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Preface

Visual analytics [277, 495] is a powerful concept that combines visualization
techniques, algorithmic approaches, interaction aspects, as well as people’s
perceptual and cognitive abilities. It follows the goal of integrating the human
observer into the data exploration process combined with automatic analyses
to derive meaning, knowledge, and insights from large datasets. The building,
refining, confirming, and rejecting of hypotheses plays a central role in all
of these knowledge generation processes. However, understanding human
behavior in this concept is a difficult task, since the human brain is a crucial
parameter in efficiently and effectively finding solutions to the data analysis
tasks at hand while the cognitive processes in the brain are still hard to
extract. To gain insights into the strengths of a visual analytics system,
user evaluation has to be considered, in the best case by recording more
dependent variables than standard error rates and completion times. Eye
tracking is a relatively novel technique for exploring the viewing behavior of
spectators in information visualization and visual analytics; however, the vast
amount of spatio-temporal data generated makes an analysis very challenging
and complicated. Hence, visual analytics can again be a powerful concept
to derive meaning from eye movement data, in particular if the data is
complemented by additional data measurements like pupil dilations, galvanic
skin responses, EEG, further physiological data, or qualitative feedback [44].
Following this principle, we can generate an iterative multiple step model
starting with general visual analytics, user evaluation including eye tracking,
and again visual analytics including algorithms, interactive visualizations,
and human users to improve visual analytics, an idea that we refer to as
dynamic visual analytics. This whole repeating process results in a cycle of
visual stimuli, evaluations with users-in-the-loop, and again visualizations of
the recorded evaluation data that might serve as visual stimuli for the next
iteration, finally leading to valuable insights and hence improvements that
would not have been possible without the application of eye tracking.

In this book, we describe the challenges and perspectives of dynamic
visual analytics, i.e. we showcase the value of eye tracking for visual analytics

xi



xii Preface

and, in addition, the value of visual analytics for eye tracking. We first
introduce visualization and visual analytics as methodologies to explore
and analyze data with the user-in-the-loop, with and without automatic
analyses and analytical reasoning. This process generates snapshots of
visualizations that support humans due to rapid pattern detection, guiding
further exploration processes like the choice of algorithmic approaches and
applied interactions, and hence helping to build, refine, accept, or reject
hypotheses.

Such visual snapshots – static or dynamic ones – serve as independent
variables in controlled and uncontrolled user evaluations. Typically, those
stimuli are varied, and dependent variables like error rate and completion
times are recorded that are statistically evaluated as a post-process. The
same could be done with eye movement data, although the evaluation is
much more challenging due to the spatio-temporal aspect of the recorded
data and the different stimuli properties. Moreover, additional data sources,
and qualitative feedback, come into play, making such an analysis even
more complicated. However, using visual analytics such heterogeneous data
can be made explorable, in the case where right visualizations, interactions,
and algorithmic approaches are chosen, also allowing human users to
collaboratively and remotely identify insights, sharing them with others, and
combining them into even stronger and more valuable insights.

Visual analytics combined with more advanced data science concepts
like machine learning can be used to analyze recorded eye tracking data,
either offline, after the recording of the data, or online, during the recording,
making it a real-time evaluation process. The insights gained from these
rapid analyses can be applied to the shown stimuli in order to improve
them or adapt to the observers’ requirements and needs. Consequently, visual
analytics plays a crucial role, since it contains many useful methods for
tackling upcoming challenges, although some are very hard and belong to
future work. We conclude this book by several open problems in the field of
eye tracking in general, but also in visual analytics applied to eye tracking
data in particular.
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1
Introduction

Data can be considered as one of the major ingredients in computer and
data science. Devices measure and algorithms simulate and produce data at
ever increasing rates, eventually bringing the term big data [42] into play.
Exploring such data with the goal of finding insights and deriving meaning
has become a challenging task due to the fact that the currently available
data science concepts cannot be efficiently applied to any kind of data
due to their heterogeneity, complexity, and size. Moreover, in many cases
human observers are not able to precisely describe what they are looking
for. Consequently, any kind of algorithm cannot be applied because of a
lack of parameter descriptions and missing details on what we are precisely
looking for.

Visualization, on the other hand, is a valuable concept although it cannot
solve the problems; however, due to the strengths of human perceptual
abilities [219, 521, 522], visualization builds a great means to guide a data
analyst and to uncover patterns or anomalies in data, even partially if the
wrong visual metaphor is initially chosen. Visualization can give hints about
something we are not aware of. Those visual insights can then be used to
more or less guide the exploration process and, hence, visualization can build
a starting point for further data exploration. This starting point helps to build
hypotheses, to confirm or reject them, and also to refine them, if interactions
are supported, allowing the visual observer to change parameters or apply
different kinds of algorithms. However, visualization gives no guarantee that
the patterns found in the data lead to the correct conclusions or confirm what
was to be expected.

Visual analytics is actually equipped with several powerful concepts like
information visualization, human–computer interaction (HCI), algorithmic
and statistical approaches, and most importantly, human users who are able to
start any kinds of supported processes with the final goal of finding insights
in a dataset. Moreover, it is not limited to an individual user but can be
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applied in a collaborative manner [441], exploiting the perceptual strengths
and the manpower of several people in stepwise consecutive processes or
even simultaneously, being in the same room or sitting at different places in
the world connected via a well-designed online visual analytics system.

Although visual analytics concepts have been and are still developed
for nearly any research field involving data, it is still an open challenge to
figure out what the best or at least a suitable configuration of such a system
is. For example, the displayed visualization techniques, the interactions to
be applied, or the algorithms to transform or project data are very vague.
This brings evaluation into play which allows us to measure and record
dependent variables from human observers while solving given tasks based
on the application of a visual analytics system. However, standard evaluation
only tells half of the truth due to the limitation to typical standard variables
like completion times and error rates, or in some cases, qualitative verbal
feedback. This evaluation data is useful, but it does not explain much about
the intervening visual and interaction processes, i.e. the fine granular visual
attention behavior that people show while solving a given task.

Eye tracking, on the other hand, is an advanced technique that supports
the recording of spatio-temporal eye movement behavior during small
instances of time, hence providing insights into the where and when
questions [306]. Moreover, extra variables can be recorded, meaning eye
tracking provides information in addition to the standard evaluation measures
like completion times and error rates. On the negative side, the setup
of eye tracking studies is typically much more complicated since it
demands a proper calibration phase to avoid errors in the recorded data.
Moreover, the recorded data is much larger and more complex than standard
evaluation measures, not only because of the finer time granularity during
the measurements, but also because the scanpaths can have different lengths
consisting of more or less fixations and the fact that the viewing behavior can
have significant differences over space and time.

A challenging issue with eye tracking data is the analysis of the
recorded data, which is important to find insights, to eventually enhance
the shown stimulus. For traditional evaluations in the form of user studies,
the recorded dependent variables are statistically evaluated, leading to
confirming or rejecting formerly stated hypotheses or research questions. This
straightforward analysis is difficult with eye tracking data since it has a spatio-
temporal nature. But, fortunately, visual analytics can be of great help to
analyze the more complex eye tracking data, again involving visualizations,
interactions, algorithms, and the human users.
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Applying eye tracking evaluation in a visual analytics system in an
iterative manner can be useful to collect eye movement behavior at different
development phases. Exploring this data step by step can lead to insights in
the form of design flaws that can be mitigated one after the other. However,
for this to work properly, vast amounts of eye movements have to be recorded
and analyzed while several tasks have to be tested. Dynamic visual analytics
describes the process of applying eye tracking to visual analytics and vice
versa, i.e. applying visual analytics to eye tracking, generating some kind of
synergy effect for both research fields.

1.1 Tasks, Hypotheses, and Human Observers

Although visual analytics can provide many insights into a dataset, this is
only possible with the support of the human users with their tasks in mind
and the strength of their perceptual abilities [219] to rapidly identify patterns.
Based on those patterns, further hypotheses can be built or already existing
ones can be refined that guide the data exploration process (see for example
Figure 1.1). This can be reflected in the chosen visualization techniques,
the interactions, but also in the algorithms that can be adapted to certain
parameter settings. Hence, the human observers play a crucial role in this
whole exploration process. Understanding the visual scanning strategies and
behavior can give suitable hints to the usefulness of a visualization technique
but also in more complex visual analytics systems, for example, in which
visualization and interaction techniques are powerful for solving certain
tasks, but also in which algorithms can be useful under certain parameter

Figure 1.1 Building, rejecting, confirming, and refining of hypotheses plays a key role in
visual analytics.
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settings. Without evaluation, in particular eye tracking, such insights would
not be possible. Moreover, the human users themselves have large differences
like experts vs. non-experts, different genders, different age groups, or even
different viewing abilities affected by color deficiency, visual acuity, or
other perceptual issues. All of these aspects must be taken into account
when evaluating recorded eye movement data, so that wrong or incomplete
conclusions are not made.

Using a visual analytics system typically involves a certain kind of
dataset that is investigated for patterns or anomalies, i.e. knowledge and
insights into the data that support the decision making. When starting a
visual analytics system, normally the users have certain tasks in mind that
they plan to solve or for which they wish to see some indication to more
efficiently search in the right direction. Such tasks could be, for example,
comparison, counting, estimation, or just general pattern finding tasks [304],
in case it is not absolutely clear what to search for. Based on each task there
are hypotheses, for example a comparison task might cause a hypothesis
stating that one stimulus region is more visually attended than another one,
derivable from the denser point cloud on a visual attention map [50]. Each
hypothesis typically falls into a certain task category, sometimes in several,
for example a comparison task might include counting tasks. In the best case,
the comparison task is supported by visual differences in one or several views
provided by the visual analytics system. Hence, the users get some support
to faster find a solution, for example, by applying interaction techniques
that filter parts of the dataset to better spot the differences. Unfortunately,
the application of the right interaction technique is not clear right from the
beginning. If a visual output of the data is seen, we might consider further
operations or views to come closer to what we are looking for, sometimes
creating novel insights that we have not expected before or that we would
have never been aware of.

The tasks in mind have a crucial impact on the visual attention
behavior [539]. This difference in the scanning strategies (see Figure 1.2)
causes problems for the analysis of the eye movement dataset, but also
brings new opportunities to investigate the recorded study data under different
aspects. One might even argue that the visual scanning behavior applied to a
certain stimulus might be used to identify the task behind it, i.e. what the
study participant, the eye tracked person, was looking for which could be
important to adapt a (graphical) user interface (UI) automatically based on
the eye movement behavior. Algorithmically identifying such a task, based on
various people’s eye movement behavior, might be a good strategy to guide
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(a) (b)

(c) (d)
Figure 1.2 Inspired by “The Unexpected Visitor”: a different kind of visual attention is
reflected in the scanpaths depending on the tasks the spectators have to solve as given in
scenarios (a), (b), (c), and (d) [539].

the appearance of a user interface for example, but for a rapid adaptation,
a real-time analysis of the eye movement data is required. However, the
scanning differences might not only be caused by the tasks at hand but also
by the experience level of a person who was eye tracked. Consequently, by
just algorithmically deciding or predicting, such a task could become error-
prone, hence a combination of visual analytics and a human observer can be
a great way to achieve more reliable results. This again shows the value of
eye tracking for visual analytics [306] but also the value of visual analytics
for eye tracking [14].

Considering the reliability of the results brings the number of eye tracked
people into play. There is no clear definition for that in the corresponding
literature, but since the recorded eye movement data is quite complex,
consisting of several data types, the number of study participants cannot be
large enough. One rule might be the more the better; however, we have to take
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into account the applied algorithms for the data analysis and the fact that the
generated visualizations can suffer from scalability issues, i.e. algorithmic as
well as visual scalability issues in this special case. Scalability means that the
algorithms and visualizations in use can handle larger growing datasets, for
example, growing in logarithmic or linear time with the increase of the data.
Typical scenarios for algorithms are much worse, for example, when they
fall into the class of NP-hard problems [195], or when they have quadratic
or cubic runtime complexity. Heuristics are required in this case, although
the generated results are no longer optimal. But, as a negative consequence
of a poorly performing algorithm, the interactive responsiveness of the visual
analytics system will also suffer. Who wants to wait for a few seconds, or even
minutes, for a clustering algorithm to produce an optimal visual grouping?
For visualization techniques we are typically confronted by the visual clutter
problem [426] if the data to be visualized grows too large. This effect is
regarded as “the state in which excess items or their disorganization leads
to a degradation of performance at some task”.

The number of the involved eye tracked people is definitely a challenge,
either for recruiting them or for analyzing their scanpaths over space and
time. In addition, it is questionable whether the eye movements can be
really used or if privacy issues and ethical reasons make an algorithmic and
visual analysis problematic or even impossible, in particular when sharing
the results with other people. This can even be a major problem if the data
is anonymized due to the fact that at least some of the unknown data might
be recovered by clever algorithms, hence also eye movement data has to be
taken with care. Eye movement data recorded in future user interfaces might
be used to manipulate people’s decisions, i.e. when we know where people
are paying visual attention to. Privacy can even be an issue for the provided
stimuli, for example if other people serve as stimuli to be watched by human
observers to explore where we pay visual attention to, with or without tasks
to be solved. For example, which regions are visually observed for certain
facial expressions might be an interesting study, including infants. Moreover,
dental imperfections might be worth investigating from a visual attention
perspective [275] (see Figure 1.3).

As a negative consequence, privacy issues lead to complications when
a large number of eye tracked people are needed with various additional
measures, for example, to get reliable, statistically significant results to
successfully adapt a scenario or improve a design flaw, even more if this has
to happen in real-time. A large number of scanpaths would be required for



1.2 Synergy Effects 7

Figure 1.3 Human faces can serve as visual stimuli in an eye tracking study, for example to
identify dental imperfections [275]. Image provided by Pawel Kasprowski.

tasks like car driving or shopping, however, smart phones might offer a way
to provide various datasets, just like in a crowdsourcing experiment.

1.2 Synergy Effects

Typically, many research fields do not exist alone, but are linked to other
well-known disciplines and take benefits from all of them to form some kind
of new research area: a synergy effect. A popular example can be seen in
the fields of biology and computer science that are partially merged into
a field known as bioinformatics [226] which has as one of its major goals
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Figure 1.4 Software functions calling each other can change over time and can create a large
and time-varying relational dataset worth investigating by a software engineer to identify bugs
or performance issues in a software system [67].

the sequencing and comparing of DNA [383]. Multiple sequence alignment
algorithms [493] have to be applied to make this happen efficiently while
expert knowledge from biology is important to interpret or classify the gained
results.

Another famous example is software visualization [149] which originated
from the fields of software engineering and information visualization.
Software developers typically create a wealth of data, in general source code
which is text-based, but also relations between software entities, named call
graphs (see Figure 1.4 for a visualization of dynamic call graphs). The data
is mostly time-varying and can become large and complex, in particular,
if data mining is applied to generate rules based on developer activities in
the code [74]. Hence, information visualization is important to gain insights
from the software data or the transformed data that appears as association
or sequence rules. Visualization experts and software engineers work side-
by-side to develop useful techniques that support the software development
process which saves time and money.

There are plenty of such examples. Visual analytics can also be regarded
as a combination of several fields like visualization, human–computer
interaction, data management, perception, or algorithmics just to mention the
most important ones. But, positively, visual analytics can be further combined
with usability testing, a field that involves human users with their strengths
and weaknesses to perform certain tasks. These tasks can be done more or less
efficiently depending on a variety of factors, with the visual analytics system
in first place. However, the system is too complex to gain insights into visual
attention behavior, the differences between several system states, and which



1.2 Synergy Effects 9

Figure 1.5 An illustration of the synergy effect. Standard/traditional user studies or eye
tracking studies are conducted while the recorded data is statistically evaluated or explored
by visual analytics concepts.

states cause problems or have design flaws, algorithmically, interactively,
visually, as well as perceptually. Consequently, eye tracking is a powerful
concept that builds another synergy effect with the goal of precisely looking
into the viewing behavior over space and time while responding to a given
task at hand. In our case the synergy effect goes in a bidirectional way:
visual analytics profits from eye tracking [306] while eye tracking profits
from visual analytics [14]. Figure 1.5 illustrates the data being recorded
in traditional user studies in contrast to eye tracking studies as well as the
evaluation, also by means of visual analytics concepts.

The general idea behind the extension of standard user studies to eye
tracking comes from the fact that traditional studies just record an aggregated
value for the task completion times. With these it is possible to compare
two scenarios in a comparative user study, but it is unclear what happened
“in between”. For example, the users might have the same completion time
on average for both scenarios, but it is unclear if the visual attention was a
different one. One group of users might have started to solve the given task at
a different region in the stimulus than the other group. In general, the viewing
behavior might differ between participant groups, over space and time which
can provide many more insights into finding design flaws in the stimulus, but
on the other hand creates a massive challenge for the data analysis, and at
exactly this point we can make use of visual analytics.

A user study, controlled or uncontrolled, with a few users or a
crowdsourcing experiment, with laymen or domain experts, typically involves
stimuli and tasks. The stimuli can be static like a poster or diagram, or
they can be dynamic like an interactive user interface, a video, or a real-
life scene. Visual analytics is some kind of interactive dynamic stimulus
while the users try to solve given tasks and while doing that, they change
the views, i.e. the dynamic stimulus to some extent. These scenarios can
be regarded as the independent variables in the study for which we explore
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Figure 1.6 Eye tracking data in the visualization pipeline.

variations and their impact on measurements, i.e. the dependent variables
in the study. The dependent variables can be error rates, completion times,
emotions, qualitative feedback, and many more. If eye tracking is applied
in the user study we get additional measurements in the form of the spatio-
temporal eye movements, but also physiological data, facial expressions, and
an endless list of extra measurements depending on what we are investigating
in the study. Finally, the recorded data, no matter what type it is, has to be
analyzed, otherwise the recorded data would uselessly sleep somewhere in a
database or on a text file (see Figure 1.6 for eye tracking data incorporated
in a visualization pipeline). The analysis tasks play a crucial role in choosing
which algorithms, parameters, visualizations, and interactions are used, and
in which order.

This whole problem gets really challenging if a real-time analysis of the
eye movement data has to be done, for example, by comparing the currently
recorded eye movement data with a huge database of existing data. Then
the new data could be classified based on the existing one and the stimulus
could be adapted dynamically. In such a scenario a database might store data
for different scenarios, i.e. the independent variables, and a clever algorithm
searches for the best option in which a new eye movement recording might
fall in, i.e. the dependent variables. In such a case we are more interested in
a fast algorithmic solution; the visual analytics approach is more suited for
a post-processing of the data, i.e. a situation in which the data analyst has
enough time to explore the data. However, visual analytics could be used for
the already recorded data, to prepare the data to allow better predictions in
the real-time scenario.

In addition, research fields like cognitive science and psychology build
synergy effects with the field of eye tracking [305]. Figure 1.7 illustrates some
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Figure 1.7 Cognitive science and psychology are also important research fields to improve
the design of eye tracking studies and the interpretation of the recorded data [305].

of the major concepts that are most powerful for detecting valuable claims
about human behavior applied to provided stimuli, static or dynamic ones, in
case they are combined in a meaningful way. This way, tasks solved in an
eye tracking study are not only dependent on the shown stimulus but also on
important aspects like cognitive load [512] in the cognitive processes [268]
or the working memory [386] which is typically not seen in the recorded eye
movement data. The so-called eye–mind hypothesis [269] plays a role in this
context, stating that people visually fixate what they process, having its origin
in reading research [268]. Also machine learning, statistics, and data science
play a crucial role in finding insights, patterns, correlations, and knowledge in
the eye tracking data efficiently, also for classifying scanpaths or predicting
visual behavior based on existing data.

1.3 Dynamic Visual Analytics

Eye tracking could be used to enhance or adapt the shown visual stimulus,
either by changing the visual content after the eye tracking data has been
recorded, as a post process [14], or in real-time [395]. Both approaches have
in common that they make the stimulus, with static or dynamic content, a
dynamically changing visual representation in a way that it is modified after
each iteration, either by inspecting the data in a post process or very quickly,
i.e. in real-time (see Figure 1.8). The real-time approach can be applied
to a visual analytics system equipped with an integrated eye tracker, with
algorithms running in the background analyzing the recorded eye tracking
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Figure 1.8 Dynamic visual analytics describes the process of evaluating a visual analytics
stimulus by either a post process analysis or a real-time analysis. In a post process analysis,
a second visual analytics system can be used to analyze the eye tracking data; in a real-time
analysis, efficient algorithms must be used.

data for patterns and changing the visual content when required based on the
output of the efficient algorithms. In a second concept, visual analytics can be
used to analyze the data recorded in an eye tracking experiment with another
visual analytics system as a visual stimulus [46]. This concept typically does
not work in real-time due to the fact that the human user is involved in visual
analytics and the eye tracking data has to be analyzed by a combination
of interactive visualizations, algorithms, and the human observers to build
hypotheses about the recognized visual patterns. The visual content of the
static stimulus or a temporal snapshot of the dynamic stimulus is important
to guide the observer, also leading to different applications of interaction
techniques or varying parameter settings for the applied algorithms or to using
completely different classes and variations of supported algorithms.

Exploring the recorded eye tracking data using a second visual analytics
system allows insights into the data, but it also gives us information about
how well the second visual analytics system works as some kind of user
evaluation. This information, on the other hand, can be used to find design
flaws in the second system while the actual task was to adapt or improve
the first visual analytics system, i.e. the original dynamic stimulus in the
eye tracking study. Creating such a dynamic visual analytics system sounds
like an easy task to tackle, however, it involves several challenges to be
solved. For example, a visual analytics system can also be equipped with
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(a) (b)
Figure 1.9 Two types of interactive stimuli: (a) a user interface of a ticket machine and
(b) a more complex user interface of a visual analytics system. Image provided by Bram
Cappers [106].

gaze-based interaction, combined with several more input media like
voice [510], mouse [532], keyboard [114], touch [284], gestures [110],
and so on. Such extra interaction media build a source for additionally
recorded data [45] worth investigating and incorporating into the whole
evaluation process. Facial expressions [373] might also be recorded to extract
information about the human user in front of the visual stimulus. The user
might be young or old, male or female, wear glasses or contact lenses, be
laughing, smiling, or angry, and the like. All these variations of aspects allow
for a more reliable analysis of the data and build a means to hopefully adapt
the shown system or at least identify design flaws, either as a post process
or in real-time. But negatively, they also increase the burden of building an
efficient and effective eye tracking data analysis tool.

A concrete example for the post process model, but with a simpler visual
stimulus as a traditional visual analytics system would be the user interface
of a ticket machine (see Figure 1.9(a)). If we imagine that hundreds or
thousands of people use this interface to buy a ticket for their favorite train
connection every day we might have a large database of scanpaths if the
ticket machine had an integrated eye tracking device. If it was equipped with
gaze-based interaction we would have even more additional data. The ticket
machine designers might be interested in the eye movements of the people
to investigate whether their user interface is designed in a way to provide
understandable and easy-to-apply functions to get the requested service, or
if several design flaws have occurred, leading to dissatisfied passengers due
to the bad service. For this scenario the recorded eye movement data can
be analyzed in a post process by using a visual analytics system that shows
typical user behavior patterns. A user interface for a ticket machine is much
simpler than for a visual analytics system (see Figure 1.9(b)) since it is
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equipped with less functionality, fewer algorithmic approaches, less visual
output, and fewer complex interactions; however, it requires a substantial
number of analyses, algorithmic and visual, to understand the data patterns
and correlations.

In a corresponding real-time scenario of a ticket machine exploiting
eye movement behavior, people’s scanpaths must be permanently recorded.
These scanpaths have to be compared to existing and previously recorded
eye movement data as well as additional data sources with extra information.
Efficient algorithms run in the background and analyze the data of the new
eye tracked persons. One consequence might be that the user behavior can be
classified and mapped to a group of people that show similar behavior. This
class of people’s visual attention behavior is used to adapt the user interface
to a certain appearance with only the required information to solve the task,
for example buying a ticket for a certain person group (adult or infant). The
adapted appearance of the user interface depends on several factors, which is
a challenging task. We argue that such a real-time approach might be useful
but successfully building such a system is a long way off, primarily based on
eye movement behavior.

A visual analytics system is typically much more complex than a user
interface for a ticket machine. Although the ticket machine already provides
some kind of user interaction, typically based on touch, the user interface
is designed in a more task-driven way, focusing on providing a specific
service for efficiently buying one or more tickets. In visual analytics we
are offered a complex graphical user interface (GUI) consisting of several
interactively linked views, so-called multiple coordinated views [374] (see
Figure 1.10). Algorithms run in the background and the user adapts the
parameters of those and decides which visualizations in which layouts and
settings to show. Visual analytics systems have a variety of functionality,
supporting hypothesis building with the goal of allowing analytical reasoning.
A visual analytics system can be used by several people simultaneously, in
the same room, but also remotely, located all over the world in a collaborative
interaction manner. Even more, the display medium can be small-, medium-,
or large-sized and the interaction styles can be manifold, ranging from
touch on mobile phones, gestures in front of a high-resolution powerwall
display, or just mouse and keyboard interactions with a standard computer
monitor. Recording eye tracking data of several people is a suitable means
of understanding visual attention behavior to improve the visual analytics
system; however, typically only a few people’s scanpaths can be recorded
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Figure 1.10 Coordinating multiple views provides several perspectives on the data under
exploration. In this case we see a visual analytics tool for analyzing eye movement data from
video stimuli [308]. Image provided by Kuno Kurzhals.

compared to the ticket machine scenario in which thousands of scanpaths can
be recorded easily in a short period of time.

Analyzing the recorded eye movement data in the visual analytics
scenario turns out to be a complicated task due to the fact that it has a
spatio-temporal nature, i.e. changing over space and time. Moreover, the
displayed stimulus can also be time-varying, for example if videos have to
be watched in a video surveillance system [234, 308], in an animation [505],
or in an interactive stimulus like in a visual analytics system. Videos and
animations are not that complicated as a visual analytics system because they
only provide a sequence of frames, i.e. a linear sequence of static stimuli. In
a visual analytics system, the users can decide which static stimulus to watch
next, i.e. if we interpret the static stimuli as snapshots of the system we reach
a situation in which the users decide from which snapshot to move to another
one. This is similar to a graph structure. The many possible snapshots create
a huge graph with eye movement data for every graph node [68]. However,
a post process of such eye movement data is still simpler than the real-time
scenario for which we also require a lot of users of a visual analytics system
which we just do not have these days, but it may be possible in the future. The
analysis of the eye tracking data for a post process can be done by another
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visual analytics system that has to be adapted to the situation at hand in an
iterative way.

To reach the real-time scenario we also need a visual analytics system
that contains an integrated eye tracking device, transmitting the recorded data
to a server on which the efficient analyses run. Efficiency is very important
in this scenario to keep up with the flood of incoming data that has to be
processed and the adaptations to the user interface that have to be made.
Important approaches from data science include machine learning concepts as
well as data mining, in particular to learn from the data already generated and
to use that to classify or predict new results. Data mining could particularly
be applied to generate rules between people, user interface components, and
events, attached with a certain occurrence probability. In the case where the
data is stored on a remote server, aspects like a reliable and stable internet
connection also have to be considered. Moreover, privacy issues might play a
crucial role, depending on the country in which the data is recorded.

The remainder of this book is as follows: in Chapter 1 we introduce the
general research questions and which stages are required to come closer to
solutions. Chapter 2 discusses typical visualization techniques in information
visualization as well as visual variables to provide a spectrum for independent
variables for user studies and eye tracking experiments. Chapter 3 extends
this idea by additional interaction techniques and algorithms with the goal
of creating a visual analytics system, including the human observer, to gain
insight and to find knowledge in the data. In Chapter 4 we explain traditional
evaluation methods in information visualization and visual analytics that are
extended by eye tracking in Chapter 5. The analysis and visualization of the
recorded eye tracking data is described in Chapter 6 and we conclude the
book with an outlook on open gaps, challenges, and further difficulties in
Chapter 7.



2
Visualization

Before describing visual analytics it is important to mention the most
important concepts in the field of visualization [182, 513]. The stimuli
that we explore in an eye tracking study are initially of a visual form;
the interactions and algorithms are second, but are equally important. The
representation of data in a graphical form has been a focus for many years
now, producing a variety of different visual encodings based on a large
repertoire of visual metaphors. Information visualization is the scientific field
that deals with studies and researches the visual representation of abstract
data [108]. This data can come in many forms like numerical or non-
numerical data. On the other hand, scientific visualization deals more with
the visual depiction of spatial data. This difference in the definitions of both
subfields of visualization sometimes causes confusion [364]. However, both
fields have in common that a suitable visual representation for data is required
to support an observer to detect patterns in data, no matter if the data is
abstract or spatial. The common goals in visualization are the presentation
of results of analyses, or already existing non-transformed data, to a larger
audience or readership, support for confirming formerly built hypotheses,
or the means to explore a dataset visually and to interactively search for
data patterns by first transforming the whole pattern-including dataset into
a suitable visual form and by re-mapping those identified visual patterns to
corresponding data patterns with the goal of rapidly detecting them in a larger
dataset.

In particular, the research field of visualization combines other fields
like computer science, computer graphics, visual design, human–computer
interaction, as well as psychology, to mention the most important ones.
Typical areas in which visualization is useful and for which it can bring
a lot of benefits are software engineering, biology, bioinformatics, social
networking, sports, geography, eye tracking, and many more (see Figure 2.1
for examples). No matter which area it focuses on, the human eye plays
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(a) (b)
Figure 2.1 (a) Part of a visualization for dynamic call graphs [75]. (b) A hierarchy
visualization based on the space-reclaiming icicle plots [509].

a crucial role in the rapid pattern finding process which typically makes
visualization a suitable concept, in many cases performing better than if pure
algorithmic approaches are applied that require an exact definition of the input
parameters. This means that visualization can be helpful in situations in which
the data analysis problem cannot be defined in enough detail. The human user
decides which parts of the data are interesting and require further attention,
given that the chosen visualization is an adequate one.

Typically, the human observer is not left alone with the static diagram,
but interaction techniques [476, 544] awaken the otherwise static visual
representation, providing us with several other perspectives on the data, even
in multiple coordinated views [374], linking various views and giving us
the full potential a visualization can have. All this can only be achieved by
good design of the whole graphical user interface [461] in which the linked
views are laid out as well as the design, layout, and arrangement of the visual
elements in each of the visualization techniques provided in each individual
view. Hence, it is important to have a good understanding of and some
experience in visualization before starting to develop advanced visualization
tools. But it is also crucial to have knowledge about the concepts of computer
and data science, like powerful algorithms that transform or project data into
a pattern-preserving and usable form. The efficiency and effectiveness of the
incorporated algorithms are important to achieve responsive interactions that
allow the views to be adapted and to rapidly inspect the data from different
visual perspectives.

Performance evaluation explores how fast the individual algorithms are
and whether certain algorithmic scalability issues might occur that make
real-time interactions hard to be applied [195]. In this case a better data
preprocessing and data handling stage might be required to first bring the
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data into a form that allows efficient operations, making the interactive
visualization tool acceptably fast. User evaluation [397], in particular, if
many users are involved like in crowdsourcing experiments [52], with or
without eye tracking, can provide further insights into the usefulness of a
visualization tool, i.e. if there are design flaws that hinder spectators from
quickly getting insights into the data. For example, a chosen visualization
technique might be more difficult to understand than another equivalent one.
This has already been evaluated for simple graphical representations [124].
Moreover, the arrangement or layout of visual components or views in a
graphical user interface might not be perfectly chosen for the tasks at hand.
Even visual variables like color coding or font sizes might cause problems in
the data exploration process, which can be detected by user studies; however,
the parameter space is so huge that not all aspects can be studied in such
experiments, even the simplest ones. Positively, this makes user evaluation
a research topic on its own with all its facets and variations. Eye tracking
brings an even bigger challenge into play since it produces spatio-temporal
data that is hard to analyze for patterns focusing on improving visual designs.
But, on the other hand, it provides a great opportunity to dig deeper into
visual attention behavior and hopefully combining eye tracking successfully
with cognitive psychology [305] one day, to tap the full potential of user
evaluation.

2.1 Motivating Examples

Data is the core ingredient of information visualization as we know it
as a means to find patterns and correlations, and to derive meaning and
knowledge, for example to understand a list of statistical values or the
relationships between a group of people. The human users with their tasks
in mind are responsible for identifying patterns and correlations, but also
the way the visualization is presented, i.e. the visual metaphor or the visual
encoding with all of its visual variables [39] plays a crucial role in the
usefulness of a visualization technique. The list of visual variables has been
extended over the years and also simple evaluations for ordering them based
on a certain task have been conducted and the results presented [344].

To start with the major ingredient of visualization, there is, however, a
certain difference between data and information. Data needs some kind of
process to turn the raw, unorganized, and unstructured entities into something
that is understandable and organized according to specific (mostly user-
defined) requirements, maybe equipped with additional meaning in a certain
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context, finally transforming data into information. Clearly understanding
the difference between data and information is important for the field of
visualization, in particular information visualization since the major principle
in information visualization is to allow information to be derived from
data [476]. An important aspect of information visualization is also the
communication of information, i.e. after having seen a dataset in a visual
form we should be able to discuss the visual appearance with other people.
This means we try to share the insights in a different form than the raw data,
in a language that the conversation partners understand. The original raw data
is first interpreted and a new kind of pattern is derived that is understandable
by all people who speak the same language of visualization.

As an example for raw data we might be confronted with a table of values
as in Table 2.1. Reading this raw data does not help us identify any pattern.
But if we know the general context from which the data stems and interpret it
as 2D coordinates, we might try to plot the 2D points and connect subsequent
ones from the table by a line while we also draw a line between the last one
and the first one. This transforms the raw data into a visual form that can
be seen in Figure 2.2. What we did here is make use of a visual variable
that encodes the data property of consecutive coordinates ordered into a line-
based diagram based on the visual variable of connectedness by a direct
linking with lines. Moreover, it visually transforms the coordinate values
into positions in space, in this case x- and y-positions in a given coordinate
system. In summary, we used some kind of visual transformation, i.e. visual
variables like connectedness and position. Everybody who is familiar with
geometric objects would interpret this pattern as a pentagon shape. This
pattern could not be detected from the raw coordinates, even if we tried very
hard. It may be argued that the lines are not needed to interpret the coordinate
sequence as a pentagon. However, if the coordinate list gets larger and larger,
the lines are definitely needed because our brain cannot derive a shape
immediately, it needs some help by explicitly drawn lines (see Figure 2.3).

Table 2.1 A table of raw data consisting of five subsequent 2D coordinates.
Number x y

1 15 47
2 38 46
3 47 25
4 27 6
5 6 25
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Figure 2.2 Connecting the list of 2D coordinates from Table 2.1 by straight lines in order
transforms the raw data into a visual form, in this case a pentagon shape.

Figure 2.3 The shape of a pentagon as in Figure 2.2 can be drawn with just five points and
five connecting lines, but the shape of a Christmas tree requires many more points. There are
many more complex pattern examples in visualization.

This more complex example, consisting of many more 2D coordinates, would
create some kind of Christmas tree when connected by straight lines in the
right order, given the fact that the observer knows this visual pattern, being
able to map it to a pattern already seen before based on experience. More
complex examples are sometimes provided in newspapers and magazines
where the goal is to connect a point cloud by straight lines in the right order
(indicated by small numbers, see Figure 2.4) while the task is to interpret the
resulting shape.
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Figure 2.4 Connect-the-dots is a popular game in newspapers and magazines. The human
brain needs lines connecting the dots to successfully interpret the shape.

The created shapes we saw here were just simple data examples consisting
of a handful of points, easily manageable by hand with pencil and paper.
Visualization these days, supported by a computer, has the benefit that it can
visually encode hundreds, thousands, or even millions of data points very
exactly in a short space of time, in the best case reflecting hidden patterns
in the data. In addition, if the visualization of all the data points at once is
not possible due to space limitations or a lot of overdraw and visual clutter,
aggregation or projection methods can be applied to reduce the amount of
data while preserving most of the hidden patterns, but at the cost of a loss of
information.

If we have never seen the pattern of a pentagon or a Christmas tree we
are not able to interpret it, or communicate it to someone else because we
have no common term for it. Visualization is hence based on a common
language of known patterns, just like letters that form words which form
sentences and, finally, an entire story, but the repertoire of visual patterns can
easily be extended (the number of letters is fixed). However, the visual pattern
repertoire must be extended in everybody’s pattern repertoire, otherwise we
cannot easily discuss the findings and communicate the insights. Nearly any
kind of shape can be generated from a list of 2D coordinates and it depends
on the repertoire of known patterns as to which ones can be successfully
interpreted and are useful for a suitable communicative visualization.

There is a larger list of visual variables that can be used to build any kind
of complex visual representations of data. A visual variable is a container for
a certain visual value that can change, but that still has the same type as all
the values fitting in the same visual variable. A visual variable describes to
which visual elements of the same type a data value is mapped. An example
of a visual variable is the color hue. The hue can be changed but it is still a
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Figure 2.5 Visual variables are fundamental ways to distinguish visualizations. Jacques
Bertin [37] described seven such variables and denoted them as retinal variables.

hue. Examples for visual variables are illustrated in Figure 2.5 and are color,
size, position, shape, value, orientation, arrangement, texture, and several
more [39, 344]. For color we can have a finer categorization into hue, value, or
saturation for example. There are also some more modern ones like crispness,
resolution, or transparency [342].

Before starting to design and implement complex visualizations, it is
important to understand the fundamentals or the basic rules in visualization
first. Two pioneers in this domain were William S. Cleveland and Robert
McGill who tried to figure out which kinds of visuals lead to good
performances in terms of error rates. In their experiments [124], they showed
that some visual variables are better than others for a given task in terms of
performance, like error rates. However, they were not applying eye tracking
to record the visual attention paid to their stimuli. The spatio-temporal eye
movement data would have given them many more insights, in which case
they would have been able to analyze it. Eye tracking devices and also
visual analytics were either not that well researched or even did not exist
as they are known today in their advanced forms. The steady progress in
hardware technologies and software engineering has led to better, faster, and
more efficient solutions. However, what they found out with traditional user
experiments was the fact that the visual variable position in a common scale
leads to better user performance than using the angle for the task of judging
the size of a data point for example.

This effect appears in the very common and simple visualization
techniques like bar charts and pie charts, which were used as polar area
diagrams by Florence Nightingale during the Crimean War (1853–1856) to
show deaths in British military hospitals [130], although it is said that they
were invented much earlier by William Playfair [188] (see Figure 2.6). Pie
charts are very common representations in newspapers or magazines for the
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(a) (b)
Figure 2.6 The task of judging and comparing sizes appears to be easier and more reliable
with fewer errors in bar charts (b) than in pie charts (a). Visual variables are the cause of this
effect, which are positions in a common scale in bar charts and angles in pie charts.

everyday visualization consumer, i.e. the non-expert in visualization, but bar
charts of the same data lead to much better performance for the task of
judging the different sizes of the represented values [102]. For example, the
result of an election and the number of votes is typically shown as a pie chart,
with color coding indicating the different parties and the visual variable angle
encoding the percentage of votes based on the total number of votes in the
election. In a bar chart the color is used for the same encoding for the parties,
but the data variable number of votes is encoded in the visual variable position
in common scale instead, which makes the tasks of judging the values and
comparing them much easier (fewer error rates and faster responses). This
slight change in the choice of visual variables shows that we can obtain a
large effect in user performance, even for the simplest diagram types.

The real power of a visualization technique can be recognized if we
rely on the visual variable position in a common scale for representing two
quantitative values, i.e. two variables in the data also called bivariate data.
The resulting visualization technique is referred to as a scatter plot [189] if
each of the variables is placed on one axis in a Cartesian coordinate system.
Those plots are beneficial since they are easy to create, without complex
mathematical background and programming experience, and reflect a lot
of visual patterns that can hint at positive and/or negative correlations in
bivariate data (data consisting of two variables for each object).

If we consider an example of four sets of 2D values (see Table 2.2) and
do some statistics to get derived values, one might get the impression that
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Table 2.2 Anscombe’s quartet [15] is based on four sets of 2D coordinates.
x y x y x y x y

4.0 4.26 4.0 3.10 4.0 5.39 8.0 5.25
5.0 5.68 5.0 4.74 5.0 5.73 8.0 5.56
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.76
7.0 4.82 7.0 7.26 7.0 6.42 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 6.89
9.0 8.81 9.0 8.77 9.0 7.11 8.0 7.04

10.0 8.04 10.0 9.14 10.0 7.46 8.0 7.71
11.0 8.33 11.0 9.26 11.0 7.81 8.0 7.91
12.0 10.84 12.0 9.13 12.0 8.15 8.0 8.47
13.0 7.58 13.0 8.74 13.0 12.74 8.0 8.84
14.0 9.96 14.0 8.10 14.0 8.84 19.0 12.50

(a) (b) (c) (d)
Figure 2.7 Visually depicting the four sets of 2D values reflects the real differences in the
four example datasets. Statistics is a powerful concept but, due to aggregation effects, not all
insights in the data variations can be found.

all of the value lists are the same, or at least similar. The benefit of the
derived values is that we get rid of the large number of values by aggregating
them into one number; however, aggregation is always prone to data loss.
Statistics is a powerful concept, but only applying statistical approaches to
detect insights into a dataset is a process only showing half of the truth and
can lead to various misinterpretations of the underlying data.

Representing the values from Table 2.2 in 2D scatterplots and inspecting
their distributions, i.e. visual patterns, reveals something totally different than
reflected by the pure statistics. The visual depiction of this simple bivariate
dataset provides more insights than the statistical summaries into individual
aggregated values (see Figure 2.7). This does not mean that statistics is
useless or error-prone, but a look at a corresponding visualization can help
to see the data under a different light, maybe leading to more detail and more
fine-granular hypotheses. This effect was studied by Anscombe [15], and is
known as the Anscombe quartet.

Most of the data situations do not allow such a simple depiction
as a scatterplot, but rely on more complex visual scenarios, inspired by
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well-known concepts (maybe visual patterns in nature). This mapping from
a dataset scenario to a visual encoding is oftentimes referred to as a visual
metaphor which can be understood as a mapping of data to a visual concept
where the data points are represented as graphical primitives. A visual
metaphor is based on familiar symbols in order to make it understandable.
It represents some kind of analogy to something well known from another
field.

Examples for visual metaphors are trees, i.e. the depiction of hierarchical
data into naturally growing tree shapes following a parent–child relationship.
Moreover, a word cloud puts words with their occurrence frequencies shown
as varying font sizes in groups of varying proximity. Also computer science
makes use of various visual metaphors, for example when introducing the
concept of Turing machines to students, which is composed of bands for
manipulating symbols based on a set of rules. Everybody who has studied
computer science has this picture in mind of a machine painted on a
blackboard or projected onto a wall, although the mathematical computations
have nothing to do with a machine.

To conclude this section, there are various examples of visualizations,
diagrams, plots, charts, or whatever we would like to call them. If the
reader needs inspiration for static visualizations, a Google image search is
recommended since a picture is worth a thousand words. Typing in the term
“visual” provides many results which, in case one is already familiar with
a small repertoire of visualization candidates, build a basis for further ideas.
Scrolling down the endless list of visual depictions while trying to understand
which visual variables are chosen for a data representation might lead to
the final goal of either finding the candidate one is looking for or getting
completely new ideas for the dataset under investigation and the tasks at hand.

Dynamic, i.e. interactive visualizations, can also be found using the image
search if we search for animated gifs for example. To get a longer description
and explanations of the variety of features in an interactive visualization
tool, YouTube is recommended while reading the endless list of academic
research papers in the field of visualization, which can be supported by the
DBLP, the Digital Bibliography & Library project, hosted at the University
of Trier [327]. The DBLP contains, while writing this book, more than 5
million papers and articles from the fields of computer and data science, while
filtering for the word “visual” still results in more than 85,000 hits [90, 92],
each being its own small subtopic in the visualization domain with its various
conferences and journals bridging the communities in those subdomains and
trying to create synergy effects. Visualization has the great benefit that it can
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be applied to nearly any kind of discipline that produces, transforms, or deals
with data, which at some point wants a visual depiction of it [513].

The research field of information visualization is understood as the use
of computer-supported, interactive, visual representations of abstract data
to amplify cognition [108]. Information visualizations attempt to efficiently
map data variables onto visual dimensions in order to create graphic
representations [198]. Information visualization is the communication of
abstract data through the use of interactive visual interfaces [279]. The
purpose of information visualization is to amplify cognitive performance, not
just create interesting pictures. Information visualizations should do for the
mind what automobiles do for the feet [107].

The previous definitions are just a short list of a larger repertoire, all
expressing similar aspects, mostly amplifying cognition in the best case to
support the pattern recognition process in large data, in the case that this data
is efficiently mapped to visual variables to allow interpretations to reliably
solve the tasks at hand or build, refine, confirm, or reject hypotheses.

Over the years the field of visualization has split into several subfields,
such as software visualization, graph visualization, biovisualization and so
on, but also more general overlapping areas such as information visualization
and scientific visualization. No matter which subfield we are in, there is
always overlap and synergy effects with other, even less related subfields
and research disciplines. Mostly, the difference depends on the data to be
visualized, but also on the domain from which it stems. It is said that
scientific visualization deals more with continuous and spatial data whereas
information visualization researches abstract, non-spatial, and discrete data,
but this definition always leads to misunderstandings and causes trouble.

2.2 Historical Background

Visualization goes back in history to long before the invention of the
computer [188]. For many years, humans tried to visually mark, remember, or
disseminate information from scenes, daily environments and circumstances,
or rituals for the next generations. This visual language was understandable
in a quick manner, in some cases warning people about something, a visual
language whose visual intention is still incorporated today in traffic signs for
example. Drawing by hand was a time-consuming process and errors could
not be corrected in an easy and fast way as would be possible in today’s
computer programs or in a graphical user interface supporting drawing and
painting, but once the visual scenes were created they could be instances of
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the famous saying “a picture is worth a thousand words” [399], which first
appeared in a 1911 newspaper article [57].

However, although the creation of visualizations is definitely possible
without devices such as the computer [37, 39], it would probably take much
more time to generate them, in particular if the underlying dataset consists of
a variety of data entities. Moreover, the visual result will be static, meaning
it cannot be modified in a fraction of a second, keeping pace with the
perceptual abilities of the human brain to rapidly detect patterns. In particular,
many of those visual patterns, watched from various perspectives make a
visualization tool a powerful concept to keep up with the vast amounts of data
generated in these days. Without the use of the computer combined with the
experience and knowledge of human users, much of the data would hide most
of the patterns and hence the informational insights that are contained in it.
Consequently, the visualizations designed and sketched before the invention
of the computer could not tap the full potential for data visualization of the
big data era that we find today, consisting of various data sources, being static
or changing over time.

In this section we will focus on the history of visualization, giving a brief
overview of how the field has developed over time to get a rough impression
of why the application of eye tracking to visual concepts is very important but
also challenging due to the fact that many more visual variables are combined,
while interactions allow us to quickly switch between them based on users’
demands.

2.2.1 Early Forms of Visualizations

We will start the journey of visualization history with famous cave paintings.
Those visual depictions can typically be found on cave walls and ceilings,
mostly being of a prehistoric origin. One of the earliest of such paintings dates
back to approximately 40,000 years ago, the Aurignacian period in Europe,
found in the El Castillo cave in Cantabria in Spain [125]. Figure 2.8 gives an
impression of what typical animal drawings in such cave paintings might look
like, here inspired by a painting from a cave close to Santander in Spain. The
spectators can detect by themselves which scene it illustrates visually since
the scene reflects some kind of natural circumstances. There are even older
ones, typically illustrating hunting scenes, depicting large and wild animals
like horses, deer, or bison, while abstract patterns showing human hand-like
shapes or time-relevant weapons give a visual impression that those animals
might get caught by humans.
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Figure 2.8 The outline of an animal found in the Cave of Altamira near Santander in Spain,
also known as the Sistine Chapel of the cave painting.

In these prehistoric times, the human eye also played a crucial role, for
example, when rapidly detecting a predator hunting for food. The strength of
human sight was one key to survival in the wild, for example during hunting
it was important to rapidly distinguish the berries in a bush from the eyes of
a wild animal like a tiger with food in mind. Touch, hearing, smell, and taste
were also important in these times but no sense has a higher bandwidth than
sight transmitting information faster than any other sense to the brain to react
on situations that might possibly have had a bad impact on a human life.

Apart from inspecting natural scenes, the human eye was also important
for interpreting behavior among humans, by seeing where a gaze was directed
one could guess the mood of another human being. In this context, the so-
called cooperative eye hypothesis [290] was researched as a means to describe
visible characteristics to facilitate humans when following another human’s
gazes while they communicate simultaneously, or while they collaboratively
solve certain tasks. The research in this field was guided by scientists
from the Max Planck Institute for Evolutionary Anthropology in Germany
investigating effects of head and eye movements on gaze direction changes,
comparing humans and great apes.

In particular, for the cave paintings, some theories have been developed
over the years. One of them regards the paintings as a means of



30 Visualization

communicating with others, or as religious, mostly following a ceremonial
purpose. Some other theories describe the paintings rather as decorations of
a living place, some kind of art, but due to the fact that such caves are not
easily reachable those theories are quite vague. However, the paintings in
these early days carry some kind of visual meaning that can be interpreted
and understood by those who are familiar with the same visual language.
Consequently, they can be classified as some early forms of visualization,
but still far away from those diagrams, charts, plots, or graphics we can
generate today in a fraction of a second with a computer program, graphically
supporting fields like science or art.

2.2.2 The Age of Cartographic Maps

The prehistoric depictions can even be classified as data visualizations
although it was first assumed that they describe natural scenes or art, instead
of more data-related aspects as we know them today. However, it is said that
the earliest known data visualizations stem from the field of cartography [188]
and those have also been found in cave paintings. Hence, some of those map-,
route-, or geography-related prehistoric depictions could also be considered
to be real data visualizations, i.e. the first ones of their kind. Some recent
work [388] has shown that several of the maps found describe hunting areas
or maps of the stars.

To successfully create visual depictions, the designers in those days
had to transform the geographic positions, their connections, as well as
extra attributes attached to the positions and the routes, into a graphical
representation by using visual variables and by focusing on some kind of
visual metaphor, in this case a map metaphor as we would call it today,
mirroring the spatial information in the data as naturally as possible. Whether
the designed maps were useful and interpretable was dependent on the
success the hunters had after having observed them, hence some kind of
user evaluation has also been conducted, without explicitly taking that into
account, to enhance the maps.

For example, it is known that at around 6300–6100 BCE people sketched
map-like plans, like the one containing buildings and a volcano that was
found in Anatolia [442]. Moreover, the Egyptians created maps on papyrus
to better navigate and travel in their empire, and to battle for winning new
territories [170]. Those practical ideas supported military and administrative
challenges as a suitable way to have an overview of the economy and finance
in certain regions under their command. The major ideas in cartography and
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(a) (b)
Figure 2.9 Maps have been used in a variety of forms, including various visual variables:
(a) a geographic map annotated with a grid-based overlay to faster detect the label information
and the location of a place [371]. (b) Data from other application domains with a more abstract
character have been visually encoded into maps, like trade relations [243]. Figure provided by
Stephen Kobourov.

geography were developed by the Greeks, including scientists like Ptolemy,
Herodotus, or Eratosthenes. This progress in geographic mapping, including
visual variables like area, position, or shape to visually express data aspects
like geographic extents, locations, or forms, for example, produced the
ingredients that are required to create an understandable geographic map as
we know it today [342, 343] (see Figure 2.9(a)).

The early maps were still far away from the visualization concepts
used today but many of the visual variables applied in these ancient times
are still being used, hence they have been easily interpreted due to the
experience of users creating or reading them over many centuries. However,
these developments led to the maps we use in the 21st century consisting
of regions with boundaries as well as road networks connecting the major
places in these regions. A major difference to the ancient maps is the fact
that we can generate a map on demand, in a fraction of a second based on a
huge dataset, with a certain spatial granularity with dynamic non-overlapping
labels supporting interactions like zooming and panning [544]. Prominent
examples are Google Maps [546] or Google Earth [537] that make the data
quickly accessible and support various tasks in this context while providing
the means to interact with geographic data from nearly the whole world based
on satellite imagery, meaning we can forget the existence of devices like
compasses and sextants.

The map metaphor is, by the way, also used today not only for geographic
data, but also for abstract data like social networks or trade relations as
some kind of overview representation [243] (see Figure 2.9(b)). If a different
dataset than geographical data is incorporated in the map-generating process,
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some kind of user evaluation is needed to investigate whether people can still
interpret the data visually to solve the tasks at hand. Eye tracking could be
useful here, since it brings into play spatial visual attention behavior that can
be visually encoded directly on the map to see where the design flaws or
problems might occur during paying visual attention [371].

2.2.3 Visualization During Industrialization

There was a time when people started to create visual depictions for
various kinds of relevant data, trying to graphically depict what was going
on. This trend could be seen in many application fields like healthcare,
public transport, epidemiology, astronomy, economy, or military, to mention
a few. The most common visualizations were based on bar, area, and
pie charts, line graphs, geographic maps with visual annotations, or even
Sankey diagrams [422], obviously counting for one of the more complex
visualizations. Most of the visual encoding used just a small number of visual
variables to transform data into a visual output, providing an overview or
serving as an illustration, like that later used in data journalism, i.e. printed
for the public as some kind of dissemination process. This new aspect also
meant that the graphical depictions in the form of diagrams had to be simple
charts to make them quickly understandable for the everyday consumer and
not primarily for the expert in visualization.

Famous diagram examples from these times have been developed by
people like Harry Beck, John Snow, Florence Nightingale, Charles Joseph
Minard, William Playfair, and Francis Galton, to mention the prominent
ones. These people had different educations, jobs, and obligations in their
daily lives when they took on the challenging burden of designing expressive
diagram types that have persisted until today, and that are well-known
inspirational bases for many of the developed visualization and visual
analytics tools today. The largest burden, however, was the fact that those
diagrams had to be created without the use of a computer, i.e. they were
typically hand made and their creation took quite a long time, although the
underlying dataset was quite small compared to the megabytes of data we
have to visually encode these days.

Sometimes the diagrams from these times were even referred to as
infographics [338], which are some kind of visual illustrations that are easily
absorbed by the user [503]. Infographics are typically based on a simple
visual metaphor, visually enhanced and decorated, for example, by textual
descriptions as well as extra surroundings, or inscribed graphics that indicate
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Figure 2.10 Today’s pie charts are based on the ideas originally developed, for example, by
Florence Nightingale.

the application field or topic that the infographic is about, sometimes denoted
by the term reference graphic. Although it is said that they originated many
centuries ago, they had their high tide in the years of industrialization due
to the fact that the data was quite small and no computer was available to
quickly produce or print them. However, they are still created in the 21st
century because they typically attract the attention of the human observers
and are quickly, easily, and effortlessly understood.

There was also no kind of advanced user evaluation giving feedback
about the usefulness of the diagrams, about their interpretability as well
as understandability and effectiveness, for example taking into account the
encoded visual variables or perceptual issues. However, it seems that user
evaluations, even for the simplest infographics, are conducted today as
progress in technology and a growing visualization community, in particular
eye tracking studies [346], become more and more of interest, since they can
uncover design flaws over space and time, not only aggregated to measures
like response times and error rates as in traditional user experiments.

There are various hand-made examples from the early days of
infographics. For reasons of completeness and for illustrative purposes the
most important ones will be described here. “The best statistical graphic ever
drawn” was a famous quote by Edward Tufte that illustrated the expressive
power in the so-called Minard map [503]. The graphic designed by Charles
Joseph Minard (1781–1870) shows Napoleon’s army marching to Moscow
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and illustrates some Sankey-based visualization of the army size in terms of
soldiers on their way to Moscow and the retreat. Various visual variables
are encoded in this diagram as well as merging and splitting behavior,
temperatures, and geographic aspects such as rivers. Another famous example
from the field of healthcare and medicine was developed by Florence
Nightingale (1820–1910). She visually depicted the deaths among British
soldiers using a diagram type referred to as a coxcomb or wedge chart called
a polar-area diagram, which seems to be some kind of predecessor of the
pie chart that we know today. However, Nightingale used the radial extent
as well, instead of just the angular one as it is typical for pie charts as we
know them today (see Figure 2.10). Another example falling into the field
of healthcare or even epidemiology was designed by John Snow (1813–
1858). Based on his spot map, people were able to close a water pump in
Soho close to Broad Street that seemed to be the cause of various cholera
infections. Public transport also turned out to be an important topic for
creating visual representations to facilitate traveling in a city or to support
route finding tasks. Harry Beck (1902–1974) designed a variant of the
London Underground Tube map that helps to identify stations and routes by
distorting the geographic locations in a way that the crowded information in
the city center is reduced. He is popular for his famous quote: “It does not
matter where you are when you are underground.” The design from these
early days is still in use today, although mostly in an adapted style.

2.2.4 After the Invention of the Computer

The computer changed our lives in many respects. The field of visualization
has also gained even more popularity than before due to the power and
incredible exactness of programs that can create diagrams of more and more
data at even faster rates. Moreover, diagrams are no longer static but awake
to life, letting the users play around by applying more and more advanced
interaction techniques [544]. Modern technology allows us to produce a chart
with just a few mouse clicks while the implementation just required several
lines of program code to turn a huge dataset consisting of various values
measured for certain attributes into a simple understandable graphic in a
fraction of a second.

Not only can the visualization perspective on the data be changed quickly,
the data itself can also be recorded, stored, manipulated, processed, and
structured at an increasingly fast rate. The data-related issues can also have
an impact on the visualization itself by observing the data with it and then
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Figure 2.11 An example of a graphical user interface for visually exploring eye movement
data [82]. Figure provided by Neil Timmermans.

slightly adapt it to the needs given by the newly computed structure of the
data and the users’ tasks at hand. The amazing power of the computer brings
a new topic into play but also even more new challenges: real-time data
visualization [533]. Not only is real-time data a challenge for visualizers but
also data that is changing over time, allowing to play back or replay several
times, i.e. after the dynamic data has been recorded and preprocessed.

We discussed time-dependent data in infographics in Section 2.2.3, for
example the march to Moscow and the retreat, which has an implicitly
inscribed timeline, but shows the same underlying data as an animated
diagram with the aforementioned features. This was impossible in the years
before the invention of the computer, at least not with an equal outcome.
Moreover, several visualizations could be shown next to each other and
linked, a concept that is known as multiple coordinated views [424]. The
graphical user interfaces (GUIs) in which typical visualization tools are
integrated consist of a variety of additional functionalities like buttons,
sliders, menus, and many more, all targeting the common goal of supporting
users to find insights into a dataset (see for example Figure 2.11 for an eye
movement data visualization user interface). In general, the advent of the
computer meant a huge step in the field of visualization, and the field is
still progressing and outputting lots of research ideas, also based on new
technologies.

The very first definition for the term visualization was given in an
NSF panel in 1987 by McCormick, DeFanti, and Brown [146, 349]
stating: “Visualization is a method of computing. It transforms the symbolic
into the geometric, enabling researchers to observe their simulations and
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computations. Visualization offers a method for seeing the unseen...It studies
those mechanisms in humans and computers which allow them in concert to
perceive, use and communicate visual information.” This definition after the
invention of the computer shows that the focus was no longer on creating
infographics, but it was focused on observation tasks for simulations and
computations, which reflects that the datasets in use have increased a lot in
size compared to those before the invention of the computer.

Soon after that the whole field brought more and more research ideas,
presented in famous journals, conferences, and workshops. The variety of
all of these topics from different application areas led to the effect that
the whole visualization community split off into several subcommunities
having overlapping interests. For example, areas like scientific visualization
and information visualization showed this effect, but there is some kind
of controversial debate on how those fields could be merged since many
researched topics share common ideas and one might benefit from the
other, building some kind of synergy effect. The merge could partially be
recognized in the field of visual analytics [495] which makes use of concepts
from both but goes even a step further by including human–computer
interaction (HCI), statistics, data science, algorithmics, perception, and many
more relevant fields. However, from a user experience point of view it gets
more and more challenging to identify design flaws, compare visualizations
with each other, and enhance them by the feedback and recorded measures of
real users, either laymen or domain experts, with or without eye tracking.

2.2.5 Visualization Today

The visualization community has grown a lot in the past few years,
consisting of several thousand researchers from various application fields.
Popular events like the IEEE VIS, EuroVis, the Symposium on Pacific
Visualization, and many more have built a platform for interested scientists
to communicate, share, discuss, and publish their innovative ideas. Research
topics range from abstract data visualization for tree, network, text/document,
high-dimensional/multivariate, non-numeric, stream/time-varying, as well
as geo-spatial data to more spatial data like scalar/vector/tensor fields,
unstructured, or volumetric data, to mention a few from a large repertoire
of topics. Interaction techniques also play a crucial role these days, including
coordinated multiple views [424] as well as the display types, such as small,
medium, or large ones with a high resolution, even in combination, also
having an impact on the way interaction techniques are incorporated [385].
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Figure 2.12 A hierarchy visualization depicted on a powerwall display. The system allows
collaborative interactions for several users equipped with tablets, or it serves as an overview
of a large dataset [93, 441]. Pictures taken and provided by Christoph Müller.

Figure 2.12 illustrates a hierarchy visualization in the form of a generalized
Pythagoras tree [31, 363] that supports collaborative interactions between
several users [93, 441]. Data visualization was also tried in virtual and
augmented reality environments [276], trying to bring the users even closer
to the data, a field that comes into play here is immersive analytics [168].

More and more algorithmic approaches including concepts from artificial
intelligence are covered by the field, but they also bring new challenges
and opportunities for research such as ethical issues and data privacy and
security [478]. Finally, user evaluation is a steadily growing subfield that
shows its strengths in nearly any niche of visualization [111], not only
because visualization relies on the perceptual abilities of an individual human
user but also because it has to uncover the problems that several users might
have in a multi-user system in a collaborative interaction setting for example.
Moreover, the various parameters in a visualization system demand extensive
scientific research in the domain of user evaluation, also taking more and
more into account visual attention behavior [306, 307] that is recorded by eye
tracking devices whose progress has to keep pace with the enhancing visual
and interaction technologies.
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These days we see an increase in substantive and impressively
challenging problems and data structures, more and more including the
industry with a lot of money involved. There is a growing interest
in combining real-world problems that companies face with the basic
knowledge from researchers working and teaching at universities all over the
world. The education of young people is, at the same time, important [87]
as is the involvement of the vast amount of money offered by industry to
further strengthen the field and to build a platform for further inspirations
and powerful developments supporting real-life problems in an effective
way, always keeping the real user in the development process in some kind
of feedback loop. All of these stages and involved persons with varying
knowledge and experience levels make visualization the powerful field that it
has become today, grown from a small number of interested researchers and
practitioners who met at renowned symposia, conferences, and workshops to
share their ideas. Also technological infrastructures like the world wide web
accelerated this process and the exchange of ideas among researchers while
they also provided a new means for sharing interactive visualization systems,
for example in a web-based environment based on existing visualization
libraries and frameworks.

2.3 Data Types and Visual Encodings

We generate data at faster rates than we can analyze, visualize, or make sense
of in any way [486]. Data can be measured or simulated while we are able
to store massive amounts of it, creating an information overload. The field of
big data brings new challenges, but on the positive side also opportunities for
researchers working at a university or in industry. The field of big data [42]
tries to tackle the daily problems that arise in the data domain, for example
data storage, data transformation, data analysis, but also data linkage for
heterogeneous data sources, furthermore concepts like data ethics, privacy,
or provenance [478]. In the context of big data we often read the three terms
volume, variety, and velocity, expressing the sheer size data can have these
days. However, it may be noted that classification if a dataset is big data also
depends on the application domain, not only on the number of bytes a dataset
requires on a hard disc. It does not matter how big the data is when we have
to decide which visual encoding to choose from the existing repertoire, i.e.
which visual variables to combine. It is more important which ingredients a
dataset has and what tasks should be solved if an interactive visualization tool
is designed and implemented.
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In this book we describe the most frequently occurring data types that
have been visualized and that have been investigated in user evaluations, in
particular with eye tracking technologies. We start with primitive data types,
proceed with complex data types, and finally explain combinations of data
types as well as time-dependent data, also taking a look at metadata because
it is important for a self-explanatory diagram. In the following we provide
visual examples for representing data categorized by the type to which they
belong. We describe the included visual variables in visual depictions and
discuss the pros and cons whenever we assume that it is required. In some
scenarios we also explain for which tasks a visualization of data of a certain
type is particularly beneficial. The visual encoding and the tasks play a crucial
role in user studies since they play the role of the independent variables for
which dependent variables are recorded, like error rates, response times, or
spatio-temporal eye movement data, in case visual attention during the task
solving process is of interest.

2.3.1 Primitive Data

There are three different primitive data types: quantitative, ordinal, and
categorical/nominal. Categorical data is in some cases also referred to as
nominal data because it can have some kind of textual description like a label.
But numbers can also serve as a textual description, although it seems as if we
could do arithmetic operations with them but not in a meaningful way, which
again makes them belong to the class of categorical and not to the class of
quantitative data.

In the following a clearer impression of primitive data types will be given
together with some real-world examples as well as visualization candidates
from a large repertoire. Typically, depending on which kind of data is
involved in a visualization technique it has an impact on the complexity of a
user study since the number of variable parameters allows for a more flexible
study design and for many more recruited participants to obtain reliable or
statistically significant results.

• Quantitative data: a set S or list L of elements {x1, . . . , xn} belongs
to the class of quantitative data if we are able to do arithmetic operations
with them in a meaningful way, i.e. multiplying, dividing, adding, or
subtracting the elements in S or L. A real-world scenario can be file
sizes in a file system. Each individual file has its own file size in
bytes. Computing the size of the directory with all the files inside
means summing up all the file sizes of the files contained in it. In this
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(a) (b) (c)
Figure 2.13 Prominent visualization techniques for primitive data types already exist in
several variants. The performance and visual attention strategies of human users while solving
tasks with any of the visualization techniques can be analyzed by eye tracking studies: (a) a
bar chart for quantitative data using the visual variable length for the quantities; (b) a dot plot
for the ordinal data using the visual variable position to encode the order; (c) a scatter plot with
varying colors and different circle sizes as visual variables to indicate the categorical nature
of the data.

scenario, arithmetic operations make sense, like additions or summing
up; consequently file sizes belong to the class of quantitative data.
A prominent visualization for quantities are bar charts making use of the
visual variable length (see Figure 2.13(a)), but pie charts or line plots can
be found in the literature; however not all of them are equally effective
when it comes to the task of comparing or ordering the values by size, or
in the case of a line chart, they connect discrete values by lines although
this does not make sense.

• Ordinal data: a set S or list L of elements {x1, . . . , xn} belongs to the
class of ordinal data if we are able to bring all the elements in some kind
of meaningful order, i.e. to apply some kind of sorting algorithm that
takes the elements as the input parameter and terminates after finitely
many steps with the sorted elements. A real-world scenario can be found
for shoe sizes. Here, arithmetic operations make no sense, i.e. adding the
shoe sizes is a meaningless operation although the numbers would allow
it. But ordering the shoes by their sizes makes sense, for example in a
shoe store.
A prominent visualization for this kind of data would be a dot plot that
uses the visual variable position in a common scale (see Figure 2.13(b)).
The order of the elements can be read from the vertical axis by checking
the corresponding value of each point and visually comparing it with the
others. A sorting algorithm could also improve the plotting order of the
elements before they are visualized. It may be noted that also time has
an implicit temporal order, i.e. time steps are of an ordinal nature.

• Categorical/nominal data: a set S or a list L of elements {x1, . . . , xn}
belongs to the class of categorical data if arithmetic and also the
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generation of an order do not make sense. Although it seems that we
can apply arithmetic operations to them, like adding bus line 11 to bus
line 7 summing up to bus line 18, however, this is not meaningful.
Furthermore, ordering the bus lines increasingly is also not a meaningful
solution. It is not clear which order criterion would make sense for bus
lines. Bus lines are just categories and placeholders or representatives
for routes that a bus takes.
Prominent visualizations for categorical data exist in various forms.
Textures, shapes, or colors are typically used as visual variables to
indicate a category, and iconic graphical depictions are sometimes used,
for example for car brands, football clubs, or national flags. In a scatter
plot we could indicate with color and circle size or different shapes
that a value pair belongs to a certain category (see Figure 2.13(c)). In
a public transport map, the train lines are typically color coded which
also generates the effect that the lines can be traced easier, faster, and
with fewer errors as in grayscale maps [371].

Jacques Bertin described a list of visual variables [37] which was later
extended by Jock Mackinlay [344] who also ordered them for the three
primitive data types to be visualized (see Figure 2.14). Mackinlay conjectured
the effectiveness of the visual encoding for each of the primitive data types;
however, nowadays an eye tracking experiment might give insights in the
visual attention behavior when solving such perceptual tasks as he called
them.

Figure 2.14 Jock Mackinlay gave an ordered list of the visual variables for each of the three
primitive data types. He described the effectiveness of such a perceptual task in decreasing
order [344].
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2.3.2 Complex Data

Visualization for just primitive data is already difficult and can lead to
misinterpretation problems or performance issues in case the wrong visual
metaphor for solving a task is chosen. This can be seen in the example
comparing bar charts and pie charts (Section 2.1) for the task of visually
ordering quantities. An eye tracking study would show the design flaw in
an increased response time for the pie charts, a higher error rate, and more
chaotic eye movement behavior.

If we leave the scenario of primitive data types and move to more complex
ones, it seems as if we have a larger repertoire of visualization candidates, but
those are also much more complex and finding the best candidate for a certain
task or task group is a challenging procedure.

• For example, graphs or networks consist of two types of entities in its
simplest form. Vertices model the objects or persons that are related
while edges indicate that a pair of them is related or not, hence a graph is
modeled asG = (V,E) with a vertex set V and an edge setE ⊆ V ×V .
There can be an endless list of additional attributes attached to the
vertices or edges, in its simplest form the edges might have a weight
or the vertices might carry a textual description, i.e. a label. But as said
before, there is no limitation to the extras that can be attached to the
graph entities.
In its raw form a graph can be represented as a node-link diagram (see
Figure 2.15(a)), an invention dating back to Leonard Euler [179] when
trying to find a mathematical abstraction to the problem of the “Seven
Bridges of Königsberg”. However, in these modern days, the graph data

(a) (b) (c)
Figure 2.15 Three prominent visual metaphors for encoding the same graph dataset [29]:
(a) a node-link diagram; (b) an adjacency matrix; (c) an adjacency list.
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gets so large that node-link diagrams produce visual clutter [426] and
are no longer readable, even after applying an advanced layout algorithm
focusing on aesthetic graph drawing criteria [406, 409] or changing the
edge representation style [237], and even bundling them together [236,
239]. Hence, adjacency matrices [29] were invented (see Figure 2.15(b))
to get a more visually scalable, clutter-free representation of relational
data, evaluated for typical graph interpretation tasks [200]; however, the
rearrangement of the matrix rows and columns [34] has a large impact
on the identification of patterns, typically vertex groups and clusters. A
third rarely used visualization technique is an adjacency list [229] that
has some benefits but it is quite hard to read paths and identify clusters
(see Figure 2.15(c)). If a graph is locally dense and globally sparse,
hybrid methods are used such as the NodeTrix representation [227].

• Hierarchies are another relational data type with the differences that they
can be drawn as a node-link diagram in 2D in a planar way without
link crossings, that the corresponding graph has no cycles, and the fact
that they have a designated root node. Hierarchical data is built on
parent–child relationships defining the level a vertex is located and also
aspects like its depth and branching factor. Visualizations for this type
of data exist in a variety of forms [445, 446]. For this type of relations
there are also various attributes to be attached to vertices and edges,
like the sizes of files in a hierarchically organized file system or the
evolutionary distances of related species living on earth in a so-called
NCBI taxonomy [509]. For visualizing hierarchical data there exist at
least four major types of visual metaphors (see Figure 2.16) that come
in the form of explicit links [78, 419], nesting [266, 458], stacking [295,
509], and indentation [91, 95]. Each of these types contains various
variants exploiting different combinations of visual variables, even
hybrids of these types and variants exist. User studies, in particular
with eye tracking, can find design flaws and perceptual problems for
typical hierarchy-related tasks like finding the least common ancestor
for example [72, 78].

• Data coming in the form of a table consisting of rows and columns is
said to be multivariate or multi-dimensional data. The rows are called the
observations or cases while the columns are the variables or attributes.
One major task for this kind of data is the identification of correlations,
positive or negative ones, or more complex ones as well as outliers and
anomalies.
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(a) (b)

(c) (d)
Figure 2.16 Four major visual metaphors for hierarchical data exist: (a) explicit links; (b)
nesting; (c) stacking; (d) indentation.

There exist three major visual metaphors for this kind of data which
come in the form of glyph-based representations [325, 428], scatterplot
matrices [172], and parallel coordinates plots [224, 255] that have been
evaluated in several ways in the past [265]. Figure 2.17 illustrates
an example for a multivariate dataset with the same observations
and attributes. We see that the glyph-based representations rely on a
combination of visual variables, one for each attribute, combined in
a single visual entity. The scatterplot matrices consist of a quadratic
scheme of individual scatterplots, each making use of the visual variable
position and maybe color or shape if the points carry categorical
information as well. The parallel coordinates are based on the visual
variables position in common scales and connectedness by straight links,
forming polylines.

• Trajectories are generated by moving objects, animals, or people,
leading to some kind of spatio-temporal data since they change their
locations over space and time. Eye movement data [161, 235] also falls
into this category. If we only take into account a pure scanpath, i.e. the
movements the eye makes, we receive the simplest scenario of such an
eye movement trajectory. In general, eye movement data is much more
complex with extra attributes attached, for example fixation duration,
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(a) (b) (c)
Figure 2.17 Multivariate data can be visualized in at least three major ways: (a) a glyph-
based visualization, here in the form of Chernoff faces; (b) a scatterplot matrix (SPLOM); (c)
a parallel coordinates plot.

(a) (b)
Figure 2.18 Different kinds of movement data can be measured and visualized: (a)
trajectories from bird movement [369]; (b) scanpaths from an eye movement study
investigating the readability of public transport maps [372].

calibration details, physiological measures, face expressions, or verbal
feedback [44].
Typical visualization techniques for trajectories show the spatial
information as a geographic map or, in case of eye movement data,
the visual (static) stimulus while overplotting it with a line-based
visualization, denoted by a gaze plot. This results, like nearly all line-
based diagrams, in visual clutter effects [426]. Figure 2.18 illustrates
two scenarios for a trajectory visualization of bird movement [369]
(a) and a gaze plot [203] that shows the scanpath of several
eye tracked people overplotted on a static public transport map
stimulus [372] (b).

• Text or document data consists of a sequence of words that typically
carry some meaning and that, in most cases, already present some
kind of structure. DNA sequences are typically modeled as one string
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(a) (b)
Figure 2.19 There are various scenarios in which textual information is important: (a) label
information on a public transport map [372] (Figure provided by Robin Woods, Communicarta
Ltd); (b) an aggregated view on the occurrence frequencies of words in the DBLP, summarized
as a prefix tag cloud [86].

consisting of a finite set of characters. However, in some scenarios only
a single word or text fragment is enough information to provide the
detail needed to better understand a visual depiction of a dataset or a
part of it, for example a label information in a map [371] indicating a
street, a village, or a public transport station name (see Figure 2.19(a)).
Moreover, a text or document might be summarized by counting the
number of words contained in it. Those word summaries can be
illustrated as quantitative information in a tag or word cloud [220],
sometimes even aggregated in a prefix tree-like fashion [86] while the
word occurrence frequencies are mostly mapped to the visual variable
font size, sometimes color. Figure 2.19(b) gives an impression of word
frequencies closely related to the word “visualization” based on data
from the digital bibliography and library project (DBLP) [327, 328]
that collects most of the publications in the field of computer and data
science, hence itself being a source for several texts and documents,
worth visualizing [92].

• Data elements can be in a set relation, meaning they form some kind
of entity following a similar well-defined property. If several of those
sets exist they can be combined by union, intersection, or difference
operations forming new sets or subsets. Visualizing sets [8] has become
a topic with various research ideas, not only because sets appear in
many application fields but also because they are powerful concepts in
mathematics. Moreover, they can be used in interaction techniques to
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Figure 2.20 A set visualization based on the “bubble sets” approach [127]. Image provided
by Christopher Collins.

filter data, navigate in it, or collapse and expand the data to allow more
space for the remaining visible elements.
Figure 2.20 shows an example of a complex visualization based on the
so-called “bubble sets” approach [127]. Numerous visual variables are
used to create fancy but also complex diagrams that require some time
to learn and to interpret the data that is visualized.

• In the field of scientific visualization in particular, we have to deal
with complex data such as 2D/3D scalar, vector, or tensor fields as
well as volumetric data, just to mention a few data type examples
that can easily get more complex by adding more data attributes, and
also time dependency. Moreover, compared to information visualization
the datasets under examination are typically much larger and generate
continuous data values instead of discrete ones, either for the static
spatial data or in the dynamic time-varying case [281].
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(a) (b) (c) (d)
Figure 2.21 Four examples that are typical data types in the domain of scientific
visualization depicted by standard approaches: (a) a scalar field; (b) a vector field; (c) a tensor
field; (d) a volumetric data visualization.

Figure 2.21 illustrates four examples from the field of scientific
visualization. Typical data types are 2D scalar fields that are represented
by visual variable color (a) while 3D versions can also be found. In
addition, a visual attention map [50] with which the hot spots of eye
movements are depicted falls into the category represented by scalar
field visualizations. The vector fields are represented by glyphs; in
the case of Figure 2.21(b) those glyphs are arrow-based, indicating
at least two data variables such as direction or extent by the visual
variables line orientation and line length. Sometimes the arrow heads
have different sizes as well to indicate another data variable visually.
In (c) we see a tensor field representation that visualizes some kind of
relationship between algebraic objects. A volumetric data visualization
is shown in (d), typically suffering from occlusion effects, hence
mathematical/algorithmic, visual, and interaction concepts have been
developed to find insights in this kind of data, even if most of the
information is occluded.

2.3.3 Mixture of Data

The data-in-data concept makes the visualization much more complicated
than if just one basic data type exists to be visualized. The major challenge
with this scenario is the fact that we have to figure out which data of the
combined data stands in focus, i.e. plays the primary role. This has a major
impact on the appearance of the final visualization, the secondary, tertiary
and further data types have to be incorporated in another way by extra visual
variables. Hence, before starting with a visual design of such a mixture-of-
data example we definitely should be aware of the task or tasks at hand to
be solved. This task order will typically generate another order among the
data types that guides and influences the appearance and combinations of
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Figure 2.22 A part of the Eclipse software system and its hierarchical organization depicted
as a node-link diagram with aligned orthogonal links to visually represent a list of quantitative
values for certain derived attributes [62].

the visual variables for the final visual design, i.e. that decides about the
most effective data-to-visualization mapping. However, in some scenarios
this order is not that clear right from the beginning, offering the users the
choice to reconfigure the visualization in a way that adapts the roles and
orders of the variables in use.

A popular example is the field of software engineering that produces a
wealth of data based on the source code, the involved developers, comments,
bug reports, check-in information, call dependencies resulting in a call
graph, code–developer relations, the hierarchical organization of the software
system, and even more, for example the time-varying aspect bringing the
field of software evolution into play as well as software visualization [149].
In Figure 2.22 we see an example from a software system for which the
hierarchical organization stands in focus, i.e. plays the primary role. The
secondary role is given to a list of quantitative attributes which generate
some kind of multivariate dataset, with the files being the observations. For
the visual depiction we chose a node-link diagram in a top-to-bottom layout
indicating the parent–child relationships while the attributes are reflected
in the color coding represented in an aligned fashion to allow comparison
tasks on different levels of hierarchical granularity, looking similar to bar
codes [62].
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(a) (b)
Figure 2.23 (a) A time-varying graph dataset consisting of flight connections in the US
from the year 2001 shown as a heat triangle [242]. (b) A Themeriver [218] representation for
showing the evolving number of developers during software development [89].

2.3.4 Dynamic Data

With temporal evolution we can add an extra data dimension to any kind
of dataset. This means that a certain variable or several of those exist in a
time-varying behavior, either measured discretely, i.e. time step by time step,
or continuously, i.e. for infinitely small instances of time there exists a data
value, typically modeled by a mathematical function and not measured as in
the discrete case. Moreover, not only time can be involved to make a dataset
consisting of several subsequent instances but also just a time-independent
sequence, or even a set of instances without an explicit order among the
data instances. No matter which kind of scenario we are confronted with,
the visual metaphor to be chosen is typically a different one than for the static
counterpart of the same data type scenario.

With dynamic data we normally have to take into account an additional
task which is related to the comparisons of data values over time. This makes
the chosen visual metaphor a different one from the one chosen for static
diagrams, but one might say we can just copy the metaphor for the static
visualization and put one side-by-side for each instance of the dynamic case.
This is a suitable and oftentimes applied solution but we have to keep in
mind that we only have a limited display space that causes visual scalability
problems [4]. This time-to-space mapping can also be replaced by a time-to-
time mapping in which the temporal or sequential information is mapped
to physical time, typically illustrated in an animation. Although this is a
valuable and well-researched concept it comes with its drawbacks [505]
which are cognitive issues when comparing subsequent values to make a
claim or hypothesis about a time-varying behavior in a dataset like a trend,
a countertrend, oscillating or alternating behavior, or even combinations
thereof, as well as outliers and anomalies [101].

A mixture between time-to-space and time-to-time mappings was
introduced by Spence et al. [475] who investigated a concept denoted by rapid
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Figure 2.24 An electrocardiogram consists of several time-dependent quantities that are
shown as a line-based diagram, annotated with P, Q, R, S, T waves. This kind of diagram
has also been investigated by an eye tracking study [144].

serial visual presentation (RSVP) often used for text reading tasks [113] or
inspecting large image collections [477] in a rapid way. The concept supports
tasks like browsing a large static dataset or a time-varying dataset consisting
of several instances of data values visualized in some way. Moreover,
weighted browsing tasks describe the way in which we search for a certain
element for what we have an approximate visual pattern in mind. No matter
which concept we chose for displaying dynamic data, it is definitely more
challenging to effectively visualize, and further, an eye tracking study has to
take an additional parameter into account which comes in the form of the
sequential behavior [309]. A video might even fall into this category since it
consists of a sequence of static image frames that are watched one after the
other in a rapid serial visual presentation; however, eye tracking experiments
have already been conducted for this kind of scenario [310].

Examples for dynamic data visualizations exist a lot due to the prevalence
of the temporal aspect in nearly any kind of application domain that stores,
measures, or simulates data at different instances or time steps. Figure 2.23(a)
illustrates an example from dynamic graph visualization showing the flight
behavior in the US in the year 2001 depicted as a heat triangle [242].
One can clearly detect a visual anomaly pattern which was caused by the
terror attacks on 9/11. Another popular example (b) stems from the field of
topic exploration which results in a diagram denoted by Themeriver [218]
showing a list of time-dependent quantities (here a developer river [89]), but
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negatively also bringing issues for value comparison tasks into play [124].
Moreover, a simpler diagram showing quantities as a time-series plot is
known as the electrocardiogram (ECG) [144] with which every medical
doctor is familiar (see Figure 2.24). All of the presented diagrams use the
time-to-space mapping concept, i.e. displaying the individual time steps next
to each other to support comparison tasks.

2.3.5 Metadata

Every dataset requires some kind of additional descriptions that explain
and give more details about the data, extra information that is needed to
understand the context of the data. The data about data is important for a
visualization to pick the right visual metaphor, for example the correct scale
given by the units of the measurements. For the user the metadata is crucial
information to interpret the visual patterns in the right context and scale [317].
This data defines how and when data is measured, where it is stored, who is
the owner, in which environment it was measured, which device was used,
and so on. For example, when taking a picture with a camera, the picture is
the data of interest while the date and time when it was taken, the label of
the picture, the resolution, or further extra information, describe the metadata
about it. Moreover, in the field of eye tracking, metadata might describe the
quality of the recordings, giving a hint about how trustworthy and reliable the
data is. This quality can even be measured for every data entity, for example at
different time instances or for every individual participant in an eye tracking
study [444].

For a visualization it is crucial to add the metadata to give the users the
opportunity to interpret what is actually depicted. Without the metadata it
might get misinterpreted or the metadata information must be derived from
another context, making the interpretation process quite time-consuming.
Figure 2.25 illustrates an example of a scatterplot with additional information
about the attributes shown at the axes as well as the color coding of the points.
Without them the visual patterns might be observable but they cannot be
put into the context of an already known scenario with which it should be
compared.

The intention of Section 2.3 is not to introduce and discuss all data types;
that would generate an endless list of examples. It is more given in a way to
provide an overview about the most common data types and possible visual
depictions of them as well as some additional remarks about drawbacks and
benefits of one technique compared to another one. Later, these techniques
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Figure 2.25 A scatterplot with extra descriptions for the axes and the color coding, serving
as metadata.

will be examined for user evaluation, in particular if eye tracking was used to
investigate their usefulness, readability, and interpretability by human users
based on visual attention paid over space and time, hence explaining the value
of eye tracking for these techniques.

2.4 Interaction Techniques

To not leave users with a static representation, as in the years before the
invention of the computer, interaction techniques typically add life and
flexibility to a diagram, plot, chart, or any kind of visual output that needs
to be modified [152]. These varying perspectives on a dataset may shed
some light on aspects that might not have been detected if just the static
version of the visualization was presented [476]. Interaction is particularly
important if views on real-time data under different parameter settings are
required. This allows fast and adaptive user requests within the functionality
of a visualization tool, making the whole process some kind of bidirectional
dialogue in which the user inputs some information and the visualization
tool outputs (hopefully) the desired information. Powerful input and output
devices are required, and human users with their perceptual abilities to
rapidly detect patterns [219, 521, 522] and who react on those, demanding
some cognitive skills and technology experience. Interaction in visualization
is hence a real-time action with an expected quick response while the
visualization itself is not.
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Interaction has its origins in the field of human–computer interaction
(HCI) [107, 109] and is somehow regarded as the little brother of
visualization, which is due to the fact that more information flows from the
visualization to the user and not vice versa [476, 496]. Moreover, in many
scenarios, interaction is so fundamental that it is no longer recognized but
is rather a standard visualization ingredient. Interaction is a goal-oriented
activity, required to modify a diagram until it meets the needs of the human
users to solve a given task or at least give some hints about its solution. A
visualization system reacts with a response, change, textual, or visual output,
in a reasonable and acceptable time, and some studies’ results have revealed
a time limitation of 20 ms [337] to achieve an interactive feeling. Bertin [38]
describes interaction as a diagram being constructed and reconstructed,
leaving the interaction choice to the decision makers themselves. A good
diagram must be flexible in a way that interactive modification allows
refinements of hypotheses and insights. This is also supported in many of
the designed visualization pipelines [359] which, in the best case, allow
interactive feedback in any of the intermediate stages.

In this section an overview of interaction categories, physical input
and output devices, as well as human users-in-the-loop is given, without
explicitly stating that a complete list of all these aspects is provided. From the
perspective of eye tracking it makes a difference if gaze-assisted interaction
is evaluated in which the visual attention over space and time is recorded at
the same time as someone is interacting with a visualization tool or if another
kind of interaction without gaze support is applied.

2.4.1 Interaction Categories

Nowadays, a visualization tool is equipped with various options to interact.
The intention is in most cases to create a new perspective on the represented
data by refining parameters in a way that the resulting new view on the data
supports the identification of what one is looking for. This typically happens
in several, sometimes repeating, stages while applying interactions from a
given certain tool-supported repertoire (see Figure 2.26 for a visualization
pipeline [108] that incorporates human interaction). Apart from just the
individual interactions, undo/redo options would be desirable, in case an
interaction was not well chosen and caused the opposite effect to the one
intended or an individual interaction technique has to be repeated several
times, which would be a daunting task if it had to be applied one after the
other by always first setting all the parameters again. To reliably step back to
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Figure 2.26 A visualization pipeline illustrates how raw data is transformed in a stepwise
manner into a graphical output while the users can adapt and modify the steps and states [108].

Figure 2.27 An interaction history can be modeled as a network of states; in the case of a
visualization tool it consists of snapshots, each illustrating a certain parameter setting [68].
Node-link diagrams can depict the weighted state transitions and are interactive themselves.
Here we see a network with additional thumbnails indicating the current view in the
visualization tool. It may be noted that in this scenario some of the interaction steps cannot
be undone, indicated by the directions of the links while some others are undirected. The
thickness of the links might encode a transition probability for example.

previous states of a visualization system, to keep track, and to get an overview
of the exploration stages, some kind of interactive interaction history [68]
would be beneficial that supports the mental map of the intermediate
modifications (see Figure 2.27).
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Yi et al. [544] described and classified most of the general interaction
concepts supported in visualization into seven categories. They argued that
the most prominent techniques fall into categories like select, explore,
reconfigure, encode, abstract/elaborate, filter, and connect.

• Select. Certain visual elements are selected, marked, and highlighted to
keep track of them in case a view is modified, i.e. we either see a new
arrangement of the visual elements or a completely new visual encoding
of the same visual elements. A selection also has the benefit that the
elements of interest can be treated separately from the non-selected ones,
for example, applying further interactions to them while the rest remains
unchanged.

• Explore. If only a small number of elements can be presented visually
but the users wish to see the invisible part they start to explore. This
means that they move to a different part of the dataset under investigation
by, for example, panning to a different location or area. This introduces
the concept of smooth changes, i.e. the view is not changed abruptly, but
to preserve the viewers’ mental map this is done smoothly. Moreover,
the smooth transitions support the keeping track of what is present on
the way from the old to the new position.

• Reconfigure. Rearranging the placements or layouts of the visual
elements are important principles to obtain new perspectives on the
data that might show insights that would have been hidden in the
case in which just one static representation was given. For quantitative
values this could be achieved by a sorting function while for graph
visualization a switch between certain layouts might fulfill the task. For
rearrangements it is crucial to keep in mind that the users’ mental map
should be preserved.

• Encode. In some situations it is a powerful idea to even change the
visual metaphor or visual encoding by applying a different set of visual
variables. This could include just the change of the values of the visual
variables like using a different kind of color scale, but it could also
switch from one visual variable to a completely new one, like switching
between size and color for representing quantities. In the best case a
multiple coordinated view is supported allowing the users to compare
the visual encodings side-by-side.

• Abstract/elaborate. Starting with a visual overview about a dataset
is a good concept, however, the users wish to dig deeper in a dataset
by changing the level of granularity or abstraction, until they reach
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a detail level in which the tasks at hand can be finally solved or
at least a hint for a possible solution is given. The overview-and-
detail is a well-known problem in visualization due to the fact that in
many situations the details alone are not helpful, but the overview is
required as contextual information. This challenge is denoted by the
focus-and-context problem.

• Filter. Certain conditions or properties, typically guided by the user
tasks, can be applied to a dataset, having the impact that only a part
of the dataset is visually represented. All of the data elements not
falling into the filtered part either disappear completely or are shown
as grayed-out contextual information. Typically, the visual metaphor or
the arrangement is not changed after applying a filter interaction; in
some cases the won free display space is filled with the remaining visual
elements by smoothly enlarging them, fitting the whole area.

• Connect. If there exist relations, dependencies, or associations between
certain data elements, those should be indicated visually in the best case,
supporting a user to quickly recognize those. This scenario could occur
for a single view in which elements could be linked visually like in a
node-link graph visualization. But it is useful even more in a situation of
a multiple coordinated view in which the users select a visual element in
one view and the same visual element is highlighted in all other views,
in case it is currently visible. This challenge typically occurs if brushing
and linking is supported [256].

Although these are very general descriptions of such interactions, the
“how” they are applied also depends on aspects like the input and output
devices as well as the persons who are starting an interaction; for example,
what their experience level is or if they suffer from visual deficiencies or color
blindness, making them, for example, use a special color coding adapted for
their needs or even some kind of braille technology [288] to interact, as well
as audio feedback to get additional support and hints with which component
they have interacted.

Apart from the seven categories discussed by Yi et al. [544] there are
several more that could be counted as interaction techniques. In many cases
the users wish to apply undo/redo options while seeing their flow of states
in an interaction history as already described above. For visualization tools
this would be a helpful visual extra but for visual analytics systems that allow
many more complex exploration processes this would definitely support in
many ways. Such an interaction history can generate another dataset, a huge
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graph consisting of states and transitions, meaning also for this kind of dataset
we need an advanced interactive visualization technique, otherwise it would
not be useful at all.

A further interaction technique can be the editing of a textual description,
like changing a label or adding an annotation, although annotations could
be classified as connect interactions since they link a textual description to
a visual element. Such a modification, update, or even correction of text
could even be applied directly to visual elements, for example by exchanging
a visual variable or removing a visual pattern that is superfluous which
would again fall into the category of encode. Moreover, more visualization-
independent interactions might be imaginable like adding extra data sources
or requesting a data update if the visualization tool is not using the latest
version. However, such an update could demand a longer preprocessing time
to bring the new or missing data into the same format as the already loaded
one. Even more visualization-independent interactions might be opening
and closing menus, menu items, or whole views containing a visualization.
Also interactions related to the graphical user interface in which all the
visualizations and their functionality live can build their own category; for
example, maximizing or rearranging views, adding more views, highlighting
or decorating a view with additional information, and many more.

The way in which we interact in a visualization also depends on
further factors, for example, based on the visual variables directly. A 2D
interaction is typically different from a 3D interaction in which occlusion
and perspective distortion effects have to be taken into account. This could,
in particular, be interesting and challenging for VR/AR environments; for
example, in immersive analytics, a field that is more related to visual
analytics since it supports complex exploration processes including many
technological concepts. Furthermore, interacting with a static visualization
requires different interaction techniques than when interacting with animated,
dynamic visualizations. Those need to be stopped, replayed, slowed down, or
sped up on user demand.

2.4.2 Physical Devices

The physical devices required for successful interactions could be split into
input and output devices. This is in particular important if we inspect them
under the light of eye tracking technologies. An input device is one that is
controlled by the user while an output device is required by the visualization
tool to reflect the feedback, i.e. the visual output based on the user interaction.
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In these modern days there exist various input devices while the number of
output devices is not that large in comparison. Evaluating the impact of input
devices on the usability of a visualization tool by eye tracking is similarly
challenging as evaluating the impact of the output devices. However, for
the output devices we obtain the primary stimulus, i.e. most of our visual
attention is paid on the output (the visual representation) rather than on
the input, hence most of the recorded eye movement data contains output
device information. Typically, the information from the input device has to be
collected by additional sensors, apart from gaze-assisted interaction in which
the input data comes from the eye.

Most of the input devices focus on hand control, for example mouse,
keyboard, touch, pen, or joystick, to mention a few. For touch devices, the
input and output typically happens on the same display, for example the
computer monitor or a mobile phone to provide a faster and more natural
feeling during interacting. Touch supports direct connection of the user’s
finger with a graphical element while a mouse does not and requires some
synchronous action with the eye and the hand to efficiently work. Hence,
mouse interaction needs some training compared to touch interaction. Touch
is, these days, integrated in most of the public user interfaces, for example, in
ticket machines, information monitors, interactive public transport maps [96],
and so on. However, for a visualization technique it might lead to occlusion
problems due to the size of a human finger compared to a mouse cursor, for
example. This could, in particular, be a problem for eye movement studies
because the visual attention behind the finger is hard to track reliably.

Apart from hand-driven interactions, further input modalities have been
researched and developed including gestures, voice, or gaze [381]; even a
combination thereof can be efficient if it is designed in a user-friendly way.
For example, for gaze interaction, which is useful for disabled people who
cannot just use standard interactions; the popular Midas touch problem [260,
516] typically makes a pure gaze-assisted interaction challenging, hence
some approaches combine gaze and voice interaction (see Figure 2.28).
For game playing such a setup was evaluated, comparing gaze and voice
interaction with mouse and keyboard [378]. For gaze-assisted interaction,
an eye movement data evaluation can be started right away because the
eye movement data is already recorded which is typically not the case
if just a standard non-gaze-based user interaction is supported. For even
more complicated settings such as 3D interactions [191], for example on
mobile devices [104] as well as walking in 3D immersive virtual reality
environments [145] or tangible visualization [287], standard interaction
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Figure 2.28 Gaze-controlled buttons are used in a game environment to interact with a game
character. After a user evaluation this was replaced by a simpler scenario due to unintended
rotation issues [378]. Image provided by Veronica Sundstedt and Jonathan O’Donovan.

techniques have their limitations and have to be exchanged with more
advanced techniques; however, their evaluation, in particular with eye
tracking, is difficult. More natural human-based interactions like body and
head movements, gestures, or speech and verbal conversations have to be
taken into account. We see that, depending on the provided visual stimulus,
2D or 3D, static or dynamic/animated, and also the way in which interaction
techniques are incorporated as well as their complexity must be adapted.

Each input device for applying interaction techniques requires certain
output devices to illustrate the modifications of the views or visualizations
to the users. For visualization tools the standard output device is a
computer monitor, but even smartphones [56] or powerwall high resolution
displays [531] are more and more frequently used. Such small-, medium-,
and large-scale interaction settings allow for a variety of alternatives, even
in combination, focusing on the goal to providing views and perspectives on
the data while supporting changes, modifications, and user requests. Visually
impaired people might use braille technology [288] as the output device,
while stereoscopic displays [352], VR/AR environments [524], as well as a
hybrid output [294], even on several output devices, are imaginable. The type
of output device in use makes a difference for eye tracking studies since the
visual stimulus appears in a different environment. This has an impact on the
eye tracking device, the user groups, as well as the eye tracking data analytics
technique applied.
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2.4.3 Users-in-the-Loop

Human users are responsible for initiating interaction techniques. They awake
a visualization to life, guided by tasks at hand that require some kind of
solution, in most cases raising new questions falling in a certain task category.
The human users cannot only intervene in the final visual output but in typical
visualization tools, they have the option to interact at any stage illustrated
by the visualization pipeline (see Figure 2.26), making them users-in-the-
loop. This pipeline can even be run through in an iterative manner, adjusting
and adapting parameters, views, and perspectives at any stage, until the final
desired configuration is hopefully reached, generating an “aha” effect, i.e.
either providing a solution to a task or at least giving a hint where to search
further. Interaction can be subdivided into subinteraction sequences in which
all interactions should occur quickly, typically in a fraction of a second
from starting the interaction to the final output, i.e. until the interaction has
ended, before a new one from the sequence starts. The human user decides
the order of subinteractions and how this sequence is created, changing
the parameter setting in a visualization tool step-by-step. Some interactions
from the sequence might be executed several times in a row, some might be
reversed or be undone. There is some debate about an acceptable time for an
interaction technique to be considered interactive. Some results indicate that
20 ms [337] might be an acceptable response time, but that surely depends
on the users’ knowledge and experience levels as well as the application.
However, no matter how long it takes for a visualization tool to react on user
input, it is important that a user feels comfortable, engaged, and entertained,
aspects that ease the burden of using a visualization tool with the goal of
deriving knowledge and insights for the tasks at hand. Such properties are
hard to measure with an eye tracking device but additional data sources might
give a hint about them as well as cognitive and psychological issues [305]
worth integrating into a data analytics process to identify design flaws in a
visualization tool.

There is even a difference if an individual user interacts with a
visualization or if the tool supports collaborative interaction [60], i.e. letting
several users work with the tool, either at the same place in front of
the same output device or remotely if they are physically separated, even
one after the other due to different time zones or maybe in temporally
overlapping processes. However, such a scenario typically requires a web-
based visualization tool [82] that offers easy possibilities to store and organize
the results found by many users, all, just a few, or even an individual one.
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Eye tracking can be a powerful concept for collaborative interaction to figure
out how people communicate information and how they solve a common
task in a cooperative way. The eye movement data could be recorded at
physically different places, matched by the same or at least similar stimuli,
i.e. tool settings. This eye movement data could flow into the data analysis
since it provides hints about visual attention and visual scanning strategies
while finding a solution to a certain task. The eye movements from successful
viewers could be shared with other remote users to get some guidance in the
exploration process or to recap the found solution as some kind of learning
goal. The most important aspect for collaborative interaction is the fact that
the found insights can be merged in some way to faster find insights or even
find more insights that one individual user would never find. To reach these
goals the found insights must be shared and communicated among users and
a consensus must be reached to coordinate the further investigations, i.e. split
the general task among the users, maybe as subtasks.

Visualization tool users could have various properties. They could belong
to a group of visualization experts or non-experts, they could be application
domain experts or not, or they could stem from different age groups and
have different genders with varying judgments of visual or perceptual issues.
Moreover, perceptual abilities, color deficiencies, or visual acuity problems
could have an impact on the design of a visualization tool and its effectiveness
for the users. Some of them might be handicapped, have senso-motoric
issues, be blind or visually impaired to a certain degree, and so on. All of
these challenges have to be taken into account when integrating interaction
techniques into a visualization tool. Gaze-assisted interaction is a way to
support handicapped users in case they suffer from certain disabilities that
other users might not have.

2.5 Design Principles

Creating a readable, intuitive, and interpretable diagram is a challenging
task, but following certain design principles can be of great support to
generate a user-friendly, powerful, and valuable visualization [513]. Those
principles describe facts that have been studied and evaluated in the
past to more and more enhance a visualization by taking into account
human observers and their perceptual abilities [521, 522]. If a visualization
technique or tool is created we have to take into account the visual
variables and their combination, the supported interaction techniques, the
input and output devices, as well as the human users with their tasks in
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mind, properties, background knowledge, and experience levels. Designing
a suitable visualization tool that is able to support all tasks is an impossible
endeavor. On the other hand, creating a poorly designed visualization can
lead to a time-consuming visual and cognitive process to understand the
key ideas to derive meaning and furthermore, this drawback might lead to
misinterpretations when exploring the data depicted in the graphics.

However, the design principles discussed in this section describe some
general powerful concepts and even no-goes that should be followed as
criteria before creating such a tool. It may be noted that the creation process
of a visualization tool is some kind of never ending story with the designers
and the end users in the loop, adapting and modifying the current version by
steady feedback, but reaching a stable state with which everybody is confident
in the end is a challenging and time-consuming problem, in particular, if a
proper user evaluation, maybe even with eye tracking, is considered as a way
to enhance the implemented visualization tool. Dix described this process in
a quote stating: “you may not be able to design for the unexpected, but you
can design to allow the unexpected” [154], also meaning that the tool might
be equipped with various functionalities that cover nearly all aspects, but the
human users decide which ones to use. Hence, the decisions are somehow left
to the users, not to the designers and developers. However, such a strategy
demands for a lot of implementation work to cover all possible directions to
support nearly all user tasks.

2.5.1 Visual Enhancements and Decorations

Visually depicting data in the plain vanilla form might already show some
data patterns, but to make a diagram readable and interpretable we have to
take into account that additional visual enhancements or visual decorations
have to be attached in a suitable way to get the ultimate depiction for an
accurate and reliable visual analysis of the underlying dataset.

Such extra, but definitely required, decorations are, for example, legends
that either visually or textually describe the visual variables or any extra
signage used in the technique, for example, iconic representations, typically
used for visually encoding categorical data. Legends are put next to a
diagram where the user can keep an eye on them whenever needed. Some
situations are self-explanatory, meaning legends are not needed for one user,
but depending on the users’ background knowledge and experience levels
they might be an absolutely necessary information to read a diagram. Color
legends, for example, depict the range of the color mapped to quantitative
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values indicating minimum and maximum or they show the individual colors
used for a certain category like, for example, public transport lines.

Axes scales are important, in particular, if an axis is composed of several
scales; for example, if there is a large range between the minimum and
maximum values. In addition, axes descriptions and corresponding units are
required as well as guiding lines that perceptually help to quickly read the
represented value. In a scenario in which the vertical axis is used to indicate
quantities, but those differ in size a lot, a logarithmic or a scale-stack is of
special interest [230], depending on the user tasks. As a negative issue, these
types of stacked scales have to be learned; however, the first attempt to make
them interpretable is by attaching an intuitive scale description.

It is also important that textual information is added in enough detail, for
example labels that give extra hints about scale values. Adding too many is
as bad as adding too little; a good balance is required and texts should be
readable in an acceptable font size and font style. Moreover, a left-to-right
or a slightly varying reading direction should be used for users from Western
civilized countries, for others the reading direction has to be adaptable in
the design. The users’ visual acuity plays a crucial role for text reading
tasks [470], while text reading tasks have been evaluated by eye tracking
a lot in the past [41]. Any additional information is useful, but the diagram
should not be too crowded to avoid an information overflow. However, if extra
textual or visual information is presented, overlaps and occlusion should be
avoided as well as distortions. The choice of the right color scale depends
on the data to be displayed as well as effects related to the user, for example
color blindness [348, 521] or color deficiencies [380].

There could be two extreme situations for data visualization that have to
be treated with care, and this depends on the user tasks. The first issue comes
from the fact that data elements might be missing or erroneous right from
the beginning. Those data elements might be ignored in the visualization or
they might be indicated very clearly to alert the user to those issues. If they
have to be shown in some way, they should be color coded in a gray scale,
indicating that there are missing or wrong values, but they are depicted in
a different way to contextual information. The same holds if those values
are aggregated with other surrounding values or interpolated, and all of these
hints attempt to avoid misinterpretation of the data. A second issue comes
from the fact that some values are considered outliers or anomalies. These
should play a special role in the visualization and should be highlighted in a
way that makes them pre-attentively detectable [219, 500]. This means they
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pop out from the display, with just one glance at the monitor, without paying
a lot of attention to them.

No matter which kind of visual enhancements are chosen, the readability,
intuitiveness, and understandability play major roles when designing
powerful visualizations, and aesthetics [24] plays a nearly equally important
role, but should still be considered a minor second option to further improve
a diagram after it fulfills the task solution and explorative functionalities that
a visualization tool should have.

2.5.2 Visual Structuring and Organization

Apart from visual enhancements and decorations the design should also
take into account the structure and order of visual variables contained in a
visualization, but also the views and components provided by a graphical user
interface. In particular, if a multiple coordinated view [424] is used to show
several perspectives on a dataset, those views should have a suitable order
that considers the user tasks. The most important view should be centered
and in the best case should be mapped to the largest display region. The
views should be interactively exchangeable (see Figure 2.29 for the GUI of
the VizWick tool) and the users should be able to select a certain number of
views from a given repertoire as for example shown in the VizWick tool for
hierarchy visualization [99]. Whenever possible, a hierarchical layout of the

Figure 2.29 The user has the option to see one, two, or four views for hierarchy visualization
techniques. Moreover, the views are exchangeable and support their own parameter settings
while they are interactively linked [99].
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views is adequate, starting with the most important view as the root node and
following a hierarchical exploration task order. In any case the views should
be clearly distinguishable, separable, and a good layering should be used.

The visual information seeking mantra [459] is a good concept to follow
in a visual design. For a data visualization it is important to provide an
overview as a starting point for further exploration processes. After a user
sees the whole dataset or, due to scalability and display limitation issues,
at least a large portion of it [503], further interactions should be supported
like zooming and filtering and finally, details-on-demand. Another option
for reducing the amount of data to be displayed is by using small graphical
elements like pixel-based representations whenever that is possible. For
multivariate data, it could be projected first to a lower dimension and then
visualized, supported by various projection algorithms [176]. In such a
projection process it must be guaranteed that formerly similar data points
in high-dimensional space are still similar in the low-dimensional one to
preserve the patterns and hence, the interpretation of the data in a reliable
way.

No matter how the data is visually depicted, the visualization should
at least try to tell a story [324]. A diagram should be as self-explanatory
as possible [362]; if a lot of textual descriptions are given a good way
to bring them to life by visuals is by using sparklines [429], which are
tiny graphics that are embedded in a text, being so small that even visual
enhancements or decorations are left out. In these modern days, a special
focus could be on a web-based visualization, making it accessible by using a
smartphone, reaching thousands of users; however, the display space is really
small and hence the visualization must be organized in a way that it makes
the most of the small display area. The opposite effect occurs if we need high
resolution, for example showing tiny visual features that are crucial in the
visual depiction to explore the underlying dataset, but for such a scenario the
number of users is typically small, i.e. it is created for domain experts. In
any case the design should be balanced, using symmetrical layouts, to make
it aesthetically appealing, maybe by making use of radial forms instead of
Cartesian ones [24].

2.5.3 General Design Flaws

Although a picture can say a thousand words, meaning a static representation
can already show a lot of visual patterns, interactions should be taken
into account to obtain a well-designed visualization [476]. Otherwise the
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(a) (b) (c)
Figure 2.30 When designing a diagram we should take into account several general issues
that can lead to problems when interpreting the diagram: (a) visual clutter; (b) chart junk; (c)
lie factor.

usability would be limited in a way that the users cannot really adapt the
presented diagram to their needs by, for example, changing parameters.
No matter which kind of visualization is created, the experience levels and
further properties of the users have to be taken into account to not design
the visualization for the wrong user group, making it useless. Moreover,
interaction is one way to avoid boring visualizations, but even further, visual
variables and in particular color [440] should be chosen in a way to create
enjoyable diagrams, a fact that is also related to aesthetics.

For a static visualization there are already issues that can decrease the
value enormously. Those come in the form of visual clutter which is “a
state in which excess items or their disorganization leads to a degradation of
performance at some task” [426]. This could, for example, happen if line-
based diagrams are used and if there are too many crossing lines like in
a time-series visualization based on line plots (see Figure 2.30(a)). Node-
link diagrams for graph data mostly suffer from this issue. For this reason,
graph drawings have to consider aesthetic rules like reducing the number of
link crossings, avoiding node–link and node–node overlaps, or reducing link
lengths, to just mention a few from a longer list [406, 409]. A data variable
should in the best case only be mapped to one visual variable, otherwise the
additional decoration of a diagram will no longer be a visual enhancement,
but could generate the opposite effect, leading to misinterpretations. Less
is oftentimes better in visualization, leading to some kind of simplistic or
minimalistic diagrams [91]. This is related to the data-to-ink ratio [254, 503]
although this just describes that as little ink as possible should be used for
drawing a diagram, which also includes that second, third, or more visual
variables should not be used for encoding the same data variable, which is
denoted by the term chart junk [26, 503] (see Figure 2.30(b)). Finally, the
lie factor [503] describes the ratio of the extent of the effect shown in a
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visualization and the extent of the effect existing in the data. This proportional
issue typically occurs for displaying comparable values. The chosen visual
variable for the numeric variable should treat each value in the same way, i.e.
a value that is twice as large in the data should also be shown with a twice as
large effect in the visual variable (see Figure 2.30(c) for a strong lie factor).

For dynamic data [4] it is important that two representation choices for
the time dimension can be considered, which are denoted by either time-
to-time mapping or time-to-space mapping [75]. The time-to-time mapping
describes the concept of displaying each time instance in the data to physical
time, for example in an animation, typically called smooth animation in
visualization. Time-to-space mappings try to encode as many time instances
as possible to the display space. While time-to-time mappings generate
cognitive and change blindness [376] problems when comparing time steps
due to limitations of the short term memory [410], time-to-space mappings
typically lead to visual scalability issues due to display space limitations [4].
Another negative issue is that for comparison tasks the individual visual
elements have to be mapped to each other in each time instance to reliably
do the comparison. Moreover, both mappings have to rely on dynamic
stability [151] to allow the preservation of the users’ mental maps [18] which
is even more important in animated diagrams. In non-animated diagrams
we do not speak of dynamic stability but more of a temporal alignment,
meaning that the time axis should be the same for all varying variable values
which leads to better performances for comparison tasks. Both concepts have
their benefits and drawbacks [505] while rapid serial visual presentation
(RSVP) [475] is some kind of hybrid concept that includes ideas from both
concepts.

2.5.4 Gestalt Laws

There are some general rules that hold when watching a scene, picture, or a
visualization that we apply without really paying attention to them. Those
rules have been denoted as Gestalt laws [292] and they describe how we
build visual objects from perceiving surrounding smaller objects or pieces
thereof as well as their environment. In Gestalt psychology we often hear
the quote “the whole is greater than the sum of its parts” [485] meaning that
the humans’ visual systems more or less automatically create visual patterns
without explicitly paying attention to them, hence reducing the cognitive
burden for our brains when identifying patterns. The illustrated principles
and laws in Gestalt theory are important for visualization design as well
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since they explain which patterns are easily perceivable and which ones could
cause confusions and misinterpretations. This is in particular useful if we
take into account several visual variables of which a diagram is composed.
This does not only hold for static diagrams but also for dynamic, animated
ones that model change by movement, typically causing issues when keeping
track of visual elements, either individual ones or whole groups of them,
merging with each other and splitting off again after some time. The most
important principles are summarized by emergence, reification, multistability,
invariance, and grouping.

The principle of emergence is probably one of the most relevant ones
in visualization since it states that visual patterns might emerge from a
visual depiction, for example, separating them from noise or from chaotic
patterns that do not carry any meaning (see Figure 2.31(a)). Without this
principle the data-to-visualization mapping is useless because we might not
be able to detect visual patterns that can be remapped to data patterns,
hence the visual exploration process would be impossible in this case.
Multistability is important to let the users see several visual patterns from
the same arrangement of visual elements, meaning several perspectives on
the visual depiction of data are possible (see Figure 2.31(b)). The principle
of invariance allows the detection of deformed visual patterns, for example if
they are rotated, stretched, or scaled in any direction (see Figure 2.31(c)). The
perceptual abilities are good enough to recognize similarities which is one
of the strengths of visualizations since a pure algorithmic approach cannot
be used due to the fact that we do not know how to describe the similarity
between two or more visual patterns. Reification is a principle in visualization
that describes how patterns can be completed virtually although they are not
completely visible on screen (see Figure 2.31(d)). For example, a link in a
graph visualization might be dashed or incomplete, or even overplotted by a
larger area.

(a) (b) (c) (d)
Figure 2.31 (a) Emergence: a visual pattern (my son Colin) can pop out from a noisy
background pattern. (b) Multistability: a visual pattern can carry several meanings and might
be interpreted in several ways. (c) Invariance: a visual pattern can be deformed in various
ways but it is still recognizable as a similar pattern as the original one. (d) Reification: a visual
pattern can be completed although it is not shown completely on screen.



70 Visualization

(a) (b)

(c) (d)
Figure 2.32 There are several ways of grouping visual elements described in the Gestalt
principles. (a) Proximity. (b) Similarity. (c) Closure. (d) Symmetry. Further ones are given by
the law of common fate, continuity, or good form.

Grouping is typically a visual process that supports the detection of
visual elements belonging together like clusters, i.e. visual elements with
a small distance between each other, obviously standing in some kind of
relation behavior (see Figure 2.32). This is in particular a crucial property
if dimensionality reduction methods project a high-dimensional dataset to
a lower-dimensional space, typically 2D. Without detecting group patterns,
such a projection method would not tap the full data analysis potential. Gestalt
psychology describes major groupings as laws of proximity, similarity,
closure, symmetry, common fate, continuity, and good form.

Proximity (Figure 2.32(a)) is important for detecting groups of nodes in
a graph visualization forming a cluster. The human eye is able to separate
several groups by identifying gaps between them, even if the groups have
different shapes and partly overlap each other. Similarity (Figure 2.32(b))
uses a certain visual variable, for example color, to make a group of visual
elements different from another one, which could be useful for the detection
of several areas or regions to make them distinguishable quickly. Closure
(Figure 2.32(c)) describes the effect of perceiving objects as a whole even
if they are not completely shown. This effect could be important in a
visualization if there are overlapping visual objects or dashed and partial
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links. Symmetry (Figure 2.32(d)) is some kind of aesthetic criterion that
should be followed whenever possible to let users identify similar patterns in a
visualization, in particular, in graph visualization this law could lead to faster
perception and comparisons of node clusters. Further ones, like common fate
is useful for animations, for example in a dynamic dataset in which groups of
visual elements move around in the display space and have to be tracked
over time like in a dynamic graph visualization [368]. This effect is also
perceivable in swarm behavior, for example, groups of birds flying around.
We perceive each of the groups as a whole not as individuals. Continuity leads
to the benefit that crossing lines can be perceived correctly by following easily
with a reduced probability to become distracted and misled at the crossing
point. Finally, good form supports the identification and separation of several
patterns by taking into account already learned and experienced patterns.

2.5.5 Optical Illusions

If the visual depiction uses the correct visual variables but the perceptually
wrong effect as intended is created we speak of some kind of optical illusion,
also visual illusion, to indicate that it is mostly caused by the visual system.
In particular, for visualization such illusions can come in a variety of forms
related to color, distortion, depth, size, distance, movement, or cognitive
illusions to mention a few from a long list [201], of which all are crucial
to design a powerful diagram. Normally, such illusions rarely happen but
we should be aware of them in case certain ingredients, properties, or
environments are given that might cause problems we do not like. The wrong
mixture of visual variables can, hence, cause a representation that generates
an opposite effect to that intended. This section neither focuses on giving a
complete explanation of all categories of visual illusions nor on providing
a complete list of examples in any of the categories. The research field of
optical illusions is so huge that we can only literally describe less than the
tip of the iceberg. However, to illustrate some of the major issues occurring
when mixing up visual variables we come up with a somewhat condensed
perspective on this fascinating field of research.

Figure 2.33 shows some general visual illusion examples with which we
might be confronted when designing diagrams, static or even dynamic ones.
The Ebbinghaus illusion (a) illustrates some kind of perceptual lie factor. In
a scenario in which twice the same numeric value has to be represented by a
circular area visual variable, the properties of the surrounding visual elements
should be known, otherwise the area variable might get interpreted differently
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(a) (b)

(c) (d)
Figure 2.33 Visual illusions can happen in a variety of forms including visual variables
and the environments in which they are used: (a) Ebbinghaus illusion related to size effect,
caused by the environment and surroundings. (b) Cafe wall illusion related to distance, caused
by shifted black square patterns. (c) Herman grid illusion related to cognitive issues, i.e.
visual elements are generated where no elements are. (d) Müller-Lyer illusion related to
length, caused by extra visuals like arrow heads pointing in opposite directions [274]. Further
well-known effects are the spinning dancer illusion related to movement, caused by missing
reference points which seem to change the direction of movement, the Ponzo illusion related
to depth, caused by the environment and additional effect with denser becoming parallel lines
in the background like a railway track [274], or the checker shadow illusion related to color
and the surrounding colors [228].

for the same numeric value. This effect could happen in bubble treemaps or
node-link diagrams using circular shapes for the nodes with node weights
visually encoded by node size. Illustrating parallelism (b) could become a
problem for process visualization in which two processes are depicted as
running in parallel. Seeing patterns where no patterns exist (c) can lead to
misinterpretations of data and a longer response time due to visual elements
that have to be checked although they do not exist. Also the visual attention
might be misled which could be investigated by an eye tracking study. If
the length visual variable (d) is chosen to depict quantities, for example in
a histogram, those lines should not be attached by visual extras like arrow
heads to avoid confusion and wrong visual results.
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Further visual illusions can be found that are worth mentioning. For
example, for a dynamic dataset it would be a disaster if the movement
effect was interpreted in several ways by different user groups or even the
same user. If depth is used to indicate older time steps or visual elements
not in focus we should be careful with comparison tasks that might lead
to wrong conclusions. Color is frequently used in visualizations to encode
a variety of data variables. If those are applied in certain environments,
typically combined with other colors, this might lead to an effect that causes
misinterpretations when judging and comparing the values of the colors,
hence the underlying data could be misinterpreted.





3
Visual Analytics

Compared to visualization, the field of visual analytics [495] seems to
be much more complex, including many more technical and technological
aspects, disciplines, theories, models, and practical problems, making it
an interdisciplinary field [279]. Moreover, it seems as if it supports many
more real-world applications related to data, with respect to small, big,
static, and time-varying issues, and also distributed in several sources
in various formats with a mixture of data types with various additional
attributes, like conflicting, erroneous, missing values, not explicitly given
links, and correlations between the datasets. In some respect this is true,
but visual analytics contains at least one major ingredient from the field of
visualization which is the visual depiction of data enhanced by interaction
techniques [476]. However, “the knowledge generated from models” [433] or
the derived insights provided by algorithmic concepts in the form of rules,
statistics, or tables full of values is typically in the scope of visual analytics.
Further it is important to allow to hypothesize about the data and combining
whatever kind of technology is useful for the tasks at hand with the ultimate
goal to explore the data. Put briefly, in a quote by Thomas and Cook, visual
analytics is “the science of analytical reasoning facilitated by interactive
visual interfaces” [495]. In their definition human users are not explicitly
mentioned nor are the tasks and hypotheses involved in the whole process
of knowledge discovery. The analytical reasoning [420] stage demands for
many additional tools to effectively and efficiently support task solving while
hypotheses are built, confirmed, rejected, or refined [277], typically involving
human users playing the key role. The combination of computers with their
analytical power and humans with their perceptual abilities and strengths
make visual analytics a powerful tool which is described in a quote that
goes back to Albert Einstein or Leo Cherne: “Computers are incredibly
fast, accurate, and stupid. Human beings are incredibly slow, inaccurate, and
brilliant. Together they are powerful beyond imagination” (see Figure 3.1).

75
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Figure 3.1 A quote by Albert Einstein or Leo Cherne describes the general ingredients
of visual analytics: “Computers are incredibly fast, accurate, and stupid. Human beings are
incredibly slow, inaccurate, and brilliant. Together they are powerful beyond imagination”.

On the challenging and interesting side, visual analytics cannot be
evaluated in the same way as visualization can be [306, 443]. Visual analytics
is a combination of several processes that lead to a goal, defined, adapted,
or modified by the users; consequently, it is not just primarily based on
visual stimuli like visualization which could at least be shown in a user
evaluation [397, 552] to investigate where and when people pay visual
attention, to come closer to the solution of a task. Many of the cognitive
processes happening in human brains, and also computational processes
happening during algorithm executions, cannot be easily studied, but to
understand whether a visual analytics system is well designed or full of
design flaws, eye tracking is one way to, at least, get some insights into such
complex processes composed of several repeating sub-processes with varying
parameter settings. Eye tracking plays two roles here. It helps to record data
about the spatio-temporal visual attention of several users of a visual analytics
system, but eye tracking also generates a challenging dataset scenario worth
investigating and creating a new application domain for visual analytics.
From the perspective of visual analytics, eye tracking is used to evaluate
its usefulness [306, 307], but visual analytics is again applied to analyze
the recorded eye movement data [14] that might even be complemented by
additional data sources like physiological measurements [44].

The goal to success is the sense-making skills and experiences of the
data explorers who make use of both the interactive and linked visualizations
as well as the computational power of today’s computers. However, in most



3.1 Key Concepts 77

cases the human analyst has to guide the process of combining the machine
with the provided algorithms and the implemented interactive visualizations.
Hence, the humans with their tasks at hand seem to be the major ingredient
in the visual analytics system. Those humans-in-the-loop, or sometimes
described as “human-is-the-loop” [174], can serve as participants in user
evaluations, with and without eye tracking, recording standard error rates,
response times, and also visual attention strategies recorded by more and
more advanced eye tracking systems [161, 235]. This kind of data about
human behavior has great value for understanding how and if visual analytics
systems function as expected or not. The real value becomes apparent when
visual analytics is applied again to the recorded evaluation data, supporting
hypotheses building, confirming, rejecting, or refining by taking into account
analytical approaches as well as the perceptual strengths of the humans’
visual systems. For visual analytics systems applicable to eye movement data
this can lead to a dynamic visual analytics system since it allows the recording
and analysis of the data in incremental and iterative processes.

3.1 Key Concepts

Visual analytics incorporates some major key concepts which are absolutely
necessary to make it the powerful discipline it has become in these days with
lots of contributors and a growing research community. This growth is caused
by the various application fields [487] it is useful for, actually any kind of
research area that generates data worth investigating, ranging from academia
to industry. The success of visual analytics might be caused by the fact that
it can try to tackle data problems that were not imaginable many years ago,
that could not be solved by algorithms and visualizations applied separately.
Only their combination with the power of today’s computers and the strengths
of the humans’ perceptual abilities to quickly identify visual patterns paired
with interaction techniques can solve several problems that already have a
certain size and complexity that will even grow in the future.

Some of the key research areas involved in visual analytics focus on
computer-related disciplines like data management, knowledge discovery in
databases (KDD), data mining, machine learning containing several specific
domain-relevant and efficient algorithms, general algorithmic approaches
with computing power and the like, but also human-related ones like
visualization, cognition, perception, individual as well as collaborative
reasoning, and many more. The bridge between all these areas is built
by human–computer interaction [19] in which the human factors play the
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key role. All of those interplays, benefits, and synergy effects have been
and are still developed by the visual analytics community, for example, by
communicating ideas at popular conferences such as the IEEE VIS with its
well-accepted VAST challenge. However, evaluation of visual analytics [306,
307], with and without eye tracking, still remains a challenging issue, not
only because all of those areas play a key role in the field, and this has made
it what it has become.

3.1.1 Origin and First Stages

In several sources it can be found that visual analytics has some origins in the
research areas of information visualization and scientific visualization [495,
529]. Actually, visual analytics more or less started to develop as a response
to the terror attacks in the United States and the fact that the vast amounts
of data have to be analyzed more rapidly for insights to support Homeland
Security and to prevent further attacks. These cannot just be gained by pure
visualizations or even pure automatic analyses. Their combination was the
key to success as suggested in Thomas and Cook’s book on “Illuminating
the Path” [495]. In addition, the sharing of the results with experts and non-
experts, all contributing to the analysis process in a collaborative manner,
would be one of the goals.

Data is recorded at ever faster rates [3], but without proper analyses
the data sleeps unused and the question comes up of whether the storage
makes sense at all under such disappointing circumstances. The datasets have
changed enormously in the days right before the invention of visual analytics
into massive, dynamic, and partially incomplete datasets, stored in several
data sources as heterogeneous data. This new complexity led to a rethinking
of the technologies used these days to explore data, and finally brought the
field of visual analytics into play. The power of human judgment played one
key role in the development of visual analytics. In 2004, the Department
of Homeland Security established the National Visual Analytics Center,
led by the Pacific Northwest National Laboratory (PNNL). To reach the
challenging goals that the new field of visual analytics promises, an agenda
with a coordinated plan for governments and industry with investments
was researched to guarantee that most of the developed advanced tools and
successful technologies come to the attention of data analysts.

Searching the DBLP for the first archived paper that contains visual
analytics in its title provides a result from 2002 on the topic of the semantic
web [526]. This work combines visualization and analysis techniques while
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allowing to get web material that is of particular interest for the users. It seems
that the term visual analytics has already been used before the famous book
publication by Thomas and Cook [495], but what visual analytics actually
really means has not been clarified in the beginning.

Nowadays, many research fields are included to make visual analytics
successful and applicable to a variety of application examples. In their paper,
Wong and Thomas [529] stated that “visual analytics will not likely become
a separate field of study, but you will see its influence and growth within
many existing areas, conferences, and publications.” After several years of
development we have to admit that it has indeed become a separate field
of study, including more and more other fields, all giving benefit in their
role to find insights in data. Hence, visual analytics can only survive if
interdisciplinary research is done by several experienced scientists all over
the world while their research outputs have to be presented and shared at
famous international conferences like the IEEE VIS.

3.1.2 Data Handling and Management

Although the field is called visual analytics, expressing that visualization and
the analysis techniques build the major ingredients, the real core of visual
analytics is the data that has to be explored for patterns, anomalies, and
insights. In many cases it is not the raw data that is used in the visual analytics
system but the data is modified in some ways to make it readable by the
system and to bring it into a suitable form for solving the users’ tasks at hand.
In this section we will describe and discuss some of the data aspects that are
important in the field of visual analytics without explicitly focusing on the
completeness of all the data-related aspects and operations.

The data-related processes can be divided into three stages focusing
on preparing, checking and deriving, as well as advanced operations (see
Figure 3.2). Some of those processes happen fully automatically by just using
the computer, others require more intervention from human users to support
an algorithm based on strong perceptual abilities, prior experiences, or the
fact that humans can better understand the semantics of a textual description
in a strange context. Algorithmic approaches are useful when the data source
is clearly specified and structured in terms of parameters, rules, or patterns.

The first stage when working in a data-related research field typically
comes in the form of data preparation. This means the data must be collected
first, before it can be the focus of a visual analytics system. If the data
consists of several data sources it has to be organized and each part has to be
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Figure 3.2 Data-related concepts may happen at three stages in a visual analytics system
in the form of preparing, checking and deriving, and advanced operations. Humans and
computers play different roles in these stages and are involved to varying extents.

checked for relevance concerning the tasks at hand. Data has to be annotated
or even de-annotated for anonymization for example, which might also be
done in rare cases by humans due to the lack of deriving the right computer-
supported semantics. Exploring the correct format as well as the data types is
as important as the linking between several data sources in case the linking is
not explicitly given. In all of these steps the human plays a crucial role while
the computer also supports most of the steps.

• Data collection and acquisition. Data can be collected in various ways.
If the user is involved, this typically happens in a hand-written form
with pencil and paper or directly stored in an electronic form, when the
situation allows it. However, to make the data explorable by a visual
analytics system it has to be brought into a computer-readable electronic
format. Hand writing can be read by a computer, for example by a
machine learning algorithm [366]. Normally, large data sources stem
from device-supported recordings (like eye trackers, cameras, sensors,
and so on) or dynamic and continuous data by simulations.

• Organization and relevance. In the case that a dataset consists of
several heterogeneous data sources, those must be ordered by relevance.
This decision is important to start with the most urgent data source
first, for example in situations in which a quick response is required.
The remaining data sources are read one after the other as soon as
computation resources are available. Such an organization is also of
interest if a primary data source has to be attached with additional
attributes from secondary, tertiary, and further data sources.
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• Data annotation and anonymization. Annotation can be done by the
human users and is typically time-consuming, hence the best case is
that the computer can do that automatically if it is instructed what to
do. However, some datasets do not allow the computer to do that, for
example, fixations in an eye tracking study while taking into account the
semantics of a stimulus [370]. Also the opposite effect might happen,
for example, if the data has to be anonymized which means that data
elements have to be removed or encrypted. To avoid that humans read
the data before it is anonymous, the computer should do this step.

• Interpretation of data. Identifying the format of the data is typically
done by the human and then the computer is given some kind of template
to apply that format to a dataset. This template describes which kinds of
data types a dataset is composed of or if there are any unknown and
non-identifiable data entries based on the given format. If the format is
understood by the computer it can be brought in other specific formats
to support rapid task solutions.

• Data linking. In some situations the data is not stored in one file in
a clearly defined format but it is distributed over several files. Visual
analytics systems should be able to link those datasets based on certain
common keys. Also this process typically requires the human users in
order to reliably merge several datasets into one. Sometimes, another
external data source has to be considered to create the correct linking,
while in some situations a linking might not be easily computable;
however, it might be done by inspecting visual patterns observable when
visualizing each of the datasets separately.

A second stage describes how the data is checked and additional values
are derived. Included steps are the validation, verification, and cleaning of the
data, the enhancement, i.e. which values can be removed, added, or have to
be kept due to the fact that their deletion might lead to misinterpretations.
If the data has to be presented in a textual form as well, apart from visual
output, it must be decided which parts of the data are of particular interest,
for example, as adequate labels. Further information about a dataset can be
computed and attached to make it quickly accessible during the running tool.
If the data is still not in a computer-readable and understandable form, this is
the chance to get rid of pieces to avoid that. Storing relevant data portions to
quickly providing them when the visual analytics system gets started again
is also of particular importance. Most of the steps in this stage demand for
the computation power of the computer and can be done quite automatically;
however, in some scenarios the human users have to or can intervene.
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• Validation, verification, and cleaning. It should be checked if the data
in use is incorrect, redundant, incomplete, i.e. has a certain number of
missing elements, where these elements are located, and if they can be
replaced, interpolated, simulated, or just ignored. One goal of this step
is to clean the data in a way that the number of errors or missing values
lies below a certain, typically user-defined, threshold. Another question
is, if there is an error or missing element, how serious this effect is and
which impact it will have on the rest of the data. In particular, for eye
movement data it could be important to clean the data from calibration
errors [444].

• Data enhancement. In some cases the original data is not in its final
form for loading into the visual analytics system. The reason is that
the data has to be enhanced by removing superfluous elements, adding
extra elements, or by even annotating the existing data elements with
further add-ons. Those could come from the user by manually adding
information, but also by the computer, for example, an algorithm could
categorize data elements and tag them or compute even more advanced
statistical or projected values and attach them to the corresponding data
elements.

• Data presentation. It has to be decided which components of a dataset
are shown graphically and which ones textually. For those shown
graphically we have to find out what extra information is required to
improve the interaction response of the visual analytics system. For the
components shown textually we have to decide what part of the text is
displayed. Text can be pretty long, even labels or whole text passages,
meaning it cannot be shown completely. Only the relevant part of the
text should be shown and the rest might be omitted.

• Meta information about data. Each process applied to data can
generate additional information, for example, error reports, performance
feedback, quality of results, trustworthiness of the data, uncertainty
values, provenance and lineage of the data to provide information about
the context in which the data was recorded. Also ethical, privacy,
or security issues can be considered. Metadata can also be any kind
of advanced computations on the data that are stored as additional
attachments, i.e. data about data. Also units, whenever existing, are
important metadata, even considering the change to another unit scale.

• Data transformation. A very general process is to bring a dataset into
a computer-readable form. That means that the raw data is brought
into a computer-supported format, an already preprocessed dataset is
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adapted to a certain well-defined other data format specified by a visual
analytics program, or a dataset is reduced by size and complexity to
make it responsively usable in the visual analytics tool. For such data
transformations the data has to be read and parsed which already means
understanding the general format rules.

• Data storage. Either the whole dataset or filtered parts of it can be
stored for further use, in a prepared format with data annotations. The
storage format can be different from the internally used format during
the execution of the visual analytics system, the format can be changed
to allow faster access and better interaction responses.

Another stage consists of more advanced data operations which are
typically done by the computer, not by the human since they demand fast
computation and the rules how to apply them are clear in a way that an
algorithm can quickly process the data. Interesting and popular operations
in this context are finding better structures by ordering and clustering,
reducing dataset sizes by summarizing, classing, classifying, aggregating,
and projecting data, or by allowing fair comparisons, i.e. by normalizing
data. The intention of such operations is to increase algorithmic, visual, and
perceptual scalability, but it may be noted that such operations also typically
lead to information loss. Hence, it should be decided whether or not they are
adequate and do not introduce negative issues.

• Ordering and sorting. Quantities are typically ordered, i.e. brought into
an increasing or decreasing structure by following some kind of order
relation expressing which values are higher and which ones are lower.
This approach can also be applied to n-tuples of quantities like pairs
used for adjacency matrices, ordering each dimension in the same way
to detect group relations. For multivariate data such a 1D ordering is
useful to investigate the impact of one attribute to another one, i.e. if
there are any easy-to-identify correlations among the attributes, positive
or negative ones. Even lexicographic ordering for text is important. In
general, the ordering could be a step towards applying classification and
aggregation techniques, taking into account value ranges, i.e. classes,
this is in particular useful if additional data is attached to each object
corresponding to an ordered value.

• Data clustering. Putting data elements together in some way due
to the fact that they share a common similar property can lead to
reflecting on additional insights about a dataset that we would never
get without this effect. Such a grouping of elements is typically shown
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(a) (b)
Figure 3.3 A node-link diagram in the field of graph visualization. (a) The relational data
without clustering, just randomly placed nodes. (b) Computing a clustering of the same data
as in (a) and, based on that, using a graph layout that takes into account the node clusters,
encoded by spatial distances of the nodes.

by spatially positioning them close to each other, in case they are
related, while the not-related ones are moved apart. Clustering is a
typical example occurring in a graph visualization in which the relation
among the objects is given by the graph edges connecting the objects
(see Figure 3.3 for an example) or for fixations in eye movement data
into areas of interest based on the spatial distance in a stimulus. In
some data situations, a relation has to be computed first, for example by
pairwise similarity values. Also a clustering could be a pre-step towards
classification and aggregation techniques, to meaningfully reduce the
amount of data to be visualized.

• Summarization, classing, and classification. Data elements or whole
parts of a dataset can be summarized in a way that their size is reduced.
In the best case several data elements get mapped to one representative
element. To do this reliably without introducing too many interpretation
errors those “new” representative elements have to be chosen carefully.
This procedure is also useful for time-varying data in which whole
time periods might be mapped to certain time-characteristic and well-
described categories, for example, special events or attributes best
describing what happens during a time period. A “rush hour” for traffic
data would be a good example. Typical summaries for groups of data
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elements are based on a certain class or category in which the data
elements fall in most cases.

• Aggregation and collapsing. Folding certain data elements that are
contained or classified to belong in a container to a new aggregated
element, due to the fact that they carry similar aspects, is a powerful
strategy. This also brings along several negative issues like information
loss and the problem of what this new element should look like.
However, in hierarchical organizations of which many exist in the data
domain such a data aggregation might be caused by collapsing sub-
hierarchies to which certain objects with their attributes are attached.
In such a case, as well as in many others, the represented value after the
aggregation could be determined by minimum, maximum, sum, mean,
average, standard deviation, or any other statistical value, maybe even
shown as a box plot.

• Data projection and dimensionality reduction. If the data consists of
various data dimensions, like eye tracking data [66, 79], too many to
explore for patterns or to display visually due to visual scalability issues,
the data might be projected from a higher to a lower dimension. The
general goal behind a projection is the idea of preserving similarities and
dissimilarities existing in the original data in the projected data as well.
If this effect is not supported the projection method might fail in terms of
leading to misinterpretations when exploring the data for insights. There
are various dimensionality reduction methods typically differing in the
fact if they are linear or non-linear [176].

• Data normalization. If several scales are taken into account while
measuring data this might lead to unfair judgments of the data when
graphically depicted. Normalization is a step to adapt each data element
or data series to a common scale, for example, by stretching it to the
largest value while adjusting all involved parameters. In the field of eye
tracking this could be important for different scanpaths. Visual attention
can vary from participant to participant in terms of exploration speed,
although the order of visits in a stimulus might be similar. Normalization
helps to identify those similarities.

Data is typically processed in a different visual analytics system-
independent process, maybe on a different computer or server, to get the
computing resources only for the purpose of displaying and interacting in the
already processed data, allowing a responsive system. Apart from the running
system, the remaining new, or modified data can be processed over longer
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time periods and when the processing is ready, this data can be interactively
visualized and explored, not weakening the computing power of the visual
analytics system. This separation strategy guarantees a user-friendly tool
experience; no-one wants to wait for a long time for a data analysis result
while wasting valuable time. A data processing step should be as independent
as possible from the rest of the visual analytics system, in case the system and
the tasks at hand allow such a scenario.

3.1.3 System Ingredients Around the Data

To explore the core ingredient in a visual analytics system, i.e. the data,
various other techniques from several research disciplines have to be applied
in combination. This interplay guarantees that the users of visual analytics
systems can efficiently explore the data for answering their tasks at hand. On
the negative, challenging, but also interesting and valuable side it also brings
new research topics into the field that mostly come in the form of how to
combine the techniques in a clever and effective way. This leads to steady
progress of the field and a growing of the research community as well as
powerful applications [278]. Visual analytics is actually composed of two
major aspects, machines and humans, taking the best out of both worlds, and
hence, the power of it is their clever combination while the human plays some
kind of key role in the whole process.

Computers support efficient algorithms by their computing power and
allow automated analyses in case it can be specified how such algorithms
have to be applied. This means the human users just initiate the algorithms
and then those run until they provide an expected or unexpected result.
Statistical approaches to reduce a larger dataset into expressive numbers
are typically computer-driven. Mathematics is a powerful field that comes
into play here with a lot of theoretical concepts and disciplines. Strong
research areas involved in the visual analytics process in which the computer
is definitely required are knowledge discovery in databases (KDD) as well
as data mining [186] to derive patterns in the form of association and
sequence rules. However, although such rules bring some structures in
the data and show static as well as temporal correlations between data
elements, the output of the involved efficient algorithms is typically so
large that further concepts have to be applied, with interactive visualization
being among them. In particular, the visual depiction of data demands for
appropriate devices and displays as visual outputs for guiding the input
in form of interactions. However, although the displays are computer- or
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hardware-based, the decision which display(s) to use is still on the users’
side, such as small-, medium-, or large-scale displays like high-resolution
powerwalls or combinations thereof.

Humans with their perceptual abilities to quickly and effortlessly
recognize and identify visual patterns are the driving force in the whole
visual analytics process. Using their hypothesis building strategies they start
some kind of reasoning to draw conclusions from what they see to guide
and adapt the supported algorithms and concepts and to build the right
mixture of ingredients with the goal to solve their tasks at hand. Humans use
cognitive aspects to combine the facts in a clever way to refine the hypotheses,
confirm, or reject them or even generate new ones. In some situations, not
one individual person can solve the problem, but a quick or exact solution is
oftentimes based on a collaborative strategy exploiting the strengths of many
others. To make this even more advanced and powerful, people from different
locations on Earth, in different time zones with varying technologies can step
in the analysis process and can give feedback to the tasks at hand while the
biggest challenge is to collect all the information and bundle it into something
meaningful. The human users are also responsible for the dissemination of
the achieved results, which means presenting them to a larger audience, for
example, at conferences. Although the human plays the major role in these
processes, computers and advanced technologies are required to allow all of
this. Many years ago, due to a lack of technological progress, this was not
possible, and hence, visual analytics as we know it today can and has to keep
pace with the progress in technology.

The combination of computers and humans, i.e. the interplay as stated
by Einstein or Cherne is partially realized in the research field of human–
computer interaction (HCI). But this interplay exists in many more forms,
for example, it also includes the algorithmic approaches that can be adapted
during runtime by human intervention, i.e. changes and modifications of
parameters, for example, if they have run into a local minimum where it is
impossible to get out automatically. This requires the users’ input to give
an algorithm additional support during runtime to work more reliably and
to search in a certain user-defined direction. But still, the computational
power is exploited to allow running an algorithm automatically to a certain
stage until the human users come into play. Hence, the decision-making
process is guided by humans as well as the computers which are actually
the strength of visual analytics, but the extent to which each part is involved
is typically guided by the human. Although visualization is the means to
provide insights in the final result or intermediate steps of algorithmic
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processes, it is still a combination of human–machine processes, the same
holds for interactions although they are initiated by the human users. The
generation, presentation, and dissemination of results is also mainly guided
by the humans but the computer is required to prepare and display the results
efficiently. Output devices are fundamental for visual analytics, but the users
can adapt device parameters, and they could even make use of much more
advanced technologies if they have access to them, for example, in a research
institution or industrial environment.

To investigate if a visual analytics system is really useful or at
least several parts of the provided functionality, evaluation can help to
measure performance for the humans but also for the computer with all
of its algorithmic approaches. Humans with their varying knowledge and
experience levels as well as further specific properties can be evaluated
in several user study settings, for example, in an eye tracking study to
record visual attention behavior. The machine can be checked for runtime
performances, reliability, trustworthiness, and soundness in the form of the
numbers and complexities of errors it produces while working with the
data. Also interaction techniques on the user side can be evaluated, on the
computer side it must be checked for responsiveness, hence human–computer
interaction demands two aspects, well-performing users with their tasks, and
fast algorithms. If any side suffers from performance degradation, this might
have a bad impact on the visual analytics system. In summary, the evaluation
of a visual analytics system is challenging, but also interesting because it
brings into play new research fields.

3.1.4 Involved Research Fields and Future Perspectives

Visual analytics is called an interdisciplinary approach [279] with many cross
relations to and between fields that bring some benefits for the goal of finding
insights in data by supporting analytical reasoning (see Figure 3.4). Without
this linking strategy it could not tap its full potential as it does in these
days with a variety of application fields, in particular, focusing on large,
complex, heterogeneous, and time-varying datasets. To get the data ready
and prepared for the analysis, visual analytics systems are based on a well-
designed infrastructure with respect to data handling and storage as well as
all other aspects making it a responsive system with a good user experience.

The number of involved research fields is growing as well as the interest
which is reflected by the size of the community as well as the variety of
corresponding research activities and events such as the VAST challenge;
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Figure 3.4 Visual analytics is an interdisciplinary field that makes use of research disciplines
involving the computer, the humans, and also human–computer interaction (HCI).

there are too many to mention all of them here, but we will keep an eye
on the most prominent ones which are also involved to the largest extent. For
the algorithmic data processing we have to mention fields like data mining
and knowledge discovery in databases (KDD). Also machine learning,
deep learning, artificial intelligence (AI), or disciplines like explainable
AI build the basis for many data analysis techniques as well as statistics
and mathematics, in which the human user is typically not involved a lot.
Data management is important because of diverse data sources, and is also
available on the web existing in various and diverse research fields and
applications.

From the human perspective, fields like human–computer interaction
including individual and collaborative interaction, also over the web, play
a crucial role for more and more data analysts spread all over the world
with varying expertise. Cognition, perception, and psychology are important
for enhancing and accelerating the decision-making process, in particular,
if visualization is incorporated in the data analytics process, for example
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in cases where large data like time-varying high volumes or streams are
visualized in a scalable form with a great overview first. Pattern recognition is
used for starting further exploration processes, to build new hypotheses about
the data, and to dig deeper in the already achieved insights. Presentation and
dissemination of the results is typically mostly the job of the humans although
computers are required to facilitate these issues. Evaluation is an increasingly
needed research area that provides insights into the user experiences and can
show design flaws and drawbacks that help to enhance the system. This brings
into play novel problems like ethics and privacy, creating a new kind of data
worth including in the analysis.

The field is still developing and has not reached the end of its progress.
As long as datasets are generated and recorded, visual analytics will play
a key role in order to process, analyze, and visualize this data with respect
to the tasks of the human analysts. However, due to the steady progress
in hardware and software technologies, visual analytics is also subject to
a steady change to keep pace with more and more challenging problems.
In particular, fields like machine learning, deep learning, or explainable
artificial intelligence [123] bring new ideas and emerging topics into play,
demanding the power of many involved aspects of this interdisciplinary field.
Taking into account the opinions, real-time decisions which are difficult for
visualization alone, and power of various users, maybe even in a collaborative
manner, is a suitable concept but requires scalability in terms of client–server
software architectures to reach out to the experts and non-experts in the world.
Visual analytics on smartphones, although the display is small, could be of
potential support, at least to access the people. Synchronizing, merging, and
summarizing the inputs and outputs of the users is another challenge. Such
apps would bring even more privacy issues into the field, a challenge that
cannot be neglected in the future. Users could suffer from cognitive overload
and hence, the problem might be split into parts and distributed among several
people to reduce this cognitive burden for the individual person.

Algorithmic and visual scalability are not the only challenging problems,
but also the general aspect of finding out if a visual analytics system is
useful at all or for which tasks it is of particular use. Evaluation is a huge
topic for the future development of such systems, specifically if millions
of people could be included in the evaluation process. The number of
people has to be large because visual analytics systems contain a variety
of functions, algorithmic approaches as well as visual depictions in lots of
parameter settings supported by interactions. Setting up user studies and
recording the performance or visual attention data is not the biggest challenge
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here, but it is more the effective and efficient analysis of the recorded data
with the goal to find or predict insights that help to improve the visual
analytics system, maybe in real-time. Further, automatic adaptations based
on users’ eye movement behavior or general behavior like body movements
and gestures, spoken words, interactions with the system but also between
the users, facial expressions, and many more could be steps into the right
direction. An exploration and interaction history, reflecting the steps and
stages taken during an analysis process, which is not found in many visual
analytics systems, can be of great support to achieve a faster way to find
insights, specifically if users have to jump to and fro between earlier and later
states of the system many times.

3.2 Visual Analytics Pipeline

Compared to the visualization pipeline (see Figure 2.26), the states and
transitions in visual analytics contain many more concepts which is due to the
fact that visual analytics is an interdisciplinary field combining the strengths
of computers and humans. Figure 3.5 shows an illustration of the major
concepts that are applied to start from raw and original data to finally generate
insights that are either used to adapt the data aspects under exploration or that
make the users confident and solve the tasks and help to confirm or reject
their hypotheses. In this section the major concepts are described as well as
their interplay and the transitions between them.

3.2.1 Data Basis and Runtimes

A good data basis builds the crucial aspect for an appropriate data analysis
as well as an interactive visualization, which are important for the visual
analytics system to generate insights based on users’ tasks and hypotheses.
Such data challenges can come in many forms, as described in Section 3.1.2.
In nearly all cases, no matter from which application field the data stems,
the visual analytics system cannot work with the raw or original data, hence
it must be modified and adapted in a way that it meets the requirements of
the system. This is described in the three stages starting with the raw data,
preparing it, and finally checking it for its suitability for the system. The
last transition is the deciding one, for which the computer is exploited with
its computational power, i.e. the advanced data operations transform it into
structures that reflect patterns, correlations, and rules.
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Figure 3.5 The visual analytics pipeline illustrates how data is transformed into patterns,
correlations, or rules that can be regarded as tables filled with values or visual depictions. The
users can adapt visual variables and refine parameters guided by their hypotheses and tasks,
hopefully generating new insights that can be used to modify the data under exploration.

These transformations are defined by the users with their tasks in mind,
hence due to the fact that the users can change their intentions quickly
it is important that the algorithms run fast and adapt the outputs to the
users’ needs. This is actually the stage in which the responsiveness of
the visual analytics system in terms of interactivity is based on. A poorly
running algorithm cannot be mitigated by a fast interaction technique. The
interactions do not only depend on the users’ intentions but also on the
algorithm performances. When working with algorithms it is crucial to have
profound knowledge about data structures on which the algorithms are based
and algorithmic runtime issues like NP-hardness [195]. In some situations,
the algorithmic problem is so complex that we cannot expect an optimal
solution in a reasonable time, hence a good heuristic approach is needed.
This is actually the point where we need experts in the field of data structures
and algorithms, typically needed to enhance the runtime and, consequently,
the interactivity of the system. In the cases in which we really need an optimal
solution for such a complex problem the users might be warned that a result
is not expected for an indefinitely long time. Showing a progress bar in such
a scenario is also not possible in most of the situations because we cannot
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predict how long the computation will take, i.e. we do not know after which
time period the one hundred percent is reached.

In some scenarios it would even be a good idea to provide insights
into the algorithm, which means showing the step-by-step iterations of an
algorithm and how it processes the data. This would help to understand how
long it might take until the algorithm terminates but, further, it would give
insights into why an algorithm produced the wrong results or suffers from bad
performance. Although such an approach would be suitable for the design of a
visual analytics system, it is less useful for an end user who plans to just apply
the system to find insights into the data based on the tasks and hypotheses.
However, the algorithmic issues could be reported to the developer of the
system while the users let the tool run without recognizing that such extra data
is stored and transmitted. By such a strategy the system might be evaluated
from an algorithmic perspective, but the end users’ feedback could also be
included and linked to the algorithms under different settings.

3.2.2 Patterns, Correlations, and Rules

The data gets its real value if it is processed by advanced operations such as
ordering, clustering, data mining, projection, and so on, that finally brings it
into the shape the users might want to see to get answers to their hypotheses
and tasks. It should be mentioned that the result of such advanced operations
first comes in a textual form, i.e. the transformed data is presented in tables
consisting of values and numbers. Those could be read by humans but
typically, it either takes a long time to understand them and to identify some
patterns, correlations, or rules, or it is not possible at all to detect something
relevant. This would lead to the fact that it is argued that the data does not
contain any kind of pattern or a second, typically statistical or visualization
tool is applied to confirm or reject this hypothesis.

Some experts working in certain application domains are trained to
read and explore the data values without looking at corresponding visual
depictions of it. One reason for that is that they typically do not like to learn
visualization techniques since it would cost them a certain amount of time
to get some experience to read them and they fear the cognitive efforts in
the visual data exploration process. An example domain would be software
engineering in which the programmers rather like to locate the bugs and
performance issues in their code by reading the vast number of commands
and instructions. They rarely use visualization tools [149] to debug their tool
or to make it more efficient. Visualization can be of great help to quickly and
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effortlessly detect insights, in case the chosen visual metaphor is the right
one for the task at hand. Hence, a visual depiction of the data is of particular
importance to support the viewers and to guide them in the right direction as
well as accelerate the insight detection process. This is, in particular, useful
for applications in which a quick answer to the problems at hand is needed,
like evacuation planning, epidemics, or preventing terror attacks [495].

A lot of experience is required to design a good visualization as well
as to read it and to derive patterns, correlations, and rules. Moreover, it
should be investigated whether visualization is really needed to solve the
given task or if a pure algorithmic solution is strong enough to provide
the right answers. Visualization is the means of choice if an algorithm
cannot be clearly specified in terms of parameters and details about the
computation steps. An example is the min–max search in a set consisting
of quantities. This task can be solved on a sole algorithmic basis without
asking a diagram for support. However, if we search for a pattern which is
very vaguely defined, also depending on the dataset and domain, we might
choose a visualization. But to choose that in the right way we need profound
knowledge about the data types and structures involved in the dataset as well
as the domain and environment from which it stems, also the user tasks are
deciding factors in picking the right visual metaphor and right individual
visualization techniques. In summary, applying visualization for a dataset
to detect patterns, correlations, and rules is a challenging task, not only on
the design level but also on the interpretation level, typically involving non-
experts in visualization. This is the step in which user evaluation is important
to understand if the designer was successful or not in supporting the pattern
finding task which is interesting for the user.

A pattern is a user-defined order or structure in a dataset that follows a
certain behavior, shape, model, outline, or template. It is something that is
the opposite of random. A pattern carries some kind of user-defined meaning.
In some cases it can be clearly specified in terms of parameters, but in most
cases the users are able to define it as a pattern although they cannot specify it
very clearly which makes it hard to be processed by an algorithm. Moreover,
in some data situations it was not clear right from the beginning that a pattern
existed in the data, hence an algorithm cannot be specified which refers to
the “seeing the unseen” quote. If a pattern can be identified, also outliers and
anomalies can be present which are points that do not fall into the pattern
shape, but behave somehow differently. Outliers and anomalies can only
exist if a pattern exists. A powerful visualization for depicting patterns is
an adjacency matrix, if it is ordered in a meaningful way. Figure 3.6 shows
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(a) (b)
Figure 3.6 (a) Comparing the participants’ scanpaths from an eye tracking study can
generate pairwise similarity values shown in an adjacency matrix. (b) Applying a matrix
reordering technique immediately shows a pattern in the matrix which is difficult to find by
the pure textual values given in a table or 2D array [300].

two examples for the same dataset, an unordered one and an ordered one.
The ordered matrix immediately reflects patterns in form of blocks along the
diagonal.

A correlation is defined as two or more variables measured for the same
observations standing in a certain related behavior. This behavior can be
the same, similar, or one can be completely the opposite of other ones. An
example would be a bivariate dataset, i.e. containing two variables for each
observation, in which the larger values of variable A correspond to the larger
ones in variable B and the lower ones of A correspond to lower ones of
B, building a positive correlation. If the larger ones of A correspond to the
smaller ones of B and vice versa we call this effect a negative correlation. If
those values are stored in a table with two columns, an ordering of one column
can help us to see the impact of this ordering on the second one. Scrolling
down the columns can still be a solution to identify the correlation behavior
but in many cases it is not that easy to identify in the textual representation.
A visualization can help to rapidly judge which kind of correlation (apart
from the standard positive and negative ones) exists. Scatterplots for bivariate
data as well as scatterplot matrices and parallel coordinates plots [255] for
multivariate data are standard and well-researched depictions for this kind of
data focusing on visual correlation detection. Figure 3.7 shows an example for
multivariate metric data from an eye tracking study [299]. The vertical axes
encode the metric scales from top (large values) to bottom (small values)
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Figure 3.7 A parallel coordinates plot (PCP) for showing positive and negative correlations
between pairs of metric attributes derived from eye movement data for selected study
participants [299]. Axis filters are indicated to reduce the number of polylines. Image provided
by Ayush Kumar.

and the polylines in between depict the values for each observation, in this
case an eye tracking study participant. We can detect the positive correlations
in the nearly horizontal more or less parallel running lines and the negative
correlations in the crossing line patterns between the axes.

If data mining is applied we can generate more advanced rules that can
exist in at least two major types denoted by association and sequence rules.
Depending on the number of elements involved they can be binary or n-ary.
An association rule expresses if two or more data elements are related at the
same time to a certain extent, typically described in a percentage value or
in natural numbers. This depends on the fact of whether the confidence or
the support of a rule is considered. The support expresses the total number
of occurrences of an element tuple in a rule while the confidence expresses
the relative number of an occurrence of an element tuple to all occurrences
of an element in that tuple. A sequence rule, on the other hand, contains
a temporal aspect, describing an antecedent, the condition before, and a
consequent, the condition afterwards. Also sequence rules exist with a certain
confidence, i.e. probability, as well as a support value, even in multiple stages,
if the sequence rule consists of several antecedents and consequents. Each
following consequent typically lowers the probability because of the more
restrictions due to the higher number of antecedents. Figure 3.8 shows an
example from eye movement data [63] for which data mining rules have been
generated and visualized. A typical visual aggregation for sequence rules can
be achieved by considering common prefixes and put them together into a
rule hierarchy, just like some kind of decision tree.
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(a) (b)
Figure 3.8 (a) n-ary association rules (b) and n-ary sequence rules generated from eye
movement data can express which general relations exist in eye movement data [63].

It may be noted that apart from patterns outliers and anomalies can also
exist, but those can only be detected if a pattern is known, i.e. the normal
case from which an outlier can be distinguished. A similar effect holds for
countertrend patterns that can only be detected if we know the trend pattern in
the data. For example, if one time-series shows a growing behavior, a second
one shows a decreasing one. However, it always depends on the perspective of
the user what is defined as the trend and the countertrend. A trend is typically
found in time-dependent data in which we can compare values over time.
This means we identify a certain function that describes or models the trend
behavior as well as possible.

3.2.3 Tasks and Hypotheses

Hypotheses guide the data exploration process. They describe insights that
are to be expected by the users, for example at the time when the data is still
existing in its raw form, before further adaptations have been made, the users
do not know if those hypotheses can be confirmed or rejected. Furthermore,
there are many more hypotheses which the users are not aware of before using
the visual analytics system; they build new ones or refined ones during the
exploration process. Each hypothesis involves one or a set of tasks that have
to be answered in order to successfully confirm or reject it. A hypothesis can,
for example, state that “the largest cluster of related people in a social network
consists of 45 members”. To find an answer to this hypothesis we need to
know which people are connected to whom and how they are separated in
individual clusters. This separation into individual clusters, if shown visually,
is done pre-attentively [219] by exploiting the Gestalt laws of proximity and
good form [292] without paying much attention and with fewer cognitive
efforts if the visualization is perceptually well-designed, maybe as a node-link
diagram.
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Figure 3.9 Confirming or rejecting a given hypothesis in a simple bar chart can generate a
lot of simple tasks which might be recognized if the eye movements of observers are recorded
and overplotted on the bar chart stimulus in the form of a gaze plot [203].

However, as a starting point, we need to answer some kind of estimation
task to judge the number of people in each cluster as well as a comparison task
to identify which cluster is the largest one. Finally, we might need a counting
task to check the given number of 45. However, before we can start with
answering the simple tasks and combine them to the answer of the complex
task to find a solution to the hypothesis we typically make use of additional
support. In our case, we could solve the tasks purely algorithmically. Visual
analytics offers interactive visualizations as well, hence we could also try
to find a solution visually if the right visual metaphor is chosen and if
the preprocessing of the data computes a suitable structure, in this special
case, a structure that moves the related social network members spatially
closer together than the non-related ones. Only by this strategy we can start
recognizing clusters of people.

Another simple visual example might be given as a bar chart. A
hypothesis could be that “the value of the second smallest bar is 8 and the bars
are labeled A, B, C, D, and E”. If people’s eye movements are recorded while
checking this hypothesis we can get an idea of which simple tasks, and maybe
in which order they have to be solved, to confirm or reject the hypothesis (see
Figure 3.9). At least, without paying too much attention to the order, we can
identify some simple tasks by looking at the visual depiction denoted by the
term gaze plot [203]. The participants judge the heights of the bars (only two
of them), compare those (otherwise they cannot find the second smallest one),
follow a horizontal line (to get the scale of the vertical axis), read the number
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on the scale (to check for 8), and finally, read the labels. This visual stimulus
also shows some extras, one is definitely the fact that not all bars are visually
attended, a fact that might come from the peripheral vision, meaning in some
situations we do not have to focus the eyes on a visual object to judge if it is
relevant for a task to confirm or reject a given hypothesis.

We have to admit that the bar chart example is not needed to answer the
given hypothesis, this could be solved by an algorithm while the labels could
also be checked by just searching for them in the dataset. However, there
are much more complex hypotheses for which visualization is required. For
example, we might state that “there exists a periodic dynamic pattern in the
data”. This hypothesis could be algorithmically solved if we knew the period
in the time-varying data, but this period might even change over time. Hence,
a visual depiction would help and the perceptual abilities allowing fast pattern
recognition would do the rest for us.

The examples above illustrate that a simple hypothesis requires a certain
number of simple tasks that have to be combined in order to find a way to
confirm or reject this hypothesis. In general there are various simple low-level
tasks that can be combined in task categories, each describing the common
procedure that is needed to solve each individual task contained in it. In a user
study, with and without eye tracking, the participants are typically confronted
by one or several of those tasks, simple ones or more complex ones. If the task
is too complex the study participants start to subdivide the complex task into
simpler tasks automatically. This subdivision can be identified if the visual
attention behavior in form of eye movement was recorded and the analysis
approach was sufficient to identify the task splitting strategy. In the following
an overview is given about certain task categories without explicitly stating
that the list is complete (see Figure 3.10). The tasks can be applied to both,
textual representations in the form of tables and values, but also to visual
depictions of data, probably with varying task performance in the form of
task response times and even error rates, typical for user studies reflected
in the dependent variables. Yarbus [539] has shown that the task even has
an impact on the eye movements, hence it would be interesting to analyze
eye movement patterns to identify the current user task in a visual analytics
system, maybe to better guide a user.

• Search tasks. Locating textual or visual objects of interest builds the
basis for nearly every other task. Search tasks can be quite time-
consuming if the objects we are looking for are not quickly recognized,
for example outliers should be visually highlighted and hence, be made
pre-attentively detectable [219, 500].
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 3.10 Visual scenes illustrating several tasks. (a) Searching a red triangle in a sea of
distracting visual objects. (b) Counting the number of red circles. (c) Reading labels attached
to visual objects. (d) Judging the smallest bar in a bar chart. (e) Estimating the number of
green squares. (f) Comparing the red and blue circle clusters with the blue triangle cluster.
(g) Identifying patterns from groups of visual objects. (h) Identifying correlations between
visual curves. (i) Finding a route in a network. (j) Detecting communities by similarity and
proximity.

• Counting tasks. If explicit values have to be checked, like a number
of certain visual objects, we cannot just interpret them in a quick guess
but we have to observe the objects one-by-one. A counting task [139]
typically requires an object or pattern identification task prior to the real
task.

• Reading tasks. Labels give extra details-on-demand or help to set the
found insights into context to the seen objects. Also longer texts or
text fragments give extra feedback on a visual scene in which the pure
visualization is not exact enough, for example. Text can be an amplifier
for the interpretation, but a visual depiction is in most cases more
efficient to show patterns. Reading tasks have been studied a lot by
means of eye tracking, also on small displays [382], with the major
insight that the eye does not move smoothly but does several rapid
movements as well as short stops [263].

• Judgement tasks. If a certain visual variable is used to encode a
data variable it is important to allow judgments of the value visually
depicted in this visual variable. For example, if a quantity is shown as
a bar of a certain height or length it should be possible to judge this
height reliably to avoid misinterpretations of the data. Color as a visual
variable could be problematic for some people due to color deficiency
or color blindness problems [348], hence the judgment process can vary
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from user to user due to the impact of individual perceptual or vision
properties [521, 522].

• Estimation tasks. If a crowd of visual objects is given that cannot be
counted easily, but maybe a quick estimate as a first sufficient response
has to be provided we typically do some kind of estimation task. In
many situations when direct comparisons are required between two or
more sets of point crowds we more or less automatically change from
a counting to an estimation task, although the risk of inaccurate results
may come into play. However, in estimation tasks we are less interested
in response accuracy but more in a low response time as well as to reduce
cognitive efforts that occur during counting and less during estimating.

• Comparison tasks. To set textual or visual objects in relation to
others based on their properties or visual appearance they need to be
compared to each other. This requires prior search tasks to locate the
objects of interest, counting, estimation, or judgment tasks to make
them comparable, hence a comparison is already a more complex
task that also requires to remember visual objects in the short term
memory [272, 410], at least if they are not both in the visual field
at the same time, to allow a reliable comparison. Change blindness
effects [376] may cause problems in this case.

• Pattern identification tasks. For these kinds of tasks we typically
also use peripheral vision [120] to detect patterns that are not directly
in the field of view. Pattern identification tasks are mostly based on
user experience and exploit the general Gestalt principle [292] of “the
whole is greater than the sum of its parts” to make the identification
process cognitively less stressful. Moreover, patterns are in most cases
not specifiable that easily by algorithmic concepts, hence visualization
is an important ingredient in a visual analytics system.

• Correlation tasks. The impact of variables on other ones typically
requires some kind of pattern identification task as a first step to identify
correlations. This demands for having already some experience with
those patterns and how they might look like, otherwise the pattern
identification cannot work due to the fact that we do not know what
to search for. Even more simple tasks are involved like reading tasks to
identify the names of the variables that stand in a correlation behavior or
judgment tasks to observe the extent of the correlation [223, 255].

• Route finding tasks. Following a single line or a sequence of connected
lines is not an easy task if occlusion and clutter effects occur as in
typical visual situations, for example, in graph visualization or route
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network representations as in navigation systems. The law of good
continuation [292] supports viewers in more easily finding a route, even
in a complex network. Route finding tasks are a special example of
following lines, which is a common task in many of the line-based
diagrams such as node-link representations of graphs or line-based
time-series diagrams consisting of several time-varying measurements.

• Community detection tasks. Identifying objects that belong together
due to a certain criterion or relation is actually supported by the
laws of proximity and good form [292]. If movement is involved for
each object in a community separately, for example in animated graph
visualizations [151, 190], then swarm-based behavior interpretation
making use of the law of common fate is a quite successful strategy.

In general, a visual analytics system is needed for solving a series
of complex tasks; in most cases the users are not aware of the fact that
they subdivide such complex high-level tasks into simple low-level tasks,
switching between top-down and bottom-up strategies, to find the right hints
or solutions for confirming or rejecting a given hypothesis. The solutions
to such simple tasks are the key factors in solving more complex analytical
tasks, in particular if certain situations have to be understood quickly enough
for timely reaction to urgent problems like epidemics, terror attacks, or other
threatening situations. A reaction to unexpected events is as important as
well-known events that require a fast response.

3.2.4 Refinements and Adaptations

In cases in which we do not exactly know if the visual metaphor or the
visual variables have been chosen in a task-supporting way we are able to
adapt those and watch the data from several visual perspectives. To reach this
goal the users can interact with the visual analytics system until the visual
representations meet the needs of the observers. A similar procedure can be
applied to the algorithmic concepts for which the involved parameters can
be refined as long as they have to. For example, changing a threshold value
or a layout strategy (see Figure 3.11) might have a tremendous impact on the
output of an algorithm, in particular in cases in which a probabilistic model or
a randomized algorithm is applied, but also, in most cases, on the runtime, i.e.
the time until an algorithm terminates with the result. One challenge for both
algorithmic as well as visual refinements and adaptations can be the runtime
until a new state is computed. Making these modifications many times in an
exploration process can accumulate to a certain amount of time we have to
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Figure 3.11 Changing the requirements for an algorithm can modify its output, which is seen
in a visual result. In this case the layout algorithm for a generalized Pythagoras tree [31] for
hierarchy visualization (top row) is changed to a force-directed one (bottom row) that creates
a representation which is free of overlaps [363].

wait, valuable time that might be lost in which we might have done something
else. If an urgent and timely solution is required, for example in an application
scenario in which the users are under an extreme time pressure for making a
decision, such an effect is not desirable and should be avoided when possible.
However, some algorithms do not allow for a quick solution, even on the
fastest computer [195], hence the user should be warned in such a situation.

Most modifications, either to the parameters of the algorithms or to the
visual variables, have an impact on the other side, i.e. algorithms influence
visualizations and vice versa. This means, for example, if an algorithm setting
is changed, the new output will have an impact on the visual result, for
example a refinement for the layout or arrangement of the visual objects.
On the other hand, changing a visual variable might request an algorithm to
compute a more efficient structure of a set of elements. This bidirectional
interplay between algorithms and visualizations is important for a visual
analytics system but also requires that the human observers are able to keep
track of what has been changed and what stays the same or similar. This
effect brings into play the mental map [356] which is a crucial aspect for
keeping a system with visual and algorithmic ingredients usable and user-
friendly. Such refinements and adaptations bring typical parameters in user
experiments to check their impact on the user performance, but also on
algorithmic performance without including humans. For eye tracking it is of
particular interest that the visual analytics system can provide various types
of visual stimuli to investigate the impact of parameter changes on them,
and, further, on the interpretation of the users combined with the tasks. Only
with these insights are we able to find out for which setting a certain design
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flaw occurs that needs to be removed. Moreover, with eye tracking we can
record where (space) and when (time) the design problem appeared and who
(participant) had bad experiences with it, reflected in the visual attention
behavior.

The evaluation of such refinements and adaptations does not only depend
on the shown visual stimuli but on even more factors. Interactions are
supported by various input as well as output devices, can be done by
individual users or in a collaborative manner, and the users themselves with
their experience levels as well as tasks in mind build a crucial ingredient.
Moreover, the eye can itself be used as interaction means, for example
as gaze-assisted interaction [439], a concept that already records the eye
movements during interacting with a visual analytics system.

3.2.5 Insights and Knowledge

Insights can be defined as any kind of extra knowledge that we did not
have before letting a visual analytics tool run. Insight is the difference in
knowledge after a run of a visual analytics system minus the knowledge
before this run which requires that knowledge to be measurable as some kind
of quantitative number. Insights can, and in the best case, are increased with
each iteration for the user-in-the-loop who adapts and refines parameters over
and over again to reach the goal of solving a given task. Insights depend on
the task, i.e. how far we get to a possible solution; the more insights we
get, the closer we are to the solution. It cannot be expected that the first
insight solves our task at hand, but another run can provide us with even
more insights, hopefully summing up, until the insight is so much that the
users are confident. However, an insight could be as small as a new label that
is successfully read as well as a complex link between two patterns that has
been identified. Generally, and to sum up, insight is anything that brings us
closer to a solution of a given dataset problem focusing on a task at hand.
Gained insights can be applied to start the whole exploration, refinement,
and adaptation process again under refined circumstances, under different
viewpoints requiring that a user is able to remember already found issues
and to strategically combine them.

In an eye tracking user evaluation it could be recorded how the user
got the insight, i.e. what features have been used and what visual stimuli
have been watched in a visual analytics system over time. This procedure
generates a new dataset of spatio-temporal visual attention behavior together
with the stimulus information that typically carries some meaning or inherent
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semantics, visually describing how a given task might be solved. If the insight
is not enough at any stage the user does another iteration for which the visual
attention behavior could be compared with the previous one to analyze which
chunk of information was missing in the previous iteration. It can be evaluated
if insights are as expected, good enough, how fast people came to them, if they
made misinterpretations, and what they visually attended. Insight is much
related to user confidence, meaning the more insight the users get, the more
confident they are and the fewer eye movements are made from iteration to
iteration, but as long as this is not properly analyzed the effect just serves
as a hypothesis about the eye movement data. In any case the user getting
frustrated while looking for more and more insights should be avoided. This
effect might be detectable in the eye movement behavior, maybe by more
and more chaotic visual attention patterns. On the positive side, the faster the
insight is generated, with a minimum number of eye fixations, is a good sign
for a well-designed system.

A maximum of insight finally leads to knowledge about a certain data
scenario, aspect, or situation to allow making a decision. For example, in
urgent cases for timely decisions with a lot of stress for the user, the eye
movements might vary a lot [539] compared to a totally relaxed situation for
which the rapid insight detection is not required but for which we have all the
time in the world. Also for a real-time visual analysis in which the user cannot
see the dynamic stimulus easily again and again, like in a replay, without
losing real-time information, we could analyze the recorded eye tracking data
to identify where the design flaws occurred for generating insights, hence
real-time situations are challenging to evaluate by eye tracking. This is also
problematic for a feedback loop allowing users to step back and adjust or
adapt certain parameters, with the challenging issue that the real-time analysis
is running at the same time as we wish to step back. For a non-real-time
situation the feedback loop is a powerful concept since it allows us to go back
to the data stage, but also to stay in the pattern, correlation, or rule generation
stage, and refine and adapt it until insight is generated again. Visual analytics
provides many opportunities to analyze data and to finally get knowledge
about the data under exploration. To sum up, those insights are important to
present, share, and disseminate to and with an interested audience.

3.3 Challenges of Algorithmic Concepts

Algorithms occur in many variations in a visual analytics system, be it for
the problems in the original data (see Section 3.1.2) like fixing data capture
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errors, finding anomalies, or detecting noise, outliers, missing, or duplicated
values, or for already processed and transformed data. Particularly for eye
movement data, we could get low precision data in certain time periods,
maybe caused by calibration issues of the eye tracking device. Moreover, if
the data has to be transformed into a certain system-acceptable format we can
be confronted by additional algorithmic problems like migrating or parsing
the data, cleaning up the data, reducing, enriching, and up- or down-sampling
it. If several data sources exist the data must be linked in an efficient but
also meaningful way. More advanced data operations bring the data into a
more structured and pattern-based form required to solve the users’ tasks
at hand, for example sorting, clustering, grouping, aggregating, classifying,
categorizing, or projecting it. Even more, correlations and rules might be
extracted from the data. Also most of the visualizations demand for efficient
algorithms, for example, for computing suitable layouts that follow certain
design and aesthetic criteria, like visual object placements without overdraw
and occlusion effects or real-time animated diagrams that have to guarantee a
high degree of dynamic stability to preserve the viewers’ mental maps during
the visual exploration. For real-time settings this cannot be pre-computed and
it cannot be predicted where and when the user interacts with certain visual
objects. A big challenge for algorithms in visual analytics systems is the fact
that real-world problems cannot be defined in a proper algorithmic way, hence
making it difficult to design, implement, or find the algorithm for a certain
problem.

3.3.1 Algorithm Classes

There is no unique classification of algorithms, but the literature gives
some explanations as to why a specific algorithm falls into a certain
class [361]. Such a classification could be based on the computation strategy
the algorithms follow during runtime like recursion, backtracking, divide-
and-conquer, dynamic programming, greedy, branch-and-bound, brute force,
and the like. Finding insights into the internal workings of an algorithm,
typically supported by visualization or visual analytics, is described in
Section 3.3.5. Moreover, a classification could focus on what the algorithms’
results are based on, how their input is given, or what quality of results
can be expected which is reflected in the classes denoted by deterministic,
random, offline, online, optimal, or heuristic. In the following we discuss
several of those classes and for which visual analytics scenario they are
useful.
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• Deterministic or randomized. We can distinguish between algorithms
based on the result they generate. A deterministic approach follows a
clearly defined computation strategy, meaning if the same algorithm
gets executed several times on the same input data with the same input
parameters, we will always obtain the same result. A randomized version
can follow different rules from execution to execution due to the random
effect, even if the same input data with the same input parameters is used.
There even exist algorithm subclasses; for the randomized ones we could
mention Monte Carlo and Las Vegas variants. This class of algorithms
can be useful to consider in visual analytics if the runtime is important,
i.e. randomized algorithms typically generate a result much faster than
the deterministic counterparts, but the results have to be taken with care
to not lead to misinterpretations.

• Offline or online. If the input is given, it only makes a difference how
the input is given. This is reflected in the offline or online criteria in
which offline means that an algorithm is aware of the input data and
parameters all the time, which makes a solution more predictable. For
online algorithms the input is typically not known, either completely or
at certain stages during the execution which makes it sometimes hard
to generate a good result due to the fact that a context information is
missing or can change abruptly during the execution. Dynamic data
problems, for example real-time data, are candidates for which a visual
analytics system normally does not know what has to be expected.

• Optimal or heuristic. If the quality of the results and the time
taken play a major role in the visual analytics system we should
distinguish between optimal and heuristic solutions. This is in particular
a good concept if the algorithm has a high runtime complexity,
typically in the case of NP-hardness [195], for which we cannot expect
a result in a reasonable time since no algorithm with polynomial
runtime is known, while at the same time it might have large
memory consumption, even for small data problems. An example
would be asking for an optimal solution to a clustering or matrix
reordering problem [34], maybe following the strategy of the minimal or
optimal linear arrangement problem (OLAP). A heuristic approach can
compute a non-optimal but still close-to-optimal and hence acceptable
solution. This has the benefit that the solution is obtained much
faster which means that we trade computation time for computation
accuracy.
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(a) (b) (c) (d)
Figure 3.12 Several dimensionality reduction algorithms applied to the same dataset
consisting of eye movement scanpaths [79]. (a) t-distributed stochastic neighbor embedding
(t-SNE). (b) Uniform manifold approximation and projection (UMAP). (c) Multidimensional
scaling (MDS). (d) Principal component analysis (PCA).

The right choice of algorithms from a certain class is important for an
interactively responsive system and as a designer of a visual analytics system
we should have some expert knowledge about data structures and algorithms;
even a simple algorithm such as a minimum or maximum search can end up
in an inefficient end result. However, today’s programming libraries mostly
support efficient variants of the required algorithms, in the case that those
algorithms are standard ones for a well-known algorithmic problem. The
choice of the right algorithms depends on the data, its inherent properties,
types, and structures, as well as tasks, and whether a fast or accurate/optimal
solution is expected. In many cases there is a trade-off between runtime
and exactness of the results. Visualization is important to show the output
of an algorithm (see Figure 3.12 for examples of variants of projection or
dimensionality reduction algorithms) but it is difficult to show the internal
workings that could be done in an animated or static time-to-space mapping
(see Section 3.3.5), in the cases that these internal operations can be tracked
step-by-step.

The selection of an algorithm typically depends on the data and the
patterns we plan to see in a given dataset. In the following we will
describe several examples of data and tasks with corresponding algorithmic
approaches being able to provide solutions to those given problems. How
those are internally implemented depends on the decision of the designer, i.e.
can it be based on a previously described algorithm class, as well as the way
they process the data internally step-by-step (Section 3.3.5).

• Counting. Computing the number of elements is a basic algorithmic
problem, but even that requires to understand what an individual unit
is, like a number, a group of people, or the ups and downs in a
time-series.
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• Ordering and sorting. Bringing an ordered or sorted structure in a
dataset seems to be a simple problem for one-dimensional data like a list
of numbers, but if the to be ordered or sorted data has a higher dimension
like a matrix [34] or multivariate data, we have much more variety and
complexity in the repertoire of algorithms.

• Clustering. If a pairwise similarity relation is given among a group of
objects or persons those can be clustered, meaning similar objects or
persons are grouped together and non-similar ones are to be separated.
Visually, this is typically indicated by the Gestalt law of proximity which
leads to the pattern of clumped together visual elements.

• Dimensionality reduction or projection. In cases where the data has
a high dimension, too high to easily inspect it visually, dimensionality
reduction algorithms are able to reduce the dimensionality to a lower
one, typically two dimensions, while the similarity and dissimilarity
patterns in the data should be preserved as good as possible. However,
such a strategy leads to some kind of information loss and computing
such patterns can take a long time if a good result is expected (see
Figure 3.12 for examples of t-SNE, UMAP, MDS, and PCA).

• Route finding. Identifying an efficient way in a network, based on some
prior quality criteria, can be supported by algorithms. Popular examples
are the finding of a shortest path in a road network, for example in
navigation systems, or robot motion planning, i.e. efficiently guiding a
robot through a complex environment following a certain goal.

• Sequence comparison. Data consisting of a set of sequences can
be rather unstructured in terms of the order of the sequences or
the alignment inside each sequence. In particular, for DNA or RNA
sequences it is of interest to understand the commonalities of the
sequences and even group or cluster them in a way that reflects these
commonalities. This strategy is even applicable to general character
sequences like texts or source code or even eye movement scanpaths,
first translated into character sequences, in which each character
represents a certain property in a scanpath.

Depending on the application fields there are various simple but also
more complex algorithms consisting of several simple algorithmic routines
that are linked in a way to compute solutions to the complex problems.
Examples from this style are text or natural language processing algorithms
like tokenization, stemming, and so on. Also graph- and network-theoretic
problems have to take into account algorithms like computing a suitable
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layout for the users’ tasks at hand, which gets even more challenging for a
dynamic graph, i.e. one that changes over time for which the dynamic stability
has to be taken into account to support the user as good as possible to preserve
the mental map when using an animation to explore the dynamic data for
trends, countertrends, or anomalies.

3.3.2 Parameter Specifications

Selecting the right parameters as well as the right values or value ranges is
as important for an algorithmic solution for a task at hand as selecting the
right class of algorithms and the proper way after which strategy an algorithm
should process the data step-by-step during its runtime. In many cases it is
quite hard to specify the values of algorithm parameters or the set of suitable
parameters right from the beginning, which makes visualization a helpful
concept to get the first visual idea about what an algorithm result might look
like based on a fixed set of parameters and their values. Such a benefit of
visualization is only useful if the runtime of an algorithm is not too complex,
otherwise we would have to wait each time the algorithm is executed to see
the result and, as a next step, adapt the parameters, and let run the algorithm
again. This makes it important to have an initial feeling or experience about
the class and type of algorithm as well as the size of its input parameters.

Although visualization can help to give insights into the algorithm results,
we typically can only adapt one parameter at a time. If several parameters are
modified at the same time it is hard, even impossible, to see which parameter
caused the change in the results. On the negative side, changing one parameter
after the other requires much more time to investigate the right parameter
setting. A possible solution to this aspect would be to let the algorithm run
several times, without seeing the results visually all the time in the end,
but instead, statistical values describe the results. Those are not useful in
understanding the details about a result but they can give a hint about the
quality of the results depending on a certain value range for a parameter.
Positively, this strategy can be used to reduce the search space for a good
parameter configuration, serving as some kind of threshold value, but the
statistical values are typically aggregations and averages of various results
and, hence, it cannot be guaranteed that the best parameter setting is among
the suggested ones. The selection process of the right parameter settings can
be done manually or even another kind of algorithm could suggest and even
adapt an automatically computed solution. If none of the parameter settings
is appropriate to compute the patterns that help to solve the tasks at hand, we
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still have the option to try another kind of algorithm that might have a higher
runtime complexity but successfully generates the patterns we wish for.

For algorithms from the class of online problems, we mostly have one
chance to watch the data, because it is shown in real-time, hence the correct
parameter setting has to be chosen in the beginning. This could be based on
learning from previously seen scenarios or the data must be recorded and the
important time periods will be observed in an offline setting after the real-
time application has ended or even simultaneously, if the time permits. An
offline inspection of the online data provides more time to explore and adapt
the parameters to the users’ needs, but in cases we have to react in real-time
due to timely reactions, a visual analytics system must take into account such
a complex scenario, even the combination of online and offline algorithms.
It should even be possible to adapt parameters to modify the phase of an
algorithm during runtime. For example, if visual output is given, even in form
of a simple statistical value like a threshold number, we could initiate the
algorithm to run in a new phase, for example from searching for an optimum
to just a local maximum. This makes sense if the algorithm runs into a time-
consuming routine with bad performance.

3.3.3 Algorithmic Runtime Complexities

Runtimes play a deciding factor for a visual analytics system in making it a
live system and keeping it alive, avoiding waiting for a solution for a long
time which is the worst thing that can happen if we are interested in a user-
friendly system. If an algorithm runs only once, for example, to transform
an originally not useful dataset into a usable form, we might accept that the
algorithm takes a long time, but the user should be warned before running
such an algorithm with a runtime estimation. In this case the algorithm might
run on a different machine and inform the user when it is ready with its
computation. In the meantime, the user can work at other tasks until the data
is processed.

In a situation in which we have to use an algorithm all the time, after
short visual exploration times, again and again, a badly performing algorithm
is not a good idea. In such cases the algorithm should try to compute most of
the needed steps beforehand, but this is more difficult than it sounds. In many
situations we do not know what the user will be doing as the next steps, which
makes it hard to predict what kind of information an algorithm should process
beforehand to make the system a user-friendly and interactively responsive
system.
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A careful look at runtime complexities for a certain algorithm based on
an input parameter n ∈ N brings us to the following classes of functions
that describe the asymptotic runtime of a function based on the class it
falls in [132]. Apart from this concept there exist many more runtime
analyses like worst-case, average case, expected, amortized, or the analysis
of competitiveness. The well-known Landau symbols [316] can help to give
a mathematical abbreviation for expressing the runtime of an algorithm in
terms of function classes an algorithm falls in. f and g are both functions
from N to R+:

O(f) := {g : ∃c ∈ R > 0, n0 ∈ N : ∀n ∈ N, n ≥ n0 : g(n) ≤ c · f(n)}

Ω(f) := {g : ∃c ∈ R > 0, n0 ∈ N : ∀n ∈ N, n ≥ n0 : g(n) ≥ c · f(n)}

Θ(f) := {g : g ∈ O(f) ∧ g ∈ Ω(f)}

o(f) := {g : lim
n−→∞

g(n)

f(n)
= 0}

ω(f) := {g : lim
n−→∞

f(n)

g(n)
= 0}.

In a visual analytics system we would rather speak in terms of adjectives
that describe the function classes which makes it more understandable for
people not involved in algorithmic runtime complexities like non-experts in
algorithms and data structures who are involved in the design process and just
need knowledge about the adjectives but not the internal workings.

An algorithm has a constant runtime if the function modeling the runtime
behaves as f(n) ∈ Θ(1), grows with logarithmic runtime if f(n) ∈
O(log n), grows linearly if f(n) ∈ O(n), and quadratically if f(n) ∈ O(n2).
Moreover, it has a polynomial runtime complexity if f(n) ∈ O(nk), k ∈
N, finally and worst for the runtime in these examples here, it grows
exponentially if f(n) ∈ O(2cn), 0 < c ∈ R.

3.3.4 Performance Evaluation

In cases in which the algorithms are too complex to estimate the runtime
complexities using Landau symbols we need to measure the runtime in a
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(a) (b)
Figure 3.13 Runtime performance chart for two algorithms generating visualizations. (a) A
word cloud is generated for differently large dataset sizes, resulting in a linear-like runtime.
(b) A pedigree tree is generated based on more and more people involved, standing in a family
relationship, resulting in some exponential-like runtime.

different way. In such a scenario we could start the visual analytics system
and for every computation that has to be made we could store the time
it takes from starting the computation until the result is produced. This
process could be done for several instances of the algorithm responsible for a
certain computation by increasing the size of an input parameter, for example,
the dataset size in terms of number of elements to be processed. Even
an application on a different machine or a different environment can have
an impact on the runtime performance. Plotting the measured performance
values (see Figure 3.13), i.e. the time in this case, on the y-axis of a coordinate
system and the size of the varied parameter, in this case the number of the
data elements, gives a visualization of the runtime function. Having some
experience with such mathematical functions and what they look like when
plotted can give us an impression of which complexity class the algorithm
falls in; however, it may be noted that this is not a mathematical proof, it
is just a hint of what the runtime of an algorithm might be, which cannot be
modeled in terms of input parameters and a function depending on these input
parameters.

A performance evaluation might even be based on the memory
consumption in addition to the runtimes. Negatively, if we use Landau
symbols to express runtimes or memory consumption we only get the total
aggregated performance of an algorithm after it has run. In a strange scenario,
an algorithm might run very efficiently, maybe in O(n) time for most of
the processing steps, but negatively, a few processing steps may take more
time than expected, which would result in a much longer runtime. The
aggregated performance is not able to explain this phenomenon, which makes
it absolutely necessary to explore the internal step-by-step processes of an
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algorithm to investigate this negative issue. Such challenges are described in
Section 3.3.5.

3.3.5 Insights into the Running Algorithm

An algorithm does not only generate results after it has finished running,
it modifies a given data structure step-by-step based on input parameters
typically following a certain well-defined goal. Only in rare cases does the
output give a hint where the bug or error in the algorithm is located, and
which line of code is error-prone and produces a wrong or misleading result.
Further, it cannot tell us where a performance issue occurred and which
program instructions and variables are involved. How the algorithm proceeds
depends on the commands and instructions defined and implemented by
the programmer of that algorithm. Visually representing the output of an
algorithm is easier than showing its internal workings, which is due to the
fact that the output is in most cases one instance of a problem solution,
while the internal steps are several, not-finished instances, of the problem.
Moreover, it might also be of interest to observe the variables in use, how they
are modified, and how much time it takes to do such an operation. Even the
memory consumption might be worth inspecting to identify another kind of
possible bottleneck and shortcomings (see Figure 3.14). In a visual analytics

(a)

(b)
Figure 3.14 During an algorithm execution, the runtimes (a) as well as the memory
consumption (b) might differ from iteration to iteration.
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Figure 3.15 A time-to-space mapping of the vertices and edges processed by a Dijkstra
algorithm trying to find the shortest path in a network is visually represented in a bipartite
layout [75]. The time axis runs from left to right.

system it would be an extra insight if the users could choose to have a look
into an algorithm and see how it works step-by-step (see Figure 3.15). Such
an option would not be used by domain experts who would just explore their
data, but by the designer of the system to understand the design flaws, not only
on a visual basis but also on an algorithmic one, but supported by algorithm
visualizations, typically as animated sequences consisting of the individual
steps [59, 479, 480].

Before we can visualize the instances over time that an algorithm
generates we have to access and store all the information that is required
to get a suitable visual depiction of such a dynamic dataset in order to use
it for insight detection. The tracking of the variables in use as well as the
internal step-by-step states of the transformed data structure is challenging
but can be of great help if visualized in an efficient way. We could even argue
that the algorithms incorporated in a primary visual analytics system might
be so complicated that another secondary visual analytics system is needed to
analyze their internal workings for detecting design flaws in the algorithms of
the primary visual analytics system. This procedure would make the primary
visual analytics system a dynamic visual analytics system since the generated
insights can be used to improve the algorithms, their runtimes as well as their
visual representations, if eye tracking is applied as well.

To show the step-by-step execution of an algorithm [282] we have two
major options which are denoted by time-to-time or time-to-space mapping.
A time-to-time mapping also contains the concept of animation [505], which
maps each time instance in a dynamic dataset to physical time, typically as
a smooth animation with smooth transitions from one step to the next one
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to distinguish it from just showing individual time snapshots one after the
other. In contrast, a time-to-space mapping is a static representation of the
dynamics of the algorithm. The benefit of such a static representation is that
it shows several instances at a time in the same display space which makes
the dynamic data comparable over time. This is difficult, even impossible, for
animated sequences. We have to stop and replay, but still comparison tasks are
hard to solve successfully. A negative issue of time-to-space mappings is the
fact that the display space has to be used with care to show as many time steps
as possible, otherwise the individual time instances with their corresponding
visualizations might get too small to be inspected visually. A concept that
is between time-to-time and time-to-space mappings, some kind of hybrid
approach, is rapid serial visual presentation (RSVP) [477]. A variant of it
is called dynamic RSVP that shows a sequence of individual time steps as a
time-to-space mapping and animates a sliding time window over the sequence
to show the progress over time. This always gives an observer the chance to
inspect a sub-sequence of a well-defined temporal length.

3.4 Applications

Visual analytics has existed for quite some time now which is the reason why
it is applied in many application fields focusing on a variety of data analytics
problems. The repertoire of examples for such tools is increasing day-by-day,
the more complex ones focusing on heterogeneous data sources accessible
online, while the most successful ones are typically published at renowned
conferences or workshops or in journals and books. Some of the researched
solutions even made it from academia to industry as a powerful concept to
analyze specific datasets; however, for most of them, domain knowledge as
well as some expertise in algorithms and interactive visualization techniques
are required. From the various application examples we will just showcase a
small selection for illustrative purposes.

The applications can also be distinguished by the size and the complexity
of data they can handle, the types of tasks, the target users, like decision
makers, who might have to react in real-time, or whether they have been
designed for the expert or non-expert in a certain domain. Some of the
prominent application fields are astronomy or astrophysics with continuously
changing data streams full of noise, seismology with geographic information
measured over several attributes, weather, climate, and meteorology focusing
on predicting scenarios based on sensor and satellite data, security containing
people networks and their interactions based on social media and global
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positioning system (GPS) data, or medical applications that are based on
3D human body data or DNA sequences as well as additional personal data
sources including feedback and results of a therapy focusing on patients’
formerly detected symptoms.

3.4.1 Dynamic Graphs

A dynamic graph Γ in one of its simplest forms is a finite sequence of n
static individual graphs Gi := (Vi, Ei), 1 ≤ i ≤ n, n ∈ N that describe
the time-varying behavior of relations between people or objects. The ith
graph can therefore be based on actual time points, time periods, or just be
a unique number expressing a certain order among the individual graphs. A
static graph consists of a set of vertices V := {v1, . . . , vk}, k ∈ N and a set
of edges E ⊆ V × V := {e1, . . . , em}, m ∈ N expressing which pairs of
vertices stand in a relation and which ones not. If the weight or strength of a
relation plays a role as well as the direction of the relation we typically denote
that as a network instead of a graph. These data dimensions, i.e. vertices,
edges, and weights build one of the simplest forms of a graph data type, but a
dynamic graph adds one more data dimension to it, i.e. time or the sequential
order.

Visual analytics of dynamic graphs [64] is a field that has been and
still is the focus of research since time-varying graph data occurs in
various application fields (for example flight traffic data as can be seen in
Figure 3.16), in each scenario in which data elements stand in some kind of
relation behavior. Analyzing the trends, countertrends, as well as anomalies
over time between related persons or objects is of particular interest to
identify group behavior, the spreading of disease as in contagion networks,
or the message flow over time between people, to mention a few. Algorithmic
approaches like generating task-specific layouts, clusterings over vertices
and time, detecting shortest paths, or reorderings if adjacency matrices are

Figure 3.16 A flight traffic dataset taking into account temporal clusters while a bipartite
splatted vertically ordered layout is chosen to reflect static and dynamic patterns in the time-
varying graphs [2]. Image provided by Moataz Abdelaal.
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chosen belong to the challenging aspects in this application field. From
a visualization perspective [30] it is typically a user decision if time-to-
space [75], time-to-time [151, 190], or hybrid approaches like RSVP [32]
are applied. Apart from the visual challenges, algorithms are required to, for
example, compute time-varying layouts focusing on a high degree of dynamic
stability to help preserve the viewers’ mental maps [18].

3.4.2 Digital and Computational Pathology

Another important field of research with a real-life background and
application can be found in pathology (see Figure 3.17 showing an example
of the PathoVA tool [134]). This field combines technological aspects from
medical imaging as well as healthcare with the goal of improving the quality
of diagnoses, i.e. to find the causes and effects of a disease, to predict its
progress, and, based on the results, to find ways and therapies. In addition,
based on various datasets, correlations between symptoms, patients’ personal
information, sensor data, and the outbreak of a disease can help to prevent
others from getting sick. Although such a scenario sounds like science fiction

Figure 3.17 The graphical user interface of the pathology visual analytics tool with the
image viewer, the image overview, a gallery with thumbnail images, a textual input to make
reports, a scatterplot for showing correlations of bivariate data, and a view on sequential
diagnostic data [134]. Image provided by Alberto Corvo.



3.4 Applications 119

or Utopian future wishes, visual analytics can at least support several, if not
all, data analysis tasks for clinical researchers, given the fact that the data is
available and ready to be used [135].

Typical tasks that are of interest come in the form of aggregating the data
based on patient groups and their symptoms to derive a general kind of rule
that holds if a certain subset of symptoms occurs for a special patient group.
Based on such generated rules a prediction or therapy could be suggested
while the new generated data and the reliability of the rule could be stored
in the database with the goal of improving the accuracy of the set of rules.
Data mining could be an important discipline here which shows again that
visual analytics is some kind of interdisciplinary approach that has to take
into account various technologies to be as powerful as possible. Insights
from applied algorithms could be useful to find abnormalities in the data,
facilitate the identification of a characterization that on the other hand helps
to better group and categorize the data on several attributes and criteria, or,
in general, information could be derived that is not directly visually observed
from shown medical images for example. However, one problem this field
has to deal with is of an ethical nature, i.e. the requirement for respecting
individual human rights and privacy aspects. These challenges make data
analysis and, in particular, the dissemination and sharing of the results to
a larger audience difficult, although it would be a great benefit to find more
reliable and accurate therapies given the fact that all of the patients’ data is
publicly available. The question is if the benefits outweigh the drawbacks and
misuses of the data.

3.4.3 Malware Analysis

Activities in networks due to malware, i.e. malicious software like viruses,
ransomware, or spyware, can have serious effects on the networks’
performance, wasting time and causing massive cost to detect, identify,
and remove the problem [142]. Data screening is a process in this domain
that could be supported by visual analytics [106] in order to include the
human users with their knowledge and expertise to accelerate the process
of exploring the manner in which the malware behaves inside the networks
(see Figure 3.18). Typical tasks in this context are discovering which areas of
the networks are infected, how fast it is spreading, or where the leakage in the
networks are. To find solutions to these tasks the data has to be transformed
first; for example, it has to be projected to reduce its dimensionality, it has to
be aggregated over time, or categories have to be derived, and the data has
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Figure 3.18 EventPad [106] is based on a graphical user interface with several interactively
linked views to support data analysts at specific tasks to explore malware activities. Image
provided by Bram Cappers.

to be classified to define events that are of special interest to support a data
analyst.

In particular, in the cyber security domain, the data under investigation
is oftentimes so complex and difficult to oversee, demanding some kind of
external tool, like a visual analytics system, to get some insight into serious
issues such as cyber attacks. However, even after applying such a tool it
remains a challenging task to protect networks from such issues. In particular,
the question comes up if such a visual analytics system cannot be used by
the criminals to create much stronger, more difficult to detect, malware. This
aspect shows that visual analytics can have benefits for both worlds, the good
ones and the bad ones. On the one hand we try to find strategies and rules
that describe malware attacks and their impact to mitigate the problem; on
the other hand, it is a way to figure out how fast the malware can be detected
and the network cleaned and freed from it, which shows the weaknesses of
the malware and the ways to make it harder to detect.

3.4.4 Video Data Analysis

Video surveillance [232] generates a massive pool of data: individual
snapshots of images that change over time, most of them containing
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Figure 3.19 Visual analytics supports several views on the video data [232]: time navigation,
video watching, snapshot sequence view, audio augmentation, statistical plots, graph views,
schematic summaries, and filter graphs. Image provided by Benjamin Höferlin.

semantic information or visual patterns that might carry some meaning (see
Figure 3.19). In video visual analytics [233, 234] we try to find reliable and
fast answers to the tasks at hand, in particular, if the data stems from video
surveillance to investigate criminal cases. Those tasks might be to compare
video sequences to identify people who act in different scenes at different
times, find analysis-relevant time periods in a video to reduce the time for
browsing the video, or to detect certain well- or partially-known patterns,
also known as weighted browsing. Visual analytics also takes into account
additional information to augment and annotate a video for the observer, for
example, based on object detection and tracking. Moreover, further derived
information from the video sequence like color distributions might be of
interest to apply some kind of temporal clustering or to faster compare several
video sequences.

Watching the video to identify certain patterns that bring us to the
solutions of analysis tasks would be one way but it requires to watch each
video completely. For data that is produced from video surveillance systems
this strategy is too time-consuming and would not quickly enough lead to
a desired goal. Making a quick decision based on the gained insights is as
important as to understand the relations between the environments, objects,
and actors in a scene recorded as a video. Automatic analyses alone are a
powerful approach to quickly examine the time-varying data but, negatively,
the semantic information cannot be reliably extracted and judged by a pure
machine-based approach. This is the point at which visual analytics comes
into play since it combines the power of the machines with the perceptual
abilities of the human observers being able to recognize patterns and to
explore them in context to a semantic meaning that the machine is not able to
derive.
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Figure 3.20 GazeStripes: visual analytics of visual attention behavior after several people
have watched videos [309]. Images provided by Kuno Kurzhals.

3.4.5 Eye Movement Data

Eye movement data [161, 235] consists of space, time, and participant
dimensions in its simplest form, but it can be augmented by additional data
sources, for example, physiological data like EEG, blood pressure, pupil
dilation, galvanic skin response, and many more [44], possibly being a
candidate for big data analytics in cases where long-duration tasks have to
be solved by millions of people like driving a car over longer distances.
Visual analytics can be helpful to hint at design flaws in a static visual
stimulus like a public transport map [372] or to understand the visual attention
behavior in complex dynamic scenes (see Figure 3.20), given the fact that
eye movement data is available for a certain number of people [308, 309].
This application is somehow related to the video application (Section 3.4.4)
since the visual stimulus in an eye tracking study could be a dynamic one,
meaning an accompanying video to the spatio-temporal eye movement data
is required that has to be matched with the visual attention behavior to
explore the visual task solution strategies applied by the eye tracking study
participants.

Eye movement data cannot only be represented by a visual analytics
system, but in addition, the visual analytics system itself could be controlled
by eye gazes, leading to a field called gaze-assisted interaction [61]. For an
eye movement data visual analytics system this would have two positive
effects. On the one hand we can explore the recorded eye movement data
while at the same time investigating if the recorded interaction strategies
are based on a well-designed visual analytics system. This means each
visual analytics system could be equipped with an option to explore the
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visual attention data as well as the data stemming from the gaze-assisted
interaction. Another challenge in this line of research is whether the recorded
eye movement data can be reliably analyzed to enhance a visual analytics
system based on users’ visual attention input, making it to a dynamic visual
analytics system.





4
User Evaluation

Evaluation of an interactive visualization [185, 257] or a more advanced
visual analytics system [307] can be done in several ways [315]. If we
are more interested in the algorithmic runtimes (see Section 3.3.3) we
might consider conducting performance testing that can give hints about the
limitations in terms of processable dataset sizes or the step-by-step runtimes
and memory consumption of an algorithm (see Sections 3.3.4 and 3.3.5).
These limitations indicate whether the technique is still interactively
responsive or whether we have to wait for quite some time to achieve a new
result in form of a visual depiction, maybe a new layout of a graph or a set of
points. This kind of evaluation focuses more on the algorithmic scalability of
the visualization technique or visual analytics system.

On the other hand, we might consider conducting a study in which real
users are involved, also causing ethical and privacy issues as a negative
effect of incorporating real users (see Figure 4.1 for the most important study
ingredients). Those could be laymen or domain experts. User studies can be
done in several ways, with or without eye tracking, but their major intention is
to get insights into the behavior of people while using a visualization or visual
analytics system. The recorded data can be explored for finding insights like
design flaws in the visual analytics system or which kind of visualization
techniques are suited best for answering the tasks at hand. Eye tracking
plays a crucial role in such a user evaluation because with this technology
we are able to record the visual attention of study participants over space
and time. Hence, a spatio-temporal dataset is generated which is much more
challenging to be explored than the traditional measurements like error rates,
response times, or qualitative participant feedback. When analyzing the eye
tracking data in an efficient and effective way, we see the real value of eye
tracking for visual analytics, the recorded eye tracking data alone is useless,
only if visual analytics is applied on eye tracking data, the loop is closed
and design flaws in space and time can be found and mitigated. This actually
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Figure 4.1 The most important ingredients in a user study are the participants, the study
type with the independent, confounding, and dependent variables, and the results in the form
of statistics and visual depictions.

requires some experience about the repertoire of existing eye tracking data
visualizations [47]. However, both kinds of evaluations, performance and
user evaluation, provide a wealth of insights for enhancing a visual analytics
system, algorithmically or perceptually.

Evaluating visual analytics systems and analyzing the recorded
performance data can have several benefits, for example, to obtain measured
values instead of subjective feedback and personal judgments, but in case that
spatio-temporal eye movement data is incorporated in the analysis process,
we have to tackle many challenges before insights about the user behavior
can be detected. One benefit is definitely that design flaws can be identified
over space and time, even for certain specific participant groups, which leads
to an improvement of the quality of the visual analytics system, maybe
only for certain groups of users. This quality can be measured during the
development or after the visual analytics product is finished, making it a
problem- or technique-driven evaluation [450]. In the case that there are
serious design flaws which lead to a degradation of performance at some
task [426], the system might be redesigned in some way and evaluated again
to check whether there is any kind of improvement. Even before starting
the design and implementation phase, a user study, in this case more in
the form of interviews, could help to guide the development process in the
right direction. If several system variants are available and there is no clarity
as to which one is better for certain tasks and user group, evaluation can
help as a means to get a qualitative or quantitative comparison between the
variants [397]. Moreover, not only can the visual analytics system be the focus
of an evaluation, but also the users, allowing categorization into user groups
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based on varying performances or visual attention behavior. The obtained
evaluation insights provide useful information to make the designed system
more acceptable to a user group if the evaluation results convince them.

4.1 Study Types

Depending on several criteria we have to base a user study on one or several
classes of study types. Those might differ in the way the data gets recorded,
where it gets recorded, which kind of data gets recorded, the number,
properties, experience levels, or quality of study participants involved, the
technologies applied to record user performance and behavior, how the
evaluation data gets evaluated, which tasks are involved as well as the actual
or expected duration of the tasks, and many more. The human user is a crucial
ingredient in a user evaluation, in contrast to a pure algorithmic performance
or runtime evaluation that, on the other hand, is similarly important for a
visual analytics system and its user-friendliness. Moreover, the type of stimuli
shown in a study make a difference for the type of the study, for example, if
the stimulus is static or dynamic as in interactive, animated, or video scenarios
which mostly build the basis for studies in visual analytics. The bases for the
visual stimuli are built by the data types and where they stem from, i.e. either
real-world data or artificially generated synthetic data.

The study type also decides the preparations that have to be taken into
account before the users can be recruited and confronted with the tasks
to measure their performances. An appropriate study setup is required to
guarantee proper conduction of the study with as few negative issues as
possible to avoid erroneous study results. Many study designs are first
evaluated themselves by so-called pilot or feasibility studies [160] to check
whether the procedure has to be adjusted or not, or whether and how the
real study can be conducted. For example, not only prior explanations and
questionnaires, but also the execution of the study should be tested. Before
having seen users in real action in a study we cannot really predict how
they will behave, in most situations; they do not exactly follow the working
plan and time schedule as we expected before running the real experiment.
Moreover, the type of study typically limits the concepts that go hand in
hand to finally get the best out of the study. In particular, for visual analytics
systems equipped with lots of visualization techniques, interactions, and
algorithms, i.e. supporting many modifiable parameters, several study types
have to be considered to identify design flaws based on the opinions and
performances of real users.
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4.1.1 Pilot vs. Real Study

Before starting a real and oftentimes expensive study in terms of money or
human resources it is a good idea to test the setup of the actual study in a pilot
study that runs some time before, to leave room for possible adjustments. The
pilot study can be regarded as some kind of feasibility experiment. However,
a feasibility study is more than a pilot study since it asks whether a study can
be conducted at all and in particular, how it can be conducted. A pilot study
adapts the role of a preliminary study, but we should take into account that
it already costs some resources. Generally, it follows the same design as the
actual study but on a much smaller scale with fewer participants and, if the
scenario allows it, also with a smaller number of trials. In the best case the
number of trials should be the same as in the real study to check how much
time the study takes for one participant and if learning or fatigue effects might
occur and, in particular, after which trials.

The general goals of a pilot study are to test and check for aspects
like strangely unexpected events and study design issues, also technical
problems, missing study elements, additional costs, the study duration that
causes fatigue effects in case the duration is not well-chosen, hence also the
feasibility of the study. The participants from a pilot study should be different
ones from the real study to avoid learning effects, but they should belong to
the same population based on the same recruitment criteria as in the real study
to avoid different characteristics which could be a confounding variable.
The results obtained by running the pilot study should not be merged with
the results generated from the real study to avoid grounding the insights on
two study setups, which might cause misinterpretation problems and which
might add some bias to the study. Moreover, adapting formerly built study
hypotheses or research questions after the pilot study has been conducted
should be avoided.

Since a visual analytics system contains a variety of functions with lots
of interactive visual output it is quite a problem to guess how the study
participants will behave in the given task situation and in the visual analytics
environment. For this reason it cannot be expected that all functionality can be
tested in one user study due to the fact that there are just too many parameters
that can be varied. A pilot study can help to test if the study setup works as
desired or if modifications have to be made. However, even before running the
pilot study we have to reduce the number of functions to be tested. Moreover,
if eye tracking is applied to record the visual attention behavior the equipment
should be tested to make sure it is running properly, i.e. if the eye tracker
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records the data over space and time accurately. In addition, it should be
checked whether the participants who are not familiar with eye tracking can
effortlessly work with the new technology without being too stressed and
feeling uncomfortable. Eye tracking studies are very different from regular
studies without eye tracking.

4.1.2 Quantitative vs. Qualitative

Whether a study is based on a quantitative or qualitative setup makes a huge
difference in the study design as well as the reliability and expressiveness of
the generated results, for example, the instrumentation, population size, or
even the analysis as well as the visualization techniques of the recorded data
to mention a few [111]. Quantitative evaluations are typically conducted in a
laboratory environment and allow a quite high precision for the setup, control,
as well as the results, which are important criteria for generalization aspects.
A quantitative study follows a strict plan including stages like hypothesis
building, finding independent, dependent, as well as confounding variables,
the study design is based on within- or between-subjects procedures, the
evaluation and statistical analysis of the recorded values, the presentation of
the results, and so on. To run such a quantitative study in a reliable and smooth
way the experimenter has to control a lot of aspects to guarantee a successful
study. This means that the independent variables are varied and their impact
on the dependent ones, typically error rates and response times, is measured.
The more independent variables are modified at the same time the less can
be said about this impact since we do not know which variable caused the
change. Compared to a qualitative study the results of a quantitative study
have a high degree of certainty due to the controlled setting.

In a qualitative study we do not ground the results on explicit
measurements with error rates and response times. This makes it more
applicable to complex visual stimuli equipped with interactions like visual
analytics systems. The benefit of this type of study is the fact that they
can easily be included in a design process of a visual analytics system, for
example, by interviewing the participants from time to time and by asking
for qualitative feedback which can be used to improve the system after each
development stage and hence, guide the design and implementation process.
The participant feedback is mostly written down by taking notes or recorded
by audio/video to make it more accurate when summarizing the content
later on and to mitigate the experimenter’s challenge of remembering all the
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important aspects that have been said during the experiment. Think- or talk-
aloud studies might have an impact on the participant’s behavior as well as
writing down notes. This is even more problematic in remote eye tracking
studies in which the participants should not move around too much to avoid
calibration errors, and hence inaccurate scanpath recordings.

For eye tracking technologies it makes no difference if a quantitative or
qualitative study type is used. The eye movement data can serve as additional
input for either enriching the dependent variable response time with temporal
visual attention information to identify the causes of response time variations
between stimuli or when the time is wasted, why an error has been made,
and which visual region in a stimulus might be problematic and worth
enhancing. For a qualitative study we might enrich the verbal feedback by
visual attention data to understand why, where, and when a participant made
the comments. This gives a bit more insights from the cognitive processes
that are not recordable by eye trackers. However, linking eye movement data
with other data sources like qualitative feedback is a challenging task and
likely producing interpretation errors. For visual analytics, both, quantitative
as well as qualitative study types are useful. Quantitative studies can help to
compare simple stimuli like static diagrams to find out which one would lead
to better performance measures for a specific task at hand. Qualitative studies,
on the other hand, might be useful in more complex scenarios, even during
the design process, but the generated results are less exact due to the missing
quantitative values.

4.1.3 Controlled vs. Uncontrolled

Having the control over a study design with all its independent and
confounding variables is of particular interest to obtain reliable and
trustworthy results. However, such a high degree of control comes at a high
price. First of all, it takes a longer time to setup the study due to the fact that
control must be given in many respects. Moreover, controlled experiments
that typically take place in a laboratory, measure the performances of the
study participants one after the other, not as in uncontrolled settings in which
many participants can take part at the same time, for example, in an online
setting. Although every effort is made to make an uncontrolled study as
controlled as possible, there is no guarantee that the control always gives
reliable results and the participants follow the required rules and procedures.
Uncontrolled study types mostly measure the performance of hundreds
or thousands of people [150] as in a crowdsourcing online experiment
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Figure 4.2 A comparison between Cartesian and radial diagrams in an uncontrolled user
study recruiting several hundred participants in an online experiment [150]. Image provided
by Stephan Diehl.

(see Figure 4.2), mostly being of a short duration of a few minutes to attract
as many people as possible, sometimes offering money or an additional gift
for an elected winner. If there seems to be a common pattern or strategy, this
typically shows an impact from an independent variable on a dependent one,
but still there is no guarantee for it, even if thousands of people show the same
behavior.

We might say that the more control is forced on a study the smaller the
population in the study. The question is, how we can put as much control as
possible in a study while at the same time recruiting a large number of study
participants which would allow us to increase the number of independent
variables to be varied? This limitation of controlled studies has an impact on
the visual stimuli, being rather static and trying to focus on comparing two or
more visuals based on the same task. This might result in an assumption that
one technique is better in terms of error rates and response times than another
one under certain circumstances. For uncontrolled studies the parameter
space can be larger, i.e. showing an interactive stimulus like a visual analytics
system and allowing many people to experiment with it, maybe asking for a
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certain well-defined task and measuring the performance, or trying to get
qualitative feedback from the people. However, explaining the task in a
controlled setting for static technique comparisons is mostly much easier than
if a more complex interactive stimulus with a variety of flexible parameters
is given. Negatively, if the technique is too complex, the population size is
reduced due to the fact that we need to recruit more domain experts to solve
the task reliably. Asking non-experts would require a longer training phase
for which we cannot guarantee, in an uncontrolled setting, that the training is
done successfully.

Eye tracking brings some kind of control in a study design. It demands
for calibrating the system to make it produce reliable and accurate data.
Moreover, the eye tracking equipment is typically located in a laboratory,
asking study participants to meet an experimenter who is familiar with eye
tracking and the setup of the study. Currently, most people are not familiar
with eye tracking as a technology, hence it might be challenging to let them
participate in an uncontrolled setting, maybe in some kind of online eye
tracking experiment. A future scenario, however, would be to allow many
people to take part in a study to produce massive amounts of this type of
data [44]. For example, head-mounted or wearable eye trackers might be
an option to record eye movement data for a driving task which is some
kind of longitudinal study type, typically in an uncontrolled setting since the
experimenter cannot play the role of a co-pilot all the time. But, positively,
experimenters could try to control such a study by video surveillance and
give instructions via audio to not distract the participant too much. For visual
analytics, this could also be a suitable scenario, with the difference, that the
stimulus is always at the same place, i.e. shown in a display, not like a 3D
dynamic scene as in car driving [387] or plane landing [431] experiments.

4.1.4 Expert vs. Non-Expert

Conducting an expert study requires recruiting people that have special
knowledge or expertise of a certain domain. The recruitment process can be
difficult and time-consuming since by only asking people whose knowledge
level is high we limit ourselves to a small population, i.e. to only a few
possible candidates. Moreover, spending the time of the experts might cost a
lot of money since they can no longer concentrate on their daily job. To reduce
costs and increase the value of a study it is unavoidable to ask experts who
really enjoy to take part in such a study and who do not see this as a waste of
time, i.e. just being interested in the money that can be earned. For example,
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medical scientists working as doctors in hospitals might be good candidates
to evaluate a visual analytics system for analyzing patient data [134], but in
reality they do not have much time and are typically very busy doing their
daily jobs. This situation is particularly even more problematic if we are
interested in a problem-driven evaluation that demands meeting the doctors
on a regular, maybe weekly, basis to give expert feedback and to guide the
development of the visual analytics system.

Another question arises when determining the quality of the experts.
Each expert behaves differently, has more or less interest in the application,
understands the visual analytics system differently, and provides feedback
at different levels of granularity. Deciding whether a person is an expert or
not might also be done after the study when evaluating the results. But this
procedure should be done with care and the rules about classifying people’s
performance to identify experts should be given beforehand, i.e. prior to the
study execution. This mitigates the problem of adding a bias to the study
results, meaning the experts could be classified in a way that the results hold
for confirming a certain research question or hypothesis. Also the design
and presentation of the stimuli in a study should take into account which
kind of experts are taking part. The domain experts are typically neither
visualization nor algorithm experts, hence the ingredients from a visual
analytics perspective should be easy to explain, to understand, and to use.
On the other hand, if only the visual analytics system should be evaluated
separately from the application domain, we might ask visual analytics
experts, but then the application domain knowledge might be missing. In the
best case, we need experts from the application as well as the visual analytics
domain, a fact that again reduces the number of possible expert participant
candidates. This is a general problem due to the fact that visual analytics
combines many fields making it an interdisciplinary approach.

Finding an expert for participating in an eye tracking study can be even
more problematic. First of all there is some kind of reluctance with respect
to eye tracking, also for non-experts, due to the fact that the technology
is not well-known for people unfamiliar with usability research. The first
step when evaluating visual analytics by applying eye tracking is to explain
the technology to possible participants and that it will not harm the eyes.
Moreover, they might even be convinced by the new technology and be
curious to participate. If someone is finally convinced to take part in the
study, it is important to record if an eye tracking system has been used by
this participant before since the familiarity with this technology can have an
impact on the study results. A performance issue or visual attention strategy
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might not be caused by the task applied to a visual stimulus but by other
influences, like the technology, which is another confounding variable in the
study. It is always a good advice to conduct the study with non-experts first,
and then refine the tasks, stimuli, and independent variables to reduce the
study complexity. As a second stage we can use the adapted and refined
version for the few experts that are available, hence we should not waste our
valuable resources on an ill-designed study. As another interesting insight to
explore the expertise of a participant, the scanpaths can be compared which
could reflect expertise changes over time, i.e. with the progress of the study,
but this insight could even be used to classify expert and non-expert users.

4.1.5 Short-term vs. Longitudinal

Traditional studies in visualization or visual analytics are based on a single
study session that might last an hour per participant, letting people watch a
stimulus or interact in a visual analytics system while performance, visual
attention, or qualitative feedback is recorded. This one session setting makes
sense since the fatigue effect is quite high, leading to performance drops
after some time. In a longitudinal study setup [460], the participants can be
invited to several sessions on different days during which a lot of data in a
multitude of forms is recorded. That means they can relax a bit between the
sessions to reduce the fatigue effect while they participate again and again
in subsequent sessions. However, such a study setting brings some negative
issues that have to be considered in the evaluation of the recorded data. One
problem is that people typically forget some of the required aspects from
session to session that are needed to successfully take part in the study. Hence,
they have to be instructed and trained every time to bring them to a similar
state each time. Another problem is that people might exchange their opinions
with other study participants, introducing another kind of bias, comparable to
learning effects. The study participants also do not behave the same in all
of the sessions, making it hard to interpret and compare the recorded data
between the sessions.

For visual analytics evaluated in an eye tracking study it can be quite
challenging to recruit a lot of participants that spend their time on several
sessions. The chance is high that not all people will finish all sessions,
making the recorded data difficult to compare. However, in the case that
enough participants can be found to solve a task while their eye movements
are tracked, it can be interesting to research their visual attention strategies
with respect to changes over time as well as comparisons between groups of
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participants having different properties. For example, short-term and long-
term memory could be compared with respect to the recorded eye movement
data, giving hints about how much can be remembered in a visual analytics
system. The easier the longer complex scenarios and visualization setups can
be remembered the more user-friendly such a system is, reducing the burden
of cognitive effort when starting the system again and again. Also a mental
map is important in cases where human users need to quickly get started from
session to session. Modifying a setup of the visual analytics system between
subsequent sessions can lead to confusion and frustration, caused by having
to learn new aspects again and again, and not allowing the participants to
always use the same setup every time, making them faster and faster and,
hence, more efficient while solving a given task.

4.1.6 Limited-number Population vs. Crowdsourcing

If a lot of participants are required in a user study there is the option of
conducting a crowdsourcing experiment [52, 194] which is only possible in
the modern day due to the internet making it possible to quickly reach out
to many people. To recruit a large number of people in a rapid manner we
can make use of platforms such as Mechanical Turk (MTurk) [221], or invite
people via mailing lists or advertising on social media like Facebook, Twitter,
or LinkedIn, which can lead to a quite large number of people being attracted,
given the fact that the study setup and visual stimuli are easy to understand.
Otherwise, the number of people giving up will be quite high which is one of
the biggest issues when conducting a crowdsourcing experiment. Hence, the
more people can be accessed, the more people will complete the experiment,
even if there is a high number of dropouts. To prevent a lot of incomplete
answers, a pre-test can be conducted asking certain study-related tasks. Only
the participants who have already invested much time in solving these tasks
and paying attention seem to likely complete the real crowdsourcing study.
Although there is no guarantee, it can at least serve as some kind of participant
filter before running the actual experiment.

Crowdsourcing experiments bring into play some challenging issues that
limited-number population studies conducted in a laboratory do not have. The
biggest issue is definitely having no control over the participants, i.e. some
kind of screening procedure like in controlled lab experiments is not given
and one must more or less rely on the personal details the study participants
provide, leading to an anonymity problem with lots of limitations due to the
confounding variables that cannot be controlled. However, even if there is
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some kind of uncertainty in the recorded performance data, crowdsourcing
experiment results can be exploited as some form of pilot study to investigate
which parameters are important and worth further investigation [150], i.e. a
crowdsourcing study can serve as a way to improve or optimize the setup
of another more controlled smaller-scale experiment. In such a follow-up
experiment the relevant parameters can be fixed and only a limited number
of participants has to be recruited to generate performance values. Another
problem in crowdsourcing experiments is that it can be quite challenging
for longitudinal studies to match the participants and to get reliable results
due to the several sessions and prerequisites to every session. In general, the
tasks in a crowdsourcing experiment are performed with less attention than
in small-scale experiments in a lab due to the missing experimenter.

Crowdsourcing experiments have to be carried out with care for visual
analytics and, in particular, in combination with eye tracking to investigate
the usefulness or the development of a system. Due to the missing control
of the study participants and the task difficulty as well as the complexity of
the stimuli it cannot be expected that most of the recorded eye movements
are reliable results. Moreover, these days not many people own an eye
tracking device, although they are getting cheaper and cheaper, making them
affordable for the everyday user. In the future, standard computers might be
equipped with eye tracking technology which would make crowdsourcing
experiments of this new style imaginable. However, if such data was available
it is questionable how accurate the recordings are for each individual user.
Although it is still hard to think of such an advanced experiment, technically
it might be possible in a few years’ time, given the fact that the eye tracking
hardware will become well-accepted by many people and, hence, cheap
enough for mass production and integration.

4.1.7 Field vs. Lab

Field studies are conducted in the natural environment of the participants
and are not like an artificially generated study setup in a laboratory, for
example. This helps to understand causes for certain correlations or impacts
from independent to dependent variables that could not be found in a lab.
To obtain similar characteristics in a lab the experimenter has to simulate
many aspects without ever reaching the same circumstances as in a natural
field environment. In most of the cases in a field study it is difficult to
measure the variable values as in traditional lab studies due to the fact
that the study must be invasive to obtain good performance from the study
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participants which should be avoided as much as possible in a field study.
Most of the results are hence received by pure observations of the participants
while several environmental parameters might be varied to understand their
impact on performance, behavior, or qualitative feedback. Interacting with
the participants is challenging since this might lead to a confounding aspect
to the natural environment.

Field studies are typically time-consuming, are expensive, and only a
few participants can be recruited. Also the collection of the study data is
more difficult as well as the evaluation of it. Moreover, due to the low
number of participants it might be hard to generalize the found insights to
a larger population. The collected data consists mostly of qualitative aspects
like observation data to reduce the effect of being too invasive. However,
if the participants are equipped with adequate sensors, we could even get
quantitative time-varying performance data that produces very exact traces of
the people’s behavior, in the case of eye tracking the visual attention paid to
a given static or dynamic scene. Without the right sensors the experimenter
has to be as close as possible to get information while at the same time being
far away enough to not distract the participant. This situation might cause a
trade-off in a field study.

Whether a field or a lab study type is chosen makes a huge difference for
the application of eye tracking technology. In a field study we might consider
more head-mounted and wearable eye trackers since they must provide some
freedom and room for the participant to move while not feeling distracted or
uncomfortable. In a lab study we can also use head-mounted eye trackers but
even remote eye trackers integrated in a computer monitor might work in this
setting, but the freedom is limited a lot, requiring a person to sit rather quietly
on a chair during the experiment. Actually, there are four different general
scenarios for an eye tracking experiment given the stimulus variants and the
flexibility of the study participants. The stimuli could be static or dynamic
while the participants could be fixed to a location like a lab or freely move
around, maybe in a field study. The participants might sit in front of a monitor
with a static stimulus, they might move around to inspect a static stimulus
when displayed at a high-resolution powerwall, the participants might sit in a
car and the stimulus changes dynamically over time, or the participants freely
move around while the stimulus is dynamically changing. The last scenario is
probably the most challenging one for evaluating the recorded visual attention
data. A visual analytics system is typically used while sitting still on a chair,
while the stimulus itself is quite dynamic.
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4.1.8 With vs. Without Eye Tracking

Many user studies in visualization and visual analytics do not make explicit
use of eye tracking technologies [161, 235]. They more or less record user
performances in terms of response times and error rates as well as some
qualitative user feedback. While some kind of think-aloud protocol [199]
during a task solution goes toward getting insights into the time-varying
visual attention behavior, although described verbally, the recorded protocol
is not exact enough to make reliable claims about visual attention. Think-
aloud is also said to distract a study participant during the task solution [111]
because some amount of cognitive capacity is dedicated to the verbal
feedback all the time and hence less to the actual task solution. Moreover,
to evaluate a think-aloud protocol the content has to be either written down
during the study run or it has to be recorded as audio or video before its results
can be processed, aligned, and prepared to be included in the study results.

Eye tracking does not lead to such a distraction. The viewer can
completely concentrate on the task solution while inspecting the stimulus
and, at the same time, the eye tracking device is recording the visual
attention in the form of fixation points with their fixation durations. Although
this spatio-temporal data contains more detailed information about the user
behavior it also brings new challenges into play in the form of more
advanced technologies to record the data, more complex and time-consuming
algorithmic analyses and interactive visualizations for this technique, and the
question of how reliable the recorded data is in terms of tracking accuracy as
well as the relation to cognitive processes [268, 269]. Chapter 5 gives more
in-depth details about eye tracking.

4.2 Human Users

The human users play a key role in a visual analytics system. They are
responsible for modifying the views, interacting with the visualizations, or
refining algorithm parameters with the intention to explore a dataset for
insights and knowledge. Hence, they decide if a visual analytics system is
well-designed, understandable, and created for the tasks at hand. On the
challenging side, the users have various properties like being experts or
laymen, belonging to certain age groups, having cultural backgrounds, being
of certain genders, or even suffering from color deficiencies, color blindness,
or having visual acuity problems, to mention a few. All of those aspects
have to be taken into account when recruiting participants for a study, no
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matter which type it is. This requires that the users-in-the-loop, i.e. the study
participants, have to be tested for a variety of aspects and properties before
running the study, even before thinking about the final design of the study.
Those human aspects definitely play a major role in the study setup, for
example, they might even serve as independent variables to measure their
impact on the dependent ones like error rates, response times, or visual
attention strategies recorded in an eye tracking experiment.

The human users can play different roles in a study, typically described by
the purpose of the study or the goal it is based on, like exploratory, predictive,
formative, or summative [12]. These goals might be used to build another
kind of study type classification in which the study participants are more
closely taken into account than in the study types discussed in this book
(Section 4.1). The individual users with their roles can have any kind of
background knowledge but before starting a study, or even before designing
it, the experimenters typically try to find the best possible way to recruit study
participants [171]. In the recruitment process there is some kind of trade-
off since the expertise of the participants stands in a negative correlation
behavior to the relationship between the experimenter and the participants
themselves. This means that the more expertise the population taking part in
a study has to solve a given task, the farther away this population is from
the personal environment of the experimenter. For traditional small-scale and
simple-task studies this trade-off might bring some kind of bias in the study
if this problem is not carefully taken into account.

4.2.1 Level of Expertise

The level of participant expertise plays a crucial role in the conduction
of a study which might also be given by the environment in which a
study is conducted, for example in a large company with the employees as
participants [449]. This expertise is already important in the first stage when
introducing the participant to the study setup as well as the technology and
instrumentation used to measure the performance. The more expertise the
users have, in particular in visual analytics, the less training has to be provided
in a practice runthrough. The trade-off between the level of expertise and
the accessibility of the people as well as the study costs typically decides
the population that finally takes part in a study. For example, a lecturer
at a university might first start by recruiting the students from a lecture
since they have a closer relationship to the lecturer than experts from other
universities. However, if the level of expertise has to be higher to solve the
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(a) (b)
Figure 4.3 Examples from a visualization course at the Technical University of Eindhoven
educating students in eye tracking and visual analytics [70]. (a) A visual attention map with
contour lines. (b) An eye movement direction plot.

task and to understand the visual stimuli, like a visual analytics process,
the students might not be the right choice for a study population. To raise
them to a certain level of expertise they are educated, in the best case, in eye
tracking [71], and hence, trained during the lecture to finally serve as some
kind of experts in the study. After some training of about eight weeks the
students are able to design and implement their own interactive visualizations
for eye tracking data (see Figure 4.3), enriched by algorithmic concepts to
transform the data [70], showing a steep learning curve, which means they
obtained profound knowledge of this specific application domain that they
did not have before attending the course.

The training has an impact on the individual performance, possibly
introducing some kind of bias. It is important that the individual participants’
expertise after the training session is checked by test questions and a thorough
practice runthrough. All of the participants should be on a similar level
after some time to take part in the study. Randomization, replication, and
permutation are powerful concepts to average out certain differences in
the expertise and performance that might even vary during an experiment,
typically reflected in learning or fatigue effects. Measuring the expertise is
difficult but not impossible. It can be based on the accuracy of the answers
to, and response time to, test questions in the practice runthrough since only
the expertise relevant for the particular study is important, not the expertise
stated by a participant. People could even be excluded from a study based
on the level of expertise, but this should be done after the participant has
completed the study. Moreover, the rules for such an exclusion must be
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defined beforehand, prior to the execution of the study to avoid introducing
biases that manipulate the study results.

4.2.2 Age Groups

We might tend to say that the expertise grows with age but there are specific
age-related tasks that can be solved faster and more accurately by infants than
by adults. Similar to this, old people might have much more experience to
solve specific tasks that young people cannot solve. In most cases, studies
are designed in a way to focus on a certain age group requiring that the
participants in this group are able to provide answers to a given task in a
reasonable time with an acceptable accuracy. For sure, there are tasks that
can be solved more accurately and faster with growing age, independent of
the expertise level. However, the training stage is typically more difficult for
infants since they do not have the global understanding of certain aspects
that we need to explain the connections between scenarios in the right way.
If infants under the age of six have to be recruited we have the additional
challenge that those cannot read text properly and quickly enough, hence
giving them textual tutorials is impossible. On the other hand, their verbal
feedback is on a different level than the one given by adults which makes
the analysis step a bit more time-consuming, but given the fact that the
information contained is less granular than for adults due to the limited
vocabulary and semantic expression, this can also be a chance for more
efficient procedures to find patterns and insights in the recorded verbal data.
Children tend to focus more on the relevant and simple aspects while adults
try to interpret more due to their life-long experiences and hence more
complex dependencies might be mentioned.

From a technical and technological aspect, younger people might have
fewer problems than old people since they have grown up with all of these
issues, practicing them on a daily basis, for example when using mobile
phones, apps, or certain public services like ticket machines. Perceptual and
visual issues (Section 4.2.4) can occur in any age group but older people tend
more to vision-related and cognitive diseases affecting memory and thinking
abilities, for example eye cataracts or Alzheimer’s disease. Amnestic diseases
tend to cause problems with the memory while non-amnestic diseases tend
to cause issues with decision processes, both of which are important when
taking part in a user study involving visual stimuli. Also senso-motoric issues
tend to grow with the age, making it hard to solve certain visual analytics
tasks, in particular if it comes to complex interaction techniques for which
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several senses have to be used in combination to make the best of the system.
But such diseases can be a great opportunity for user studies since they can
serve as a way to understand the difficulties this population group has in
daily life, hence evaluating a system for insights can be a useful strategy to
improve the daily living environment for these people. The biggest challenge,
however, is to get participants for a study related to such issues, also for
the age group of young children, maybe under the age of six. Ethical issues
also build a limitation in this research field and hinder the development of
appropriate tools and systems.

For eye tracking, age plays a crucial role, not only due to reasons of the
study setup like the sitting position’s height and distance to the monitor to
allow a smooth and comfortable calibration and tracking phase for a remote
eye tracking device. Moreover, also many instructions are dependent on the
age of the participants in an eye tracking study; infants must be controlled
a lot more than adults, while elderly people may need many more details
explained on the technological side. This is the case for controlled studies in a
lab, but even more for uncontrolled settings in the field. For visual analytics it
could make sense to include very young people, in case they serve as domain
experts, for example, for analyzing data stemming from a certain kid-like
environment like a kindergarten in which data about strategic game playing
is recorded. A study setting could make sense in which a nursery teacher
and a child watch such scenes on a monitor while the kid is eye tracked
and the teacher tries to figure out the visual attention behavior of a kid in
a specific scene. In this case eye tracking is required to produce another kind
of data to the given video stimulus data as well as visual analytics to let the
experimenter, here a nursery teacher, visually explore the data. For elderly
people we could find similar useful scenarios, focusing on understanding
the problems they might suffer from in their daily lives with the intention
of enhancing their situation based on the insights found by applying visual
analytics.

4.2.3 Cultural Differences

The internet gives access to people all over the world, in different time zones
and various cultures. These cultural differences are also problematic in user
studies [259] and can introduce a bias. A famous example in this context is
the text reading direction. For people from a Western civilization a left-to-
right reading direction is appropriate whereas in Asian countries like Japan
the reading direction can be vertically, i.e. from top-to-bottom, and even
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right-to-left as in Arab countries. In a controlled experiment in a lab this
effect can be checked by reading tasks and asking the recruited participants
about their cultural background. In uncontrolled crowdsourcing experiments
which might be run all over the world the reading direction must be taken with
care, for example in a study setting in which text labels play a crucial role in
understanding a certain correlation. One might say that the text orientation
can be based on the reading direction of the participants but adapting the
labels by their orientation can bring layout problems into play which did not
exist in another text orientation, hence introducing a confounding variable
that is hard to control. Moreover, translating a text into a participant’s
native language can bring semantic meaning issues that are again hard to
control.

There are several visual variables or habits that differ from culture to
culture. These differences can lead to misinterpretations in a user study for
both sides, the study participant as well as the experimenter. This does not
only hold for the visual stimuli or the verbal output in form of conversations
or qualitative feedback, but also gestures might be problematic due to their
different meaning among cultures. A famous example in this respect is color
which can have a tremendous effect on the meaning, also depending on the
context. Color is one of the most exploited visual variable in a visual analytics
system and hence its associations have to be understood to avoid misleading
results. For example, in a visual analytics system for medical data we might
choose the color black to indicate that a person has died, but this can cause
interpretation problems for people who interpret the color black as health.
A color should be intuitive and quickly understood, and not lead to debates
about its meaning.

For eye tracking studies such interpretation issues might be detectable
in the visual attention behavior. Longer fixation duration can be a sign of
unclear meanings caused by a variety of aspects, with cultural ones mostly
not being on the list. Also knowledge about eye tracking technologies might
vary among cultures, leading to some kind of bias in the study. It is a good
advice to record people’s cultural backgrounds and add some extra questions
in a tutorial before running an experiment. In a laboratory experiment, for
example, at a university with students stemming from many cultures, such
background information can be collected by asking the student participants.
In a controlled study setting the chances are smaller to run into such problems,
but in an uncontrolled crowdsourcing experiment it can become a big problem
one has to be aware of.
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4.2.4 Vision Deficiencies

One important aspect in a user study is to understand the deficiencies that
the participants might have. These can come in various forms, too many to
be checked before running the experiment. But at least the most crucial ones
related to color vision and visual acuity [314] should be taken into account.
Doing the check absolutely right is nearly impossible unless we have the
expensive equipment that an eye specialist would have as well as a lot of
expertise that one gains after having studied this field for several years. The
human eye is very complex and can be regarded as the window to our soul.
This means it does not only support the seeing tasks for the study participants
but it can even be observed by the experimenter for emotional states that
might hint at other issues apart from the traditional user performances,
visual attention behavior, or qualitative feedback. However, such emotional
aspects are hard to measure and might even be related to cognitive processes.
Emotional states can have a big impact on the study results, hence they create
some kind of bias in the study.

The health of the eye can at least be checked for visual impairments
that influence the performance of a participant. For example, visual acuity
is important if texts of certain font sizes have to be read (see Figure 4.4(a))
which can be checked by a Snellen chart [470]. These well-known

(a) (b)
Figure 4.4 (a) A Snellen chart [470] can help to identify visual acuity issues. (b) An
example plate of an Ishihara color perception test consisting of several pseudo-isochromatic
plates [258].
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alphanumeric capitals appear in different but well-defined sizes and should be
read while the participant is standing at a given distance. To compensate such
visual acuity issues the study participants typically wear glasses or contact
lenses, i.e. their visual acuity is corrected-to-normal. Another problem is
color blindness, mostly red-green, which is one of the most occurring color
vision deficiencies among the population. In particular, this negative issue can
affect a study related to visual analytics in which color scales play a crucial
role to encode various kinds of data. The famous Ishihara tests [258] (see
Figure 4.4(b) for an example plate) provide a number of plates that focus on
asking people to read a number or pattern contained in a certain color noise
pattern focusing on a mixture of colors to check for a specific kind of color
blindness.

Color deficiencies are not a problem for the tracking of the data in an
eye tracking study, but more for the conclusions that can be drawn from
the recorded eye movements. People might fixate much longer on a certain
region in a stimulus if they are color blind since they try to interpret the visual
stimulus with respect to color coding and try to infer some meaning from the
perceived color. This means that their scanpaths might vary from participants
with normal color vision. Moreover, similar challenges might occur for visual
acuity which change the reading behavior of the people in case they are not
able to clearly see a written text and hence draw the wrong conclusions.
Braille technology [490] is a way to support people with visual impairments
but the question is to what extent such a support can be incorporated in an
eye tracking experiment. Further artificially created negative issues that cause
visual deficiencies are deep eyelashes that partially cover the eye which might
lead to tracking problems in an eye tracking study.

4.2.5 Ethical Guidelines

Ethics describes aspects related to morality and tries to define a border
between concepts that are either right or wrong or good or bad, ending
in a crime if the ethics rules are not followed. Such criteria also hold
in user evaluations, taking into account several perspectives like the study
participants, the experimenter, but also the results related to the participants
and existing in a data-like form. Recording personal data is one thing, sharing
it with others is a different one. Before the data recording starts we should ask
each participant for permission to use, i.e. record and share the sensitive data,
maybe in an anonymized form. It is important that pressure is avoided when
asking the participants for their agreement. From a study setup view it is
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advisable to respect the people involved in the study; this holds for the study
participants as well as for the experimenter who can be mistreated without
respect, for example, if people just take part for the reason of earning money.
Everybody should be treated similarly, no matter which gender, age, culture,
religion, and so on this person is associated with.

For the recorded data there could be the general problem that the results
are not convincing enough or not convincing at all. In these days with various
other research groups working in the same or similar area it is tempting to
manipulate the results in a way to obtain more convincing results. Such fraud
must be avoided, but it might be quite challenging to detect it. For this reason
it is desirable to share the recorded data to make it publicly available for the
research community to check for any inconsistencies in the analysis steps.
However, the data might already have been manipulated before the sharing,
which is hard to avoid. Some kind of mechanism would be beneficial that
directly shares the recorded data in its raw form which would minimize the
chance of modifying to get more convincing results. However, at least in the
visual analytics field, such an approach is hard to realize and might contradict
the goal of data protection and data privacy. At least, in many institutions
there is some kind of ethics committee that checks the rules before running
an experiment. Negatively, it can take quite a long time until permission is
given to start a study, i.e. an ethics committee can sometimes slow down
research, but it is definitely needed.

People tend to be more under pressure in an eye tracking study than in a
traditional study without eye tracking from the perspective of ethical reasons.
This is due to the fact that people might fear that they are more observed
because of the general opinion that the eyes tell more about a human than any
other organ. The eyes are some kind of window to the soul [246] and it is
said that emotional states can be recognized [332] by reading the eyes as well
as if somebody is telling the truth or lying. Ethics can be a problem in eye
tracking research [320] because it might be unclear for the ethics committee
to assess how invasive the procedure will be, if eye damage can occur, and
which additional body-worn sensors are used to record additional personal
and private data, which can cause a delay for the confirmation to start a study.
This delay is typically caused by missing information about the relatively
new technology, in particular when evaluating visual analytics systems. For
example, the types of visual stimuli and the way they are presented plays
a crucial role, also taking into account that people might have health issues
when exposed to a flickering stimulus, maybe causing epileptic problems.
People should be informed about the option to give up, even if they are forced
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to take part in the study with the money as some kind of pressure. Moreover,
the data recorded in an eye tracking study contains much more confidential
and privacy information than the data from a traditional user study without
eye tracking.

4.3 Study Design and Ingredients

A technique- as well as problem-driven user study has to take into account
several necessary ingredients to make it successful and to obtain results that
are based on a reliable and correct setup. Any kind of erroneous procedure
in the study execution can make the results useless and hence a lot of
time is wasted and sometimes even money. For this reason it is important
to make sure that the most crucial aspects have been incorporated in a
proper and structured way [450]. For a technique-driven study we need more
controlled aspects to compare the technique with the state-of-the-art while
for a problem-driven study we mostly need to record or note down qualitative
feedback given in interviews to improve the design of a developed tool.
Starting from the fact that the participants are already recruited and the stimuli
can be generated in the required parameter settings to model the independent
variables for a technique-driven study or the system snapshots for a problem-
driven study, we can think about how to create a study design that allows
us to record the dependent variables as well as qualitative feedback and
eye movements in a way that they can either be statistically evaluated for
confirming or rejecting a formerly given hypotheses or research questions, or
to qualitatively improve the current state of a visualization or visual analytics
system. The stimuli generation process is driven by a list of user tasks [389]
that have to be responded to during the running experiment to check the
hypotheses or research questions based on recorded performance measures,
qualitative feedback, or visual attention patterns.

All of this guides the major design of the study, but during this process
it also has to be considered if the participants have to be split into several
groups to avoid learning effects, for example, as in a between-subjects study
design in contrast to a within-subjects study design. Moreover, the number
of participants and the number of trials for each participant can be fixed after
the coarse-grained design has been created, combined with a detailed plan
describing how the individual steps are executed and how they link to each
other. For example, if several tasks are evaluated, a certain permutable order
of the task blocks has to be defined while inside each block another kind
of permutation is important to compensate learning and fatigue effects that
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typically happen over time. The number of replications decides the coverage
of certain configurations of the independent variables. A pilot study is an
appropriate way to figure out if all the study parameters are well chosen or if
some have to be modified and adapted to guarantee a smoothly running actual
non-pilot user study. For eye tracking studies, the technology also has to be
included in the study design process in an adequate way. Actually, in most
cases, if we can run the study without eye tracking we can also run it with eye
tracking by just using suitable eye tracking technology, i.e. either remote or
wearable eye tracking systems. The downsides of adding eye tracking as an
opportunity to record additional performance measures in the form of visual
attention can be tested in a corresponding pilot study.

4.3.1 Hypotheses and Research Questions

The hypotheses or research questions build some kind of starting point to
initiate a user study. They more or less guide the whole study design process
and force us to follow certain rules since they describe the needed insights
that we hope to get from the users and the performance they show while
solving given tasks, focusing on responding to the tasks corresponding to the
given hypotheses or research questions. Hypotheses can state that something
is better or worse to a comparable variant of a similar style focusing on a
specific task or they can claim that something is useful in a way that human
users can understand which typically also includes some kind of user task.
The terms “better/worse” and “useful” include some kind of performance
that has to be recorded, evaluated, and compared, in most cases errors or
response times in quantitative study setups and verbal feedback in qualitative
studies. Varying an independent variable can give insights into the impact it
has on the assumption that a hypothesis is true or not, i.e. can be confirmed
or rejected. For example, a hypothesis might hold for small datasets but for
larger ones it can no longer be confirmed. In some situations it is even unclear
if a hypothesis has to be confirmed or rejected due to missing statistically
significant evidence.

Hypotheses express a stronger claim than research questions; however,
they also need more grounded statistical approaches to be accurately
confirmed or rejected than research questions. In typical quantitative user
studies, a formulated hypothesis might describe the fact that variant A is
better than variant B with a special focus on a user task and the measured
performances. In qualitative user studies we do not have the performance but
we have to rely on verbal feedback to check the hypotheses. For example, we
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might argue that variant two is better than variant one of a visual analytics
system by investigating the judgments or personal opinions of the study
participants. However, we could also measure performance but in general
in such a complex visual stimulus and study setting it is hard to compare
performance due to the fact that the people start interacting and follow
different exploration strategies. This makes the recorded values incomparable
due to the fact that the concrete task is split into different subtasks, each
participant uses a different subtask organization which is one reason why
a hypothesis is typically not checked with raw numbers in a statistical
evaluation.

Eye tracking can give insights into the visual scanning strategies and
allows comparisons between the participants, even if they followed different
subtasks to respond to the main task. Hence, eye tracking is a suitable way
to confirm or reject hypotheses focusing on such viewing behavior, i.e. over
space and time. However, the hypotheses are difficult to statistically evaluate,
but visual analytics can serve as some kind of evaluation since it allows
analytical reasoning incorporating algorithms, interactive visualizations, and
the human user (Chapter 6). As a challenging aspect, the hypotheses in eye
tracking studies can be much more complex due to the spatio-temporal nature
of the recorded data, even combined with extra data sources [44]. Hypotheses
might be built that refer to the space and time dimension in the data at the
same time. Moreover, the semantics of a (dynamic) stimulus can be taken into
account, like getting some information in a certain region at a specific time
point that is applied later on in a different region in the dynamic stimulus.
Such a scenario brings challenging issues related to cognitive processing, for
which we cannot easily find answers.

4.3.2 Visual Stimuli

The visual stimulus plays the role of the interface between the independent
variables and the visual output, i.e. what the study participants can see or
interact with to solve a given task. If an independent variable is modified this
has an impact on the visual stimulus, for example varying the size parameter
of an underlying dataset on which a visualization is based has the impact that
more visual elements have to be included in the visual output, hence maybe
affecting the performance for a task solution due to visual clutter. This means
the independent variables first have an impact on the visual stimulus which
again may have an impact on the dependent variables that come in the form
of performance measures or visual attention strategies in eye tracking studies.
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(a) (b)

(c) (d)
Figure 4.5 The way a stimulus is presented and the degree of freedom of the participant’s
position has an impact on the study design and the instrumentation. (a) A static stimulus, like
a public transport map [372], inspected from a static position like sitting in front of a monitor.
Image provided by Robin Woods. (b) A dynamic stimulus, like the game playing behavior of
people recorded in a video [71], inspected from a static position. Image provided by Kuno
Kurzhals. (c) A static stimulus, like a powerwall display [441], inspected from a dynamic
position, allowing movement to change the perspective on the static stimulus. Image provided
by Christoph Müller. (d) A dynamic stimulus, like driving a car with many other cars and
pedestrians crossing our way while dynamically changing our positions [44].

However, the impact on the dependent variables is decided by the strengths
of the human users when solving a task. In summary, we can say that in a
visualization or visual analytics study the independent variables affect the
appearance of the stimuli while the dependent variables are affected by the
human users with their task performance.

A visual stimulus can be of several types, including the way it is presented
and the degree of freedom of the participant’s position which have a direct
impact on the study design and the instrumentation (see Figure 4.5). We
can distinguish between static and dynamic stimuli as well as static and
dynamic participant positions. A static stimulus like a public transport map
might be inspected from a static position, for example when sitting on a
chair in a laboratory experiment [372]. A dynamic stimulus could be some
kind of video that shows people playing cards while a study participant is
watching it and sitting still [71]. A static stimulus could be a powerwall
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display and people walking around dynamically to watch the visualization
from several perspectives [441]. Finally, a dynamic stimulus occurs when
driving a car while many other cars and pedestrians are crossing our way [44].
The drivers sit still but move their heads dynamically to visually observe the
dynamic scene while they actively change their positions by navigating the
car dynamically.

Moreover, apart from a stimulus being static or dynamic it can be
either 2D or 3D while a dynamic 3D stimulus seems to be the most
complicated one for conducting a study since many parameters are flexible
and hence uncontrollable. The dynamics can have several forms, i.e. a video
or animation is just one linear sequence of static frames or time steps while
interacting with a stimulus means changing the states on user demand,
typically generating related static stimuli forming a graph structure [68].
The type of stimulus can even be classified by the way it is generated.
For example, real stimuli are based on real-world datasets while artificially
generated ones are mostly based on a stochastic model or manually created,
sometimes in a time-consuming process, to guarantee similar characteristics
of the underlying data allowing fair comparisons later on. The presentation of
a stimulus and the flexibility of the study participants typically decide which
kind of eye tracking device to choose. For visual analytics we are confronted
by a dynamic stimulus equipped with various interaction techniques. In
most cases the data analyst sits on a chair in a laboratory, but with the
growing fields of immersive analytics [347] and augmented, virtual, and
mixed reality [303] more advanced technologies are incorporated in the data
analytics process and hence more flexibility for the study participants has to
be guaranteed.

4.3.3 Tasks

The tasks in a user study can come in various forms, ranging from simple
ones for which just one static diagram has to be inspected to very complex
ones demanding for a variety of interaction techniques including gestures,
touch, or gaze [413], applied to several visualizations, changing parameters,
letting run several kinds of algorithms, and understanding the components,
their interplay, and how they affect the dynamic user interface like buttons,
sliders, menus, and the like. Simple tasks are mostly required in controlled
studies in a lab for a technique-driven setting to evaluate if one static
visualization is better than another one [389]. The complex tasks, however,
are more interesting in visual analytics systems in which complex relations,
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correlations, rules, patterns, and models have to be understood and brought
in context to others to finally derive some knowledge. The measurement of
performance like error rates or response times does not make that much sense
for complex tasks as it makes for simpler ones because the study participants
automatically split the main task into several simpler subtasks to reduce the
cognitive effort. These subtasks do not even vary in the number and function
but more in their order.

Each participant has a different understanding of the main task and splits
it into subtasks as required, and as the visual stimulus is understood. To
respond to the main task it is required to merge the solutions of the simple
subtasks in the end, which can be a challenging problem and requires some
complex and well-structured cognitive processes [305]. Hence, in such a
user study scenario in which the participants are exposed to complex tasks
it is a good strategy to use a think-aloud setting with a lot of qualitative
feedback, as well as eye tracking to better compare the visual task solution
strategies [539] of the individual participants, maybe to classify them.
Moreover, if a combination of interaction techniques is allowed, for example,
in a 3D walking scene, video recording is a suitable choice to better analyze
the gestures, body movements, and facial expressions of the participants.
Complex tasks in complex interactive systems turn a study into some kind
of behavior-driven experiment instead of the standard technique- or design-
driven settings. Tasks target finding answers to the previously formulated
hypotheses or research questions about a dataset. However, the various types
of recorded data also challenge the analysis of the data and the verification
of the formulated hypotheses also gets more challenging, maybe requiring
visual analytics as a means to find insights in the heterogeneous data. More
explorative types of tasks go in the direction of asking whether a tool or
system is usable or whether the design of it has to be improved in some way.
Those tasks are mostly relevant in a design-driven user evaluation and are
asked after each development stage.

A task can also demand combining certain aspects from a visual stimulus
to respond to a simple question. The visit order of the regions in the stimulus
is important to solve the subtasks step-by-step that lead to a solution of
the complete task. For this, the semantics of the visual scene has to be
understood and applied to another region. Such a task can be as simple
as “why is the road wet?” (see Figure 4.6). Without eye tracking it is
unclear how the participant combined and linked visual objects in the scene
to provide the final answer, given as qualitative feedback. Moreover, the
response time might support as additional performance measure to compare
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(a) (b)
Figure 4.6 “Why is the road wet?” is a task that can be solved by watching a given abstract
visual depiction of a scene (a). The visual scanning strategy to solve this task has to follow
a certain visit order to grasp the information subsequently to solve the task (b). Eye tracking
can give some insights into such viewing behavior [416].

scenes and explore their complexities in terms of a quantitative measure.
Such simple tasks could also be important for visual analytics to understand
if there is a design flaw in a certain visual or more complex process, i.e.
the order of visual attention is not the optimal one to solve a task, for
example the order of interaction techniques or diagram types. The task
and even the task category [304] has an impact on the scanning strategies
applied to the same visual scene as illustrated in an early work by Alfred
Yarbus on a painting called “The Unexpected Visitor” [539]. For visual
analytics, other tasks might ask whether the system is effective, efficient,
user-friendly, engaging, easy to understand and learn, or usable by different
user groups, all of them including real users who generate scanpaths worth
analyzing.

4.3.4 Independent and Dependent Variables

With the independent variables in a user study we guide the possible impact
of a visual stimulus on the dependent variables. While we do that we come
across many confounding variables, those that also have an impact on the
dependent variables, but which should be avoided or controlled whenever
possible to increase the reliability of the results, in terms of the real value
of this dependency given by the performance variation of the participants
when responding to a certain task. Since we cannot see the independent
variables, which are the factors to be studied, and hence, can neither react
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Figure 4.7 Varying the independent variable “link length” can have an impact on the
dependent variables error rate and response time for the task of finding a route from a start to
a destination node in a node-link diagram with a tapered edge representation style [97].

on them nor measure their impact on the dependent variables, we need some
kind of extra means to show the change to the human user, i.e. the visual
stimuli which serve as visual output. Those reflect the modifications of the
independent variables and get perceived, observed, and visually processed by
the user in order to efficiently solve a given task (see Figure 4.7 for a change
of the independent variable “link length” in a partial link study [97]). The
user efficiency comes as a challenging issue and it is impossible to measure
whether a user performed as efficiently as possible. However, to achieve a
real value for the performance measure we should trust the participants and
tell them to either respond as fast as possible or as accurately as possible.
Reaching both goals at the same time are typically two conflicting situations,
i.e. the faster we respond the more errors we make and the more accurate we
are the slower we are with the response. Most study setups ask for responding
as fast as possible while still keeping a high degree of accuracy, in cases
in which we are interested in the response time as a dependent variable
reflecting a performance measure to compare two or more visual variants
for example. In a comparative user study, for example, it typically does not
matter if the participants behave similarly for both settings, hence replication,
permutation, and randomization of the task blocks and trials should average
out this effect.

In a visual analytics system the independent variables can at least be
based on properties like the data, visualizations, interactions, algorithms, or
displays.

• Data based. Modifying properties of the underlying data in a visual
analytics system can show the impact on the dependent variables. For
example, given the fact that the data structure remains unchanged –
only its size in terms of the number of elements or the granularity gets
changed – might have an impact on a certain well-defined user task.
Another data aspect to be tested could be the completeness of the data in
terms of missing values and errors it contains. An independent variable
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could vary the extent of such data gaps, maybe with artificially generated
data based on a stochastic model.

• Visualization based. There are various visual variables that can be
varied to test their impact on user performance. For example, data
elements can be visually encoded differently focusing on lengths,
sizes, areas, shapes, colors, and many more. Moreover, layouts and
arrangements, visual complexities, compactness, or sparsity/density
properties can be adjusted to understand how they affect the user
performance. Even the positions of several views in a graphical user
interface can be modified which seems to be a meaningful independent
variable for a visual analytics system to be tested.

• Interaction based. If user interactions are allowed those can come
in a variety of ways [544]. Understanding the difference between two
or more interactions that focus on the same effect in a visualization
can help to pick the most effective and efficient one based on the
user performance. Moreover, input devices like a mouse, gesture,
gaze, voice, keyboard, or many more might be compared, or even
a combination of them to find the best way to interact in terms of
user performance. However, testing different input devices typically
demands completely different study designs and setups, hence the
results must be taken with care due to the fact that the impact might
not be caused by the input device but rather by the different study
setup.

• Algorithm based. A visual analytics system provides lots of algorithms
to process, transform, aggregate, project, or modify the given data.
Supporting several algorithms that actually produce similar results, or
one algorithm that produces several different results based on the same
input parameters, like a stochastic approach based on a random function,
could serve as an independent variable. It may be noted that the runtime
performance of the algorithm is not investigated here, but rather its
visual output that can be perceived and explored by the user based on
a certain task.

• Display based. The output device can also serve as an independent
variable. For example, small-, medium-, or large-scale displays provide
more or less space for the visual output, hence they might have an effect
on the user performance. Typically, a certain repertoire of interaction
techniques is required depending on the displays like mobile phones,
standard computer monitors, or large-scale high-resolution powerwall
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displays, even AR/VR environments are suitable concepts, in particular
in immersive analytics applications [347].

If we vary independent variables, only a few variations are possible,
otherwise the parameter space of the study explodes and many more
participants are needed, in most cases too many to successfully conduct the
study. Consequently, testing the independent variables should be done with
care, by investigating only the most crucial ones in a clever way. If a between-
subjects study design has to be chosen we need many more participants due
to the splitting into separate groups. A within-subjects study design tests all
independent variables with all participants, hence no splitting into groups is
required and, consequently, fewer participants have to be recruited. What both
study designs have in common is the fact that we investigate the relationship
between independent and dependent variables, sometimes leading to false
positive (type I error) and even false negative (type II error) effects. A type
I error describes the effect that a relationship is found although none exists
while a type II error describes the effect that no relationship is found although
one exists.

In an eye tracking study we generate many more dependent variables than
in a traditional study without eye tracking [44]. The standard performance
measures like error rates and response times are generated as well as in
a standard study without eye tracking. Further metrics from a long list
that are recorded in an eye tracking experiment are, for example, spatial
fixation coverage, temporal lengths, fixation durations, saccade lengths,
saccade orientations, scanpath lengths, Euclidian distances between start
and end points, and many more [299], leading to multivariate data. This
data is typically stored in a tabular form with rows and columns, while
the rows represent the observations or cases, i.e. the study participants,
and the columns represent the attributes, i.e. the measured dependent
variables. Statistically evaluating the data is possible but visual analytics
combined with machine learning concepts can provide even more insights
than pure statistical approaches, for example, correlations between the
dependent variables. Furthermore, in an eye tracking study we can even
collect qualitative verbal data stemming from interviews, think- or talk-
aloud protocols, open- or closed-ended questions, questionnaires, and even
participant behavior, emotions, gestures, body movements, and so on, which
might be of interest and worth analyzing. Finally, ratings focusing on aspects
like satisfaction or frustration might be requested, mostly by showing a Likert
scale ranging from 1 to 5.
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4.3.5 Experimenter

In a controlled study setting the experimenter guides the participants and
hence, plays a bigger role than in an uncontrolled setting in which the study
participants more or less have to guide themselves through the study trials.
The degree of control is higher if the experimenter is present and sitting next
to the participant, eager to help, like in a laboratory experiment. However,
the experimenter has to behave as constantly, smoothly, and similarly as
possible for each participant to avoid biases. Moreover, the experimenter
can be a confounding variable for several reasons, for example, just the fact
that a person has a different effect on another person makes the mimicking
of a similar behavior a difficult, nearly impossible challenge. Some study
setups even try to hide the experimenter from the participants, for example,
by a glass pane that is transparent on one side, but still the voice of the
experimenter can have an impact on the performance of the study participants.
Furthermore, even if the experimenter tries very hard to behave the same for
every study participant, it is just not possible due to mood swings and personal
reactions to certain participants. Experimenters are human beings and hence
prone to feelings, errors, and misunderstandings. The only way to mitigate
this situation is to average out the effects in the performance measures by
testing many participants while, hopefully, the experimenter does not have a
positive or negative impact on all of them in the same way.

Also in an uncontrolled study the experimenter has an impact, for
example when interviewing people later on. However, in running an
uncontrolled experiment, the study participant is typically left alone, for
example in a crowdsourcing experiment, and the experimenter has to rely on
the participants’ best performances without giving them further instructions
or giving them the chance to ask for help. The experimenter has neither the
opportunity to intervene, in case the participants do not follow the study plan,
nor does the experimenter have a good way of observing the participants or to
take notes, unless the session is recorded as audio or video. In an uncontrolled
setting it should be avoided that the experimenter is seen. Normally, it is
not needed because all the instructions can be given in written form that
have to be read by the study participants. However, also the writing and
explanation style might have an impact on the participants, but at least it is
the same style; however, the interpretation is based on the personal attitudes
and understandings of the study participants. In summary, the experimenter
plays a role to different extents when taking the perspective of before, during,
or after a running experiment.
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The experimenter plays a crucial role in an eye tracking study since a
participant is typically not able to put on the eye tracking device or to calibrate
it in a proper way. This challenge is due to the typically unknown technology
to the laymen, i.e. non-experts who are not familiar with eye tracking.
Another challenge for the experimenter is to explain the required features
and functionalities a visual analytics system can have. For a controlled study,
to which eye tracking studies typically belong, this can be managed by
explaining the most important functions and by letting the participants do
a practice runthrough and a test session in which they are guided as much
as possible. For an uncontrolled eye tracking study, if this is possible at all,
the biggest challenge is to setup the study for each individual participant and
to explain all of the required features in a written form. Positively at least,
we might have the recorded eye movements to check for the problems that
occurred to improve the study setup for the next study participants in line.

4.4 Statistical Evaluation and Visual Results

Only storing the user performances or scrolling through the textual
information does not really help since the data already has a certain size
and is composed of various attributes. Statistically evaluating the recorded
data [506] helps to aggregate or summarize it to a valuable claim but although
statistics is a powerful concept it might even not show all the insights in
a similarly powerful way as a visualization, diagram, plot, or chart can do.
Statistics can hint at similar properties although the data, if visually depicted,
shows a completely different phenomenon, for example illustrated by the
Anscombe’s quartet (Section 2.1 and Figure 2.7). It is a good idea to evaluate
the usefulness of statistics first, before running the study, i.e. to explore
whether it is worth the efforts. In many cases, a qualitative feedback can
show more insights than any statistical evaluation could do [447]. A mixture
of statistical analyses with its summarized values as some kind of data
aggregation and a visualization that shows visual patterns from which a
human can derive insights that a statistical number cannot give could also be a
suitable alternative. The power of both, statistics and visualization, is the fact
that the results from a user study can easily be presented and communicated to
a larger audience, people who are able to derive knowledge from the results
or to even generalize them. There exist various free and commercial tools
to support statistical analyses, typically also integrating visual output in the
form of standard plots like bar charts, histograms, box plots, scatter plots, or
even parallel coordinates. Those tools are, for example, GGobi, JASP, PSPP,
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R, RapidMiner, MATLAB, PRISM, SAS, SPSS, Stata, or STATISTICA to
mention a few.

Although statistics provides a summary in form of values about a certain
recorded performance measure in a user study, it has to be taken with care
since it gives no absolute guarantee about those facts and how certain they are.
Statistics aggregates the values while incorporating some kind of vagueness
since there is always the chance that the statistical result may err in some
situation. However, this error is kept as small as possible so as to only
have a few cases in which the computed result does not hold, hence the
statistical values have probabilities that give the likelihood that the results
could really occur or not by chance. If qualitative feedback or eye movement
data is recorded, the statistical evaluation cannot be applied directly, meaning
that the textual and spatio-temporal data has to be transformed into suitable
numbers first before statistics takes its part. Qualitative feedback might be
projected to some kind of Likert scale first while eye movement data could
be split into x-, and y-coordinates, fixation durations, or saccade lengths,
to mention a few useful data transformations. Based on those numbers we
might build statistical plots, however, researchers more and more make
use of more complex visualizations (see Figure 4.8), in particular, to show
eye movement patterns consisting of data dimensions like space, time, and
participants [298].

Figure 4.8 Since eye movement data is composed of at least three data dimensions like
space, time, and study participants, the visual representations also get more complex with
many aligned and linked visual components supporting pattern identification in the data [298].
Here we see the x–y positions in the top row, the saccade lengths and orientations in the center
row, and the filtered pairwise fixation distances in the bottom row while time is pointing from
left to right.
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4.4.1 Data Preparation and Descriptive Statistics

There are various statistical tests, and all of them have certain goals and have
their benefits and drawbacks. Moreover, their application depends on certain
circumstances and data properties, i.e. the quality, distribution, and structure
of the dependent variable to be evaluated. Fortunately, software packages,
freely accessible or commercial ones, are a great support, but profound
knowledge about the existing tests and their differences is required to know
which test to successfully apply. Doing statistics correctly is a challenging
task since most visual analytics experts are no experts in statistics. However,
interpreting qualitative feedback or using a visualization technique to identify
and explore design flaws might be a better option than relying on pure
statistical numbers that might reflect a mixture between the good and the bad
and hence cannot give enough details about serious problems in a system.
However, if statistics is a like-to-have feature we can give some basic rules
for applying it to performance measures.

First of all, the data to be statistically evaluated has to be prepared for
the analysis. For this reason, obviously erroneous data has to be removed
from the repertoire of the performance datasets as well as participants who
had vision deficiencies and obviously could not solve the given task in any
way. Removing or cleaning data are serious actions that should be taken with
care. Never just clean a dataset just because it does not seem to fit into the
final result. The rules about which data to be cleaned or even removed should
be clear right from the beginning, i.e. before the first participant started to
take part in the study. Otherwise, it might be tempting to remove participant
data that leads to better results, for example, to confirm or reject a specific
hypothesis. In any case, there must be a pre-defined rule about the reliability
and usefulness of datasets that make it into the final round, ready for statistical
evaluation and this rule should not be modified or adapted during the study.
In any case if the recorded data is modified due to whatever reason it should
be mentioned in the study report to recap why it was done and which data
was under investigation in the final statistical evaluation, i.e. on which data
the results are based.

Normally, performance data consists of a list of quantities, numbers or
values with which we can do arithmetic operations. This fact brings simple
descriptive statistical values into play, for example the minimum or the
maximum of a list of numbers. Moreover, to make it a bit more complicated
we can compute the mean or the median of all values. The minimum and
maximum can be real outliers of a list of values, which don’t tell us anything
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about the major distribution of the numbers. The mean value, i.e. the average
value, takes into account all numbers, however, it can be a value that is far
from being a representative value of the distribution, for example in a case, in
which the numbers are distributed at both ends of a scale and not in between.
On the other hand, the median value, which could be explained as the value
in the middle, could also not tell anything about the distribution of the list
of values. However, it is nice to have such descriptive statistical values that
give an impression about a central tendency of a value list. They already give
some very general hints about the data, for example, when inspecting the
minimum and maximum in combination which provides insights about the
range of the values. Negatively, they do not tell us enough about a distribution
of the values and can lead to wrong conclusions, like in the example of the
Anscombe’s quartet.

To provide even more insights into a list of user study performances,
statistics is equipped with further expressive values, for example, indicating
the distribution or spread of a list of values around a certain point or in a
certain value range, but telling us more than just the standard minimum,
maximum, mean, or median values. The variance, for example, takes into
account each value by including the difference to the mean value which is
important for the spread of the values in a list. To reach this goal, the sum of
the squared differences of all values to the mean divided by the size of the
value list gives the variance (Var) which is at the same time also the squared
standard deviation (SD), a more commonly used term in a scientific report or
research paper. If X := {x1, . . . , xn} expresses a list of performance values,

x :=
∑n

i=1 xi

n the mean value, then the variance and standard deviation are
defined as

Var(X) := σ2 =

∑n
i=1(xi − x)2

n

SD(X) := σ =
√
V ar(X).

Generally, the variance describes the spread effect of the values in a given
list from their mean value. It may be noted that if we use a population for our
performance value list, we use n to divide, while for a sample, i.e. a smaller
part of a population, n− 1 is used.

4.4.2 Statistical Tests and Inferential Statistics

Apart from descriptive statistics we can have a look into inferential statistics
that tries to generalize the insights gained from a small population to make
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it applicable to a much larger population. One goal is to generate statistically
significant results to reject the null hypothesis (H0) which serves as a default,
expressing that no statistically significant relation occurs between two value
lists, typically focusing on differences between performance measures in user
studies. H0 remains true until it can be rejected by statistical means, for
example using a p-value that expresses the probability that the null hypothesis
is true. This brings the term significance into play which has been defined
as the fact that the probability p should be smaller than a given value of
p = 0.05, also denoted as a significance or α level which can be understood
as the probability of a type I error, i.e. the fact that we support an alternate
hypothesis in a case in which the null hypothesis is true. Generally, the
lower the value of p, the more significant is the obtained result. There are
several tests that support this significance aspect in inferential statistics, for
example the t-test [551] like Welch’s or Student’s t-test, analysis of variance
(ANOVA) [183] like one-, two-, or three-way as well as factorial ANOVA,
with the Kruskal–Wallis [296] or Friedman tests [187] as special cases, just
to mention a few.

• t-test. With the t-test we are able to compare two mean values of two
given performance value lists, i.e. distributions of dependent variables.
The result of the test expresses whether the values indicate a certain
difference to a certain significance level. To reach this goal the variance
of the value lists is taken into account.

• One-way ANOVA. Comparing three or more mean values of
performance value lists, i.e. some distributions of dependent variables
in the study, to test them for differences, is more difficult than just
two. The F distribution is considered to do this reliably in a one-way
ANOVA, hence using F-tests to statistically evaluate equality of mean
values. Moreover, a post hoc test after the ANOVA test is required to
check between which pairs of mean values a difference exists since the
ANOVA can only tell us that there is a difference between all the means.

• Two- or three-way ANOVA. If two or three independent variables come
into play we rely on the results of a two- or three-way ANOVA which
is some kind of extension stage of the one-way ANOVA. These kinds
of ANOVAs have the additional benefit that they can find results about
interaction effects between two or more independent variables.

• Factorial ANOVA. Again, if more than one independent variable is
under investigation we typically apply two- or three-way ANOVAs, or
in the case there are even more of them to be analyzed, we refer this to as
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a factorial ANOVA. However, a four-way or even more-way ANOVA is
not found very often due to the challenge of understanding the generated
results and their reliability.

Although these tests are in most cases applied to performance measures
from a user study, they might even be applicable to eye movement data. To
make them useful we have to derive some kind of quantitative values for
the dependent variable coming in the form of eye movement patterns. For
example, the fixation durations or saccade lengths could serve as standard
dependent variables, but it may be noted that those do not express the visual
attention behavior in terms of spatio-temporal behavior, they are more like a
separate form of information, having lost the context to the shown stimulus,
i.e. the spatio-temporal information.

4.4.3 Visual Representation of the Study Results

For descriptive statistics there mostly exist several impressive visualizations
that are easy to understand and hence useful for non-experts in visualization,
researchers who just want to get an overview of the recorded study data, the
distributions, or correlations between two or more dependent variables. For
individual participants or participant groups we could use bar charts (see
Figure 4.9 (a)) to visually explore the performance differences while pie
charts (see Figure 4.9 (b)) might be useful for a part-to-a-whole relationship,
i.e. how much time each participant spent for a certain task with respect
to the total time spent by all participants for the same or for all tasks. This
might give a hint at the percentage of the time for each participant and could
help to identify the slow ones and separate them from the time-efficient ones.

(a) (b) (c)
Figure 4.9 Easy-to-understand diagrams are often preferred for depicting the results of
a statistical dependent variable in a visual form. Such a variable could, for example, be a
performance measure like response times or error rates or participants’ individual feedback in
the form of values indicated on a Likert scale: (a) a bar chart. (b) a pie chart. (c) a histogram.
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(a) (b) (c) (d) (e) (f)
Figure 4.10 A histogram can contain various patterns indicating a property of the
distribution of the dependent variable under investigation. (a) Bell-shaped or normal. (b)
Uniform. (c) Left-skewed. (d) Right-skewed. (e) Bimodal. (f) J-shaped.

A histogram (see Figure 4.9(c)), on the other hand, can be used to show the
distribution of a population with respect to the performance measure, i.e. a
quantity is mapped to the x-axis instead of a categorical information, the
participants, as in the case of a bar chart. In a histogram we typically encode
the number of people falling into a certain bin, i.e. a value range on the x-
axis representing the corresponding performance values. The height visually
depicts this number and hence, gives an easy-to-understand overview of the
bins that are frequently hit and those in which not many values fall. The
shape of the resulting histograms can be interpreted for patterns indicating
a property of a certain distribution (see Figure 4.10).

If the evolution over time of a performance value is of interest we might
use line charts that connect the points indicating a certain value at a time
point (see Figure 4.11). This mostly results in visual shapes that help to
identify trends or countertrends, in case several of those temporal variables
are plotted, for example, focusing on fatigue or learning effects that might
have an impact on a performance measure over time. Moreover, temporal
data might include anomalies or outliers, i.e. effects that do not follow the
overall trend pattern. It may be noted that line charts should be taken with
care if discrete or categorical values are depicted at the x-axis since the lines
would reflect some kind of interpolation effect that might let us perceive
non-existing values between the discrete time steps or even between two
neighbored categories. However, the shape created by adding lines to the
points is perceived as some kind of closed curve and hence comparisons to
other such curves are perceptually easier than if only the point set would be
visible. This is due to the strengths of the Gestalt laws of good continuation
and closure [292].

Depending on whether univariate, bivariate, trivariate, or multivariate
data is measured, we have to rely on different types of visualizations to
show patterns in the data. For example, for univariate data, i.e. data that
is composed of just one variable, like the response time, we could show a
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Figure 4.11 A line chart is useful to depict several time-varying performances to identify
trends as well as countertrends and to compare them for differences over time.

Figure 4.12 A box plot can show the distribution of a univariate dataset, for example the
performance measure of the response time or the error rates.

histogram, or a box plot (see Figure 4.12). The box plot is useful to show the
general spread of the univariate data on a quantitative scale. It indicates data
values like the median, which is the middle value of the dataset, the minimum,
the maximum, the first and third quartiles which are the medians of the lower
and upper halves of the dataset. Moreover, if correlations of two variables are
of particular interest, for example, between an independent and a dependent
variable or between two dependent ones like the response time and the error
rate, we typically show this bivariate data in a scatter plot (see Figure 4.13(a)).
Correlations between more than two variables, for example tri- or multivariate
data, are depicted as scatter plot matrices (SPLOMs) (see Figure 4.13(b)) or
parallel coordinates plots (see Figure 4.13(c)). The most prominent patterns
to be visually derivable are positive or negative correlations, for example, a
longer response time might cause more (positive correlation) or less (negative
correlation) errors.
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(a) (b) (c)
Figure 4.13 Visual depictions of bivariate and multivariate data. (a) A scatter plot for
showing the correlations between two variables. (b) A scatter plot matrix for depicting more
than two variables. (c) A parallel coordinates plot (PCP) as an alternative to the scatter plot
matrix for representing more than two variables.

(a) (b)
Figure 4.14 A scatter plot enriched by error bars indicating the standard error of the means
(SEM). The average saccade length is plotted on the y-axis while the average fixation duration
is shown on the x-axis. (a) The complexity levels. (b) The task difficulty.

In an eye tracking study such bivariate data could be given by the
two variables fixation duration and saccade length (see Figure 4.14 for a
scatter plot for this kind of data). For even more variables, like derived
metrics from the visual attention behavior, we might show the correlations
among them by a parallel coordinates plot (see Figure 3.7). However,
depicting the results of an eye tracking study, in particular, the visual
attention over space and time, requires many more complex visualization
techniques. If a spatial start- or target-oriented task is asked we might
provide an overview of the temporal distance to either the start or target
or both in form of a line plot (see Figure 4.15). Several visualization
examples will be explained in detail in Section 6.4. The simple statistical
plots like histograms or box plots are useful to give a first impression
on the distribution of the recorded eye movement data but such diagrams
are not able to provide deeper insights into the spatio-temporal data.
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Figure 4.15 The Euclidian distance to the start is plotted over time to show the progress of
visual attention with respect to such a relevant point of interest in a visual stimulus.

Moreover, if even further patterns are algorithmically computed, for example,
generated rules by data mining techniques [63], we have to select suitable
visualization candidates from the large repertoire of information visualization
techniques.

4.5 Example User Studies Without Eye Tracking

Many more visualization techniques and corresponding interactions have
been developed than we can test for usability, either as a stand-alone concept
or in a comparative study to check the differences of the approaches.
Moreover, due to the various parameters to be modified for each of the
techniques, the design space, and hence the number of independent variables,
explodes to such an extent that we can never check all of them. For this
reason, it is a wise decision to first focus on the most crucial variables to not
waste valuable resources in the form of user study participants. In addition,
the number of tasks can also be quite large, adding one more dimension to the
repertoire of possible user experiments. However, in this section we are going
to look into typical examples that take into account a certain visualization
technique, an interaction, or a visual analytics system while asking users to
perform tasks to record performance measures, qualitative feedback, as well
as in some cases even more.

The user studies surveyed here are far from providing a complete
list since there are various ones already just in the very specific field of
graph visualization [76]. The explained studies just serve as illustrative
examples to show the reader in which direction such research is pointing and
which ingredients are typically incorporated, for example, the visual stimuli,
independent variables, the number of study participants, and on which type a
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study is based. Moreover, the output in terms of statistical results, how they
are computed, and how those results are visually depicted will be discussed.
It is worth noting that in this section we only focus on user studies without
the explicit use of eye tracking as a technology to record visual attention
which would go beyond the scope of this section, but those will definitely be
discussed later in Section 5.4.

4.5.1 Hierarchy Visualization Studies

Hierarchical data exists in many application fields and a visualization of it is
useful [446] to explore the hierarchical structure but it also serves as a means
to provide suitable interactions, for example, to collapse or expand the data on
certain levels of hierarchical granularity. Hierarchy visualizations can come
in at least four major visual metaphors like node-link, nesting, stacking, or
indentation approaches. All of them have their benefits and drawbacks, but
if it comes to a specific task, like identifying the least common ancestor of
a given list of relevant nodes, some hierarchy visualization techniques might
be preferred due to the fact that the users perform the task faster and more
accurately with this technique than with any other. This is the starting point
for a user evaluation since the statement that one visualization is better or
worse than another one is some kind of hypothesis that can be confirmed
or rejected, based on the performance of real human users. Figure 4.16
shows some examples for hierarchy visualizations designed and developed
by students which indicates that hierarchy visualization can be learned and
applied quite quickly.

In two controlled and qualitative lab studies with 15 and 20 participants,
respectively, it was investigated which one of four combined tree
visualizations like RINGS, radial tree, treemap, or hierarchical is useful under

(a) (b) (c)
Figure 4.16 Three hierarchy visualizations illustrating examples from a huge design space
for depicting hierarchical data. (a) A bubble hierarchy. (b) A treemap. (c) A sunburst
visualization. Images provided by the students from a design-based learning course in 2018 at
Eindhoven University of Technology.
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the assumption that the provided tree visualizations complement each other
since no individual one can focus on all aspects in the hierarchical data such
as depth, size, or branchings [494]. Moreover, it was partially investigated
whether several of the techniques in combination can be more powerful
than one technique alone. A year before, only three tree visualizations,
RINGS, treemaps, and Windows Explorer were compared [520] by asking
18 participants. Qualitative ratings as well as task completion times were
measured. Another comparative study using the hierarchical visualization
testing environment [13] also looked into four hierarchy visualizations
by recruiting 32 participants answering eight tasks. The visualizations
under investigation were Windows Explorer, the information pyramid, the
treemap, and the hyperbolic browser while the response times and subjective
ratings were recorded. In a similar direction we find a study focusing
on six tree visualizations [291] with 48 participants. This study uses
Windows Explorer as a baseline comparison system and quantitative as
well as qualitative measures were recorded. Only three tree visualization
techniques were compared for hierarchies with large fan-outs [471] by
recruiting 18 participants. Response times, error rates, and verbal feedback
was recorded for various hierarchy-related tasks. There are many more
hierarchy visualization user studies, focusing on different independent
variables checked for a variety of tasks. Such studies focus on hierarchies
in source code [21], treemaps vs. wrapped bars [536], 2.5D treemaps [333],
progressive treemaps [425], as well as combined treemaps [331], node-link
trees [398], a space-reclaiming variant of the icicle plots [509], indented
trees [192], or H-tree layouts [436], to mention a few.

4.5.2 Graph Visualization Studies

Empirical user evaluation in graph visualization has become a prominent
research field due to the various visual variables useful to encode one or more
properties of graph and network data like vertices, edges, weights, temporal
evolution, and additionally derived quantitative or qualitative metrics about
the underlying graph data [76]. Graph visualizations can give a great overview
of the relational aspects among objects or humans stored in a dataset, quickly
reaching a situation in which too many data elements and relations among
them can lead to occlusion and visual clutter [426] effects in cases where the
visual variables are not well chosen. Hence, it makes sense for user studies to
investigate which technique is most suitable for certain tasks and what impact
the variation of an independent variable has on the dependent ones.
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(a) (b) (c) (d) (e) (f) (g)
Figure 4.17 Seven edge representation styles: (a) standard with arrow head; (b) tapered; (c)
orthogonal; (d) color gradient; (e) dashed; (f) curved; (g) partial.

The visual metaphor for graphs can be investigated, for example, asking if
node-link diagrams or adjacency matrices are better in terms of performance
measures. One study asks for typical tasks [200] focusing on understanding
which one of the aforementioned approaches produces better results in a
comparative study. Thirty-six participants were recruited while the error
rates and response times were measured as performance indicator. Another
comparative study [238] tries to understand which kind of edge representation
styles like animated, tapered, curved, or standard with arrow head (see
Figure 4.17 for a few examples of edge representation styles) is suitable for
the task of finding connected nodes in a network. Twenty-seven participants
answered various trials while their response times and error rates were
recorded. Also qualitative feedback was investigated to understand people’s
preferences. Moreover, partial links [97] were researched to understand
the shortest link length that still gives good performance results. Forty-
two participants answered path finding tasks in a controlled laboratory
study while error rates and response times were recorded. The crossing
angles effect was checked by 22 participants in an uncontrolled online
study setting [248]. The response times were recorded and those of the
correct answers were analyzed. Brief interviews provide some qualitative
feedback. Finally, the dynamics of graphs with respect to memorability tasks
was investigated [17]. Error rates, response times, and the 25 participants’
ratings were measured and recorded. There are many more studies related to
graph visualization, some even with eye tracking, which is less prominent
in hierarchy visualization, in particular focusing on aesthetic criteria [29,
407] like the impact of link crossings [247], the layout [400], or edge
representation styles such as curvature effects on link interpretation [136,
534]. Moreover, some studies focus on connectivity models with respect
to node-link diagrams and adjacency matrices [6, 280], while others take
into account the mental map in dynamic graph visualizations [16, 408],
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(a) (b)
Figure 4.18 Using interaction techniques to adapt parameters in a contour line-based visual
attention map. The public transport maps of (a) Zurich, Switzerland and (b) Tokyo, Japan.

however the dynamics effect is less studied in hierarchy visualizations for
example.

4.5.3 Interaction Technique Studies

The way we interact with a visualization or a visual analytics system is
important for efficiently exploring the represented data (see Figure 4.18 for
an example of interaction techniques). It turned out that there are at least
seven major categories in the field of information visualization [544] worth
investigating in a user study. On the challenging side, it is quite difficult
to compare interaction techniques that are applied differently but focus on
the same effect, in particular for visual analytics that is equipped with a
large repertoire of interactions [396] to make it a powerful concept for data
exploration. There are too many parameters to control to achieve a similar
scenario to make two or more of the interaction techniques comparable. Also
the display types, like small-, medium, or large-scale displays, as well as the
environments, like using a standard computer monitor or walking in a virtual
reality scene, make a difference to the way in which we apply an interaction
and the repertoire of interaction methods. However, instead of comparing
interactions, it is always possible to test if users understand an individual
interaction technique and to apply it in a reliable way to visually analyze an
underlying dataset, for example for finding insights and knowledge in it.

Interactive public transport maps provide a way to find insights into
routes, in particular, focusing on additional passenger information [96]. The
usefulness of such incorporated interaction techniques was evaluated by
recruiting 20 participants, split into two groups, to avoid learning effects
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between two different study settings, i.e. with and without interaction in a
comparative study setting. Moreover, other tasks focused on understanding
if the interactions are useful at all and can be applied by the participants in
a suitable way. Response times and qualitative feedback were recorded and
evaluated. In another study focusing on interactions for exploring dynamic
graphs [69], 20 participants were recruited to examine if the interaction
techniques incorporated in a dynamic graph visualization tool are intuitive
for the study participants to solve a given task. This task was too complex
to be solved by the static version of the tool without interactions. Response
times were recorded and qualitative feedback was requested. In the same
line of research focusing on dynamic graph visualization we can read about
the evaluation of two interaction techniques [181]. Sixty-four participants
answered tasks based on interaction in a controlled study while error
rates and response times as well as qualitative feedback was recorded.
Also eye movement data visualization is in the focus of user evaluation,
in particular the combination of several views [100] and interactions for
modifying the individual views as well as linking them together. An
uncontrolled experiment showed the usefulness of the interactivity of such
an eye movement data visualization tool while the qualitative feedback of
10 participants was analyzed for insights on the usability of the tool and its
functionality with respect to find patterns and strategies in the visual attention
behavior of people when inspecting public transport maps [372]. Interactive
timeslicing, animation, and small multiples were investigated in several
user studies for visualizing dynamic graphs on large displays [322]. For all
study setups the same 24 participants carried out tasks while their response
times, error rates, and qualitative feedback were measured. There are many
more studies with a clear focus on interaction techniques in a visualization-
or visual analytics-related context. Those range from preferential choices
based on a set of interactive visualization techniques [28], Fitt’s law with
respect to the design of interactive user interfaces [350] based on pointing
devices, or navigation tasks for off-screen targets on mobile phones for which
the display space limitations generate challenges for standard visualization
techniques [27].

4.5.4 Visual Analytics Studies

Evaluating the user behavior in a visual analytics system [46] is a challenging
problem [514] due to the many linked ingredients like algorithmic concepts,
visualizations, and interaction techniques. Consequently, the list of user
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studies focusing on an entire visual analytics system only contains a few
examples. Moreover, most of these studies rather focus on qualitative
feedback instead of measuring response times and error rates. The reason
is that in many cases the developer of such a system is more interested in the
development phases and whether the users are still confident with the system
after certain stages. Evaluating a visual analytics system after the final stage
of development might be a good idea to get extra feedback, but actually, visual
analytics systems are much more complex than just interactive visualization
techniques, hence it is a wise idea to evaluate them from time to time,
typically with domain experts because they mostly focus on very specific and
complex dataset scenarios stemming from a well-defined application domain.
Eye tracking might be a good concept here to evaluate a visual analytics
system [307] since the eye movement data can give us many insights into the
linking of the system’s components which cannot be found if just standard
quantitative performance measures are recorded or even qualitative feedback
is provided.

The exploratory strategies of 24 participants with respect to visual
causality analysis were investigated [541] in a controlled experiment. The
reasoning performance, strategies, and pitfalls were measured and analyzed
while the participants also provided qualitative verbal feedback during the
exploration stages based on the experimenter’s requests. To answer the given
tasks reliably the participants had to use many of the provided functionalities
of the analysis tool, hence such a study involves more processes than
a standard visualization tool or a simple interaction technique. Another
study investigated how well people can recall their reasoning of visual
analyses [334] by recruiting 10 participants using the WireVis system
for visual exploration of financial transaction data [117]. A mixture of
qualitative and quantitative data was recorded to get insights into such
complex visual processes. Another follow-up study by the same authors tried
to figure out if the recall of findings and strategies is possible and how
this is done. Again 10 participants were recruited. A user study focusing
on the ability of semantic interaction by using a visual analytics system
to support sensemaking [173] was conducted in a laboratory setting by
means of a high-resolution display. Six participants solved such interactions
to understand how the models benefit the participants based on a majorly
qualitative feedback. Twenty-seven participants investigated human factors
of the confirmation bias in the field of intelligence analysis [131]. Qualitative
feedback and quantitative measures were recorded in a laboratory setting.
Also the priming and anchoring effects in visualization and visual analytics
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Table 4.1 Examples of user studies focusing on aspects in visualization, interaction,
and visual analytics: comparative (CP), laboratory (LB), controlled (CT), qualitative (QL),
quantitative (QN)

Scenario Participants Study type Literature

Hierarchy visualization 15 + 20 CP, QL, LB, CT [494]
Hierarchy visualization 18 CP, QL, QT, LB, CT [520]
Hierarchy visualization 32 CP, QL, QT, LB, CT [13]
Hierarchy visualization 48 CP, QL, QT, LB, CT [291]
Hierarchy visualization 18 CP, QL, QT, LB, CT [471]

Graph visualization 36 CP, LB, CT, QT [200]
Graph visualization 27 CP, LB, CT, QT, QL [238]
Graph visualization 42 CP, LB, CT, QT [97]
Graph visualization 22 CP, QT, QL [248]
Graph visualization 25 CP, LB, CT, QT, QL [17]

Interaction technique 20 CP, LB, CT, QT, QL [96]
Interaction technique 20 LB, CT, QT, QL [69]
Interaction technique 64 CP, LB, CT, QT, QL [181]
Interaction technique 10 QL [100]
Interaction technique 24 CP, LB, CT, QT, QL [322]

Visual analytics 24 LB, CT, QT, QL [541]
Visual analytics 10 + 10 LB, CT, QT, QL [334]
Visual analytics 6 LB, CT, QL [173]
Visual analytics 27 LB, CT, QT, QL [131]
Visual analytics 726 QL [507]

were investigated based on five individual studies, even including a series
of Mechanical Turk experiments [507]. A total of 726 people participated
in the studies, while the results were mostly based on Likert scale-based
participant ratings. Some more examples related to visual analytics and
user evaluation focus on think-aloud protocols targeting the design of user
interfaces [262], i.e. the link between the human, the visual, and the analytics
parts in a visual analytics system, adaptive contextualization [207], reasoning
processes [159], modeling of user interactions during the data exploration
process [141], or visual analytic roadblocks [313].

Table 4.1 provides a summary with some user study examples from the
application fields of hierarchy and graph visualization, interaction techniques,
and visual analytics. The additional study information in the table is based on
the number of participants, the most important study types as well as the
reference to find more details about each of the studies for the interested
reader.
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Eye Tracking

Eye tracking has become a well-studied field these days [161, 235], not only
because of the progress of the hardware technology and the reduced costs for
eye tracking devices, but also due to the various application fields that benefit
from it. Such fields are numerous with varying backgrounds like marketing
that is interested in the user behavior to improve the selling strategies,
visualization and visual analytics which are focusing on understanding the
interplay of their algorithmic, visual, and interactive components to identify
design flaws and to build a starting point for enhancements, or software
engineering trying to figure out how software developers produce source
code and how efficiently and effectively they implement or debug such
code while they interact with a software development environment or while
they collaborate and communicate with other software developers. Moreover,
fields like neuroscience, cognition, human–computer interaction, medicine,
sports, or the automobile industry all benefit from eye tracking, given the fact
that the data is measured accurately and analyzed afterwards.

To efficiently and effectively record eye tracking data, a profound
knowledge of the anatomy of the eye is needed. Moreover, the internal
processes and concepts involving facts about light, vision, perception,
cognition, and psychology have to be researched and understood in order to
obtain reliable and significant results based on eye tracking data. The human
eye is very complex but to build a simple and cheap eye tracking device that
is powerful enough to measure and record eye movements, even on a very
coarse-grained and not very accurate level, at least the major components
of the eye have to be studied as well as their connections, impacts, and
causes for certain effects. Such effects also include diseases that might have
a negative influence on the way we measure the eye movements but also on
the trustworthiness of the results. Hence, the eye is involved in the field of
eye tracking in many respects, it is not just “the window to our soul”, it builds
some kind of interface between the visual stimuli and the cognitive processes
happening in the brain.

175
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The field of eye tracking has existed for many years but the technology
as we know it today is not comparable with the early attempts to observe
people’s eyes while they were solving a certain task. Although there was
a general impression about what eye movement looked like, it was pretty
challenging to note down the various numbers of movements, i.e. just very
general observations could be made. The invention of the computer and the
progress in hardware technology in general has led to the eye tracking devices
that we know today with the ability to record eye movements very accurately
as well as additional physiological measures. Moreover, the steady progress
in software technologies, in particular data analysis, visualization, and visual
analytics, give great support in helping us to identify patterns in the eye
tracking data, even in real-time. Compared to the early attempts we can say
that we are eye witnesses to the great advancements in the field; however,
other, even more challenges, occur these days, moving away from the data
recording to more data analysis challenges. Describing the many concepts
that exist for analyzing eye tracking data is beyond the scope of this chapter,
hence we move that to another part of this book which is located in Chapter 6.

Moreover, interacting with the eye, instead of using devices like the
mouse, joystick, keyboard, or further concepts based on touch, gestures,
voice, and the like, brings into play another kind of giving user input to an
interactive visual stimulus. Such gaze-assisted interaction is researched as a
novel discipline but although it seems to be promising, it also brings new
challenges into play, for example the well-known Midas touch problem that
describes the effect of making everything that is visible in a visual stimulus
interactable by focusing on it with the eye. However, this effect is counter-
productive since it generates some kind of over-reaction in the users’ visual
attention, hence good ways out of this dilemma have to be developed. This
issue requires special gaze-assisted features which are not known in the same
way for other interaction devices and methods, but if several interaction
concepts are combined in a clever way, they seem to create a possible solution
for this problem. However, user evaluation is required that brings another kind
of data to be analyzed into the field.

In particular, applying eye tracking to visual analytics systems requires
the knowledge of many concepts due to the interdisciplinary character of such
systems ranging over, and including, general fields like algorithms and data
structures, human–computer and gaze-assisted interaction, visualization, as
well as cognition, perception, or psychology, to mention the most important
ones. The interdisciplinary fields are one reason for the generated eye tracking
dataset coming with a certain degree of complexity. No matter how complex
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the data is, it is worth analyzing and visualizing since it hides interesting
and valuable patterns, correlations, strategies, rules, or associations that
correspond to a certain user behavior. The understanding of such visual task
solution strategies depends on how well we are able to translate the abstract
eye tracking datasets into a language that easily explains the human behavior
while solving a task. These insights can finally help to identify negative
issues like design flaws to hopefully enhance a static, dynamic, interactive,
animated, 2D, or 3D stimulus based on such advanced analyses.

5.1 The Eye

We primarily discuss the human factors of the eye since the humans are most
relevant for visual analytics systems with their perceptual abilities to rapidly
detect patterns and to apply the found pattern-based insights for refining
parameters, algorithmic as well as visual ones. Without the functions that the
eye is providing or just some limitations of them, our vision and perceptual
abilities would suffer a lot which would have many negative consequences for
the exploratory strengths and strategic behavior while using a visual analytics
system.

Eyes are considered organs that are relevant for the visual system [522].
Effectively perceiving and processing static and dynamic visual objects in the
brain requires unlimited vision for which the eyes play the deciding factor.
To reach this goal, the eyes transform light into impulses that occur electro-
chemically in the neurons which build the basic units of the humans’ nervous
system and hence are responsible for any kind of information processing. The
majority of such neurons are in contact with hundreds of other neurons and
are consequently able to transmit information further and further.

For eye tracking the eyes logically play an important role since they are
obviously the core ingredient for this emerging technology. However, it is
actually not of primary interest how the information is processed in the brain,
but for the tracking we are more interested in how the eye functions and
how to extract, measure, and record the valuable information that is required
to reliably and efficiently track the eye. For this to be achieved we need
profound knowledge about the eye movements, how they are initiated and
controlled, and which features of the eyes have to be taken into account to
reliably record the data we need for our eye tracking data analysis. A second,
but still important and challenging aspect is the way in which the information
is transmitted from the eye into the responsible brain regions and vice versa
back from the brain to guide our reactions and interactions which brings
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Figure 5.1 The human eye is a complex organ that is important for the visual system [196].
Moreover, it builds the major ingredient for all eye tracking studies.

principles from cognitive psychology into play as well as aspects related to
the eye–mind hypothesis [268, 269].

5.1.1 Eye Anatomy

Figure 5.1 shows some of the important components in the human eye [196]
(many others that are not relevant ones for eye tracking are not shown) that
might be distinguished in the outer and inner ones. The outer ones typically
occur as confounding variables in an eye tracking study, the inner ones are
useful to measure and record eye movement reliably. For example, outer
eye components that might lead to inaccurate and erroneous eye movement
data or biases in the study can be the differences in the lengths of the eye
lashes, even false eye lashes due to cosmetic reasons, or properties of the
eyelids as well as diseases of the eyelids like eye twitching. These can cause
problems for certain study participants and might have a negative effect
on the dependent variables measured in an eye tracking study. Many more
problems and diseases [336] related to the eyes can cause irregularities in an
eye tracking study such as eyestrain, night blindness, lazy eye, cross eyes,
color blindness, dry eyes, cataracts, or glaucoma, just to mention a few. Even
artificial corrections of the eye sight like glasses or contact lenses might be
outer eye components that have an impact on eye tracking studies. Hence,
it is a wise decision to collect such information for each participant before
starting an eye tracking experiment, to incorporate those issues later in the
data analysis stage.

The most important inner components of the human eye from a large
repertoire could be listed as the iris, cornea, pupil, lens, sclera, retina, fovea,
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rods, cones, and optic nerve (see Figure 5.1). These play crucial roles when
setting up and conducting eye tracking studies. Actually, the human eyes have
many similarities to digital cameras. The cornea which takes the role of the
camera lens is hit by light. The iris imitates a diaphragm, similar to that of a
camera which is responsible for increasing or decreasing the amount of light
that falls into the eye, in particular, the light ending up at the backside of
the eye, i.e. the retina. To reach this goal the pupil’s size can be modified
in order to regulate the amount of light falling in. The eye’s lens plays the
role of focusing visual objects just like the autofocus mechanism of a digital
camera lens. The remaining light reaching the retina which is consisting of
rods and cones, transforms this light into electronic signals, transmitted by
the optic nerve to the visual cortex which stands for the region of the brain
that manages the sense of sight [521]. From here, cognitive processes guide
the actions and reactions of the human body functions, also the movement of
the eyes.

The rods and cones placed on the retina take the role of photoreceptors.
Several million of them [196] absorb light to transform it into nerve impulses
which are further sent via the optic nerve to the corresponding brain region.
One difference between rods and cones is their effectivity at different day
and night times. Rods are important for vision at night since they are
more sensitive to light than cones, hence if the light is very low the rods
play the most crucial role for human vision. The cones instead, are useful
during daytime when the light is very bright, i.e. there are many more
photons than during nighttime. Rods and cones have an impact on color
perception, but this impact is highest for the cones. Certain wavelengths,
typically short, medium, and long ones, are considered, characterizing the
cone photoreceptors into three classes. Research about these aspects describes
the number of photoreceptors in the human retina as being approximately
6 million for the cones and 120 million for the rods, but these numbers
vary from eye to eye. For eye tracking studies, it is important to use
bright light in case the cones are more the focus of the results whereas
in a comparative eye tracking study investigating how different light levels
affect the eye movement behavior and further dependent variables we need
profound knowledge about the functions of the photoreceptors [253].

5.1.2 Eye Movement and Smooth Pursuit

When the eye moves, the eye muscles initiate a movement in the desired
direction. This happens very rapidly, i.e. the eye can be accelerated a lot
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and stopped very quickly to allow accurate visual attention to a certain
point or object of interest. Extraocular muscles are responsible for these
eye movements which are primarily under the humans’ control, i.e. on a
voluntary level. While looking around, the humans are free in their decisions
where to look at and for how long. But in rare cases, we can detect some
reflex eye movement actions that have a higher priority than the voluntary
eye movements because they have to be done quickly, for example, due
to some dangerous, unforeseen, or interesting situations. The voluntary
eye movements are also typically without explicit awareness, to reduce
the cognitive efforts and to ease the ways we pay visual attention to a
visual stimulus, either to interesting static or dynamically moving objects or
sometimes caused by body or head pose changes and movements. The goal
of the rapid eye movements based on the actions of the extraocular muscles
is to quickly navigate and direct the way the light falls on the retina, actually
the small part called the fovea, to change the focus for the visual input to the
visual cortex to make the information processible in the brain. A high degree
of precision and rapidness of the oculomotor system is required to achieve
the best visual attention scenario possible.

The gaze has to stay rather constant in a situation in which we have to
watch a small visual object for a longer time, meaning the eye muscles must
frequently adjust their position to keep the interesting visual part in the center
of the fovea, in case we make small or larger head movements while at the
same time fixating the same visual object with our eyes. Since such a scenario
happens very often due to the fact that the head is typically not fixed and
shaking around a bit, even more in a free walking eye tracking situation,
we can see that the eye muscles take over a special and challenging job in
keeping our vision as effortless as possible while solving given tasks. The
responsible six extraocular muscles have different tasks, for example, rotation
of the eye toward the nose, outward, upward, or downward eye movements.
In normal eye health situations the muscles move both eyes simultaneously
and synchronously, i.e. as conjugate movements, in contrast to disjunctive
movements.

There are different ways to move the eyes that make a difference for
the analysis and visualization of the eye movement data. Generally, the eyes
never stay in the same position for more than a few milliseconds, making
high frequent movements per second [11]. For eye movement studies it is
of particular interest if the eyes move from spatial positions to other ones,
staying at each for a while and make saccades, i.e. rapid eye movements
in between. In contrast to this scenario the eyes might make continual
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movements, following a moving object smoothly, an effect for which the
term smooth pursuit [177] was coined. For static stimuli the first scenario
is typically detectable in the recorded eye movement data while for dynamic
stimuli with animated visual features, the continuous following of a visual
object, for example, a ball or a car, can cause additional data recording
and analysis issues. The smooth pursuit effect actually allows us to follow
moving visual objects while most people are unaware of doing a smooth
pursuit and they are even not able to perform one without a visible moving
object. If the visual object is moving too fast, like more than a velocity of 30
degrees per second, people tend to do so-called catch-up saccades, i.e. quick
movements of the eye from one position to another one. For eye tracking
studies containing smooth pursuit tasks it has to be noted that there is a
general difference in the direction of smooth pursuits, i.e. humans perform
better for horizontal and downward movements than vertical and upward
ones.

5.1.3 Disorders and Diseases Influencing Eye Tracking

We might classify the diseases having an impact on the value and reliability
of eye tracking studies and their generated results into two major classes.
The first class consists of diseases or disorders that directly influence the
vision due to malfunctions related to the eye. Those diseases could be
color blindness, cataracts, glaucoma, retinal disorders, strabismus as well
as refractive errors such as myopia, hyperopia, astigmatism, and many
more [434]. The second class contains those that are not directly eye-related
diseases but have a similar impact on the conduction of eye tracking studies
and the reliability of the results. Examples for this type are Parkinson’s
disease which typically affects a human’s motor system, or autism that
belongs to the class of developmental disorders causing problems for social
interactions and communications. Diseases belonging to this second class
are typically related to senso-motoric disorders or communication problems
that hinder study participants to take part in an eye tracking study generating
results of high accuracy rates and with acceptable response times compared
to people who are not suffering from such problems. Moreover, for most
scenarios under investigation, the eye movements should be recordable in an
efficient and well-calibrated way with a high degree of expressiveness about
the visual attention behavior, an aspect that unfortunately oftentimes leads to
the exclusion of people with a certain kind of disorder.
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(a) (b)
Figure 5.2 Cataracts [392] affect the lens of the eye in some kind of degeneration process
causing clouded and unclear vision: (a) clear vision; (b) an eye with cataract issues.

The causes of eye-related diseases are manifold, like infections, allergies,
genetic issues, smoking habits, and even vitamin deficiencies. Moreover,
diabetes, which has other causes, might be one of many reasons [437],
having a negative impact on the eyes making them less powerful for vision.
Diabetes causes a macular edema which destroys the sharp vision, leading
to an effect of partial loss of vision or complete blindness. Hence, this issue
can be problematic for eye tracking studies since many people do not know
if they suffer from any form of diabetes [341] or not. Apart from diabetes
there are various more disorders that have a negative impact on vision and
sight. For example, visual impairments might also be caused by cataracts
(see Figure 5.2) which affect the lens by a degeneration issue making it
becoming opaque and causing some kind of clouded unclear vision effects.
Cataracts [392] are mostly age-related problems but can even be caused by
diabetes or traumatic issues.

Eye tracking could even be useful to identify a disease of the eyes [301]
or even one that is not directly related to the eyes like Alzheimer’s [25]. This
could be done in a controlled lab environment or even in an online session
in which the doctor inspects the eye remotely. Such a remote session might
produce less exact and less expressive results than the lab examination but
still some useful knowledge about a person’s health status might be generated.
Based on the outcome of the remote check-up, the online doctor might invite
persons with strong symptoms indicating possible diseases for further more
detailed examinations into the lab or other further steps might be taken. The
eyes might tell more about a person’s health status than we would expect.
Eye tracking could even be useful to check for states like tiredness which
could have serious impacts on tasks like driving a car or a truck. In the case
of an eye tracking study in visual analytics, tiredness might cause a low task
accuracy or high response times, a situation that might cause biases in a user
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Figure 5.3 No corrective lenses are needed for normal vision.

study. In particular, for long-duration tasks, which might also occur in visual
analytics eye tracking studies, this effect can have negative consequences on
the reliability of the results. Finally, with eye tracking we might find out the
emotional states of people [491].

For standard eye tracking studies it would be too expensive or even
too frightening for people to take part if they have to visit a doctor or eye
specialist first to check for diseases, hence the number of participants would
be reduced tremendously for studies investigating issues in visual analytics.
The best way is, consequently, to just invite the people for the study and ask
them if they would like to fill out a corresponding form while explaining them
the ethics and privacy issues related to this information providing process. In
any case, it is good advice to check participants beforehand, i.e. they should
fill out some kind of form that includes information about personal details
to which diseases also belong. However, such private information should not
be abused and hence it should be explained to the participants if they decide
to provide such information. Moreover, the recorded personal data should be
anonymized in a way that it cannot be recovered later on.

5.1.4 Corrected-to-Normal Vision

From the five senses sight, hearing, taste, smell, and touch, sight is reported to
be the most important one for our daily life. Hence, it is important to find ways
to correct the vision in cases certain visual acuity or color blindness issues
occur, leading to effects of blurred images that might even affect the eyes for
long-duration tasks in the sense of making them more tired than they would
get in situations with normal vision (see Figure 5.3). Effects that are caused
by eye strain, such as headaches, dry eyes, or even squinting might occur if
the incorrect vision is not medicated. However, there is hope that those issues
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(a) (b)

(c) (d)
Figure 5.4 Refractive errors: (a) nearsightedness (myopia) and (c) farsightedness
(hyperopia) can be corrected by special lenses (b), (d).

might disappear or at least be reduced when wearing glasses or contact lenses
regularly. Actually, in many scenarios the vision can be corrected artificially
by such non-invasive instruments like glasses or contact lenses. Typically,
glasses are worn at a short distance in front of the eyes while contact lenses
are worn directly on the eye surface. Both instruments have the purpose of
correcting the vision, i.e. they function as corrective lenses (see Figure 5.4).
To reach this goal they work as light benders when it enters the eye and hence
they correct refractive errors. Most common sight issues are nearsightedness
called myopia, farsightedness called hyperopia, or astigmatism.

The reasons for these effects are typically caused by aging, but might
even have different causes lying in the genes of your family, i.e. they can
be inherited from ancestors. The older people get, the less flexible their eyes
are to certain situations, i.e. the negative effect is likely to get worse and can
also vary a lot with increasing age. Moreover, both eyes do not suffer equally
from these problems but they can have varying extents of refractive errors.
However, even this inhomogeneity can be detected by an optometrist or
ophthalmologist and corrected by differently shaped lenses, one for each eye,
taking into account the extent of refractive error individually. For hyperopia,
a convergent lens is used while for myopia, a divergent lens corrects the error.
Also color blindness correction glasses are researched, offering a way to put
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the three primary colors in a certain balance in case there is a disorder or
deficiency in one of the three primary colors.

For eye tracking studies these vision correction instruments can cause
problems which typically have to do with the correct calibration of the
eye tracking device or even with wearing a head-mounted eye tracker
in combination with glasses for example. It is a good advice to collect
information about the wearing of glasses or contact lenses, but also the age
of the study participants might give a hint about certain sight problems, even
if the participant is unaware of it and does not wear any vision correction
instruments. The experimenter can at least conduct a visual acuity test, for
example, by means of a Snellen chart [470], but whatever result comes out of
this test, it should not be reported to the participant since the experimenter of
a visual analytics eye tracking study is typically not privileged and educated
enough to give such a result. But at least the study participant performing
badly in the visual acuity test might be excluded from the data analysis part
later on; however, the rules for this exclusion process should be defined and
determined before starting the study to avoid biased performance data.

5.2 Eye Tracking History

Eye contact, eye movement, as well as gaze direction have played and still
play a crucial role in silent human-to-human communication, for example,
as a means to express emotions, interest, disinterest, or just as a way for
an efficient form of social interaction. Typically, we use joint attention to
a certain visual object to build this form of eye communication, i.e. some
kind of visual object takes the role of the interface between human and
human if words are missing. The need for understanding the complex visual
and cognitive processes incorporated in joint attention might be some kind
of starting point for research in eye tracking [518]. In the 19th century,
researchers started to observe eye movement patterns, like Javal [250] who
tried to describe eye movements during reading tasks. But an accurate
recording was impossible due to the missing technical equipment in these
times. The invention of the film camera in 1905 brought a big step from the
observational description to a more accurate after-recording analysis, but still
the development of the technology was not finished.

Actually, Yarbus [539] was one of the pioneers of eye tracking research
with an already high accuracy, but long ago before the invention of powerful
computers being able to process big data, asking himself which role the
task plays in visual attention patterns in a given static scene. The major
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conclusion from such experiments was that, depending on the task, the
spectators perform different scanpaths, i.e. their eye movements can vary a
lot. However, although the recording of the eye movement data was quite
accurate in these days, the quality of the data cannot be compared with
that generated by eye tracking devices having undergone many stages of
technological progress as we have them today. The devices to record the
eye movements in these old days were mostly based on so-called suction
caps [492], similar to contact lenses as we know them today for correcting
refractive errors in the eyes.

The progress in the hardware technology brought various novelties into
the field. With those novel inventions and more and more accurate eye
tracking devices, many more challenges occurred, mostly focusing on the
analysis concepts needed for a proper and insightful evaluation of the
recorded eye movement data combined with additional data sources like
physiological and verbal data [44]. Moreover, visual analytics was detected
as a field to further uncover data patterns by including the human user
with interactive tools containing visual components as well as algorithmic
ones. But still, the field is moving forward since many open challenges still
remain such as the link between visual attention, cognitive processes, and
psychological issues that might guide the visual task solution strategies [305].
With steady progress we have reached a level at which even real-time eye
movement data can be recorded and analyzed. Moreover, eye tracking can be
used as an interaction modality, normally known as gaze-assisted interaction,
demanding for very accurate eye trackers, depending on the interactive visual
components provided by a user interface, for example, a complex visual
analytics system.

5.2.1 The Early Days

Eye movement was recognized many years ago, but tracking it in a very
accurate way was impossible due to missing instruments and devices in
these early days. However, Wells and Erasmus Darwin studied afterimages
as a means to examine eye behavior and movement patterns. Researchers
around 1879 also tried to listen to eye muscle movements by means of a
kymograph to get some insight into the corresponding eye movements. The
actual roots of the technology lie in the 19th century in which researchers
became interested in reading tasks, but professional equipment as we know
it today was not available. Even a simple device could not be used, just
human-to-human eye movement observations were possible, for analyzing
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Figure 5.5 Eye movements during a reading task consist of short stops (fixations) and rapid
eye movements (saccades). This insight was found by Hering, Lamare, and Javal around
1879 [263].

reading behavior [263]. For example, the experimenter used mirrors so as to
not distract the reader from the actual task too much. Although this concept
was quite novel and provided some insights into viewing behavior, it was
far from being accurate since it relied on the observation performance of the
experimenter and not on powerful, accurate, and fast measurement devices,
cameras, sensors, and computers as we have them today, just a microphone
was used and a mechanical device for better counting the eye movements.
One of the first experimenters in these times were Hering, Lamare, and
Javal [519] who studied the movement of the eyes during reading, which
is reported to have happened around 1879. One major outcome of this first
eye tracking study was the fact that the eyes do not move smoothly over the
words while reading but instead, they make short stops and even jump back
and forth with rapid eye movements in between those stops (see Figure 5.5).
These effects of stop-and-go brought into play the terms that we refer to as
fixations and saccades today.

The biggest challenge in these early days, however, was the eye tracking
invasiveness that could cause pain or even eye damage in some cases. Around
1898, Huey, for example, used some kind of contact lens with an opening for
the iris while the lens was connected to an aluminum indicator to uncover
the eye movements. Delabarre also used an invasive way to research eye
movements by attaching a gypsum cap to the eye, but with his approach
he could only detect and draw horizontal eye movements, a clear limitation
of the early eye tracking techniques. Some sort of breakthrough in eye
tracking research might have been the non-invasive eye trackers that made
use of reflected light and hence were often called optical trackers. Dodge
and Cline studied the corneal reflection method but still had to record the
eye movements based on this concept on a photosensitive photographic plate,
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later replaced by photographic tape. Also in their method it was only possible
to record horizontal eye movements. In 1905, Judd, McAlister, and Steel were
the first who presented a device that was able to record eye movements in both
directions, i.e. horizontal as well as vertical with the drawback that the study
participants had to sit or stand still during the experimentation. The most
popular outcomes of these days, although eye tracking was in its infant ages,
were that humans do not obtain information during rapid eye movements
(saccades), that the eyes need some time to first initiate before they can start
obtaining information, and the fact that humans have a limited visual field that
only allows focusing on the visual objects in the center of the view sharply
while the objects at the edge of the visual field are more observed in a blurred
fashion [521].

5.2.2 Progress in the Field

The progress in the development of the film camera after 1900 brought novel
ideas into play to enhance the methods and techniques in the field of eye
tracking, for example in the research by Fitts in 1947. Instead of being
invasive in the sense of injuring the study participants’ eyes, the camera-based
concepts were non-invasive, allowing to take part in eye tracking experiments
without affecting the eye. Such non-contact devices were developed by
Buswell around 1935 by reflected light on the eye that was recorded on
film. Further more semi-invasive concepts focused on electric potential
differences in the eye and used electrodes to measure those differences during
eye movements, typically called electro-oculography [535]. A big problem
was the dependency on the head movements, i.e. in typical eye tracking
experiments in these times, the participants were not able to move and their
head had to be fixed somehow. Some methods made use of chin rests, head
rests, or bite bars. For traditional visual analytics studies, head movements
might not be needed to make use of the full potential of the visual analytics
system. But for more complex immersive analytics studies [347], as we find
many of them today, studies applying eye tracking technologies have to be
conducted in a way that people can freely move around to reach the entire
visual space, for example to explore the represented data. Before the invention
of visual analytics as an interdisciplinary field, Hartridge and Thomson
researched the recording of eye movement by allowing a high degree of head
movement, although their technology was not considered comfortable for the
study participant.
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Mobile eye tracking devices, like head-mounted or wearable trackers as
we know them today, were a great success since they made eye tracking more
comfortable and less stressful for the study participants. The invention of
the computer and the steady progress in hardware and software technologies
had a simultaneous positive impact on the development of the eye tracking
research field. With the rubber suction cap invention applied by Yarbus [539],
the field made progress again in these days. With his method he created a
means to record and analyze eye movement at a comparably high accuracy.
With his ideas, he found out that the task plays a crucial role for the
differences in eye movement patterns. Also organizations like the NASA
and the US Air Force were in focus when researchers started to develop
eye tracking devices, or oculometers, typically for pilot experiments in
aviation [43]. But although many studies were conducted with much money
involved, eye tracking devices were still more or less created for the industry
or military, but not for the everyday user, which is still a problem today due to
the immense costs of the more accurate devices. Also researchers in the field
of marketing detected eye tracking for their benefits and tried to figure out
how advertisements are inspected to derive insights from the eye movement
data to improve advertisement strategies.

We might say that the computational power of computers with their
efficient algorithmic approaches are a key to success for fast and accurate
recording, in particular the detection and extraction of important information
from the eye to draw conclusions from the eye movements, but also for
the analysis of the bigger and bigger getting spatio-temporal eye movement
data. This technological improvement, based on computers and their powerful
algorithms, have brought us closer to the eye tracking devices and software
as we find them today. Those might be classifiable into remote and head-
mounted or wearable ones, as well as based on electro-oculography, infrared-
oculography, video-oculography, or scleral search coils. More and more
application fields are applying eye tracking techniques, also due to cheaper
and cheaper devices. Also eye tracking research and studies conducted
at universities have increased over the years, leading to a vast amount
of scientific publications ranging over all sub-disciplines related to eye
tracking, even bringing international conferences into play, like the popular
symposium on eye tracking research and applications (ETRA), as a meeting
point for researchers from academia and the industry from all over the
world.
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Figure 5.6 An example of an eye tracking device as we know it today, known as the Tobii
Pro Glasses 3. Image provided by Lina Perdius (Tobii AB).

5.2.3 Eye Tracking Today

No matter how efficient a technology currently is, we have to take into
account the value of the recorded eye movement data which is typically based
on the so-called eye-mind hypothesis [268, 269]. This hypothesis states that
people tend to cognitively process, i.e. think about, the visual objects that
they fixate as long as they pay attention to them. The problem here is that
cognitive psychology and eye tracking typically run as two separate research
fields, hence many aspects remain unresearched and unexplained, while more
joint research might lead to many synergy effects from which both fields
might benefit. Overt and covert attention come into play here that explain
the effects of fixation and cognitive processing. Covert attention is denoted
as the attention that we pay to some object we are not looking at while overt
attention is the opposite of that. Consequently, covert attention makes the
reliability of eye tracking data a bit questionable due to the missing links
to the cognitive processing stages. Regardless of the eye–mind hypothesis,
we can find different types of eye tracking technologies today that could
be categorized by means of some major criteria, apart from niche concepts
that we will not explain here in much detail (see Figure 5.6 for a modern
eye tracker example known as the Tobii Pro Glasses 3). Those classifications
might be based on invasiveness, flexibility, or data acquisition.

• Invasive/intrusive vs. non-invasive/non-intrusive. As described by
Duchowski [161], for example, systems that are invasive or intrusive
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typically touch or have a contact with either the eye or the skin around
the eye. This contact makes such studies uncomfortable for the study
participants and in rare cases, at least in early times, people might have
suffered from some eye injuries or at least their eyes had to relax some
time after having taken part in such an eye tracking experiment. On the
other hand, systems that rely on technical equipment that actually avoid
these contacts try to make the study procedure more comfortable for the
subjects, at the cost of finding a good way to get accurate and reliable eye
tracking measurements, for example, if head movements in interactive
applications must be allowed [360].

• Remote vs. mobile/head-mounted/wearable/portable. Looking at
where the eye tracker is placed and how much flexibility it provides
brings us to another categorization consisting of major classes. Those
contain devices that are used in remote settings, placed away from a
study participant without direct eye or body contact allowing contactless
measurements, typically integrated into a computer monitor. The eye
tracking devices could even be mobile eye trackers in the sense of being
applicable everywhere, for example, in field studies, in which a high
degree of flexibility is required. Moreover, such systems can be head-
mounted, wearable, or portable which is achieved by better and better
hardware technologies. Some mobile systems are so advanced that they
can even track the eye movements in combination with head movements
to reliably compute the points of eye fixations.

• Electro-, infrared-, video-oculography, and scleral search coil.
Another classification is based on how the eye movement data is
acquired. For example, certain sensors might be placed around the eye,
measuring the skin potential during eye movements based on electric
fields called electro-oculography. Also infrared light can be thrown on
the eye to better record the effects of eye movements on the pupil
positions. The amount of reflected light and, in particular the amount
changes play a key role in this approach called infrared-oculography.
Video-oculography, on the other hand, takes into account the video-
recorded images based on single- or multiple-camera eye trackers. The
corneal reflection technique makes it possible to record the position of
the pupil given by the additionally reflected light. Finally, the search coil
method uses wires in some kind of contact lens placed in a magnetic field
causing voltages based on Faraday’s law which give a hint about the eye
position.



192 Eye Tracking

One of the biggest challenges today is the analysis and visualization of
recorded eye tracking data. Moreover, if the data has to be analyzed in real-
time, for example, for gaze-assisted interaction, we have to take into account
the most powerful and most flexible technologies we can develop to guarantee
eye tracking in free walking scenes, from a data recording perspective as
well as from the algorithmic analysis power in terms of runtime efficiency.
These aspects bring into play the criteria mentioned above like invasiveness,
flexibility, or the method of data acquisition, which are related to aspects like
cost, accuracy, or sensitivity, standing in a trade-off situation. Moreover, the
eye tracking device in use also depends heavily on the application field as
well as which environment the eye movement data has to be recorded. For
traditional visual analytics systems this is definitely different than fields like
marketing in which the study participants have a high degree of flexibility,
typically walking around to find products meeting their needs.

5.2.4 Companies, Technologies, and Devices

In this section we present a list of popular eye tracking companies with
the important eye tracking devices and technologies they have developed
during the years of their existence. Moreover, we take a look into several
criteria and aspects related to the designed technologies which we found
on the corresponding web pages provided by the companies. We do not
focus on listing all companies since there are many companies with varying
backgrounds and scope of their research due to the fact that the whole field
is progressing a lot, involving many international researchers from varying
application domains. So that we do not prioritize one company over another
by the order of their mentions in the list, we use a lexicographic order of the
company names (see Table 5.1).

5.2.5 Application Fields

Due to the progress of hardware and software technologies the whole
field of eye tracking steadily improves. Moreover, many companies (see
Section 5.2.4) have been founded over the years with similar but also varying
intentions to develop further concepts, devices, techniques, and technologies
or to just provide support to certain fields of research. These fields also come
in a variety of forms focusing on different goals demanding for a mixture of
efficient interdisciplinary approaches with eye tracking among them. In the
following we will briefly describe a list of interesting application fields for
eye tracking without promising to be complete.
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Table 5.1 Eye tracking companies with respect to hardware and software developments as
well as focused applications, described by major buzz words

Company Developments/Technologies Applications/Focus

Argus Science Binocular, 3D mobile, real-time Marketing, sports
Blickshift Visual analytics, data analytics Usability studies
Ergoneers D-Lab, Dikablis glasses, portable Automotive, marketing

EyeSee Online, facial coding, webcam Virtual shopping
EyeTech USB-connected, low-powered Assistive, disabled
EyeVido Browser data, data analytics UX, usability studies
EyeWare 3D software, depth camera Real-world interaction

GazeHawk Webcam, crowd sourcing Usability, comparisons
Gaze Intelligence MRI, mobile, remote Behavioral studies

Gazepoint Biometrics, GP3 HD UX design, usability
iMotions Biometric sensors, real-time Human behavior, UX

ISCAN Real-time, head-mounted Pilots, military
LC Technologies Eyegaze, tablet communication Assistive, disabled

Mirametrix USB, attention sensing UX, HCI
Pupil Labs Open-source, wearable headset UX design, marketing
Smart Eye Head tracking, AI-powered Automotive, aviation

SMI Glasses, VR, RED500 Research, neuroscience
SR Research EyeLink 2, portable Academic research

The Eye Tribe Tracker Pro, smart phone Gaming, web usability
Tobii VR headsets, wearable Usability, VR, cars

• Human–computer interaction/gaze-assisted interaction. Using gaze
as a means to interact with a user interface can be a great support to
the standard interaction modalities like mouse, speech, touch, gesture,
etc. [137]. However, when interacting by using gaze, so-called gaze-
assisted interaction, we are confronted with extra challenging problems,
one of which is the Midas touch problem [516]. This states that
everything we look at is immediately interacted with, which can be a
nasty feature. Hence, a certain time threshold, i.e. some kind of dwell
time, should be decided when a visual component is interacted with,
but it is not clear at what this threshold should be set in the default
case, and in addition, it is user-dependent. A better solution would be to
combine gaze-assisted interaction with some extra modalities [391] to
better guide the interaction process. Moreover, the interactions could be
linked to a database of all former users’ interactions to somehow predict
the way how we interact, maybe in a real-time setting which requires
fast algorithmic solutions.
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• Physical disablement. People who have a certain kind of disablement
might be limited in the way they can interact with a visual stimulus.
Eye tracking, in particular gaze-assisted interaction, can be of great
support [517]; however, this kind of interaction suffers from the
aforementioned problems that gaze-assisted interactions mostly have,
the need to combine it with extra modalities such as speech, for example,
based on voice recognition techniques. Moreover, in many cases the
user interface provided for the physically disabled contains special
visual components, for example, enlarged buttons, sliders, or menus, to
allow better navigation with the eyes, otherwise controlling such a user
interface using the eyes might end up as a frustrating experience.

• Visual analytics/visualization/interaction. Concepts from the field
of visual analytics, for example major ingredients like visualization
and interaction, are often examined in usability studies based on eye
tracking [306]. Moreover, gaze-assisted interaction, apart from normal
non-gaze-assisted interaction, provides a means to directly interact with
the eyes to navigate in the system. Visual analytics is not only evaluated
by eye tracking technologies, it is also a powerful concept to analyze the
recorded eye tracking data, no matter from which kind of application
field [14].

• Medicine. From a medical point of view, eye tracking can give a lot of
positive advancements to the field. For example, eye movements can
give hints about certain types of diseases or disorders like autism or
Parkinson which are worth examining further [271]. Moreover, based
on eye movements, a certain therapy or medication could be modified,
adapted, or enhanced. Using web-based technologies, a doctor might
examine the eyes of a person in an online meeting and decide what
further treatment is needed, for example, inviting the person into the
doctor’s office [217]. Also in the medical environment we find many
applications for gaze-assisted interaction, for example in a complicated
surgery in which the doctor needs the hands while at the same time
needing to interactively navigate an eye-controllable large monitor,
hence eye tracking might be useful in a surgical training setting [340].

• Marketing/product design/web usability. How advertisements like
print ads, online ads, or commercials are observed by possible customers
and where, when, and for how long they pay visual attention can
help to find out whether the design and the advertisement story of the
product are adequate or not. An effective advertisement can attract more
customers and hence, can bring a lot of money to the company that wants
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to sell a product. Eye movements can at least give a hint about the visual
attention strategies; however, they do not tell us what the customers
are thinking, i.e. cognitively processing. There is a lot of research in
this domain based on eye tracking with the goal of understanding the
customers viewing strategy and, based on that, improve a product design
or even the placement of products in a department store or on a web
page [23].

• Immersive analytics/VR/AR/MR. Virtual, augmented, and mixed
reality environments stand for some novel technologies in the field of
data analytics, for example in the field of immersive analytics [347].
Combining them with eye tracking technologies can lead to powerful
tools in the domain of data analysis while the human users are even
more integrated in the data analysis process by taking into account
their eye movements [140], even as a way to interact with the system
by using the eyes as in gaze-assisted interaction. For example, recent
technologies like the HTC Vive Pro Eye or the Microsoft Hololens
2 integrate eye tracking to improve the user experience. However, to
allow a combination of eye tracking data with the rest of the system,
real-time eye movement data analysis is required, supported by efficient
algorithms running in the background.

• Gaming/entertainment/sports. The fields of gaming and entertainment
benefit from gaze-assisted interaction in a way that the user has an
additional means to interact, which makes the gaming experience
much more realistic, for example if target-based shooting or foveated
rendering is based on the gaze input. However, on the negative side, it
is also more difficult to learn how to eye-control the games, even how
to combine different interaction modalities. Moreover, analyzing and
visualizing the recorded eye movement data [83], for example to explore
visual attention strategies of the players for patterns and anomalies, is
a challenging task due to the time-varying, interactive visual stimulus,
even in a collaborative way as in multiple player systems. In the field of
sports we might use eye tracking technologies to examine how active
players perceive their environments during a match, for example to
improve their winning strategy based on the detection of inefficient
eye movements or the fact that they have been unaware of a certain
situation [252].

• Education. We could inspect the teaching process from two
perspectives, from the teacher and the students’ side, for example who
pays attention to what [147]. Such eye movement data could give
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hints about the quality of a teaching strategy and, in particular, if
the students were able to follow the written course content enriched
by various illustrative figures or if there is room for improvement.
Moreover, eye tracking itself could be taught as a novel concept to the
younger generation to educate students and to create an interest in the
technology. Not only the technology itself but also linked concepts like
visual analytics should be learned to find insights in the recorded eye
movement data [71].

• Car driving/automotive. The automotive industry is trying to
investigate eye tracking technologies as assistive concepts during car
driving [501]. This new kind of interaction inside a cockpit, while
driving a car at the same time, can have benefits due to being less
distracted to better focus on the main car driving task. Moreover, the
recorded eye movement data from millions of car drivers in a long-
duration task can give many insights about certain accident black
spots or serious impacts on the driving ability after longer journeys.
Understanding eye movements cannot solve the problems but it can
give valuable insights into reducing the number of dangerous situations
on the roads, i.e. eyes-off-road detection, for example, can be a useful
strategy to create safer cars. Moreover, eye movements might be useful
in an education setup in which the car driving teacher can watch
the visual attention during a car driving lesson afterwards to identify
possible negative issues.

• Aviation/military. Eye tracking could also be useful for analyzing pilot
training sessions [430, 431], for example understanding their progress
and to educate them while at the same time taking into account their eye
movement patterns (see Figure 5.7). For example, a pilot might have had
problems understanding the functionality of a dashboard or they might
have missed a chunk of information that was needed to safely land a
plane. Moreover, fatigue effects might be measured as well as possible
skill levels which can guide the setup of the next training sessions. Also
in the field of military, eye tracking devices have been used, for example,
in a flight simulator for learning how to control fast military jets [267].

There is an endless list of applications using eye tracking as a means
to either interact with or exploit the recorded data to find insights into the
strategic visual attention patterns of the observers to enhance certain aspects
based on the identified design flaws. Some extra application fields might
be neuroscience, perception, cognition, psychology, communication, reading
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Figure 5.7 Eye tracking technologies can be useful in the field of aviation, in particular,
when training pilots to land a plane [430, 432]. Image provided by David Rudi (Copyright
ETH Zurich).

research, activity detection, authentication, music score page turning [51],
walking and hiking, and many more.

5.3 Eye Tracking Data Properties

It does not matter how advanced an eye tracking device is, the general benefit
is that it produces data describing people’s eye movement patterns, i.e. spatio-
temporal effects varying from participant to participant, over the tasks at hand
and shown stimuli (see Figure 5.8 for an illustration of a scanpath overplotted
on a static stimulus). In the best case this data is measured at high tracking
frequencies and the quality of the data is good enough to derive visual
attention patterns that give hints about certain design flaws, for example, to
improve a visual analytics system. However, apart from the quality of the
spatio-temporal eye movement data, it can come in many facets, typically
including information about the visual stimuli, the participants, fixations with
their fixation duration, saccades, and additional physiological data as well
as verbal feedback or extra personal data [44]. Although some eye tracking
devices provide very fine-granular eye movement data, in space and time, for
the analysis and visualization concepts, such data is mostly aggregated on
a level that allows efficient methods targeted at insight detection as well as
building, confirming, refining, or rejecting hypotheses based on certain user
tasks.
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Figure 5.8 Eye movement data can be described as consisting of gaze points, which is the
lowest level of granularity that is interesting for eye tracking in visual analytics. Those gaze
points are spatially and temporally aggregated into fixations by modifiable value thresholds.
The fixations with duration (encoded in the circle radius) contain saccades in-between, i.e.
rapid eye movements. A scanpath is made from a sequence of fixations and saccades. Regions
in a stimulus that are of particular interest are called areas of interest (AOIs). If we are only
interested in fixations in a certain AOI we denote those by gazes. Between AOIs there can be
a number of transitions indicated by the number of saccades between those AOIs [44].

The stimuli are a key ingredient in an eye tracking study since they carry
semantic information that has to be understood and combined in a way to
successfully solve the given tasks. These stimuli can have several properties
and make a difference for the data storage, linking, as well as later data
analytics in the form of algorithmic as well as visual concepts combined
with interaction techniques, such as visual analytics. The stimuli can be just
static or even dynamic, i.e. changing over time as in a video. Moreover, if
the content is changing on user demand, like in interactive user interfaces,
we can have many different static stimulus states that might form some kind
of stimulus graph [68] instead of a linear sequence of animated frames or
snapshots from a video in which each frame is typically watched only for
a fraction of a second. In general, one challenge will be the linking of the
stimulus data with the eye movement patterns before starting an analysis.
Moreover, combining several different stimuli with similar characteristics
attached by eye movement data is a challenging synchronization task as well
as the storage of the data if it comes to long-duration eye tracking tasks in
the wild where video sequences have to be recorded together with the eye
movement data.
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In this section we will have a look into the different stimuli in eye tracking
studies. As a next step we describe fixations and saccades that model the
visual scanning behavior of several people, for example when taking part in
an eye tracking study. Areas of interest (AOIs) are useful to explore the visual
attention patterns based on aggregated regions in a stimulus. Static AOIs
are easier to handle than dynamic ones, for which some kind of matching
function is required. Apart from the pure eye tracking data we can easily
enrich the data by extra physiological measures such as EEG, galvanic skin
response, or pupil dilations, to mention a few. Finally, additional metrics
can be derived from the original data to get more insights from a different
perspective, typically on a more aggregated view or in a form that links
different data aspects to build a new kind of measure, for example the ratio
of fixation durations and saccade lengths, or the time to first fixation to areas
of interest. Actually, there is no limitation to what types of data can be used
as extra input, it is just a question of what is meaningful for solving the tasks
at hand from a data analysis perspective. Moreover, the runtime complexities
for certain algorithms might need to transform the data in the desired format
first which could have an impact on a possible interaction in a visual analytics
system for analyzing eye tracking data.

5.3.1 Visual Stimuli

A visual stimulus in an eye tracking study is what we see, like a static
or dynamic diagram or the real world, and it builds a basis for solving
given tasks, either artificially made tasks in a user experiment or real-world
everyday tasks like shopping, car driving, or watching football matches on
TV. Each stimulus contains some kind of semantics, i.e. visual aspects and
objects that can be compared and linked, and from which information can
be deduced to apply it to another stimulus or another spatial region in the
same one. In this process we add extra information stored in our brains’
long-term memories that we have gained over the years which builds our
level of experience. All of these aspects in combination support the finding,
identification, or detection of a task solution, or in the worst case we might
fail to find a solution, but maybe we refine our knowledge at least. A visual
stimulus guides us somehow based on the powerful vision that has been
adapted over the millions of years of mankind evolution. The information
that we see in the stimulus is transformed to make it processible in the brain
and a certain kind of reaction guides and controls the eyes to the next chunk
of visual information that is required to come closer to a task solution. These
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(T1) (T2) (T3) (T4)
Figure 5.9 A car driving task generates a dynamic stimulus, in this case we see four
snapshots at different time points (T1) to (T4) of a longitudinal eye tracking experiment with
indicated points of visual attention [44].

eye movements are interesting since they describe some kind of path that is
taken in the visual stimulus which hints at facts like how we solved the task,
where we stopped for longer and shorter times, and if certain visual objects
have been inspected several times in a row. However, the eye movements do
not describe what is cognitively processed in the brain, they just give hints
about the visual attention patterns.

Visual stimuli in an eye tracking study can come in several forms.
Figure 5.9 shows an example of a dynamic stimulus from a car driving
experiment.

• Static visual stimulus. A visual stimulus could be a static diagram,
picture, poster, or any visual object that is not equipped with interactions
and that cannot be rotated or for which there is no opportunity to walk
around to inspect it from different perspectives. Typical examples are
standard “old” diagrams before the invention of the computer or those
for which interaction is turned off (see Figure 5.8) like in a technique-
driven user experiment. Moreover, text could fall into this category for
which researchers try to investigate reading tasks and the corresponding
eye movements, also static scenes like pictures or paintings for which
a task is asked, like in the work by Yarbus [539]. To keep the setup of
an eye tracking study easy, as well as the data analysis later on, in most
cases a remote eye tracking system is used, for example integrating the
eye tracker in a computer monitor on which the static visual stimulus is
shown.

• Dynamic visual stimulus. A dynamic stimulus is one that changes its
content from time to time. This does not mean that the stimulus itself
has to change necessarily but it could be possible that an observer has
the possibility to watch the stimulus from many different perspectives,
for example, walking around in a museum and inspecting a “static”
sculpture. This visual object is always the same but the viewer’s field of
view changes dynamically while walking closer and farther away, also
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with varying gaze depth [163, 166]. In a shopping task we have a similar
situation, but here the viewer typically explores a larger dynamic scene
while other customers cross the way and we might start conversations
and communications. In a car driving task we see the dynamic stimulus
passing by while at the same time navigating the car and also interacting
with several electronic devices like the radio, telephone, or navigation
system. Similar aspects hold for virtual environments in which people
freely walk around or react to certain situations with body movements or
gestures. Moreover, a video or animation belongs to the class of dynamic
stimuli although the viewers cannot change their content, maybe just
pause and play back. It is more like an autonomously changing linear
sequence of static pictures. In visual analytics or many other application
fields we come across interactive user interfaces which are by definition
dynamic. For such a dynamic visual stimulus we require more advanced
head-mounted, portable, or wearable eye tracking devices. However,
analyzing such data is much more challenging because the dynamics
of the stimulus has to be stored by a video and this demands for
algorithmic concepts like dynamic AOI detection, matching and linking
of the stimuli over time, or just identifying the group behavior and visual
attention paid over space and time.

A visual stimulus can be mathematically modeled as a sequence of static
pictures carrying a time point given as a natural-numbered index, no matter if
the stimulus is static or dynamic. In a static case the sequence consists of the
same stimulus all the time. This means the visual stimulus can be modeled as

S := (S1, . . . , Sn)

if n ∈ N describes the total amount of time the stimulus was visually
attended. In the static case we consequently have Si := S, ∀ 1 ≤ i ≤ n
where S describes the static visual stimulus. It may be noted that we do
not use this model to store the sequence efficiently, it is just a mathematical
illustration. To avoid storage issues, only the stimuli differences over time
might be stored. Moreover, for an interactive stimulus we might additionally
store the relations between the individual static stimuli from the sequence
since they form some kind of interaction graph [68], i.e. the stimulus changes
from one state to another one with the option to go back and forth between
the same stimulus states. The semantics contained in the stimuli as well as the
experience levels of the stimuli observers lead to evolving knowledge states
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that can also be mathematically modeled as

K := (K1, . . . ,Kn)

for n ∈ N describing again the total amount of time the stimulus was visually
attended. Those knowledge states might be updated from time to time, but
we cannot really describe how they are updated; however, they might have an
impact on the visual attention strategy [269].

5.3.2 Gaze Points, Fixations, Saccades, and Scanpaths

An eye tracker registers gaze points at high tracking rates, called sampling
frequencies. The frequency describes how often an eye tracker registers a
gaze point per second. It can vary from tracker to tracker and depends on
the purpose of the recorded eye movement data, i.e. for some scenarios a
lower sampling frequency has benefits compared to higher frequencies. For
example, if a scanpath has to be followed at very fine intervals, a higher
frequency makes sense. However, the high frequency eye trackers come at
the cost of being much more expensive due to the fact that the technical
equipment is more advanced, for example, the cameras and the artificial
illuminations must be more powerful. Moreover, a higher sampling frequency
means more data to be handled as well as more unneeded data points which
require additional algorithmic preprocesses. Typical eye trackers useful for
visual analytics have a frequency of 60–120 Hz, but those with high sampling
frequencies of 600–1200 Hz also exist. But again, the question is whether
such a high tracking frequency really has any benefits. For example, in
a case in which we are interested in so-called microsaccades or post-
saccadic oscillations [377], we need eye tracking devices with high sampling
frequencies.

If an eye tracker has a sampling frequency of n Hz, it means that n gaze
points per second are registered. These gaze points are too fine-granular for
data analysis, hence they are typically aggregated beforehand into so-called
fixations. For this we need two parameters, a temporal distance and a fixation
radius meaning gaze points that are next to each other over time and space
are aggregated into a fixation, like a gaze point cluster for which we need a
representative element, i.e. the fixation point in space. These two parameters
are set by default in an eye tracking system but can even be modified on user
demand, for example for generating more or fewer fixations from the recorded
gaze points. The coordinates of such a fixation point might be derived directly
as the center of the circle spanned by the fixation radius or the average point
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of all gaze points in a gaze point cluster. There are even more advanced
methods [463] which are not required for eye tracking visual analytics. The
fixation radius is typically so small that it is irrelevant where exactly inside
the gaze point cluster the representative fixation point is located.

The total amount of time a fixation lasts is called fixation duration
which can be interpreted as the longer a visual object is fixated, the more
interesting it is and it attracts our attention; but on the other hand, it might
also be confusing and some time is wasted in understanding its meaning.
The eye movement from one fixation to the next one is called a saccade
while the sequence of all fixations and saccades forms a scanpath (see
Figure 5.8). However, there are also smooth pursuits that describe eye
movements constantly following a moving visual object, i.e. saccades are not
occurring very often due to the fact that all gaze points are close together
over time and space by a small constantly shifting offset. In rare cases there
might occur so-called catch-up saccades which are effects caused by visual
objects that move too fast for keeping an eye on them or a distracting visual
object that also attracts the viewer’s attention at the same time. A scanpath
describes a trajectory over space and time making it a challenging type of
data to analyze if several people’s scanpaths are involved in finding a common
visual scanning strategy in the spatio-temporal data.

Mathematically, we can model a sequence of gaze points as

G := (g1, . . . , gk)

with gi ∈ X × Y being a 2D spatial point if X and Y model the width
and height of the stimulus in pixels for example. If we have an eye tracker of
sampling frequency 60 Hz we get 60 gaze points in a second, i.e. k = 60 in the
sequence above which means a gaze point is measured after every 16.67 ms
approximately. If the gaze point sequence is mapped into a fixation sequence

F := (p1, . . . , pm),

we get much fewer points, i.e. m < k, depending on the given parameters.
Each pi, 1 ≤ i ≤ m describes a point in 2D as pi ∈ X × Y , similarly
to the gaze points. However, each pi is based on a group of gi and, hence,
some kind of aggregated or representative value based on gi. Moreover, each
pi is attached by two time points tei and tli , expressing the time points the
eye enters the fixation space and when it leaves it again. Consequently, each
fixation has a fixation duration given by tdi := tli − tei in addition to the
spatial position on the stimulus. Between each pair of subsequent fixations



204 Eye Tracking

we have a saccade that describes the eye rapidly moving from one fixation
to the next one in the sequence. All fixations in a fixation sequence and the
saccades in between together form a scanpath. If several people are taking
part in an eye tracking study we have many of those scanpaths, typically all
with varying properties incorporating the visual attention behavior of many
people. The sum of all fixation durations

tresponse :=

m∑
i=1

tdi

in a scanpath of one participant results in the response time for a specific
task. By contrast, this means that each response time, for example in a
traditional study without eye tracking, is actually a temporal aggregation of
many response times of subtasks which might be identifiable when observing
a scanpath.

5.3.3 Areas of Interest (AOIs) and Transitions

An area of interest is, as the name suggests, a certain spatial region in a
2D or 3D stimulus that might be of particular value for the data analyst. By
defining areas of interest we can reduce the number of data points since the
AOI definition is some kind of spatial aggregation technique. The fixations
contained inside an AOI are denoted by gazes (see Figure 5.8). Even more
metrics can be derived and values computed, just for those specific regions in
a stimulus. For a static stimulus, the AOI definitions are typically also static,
meaning each AOI just corresponds to a spatially connected subregion of a
stimulus, i.e.

AAOI ⊆ X × Y

if X and Y are the width and the height of a stimulus in pixels for example.
Although the entire stimulus can be defined as an AOI it is questionable
whether this makes sense for a later analysis, but maybe if we want to separate
on-screen and off-screen fixations from each other it might be a useful AOI
selection. Such an AOI region can be a rectangular or any arbitrarily complex
shape, but typically it is given by a closed region to better identify what
is inside. Moreover, if the stimulus is not static but dynamically changing
over time we need some kind of algorithm that identifies a selected AOI in
each of the frames in a video, for example [264]. The challenging problem
for this algorithm is that the AOI can move from one position to another
one, for example, a moving car in a video or a pedestrian. This movement
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(a) (b)
Figure 5.10 Selecting areas of interest in a static stimulus can reduce the amount of eye
movement data and can impact the eye movement data analysis since each AOI is some kind
of spatial aggregation: (a) AOI selection based on hot spots of the visual attention behavior;
(b) AOI selection based on the semantics in the stimulus [100].

can happen smoothly, but also abruptly, jumping from one position to a
completely different one. Moreover, the visual object to be located inside an
AOI can change its shape dynamically, it can rotate, get bigger or smaller, be
partially occluded for a certain amount of time, and so on. All of these effects
make an automatic detection of an AOI a difficult and sometimes error-prone
process. However, defining dynamic AOIs manually is possible, but it is a
very time-consuming process.

There are several ways to define areas of interest that are independent of
the fact whether a stimulus is static or dynamically changing over time (see
Figure 5.10 for an example of such an AOI definition based on user input).

• User input. Manually selecting areas of interest is a possible solution.
For static stimuli this sounds doable, but for dynamically changing
AOIs this can become a time-consuming process. However, a manual
user-specified AOI definition and selection can be more exact than an
automatic one due to the perceptual strengths of the human visual system
and pattern recognition abilities [521]. Moreover, the selection can be
based on rectangular, polygonal, or arbitrary shapes.

• Automatic spatial subdivision. A stimulus, static or dynamic, can be
split into several subregions based on equally sized grid cells while the
cell sizes are modifiable and adaptable by the user. Although this is a
naive, semantics- and visual attention-ignoring process, it works quickly
and might give some hints about the eye movement data. However, a
more fine-tuned AOI definition should follow after this naive idea is
applied.
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• Visual attention-based. Conducting an eye tracking experiment, at least
partially with a few participants, provides the opportunity to define
areas of interest based on the already recorded visual attention paid to
a stimulus. The relevant visual attention-based regions might serve as
AOIs, for example using the hot spots of visual attention. Those hot spots
can be identified by the human observer but also by advanced density-
identifying algorithms. AOIs can be based on the density shapes but also
on Voronoi regions taking the hot spot regions with their highest density
points as Voronoi cell centroids into account.

• Semantics-based. Incorporating the semantic meaning of a stimulus’
components is a valuable approach to exploring eye movement data. The
question comes into play: which visual features in a stimulus are really
carrying meaningful semantic information to solve a given task? For this
AOI definition to work reliably, the human users are required with their
experience and domain knowledge. The human does this faster and more
accurately than a computer.

• Hybrid approach. A combination of several AOI definition and
selection concepts is always possible. For example, the computer might
identify hot spot regions in a stimulus while the human user can refine
them, remove or add some based on the semantic understanding of the
stimulus. Moreover, formerly defined AOIs should always be modifiable
after a certain data analysis or visual representation process has been
applied to the eye movement data with the AOIs in use.

The eye movements between pairs of AOIs are called transitions, typically
given as a weighted transition matrix that describes the transition frequencies
between all pairs of AOIs, either as a time-aggregated measure or as a time-
dependent AOI transition sequence [80].

5.3.4 Physiological and Additional Measures

Apart from the eye movement data we could be interested in additional
data sources, either recorded during the eye tracking experiment, maybe
synchronized with the eye movement data, or additional data that is unrelated
to the eye movements and maybe recorded before or after the eye tracking
experiment. There could be any kind of additional data source but the biggest
challenge is to link those extra data inputs with the eye movement data to get
benefits for the insight detection process focusing on visual attention patterns
and visual task solution strategies.
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Additional data that might be recorded during each eye tracking
experiment could be related to the physiology, i.e. functions and mechanisms
in the human body. Typical measures are galvanic skin response, blood
volume, blood pressure, respiration activity, EEG, ECG, EMG, skin
conductance, or pupil dilation [289], among many others, data which could be
acquired by additional sensors, in case those sensors produce time-dependent
data of an acceptable quality that do not lead to misinterpretations later on.
Moreover, body movements or gestures, eye blinking, vocal tone, emotions,
and many more could enrich the repertoire of possible physiological data
sources. Some care must be taken when measuring such additional data since
most sensors are some kind of semi-invasive technologies, meaning they are
partially connected to the human body and hence may cause some negative
issues in an eye tracking experiment, in the worst case having an impact on
the eye movements in the form of confounding variables and leading to a
certain bias in the study results.

Apart from physiological data other study-related data can also be
measured during the running experiment which is not directly related to
the physiology, for example mouse clicks and movements, keystrokes, or
touch interactions if those are allowed and supported in an eye tracking
study. If we are not directly in a laboratory environment, but for example,
in a car driving study, additional instruments might be used, like human–
car interactions for which other properties might also be of interest such as
the velocity of the car or the steering wheel angle, the volume of the radio,
the communications and conversations with other car passengers, and so on.
Moreover, verbal feedback during an experiment like think-aloud or talk-
aloud are additional data sources that are worth considering in a later data
analysis. To avoid noting down all the feedback, audio or video might be
used. However, such textual feedback is typically difficult to analyze since it
might require advanced text processing algorithms, no matter whether audio
or video recordings are available, in particular, if the semantics of a text has
to be integrated. The problem of transforming verbal feedback into a valuable
and linkable data source is not a problem for studies with a few participants,
for which it can be done manually, but in a future scenario we might have
eye tracking experiments with thousands of participants, and then at least we
need some kind of automated process that brings the massive verbal data into
a suitable form for a later data analysis step.

A third type of additional measurements could come in the form
of qualitative feedback after the study. Moreover, any kind of personal
details about a study participant, such as gender, age, level of experience,
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visual deficiencies, and so on, as well as confounding variables might be
worth including as an important data part in the whole study data base.
Physiological data is typically measured during the running experiment,
but it might even be a good concept to measure, at least some, additional
physiological data before or after the experiment, for example to compare it
with the data during the experiment to understand if the participants had some
varying performance states that might cause changes in the data interpretation
step. If tasks are asked to be solved in the study, the task accuracy (or error
rate) might be of particular interest as well as the response time that can be
directly derived from the fixation durations. However, no matter how much
data and which types are recorded, they might be useful for a later analysis.
Actually, we can measure as much as possible, the storage of the data is often
not the problem; for a later data analysis step we can still decide which data
sources are important and worth integrating into a visual analytics system
focusing on finding insights in eye movement data as well as the combined
extra data sources.

5.3.5 Derived Metrics

Not only the recorded and measured data might be of interest but also
additional data that can be derived from the originally given data, be it
combined from eye movement data, extra physiological, or even further data
sources such as human interaction data or verbal feedback for example. In this
context we often find the term derived metrics that focus on combining two
or several of the data sources [299] to come up with a completely new one,
but still containing the input from the given ones [452]. Examples from this
concept are fixation duration for which we might be interested in the average
fixation duration, either for each scanpath of the participants to compare the
participants [300] or for all scanpaths of one stimulus to compare the stimuli.
The same idea can be found for saccade lengths or saccade orientations and
directions. Also the mean, median, standard deviation, variance, and even
further statistical measures might give further insights into the properties
and distributions of the recorded data. In most cases, the statistical data
only serves the purpose of providing a quick way to compare different data
dimensions like the participants or stimuli.

Further metrics might take into account the length of a scanpath in terms
of number of fixations, or the total length in terms of distances that the eye
has moved over a given stimulus. Moreover, the scanpath-enclosed maximal
stimulus region might be of interest which could give a hint as to how much
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of the input information has been covered by the visual attention, which can
also be estimated by the enclosed region of the fixation points in a scanpath,
i.e. given by a minimal polygonal shape that encloses all fixation points.
Also areas of interest provide a way to form some kind of derived metric
since they all contain additional insights for specific stimulus regions like
the numbers of fixations to certain areas which allow comparisons between
stimulus regions, even for comparing participant groups based on their visual
scanning behavior. Moreover, metrics like time to first fixation, time spent in
an area of interest, number of AOI revisits, number of transitions between
two AOIs, and many more provide interesting additional values.

If several metrics are combined we can further extend the repertoire of
possible metrics; however, since this repertoire is very large, we might better
consider which ones make sense for a certain data analysis task beforehand
and then select the ones that are interesting for these specific tasks. For
example, a combination often seen is the ratio between fixation duration
and saccade length, or the saccade orientation (in degrees) divided by the
saccade length, average saccade length in a certain area of interest, average
distance between all pairwise fixation points, and many more. All of these
derived metrics serve their own purpose and can be analyzed for further
statistical properties and also for correlations between two or more of them,
for example, asking oneself if the fixation duration and length of subsequent
saccades are positively or negatively correlated [299].

5.4 Examples of Eye Tracking Studies

There is a huge body of eye tracking studies due to the fact that
this technology is applicable to many research fields. In this book we
will specifically focus on eye tracking studies in the context of visual
analytics, including visualizations, diagrams, plots, and charts, and also
interaction techniques, reading tasks like texts, labels, source code, maybe for
understanding algorithms, user interface design and usability, and the like.
Finally, we explain eye tracking studies that focus on visual analytics as a
whole, i.e. in which all of the aforementioned concepts are linked to some
degree with the goal of finding insights in datasets, and how the recorded eye
movement data and additional data sources are analyzed and visualized will
be described in more detail in Chapter 6. To allow the human user to interact
with the system we also need user interfaces and their design, hence we will
also focus on this aspect and the usability issue investigated by eye tracking
studies.
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Not all of the aforementioned concepts can be evaluated by eye tracking
in the same way since they contain varying and also differently complex
scenarios making use of a variety of ingredients to achieve a maximum
of usability for a visual analytics system. For example, visualization
techniques are often studied if they can be understood and compared to other
visualization techniques, like in a technique-driven evaluation, showing the
same dataset. From the perspective of eye tracking it is interesting to find
out where and when people make errors when inspecting such a stimulus
and, in particular, we are interested in the question why they made them,
to reduce the number of design flaws in a visualization, diagram, chart, or
plot. For interaction techniques this situation is a bit more challenging since
the stimulus becomes dynamic, i.e. changes over time [68]. However, the
recorded data can still give insights about which interaction is useful or
which one causes delays and misunderstandings. Here we can distinguish
between two scenarios, interactions supporting gaze and those that do not
support gaze. We often have to read labels or additional textual information,
for example, as a details-on-demand feature or as error messages, further
textual instructions, or source code, for example in visual analytics systems
for software developers [453]. For user interfaces it is even advice based on
the eight golden rules for interface design [461] to add textual components.
The most difficult eye tracking setup in this context comes into play if all of
those issues are studied in combination, like in a fully fledged visual analytics
system.

5.4.1 Eye Tracking for Static Visualizations

Visualization techniques are a way to depict data graphically. In many cases
there are alternative visualization techniques for the same dataset that might
be better or worse in terms of user performance for a given task. Standard
user studies measure error rates and response times when people try to solve
the given task with several visualization techniques. The researchers expect
to understand the differences between the visualization techniques by taking
into account the measured performance in a comparative way. Although this
idea is already quite useful and has been applied many times, for example
in graph and network visualization [76], it does not provide any details
about the visual attention behavior over space and time. Error rates and
response times are some kind of aggregated measures, but eye tracking can
give detailed insights into the visual scanning process over space and time
which is lost if only error rates and completion times are analyzed. However,
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(a) (b) (c)
Figure 5.11 Visualization techniques have been explored a lot by applying eye tracking. (a)
Node-link tree visualizations [78]. (b) Trajectory visualizations for bird movements [369]. (c)
Visual search support in geographic maps [371].

the recorded data is much more challenging to analyze, in particular if we
are interested in differences over space, time, study participants, stimuli, or
even further derived metrics (Section 5.3.5). These differences might even be
used to classify the data dimensions into groups, classes, or time points and
intervals based on the eye movement behavior, for example groups of study
participants, groups of stimuli, groups of time periods, or spatial subdivisions
of the shown stimulus. Moreover, a combination of all of those aspects is
imaginable building a several level subdivision of the data dimensions.

To investigate the usefulness of node-link diagrams for hierarchical
data, some of the existing layouts and link representation styles have been
evaluated in an eye tracking study [78]. Traditional, orthogonal, and radial
tree diagrams served as independent variables and the eye movement data of
40 participants was recorded who tried to find the least common ancestor in a
corresponding tree diagram of highlighted leaf nodes. As further independent
variables, the number of highlighted leaf nodes, the tree orientation, and the
sizes of the hierarchy datasets were varied. The Tobii T60 XL eye tracking
device, integrated into a monitor, was used to record the eye movements of
the study participants when paying visual attention to the static diagrams. As
a major goal it was found that people tend to make fewer errors and had lower
response times when using the top-to-bottom traditional tree diagram for this
specific task. The eye movement data additionally showed that the reason for
the longer response time for the radial diagram type was a cross checking
behavior until the solution node was confirmed by a mouse click [72]. An
example stimulus from the tree eye tracking study in an orthogonal layout
overlaid with a gaze plot can be seen in Figure 5.11(a).

Another eye tracking study was based on static diagrams for trajectory
visualizations for bird movement behavior [369], recorded by making use
of GPS. Several edge representation styles like arrow-based, equidistant
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arrows, equidistant comets, and a tapered edge representation style (see
Figure 5.11(b) for a stimulus showing a trajectory) were compared. The
rendering order was also investigated in the study. Twenty-five participants
were recruited to answer tasks focusing on long, dense, complex, and
piecewise linear spatial trajectories visually encoded in each of the edge
representations for the trajectory visualization. The given tasks asked for
tracing paths, identifying longest links, and estimating densities of trajectory
clusters. As an eye tracking device the Tobii T60 XL was chosen, partly
due to the fact that the researchers had some experience with it in earlier
eye tracking studies and that it was a suitable eye tracking technology for
evaluating static diagrams visually depicted on a computer monitor. Tapered
edge representation styles [238] have been identified as the best option for
a trajectory visualization in this eye tracking study, also by evaluating the
recorded eye movement data statistically and by presenting the results in the
form of simple statistical diagrams.

General geographic maps contain lots of labels to provide a textual
overview for the viewer to better orientate oneself in the map. However,
locating a given label in a map in which we do not know where the label is
actually located is a tedious task and requires some kind of time-consuming
search strategy. If the search is supported by additional hints like within-
image, grid reference, directional, or miniature annotation [371] we can
typically reduce the map into relevant regions in which the label is to be
found and hence the search time is tremendously reduced (see Figure 5.11(c)
for artificially generated labels for a grid reference annotation overplotted
with a scanpath). In an eye tracking study we can additionally find out how
the observers pay visual attention if certain search support in a map is given.
Moreover, based on a comparison of all the tested search support techniques
we can identify which one is actually the best one for the task of finding a
label in a geographic map. Thirty participants were recruited to solve such
a task with several techniques by showing them artificially generated static
geographic maps to avoid learning effects. A Tobii T60 XL eye tracking
device integrated into a monitor was used to record the eye movements.
The major result of this study showed that all annotations outperformed
the within-image annotation while the eye movement data showed that the
visual search patterns differ from annotation to annotation with the miniature
annotation producing the lowest response times.

Public transport maps [103] are designed to support travelers in the task
of finding a route from a start station to a destination station, for example
when planning a journey through an unknown city. The map is some kind of
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Figure 5.12 Public transport maps for different cities in the world (in this case Venice in
Italy) [372].

visual stimulus used to efficiently solve such route finding tasks. By using
eye tracking we might find out if the map contains certain design flaws [372],
if its design is better or worse than another one for the same city, if the map
complexity in terms of number of stations and metro lines plays a role for the
visual attention strategies [85], or if visual enhancements in the form of color
coding, legends, or sights [65] have any impact. Twenty-four public transport
maps from cities all over the world were used as stimuli by changing between
colored and gray-scale stimuli to investigate if color has any impact on the
user performances as well as visual task solution strategies [372]. Route
finding tasks were asked in this study by highlighting the start and destination
stations to reduce cognitive effort when finding those relevant points for
answering the task (see Figure 5.12 for a public transport map overlaid with a
scanpath). Forty participants were recruited and a Tobii T60 XL eye tracking
device was used. The major result showed that the original task of finding
a route between two highlighted stations was actually subdivided into many
subtasks [63] containing cross checking behavior, i.e. the found route was not
confirmed immediately but after a careful check of the found route. Moreover,
color coding was found to be very important for lowering the response times,
while the saccades became much shorter for gray-scale maps due to the fact
that the observers had to more carefully follow a gray-scale metro line which
is obviously easier if color is supported.
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(a) (b)
Figure 5.13 Graph layouts with different kinds of link crossings, crossing angles, and the
effects of geodesic-path tendency can have varying impacts on eye movements [245].

Node-link diagrams for graphs and networks (see Figure 5.13 for
examples illustrating the ideas in the graph layout eye tracking study) can
be visualized in several layouts, all following certain aesthetic graph drawing
criteria [29, 405] with benefits for a certain well-defined graph task [323].
The eye movement data [245] can give additional insights into the task
solution strategies applied by typical graph visualization users, for example,
which impact link crossings, crossing angles, or the geodesic-path tendencies
might have on task performance and why they could be problematic. With
an iViewX head-mounted eye tracking device created by SensoMotoric
Instruments (SMI) and by recruiting 16 participants such effects of the
graph layout were investigated. As a major result it was found out that
small crossing angles can lead to increased response times and more eye
movements around the crossing areas for route finding tasks while node
location tasks are not that affected by these issues. Moreover, the criterion
of geodesic-path tendency shows that routes in a graph might be harder to
follow by the eye.

There are many more eye tracking studies taking into account
visualization techniques, for example focusing on visual variables in 3D
visualization [335] by recruiting 36 participants and by using a Tobii T120
eye tracking device. An SMI RED 250 eye tracker was used to investigate
2D and 3D visualizations in cartography [402]. Visual exploration patterns
in general information visualizations have been studied by using a Tobii
X120 eye tracker by recruiting 23 participants [5]. Scatter plots [178] and
scatter plot matrices [451] have been a focus of eye tracking. A remote Eye
Tribe eye tracker was used in the scatter plot matrix approach in which 12
participants were recruited. Ontology visualization has also been explored
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by applying eye tracking [193]. Indented list and graph approaches were
evaluated by recruiting 36 participants recording their eye movements with
a Tobii 2150 eye tracker. Even Euler diagrams have built the basis for an
eye tracking study [438] by asking 12 participants and by using a Tobii X2-
60 eye tracker. Further topics under eye tracking investigation include 2D
flow visualization [231], flow maps [157], program visualization [33], clutter
effects [358], or radial diagrams [204].

5.4.2 Eye Tracking for Interaction Techniques

Interaction techniques are useful to bring a static diagram to life and allow
the users to navigate in the visual depiction of data. However, evaluating
the usefulness of an interaction technique is much more challenging than
evaluating a static diagram for example. From an eye tracking perspective, the
major difference is that the stimuli are dynamic due to the interactive feature
that they provide. However, the recording of the eye movement data is not a
challenging issue, it is more problematic to analyze the dynamics of the data
later on, since the stimulus content varies over time, typically leading to many
more visual components with various visual variables that have to be matched
first to the eye movement data and additional data sources. In this section we
describe some of the eye tracking studies that have been conducted in the
field of interaction related to visualizations, but it may be noted that there is
a much longer list focusing on research in this direction.

When including interaction in a visualization or user interface we have
two major options. The first one incorporates standard interactions like
mouse, keyboard, voice, touch, and so on to modify a given stimulus. These
types of interactions have to be recorded by video and audio and have to
be matched with the additional data from the eye tracking device, i.e. the
dynamic data has to be synchronized to allow the identification of insights
over space, time, and participants. A second option to incorporate interaction
in a visualization or user interface is by means of gaze, i.e. the field of
gaze-assisted interaction comes into play here. The major benefit of gaze-
assisted interaction is that the eye movement data is already recorded and
matched with the stimulus, otherwise it would be problematic to interact with
a stimulus based on gaze. Moreover, standard interactions can be combined
with gaze interaction [510], building some form of hybrid or multi-modal
interaction.

The browsing behavior in web pages was investigated by recording
eye movements to understand this kind of interaction [156]. Searching and
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scanning are two popular viewing strategies with the goal of finding relevant
information, often resulting in an “F”-shape pattern if the web page contains
mostly textual information, as found out by other eye tracking studies [464].
However, the visual hierarchy of a web page plays a crucial role if this “F”-
shape pattern occurs or if it looks different, which also has an impact on
the way we interact with the content. Forty-eight participants were recruited
to explore the browsing strategy in web pages while the Tobii X120 eye
tracker was placed in front of a monitor. This interaction is not an active
but rather a passive interaction technique [476] in the way that the user
communicates with a stimulus to get back important information, but the
stimulus is not changed. However, it can give insights into where the user
might find information and hence needs to use scroll bars, and so it is some
kind of passive “explore” interaction [544]. The major result of this eye
tracking study is that the top-down model based on the visual hierarchy
is typically preferred, but the “F”-shape pattern of viewing also plays a
significant role.

Another interaction task, namely navigation in web pages, showed
interesting results based on the viewing behavior [543]. Eighteen participants
had to work with typical web pages and had to respond to typical navigation
tasks while they had to browse through the different linked pages to locate
a task’s result. During this scanning procedure their eye movements were
recorded with a Tobii 1750 eye tracking device. The major result of the study
is that participants tend to use reference and identification points to better
track their locations during the navigation task which is some kind of mental
map preservation to not be completely lost in such a complex task, hence
people tend to reduce their cognitive load somehow to orientate themselves
in the web page contents, in particular when the content is changing by
self-initiated mouse clicks on web page links.

Interacting with large displays plays a larger and larger role these days,
in particular in visual and immersive analytics applications. Two gaze-based
interactions for an individual user have been developed and evaluated by an
eye tracking study [283]. Walk-then-interact as well as walk-and-interact are
two different setups in the system that are investigated in the eye tracking
experiment. Twenty-six participants were recruited while the Tobii REX eye
tracker was used to measure the gazes and let the people reliably interact with
the system. The major result was that the system was in general accepted by
the users and that the interaction kick-off time was decreased to only 3.5 s,
making it pop out from the repertoire of existing solutions.
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Eye tracking for interacting in a plane’s cockpit or to understand how
pilots interact in a cockpit are valuable research fields [339], in particular for
training sessions, i.e. new pilots learning to do their job reliably in an airplane,
for example, by educating oneself in a flight simulator. The intelligent cockpit
supports pilots as much as possible with their tasks, and if eye movements
are incorporated in this process we might get even more insights into the
viewing behavior as well as interactions with the displays and components in
a cockpit. Twelve pilots’ eye movements were recorded using a Smart Eye
system while performing manual landing tasks. The major result of this study
showed that the pilots did not visually attend all of the instruments, displays,
components, and environments equally well, possibly failing to see relevant
information, and hence leading to false interactions in the cockpit. The eye
movement data is quite complex since it includes long-duration tasks with
many options of AOIs to inspect over space and time.

Click-down menus are very important components in user interfaces to
allow the user to interactively select a certain option. Eye tracking studies
can show how users search menu items and which impact they might have on
the visual attention behavior [105]. Eleven participants’ eye movements were
recorded with an ISCAN RK726/RK520 eye tracker. One major result of the
study showed that people’s eye movements, in particular response times and
fixation numbers, generally tend to increase with a larger number of menu
items. Hence, it might be a wise idea to reduce the number of menu items in
a user interface if efficient interactions are required to solve a certain task.

Also in the field of interaction we can find many more eye tracking
studies as well as interaction support by means of gaze-assisted interaction
techniques [508]. For example, focusing on interacting using different kinds
of displays is a research topic on its own [355]. Large displays [549],
stereoscopic displays [9, 489], as well as pervasive displays [270] have been
and have become more and more the focus of eye tracking research, which
are all useful for visual analytics. Searching strategies in different contexts
also typically include interactions and are evaluated or supported by using
eye tracking [7, 153, 215]. Game playing is a popular field of research
including more and more eye tracking interaction techniques [222], with a
new workshop on eye tracking in games and play (PLEY). Also aviation,
in particular for training pilots, requires understanding of the usefulness of
interaction techniques [499]. Another emerging field, also useful due to the
many online meetings in the time of Covid-19, is remote eye tracking, for
example as a way to interact remotely by using one’s eyes [122, 548].
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5.4.3 Eye Tracking for Text/Label/Code Reading

Although a picture is worth a thousand words, there are still textual
enhancements in any visualization or diagram. In particular, in the field
of visual analytics, there are textual descriptions, error messages, or hints,
for example, in a details-on-demand output which requires reading tasks
to be understood. In general, each diagram needs some kind of scale with
indicated values, physical units at possible diagram axes, or legends, to just
mention a few. At the most fine-grained level of the visual representation
we might wish to get an insight into the raw textual data, for example in
source code that has to be checked for the causes of bugs or performance
issues [88]. All of those textual elements are important in a visual analytics
system or in a visualization since they allow us to finally derive meaning by
understanding the semantics or the context of visual information, but on the
negative side, textual representations are much more time-consuming to read
and to understand than a good diagram representing the same kind of data.

Eye tracking studies in the field of text reading have been conducted
as one of the first ones in the field [418], with the ground-breaking result
of the effect that the human eye does not smoothly move over the text but
makes small jumps and regressions back to certain words. These differences
in eye movements are also caused, in addition to other reasons, by the more
or less complex meanings of the individual words and the time it takes to
understand them, using peripheral and central vision. Moreover, in some
situations we have to jump back to an already read word because we now have
to understand it from a different context, for example. The general question
with eye tracking is not only how text is read and how the eye behaves, but
also whether eye tracking can be a useful technology to guide a reader or to
give extra special information based on the word or sentence that is currently
in focus. Such an eye tracking-based reading assistance technique can also
be helpful in visual analytics, for example, only showing the most important
textual information and then, based on the eye movements, add more and
more of it until the user is confident. Such a scenario could be useful for text
labels in a geographic map, in which the gaze tracking can be used as some
kind of automatic semantic zoom function that adds more and more labels to
a geographic map.

Label positions in online forms have been evaluated by using eye
tracking [143]. The position of textual components and elements in a user
interface or a visualization is as important as its content. In many cases users
are already familiar with label positions due to some given design rules and
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hence they might expect to find the relevant textual information exactly at a
certain position. Eleven participants were recruited with nearly no experience
with eye tracking. The eye tracking device in use in this study was a Tobii
1720. The major results showed that left-aligned labels should be avoided.
Moreover, columns are not a good choice and should be avoided, or if this is
not possible, right-aligned labels should be used.

An eye tracking study in the medical domain investigated how medical
information is actually read, and probably understood, by patients [208].
To find insights in these aspects, 50 participants were recruited while the
EyeLink 1000 eye tracker was used to record eye movements during reading.
Major results of the study showed that there are differences in the reading and
understanding of the medical textual information compared to a simplified
variant of these texts. Hence, the eye tracking study shows that we have
to be careful with the information we provide for people who are no
domain experts, for example, in a visual analytics system in which textual
descriptions might be used in various forms.

Highlighting of text is a powerful tool to guide viewers’ visual attention
to specific relevant text fragments [121]. Such a feature is, in particular,
useful if a lot of text has to be shown that might be separated in relevant
and not that relevant information. However, the complete text has to be
shown for those readers who are not that familiar with a certain aspect while
the experienced user gets the most important parts in a highlighted fashion.
Such a highlighting effect of textual content is only possible these days due
to lots of possibilities for digital reading. An eye tracking study with six
participants showed that highlighted text areas attract the attention of people.
The highlights seem to pretend some kind of special importance. The used
eye tracking device in the study was an SMI EyeLink I.

Musical scores are some kind of special textual information that has to
be read by the musician to play successfully. The general problem with such
music sheets is the page turning which might be controlled by gaze instead of
using the musician’s hand [51]. Ten participants were recruited, all of them
with experience in music playing, in total eight pianists, one violinist, and one
euphonium player. An SMI RED500 eye tracker was used to measure, record,
and analyze the eye movements to make such a page turning functionality a
successful tool. The major result of the evaluation of the system showed that
the gaze-assisted page turning tool reduced the page navigation time by 47%,
a value that the researchers obtained by comparing to existing music score
reading systems.
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Inspecting source code, in particular for identifying code defects that
cause syntactical or semantical problems during the program execution, can
consume a lot of time for the code developer or program maintainer. Hence,
eye tracking might be an option to investigate how people strategically
find such defects in source code [454]. Understanding the visual attention
behavior might help to improve the search strategy to save some valuable
time in the program development stage. Fifteen participants were recruited to
let them find code defects in small program snippets. Their eye movements
have been recorded by using a Tobii 1750 eye tracker. The major result of the
source code reading experiment was that people typically scan through the
entire code line by line and, finally, end-up in a critical code region that is then
inspected in more detail, meaning the search space in the source code is first
reduced step-by-step before one concentrates on the relevant smaller code
pieces (Figure 5.14 shows a code snippet and an example visual scanning
strategy).

The reading of textual information is a relevant part in a visual analytics
system, but not that researched in combination to other visual analytics
components. However, the pure reading task has been evaluated a lot
with eye tracking techniques, also in various contexts. Those focus, for
example, on attempts to improve the reading performance [116], to create
a reading assistant [214], to analyze reading behavior [468], or to simplify
texts [462]. Moreover, some other approaches investigate textual [457] and
label [371] placements or look into health applications that are full of
textual information [354]. Also source code as a form of textual information

Figure 5.14 Finding a bug in a source code typically requires to scan the whole piece of
code before one concentrates on specific parts of it [454].
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might be of particular interest for eye tracking studies, focusing on code
enhancements [212], reading skills [504], a dual space analysis [547], or
educational purposes for novices in programming courses [542], to mention
a few.

5.4.4 Eye Tracking for User Interfaces

While visualizations and diagrams might follow visual design criteria [503,
521], user interfaces should also be based on well-considered design
principles, for example by following the eight golden rules for interface
design [461]. A user interface builds the playground in which humans can
communicate with machines and where they get feedback on which the
humans base their decisions and further interactions. The user interface is
some kind of general language that is understood by both sides and hence
a crucial ingredient in any visual analytics system. However, from a design
perspective it is expected that a user interface is as user-friendly as possible
and that the human user has full control over it and consequently, over the
machine. In some scenarios, it is expected that the machine or computer is
capable of including automatically generated feedback that might support the
human users with their decisions; however, it is not a wise idea to give the
machine the full control. There are many examples for user interfaces in these
modern days like ticket machines, GUIs of navigation systems, dashboards
in a plane’s cockpit, while visual analytics itself requires a powerful and
effective user interface full of interlinked functionalities, visually depicted
by interface components, visual elements, and diagrams, all equipped with
interaction features.

Eye tracking plays the role of exploring how people visually
communicate with a machine via a user interface [112, 403], typically a visual
or graphical user interface, meaning either analyzing their eye movement
behavior to understand design flaws or exploiting the gaze behavior as an
additional modality to interact with the individual interface components. In
this process, the layout and the sizes of the components as well as their linking
are important design criteria, aspects that can be explored by recording and
analyzing eye movement data. The visualizations in a visual analytics system
can be as well-designed as possible, but if the user interface is not able to
present them in a well-designed way, they are only half as powerful as they
could be. Hence, the user interface, as a communication means between the
humans and the machine, is also worth investigating in eye tracking studies.
Although static snapshots of user interfaces can already serve as stimuli,
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it might be a wise decision to incorporate the dynamic version of a user
interface in an eye tracking study with some relevant functionalities, but
negatively, the recorded eye movement data based on such dynamic stimuli is
also much more challenging to be analyzed later on, with the goal of detecting
design flaws worth improving.

Knowing the semantics of a user interface can be a great benefit for
interacting with a system but also to better understand the connections
of certain interface components. An eye tracking study was conducted to
investigate such semantic effects [353], in particular for controlling user
interfaces which are typically designed in a way that they create a lot
of information overload that actually clutters the interface and leads to a
degradation of performance at some task [426]. Twenty participants were
recruited and split into two groups using an SMI REDn and a Tobii EyeX
eye tracking device. The major result of the study was that the developed web
browser called GazeTheWeb let people perform search and browsing tasks
much faster than a corresponding emulation approach.

Multi-modal user interfaces allow people to interact in several ways
by using more than one standard interaction device. In an eye tracking
study such multi-modal interactions have been evaluated [36] although such
combinations have mostly been the focus of HCI research in recent years.
Eleven participants were recruited to use two mice and speech as input in a
user interface. The eye movements were recorded using a Tobii x5 eye tracker.
The usability study showed that such interaction modes are well accepted by
the users although it takes some learning time to completely adjust to the new
interaction scenarios.

Item list interfaces are frequently occurring types of interfaces, in
particular, in the world wide web and also in recommender systems. An eye
tracking study was conducted [197] to analyze the user behavior when being
confronted by the task of choosing a movie to watch while a textual and an
image-based variant was used for the stimuli. Sixty-four participants were
recruited and a Tobii X2-60 eye tracking device was used to record the eye
movements. The major outcome of the study was that there are differences in
the visual attention behavior depending on what type of variant was shown
in the item list interface. The researchers argue that the visual appeal of the
images had an impact on the user behavior and, in particular, on the visual
attention strategies.

The product selection has a big impact for certain online shops, for
example, to modify their selling strategies. However, the online web interface
also plays a crucial role in attracting viewers’ attention to certain products.
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Recommender systems try to help customers with a reduced and well-
prepared repertoire of products coming in effective layouts like list-based
ones or grouped into categories. An eye tracking study [210] was conducted
to investigate the user behavior in recommender interfaces by making use
of the Tobii 1750 eye tracking device and by recruiting 21 participants. The
major outcome of the study was the fact that the better organized interfaces,
focusing on a good layout, seem to attract the users’ attention to more
products than the standard layouts.

A gesture-based user interface brings into play another way to interact
with the interface components. This could be useful for large-scale displays,
for example, high resolution powerwalls, combined with eye tracking
technologies, this could lead to great synergy effects. Five participants were
recruited to test such a gesture-based kinetic interaction [488] while a Tobii
x2-60 eye tracker was used to measure the eye movements. The major result
of the study was that there was a relation between the eye fixation and an
active point which could be used in the future to design and implement a
gaze-controlled interface.

Many more eye tracking studies in this special topic of user interfaces
are related to graph displays [456, 550], to online learning behavior [216]
or education in game environments [545], as well as to hand gesturing
and multi-modalities [286]. Also tangible user interfaces have been under
investigation [53], adaptive user interfaces [119, 128], and personalized
focus-metaphor interfaces [319].

5.4.5 Eye Tracking for Visual Analytics

Visual analytics is an interdisciplinary field, at least combining concepts from
visualization, interaction techniques, text reading, and user interface design
as mentioned before. Moreover, there are many more fields worth mentioning
but most of them do not provide a visual stimulus that might attract the visual
attention of an observer. For example, an algorithm running in the background
is an important ingredient in a visual analytics system, but actually, we can
only see its output, maybe in a visual form, or the menu and the parameters
that have been selected by a data analyst in a user interface. In particular,
a visual analytics system might allow us to inspect the running algorithm
from iteration to iteration, but still, a visual output is required to provide
details about such internal processes. Visual analytics systems are complex
and require long-duration tasks in case the entire system with most of its
functionality has to be evaluated, i.e. some kind of real-world setting. We
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might argue that in a simple visualization technique the user tasks might be
much easier and faster to solve, for example, in a comparative user study, but
for visual analytics it is a wise decision to evaluate the system as a whole,
meaning the tasks to be solved are more explorative tasks with lots of options
to solve them and lots of system components to use.

Eye tracking is also useful for larger systems [307] compared to simple
visualization techniques. However, we must say that the recorded eye
movement data, be it for gaze-assisted interaction, to use it for detecting
design flaws, or as a recommender system supporting users at task solving,
is much more complex and is recorded over much longer time periods than
in traditional eye tracking studies investigating visualization techniques, text
reading tasks, or the effectiveness of layouts of user interfaces. A visual
analytics system might even be installed on different kinds of displays and
in varying environments; there can be a multitude of interaction techniques
incorporated, even working in a multi-modal fashion combined with gaze
interaction. Also augmented, virtual, or mixed reality techniques can be
part of a visual analytics system, typically integrated in immersive analytics
tools [347]. Moreover, additional data sources can come into play like
physiological measures, body movements, verbal feedback like think-aloud
or talk-aloud, and many more. All of these should be considered in an analysis
of the eye tracking study data to make the best of it in order to detect the
design issues and, consequently, to identify a way to improve the visual
analytics system.

Eye tracking applied to visual analytics systems is a relatively novel
concept and hence, there is not that much research focusing on the entire
visual analytics system, rather on specific components that are under
investigation from the perspective of visual attention. An eye tracking study
was conducted [379] taking into account tasks to explore networks. These
tasks were not given beforehand but the system was able to detect them
based on eye movement behavior and suggested visual adaptations. Twelve
participants were recruited while an SMI RED120 eye tracking device was
used. As a major outcome of this line of research it was found that there
seems to be some accuracy improvements for the network task of checking if
two nodes are connected.

Using scatter plot matrices for depicting multivariate data with the goal
of identifying correlations can be a challenging task, in particular if the user
of such a system is not able to focus on the most important views and data
aspects to solve given tasks. Such a problem was investigated by making use
of eye tracking [451] to support the visual exploration of scatter plot matrices
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Figure 5.15 A recommender system for scatter plot matrices equipped with eye tracking
technologies to support the data analysts [451]. Image provided by Lin Shao.

(see Figure 5.15) based on user input coming from eye movement behavior,
similar to a recommender system. 12 participants were recruited while the
Eye Tribe SDK was used to measure and transform the recorded eye tracking
data. The benefits of this experiment showed that such a system can get higher
pattern recall in comparison to a different interaction modality like mouse
input for example.

Also in the field of time-series visualization it is of particular interest to
identify temporal patterns, for example, to compare them with other patterns
on different levels of temporal granularity. A visual analysis can be a tedious
task if too many of those time-series patterns are displayed, hence some kind
of recommender system might support the viewer at those tasks [467]. Thirty
participants were involved in an eye tracking study in which an Eye Tribe
eye tracking device was applied to incorporate the eye movement data into
the data analysis and recommendation process. The evaluation of the system
showed that it is possible for the observers to quickly identify time-series
patterns that are of particular interest.

Visual analytics systems might even involve user-adaptive information
visualizations [481] that allow the configuration of a system in a user-
specified view with an adapted layout of the user interface, important views
and visualizations, active interaction techniques, and so on. Eye tracking
can help to give additional user-specific input for finding a suitable solution
for each individual user. An eye tracking study with 35 participants was
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Table 5.2 Examples of eye tracking studies focusing on aspects in visualization, interaction,
text reading, user interface design, as well as visual analytics

Scenario Participants Eye tracker Ref.

Hierarchy visualization 40 Tobii T60 XL [78]
Trajectory visualization 25 Tobii T60 XL [369]

Public transport map 40 Tobii T60 XL [372]
Geographic map 30 Tobii T60 XL [371]

Graph visualization 16 SMI iViewX [245]

Webpage browsing 48 Tobii X120 [156]
Webpage navigation 18 Tobii 1750 [543]

Large display interaction 26 Tobii REX [283]
Plane landing 12 Smart Eye [339]

Menu selection 11 ISCAN RK726/RK520 [105]

Label positions 11 Tobii 1720 [143]
Health document reading 50 EyeLink 1000 [208]

Text highlighting 6 SMI EyeLink I [121]
Music score page turning 10 SMI RED500 [51]

Source code reading 15 Tobii 1750 [454]

UI interaction 20 SMI REDn/Tobii EyeX [353]
Multi-modal interfaces 11 Tobii x5 [36]

Item list interface 64 Tobii X2-60 [197]
Interface layout 21 Tobii 1750 [210]

Gesture-based interface 5 Tobii x2-60 [488]

Network exploration system 12 SMI RED120 [379]
SPLOM recommender system 12 Eye Tribe [451]

Time-series patterns 30 Eye Tribe [467]
User-adaptive system 35 Tobii T120 [481]

Problem solving 28 Tobii T120 [244]

conducted taking into account such challenging problems. A Tobii T120 eye
tracker was applied to predict the best possible scenario for a user, typically
focusing on the tasks to be solved by interpreting visualizations. The major
finding of this research was that there are promising initial results indicating
that the predictions made have some positive value for the system; however,
there are still a lot of open future challenges to make it a real-time adaptable
system.

Problem solving belongs to visual analytics which can occur in at
least two ways, i.e. by using interactive visualizations or by applying
algorithms for analytical problems, but in the best case, both concepts work
in combination which is actually the power of visual analytics. However,
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understanding the problem-solving behavior of people could be of particular
interest and eye tracking can play a crucial role in detecting patterns in
the human users’ visual attention behavior [244]. Twenty-eight participants
were asked to focus on problem solving while a Tobii T120 eye tracker
was used. The researchers identified several varying strategies concerning the
information processing stages.

Although eye tracking applied to visual analytics systems is an emerging
topic, only a few examples for this important topic exist so far. In particular,
it could generate valuable insights for detecting design flaws in a system,
for exploiting eye movement data as recommendations for the users, or for
applying gaze-assisted interaction as an additional way to interact with the
visual analytics interface components as well as the visualizations. Some
of the approaches not discussed above also take into account general eye
tracking support for visual analytics systems [466], a combination of eye
tracking for evaluating visual analytics systems, but also for visual analytics
of the eye tracking data [46], eye tracking in personal visual analytics [312],
or comparisons of several interactions in two separate systems [427].

Table 5.2 summarizes some of the example eye tracking studies for each
of the five separately discussed fields involved in visual analytics.





6
Eye Tracking Data Analytics

Each eye tracking study or each gaze-assisted interaction produces a lot of
spatio-temporal data in form of scanpaths with fixations and saccades. The
recorded data generates a valuable source of information, hence it could be
stored in a database to make use of it later on, for example, to improve the
accuracy of a recommender system based on the eye movements of various
people. Although this concept opens new doors for powerful user interfaces
and visual analytics systems it comes at a cost. Typically, such data has to be
used in real-time to make fast recommendations or predictions. This effect
actually requires that the data is somehow preprocessed and transformed
in a suitable data format that allows fast access to it. Storing the raw eye
tracking data is not a good solution, the data must be prepared in a clever
and efficient way to make it usable for later purposes. On the other hand,
if the data analysis is not required in real-time, for example in typical eye
tracking studies, we can store the data in its raw format first and later on,
if all of the scanpaths are recorded, we can start to think about how to
process, transform, and algorithmically analyze the data with the goal of
finding patterns, correlations, and insights in it.

Various approaches exist that make use of pure algorithmic concepts, of
visualization techniques, or even of visual analytics systems that combine
algorithms, interactive visualizations, and human users with their perceptual
strengths. In a real-time eye tracking data analysis we typically rely on the
pure algorithmic results since an algorithm can produce a fast and accurate
solution to a given well-specified problem. If the goal of the eye tracking
data analysis comes more in an explorative way for which more time can
be wasted than for a real-time analysis, researchers mostly transform the
data in statistical data and inspect the results in form of simple plots and
diagrams. These diagrams help to quickly compare the data reduced to a
certain well-defined aspect or data dimension. However, eye movement data
consists of spatial, temporal, and participant data dimensions, hence reducing
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Figure 6.1 Applying visual analytics as a combination of algorithmic analyses and
interactive visualization to eye tracking data can provide useful insights into visual scanning
behavior over space, time, and participants [309]. Image provided by Kuno Kurzhals.

all of those to simple statistical graphics can lead to wrong conclusions [15] or
missing correlations between data dimensions that might have been visible in
a case in which more complex visualization techniques are used. Negatively,
such visualization techniques demand for learning and understanding the
new concepts [71] which is actually difficult for non-experts in visualization.
Consequently, to visually explore eye tracking data reliably we should have
some profound knowledge in eye tracking and visualization at the same time
which reduces the number of people actually using visual depictions of eye
tracking data.

Positively, standard and well-known visualization techniques like visual
attention maps [50] or gaze plots [203] which show space, time, and
participant dimensions are already well established in the eye tracking
community in a way that they are well understood and they can be found
in many results sections in scientific research papers related to eye tracking
data. Moreover, they have been so popular that they are typically built-in
features in today’s commercial eye tracking analysis software. However, from
a perceptual and visual perspective such visualizations are not as powerful as
expected. Visual attention maps aggregate over time and participants, while
gaze plots lead to visual clutter if too many scanpaths have to be shown on
a visual stimulus. These drawbacks are one major reason why many more
advanced eye tracking data visualizations have been developed [47], all trying
to show as many insights about the recorded eye tracking data as possible.
Visual analytics (see one example of a visual result in form of gaze stripes in
Figure 6.1) adds one powerful strategy to this existing repertoire of analysis
techniques [14], but again, it requires knowledge from several domains, other
than from eye tracking, to find knowledge and meaning in the eye tracking
data which is definitely one of the biggest challenges in this whole domain
combining eye tracking and visual analytics.

6.1 Data Preparation

Normally, the eye tracking data comes in a raw data format from the eye
tracking device, before it gets processed into the form that is required for a
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more advanced data analysis or as input for a visualization or visual analytics
technique. The major ingredients of the eye tracking data contain scanpaths,
with aggregated fixations with fixation durations as well as saccades that can
be derived from two consecutive fixation points. Each scanpath is typically
produced by one person trying to answer a certain task. This requires an
efficient data collection and acquisition process. Moreover, some of the
recorded eye movement data elements must be better organized, to focus on
the most relevant one first, in case quick real-time decisions have to be made,
for example on a certain data dimension or in case of a heterogeneous data
source on the most relevant datasets first. Eye movement data might need to
be annotated or even anonymized. The eye tracking data also needs to be in
a specific computer-understandable format which is due to the fact that not
all eye tracking devices work with the same data format. Finally, if the eye
tracking data comes in several data files, we need to find a way to link them
together, in case more than one of those files is required for a later analysis.

The algorithmic concepts in a visual analytics system need a proper input
data to reliably work. However, in some situations it is unclear how this can be
achieved successfully, for example, it might not be known from the beginning
which data dimension is the most important one; this might only be known
during the runtime of the system. Consequently, it is difficult to organize and
restructure the data in an efficient way without any extra knowledge about
the users and the tasks to be solved, i.e. which data dimensions are mostly in
focus. A similar aspect holds for the data annotation which typically happens
manually, i.e. by the users themselves in a time wasting process. This means
that eye movement data is typically enriched by extra information in a post
process and not in real-time unless a clever algorithm is able to do that in
a fast and automatic way. This definitely depends on the way in which the
annotation has to be done, for example if complicated semantic information
from a visual stimulus has to be included in a data analysis process, we need
the human users to add this extra information to the data. If the semantic
information is clear from the context, then the algorithm might do the data
annotation step.

6.1.1 Data Collection and Acquisition

Acquiring the data is supported by the eye tracking device in each of the
eye tracking studies, for example, if a visual analytics system is evaluated.
In our modern days, we can record massive amounts of eye movement data
in case long-durating tasks are asked, which is a typical scenario if more
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complex visual analytics approaches are evaluated compared to traditional
static diagrams or simple visualization techniques. However, we must still
rely on the accuracy of the recorded eye movement data, which could be
problematic for certain persons who are not suitable for taking part in eye
tracking studies since they suffer from certain disorders or other issues which
make the tracking of the eyes error-prone. Moreover, the eye tracking device
itself might be wrongly calibrated although today the integrated software and
hardware is quite advanced to prevent such errors whenever possible. It is a
good advice that a well-experienced experimenter guides the study participant
to avoid such measurement errors as much as possible.

In a gaze-assisted visual analytics system, however, such guidance cannot
be expected in the future since nobody wants to wait for long calibration
times each time he or she starts interacting with a system. Hence, it is a good
idea to develop eye tracking devices in such a way that they support quick
and reliable data acquisition, no matter which scenario we are confronted
with. But actually this is one of the challenging topics in eye tracking
research, at least in gaze-assisted visual analytics systems. One solution for
a future scenario would be to combine the collected eye movement data with
some already recorded data to see potential problems and either clean the
recorded data based on formerly measured data records or to annotate the
eye movement data with certain events such as calibration errors, which is
typically integrated as a feature in most of the modern eye tracking devices.
Although the data acquisition step does not seem to be a part of the data
analytics process, it might be one of the most important ones since this is
the data we will base our evaluations on in a later data analysis step. For this
reason it is a crucial idea to annotate, either manually or automatically, the
data using reliability aspects like error-proneness or uncertainty. All of these
aspects do not only hold for eye movement data but for any extra data sources
that complement the eye movements with the goal of deriving further insights
from user behavior.

6.1.2 Organization and Relevance

The recorded eye movement data from a user study in visual analytics or
visualization has to be organized in a proper way to allow fast access for
an analysis later on. This is in particular even more required if the data is
heterogeneous, for example, consisting of several data sources all storing
important or unimportant attributes and variables with values about the
stimuli, the participants, as well as their behavior during the eye tracking
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experiment. Organizing those data aspects in several files might be a good
idea to separate them and allow to quickly achieve the part of the data that
is relevant for an analysis or a visualization technique. If such a data part
selection process happens during the program execution, the interactivity of a
visual analytics system or a visualization tool might suffer. However, in some
situations it is unclear which tasks are crucial for a data analyst, hence it is
important to have all the data at hand, but in an organized way, to quickly
react to the users’ wishes and to enrich the data already under investigation
with additional data sources based on the users’ requirements. An example
would be to organize the stimuli separately from the scanpaths, since in
some situations a visualization does not need the visual stimuli, but only an
aggregated view on the scanpath data is shown, for example as a scarf plot
or statistical graphic, in which the stimulus cannot be integrated and aligned
directly. However, the user might wish to see the stimuli, and hence, an extra
request for the stimuli could solve this problem.

Organizing data also means to filter out irrelevant data right from the
beginning, but this requires knowing what the user is planning to explore
with the eye movement data later on. This is actually a challenging problem,
meaning that most eye trackers store and provide all of the data on the finest
possible data granularity; however, in most situations the given granularity
or data extras are not required for one or the other task. As long as the data
size or disorganization does not lead to a degradation of performance at some
task, this situation is acceptable. In cases in which we see such performance
issues we might consider reducing or reorganizing the data sources for the
most relevant parts for solving the data exploration tasks before running a
visualization tool or visual analytics system. For example, if we realize that
a scanpath visualization suffers from visual clutter due to the fact that the
tracking frequency in the data is too high, although the higher frequency
and denser points do not lead to many more insights, we might temporally
aggregate the data beforehand to reduce the number of points to be drawn.
One might argue that this could happen while working with an interactive
scanpath visualization; however, if the drawing is the problem, then the
visualization can suffer from performance issues and clutter effects which
might both be mitigated by reorganizing the data and only focusing on the
relevant time granularity for example. This is just one example from many
others, but it still requires knowledge about the tasks that have to be solved
with a data analysis tool. Reorganizing data and only focusing on relevant
parts have to be taken with care anyhow.



234 Eye Tracking Data Analytics

Figure 6.2 A manual fixation annotation tool has been developed to step-by-step add extra
information to the fixations, for example based on the semantics of a stimulus [370].

6.1.3 Data Annotation and Anonymization

Annotating the recorded eye movement data with extra events or semantic
information from the stimulus should be done as early as possible in the data
analysis process. Such a data annotation supports data analysts in setting the
found visual patterns in special context, for example, based on the semantics
of the shown stimulus, in a case where the stimulus cannot be shown directly
in the eye movement data visualization. Moreover, special events such as
user behavior or verbal feedback might even be used to annotate the data
to give quick feedback later on when the data is visualized. The annotation
can be done algorithmically, but this requires that the annotation algorithm
can be specified in a proper, well-defined way, otherwise a more manual
annotation is needed [370], taking into account the perceptual strengths of
the human users (see Figure 6.2 for a tool supporting the human annotator
in such a time-consuming task). Data annotation might even be done after
the data is already visualized, meaning visualization can be used as a
special support to first detect patterns and then annotate the data with these
patterns. However, in a visualization the pattern detection is typically done
by the human observers due to their perceptual strengths and rapid pattern
detection abilities, hence this visualization-based annotation step requires
a manual procedure. In some situations, for example when an annotation
algorithm cannot be clearly specified, a manual annotation is not avoidable,
consequently, a time-consuming process including humans is required.

Some kind of opposite effect to the data annotation, in which data is
added to the already existing data, might be data anonymization, a step in
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which data elements from the data source are removed, for example for data
privacy reasons. This step typically removes all personal information from the
data source, which means all data elements that might somehow be used to
recover the person behind a certain scanpath for example. A typical strategy
is to replace all person names with identifiers that are just random natural
numbers. It should not be possible to link these identification numbers with
the filled out study participant forms to definitely avoid recovering personal
information like the person’s name. A problem is definitely the fact that
certain person’s names might be recovered in the case that a certain attribute
value only exists once and hence can be mapped uniquely to this person. An
example would be if we just had one person who is wearing contact lenses,
then this person can be identified easily later on in the recorded scanpath
data by just looking up this special attribute. The safest anonymization
effect in an eye tracking study is to completely avoid the recording of a
person’s name, but just in case the persons are paid for participation in an
eye tracking experiment we normally need the names. However, this extra
payment information should be separated from the recorded data and maybe
should be destroyed as soon as possible to avoid anonymization problems
later on.

6.1.4 Data Interpretation

Eye tracking data can come in many formats, typically depending on the eye
tracking device in use. To reliably work, the data has to be interpreted in
a way that the data elements it is composed of can be stored into variables
in a data analysis or data visualization tool. To make this possible a certain
kind of template is required that perfectly describes which data elements have
to be expected and in which order those are stored. If this data interpretation
process does not work properly, the data might be not parsable and readable at
all or the data might be read while some or all data values might be attached
to the wrong attributes or even mixed up completely. This has the negative
effect that the data analysis leads to wrong conclusions. In most scenarios
the human user has to keep an eye on the raw data first to understand its
structure and the order of data elements to check if the underlying data
template matches the one given in the data reading and parsing algorithm.
This is in particular important if the eye tracking data comes from several
eye tracking devices, all typically having different kinds of data outputs. One
option to handle this problem is to write a data parser for each of the eye
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tracking data sources separately or to transform each data source into the
same format based on the same template.

If several data sources are stored for a later data analysis, this problem
might get even worse. For example, the scanpaths from an eye tracking
study as well as additional verbal feedback, interview data, personal
study participant data, physiological measures, and so on might be worth
investigating. All of those data sources could be stored in different formats,
for example, stemming from various eye tracking experiments conducted by
different groups of researchers. Finding a data analysis tool that helps to
identify data patterns and insights in those data sources is a difficult task
since, in the worst case, each data scenario has to be adapted to the tool’s
data reading and parsing requirements. If this adaptation happens on the tool
side it can be challenging for the tool developer to create a parsing function
for each of the data formats. Maybe only the most important ones might be
supported by a tool, the rest has to be brought in the correct template by the
research group who generated a dataset. This is typically the best option since
they are best in interpreting their own data and deciding which values in the
dataset belong to which attributes for example.

6.1.5 Data Linking

We often face the situation that the eye movement data is not the only
available data source, but many more describe the user behavior, for example,
storing time-varying facial expressions or verbal feedback during a study.
Moreover, many personal details are available that have been typically stored
before running an eye tracking study. All of these data sources have to be
linked in a certain meaningful way, otherwise they cannot be taken into
account in combination later on in a data analysis or visualization process.
Even the eye movement dataset might be stored in several data sources, for
example, the scanpath data for each participant might be given on a text file
while the corresponding stimuli, static or dynamic ones, are stored in other
files, maybe in a stimulus directory. Hence, to remap the scanpaths from the
eye tracking experiment with the stimuli that have been seen at a certain point
in time, a well-defined key or identifier is required that allows finding the
right stimulus file for each of the scanpaths. This is in particular problematic
for dynamic stimuli that occur as video sequences which have to be matched
with the corresponding scanpath, but also over time, meaning the dynamic
stimulus actually consists of many static stimuli while the scanpath data
describes which static stimulus from the video has been watched at a certain
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time. Hence, the linking does not only happen between several separate data
sources, but also over time, in case we have to deal with dynamic visual
stimuli, which is a typical scenario in visual analytics.

The general problem might occur if the data sources have to be linked
during the runtime of a data analysis or visual analytics tool. For example,
a user might decide to visually explore eye movement data by also taking
into account an additional data source describing interview data that has been
acquired by asking the study participants after each of the experiments. Then
this extra data has to be linked with the primary eye movement data first and
then additional views or visual output have to be incorporated into the original
visualization for example. Although the visualization of the extra data might
not be a problem at all, it might take some time to link the two data sources
before the visualization can be modified and updated. Even if such a linking
process just takes a few seconds it might even lead to a bad user experience.
Consequently, the question comes up which data sources should be linked
beforehand, i.e. before the analysis tool is running to avoid such waiting times
during the data analysis process. Moreover, another question is how the data
sources can be linked, meaning if there is some common key that can be
used to do that successfully, for example, as in our scenario above, the study
participant might be the key to link the data sources. In some situations it is
not clear how the linking can be done reliably without asking the user of a
data analysis tool which makes the data linking a quite challenging topic.

6.2 Data Storage, Adaptation, and Transformation

All the data from all data sources recorded before, during, and after an
eye tracking experiment has to be stored in an efficient way, for example,
in several, typically linked files, or in a database allowing fast access to it
during a later analysis process. For example, if a real-time reaction on the eye
movement data is required based on the previously recorded data elements,
the data should be stored in a clever way to allow such fast interpretations to
support the real-time experience. This means that the new data to be stored
has to be modified in a certain way to bring it into the desired format to
allow fast access to it. Data storage is not just putting the data into a file
or database, the data is already adapted to a certain common situation. This
is even more challenging if the eye tracking data comes from several eye
tracking devices, having different data formats, but still following the same
general goal. Hence, it might be a good idea to transform the data already in



238 Eye Tracking Data Analytics

this early stage while it is stored or added to the general eye tracking database
for later usage.

Important stages in this whole process include the checking of the data for
inconsistencies or redundancies. Consequently, the data sources get validated,
verified, and typically cleaned and freed from errors or missing data entries
whenever this is possible. This builds some kind of data enhancement or
data enrichment process in which certain data elements can be removed,
added, or even annotated by special events or uncertainty values to indicate
that they might otherwise lead to misinterpretations. Moreover, in this step,
additional analysis-relevant data metrics can be derived and values for them
can be generated. Computing those values beforehand can save a lot of
computation time during the running data analysis system. Hence, this whole
stage focuses on storing the data in an efficient way, on adapting it in a
way that it can be accessed as quickly as possible later on, to save valuable
computation time during a running data analysis or visual analytics system,
and finally, on allowing data transformations that might modify a raw dataset
into a computer-readable one, for example, based on bringing it into a given
format that is understandable by a data analytics tool. This kind of data
transformation is just responsible for adapting the format of the data, it
does not draw any conclusions from the data nor does it derive any data
patterns, like an explicit algorithmic data analysis process would do which
will be discussed in one of the following sections. Generally spoken, when
a visual analytics system for eye tracking data is started, the underlying data
to be analyzed should be in the most appropriate data format as possible,
for example, to avoid long runtimes while using the visual analytics tool and
while interacting with it. Nobody wants to wait too long for the results of a
data analysis, but in some situations it is unavoidable.

6.2.1 Data Storage

It sounds like the data storage process is not as important as all the others,
but it may be noted that the wrong storing of eye movement data can have
a tremendous impact on a data analysis or visual analytics stage later on.
In addition, if a real-time analysis is required we need fast access to well-
structured and already preprocessed data sources, otherwise there might
be missing data chunks during the real-time analysis which would lead
to a degradation of performance of the underlying data analysis system.
However, in many situations, fast data access to all required information is
not possible, hence a real-time reaction is not possible, meaning it does not
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matter how efficient the data is stored in these scenarios. For eye tracking
data it also depends on which data dimension the data analysts are primarily
interested in, like the spatial information from the visual stimulus, the
temporal information, i.e. how the situation changed over time, for example,
the stimulus and/or the eye movement behavior, or the eye tracking study
participants, individually or clustered into participant groups. The primary
data dimension typically decides which algorithms and visualizations are
used later on and hence the data should be stored in a way that this primary
aspect can be accessed as fast as possible while the secondary or tertiary data
dimension plays a minor role.

For example, if a visual analytics system focuses on supporting an
analysis of participant clusters, the individual participants are of primary
interest and not the visual stimuli. However, the stimuli might be used as a
later details-on-demand request to see where certain participant clusters paid
visual attention, but actually for identifying the participant cluster this data
is not as important as the participants themselves, maybe with their personal
information. Things are not that easy in most situations. To decide on the
order of relevance of the data dimensions and how to structure and organize
them is a difficult problem. On the one hand it definitely depends on the
data analysis tool or visual analytics system that works with this kind of
data, but on the other hand it also strongly depends on the user tasks. From
the scenario above, it might be efficiently stored if the major focus is on
participant clusters based on personal information, but if the users decide to
switch to a more scanpath- and stimulus-related grouping of the participants
instead of the personal information, the performance of the system might
suffer from it.

Today, with only small eye movement datasets, we might argue that this
is actually not a big challenge, but in future scenarios, for example, with
millions of scanpaths and dynamic stimuli of hours of lengths, we might get
into serious performance issues if this problem is not treated well enough.
One scenario could be the tracking of the eyes of millions of car drivers
over longer driving distances. On the one hand, we would like to analyze
the scanpaths after the driving tasks have been finished which actually gives
us enough time to process the data, i.e. making the storage problem actually
not that relevant. However, if we are facing a scenario in which we already
have millions of scanpaths from car drivers and now a new car driver is eye
tracked, we might want to get real-time feedback based on the eye movements
of the one car driver while at the same time taking into account the existing
scanpaths, typically stored in a database, prepared for such purposes. There
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are many of such future scenarios in which we might face this challenging
problem, the larger the eye tracking data sources get, the more insights we
can extract from them, but at the cost of thinking about efficiently storing and
managing the data.

6.2.2 Validation, Verification, and Cleaning

After the data is stored and successfully brought into a format that allows fast
access depending on the tasks solvable by a data analysis or visual analytics
system we should incorporate another follow-up step to the storage process.
In the best case this validation, verification, and data cleaning process might
happen simultaneously to the data storage process, but in some situations the
data sources must be inspected as a whole to validate and verify them. For
example, checking if a certain data element is missing in the data source can
only be done if the whole data source is available. In this stage it is important
that incorrect data is removed or at least annotated as being incorrect or
inaccurate, for example caused by calibration errors or even by linking it to
additional physiological data that provides further insights about eye tracking
study participants’ performance, telling us if there is a chance that the eye
movement data might be error-prone and not worth including in a later data
analysis step.

Moreover, the data might be redundant or inconsistent, as well as
incomplete. The incompleteness might be treated differently, depending on
how crucial this aspect is in a data analysis step. For example, if missing
data elements are located in a dataset they can be treated as being missing,
meaning they can just be ignored in the data analysis. Moreover, they can be
interpolated by taking into account the neighbored existing data elements or
a certain derived pattern might be used that looks similarly as the data points
with the missing data element, helping to close the data gaps. This similarity
is typically based on similarity values that are generated by algorithmically
comparing two patterns. If the similarity values are above a certain user-
defined threshold it is decided to apply the data completion process based on
such a found similarity pattern. However, no matter which data correction or
completion strategy is applied there is always the chance that this procedure
does not produce the right data points. Hence, the best option in such a
scenario might be to not modify the data and just indicate in a data analysis or
data visualization that there are certain missing data elements. However, if too
many of those data points do not exist, it remains questionable how reliable a
data analysis will be in the end. Cleaning eye movement data is a challenging
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process for low-level eye tracking data [444]. Positively, additional data
sources might be a good option to more efficiently and reliably clean the data
since they allow us to take into account further data perspectives compared to
just one individual data source alone.

6.2.3 Data Enhancement and Enrichment

The originally recorded data is typically not sufficient enough for a data
analysis or a visualization. In many situations we have to first enhance and
enrich the data to get it in a suitable form to detect insights later on. The
data enhancement and enrichment mean that the data can be attached by
additional attributes but even superfluous and redundant data elements might
be removed in this step. Actually, everything that adds more value to the data
itself could be regarded as a data enhancement and enrichment. For example,
in an eye tracking study we often have the situation that data might contain
scanpaths with a high uncertainty, maybe due to calibration problems or other
participant-related issues that lead to such data problems. There are several
options to enhance the data; in the best case we let the study participants with
badly recorded data do the experiment again, but this might cause additional
costs and the participant has some kind of learning effect from the original
experiment, hence this should be taken with care. Another option to enhance
the data is by closing the gaps algorthmically, if there are just a few, for
example by interpolation or by deriving a similar data pattern from other
parts of the scanpath or other participants’ scanpaths. However, this always
happens at the cost of not being correct since it is never data from the real
experiment. If there are too many data gaps we should think about replacing
the eye tracking device or modifying the study setup in a way that makes the
data more reliable.

Also metadata, i.e. data about data, plays a crucial role in this process.
Such data describes, for example, error reports, performance feedback,
quality of the results, trustworthiness of the data, uncertainty values,
provenance and lineage of the data, to provide an information about the
context in which the data was recorded. Each data element, for example,
a scanpath related to an individual participant, might even have privacy
information attached to it. Moreover, metadata can even be based on
additional computations applied to the data which lead to data enrichment
in the best case. Also physical units are important metadata that describe at
what scale the data was measured, for example. In particular for eye tracking
studies, the tracking frequency given in Hz could be important to understand
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the temporal granularity of the data. This could be very relevant information
if the recorded data stems from different eye tracking devices with varying
properties. Consequently, the type of the eye tracker should also be stored as
well as additional meta information about the experiment.

6.2.4 Data Transformation

Transformations of data are typically those that bring the data into another
format. Such a new format can be based on different aspects, mostly
depending on the users’ input and tasks. For example, the data might be
aggregated over space and time or the scanpaths, and additional data of
individual participants might even be aggregated into groups or clusters of
participants. However, the aggregation strategy might cause some problems
due to the fact that it is sometimes not clear how the aggregated values have
to be computed to show a representative data element for the aggregated
time, space, or participant group. For the time dimension the scale is
typically changed from the most fine-granular temporal dimension given by
the tracking frequency of the eye tracker to a more coarse-grained temporal
scale, for example, to inspect the data on a per second basis instead of on a
per millisecond one. Such an aggregation can come with several challenging
problems. For example, for a dynamic stimulus shown in an eye tracking
study it is pretty unclear how to also aggregate this stimulus over time. For
a static stimulus it is no problem at all since the content of the stimulus is
always the same over time, but a dynamic one like a video might change its
content from time to time. In such a case it might be a good idea to not just
aggregate the temporal dimension based on the scanpath data, but to take into
account the dynamic stimulus information and maybe base the time periods
on the sequences of the dynamic stimulus that carry the same information, i.e.
where the dynamic stimulus shows a static content. Moreover, if the dynamic
stimulus shows a static content for a longer time, this time period might again
be split into sub-periods and then all of them might be aggregated while the
representative stimulus content can easily be derived from the static content
of those subsequences, i.e. it is guaranteed that it is always a static stimulus.

One goal of a data transformation is always to reduce the complexity
and size of a dataset, but at the cost of losing information. Hence, data
transformation should be taken with care and it should be clear right from the
beginning if the transformation process is still acceptable so as not to remove
relevant information that cannot be regained later on. Another concept is to
work with the raw data in a data analysis or visual analytics system, but
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deciding during the runtime of the system which parts of the data to be
transformed might lead to a performance degradation and, consequently, it
is a wise decision to preprocess the data and transform everything that can be
transformed while taking into account the fact that after the transformation
the granularity of the data is changed. This means if we aggregate or even
normalize the given recorded raw data beforehand, for example, changing
from a lower to a higher scale, we no longer see the lower scale in the data
analysis or visual analytics tool. One solution could be to still keep the raw
data, just in case the tool user makes a request to it which might lead to
runtime performance issues, but in the case that the data is used on the higher
scale, the tool might perform quite well.

6.3 Algorithmic Analyses

Algorithmic analyses focus more on the computer-supported generation of
numbers, patterns, correlations, rules, and insights from the given data,
typically applied to individual data entries but also in comparison between
several data entries over space, time, and participants if we speak about
eye tracking data. Moreover, algorithmic analyses should take into account
any further available data sources with the goal to effectively and efficiently
generate new perspectives on the given data. Algorithmic solutions can be
distinguished from visual solutions by the fact that algorithms must be clearly
specified to run properly while a visual solution shows visual patterns that
have to be interpreted by the human users based on their perceptual abilities
to rapidly recognize patterns. However, just recognizing patterns is not the
key to the solution. The solution based on visualization comes from the
linking of the visual patterns to the data patterns which is a benefit of pure
algorithmic solutions that come up with the generated data patterns directly,
but negatively, those data patterns might be hidden in a flood of generated
solutions. Interesting and popular algorithmic operations in this context are
finding better structures by ordering and clustering, reducing dataset sizes by
summarizing, classing, classifying, aggregating, and projecting data, or by
allowing comparisons, for example, by normalizing the data or by applying
multiple sequence alignment methods to find a consensus matrix for a list of
scanpaths [84].

There are various algorithmic approaches that also vary in their runtime
complexities. Each algorithm is typically based on a certain task to be solved
by extracting the relevant information from a given dataset or several of them
in combination. Actually, there are two options to apply an algorithm which
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is, on the one hand, an offline approach that starts computing after the data
has been recorded completely, i.e. as some kind of post-processing. The other
alternative might be denoted by the term online approach which indicates that
the data has to be algorithmically analyzed during the recording, i.e. in real-
time. The second option is typically more complicated to implement since
it requires the algorithm to react quickly, i.e. in real-time, on a given input.
This could be interesting for gaze-assisted interaction for which the data of
many eye tracked people might be taken into consideration to generate a
quick recommendation while interacting. Moreover, in any scenario in which
the user dynamically interacts or inspects a visual stimulus, an algorithm
might generate real-time solutions and hints during this dynamic process.
The offline approach, on the other hand, is typically useful when we have
enough time to analyze the data, for example, in an eye tracking study for
which we have recorded all the data beforehand. As a post-process, i.e. a
data evaluation and analysis, we might apply a visual analytics system with
various algorithms [14], to find design flaws in the given stimuli during the
eye tracking study.

6.3.1 Ordering and Sorting

There are several ways to bring a certain structure or organization into a
dataset based on ordering and sorting algorithms. Also for eye tracking data
there are some ways to order or sort them, typically depending on a well-
defined criterion on which an order can be computed. The easiest way to do
this is to reduce the scanpaths or any other data source to a certain quantity
like the lengths of the scanpaths, the completion times for a task, the average
fixation duration, and many more. Based on such a quantitative value we
can derive a one-dimensional order of the data, for example, for the list of
study participants, maybe to see who produced the longest fixation sequence
and who the shortest one. If the data is more complex and cannot be easily
reduced to quantities such an approach cannot be applied in the same way.
One example would be the list of visual stimuli that should be brought into
a certain order. There is no unique property to apply an ordering strategy for
the list of stimuli, however we might create one that meets our needs. For
example, we might compute the distribution of the individual colors in each
visual stimulus [309] and then use a priority list among the individual colors
to derive a unique one-dimensional order for the stimuli. This procedure could
be helpful to create an order based on a certain primary color that has to be
investigated for its impact on visual scanning strategies. No matter which data
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aspect we use to apply an ordering or sorting strategy it typically focuses on
a certain well-defined user task, for example exploring the impact of color
coding of the visual stimuli on the scanning strategies as described above.

Some of the data dimensions bring their own order, for example the time
dimension. It is clear which the first fixation is and which one the last in
a scanpath and it is a bad idea to reorder the temporal aspect, in particular
in a case in which we are interested in temporal patterns. In a different
scenario in which we might be primarily interested in the visual stimulus,
the temporal order might be less interesting, for example for reasons of
visual clutter reduction. The temporal order, on the negative side, restricts
the order of another data dimension. This is a general problem for any kind
of ordering strategy. If we base our order on a certain attribute or data aspect
we have to resolve this issue for all the other data aspects, meaning the order
typically focuses on a primary aspect for which we have lots of opportunities
in eye tracking data, especially if we take into account additional data like
physiological measures or personal information as well as verbal feedback
and so on. For a visual analytics system it could be important to have already
computed the orderings for the most important data attributes, to avoid long
computation times during the runtime of the system. However, ordering for
all aspects as a pre-process would be a challenging task, just because there
are so many data aspects that might be taken into account for ordering
or sorting. Moreover, there could be combinations of data attributes, for
example, resulting in a matrix-like scheme expressing quantitative distances
or similarities between pairs of data elements. For example, we might
compute the scanpath similarity for all pairs of eye tracking study participants
which would lead to a matrix filled with real-valued numbers. Without any
order such a matrix would not help to identify group patterns among the
participants, hence matrix re-ordering techniques [34] are of special interest
here to better organize the data for a later visualization, in particular group eye
movement data based on similar scanpaths [300]. For ordering more attributes
we need more advanced techniques [299], however in such a multivariate
dataset it is challenging to indicate the order for all attributes simultaneously.

6.3.2 Data Clustering

Clustering is a popular algorithmic approach to bring structure to a dataset.
The idea is based on putting data elements or objects together that share
similar properties while non-similar ones are not in the same cluster. Hence,
by this strategy we can obtain a separation of all data elements based on
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Figure 6.3 The Antwerp public transport map was visually explored in an eye tracking study.
The visual attention hot spots were used to split the static stimulus into sub-images which are
then grouped by a force-directed layout taking into account the transition frequencies between
the individual sub-images [98]. Different parameters can be modified such as cropping sizes,
cluster radius, or number of sub-images displayed, for example.

certain well-defined properties, even a fuzzy clustering could be generated,
allowing a data element to belong to several clusters at the same time, but to
each only to a certain probability. There are various techniques for computing
a clustering [180] applicable to data from a multitude of application fields. A
general idea is the fact that between each pair of data elements there exists
a distance or similarity value that is used to generate good separation into
clusters, for example, based on finding a hierarchical organization among the
elements as in a hierarchical clustering [273]. A k-means clustering [82], on
the other hand, actually tries to find a separation of the space, attaching the
data elements to spatial regions belonging to certain sub-spaces and hence
some kind of spatial separation is computed. In eye movement analysis,
such an approach could be used, for example, for detecting the eye [411],
i.e. before it comes to the actual eye movement data recording. Moreover,
the visual stimulus might even be split based on formerly recorded visual
attention hot spots and then the resulting list of images from the stimulus
can be reorganized, maybe by using some kind of force-directed layout (see
Figure 6.3) that takes the eye movement transitions between the split images
into account to let those images attract or repel each other [98].

In the field of eye tracking, a hierarchical clustering also makes sense
for a list of scanpaths that might be split into hierarchically organized
groups of scanpaths, each group reflecting a certain similar visual scanning
behavior [309]. Such a clustering is then useful to subdivide the group of
participants, based on their viewing behavior, into several groups, while
each group of participants might be inspected further by taking into account
additional data. The clustering, on the one hand, brings a structure into the
eye movement data on a scanpath basis [175] while the computed structure
is further investigated for reasons causing these different behaviors, hence,
if it is attached to additionally recorded extra data we might get hints about
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the different viewing behaviors that cause the changes in the scanpath data.
It may be noted that the longer the scanpaths are under investigation, then
the probability that they share common data patterns is normally lower.
Moreover, there are always small variations in the fixation pattern for each
scanpath, even if they are very similar. This problem might be mitigated by
either using spatio-temporal thresholds for each fixation that still consider
fixation points as being similar if they are located within the same radius, for
example. Another idea to manually or automatically annotate or manipulate
each scanpath is based on the semantics of a stimulus, hence identifying
the visual object a fixation belongs to in a stimulus. However, this can be
a time-consuming process, in particular, if it is done manually [370].

6.3.3 Summarization, Classing, and Classification

Eye tracking data might get quite big, in particular in future scenarios [44]
in which eye tracking devices might be integrated in certain devices of daily
life such as cars or mobile phones. In such data situations it is of great help
to reduce the complexity and size of the data in a clever way while still
preserving most of the original data patterns. This means, no matter how
much we reduce the data we should still be able to identify the overall data
patterns, which seems to be a challenging problem. However, concepts like
classing or classification are suitable summarization approaches to reduce the
dataset size in a way that they compute representative elements for each of
the time periods, spatial regions, or participant groups to mention the most
important data dimensions in an eye tracking study. For example, classes
could be identified, even beforehand, and each time period could be checked
for the class it might fall into. Such classes might be slow, medium, and fast,
for example, to express the space inspected per time unit by each participant
which is similar to a velocity measurement. By using such a subdivision
into velocity classes we could aggregate or summarize each scanpath into
a sequence of classes instead of a sequence of fixations, hence, the size of the
temporal aspect in the data is reduced tremendously. Negatively, this happens
at the cost of losing fine granular information. Moreover, each scanpath might
be reduced to a sequence of areas of interest (AOIs) that have been visually
attended over time. However, this requires defining the AOIs based on the
visual stimulus and its content, also taking into account semantic information.

If we go one step further we might classify each participant based on
a certain well-defined property, for example, the dynamic pattern of slow,
medium, and fast movements as described above, or the sequence of areas of
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interest they create during the visual scanning strategy. Hence, such a classing
and classification might be a useful concept to guide a clustering, for example
a hierarchical one, taking into account the participants and their scanning
behavior reduced to certain classes based on well-defined properties. On the
one hand, we lose information by the classing, while on the other hand, the
follow-up clustering algorithms might produce faster results since the input
data is no longer that accurate, but it is condensed to the most relevant aspects
that are still detailed enough to generate a suitable and expressive clustering,
for example. The classing actually works for any data dimension, we only
have to decide how the classes are created and how many we plan to get
in the end to base further data organization, structuring, or clustering on.
Moreover, if another scanpath is recorded it is faster and easier to classify to
which category it belongs than taking into account the whole scanpath with
all its detailed fixations and fixation duration. In particular, in the field of
fatigue detection of car drivers based on eye tracking [285] we can find many
approaches making use of classification concepts, an approach that typically
requires real-time computations to provide fast results.

6.3.4 Normalization and Aggregation

A general problem with eye movement data comes from the fact that not all
eye tracking participants are equally fast and hence, to better compare the
data on a temporal basis it makes sense to normalize each of the scanpaths,
i.e. stretching all of them to the same length. This stretching might help
identify which regions in a stimulus or areas of interest are covered by the
participants and which particular sequential order they follow in the visual
attention process. The comparison might even work without a temporal
normalization but it requires more effort to reliably do the comparisons. A
temporal stretching somehow leads to some kind of temporal alignment, but
it is not guaranteed that this approach works for any eye tracking study. In
some situations the visual attention sequences are completely different and
even a normalization will not help. Another challenging problem might occur
if the data values vary a lot, for example, completion times or average fixation
duration, hence really large ones overwhelm the small and tiny values and,
consequently, the small values are hard to compare due to the fact that the big
ones will reduce them in size a lot if those are visualized later on, for example
as a bar chart. One way to allow fair comparisons of such quantitative data
can be achieved by applying a logarithm function to all of the values or even
more advanced concepts that transform the quantitative data into another
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format that allows better comparisons [230]. Choosing the logarithm idea
actually transforms the quantities to exponents, allowing the small values to
be compared visually. However, the users of such a logarithmic scale should
be informed about this data transformation to avoid misinterpretations.

Aggregation, as mentioned earlier, is also a useful concept to reduce the
dataset size and to provide a better overview of the data, in particular, if
the data reaches sizes that no longer allow it to be visually depicted without
needing the user to scroll a lot. In some scenarios we can find a combination
of these concepts, i.e. the eye movement data is aggregated, normalized, and
finally, transformed to a different scale. All of this follows the goal to get a
scalable overview of the eye movement data for as many data dimensions as
possible to allow fast comparisons. This first overview strategy is a fruitful
concept to support a data analyst with a starting point for further exploration
processes, algorithmically as well as visually. The aggregation strategy can
be manifold and could be based on several approaches, including simple and
more complex statistical ones. For example, if we plan to inspect the fixation
durations in a scanpath and plan to temporally aggregate those, we may ask
the question what the result of such an aggregation strategy might be. We
could generate the sum of the fixation durations but without normalizing the
sum by taking into account the number of fixations in a time interval, this
approach might be misleading, hence the average or mean value might be of
special interest here. Also the minimum valley or maximum peak might be
interesting aggregation measures for each time period. More statistical values
such as the median or the standard deviation could give even more detail.
Also a combination of several of those aggregation measures could be useful,
in particular if those are visually depicted later on, for example in box plots.

6.3.5 Projection and Dimensionality Reduction

Eye tracking data can even be regarded as multivariate or high-dimensional
data consisting of a multitude of attributes [299], making it hard to identify
patterns, in particular correlations among the attributes. Consequently, it
might be a good idea to project the high-dimensional data to a lower
dimension, typically 2D or 3D, for example, visualized by means of a
scatter plot. The general concept behind the dimensionality reduction is the
preservation of the original data structures as much as possible, meaning
similar data points from the original high-dimensional data should be located
close to each other in the projected lower-dimensional data. Moreover, high-
dimensional data points that are not similar should be placed far apart in
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the projected lower-dimensional data. Although this is a powerful concept,
the property of preserving the data structure in the projected data cannot
be reached in all data situations due to the fact that a projection to a
lower dimension does not leave as many options to place the data as a
high-dimensional structure would offer. A pure algorithmic analysis of the
high-dimensional data would also be an option, however the large number
of attributes as well as the observations providing values for each attribute
make an algorithmic approach sometimes computationally intractable [195].
Hence, a projection might be the last chance to provide an overview about
certain data patterns, even at the cost of losing some of the important
information from the originally non-projected data.

We can find many dimensionality reduction techniques in the
literature [176], which are divided into two major classes called linear
and non-linear techniques. Popular candidates for the linear class are the
principal component analysis (PCA) [241] or multi-dimensional scaling
(MDS) [497] while non-linear techniques are the t-distributed stochastic
neighbor embedding (t-SNE) [511] or the uniform manifold approximation
and projection (UMAP) [351] to mention a few from a large repertoire of
existing techniques. For eye tracking data it might be of interest to interpret
the scanpaths as feature vectors and to investigate whether a dimensionality
reduction method can uncover similar and dissimilar scanpaths after they
have been projected to a lower-dimensional space. However, interpreting the
entire scanpaths as vectors will not lead to a good solution since they contain
too many variations and build too long feature vectors that are hardly similar.
A better option is to first transform, aggregate, and normalize the scanpaths, to
first reduce the variability of the input data for the dimensionality reduction.
As a final stage, the transformed scanpaths can be projected to 2D and be
visualized as scatterplots [66, 79]. As another add-on in the visual output of
the projection the user might wish to interact with the projection tool and
modify typical data parameters like the length of the scanpaths to be explored
or even other threshold parameters that reduce the data complexity, i.e. feature
vector lengths.

6.3.6 Correlation and Trend Analysis

If several attributes exist in eye tracking data, for example fixation durations,
saccade lengths, maximum area covered in a stimulus, and so on, it might
be of particular interest to analyze whether these attributes stand in a certain
correlation behavior. This means, for example, that an increase in value for



6.3 Algorithmic Analyses 251

one attribute also increases the value of another or even more other attributes.
In contrast, the increase could also lead to a decrease for other attributes.
The first observation is called a positive correlation while the second kind
is denoted negative correlation. Not only the static correlation behavior of
attribute values might be of interest but also the dynamic ones, i.e. it could be
of particular value to identify the correlation behavior over time between two
or even more attributes. For example, the average fixation duration in a certain
time period might correlate in a specific way with the average saccade length
in the same time period. If this time period is moved just like a sliding time
window over the entire scanpath we could analyze if the dynamic correlation
pattern changes or stays the same. The scanpath with the attributes fixation
duration and saccade length is just a simple example for such a correlation
analysis but there is no limitation to extend it to any kind of quantitative
attribute, static or dynamic. The quantitative eye movement metrics could
even be set in correlation to other metrics not directly related to the eye [540].

If the dynamics in the eye tracking data plays a crucial role for further
investigations we might consider trend analyses [175]. These algorithmic
approaches take into account a time-varying dataset and compute a trend
in it based on certain attributes and data properties. For example, for eye
movement data it might be of interest to analyze how the fixation duration
changes over time since there is some kind of evidence that the fixation
duration can give hints about certain task solution strategies and how much
effort a viewer is putting into a certain task. A similar aspect holds for the
saccade lengths, i.e. analyzing the saccade lengths can also give insights into
the modification of a certain viewing behavior or scanning strategy. Trend
analysis can help to uncover increasing or decreasing effects in a dynamic
dataset, but also constant behavior, oscillating or alternating effects, as well
as outliers and anomalies. Moreover, considering correlations we might even
combine trend analysis with correlation analysis to identify countertrends in
a dynamic dataset, for example, an increasing trend pattern might hold for
one attribute, but compared to another one which shows a decreasing trend
pattern, the combination of both patterns would uncover a countertrend, i.e.
one dynamic attribute shows an opposite effect compared to another one
or even many more. The trend analysis might even be carried out for an
individual attribute, like the saccade length over time, and then if it is applied
to all scanpaths of all eye tracking study participants, those trend detection
results might even be usable for grouping participants. However, the grouping
strongly depends on the attribute under investigation and also how long the
corresponding scanpaths are, for example.



252 Eye Tracking Data Analytics

6.3.7 Pairwise or Multiple Sequence Alignment

Eye movements, i.e. scanpaths, can be interpreted as sequences of characters
stemming from a common alphabet. This means we can transform each
scanpath into a finite string consisting of a series of characters while there
should be a limited number of those characters to reduce the variability
in those computed sequences. This has the benefit that scanpaths can be
compared by applying either a pairwise or multiple sequence alignment
method [58], typically known from bioinformatics in comparing DNA or
RNA sequences. The general idea behind this concept is to compute some
kind of consensus matrix [84] which gives an impression of similar and
dissimilar regions in the list of eye movement sequences, i.e. scanpaths (see
Figure 6.4). The transformation of a scanpath into a sequence of characters
can be based on several parameters, for example each fixation might be
translated into a character based on a subdivision of a stimulus into areas of
interest while each area of interest is modeled by a unique character. The more
AOIs are present, the more characters will be encoded into a corresponding
scanpath, hence making the chance quite low of finding a good consensus
among many of those scanpaths. For this reason, it is a good idea to let a
user interactively adapt the separation of the visual stimulus into areas of
interest to see the impact of the sub-division on the output of the consensus
matrix. However, such an approach is quite time-consuming, in particular if
the scanpaths are long and consist of many characters. Positively, there is a
lot of research in the field of bioinformatics that supports quite fast solutions
to this algorithmic problem.

There are string-based sequence alignment methods which have also
been used for comparing eye movement data, for example, the Levenshtein
distance [54]. The alignment algorithms have been applied, for example,
in combination with clustering approaches to find a good grouping of eye
tracking study participants based on their scanpath patterns or to find specific
areas of interest [162, 404]. Also the Needleman–Wunsch algorithm goes in
a similar direction [367] and has also been adapted to work for eye movement
data [525]. Tools like SubsMatch [297] or MultiMatch [148] are interesting
offspring from this line of research, apart from many others. However, if
it comes to dynamically changing scanpaths, generated by various people
in a long-duration task, those alignment methods soon reach performance
issues if they are applied to the raw scanpath data. In this case, some kind
of aggregation or filtering algorithm has to reduce the size and complexity
of the data before it comes to an efficient alignment. This is actually the
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Figure 6.4 Alignment of a set of scanpaths from an eye tracking study. First, the scanpaths
are transformed into character sequences based on user input, before they are aligned [84].

challenging bottleneck of this algorithmic technique to compare the eye
movement patterns by aligning them to identify dynamic pattern groups that
can be used to classify scanpaths, for example.

6.3.8 Artificial Intelligence-Related Approaches

Powerful concepts for data analysis have been developed in the field of
artificial intelligence (AI) [326], and more and more have also found their
way to the field of eye tracking [455]. The idea behind artificial intelligence
is to mimic human intelligence as much as possible to include the power of
the computer as a way of faster detecting solutions to challenging problems
that the human alone could not find that quickly and the computer not
that precisely. AI also includes fields like machine learning [10] and deep
learning [390, 527], describing strategies to make the computer learn from
given datasets to apply generated models from a training phase on new data
elements, for example, to classify them or to predict future scenarios. The
machine gets more and more experienced and is finally able to apply the
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computed rules to new situations. The learning can happen in different ways
like supervised, semi-supervised, unsupervised, or as reinforcement. Multi-
layered neural networks [384] are often used to train, as a mechanism to
perform complex tasks in larger and larger datasets to which eye tracking
data also belongs. Although artificial intelligence has generated various fast,
efficient, and quite accurate methods, the whole discipline is just about to start
to take into account eye tracking data. The major reason is that the available
eye tracking data today might still be too small to make reliable predictions
based on artificial intelligence, using machine and deep learning approaches.

However, a few problems have been tackled in the field of eye tracking
by making use of AI-related concepts. For example, convolutional neural
networks have been used for analyzing real-time eye tracking data with focus
on interactive applications [77]. In most scenarios the research focuses on
eye images, for example, to train a machine learning algorithm based on a
multitude of such images to classify or predict newly seen images. Such an
approach is, in particular, useful for detecting negative performance issues
of car or truck drivers, for example, if their eye movements indicate fatigue
effects that might cause accidents [115]. Such image-centric tasks are hard to
solve by standard algorithms due to the vast amount of data and features to be
explored, in particular, if real-time analyses are required. Machine learning,
on the other hand, can be used to make fast predictions and classifications,
however a certain large amount of training data is required to generate
accurate and meaningful results. For example, a model for predicting where
people look in images [302], predicting gaze fixations [133], or saliency in
context to predict visual attention [249] are typical research areas.

6.4 Visualization Techniques and Visual Analytics

In most cases the output of the algorithmic computations is too complex and
too large to be inspected by just reading the generated textual information.
Typically, algorithms take a dataset or several of them as input and
produce a new processed dataset which would still require a time-consuming
exploration process to understand and to find patterns. Consequently, a visual
encoding of such datasets is a powerful idea since the visual output is
typically easier and more rapidly understandable by the human user than
the textual counterpart. However, it should be guaranteed that the visual
encoding is based on appropriate visual variables that help to quickly identify
visual patterns that can be remapped to data patterns in order to analyze the
data. In particular, in the field of eye tracking, the data can be based on at
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least three major data dimensions which come in the form of space, time,
and participants in an eye tracking study. Depending on the tasks [304] the
users of a visualization technique or visual analytics system plan to solve,
the visual encoding can vary a lot as well as the interaction techniques that
are integrated into the provided visual depictions of the data. Moreover, the
way in which the data actually exists or is being transformed plays a crucial
role for the visual metaphor and the visual variables in use. For example, it
makes a difference for the visualization technique whether we are interested
in the raw fixations to a stimulus or to spatially aggregated areas of interest,
while the dynamics of the data plays a role for the visual depiction, static
data is definitely easier to visualize than its time-varying variant, i.e. several
instances of the static data.

Visualization techniques for eye tracking data exist in various forms [47],
either focusing on individual aspects in the data, or incorporating more and
more data dimensions and derived values, typically attached to one or more
of the provided visualization techniques focusing on the primary aspect in
the data based on the primary task or tasks a user wishes to solve with a
visualization, or at least get a hint about a certain visual pattern that initiates
further exploration and analysis processes. Visual analytics goes one step
further than traditional visualization techniques since it is an interdisciplinary
field that combines concepts from algorithmics, statistics, human–computer
interaction, visualization, perception, cognitive processing, and many more.
Hence, with visual analytics we can actually get power from both sides,
the machine and the human side, to build models and hypotheses for our
eye tracking data guided by interactive visual depictions of the interesting
pieces of the data, finally leading to insights and knowledge from those
large and heterogeneous eye tracking data sources, in particular in future
scenarios when eye tracking data grows and grows [44] with many more
extra data sources about human behavior and additional personal feedback.
Visualization and visual analytics are not built to solve the problems in eye
tracking data, but in cases where the data is visually encoded in a perceptually
and visually effective way, we can recognize visual patterns that can be
remapped to data patterns in the best case, leading to the formulation of new
hypotheses and also to the confirmation, rejection, or refinement of already
existing hypotheses. Visualization plays the role of guide through our large
eye tracking data since it allows us to navigate, scroll, filter, and finally,
explore the data.
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(a) (b) (c)
Figure 6.5 Statistical plots can be useful to get an overview of the quantitative values in an
eye tracking dataset: (a) a bar chart; (b) a line graph; (c) a scatter plot.

6.4.1 Statistical Plots

The complexity and size of eye tracking data might be reduced to only a
few quantitative numbers expressing properties about the data. Although the
general data dimensions like space, time, and participants are not explicitly
derivable from such quantities, they might be worth visualizing due to the
fact that they can give an overview for comparing eye tracking data in
several dimensions. Famous examples of such statistical graphics are box
plots for the value distribution of one attribute, histograms and bar charts
(see Figure 6.5(a)) for visually exploring weighted distributions of values of
one attribute, line charts (see Figure 6.5(b)) for time-dependent attributes and
correlations between several attributes, or scatter plots (see Figure 6.5(c)) for
identifying correlations among two attributes, just to mention a few. Such
statistical plots have already been used for eye tracking data, for example, for
visualizing children’s eye movement behavior when watching TV as a line
chart [213], primarily to identify eye movements and saccades over time.
Also fixations can be displayed in a line chart, for example, for different
tasks to allow temporal comparisons [20]. Several more derived metrics like
mean values for saccades, fixation duration, and many more might be worth
investigating by using line charts [469].

In addition, bar charts and histograms have been used a lot to
depict distributions of attribute values, for example, for showing fixation
duration [129] or eye position accuracy [155], even extended to 3D bar
charts for visual attention distributions in 2D TV screens [55]. Bar charts
can show the weighted distribution, for example, the number of quantities
that fall into a certain bin illustrated by a bar or line in a histogram. Box
plots, on the other hand, do not encode the number of quantities that fall into
a certain bin, but they can show the statistical distribution of all quantities
over the value range while typically indicating the middle fifty percent of
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all the values as a bar separated by the median line that reflects the value
exactly in the middle of the distribution. Box plots can be useful to show
fixation deviations with the goal of analyzing the deterioration of the eye
tracking device calibration [240] or as a summarized comparison of study
participants and their normalized scanpath saliency scores [158]. Analyzing
pairwise correlations can be done with scatterplots while each attribute is
mapped to one of the axes. Also, in the field of eye tracking, scatter plots have
been used, for example, to plot correlations between response latency and
angular disparity [268]. Moreover, scatter plots can be used for comparing
different species’ eye movements like humans and monkeys, for example, by
plotting amplitudes and velocities of the recorded saccades [35]. To explore
more than two attributes we might use star plots, for example, to visualize
scanpath properties [203] or fixations [365]. Apart from star plots we can use
parallel coordinate plots to show correlations between several attributes like
derived eye tracking metrics [299].

6.4.2 Point-based Visualization Techniques

Some visualization techniques do not focus on statistically derived data from
original eye tracking data. Those visualization techniques more or less take
into account the fixation data without further aggregating it and try to visually
encode those fixations over space and time, for each participant individually
or even aggregated for groups of participants. The fixation data is typically
given as x- and y-coordinates with a fixation duration and a time stamp.
Due to the fact that the fixation data is not further spatially aggregated,
for example, into areas of interest, we denote a visualization of it by the
term point-based visualization. One major visual focus is the fixation point
evolution over time, i.e. in the x- and y-dimensions in space while the spatial
dimension stems from the displayed static or dynamic stimulus in an eye
tracking study. To reach this goal of exploring the temporal aspect of the
eye tracking data we can use a timeline visualization which uses one axis
for the time dimension while on the other one more typical time-varying
property or attribute from the eye tracking data are represented. To show
such time-dependent scanpath data on a point-based perspective we might
split the x- and y-coordinates and plot both separately (see Figure 6.6) in two
timeline plots [203, 209]. Moreover, a 3D variant would also be possible like
a space-time cube [293] in which the x–y-plane is used for the coordinates
of the fixations while the z-axis shows the evolution over time. However, 3D
charts have to be taken with care due to the fact that they generate occlusion
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(a) (b) (c)
Figure 6.6 Splitting the fixations from a scanpath into their x- and y-coordinates: (a) the
original scanpath; (b) a timeline for the y-coordinates; (c) a timeline for the x-coordinates.

effects and are difficult to interpret because of missing reference points to the
axes. As a negative consequence of splitting the x- and y-coordinates of a
scanpath to show them separately in timeline plots we cannot easily identify
the temporal changes in the spatial dimension, i.e. in the visual stimulus.
To see this effect we can use the popular gaze plots [448], however, if the
scanpaths are quite long or many participants’ scanpaths have to be shown at
the same time, we reach a problem denoted by visual clutter [426].

Instead of showing the fixation points over time we might be interested
in inspecting the fixation data with an additional view on the shown stimulus,
i.e. the spatial dimension. This could be done using a transparent overlay on
the stimulus, however, the dynamics of the fixation data can also be shown,
for example, by an animated diagram known as a bee swarm visualization [1],
also for a dynamic stimulus [345]. However, animation is typically considered
to be problematic for comparisons over time [505] due to the fact that a
viewer has to remember lots of visual patterns in the short-term memory to
reliably do the comparisons. A static side-by-side visualization might be the
better option for such data although the display space is a limitation of the
static representation. If the fixation data is temporally aggregated as well as
over groups of participants we denote such a visualization as visual attention
map, fixation map, or heat map [49, 50, 473]. This aggregated representation
of the fixation data does not show the time-varying behavior, but serves
as a great overview of visual attention hot spots—regions in the visual
stimulus that attracted much attention. Such hot spot regions are typically
used for defining areas of interest (see Section 6.4.3). The visual depiction of
these hot spots can be based on several criteria like fixation count, fixation
duration, relative fixation duration, or participant percentage, to mention a
few. Moreover, the visual appearance of the attention maps can be based on
several visual variables (see Figure 6.7 for visual attention maps enhanced
by contour lines); typically color coding [50, 167] is used to visually depict
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(a) (b)
Figure 6.7 Two different visual attention maps from a public transport map eye tracking
study. In this case the hot spots of visual attention are indicated by contour lines [100]. Route
finding tasks in the maps of: (a) Tokyo, Japan; (b) Hamburg, Germany.

the visual attention at a certain point, but also luminance [515], contour
lines [100, 158, 206], or even 3D effects [321, 530]. However, although
attention maps seem to be powerful concepts they also have to be taken with
care [235] to avoid misinterpretations of the data. For a dynamically changing
stimulus it is challenging to generate a visual attention map. However,
synchronous attention of several participants can be computed and then this
can be visualized over time [357]. Also motion-compensated attention maps
based on optical flow concepts for moving objects have been explored [311].
On the other hand, for 3D visual stimuli, the 3D visual attention is typically
directly incorporated in the stimulus [394], maybe also by 2D projections
or by coloring the entire 3D visual object by using the visual attention map
color [483].

If we are interested in seeing the connected fixations, i.e. the whole
scanpath, over space and time we can use scanpath visualizations [375],
meaning a sequence of fixations and saccades [235]. A standard visualization
for a scanpath is a composition of circles of different size with the circle
center where the fixation was done in the visual stimulus, encoding the
fixation duration in the circle size while the saccades are represented
as straight lines connecting subsequent fixations [448]. The scanpath
visualization is typically overplotting the visual stimulus for contextual
reasons (see Figure 6.8 for examples of scanpath visualizations). Also the
velocity of fixation data can be encoded [318] while in the early days the
fixations were not visually indicated, just the saccades [539]. Scanpaths can
even be used to derive other visual effects, for example the convex hull
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(a) (b)
Figure 6.8 Scanpath visualizations for (a) one participant and (b) 40 participants [100]. The
scanpath visualization in (b) can hardly by used for data exploration.

or surrounding area of a scanpath [205] which might be an indication of
how much area was covered during visually scanning a stimulus. Although
scanpath visualizations show the spatio-temporal behavior of the participants’
scanning strategies, they mostly suffer from visual clutter [426] making
them only useful for shorter scanpaths for one or two participants. Bundling
scanpaths can be an option [118, 225, 251] but at the cost of modifying
the straight lines and hence leading to misinterpretations of the scanpath
data. Moreover, the data-to-ink ratio might be reduced in the scanpath
visualization [203] or the vertical and horizontal movement directions might
be shown separately at the surrounding borders of a visual stimulus [94].
To avoid long scanpaths being shown we might only show the parts of the
scanpaths that are located in a sliding time window that is animated over the
entire time axis [523]. Finally, 3D scanpaths can be shown by overplotting
the original visual stimulus [165, 394, 484] or by using a modified 2D
representation of the 3D stimulus and by mapping the scanpath to the new
2D projection [415].

If the visual stimulus and the temporal information are of interest, a
space-time cube visualization can provide insights [293]; however, occlusion,
distortion, or irritating depth perception effects might occur. The benefit of
space-time cubes is the fact that they can be used for static [330] as well as
dynamic [164, 311] visual stimuli (see Figure 6.9). Space-time cubes require
various interaction techniques to rotate, navigate, and scroll in the dynamic
data, with the goal to get an overview about space, time, and participants.
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Figure 6.9 A space-time cube showing clustered gaze data for a given stimulus [311]. Image
provided by Kuno Kurzhals.

6.4.3 AOI-based Visualization Techniques

A spatially aggregated view on the fixation data provides insights into
certain connected regions in a visual stimulus in combination with the visual
attention paid to the scene, even over time. Moreover, those areas of interest
(AOIs) or regions of interest (ROIs) can be set in relation to each other, for
example, by computing the number of pairwise transitions between them,
generating a static [202, 205, 329, 393] or dynamic AOI transition graph [73]
or a dynamic Sankey diagram called AOI rivers [80]. Those visualizations
can be enhanced by additional eye tracking metrics [169, 465], even a node-
link diagram [82] instead of a transition matrix can be shown. AOIs can be
defined in several ways, typically taking into account the hot spots of visual
attention, the semantics of a stimulus with its visual objects, or a naive grid-
based sub-division of the stimulus space. The hot spot-based approach can
by done algorithmically [404, 435] or manually, by defining rectangular or
arbitrarily shaped borders around hot spots or by using a clustering algorithm,
for example k-means producing a Voronoi-like sub-division of the space. One
benefit of AOIs is that additional metrics can be derived based on the formerly
defined spatial sub-division [261, 401], for example, the time to first fixation,
the frequency of visits of an AOI, or the order of AOI visits, to mention a
few. If we are interested in the temporal aspect of AOI visits we have several
options, for example, using an animation or a static side-by-side or stacked
display as well as some form of rapid serial visual presentation [477]. A static
representation for the AOI visits for one or several participants is shown in
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(a) (b)
Figure 6.10 AOI visits over time, either for one participant and three AOIs [414] (a) or
three participants and four AOIs in parallel [417] (b). Extending these visualizations to many
participants, many AOIs, and long scanpaths can lead to visual clutter effects.

Figure 6.10. The fixation duration in an AOI can be shown by additional
visual variables [138], for example, by the circle size [414]. However, visual
clutter can be a problem if too many participants are shown [417]. But for one
participant, observations like reading tasks where each word can be defined
as an AOI, a visual approach like this might be quite useful [40, 474].

An attention map can also be used to visually encode the fixation numbers
and additional derived metrics in formerly defined areas of interest, statically
but also evolving over time [126]. Moreover, if the changes over time are
of particular interest, a scarf plot [100, 308, 421] is recommended which
encodes the participants on parallel timelines and indicates the duration of
AOI visits by differently long color coded rectangles [235, 523] while the
color coding is used for the correspondence [423] between the AOIs shown
in the scarf plot and those annotated in the stimulus (see Figure 6.11).
The AOIs can even be visually enhanced by thumbnail images to show the
contextual information from the visual stimulus [502]. Also 3D visual stimuli
can be encoded in a scarf plot [484]. As a negative issue we cannot see
the dynamic AOI transitions between AOIs in a scarf plot, just the AOI
visits over time, which are visually encoded as well in an AOI river [80]
by using merging and splitting of sub-rivers following the visual metaphor
of a Sankey diagram (see Figure 6.12). One problem with the graph-based
transition visualizations, matrix or node-link-based ones, is the fact that the
contextual information to the shown stimulus is lost [48, 184, 498]; however,
due to this visual independence from the stimulus, the visualization technique
has all the freedom to place the visual objects for all AOIs wherever they
fit in the display. Finally, apart from the transitions that form a graph we
can generate a hierarchy of AOIs to indicate the major AOI branches that
the participants follow during a visual scanning strategy [423, 502, 525]. A
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(a) (b)
Figure 6.11 Annotating a visual stimulus, overplotted with a contour visual attention map,
with color coded AOIs (a); the AOI visits over time can be seen in a corresponding scarf plot
(b) that uses the same color coding as in the annotation view.

Figure 6.12 The dynamic AOI transitions can be shown in an AOI river visualization [80]
with an enhancement by Voronoi cells.

combination of graph and hierarchical aspects among the AOIs can be used to
compute a hierarchical graph layout for the AOIs together with their transition
frequencies [81].

6.4.4 Eye Tracking Visual Analytics

Since eye tracking gets more and more interesting for various application
fields, the number of available datasets increases day by day. Moreover, the
size and complexity of those datasets also changes, from simple scanpaths
as in early times to various other complementing measures, metrics, and
additional data sources. This progress in eye tracking technology and the
need for analyzing the data from various application fields requires new
powerful concepts to which visual analytics also belongs [14]. Eye tracking
data consists of so many different aspects generating a multitude of user
tasks that require solutions or at least hints where to look further to find
answers to hypotheses. Visual analytics does not directly give answers but
it gives users the control to interact and navigate in the visual depictions
of the data. Moreover, it supports algorithmic approaches, also allowing
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building of models and visualizing them in a way that users can step-by-step
explore their eye tracking data. To reach this goal, visual analytics applies
techniques from many application fields [277] due to the fact that it is an
interdisciplinary approach. However, visual analytics cannot solve all eye
tracking exploration problems [412], but at least it provides ideas that show
how to come closer to solutions, in cases where the data problem seems to
be algorithmically intractable or the required visualization produces a non-
scalable representation of the data. For example, real-time eye tracking data
analysis [482] is a challenging problem that needs powerful concepts from
various disciplines to keep up with the flood of data that is recorded, even
from several eye tracking devices at the same time, maybe generated in
scenarios involving VR/AR/MR or in particular, immersive analytics.

Gaze stripes [309] or ISeeCube [308] focus on visual analytics of video
data by providing visual and algorithmic concepts in combination. Both
visual analytics concepts can also be modified to make them applicable
to static visual stimuli. ISeeColor [390] combines interactive visualizations
and automatic recognition of independent objects by applying deep learning
approaches focusing on semantic segmentation. Also the identification of
reading patterns is in focus of eye tracking visual analytics [538]. Making
a visual analytics tool for eye tracking accessible via the internet (see
Figure 6.13) is a good idea to reach many users and to get feedback [22].

Figure 6.13 A graphical user interface showing several linked views for visually exploring
eye movement data: a clustered fixation-based visual attention map, a timeline view on the
visually attended AOIs, a scanpath visualization, a visual attention map with color coded hot
spots, and a scarf plot for an overview about the inspected AOIs [22].
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Moreover, researchers can upload and share their eye tracking data with
others, as well as the found insights. ETGraph is a system for eye tracking
visual analytics based on graphs [211]. Also in the medical domain there are
tools making use of eye tracking data and trying to analyze them with visual
analytics concepts [472].





7
Open Challenges, Problems, and Difficulties

In the previous chapters we read a lot about visualization, visual analytics,
user studies, and eye tracking, but although these research disciplines provide
various concepts and techniques to tackle problems and challenges at the
intersection of eye tracking and visual analytics [528] we are aware of the
fact that there are numerous open questions, problems, and difficulties. Some
of them might be solved in the future, some of them are quite hard to solve
with currently available technologies. In the following sections we discuss
some of those future problems without explicitly stating that the discussions
will take into account a complete list of all those challenges. On a top level we
can define a sub-division of the problems into two major categories focusing
on eye tracking as a technology incorporating user study issues as well as
eye tracking device problems, for example, concerning the recorded data.
Secondly, visual analytics with its interdisciplinary character builds another
category for future challenges concerning aspects related to data analytics
and interactive visualization, but also the human users with their perceptual
and visual abilities. In general, it seems as if the data and the human users
somehow stand in the center of the involved topics, building some kind of
interface between eye tracking and visual analytics. The visual analytics
systems might be evaluated by human users generating eye tracking data,
while visual analytics is used again to analyze this eye tracking data but based
on the human users with their tasks and hypotheses in mind.

7.1 Eye Tracking Challenges

Apart from technological problems related to the eye tracking devices,
general user study problems can occur that lead to erroneous or inaccurate
study data. In particular, in the field of eye tracking, people might suffer
from visual and perceptual disorders that do not allow reliably recording eye
movement data from those participants. Moreover, there might be calibration
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problems that lead to negative aspects concerning the recorded data. The eye
movement data can be inaccurate in many ways, making it hard to use or
to make predictions based on the users’ visual scanning behavior. Hence,
it is a good advice to check the reliability of the recorded data before it is
analyzed and visualized to avoid wrong conclusions drawn from it. No matter
how accurate the data is, the eye-mind hypothesis leads to the fact that the
data is regarded as useful or not for describing what people are cognitively
processing while they are visually inspecting a static or dynamic stimulus
which also makes the interpretation of eye tracking data a challenging field
of research. The eye–mind hypothesis can have a negative impact for the
whole eye tracking data analysis and visualization community, depending on
whether we believe in it or not.

Another eye tracking challenge is caused by the costs that come with each
eye tracking device [44]. Although those costs have been decreasing over
the years due to the progress in hardware technology like faster processor
speed or improved digital video processing and the fact that the market for
selling those devices is growing a lot, it can still be quite expensive, but this
typically depends on the application domain and parameters like accuracy
and tracking rate, i.e. all the required technologies involved in building a
suitable eye tracking device. Moreover, nowadays there is some kind of
competition between eye tracking companies (see Section 5.2.4) trying to
design the best solution for any kind of application scenario, a fact that can
also lead to cheaper devices, but mostly for general applications using the
standard devices. One such emerging field of eye tracking research focuses
on web-based or online eye tracking studies that are particularly useful in
pandemic times such as those we are facing at the moment. However, online
studies are typically uncontrolled. For eye tracking studies, this aspect also
means that each participant must be equipped with an eye tracker or the eye
movement data has to be recorded by other novel devices, for example, by
using a webcam which, on the negative and challenging side, does not allow
producing quite accurate eye movement data over space and time. This is also
one of the challenging difficulties for eye tracking integrated in smartphones,
either for analyzing the design of an app or for using it in the mode of gaze-
assisted interaction to modify something in a user interface or to navigate in
an app.

Allowing eye tracking to be used in smartphones might make this
technology applicable in a collaborative manner, i.e. making use of the
scanpaths of several people in different places in the world, but this powerful
idea causes even further challenges related to data privacy issues and ethical
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aspects in particular, if the recorded eye movement data is made publicly
available online. However, some future tasks, for example, by using a visual
analytics system can only be solved in a collaborative manner due to the
size and complexity of the involved data and knowing where each individual
participant was looking at over space and time is very important to find design
flaws in the visual interface, the visualization, the interaction techniques,
but also in the collaboration and communication between the participants.
Hence, it might be important to show the recorded eye movement data
to other participants as well which contradicts the data privacy rules. In
particular, gaze-assisted interaction can be a problem, either for the individual
participant or even a group solving a collaborative task based on eye tracking.
The Midas touch problem is well-known when it comes to interacting
with visual objects, typically solved by allowing multi-modality interactions
including voice, mouse, or gestures [391], or taking into account the dwell
time or including eye blinks.

Leaving the laboratory for the real world, i.e. changing the eye tracking
study setting from a more controlled environment to an uncontrolled field
environment, causes problems for the tracking devices, the reliability and
accuracy of the data, but also brings in new challenges for mapping and
matching the data with the recorded dynamic visual stimuli. In addition, if
eye tracking is used in virtual or augmented reality scenarios we might face
additional difficulties that cause data analysis problems later on which are
mostly also due to the unclear matching of the seen stimuli and the recorded
eye movement data, also including aspects from cognitive psychology,
perception, attention, memory, and many more related fields. Building a link
between what we see and what we think or cognitively process is one of
the key problematic issues we are facing today [305]; however, both fields,
eye tracking and cognitive psychology might benefit from such research
results, helping us to build better user interfaces, visualizations, interaction
techniques, visual analytics systems, and the like.

There are many more challenges in the application area of eye tracking
which make the whole field worth researching and which leads to an increase
in the number of people involved in the community. Moreover, eye tracking
can be found in many other application fields, making it a valuable scientific
discipline.

7.2 Eye Tracking Visual Analytics Challenges

Data analysis, visualization, or visual analytics have been successfully
applied to eye tracking data, but due to the fact that the data itself gets
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bigger and bigger, stemming from several heterogeneous data sources creates
more and more challenges for all of the data analytics and visualization
fields. Moreover, real-time analyses require the most powerful concepts to
keep up with the pace of the growing eye tracking datasets. For example,
having recorded various scanpaths beforehand and trying to analyze a new
incoming scanpath in the light of the existing data might be a great idea,
but to achieve fast solutions, i.e. in real-time, we need advanced algorithmic
approaches that can efficiently tackle such data scenarios. Fields like artificial
intelligence, machine learning, deep learning, data mining, and the like play
more and more important roles in the data analysis, however visualization and
visual analytics are suitable concepts to involve the human users with their
perceptual and visual strengths. But negatively, the human users are typically
not able to solve real-time data analysis problems, they can more or less guide
the analysis process on a visual exploration basis. For example, human users
can decide which kinds of algorithms to apply to a certain data problem or
they can include additional information in the data analysis process, maybe
the semantics given in a visual stimulus which is something that an algorithm
can hardly involve automatically in the analysis, unless it is not trained with
various stimuli beforehand.

For a visual analytics system it might be a challenge to reliably connect
itself with the recorded eye movement data. This is in particular problematic
if several eye tracking devices are used or a new one that has not been used
before comes into play which requires first adapting to the new data format.
Moreover, it is unclear if the visual analytics system is able to keep up with
the growing dataset sizes, in particular if dynamic stimuli like videos are
included. It is also unclear if such a system can handle both types of stimuli,
static and dynamic ones, also those with actively changeable content like
interactive user interfaces. The scalability issues might arise if eye tracking
is integrated in smartphones one day, producing vast amounts of data worth
analyzing, even in real-time which might cause further problems for storing
the data, transforming it, and finally, accessing it again to make predictions
or recommendations based on the formerly recorded data. Also the display
has a crucial role for a visual analytics system, meaning small-, medium-,
or large-sized displays, all having their benefits and drawbacks. Those are
typical problems that come with growing dataset sizes including research
from the field of big data [44], involving various disciplines to analyze the
data with the goal to detect rules, correlations, patterns, and finally, insights
and knowledge, even in real-time. Another aspect from the perspective of
visual analytics systems could be the idea of letting users interact with the
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system while at the same time their eye movements are recorded. This data
can be analyzed while users further work with the system and, based on the
outcomes of such an analysis, the visual analytics system might be adapted
to some degree, making the whole concept some kind of dynamic visual
analytics system based on user behavior like visual scanning strategies.

Many application fields could benefit from eye tracking as well as visual
analytics in combination. For example, the field of medicine might apply eye
tracking to later analyze and understand how doctors behaved during surgery,
i.e. where they looked over time. Moreover, a similar scenario holds for
aircraft pilots who first control a plane, for example, in a landing maneuver.
Recording the eye movements and analyzing and visualizing the data later
on can help to identify which visual elements the pilot has missed during
the maneuver. This again might help to improve the landing strategy for later
training phases. Such insights could be helpful to better train young doctors
or pilots to get more practice for future surgeries or landing maneuvers.
Education in eye tracking as well as visual analytics [71] is a deciding factor
to train young researchers and to make them aware of the challenges in both
fields, but also the benefits and synergy effects that might come with such
a combination. On the negative side, it is quite difficult to educate young
students since the fields of eye tracking and visual analytics both involve that
many concepts that it is impossible to teach these topics in a short time period,
hence only the tip of the iceberg can be the focus of education.
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