

 [image: Pragmatic Bookshelf]

Agile Web Development with Rails 4

by Sam Ruby, Dave Thomas, David Heinemeier Hansson

Version: P1.0 (September 2013)
Copyright © 2013 Pragmatic Programmers, LLC. This book is licensed to
	the individual who purchased it. We don't copy-protect it
	because that would limit your ability to use it for your
	own purposes. Please don't break this trust—you can use
	this across all of your devices but please do not share this copy
	with other members of your team, with friends, or via file sharing services. Thanks.

—Dave & Andy.

 Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and The Pragmatic Programmers, LLC
 was aware of a trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic Starter Kit,
 The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
 and the linking
 g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this
 book. However, the publisher assumes no responsibility for errors or
 omissions, or for damages that may result from the use of information
 (including program listings) contained herein.

 Our Pragmatic courses,
 workshops, and other products can help you and your team create better
 software and have more fun. For more information, as well as the
 latest Pragmatic titles, please visit us at
 http://pragprog.com.

Table of Contents
		Acknowledgments

		Introduction

	 	Rails Simply Feels Right

	 	Rails Is Agile

	 	Who This Book Is For

	 	How to Read This Book

I. Getting Started
	 	1. 	Installing Rails

	 	 	1.1 	Installing on Windows

	 	 	1.2 	Installing on Mac OS X

	 	 	1.3 	Installing on Linux

	 	 	1.4 	Choosing a Rails Version

	 	 	1.5 	Setting Up Your Development Environment

	 	 	1.6 	Rails and Databases

	 	2. 	Instant Gratification

	 	 	2.1 	Creating a New Application

	 	 	2.2 	Hello, Rails!

	 	 	2.3 	Linking Pages Together

	 	3. 	The Architecture of Rails Applications

	 	 	3.1 	Models, Views, and Controllers

	 	 	3.2 	Rails Model Support

	 	 	3.3 	Action Pack: The View and Controller

	 	4. 	Introduction to Ruby

	 	 	4.1 	Ruby Is an Object-Oriented Language

	 	 	4.2 	Data Types

	 	 	4.3 	Logic

	 	 	4.4 	Organizing Structures

	 	 	4.5 	Marshaling Objects

	 	 	4.6 	Pulling It All Together

	 	 	4.7 	Ruby Idioms

II. Building an Application
	 	5. 	The Depot Application

	 	 	5.1 	Incremental Development

	 	 	5.2 	What Depot Does

	 	 	5.3 	Let’s Code

	 	6. 	Task A: Creating the Application

	 	 	6.1 	Iteration A1: Creating the Products Maintenance Application

	 	 	6.2 	Iteration A2: Making Prettier Listings

	 	7. 	Task B: Validation and Unit Testing

	 	 	7.1 	Iteration B1: Validating!

	 	 	7.2 	Iteration B2: Unit Testing of Models

	 	8. 	Task C: Catalog Display

	 	 	8.1 	Iteration C1: Creating the Catalog Listing

	 	 	8.2 	Iteration C2: Adding a Page Layout

	 	 	8.3 	Iteration C3: Using a Helper to Format the Price

	 	 	8.4 	Iteration C4: Functional Testing of Controllers

	 	 	8.5 	Iteration C5: Caching of Partial Results

	 	9. 	Task D: Cart Creation

	 	 	9.1 	Iteration D1: Finding a Cart

	 	 	9.2 	Iteration D2: Connecting Products to Carts

	 	 	9.3 	Iteration D3: Adding a Button

	 	10. 	Task E: A Smarter Cart

	 	 	10.1 	Iteration E1: Creating a Smarter Cart

	 	 	10.2 	Iteration E2: Handling Errors

	 	 	10.3 	Iteration E3: Finishing the Cart

	 	11. 	Task F: Add a Dash of Ajax

	 	 	11.1 	Iteration F1: Moving the Cart

	 	 	11.2 	Iteration F2: Creating an Ajax-Based Cart

	 	 	11.3 	Iteration F3: Highlighting Changes

	 	 	11.4 	Iteration F4: Hiding an Empty Cart

	 	 	11.5 	Iteration F5: Making Images Clickable

	 	 	11.6 	Testing Ajax Changes

	 	12. 	Task G: Check Out!

	 	 	12.1 	Iteration G1: Capturing an Order

	 	 	12.2 	Iteration G2: Atom Feeds

	 	13. 	Task H: Sending Mail

	 	 	13.1 	Iteration H1: Sending Confirmation Emails

	 	 	13.2 	Iteration H2: Integration Testing of Applications

	 	14. 	Task I: Logging In

	 	 	14.1 	Iteration I1: Adding Users

	 	 	14.2 	Iteration I2: Authenticating Users

	 	 	14.3 	Iteration I3: Limiting Access

	 	 	14.4 	Iteration I4: Adding a Sidebar, More Administration

	 	15. 	Task J: Internationalization

	 	 	15.1 	Iteration J1: Selecting the Locale

	 	 	15.2 	Iteration J2: Translating the Storefront

	 	 	15.3 	Iteration J3: Translating Checkout

	 	 	15.4 	Iteration J4: Add a Locale Switcher

	 	16. 	Task K: Deployment and Production

	 	 	16.1 	Iteration K1: Deploying with Phusion Passenger and MySQL

	 	 	16.2 	Iteration K2: Deploying Remotely with Capistrano

	 	 	16.3 	Iteration K3: Checking Up on a Deployed Application

	 	17. 	Depot Retrospective

	 	 	17.1 	Rails Concepts

	 	 	17.2 	Documenting What We Have Done

III. Rails in Depth
	 	18. 	Finding Your Way Around Rails

	 	 	18.1 	Where Things Go

	 	 	18.2 	Naming Conventions

	 	19. 	Active Record

	 	 	19.1 	Defining Your Data

	 	 	19.2 	Locating and Traversing Records

	 	 	19.3 	Creating, Reading, Updating, and Deleting (CRUD)

	 	 	19.4 	Participating in the Monitoring Process

	 	 	19.5 	Transactions

	 	20. 	Action Dispatch and Action Controller

	 	 	20.1 	Dispatching Requests to Controllers

	 	 	20.2 	Processing of Requests

	 	 	20.3 	Objects and Operations That Span Requests

	 	21. 	Action View

	 	 	21.1 	Using Templates

	 	 	21.2 	Generating Forms

	 	 	21.3 	Processing Forms

	 	 	21.4 	Uploading Files to Rails Applications

	 	 	21.5 	Using Helpers

	 	 	21.6 	Reducing Maintenance with Layouts and Partials

	 	22. 	Migrations

	 	 	22.1 	Creating and Running Migrations

	 	 	22.2 	Anatomy of a Migration

	 	 	22.3 	Managing Tables

	 	 	22.4 	Advanced Migrations

	 	 	22.5 	When Migrations Go Bad

	 	 	22.6 	Schema Manipulation Outside Migrations

	 	23. 	Nonbrowser Applications

	 	 	23.1 	A Stand-Alone Application Using Active Record

	 	 	23.2 	A Library Function Using Active Support

	 	24. 	Rails’ Dependencies

	 	 	24.1 	Generating XML with Builder

	 	 	24.2 	Generating HTML with ERB

	 	 	24.3 	Managing Dependencies with Bundler

	 	 	24.4 	Interfacing with the Web Server with Rack

	 	 	24.5 	Automating Tasks with Rake

	 	 	24.6 	Survey of Rails’ Dependencies

	 	25. 	Rails Plugins

	 	 	25.1 	Credit Card Processing with Active Merchant

	 	 	25.2 	Beautifying Our Markup with Haml

	 	 	25.3 	Pagination

	 	 	25.4 	Finding More at RailsPlugins.org

	 	26. 	Where to Go from Here

	A1. 	Bibliography

Copyright © 2013, The Pragmatic Bookshelf.

 Early praise for Agile Web Development with Rails 4

			Agile Web Development with Rails is ​the​ Rails way to build real-world web apps—it’s definitive. Rails itself relies on this book as a test suite. Rails
			moves fast and AWDwR is always there, a backstage pass to the very
			latest.
	

	→ 	Jeremy Kemper
	
	Member of the Rails core team

	This is an excellent way to quickly get up and running with Ruby and Rails. The book is so good that Sam Ruby should change his name to Sam Rails.

	→ 	Aaron Patterson
	
	Member of the Ruby and Rails core teams

	Like many, I started out with Ruby by reading an earlier version of Agile Web Development with Rails. Many years (and a few updates) later, it’s still as good a resource for learning Rails as it has ever been, and this edition brings it right up to date with Rails 4.

	→ 	Stephen Orr
	
	Lead developer, Made Media

Acknowledgments

 Rails is constantly evolving and, as it does, so has
 this book. Parts of the Depot application were rewritten several
 times, and all of the narrative was updated. The
 avoidance of features as they become deprecated
 have repeatedly changed the structure of the book as what was once hot
 became just lukewarm.

 So, this book would not exist without a massive amount of help
 from the Ruby and Rails communities. To start with, we had a number of
 incredibly helpful formal reviewers of drafts of this book.

	Jeremy Anderson	Andrea Barisone	Ken Coar
	Jeff Cohen	Joel Clermont	Geoff Drake
	Jeremy Frens	Pavan Gorakavi	Michael Jurewitz
	Mikel Lindsaar	Nigel Lowry	Stephen Orr
	Aaron Patterson	Paul Rayner	Martijn Reuvers
	Doug Rhoten	Gary Sherman	Tibor Simic
	Gianluigi Spagnuolo	Davanum Srinivas	Charley Stran
	Federico Tomassetti	Stefan Turalski	José Valim

 Additionally, each edition of this book has been released as a beta
 book: early versions were posted as PDFs, and people made comments
 online. And comment they did; over time more than 1,000
 suggestions and bug reports were posted. The vast majority ended up
 being incorporated, making this book immeasurably more useful than it
 would have been. While thanks go out to all for supporting the beta
 book program and for contributing so much valuable feedback, a number of
 contributors went well beyond the call of duty.

	Manuel E. Vidaurre Arenas	Seth Arnold
	Will Bowlin	Andy Brice
	Jason Catena	Victor Marius Costan
	David Hadley	Jason Holloway
	David Kapp	Trung LE
	Kristian Riiber Mandrup	mltsy
	Steve Nicholson	Jim Puls
	Johnathan Ritzi	Leonel S
	Kim Shrier	Don Smith
	Joe Straitiff 	Martin Zoller

 Finally, the Rails core team has been incredibly helpful, answering
 questions, checking out code fragments, and fixing bugs—even to the point
 where part of the release
 process includes verifying that new releases of Rails don’t break the
 examples provided in this book.[1]
 A big “thank you” to the following:

	Rafael França (rafaelfranca)	Guillermo Iguaran (guilleiguaran)
	Jeremy Kemper (bitsweat)	Yehuda Katz (wycats)
	Michael Koziarski (nzkoz)	Santiago Pastorino (spastorino)
	Aaron Patterson	 José Valim (josevalim)

Sam Ruby
mailto:rubys@intertwingly.net
August 2013

Footnotes

	[1]	

 ​https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-happy--if-not-make-him-happy​

Copyright © 2013, The Pragmatic Bookshelf.

Introduction

 Ruby on Rails is a framework that makes it easier
 to develop, deploy, and maintain web applications. During the
 months that followed its initial release, Rails went from being an
 unknown toy to being a worldwide phenomenon; more important, it has become the framework of choice for
 the implementation of a wide range of
 so-called Web 2.0 applications.

 Why is that?

Rails Simply Feels Right

 A large number of developers were
 frustrated with the technologies they were using to create web
 applications. It didn’t seem to matter whether they used
 Java, PHP, or .NET—there was a growing sense that their jobs were
 just too damn hard. And then, suddenly, along came Rails, and
 Rails was easier.

 But easy on its own doesn’t cut it. We’re talking about
 professional developers writing real-world websites. They wanted
 to feel that the applications they were developing would stand the
 test of time—that they were designed and implemented using
 modern, professional techniques. So, these developers dug into
 Rails and discovered it wasn’t just a tool for hacking out sites.

 For example, ​all​ Rails applications are implemented
 using the Model-View-Controller (MVC) architecture.
 Java developers are used to frameworks such as
 Tapestry and Struts, which are based
 on MVC. But Rails takes MVC further: when you develop in Rails,
 you start with a working application,
 there’s a place for each piece of code, and all the pieces of your
 application interact in a standard way.

 Professional programmers write tests. And again, Rails
 delivers. All Rails applications have testing support baked right
 in. As you add functionality to the code, Rails automatically
 creates test stubs for that functionality. The framework makes it
 easy to test applications, and as a result, Rails applications tend
 to get tested.

 Rails applications are written in
 Ruby, a modern, object-oriented
 scripting language. Ruby is concise without being unintelligibly
 terse—you can express ideas naturally and cleanly in Ruby
 code. This leads to programs that are easy to write and (just as
 important) are easy to read months later.

 Rails takes Ruby to the limit, extending it in novel ways that
 make a programmer’s life easier. This makes our programs shorter
 and more readable. It also allows us to perform tasks that would
 normally be done in external configuration files inside the
 codebase instead. This makes it far easier to see what’s
 happening. The following code defines the model class for a
 project. Don’t worry about the details for now. Instead, just
 think about how much information is being expressed in a few lines
 of code.

	​ 	​class​ Project < ActiveRecord::Base

	​ 	 belongs_to :portfolio

	​ 	 has_one :project_manager

	​ 	 has_many :milestones

	​ 	 has_many :deliverables, through: milestones

	​ 	 validates :name, :description, presence: true

	​ 	 validates :non_disclosure_agreement, acceptance: true

	​ 	 validates :short_name, uniqueness: true

	​ 	​end​

 Two other philosophical underpinnings keep Rails code short and readable:
 DRY and convention
 over configuration. DRY stands for ​don’t repeat
 yourself​. Every piece of knowledge in a system should be
 expressed in just one place. Rails uses the power of Ruby to bring
 that to life. You’ll find very little duplication in a Rails
 application; you say what you need to say in one place—a place
 often suggested by the conventions of the MVC architecture—and
 then move on. For programmers used to other web frameworks, where
 a simple change to the schema could involve a dozen
 or more code changes, this was a revelation.

 ​Convention over configuration​ is crucial, too. It means that Rails has
 sensible defaults for just about every aspect of knitting together
 your application. Follow the conventions, and you can write a
 Rails application using less code than a typical Java web
 application uses in XML configuration. If you need to override the
 conventions, Rails makes that easy, too.

 Developers coming to Rails found something else, too. Rails doesn’t
 merely play catch-up with the de facto web
 standards; it helps define them. And Rails makes it easy for developers to
 integrate features such as Ajax and RESTful interfaces into their
 code because support is built in. (And if you’re not familiar with Ajax
 and REST interfaces, never fear—we’ll explain them later in the book.)

 Developers are worried about deployment too. They found that with
 Rails you can deploy successive releases of your application to
 any number of servers with a single command (and roll them back
 equally easily should the release prove to be somewhat less than
 perfect).

 Rails was extracted from a real-world, commercial
 application. It turns out
 that the best way to create a framework is to find the central
 themes in a specific application and then bottle them up in a
 generic foundation of code. When you’re developing your Rails
 application, you’re starting with half of a really good
 application already in place.

 But there’s something else to Rails—something that’s hard to
 describe. Somehow, it just feels right. Of course, you’ll have to
 take our word for that until you write some Rails applications for
 yourself (which should be in the next forty-five minutes or so…).
 That’s what this book is all about.

Rails Is Agile

 The title of this book is Agile Web Development with
 Rails 4. You may be surprised to discover that we don’t
 have explicit sections on applying agile practices X, Y, and Z
 to Rails coding.

 The reason is both simple and subtle. Agility is part of the
 fabric of Rails.

 Let’s look at the values expressed in the Agile
 Manifesto as a set of four preferences.[2]

	
Individuals and interactions over processes and tools

	
Working software over comprehensive documentation

	
Customer collaboration over contract negotiation

	
Responding to change over following a plan

 Rails is all about individuals and interactions. There are no
 heavy toolsets, no complex configurations, and no elaborate
 processes. There are just small groups of developers, their
 favorite editors, and chunks of Ruby code. This leads to
 transparency; what the developers do is reflected immediately
 in what the customer sees. It’s an intrinsically interactive
 process.

 Rails doesn’t denounce documentation. Rails makes it trivially
 easy to create HTML documentation for your entire codebase. But
 the Rails development process isn’t driven by documents. You
 won’t find 500-page specifications at the heart of a Rails
 project. Instead, you’ll find a group of users and developers
 jointly exploring their need and the possible ways of answering
 that need. You’ll find solutions that change as both the
 developers and the users become more experienced with the problems
 they’re trying to solve. You’ll find a framework that delivers
 working software early in the development cycle. This software
 may be rough around the edges, but it lets the users start to
 get a glimpse of what you’ll be delivering.

 In this way, Rails encourages customer
 collaboration. When customers see just how
 quickly a Rails project can respond to change, they start to
 trust that the team can deliver what’s required, not just what has
 been requested. Confrontations are replaced by “What if?”
 sessions.

 That’s all tied to the idea of being able to respond to
 change. The strong, almost obsessive, way that Rails honors the
 DRY principle means that changes to Rails applications
 impact a lot less code than the same changes would in other
 frameworks. And since Rails applications are written in Ruby,
 where concepts can be expressed accurately and concisely,
 changes tend to be localized and easy to write. The deep
 emphasis on both unit and functional testing, along with support
 for test fixtures and stubs during testing, gives developers the
 safety net they need when making those changes. With a good set
 of tests in place, changes are less nerve-racking.

 Rather than constantly trying to tie Rails processes to the agile
 principles, we’ve decided to let the framework speak for itself. As you
 read through the tutorial chapters, try to imagine yourself developing
 web applications this way, working alongside your customers and jointly
 determining priorities and solutions to problems. Then, as you read the
 more advanced concepts that follow in Part III, see how the
 underlying structure of Rails can enable you to meet your customers’
 needs faster and with less ceremony.

 One last point about agility and Rails is that although it’s probably
 unprofessional to mention this, think how much fun the coding
 will be!

Who This Book Is For

 This book is for programmers looking to build and deploy web-based applications. This
 includes application programmers who are new to Rails (and perhaps even
 new to Ruby) and ones who are familiar with the basics but want a more
 in-depth understanding of Rails.

 We presume some familiarity with HTML, Cascading Style Sheets (CSS), and
 JavaScript, in other words, the ability to view source on web pages.
 You need not be an expert on these subjects; the most you will
 be expected to do is to copy and paste material from the book, all of
 which can be downloaded.

How to Read This Book

 The first part of this book makes sure you are ready. By the time
 you are done with it, you will have been introduced to Ruby (the
 language), you will have been exposed to an overview of Rails, you will have
 Ruby and Rails installed, and you will have verified the installation with
 a simple example.

 The next part takes you through the
 concepts behind Rails via an extended example; we build a
 simple online store. It doesn’t take you one by one through each
 component of Rails (“here is a chapter on models, here is a chapter on
 views,” and so forth). These components are designed to work together,
 and each chapter in this section tackles a specific set of
 related tasks that involve a number of these components working
 together.

 Most folks
 seem to enjoy building the application along with the book. If
 you don’t want to do all that typing, you can cheat and download
 the source code (a compressed tar archive or a zip
 file).[3]
 This download contains separate sets of source code for Rails 3.0,
 Rails 3.1, Rails 3.2, and Rails 4.0. As you will be using Rails 4.0,
 the files you want are in the
 ​rails40​ directory. See the
 ​README-FIRST​ file for more details.

 Be careful if you ever choose to copy files directly from the download
 into your application, as the server won’t know that it needs to pick
 up these changes if the timestamps on the file are old. You can update
 the timestamps using the ​touch​ command on either
 Mac OS X or Linux, or you can edit the file and save it. Alternately,
 you can restart your Rails server.

 Part 3, ​Rails in Depth​ surveys the entire Rails ecosystem.
 This starts with the functions and facilities of Rails that you will now
 be familiar with. It then covers a number of key dependencies that the
 Rails framework makes use of that contribute directly to the overall
 functionality that the Rails framework delivers. Finally, there is a
 survey of a number of popular plugins that augment the Rails framework
 and make Rails an open ecosystem rather than merely a framework.

 Along the way, you’ll see various conventions we’ve adopted.

	​Ruby Tips​
	

	 Although you need to know Ruby to write Rails applications,
	 we realize that many folks reading this book will be
	 learning both Ruby and Rails at the same time. You will find a
 (very) brief introduction to the Ruby language in Chapter 4, ​Introduction to Ruby​. When we use a Ruby-specific construct
	 for the first time, we’ll cross-reference it to that
	 chapter.

For example, this paragraph contains a gratuitous
	 use of ​:name​, a Ruby symbol. In formats that support
	 margins, you’ll see a reference to where symbols are explained.
	

	​Live Code​
	

	 Most of the code snippets we show come from full-length,
	 running examples that you can download.
	

 To help you find
	 your way, if a code listing can be found in the download,
	 there’ll be a bar before the snippet (just like the one
	 here).
	
	rails40/demo1/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController

	​*
​	 ​def​ hello

	​*
​	 ​end​

	​ 	

	​ 	 ​def​ goodbye

	​ 	 ​end​

	​ 	​end​

	 This contains the path to the code within the download. If
	 you’re reading the ebook version of this book and your ebook
	 viewer supports hyperlinks, you can click the bar, and the
	 code should appear in a browser window. Some browsers
	 may mistakenly try to interpret some of the HTML
	 templates as HTML. If this happens, view the source of the
	 page to see the real source code.
	

 And in some cases involving the modification of an existing file where
 the lines to be changed may not be immediately obvious, you will
 also see some helpful little triangles on the left of the lines that
 you will need to change. Two such lines are indicated in the previous code.

	​David Says…​
	

	 Every now and then you’ll come across a “David
	 Says…” sidebar. Here’s where David Heinemeier
	 Hansson gives you the real scoop on some particular aspect
	 of Rails—rationales, tricks, recommendations, and
	 more. Because he’s the fellow who invented Rails, these are
	 the sections to read if you want to become a Rails pro.
	

	​Joe Asks…​
	

	 Joe, the mythical developer, sometimes pops up to ask
	 questions about stuff we talk about in the text. We answer
	 these questions as we go along.
	

 This book isn’t meant to be a reference manual for Rails. Our
 experience is that reference manuals are not the way most people learn.
 Instead, we show most of
 the modules and many of their methods, either by example or
 narratively in the text, in the context of how these components are used
 and how they fit together.

 Nor do we have hundreds of pages of
 API listings. There’s a good reason for this—you get that
 documentation whenever you install Rails, and it’s guaranteed to
 be more up-to-date than the material in this book. If you
 install Rails using RubyGems
 (which we recommend), simply start the gem documentation server
 (using the command ​gem server​), and
 you can access all the Rails APIs by pointing your browser
 at ​http://localhost:8808​. You will find
 out in ​A Place for Documentation​ how to build even more
 documentation and guides.

 In addition, you will see that Rails helps you by producing responses
 that clearly identify any error found, as well as traces that tell you
 not only the point at which the error was found but also how you got
 there. You can see an example in Figure 25, ​Our application spills its guts​. If you need additional information,
 peek ahead to Section 10.2, ​Iteration E2: Handling Errors​ to see how to insert logging statements.

 Should you get really stuck, there are plenty of online resources to
 help. In addition to the code listings mentioned, there is a
 forum,[4] where you can ask questions and share experiences; an
 errata page,[5] where you can report bugs; and a wiki,[6] where you can discuss the exercises found throughout
 the book.

 These resources are shared resources. Feel free to post
 not only questions and problems to the forum and wiki but also
 any suggestions and answers you may have to questions that others may
 have posted.

Let’s get started! The first steps are to install Ruby and Rails and
 to verify the installation with a simple demonstration.

Footnotes

	[2]	

 ​http://agilemanifesto.org/​
 . Dave Thomas was one
	 of the seventeen authors of this document.

	[3]	

	
 ​http://pragprog.com/titles/rails4/source_code​

	 has the links for the downloads.
	

	[4]	

 ​http://forums.pragprog.com/forums/148​

	[5]	

 ​http://www.pragprog.com/titles/rails4/errata​

	[6]	

 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​

Copyright © 2013, The Pragmatic Bookshelf.

Part 1
Getting Started

	 Chapter
	 1
Installing Rails

	
installing Ruby, RubyGems, SQLite3, and Rails; and

	
development environments and tools.

 In Part I of this book, we’ll introduce you to both the Ruby language
 and the Rails framework. But we can’t get anywhere until you’ve
 installed both and verified that they are operating correctly.

 To get Rails running on your system, you’ll need the following:

	

	 A Ruby interpreter. Rails is written in Ruby, and you’ll be
	 writing your applications in Ruby too. Rails 4.0
	 recommends Ruby version 2.0.0 but will run on 1.9.3. It will
 not work on Ruby versions 1.8.7 or Ruby 1.9.2.
	

	

	 Ruby on Rails. This book was written using Rails version
	 4.0 (specifically Rails 4.0.0).
	

	

	 A JavaScript interpreter. Both Microsoft Windows and Mac OS X
 have JavaScript interpreters built in, and Rails will use the version
 already on your system. On other operating systems, you may need to
 install a JavaScript interpreter separately.
	

	

	 Some libraries, depending on the operating system.
	

	

	 A database. We’re using both SQLite 3 and MySQL 5.5 in this book.
	

 For a development machine, that’s about all you’ll need (apart
 from an editor, and we’ll talk about editors
 separately). However, if you are going to deploy your
 application, you will also need to install a production web server
 (as a minimum) along with some support code to let Rails run
 efficiently. We have a whole chapter devoted to this, starting
 in Chapter 16, ​Task K: Deployment and Production​, so we won’t talk about it
 more here.

 So, how do you get all this installed? It depends on your operating
 system....

1.1 Installing on Windows

 The easiest way to install Rails on Windows is by using the
 RailsInstaller[7] package.

 At the time of this writing, the latest version of RailsInstaller
 is version 2.2.1, which includes Ruby 1.9.3 and Rails 3.2.
 Until a new version is released that supports Rails 4.0.0 or Ruby 2.0,
 feel free to use version 2.1 of RailsInstaller to get you
 started.

 Base installation is a snap. After you download,
 click Run and then click Next. Select
 “I accept all of the Licenses” (after reading them carefully of course) and then
 click Next, Install, and Finish.

 This opens a command window and prompts you for your name and email.
 This is only to set up the ​git​ version control system. For the
 purposes of the exercises in this book, you won’t need to worry about
 the ​ssh​ key that is generated.

 Close this window and open a new command prompt. On Windows 8,
 type ​cmd​ on the tile-based Start screen and press Enter. On
 versions of Windows prior to Windows 8, select Windows Start, select
 Run..., enter ​cmd​, and click OK.

 Windows 8 users need to perform the additional step of installing
 node.js.[8] Once this is complete, close the command window and open a
 new one for the changes to ​%PATH%​ to take effect.
 Verify that the installation is correct by entering the command
 ​node -v​.

 If you have trouble, try looking for suggestions on the
 Troubleshooting page on the RubyInstaller
 site.[9]

 As long as the version of RailsInstaller you used installed a
 version of Ruby that is 1.9.3 or greater, there is no need to upgrade
 to a newer version of Ruby. Please
 skip to Section 1.4, ​Choosing a Rails Version​ to ensure that
 the version of Rails you have installed matches the version described in
 this edition. See you there.

1.2 Installing on Mac OS X

 Since Mac OS X ships with Ruby 1.8.7, you’ll need to download a newer version
 of Ruby that works with Rails 4.0. The easiest way to do
 this is to use RailsInstaller, which at the time of this writing
 installs Ruby 1.9.3. A second way to do this is to use the newest
 development version of RVM, which you can use to install Ruby 2.0.0.
 Ruby 2.0 is what the Rails core team recommends and is noticeably
 faster than Ruby 1.9.3, but either can be used with this book. Both approaches are described here. The choice is up to you.

 Before you start, go to your ​Utilities​ folder and drag
 the Terminal application onto your dock. You’ll be using this during the installation and then frequently as a Rails developer.

Installing via RailsInstaller

 Start by going to the RailsInstaller[10] and clicking the big green Download the Kit
 button.

 Once the download is complete, double-click the file to uncompress
 it. Before clicking the app file that is produced, hold down the
 Control key. Select the “open” option. Opening the
 app in this way gives you the option to install a program from a
 developer who isn’t known to the app store. From here there are
 a few questions (such as your name, which will be used to configure
 ​git​), and installation will proceed.

 Now open the Terminal application, and at the prompt enter
 the following command:

	​ 	$ ​ruby -v​

 You should see the following result:

	​ 	ruby 1.9.3p392 (2013-02-22 revision 39386) [x86_64-darwin11.4.0]

 Next, update Rails to the version used by this book with the
 following command:

	​ 	$ ​gem install rails --version 4.0.0 --no-ri --no-rdoc​

 You’re ready to go! Skip forward to join the Windows
 users in Section 1.4, ​Choosing a Rails Version​.

Installing Using RVM

 First, download and install the latest (January 2013) Command Line Tools
 for Xcode for your operating system (OS X Lion or OS X Mountain Lion)
 using the "Downloads" preference pane within XCode.

 Now open the Terminal application, and at the prompt enter
 the following command to install the development version of RVM:

	​ 	$ ​curl -L https://get.rvm.io | bash -s stable​

 Check for, and follow, any upgrade notes in the output from
 that command.

 Once you complete those instructions, you
 can proceed to install the Ruby interpreter.

	​ 	$ ​rvm install 2.0.0 --autolibs=enable​

 The preceding step will take a while as it downloads, configures, and
 compiles the necessary executables. Once it completes, ​use​
 that environment, and ​install rails​.

	​ 	$ ​rvm use 2.0.0​

	​ 	$ ​gem install rails --version 4.0.0 --no-ri --no-rdoc​

 With the exception of the ​rvm use​ statement, each of the previous
 instructions needs to be done only once. The ​rvm use​ statement
 needs to be repeated each time you open a shell window. The
 ​use​ keyword is optional, so you can abbreviate this to ​rvm
 2.0.0​. You can also choose to make it the default Ruby interpreter
 for new terminal sessions with the following command:

	​ 	$ ​rvm --default 2.0.0​

 You can verify successful installation using the following command:

	​ 	$ ​rails -v​

 If you have trouble, try the suggestions listed under the
 “Troubleshooting Your Install” heading on the rvm
 site.[11]

 OK, you OS X users are done. You can skip forward to join the Windows
 users in Section 1.4, ​Choosing a Rails Version​. See you there.

1.3 Installing on Linux

 Start with your platform’s native package management system, be it
 ​apt-get​,
 ​dpkg​,
 ​portage​,
 ​rpm​,
 ​rug​,
 ​synaptic​,
 ​up2date​, or
 ​yum​.

 The first step is to install the necessary dependencies. The following
 instructions are for Ubuntu 13.04 (Raring Ringtail); if you’re
 on a different operating system, you may need to
 adjust both the command and the package names.

	​ 	$ ​sudo apt-get install apache2 curl git libmysqlclient-dev mysql-server nodejs​

 You’ll be prompted for a root password for your mysql server. If you
 leave it blank, you’ll be prompted multiple times. If you specify a
 password, you’ll need to use that password when you create a database
 in Iteration K1.

 While the Rails core team recommends Ruby 2.0 for use with Rails
 4.0, if you want to use a system-installed version of Ruby, you can use
 Ruby 1.9.3. This will get you up and running quickly.

 Starting with Ubuntu 12.04, you can install Ruby 1.9.3 and Rails 4.0
 with the following commands:

	​ 	$ ​sudo apt-get install ruby1.9.3​

	​ 	$ ​sudo gem install rails --version 4.0.0 --no-ri --no-rdoc​

 If this works for you, you are done with the necessary installation
 steps and can proceed to Section 1.4, ​Choosing a Rails Version​.

 Many people prefer instead to have a separate installation of Ruby
 on their machine dedicated to support their application, and therefore
 they choose to download and build Ruby.
 The easiest way we’ve found to do this is
 to use RVM. Installing RVM is described on the RVM site.[12] An overview of the steps is included here.

 First, install RVM.

	​ 	$ ​curl -L https://get.rvm.io | bash -s stable​

 Next, select the “Run command as login shell” checkbox in the
 Gnome Terminal Profile Preference. Refer to the Integrating RVM
 with gnome-terminal page for instructions.[13]

 Exit your command window or Terminal application and open a new one.
 This causes your ​.bash_login​ to be reloaded.

 Execute the following command, which installs the necessary
 prerequisites needed for your specific operating system:

	​ 	$ ​rvm requirements --autolibs=enable​

 Once this is complete, you
 can proceed to install the Ruby interpreter.

	​ 	$ ​rvm install 2.0.0​

 This step will take a while as it downloads, configures, and
 compiles the necessary executables. Once it completes, ​use​
 that environment, and ​install rails​.

	​ 	$ ​rvm use 2.0.0​

	​ 	$ ​gem install rails --version 4.0.0 --no-ri --no-rdoc​

 With the exception of the ​rvm use​ statement, each of the previous
 instructions needs to be done only once. The ​rvm use​ statement
 needs to be repeated each time you open a shell window. The
 ​use​ keyword is optional, so you can abbreviate this to ​rvm
 2.0.0​. You can also choose to make it the default Ruby interpreter
 for new Terminal sessions with the following command:

	​ 	$ ​rvm --default 2.0.0​

 You can verify successful installation using the following command:

	​ 	$ ​rails -v​

 If you have trouble, try the suggestions listed under the
 “Troubleshooting Your Install” heading on the RVM
 site.[14]

 At this point, we’ve covered Windows, Mac OS X, and Linux. Instructions
 after this point are common to all three operating systems.

1.4 Choosing a Rails Version

 The previous instructions helped you install the version of
 Rails used in the examples by this book. But occasionally you might not
 want to run that version. For example, there may be a newer version
 with some fixes or new features. Or perhaps you are developing on one
 machine but intending to deploy on another machine that contains a
 version of Rails that you don’t have any control over.

 If either of these situations applies to you, you need to be aware of a
 few things. For starters, you can find out all the versions
 of Rails you have installed using the ​gem​
 command.

	​ 	$ ​gem list --local rails​

 You can also verify what version of Rails you are running as the
 default by using the
 ​rails --version​ command. It should return
 4.0.0.

 If it does not, insert the version of Rails surrounded by underscores
 before the first parameter of any ​rails​
 command. Here’s an example:

	​ 	$ ​rails _4.0.0_ --version​

 This is particularly handy when you create a new application, because
 once you create an application with a specific version of Rails, it will
 continue to use that version of Rails—even if newer versions are
 installed on the system—​until ​you​ decide it is time to
 upgrade.
 To upgrade, simply update the version number in the
 ​Gemfile​ that is in the root directory of your
 application and run ​bundle install​. We will cover this
 command in greater depth in Section 24.3, ​Managing Dependencies with Bundler​.

1.5 Setting Up Your Development Environment

 The day-to-day business of writing Rails programs is pretty
 straightforward. Everyone works differently; here’s how we
 work.

The Command Line

	
	We do a lot of work at the command line. Although there are
	an increasing number of GUI tools that help generate and
	manage a Rails application, we find the command line is still
	the most powerful place to be. It’s worth spending a little
	while getting familiar with the command line on your operating
	system. Find out how to use it to edit commands that you’re
	typing, how to search for and edit previous commands, and how
	to complete the names of files and commands as you
	type.

	
	So-called tab completion is standard on Unix shells such as Bash and
	zsh. It allows you to type the first few characters of a
	filename, hit
 ​Tab​
 , and have the
	shell look for and complete the name based on matching
	files.

Version Control

	We keep all our work in a version control system (currently
	Git). We make a point of
	checking a new Rails project into Git when we create it and committing
	changes once we have passed the tests. We normally commit to the
	repository many times an hour.

	If you’re working on a Rails project with other people,
	consider setting up a continuous integration (CI) system. When
	anyone checks in changes, the CI system will check out a fresh
	copy of the application and run all the tests. It’s a simple
	way to ensure that accidental breakages get immediate
	attention. You can also set up your CI system so that your
	customers can use it to play with the bleeding-edge version of
	your application. This kind of transparency is a great way of
	ensuring that your project isn’t going off the tracks.

Editors

	
	
	We write our Rails programs using a programmer’s editor. We’ve
	found over the years that different editors work best with
	different languages and environments. For example, Dave originally
	wrote this chapter using Emacs because he thinks that
	its Filladapt mode is unsurpassed
	when it comes to neatly formatting XML as he types. Sam updated the
 chapter	using Vim. But many think that neither Emacs nor Vim is
	ideal for Rails development. Although the choice of
	editor is a personal one, here are some suggestions of
	features to look for in a Rails editor:

	

	 Support for syntax highlighting of Ruby and HTML. Ideally
	 support for ​erb​ files (a
	 Rails file format that embeds Ruby snippets within HTML).
	

	

	 Support of automatic indentation and reindentation of Ruby
	 source. This is more than an aesthetic feature: having an
	 editor indent your program as you type is the best way of
	 spotting bad nesting in your code. Being able to reindent
	 is important when you refactor your code and move
	 stuff. (TextMate’s ability to reindent when it pastes code
	 from the clipboard is very convenient.)
	

	

	 Support for insertion of common Ruby and Rails
	 constructs. You’ll be writing lots of short methods, and if
	 the IDE creates method skeletons with a keystroke or two,
	 you can concentrate on the interesting stuff inside.
	

	

	 Good file navigation. As you’ll see, Rails applications are
	 spread across many files; for example,
		a newly created Rails application enters the world
		containing forty-six files spread across thirty-four
		directories. That’s before you’ve written a
		thing.
	

	 You need an environment that helps you
	 navigate quickly between these. You’ll add a line to a
	 controller to load a value, switch to the view to add a
	 line to display it, and then switch to the test to verify you
	 did it all right. Something like Notepad, where you
	 traverse a File Open dialog box to select each file to edit,
	 just won’t cut it. We prefer a combination of a
	 tree view of files in a sidebar, a small set of keystrokes
	 that help us find a file (or files) in a directory tree
	 by name, and some built-in smarts that know how to
	 navigate (say) between a controller action and the
	 corresponding view.
	

	

	 Name completion. Names in Rails tend to be long. A nice
	 editor will let you type the first few characters and then
	 suggest possible completions to you at the touch of a key.
	

	We hesitate to recommend specific editors because we’ve used
	only a few in earnest and we’ll undoubtedly leave someone’s
	favorite editor off the list. Nevertheless, to help you get
	started with something other than Notepad, here are some
	suggestions:

	

	 TextMate was once the Mac OS X de facto standard text editor for Ruby on Rails.[15]
	

	

 Sublime Text[16]
 is a cross-platform alternative that some see as the de facto successor
 for TextMate.
	

	

	 Aptana Studio 3[17] is an
	 integrated Rails development environment that runs in
	 Eclipse. It runs on Windows, Mac OS X, and
 Linux. Originally known as RadRails, it won an award for
 being the best open source developer tool based on Eclipse in 2006, and
 Aptana became the home for the project in 2007.
	

	

	 jEdit[18] is a
	 fully featured editor with support for Ruby. It has
	 extensive plugin support.
	

	

	 Komodo[19] is
	 ActiveState’s IDE for
	 dynamic languages, including Ruby.
	

	

	 RubyMine[20] is
 a commercial IDE for Ruby and is available for free to qualified
 educational and open source projects. It runs on Windows, Mac OS X,
 and Linux.
	

	

	 NetBeans Ruby and Rails plugin[21] is
 an open source plugin for the popular NetBeans IDE.
	

Where's My IDE?

 If you’re coming to Ruby and Rails from languages such as C# and
 Java, you may be wondering about IDEs. After all, we all know
 that it’s impossible to code modern applications without at
 least 100MB of IDE supporting our every keystroke. For you
 enlightened ones, here’s the point in the book where we
 recommend you sit down—ideally propped up on each side by a
 pile of framework references and 1,000-page Made Easy books.

 It may surprise you to know that most Rails developers don’t use
 fully fledged IDEs for Ruby or Rails (although some of the
 environments come close). Indeed,
 many Rails developers use plain old editors. And it turns out that
 this isn’t as much of a problem as you might think. With other, less
 expressive languages, programmers rely on IDEs to do much of the
 grunt work for them, because IDEs do code generation, assist with
 navigation, and compile incrementally to give early warning of
 errors.

 With Ruby, however, much of this support just isn’t necessary.
 Editors such as TextMate and BBEdit give you 90
 percent of what you’d get from an IDE but are far lighter weight.
 Just about the only useful IDE facility that’s missing is
 refactoring support.

	Ask experienced developers who use your kind of operating
	system which editor they use. Spend a week or so trying
	alternatives before settling in.
	

The Desktop

	We’re not going to tell you how to organize your desktop while
	working with Rails, but we will describe what we do.

	Most of the time, we’re writing code, running tests, and poking
	at an application in a browser. So, our main development desktop
	has an editor window and a browser window permanently open. We
	also want to keep an eye on the logging that’s generated by the
	application, so we keep a terminal window open. In it, we
	use ​tail -f​ to scroll the contents
	of the log file as it’s updated. We normally run
	this window with a very small font so it takes up less
	space—if we see something interesting flash by, we zoom it up
	to investigate.

	We also need access to the Rails API documentation, which we
	view in a browser. In the introduction, we talked about using
	the ​gem server​ command to run a local web server containing the Rails
	documentation. This is convenient, but it unfortunately splits
	the Rails documentation across a number of separate
	documentation trees. If you’re online, you can
	use
 ​http://api.rubyonrails.org/​
 to see a
	consolidated view of all the Rails documentation in one
	place.

Creating Your Own Rails API Documentation

 You can create your own local version of the consolidated
 Rails API documentation. Just type the following commands at
 a command prompt:

	​ 	rails_apps>​ rails new dummy_app​

	​ 	rails_apps>​ cd dummy_app​

	​ 	dummy_app>​ rake doc:rails​

 The last step takes a while. When it finishes, you’ll have
 the Rails API documentation in a directory tree starting
 at ​doc/api​. We suggest moving this folder
 to your desktop and then deleting
 the ​dummy_app​ tree.

 To view the Rails API documentation, open the location
 ​doc/api/index.html​ with your browser.

1.6 Rails and Databases

 The examples in this book were written using SQLite 3
 (version 3.7.4 or thereabouts). If you want to follow along
 with our code, it’s probably simplest if you use SQLite 3 too. If
 you decide to use something else, it won’t be a major
 problem. You may have to make minor adjustments to any explicit
 SQL in our code, but Rails pretty much eliminates
 database-specific SQL from applications.

 If you want to connect to a
 database other than SQLite 3, Rails also works with DB2, MySQL, Oracle, Postgres,
 Firebird, and SQL Server. For all but
 SQLite 3, you’ll need to install a
 database driver, a library that Rails can use to connect to and
 use your database engine. This
 section contains links to instructions to get that done.

 The database drivers are all written in C and are primarily
 distributed in source form. If you don’t want to bother building
 a driver from source, take a careful look at the driver’s website. Many times you’ll find that the author also distributes
 binary versions.

 If you can’t find a binary version or if you’d rather build
 from source anyway, you’ll need a development environment on
 your machine to build the library. Under Windows, this means
 having a copy of Visual C++. Under Linux, you’ll need gcc and
 friends (but these will likely already be installed).

 Under OS X, you’ll need to install the developer
 tools (they come with the operating system but aren’t installed
 by default). You’ll also need to install your
 database driver into the correct version of Ruby.
 If you installed your own copy
 of Ruby, bypassing the built-in one, it is important to remember
 to have this version of Ruby first in your path when building
 and installing the database driver. You can use the
 command ​which ruby​ to make sure
 you’re ​not​ running Ruby from ​/usr/bin​.

 The following are the available database adapters and
 the links to their respective home
 pages:

	
	 DB2

		
	
 ​http://raa.ruby-lang.org/project/ruby-db2​

	
or
 ​http://rubyforge.org/projects/rubyibm​

	Firebird
	
 ​http://rubyforge.org/projects/fireruby/​

	MySQL
	
 ​http://www.tmtm.org/en/mysql/ruby/​

	Oracle
	
 ​http://rubyforge.org/projects/ruby-oci8​

	Postgres
	
 ​https://bitbucket.org/ged/ruby-pg/wiki/Home​

	SQL Server
	
 ​https://github.com/rails-sqlserver​

	SQLite
	
 ​https://github.com/luislavena/sqlite3-ruby​

 MySQL and
 SQLite
 adapters are also available for download as RubyGems
 (​mysql2​ and ​sqlite3​,
 respectively).

What We Just Did
	
We installed (or upgraded) the Ruby language.

	
We installed (or upgraded) the Rails framework.

	
We installed (or upgraded) the SQLite3 and MySQL
 databases.

	
We selected an editor.

 Now that we have Rails installed, let’s use it. It’s time to move on to the next chapter
 where we create our first application.

Footnotes

	[7]	

 ​http://railsinstaller.org/​

	[8]	

 ​http://nodejs.org/download/​

	[9]	

 ​https://github.com/oneclick/rubyinstaller/wiki/Troubleshooting​

	[10]	

 ​http://railsinstaller.org/​

	[11]	

 ​https://rvm.io/rvm/install​

	[12]	

 ​https://rvm.io/rvm/install​

	[13]	

 ​https://rvm.io/integration/gnome-terminal/​

	[14]	

 ​https://rvm.io/rvm/install​

	[15]	

 ​http://macromates.com/​

	[16]	

 ​http://www.sublimetext.com/​

	[17]	

 ​http://www.aptana.com/products/studio3​

	[18]	

 ​http://www.jedit.org/​

	[19]	

 ​http://www.activestate.com/komodo-ide​

	[20]	

 ​http://www.jetbrains.com/ruby/features/index.html​

	[21]	

 ​http://plugins.netbeans.org/plugin/38549​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 2
Instant Gratification

	
creating a new application,

	
starting the server,

	
accessing the server from a browser,

	
producing dynamic content,

	
adding hypertext links, and

	
passing data from the controller to the view.

 Let’s write a simple application to verify we have Rails snugly
 installed on our machines. Along the way, we’ll get a peek at
 the way Rails applications work.

2.1 Creating a New Application

 When you install the Rails framework, you also get a new
 command-line
 tool, ​rails​,
 that is used to construct each new Rails application you
 write.

 Why do we need a tool to do this? Why can’t we just hack away
 in our favorite editor and create the source for our application
 from scratch? Well, we could just hack. After all, a Rails
 application is just Ruby source code. But Rails also does a lot
 of magic behind the curtain to get our applications to work with
 a minimum of explicit configuration. To get this magic to work,
 Rails needs to find all the various components of your
 application. As we’ll see later (in Section 18.1, ​Where Things Go​), this means we need to
 create a specific directory
 structure, slotting the code we write into the appropriate
 places. The ​rails​ command simply
 creates this directory structure for us and populates it with
 some standard Rails code.

 To create your first Rails application, pop open a shell window,
 and navigate to a place in your filesystem where you want to
 create your application’s directory structure. In our example,
 we’ll be creating our projects in a directory
 called ​work​. In that directory, use
 the ​rails​ command to create an
 application called ​demo​. Be slightly
 careful here—if you have an existing directory
 called ​demo​, you will be asked whether you want to
 overwrite any existing files.
 (Note: if you want to specify which Rails version to use, as described
 in Section 1.4, ​Choosing a Rails Version​, now would be the time to do
 so.)

	​ 	rubys>​ cd work​

	​ 	work>​ rails new demo​

	​ 	create

	​ 	create README.rdoc

	​ 	create Rakefile

	​ 	create config.ru

	​ 	 : : :

	​ 	create vendor/assets/stylesheets

	​ 	create vendor/assets/stylesheets/.keep

	​ 	 run bundle install

	​ 	Fetching gem metadata from https://rubygems.org/...........

	​ 	 : : :

	​ 	Your bundle is complete!

	​ 	Use `bundle show [gemname]` to see where a bundled gem is installed.

	​ 	work>

 The command has created a directory
 named ​demo​. Pop down into that directory, and
 list its contents (using ​ls​ on a Unix
 box or using ​dir​ under Windows). You should
 see a bunch of files and subdirectories.

	​ 	work>​ cd demo​

	​ 	demo>​ ls -p​

	​ 	app/ config/ db/ Gemfile.lock log/ Rakefile test/ vendor/

	​ 	bin/ config.ru Gemfile lib/ public/ README.rdoc tmp/

 All these directories (and the files they contain) can be
 intimidating to start with, but we can ignore most of them for now. In
 this chapter, we’ll use only one of them directly:
 the ​app​ directory, where we’ll write our
 application.

 Examine your installation using the following command:

	​ 	demo>​ rake about​

 If you get a Rails version other than
 ​4.0.0​, please reread Section 1.4, ​Choosing a Rails Version​.

 This command will also detect common installation errors. For example,
 if it can’t find a JavaScript runtime, it will provide you with
 a link to available runtimes.

If you see a bunch of messages concerning
 already initialized constants or a possible conflict with an extension,
 consider deleting the ​demo​ directory, creating a
 separate RVM gemset,[22] and starting over. If that doesn’t work, use
 ​bundle exec​[23] to run ​rake​ commands.

 Once you get ​rake about​ working, you have
 everything you need to start
 a stand-alone web server that can run our newly
 created Rails application.
 So, without further ado, let’s start our demo
 application.

	​ 	demo>​ rails server​

	​ 	=> Booting WEBrick

	​ 	=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000

	​ 	=> Run `rails server -h` for more startup options

	​ 	=> Ctrl-C to shutdown server

	​ 	[2013-04-18 20:22:16] INFO WEBrick 1.3.1

	​ 	[2013-04-18 20:22:16] INFO ruby 2.0.0 (2013-02-24) [x86_64-linux]

	​ 	[2013-04-18 20:22:16] INFO WEBrick::HTTPServer#start: pid=25170 port=3000

 Which web server is run depends on what servers you have installed.
 WEBrick is a pure-Ruby web server that is distributed with Ruby itself
 and therefore is guaranteed to be available. However, if
 another web server is installed on your system (and Rails can find it),
 the ​rails server​ command may use it in
 preference to WEBrick. You can force Rails to use WEBrick by providing
 an option to the ​rails​ command.

	​ 	demo>​ rails server webrick​

 As the last line of the startup tracing indicates, we just
 started a web server on port 3000.
 The ​0.0.0.0​ part of the address
 means that WEBrick will accept connections on all
 interfaces. On Dave’s OS X system, that means both local
 interfaces (127.0.0.1 and ::1) and his LAN connection.
 We can access the application by pointing a browser
 at the URL
 ​http://localhost:3000​
 . The result is shown in Figure 1, ​Newly created Rails application​.

[image: images/demo_startscreen.png]

Figure 1. Newly created Rails application

 If you look at the window where you started the server, you’ll see
 tracing showing you started the application. We’re going to
 leave the server running in this console window. Later, as we
 write application code and run it via our browser, we’ll be able
 to use this console window to trace the incoming requests. When
 the time comes to shut down your application, you can press
 Ctrl-C in this window to stop WEBrick. (Don’t do that
 yet—we’ll be using this particular application in a minute.)

 At this point, we have a new application running, but it has
 none of our code in it. Let’s rectify this situation.

2.2 Hello, Rails!

 We can’t help it—we just have to write a “Hello,
 World!” program to try a new system. Let’s
 start by creating a simple application that sends our cheery greeting to
 a browser. After we get that
 working, we will embellish it with the current time and links.

 As we’ll explore further in Chapter 3, ​The Architecture of Rails Applications​, Rails is a
 Model-View-Controller framework. Rails accepts
 incoming requests from a browser, decodes the request to find a
 controller, and calls an action method in that controller. The
 controller then invokes a particular view to display the results
 to the user. The good news is that Rails takes care of most of
 the internal plumbing that links all these actions. To write our
 simple “Hello, World!” application, we need code for
 a controller and a view, and we need a route to connect the two. We
 don’t need code for a model, because we’re not dealing with any data.
 Let’s start with the controller.

 In the same way that we used
 the ​rails​ command to create a new
 Rails application, we can also use a generator script to create
 a new controller for our project. This command is
 called ​rails generate​.
 So, to create a controller called ​say​, we make sure we’re in
 the ​demo​ directory and run the command,
 passing in the name of the controller we want to
 create and the names of the actions we intend for this controller to
 support.

	​ 	demo>​ rails generate controller Say hello goodbye​

	​ 	create app/controllers/say_controller.rb

	​ 	 route get "say/goodbye"

	​ 	 route get "say/hello"

	​ 	invoke erb

	​ 	create app/views/say

	​ 	create app/views/say/hello.html.erb

	​ 	create app/views/say/goodbye.html.erb

	​ 	invoke test_unit

	​ 	create test/controllers/say_controller_test.rb

	​ 	invoke helper

	​ 	create app/helpers/say_helper.rb

	​ 	invoke test_unit

	​ 	create test/helpers/say_helper_test.rb

	​ 	invoke assets

	​ 	invoke coffee

	​ 	create app/assets/javascripts/say.js.coffee

	​ 	invoke scss

	​ 	create app/assets/stylesheets/say.css.scss

 The ​rails generate​ command logs the files and directories it
 examines, noting when it adds new Ruby scripts or directories to your
 application. For now, we’re interested in one of these scripts and (in
 a minute) the ​html.erb​ files.

 The first source file we’ll be looking at is the controller. You’ll find
 it in the file ​app/controllers/say_controller.rb​.
 Let’s take a look at it:

	rails40/demo1/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController

	​ 	 ​def​ hello

	​ 	 ​end​

	​ 	

	​ 	 ​def​ goodbye

	​ 	 ​end​

	​ 	​end​

 Pretty minimal, eh? ​SayController​ is a
 class that inherits
 from ​ApplicationController​, so
 it automatically gets all the default controller behavior.
 What does this code have to do? For
 now, it does nothing—we simply have empty action
 methods named
 ​hello​
 and
 ​goodbye​
 .
 To understand why these methods are named this way,
 we need to look at the way Rails handles requests.

Rails and Request URLs

	Like any other web application, a Rails application appears to
	its users to be associated with a URL. When you point your
	browser at that URL, you are talking to the application code,
	which generates a response to you.

 Let’s try it now. Navigate to the URL

 ​http://localhost:3000/say/hello​
 in a browser.
 You’ll see something that looks like this:

[image: images/template_missing.png]
Our First Action

 At this point, we can see not only that we have connected the URL to
 our controller but also that Rails is pointing the way to our next
 step, namely, to tell Rails what to display. That’s where views come in.
 Remember when we ran the script to create the new controller? That
 command added several files and a new directory to our application. That
 directory contains the template files for the controller’s views.
 In our case, we created a controller named ​say​, so the views
 will be in the directory ​app/views/say​.

	By default, Rails looks for templates in a file with the same
	name as the action it’s handling. In our case, that means we
	need to replace a file called
	​hello.html.erb​ in the
	directory ​app/views/say​. (Why
	​html.erb​?
	We’ll explain in a minute.) For now, let’s just put some basic
	HTML in there.

	rails40/demo1/app/views/say/hello.html.erb
	​ 	​<h1>​Hello from Rails!​</h1>​

	Save the file ​hello.html.erb​, and refresh
	your browser window. You should see it display our friendly
	greeting.

[image: images/hello1.png]

 In total, we’ve looked at two files in our Rails application tree.
 We looked at the controller, and we modified a
 template to display a page in the browser. These files live in
 standard locations in the Rails hierarchy: controllers go into
 ​app/controllers​, and views go into subdirectories
 of ​app/views​. See the following figure:

[image: images/demo_files.png]

Figure 2. Standard locations for controllers and views

Making It Dynamic

	So far, our Rails application is pretty boring—it just
	displays a static page. To make it more dynamic, let’s have it
	show the current time each time it displays the page.

	To do this, we need to change the template file in
	the view—it now needs to include the time as a string. That
	raises two questions. First, how do we add dynamic content to
	a template? Second, where do we get the time
	from?

Dynamic Content

	 There are many ways of creating dynamic templates in
	 Rails.
 The most common way, which we’ll use here, is to embed Ruby code in the
 template. That’s why we named our template
	 file ​hello.html.erb​;
	 the ​html.erb​ suffix tells Rails
	 to expand the content in the file using a system called ERB.
	

 ​ERB​ is a filter that is installed as
 part of the Rails installation that takes an
 ​erb​ file and outputs a transformed
 version. The output file is often HTML in Rails, but it can be
 anything. Normal content is passed through without being changed.
 However, content
	 between ​<%=​ and ​%>​ is interpreted as
	 Ruby code and
	 executed.
	 The result of that execution is converted into a string, and
	 that value is substituted in the file in place of
	 the ​<%=​…​%>​ sequence. For
	 example, change ​hello.html.erb​ to display
	 the current time.
	
	rails40/demo2/app/views/say/hello.html.erb
	​ 	​<h1>​Hello from Rails!​</h1>​

	​*
​	​<p>​

	​*
​	 It is now <%= Time.now %>

	​*
​	​</p>​

	 When we refresh our browser window, we see the time
	 displayed using Ruby’s standard format.
[image: images/hello2.png]

	 Notice that if you hit Refresh in your browser, the time
	 updates each time the page is displayed. It looks as if we’re
	 really generating dynamic content.
	
Making Development Easier

	 You might have noticed something about the development we’ve
	 been doing so far. As we’ve been adding code to our
	 application, we haven’t had to restart the running
	 application.
	 It has been happily chugging away in the background. And yet
	 each change we make is available whenever we access the
	 application through a browser. What gives?
	

	 It turns out that the Rails dispatcher is
	 pretty clever. In development mode (as opposed to testing or
	 production), it automatically reloads application source
	 files when a new request comes along. That way, when we edit our application, the
	 dispatcher makes sure it’s running the most recent
	 changes. This is great for development.
	

	 However, this flexibility comes at a cost—it causes a
	 short pause after you enter a URL before the application
	 responds. That’s caused by the dispatcher reloading stuff.
	 For development it’s a price worth paying, but in production
	 it would be unacceptable. Because of this, this feature is disabled
	 for production deployment (see Chapter 16, ​Task K: Deployment and Production​).
	

Adding the Time

	 Our original problem was to display the time to users of our
	 application. We now know how to make our application display
	 dynamic data. The second issue we have to address is working
	 out where to get the time from.
	

	 We’ve shown that the approach of embedding a call to
	 Ruby’s
 ​Time.now​
 method in
	 our ​hello.html.erb​
	 template works.
	 Each time we access this page, the user will see
	 the current time substituted into the body of the
	 response. And for our trivial application, that might be
	 good enough. In general, though, we probably want to do
	 something slightly different. We’ll move the determination
	 of the time to be displayed into the controller and leave
	 the view with the simple job of displaying it. We’ll change our
	 action method in the controller to set the time value into
	 an instance variable
	 called ​@time​.
	
	rails40/demo3/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController

	​ 	 ​def​ hello

	​*
​	 @time = Time.now

	​ 	 ​end​

	​ 	

	​ 	 ​def​ goodbye

	​ 	 ​end​

	​ 	​end​

	 In the ​html.erb​ template, we’ll
	 use this instance variable to substitute the time into the
	 output.
	
	rails40/demo3/app/views/say/hello.html.erb
	​ 	​<h1>​Hello from Rails!​</h1>​

	​ 	​<p>​

	​*
​	 It is now <%= @time %>

	​ 	​</p>​

	 When we refresh our browser window, we will again see the
 current time, showing that the communication between the controller
 and the view was successful.
	

	 Why did we go to the extra trouble of setting the time to be
	 displayed in the controller and then using it in the view?
	 Good question. In this application, it doesn’t make much difference,
	 but by putting the logic in the controller instead, we buy
	 ourselves some benefits. For example, we may want to extend
	 our application in the future to support users in many
	 countries. In that case, we’d want to localize the display of
	 the time, choosing a time appropriate to their time zone. That would
	 be a fair amount of application-level code, and it would
	 probably not be appropriate to embed it at the view
	 level. By setting the time to display in the controller, we
	 make our application more flexible—we can change the
 time zone in the controller without having to update any view that
 uses that time object. The time is ​data​, and it should
 be supplied to the view by the controller. We’ll see a lot more of
 this when we introduce models into the equation.
	
The Story So Far

	 Let’s briefly review how our current application works.
	
	

	 The user navigates to our application. In our case, we
	 do that using a local URL such
	 as
 ​http://localhost:3000/say/hello​
 .
	

	

	 Rails then matches the route pattern, which it previously
 split into two parts and analyzed.

 The ​say​ part is taken to be the name of a controller,
 so Rails creates a new instance of the Ruby class
 ​SayController​ (which it finds in
 ​app/controllers/​​say_controller.rb​).
	

	

	 The next part of the pattern, ​hello​, identifies an
	 action. Rails invokes a method of that name in the
	 controller. This action method creates a
	 new ​Time​ object holding the
	 current time and tucks it away in
	 the ​@time​ instance
	 variable.
	

	

	 Rails looks for a template to display the result. It
	 searches the
	 directory ​app/views​
	 for a subdirectory with the same name as the controller
	 (​say​) and in that subdirectory for a
	 file named after the action
	 (​hello.html.erb​).
	

	

 Rails processes this file through the ERB templating system,
 executing any embedded Ruby and substituting in values set up by
 the controller.
	

	

	 The result is returned to the browser, and Rails
	 finishes processing this request.
	

	 This isn’t the whole story—Rails gives you lots of
	 opportunities to override this basic workflow (and we’ll be
	 taking advantage of them shortly). As it stands, our story
	 illustrates convention over
	 configuration,
	 one of the fundamental parts of the philosophy of Rails. By
 providing convenient defaults and by applying certain conventions on
 how a URL is constructed or in what file a controller definition is
 placed and what class name and method names are used, Rails
 applications are typically written using little or no external
 configuration—things just knit themselves together in a natural
 way.
	

2.3 Linking Pages Together

 It’s a rare web application that has just one page. Let’s see
 how we can add another stunning example of web design to
 our “Hello, World!”
 application.

 Normally, each page in your application will
 correspond to a separate view. In our case, we’ll also use a
 new action method to handle the page (although that
 isn’t always the case, as we’ll see later in the book). We’ll
 use the same controller for both actions. Again, this
 needn’t be the case, but we have no compelling reason to use a
 new controller right now.

 We already defined a goodbye action for this controller, so all that
 remains is to create a new template in the
 directory ​app/views/say​. This time it’s
 called ​goodbye.html.erb​ because by default
 templates are named after their associated actions.

	rails40/demo4/app/views/say/goodbye.html.erb
	​ 	​<h1>​Goodbye!​</h1>​

	​ 	​<p>​

	​ 	 It was nice having you here.

	​ 	​</p>​

 Fire up our trusty browser again, but this time point to our
 new view using the
 URL
 ​http://localhost:3000/say/goodbye​
 . You should
 see something like this:

[image: images/goodbye1.png]

Figure 3. Our second action

 Now we need to link the two screens. We’ll put a link
 on the hello screen that takes us to the goodbye screen, and
 vice versa. In a real application, we might want to
 make these proper buttons, but for now we’ll just use
 hyperlinks.

 We already know that Rails uses a convention to parse the URL
 into a target controller and an action within that
 controller. So, a simple approach would be to adopt this URL
 convention for our links.

The
 file ​hello.html.erb​ would contain the following:

	​ 	...

	​ 	​<p>​

	​ 	 Say ​<a​ href=​"/say/goodbye"​​>​Goodbye​​!

	​ 	​</p>​

	​ 	...

 And the file ​goodbye.html.erb​ would point the
 other way.

	​ 	...

	​ 	​<p>​

	​ 	 Say ​<a​ href=​"/say/hello"​​>​Hello​​!

	​ 	​</p>​

	​ 	...

 This approach would certainly work, but it’s a bit fragile. If we
 were to move our application to a different place on the
 web server, the URLs would no longer be valid. It also encodes
 assumptions about the Rails URL format into our code; it’s
 possible a future version of Rails might change this.

 Fortunately, these aren’t risks we have to take. Rails comes
 with a bunch of ​helper methods​ that can be used in
 view templates. Here, we’ll use the helper method
 ​link_to​
 , which creates a
 hyperlink to an action.
	 (The
 ​link_to​
 method can do a lot
	 more than this, but let’s take it gently for now.)
 Using
 ​link_to​
 ,
 ​hello.html.erb​ becomes the following:

	rails40/demo5/app/views/say/hello.html.erb
	​ 	​<h1>​Hello from Rails!​</h1>​

	​ 	​<p>​

	​ 	 It is now <%= @time %>

	​ 	​</p>​

	​*
​	​<p>​

	​*
​	 Time to say

	​*
​	 <%= link_to ​"Goodbye"​, say_goodbye_path %>!

	​*
​	​</p>​

 There’s a
 ​link_to​
 call within an
 ERB ​<%=…%>​ sequence. This
 creates a link to a URL that will invoke
 the
 ​goodbye​
 action. The first parameter
 in the call to
 ​link_to​
 is the text to
 be displayed in the hyperlink, and the next parameter tells
 Rails to generate the link to the
 ​goodbye​

 action.

 Let’s stop for a minute to consider how we generated the link. We wrote this:

	​ 	link_to ​"Goodbye"​, say_goodbye_path

 First,
 ​link_to​
 is a method call. (In Rails, we call
 methods that make it easier to write
 templates ​helpers​.) If you come from
 a language such as Java, you might be surprised that Ruby
 doesn’t insist on parentheses around method parameters. You can
 always add them if you like.

 ​say_goodbye_path​ is a precomputed value that Rails makes
 available to application views. It evaluates to the
 ​/say/goodbye​ path. Over time you will see that Rails provides
 the ability to name all the routes that you will be using in your
 application.

 OK, let’s get back to the application. If we point our browser at our
 hello page, it will now contain the link to the goodbye page, as
 shown in the following figure:

[image: images/hello3.png]

Figure 4. The Hello page with a link to the goodbye page

 We can make the corresponding change
 in ​goodbye.html.erb​, linking it back to the
 initial hello page.

	rails40/demo5/app/views/say/goodbye.html.erb
	​ 	​<h1>​Goodbye!​</h1>​

	​ 	​<p>​

	​ 	 It was nice having you here.

	​ 	​</p>​

	​*
​	​<p>​

	​*
​	 Say <%= link_to ​"Hello"​, say_hello_path %> again.

	​*
​	​</p>​

 At this point, we’ve completed our toy application and in the process
 verified that our installation of Rails is functioning properly.
 After a brief recap, it is now time to move on to building a real
 application.

What We Just Did

 We constructed a toy application that showed us the following:

	

	 How to create a new Rails application and how to create a
	 new controller in that application
	

	

	 How to create dynamic content in the controller and display
	 it via the view template
	

	

	 How to link pages together
	

 This is a great foundation, and it didn’t really take much time or
 effort. This experience will continue as we move on to the next
 chapter and build a much bigger application.

Playtime

	Here’s some stuff to try on your own:

	

	 Experiment with the following expressions:
	
	
​Addition: <%= 1+2 %>​

	
​Concatenation: <%= "cow" + "boy" %>​

	
​Time in one hour: <%= 1.hour.from_now.localtime %>​

	

	 A call to the following Ruby method returns a list of all
	 the files in the current directory:
	
	​ 	@files = Dir.glob(​'*'​)

	 Use it to set an instance variable in a controller action,
	 and then write the corresponding template that displays
	 the filenames in a list on the browser.
	

	 Hint: you can iterate over a
	 collection using something like this:
	
	​ 	<% ​for​ file ​in​ @files %>

	​ 	 file name is: <%= file %>

	​ 	<% ​end​ %>

	 You might want to use a ​​ for the list.
	

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Cleaning Up

	Maybe you’ve been following along and writing the code in this
	chapter. If so, chances are that the application is still
	running on your computer. When we start coding our next
	application in Chapter 6, ​Task A: Creating the Application​, we’ll get a conflict the first
	time we run it because it will also try to use the
	computer’s port 3000 to talk with the browser. Now would be a
	good time to stop the current application by pressing
	Ctrl-C in the window you used to start it. Microsoft Windows users
 may need to press Ctrl-Pause/​Break instead.

 Now let’s move on to an overview of Rails.

Footnotes

	[22]	

 ​https://rvm.io/gemsets/basics/​

	[23]	

 ​http://gembundler.com/v1.3/bundle_exec.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 3
The Architecture of Rails Applications

	
models,

	
views, and

	
controllers.

 One of the interesting features of Rails is that it imposes some
 fairly serious constraints on how you structure your web
 applications. Surprisingly, these constraints make it easier to
 create applications—a lot easier. Let’s see why.

3.1 Models, Views, and Controllers

 Back in 1979, Trygve Reenskaug came up
 with a new architecture for developing interactive
 applications. In his design, applications were broken into three
 types of components: models, views, and controllers.

 The
 ​ model​

 is responsible for maintaining the state
 of the application. Sometimes this state is transient, lasting
 for just a couple of interactions with the user. Sometimes the
 state is permanent and will be stored outside the application,
 often in a database.

 A model is more than just data; it enforces all the business
 rules that apply to that data. For example,
 if a discount shouldn’t be applied to orders of less than $20,
 the model will enforce the constraint. This makes sense; by
 putting the implementation of these business rules in the model,
 we make sure that nothing else in the application can make our
 data invalid. The model acts as both a gatekeeper and a data
 store.

 The
 ​ view​

 is responsible for generating a user interface, normally based
 on data in the model. For example, an online store will have a
 list of products to be displayed on a catalog screen. This list
 will be accessible via the model, but it will be a view that
 formats the list for the end
 user. Although the view may present the user with various ways
 of inputting data, the view itself never handles incoming
 data. The view’s work is done once the data is displayed. There
 may well be many views that access the same model data, often
 for different purposes. In the online store, there’ll be a view
 that displays product information on a catalog page and another
 set of views used by administrators to add and edit products.

 ​ Controllers​

 orchestrate the application. Controllers receive events from the
 outside world (normally user input), interact with the model, and
 display an appropriate view to the user.

 This triumvirate—the model, view, and controller—together form an
 architecture known as MVC.
 To learn how the three concepts fit
 together, see the following figure:

[image: images/basic_mvc.png]

Figure 5. The Model-View-Controller architecture

 The MVC architecture was originally intended for conventional GUI
 applications, where developers found the separation of concerns led to
 far less coupling, which in turn made the code easier to write and maintain.
 Each concept or action was expressed in just one well-known place.
 Using MVC was like constructing a skyscraper with the girders already in
 place—it was a lot easier to hang the rest of the pieces with a
 structure already there. During the development of our application, we
 will be making heavy use of Rails’ ability to generate
 ​scaffolding​ for our application.

 Ruby on Rails is an MVC framework, too. Rails enforces a
 structure for your application—you develop models, views,
 and controllers as separate chunks of functionality, and it knits
 them together as your program executes. One of the joys of
 Rails is that this knitting process is based on the use of
 intelligent defaults so
 that you typically don’t need to write any external
 configuration metadata to make it all work. This is an example
 of the Rails philosophy of favoring convention over
 configuration.

 In a Rails application,
 an incoming request is first sent to a router, which works out
 where in the application the request should be sent and how the
 request itself should be parsed. Ultimately, this phase
 identifies a particular method (called
 an
 ​ action​

 in Rails parlance)
 somewhere in the controller code. The action might look at data in the
 request, it might interact with the model, and it might
 cause other actions to be invoked. Eventually the action
 prepares information for the view, which renders something to the
 user.

 Rails handles an incoming request as shown in the following figure. In
 this example, the application has
 previously displayed a product catalog page, and the user has
 just clicked the
 ​Add to Cart​
 button next
 to one of the products. This button posts
 to
 ​http://localhost:3000/line_items?product_id=2​
 ,
 where ​line_items​ is a resource in our application and
 2 is our internal ID for the selected product.

[image: images/rails_mvc.png]

Figure 6. Rails and MVC

 The routing component receives the incoming
 request and immediately picks it apart. The request contains a path
 (​/line_items?product_id=2​) and a method (this button does a
 POST operation; other common methods are GET, PUT, PATCH, and DELETE).
 In this simple case, Rails takes the first part of the
 path, ​line_items​,
 as the name of the controller and the ​product_id​ as the ID of
 a product. By convention, POST methods are associated with

 ​create​
 actions. As a result of all
 this analysis, the router knows it has to invoke
 the
 ​create​
 method in the
 controller class ​LineItemsController​ (we’ll
 talk about naming conventions in Section 18.2, ​Naming Conventions​).

 The
 ​create​
 method handles
 user requests. In this case, it finds the current user’s
 shopping cart (which is an object managed by the model). It also
 asks the model to find the information for product 2. It then
 tells the shopping cart to add that product to itself. (See how
 the model is being used to keep track of all the business data?
 The controller tells it ​what​ to do, and the model
 knows ​how​ to do it.)

 Now that the cart includes the new product, we can show it to
 the user. The controller invokes the view code, but before it does, it
 arranges things so that the view has access to the cart object from the
 model.
 In Rails, this invocation is often implicit; again,
 conventions help link a particular view with a given action.

 That’s all there is to an MVC web application. By following a
 set of conventions and partitioning your functionality
 appropriately, you’ll discover that your code becomes easier to
 work with and your application becomes easier to extend and
 maintain. That seems like a good trade.

 If MVC is simply a question of partitioning your code a
 particular way, you might be wondering why you need a framework
 such as Ruby on Rails. The answer is straightforward:
 Rails handles all of the low-level housekeeping for you—all
 those messy details that take so long to handle by
 yourself—and lets you concentrate on your
 application’s core functionality. Let’s see how.

3.2 Rails Model Support

 In general, we’ll want our web applications to keep their
 information in a relational database. Order-entry systems will
 store orders, line items, and customer details in database
 tables. Even applications that normally use unstructured text,
 such as weblogs and news sites, often use databases as their
 back-end data store.

 Although it might not be immediately apparent from the SQL[24] you use to access them, relational databases are
 actually designed around mathematical set theory. Although this
 is good from a conceptual point of view, it makes it difficult
 to combine relational databases with object-oriented (OO) programming
 languages. Objects are all about data and operations, and
 databases are all about sets of values. Operations that are easy
 to express in relational terms are sometimes difficult to code
 in an OO system. The reverse is also true.

 Over time, folks have worked out ways of reconciling the
 relational and OO views of their corporate data. Let’s look at
 the way that Rails chooses to map relational data onto objects.

Object-Relational Mapping

 ORM libraries map database tables to classes. If a
 database has a table called ​orders​, our
 program will have a class named ​Order​.
	Rows in this table correspond to objects of the class—a
 particular order is represented as an object of
 class ​Order​. Within that object,
 attributes are used to get and set the individual
 columns. Our ​Order​ object has methods
 to get and set the amount, the sales tax, and so on.

 In addition, the Rails classes that wrap our database tables
 provide a set of class-level methods that perform table-level
 operations. For example, we might need to find the order with
 a particular ID. This is implemented as a class method that returns the
 corresponding ​Order​ object. In Ruby
 code, this might look like this:

	​ 	order = Order.find(1)

	​ 	puts ​"Customer ​#{order.customer_id}​, amount=$​#{order.amount}​"​

 Sometimes these class-level methods return collections
 of objects.

	​ 	Order.where(name: ​'dave'​).each ​do​ |order|

	​ 	 puts order.amount

	​ 	​end​

 Finally, the objects corresponding to individual rows in a
 table have methods that operate on that row. Probably the
 most widely used is
 ​save​
 , the
 operation that saves the row to the database.

	​ 	Order.where(name: ​'dave'​).each ​do​ |order|

	​ 	 order.pay_type = ​"Purchase order"​

	​ 	 order.save

	​ 	​end​

 So, an ORM layer maps tables to classes, rows to objects, and
 columns to attributes of those objects. Class methods are used
 to perform table-level operations, and instance methods
 perform operations on the individual rows.

 In a typical ORM library, you supply configuration data to
 specify the mappings between entities in the database and
 entities in the program. Programmers using these ORM tools
 often find themselves creating and maintaining a boatload of
 XML configuration
 files.

Active Record

	​Active Record​ is the ORM
	layer supplied with Rails. It closely follows the standard ORM
	model: tables map to classes, rows to objects, and columns to
	object attributes. It differs from most other ORM libraries in
	the way it is configured. By relying on convention and
	starting with sensible defaults, Active Record minimizes the
	amount of configuration that developers perform.

To illustrate this, here’s a program
	that uses Active Record to wrap
	our ​orders​ table:

	​ 	require ​'active_record'​

	​ 	

	​ 	​class​ Order < ActiveRecord::Base

	​ 	​end​

	​ 	

	​ 	order = Order.find(1)

	​ 	order.pay_type = ​"Purchase order"​

	​ 	order.save

	This code uses the new ​Order​ class to
	fetch the order with an ​id​ of 1 and modify the
	​pay_type​. (We’ve omitted the code that creates a database
	connection for now.) Active Record relieves us of the hassles
	of dealing with the underlying database, leaving us free to
	work on business logic.

	But Active Record does more than that. As you’ll see when we
	develop our shopping cart application, starting
	in Chapter 5, ​The Depot Application​, Active Record integrates
	seamlessly with the rest of the Rails framework. If a web form
	sends the application data related to a business object,
	Active Record can extract it into our model. Active Record
	supports sophisticated validation of model data, and if the
	form data fails validations, the Rails views can extract and
	format errors.

	Active Record is the solid model foundation of the Rails MVC
	architecture.

3.3 Action Pack: The View and Controller

 When you think about it, the view and controller parts of MVC
 are pretty intimate. The controller supplies data to the view,
 and the controller receives events from the pages generated by
 the views. Because of these interactions, support for views and
 controllers in Rails is bundled into a single
 component, ​Action Pack​.

 Don’t be fooled into thinking that your application’s view code
 and controller code will be jumbled up just because Action Pack
 is a single component. Quite the contrary; Rails gives you the
 separation you need to write web applications with clearly
 demarcated code for control and presentation logic.

View Support

	In Rails, the view is responsible for creating all or
	part of a response to be displayed in a browser, to be processed by an
 application, or to be sent as an email.
	
	At its simplest, a view is a chunk of HTML code
	that displays some fixed text. More typically you’ll want to
	include dynamic content created by the action method in the
	controller.

 In Rails, dynamic content is generated by templates,
 which come in three flavors. The most common templating scheme,
 called Embedded Ruby (ERB), embeds snippets of Ruby
 code within a view document, in many ways similar to the way it is
 done in other web frameworks, such as PHP or JSP.
 Although this approach is very flexible, some are concerned that it
 violates the spirit of MVC. By embedding code in the view, we risk
 adding logic that should be in the model or the controller. As with
 everything, while judicious use in moderation is healthy, overuse can
 become a problem. Maintaining a clean separation of concerns is part
 of the job of the developer. (We look at HTML templates
	in Section 24.2, ​Generating HTML with ERB​.)

 You can also use ERB to construct
	JavaScript fragments on the server that are then
	executed on the browser. This is great for creating dynamic
	Ajax interfaces. We talk about these starting
	in Section 11.2, ​Iteration F2: Creating an Ajax-Based Cart​.

 Rails also provides
	XML Builder to construct XML documents using Ruby
	code—the
	structure of the generated XML will automatically follow the
	structure of the code. We discuss ​xml.builder​ templates starting
	in Section 24.1, ​Generating XML with Builder​.

And the Controller!

	The Rails controller is the logical center of your
	application. It coordinates the interaction between the user,
	the views, and the model.
	However, Rails handles most of this interaction behind the
	scenes; the code you write concentrates on application-level
	functionality. This makes Rails controller code remarkably
	easy to develop and maintain.

	The controller is also home to a number of important
	ancillary services.

	

	 It is responsible for routing external requests to
	 internal actions. It handles people-friendly URLs
	 extremely well.
	

	

	 It manages caching, which can give applications
	 orders-of-magnitude performance boosts.
	

	

	 It manages helper modules, which extend the capabilities
	 of the view templates without bulking up their code.
	

	

	 It manages sessions, giving users the impression of
	 ongoing interaction with our applications.
	

We’ve already seen and modified a controller in Section 2.2, ​Hello, Rails!​ and will be seeing and modifying a number
 of controllers in the development of a sample application, starting
 with the products controller in Section 8.1, ​Iteration C1: Creating the Catalog Listing​.

 There’s a lot to Rails. But before going any further, let’s have a brief
 refresher​—and for some of you, a brief introduction—to the Ruby
 language.

Footnotes

	[24]	

 SQL, referred to by some as ​Structured Query
 Language​, is the language used
 to query and update relational databases.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 4
Introduction to Ruby

	
objects: names and methods;

	
data: strings, arrays, hashes, and regular expressions;

	
control: if, while, blocks, iterators, and exceptions;

	
building blocks: classes and modules;

	
YAML and marshaling; and

	
common idioms that you will see used in this book.

 Many people who are new to Rails are also new to Ruby. If you are
 familiar with a language such as Java, JavaScript, PHP, Perl, or Python, you
 will find Ruby pretty easy to pick up.

 This chapter is not a complete introduction to Ruby. It will not cover
 topics such as precedence rules (like most other programming languages,
 1+2*3==7 in Ruby). It is only meant to explain enough Ruby that the
 examples in the book make sense.

 This chapter draws heavily from material in Programming Ruby [TFH13]. If you think you need
 more background on the Ruby language (and at the risk of being grossly
 self-serving), we’d like to suggest that the best way to learn Ruby and
 the best reference for Ruby’s classes, modules, and libraries is
 Programming Ruby [TFH13] (also known as
 the PickAxe book). Welcome to the Ruby community!

4.1 Ruby Is an Object-Oriented Language

 Everything you manipulate in Ruby is an object, and the results
 of those manipulations are themselves
 objects.

 When you write object-oriented code, you’re
 normally looking to model concepts from the real world. Typically during
 this modeling process you’ll discover categories of things that need to
 be represented. In an online store, the concept of a line item could be
 such a category. In Ruby, you’d define a

 ​ class​

 to represent each of these
 categories. You then use this class as a
 kind of factory that generates
 ​ objects​

 —instances
 of that class. An object is a combination of state (for example, the
 quantity and the product ID) and methods that use that state (perhaps a
 method to calculate the line item’s total cost). We’ll show how to
 create classes in ​Classes​.

 Objects are created by calling
 a
 ​ constructor​

 , a special method associated with a class. The
 standard constructor is called
 ​new​
 .
 Given a class called ​LineItem​, you could
 create line item objects as follows:

	​ 	line_item_one = LineItem.new

	​ 	line_item_one.quantity = 1

	​ 	line_item_one.sku = ​"AUTO_B_00"​

 Methods are invoked by sending a message to an object. The
 message contains the method’s name, along with any parameters
 the method may need.
 When an object receives a
 message, it looks into its own class for a corresponding
 method.
 Let’s look at some method calls:

	​ 	​"dave"​.length

	​ 	line_item_one.quantity()

	​ 	cart.add_line_item(next_purchase)

	​ 	submit_tag ​"Add to Cart"​

 Parentheses are generally optional in method calls.
 In Rails applications, you’ll find that most method calls
 involved in larger expressions will have parentheses, while
 those that look more like commands or declarations tend not to
 have them.

 Methods have names, as do many other constructs in Ruby. Names in Ruby
 have special rules, rules that you may not have seen if you come to Ruby
 from another language.

Ruby Names

 Local variables,
 method parameters, and method names should all start with a
 lowercase letter or with an
 underscore: ​order​, ​line_item​,
 and ​xr2000​ are all valid. Instance
 variables begin
 with an “at” (@) sign, such
 as ​@quantity​
 and ​@product_id​. The Ruby convention is
 to use underscores to separate words in a multiword method or
 variable name (so ​line_item​ is
 preferable to ​lineItem​).

 Class names, module names, and constants must start with an
 uppercase
 letter. By
 convention they use capitalization, rather than underscores, to
 distinguish the start of words within the name. Class names look
 like ​Object​, ​PurchaseOrder​,
 and ​LineItem​.

 Rails uses

 ​ symbols​

 to identify things. In particular, it
 uses them as keys when naming method parameters and looking things up in
 hashes. Here’s an example:

	​ 	redirect_to :action => ​"edit"​, :id => params[:id]

 As you can see, a symbol looks like a variable name, but it’s prefixed
 with a colon. Examples of symbols include
 ​:action​, ​:line_items​,
 and ​:id​. You can think of symbols as string
 literals magically made into constants. Alternatively, you can
 consider the colon to mean “thing named,” so
 ​:id​ is “the thing named
 ​id​.”

 Now that we have used a few methods, let’s move on to how they are
 defined.

Methods

 Let’s write a
 ​ method​

 that returns a cheery,
 personalized greeting. We’ll invoke that method a couple of
 times.

	​ 	​def​ say_goodnight(name)

	​ 	 result = ​'Good night, '​ + name

	​ 	 ​return​ result

	​ 	​end​

	​ 	

	​ 	​# Time for bed...​

	​ 	puts say_goodnight(​'Mary-Ellen'​) ​# => 'Goodnight, Mary-Ellen'​

	​ 	puts say_goodnight(​'John-Boy'​) ​# => 'Goodnight, John-Boy'​

 Having defined the method, we call it twice. In both cases, we
 pass the result to the method
 ​puts​
 ,
 which outputs to the console its argument followed by a newline
 (moving on to the next line of output).

 You don’t need a semicolon at the end of a statement as long as
 you put each statement on a separate line. Ruby comments start with
 a ​#​ character and run to the end of the
 line. Indentation is not significant (but two-character
 indentation is the de facto Ruby standard).

 Ruby doesn’t use braces to
 delimit the bodies of compound statements and definitions (such
 as methods and classes). Instead, you simply finish the body
 with the keyword ​end​.
 The keyword ​return​ is optional, and if not present, the
 results of the last expression evaluated will be returned.

4.2 Data Types

 While everything in Ruby is an object, some of the data types in Ruby
 have special syntax support, in particular for defining literal values.
 In these examples, we’ve used some simple strings and even string
 concatenation.

Strings

 The previous example also showed some Ruby string objects. One way to
 create a string object is to use
 ​ string
 literals​

 , which are sequences of characters between single or double
 quotation marks. The difference between the two forms is the
 amount of processing Ruby does on the string while constructing
 the literal. In the single-quoted case, Ruby does very
 little. With only a few exceptions, what you type into the
 single-quoted string literal becomes the string’s value.

 In the double-quoted case, Ruby does more work. First, it looks
 for
 ​ substitutions​

 —sequences that start
 with a backslash character—and replaces them with some binary
 value. The most common of these is ​\n​,
 which is replaced with a newline character. When you write a
 string containing a newline to the console,
 the ​\n​ forces a line break.

 Second, Ruby performs
 ​ expression
 interpolation​

 in double-quoted strings. In the
 string, the
 sequence ​#{​​expression​​}​
 is replaced by the value of ​expression​. We could
 use this to rewrite our previous method:

	​ 	​def​ say_goodnight(name)

	​ 	 ​"Good night, ​#{name.capitalize}​"​

	​ 	​end​

	​ 	puts say_goodnight(​'pa'​)

 When Ruby constructs this string object, it looks at the current
 value of ​name​ and substitutes it
 into the string. Arbitrarily complex expressions are allowed in
 the ​#{…}​ construct. Here we
 invoked the
 ​capitalize​
 method, defined
 for all strings, to output our parameter with a leading
 uppercase letter.

 Strings are a fairly primitive data type that contain an ordered
 collection of bytes or characters. Ruby also provides means for
 defining collections of arbitrary objects via arrays and hashes.

Arrays and Hashes

 Ruby’s arrays and hashes are indexed collections. Both store collections of objects, accessible using
 a key. With arrays, the key is an integer, whereas hashes
 support any object as a key. Both arrays and hashes grow as
 needed to hold new elements. It’s more efficient to access
 array elements, but hashes provide more flexibility. Any
 particular array or hash can hold objects of differing types;
 you can have an array containing an integer, a string, and a
 floating-point number, for example.

 You can create and initialize a new array object using an

 ​ array literal​

 —a
 set of elements between square
 brackets. Given an array object, you can access individual elements by
 supplying an index between square brackets, as the next example shows.
 Ruby array indices start at zero.

	​ 	a = [1, ​'cat'​, 3.14] ​# array with three elements​

	​ 	a[0] ​# access the first element (1)​

	​ 	a[2] = nil ​# set the third element​

	​ 	 ​# array now [1, 'cat', nil]​

 You may have noticed that we used the special
 value ​nil​ in this example. In
 many languages, the concept of ​nil​
 (or ​null​) means “no object.” In Ruby,
 that’s not the case; ​nil​ is an object, just
 like any other, that happens to represent nothing.

 The method
 ​<<​
 is commonly used with arrays. It
 appends a value to its receiver.

	​ 	ages = []

	​ 	​for​ person ​in​ @people

	​ 	 ages << person.age

	​ 	​end​

 Ruby has a shortcut for creating an array of words.

	​ 	a = [​'ant'​, ​'bee'​, ​'cat'​, ​'dog'​, ​'elk'​]

	​ 	​# this is the same:​

	​ 	a = ​%w{ ant bee cat dog elk }​

 Ruby hashes are
 similar to arrays. A hash
 literal uses braces rather than square brackets. The literal
 must supply two objects for every entry: one for the key, the
 other for the value. For example, you may want to map musical
 instruments to their orchestral sections.

	​ 	inst_section = {

	​ 	 :cello => ​'string'​,

	​ 	 :clarinet => ​'woodwind'​,

	​ 	 :drum => ​'percussion'​,

	​ 	 :oboe => ​'woodwind'​,

	​ 	 :trumpet => ​'brass'​,

	​ 	 :violin => ​'string'​

	​ 	}

 The thing to the left of the ​=>​ is
 the key, and that on the right is the corresponding value. Keys
 in a particular hash must be unique—you can’t have two entries
 for ​:drum​. The keys and values in a
 hash can be arbitrary objects—you can have hashes where the
 values are arrays, other hashes, and so on. In Rails, hashes
 typically use symbols as keys. Many Rails hashes have been
 subtly modified so that you can use either a string or a
 symbol interchangeably as a key when inserting and looking up values.

 The use of symbols as hash keys is so commonplace that starting with Ruby
 1.9 there is a special syntax for it, saving both keystrokes and
 eyestrain.

	​ 	inst_section = {

	​ 	 cello: ​'string'​,

	​ 	 clarinet: ​'woodwind'​,

	​ 	 drum: ​'percussion'​,

	​ 	 oboe: ​'woodwind'​,

	​ 	 trumpet: ​'brass'​,

	​ 	 violin: ​'string'​

	​ 	}

 Doesn’t that look much better?

 Feel free to use whichever syntax you like. You can even intermix
 usages in a single expression. Obviously you’ll need to use the
 arrow syntax whenever the key is ​not​ a symbol.

 Hashes are indexed using the same square bracket notation as arrays.

	​ 	inst_section[:oboe] ​#=> 'woodwind'​

	​ 	inst_section[:cello] ​#=> 'string'​

	​ 	inst_section[:bassoon] ​#=> nil​

 As the previous example shows, a hash
 returns ​nil​ when indexed by a key it
 doesn’t contain. Normally this is convenient,
 because ​nil​ means false when used in conditional
 expressions.

	You can pass hashes as parameters on method calls. Ruby allows you to omit the braces, but
	only if the hash is the last parameter of the call. Rails makes extensive use of this feature. The
	following code fragment shows a two-element hash being passed
	to the
 ​redirect_to​
 method. In effect,
	though, you can ignore that it’s a hash and pretend
	that Ruby has keyword arguments.

	​ 	redirect_to action: ​'show'​, id: product.id

 There is one more data type worth mentioning—the regular
 expression.
Regular Expressions

 A regular expression lets you
 specify a ​pattern​ of characters to be
 matched in a string. In Ruby, you typically create a regular
 expression by
 writing ​/​pattern​/​
 or ​%r{​pattern​}​.

 For example, you could write a pattern that matches a string
 containing the text ​Perl​ or the
 text ​Python​ using the regular
 expression ​/Perl|Python/​.

 The forward slashes delimit the pattern, which consists of the
 two things we’re matching, separated by a vertical bar
 (​|​). This bar character means
 “either the thing on the left or the thing on the
 right,” in this case either ​Perl​
 or ​Python​. You can use parentheses within
 patterns, just as you can
 in arithmetic expressions, so you could also write this pattern
 as ​/P(erl|ython)/​. Programs typically
 test strings against regular expressions using
 the ​=~​ match operator.

	​ 	​if​ line =~ /P(erl|ython)/

	​ 	 puts ​"There seems to be another scripting language here"​

	​ 	​end​

 You can specify ​repetition​ within
 patterns. ​/ab+c/​ matches a string
 containing an ​a​ followed by one or
 more ​b​’s, followed by a ​c​. Change the
 plus to an asterisk, and ​/ab*c/​ creates
 a regular expression that matches one ​a​, zero or
 more ​b​’s, and one ​c​.

 Backward slashes start special sequences; most notably, ​\d​
 matches any digit, ​\s​ matches any whitespace character, and
 ​\w​ matches any alphanumeric (​word​) character.

 Ruby’s regular expressions are a deep and complex subject; this
 section barely skims the surface. See
 the PickAxe book for a
 full discussion.

This book will make only light use of regular expressions.

With that brief introduction to data, let’s move on to logic.

4.3 Logic

 Method calls are statements. Ruby also provides a number of ways to make
 decisions that affect the repetition and order in which methods are
 invoked.

Control Structures

 Ruby has all the usual control structures, such
 as ​if​
 statements and ​while​ loops. Java, C,
 and Perl programmers may well get caught by the lack of braces
 around the bodies of these statements. Instead, Ruby uses the
 keyword ​end​ to signify the end of a
 body.

	​ 	​if​ count > 10

	​ 	 puts ​"Try again"​

	​ 	​elsif​ tries == 3

	​ 	 puts ​"You lose"​

	​ 	​else​

	​ 	 puts ​"Enter a number"​

	​ 	​end​

 Similarly, ​while​ statements are
 terminated with ​end​.

	​ 	​while​ weight < 100 ​and​ num_pallets <= 30

	​ 	 pallet = next_pallet()

	​ 	 weight += pallet.weight

	​ 	 num_pallets += 1

	​ 	​end​

 Ruby also contains variants of these statements. ​unless​ is like
 ​if​ except that it checks for the condition to ​not​
 be true. Similarly, ​until​ is like ​while​ except that the
 loop continues until the condition evaluates to be true.

 Ruby
 ​ statement​

 modifiers are a useful
 shortcut if the body of an ​if​, ​unless​,
 ​while​, or ​until​ statement is just a single
 expression. Simply write the expression, followed
 by the modifier keyword and the condition.

	​ 	puts ​"Danger, Will Robinson"​ ​if​ radiation > 3000

	​ 	distance = distance * 1.2 ​while​ distance < 100

Although ​if​ statements are fairly common in Ruby applications,
 newcomers to the Ruby language are often surprised to find that looping
 constructs are rarely used. Blocks and iterators often take their
 place.
Blocks and Iterators

 Code
 blocks are just
 chunks of code between braces or
 between ​do​…​end​.
 A common convention is that people use braces for single-line
 blocks
 and ​do​/​end​ for
 multiline blocks.

	​ 	{ puts ​"Hello"​ } ​# this is a block​

	​ 	

	​ 	​do​ ​###​

	​ 	 club.enroll(person) ​# and so is this​

	​ 	 person.socialize ​#​

	​ 	​end​ ​###​

 To pass a block to a method, place the block
 after the parameters (if any) to the method. In other words,
 put the start of the block at the end of the source line
 containing the method call. For example, in the following code,
 the block containing ​puts "Hi"​ is
 associated with the call to the
 method
 ​greet​
 .

	​ 	greet { puts ​"Hi"​ }

 If a method call has parameters, they appear before the block.

	​ 	verbose_greet(​"Dave"​, ​"loyal customer"​) { puts ​"Hi"​ }

 A method can invoke an associated block one or more times using
 the Ruby ​yield​ statement.

 You can think
 of ​yield​ as being something like a
 method call that calls out to the block associated with the
 method containing the ​yield​. You can
 pass values to the block by giving parameters
 to ​yield​. Within the block, you list
 the names of the arguments to receive these parameters between
 vertical bars (​|​).

 Code blocks appear throughout Ruby applications. Often they are
 used in conjunction with iterators: methods that return
 successive elements from some kind of collection, such as an
 array.

	​ 	animals = ​%w(ant bee cat dog elk)​ ​# create an array​

	​ 	animals.each {|animal| puts animal } ​# iterate over the contents​

 Each integer ​N​ implements a
 ​times​

 method, which invokes an associated block ​N​ times.

	​ 	3.times { print ​"Ho! "​ } ​#=> Ho! Ho! Ho!​

 The ​&​ prefix operator will allow a method to capture a
 passed block as a named parameter.

	​ 	​def​ wrap &b

	​ 	 print ​"Santa says: "​

	​ 	 3.times(&b)

	​ 	 print ​"​\n​"​

	​ 	​end​

	​ 	wrap { print ​"Ho! "​ }

 Within a block, or a method, control is sequential except when there is
 an exception.

Exceptions

 Exceptions
 are objects of class ​Exception​ or its
 subclasses. The ​raise​ method causes an
 exception to be raised. This interrupts the normal flow through
 the code. Instead, Ruby searches back through the call stack for
 code that says it can handle this exception.

 Both methods and blocks of code
 wrapped
 between ​begin​ and ​end​
 keywords intercept certain classes of exceptions
 using ​rescue​ clauses.

	​ 	​begin​

	​ 	 content = load_blog_data(file_name)

	​ 	​rescue​ BlogDataNotFound

	​ 	 STDERR.puts ​"File ​#{file_name}​ not found"​

	​ 	​rescue​ BlogDataFormatError

	​ 	 STDERR.puts ​"Invalid blog data in ​#{file_name}​"​

	​ 	​rescue​ Exception => exc

	​ 	 STDERR.puts ​"General error loading ​#{file_name}​: ​#{exc.message}​"​

	​ 	​end​

​rescue​ clauses can be directly placed on the outermost level
 of a method definition without needing to enclose the contents in a
 ​begin​/​end​ block.

That concludes our brief introduction to control flow, and at this
 point we have our basic building blocks upon which we can build larger
 structures.

4.4 Organizing Structures

 There are two basic concepts in Ruby for organizing methods, namely,
 classes and modules. We cover each in turn.

Classes

 Here’s a Ruby class definition:

	​Line 1 	​class​ Order < ActiveRecord::Base

	​- 	 has_many :line_items

	​- 	 ​def​ self.find_all_unpaid

	​- 	 self.where(​'paid = 0'​)

	​5 	 ​end​

	​- 	 ​def​ total

	​- 	 sum = 0

	​- 	 line_items.each {|li| sum += li.total}

	​- 	 sum

	​10 	 ​end​

	​- 	​end​

 Class definitions start with the keyword ​class​
 followed by the class name (which must start with an uppercase letter).
 This ​Order​ class is defined to be a
 subclass of the class
 ​Base​ within the
 ​ActiveRecord​ module.

 Rails makes heavy use of class-level declarations. Here
 ​has_many​ is a
 method that’s defined by Active Record. It’s called as the
 ​Order​ class is being defined. Normally these
 kinds of methods make assertions about the class, so in this book we
 call them
 ​ declarations​

 .

 Within a class body you can define class methods and instance
 methods. Prefixing a method name
 with ​self.​ (as we do
 on line 3) makes it a class method; it can
 be called on the class generally. In this case, we can make the
 following call anywhere in our application:

	​ 	to_collect = Order.find_all_unpaid

 Objects of a class hold their state in
 ​ instance
	variables​

 . These variables, whose names all start
 with ​@​, are available to all the
 instance methods of a class. Each object gets its own set of
 instance variables.

 Instance variables are not directly accessible outside the
 class. To make them available, write methods that return their
 values.

	​ 	​class​ Greeter

	​ 	 ​def​ initialize(name)

	​ 	 @name = name

	​ 	 ​end​

	​ 	

	​ 	 ​def​ name

	​ 	 @name

	​ 	 ​end​

	​ 	

	​ 	 ​def​ name=(new_name)

	​ 	 @name = new_name

	​ 	 ​end​

	​ 	​end​

	​ 	

	​ 	g = Greeter.new(​"Barney"​)

	​ 	g.name ​# => Barney​

	​ 	g.name = ​"Betty"​

	​ 	g.name ​# => Betty​

 Ruby provides convenience methods that write these accessor
 methods for you (which is great news for folks tired of writing
 all those getters and setters).

	​ 	​class​ Greeter

	​ 	 attr_accessor :name ​# create reader and writer methods​

	​ 	 attr_reader :greeting ​# create reader only​

	​ 	 attr_writer :age ​# create writer only​

	​ 	​end​

	A class’s instance methods are public by default; anyone can
	call them. You’ll probably want to override this for methods
	that are intended to be used only by other instance methods.

	​ 	​class​ MyClass

	​ 	 ​def​ m1 ​# this method is public​

	​ 	 ​end​

	​ 	 protected

	​ 	 ​def​ m2 ​# this method is protected​

	​ 	 ​end​

	​ 	 private

	​ 	 ​def​ m3 ​# this method is private​

	​ 	 ​end​

	​ 	​end​

	The ​private​ directive is the
	strictest; private methods can be called only from within the
	same instance. Protected methods can be called both in the same
	instance and by other instances of the same class and its
	subclasses.

 Classes are not the only organizing structure in Ruby. The other
 organizing structure is a module.

Modules

 Modules are
 similar to classes in that they hold a collection of methods,
 constants, and other module and class definitions. Unlike
 classes, you cannot create objects based on modules.

 Modules serve two purposes. First, they act as a namespace, letting you
 define methods whose names will not clash with those defined elsewhere.
 Second, they allow you to share functionality between classes—if a
 class
 ​ mixes in​

 a module, that
 module’s instance methods become available as if they had been defined
 in the class. Multiple classes can mix in the same module, sharing the
 module’s functionality without using inheritance. You can also mix
 multiple modules into a single class.

 Helper methods are an example of where Rails uses
 modules.
 Rails automatically mixes these helper modules into the
 appropriate view templates. For example, if you wanted to write
 a helper method that would be callable from views invoked by the
 store controller, you could define the following module in the
 file ​store_helper.rb​ in
 the ​app/helpers​ directory:

	​ 	​module​ StoreHelper

	​ 	 ​def​ capitalize_words(string)

	​ 	 string.split(​' '​).map {|word| word.capitalize}.join(​' '​)

	​ 	 ​end​

	​ 	​end​

 There is one module that is part of the standard library of Ruby that
 deserves special mention given its usage in Rails, namely, YAML.

YAML

 YAML[25] is a recursive acronym that stands for YAML Ain’t Markup
 Language. In the context of Rails, YAML is used as a convenient way to
 define the configuration of things such as databases, test data, and
 translations. Here is an example:

	​ 	development:

	​ 	 adapter: sqlite3

	​ 	 database: db/development.sqlite3

	​ 	 pool: 5

	​ 	 timeout: 5000

 In YAML, indentation is important, so this defines ​development​
 as having a set of four key-value pairs, separated by colons.

 While YAML is one way to represent data, particularly when interacting
 with humans, Ruby provides a more general way for representing data for
 use by applications.

4.5 Marshaling Objects

 Ruby can take an object and convert it into a stream
 of bytes that can be stored outside the application. This
 process is called
 ​ marshaling​

 . This saved
 object can later be read by another instance of the application
 (or by a totally separate application), and a copy of the
 originally saved object can be reconstituted.

 There are two potential issues when you use marshaling. First,
 some objects cannot be dumped. If the objects to be dumped
 include bindings, procedure or method objects, instances of
 class ​IO​, or singleton objects, or if you
 try to dump anonymous classes or modules,
 a ​TypeError​ will be raised.

 Second, when you load a marshaled object, Ruby needs to know the
 definition of the class of that object (and of all the objects
 it contains).

 Rails uses marshaling to store session
 data. If you rely on Rails
 to dynamically load classes, it is possible that a particular
 class may not have been defined at the point it reconstitutes
 session data. For that reason, you’ll use
 the ​model​ declaration in your
 controller to list all models that are marshaled. This
 preemptively loads the necessary classes to make marshaling
 work.

 Now that you have the Ruby basics down, let’s give what we learned a
 whirl with a slightly larger, annotated example that pulls together a
 number of concepts. We’ll follow that with a walk-through of special
 features that will help you with your Rails coding.

4.6 Pulling It All Together

 Let’s look at an example of how Rails applies a number of Ruby features
 together to make the code you need to maintain more declarative. You
 will see this example again in ​Generating the Scaffold​.
 For now, we will focus on the Ruby-language aspects of the example.

	​ 	​class​ CreateProducts < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 create_table :products ​do​ |t|

	​ 	 t.string :title

	​ 	 t.text :description

	​ 	 t.string :image_url

	​ 	 t.decimal :price, precision: 8, scale: 2

	​ 	

	​ 	 t.timestamps

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 Even if you didn’t know any Ruby, you would probably be able to
 decipher that this code creates a table named
 ​products​. The fields defined when creating this
 table include ​title​, ​description​, ​image_url​,
 and ​price​ as well as a few timestamps (we’ll describe these
 in Chapter 22, ​Migrations​).

 Now let’s look at the same example from a Ruby perspective. A class
 named ​CreateProducts​ is defined, which inherits
 from the ​Migration​ class from the
 ​ActiveRecord​ module. One method is defined named

 ​change​
 .
 This method calls the
 ​create_table​
 method (defined
 in ​ActiveRecord::Migration​), passing it the name
 of the table in the form of a symbol.

 The call to
 ​create_table​
 also passes a block
 that is to be evaluated before the table is created. This block, when
 called, is passed an object named ​t​, which is used to
 accumulate a list of fields. Rails defines a number of methods on this
 object—methods with names that are named after common data types.
 These methods, when called, simply add a field definition to the
 ever-accumulating set of names.

 The definition of decimal also accepts a number of optional parameters,
 expressed as a hash.

 To someone new to Ruby, this is a lot of heavy machinery thrown at
 solving such a simple problem. To someone familiar with Ruby, none of
 this machinery is particularly heavy. In any case, Rails makes
 extensive use of the facilities provided by Ruby to make defining
 operations (for example, migration tasks) as simple and as declarative
 as possible. Even small features of the language, such as optional
 parentheses and braces, contribute to the overall readability and ease
 of authoring.

 Finally, there are a number of small features, or rather idiomatic
 combinations of features, that are often not immediately obvious to
 people new to the Ruby language. We close this chapter with them.

4.7 Ruby Idioms

 A number of individual Ruby features can be combined in interesting
 ways, and the meaning of such
 idiomatic usage is often
 not immediately obvious to people new to the language.
 We use these common Ruby idioms in this book:

	Methods such
	as ​empty!​
	 and ​empty?​
	

	 Ruby method names can end with an exclamation mark (a bang
	 method) or a question mark (a predicate method). Bang
	 methods normally do something destructive to the receiver. Predicate methods
	 return ​true​
	 or ​false​ depending on some condition.
	

	​a || b​
	

	 The expression ​a || b​
	 evaluates ​a​. If it isn’t ​false​
	 or ​nil​, then evaluation stops, and the
	 expression returns ​a​. Otherwise,
	 the statement returns ​b​. This is a
	 common way of returning a default value if the first value
	 hasn’t been set.
	

	​a ||= b​
	

	 The assignment statement
	 supports a set of
	 shortcuts: ​a ​op​= b​
	 is the same
	 as ​a = a ​op​ b​. This
	 works for most operators.
	
	​ 	count += 1 ​# same as count = count + 1​

	​ 	price *= discount ​# price = price * discount​

	​ 	count ||= 0 ​# count = count || 0​

	 So, ​count ||= 0​
	 gives ​count​ the value 0
	 if ​count​ doesn’t already have
	 a value.
	

	​obj = self.new​
	

	 Sometimes a class method needs to create an instance of
	 that class.
	
	​ 	​class​ Person < ActiveRecord::Base

	​ 	 ​def​ self.for_dave

	​ 	 Person.new(name: ​'Dave'​)

	​ 	 ​end​

	​ 	​end​

	 This works fine, returning a
	 new ​Person​ object. But later, someone might subclass our class.
	
	​ 	​class​ Employee < Person

	​ 	 ​# ..​

	​ 	​end​

	​ 	

	​ 	dave = Employee.for_dave ​# returns a Person​

	 The
 ​for_dave​
 method was
	 hardwired to return a ​Person​
	 object, so that’s what is returned
	 by ​Employee.for_dave​.
	 Using ​self.new​ instead returns a
	 new object of the receiver’s
	 class, ​Employee​.
	

	​lambda​
	

 The ​lambda​ operator converts a block into an object of type
 ​Proc​. An alternate syntax, introduced in Ruby
 1.9, is ​->​. We will see both syntaxes
 used in ​Scopes​.

	​require File.expand_path(’../../config/environment’, __FILE__)​
	

	 Ruby’s ​require​ method loads an external source file into our
	 application. This is used to include library code and
	 classes that our application relies on. In normal use, Ruby
	 finds these files by searching in a list of directories,
	 the ​LOAD_PATH​.
	

	 Sometimes we need to be specific about what file to
	 include. We can do that by
	 giving ​require​ a full filesystem
	 path. The problem is, we don’t know what that path will
	 be—our users could install our code anywhere.
	

	 Wherever our application ends up getting installed, the
	 relative path between the file doing the requiring and the
	 target file will be the same. Knowing this, we can
	 construct the absolute path to the target by using
 the
 ​File.expand_path​
 method, passing
 in the relative path to the target file, as well as the
	 absolute path to the file doing the requiring (available in
	 the special variable ​__FILE__​).
	

 In addition, there are many good resources on
 the Web showing Ruby idioms and Ruby gotchas. Here are just a few:

	

 ​http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/​

	

 ​http://en.wikipedia.org/wiki/Ruby_programming_language​

	

 ​http://www.zenspider.com/Languages/Ruby/QuickRef.html​

 By this point, we have a firm foundation upon which to build.
 We’ve installed Rails, verified that we have things working with a
 simple application, covered a brief description of what Rails is, and
 reviewed (or for some of you, learned for the first time) the basics of
 the Ruby language. Now it is time to put this knowledge in place to
 build a larger application.

Footnotes

	[25]	

 ​http://www.yaml.org/​

Copyright © 2013, The Pragmatic Bookshelf.

Part 2
Building an Application

	 Chapter
	 5
The Depot Application

	
incremental development;

	
use cases, page flow, data; and

	
priorities.

 We could mess around all day hacking together simple test
 applications, but that won’t help us pay the bills. So, let’s get
 our teeth into something meatier. Let’s create a web-based
 shopping cart application called Depot.

 Does the world need another shopping cart application? Nope, but
 that hasn’t stopped hundreds of developers from writing one. Why
 should we be different?

 More seriously, it turns out that our shopping cart will
 illustrate many of the features of Rails development. We’ll see
 how to create simple maintenance pages, link database tables,
 handle sessions, and create forms. Over the next twelve chapters,
 we’ll also touch on peripheral topics such as unit testing,
 security, and page layout.

5.1 Incremental Development

 We’ll be developing this application
 incrementally. We won’t
 attempt to specify everything before we start coding. Instead,
 we’ll work out enough of a specification to let us start and then
 immediately create some functionality. We’ll try ideas,
 gather feedback, and continue with another cycle of
 mini-design and development.

 This style of coding isn’t always applicable. It requires close
 cooperation with the application’s users because we want to
 gather feedback as we go along. We might make mistakes, or the
 client might discover they asked for one thing but really wanted
 something different. It doesn’t matter what the reason—the
 earlier we discover we’ve made a mistake, the less expensive it
 will be to fix that mistake. All in all, with this style of
 development, there’s a lot of change as we go along.

 Because of this, we need to use a toolset that doesn’t penalize
 us for changing our minds. If we decide we need to add a new
 column to a database table or change the navigation between
 pages, we need to be able to get in there and do it without a
 bunch of coding or configuration hassle. As you’ll see, Ruby on
 Rails shines when it comes to dealing with change—it’s an
 ideal agile programming environment.

 Along the way, we will be building and maintaining a corpus of tests.
 These tests will ensure that the application is always doing what we
 intend to do. Not only does Rails enable the creation of such tests, but
 it actually provides you with an initial set of tests each time you
 define a new controller.

 On with the application.

5.2 What Depot Does

 Let’s start by jotting down an outline specification for the
 Depot application. We’ll look at the high-level use cases and
 sketch out the flow through the web pages. We’ll also try
 working out what data the application needs (acknowledging that
 our initial guesses will likely be wrong).

Use Cases

	A ​use case​ is simply a statement about how some
	entity uses a system. Consultants invent these kinds of
	phrases to label things we’ve known all along—it’s a
	perversion of business life that fancy words always cost more
	than plain ones, even though the plain ones are more valuable.

	Depot’s use cases are simple (some would say tragically
	so). We start off by identifying two different roles or actors:
	the ​buyer​ and the ​seller​.

	The buyer uses Depot to browse the products we have to sell,
	select some to purchase, and supply the information needed to
	create an order.

	The seller uses Depot to maintain a list of products to sell,
	to determine the orders that are awaiting shipping, and to
	mark orders as shipped. (The seller also uses Depot to make
	scads of money and retire to a tropical island, but that’s
	the subject of another book.)

	For now, that’s all the detail we need. We ​could​
	go into excruciating detail about what it means to
	maintain products and what constitutes an order
	ready to ship, but why bother? If there are details
	that aren’t obvious, we’ll discover them soon enough as
	we reveal successive iterations of our work to the customer.

	Talking of getting feedback, let’s get some
	right now—let’s make sure our initial (admittedly sketchy)
	use cases are on the mark by asking our user.
	Assuming the use cases pass muster, let’s work out how the
	application will work from the perspectives of its various users.

Page Flow

	We always like to have an idea of the main pages in our
	applications and to understand roughly how users navigate
	between them. This early in the development,
	these page flows are likely to be incomplete, but they still
	help us focus on what needs doing and know how actions are
	sequenced.

	Some folks like to mock up web application page flows using
	Photoshop, Word, or (shudder) HTML. We like using a pencil and
	paper. It’s quicker, and the customer gets to play too,
	grabbing the pencil and scribbling alterations right on the
	paper.

 The first sketch of the buyer flow is shown in the following figure.
[image: images/buyer_flow.png]

Figure 7. Flow of buyer pages

It’s
 pretty traditional. The buyer sees a catalog
	page, from which he selects one product at a time. Each
	product selected gets added to the cart, and the cart is
	displayed after each selection. The buyer can continue
	shopping using the catalog pages or check out and buy
	the contents of the cart. During checkout, we capture contact
	and payment details and then display a receipt page. We don’t
	yet know how we’re going to handle payment, so those details
	are fairly vague in the flow.

	The seller flow, shown in the next figure,
	is also fairly simple. After logging in, the seller sees a
	menu letting her create or view a product or ship existing
	orders. Once viewing a product, the seller may optionally edit
	the product information or delete the product entirely.

[image: images/seller_flow.png]

Figure 8. Flow of seller pages

	The shipping option is very simplistic. It displays each
	order that has not yet been shipped, one order per page. The
	seller may choose to skip to the next or may ship the order,
	using the information from the page as appropriate.

	The shipping function is clearly not going to survive long in
	the real world, but shipping is also one of those areas where
	reality is often stranger than you might think. Overspecify
	it up front, and we’re likely to get it wrong.
	For now let’s leave it as it is,
	confident that we can change it as the user gains experience
	using our application.

Data

	Finally, we need to think about the data we’re going to be
	working with.

	Notice that we’re not using words such as ​schema​
	or ​classes​ here. We’re also not talking about
	databases, tables, keys, and the like. We’re simply talking
	about data. At this stage in the development, we don’t know
	whether we’ll even be using a database.

	Based on the use cases and the flows, it seems likely that
	we’ll be working with the data shown in the following figure.
	Again, using pencil and paper seems a
	whole lot easier than some fancy tool, but use whatever works
	for you.

[image: images/initial_data.png]

Figure 9. Initial guess at application data

	Working on the data diagram raised a couple of questions. As
	the user buys items, we’ll need somewhere to keep the list of
	products they bought, so we added a cart. But apart from its
	use as a transient place to keep this product list, the cart
	seems to be something of a ghost—we couldn’t find anything
	meaningful to store in it. To reflect this uncertainty, we put
	a question mark inside the cart’s box in the diagram. We’re assuming this uncertainty will get
	resolved as we implement Depot.

	Coming up with the high-level data also raised the question
	of what information should go into an order. Again, we chose
	to leave this fairly open for now—we will refine this further
	as we start showing our early iterations to the customer.

General Recovery Advice

 Everything in this book has been tested. If you follow along with this
 scenario precisely, using the recommended version of Rails and
 SQLite3 on Linux, Mac OS X, or Windows, then everything should work as
 described. However, deviations from this path may occur. Typos happen
 to the best of us, and not only are side explorations possible, but
 they are positively encouraged. Be aware that this might lead you to
 strange places. Don’t be afraid: specific recovery
 actions for common problems appear in the specific sections where such
 problems often occur. A few additional general suggestions are included
 here.

 You should only ever need to restart the server in the few places where
 doing so is noted in the book. But if you ever get truly stumped,
 restarting the server might be worth trying.

 A “magic” command worth knowing, explained in detail in Part III,
 is ​rake db:migrate:redo​. It will undo and reapply the last
 migration.

 If your server won’t accept some input on a form, refresh the form on
 your browser and resubmit it.

	Finally, you might have noticed that we’ve duplicated the
	product’s price in the line item data. Here we’re breaking the
	“initially, keep it simple” rule slightly, but it’s a
	transgression based on experience. If the price of a product
	changes, that price change should not be reflected in the
	line item price of currently open orders, so each line item
	needs to reflect the price of the product at the time the order
	was made.

	Again, at this point we’ll double-check with the customer that
	we’re still on the right track. (The customer was most likely
	sitting in the room with us while we drew these three
	diagrams.)

5.3 Let’s Code

 So, after sitting down with the customer and doing some
 preliminary analysis, we’re ready to start using a computer for
 development! We’ll be working from our original three diagrams,
 but the chances are pretty good that we’ll be throwing them
 away fairly quickly—they’ll become outdated as we gather
 feedback. Interestingly, that’s why we didn’t spend too long on
 them; it’s easier to throw something away if you didn’t spend a
 long time creating it.

 In the chapters that follow, we’ll start developing the
 application based on our current understanding. However, before
 we turn that page, we have to answer just one more
 question: what should we do first?

 We like to work with the customer so we can jointly agree on
 priorities. In this case, we’d point out to her that it’s hard to
 develop anything else until we have some basic products defined
 in the system, so we suggest spending a couple of hours getting
 the initial version of the product maintenance functionality up
 and running. And, of course, the client would agree.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 6
Task A: Creating the Application

	
creating a new application,

	
configuring the database,

	
creating models and controllers,

	
adding a stylesheet, and

	
updating a layout and a view.

 Our first development task is to create the web interface that
 lets us maintain our product information—create new products,
 edit existing products, delete unwanted ones, and so on. We’ll
 develop this application in small iterations,
 where ​small​ means “measured in minutes.”

 Typically, our iterations involve multiple steps, as in iteration C, which
 has steps C1, C2, C3, and so on. In this case, the iteration has two steps. Let’s get started.

6.1 Iteration A1: Creating the Products Maintenance Application

 At the heart of the Depot application is a database. Getting this
 installed and configured and tested before proceeding further will prevent
 a lot of headaches. If you aren’t sure what you want, take the
 defaults, and it will go easy. If you know what you want, Rails
 makes it easy for you to describe your configuration.
Creating a Rails Application

 In Section 2.1, ​Creating a New Application​, we saw how to
 create a new Rails application. We’ll
 do the same thing here. Go to a command prompt, and
 type ​rails new​ followed by
 the name of our project. In this case, our project is
 called ​depot​, so make sure you are not
 inside an existing application directory and type
 this:

	​ 	work>​ rails new depot​

 We see a bunch of output scroll by. When it has finished,
 we find that a new directory, ​depot​, has
 been created. That’s where we’ll be doing our work.

	​ 	work>​ cd depot​

	​ 	depot>​ ls -p​

	​ 	app/ config/ db/ Gemfile.lock log/ Rakefile test/ vendor/

	​ 	bin/ config.ru Gemfile lib/ public/ README.rdoc tmp/

 Windows users will need to use ​dir /w​ instead
 of ​ls -p​.

Creating the Database

 For this application, we’ll use the open source SQLite
 database (which you’ll need if you’re following
 along with the code). We’re
 using SQLite version 3 here.

 SQLite 3 is the default database for Rails development and was
 installed along with Rails in Chapter 1, ​Installing Rails​. With SQLite 3 there are
 no steps required to create a database, and there are no special
 user accounts or passwords to deal with. So, now you get to
 experience one of the benefits of going with the flow (or,
 convention over configuration, as Rails folks say...ad
 nauseam).

	 If it’s important to you to use a database server other
	 than SQLite 3, the commands you’ll need to create the database and
	 grant permissions will be different. You will find some helpful
	 hints in the Getting Started Rails Guide.[26]

Generating the Scaffold

 In Figure 9, ​Initial guess at application data​, we sketched out
 the basic content of the ​products​ table. Now let’s turn that
 into reality. We need to create a database table and a
 Rails ​model​ that lets our application use that
 table, a number of ​views​ to make up the
 user interface, and a ​controller​ to
 orchestrate the application.

 So, let’s create the model, views, controller, and
 migration for our ​products​
 table. With Rails, you can do
 all that with one command by asking Rails to generate what is known
 as a ​scaffold​ for a given model. Note that
 on the command line that follows, we use the singular form,
 ​Product​. In Rails, a model is automatically
 mapped to a database table
 whose name is the plural form of the
 model’s class. In our case, we asked for a model called
 ​Product​, so Rails associated it with the
 table called ​products​. (And how will it find
 that table? The
 ​development​ entry
 in ​config/database.yml​ tells Rails where
 to look for it. For SQLite 3 users, this will be a file in the
 ​db​ directory.)

Note that command is too wide to fit
	 comfortably on the page. To enter a command on multiple lines,
	 simply put a backslash as the last character on all but the last
	 line, and you’ll be prompted for more input. Windows users will
	 need to substitute a caret (​^​) for the
	 backslash.
	​ 	depot>​ rails generate scaffold Product \​

	​ 	​ title:string description:text image_url:string price:decimal​

	​ 	 invoke active_record

	​ 	 create db/migrate/20121130000001_create_products.rb

	​ 	 create app/models/product.rb

	​ 	 invoke test_unit

	​ 	 create test/models/product_test.rb

	​ 	 create test/fixtures/products.yml

	​ 	 invoke resource_route

	​ 	 route resources :products

	​ 	 invoke jbuilder_scaffold_controller

	​ 	 create app/controllers/products_controller.rb

	​ 	 invoke erb

	​ 	 create app/views/products

	​ 	 create app/views/products/index.html.erb

	​ 	 create app/views/products/edit.html.erb

	​ 	 create app/views/products/show.html.erb

	​ 	 create app/views/products/new.html.erb

	​ 	 create app/views/products/_form.html.erb

	​ 	 invoke test_unit

	​ 	 create test/controllers/products_controller_test.rb

	​ 	 invoke helper

	​ 	 create app/helpers/products_helper.rb

	​ 	 invoke test_unit

	​ 	 create test/helpers/products_helper_test.rb

	​ 	 invoke jbuilder

	​ 	 exist app/views/products

	​ 	 create app/views/products/index.json.jbuilder

	​ 	 create app/views/products/show.json.jbuilder

	​ 	 invoke assets

	​ 	 invoke coffee

	​ 	 create app/assets/javascripts/products.js.coffee

	​ 	 invoke scss

	​ 	 create app/assets/stylesheets/products.css.scss

	​ 	 invoke scss

	​ 	 create app/assets/stylesheets/scaffolds.css.scss

 The generator creates a bunch of files. The one we’re interested in
 first is the

 ​ migration​

 one, namely, ​20121130000001_create_products.rb​.

 A migration represents a change we want to make to the
 data, expressed in a source file in database-independent
 terms. These changes can update both the database schema and
 the data in the database tables. We apply these
 migrations to update our database, and we can unapply them
 to roll our database back. We have a whole section on
 migrations starting in Chapter 22, ​Migrations​.
 For now, we’ll just use them without too much more comment.

 The migration has a UTC-based timestamp prefix (​20121130000001​), a
 name (​create_products​), and
 a file extension (​rb​,
 because it’s Ruby code).

	 The timestamp prefix you will see will be different. In fact, the
	 timestamps used in this book are clearly fictitious. Typically your
	 timestamps will not be consecutive; instead, they will reflect the
	 time the migration was created.
	
Applying the Migration

 Although we have already told Rails about the basic data types of each
 property, let’s refine the definition of the price to
 have eight digits of significance and two digits after the decimal
 point.
	
	rails40/depot_a/db/migrate/20121130000001_create_products.rb
	​ 	​class​ CreateProducts < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 create_table :products ​do​ |t|

	​ 	 t.string :title

	​ 	 t.text :description

	​ 	 t.string :image_url

	​*
​	 t.decimal :price, precision: 8, scale: 2

	​ 	

	​ 	 t.timestamps

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	 Now that we are done with our changes, we need
	 to get Rails to apply this migration to our development
 database. We do this using
 the ​rake​ command. Rake is like
 having a reliable assistant on hand all the time: you tell
 it to do some task, and that task gets done. In this case,
 we’ll tell Rake to apply any unapplied migrations to our
 database.

	​ 	depot>​ rake db:migrate​

	​ 	== CreateProducts: migrating ===

	​ 	-- create_table(:products)

	​ 	 ->​ 0.0027s​

	​ 	== CreateProducts: migrated (0.0023s) ==

 And that’s it. Rake looks for all the migrations not yet
 applied to the database and applies them. In our case,
 the ​products​ table is added to the
 database defined by
 the ​development​ section of
 the ​database.yml​ file.

 OK, all the groundwork has been done. We set up our Depot
 application as a Rails project. We created the development
 database and configured our application to be able to
 connect to it. We created a products controller and
 a ​Product​ model and used a migration to create the
 corresponding ​products​ table. And
 a number of views have been created for us. It’s time to
 see all this in action.

Seeing the List of Products

 With three commands we have created an application and
 a database (or a table inside an existing database,
 if you chose something besides SQLite 3).
 Before we worry too much
 about just what happened behind the scenes here, let’s
 try our shiny new application.

First, we’ll start a local server, supplied with Rails.

	​ 	depot>​ rails server​

	​ 	=> Booting WEBrick

	​ 	=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000

	​ 	=> Run `rails server -h` for more startup options

	​ 	=> Ctrl-C to shutdown server

	​ 	[2013-04-18 17:45:38] INFO WEBrick 1.3.1

	​ 	[2013-04-18 17:45:38] INFO ruby 2.0.0 (2013-02-24) [x86_64-linux]

	​ 	[2013-04-18 17:45:43] INFO WEBrick::HTTPServer#start: pid=24649 port=3000

 Just as it did with our demo
 application, this command starts a web server on
 our local host, port 3000. If you
 get an error saying ​Address already in use​ when you try to
 run the server, that simply means you already have a Rails
 server running on your machine. If you’ve been following along with
 the examples in the book, that might well be the “Hello, World!”
 application from Chapter 4. Find its console, and kill the server
 using Ctrl-C. If you are running on Windows, you may see the prompt
 ​Terminate batch job (Y/N)?​. If so, respond with
 ​y​.

 Let’s connect to our application. Remember, the URL we
 give to our browser contains both the port number (3000) and the
 name of the controller in lowercase (products).

[image: images/depot_a_admin.png]

 That’s pretty boring. It’s showing us an empty list of
 products. Let’s add some. Click the New
 Product link, and a form should appear as shown in Figure 10, ​Form for adding new products​.

[image: images/depot_a_big_desc.png]

Figure 10. Form for adding new products

 These forms are
 simply HTML templates, just like the ones you created in
 Section 2.2, ​Hello, Rails!​. In fact, we can modify
 them. Let’s change the number of lines in the description
 field.

	rails40/depot_a/app/views/products/_form.html.erb
	​ 	<%= form_for(@product) ​do​ |f| %>

	​ 	 <% ​if​ @product.errors.any? %>

	​ 	 ​<div​ id=​"error_explanation"​​>​

	​ 	 ​<h2>​<%= pluralize(@product.errors.count, ​"error"​) %>

	​ 	 prohibited this product from being saved:​</h2>​

	​ 	

	​ 	 ​​

	​ 	 <% @product.errors.full_messages.each ​do​ |msg| %>

	​ 	 ​​<%= msg %>​​

	​ 	 <% ​end​ %>

	​ 	 ​​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :title %>​
​

	​ 	 <%= f.text_field :title %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :description %>​
​

	​*
​	 <%= f.text_area :description, rows: 6 %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :image_url %>​
​

	​ 	 <%= f.text_field :image_url %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :price %>​
​

	​ 	 <%= f.text_field :price %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"actions"​​>​

	​ 	 <%= f.submit %>

	​ 	 ​</div>​

	​ 	<% ​end​ %>

	 We will explore this more in Chapter 8, ​Task C: Catalog Display​.
	 But for now, we’ve adjusted one field to taste, so let’s
	 fill it in.

[image: images/depot_a_new.png]

Figure 11. Creating our first product

 Click the Create button, and you should see the new product
	 was successfully created. If you now click the Back
	 link, you should see the new product in the list, as shown in Figure 12, ​See the product as it appears in the database​.

[image: images/depot_a_list.png]

Figure 12. See the product as it appears in the database.

 Perhaps it
 isn’t the prettiest interface, but it works, and we can show
 it to our client for approval. She can play with the other
 links (showing details, editing existing products, and so
 on). We explain to her that this is only a first
 step—we know it’s rough, but we wanted to get her feedback
 early. (And four commands probably
 count as early in anyone’s book.)

 At this point, you’ve accomplished a lot with only four commands.
 Before we move on, let’s try one more command.

	​ 	rake test

 Included in the output should be two lines that each say
 ​0 failures, 0 errors​. This is for the model and
 controller tests that Rails generates along with the scaffolding.
 They are minimal at this point, but simply knowing that they are
 there and that they pass should give you confidence. As you
 proceed through these chapters in Part II, you are encouraged to
 run this command frequently because it will help you spot and track
 down errors. We will cover this more in Section 7.2, ​Iteration B2: Unit Testing of Models​.

 Note that if you’ve used a database other than SQLite3, this step may
 have failed. Check your ​database.yml​ file, and
 see the notes in Section 23.1, ​A Stand-Alone Application Using Active Record​.

6.2 Iteration A2: Making Prettier Listings

 Our customer has one more request (customers always seem to
 have one more request, don’t they?). The listing of all the products is
 ugly. Can we “pretty it up” a bit? And, while
 we’re in there, can we also display the product image along
 with the image URL?

 We’re faced with a dilemma here. As developers, we’re trained
 to respond to these kinds of requests with a sharp intake of
 breath, a knowing shake of the head, and a murmured “You
 want what?” At the same time, we also like to show off a
 bit. In the end, the fact that it’s fun to make these kinds of
 changes using Rails wins out, and we fire up our trusty
 editor.

 Before we get too far, though, it would be nice if we had a
 consistent set of test data to work
 with. We ​could​ use our scaffold-generated
 interface and type data in from the browser. However, if we
 did this, future developers working on our codebase would
 have to do the same. And, if we were working as part of a team
 on this project, each member of the team would have to enter
 their own data. It would be nice if we could load the data
 into our table in a more controlled way. It turns out that we
 can. Rails has the ability to import seed data.

 To start, we simply modify the file in the ​db​
 directory named ​seeds.rb​.

 We then add the code to populate
 the ​products​ table. This uses
 the
 ​create!​
 method of
 the ​Product​ model. The following is an
 extract from that file. Rather than type the file by
 hand, you might want to download the file from the sample code
 available online.[27]

While you’re there, copy the images[28]
 into the ​app/assets/images​ directory in your
 application. Be warned: this ​seeds.rb​ script
 removes existing data
 from the ​products​ table before loading
 the new data. You might not want to run it if you’ve just
 spent several hours typing your own data into your
 application!

	rails40/depot_a/db/seeds.rb
	​ 	Product.delete_all

	​ 	# . . .

	​ 	Product.create!(title: 'Programming Ruby 1.9 & 2.0',

	​ 	 description:

	​ 	 %{<p>

	​ 	 Ruby is the fastest growing and most exciting dynamic language

	​ 	 out there. If you need to get working programs delivered fast,

	​ 	 you should add Ruby to your toolbox.

	​ 	 </p>},

	​ 	 image_url: 'ruby.jpg',

	​ 	 price: 49.95)

	​ 	# . . .

 (Note that this code uses ​%{…}​. This is an
 alternative syntax for double-quoted string literals,
 convenient for use with long strings. Note also that because
 it uses Rails’
 ​create!​
 method, it will
 raise an exception if records cannot be inserted because of validation
 errors.)

 To populate your ​products​ table with test data,
 run the following command:

	​ 	depot>​ rake db:seed​

 Now let’s get the product listing tidied up. There are two
 pieces to this: defining a set of style rules and connecting
 these rules to the page by defining an HTML ​class​
 attribute on the page.

 We need somewhere to put our style definitions. As you will
 continue to find with Rails, there is a convention for this, and
 the ​generate scaffold​ command that you previously issued
 has already laid all of the necessary groundwork. As such, we can
 proceed to fill in the currently empty stylesheet
 ​products.css.scss​ in the directory
 ​app/assets/stylesheets​.

	rails40/depot_a/app/assets/stylesheets/products.css.scss
	​ 	​// Place all the styles related to the Products controller here.​

	​ 	​// They will automatically be included in application.css.​

	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​

	​ 	

	​*
​	​.products ​{

	​*
​	 ​table ​{

	​*
​	 border-collapse: ​collapse;​

	​*
​	 }

	​*
​	

	​*
​	 ​table tr td ​{

	​*
​	 padding: ​5px;​

	​*
​	 vertical-align: ​top;​

	​*
​	 }

	​*
​	

	​*
​	 ​.list_image ​{

	​*
​	 width: ​60px;​

	​*
​	 height: ​70px;​

	​*
​	 }

	​*
​	

	​*
​	 ​.list_description ​{

	​*
​	 width: ​60%;​

	​*
​	

	​*
​	 ​dl ​{

	​*
​	 margin: ​0;​

	​*
​	 }

	​*
​	

	​*
​	 ​dt ​{

	​*
​	 color: ​#244;​

	​*
​	 font-weight: ​bold;​

	​*
​	 font-size: ​larger;​

	​*
​	 }

	​*
​	

	​*
​	 ​dd ​{

	​*
​	 margin: ​0;​

	​*
​	 }

	​*
​	 }

	​*
​	

	​*
​	 ​.list_actions ​{

	​*
​	 font-size: ​x-small;​

	​*
​	 text-align: ​right;​

	​*
​	 padding-left: ​1em;​

	​*
​	 }

	​*
​	

	​*
​	 ​.list_line_even ​{

	​*
​	 background: ​#e0f8f8;​

	​*
​	 }

	​*
​	

	​*
​	 ​.list_line_odd ​{

	​*
​	 background: ​#f8b0f8;​

	​*
​	 }

	​*
​	}

 If you choose to download this file, make sure that the timestamp
 on the file is updated. If the timestamp is not updated, Rails
 won’t pick up the changes until the server is restarted.
 You can update the timestamp by going into your favorite
 editor and saving it. On Mac OS X and Linux, you can use the
 ​touch​ command.

 Look closely at this stylesheet and you will see that CSS rules are
 nested, in that the rule for ​dl​ is defined
 ​inside​ the rule for ​.list_description​, which
 itself is defined inside the rule for ​products​. This tends
 to make rules less repetitive and therefore easier to read, write,
 understand, and maintain.

 At this point you are familiar with files ending with ​erb​
 being preprocessed for embedded Ruby expressions and statements. If
 you note that this file ends with ​scss​, you might guess that
 this means that the file is preprocessed as ​Sassy
 CSS​[29] before being served as ​css​. And you would be
 right!

 Again, just like ERB, SCSS does not interfere with writing correct
 CSS. What SCSS does is provide additional syntax that makes your
 stylesheets easier to author and easier to maintain.
 All of this is converted for you by SCSS to standard CSS that your
 browser understands. You can find out more about SCSS in
 Pragmatic Guide to Sass [CC11].

 Finally, we will need to define the ​products​ class used by
 this stylesheet.
 If you look at the ​html.erb​
 files we’ve created so far, you won’t find any reference to
 stylesheets. You won’t even find the
 HTML ​<head>​ section where such references would
 normally live. Instead, Rails keeps a separate file that is
 used to create a standard page environment for the entire application.
 This file, called ​application.html.erb​, is
 a Rails layout and lives in the ​layouts​
 directory.

	rails40/depot_a/app/views/layouts/application.html.erb
	​ 	<!DOCTYPE html>

	​ 	​<html>​

	​ 	​<head>​

	​ 	 ​<title>​Depot​</title>​

	​ 	 <%= stylesheet_link_tag ​"application"​, media: ​"all"​,

	​ 	 ​"data-turbolinks-track"​ => true %>

	​ 	 <%= javascript_include_tag ​"application"​, ​"data-turbolinks-track"​ => true %>

	​ 	 <%= csrf_meta_tags %>

	​ 	​</head>​

	​*
​	​<body​ class=​'​<%= controller.controller_name %>​'​​>​

	​ 	<%= ​yield​ %>

	​ 	​</body>​

	​ 	​</html>​

 Because Rails loads all of the stylesheets all at once,
 we need a convention to limit controller-specific rules to pages
 associated with that controller. Using the ​controller_name​
 as a class name is an easy way to accomplish that and is what we
 have done here.

 Now that we have the stylesheets all in place, we will use a
 simple table-based template, editing the
 file ​index.html.erb​
 in ​app/views/products​ and replacing the
 scaffold-generated view.

	rails40/depot_a/app/views/products/index.html.erb
	​ 	​<h1>​Listing products​</h1>​

	​ 	

	​ 	​<table>​

	​ 	<% @products.each ​do​ |product| %>

	​ 	 ​<tr​ class=​"​<%= cycle(​'list_line_odd'​, ​'list_line_even'​) %>​"​​>​

	​ 	 ​<td>​

	​ 	 <%= image_tag(product.image_url, class: ​'list_image'​) %>

	​ 	 ​</td>​

	​ 	 ​<td​ class=​"list_description"​​>​

	​ 	 ​<dl>​

	​ 	 ​<dt>​<%= product.title %>​</dt>​

	​ 	 ​<dd>​<%= truncate(strip_tags(product.description), length: 80) %>​</dd>​

	​ 	 ​</dl>​

	​ 	 ​</td>​

	​ 	 ​<td​ class=​"list_actions"​​>​

	​ 	 <%= link_to ​'Show'​, product %>​<br​​/>​

	​ 	 <%= link_to ​'Edit'​, edit_product_path(product) %>​<br​​/>​

	​ 	 <%= link_to ​'Destroy'​, product, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

	​ 	 ​</td>​

	​ 	 ​</tr>​

	​ 	<% ​end​ %>

	​ 	​</table>​

	​ 	​<br​ ​/>​

	​ 	<%= link_to ​'New product'​, new_product_path %>

 Even this simple template uses a number of built-in Rails
 features.

	

 The rows in the listing have alternating background colors.
 The Rails helper method called
 ​cycle​
 does this by setting the CSS
 class of each row to either ​list_line_even​ or
 ​list_line_odd​, automatically toggling between the two
 style names on successive lines.

	

 The
 ​truncate​

 helper is used to display just the first eighty characters of the
 description. But before we call
 ​truncate​
 , we called
	
 ​strip_tags​
 in order to remove the
	 HTML tags from the description.

	

 Look at the ​link_to ’Destroy’​
 line. See how it has the parameter ​data: { confirm:
 ’Are you sure?’ }​. If you click this link,
 Rails arranges for your browser to pop up a dialog box
 asking for confirmation before following the link and
 deleting the product. (Also, see the
 sidebar for some inside scoop on
 this action.)

 We loaded some test data into the database, we rewrote
 the ​index.html.erb​ file that displays the
 listing of products, we filled in the
 ​products.css.scss​ stylesheet, and that stylesheet
 was loaded into our page by the
 layout file ​application.html.erb​.
 Now, let’s bring up a browser and
 point to
 ​http://localhost:3000/products​
 ; the resulting product listing might look something like
 Figure 13, ​A slightly prettier view​.

[image: images/depot_c_list.png]

Figure 13. A slightly prettier view

 So, we proudly show our customer her new product listing, and
 she’s pleased. Now it is time to create the storefront.

What We Just Did

 In this chapter, we laid the groundwork for our store application.

	
We created a development database.

	
We used a migration to create and modify the schema in our
 development database.

	
We created the ​products​ table and used the scaffold
 generator to write an application to maintain it.

	
We updated an application-wide layout as well as a controller-specific
 view in order to show a list of products.

What we’ve done did not require much effort, and it got us up and running
 quickly. Databases are vital to this application but need not be scary—in fact, in many cases we can defer the selection of the
 database to later and simply get started using the default that Rails provides.

Getting the model right is more important at this stage. As we will
 soon see, simple selection of data types doesn’t always fully capture the
 ​essence​ of all the properties of the model, even in this
 small application, so that’s what we will tackle next.
What's with method: :delete?

 You may have noticed that the scaffold-generated
 Destroy link includes the parameter ​method: :delete​.

 This determines which method is called in the
 ​ProductsController​ class and also affects
 which HTTP method is used.

 Browsers use HTTP to talk with servers. HTTP defines a set
 of verbs that browsers can employ and defines when each can
 be used. A regular hyperlink, for example, uses an HTTP GET
 request. A GET request is defined by HTTP to be used to
 retrieve data; it isn’t supposed to have any side
 effects. Using this parameter in this way indicates that an HTTP
 DELETE method should be used for this hyperlink.

 Rails uses this information to determine which action in the
 controller to route this request to.

 Note that when used within a browser, Rails will substitute the POST
 HTTP method for PUT, PATCH, and DELETE methods
 and in the process tack on an additional parameter so that the
 router can determine the original intent. Either way,
 the request will not be cached or triggered by web crawlers.

Playtime

 Here’s some stuff to try on your own:

	

 If you’re feeling frisky, you can experiment with
 rolling back the migration. Just type the following:

	​ 	depot>​ rake db:rollback​

 Your schema will be transported back in time, and
 the ​products​ table will be
 gone. Calling ​rake db:migrate​ again will
 re-create it. You will also want to reload the seed data.
 More information can be found in
 Chapter 22, ​Migrations​.

	

 We mentioned version control in ​Version Control​, and now would be a great
 point at which to save your work. Should you happen to
 choose Git
 (highly recommended, by the way), there is a tiny
	 bit of configuration you need to do first; basically, all
	 you need to do is provide your name and email address.
	
	​ 	depot>​ git config --global --add user.name "Sam Ruby"​

	​ 	depot>​ git config --global --add user.email rubys@intertwingly.net​

	 You can verify the configuration with the following command:
	
	​ 	depot>​ git config --global --list​

 Rails also provides a file named
 ​.gitignore​, which tells Git which files are
 not to be version controlled.

	rails40/depot_a/.gitignore
	​ 	# See http://help.github.com/ignore-files/ for more about ignoring files.

	​ 	#

	​ 	# If you find yourself ignoring temporary files generated by your text editor

	​ 	# or operating system, you probably want to add a global ignore instead:

	​ 	# git config --global core.excludesfile '~/.gitignore_global'

	​ 	

	​ 	# Ignore bundler config.

	​ 	/.bundle

	​ 	

	​ 	# Ignore the default SQLite database.

	​ 	/db/*.sqlite3

	​ 	/db/*.sqlite3-journal

	​ 	

	​ 	# Ignore all logfiles and tempfiles.

	​ 	/log/*.log

	​ 	/tmp

 Note that because this filename begins with a dot, Unix-based
 operating systems won’t show it by default in directory
 listings. Use ​ls -a​ to see it.

	 At this point, you are fully configured. The only tasks that
 remain are to initialize a repository, add all the files,
	 and commit them with a commit message.

	​ 	depot>​ git init​

	​ 	depot>​ git add .​

	​ 	depot>​ git commit -m "Depot Scaffold"​

 This may not seem very exciting at this point, but it does mean
 you are more free to experiment. Should you overwrite or
 delete a file that you didn’t mean to, you can always get back to this
 point by issuing a single command.

	​ 	depot>​ git checkout .​

Footnotes

	[26]	

 ​http://guides.rubyonrails.org/getting_started.html#configuring-a-database​

	[27]	

 ​http://media.pragprog.com/titles/rails4/code/rails40/depot_a/db/seeds.rb​

	[28]	

 ​http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/assets/images/​

	[29]	

 ​http://sass-lang.com/​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 7
Task B: Validation and Unit Testing

	
performing validation and error reporting and

	
unit testing.

 At this point, we have an initial model for a product, as well as a
 complete maintenance application for this data provided for us by Rails
 scaffolding. In this chapter, we are going to focus on making the model
 more bulletproof—as in, making sure that errors in the data provided
 never get committed to the database—before we proceed to
 other aspects of the Depot application in subsequent chapters.

7.1 Iteration B1: Validating!

 While playing with the results of iteration A1, our client
 noticed something. If she entered an invalid price or forgot
 to set up a product description, the application happily
 accepted the form and added a line to the database. Although a
 missing description is embarrassing, a price of $0.00 actually
 costs her money, so she asked that we add validation to the
 application. No product should be allowed in the database if
 it has an empty title or description field, an invalid URL for
 the image, or an invalid price.

 So, where do we put the validation?
 The model layer is the gatekeeper between the world of code
 and the database. Nothing to do with our
 application comes out of the database or gets stored into the
 database that doesn’t first go through the model. This makes
 models an ideal place to put validations; it doesn’t matter
 whether the data comes from a form or from some programmatic
 manipulation in our application. If a model checks it before
 writing to the database, then the database will be protected
 from bad data.

 Let’s look at the source code of the model class
 (in ​app/models/product.rb​):

	​ 	​class​ Product < ActiveRecord::Base

	​ 	​end​

 Adding our validation should be fairly clean. Let’s start by
 validating that the text fields all contain something before a
 row is written to the database. We do this by adding some code
 to the existing model.

	​ 	validates :title, :description, :image_url, presence: true

 The
 ​validates​
 method is
 the standard Rails validator. It will check one or more model fields
 against one or more conditions.

 ​presence: true​ tells the validator to check that each
 of the named fields is present and its contents are not empty. In
 the following figure we can see what happens if we
 try to submit a new product with none of the fields filled in. It’s
 pretty impressive: the fields with errors are highlighted, and the
 errors are summarized in a nice list at the top of the form. That’s
 not bad for one line of code. You might also have noticed that after
 editing and saving the ​product.rb​ file you didn’t
 have to restart the application to test your changes—the same
 reloading that caused Rails to notice the earlier change to our schema
 also means it will always use the latest version
 of our code.

[image: images/depot_b_no_fields.png]

Figure 14. Validating that fields are present

 We’d also like to validate that the price is a valid, positive number.
 We’ll use the
 delightfully named
 ​numericality​
 option to verify that
 the price is a valid number.
 We also pass the rather verbosely named
 ​:greater_than_or_equal_to​ option a value of ​0.01​.

	​ 	validates :price, numericality: {greater_than_or_equal_to: 0.01}

 Now, if we add a product with an invalid price, the
 appropriate message will appear, as shown in
 the following figure:

[image: images/depot_b_price_error.png]

Figure 15. The price fails validation.

 Why test against 1 cent, rather than zero? Well, it’s
 possible to enter a number such as 0.001 into this
 field. Because the database stores just two digits after
 the decimal point, this would end up being zero in the
 database, even though it would pass the validation if we
 compared against zero. Checking that the number is at least 1
 cent ensures only correct values end up being stored.

 We have two more items to validate. First, we want to make sure
 each product has a unique title. One more line in
 the ​Product​ model will do this. The
 uniqueness validation will perform a simple check to ensure
 that no other row in the ​products​ table
 has the same title as the row we’re about to save.

	​ 	validates :title, uniqueness: true

 Lastly, we need to validate that the URL entered for the image is
 valid. We’ll do this using the ​format​ option, which
 matches a field against a regular expression. For now we’ll just check that the
 URL ends with one of ​gif​,
 ​jpg​, or
 ​png​.

	​ 	validates :image_url, allow_blank: true, format: {

	​ 	 with: %r{\.(gif|jpg|png)\Z}i,

	​ 	 message: ​'must be a URL for GIF, JPG or PNG image.'​

	​ 	}

 Note that we used the ​allow_blank​ option to avoid getting
 multiple error messages when the field is blank.

 Later, we’d probably want to change this form to let
 the user select from a list of available images, but we’d
 still want to keep the validation to prevent malicious
 folks from submitting bad data directly.

 So, in a couple of minutes we’ve added validations that check the following:

	
The field’s title, description, and image URL are not
 empty.

	
The price is a valid number not less than $0.01.

	
The title is unique among all products.

	
The image URL looks reasonable.

 Your updated ​Product​ model should look like
 this:

	rails40/depot_b/app/models/product.rb
	​ 	​class​ Product < ActiveRecord::Base

	​ 	 validates :title, :description, :image_url, presence: true

	​ 	 validates :price, numericality: {greater_than_or_equal_to: 0.01}

	​ 	 validates :title, uniqueness: true

	​ 	 validates :image_url, allow_blank: true, format: {

	​ 	 with: %r{\.(gif|jpg|png)\Z}i,

	​ 	 message: ​'must be a URL for GIF, JPG or PNG image.'​

	​ 	 }

	​ 	​end​

 Nearing the end of this cycle, we ask our customer to play
 with the application, and she’s a lot happier. It took only a
 few minutes, but the simple act of adding validation has made
 the product maintenance pages seem a lot more solid.

 Before we move on, we once again try our tests.

	​ 	rake test

 Uh-oh. This time we see failures. Two, actually—one in
 ​should create product​ and one in
 ​should update product​. Clearly
 something we did caused something to do with the creation and
 updating of products to fail. This isn’t all that surprising.
 After all, when you think about it, isn’t that the
 whole point of validation?

 The solution is to give valid test data in
 ​test/controllers/products_controller_test.rb​.

	rails40/depot_b/test/controllers/products_controller_test.rb
	​ 	require ​'test_helper'​

	​ 	​class​ ProductsControllerTest < ActionController::TestCase

	​ 	 setup ​do​

	​ 	 @product = products(:one)

	​*
​	 @update = {

	​*
​	 title: ​'Lorem Ipsum'​,

	​*
​	 description: ​'Wibbles are fun!'​,

	​*
​	 image_url: ​'lorem.jpg'​,

	​*
​	 price: 19.95

	​*
​	 }

	​ 	 ​end​

	​ 	

	​ 	 test ​"should get index"​ ​do​

	​ 	 get :index

	​ 	 assert_response :success

	​ 	 assert_not_nil assigns(:products)

	​ 	 ​end​

	​ 	

	​ 	 test ​"should get new"​ ​do​

	​ 	 get :new

	​ 	 assert_response :success

	​ 	 ​end​

	​ 	

	​ 	 test ​"should create product"​ ​do​

	​ 	 assert_difference(​'Product.count'​) ​do​

	​*
​	 post :create, product: @update

	​ 	 ​end​

	​ 	

	​ 	 assert_redirected_to product_path(assigns(:product))

	​ 	 ​end​

	​ 	

	​ 	 ​# ...​

	​ 	 test ​"should update product"​ ​do​

	​*
​	 patch :update, id: @product, product: @update

	​ 	 assert_redirected_to product_path(assigns(:product))

	​ 	 ​end​

	​ 	

	​ 	 ​# ...​

	​ 	​end​

 After making this change, we rerun the tests, and they report that
 all is well. But all that means is that we didn’t break anything.
 We need to do more than that. We need to make sure the
 validation code that we just added not only works now but will
 continue to work as we make further changes. We’ll cover
 controller tests in more detail in Section 8.4, ​Iteration C4: Functional Testing of Controllers​. As for now, it is time for us to
 write some unit tests.

7.2 Iteration B2: Unit Testing of Models

 One of the real joys of the Rails
 framework is that it has support for testing baked right in from
 the start of every project. As we have seen, from the moment you create
 a new application using the ​rails​ command, Rails starts generating a test
 infrastructure for
 you.

 Let’s take a peek inside the ​models​
 subdirectory to see what’s
 already there:

	​ 	depot>​ ls test/models​

	​ 	product_test.rb

 ​product_test.rb​ is the file that Rails created to
 hold the unit tests for the model we created earlier with the
 ​generate​ script. This is a good start, but
 Rails can help us only so much.

 Let’s see what kind of test goodies Rails generated inside
 ​test/models/product_test.rb​ when we generated that
 model:

	rails40/depot_a/test/models/product_test.rb
	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ ProductTest < ActiveSupport::TestCase

	​ 	 ​# test "the truth" do​

	​ 	 ​# assert true​

	​ 	 ​# end​

	​ 	​end​

 The generated ​ProductTest​ is a subclass of
 ​ActiveSupport::TestCase​. The fact that
 ​ActiveSupport::TestCase​ is a subclass of
 the ​MiniTest::Unit::TestCase​
 class tells us that Rails generates tests based on the
 MiniTest[30] framework that comes preinstalled with Ruby. This is
 good news because it means if we’ve already been testing our
 Ruby programs with MiniTest tests (and why wouldn’t we be?),
 then we can build on that knowledge to test Rails
 applications. If you’re new to MiniTest, don’t worry. We’ll
 take it slow.

 Inside this test case, Rails generated a single commented-out
 test called ​"the truth"​. The ​test​...​do​
 syntax may seem surprising at first, but here Active Support is combining
 a class method, optional parentheses, and a block to make defining a
 test method just the tiniest bit simpler for you. Sometimes it is the
 little things that make all the difference.

 The ​assert​
 line in this method is an actual test. It isn’t much of one,
 though—all it does is test that ​true​ is
 true. Clearly, this is a placeholder, one that is intended to be
 replaced by your actual tests.

A Real Unit Test

 Let’s get onto the business of testing validation. First, if we
 create a product with no attributes set, we’ll expect it to be invalid
 and for there to be an error associated with each field. We can use
 the model’s
 ​errors​
 and

 ​invalid?​
 methods to see whether it validates,
 and we can use the
 ​any?​
 method of the error
 list to see whether there is an error associated with a
 particular attribute.

	Now that we know ​what​ to test, we need to
	know ​how​ to tell the test framework whether our
	code passes or fails. We do that
	using
 ​ assertions​

 . An assertion is simply
	a method call that tells the framework what we expect to be
	true. The simplest assertion is the
	method
 ​assert​
 , which expects its
	argument to be true. If it is, nothing special
	happens. However, if the argument
	to
 ​assert​
 is false,
	the assertion fails. The framework will output a message and
	will stop executing the test method containing the failure. In
	our case, we expect that an
	empty ​Product​ model will not pass
	validation, so we can express that expectation by asserting
	that it isn’t valid.

	​ 	assert product.invalid?

 Replace the test ​the truth​ with the following code:

	rails40/depot_b/test/models/product_test.rb
	​ 	test ​"product attributes must not be empty"​ ​do​

	​ 	 product = Product.new

	​ 	 assert product.invalid?

	​ 	 assert product.errors[:title].any?

	​ 	 assert product.errors[:description].any?

	​ 	 assert product.errors[:price].any?

	​ 	 assert product.errors[:image_url].any?

	​ 	​end​

 We can rerun just the unit tests by issuing the command ​rake
 test:models​. When we do so, we
 now see the test executed successfully.

	​ 	depot>​ rake test:models​

	​ 	.

	​ 	Finished tests in 0.257961s, 3.8766 tests/s, 19.3828 assertions/s.

	​ 	1 tests, 5 assertions, 0 failures, 0 errors, 0 skips

	Sure enough, the validation kicked in, and all our
	assertions passed.

	Clearly at this point we can dig deeper and exercise
	individual validations. Let’s look at just three of the many
	possible tests.

First, we’ll check that the validation of the
	price works the way we expect.

	rails40/depot_c/test/models/product_test.rb
	​ 	test ​"product price must be positive"​ ​do​

	​ 	 product = Product.new(title: ​"My Book Title"​,

	​ 	 description: ​"yyy"​,

	​ 	 image_url: ​"zzz.jpg"​)

	​ 	 product.price = -1

	​ 	 assert product.invalid?

	​ 	 assert_equal [​"must be greater than or equal to 0.01"​],

	​ 	 product.errors[:price]

	​ 	

	​ 	 product.price = 0

	​ 	 assert product.invalid?

	​ 	 assert_equal [​"must be greater than or equal to 0.01"​],

	​ 	 product.errors[:price]

	​ 	

	​ 	 product.price = 1

	​ 	 assert product.valid?

	​ 	​end​

	In this code we create a new product and then try setting its
	price to -1, 0, and +1, validating the product each time. If
	our model is working, the first two should be invalid, and we
	verify the error message associated with the ​price​
	attribute is what we expect.

 The last price is acceptable, so we assert that the model is now
 valid. (Some folks would put these three tests into three separate
 test methods—that’s perfectly reasonable.)

	Next, we’ll test that we’re validating that the image URL ends with
	one
	of ​gif​, ​jpg​,
	or ​png​.

	rails40/depot_c/test/models/product_test.rb
	​ 	​def​ new_product(image_url)

	​ 	 Product.new(title: ​"My Book Title"​,

	​ 	 description: ​"yyy"​,

	​ 	 price: 1,

	​ 	 image_url: image_url)

	​ 	​end​

	​ 	test ​"image url"​ ​do​

	​ 	 ok = ​%w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg​

	​ 	​ http://a.b.c/x/y/z/fred.gif }​

	​ 	 bad = ​%w{ fred.doc fred.gif/more fred.gif.more }​

	​ 	 ok.each ​do​ |name|

	​ 	 assert new_product(name).valid?, ​"​#{name}​ should be valid"​

	​ 	 ​end​

	​ 	 bad.each ​do​ |name|

	​ 	 assert new_product(name).invalid?, ​"​#{name}​ shouldn't be valid"​

	​ 	 ​end​

	​ 	​end​

 Here we’ve mixed things up a bit. Rather than write the nine
 separate tests, we’ve used a couple of loops—one to check the cases
 we expect to pass validation and the second to try cases we expect to
 fail. At the same time, we factored out the common code between the
 two loops.

 You’ll notice that we’ve also added an extra parameter to our
 ​assert​ method calls. All of the testing assertions accept an
 optional trailing parameter containing a string. This will be written
 along with the error message if the assertion fails and can be useful
 for diagnosing what went wrong.

	Finally, our model contains a validation that checks that all
	the product titles in the database are unique. To test this
	one, we’re going to need to store product data in the
	database.

	One way to do this would be to have a test create a product,
	save it, then create another product with the same title, and
	try to save it too. This would clearly work. But there’s a
	much simpler way—we can use Rails ​fixtures​.

Test Fixtures

 In the world of testing, a ​fixture​ is an
 environment in which you can run a test. If you’re testing a
 circuit board, for example, you might mount it in a test
 fixture that provides it with the power and inputs needed to
 drive the function to be tested.

 In the world of Rails, a test fixture is simply a
 specification of the initial contents of a model (or models)
 under test. If, for example, we want to ensure that
 our ​products​ table starts off with known
 data at the start of every unit test, we can specify those
 contents in a fixture, and Rails will take care of the
 rest.

 You specify fixture data in files in
 the ​test/fixtures​ directory. These files
 contain test data in
 YAML
 format.
 Each fixture file contains the data for a single model. The name
 of the fixture file is significant;
 the base name of the file must match the name of a database
 table. Because we need some data for
 a ​Product​ model, which is stored in
 the ​products​ table, we’ll add it to the
 file called ​products.yml​.

Rails already created this fixture file when we first created the model.

	rails40/depot_b/test/fixtures/products.yml
	​ 	​# Read about fixtures at​

	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html​

	​ 	one:

	​ 	 title: ​MyString​

	​ 	 description: ​MyText​

	​ 	 image_url: ​MyString​

	​ 	 price: ​9.99​

	​ 	two:

	​ 	 title: ​MyString​

	​ 	 description: ​MyText​

	​ 	 image_url: ​MyString​

	​ 	 price: ​9.99​

	The fixture file contains an entry for each row that we want
	to insert into the database. Each row is given a name. In the
	case of the Rails-generated fixture, the rows are
	named ​one​ and ​two​. This name
	has no significance as far as the database is concerned—it
	is not inserted into the row data. Instead, as we’ll see
	shortly, the name gives us a convenient way to reference test
	data inside our test code. They also are the names used in the
 generated integration tests, so for now, we’ll leave them alone.

[image: David says:]
David says:
Picking Good Fixture Names

 Just like the names of variables in general, you want to keep the
 names of fixtures as self-explanatory as
 possible. This increases the
 readability of the tests when you’re asserting that
 ​product(:valid_order_for_fred)​ is
 indeed Fred’s valid order. It also makes it a lot easier to remember
 which fixture you’re supposed to test against without having to look
 up ​p1​ or
 ​order4​. The more fixtures you get, the
 more important it is to pick good fixture names. So, starting early
 keeps you happy later.

 But what do we do with fixtures that can’t easily get a
 self-explanatory name
 like ​valid_order_for_fred​?
 Pick natural names that you have an easier time associating
 to a role. For example, instead of
 using ​order1​,
 use ​christmas_order​. Instead
 of ​customer1​,
 use ​fred​. Once you get into the
 habit of natural names, you’ll soon be weaving a nice little
 story about how ​fred​ is paying
 for his ​christmas_order​ with
 his ​invalid_credit_card​ first,
 then paying with
 his ​valid_credit_card​, and
 finally choosing to ship it all off
 to ​aunt_mary​.

 Association-based stories are key to remembering large
 worlds of fixtures with ease.

	Inside each entry you’ll see an indented list of name-value pairs.
 Just like in your ​config/database.yml​,
 you must use spaces, not tabs, at the start of each of the data
 lines, and all the lines for a row must have the same indentation.
 Be careful as you make changes because you will need to
 make sure the names of the columns are correct in each entry; a
 mismatch with the database column names may cause a hard-to-track-down
 exception.

 Let’s add some more data to the fixture file with something we can use
 to test our ​Product​ model.

	rails40/depot_c/test/fixtures/products.yml
	​ 	ruby:

	​ 	 title: ​Programming Ruby 1.9​

	​ 	 description:

	​ 	 Ruby is the fastest growing and most exciting dynamic

	​ 	 language out there. If you need to get working programs

	​ 	 delivered fast, you should add Ruby to your toolbox.

	​ 	 price: ​49.50​

	​ 	 image_url: ​ruby.png​

 Now that we have a fixture file, we want Rails to load the
 test data into the ​products​ table when we
 run the unit test. And, in fact, Rails is already doing this
 (convention over configuration for the win!), but you can control
 which fixtures to load by specifying the following line
 in ​test/models/product_test.rb​:

	​ 	​class​ ProductTest < ActiveSupport::TestCase

	​*
​	 fixtures :products

	​ 	 ​#...​

	​ 	​end​

 The
 ​fixtures​

 directive loads the fixture data corresponding to the given
 model name into the corresponding database table before each
 test method in the test case is run. The name of the fixture
 file determines the table that is loaded, so
 using ​:products​ will cause
 the ​products.yml​ fixture file to be used.

	Let’s say that again another way. In the case of
	our ​ProductTest​ class, adding
	the ​fixtures​ directive means that
	the ​products​ table will be emptied out
	and then populated with the three rows defined in the fixture
	before each test method is run.

 Note that most of the scaffolding that Rails generates doesn’t contain
 calls to the ​fixtures​ method. That’s because the default for
 tests is to load ​all​ fixtures before running the test.
 Because that default is generally the one you want, there usually isn’t any
 need to change it. Once again, conventions are used to eliminate the
 need for unnecessary configuration.

	So far, we’ve been doing all our work in the development
	database. Now that we’re running tests, though, Rails needs
	to use a test database.
 If you look in the ​database.yml​ file in
 the ​config​ directory,
 you’ll notice Rails actually created
 a configuration for three separate databases.

	

 ​db/development.sqlite3​ will be our
 development database. All of our programming work will
 be done here.

	

 ​db/test.sqlite3​ is a test
 database.

	

 ​db/production.sqlite3​ is the
 production database. Our application will use this when
 we put it online.

 Each test method gets a freshly initialized table in the test
 database, loaded from the fixtures we provide. This is automatically
 done by the ​rake test​ command but can be done separately by
 running ​rake db:test:prepare​.

Using Fixture Data

	 Now that we know how to get fixture data into the database, we
	 need to find ways of using it in our tests.
	

	 Clearly, one way would be to use the finder methods in the
	 model to read the data. However, Rails makes it easier than
	 that. For each fixture it loads into a test, Rails defines a
	 method with the same name as the fixture. You can use this
	 method to access preloaded model objects containing the
	 fixture data: simply pass it the name of the row as defined
	 in the YAML fixture file, and it’ll return a model object
	 containing that row’s data.

In the case of our product data,
	 calling ​products(:ruby)​ returns
	 a ​Product​ model containing the data
	 we defined in the fixture. Let’s use that to test the
	 validation of unique product titles.
	
	rails40/depot_c/test/models/product_test.rb
	​ 	test ​"product is not valid without a unique title"​ ​do​

	​ 	 product = Product.new(title: products(:ruby).title,

	​ 	 description: ​"yyy"​,

	​ 	 price: 1,

	​ 	 image_url: ​"fred.gif"​)

	​ 	

	​ 	 assert product.invalid?

	​ 	 assert_equal [​"has already been taken"​], product.errors[:title]

	​ 	​end​

	 The test assumes that the database already includes a row
	 for the Ruby book. It gets the title of that existing row
	 using this:
	
	​ 	products(:ruby).title

	 It then creates a new ​Product​ model,
	 setting its title to that existing title. It asserts that
	 attempting to save this model fails and that
	 the ​title​ attribute has the correct error
	 associated with it.
	

	 If you want to avoid using a hard-coded string for the Active
	 Record error, you can compare the response against its
	 built-in error message table.
	
	rails40/depot_c/test/models/product_test.rb
	​ 	test ​"product is not valid without a unique title - i18n"​ ​do​

	​ 	 product = Product.new(title: products(:ruby).title,

	​ 	 description: ​"yyy"​,

	​ 	 price: 1,

	​ 	 image_url: ​"fred.gif"​)

	​ 	

	​ 	 assert product.invalid?

	​ 	 assert_equal [I18n.translate(​'errors.messages.taken'​)],

	​ 	 product.errors[:title]

	​ 	​end​

	 We will cover the I18n functions in Chapter 15, ​Task J: Internationalization​.
	

 Now we can feel confident that our validation code not only works
 but will continue to work. Our product now has a model, a set of
 views, a controller, and a set of unit tests. It will serve as a
 good foundation upon which to build the rest of the application.

What We Just Did

 In just about a dozen lines of code, we augmented that generated code
 with validation.

	
We ensured that required fields were present.

	
We ensured that price fields were numeric and at least
 one cent.

	
We ensured that titles were unique.

	
We ensured that images matched a given format.

	
We updated the unit tests that Rails provided, both to conform to
 the constraints we have imposed on the model and to verify the new
 code we added.

 We show this to our customer, and although she agrees that this is
 something an administrator could use, she says that it certainly isn’t
 anything that she would feel comfortable turning loose on her customers.
 Clearly, in the next iteration we are going to have to focus a bit on
 the user interface.

Playtime

	Here’s some stuff to try on your own:

	

 If you are using Git, now might be a good time to commit our work.
 You can first see what files we changed by using the ​git
 status​ command.

	​ 	depot>​ git status​

	​ 	# On branch master

	​ 	# Changes not staged for commit:

	​ 	# (use "git add <file>..." to update what will be committed)

	​ 	# (use "git checkout -- <file>..." to discard changes in working directory)

	​ 	#

	​ 	# modified: app/models/product.rb

	​ 	# modified: test/fixtures/products.yml

	​ 	# modified: test/controllers/products_controller_test.rb

	​ 	# modified: test/models/product_test.rb

	​ 	# no changes added to commit (use "git add" and/or "git commit -a")

 Since we modified only some existing files and didn’t add any new
 ones, we can combine the ​git add​ and ​git commit​
 commands and simply issue a single ​git commit​ command
 with the ​-a​ option.

	​ 	depot>​ git commit -a -m 'Validation!'​

 With this done, we can play with abandon, secure in the knowledge
 that we can return to this state at any time using a single ​git
 checkout .​ command.

	

 The validation option ​:length​ checks the length of a
 model attribute. Add validation to the ​Product​ model to check
 that the title is at least ten characters long.

	

 Change the error message associated with one of your
 validations.

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[30]	

 ​http://www.ruby-doc.org/stdlib-2.0/libdoc/minitest/unit/rdoc/MiniTest.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 8
Task C: Catalog Display

	
writing our own views,

	
using layouts to decorate pages,

	
integrating CSS,

	
using helpers, and

	
writing functional tests.

 All in all, it’s been a successful set of iterations. We gathered the
 initial requirements from our customer, documented a basic flow,
 worked out a first pass at the data we’ll need, and put together
 the maintenance page for the Depot application’s products. It hasn’t even
 taken many lines of code. We even
 have a small but growing test suite.

 Thus emboldened, it’s on to our next task. We chatted about
 priorities with our customer, and she said she’d like to start
 seeing what the application looks like from the buyer’s point of
 view. Our next task is to create a simple catalog display.

 This also makes a lot of sense from our point of view. Once we
 have the products safely tucked into the database, it should be
 fairly simple to display them. It also gives us a basis from which
 to develop the shopping cart portion of the code later.

 We should also be able to draw on the work we just did in the product
 maintenance task—the catalog display is really just a glorified product
 listing.

 Finally, we will also need to complement our unit tests
 for the model with some functional tests for the controller.

8.1 Iteration C1: Creating the Catalog Listing

 We’ve already created
 the products controller, used by the seller
 to administer the Depot application. Now it’s time to create a
 second controller, one that interacts with the paying
 customers. Let’s call
 it ​Store​.

	​ 	depot>​ rails generate controller Store index​

	​ 	 create app/controllers/store_controller.rb

	​ 	 route get "store/index"

	​ 	 invoke erb

	​ 	 create app/views/store

	​ 	 create app/views/store/index.html.erb

	​ 	 invoke test_unit

	​ 	 create test/controllers/store_controller_test.rb

	​ 	 invoke helper

	​ 	 create app/helpers/store_helper.rb

	​ 	 invoke test_unit

	​ 	 create test/helpers/store_helper_test.rb

	​ 	 invoke assets

	​ 	 invoke coffee

	​ 	 create app/assets/javascripts/store.js.coffee

	​ 	 invoke scss

	​ 	 create app/assets/stylesheets/store.css.scss

 Just as in the previous chapter, where we used
 the ​generate​ utility to create a
 controller and associated scaffolding to administer the products, here
 we’ve asked it to create a controller
 (class ​StoreController​ in the
 file ​store_controller.rb​) containing a
 single action method,
 ​index​
 .

 While everything is already set up for this action to be accessed via

 ​http://localhost:3000/store/index​
 (feel free to try it!),
 we can do better. Let’s simplify things for the user and make this the
 root URL for the website. We do this by editing
 ​config/routes.rb​.

	rails40/depot_d/config/routes.rb
	​ 	Depot::Application.routes.draw ​do​

	​ 	 get ​"store/index"​

	​ 	 resources :products

	​ 	

	​ 	 ​# The priority is based upon order of creation:​

	​ 	 ​# first created -> highest priority.​

	​ 	 ​# See how all your routes lay out with "rake routes".​

	​ 	

	​ 	 ​# You can have the root of your site routed with "root"​

	​*
​	 root ​'store#index'​, as: ​'store'​

	​ 	 ​# ...​

	​ 	​end​

 At the top of the file, you can see the lines added to support the store
 and products controllers. We’ll leave those lines alone. Further along
 in the file you will see a commented-out line that defines a
 ​root​ for the website. Either uncomment out that line or
 add a new line immediately after that one. All we are changing on that
 line is the name of the controller (from ​welcome​ to
 ​store​) and adding ​as: ’store’​. The latter tells Rails
 to create a ​store_path​ accessor method. We saw this before
 with ​say_goodbye_path​.

 Let’s try it. Point a browser at
 ​http://localhost:3000/​
 , and
 up pops our web page (Figure 16, ​Template not found​).

[image: images/depot_c_index.png]

Figure 16. Template not found

 It might not make us rich, but at least we know everything is
 wired together correctly. The page even tells us where to find
 the template file that draws this page.

 Let’s start by displaying a simple list of all the
 products in our database. We know that eventually we’ll have to
 be more sophisticated, breaking them into categories, but this
 will get us going.

 We need to get the list of products out of the database and make
 it available to the code in the view that will display the
 table. This means we have to change
 the
 ​index​
 method
 in ​store_controller.rb​. We want to program
 at a decent level of abstraction, so let’s just assume we can
 ask the model for a list of the products we can sell.

	rails40/depot_d/app/controllers/store_controller.rb
	​ 	​class​ StoreController < ApplicationController

	​ 	 ​def​ index

	​*
​	 @products = Product.order(:title)

	​ 	 ​end​

	​ 	​end​

 We ask our customer whether she
 had a preference regarding the order things should be listed in,
 and we jointly decided to see what happened if we displayed the
 products in alphabetical order. We do this by adding an	

 ​order(:title)​
 call to the ​Product​ model.

 Now we need to write our view template. To do this, edit the
 file ​index.html.erb​
 in ​app/views/store​. (Remember that the path
 name to the view is built from the name of the controller
 [store] and the name of the action
 [index]. The
 ​html.erb​
 part signifies an ERB template that produces an HTML result.)

	rails40/depot_d/app/views/store/index.html.erb
	​ 	​<% if notice %>​

	​ 	​<p​ id=​"notice"​​>​​<%= notice %>​​</p>​

	​ 	​<% end %>​

	​ 	

	​ 	​<h1>​Your Pragmatic Catalog​</h1>​

	​ 	

	​ 	​<% @products.each do |product| %>​

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 ​<%= image_tag(product.image_url) %>​

	​ 	 ​<h3>​​<%= product.title %>​​</h3>​

	​ 	 ​<%= sanitize(product.description) %>​

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​​<%= product.price %>​​​

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	​<% end %>​

 Note the use of the
 ​sanitize​
 method for the description.
 This allows us to safely add HTML stylings to make the descriptions more
 interesting for our customers. Note that this decision opens a
 potential security hole,[31] but because
 product descriptions are created by people who work for our
 company, we think that the risk is minimal.

 We’ve also used
 the
 ​image_tag​
 helper
 method. This generates an HTML ​​ tag using
 its argument as the image source.

 Next we add a stylesheet, making use of the fact that
 in Iteration A2
 we set things up so that pages created by the
 ​StoreController​ will define an HTML class by the name of
 ​store​.

	rails40/depot_d/app/assets/stylesheets/store.css.scss
	​ 	​// Place all the styles related to the Store controller here.​

	​ 	​// They will automatically be included in application.css.​

	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​

	​ 	

	​*
​	​.store ​{

	​*
​	 ​h1 ​{

	​*
​	 margin: ​0;​

	​*
​	 padding-bottom: ​0.5em;​

	​*
​	 font: ​150% sans-serif;​

	​*
​	 color: ​#226;​

	​*
​	 border-bottom: ​3px dotted #77d;​

	​*
​	 }

	​*
​	

	​*
​	 ​/* An entry in the store catalog */​

	​*
​	 ​.entry ​{

	​*
​	 overflow: ​auto;​

	​*
​	 margin-top: ​1em;​

	​*
​	 border-bottom: ​1px dotted #77d;​

	​*
​	 min-height: ​100px;​

	​*
​	

	​*
​	 ​img ​{

	​*
​	 width: ​80px;​

	​*
​	 margin-right: ​5px;​

	​*
​	 margin-bottom: ​5px;​

	​*
​	 position: ​absolute;​

	​*
​	 }

	​*
​	

	​*
​	 ​h3 ​{

	​*
​	 font-size: ​120%;​

	​*
​	 font-family: ​sans-serif;​

	​*
​	 margin-left: ​100px;​

	​*
​	 margin-top: ​0;​

	​*
​	 margin-bottom: ​2px;​

	​*
​	 color: ​#227;​

	​*
​	 }

	​*
​	

	​*
​	 ​p, div.price_line ​{

	​*
​	 margin-left: ​100px;​

	​*
​	 margin-top: ​0.5em;​

	​*
​	 margin-bottom: ​0.8em;​

	​*
​	 }

	​*
​	

	​*
​	 ​.price ​{

	​*
​	 color: ​#44a;​

	​*
​	 font-weight: ​bold;​

	​*
​	 margin-right: ​3em;​

	​*
​	 }

	​*
​	 }

	​*
​	}

 Hitting Refresh brings up the display shown in Figure 17, ​Our first (ugly) catalog page​.
 It is still pretty basic, and it
 seems to be missing something. The customer happens to
 be walking by as we ponder this, and she points out that she’d
 also like to see a decent-looking banner and sidebar on
 public-facing pages.

[image: images/depot_d_index_1.png]

Figure 17. Our first (ugly) catalog page

 At this point in the real world, we’d probably want to call in
 the design folks—we’ve all seen too many programmer-designed
 websites to feel comfortable inflicting another on the
 world. But Pragmatic Web Designer is off getting inspiration
 on a beach somewhere and won’t be back until later in the year,
 so let’s put a placeholder in for now. It’s time for another
 iteration.

8.2 Iteration C2: Adding a Page Layout

 The pages in a typical website often share a similar
 layout—the designer will have created a standard template that is used
 when placing content. Our job is to modify this page to add
 decoration to each of the store pages.

 So far, we’ve made only minimal changes to
 ​application.html.erb​, namely, to add a
 ​class​ attribute in Iteration
 A2. As this file is
 the layout used for all views for all controllers that don’t
 otherwise provide a layout, we can change the
 look and feel of the entire site by editing just one file. This makes us
 feel better about putting a placeholder page layout in for now; we can
 update it when the designer eventually returns from the islands.

 Let’s update this file to define a banner and a sidebar.

	rails40/depot_e/app/views/layouts/application.html.erb
	​Line 1 	<!DOCTYPE html>

	​- 	​<html>​

	​- 	​<head>​

	​*
​	 ​<title>​Pragprog Books Online Store​</title>​

	​5 	 ​<%= stylesheet_link_tag "application", media: "all",​

	​- 	​ "data-turbolinks-track" => true %>​

	​- 	 ​<%= javascript_include_tag "application", "data-turbolinks-track" => true %>​

	​- 	 ​<%= csrf_meta_tags %>​

	​- 	​</head>​

	​10 	​<body​ class=​"<%= controller.controller_name %​>">

	​*
​	 ​<div​ id=​"banner"​​>​

	​*
​	 ​<%= image_tag("logo.png") %>​

	​*
​	 ​<%= @page_title || "Pragmatic Bookshelf" %>​

	​*
​	 ​</div>​

	​*
​	 ​<div​ id=​"columns"​​>​

	​*
​	 ​<div​ id=​"side"​​>​

	​*
​	 ​​

	​*
​	 ​​​<a​ href=​"http://www...."​​>​Home​​​​

	​*
​	 ​​​<a​ href=​"http://www..../faq"​​>​Questions​​​​

	​*
​	 ​​​<a​ href=​"http://www..../news"​​>​News​​​​

	​*
​	 ​​​<a​ href=​"http://www..../contact"​​>​Contact​​​​

	​*
​	 ​​

	​*
​	 ​</div>​

	​*
​	 ​<div​ id=​"main"​​>​

	​25 	 ​<%= yield %>​

	​*
​	 ​</div>​

	​*
​	 ​</div>​

	​- 	​</body>​

	​- 	​</html>​

 Apart from the usual HTML gubbins, this layout has three Rails-specific
 items. Line 5 uses a Rails
 ​stylesheet_link_tag​

 helper method to generate a
 ​<link>​ tag to our application’s stylesheet and
 specifies an option to enable turbolinks,[32] which transparently works behind the scenes to speed up page
 changes within your application.
 Similarly, line 7 generates a
 ​<link>​ to our application’s scripts.

Finally,
 line
 8 sets up all the behind-the-scenes data needed to
 prevent cross-site request forgery attacks, which will be important once
 we add forms in Chapter 12, ​Task G: Check Out!​.

 On line 13, we set the page heading to the value in
 the instance variable ​@page_title​. The
 real magic, however, takes place on line 25. When we invoke
 ​yield​, Rails automatically
 substitutes in the page-specific content—the stuff generated by the
 view invoked by this request. Here, this will be the catalog page
 generated by ​index.html.erb​.

 To make this all work, first rename the file
 ​application.css​ to
 ​application.css.scss​. If you didn’t opt to
 try Git as was suggested in ​Playtime​, now might be
 a good time to do so. The command to rename a file using Git is ​git
 mv​. Once you have renamed this file, either through Git or using
 the underlying operating system commands to do so, add the
 following lines:

	rails40/depot_e/app/assets/stylesheets/application.css.scss
	​ 	​/*​

	​ 	​ * This is a manifest file that'll be compiled into application.css, which will​

	​ 	​ * include all the files listed below.​

	​ 	​ *​

	​ 	​ * Any CSS and SCSS file within this directory, lib/assets/stylesheets,​

	​ 	​ * vendor/assets/stylesheets, or vendor/assets/stylesheets of plugins, if any,​

	​ 	​ * can be referenced here using a relative path.​

	​ 	​ *​

	​ 	​ * You're free to add application-wide styles to this file and they'll appear​

	​ 	​ * at the top of the compiled file, but it's generally better to create a new​

	​ 	​ * file per style scope.​

	​ 	​ *​

	​ 	​ *= require_self​

	​ 	​ *= require_tree .​

	​ 	​ */​

	​ 	

	​*
​	​#banner ​{

	​*
​	 background: ​#9c9;​

	​*
​	 padding: ​10px;​

	​*
​	 border-bottom: ​2px solid;​

	​*
​	 font: ​small-caps 40px/40px "Times New Roman", serif;​

	​*
​	 color: ​#282;​

	​*
​	 text-align: ​center;​

	​*
​	

	​*
​	 ​img ​{

	​*
​	 float: ​left;​

	​*
​	 }

	​*
​	}

	​*
​	

	​*
​	​#notice ​{

	​*
​	 color: ​#000 !important;​

	​*
​	 border: ​2px solid red;​

	​*
​	 padding: ​1em;​

	​*
​	 margin-bottom: ​2em;​

	​*
​	 background-color: ​#f0f0f0;​

	​*
​	 font: ​bold smaller sans-serif;​

	​*
​	}

	​*
​	

	​*
​	​#columns ​{

	​*
​	 background: ​#141;​

	​*
​	

	​*
​	 ​#main ​{

	​*
​	 margin-left: ​17em;​

	​*
​	 padding: ​1em;​

	​*
​	 background: ​white;​

	​*
​	 }

	​*
​	

	​*
​	 ​#side ​{

	​*
​	 float: ​left;​

	​*
​	 padding: ​1em 2em;​

	​*
​	 width: ​13em;​

	​*
​	 background: ​#141;​

	​*
​	

	​*
​	 ​ul ​{

	​*
​	 padding: ​0;​

	​*
​	 ​li ​{

	​*
​	 list-style: ​none;​

	​*
​	 ​a ​{

	​*
​	 color: ​#bfb;​

	​*
​	 font-size: ​small;​

	​*
​	 }

	​*
​	 }

	​*
​	 }

	​*
​	 }

	​*
​	}

 As explained in the comments, this manifest file will automatically
 include all stylesheets available in this directory and in any
 subdirectory. This is accomplished via the ​require_tree​
 directive.

 We could instead list the
 names of individual stylesheets we want to be linked in the

 ​stylesheet_link_tag​
 , but because we are in
 the layout for the entire application and because this layout is
 already
 set up to load all stylesheets, we’ll leave it alone
 for now.

 This page design consists of three primary areas on the screen: a banner
 across the top, a main area on the bottom right, and a side area on the
 left. Additionally, there is some provision for a notice should it
 appear. Each of these has margins, padding, fonts, and colors—typical
 things you see in CSS. The banner is also centered and specifies that
 the image is to be placed on the left. Inside the side area, there is
 special styling for the list, namely, to turn off padding and bullets and to
 specify a different font and color.

 Again, we make heavy use of Sass, which is exactly what the file rename
 enabled us to do. For example, there is an ​img​
 selector nested inside the ​#banner​ selector. There also is an
 ​a​ selector inside of the ​#side​ selector.

 Hit Refresh, and the browser window looks something like
 Figure 18, ​Catalog with layout added​. It won’t win any design
 awards, but it’ll show our customer roughly what the final page
 will look like.

[image: images/depot_e_index_1.png]

Figure 18. Catalog with layout added

 Looking at this page, we spot a minor problem with how prices are
 displayed. The database stores
 the price as a number, but we’d like to show it as dollars and
 cents. A price of 12.34 should be shown as $12.34, and 13 should
 display as $13.00. We’ll tackle that next.

8.3 Iteration C3: Using a Helper to Format the Price

 Ruby provides a
 ​sprintf​
 function that can be
 used to format prices. We could place logic that makes use of this
 function directly in the view. For example, we could say
 this:

	​ 	​<span​ class=​"price"​​>​​<%= sprintf("$%0.02f", product.price) %>​​​

 This would work, but it embeds knowledge of currency formatting
 into the view. Should we display prices of
 products in several places and want to internationalize the
 application later, this would be a maintenance problem.

 Instead, let’s use a helper method to format the price as a
 currency. Rails has an appropriate one built in—it’s
 called
 ​number_to_currency​
 .

 Using our helper in the view is simple; in the index template,
 we change this:

	​ 	​<span​ class=​"price"​​>​​<%= product.price %>​​​

 to the following:

	rails40/depot_e/app/views/store/index.html.erb
	​ 	​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

 Sure enough, when we hit Refresh, we see a nicely formatted
 price, as in Figure 19, ​Catalog with price formatted​.

[image: images/depot_f_format_price.png]

Figure 19. Catalog with price formatted

 Although it looks nice enough, we are starting to get a nagging feeling
 that we really should be running and writing tests for all this new
 functionality, particularly after our experience of adding logic to
 our model.

8.4 Iteration C4: Functional Testing of Controllers

 Now for the moment of truth. Before we focus on writing new tests, we
 need to determine whether
 we have actually broken anything. Remembering our experience after
 we added validation logic to our model,
 with some trepidation we run our tests again.

	​ 	depot>​ rake test​

 This time, all is well. We added a lot, but we didn’t break anything.
 That’s a relief, but our work is not yet done; we still need tests
 for what we just added.

 The unit testing of models that we did previously seemed straightforward
 enough. We called a method and compared what it returned against what
 we expected it to return. But now we are dealing with a server that
 processes requests and a user viewing responses in a browser. What we
 will need is ​functional​ tests that verify that the model,
 view, and controller work well together. Never
 fear, Rails makes this easy too.

 First, let’s take a look at what Rails generated for us.

	rails40/depot_d/test/controllers/store_controller_test.rb
	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ StoreControllerTest < ActionController::TestCase

	​ 	 test ​"should get index"​ ​do​

	​ 	 get :index

	​ 	 assert_response :success

	​ 	 ​end​

	​ 	

	​ 	​end​

 The ​should get index​ test gets the index and asserts that a
 successful response is expected. That certainly seems straightforward
 enough. That’s a reasonable beginning, but we also want to verify that the
 response contains our layout, our product information, and our number
 formatting. Let’s see what that looks like in code.

	rails40/depot_e/test/controllers/store_controller_test.rb
	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ StoreControllerTest < ActionController::TestCase

	​ 	 test ​"should get index"​ ​do​

	​ 	 get :index

	​ 	 assert_response :success

	​*
​	 assert_select ​'#columns #side a'​, minimum: 4

	​*
​	 assert_select ​'#main .entry'​, 3

	​*
​	 assert_select ​'h3'​, ​'Programming Ruby 1.9'​

	​*
​	 assert_select ​'.price'​, /\$[,\d]+\.\d\d/

	​ 	 ​end​

	​ 	

	​ 	​end​

 The four lines we added take a look ​into​ the HTML that is
 returned, using CSS selector notation. As a refresher, selectors that
 start with a number sign (​#​) match on ​id​ attributes,
 selectors that start with a dot (​.​) match on class attributes,
 and selectors that contain no prefix at all match on element names.

 So, the first select test looks for an element named ​a​ that is
 contained in an element with an ​id​ with a value of
 ​side​, which is contained within an element with an ​id​
 with a value of ​columns​. This test verifies that there are
 a minimum of four such elements. Pretty powerful stuff,

 ​assert_select​
 , eh?

 The next three lines verify that all of our products are displayed. The
 first verifies that there are three elements with a class name of
 ​entry​ inside the main portion of the page. The next line
 verifies that there is an ​h3​ element with the title of the Ruby
 book that we had entered previously. The third line verifies that the
 price is formatted correctly. These assertions are based on the
 test data that we had put inside our fixtures.

	rails40/depot_e/test/fixtures/products.yml
	​ 	​# Read about fixtures at​

	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html​

	​ 	one:

	​ 	 title: ​MyString​

	​ 	 description: ​MyText​

	​ 	 image_url: ​MyString​

	​ 	 price: ​9.99​

	​ 	

	​ 	two:

	​ 	 title: ​MyString​

	​ 	 description: ​MyText​

	​ 	 image_url: ​MyString​

	​ 	 price: ​9.99​

	​ 	

	​ 	ruby:

	​ 	 title: ​Programming Ruby 1.9​

	​ 	 description:

	​ 	 Ruby is the fastest growing and most exciting dynamic

	​ 	 language out there. If you need to get working programs

	​ 	 delivered fast, you should add Ruby to your toolbox.

	​ 	 price: ​49.50​

	​ 	 image_url: ​ruby.png​

 If you noticed, the type of test that

 ​assert_select​
 performs varies based on the type
 of the second parameter. If it is a number, it will be treated as a
 quantity. If it is a string, it will be treated as an expected result.
 Another useful type of test is a regular expression, which is what we use in
 our final assertion. We verify that there is a price that has a value
 that contains a dollar sign followed by any number (but at least one),
 commas, or digits; followed by a decimal point; followed by two digits.

 One final point before we move on: both validation and functional tests
 will test the behavior of controllers only; they will not retroactively
 affect any objects that already exist in the database or in fixtures. In
 the previous example, two products contain the same title. Such data
 will cause no problems and will go undetected up to the point where such
 records are modified and saved.

 We’ve touched on only a few things that

 ​assert_select​
 can do. More information can be
 found in the online documentation.[33]

 That’s a lot of verification in just a few lines of code. We can see
 that it works by rerunning just the functional tests (after all, that’s
 all we changed).

	​ 	depot>​ rake test:controllers​

 Now not only do we have something recognizable as a storefront, we have
 tests that ensure that all of the pieces—the model, view, and
 controller—are all working together to produce the desired result.
 Although this sounds like a lot,
 with Rails it was easy. In fact, it was mostly
 HTML and CSS and not much in the way of code or
 tests. Before moving on, let’s make sure that it will stand up to
 the onslaught of customers we’re expecting.

8.5 Iteration C5: Caching of Partial Results

 If everything goes as planned, this page will definitely be a high-traffic area for the site. To respond to requests for this
 page, we would need to fetch every product from the database
 and render each one. We can do better than that. After all, the
 catalog doesn’t really change that often, so there is no need to start
 from scratch on each request.

 Just so we can see what we’re doing, the first thing we’re going
 to do is to modify the configuration for the development environment to
 turn on caching.

	rails40/depot_e/config/environments/development.rb
	​ 	config.action_controller.perform_caching = true

 As with all configuration changes, you need to restart your
 server.

 Next we need to plan our attack. Thinking about it, we only need to
 re-render things if a product changed, and even then we
 need to render only the products that actually changed. Focusing on the
 first part of the problem, we need to add code
 that returns the most recently updated product.

	rails40/depot_e/app/models/product.rb
	​ 	​def​ self.latest

	​ 	 Product.order(:updated_at).last

	​ 	​end​

 Next we mark the sections of our template that we need to update if
 any product changes,
 and inside that section we mark the subsection that we need in order to update
 any specific product that changed.

	rails40/depot_e/app/views/store/index.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h1>​Your Pragmatic Catalog​</h1>​

	​ 	

	​*
​	<% cache [​'store'​, Product.latest] ​do​ %>

	​ 	 <% @products.each ​do​ |product| %>

	​*
​	 <% cache [​'entry'​, product] ​do​ %>

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 <%= image_tag(product.image_url) %>

	​ 	 ​<h3>​<%= product.title %>​</h3>​

	​ 	 <%= sanitize(product.description) %>

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

	​ 	 ​</div>​

	​ 	 ​</div>​

	​*
​	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​*
​	<% ​end​ %>

 In addition to bracketing the sections, we identify the components of
 the name for each cache entry. We make the choice to call the
 overall cache entry ​store​ and the individual cache
 entries ​entry​. We also associate a product with each, namely, the
 latest with the overall store and the individual product we are
 rendering with the entry.

 Bracketed sections can be nested to arbitrary depth, which is why those
 in the Rails community have come to refer to this as ​Russian
 doll​ caching.[34]

 With this, we’re done! Rails takes care of all of the rest, including
 managing the storage and deciding when to invalidate old entries. If
 you’re really interested, there are all sorts of knobs you can turn
 and choices as to what backing store to use for the cache. It’s nothing you
 need to worry about now, but it might be worth bookmarking the overview
 page of ​Caching with Rails​ in the RailsGuides.[35]

 As far as verifying that this works, unfortunately there isn’t much to
 see. If you go to that page, you should see nothing change, which in
 fact is the point! The best you can do is to make a change to
 the template anywhere
 inside the cache block without updating any product and verifying that
 you do ​not​ see that update because the cached version of the page has not
 been updated.

 Once you’re satisfied that caching is working, turn caching off in
 development so that further changes to the template will always be
 visible immediately.

	rails40/depot_f/config/environments/development.rb
	​ 	config.action_controller.perform_caching = false

 Once again, restart the server, and verify that changes to the template
 once again show up as quickly as you save
 them.

8.6 What We Just Did

 We’ve put together the basis of the store’s catalog display. The
 steps were as follows:

	

 Create a new controller to handle customer-centric
 interactions.

	

 Implement the default
 ​index​
 action.

	

 Add a call to the
 ​order​
 method within the
 Store controller to control the order in which
 the items on the website are listed.

	

 Implement a view (an ​html.erb​
 file) and a layout to contain it
 (another ​html.erb​ file).

	

 Use a helper to format prices the way we want.

	

 Make use of a CSS stylesheet.

	

 Write functional tests for our controller.

	

 Implement fragment caching for portions of the page.

 It’s time to check it all in and move on to the next task, namely, making
 a shopping cart!

Playtime

 Here’s some stuff to try on your own:

	

 Add a date and time to the sidebar. It doesn’t have to
 update; just show the value at the time the page was
 displayed.

	

 Experiment with setting various ​number_to_currency​ helper
 method options, and see the
 effect on your catalog listing.

	

 Write some functional tests for the product maintenance
 application using ​assert_select​. The tests will need to
 be placed into the
 ​test/controllers/​​products_controller_test.rb​
 file.

	

 Just a reminder—the end of an iteration is a good time to save
 your work using Git. If you have been following along, you have
 the basics you need at this point. We will pick things back up,
 in terms of exploring more Git functionality, in ​Prepping Your Deployment Server​.

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[31]	

 ​http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29​

	[32]	

 ​https://github.com/rails/turbolinks​

	[33]	

 ​http://api.rubyonrails.org/classes/ActionDispatch/Assertions/SelectorAssertions.html​

	[34]	

 ​http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works​

	[35]	

 ​http://guides.rubyonrails.org/caching_with_rails.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 9
Task D: Cart Creation

	
sessions and session management,

	
adding relationships between models, and

	
adding a button to add a product to a cart.

 Now that we have the ability to display a catalog containing all
 our wonderful products, it would be nice to be able to sell
 them. Our customer agrees, so we’ve jointly decided to implement
 the shopping cart functionality next. This is going to involve a number of
 new concepts, including sessions, relationships between models, and adding
 a button to the view, so let’s get started.

9.1 Iteration D1: Finding a Cart

 As users browse our online catalog, they will (we hope)
 select products to buy. The convention is that each item
 selected will be added to a virtual shopping cart, held in our
 store. At some point, our buyers will have everything they need
 and will proceed to our site’s checkout, where they’ll pay for
 the stuff in their cart.

 This means that our application will need to keep track of all
 the items added to the cart by the buyer. To do that, we’ll keep
 a cart in the database and store its unique
 identifier, ​cart.id​, in the session. Every time a
 request comes in, we can recover the identity from the session
 and use it to find the cart in the database.

 Let’s go ahead and create a cart.

	​ 	depot>​ rails generate scaffold Cart​

	​ 	 ...

	​ 	depot>​ rake db:migrate​

	​ 	== CreateCarts: migrating ==

	​ 	-- create_table(:carts)

	​ 	 ->​ 0.0012s​

	​ 	== CreateCarts: migrated (0.0014s) ===

 Rails makes the current session look like a hash to the controller, so
 we’ll store the ID of the cart in the session by indexing it with the
 symbol ​:cart_id​.

	rails40/depot_f/app/controllers/concerns/current_cart.rb
	​ 	​module​ CurrentCart

	​ 	 extend ActiveSupport::Concern

	​ 	

	​ 	 private

	​ 	

	​ 	 ​def​ set_cart

	​ 	 @cart = Cart.find(session[:cart_id])

	​ 	 ​rescue​ ActiveRecord::RecordNotFound

	​ 	 @cart = Cart.create

	​ 	 session[:cart_id] = @cart.id

	​ 	 ​end​

	​ 	​end​

 The
 ​set_cart​
 method starts by getting the
 ​:cart_id​ from the ​session​ object and then attempts to
 find a cart corresponding to this ID. If such a cart record is not
 found
 (which will happen if the ID is ​nil​ or invalid for any
 reason), then this method will proceed to create a new
 ​Cart​, store the ID of the created cart into the
 session, and then return the new cart.

 Note that we place the
 ​set_cart​
 method in
 a ​CurrentCart​ module and mark it as
 private. This treatment allows
 us to share common code (even as little as a single method!)
 between controllers and furthermore prevents Rails
 from ever making it available as an action on the controller.

9.2 Iteration D2: Connecting Products to Carts

 We’re looking at sessions because we need somewhere to keep our
 shopping cart. We’ll cover sessions in more depth in
 ​Rails Sessions​, but for now let’s
 move on to implement the cart.

 Let’s keep things simple. A cart
 contains a set of products. Based on the
 Initial guess at application data
 diagram, combined with a brief
 chat with our customer, we can now generate the Rails models and
 populate the migrations to create the corresponding tables.

	​ 	depot>​ rails generate scaffold LineItem product:references cart:belongs_to​

	​ 	 ...

	​ 	depot>​ rake db:migrate​

	​ 	== CreateLineItems: migrating ==

	​ 	-- create_table(:line_items)

	​ 	 ->​ 0.0013s​

	​ 	== CreateLineItems: migrated (0.0014s) =======================================

 The database now has a place to store the references between line
 items, carts, and products. If you look at the generated
 definition of the ​LineItem​ class, you can see the
 definitions of these relationships.

	rails40/depot_f/app/models/line_item.rb
	​ 	​class​ LineItem < ActiveRecord::Base

	​ 	 belongs_to :product

	​ 	 belongs_to :cart

	​ 	​end​

At the model level, there is no difference between a
 simple reference and a “belongs to” relationship. Both are implemented
 using the
 ​belongs_to​
 method.
	In the ​LineItem​ model, the two

 ​belongs_to​
 calls tell Rails that rows in
	the ​line_items​ table are children of rows
	in the ​carts​
	and ​products​ tables. No line item can
	exist unless the corresponding cart and product rows
	exist. There’s an easy way to remember where to
	put ​belongs_to​ declarations: if a table has foreign
	keys, the corresponding model should have a ​belongs_to​
	for each.

	Just what do these various declarations do? Basically, they
	add navigation capabilities to the model objects. Because Rails
	added the ​belongs_to​ declaration
	to ​LineItem​, we can now retrieve
	its ​Product​ and display the book’s
	title.

	​ 	li = LineItem.find(...)

	​ 	puts ​"This line item is for ​#{li.product.title}​"​

 To be able to traverse these relationships in both
 directions, we need to add some declarations to our
 model files that specify their
 inverse relations.

Open the
 ​cart.rb​
 file in ​app/models​, and add a call to
 ​has_many​
 .

	rails40/depot_f/app/models/cart.rb
	​ 	​class​ Cart < ActiveRecord::Base

	​*
​	 has_many :line_items, dependent: :destroy

	​ 	​end​

 That ​has_many :line_items​ part of the directive is fairly
 self-explanatory: a cart (potentially) has many associated line
 items. These are linked to the cart because each line item contains a
 reference to its cart’s ID. The ​dependent: :destroy​
 part indicates that the existence of line items is
 dependent on the existence of the cart. If we destroy a cart,
 deleting it from the database, we’ll want Rails also to
 destroy any line items that are associated with that cart.

 Now that the ​Cart​ is declared to have many
 line items, we can reference them (as a collection) from a cart
 object.

	​ 	cart = Cart.find(...)

	​ 	puts ​"This cart has ​#{cart.line_items.count}​ line items"​

 Now, for completeness, we should add a ​has_many​ directive to
 our ​Product​ model. After all, if we have lots of carts, each product
 might have many line items referencing it. This time, we will make
 use of validation code to prevent the removal of products that are
 referenced by line items.

	rails40/depot_f/app/models/product.rb
	​ 	​class​ Product < ActiveRecord::Base

	​*
​	 has_many :line_items

	​ 	

	​*
​	 before_destroy :ensure_not_referenced_by_any_line_item

	​ 	

	​ 	 ​#...​

	​ 	

	​*
​	 private

	​ 	

	​*
​	 ​# ensure that there are no line items referencing this product​

	​*
​	 ​def​ ensure_not_referenced_by_any_line_item

	​*
​	 ​if​ line_items.empty?

	​*
​	 ​return​ true

	​*
​	 ​else​

	​*
​	 errors.add(:base, ​'Line Items present'​)

	​*
​	 ​return​ false

	​*
​	 ​end​

	​*
​	 ​end​

	​ 	​end​

 Here we declare that a product has many line items and define a
 ​hook​ method named

 ​ensure_not_referenced_by_any_line_item​
 .
 A hook method is a method that Rails calls
 automatically at a given point in an object’s life. In this case, the
 method will be called before Rails attempts to destroy a row in the
 database. If the hook method returns false, the row will not be
 destroyed.

 Note that we have direct access to the ​errors​ object. This
 is the same place that the
 ​validates​
 stores
 error messages. Errors can be associated with individual attributes,
 but in this case we associate the error with the base object.

	We’ll have more to say about intermodel relationships
	starting in ​Specifying Relationships in Models​.

9.3 Iteration D3: Adding a Button

 Now that that’s done, it is time to add an

 ​Add to Cart​
 button for each product.

 There is no need to create a new controller or even a new action.
 Taking a look at the actions provided by the scaffold generator, you
 find
 ​index​
 ,
 ​show​
 ,

 ​new​
 ,
 ​edit​
 ,

 ​create​
 ,
 ​update​
 , and

 ​destroy​
 . The one that matches this operation
 is
 ​create​
 . (
 ​new​
 may
 sound similar, but its use is to get a form that is used to solicit
 input for a subsequent
 ​create​
 action.)

 Once this decision is made, the rest follows. What are we creating?
 Certainly not a ​Cart​ or even a
 ​Product​. What we are creating is a
 ​LineItem​. Looking at the comment associated with
 the
 ​create​
 method in
 ​app/controllers/line_items_controller.rb​, you see
 that this choice also determines the URL to use (​/line_items​)
 and the HTTP method (POST).

 This choice even suggests the proper UI control to use.
 When we added links before, we used
 ​link_to​
 ,
 but links default to using HTTP GET. We want to use POST, so we will
 add a button this time; this means we will be using the

 ​button_to​
 method.

 We could connect the button to the line item by specifying the URL, but
 again we can let Rails take care of this for us by simply appending
 ​_path​ to the controller’s name. In this case, we will use
 ​line_items_path​.

 However, there’s a problem with this: how will
 the ​line_items_path​ method know ​which​ product
 to add to our cart? We’ll need to pass it the ID of the product
 corresponding to the button. That’s easy enough—all we need to do is
 add the ​:product_id​ option to
 the
 ​line_items_path​
 call. We can even pass in
 the ​product​ instance itself—Rails knows to extract the ID
 from the record in circumstances such as these.

 In all, the ​one​ line that we need to add to
 our ​index.html.erb​ looks
 like this:

	rails40/depot_f/app/views/store/index.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h1>​Your Pragmatic Catalog​</h1>​

	​ 	

	​ 	<% cache [​'store'​, Product.latest] ​do​ %>

	​ 	 <% @products.each ​do​ |product| %>

	​ 	 <% cache [​'entry'​, product] ​do​ %>

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 <%= image_tag(product.image_url) %>

	​ 	 ​<h3>​<%= product.title %>​</h3>​

	​ 	 <%= sanitize(product.description) %>

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

	​*
​	 <%= button_to ​'Add to Cart'​, line_items_path(product_id: product) %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	<% ​end​ %>

 There’s one more formatting issue. ​button_to​ creates an
 HTML ​<form>​, and that form contains an
 HTML ​<div>​. Both of these are normally block
 elements, which will appear on the next line. We’d like to place
 them next to the price, so we need to add a little CSS magic to make
 them inline.

	rails40/depot_f/app/assets/stylesheets/store.css.scss
	​ 	​p, div.price_line ​{

	​ 	 margin-left: ​100px;​

	​ 	 margin-top: ​0.5em;​

	​ 	 margin-bottom: ​0.8em;​

	​ 	

	​*
​	 ​form, div ​{

	​*
​	 display: ​inline;​

	​*
​	 }

	​ 	}

 Now our index page looks like
 the following figure. But before we push the
 button, we need to modify the
 ​create​
 method in
 the line items controller to expect a product ID as a form parameter.
 Here’s where we start to see how important
 the ​id​ field is in our models. Rails
 identifies model objects (and the corresponding database rows)
 by their ​id​ fields. If we pass an ID
 to
 ​create​
 , we’re uniquely
 identifying the product to add.

[image: images/depot_f_formatted_index.png]

Figure 20. Now there’s an Add to Cart button!

 Why the
 ​create​
 method? The default HTTP method
 for a link is a ​get​, the default HTTP method for a button
 is a ​post​, and Rails uses these conventions to determine which
 method to call. Refer to the comments inside the
 ​app/controllers/​​line_items_controller.rb​ file to see
 other conventions. We’ll be making extensive use of these conventions
 inside the Depot application.

 Now let’s modify the ​LineItemsController​
 to find the shopping cart for the current session
 (creating one if there isn’t one there already), add the
 selected product to that cart, and display the cart
 contents.

 We use the ​CurrentCart​ concern we implemented in Iteration D1 to find (or create) a
 cart in the session.

	rails40/depot_f/app/controllers/line_items_controller.rb
	​ 	​class​ LineItemsController < ApplicationController

	​*
​	 include CurrentCart

	​*
​	 before_action :set_cart, only: [:create]

	​ 	 before_action :set_line_item, only: [:show, :edit, :update, :destroy]

	​ 	

	​ 	 ​# GET /line_items​

	​ 	 ​#...​

	​ 	​end​

 We ​include​ the ​CurrentCart​ module and declare
 that the
 ​set_cart​
 method is to be involved before the

 ​create​
 action. We explore action callbacks in depth in
 ​Callbacks​, but for now all we need to know is that
 Rails provides the ability to wire together methods that are to be called
 before, after, or even around controller actions.

In fact, as you can
 see, the generated controller already uses this facility to set the value
 of the ​@line_item​ instance variable before the

 ​show​
 ,
 ​edit​
 ,
 ​update​
 , or

 ​destroy​
 actions are called.

 Now that we know that the value of ​@cart​ is set to
 the value of the current cart,
 all we need to modify is a few lines of code in the

 ​create​
 method
 in
 ​app/controllers/line_items_controller.rb​.[36] to build the line item itself.

	rails40/depot_f/app/controllers/line_items_controller.rb
	​ 	​def​ create

	​*
​	 product = Product.find(params[:product_id])

	​*
​	 @line_item = @cart.line_items.build(product: product)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @line_item.save

	​*
​	 format.html { redirect_to @line_item.cart,

	​ 	 notice: ​'Line item was successfully created.'​ }

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @line_item }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @line_item.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 We use the
 ​params​ object to get the ​:product_id​
 parameter from the request. The ​params​ object is important inside Rails
 applications. It holds all of the parameters passed in a browser
 request. We store the result in a local variable because there is no need to
 make this available to the view.

 We then pass that product we found into
 ​@cart.line_items.build​. This causes a new line item
 relationship to be built between the ​@cart​ object and the
 ​product​. You can build the relationship from either end, and
 Rails will take care of establishing the connections on both sides.

 We save the resulting line item into
 an instance variable named ​@line_item​.

 The remainder of this method takes care of handling errors, which we
 will cover in more detail in Section 10.2, ​Iteration E2: Handling Errors​, and
 handling JSON requests. But for now, we want
 to modify only one more thing: once the line item is created, we want to
 redirect you to the cart instead of back to the line item.
 Since the line item object knows how to find the cart object, all we
 need to do is add ​.cart​ to the method call.

 As we changed the function of our controller, we know that we will need
 to update the corresponding functional test. We need to pass a product
 ID on the call to ​create​ and change what we expect for the
 target of the redirect. We do this by updating
 ​test/controllers/line_items_controller_test.rb​.

	rails40/depot_g/test/controllers/line_items_controller_test.rb
	​ 	test ​"should create line_item"​ ​do​

	​ 	 assert_difference(​'LineItem.count'​) ​do​

	​*
​	 post :create, product_id: products(:ruby).id

	​ 	 ​end​

	​ 	

	​*
​	 assert_redirected_to cart_path(assigns(:line_item).cart)

	​ 	​end​

 While we haven’t talked about the ​assigns​ method to date,
 we have already been using it because it is generated automatically by
 the scaffold command. This method gives us access to the instance
 variables that have been (or can be) assigned by controller actions for
 use in views.

 We now rerun this set of tests.

	​ 	depot>​ rake test test/controllers/line_items_controller_test.rb​

 Confident that the code works as intended, we try the
 ​Add to
 Cart​
 buttons in our browser.

And Figure 21, ​Confirmation that the request was processed​ shows what we see.

[image: images/depot_f_add_no_view.png]

Figure 21. Confirmation that the request was processed

 This is a bit underwhelming. Although we have scaffolding for the cart,
 when we created it, we didn’t provide any attributes, so the view doesn’t
 have anything to show. For now, let’s write a
 trivial template (we’ll tart it up in a minute).

	rails40/depot_f/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h2>​Your Pragmatic Cart​</h2>​

	​ 	​​

	​ 	 <% @cart.line_items.each ​do​ |item| %>

	​ 	 ​​<%= item.product.title %>​​

	​ 	 <% ​end​ %>

	​ 	​​

 So, with everything plumbed together, let’s go back and click the

 ​Add to Cart​
 button again and see our simple view
 displayed, as in Figure 22, ​Cart with new item displayed​.

[image: images/depot_f_dup_product.png]

Figure 22. Cart with new item displayed

 Go back to ​http://localhost:3000/​, the main
 catalog page, and add a different product to the cart. You’ll
 see the original two entries plus our new item in your cart. It
 looks like we have sessions working. It’s time to show our
 customer, so we call her over and proudly display our handsome
 new cart. Somewhat to our dismay, she makes
 that ​tsk-tsk​ sound that customers make just before
 telling you that you clearly don’t get something.

 Real shopping carts, she explains, don’t show separate lines for
 two of the same product. Instead, they show the product line
 once with a quantity of 2. It looks like we’re lined up for our
 next iteration.

What We Just Did

 It has been a busy, productive day so far. We’ve added a
 shopping cart to our store, and along the way we’ve dipped our
 toes into some neat Rails features.

	
We created a ​Cart​ object in one request and were able to
 successfully locate the same cart in subsequent requests using a session
 object.

	
We added a private method and placed it in a concern,
 making it accessible to all of our controllers.

	
We created relationships between carts and line items and
 relationships between line items and products, and we were able to navigate
 using these relationships.

	
We added a button that caused a product to be posted to a cart,
 causing a new line item to be created.

Playtime

 Here’s some stuff to try on your own:

	

	 Add a new variable to the session to record how many times
	 the user has accessed the store controller’s ​index​
 action. Note that the first time this page is accessed, your count
 won’t be in the session. You can test for this with code like
 this:
	
	​ 	​if​ session[:counter].nil?

	​ 	 ...

	 If the session variable isn’t there, you’ll need to
	 initialize it. Then you’ll be able to increment it.
	

	

	 Pass this counter to your template, and display it at the
	 top of the catalog page. Hint: the ​pluralize​
	 helper (definition) might
	 be useful when forming the message you display.
	

	

	 Reset the counter to zero whenever the user adds something
	 to the cart.
	

	

	 Change the template to display the counter only if it is
	 greater than five.
	

 (You’ll find hints at

 ​http://pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[36]	
Some lines have been wrapped to fit on the page.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 10
Task E: A Smarter Cart

	
modifying the schema and existing data,

	
error diagnosis and handling,

	
the flash, and

	
logging.

 Although we have rudimentary cart functionality implemented, we have much to
 do. To start with, we will need to recognize when customers add multiples
 of the same item to the cart. Once that’s done, we will also have to
 make sure that the cart can handle error cases and communicate
 problems encountered along the way to the customer or system
 administrator, as appropriate.

10.1 Iteration E1: Creating a Smarter Cart

 Associating a count with each product in our cart is going to require us
 to modify the ​line_items​ table. We’ve used migrations before;
 for example, we used a migration in
 ​Applying the Migration​, to update
 the schema of the database. While that was as part of creating the
 initial scaffolding for a model, the basic approach is the same.

	​ 	depot>​ rails generate migration add_quantity_to_line_items quantity:integer​

 Rails can tell from the name of the migration that you are
 adding one or more columns to the ​line_items​ table and can
 pick up the names and data types for each column from the last
 argument. The two patterns that Rails matches on
 are ​add_XXX_to_TABLE​ and ​remove_XXX_from_TABLE​,
 where the value of ​XXX​ is ignored; what matters is the list of
 column names and types that appear after the migration name.

 The only thing Rails can’t tell is what a reasonable default is for this
 column. In many cases, a ​null​ value would do, but let’s make it
 the value 1 for existing carts by modifying the migration
 before we apply it.

	rails40/depot_g/db/migrate/20121130000004_add_quantity_to_line_items.rb
	​ 	​class​ AddQuantityToLineItems < ActiveRecord::Migration

	​ 	 ​def​ change

	​*
​	 add_column :line_items, :quantity, :integer, default: 1

	​ 	 ​end​

	​ 	​end​

 Once complete, we run the migration.

	​ 	depot>​ rake db:migrate​

 Now we need a smart
 ​add_product​

 method in our
 ​Cart​, one that checks whether our list of items
 already includes the product we’re adding; if it does, it bumps the
 quantity, and if it doesn’t, it builds a new
 ​LineItem​.

	rails40/depot_g/app/models/cart.rb
	​ 	​def​ add_product(product_id)

	​ 	 current_item = line_items.find_by(product_id: product_id)

	​ 	 ​if​ current_item

	​ 	 current_item.quantity += 1

	​ 	 ​else​

	​ 	 current_item = line_items.build(product_id: product_id)

	​ 	 ​end​

	​ 	 current_item

	​ 	​end​

 The
 ​find_by​
 method is a streamlined version of the

 ​where​
 method. Instead of returning an array of results,
 it returns either an existing LineItem or ​nil​.

 We also need to modify the line item controller to use this
 method.

	rails40/depot_g/app/controllers/line_items_controller.rb
	​ 	​def​ create

	​ 	 product = Product.find(params[:product_id])

	​*
​	 @line_item = @cart.add_product(product.id)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @line_item.save

	​ 	 format.html { redirect_to @line_item.cart,

	​ 	 notice: ​'Line item was successfully created.'​ }

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @line_item }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @line_item.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 There’s one last quick change to the ​show​ view
 to use this new information.

	rails40/depot_g/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h2>​Your Pragmatic Cart​</h2>​

	​ 	​​

	​ 	 <% @cart.line_items.each ​do​ |item| %>

	​*
​	 ​​<%= item.quantity %> × <%= item.product.title %>​​

	​ 	 <% ​end​ %>

	​ 	​​

 Now that all the pieces are in place, we can go back to
 the store page and hit the
 ​Add to
 Cart​
 button for a product that is already in the cart.
 What we are likely to see
 is a mixture of individual products listed separately and a single
 product listed with a quantity of two. This is because we
 added a quantity of one to existing columns instead of collapsing
 multiple rows when possible. What we need to do next is migrate the
 data.

 We start by creating a migration.

	​ 	depot>​ rails generate migration combine_items_in_cart​

 This time, Rails can’t infer what we are trying to do, so we
 can’t rely on the generated
 ​change​
 method.
 What we need to do instead is to replace this method with separate

 ​up​
 and
 ​down​
 methods.
 First here’s the
 ​up​
 method:

	rails40/depot_g/db/migrate/20121130000005_combine_items_in_cart.rb
	​ 	​def​ up

	​ 	 ​# replace multiple items for a single product in a cart with a single item​

	​ 	 Cart.all.each ​do​ |cart|

	​ 	 ​# count the number of each product in the cart​

	​ 	 sums = cart.line_items.group(:product_id).sum(:quantity)

	​ 	

	​ 	 sums.each ​do​ |product_id, quantity|

	​ 	 ​if​ quantity > 1

	​ 	 ​# remove individual items​

	​ 	 cart.line_items.where(product_id: product_id).delete_all

	​ 	

	​ 	 ​# replace with a single item​

	​ 	 item = cart.line_items.build(product_id: product_id)

	​ 	 item.quantity = quantity

	​ 	 item.save!

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 This is easily the most extensive code we’ve seen so far. Let’s look at
 it in small pieces:

	

 We start by iterating
 over each cart.

	

 For each cart, we get a sum of the quantity fields for each of the
 line items associated with this cart, grouped by ​product_id​. The
 resulting sums will be a list of ordered pairs of ​product_id​s and
 quantity.

	

 We iterate over these sums, extracting the ​product_id​ and
 ​quantity​ from each.

	

 In cases where the quantity is greater than one, we will delete all
 of the individual line items associated with this cart and this
 product and replace them with a single line item with the correct
 quantity.

 Note how easily and elegantly Rails enables you to express this
 algorithm.

 With this code in place, we apply this migration just like any other
 migration.

	​ 	depot>​ rake db:migrate​

 We can immediately see the results by looking at the cart.

[image: images/depot_g_cart.png]

Figure 23. Three LineItems combined into one

 Although we have reason to be pleased with ourselves, we are not done yet.
 An important principle of migrations is that each step needs to be
 reversible, so we implement a
 ​down​
 too.
 This method finds line items with a quantity of greater than one;
 adds new line items for this cart and product, each with a quantity of
 one; and finally deletes the line item. The following code accomplishes
 that:

	rails40/depot_g/db/migrate/20121130000005_combine_items_in_cart.rb
	​ 	​def​ down

	​ 	 ​# split items with quantity>1 into multiple items​

	​ 	 LineItem.where(​"quantity>1"​).each ​do​ |line_item|

	​ 	 ​# add individual items​

	​ 	 line_item.quantity.times ​do​

	​ 	 LineItem.create cart_id: line_item.cart_id,

	​ 	 product_id: line_item.product_id, quantity: 1

	​ 	 ​end​

	​ 	

	​ 	 ​# remove original item​

	​ 	 line_item.destroy

	​ 	 ​end​

	​ 	​end​

 At this point, we can just as easily roll back our migration with a
 single command.

	​ 	depot>​ rake db:rollback​

 Rails provides a handy rake task to allow you to check the status
 of your migrations.

	​ 	depot>​ rake db:migrate:status​

	​ 	database: /home/rubys/work/depot/db/development.sqlite3

	​ 	

	​ 	 Status Migration ID Migration Name

	​ 	 --

	​ 	 up 20130407000001 Create products

	​ 	 up 20130407000002 Create carts

	​ 	 up 20130407000003 Create line items

	​ 	 up 20130407000004 Add quantity to line items

	​ 	 down 20130407000005 Combine items in cart

 At this point you can modify and reapply the migration or even delete it
 entirely. We can inspect the results of the rollback by moving the
 migration to another directory and looking at the cart.

[image: images/depot_g_cart_undo.png]

Figure 24. LineItems once again split apart

 Once we move the migration file back and reapply the
 migration (with the ​rake
 db:migrate​ command), we have a cart that maintains a count
 for each of the products it holds, and we have a view that displays
 that count.

 Happy that we have something presentable, we call our customer
 over and show her the result of our morning’s work. She’s
 pleased—she can see the site starting to come
 together. However, she’s also troubled, having just read an
 article in the trade press on the way ecommerce sites are being
 attacked and compromised daily. She read that one kind of attack
 involves feeding requests with bad parameters into web
 applications, hoping to expose bugs and security
 flaws. She noticed that
 the link to the cart looks
 like ​carts/​​nnn​,
 where ​nnn​ is our internal cart ID. Feeling
 malicious, she manually types this request into a browser,
 giving it a cart ID of ​wibble​. She’s not impressed when
 our application displays the page in Figure 25, ​Our application spills its guts​.
[image: images/depot_g_exception.png]

Figure 25. Our application spills its guts.

 This seems fairly unprofessional. So, our next iteration will be
 spent making the application more resilient.

10.2 Iteration E2: Handling Errors

 Looking at
the page displayed in the previous figure, it’s apparent that our application
 raised an exception at line 67 of the carts controller.[37] That turns out to be this line:

	​ 	@cart = Cart.find(params[:id])

 If the cart cannot be found, Active Record raises
 a ​RecordNotFound​
 exception,
 which we clearly need to handle. The question
 arises—how?

 We could just silently ignore it. From a security standpoint,
 this is probably the best move, because it gives no information
 to a potential attacker. However, it also means that should we
 ever have a bug in our code that generates bad cart IDs,
 our application will appear to the outside world to be
 unresponsive—no one will know there has been an error.

 Instead, we’ll take two actions when an exception is
 raised. First, we’ll log the fact to an internal log file using Rails’
 logger facility.[38] Second, we’ll redisplay the
 catalog page along with a short message to the user (something along
 the lines of “Invalid cart”) so they can continue to use
 our site.

	Rails has a convenient way of dealing
	with errors and error reporting. It defines a structure called
	a ​flash​. A flash is a bucket (actually closer to
	a ​Hash​) in which you can store stuff
	as you process a request. The contents of the flash are
	available to the next request in this session before being
	deleted automatically. Typically the flash is used to collect
	error messages. For
	example, when our
 ​show​
 method
	detects that it was passed an invalid
	cart ID, it can store that error
	message in the flash area and redirect to
	the
 ​index​
 action to redisplay the
	catalog. The view for the index action can extract the error
	and display it at the top of the catalog page. The flash
	information is accessible within the views by using
	the ​flash​ accessor method.

	Why couldn’t we just store the error in any old instance
	variable? Remember that after a redirect is sent by our
	application to the browser, the browser sends a new request
	back to our application. By the time we receive that request,
	our application has moved on—all the instance variables from
	previous requests are long gone. The flash data is stored in
	the session in order to make it available between requests.

 Armed with all this background about flash data, we can now
 create an
 ​invalid_cart​
 method to report on the
 problem.

	rails40/depot_h/app/controllers/carts_controller.rb
	​ 	​class​ CartsController < ApplicationController

	​ 	 before_action :set_cart, only: [:show, :edit, :update, :destroy]

	​*
​	 rescue_from ActiveRecord::RecordNotFound, with: :invalid_cart

	​ 	 ​# GET /carts​

	​ 	 ​# ...​

	​ 	 private

	​ 	 ​# ...​

	​ 	

	​*
​	 ​def​ invalid_cart

	​*
​	 logger.error ​"Attempt to access invalid cart ​#{params[:id]}​"​

	​*
​	 redirect_to store_url, notice: ​'Invalid cart'​

	​*
​	 ​end​

	​ 	​end​

 The ​rescue_from​ clause intercepts the exception raised
 by
 ​Cart.find​
 . In the handler, we do the following:

	

	 Use the Rails logger to record the error. Every controller
	 has a ​logger​ attribute. Here we use it to record a
	 message at the ​error​ logging level.
	

	

 Redirect to the catalog display using the
 ​redirect_to​
 method. The
 ​:notice​ parameter specifies a message to be stored in the
 flash as a notice. Why redirect rather than just display the
 catalog here? If we redirect, the user’s browser will end up
 displaying the store URL, rather than
 ​http://.../cart/wibble​. We expose less of the
 application this way. We also prevent the user from retriggering the
 error by hitting the Reload button.
	

 With this code in place, we can rerun our customer’s problematic
 query. This time, when we enter the following URL:

	​ 	http://localhost:3000/carts/wibble

 we don’t see a bunch of errors in the browser. Instead, the
 catalog page is displayed. If we look at the end of the log file
 (​development.log​ in
 the ​log​ directory), we’ll see our
 message.

	​ 	Started GET "/carts/wibble" for 127.0.0.1 at 2013-01-29 09:37:39 -0500

	​ 	Processing by CartsController#show as HTML

	​ 	 Parameters: {"id"=>"wibble"}

	​ 	 ^[[1m^[[35mCart Load (0.1ms)^[[0m SELECT "carts".* FROM "carts" WHERE

	​ 	"carts"."id" = ? LIMIT 1 [["id", "wibble"]]

	​*
​	Attempt to access invalid cart wibble

	​ 	Redirected to http://localhost:3000/

	​ 	Completed 302 Found in 3ms (ActiveRecord: 0.4ms)

 Figure 26, ​Much more user-oriented error message​ shows a better way.

[image: images/depot_h_invalid_product.png]

Figure 26. Much more user-oriented error message

 On Unix machines, we’d probably use a command such
 as ​tail​
 or ​less​

 to view this file. On Windows, you could use your favorite
 editor. It’s often a good idea to keep a window open showing
 new lines as they are added to this file. In Unix you’d
 use ​tail -f​. You can
 download a ​tail​ command for
 Windows[39] or get a GUI-based tool.[40] Finally,
 some OS X users use ​Console.app​ to
 track log files. Just
 say ​open​ ​name.log​
 at the command line.

 This being the Internet, we can’t just worry about our published web forms;
 we have to worry about every possible interface because malicious crackers
 can get underneath the HTML we provide and attempt to provide additional
 parameters. Invalid carts aren’t our biggest problem here; we also
 want to prevent access to ​other people’s carts​.

 As always, your controllers are your first line of defense. Let’s go
 ahead and remove ​cart_id​ from the list of parameters that are
 permitted.

	rails40/depot_h/app/controllers/line_items_controller.rb
	​ 	​# Never trust parameters from the scary internet, only allow the white​

	​ 	​# list through.​

	​ 	​def​ line_item_params

	​*
​	 params.require(:line_item).permit(:product_id)

	​ 	​end​

 We can see this in action by rerunning our controller tests.

	​ 	rake test:controllers

 While no tests fail, a quick peek into our
 ​log/test.log​ reveals an attempt to breach security
 that was thwarted.

	​ 	LineItemsControllerTest: test_should_update_line_item

	​ 	---

	​ 	 ^[[1m^[[36m (0.0ms)^[[0m ^[[1mbegin transaction^[[0m

	​ 	 ^[[1m^[[35mLineItem Load (0.1ms)^[[0m SELECT "line_items".* FROM

	​ 	"line_items" WHERE "line_items"."id" = ? LIMIT 1 [["id", 980190962]]

	​ 	Processing by LineItemsController#update as HTML

	​ 	 Parameters: {"line_item"=>{"product_id"=>nil}, "id"=>"980190962"}

	​ 	 ^[[1m^[[36mLineItem Load (0.1ms)^[[0m ^[[1mSELECT "line_items".* FROM

	​ 	"line_items" WHERE "line_items"."id" = ? LIMIT 1^[[0m [["id", "980190962"]]

	​*
​	 Unpermitted parameters: cart_id

	​ 	 ^[[1m^[[35m (0.0ms)^[[0m SAVEPOINT active_record_1

	​ 	 ^[[1m^[[36m (0.1ms)^[[0m ^[[1mRELEASE SAVEPOINT active_record_1^[[0m

	​ 	Redirected to http://test.host/line_items/980190962

	​ 	Completed 302 Found in 2ms (ActiveRecord: 0.2ms)

	​ 	 ^[[1m^[[35m (0.0ms)^[[0m rollback transaction

 Cleaning up that test case will make the problem go away.

	rails40/depot_h/test/controllers/line_items_controller_test.rb
	​ 	test ​"should update line_item"​ ​do​

	​*
​	 patch :update, id: @line_item, line_item: { product_id: @line_item.product_id }

	​ 	 assert_redirected_to line_item_path(assigns(:line_item))

	​ 	​end​

 At this point, we clear the test logs and rerun the tests.

	​ 	rake log:clear LOGS=test

	​ 	rake test:controllers

 A final scan of the logs identifies no further problems.

 It makes good sense to review log files periodically—they have a lot
 of useful information.

 Sensing the end of an iteration, we call our customer over and
 show her that the error is now properly handled. She’s delighted
 and continues to play with the application. She notices a minor
 problem on our new cart display—there’s no way to empty items
 out of a cart. This minor change will be our next iteration. We
 should make it before heading home.

10.3 Iteration E3: Finishing the Cart

 We know by now that in order to implement the “empty
 cart” function, we have to add a link to the cart and
 modify the
 ​destroy​
 method in the
 carts controller to clean up the session.

[image: David says:]
David says:
Battle of the Routes: product_path vs. product_url

 It can seem hard in the beginning to know when to use
 ​product_path​ and when to use ​product_url​ when you want
 to link or redirect to a given route. In reality, it’s really quite
 simple.

 When you use ​product_url​, you’ll get the full enchilada with
 protocol and domain name, like ​http://example.com/products/1​.
 That’s the thing to use when you’re doing ​redirect_to​ because the HTTP
 spec requires a fully qualified URL when doing 302 Redirect and friends.
 You also need the full URL if you’re redirecting from one domain to
 another, like ​product_url(domain: "example2.com", product:
 product)​.

 The rest of the time, you can happily use ​product_path​. This
 will generate only the ​/products/1​ part, and that’s all you need
 when doing links or pointing forms, like ​link_to "My lovely
 product", product_path(product)​.

 The confusing part is that oftentimes the two are interchangeable
 because of lenient browsers. You can do a ​redirect_to​ with a
 ​product_path​ and it’ll probably work, but it won’t be valid
 according to spec. And you can ​link_to​ a ​product_url​, but then
 you’re littering up your HTML with needless characters, which is a bad
 idea too.

 Let’s start with the template and again use the

 ​button_to​
 method to put
 a button on the page.

	rails40/depot_h/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	​<h2>​Your Pragmatic Cart​</h2>​

	​ 	​​

	​ 	 <% @cart.line_items.each ​do​ |item| %>

	​ 	 ​​<%= item.quantity %> × <%= item.product.title %>​​

	​ 	 <% ​end​ %>

	​ 	​​

	​*
​	<%= button_to ​'Empty cart'​, @cart, method: :delete,

	​*
​	 data: { confirm: ​'Are you sure?'​ } %>

 In the controller, we’ll modify the
 ​destroy​

 method to ensure that the user is deleting their own cart (think about
 it!) and to remove the cart from the session before
 redirecting to the index page with a notification message.

	rails40/depot_h/app/controllers/carts_controller.rb
	​ 	​def​ destroy

	​*
​	 @cart.destroy ​if​ @cart.id == session[:cart_id]

	​*
​	 session[:cart_id] = nil

	​ 	 respond_to ​do​ |format|

	​*
​	 format.html { redirect_to store_url,

	​*
​	 notice: ​'Your cart is currently empty'​ }

	​ 	 format.json { head :no_content }

	​ 	 ​end​

	​ 	​end​

 And we update the corresponding test in
 ​test/controllers/carts_controller_test.rb​.

	rails40/depot_i/test/controllers/carts_controller_test.rb
	​ 	test ​"should destroy cart"​ ​do​

	​ 	 assert_difference(​'Cart.count'​, -1) ​do​

	​*
​	 session[:cart_id] = @cart.id

	​ 	 delete :destroy, id: @cart

	​ 	 ​end​

	​ 	

	​*
​	 assert_redirected_to store_path

	​ 	​end​

 Now when we view our cart and click the
 ​Empty cart​

 button, we get taken back to the catalog page, and a nice little
 message says this:
[image: images/depot_h_cart_empty.png]

Figure 27. Flash alert: cart in need of products

 We can also remove the flash message that is automatically generated
 when a line item is added.

	rails40/depot_i/app/controllers/line_items_controller.rb
	​ 	​def​ create

	​ 	 product = Product.find(params[:product_id])

	​ 	 @line_item = @cart.add_product(product.id)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @line_item.save

	​*
​	 format.html { redirect_to @line_item.cart }

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @line_item }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @line_item.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 And, finally, we’ll get around to tidying up the cart
 display. Rather than use ​​ elements for each
 item, let’s use a table. Again, we’ll rely on CSS to do the
 styling.

	rails40/depot_i/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​*
​	​<h2>​Your Cart​</h2>​

	​*
​	​<table>​

	​ 	 <% @cart.line_items.each ​do​ |item| %>

	​*
​	 ​<tr>​

	​*
​	 ​<td>​<%= item.quantity %>×​</td>​

	​*
​	 ​<td>​<%= item.product.title %>​</td>​

	​*
​	 ​<td​ class=​"item_price"​​>​<%= number_to_currency(item.total_price) %>​</td>​

	​*
​	 ​</tr>​

	​ 	 <% ​end​ %>

	​ 	

	​*
​	 ​<tr​ class=​"total_line"​​>​

	​*
​	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​*
​	 ​<td​ class=​"total_cell"​​>​<%= number_to_currency(@cart.total_price) %>​</td>​

	​*
​	 ​</tr>​

	​*
​	​</table>​

	​ 	

	​ 	<%= button_to ​'Empty cart'​, @cart, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

 To make this work, we need to add a method to both
 the ​LineItem​ and ​Cart​
 models that returns the total price for the individual line item and
 entire cart, respectively. Here’s the line item, which involves only
 simple multiplication:

	rails40/depot_i/app/models/line_item.rb
	​ 	​def​ total_price

	​ 	 product.price * quantity

	​ 	​end​

 We implement the ​Cart​ method using Rails’
 nifty
 ​Array::sum​

 method to sum the prices of each item in the collection.

	rails40/depot_i/app/models/cart.rb
	​ 	​def​ total_price

	​ 	 line_items.to_a.sum { |item| item.total_price }

	​ 	​end​

 Then we need to add a small bit to our ​carts.css.scss​
 stylesheet.

	rails40/depot_i/app/assets/stylesheets/carts.css.scss
	​ 	​// Place all the styles related to the Carts controller here.​

	​ 	​// They will automatically be included in application.css.​

	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​

	​*
​	​.carts ​{

	​*
​	 ​.item_price, .total_line ​{

	​*
​	 text-align: ​right;​

	​*
​	 }

	​*
​	 ​.total_line .total_cell ​{

	​*
​	 font-weight: ​bold;​

	​*
​	 border-top: ​1px solid #595;​

	​*
​	 }

	​*
​	}

 Figure 28, ​Cart display with a total​ shows a nicer-looking cart:

[image: images/depot_i_cart.png]

Figure 28. Cart display with a total

What We Just Did

 Our shopping cart is now something the client is happy with. Along the
 way, we covered the following:

	
Adding a column to an existing table, with a default
 value

	
Migrating existing data into the new table format

	
Providing a flash notice of an error that was detected

	
Using the logger to log events

	
Removing a parameter from the permitted list

	
Deleting a record

	
Adjusting the way a table is rendered, using CSS

 But, just as we think we’ve wrapped up this functionality, our
 customer wanders over with a copy of ​Information
	 Technology and Golf Weekly​. Apparently, there’s an
 article about the “Ajax” style of browser interface, where stuff gets
 updated on the fly. Hmmm…let’s look at that tomorrow.

Playtime

 Here’s some stuff to try on your own:

	

 Create a migration that copies the product price into the line
 item, and change the
 ​add_product​
 method
 in the ​Cart​ model to capture the price
 whenever a new line item is created.
	

	

	 Add unit tests that add unique products and duplicate products.
 Note that you will need to modify the fixture to refer to products
 and carts by name, for example ​product: ruby​.
	

	

 Check products and line items for other places where a user-friendly error message would be in order.

	

	 Add the ability to delete individual line items from the cart.
 This will require buttons on each line, and such buttons will need
 to be linked to the
 ​destroy​
 action in the
 ​LineItemsController​.
	

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[37]	

	 Your line number might be different. We have some
	 book-related formatting stuff in our source files.
	

	[38]	

 ​http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger​

	[39]	

 ​http://gnuwin32.sourceforge.net/packages/coreutils.htm​

	[40]	

 ​http://tailforwin32.sourceforge.net/​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 11
Task F: Add a Dash of Ajax

	
using partial templates,

	
rendering into the page layout,

	
updating pages dynamically with Ajax and JavaScript,

	
highlighting changes with jQuery UI,

	
hiding and revealing DOM elements, and

	
testing the Ajax updates.

 Our customer wants us to add Ajax support to the store. But just
 what ​is​ Ajax?

 In the old days (up until 2005 or so), browsers were
 treated as really dumb devices. When you wrote a browser-based
 application, you’d send stuff to the browser and then forget
 about that session. At some point, the user would fill in some
 form fields or click a hyperlink, and your application would get
 woken up by an incoming request. It would render a complete page
 back to the user, and the whole tedious process would start
 afresh. That’s exactly how our Depot application behaves so far.

 But it turns out that browsers aren’t really that dumb (who knew?). They
 can run code. Almost all browsers can run JavaScript. And
 it turns out that the JavaScript in the browser can interact behind the
 scenes with the application on the server, updating the stuff the user
 sees as a result. Jesse James Garrett named
 this style of interaction
 ​ Ajax​

 (which once stood for
 Asynchronous JavaScript and XML but now just means “making browsers
 suck less”).

 So, let’s Ajaxify our shopping cart. Rather than having a separate
 shopping cart page, let’s put the current cart display into the
 catalog’s sidebar. Then, we’ll add the Ajax magic that updates the
 cart in the sidebar without redisplaying the whole page.

 Whenever you work with Ajax, it’s good to start with the non-Ajax
 version of the application and then gradually introduce Ajax
 features. That’s what we’ll do here. For starters, let’s move the
 cart from its own page and put it in the sidebar.

11.1 Iteration F1: Moving the Cart

 Currently, our cart is rendered by the ​show​
 action in the ​CartController​ and the
 corresponding ​html.erb​
 template. What we’d like to do is to move that rendering into
 the sidebar. This means it will no longer be in its own page. Instead,
 we’ll render it in the layout that displays the overall catalog. And
 that’s easy using ​partial templates​.

Partial Templates

	Programming languages let you define ​methods​. A
	method is a chunk of code with a name: invoke the method by
	the name, and the corresponding chunk of code gets run. And, of
	course, you can pass parameters to a method, which lets you
	write one piece of code that can be used in many different
	circumstances.

	You can think of Rails partial templates
	(​partials​ for short) as a kind of method for
	views. A partial is simply a chunk of a view in its own
	separate file. You can invoke (render) a partial from another
	template or from a controller, and the partial will render
	itself and return the results of that rendering. And, just as
	with methods, you can pass parameters to a partial, so the
	same partial can render different results.

	We’ll use partials twice in this iteration. First, let’s look
	at the cart display:

	rails40/depot_i/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h2>​Your Cart​</h2>​

	​ 	​<table>​

	​ 	 <% @cart.line_items.each ​do​ |item| %>

	​ 	 ​<tr>​

	​ 	 ​<td>​<%= item.quantity %>×​</td>​

	​ 	 ​<td>​<%= item.product.title %>​</td>​

	​ 	 ​<td​ class=​"item_price"​​>​<%= number_to_currency(item.total_price) %>​</td>​

	​ 	 ​</tr>​

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​<tr​ class=​"total_line"​​>​

	​ 	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​ 	 ​<td​ class=​"total_cell"​​>​<%= number_to_currency(@cart.total_price) %>​</td>​

	​ 	 ​</tr>​

	​ 	​</table>​

	​ 	

	​ 	<%= button_to ​'Empty cart'​, @cart, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

	It creates a list of table rows, one for each item in the
	cart. Whenever you find yourself iterating like this, you
	might want to stop and ask yourself, is this too much logic in
	a template? It turns out we can abstract away the loop using
	partials (and, as we’ll see, this also sets the stage for some
	Ajax magic later). To do
	this, we’ll make use of the fact that you can pass a
	collection to the method that renders partial templates, and
	that method will automatically invoke the partial once for
	each item in the collection. Let’s rewrite our cart view to
	use this feature.

	rails40/depot_j/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h2>​Your Cart​</h2>​

	​ 	​<table>​

	​*
​	 <%= render(@cart.line_items) %>

	​ 	

	​ 	 ​<tr​ class=​"total_line"​​>​

	​ 	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​ 	 ​<td​ class=​"total_cell"​​>​<%= number_to_currency(@cart.total_price) %>​</td>​

	​ 	 ​</tr>​

	​ 	

	​ 	​</table>​

	​ 	

	​ 	<%= button_to ​'Empty cart'​, @cart, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

 That’s a lot simpler. The
 ​render​
 method will
 iterate over any collection that is passed to it. The partial
 template itself is simply another template file (by default in the
 same directory as the object being rendered and with the name of the
 table as the name). However, to keep the names of partials distinct
 from regular templates, Rails automatically prepends an underscore to
 the partial name when looking for the file. That means we need
 to name our partial ​_line_item.html.erb​ and place
 it in the ​app/views/line_items​ directory.

	rails40/depot_j/app/views/line_items/_line_item.html.erb
	​ 	​<tr>​

	​ 	 ​<td>​<%= line_item.quantity %>×​</td>​

	​ 	 ​<td>​<%= line_item.product.title %>​</td>​

	​ 	 ​<td​ class=​"item_price"​​>​<%= number_to_currency(line_item.total_price) %>​</td>​

	​ 	​</tr>​

	There’s something subtle going on here. Inside the partial
	template, we refer to the current object using the
	variable name that matches the name of the template. In this case,
 the partial is named ​line_item​, so
 inside the partial we expect to have a variable called
 ​line_item​.

	So, now we’ve tidied up the cart display, but that hasn’t moved
	it into the sidebar. To do that, let’s revisit our layout. If
	we had a partial template that could display the cart, we could
	simply embed a call like this within the sidebar:

	​ 	render(​"cart"​)

	 But how would the partial know where to
	find the cart object? One way would be for it to make an
	assumption. In the layout, we have access to
	the ​@cart​ instance variable that
	was set by the controller. It turns out that this is also
	available inside partials called from the layout. However,
	this is a bit like calling a method and passing it some value
	in a global variable. It works, but it’s ugly coding, and it
	increases coupling (which in turn makes your programs brittle
	and hard to maintain).

 Now that we have a partial for a line item, let’s do the same for the
 cart. First we’ll create the ​_cart.html.erb​
 template. This is basically our
 ​carts/show.html.erb​ template but using
 ​cart​ instead of
 ​@cart​, and without the notice. (Note that
 it’s OK for a partial to invoke other partials.)

	rails40/depot_j/app/views/carts/_cart.html.erb
	​ 	​<h2>​Your Cart​</h2>​

	​ 	​<table>​

	​*
​	 <%= render(cart.line_items) %>

	​ 	

	​ 	 ​<tr​ class=​"total_line"​​>​

	​ 	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​*
​	 ​<td​ class=​"total_cell"​​>​<%= number_to_currency(cart.total_price) %>​</td>​

	​ 	 ​</tr>​

	​ 	

	​ 	​</table>​

	​ 	

	​*
​	<%= button_to ​'Empty cart'​, cart, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

 As the Rails mantra goes, don’t repeat yourself (DRY). But we have
 just done that. At the moment the two files are in sync, so there may
 not seem to be much of a problem, but having one set of logic for the
 Ajax calls and another set of logic to handle the case where
 JavaScript is disabled invites problems. Let’s avoid all of that
 and replace the original template with code that causes the
 partial to be rendered.

	rails40/depot_k/app/views/carts/show.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​*
​	<%= render @cart %>

	Now we will change the application layout to include this new partial
	in the sidebar.

	rails40/depot_k/app/views/layouts/application.html.erb
	​ 	<!DOCTYPE html>

	​ 	​<html>​

	​ 	​<head>​

	​ 	 ​<title>​Pragprog Books Online Store​</title>​

	​ 	 <%= stylesheet_link_tag ​"application"​, media: ​"all"​,

	​ 	 ​"data-turbolinks-track"​ => true %>

	​ 	 <%= javascript_include_tag ​"application"​, ​"data-turbolinks-track"​ => true %>

	​ 	 <%= csrf_meta_tags %>

	​ 	​</head>​

	​ 	​<body​ class=​"​<%= controller.controller_name %>​"​​>​

	​ 	 ​<div​ id=​"banner"​​>​

	​ 	 <%= image_tag(​"logo.png"​) %>

	​ 	 <%= @page_title || ​"Pragmatic Bookshelf"​ %>

	​ 	 ​</div>​

	​ 	 ​<div​ id=​"columns"​​>​

	​ 	 ​<div​ id=​"side"​​>​

	​*
​	 ​<div​ id=​"cart"​​>​

	​*
​	 <%= render @cart %>

	​*
​	 ​</div>​

	​*
​	

	​ 	 ​​

	​ 	 ​​​<a​ href=​"http://www...."​​>​Home​​​​

	​ 	 ​​​<a​ href=​"http://www..../faq"​​>​Questions​​​​

	​ 	 ​​​<a​ href=​"http://www..../news"​​>​News​​​​

	​ 	 ​​​<a​ href=​"http://www..../contact"​​>​Contact​​​​

	​ 	 ​​

	​ 	 ​</div>​

	​ 	 ​<div​ id=​"main"​​>​

	​ 	 <%= ​yield​ %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	​</body>​

	​ 	​</html>​

	Next we have to make a small change to the store
	controller. We’re invoking the layout while looking at the
	store’s ​index​ action, and that action doesn’t
	currently set ​@cart​. That’s easy
	enough to remedy.

	rails40/depot_k/app/controllers/store_controller.rb
	​ 	​class​ StoreController < ApplicationController

	​*
​	 include CurrentCart

	​*
​	 before_action :set_cart

	​ 	 ​def​ index

	​ 	 @products = Product.order(:title)

	​ 	 ​end​

	​ 	​end​

 Finally, we modify the style instructions—which currently apply only
 to the output produced by the ​CartController​—to
 also apply to the table when it appears in the sidebar. Again, SCSS
 enables us to make this change in one place because it will take care of
 all of the nested definitions.

	rails40/depot_k/app/assets/stylesheets/carts.css.scss
	​ 	​// Place all the styles related to the Carts controller here.​

	​ 	​// They will automatically be included in application.css.​

	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​

	​ 	

	​*
​	​.carts, #side #cart ​{

	​ 	 ​.item_price, .total_line ​{

	​ 	 text-align: ​right;​

	​ 	 }

	​ 	

	​ 	 ​.total_line .total_cell ​{

	​ 	 font-weight: ​bold;​

	​ 	 border-top: ​1px solid #595;​

	​ 	 }

	​ 	}

 While the data for the cart is common no matter where it is placed in
 the output, there is no requirement that the presentation needs to be
 identical independent of where this content is placed. In fact, black
 lettering on a green background is rather hard to read, so let’s
 provide additional rules for this table when it appears in the
 sidebar.

	rails40/depot_k/app/assets/stylesheets/application.css.scss
	​ 	​#side ​{

	​ 	 float: ​left;​

	​ 	 padding: ​1em 2em;​

	​ 	 width: ​13em;​

	​ 	 background: ​#141;​

	​ 	

	​*
​	 ​form, div ​{

	​*
​	 display: ​inline;​

	​*
​	 }

	​*
​	

	​*
​	 ​input ​{

	​*
​	 font-size: ​small;​

	​*
​	 }

	​*
​	

	​*
​	 ​#cart ​{

	​*
​	 font-size: ​smaller;​

	​*
​	 color: ​white;​

	​*
​	

	​*
​	 ​table ​{

	​*
​	 border-top: ​1px dotted #595;​

	​*
​	 border-bottom: ​1px dotted #595;​

	​*
​	 margin-bottom: ​10px;​

	​*
​	 }

	​*
​	 }

	​*
​	

	​ 	 ​ul ​{

	​ 	 padding: ​0;​

	​ 	

	​ 	 ​li ​{

	​ 	 list-style: ​none;​

	​ 	

	​ 	 ​a ​{

	​ 	 color: ​#bfb;​

	​ 	 font-size: ​small;​

	​ 	 }

	​ 	 }

	​ 	 }

	​ 	}

	
	
	If you display the catalog after adding something to your
	cart, you should see something like
	the following figure.
	Let’s just wait for the Webby Award nomination.

[image: images/depot_k_less_ugly.png]

Figure 29. The cart is in the sidebar.

Changing the Flow

	Now that we’re displaying the cart in the sidebar, we can
	change the way that the
 ​Add to Cart​

	button works. Rather than displaying a separate cart page, all
	it has to do is refresh the main index page.

The change is
	pretty simple. At the end of the ​create​ action,
	we simply redirect the browser back to the index.

	rails40/depot_k/app/controllers/line_items_controller.rb
	​ 	​def​ create

	​ 	 product = Product.find(params[:product_id])

	​ 	 @line_item = @cart.add_product(product.id)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @line_item.save

	​*
​	 format.html { redirect_to store_url }

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @line_item }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @line_item.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	So, now we have a store with a cart in the sidebar. When we
	click to add an item to the cart, the page is redisplayed with
	an updated cart. However, if our catalog is large, that
	redisplay might take a while. It uses bandwidth, and it uses
	server resources. Fortunately, we can use Ajax to make this
	better.
	

11.2 Iteration F2: Creating an Ajax-Based Cart

 Ajax lets us write code that runs in the browser that interacts
 with our server-based application. In our case, we’d like to
 make the
 ​Add to Cart​
 buttons invoke the
 server ​create​ action on the ​LineItems​
 controller in the background. The server
 can then send down just the HTML for the cart, and we can
 replace the cart in the sidebar with the server’s updates.

 Now, normally we’d do this by writing JavaScript that runs
 in the browser and by writing server-side code that
 communicated with this JavaScript (possibly using a technology
 such as JavaScript Object Notation [JSON]).

 The good news is that, with
 Rails, all this is hidden from us. We can do everything we need to do
 using Ruby (and with a whole lot of support from some Rails helper
 methods).

 The trick when adding Ajax to an application is to take small
 steps. So, let’s start with the most basic one. Let’s change
 the catalog page to send an Ajax request to our server
 application and have the application respond with the HTML
 fragment containing the updated cart.

 On the index page, we’re
 using
 ​button_to​
 to create the link to
 the ​create​ action.

 We want to
 change this to send an Ajax request instead.

 To do this, we
 simply add
 a ​remote: true​ parameter to the call.

	rails40/depot_l/app/views/store/index.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h1>​Your Pragmatic Catalog​</h1>​

	​ 	

	​ 	<% cache [​'store'​, Product.latest] ​do​ %>

	​ 	 <% @products.each ​do​ |product| %>

	​ 	 <% cache [​'entry'​, product] ​do​ %>

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 <%= image_tag(product.image_url) %>

	​ 	 ​<h3>​<%= product.title %>​</h3>​

	​ 	 <%= sanitize(product.description) %>

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

	​*
​	 <%= button_to ​'Add to Cart'​, line_items_path(product_id: product),

	​*
​	 remote: true %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	<% ​end​ %>

 So far, we’ve arranged for the browser to send an Ajax request
 to our application.

 The next step is to have the application
 return a response. The plan is to create the updated HTML
 fragment that represents the cart and to have the browser stick
 that HTML into the browser’s internal representation of the structure
 and content of the document being displayed, namely, the Document Object
 Model (DOM).

 By manipulating the DOM, we cause the display to change in
 front of the user’s eyes.

 The first change is to stop
 the ​create​ action from redirecting to the index
 display if the request is for JavaScript.
 We do this by
 adding a call to
 ​respond_to​
 telling
 it that we want to respond with a format of
 ​js​.

 This syntax may seem surprising at first, but it is simply a
 method call that is passing an optional block as an
 argument.
 Blocks are described in ​Blocks and Iterators​.
 We will cover the
 ​respond_to​
 method in
 greater detail in ​Selecting a Data Representation​.

	rails40/depot_l/app/controllers/line_items_controller.rb
	​ 	​def​ create

	​ 	 product = Product.find(params[:product_id])

	​ 	 @line_item = @cart.add_product(product.id)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @line_item.save

	​ 	 format.html { redirect_to store_url }

	​*
​	 format.js

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @line_item }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @line_item.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 Because of this change, when ​create​ finishes
 handling the Ajax request, Rails will look for
 a ​create​ template to render.

 Rails supports templates that generate JavaScript—the
 ​JS​ stands for JavaScript.
 A ​js.erb​ template is a way of
 getting JavaScript on the browser to do what you want, all by
 writing server-side Ruby code.

 Let’s write our
 first: ​create.js.erb​. It goes in
 the ​app/views/line_items​ directory, just like any
 other view for line items.

	rails40/depot_l/app/views/line_items/create.js.erb
	​ 	$('#cart').html("<%= escape_javascript render(@cart) %>");

 This simple template tells the browser to
 replace the content of the element
 whose
 ​id="cart"​
 with that HTML.

 Let’s analyze how it manages to do that.

 For simplicity and conciseness, the jQuery library
 is aliased to ​$​, and most usages of jQuery start there.

 The first call—​$(’#cart’)​—tells jQuery to find the HTML
 element that has an ​id​ of ​cart​. The
 ​html​
 method[41] is then called with a
 first argument of the desired replacement for the contents of this
 element.

 This content is formed by calling the

 ​render​
 method on the ​@cart​ object.
 The output of this method is processed by a

 ​escape_javascript​
 helper method that converts this Ruby
 string into a format acceptable as input to JavaScript.

 Note that this script is executed in the browser. The only parts
 executed on the server are the portions within the ​<%=​ and
 ​%>​ delimiters.

 Does it work? Well, it’s hard to show in a book, but it sure
 does. Make sure you reload the index page to get
 the remote version of the form and the JavaScript libraries loaded
 into your browser. Then, click one of the
 ​Add to Cart​

 buttons. You should see the cart in the sidebar
 update. And you ​shouldn’t​ see your browser show any
 indication of reloading the page. You’ve just created an Ajax
 application.

Troubleshooting

	Although Rails makes Ajax incredibly simple, it can’t make it
	foolproof. And, because you’re dealing with the loose
	integration of a number of technologies, it can be hard to
	work out why your Ajax doesn’t work. That’s one of the reasons
	you should always add Ajax functionality one step at a
	time.

	Here are a few hints if your Depot application didn’t show any
	Ajax magic:

	

	 Does your browser have any special incantation to force it
	 to reload everything on a page? Sometimes browsers hold
	 local cached versions of page assets, and this can mess up
	 testing. Now would be a good time to do a full reload.
	

	

	 Did you have any errors reported? Look
	 in ​development.log​ in
	 the ​logs​ directory. Also look in the
 Rails server window because some errors are reported there.
	

	

	 Still looking at the log file, do you see incoming
	 requests to the action ​create​? If not, it
	 means your browser isn’t making Ajax requests. If the
	 JavaScript libraries have been loaded (using View
	 Source in your browser will show you the
	 HTML), perhaps your browser has JavaScript execution
	 disabled?
	
	

	

	 Some readers have reported that they had to stop and
	 start their application to get the Ajax-based cart to
	 work.
	

	

	 If you’re using Internet Explorer, it might be running in
	 what Microsoft calls ​quirks mode​, which
	 is backward compatible with old Internet Explorer releases but is also
	 broken.
	
	 Internet Explorer switches into ​standards mode​,
	 which works better with the Ajax stuff, if the first line
	 of the downloaded page is an appropriate ​DOCTYPE​
	 header. Our layouts
	 use this:
	
	
	
	​ 	<!DOCTYPE html>

The Customer Is Never Satisfied

	We’re feeling pretty pleased with ourselves. We changed a
	handful of lines of code, and our boring old Web 1.0
	application now sports Web 2.0 Ajax speed stripes. We
	breathlessly call the client over to come look. Without saying anything, we
	proudly click
 ​Add to Cart​
 and look at
	her, eager for the praise we know will come. Instead, she
	looks surprised. “You called me over to show me a bug?” she
	asks. “You click that button, and nothing happens.”

	We patiently explain that, in fact, quite a lot happened. Just
	look at the cart in the sidebar. See? When we add something,
	the quantity changes from 4 to 5.

	“Oh,” she says, “I didn’t notice that.” And, if she didn’t
	notice the page update, it’s likely our customers won’t
	either. It’s time for some user-interface hacking.

11.3 Iteration F3: Highlighting Changes

 A number of JavaScript libraries are included with
 Rails. One of those libraries, jQuery UI,[42] lets you
 decorate your web pages with a number of visually interesting
 effects.

 One of these effects is the (now) infamous Yellow
 Fade Technique. This highlights an element in a browser: by
 default it flashes the background yellow and then gradually
 fades it back to white. We can see the
 Yellow Fade Technique being applied to our cart in the following figure; the image at
 the back shows the original cart. The user clicks
 the
 ​Add to Cart​
 button, and the count
 updates to two as the line flares brighter. It then fades back
 to the background color over a short period of time.

[image: images/yft.png]

Figure 30. Our cart with the Yellow Fade Technique

 Installing the jQuery UI library is simple enough.

 First add one
 line to your ​Gemfile​.

	rails40/depot_m/Gemfile
	​ 	# Use jquery as the JavaScript library

	​ 	gem 'jquery-rails'

	​*
​	gem 'jquery-ui-rails'

 Install the gem by running the ​bundle install​ command.

	​ 	$ ​bundle install​

 After this command completes, restart your server.

 Now that we have the ​jQuery-UI​ library​jQuery-UI​ library available to
 our application, we need to pull in the effect that we want to use.
 We do that by adding one
 line to ​app/assets/javascripts/application.js​.

	rails40/depot_m/app/assets/javascripts/application.js
	​ 	​// This is a manifest file that'll be compiled into application.js, which will​

	​ 	​// include all the files listed below.​

	​ 	​//​

	​ 	​// Any JavaScript/Coffee file within this directory, lib/assets/javascripts,​

	​ 	​// vendor/assets/javascripts, or vendor/assets/javascripts of plugins, if any,​

	​ 	​// can be referenced here using a relative path.​

	​ 	​//​

	​ 	​// It's not advisable to add code directly here, but if you do, it'll appear at​

	​ 	​// the bottom of the compiled file.​

	​ 	​//​

	​ 	​// Read Sprockets README​

	​ 	​// (https://github.com/sstephenson/sprockets#sprockets-directives) for details​

	​ 	​// about supported directives.​

	​ 	​//​

	​ 	​//= require jquery​

	​*
​	​//= require jquery.ui.effect-blind​

	​ 	​//= require jquery_ujs​

	​ 	​//= require turbolinks​

	​ 	​//= require_tree .​

 We saw ​assets/stylesheets/application.css​ in Iteration A2. This file behaves
 similarly but for JavaScripts instead of stylesheets.
 Be careful to use a dash instead of an underscore in this line,
 as clearly not all authors of libraries follow the same naming
 conventions.

 Let’s use this library to add this kind of highlight to our
 cart. Whenever an item in the cart is updated (either when it is added
 or when we change the quantity), let’s flash its background. That will
 make it clearer to our users that something has changed, even though the
 whole page hasn’t been refreshed.

 The first problem we have is identifying the most recently
 updated item in the cart. Right now, each item is simply
 a ​<tr>​ element. We need to find a way to flag
 the most recently changed one. The work starts in the
 ​LineItemsController​. Let’s
 pass the current line item down to the template by assigning
 it to an instance variable.

	rails40/depot_m/app/controllers/line_items_controller.rb
	​ 	​def​ create

	​ 	 product = Product.find(params[:product_id])

	​ 	 @line_item = @cart.add_product(product.id)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @line_item.save

	​ 	 format.html { redirect_to store_url }

	​*
​	 format.js { @current_item = @line_item }

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @line_item }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @line_item.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 In the ​_line_item.html.erb​ partial, we then
 check to see whether the item we’re rendering is the one that
 just changed. If so, we tag it with an ID
 of ​current_item​.

	rails40/depot_m/app/views/line_items/_line_item.html.erb
	​*
​	<% ​if​ line_item == @current_item %>

	​*
​	​<tr​ id=​"current_item"​​>​

	​*
​	<% ​else​ %>

	​*
​	​<tr>​

	​*
​	<% ​end​ %>

	​ 	 ​<td>​<%= line_item.quantity %>×​</td>​

	​ 	 ​<td>​<%= line_item.product.title %>​</td>​

	​ 	 ​<td​ class=​"item_price"​​>​<%= number_to_currency(line_item.total_price) %>​</td>​

	​ 	​</tr>​

 As a result of these two minor changes,
 the ​<tr>​ element of the most recently changed
 item in the cart will be tagged
 with ​id="current_item"​. Now we just need to tell the
 JavaScript to change the background color to one that
 will catch the eye and then to gradually change it back. We do
 this in the existing ​create.js.erb​
 template.

	rails40/depot_m/app/views/line_items/create.js.erb
	​ 	$('#cart').html("<%= escape_javascript render(@cart) %>");

	​*
​	

	​*
​	$('#current_item').css({'background-color':'#88ff88'}).

	​*
​	 animate({'background-color':'#114411'}, 1000);

 See how we identified the browser element that we wanted to
 apply the effect to by passing ​’#current_item’​ to the
 ​$​ function? We then called
 ​css​
 to set
 the initial background color and followed up with a call to the

 ​animate​
 method to transition back to the original color
 used by our layout over a period of ​1000​ milliseconds, more
 commonly known as one second.

 With that change in place, click any
 ​Add to Cart​
 button, and you’ll see that the changed item in the
 cart glows a light green before fading back to merge with the
 background.

11.4 Iteration F4: Hiding an Empty Cart

 There’s one last request from the customer. Right now, even carts with
 nothing in them are still displayed in the sidebar. Can we
 arrange for the cart to appear only when it has some content?
 But of course!

 In fact, we have a number of options. The simplest is probably
 to include the HTML for the cart only if the cart has something
 in it. We could do this totally within
 the ​_cart​ partial.

	​*
​	​<% unless cart.line_items.empty? %>​

	​ 	​<div​ class=​"cart_title"​​>​Your Cart​</div>​

	​ 	​<table>​

	​ 	 ​<%= render(cart.line_items) %>​

	​ 	

	​ 	 ​<tr​ class=​"total_line"​​>​

	​ 	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​ 	 ​<td​ class=​"total_cell"​​>​​<%= number_to_currency(cart.total_price) %>​​</td>​

	​ 	 ​</tr>​

	​ 	​</table>​

	​ 	

	​ 	​<%= button_to 'Empty cart', cart, method: :delete,​

	​ 	​ confirm: 'Are you sure?' %>​

	​*
​	​<% end %>​

 Although this works, the user interface is somewhat brutal: the
 whole sidebar redraws on the transition between a cart that’s
 empty and a cart with something in it. So, let’s not use this
 code. Instead, let’s smooth it out a little.

 The jQuery UI
 library also provides transitions that make elements appear. Let’s use
 the ​blind​ option on
 ​show​
 , which will
 smoothly reveal the cart, sliding the rest of the sidebar down
 to make room.

 Not surprisingly, we’ll again use our
 existing ​js.erb​ template to call
 the effect. Because the ​create​
 template is invoked only when we add something to the cart,
 we know that we have to reveal the cart in the sidebar whenever
 there is exactly one item in the cart (because that means
 previously the cart was empty and hence hidden). And, because
 the cart should be visible before we start the highlight effect,
 we’ll add the code to reveal the cart before the code that
 triggers the highlight.

 The template now looks like this:

	rails40/depot_n/app/views/line_items/create.js.erb
	​*
​	if ($('#cart tr').length == 1) { $('#cart').show('blind', 1000); }

	​*
​	

	​ 	$('#cart').html("<%= escape_javascript render(@cart) %>");

	​ 	

	​ 	$('#current_item').css({'background-color':'#88ff88'}).

	​ 	 animate({'background-color':'#114411'}, 1000);

 We also have to arrange to hide the cart when it’s
 empty. There are two basic ways of doing this. One, illustrated
 by the code at the start of this section, is not to generate any
 HTML at all. Unfortunately, if we do that, then when we add
 something to the cart and suddenly create the cart HTML, we see
 a flicker in the browser as the cart is first displayed and
 then hidden and slowly revealed by the ​blind​
 effect.

 A better way to handle the problem is to create the cart HTML
 but set the CSS style to ​display: none​ if the cart
 is empty. To
 do that, we need to change the ​application.html.erb​
 layout in ​app/views/layouts​. Our first
 attempt is something like this:

	​ 	<div id=​"cart"​

	​ 	 <​% if ​@cart.line_items.empty? ​%>​

	​ 	​ style="display: none"​

	​ 	​ <% end %>​

	​ 	 >

	​ 	 <​%= render(@cart) %>​

	​ 	​</div>​

 This code adds the CSS ​style=​ attribute to
 the ​<div>​ tag, but only if the cart is empty. It
 works fine, but it’s really, really ugly. That
 dangling ​>​ character looks misplaced (even though it
 isn’t), and the way logic is interjected into the middle of a
 tag is the kind of thing that gives templating languages a bad
 name. Let’s not let that kind of ugliness litter our
 code. Instead, let’s create an abstraction that hides it—we’ll
 write a helper method.

Helper Methods

	Whenever we want to abstract some processing out of a view
	(any kind of view), we should write a helper
	method.

	If you look in the ​app​ directory, you’ll find
	six subdirectories.

	​ 	depot>​ ls -p app​

	​ 	assets/ controllers/ helpers/ mailers/ models/ views/

	Not surprisingly, our helper methods go in
	the ​helpers​ directory.
	
	If you look in that directory,
	you’ll find it already contains some files.

	​ 	depot>​ ls -p app/helpers​

	​ 	application_helper.rb line_items_helper.rb store_helper.rb

	​ 	carts_helper.rb products_helper.rb

 The Rails generators automatically created a helper file for each of
 our controllers (products and store). The Rails command itself (the
 one that created the application initially) created the file
 ​application_helper.rb​. If you like, you can
 organize your methods into controller-specific helpers, but because this
 method will be used in the application layout, let’s put it in the
 application helper.

	Let’s write a helper method
	called
 ​hidden_div_if​
 . It takes a
	condition, an optional set of attributes, and a block. It
	wraps the output generated by the block in
	a ​<div>​ tag, adding
	the ​display: none​ style if the condition is
	true. Use it in the store layout like this:

	rails40/depot_n/app/views/layouts/application.html.erb
	​ 	<%= hidden_div_if(@cart.line_items.empty?, id: ​'cart'​) ​do​ %>

	​ 	 <%= render @cart %>

	​ 	<% ​end​ %>

	We’ll write our helper so that it is visible to the store
	controller by adding it to ​application_helper.rb​
	in the ​app/helpers​ directory.

	rails40/depot_n/app/helpers/application_helper.rb
	​ 	​module​ ApplicationHelper

	​*
​	 ​def​ hidden_div_if(condition, attributes = {}, &block)

	​*
​	 ​if​ condition

	​*
​	 attributes[​"style"​] = ​"display: none"​

	​*
​	 ​end​

	​*
​	 content_tag(​"div"​, attributes, &block)

	​*
​	 ​end​

	​ 	​end​

	This code uses the Rails standard
	helper,
 ​content_tag​
 , which can be
	used to wrap the output created by a block in a tag. By using
	the ​&block​ notation, we get Ruby to
	pass the block that was given
	to
 ​hidden_div_if​
 down
 to
 ​content_tag​
 .

 And, finally, we need to stop setting the message in the flash
 that we used to display when the user empties a cart. It really
 isn’t needed anymore, because the cart clearly disappears from
 the sidebar when the catalog index page is redrawn. But there’s
 another reason to remove it, too. Now that we’re using Ajax to
 add products to the cart, the main page doesn’t get redrawn
 between requests as people shop. That means we’ll continue to
 display the flash message saying the cart is empty even as we
 display a cart in the sidebar.

	rails40/depot_n/app/controllers/carts_controller.rb
	​ 	​def​ destroy

	​ 	 @cart.destroy ​if​ @cart.id == session[:cart_id]

	​ 	 session[:cart_id] = nil

	​ 	 respond_to ​do​ |format|

	​*
​	 format.html { redirect_to store_url }

	​ 	 format.json { head :no_content }

	​ 	 ​end​

	​ 	​end​

 Now that we have added all this Ajax goodness, go ahead and empty your
 cart and add an item.

 Although this might seem like a lot of work, there really are only two
 essential steps to what we did. First, we make the cart hide and reveal
 itself by making the CSS display style conditional on the number of
 items in the cart. Second, we provided JavaScript instructions to invoke the
 ​blind​ effect when the cart went from being empty to having
 one item.

 So far, these changes have been pretty but not functional. Let’s
 proceed to changing the behavior of the page. How about we make
 clicking the image cause an item to be added to the cart? It
 turns out that that’s easy too with JQuery.

11.5 Iteration F5: Making Images Clickable

 So far, we have been doing things only in response to a click
 and only on things that are defined to be clickable (namely, buttons and
 links). In this case, what we want to do is to handle the ​onClick​ event
 for the image and have it execute some behavior that we define.

 In other words, what we want to do is to have a script that executes when the
 page loads and have it find all the images and associate logic with
 those images to forward the processing of click events to the

 ​Add to Cart​
 button for the same entry.

 First, we refresh our memory as to how the page in question is
 organized.

	rails40/depot_n/app/views/store/index.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h1>​Your Pragmatic Catalog​</h1>​

	​ 	

	​ 	<% cache [​'store'​, Product.latest] ​do​ %>

	​ 	 <% @products.each ​do​ |product| %>

	​ 	 <% cache [​'entry'​, product] ​do​ %>

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 <%= image_tag(product.image_url) %>

	​ 	 ​<h3>​<%= product.title %>​</h3>​

	​ 	 <%= sanitize(product.description) %>

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

	​ 	 <%= button_to ​'Add to Cart'​, line_items_path(product_id: product),

	​ 	 remote: true %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	<% ​end​ %>

 Using this information, we proceed by modifying
 ​app/assets/javascripts/store.js.coffee​.

	rails40/depot_n/app/assets/javascripts/store.js.coffee
	​ 	# Place all the behaviors and hooks related to the matching controller here.

	​ 	# All this logic will automatically be available ​in​ application.js.

	​ 	# You can use CoffeeScript ​in​ this file: http:​//coffeescript.org/​

	​ 	

	​*
​	$(document).on ​"ready page:change"​, ->

	​*
​	 $(​'.store .entry > img'​).click ->

	​*
​	 $(this).parent().find(​':submit'​).click()

 CoffeeScript[43] is another preprocessor that makes writing assets easier.
 In this case, CoffeeScript helps you express JavaScript in a more
 concise form. Combined with JQuery, you can produce significant effects
 with very little effort.

 In this case, the first thing we want to do is to define a function that
 executes on page load. That’s what the first line of this script does:
 it defines a function using the ​->​ operator and passes it to
 a function named ​on​, which associates the function with
 two events: ​ready​ and ​page:change​.
 ​ready​ is the event that fires if people navigate to your
 page from outside of your site, and ​page:change​ is the event
 that Turbolinks[44] fires if people navigate to your page from within your
 site. Associating the script to both makes sure you are covered
 either way.

 The second line finds all images that are immediate children of
 elements that are defined with ​class="entry"​, which themselves
 are descendants of an element with ​class="store"​. This last
 part is important because, just like with stylesheets, Rails will by default
 combine all JavaScripts into a single resource. For each image found,
 which could be zero when run against other pages in our application, a
 function is defined that is associated with the click event for that
 image.

 The third and final line processes that click event. It starts with
 the element on which the event occurred, namely, ​this​. It then
 proceeds to find the parent element, which will be the ​div​
 that specifies ​class="entry"​. Within that element we find the
 submit button, and we proceed to click it.

 Proceeding to the browser, the page looks no different from it did in
	 Figure 29, ​The cart is in the sidebar​. But it behaves differently.
 Click the images to cause items to be added to the cart. Marvel in
 the fact that all this was accomplished with a mere three lines of code.

 Of course, you could have done all of this in JavaScript directly, but
 that would have required five more sets of parentheses, two sets of
 braces, and overall about 50 percent more characters. And this just barely
 scratches the surface of what CoffeeScript can do. A good place
 to find out more on this subject is CoffeeScript: Accelerated JavaScript
 Development [Bur11].

 At this point, it occurs to us that we haven’t really done much with
 respect to testing, but it doesn’t really feel like we’ve made much in
 the way of functional changes, so we should be fine. But just
 to be sure, we run our tests again.

	​ 	depot>​ rake test​

	​ E...F.EEEE.........EEEE..

 Oh dear. Failures and errors. This is not good. Clearly, we need to
 revisit our approach to testing. In fact, we will do that next.

11.6 Testing Ajax Changes

 We look at the test failures, and we see a number of errors that look
 like the following:

	​ 	ActionView::Template::Error: undefined method `line_items' for nil:NilClass

 Since this error represents the majority of the problems reported,
 let’s address it first so that we can focus on the rest. According to
 the test, we will have a problem if we get the product index, and sure
 enough, when we point our browser to

 ​http://localhost:3000/products/​
 , we see the results
 shown in Figure 31, ​An error in a layout can affect the entire application​.

[image: images/layout_failure.png]

Figure 31. An error in a layout can affect the entire application.

 This information is very helpful. The message identifies the template
 file that was being processed at the point where the error occurs
 (​app/views/layouts/application.html.erb​), the line number
 where the error occurred, and an excerpt from the template of lines
 around the error. From this, we see that the expression being
 evaluated at the point of error is ​@cart.line_items​, and the
 message produced is ​undefined method ‘line_items’ for nil​.

 So, ​@cart​ is apparently ​nil​ when we display an index
 of our products. That makes sense, because it is set only in the
 store controller. This is easy enough to fix; all we need to do is
 avoid displaying the cart at all unless this value is set.

	rails40/depot_o/app/views/layouts/application.html.erb
	​*
​	<% ​if​ @cart %>

	​ 	 <%= hidden_div_if(@cart.line_items.empty?, id: ​'cart'​) ​do​ %>

	​ 	 <%= render @cart %>

	​ 	 <% ​end​ %>

	​*
​	<% ​end​ %>

 After this fix, we rerun the tests and see that we are down to
 one error. The value of the redirect was not what was expected. This
 occurred on creating a line item. Sure enough, we did change that on
 ​Changing the Flow​. Unlike the last change, which was
 entirely accidental, this change was intentional, so we
 update the corresponding functional test case.

	rails40/depot_o/test/controllers/line_items_controller_test.rb
	​ 	test ​"should create line_item"​ ​do​

	​ 	 assert_difference(​'LineItem.count'​) ​do​

	​ 	 post :create, product_id: products(:ruby).id

	​ 	 ​end​

	​ 	

	​*
​	 assert_redirected_to store_path

	​ 	​end​

 With this change in place, our tests now once again pass. Just
 imagine what could have happened. A change in one part of an
 application in order to support a new requirement breaks a function we
 previously implemented in another part of the application. If you are
 not careful, this can happen in a small application like Depot. Even
 if you are careful, this will happen in a large application.

 But we are not done yet. We haven’t tested any of our Ajax additions,
 such as what happens when we click the
 ​Add to
 Cart​
 button. Rails makes that easy too.

 We already have a test for ​should create line item​, so let’s
 add another one called ​should create line item via ajax​.

	rails40/depot_o/test/controllers/line_items_controller_test.rb
	​ 	test ​"should create line_item via ajax"​ ​do​

	​ 	 assert_difference(​'LineItem.count'​) ​do​

	​ 	 xhr :post, :create, product_id: products(:ruby).id

	​ 	 ​end​

	​ 	

	​ 	 assert_response :success

	​ 	 assert_select_jquery :html, ​'#cart'​ ​do​

	​ 	 assert_select ​'tr#current_item td'​, /Programming Ruby 1.9/

	​ 	 ​end​

	​ 	​end​

 This test differs in the name of the test, in the manner of invocation
 from the create line item test (​xhr :post​ vs. simply
 ​post​, where ​xhr​ stands for the XMLHttpRequest
 mouthful), and in the expected results. Instead of a redirect, we
 expect a successful response containing a call to replace the HTML for
 the cart, and in that HTML we expect to find a row with an ID of
 ​current_item​ with a value matching ​Programming Ruby
 1.9​. This is achieved by applying the

 ​assert_select_jquery​
 to extract the relevant
 HTML and then processing that HTML via whatever additional assertions
 you want to apply.

 Finally, there is the CoffeeScript that we introduced. While testing
 code that actually executes in the browser is outside the scope of
 this book, we should test that the markup this script depends on is in
 place. And it is certainly easy
 enough.

	rails40/depot_o/test/controllers/store_controller_test.rb
	​ 	test ​"markup needed for store.js.coffee is in place"​ ​do​

	​ 	 get :index

	​ 	 assert_select ​'.store .entry > img'​, 3

	​ 	 assert_select ​'.entry input[type=submit]'​, 3

	​ 	​end​

 This way, should an exuberant web designer change the markup on the
 page in a way that affects our logic, we will be alerted to this issue
 and be able to make a change before the code goes into production.
 Note that ​:submit​ is a jQuery-only extension to CSS; we
 simply need to spell out ​input[type=submit]​ in our test.

 Keeping tests up-to-date is an important part of maintaining your
 application. Rails makes this easy to do. Agile programmers make
 testing an integral part of their development efforts. Many even go
 so far as to write their tests first, before the first line of code
 is written.

What We Just Did

 In this iteration, we added Ajax support to our cart.

	

	 We moved the shopping cart into the sidebar. We then arranged
	 for the ​create​ action to redisplay the catalog
	 page.
	

	

 We used ​remote: true​ to invoke the
 ​LineItemsController​.
 ​create​

 action using Ajax.
	

	

	 We then used an ERB template to create JavaScript that will
	 execute on the client. This script made use of jQuery in order
	 to update to the page with just the cart’s HTML.
	

	

	 To help the user see changes to the cart, we added a
	 highlight effect, using
	 the ​jQuery-UI​ library.
	

	

	 We wrote a helper method that hides the cart when it is
	 empty and used jQuery
	 to reveal it when an item is added.
	

	

	 We wrote a test that verifies not only the creation of a line item
 but also the content of the response that is returned from such a
 request.
	

	

 We added a bit of CoffeeScript in order to cause items to be added
 to the cart when an image is clicked.
	

 The key point to take away is the incremental style of Ajax
 development. Start with a conventional application and then add
 Ajax features, one by one. Ajax can be hard to debug; by adding
 it slowly to an application, you make it easier to track down
 what changed if your application stops working. And, as we saw,
 starting with a conventional application makes it easier to
 support both Ajax and non-Ajax behavior in the same codebase.

 Finally, we’ll give you a couple of hints. First, if you plan to do a lot of
 Ajax development, you’ll probably need to get familiar with your
 browser’s JavaScript debugging facilities and with its DOM
 inspectors, such as Firefox’s Firebug, Internet Explorer’s Developer
 Tools, Google Chrome’s Developer Tools, Safari’s Web Inspector, or
 Opera’s Dragonfly.

 And, second, the NoScript
 plugin for Firefox makes checking JavaScript/no JavaScript a one-click breeze.
 Others find it useful to run two different browsers when they are
 developing—with JavaScript enabled in one and disabled in the other.
 Then, as new features are added, poking at it with both browsers will
 make sure your application works regardless of the state of JavaScript.

Playtime

 Here’s some stuff to try on your own:

	

	 The cart is currently hidden when the user empties it by
	 redrawing the entire catalog. Can you change the
	 application to use the jQuery UI ​blind​ effect
	 instead?
	

	

	 Add a button next to each item in the cart. When clicked, it
	 should invoke an action to decrement the quantity of the
	 item, deleting it from the cart when the quantity reaches
	 zero. Get it working without using Ajax first and then
	 add the Ajax
	 goodness.
	

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[41]	

 ​http://api.jquery.com/html/​

	[42]	

 ​http://jqueryui.com/​

	[43]	

 ​http://jashkenas.github.com/coffee-script/​

	[44]	

 ​https://github.com/rails/turbolinks/blob/master/README.md#turbolinks​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 12
Task G: Check Out!

	
linking tables with foreign keys;

	
using ​belongs_to​, ​has_many​, and ​:through​;

	
creating forms based on models (​form_for​);

	
linking forms, models, and views; and

	
generating a feed using ​atom_helper​ on model objects.

 Let’s take stock. So far, we’ve put together a basic product
 administration system, we’ve implemented a catalog, and we have a
 pretty spiffy-looking shopping cart. So, now we need to let the
 buyer actually purchase the contents of that cart. Let’s implement
 the checkout function.

 We’re not going to go overboard here. For now, all we’ll do is
 capture the customer’s contact details and payment option. Using
 these, we’ll construct an order in the database. Along the way,
 we’ll be looking a bit more at models, validation, and form handling.

12.1 Iteration G1: Capturing an Order

 An order is a set of line items, along with details of the
 purchase transaction.
 Our cart already contains ​line_items​, so all we need to do is add
 an ​order_id​ column to the ​line_items​ table and create
 an ​orders​ table based on the
 Initial guess at application data
 diagram, combined with a brief
 chat with our customer.

 First we create the order model and update the ​line_items​ table.

	​ 	depot>​ rails generate scaffold Order name address:text email pay_type​

	​ 	depot>​ rails generate migration add_order_to_line_item order:references​

 Note that we didn’t specify any data type for three out of the four
 columns. This is because the data type defaults to ​string​.
 This is yet another small way in which Rails makes things easier for
 you in the most common case without making things any more cumbersome
 when you need to specify a data type.

 Now that we’ve created the migrations, we can apply them.

	​ 	depot>​ rake db:migrate​

	​ 	== CreateOrders: migrating =======================================

	​ 	-- create_table(:orders)

	​ 	 ->​ 0.0014s​

	​ 	== CreateOrders: migrated (0.0015s) ==============================

	​ 	

	​ 	== AddOrderIdToLineItem: migrating ===============================

	​ 	-- add_column(:line_items, :order_id, :integer)

	​ 	 ->​ 0.0008s​

	​ 	== AddOrderIdToLineItem: migrated (0.0009s) ======================

 Because the database did not have entries for these two
 new migrations in the ​schema_migrations​
 table,
 the ​db:migrate​ task applied both migrations to the
 database. We could, of course, have applied them separately by running
 the migration task after creating the individual migrations.

[image: Joe asks:]
Joe asks:
Where’s the Credit-Card Processing?

 In the real world, we’d probably want our
 application to handle the commercial side of checkout. We might even
 want to integrate credit-card processing. However, integrating with
 back-end payment-processing systems requires a fair amount of paperwork
 and jumping through hoops. And this would distract from looking
 at Rails, so we’re going to punt on this particular detail for the
 moment.

 We will come back to this in Section 25.1, ​Credit Card Processing with Active Merchant​, where
 we will explore a plugin that can help us with this function.

Creating the Order Capture Form

 Now that we have our tables and our models as we need them, we can
 start the checkout process. First, we need to add a

 ​Checkout​
 button to the shopping cart. Because it
 will create a new order, we’ll link it back to a ​new​ action
 in our order controller.

	rails40/depot_o/app/views/carts/_cart.html.erb
	​ 	​<h2>​Your Cart​</h2>​

	​ 	​<table>​

	​ 	 <%= render(cart.line_items) %>

	​ 	

	​ 	 ​<tr​ class=​"total_line"​​>​

	​ 	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​ 	 ​<td​ class=​"total_cell"​​>​<%= number_to_currency(cart.total_price) %>​</td>​

	​ 	 ​</tr>​

	​ 	

	​ 	​</table>​

	​ 	

	​*
​	<%= button_to ​"Checkout"​, new_order_path, method: :get %>

	​ 	<%= button_to ​'Empty cart'​, cart, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

	The first thing we want to do is check to make sure that there’s
	something in the cart. This requires us to have access to the cart.
 Planning ahead, we’ll also need this when we create an order.

	rails40/depot_o/app/controllers/orders_controller.rb
	​ 	​class​ OrdersController < ApplicationController

	​*
​	 include CurrentCart

	​*
​	 before_action :set_cart, only: [:new, :create]

	​ 	 before_action :set_order, only: [:show, :edit, :update, :destroy]

	​ 	

	​ 	 ​# GET /orders​

	​ 	 ​#...​

	​ 	​end​

 Next we need to add the code that checks the cart.
 If there is nothing in the cart, we redirect the
	user back to the storefront, provide a notice of what we did, and return
	immediately. This prevents people from navigating directly to the
	checkout option and creating empty orders. The return statement is
 important here; without it you will get a ​double render
 error​ because your controller will attempt to both redirect and
 render output.

	rails40/depot_o/app/controllers/orders_controller.rb
	​ 	​def​ new

	​*
​	 ​if​ @cart.line_items.empty?

	​*
​	 redirect_to store_url, notice: ​"Your cart is empty"​

	​*
​	 ​return​

	​*
​	 ​end​

	​*
​	

	​ 	 @order = Order.new

	​ 	​end​

 And we add a test for ​requires item in cart​ and modify the existing
 test for ​should get new​ to ensure that there is an item in the cart.

	rails40/depot_o/test/controllers/orders_controller_test.rb
	​*
​	test ​"requires item in cart"​ ​do​

	​*
​	 get :new

	​*
​	 assert_redirected_to store_path

	​*
​	 assert_equal flash[:notice], ​'Your cart is empty'​

	​*
​	​end​

	​ 	

	​ 	test ​"should get new"​ ​do​

	​*
​	 item = LineItem.new

	​*
​	 item.build_cart

	​*
​	 item.product = products(:ruby)

	​*
​	 item.save!

	​*
​	 session[:cart_id] = item.cart.id

	​ 	 get :new

	​ 	 assert_response :success

	​ 	​end​

	Now we want the ​new​ action to present our user with
	a form, prompting them to enter the information in
	the ​orders​ table: their name, address,
	email address, and payment type. This means we
	will need to display a Rails template containing a form. The
	input fields on this form will have to link to the
	corresponding attributes in a Rails model object, so we’ll
	need to create an empty model object in the ​new​
	action to give these fields something to work with.

	As always with HTML forms, the trick is
	populating any initial values into the form fields and then
	extracting those values out into our application when the
	user hits the submit button.

 In the controller, the ​@order​ instance
 variable is set to reference a new ​Order​ model
 object. This is done because the view populates the form from the data
 in this object. As it stands, that’s not particularly interesting.
 Because it’s a new model object, all the fields will be empty.
 However, consider the general case. Maybe we want to edit an existing
 order. Or maybe the user has tried to enter an order but their data
 has failed validation. In these cases, we want any existing data in
 the model shown to the user when the form is displayed. Passing in the
 empty model object at this stage makes all these cases
 consistent—the view can always assume it has a model object
 available.

	Then, when the user hits the submit button, we’d like the new
	data from the form to be extracted into a model object back in
	the controller.

	Fortunately, Rails makes this relatively painless. It provides
	us with a bunch of ​form helper​ methods. These
	helpers interact with the controller and with the models to
	implement an integrated solution for form handling. Before we
	start on our final form, let’s look at a simple example:

	​Line 1 	​<%= form_for @order do |f| %>​

	​2 	 ​<p>​

	​3 	 ​<%= f.label :name, "Name:" %>​

	​4 	 ​<%= f.text_field :name, size: 40 %>​

	​5 	 ​</p>​

	​6 	​<% end %>​

 There are two interesting things in this code. First, the
 ​form_for​
 helper on line 1 sets up a
 standard HTML form. But it does more. The first parameter,
 ​@order​, tells the method the instance variable to use when
 naming fields and when arranging for the field values to be passed
 back to the controller.

	You’ll see that ​form_for​ sets up a Ruby block
	environment (this block ends on line
	6). Within this block, you
	can put normal template stuff (such as the ​<p>​
	tag). But you can also use the block’s parameter
	(​f​ in this case) to reference a form context. We
	use this context on line
	4 to add a text field to the form. Because the text
	field is constructed in the context of the ​form_for​,
	it is automatically associated with the data in
	the ​@order​ object.

	All these relationships can be confusing. It’s important to
	remember that Rails needs to know both the ​names​ and
	the ​values​ to use
	for the fields associated with a model. The combination
	of ​form_for​ and the various field-level helpers (such
	as ​text_field​) gives it this
	information. We can see this process in the following figure:

	
[image: images/form_for.png]

Figure 32. The names in ​form_for​ map to objects and attributes.

	Now we can update the template for the form that captures a
	customer’s details for checkout. It’s invoked from
	the ​new​ action in the order controller, so the
	template is called ​new.html.erb​, found
 in the directory ​app/views/​​orders​.

	rails40/depot_o/app/views/orders/new.html.erb
	​ 	​<div​ class=​"depot_form"​​>​

	​ 	 ​<fieldset>​

	​ 	 ​<legend>​Please Enter Your Details​</legend>​

	​ 	 <%= render ​'form'​ %>

	​ 	 ​</fieldset>​

	​ 	​</div>​

 This template makes use of a partial named ​_form​.

	rails40/depot_o/app/views/orders/_form.html.erb
	​ 	<%= form_for(@order) ​do​ |f| %>

	​ 	 <% ​if​ @order.errors.any? %>

	​ 	 ​<div​ id=​"error_explanation"​​>​

	​ 	 ​<h2>​<%= pluralize(@order.errors.count, ​"error"​) %>

	​ 	 prohibited this order from being saved:​</h2>​

	​ 	

	​ 	 ​​

	​ 	 <% @order.errors.full_messages.each ​do​ |msg| %>

	​ 	 ​​<%= msg %>​​

	​ 	 <% ​end​ %>

	​ 	 ​​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :name %>​
​

	​*
​	 <%= f.text_field :name, size: 40 %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :address %>​
​

	​*
​	 <%= f.text_area :address, rows: 3, cols: 40 %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :email %>​
​

	​*
​	 <%= f.email_field :email, size: 40 %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :pay_type %>​
​

	​*
​	 <%= f.select :pay_type, Order::PAYMENT_TYPES,

	​*
​	 prompt: ​'Select a payment method'​ %>

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"actions"​​>​

	​*
​	 <%= f.submit ​'Place Order'​ %>

	​ 	 ​</div>​

	​ 	<% ​end​ %>

 Rails has form helpers for all the different HTML-level form
 elements. In the
 previous code, we use ​text_field​, ​email_field​, and
 ​text_area​
 helpers to capture the customer’s name, email, and address.
 We cover form helpers in more depth in Section 21.2, ​Generating Forms​.

	The only tricky thing in there is the code associated with the
	selection list. We’ve assumed that the list of available
	payment options is an attribute of
	the ​Order​ model.
	We’d better define the option array in the
	model ​order.rb​ before we forget.

	rails40/depot_o/app/models/order.rb
	​ 	​class​ Order < ActiveRecord::Base

	​*
​	 PAYMENT_TYPES = [​"Check"​, ​"Credit card"​, ​"Purchase order"​]

	​ 	​end​

	In the template, we pass this array of payment type options to
	the ​select​ helper. We also pass the ​:prompt​
	parameter, which adds a dummy selection containing the prompt
	text.

	Add a little CSS magic:

	rails40/depot_o/app/assets/stylesheets/application.css.scss
	​ 	​.depot_form ​{

	​ 	 ​fieldset ​{

	​ 	 background: ​#efe;​

	​ 	

	​ 	 ​legend ​{

	​ 	 color: ​#dfd;​

	​ 	 background: ​#141;​

	​ 	 font-family: ​sans-serif;​

	​ 	 padding: ​0.2em 1em;​

	​ 	 }

	​ 	 }

	​ 	

	​ 	 ​form ​{

	​ 	 ​label ​{

	​ 	 width: ​5em;​

	​ 	 float: ​left;​

	​ 	 text-align: ​right;​

	​ 	 padding-top: ​0.2em;​

	​ 	 margin-right: ​0.1em;​

	​ 	 display: ​block;​

	​ 	 }

	​ 	

	​ 	 ​select, textarea, input ​{

	​ 	 margin-left: ​0.5em;​

	​ 	 }

	​ 	

	​ 	 ​.submit ​{

	​ 	 margin-left: ​4em;​

	​ 	 }

	​ 	

	​ 	 ​br ​{

	​ 	 display: ​none​

	​ 	 }

	​ 	 }

	​ 	}

	We’re ready to play with our form. Add some stuff to your
	cart, and then click the
 ​Checkout​

 button. You should see something like Figure 33, ​Our checkout screen​.

[image: images/depot_p_checkout_1.png]

Figure 33. Our checkout screen

	Looking good! Before we move on, let’s finish
	the ​new​ action by adding some validation. We’ll
	change the ​Order​ model to verify that
	the customer enters data for all the input fields.

 We also validate that the payment type is one of the accepted
 values.
	

	 Some folks might be wondering why we bother to validate
	 the payment type, given that its value comes from a
	 drop-down list that contains only valid values. We do it
	 because an application can’t assume that it’s being fed
	 values from the forms it creates. Nothing is stopping
	 a malicious user from submitting form data directly to the
	 application, bypassing our form. If the user set an
	 unknown payment type, they might conceivably get our
	 products for free.
	
	rails40/depot_o/app/models/order.rb
	​ 	​class​ Order < ActiveRecord::Base

	​ 	 ​# ...​

	​*
​	 validates :name, :address, :email, presence: true

	​*
​	 validates :pay_type, inclusion: PAYMENT_TYPES

	​ 	​end​

 Note that we already loop over the ​@order.errors​ at the top
 of the page. This will report validation failures.

 Since we modified validation rules, we need to modify our test fixture
 to match.

	rails40/depot_o/test/fixtures/orders.yml
	​ 	​# Read about fixtures at​

	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html​

	​ 	

	​ 	one:

	​*
​	 name: ​Dave Thomas​

	​ 	 address: ​MyText​

	​*
​	 email: ​dave@example.org​

	​*
​	 pay_type: ​Check​

	​ 	

	​ 	two:

	​ 	 name: ​MyString​

	​ 	 address: ​MyText​

	​ 	 email: ​MyString​

	​ 	 pay_type: ​MyString​

 Furthermore, for an order to be created, a line item needs to be in
 the cart, so we need to modify the line items test fixture too.

	rails40/depot_o/test/fixtures/line_items.yml
	​ 	​# Read about fixtures at​

	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html​

	​ 	

	​ 	one:

	​ 	 product: ​ruby​

	​*
​	 order: ​one​

	​ 	

	​ 	two:

	​ 	 product: ​ruby​

	​ 	 cart: ​one​

 Note that if you didn’t choose to do the optional exercises in
 ​Playtime​, you will need to
 modify all of the references to products and carts at this time.

 Feel free to make other changes, but only the first is currently used
 in the functional tests. For these tests to pass, we will need to
 implement the model.

Capturing the Order Details

	Let’s implement the
 ​create​
 action
	in the controller. This method has to do the following:

	

	 Capture the values from the form to populate a
	 new ​Order​ model object.
	

	

	 Add the line items from our cart to that order.
	

	

	 Validate and save the order. If this fails, display the
	 appropriate messages, and let the user correct any problems.
	

	

 Once the order is successfully saved, delete the cart, redisplay
 the catalog page, and display a message confirming that the order
 has been placed.
	

	We define the relationships themselves, first from
 the line item to the order:

	rails40/depot_o/app/models/line_item.rb
	​ 	​class​ LineItem < ActiveRecord::Base

	​*
​	 belongs_to :order

	​ 	 belongs_to :product

	​ 	 belongs_to :cart

	​ 	 ​def​ total_price

	​ 	 product.price * quantity

	​ 	 ​end​

	​ 	​end​

	 and then from the order to the line item, once again indicating that
 all line items that belong to an order are to be destroyed whenever the
 order is destroyed.

	rails40/depot_o/app/models/order.rb
	​ 	​class​ Order < ActiveRecord::Base

	​*
​	 has_many :line_items, dependent: :destroy

	​ 	 ​# ...​

	​ 	​end​

	The method itself ends up looking something like this:

	rails40/depot_o/app/controllers/orders_controller.rb
	​ 	​def​ create

	​ 	 @order = Order.new(order_params)

	​*
​	 @order.add_line_items_from_cart(@cart)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @order.save

	​*
​	 Cart.destroy(session[:cart_id])

	​*
​	 session[:cart_id] = nil

	​*
​	

	​*
​	 format.html { redirect_to store_url, notice:

	​*
​	 ​'Thank you for your order.'​ }

	​ 	 format.json { render action: ​'show'​, status: :created,

	​ 	 location: @order }

	​ 	

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @order.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

[image: Joe asks:]
Joe asks:
Aren’t You Creating Duplicate Orders?

 Joe is concerned to see our controller creating
 ​Order​ model objects in two actions:
 ​new​ and ​create​.
 He’s wondering why this doesn’t lead to duplicate orders in the
 database.

 The answer is simple: the ​new​
 action creates an ​Order​
 object ​in memory​ simply to give the template
 code something to work with. Once the response is sent to the
 browser, that particular object gets abandoned, and it will
 eventually be reaped by Ruby’s garbage collector. It never
 gets close to the database.

 The ​create​ action also creates
 an ​Order​ object, populating it from
 the form fields. This object ​does​ get saved in
 the database.
 So, model objects perform two roles: they map data into and
 out of the database, but they are also just regular objects
 that hold business data. They affect the database only when
 you tell them to, typically by
 calling
 ​save​
 .

	We start by creating a
	new ​Order​ object and initialize it from the form data.
	The next line adds into this order the
	items that are already stored in the cart—we’ll write the
	actual method to do this in a minute.

	Next we tell the order object to save itself (and its children, the line items) to
	the database. Along	the way, the order object will perform validation (but we’ll
	get to that in a minute).

If the save succeeds, we do two
	things. First, we ready ourselves for this customer’s next
	order by deleting the cart from the session. Then, we
 redisplay the catalog using the
 ​redirect_to​

 method to display a cheerful message. If, instead, the save fails, we
 redisplay the checkout form with the current cart.

	In the ​create​ action we assumed that the order
	object contains the method
	
 ​add_line_items_from_cart​
 ,
	so let’s implement that method now.

	rails40/depot_p/app/models/order.rb
	​ 	​class​ Order < ActiveRecord::Base

	​ 	 ​# ...​

	​*
​	 ​def​ add_line_items_from_cart(cart)

	​*
​	 cart.line_items.each ​do​ |item|

	​*
​	 item.cart_id = nil

	​*
​	 line_items << item

	​*
​	 ​end​

	​*
​	 ​end​

	​ 	​end​

 For each item that we transfer from the cart to the order, we need to
 do two things. First we set the ​cart_id​ to ​nil​
 in order to prevent the item from going poof when we destroy the cart.

 Then we add the item itself to the ​line_items​ collection for
 the order.
	Notice that we didn’t have to do anything special with the
	various foreign key fields, such as setting
	the ​order_id​ column in the line item
	rows to reference the newly created order row. Rails does that
	knitting for us using the
 ​has_many​

	and
 ​belongs_to​
 declarations we added
	to the ​Order​
	and ​LineItem​ models. Appending each new
	line item to the ​line_items​ collection
	hands the responsibility for key management over to Rails.

 We will also need to modify the test to reflect the new redirect.

	rails40/depot_p/test/controllers/orders_controller_test.rb
	​ 	test ​"should create order"​ ​do​

	​ 	 assert_difference(​'Order.count'​) ​do​

	​ 	 post :create, order: { address: @order.address, email: @order.email,

	​ 	 name: @order.name, pay_type: @order.pay_type }

	​ 	 ​end​

	​ 	

	​*
​	 assert_redirected_to store_path

	​ 	​end​

	So, as a first test of all of this, hit the
 ​Place
	Order​
 button on the checkout page without filling
	in any of the form fields. You should see the checkout page
	redisplayed along with error messages complaining about
	the empty fields, as shown in Figure 34, ​Full house! Every field fails validation​.
	

[image: images/depot_p_full_house.png]

Figure 34. Full house! Every field fails validation.

 If we fill in some data (as shown at the top of Figure 35, ​Entering order information produces a “Thanks!”​) and
	click
 ​Place Order​
 , we should get taken back
	to the catalog, as shown at the bottom of the figure. But did
	it work? Let’s look in the database.
[image: images/depot_p_checkout_result.png]

Figure 35. Entering order information produces a “Thanks!”

	​ 	depot>​ sqlite3 -line db/development.sqlite3​

	​ 	SQLite version 3.7.4

	​ 	Enter ".help" for instructions

	​ 	sqlite>​ select * from orders;​

	​ 	 id = 1

	​ 	 name = Dave Thomas

	​ 	 address = 123 Main St

	​ 	 email = customer@example.com

	​ 	 pay_type = Check

	​ 	 created_at = 2013-01-29 02:31:04.964785

	​ 	 updated_at = 2013-01-29 02:31:04.964785

	​ 	sqlite>​ select * from line_items;​

	​ 	 id = 10

	​ 	 product_id = 2

	​ 	 cart_id =

	​ 	 created_at = 2013-01-29 02:30:26.188914

	​ 	 updated_at = 2013-01-29 02:31:04.966057

	​ 	 quantity = 1

	​ 	 price = 36

	​ 	 order_id = 1

	​ 	sqlite>​ .quit​

 Although what you see will differ on details such as version numbers and
 dates (and ​price​ will be present only if you completed the
 exercises defined in ​Playtime​),
 you should see a single order and one or more line items that
 match your selections.

One Last Ajax Change

	After we accept an order, we redirect to the index page,
	displaying the cheery flash message “Thank you for your
	order.” If the user continues to shop and they have
	JavaScript enabled in their browser, we’ll fill the cart in their
	sidebar without redrawing the main page. This means the
	flash message will continue to be displayed. We’d rather it
	went away after we add the first item to the cart (as it does
	when JavaScript is disabled in the browser). Fortunately, the
	fix is simple: we just hide the ​<div>​ that
	contains the flash message when we add something to the
	cart.

	rails40/depot_p/app/views/line_items/create.js.erb
	​*
​	$('#notice').hide();

	​*
​	

	​ 	if ($('#cart tr').length == 1) { $('#cart').show('blind', 1000); }

	​ 	

	​ 	$('#cart').html("<%= escape_javascript render(@cart) %>");

	​ 	

	​ 	$('#current_item').css({'background-color':'#88ff88'}).

	​ 	 animate({'background-color':'#114411'}, 1000);

	Note that when we come to the store for the
	first time, there’s nothing in the flash, so
	the paragraph with an ID of ​notice​ isn’t
	displayed. Therefore, there’s no tag with the ID
	of ​notice​, and the call to jQuery matches no
 elements. This is not a problem, as the call to

 ​hide​
 is applied to ​each​
	matching element, so nothing happens. This is exactly
 what we want to happen, so all is well.

[image: Joe asks:]
Joe asks:
Why Atom?

 There are a number of different feed formats, most notably RSS 1.0,
 RSS 2.0, and Atom, standardized in 2000, 2002, and 2005, respectively.
 These three are all widely supported. To aid with the transition, a
 number of sites provide multiple feeds for the same site, but this
 is no longer necessary, increases user confusion, and generally is
 not recommended.

 The Ruby language provides a low-level library, which can produce any
 of these formats, as well as a number of other less common versions
 of RSS. For best results, stick with one of the three main
 versions.

 The Rails framework is all about picking reasonable defaults and
 has chosen Atom as the default for feed formats. It is specified as
 an Internet standards--track protocol for the Internet community by
 the IETF, and Rails provides a higher-level helper named
 ​atom_feed​ that takes care of a number of details based on
 knowledge of Rails naming conventions for things like IDs and dates.

 Now that we’ve captured the order, it is time to alert the ordering
 department. We will do that with feeds, specifically, an Atom-formatted feed of orders.

12.2 Iteration G2: Atom Feeds

 Using a standard feed format, such as Atom, means you can
 immediately take advantage of a wide variety of preexisting
 clients. Because Rails already knows about IDs, dates, and
 links, it can free you from having to worry about these pesky
 details and let you focus on producing a human-readable
 summary. We start by adding a new action to the products controller.

	rails40/depot_p/app/controllers/products_controller.rb
	​ 	​def​ who_bought

	​ 	 @product = Product.find(params[:id])

	​ 	 @latest_order = @product.orders.order(:updated_at).last

	​ 	 ​if​ stale?(@latest_order)

	​ 	 respond_to ​do​ |format|

	​ 	 format.atom

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 In addition to fetching the product, we check to see whether the request is
 ​stale​. Remember in Section 8.5, ​Iteration C5: Caching of Partial Results​ when we cached partial results of
 responses because the catalog display was expected to be a high-traffic
 area? Well, feeds are like that, but with a different usage pattern.
 Instead of a large number of different clients all requesting the same
 page, we have a small number of clients repeatedly requesting the same
 page. If you’re familiar with the idea of browser caches, then the
 same thing holds true for feed aggregators.

 The way this works is that the responses contain a bit of metadata
 that identifies when the content was last modified and a hashed value
 called an ​ETag​. If a subsequent request provides this
 data back, this gives the server the opportunity to respond
 with an empty response body and an indication that the data has not
 been modified.

 As is usual with Rails, you don’t need to worry about the mechanics.
 You just need to identify the source of the content,
 and Rails will do the rest. In this case, we
 use the last order. Inside the ​if​ statement, we process the request
 normally.

 By adding ​format.atom​, we cause Rails to look for a template
 named ​who_bought.​​atom.builder​. Such a template can use
 the generic XML functionality that Builder provides as well as using
 the knowledge of the Atom feed format that the ​atom_feed​
 helper provides.

	rails40/depot_p/app/views/products/who_bought.atom.builder
	​ 	atom_feed ​do​ |feed|

	​ 	 feed.title ​"Who bought ​#{@product.title}​"​

	​ 	

	​ 	 feed.updated @latest_order.try(:updated_at)

	​ 	

	​ 	 @product.orders.each ​do​ |order|

	​ 	 feed.entry(order) ​do​ |entry|

	​ 	 entry.title ​"Order ​#{order.id}​"​

	​ 	 entry.summary type: ​'xhtml'​ ​do​ |xhtml|

	​ 	 xhtml.p ​"Shipped to ​#{order.address}​"​

	​ 	 xhtml.table ​do​

	​ 	 xhtml.tr ​do​

	​ 	 xhtml.th ​'Product'​

	​ 	 xhtml.th ​'Quantity'​

	​ 	 xhtml.th ​'Total Price'​

	​ 	 ​end​

	​ 	 order.line_items.each ​do​ |item|

	​ 	 xhtml.tr ​do​

	​ 	 xhtml.td item.product.title

	​ 	 xhtml.td item.quantity

	​ 	 xhtml.td number_to_currency item.total_price

	​ 	 ​end​

	​ 	 ​end​

	​ 	 xhtml.tr ​do​

	​ 	 xhtml.th ​'total'​, colspan: 2

	​ 	 xhtml.th number_to_currency \

	​ 	 order.line_items.map(&:total_price).sum

	​ 	 ​end​

	​ 	 ​end​

	​ 	 xhtml.p ​"Paid by ​#{order.pay_type}​"​

	​ 	 ​end​

	​ 	 entry.author ​do​ |author|

	​ 	 author.name order.name

	​ 	 author.email order.email

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 More information on Builder can be found in Section 24.1, ​Generating XML with Builder​.

 At the overall feed level, we need to provide only two pieces of
 information: the title and the latest updated date. If there are no
 orders, the ​updated_at​ value will be null, and Rails will
 supply the current time instead.

 Then we iterate over each order associated with this product. Note
 that there is no direct relationship between these two models. In
 fact, the relationship is indirect. Products have many ​line_items​, and
 ​line_items​ belongs to an order. We could iterate and traverse, but by
 simply declaring that there is a relationship between products and
 orders ​through​ the ​line_items​ relationship, we can
 simplify our code.

	rails40/depot_p/app/models/product.rb
	​ 	​class​ Product < ActiveRecord::Base

	​ 	 has_many :line_items

	​*
​	 has_many :orders, through: :line_items

	​ 	 ​#...​

	​ 	​end​

 For each order, we provide a title, a summary, and an author. The
 summary can be full XHTML, and we use this to produce a table of
 product titles, quantity ordered, and total prices. We follow this
 table with a paragraph containing the ​pay_type​.

 To make this work, we need to define a route. This action will
 respond to HTTP GET requests and will operate on a member of the
 collection (in other words, on an individual product) as opposed to
 the entire collection itself (which in this case would mean all
 products).

	rails40/depot_p/config/routes.rb
	​ 	Depot::Application.routes.draw ​do​

	​ 	 resources :orders

	​ 	 resources :line_items

	​ 	 resources :carts

	​ 	

	​ 	 get ​"store/index"​

	​*
​	 resources :products ​do​

	​*
​	 get :who_bought, on: :member

	​*
​	 ​end​

	​ 	

	​ 	 ​# The priority is based upon order of creation:​

	​ 	 ​# first created -> highest priority.​

	​ 	 ​# See how all your routes lay out with "rake routes".​

	​ 	 ​# You can have the root of your site routed with "root"​

	​ 	 root ​'store#index'​, as: ​'store'​

	​ 	 ​# ...​

	​ 	​end​

 We can try it for ourselves.

	​ 	depot>​ curl --silent http://localhost:3000/products/3/who_bought.atom​

	​ 	<?xml version="1.0" encoding="UTF-8"?>

	​ 	<feed xml:lang="en-US" xmlns="http://www.w3.org/2005/Atom">

	​ 	 <id>tag:localhost,2005:/products/3/who_bought</id>

	​ 	 <link type="text/html" href="http://localhost:3000" rel="alternate"/>

	​ 	 <link type="application/atom+xml"

	​ 	 href="http://localhost:3000/info/who_bought/3.atom" rel="self"/>

	​ 	 <title>Who bought Programming Ruby 1.9</title>

	​ 	 <updated>2013-01-29T02:31:04Z</updated>

	​ 	 <entry>

	​ 	 <id>tag:localhost,2005:Order/1</id>

	​ 	 <published>2013-01-29T02:31:04Z</published>

	​ 	 <updated>2013-01-29T02:31:04Z</updated>

	​ 	 <link rel="alternate" type="text/html" href="http://localhost:3000/orders/1"/>

	​ 	 <title>Order 1</title>

	​ 	 <summary type="xhtml">

	​ 	 <div xmlns="http://www.w3.org/1999/xhtml">

	​ 	 <p>Shipped to 123 Main St</p>

	​ 	

	​ 	 <table>

	​ 	 ...

	​ 	 </table>

	​ 	 <p>Paid by check</p>

	​ 	 </div>

	​ 	 </summary>

	​ 	 <author>

	​ 	 <name>Dave Thomas</name>

	​ 	 <email>customer@pragprog.com</email>

	​ 	 </author>

	​ 	 </entry>

	​ 	</feed>

 Looks good. Now we can subscribe to this in our favorite feed reader.

 Best of all, the customer likes it. We’ve implemented product
 maintenance, a basic catalog, and a shopping cart,
 and now we have a simple ordering system. Obviously we’ll also have to
 write some kind of fulfillment application, but that can wait for a new
 iteration. (And that iteration is one that we’ll skip in this book; it
 doesn’t have much new to say about Rails.)

What We Just Did

 In a fairly short amount of time, we did the following:

	

	 We created a form to capture details for the order and
	 linked it to a new order model.
	

	

	 We added validation and used helper methods to display errors
	 to the user.
	

	

	 We provided a feed so that the administrator can monitor orders as
 they come in.
	

Playtime

 Here’s some stuff to try on your own:

	

	 Get HTML-, XML-, and JSON-formatted views working for
	 ​who_bought​ requests. Experiment with including the
 order information in the XML view by rendering
 ​@product.to_xml(include: :orders)​. Do the same thing
 for JSON.
	

	

	 What happens if you click
	 the
 ​Checkout​
 button in the sidebar
	 while the checkout screen is already displayed? Can you
	 find a way to disable the button in this circumstance?
	

	

	 The list of possible payment types is currently stored as
	 a constant in the ​Order​ class. Can
	 you move this list into a database table? Can you still
	 make validation work for the field?
	

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 13
Task H: Sending Mail

	
sending email and

	
integration testing.

 At this point, we have a website that will respond to requests and will
 provide feeds that allow sales of individual titles to be checked
 periodically. At times it makes sense to have something more than that.
 For those times, what we need is the ability to actively target a message
 to somebody specific when an event occurs. It could be wanting to notify
 a system administrator when an exception occurs. It could be a user
 feedback form. In this chapter, we will opt to simply send confirmation
 emails to people who have placed orders. Once we complete that, we will create
 tests not only for the mail support that we just added but for the entire
 user scenario we have created so far.

13.1 Iteration H1: Sending Confirmation Emails

 There
 are three basic parts to sending email in Rails: configuring how
 email is to be sent, determining when to send the email, and specifying
 what you want to say. We will cover each of these three in
 turn.

Email Configuration

	Email configuration is part of a Rails application’s
	environment and involves a ​Depot::Application.configure​
 block.
	If you want to use the same configuration for development,
	testing, and production, add the configuration
	to ​environment.rb​ in
	the ​config​ directory; otherwise, add
	different configurations to the appropriate files in
	the ​config/environments​ directory.

 Inside the block, you will need to have one or more statements.
	You first have to decide how you want mail
	delivered.

	​ 	config.action_mailer.delivery_method = :smtp

 Alternatives to ​:smtp​ include ​:sendmail​ and
 ​:test​.

	The ​:smtp​ and ​:sendmail​ options are used
	when you want Action Mailer to attempt to deliver
	email. You’ll clearly want to use one of these methods in
	production.

 The ​:test​ setting is great for unit and functional testing,
 which we will make use of in ​Testing Email​. Email will not be delivered; instead,
 it will be appended to an array (accessible via the attribute
 ​ActionMailer::Base.deliveries​). This is
 the default delivery method in the test environment. Interestingly,
 though, the default in development mode is ​:smtp​. If you want
 Rails to deliver email during the development of your
 application, this is good. If you’d rather disable email delivery in
 development mode, edit the file ​development.rb​ in
 the directory ​config/environments​, and add the
 following lines:

	​ 	Depot::Application.configure ​do​

	​ 	 config.action_mailer.delivery_method = :test

	​ 	​end​

	The ​:sendmail​ setting delegates mail delivery to your
	local system’s ​sendmail​ program,
	which is assumed to be
	in ​/usr/sbin​. This delivery mechanism is not
	particularly portable,
	because ​sendmail​ is not always
	installed in this directory on different operating systems. It
	also relies on your local ​sendmail​
	supporting the ​-i​
	and ​-t​ command options.

	You achieve more portability by leaving this option at its
	default value of ​:smtp​. If you do so, you’ll
	need also to specify some additional configuration to tell
	Action Mailer where to find an SMTP server to handle your
	outgoing email. This may be the machine running your web
	application, or it may be a separate box (perhaps at your ISP
	if you’re running Rails in a noncorporate environment). Your
	system administrator will be able to give you the settings for
	these parameters. You may also be able to determine them from
	your own mail client’s configuration.

 The following are typical settings for Gmail. Adapt them as you need.

	​ 	Depot::Application.configure ​do​

	​ 	 config.action_mailer.delivery_method = :smtp

	​ 	

	​ 	 config.action_mailer.smtp_settings = {

	​ 	 address: ​"smtp.gmail.com"​,

	​ 	 port: 587,

	​ 	 domain: ​"domain.of.sender.net"​,

	​ 	 authentication: ​"plain"​,

	​ 	 user_name: ​"dave"​,

	​ 	 password: ​"secret"​,

	​ 	 enable_starttls_auto: true

	​ 	 }

	​ 	​end​

	As with all configuration changes, you’ll need to restart your
	application if you make changes to any of the environment
	files.

Sending Email

	Now that we have everything configured, let’s write some
	code to send emails.

	By now you shouldn’t be surprised that Rails has a generator
	script to create mailers.
	In Rails, a mailer is a class that’s stored in
	the ​app/mailers​ directory. It contains one
	or more methods, with each method corresponding to an email
	template. To create the body of the email, these methods in
	turn use views (in just the same way that controller actions
	use views to create HTML and XML). So, let’s create a mailer
	for our store application. We’ll use it to send two different
	types of email: one when an order is placed and a second
	when the order ships. The ​rails generate
	mailer​ command takes the name of the mailer
	class, along with the names of the email action
	methods.

	​ 	depot>​ rails generate mailer OrderNotifier received shipped​

	​ 	 create app/mailers/order_notifier.rb

	​ 	 invoke erb

	​ 	 create app/views/order_notifier

	​ 	 create app/views/order_notifier/received.text.erb

	​ 	 create app/views/order_notifier/shipped.text.erb

	​ 	 invoke test_unit

	​ 	 create test/mailers/order_notifier_test.rb

	Notice that we’ve created
	an ​OrderNotifier​ class
	in ​app/mailers​ and two template files, one
	for each email type,
	in ​app/views/order_notifier​.
	(We also created a test file—we’ll look
	into this in ​Testing Email​.)

 Each method in the mailer class is responsible for setting up the
 environment for sending a particular email. Let’s look at an example
 before going into the details. Here’s the code that was generated for
 our ​OrderNotifier​ class, with one default changed:

	rails40/depot_q/app/mailers/order_notifier.rb
	​ 	​class​ OrderNotifier < ActionMailer::Base

	​*
​	 default from: ​'Sam Ruby <depot@example.com>'​

	​ 	 ​# Subject can be set in your I18n file at config/locales/en.yml​

	​ 	 ​# with the following lookup:​

	​ 	 ​#​

	​ 	 ​# en.order_notifier.received.subject​

	​ 	 ​#​

	​ 	 ​def​ received

	​ 	 @greeting = ​"Hi"​

	​ 	

	​ 	 mail to: ​"to@example.org"​

	​ 	 ​end​

	​ 	 ​# Subject can be set in your I18n file at config/locales/en.yml​

	​ 	 ​# with the following lookup:​

	​ 	 ​#​

	​ 	 ​# en.order_notifier.shipped.subject​

	​ 	 ​#​

	​ 	 ​def​ shipped

	​ 	 @greeting = ​"Hi"​

	​ 	

	​ 	 mail to: ​"to@example.org"​

	​ 	 ​end​

	​ 	​end​

 If you are thinking to yourself that this looks like a controller, it
 is because it very much does. There is one method per action. Instead of
 a call to
 ​render​
 , there is a call to

 ​mail​
 . Mail accepts a number of
 parameters including ​:to​ (as shown), ​:cc​,
 ​:from​, and ​:subject​, each of which does pretty much
 what you would expect them to do. Values that are common to all mail
 calls in the mailer can be set as defaults by simply calling
 ​default​, as is done for ​:from​ at the top of this
 class. Feel free to tailor this to your needs.

 The comments in this class also indicate that subject lines are
 already enabled for translation, a subject we cover in Chapter 15, ​Task J: Internationalization​. For now, we will simply use the
 ​:subject​ parameter.

 As with controllers, templates contain the text to be sent, and
 controllers and mailers can provide values to be inserted into those
 templates via instance variables.

Email Templates

 The generate script created two email templates in
 ​app/views/order_notifier​,
 one for each action in the
 ​Notifier​ class. These are regular
 ​erb​ files. We’ll use them to create
 plain-text emails (we’ll see later how to create HTML email). As
 with the templates we use to create our application’s web pages, the
 files contain a combination of static text and dynamic content. We
 can customize the template in
 ​received.text.erb​; this is the email
 that is sent to confirm an order:
	
	rails40/depot_q/app/views/order_notifier/received.text.erb
	​ 	Dear <%= @order.name %>

	​ 	

	​ 	Thank you for your recent order from The Pragmatic Store.

	​ 	

	​ 	You ordered the following items:

	​ 	

	​ 	<%= render @order.line_items -%>

	​ 	

	​ 	We'll send you a separate e-mail when your order ships.

	 The partial template that renders a line item
	 formats a single line with the item quantity and the
	 title. Because we’re in a template, all the regular helper
	 methods, such as
 ​truncate​
 , are
	 available.
	
	rails40/depot_q/app/views/line_items/_line_item.text.erb
	​ 	<%= sprintf(​"%2d x %s"​,

	​ 	 line_item.quantity,

	​ 	 truncate(line_item.product.title, length: 50)) %>

	 We now have to go back and fill in
	 the
 ​received​
 method in
	 the ​OrderNotifier​ class.
	
	rails40/depot_r/app/mailers/order_notifier.rb
	​ 	​def​ received(order)

	​ 	 @order = order

	​ 	

	​ 	 mail to: order.email, subject: ​'Pragmatic Store Order Confirmation'​

	​ 	​end​

 What we did here is add ​order​ as an argument to the method-received call, add code to copy the parameter passed into an
 instance variable, and update the call to

 ​mail​
 specifying where to send the email and
 what subject line to use.

Generating Emails

	 Now that we have our template set up and our mailer method
	 defined, we can use them in our regular controllers to
	 create and/or send emails.
	
	rails40/depot_r/app/controllers/orders_controller.rb
	​ 	​def​ create

	​ 	 @order = Order.new(order_params)

	​ 	 @order.add_line_items_from_cart(@cart)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @order.save

	​ 	 Cart.destroy(session[:cart_id])

	​ 	 session[:cart_id] = nil

	​*
​	 OrderNotifier.received(@order).deliver

	​ 	 format.html { redirect_to store_url, notice:

	​ 	 ​'Thank you for your order.'​ }

	​ 	 format.json { render action: ​'show'​, status: :created,

	​ 	 location: @order }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @order.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 And we need to update
 ​shipped​

 just like we did for
 ​received​
 .

	rails40/depot_r/app/mailers/order_notifier.rb
	​ 	​def​ shipped(order)

	​ 	 @order = order

	​ 	

	​ 	 mail to: order.email, subject: ​'Pragmatic Store Order Shipped'​

	​ 	​end​

At this point, we have enough of the basics in place that you can
 place an order and have a plain email sent to yourself, presuming
 that you didn’t disable the sending of email in development mode.
 Now let’s spice up the email with a bit of formatting.
Delivering Multiple Content Types

	 Some people prefer to receive email in plain-text format,
	 while others like the look of an HTML email. Rails makes it
	 easy to send email messages that contain alternative
	 content formats, allowing the user (or their email client)
	 to decide what they’d prefer to view.
	

 In the preceding section, we created a plain-text email. The view
 file for our ​received​ action was called
 ​received.text.erb​. This is the standard
 Rails naming convention. We can also create HTML-formatted emails.

	 Let’s try this with the order-shipped notification.
 We don’t need to modify any code; we simply need to
 create a new template.
	
	rails40/depot_r/app/views/order_notifier/shipped.html.erb
	​ 	​<h3>​Pragmatic Order Shipped​</h3>​

	​ 	​<p>​

	​ 	 This is just to let you know that we've shipped your recent order:

	​ 	​</p>​

	​ 	

	​ 	​<table>​

	​ 	 ​<tr>​​<th​ colspan=​"2"​​>​Qty​</th>​​<th>​Description​</th>​​</tr>​

	​ 	<%= render @order.line_items -%>

	​ 	​</table>​

	 We don’t even need to modify the partial because the existing one we
 already have will do just fine.
	
	rails40/depot_r/app/views/line_items/_line_item.html.erb
	​ 	<% ​if​ line_item == @current_item %>

	​ 	​<tr​ id=​"current_item"​​>​

	​ 	<% ​else​ %>

	​ 	​<tr>​

	​ 	<% ​end​ %>

	​ 	 ​<td>​<%= line_item.quantity %>×​</td>​

	​ 	 ​<td>​<%= line_item.product.title %>​</td>​

	​ 	 ​<td​ class=​"item_price"​​>​<%= number_to_currency(line_item.total_price) %>​</td>​

	​ 	​</tr>​

 But, for email templates, there’s a little
 bit more naming magic.
	 If you create multiple templates with the same
	 name but with different content types embedded in their
	 filenames, Rails will send all of them in one email,
	 arranging the content so that the email client will be able to
	 distinguish each.

 This means you will want to either update or delete the plain-text template that Rails provided for the ​shipped​ notifier.

[image: Joe asks:]
Joe asks:
Can I Also Receive Email?

 Action Mailer makes it easy to write Rails applications that handle
 incoming email. Unfortunately, you need to find a way to retrieve
 appropriate emails from your server environment and inject them into
 the application; this requires a bit more
 work.

 The easy part is handling an email within your application. In your
 Action Mailer class, write an instance method called
 ​receive​
 that takes a single
 parameter. This parameter will be a ​Mail::Message​
 object corresponding to the incoming email. You can extract fields, the
 body text, and/or attachments and use them in your application.

 All the normal techniques for intercepting incoming email
 end up running a command, passing that command the content of
 the email as standard input. If we make the
 Rails ​runner​ script the command that’s
 invoked whenever an email arrives, we can arrange to pass that
 email into our application’s email-handling code. For example,
 using procmail-based interception, we could write a rule that
 looks something like the example that follows. Using the arcane
 syntax of procmail, this rule copies any incoming email whose
 subject line contains ​Bug Report​ through
 our ​runner​ script:

	​ 	RUBY=/opt/local/bin/ruby

	​ 	TICKET_APP_DIR=/Users/dave/Work/depot

	​ 	HANDLER='IncomingTicketHandler.receive(STDIN.read)'

	​ 	

	​ 	:0 c

	​ 	* ^Subject:.*Bug Report.*

	​ 	| cd $TICKET_APP_DIR && $RUBY bin/rails runner $HANDLER

 The
 ​receive​

 class method is available to all Action Mailer classes. It takes
 the email text, parses it into a ​Mail​
 object, creates a new instance of the receiver’s class, and
 passes the ​Mail​ object to the
 ​receive​

 instance method in that class.

Testing Email

	When we used the generate script to create our order mailer,
	it automatically constructed a
	corresponding ​order_notifier_test.rb​ file
	in the application’s ​test/mailers​
	directory. It is pretty
 straightforward; it simply calls each action and verifies
	selected portions of the email produced. As we have tailored the
	email, let’s update the test case to match.

	rails40/depot_r/test/mailers/order_notifier_test.rb
	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ OrderNotifierTest < ActionMailer::TestCase

	​ 	 test ​"received"​ ​do​

	​*
​	 mail = OrderNotifier.received(orders(:one))

	​*
​	 assert_equal ​"Pragmatic Store Order Confirmation"​, mail.subject

	​*
​	 assert_equal [​"dave@example.org"​], mail.to

	​*
​	 assert_equal [​"depot@example.com"​], mail.from

	​*
​	 assert_match /1 x Programming Ruby 1.9/, mail.body.encoded

	​ 	 ​end​

	​ 	

	​ 	 test ​"shipped"​ ​do​

	​*
​	 mail = OrderNotifier.shipped(orders(:one))

	​*
​	 assert_equal ​"Pragmatic Store Order Shipped"​, mail.subject

	​*
​	 assert_equal [​"dave@example.org"​], mail.to

	​*
​	 assert_equal [​"depot@example.com"​], mail.from

	​*
​	 assert_match /<td>1×<\/td>\s*<td>Programming Ruby 1.9<\/td>/,

	​*
​	 mail.body.encoded

	​ 	 ​end​

	​ 	

	​ 	​end​

 The test method instructs the mail class to create (but not to send) an
 email, and we use assertions to verify that the dynamic content is
 what we expect. Note the use of
 ​assert_match​

 to validate just part of the body content. Your results may differ
 depending on how you tailored the ​default :from​ line in your
 ​Notifier​.

 At this point, we have verified that the message we intend to
 create is formatted correctly, but we haven’t verified that it is sent
 when the
 customer completes the ordering process. For that, we employ
 integration tests.

13.2 Iteration H2: Integration Testing of Applications

 Rails organizes
 tests into model, controller, and integration tests.
 Before explaining integration tests, let’s briefly recap what we
 have covered so far.

	​Unit testing of models​
	

 Model classes contain business logic. For example, when we add a
 product to a cart, the cart model class checks to see whether that
 product is already in the cart’s list of items. If so, it increments
 the quantity of that item; if not, it adds a new item for that
 product.

	​Functional testing of controllers​
	

 Controllers direct the show. They receive incoming web requests
 (typically user input), interact with models to gather
 application state, and then respond by causing the appropriate
 view to display something to the user. So when we’re testing
 controllers, we’re making sure that a given request is answered
 with an appropriate response. We still need models, but we
 already have them covered with unit
 tests.

 The next level of testing is to exercise the flow through our
 application. In many ways, this is like testing one of the
 stories that our customer gave us when we first started to code
 the application.

For example, we might have been told the following:

​A
 user goes to the store index page. They select a product,
	adding it to their cart. They then check out, filling in their
	details on the checkout form. When they submit, an order is
	created in the database containing their information, along
	with a single line item corresponding to the product they
	added to their cart. Once the order has been received, an email is
	sent confirming their purchase.​

 This is ideal material for an integration test. Integration
 tests simulate a continuous session between one or more virtual
 users and our application. You can use them to send in requests,
 monitor responses, follow redirects, and so on.

 When you create a model or controller, Rails creates the
 corresponding unit or functional tests. Integration tests are
 not automatically created, however, but you can use a
 generator to create one.

	​ 	depot>​ rails generate integration_test user_stories​

	​ 	 invoke test_unit

	​ 	 create test/integration/user_stories_test.rb

 Notice that Rails automatically adds ​_test​ to the name
 of the test.

 Let’s look at the generated file.

	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ UserStoriesTest < ActionDispatch::IntegrationTest

	​ 	 ​# test "the truth" do​

	​ 	 ​# assert true​

	​ 	 ​# end​

	​ 	​end​

 Let’s launch straight in and implement the test of our story. Because
 we’ll be testing only the purchase of a
 product, we’ll need only our products fixture.

So, instead of loading all
 the fixtures, let’s load only this one:

	​ 	fixtures :products

 Now let’s build a test named ​buying a product​.
 By the end of the test, we know we’ll want to have added an
 order to the ​orders​ table and a line item
 to the ​line_items​ table, so let’s empty
 them out before we start. And, because we’ll be using the Ruby
 book fixture data a lot, let’s load it into a local variable.

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	LineItem.delete_all

	​ 	Order.delete_all

	​ 	ruby_book = products(:ruby)

 Let’s attack the first sentence in the user story: ​A
	user goes to the store index page.​

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	get ​"/"​

	​ 	assert_response :success

	​ 	assert_template ​"index"​

 This almost looks like a functional test. The main difference is
 the ​get​ method. In a functional test, we check just one
 controller, so we specify just an action when
 calling
 ​get​
 . In an
 integration test, however, we can wander all over the
 application, so we need to pass in a full (relative) URL for the
 controller and action to be invoked.

 The next sentence in the story goes ​They select a product,
	adding it to their cart.​ We know that our application
	uses an Ajax request to add things to the cart, so we’ll use
 the
 ​xml_http_request​

 method to invoke the action. When it returns, we’ll check that
 the cart now contains the requested product.

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	xml_http_request :post, ​'/line_items'​, product_id: ruby_book.id

	​ 	assert_response :success

	​ 	

	​ 	cart = Cart.find(session[:cart_id])

	​ 	assert_equal 1, cart.line_items.size

	​ 	assert_equal ruby_book, cart.line_items[0].product

 In a thrilling plot twist, the user story continues: ​They
	then check out…​. That’s easy in our test.

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	get ​"/orders/new"​

	​ 	assert_response :success

	​ 	assert_template ​"new"​

 At this point, the user has to fill in their details on the
 checkout form. Once they do and they post the data, our
 application creates the order and redirects to the index page.
 Let’s start with the HTTP side of the world by posting the form
 data to the ​save_order​ action and verifying we’ve been
 redirected to the index. We’ll also check that the cart is now
 empty. The test
 helper method
 ​post_via_redirect​
 generates the
 post request and then follows any redirects returned until a
 nonredirect response is returned.

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	post_via_redirect ​"/orders"​,

	​ 	 order: { name: ​"Dave Thomas"​,

	​ 	 address: ​"123 The Street"​,

	​ 	 email: ​"dave@example.com"​,

	​ 	 pay_type: ​"Check"​ }

	​ 	assert_response :success

	​ 	assert_template ​"index"​

	​ 	cart = Cart.find(session[:cart_id])

	​ 	assert_equal 0, cart.line_items.size

 Next, we’ll wander into the database and make sure we’ve
 created an order and corresponding line item and that the
 details they contain are correct. Because we cleared out
 the ​orders​ table at the start of the test,
 we’ll simply verify that it now contains just our new order.

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	orders = Order.all

	​ 	assert_equal 1, orders.size

	​ 	order = orders[0]

	​ 	

	​ 	assert_equal ​"Dave Thomas"​, order.name

	​ 	assert_equal ​"123 The Street"​, order.address

	​ 	assert_equal ​"dave@example.com"​, order.email

	​ 	assert_equal ​"Check"​, order.pay_type

	​ 	

	​ 	assert_equal 1, order.line_items.size

	​ 	line_item = order.line_items[0]

	​ 	assert_equal ruby_book, line_item.product

 Finally, we’ll verify that the mail itself is correctly addressed and
 has the expected subject line.

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	mail = ActionMailer::Base.deliveries.last

	​ 	assert_equal [​"dave@example.com"​], mail.to

	​ 	assert_equal ​'Sam Ruby <depot@example.com>'​, mail[:from].value

	​ 	assert_equal ​"Pragmatic Store Order Confirmation"​, mail.subject

 And that’s it.

 Here’s the full source of the integration test:

	rails40/depot_r/test/integration/user_stories_test.rb
	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ UserStoriesTest < ActionDispatch::IntegrationTest

	​ 	 fixtures :products

	​ 	

	​ 	 ​# A user goes to the index page. They select a product, adding it to their​

	​ 	 ​# cart, and check out, filling in their details on the checkout form. When​

	​ 	 ​# they submit, an order is created containing their information, along with a​

	​ 	 ​# single line item corresponding to the product they added to their cart.​

	​ 	

	​ 	 test ​"buying a product"​ ​do​

	​ 	 LineItem.delete_all

	​ 	 Order.delete_all

	​ 	 ruby_book = products(:ruby)

	​ 	

	​ 	 get ​"/"​

	​ 	 assert_response :success

	​ 	 assert_template ​"index"​

	​ 	

	​ 	 xml_http_request :post, ​'/line_items'​, product_id: ruby_book.id

	​ 	 assert_response :success

	​ 	

	​ 	 cart = Cart.find(session[:cart_id])

	​ 	 assert_equal 1, cart.line_items.size

	​ 	 assert_equal ruby_book, cart.line_items[0].product

	​ 	

	​ 	 get ​"/orders/new"​

	​ 	 assert_response :success

	​ 	 assert_template ​"new"​

	​ 	

	​ 	 post_via_redirect ​"/orders"​,

	​ 	 order: { name: ​"Dave Thomas"​,

	​ 	 address: ​"123 The Street"​,

	​ 	 email: ​"dave@example.com"​,

	​ 	 pay_type: ​"Check"​ }

	​ 	 assert_response :success

	​ 	 assert_template ​"index"​

	​ 	 cart = Cart.find(session[:cart_id])

	​ 	 assert_equal 0, cart.line_items.size

	​ 	

	​ 	 orders = Order.all

	​ 	 assert_equal 1, orders.size

	​ 	 order = orders[0]

	​ 	

	​ 	 assert_equal ​"Dave Thomas"​, order.name

	​ 	 assert_equal ​"123 The Street"​, order.address

	​ 	 assert_equal ​"dave@example.com"​, order.email

	​ 	 assert_equal ​"Check"​, order.pay_type

	​ 	

	​ 	 assert_equal 1, order.line_items.size

	​ 	 line_item = order.line_items[0]

	​ 	 assert_equal ruby_book, line_item.product

	​ 	

	​ 	 mail = ActionMailer::Base.deliveries.last

	​ 	 assert_equal [​"dave@example.com"​], mail.to

	​ 	 assert_equal ​'Sam Ruby <depot@example.com>'​, mail[:from].value

	​ 	 assert_equal ​"Pragmatic Store Order Confirmation"​, mail.subject

	​ 	 ​end​

	​ 	​end​

Taken together, unit, functional, and integration tests give you the
 flexibility to test aspects of your application either in isolation or in
 combination with each other. In Section 25.4, ​Finding More at RailsPlugins.org​,
 we will tell you where you can find add-ons that take this to the next
 level and allow you to write plain-text descriptions of behaviors that can
 be read by your customer and be verified automatically.

Speaking of our customer, it is time to wrap up this iteration and see
 what functionality is next in store for Depot.
What We Just Did

 Without much code and with just a few templates, we have managed to
 pull off the following:

	

 We configured our development, test, and production environments for
 our Rails application to enable the sending of outbound emails.

	

 We created and tailored a mailer that will send confirmation emails
 in both plain-text and HTML formats to people who order our
 products.

	

 We created both a functional test for the emails produced and an integration test that covers the entire order scenario.

Playtime

Here’s some stuff to try on your own:
	

 Add a ​ship_date​ column to the orders table, and send a
 notification when this value is updated by the
 ​OrdersController​.

	

 Update the application to send an email to the system administrator,
 namely, yourself, when there is an application failure such as the
 one we handled in Section 10.2, ​Iteration E2: Handling Errors​.

	

 Add integration tests for both of the previous items.

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 14
Task I: Logging In

	
adding secure passwords to models,

	
using more validations,

	
adding authentication to a session,

	
using ​rails console​,

	
using database transactions, and

	
writing an Active Record hook.

 We have a happy customer—in a very short time we’ve jointly put
 together a basic shopping cart that she can start showing to
 her users. There’s just one more change that she’d like to
 see. Right now, anyone can access the administrative
 functions. She’d like us to add a basic user administration system
 that would force you to log in to get into the administration
 parts of the site.

 Chatting with our customer, it seems as if we don’t need a
 particularly sophisticated security system for our application. We
 just need to recognize a number of people based on usernames and
 passwords. Once recognized, these folks can use all of the
 administration functions.

14.1 Iteration I1: Adding Users

 Let’s start by creating a model and database table to hold our
 administrators’ usernames and passwords. Rather than store passwords in
 plain text, we will store a digest hash value of the password.
 By doing so we ensure that even if our database is compromised,
 the hash won’t reveal the original password, so it can’t be used to log
 in as this user using the forms.

	​ 	depot>​ rails generate scaffold User name:string password:digest​

 We declared the password as a ​digest​ type, which is another
 one of the nice extra touches that Rails provides.

 Now run the migration as usual.

	​ 	depot>​ rake db:migrate​

 Next we have to flesh out the user model.

	rails40/depot_r/app/models/user.rb
	​ 	​class​ User < ActiveRecord::Base

	​*
​	 validates :name, presence: true, uniqueness: true

	​ 	 has_secure_password

	​ 	​end​

 We check that the name is present and unique (that is, no two users
 can have the same name in the database).

Then there’s the
 mysterious
 ​has_secure_password​
 .

 You know those forms that prompt you to enter a password and
 then make you reenter it in a separate field so they can
 validate that you typed what you thought you typed?
 That’s exactly what
 ​has_secure_password​
 does for
 you: it tells Rails to validate that the two passwords match.
 This line was added for you because you specified
 ​password:digest​
 when you
 generated your scaffold.

 The next step is to uncomment out the ​bcrypt-ruby​ gem in
 your ​Gemfile​.

	rails40/depot_r/Gemfile
	​ 	# Use ActiveModel has_secure_password

	​*
​	gem 'bcrypt-ruby', '~> 3.0.0'

 Next, you need to install the gem.

	​ 	depot>​ bundle install​

 Finally, you need to restart your server.

With this code in place, we have the ability to present both a password
 and a password confirmation field in a form, as well as the ability to
 authenticate a user given a name and a password.

Administering Our Users

 In addition to the model and table we set up, we already have
 some scaffolding generated to administer the model. Let’s go
 through it and make some tweaks as necessary.

 We start with the controller. It defines the standard methods:

 ​index​
 ,
 ​show​
 ,
 ​new​
 ,

 ​edit​
 ,
 ​update​
 , and

 ​delete​
 . By default, Rails omits the
 unintelligible password hash from the view. This means
 that in the case of users, there isn’t really much to

 ​show​
 , except a name. So, let’s avoid the redirect to
 showing the user after a create
 operation.
 Instead, let’s redirect to the user’s index and add the username to the
 flash notice.
	rails40/depot_r/app/controllers/users_controller.rb
	​ 	​def​ create

	​ 	 @user = User.new(user_params)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @user.save

	​*
​	 format.html { redirect_to users_url,

	​*
​	 notice: ​"User ​#{@user.name}​ was successfully created."​ }

	​ 	 format.json { render action: ​'show'​,

	​ 	 status: :created, location: @user }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @user.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

Let’s do the same for an update operation.
	​ 	​def​ update

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @user.update(user_params)

	​*
​	 format.html { redirect_to users_url,

	​*
​	 notice: ​"User ​#{@user.name}​ was successfully updated."​ }

	​ 	 format.json { head :no_content }

	​ 	 ​else​

	​ 	 format.html { render action: ​'edit'​ }

	​ 	 format.json { render json: @user.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 While we are here, let’s also order the users returned in the
 index by ​name​.

	​ 	​def​ index

	​*
​	 @users = User.order(:name)

	​ 	​end​

 Now that the controller changes are done, let’s attend to the view. As
 it stands now, the index view doesn’t display notice information,
 so let’s add it.

	rails40/depot_r/app/views/users/index.html.erb
	​ 	​<h1>​Listing users​</h1>​

	​*
​	<% ​if​ notice %>

	​*
​	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​*
​	<% ​end​ %>

	​ 	

	​ 	​<table>​

	​ 	 ​<thead>​

	​ 	 ​<tr>​

	​ 	 ​<th>​Name​</th>​

	​ 	 ​<th>​​</th>​

	​ 	 ​<th>​​</th>​

	​ 	 ​<th>​​</th>​

	​ 	 ​</tr>​

	​ 	 ​</thead>​

	​ 	

	​ 	 ​<tbody>​

	​ 	 <% @users.each ​do​ |user| %>

	​ 	 ​<tr>​

	​ 	 ​<td>​<%= user.name %>​</td>​

	​ 	 ​<td>​<%= link_to ​'Show'​, user %>​</td>​

	​ 	 ​<td>​<%= link_to ​'Edit'​, edit_user_path(user) %>​</td>​

	​ 	 ​<td>​<%= link_to ​'Destroy'​, user, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>​</td>​

	​ 	 ​</tr>​

	​ 	 <% ​end​ %>

	​ 	 ​</tbody>​

	​ 	​</table>​

	​ 	

	​ 	​
​

	​ 	

	​ 	<%= link_to ​'New User'​, new_user_path %>

 Finally, we need to update the form used both to create a new user and
 to update an existing user. Note that this form is already set up
 to show the password and password confirmation
 fields.
 To improve the appearance of the page, we add legend and
 fieldset tags. And finally we wrap the output in a ​<div>​
 tag with a class that we previously defined in our stylesheet.

	rails40/depot_r/app/views/users/_form.html.erb
	​ 	​<div​ class=​"depot_form"​​>​

	​ 	

	​ 	<%= form_for @user ​do​ |f| %>

	​ 	 <% ​if​ @user.errors.any? %>

	​ 	 ​<div​ id=​"error_explanation"​​>​

	​ 	 ​<h2>​<%= pluralize(@user.errors.count, ​"error"​) %>

	​ 	 prohibited this user from being saved:​</h2>​

	​ 	 ​​

	​ 	 <% @user.errors.full_messages.each ​do​ |msg| %>

	​ 	 ​​<%= msg %>​​

	​ 	 <% ​end​ %>

	​ 	 ​​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​<fieldset>​

	​ 	 ​<legend>​Enter User Details​</legend>​

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :name, ​'Name:'​ %>

	​ 	 <%= f.text_field :name, size: 40 %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :password, ​'Password:'​ %>

	​ 	 <%= f.password_field :password, size: 40 %>

	​ 	 ​</div>​

	​ 	

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​ 	 <%= f.label :password_confirmation, ​'Confirm:'​ %>

	​ 	 <%= f.password_field :password_confirmation, size: 40 %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ class=​"actions"​​>​

	​ 	 <%= f.submit %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​</fieldset>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​</div>​

 Let’s try it. Navigate to ​http://localhost:3000/users/new​.
 For a stunning example of page design, see the following figure:

[image: images/depot_p_add_user.png]

Figure 36. Entering user details

 After clicking
 ​Create User​
 , the index is
 redisplayed with a cheery flash notice. If we look in our
 database, you’ll see that we’ve stored the user details.

	​ 	depot>​ sqlite3 -line db/development.sqlite3 "select * from users"​

	​ 	 id = 1

	​ 	 name = dave

	​ 	password_digest = $2a$10$lki6/oAcOW4AWg4A0e0T8uxtri2Zx5g9taBXrd4mDSDVl3rQRWRNi

	​ 	 created_at = 2013-01-29 14:40:06.230622

	​ 	 updated_at = 2013-01-29 14:40:06.230622

 Like we have done before, we need to update our tests to reflect the
 validation and redirection changes we have made. First we update the
 test for the
 ​create​
 method.

	rails40/depot_r/test/controllers/users_controller_test.rb
	​ 	test ​"should create user"​ ​do​

	​ 	 assert_difference(​'User.count'​) ​do​

	​*
​	 post :create, user: { name: ​'sam'​, password: ​'secret'​,

	​*
​	 password_confirmation: ​'secret'​ }

	​ 	 ​end​

	​ 	

	​*
​	 assert_redirected_to users_path

	​ 	​end​

 As the redirect on the
 ​update​
 method changed too, the
 ​update​ test also needs to change.

	​ 	test ​"should update user"​ ​do​

	​ 	 patch :update, id: @user, user: { name: @user.name, password: ​'secret'​,

	​ 	 password_confirmation: ​'secret'​ }

	​*
​	 assert_redirected_to users_path

	​ 	​end​

 And we need to update the test fixtures to ensure that there are no
 duplicate names.

	rails40/depot_r/test/fixtures/users.yml
	​ 	​# Read about fixtures at​

	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html​

	​ 	

	​ 	one:

	​*
​	 name: ​dave​

	​ 	 password_digest: ​<%= BCrypt::Password.create('secret') %>​

	​ 	

	​ 	two:

	​*
​	 name: ​susannah​

	​ 	 password_digest: ​<%= BCrypt::Password.create('secret') %>​

 Note the use of dynamically computed values in the fixture, specifically
 for the value of ​password_digest​. This code was also
 inserted by the scaffolding command and uses
 the same function that Rails[45] uses to compute the password.

 At this point, we can administer our users; we need to first
 authenticate users and then restrict administrative functions so they will be
 accessible only by administrators.

14.2 Iteration I2: Authenticating Users

 What does it mean to add login support for administrators of
 our store?

	

	 We need to provide a form that allows them to enter their
	 username and password.
	

	

	 Once they are logged in, we need to record that fact
	 somehow for the rest of their session (or until they log
	 out).
	

	

	 We need to restrict access to the administrative parts of
	 the application, allowing only people who are logged in to
	 administer the store.
	

 We could put all of the logic into a single controller, but it makes
 more sense to split it into two:
 a session controller to support logging in and out
 and a controller to welcome administrators.

	​ 	depot>​ rails generate controller Sessions new create destroy​

	​ 	depot>​ rails generate controller Admin index​

 The ​SessionsController#create​ action will need to record
 something in ​session​ to say that an
 administrator is logged in. Let’s have it store the ID of
 their ​User​ object using the
 key ​:user_id​. The login code looks
 like this:

	rails40/depot_r/app/controllers/sessions_controller.rb
	​ 	​def​ create

	​*
​	 user = User.find_by(name: params[:name])

	​*
​	 ​if​ user ​and​ user.authenticate(params[:password])

	​*
​	 session[:user_id] = user.id

	​*
​	 redirect_to admin_url

	​*
​	 ​else​

	​*
​	 redirect_to login_url, alert: ​"Invalid user/password combination"​

	​*
​	 ​end​

	​ 	​end​

 We are also doing something new here: using a form that isn’t
 directly associated with a model object. To see how that works, let’s
 look at the template for the ​sessions#new​ action.

	rails40/depot_r/app/views/sessions/new.html.erb
	​ 	​<div​ class=​"depot_form"​​>​

	​ 	 <% ​if​ flash[:alert] %>

	​ 	 ​<p​ id=​"notice"​​>​<%= flash[:alert] %>​</p>​

	​ 	 <% ​end​ %>

	​ 	 <%= form_tag ​do​ %>

	​ 	 ​<fieldset>​

	​ 	 ​<legend>​Please Log In​</legend>​

	​ 	 ​<div>​

	​ 	 <%= label_tag :name, ​'Name:'​ %>

	​ 	 <%= text_field_tag :name, params[:name] %>

	​ 	 ​</div>​

	​ 	 ​<div>​

	​ 	 <%= label_tag :password, ​'Password:'​ %>

	​ 	 <%= password_field_tag :password, params[:password] %>

	​ 	 ​</div>​

	​ 	 ​<div>​

	​ 	 <%= submit_tag ​"Login"​ %>

	​ 	 ​</div>​

	​ 	 ​</fieldset>​

	​ 	 <% ​end​ %>

	​ 	​</div>​

 This form is different from ones we saw earlier. Rather than
 using ​form_for​, it
 uses ​form_tag​, which simply builds a regular
 HTML ​<form>​. Inside that form, it
 uses ​text_field_tag​
 and ​password_field_tag​, two helpers that
 create HTML ​<input>​ tags. Each helper takes two
 parameters. The first is the name to give to the field, and the
 second is the value with which to populate the field. This style
 of form allows us to associate values in the ​params​
 structure directly with form fields—no model object is
 required. In our case, we chose to use the ​params​
 object directly in the form. An alternative would be to have the
 controller set instance variables.

 We also make use of the ​label_tag​ helpers to
 create HTML ​<label>​ tags. This helper also accepts two
 parameters. The first contains the name of the field, and the second
 contains the label to be displayed.

 See Figure 37, ​Parameters flow between controllers, templates, and browsers​. Note how the value of the form
 field is communicated between the controller and the view using
 the ​params​ hash: the view gets the value to display in
 the field from ​params[:name]​, and when the user submits
 the form, the new field value is made available to the
 controller the same way.

[image: images/form_flow.png]

Figure 37. Parameters flow between controllers, templates, and browsers.

 If the user successfully logs in, we store the ID of the user
 record in the session data. We’ll use the presence of that value
 in the session as a flag to indicate that an administrative user is
 logged in.

 As you might expect, the controller actions for logging out are
 considerably simpler.

	rails40/depot_r/app/controllers/sessions_controller.rb
	​ 	​def​ destroy

	​*
​	 session[:user_id] = nil

	​*
​	 redirect_to store_url, notice: ​"Logged out"​

	​ 	​end​

 Finally, it’s about time to add the index page, the first screen
 that administrators see when they log in. Let’s make it
 useful—we’ll have it display the total number of orders in our
 store. Create the template in the
 file ​index.html.erb​ in the
 directory ​app/views/admin​. (This template
 uses the
 ​pluralize​
 helper, which in
 this case generates the string ​order​
 or ​orders​ depending on the cardinality of its first
 parameter.)

	rails40/depot_r/app/views/admin/index.html.erb
	​ 	​<h1>​Welcome​</h1>​

	​ 	

	​ 	It's <%= Time.now %>

	​ 	We have <%= pluralize(@total_orders, ​"order"​) %>.

 The
 ​index​
 action sets up the
 count.

	rails40/depot_r/app/controllers/admin_controller.rb
	​ 	​class​ AdminController < ApplicationController

	​ 	 ​def​ index

	​*
​	 @total_orders = Order.count

	​ 	 ​end​

	​ 	​end​

 We have one more task to do before we can use this. Whereas previously
 we relied on the scaffolding generator to create our model and routes
 for us, this time we simply generated a controller because there is no
 database-backed model for this controller. Unfortunately, without the
 scaffolding conventions to guide it, Rails has
 no way of knowing which actions are to respond to GET requests, which
 are to respond to POST requests, and so on, for this controller.

 We need
 to provide this information by editing our
 ​config/routes.rb​ file.

	rails40/depot_r/config/routes.rb
	​ 	Depot::Application.routes.draw ​do​

	​*
​	 get ​'admin'​ => ​'admin#index'​

	​*
​	 controller :sessions ​do​

	​*
​	 get ​'login'​ => :new

	​*
​	 post ​'login'​ => :create

	​*
​	 delete ​'logout'​ => :destroy

	​*
​	 ​end​

	​ 	

	​ 	 get ​"sessions/create"​

	​ 	 get ​"sessions/destroy"​

	​ 	 resources :users

	​ 	 resources :orders

	​ 	 resources :line_items

	​ 	 resources :carts

	​ 	

	​ 	 get ​"store/index"​

	​ 	 resources :products ​do​

	​ 	 get :who_bought, on: :member

	​ 	 ​end​

	​ 	

	​ 	 ​# The priority is based upon order of creation:​

	​ 	 ​# first created -> highest priority.​

	​ 	 ​# See how all your routes lay out with "rake routes".​

	​ 	 ​# You can have the root of your site routed with "root"​

	​ 	 root ​'store#index'​, as: ​'store'​

	​ 	 ​# ...​

	​ 	​end​

 We’ve touched this before, when we added a ​root​ statement in
 Section 8.1, ​Iteration C1: Creating the Catalog Listing​. What the generate command
 will add to this file are fairly generic ​get​ statements for each
 of the actions specified. You can (and should) delete the routes
 provided for ​sessions/​​new​, ​sessions/create​, and
 ​sessions/destroy​.

 In the case of ​admin​, we will shorten the URL that the user has
 to enter (by removing the ​/index​ part) and map it to the
 full action. In the case of session actions, we will completely change
 the URL (replacing things like ​session/create​ with simply
 ​login​) as well as tailor the HTTP action that we will match.
 Note that ​login​ is mapped to both the new and create actions,
 the difference being whether the request was an HTTP GET or HTTP POST.

 We also make use of a shortcut: wrapping the session route declarations
 in a block and passing it to a
 ​controller​
 class
 method. This saves us a bit of typing as well as makes the routes
 easier to read. We will describe all you can do in this file in
 Section 20.1, ​Dispatching Requests to Controllers​.

 With these routes in place, we can experience the joy of logging in as an
 administrator. See the following figure:

[image: images/depot_p_index.png]

Figure 38. Administrative interface

 We need to replace the functional tests in the session controller to
 match what we just implemented.

	rails40/depot_r/test/controllers/sessions_controller_test.rb
	​ 	require ​'test_helper'​

	​ 	

	​ 	​class​ SessionsControllerTest < ActionController::TestCase

	​ 	 test ​"should get new"​ ​do​

	​ 	 get :new

	​ 	 assert_response :success

	​ 	 ​end​

	​ 	

	​*
​	 test ​"should login"​ ​do​

	​*
​	 dave = users(:one)

	​*
​	 post :create, name: dave.name, password: ​'secret'​

	​*
​	 assert_redirected_to admin_url

	​*
​	 assert_equal dave.id, session[:user_id]

	​*
​	 ​end​

	​ 	

	​*
​	 test ​"should fail login"​ ​do​

	​*
​	 dave = users(:one)

	​*
​	 post :create, name: dave.name, password: ​'wrong'​

	​*
​	 assert_redirected_to login_url

	​*
​	 ​end​

	​ 	

	​*
​	 test ​"should logout"​ ​do​

	​*
​	 delete :destroy

	​*
​	 assert_redirected_to store_url

	​*
​	 ​end​

	​ 	​end​

 We show our customer where we are, but she points out that we
 still haven’t controlled access to the administrative pages
 (which was, after all, the point of this exercise).

14.3 Iteration I3: Limiting Access

 We want to prevent people without an administrative login from
 accessing our site’s admin pages. It turns out that it’s easy to
 implement using the Rails ​callback​ facility.

 Rails callbacks allow you to intercept calls to action methods,
 adding your own processing before they are invoked, after they
 return, or both. In our case, we’ll use a ​before
 action​ callback to intercept all calls to the actions in our admin
 controller.

 The interceptor can
 check ​session[:user_id]​. If it’s set and if it corresponds
 to a user in the database, the application knows an
 administrator is logged in, and the call can proceed. If it’s not
 set, the interceptor can issue a redirect, in this case to our
 login page.

 Where should we put this method? It could sit directly in the
 admin controller, but, for reasons that will become apparent
 shortly, let’s put it instead in
 ​ApplicationController​, the parent
 class of all our controllers. This is in the
 file ​application_controller.rb​

 in the directory ​app/controllers​. Note too
 that we chose to restrict access to this method. This prevents it from
 ever being exposed to end users as an action.

	rails40/depot_r/app/controllers/application_controller.rb
	​ 	​class​ ApplicationController < ActionController::Base

	​*
​	 before_action :authorize

	​ 	 ​# ...​

	​*
​	

	​*
​	 protected

	​*
​	

	​*
​	 ​def​ authorize

	​*
​	 ​unless​ User.find_by(id: session[:user_id])

	​*
​	 redirect_to login_url, notice: ​"Please log in"​

	​*
​	 ​end​

	​*
​	 ​end​

	​ 	​end​

 The
 ​before_action​
 line causes the

 ​authorize​
 method to be invoked before every action
 in our application.

 This is
 going too far. We have just limited access to the store itself to
 administrators. That’s not good.

 We could go back and change things so that we mark only those
 methods that specifically need authorization. Such an
 approach is called ​blacklisting​ and is prone to errors of
 omission. A much better approach is to “whitelist” or list
 methods or controllers for which authorization is ​not​
 required. We do this simply by inserting a

 ​skip_before_action​
 call within the
 ​StoreController​:

	rails40/depot_r/app/controllers/store_controller.rb
	​ 	​class​ StoreController < ApplicationController

	​*
​	 skip_before_action :authorize

 and again for the ​SessionsController​ class, like so:

	rails40/depot_r/app/controllers/sessions_controller.rb
	​ 	​class​ SessionsController < ApplicationController

	​*
​	 skip_before_action :authorize

 We’re not done yet; now we need to allow people to create,
 update, and delete carts.

	rails40/depot_r/app/controllers/carts_controller.rb
	​ 	​class​ CartsController < ApplicationController

	​*
​	 skip_before_action :authorize, only: [:create, :update, :destroy]

	​ 	 ​# ...​

	​ 	 private

	​ 	 ​# ...​

	​ 	

	​ 	 ​def​ invalid_cart

	​ 	 logger.error ​"Attempt to access invalid cart ​#{params[:id]}​"​

	​ 	 redirect_to store_url, notice: ​'Invalid cart'​

	​ 	 ​end​

	​ 	​end​

 And we allow them to create line items:

	rails40/depot_r/app/controllers/line_items_controller.rb
	​ 	​class​ LineItemsController < ApplicationController

	​*
​	 skip_before_action :authorize, only: :create

 as well as create orders (which includes access to the ​new​ form):

	rails40/depot_r/app/controllers/orders_controller.rb
	​ 	​class​ OrdersController < ApplicationController

	​*
​	 skip_before_action :authorize, only: [:new, :create]

 With the authorization logic in place, we can now navigate to

 ​http://localhost:3000/products​
 . The callback method
 intercepts us on the way to the product listing and shows us the login
 screen instead.

 Unfortunately, this change pretty much invalidates most of our
 functional tests because most operations will now redirect to the login
 screen instead of doing the function desired. Fortunately, we can
 address this globally by creating a
 ​setup​

 method in the ​test_helper​. While we are there, we also define some
 helper methods to
 ​login_as​
 and

 ​logout​
 a user.

	rails40/depot_r/test/test_helper.rb
	​ 	​class​ ActiveSupport::TestCase

	​ 	 ​# ...​

	​ 	

	​ 	 ​# Add more helper methods to be used by all tests here...​

	​ 	 ​def​ login_as(user)

	​ 	 session[:user_id] = users(user).id

	​ 	 ​end​

	​ 	

	​ 	 ​def​ logout

	​ 	 session.delete :user_id

	​ 	 ​end​

	​ 	

	​ 	 ​def​ setup

	​ 	 login_as :one ​if​ ​defined?​ session

	​ 	 ​end​

	​ 	​end​

 Note that the
 ​setup​
 method will call

 ​login_as​
 only if ​session​ is defined. This
 prevents the login from being executed in tests that do not involve
 a controller.

 We show our customer and are rewarded with a big smile and a
 request: could we add a sidebar and put links to the user and
 product administration stuff in it? And while we’re there, could
 we add the ability to list and delete administrative users? You
 betcha!

14.4 Iteration I4: Adding a Sidebar, More Administration

 Let’s start with adding links to various administration functions to
 the sidebar in the layout and have them show
 up only if there is ​:user_id​ in the ​session​.

	rails40/depot_r/app/views/layouts/application.html.erb
	​ 	<!DOCTYPE html>

	​ 	​<html>​

	​ 	​<head>​

	​ 	 ​<title>​Pragprog Books Online Store​</title>​

	​ 	 <%= stylesheet_link_tag ​"application"​, media: ​"all"​,

	​ 	 ​"data-turbolinks-track"​ => true %>

	​ 	 <%= javascript_include_tag ​"application"​, ​"data-turbolinks-track"​ => true %>

	​ 	 <%= csrf_meta_tags %>

	​ 	​</head>​

	​ 	​<body​ class=​"​<%= controller.controller_name %>​"​​>​

	​ 	 ​<div​ id=​"banner"​​>​

	​ 	 <%= image_tag(​"logo.png"​) %>

	​ 	 <%= @page_title || ​"Pragmatic Bookshelf"​ %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ id=​"columns"​​>​

	​ 	 ​<div​ id=​"side"​​>​

	​ 	 <% ​if​ @cart %>

	​ 	 <%= hidden_div_if(@cart.line_items.empty?, id: ​'cart'​) ​do​ %>

	​ 	 <%= render @cart %>

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​​

	​ 	 ​​​<a​ href=​"http://www...."​​>​Home​​​​

	​ 	 ​​​<a​ href=​"http://www..../faq"​​>​Questions​​​​

	​ 	 ​​​<a​ href=​"http://www..../news"​​>​News​​​​

	​ 	 ​​​<a​ href=​"http://www..../contact"​​>​Contact​​​​

	​ 	 ​​

	​*
​	

	​*
​	 <% ​if​ session[:user_id] %>

	​*
​	 ​​

	​*
​	 ​​<%= link_to ​'Orders'​, orders_path %>​​

	​*
​	 ​​<%= link_to ​'Products'​, products_path %>​​

	​*
​	 ​​<%= link_to ​'Users'​, users_path %>​​

	​*
​	 ​​

	​*
​	 <%= button_to ​'Logout'​, logout_path, method: :delete %>

	​*
​	 <% ​end​ %>

	​ 	 ​</div>​

	​ 	 ​<div​ id=​"main"​​>​

	​ 	 <%= ​yield​ %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	​</body>​

	​ 	​</html>​

	Now it is all starting to come together. We can log in, and
	by clicking a link on the sidebar, we can see a list of
	users. Let’s see whether we can break something.

Would the Last Admin to Leave…

	We bring up the user list screen that looks
	something like Figure 39, ​Listing our users​; then we
	click the Destroy link next to ​dave​ to delete
	that user. Sure enough, our user is removed. But to our
	surprise, we’re then presented with the login screen
	instead. We just deleted the only administrative user from the
	system. When the next request came in, the authentication
	failed, so the application refused to let us in. We have to
	log in again before using any administrative functions.
[image: images/depot_q_user_list.png]

Figure 39. Listing our users

But
	now we have an embarrassing problem: there are no
	administrative users in the database, so we can’t log in.

	Fortunately, we can quickly add a user to the database from
	the command line. If you invoke the
	command ​rails console​, Rails invokes
	Ruby’s ​irb​ utility, but it does so
	in the context of your Rails application.
	
	
	That means you can
	interact with your application’s code by typing Ruby
	statements and looking at the values they return.

We can use
	this to invoke our user model directly, having it add a user
	into the database for us.

	​ 	depot>​ rails console​

	​ 	Loading development environment.

	​ 	>>​ User.create(name: 'dave', password: 'secret', password_confirmation: 'secret')​

	​ 	=> #<User:0x2933060 @attributes={...} ... >

	​ 	>>​ User.count​

	​ 	=> 1

	The ​>>​ sequences are prompts. After the first,
	we call the ​User​ class to create a new
	user, and after the second, we call it again to show that we do
	indeed have a single user in our database. After each command
	we enter, ​rails console​ displays the value returned
	by the code (in the first case, it’s the model object, and in
	the second case, it’s the count).

	Panic over. We can now log back in to the application. But
	how can we stop this from happening again? There are several
	ways. For example, we could write code that prevents you from
	deleting your own user. That doesn’t quite work—in theory, A
	could delete B at just the same time that B deletes
 A. Instead, let’s try a different approach. We’ll
 delete the user inside a database transaction. If there are no users
 left after we’ve deleted the user, we’ll roll the transaction back,
 restoring the user we just deleted.

	
	To do this, we’ll use an Active Record hook method. We’ve
	already seen one of these: the ​validate​ hook is called
	by Active Record to validate an object’s state. It turns out
	that Active Record defines sixteen or so hook methods, each called
	at a particular point in an object’s life cycle. We’ll use the
	
	
 ​after_destroy​
 hook, which is called after
	the SQL ​delete​ is executed. If a method by this name is
 publicly visible, it will conveniently be called
	in the same transaction as the ​delete​, so if it
	raises an exception, the transaction will be rolled back. The
	hook method looks like this:

	rails40/depot_s/app/models/user.rb
	​ 	after_destroy :ensure_an_admin_remains

	​ 	

	​ 	private

	​ 	 ​def​ ensure_an_admin_remains

	​ 	 ​if​ User.count.zero?

	​ 	 raise ​"Can't delete last user"​

	​ 	 ​end​

	​ 	 ​end​

	
	
	The key concept here is the use of an exception to indicate an
	error when deleting the user. This exception serves two
	purposes. First, because it is raised inside a transaction, it
	causes an automatic rollback.
	By raising the
	exception if the ​users​ table is empty
	after the deletion, we undo the delete and restore that last
	user.

	Second, the exception signals the error back to the
	controller, where we use a ​begin/end​ block to handle
	it and report the error to the user in the
	flash. If you want only to abort the transaction but not otherwise
 signal an exception, raise an
 ​ActiveRecord::Rollback​ exception instead, because
 this is the only exception that won’t be passed on by
 ​ActiveRecord::Base.transaction​.

	rails40/depot_s/app/controllers/users_controller.rb
	​ 	​def​ destroy

	​*
​	 ​begin​

	​*
​	 @user.destroy

	​*
​	 flash[:notice] = ​"User ​#{@user.name}​ deleted"​

	​*
​	 ​rescue​ StandardError => e

	​*
​	 flash[:notice] = e.message

	​*
​	 ​end​

	​ 	 respond_to ​do​ |format|

	​ 	 format.html { redirect_to users_url }

	​ 	 format.json { head :no_content }

	​ 	 ​end​

 This code still has a potential timing issue—it is still possible
 for two administrators each to delete the last two users if their
 timing is right. Fixing this would require more database wizardry than
 we have space for here.

 In fact, the login system described in this chapter is rather
 rudimentary. Most applications these days use a plugin to do this.

 A number of plugins are available that provide ready-made solutions
 that not only are more comprehensive than the authentication logic
 shown here but generally require less code and effort on your part to
 use. See Section 25.4, ​Finding More at RailsPlugins.org​ for a couple of examples.

What We Just Did

 By the end of this iteration, we’ve done the
 following:

	

	 We used ​has_secure_password​ to store an encrypted version
	 of the password into the database.
	

	

	 We controlled access to the administration functions
	 using before action callbacks to invoke
	 an
 ​authorize​
 method.
	

	

	 We saw how to use ​rails console​
	 to interact directly with a model (and dig us out of a hole
	 after we deleted the last user).
	

	

	 We saw how a transaction can help prevent deleting
	 the last user.
	

Playtime

 Here’s some stuff to try on your own:

	

 Modify the user update function to require and validate the current
 password before allowing a user’s password to be changed.
	

	

	 When the system is freshly installed on a new machine,
	 there are no administrators defined in the database, and
	 hence no administrator can log on. But, if no
	 administrator can log on, then no one can create an
	 administrative user.

Change the code so that if no
	 administrator is defined in the database, any username
	 works to log on (allowing you to quickly create a real
	 administrator).
	

	

	 Experiment
	 with ​rails console​. Try
	 creating products, orders, and line items. Watch for the
	 return value when you save a model object—when validation fails,
	 you’ll see ​false​ returned. Find out
	 why by examining the errors.
	
	​ 	>>​ prd = Product.new​

	​ 	=> #<Product id: nil, title: nil, description: nil, image_url:

	​ 	nil, created_at: nil, updated_at: nil, price:

	​ 	#<BigDecimal:246aa1c,'0.0',4(8)>>

	​ 	>>​ prd.save​

	​ 	=> false

	​ 	>>​ prd.errors.full_messages​

	​ 	=> ["Image url must be a URL for a GIF, JPG, or PNG image",

	​ 	 "Image url can't be blank", "Price should be at least 0.01",

	​ 	 "Title can't be blank", "Description can't be blank"]

	
Look up the

 ​authenticate_or_request_with_http_basic​
 method and
 utilize it in your ​:authorize​ callback if the
 ​request.format​ is ​not​ ​Mime::HTML​.
 Test that it works by accessing an Atom feed.
	​ 	curl --silent --user dave:secret \

	​ 	 http://localhost:3000/products/2/who_bought.atom

	

 While we have gotten our tests working by performing a login, we
 haven’t yet written tests that verify that access to sensitive
 data requires login. Write at least one test that verifies this
 by calling
 ​logout​
 and then attempting to fetch or
 update some data that requires authentication.

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[45]	

 ​https://github.com/rails/rails/blob/3-2-stable/activemodel/lib/active_model/secure_password.rb​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 15
Task J: Internationalization

	
localizing templates and

	
database design considerations for I18n.

[image: Joe asks:]
Joe asks:
If We Stick to One Language, Do We Need to Read This Chapter?

 The short answer is no. In fact, many Rails applications are for a
 small or homogeneous group and never need translating. That being
 said, pretty much everybody who does find that they need translation
 agrees that it is best if this is done early. So, unless you are sure
 that translation will not ever be needed, it is our recommendation that
 you at least understand what would be involved so that you can make an
 informed decision.

 Now we have a basic cart working, and our customer starts to
 inquire about languages other than English, noting that her company has
 a big push on for expansion in emerging markets. Unless we can
 present something in a language that visitors to our customer’s website
 will understand, our
 customer will be leaving money on the table. We can’t have that.

 The first problem is that none of us is a professional translator. The
 customer reassures us that this is not something we need to concern
 ourselves with because that part of the effort will be outsourced. All we
 need to worry about is ​enabling​ translation. Furthermore, we
 don’t have to worry about the administration pages just yet, because all
 the administrators speak English. What we have to focus on is the store.

 That’s a relief—but is still a tall order. We are going to need to
 define a way to enable the user to select a language, we are going to have
 to provide the translations themselves, and we are going to have to
 change the views to use these translations. But we are up to the
 task, and armed with a bit of memory of high-school Spanish,
 we set off to work.

15.1 Iteration J1: Selecting the Locale

 We start by creating a new configuration file that
 encapsulates our knowledge of what locales are available
 and which one is to be used as the default.

	rails40/depot_s/config/initializers/i18n.rb
	​ 	​#encoding: utf-8​

	​ 	I18n.default_locale = :en

	​ 	

	​ 	LANGUAGES = [

	​ 	 [​'English'​, ​'en'​],

	​ 	 [​"Español"​.html_safe, ​'es'​]

	​]

 This code is doing two things.

 The first thing it does is use the ​I18n​ module
 to set the default locale. ​I18n​ is a
 funny name, but it sure beats typing out
 ​internationalization​ all the time. Internationalization,
 after all, starts with an ​i​, ends with an ​n​,
 and has eighteen letters in between.

 Then it defines a list of associations between display names and locale
 names. Unfortunately, all we have available at the moment is a U.S.
 keyboard, and español has a character that can’t be directly entered via
 our keyboard. Different operating systems have different ways of
 dealing with this, and often the easiest way is to simply copy and paste the
 correct text from a website. If you do this, just make sure your
 editor is configured for UTF-8. Meanwhile, we’ve opted to use the HTML
 equivalent of “n con tilde” character in Spanish. If we didn’t do
 anything else, the markup itself would be shown. But by calling
 ​html_safe​, we inform Rails that the string is safe to be
 interpreted as containing HTML.

 To get Rails to pick up this configuration change, the server
 needs to be restarted.

 Since each page that is translated will have an ​en​ and
 ​es​ version (for now, more will be added later), it makes sense
 to include this in the URL. Let’s plan to put the locale up front, make
 it optional, and have it default to the current locale, which in turn
 will default to English.

 To implement this cunning plan, let’s start with modifying
 ​config/routes.rb​.

	rails40/depot_s/config/routes.rb
	​ 	Depot::Application.routes.draw ​do​

	​ 	 get ​'admin'​ => ​'admin#index'​

	​ 	

	​ 	 controller :sessions ​do​

	​ 	 get ​'login'​ => :new

	​ 	 post ​'login'​ => :create

	​ 	 delete ​'logout'​ => :destroy

	​ 	 ​end​

	​ 	

	​ 	 get ​"sessions/create"​

	​ 	 get ​"sessions/destroy"​

	​ 	

	​ 	 resources :users

	​ 	

	​ 	 resources :products ​do​

	​ 	 get :who_bought, on: :member

	​ 	 ​end​

	​ 	

	​*
​	 scope ​'(:locale)'​ ​do​

	​ 	 resources :orders

	​ 	 resources :line_items

	​ 	 resources :carts

	​ 	 root ​'store#index'​, as: ​'store'​, via: :all

	​*
​	 ​end​

	​ 	​end​

 What we have done is nested our resources and root declarations inside a
 scope declaration for ​:locale​. Furthermore, ​:locale​
 is in parentheses, which is the way to say that it is optional. Note
 that we did not choose to put the administrative and session functions
 inside this scope, because it is not our intent to translate them at this
 time.

 What this means is that both
 ​http://localhost:3000/​
 will use
 the default locale, namely, English, and therefore be routed exactly the
 same as
 ​http://localhost:3000/en​
 .

 ​http://localhost:3000/es​
 will route to the same controller
 and action, but we will want this to cause the locale to be set
 differently.

 At this point, we’ve made a lot of changes to
 ​config.routes​, and with the nesting and all the
 optional parts to the path, the gestalt might be hard to visualize.
 Never fear: when running a server in development mode, Rails provides a
 visual aid. All you need to do is navigate to

 ​http://localhost:3000/rails/info/routes​
 , and you’ll see a
 list of all your routes, as shown in
 Figure 40, ​A list of all of the active routes​. More information on the fields
 shown in this table can be found in the description of
 ​rake routes​.

[image: images/rails_info_routes.png]

Figure 40. A list of all of the active routes

 With the routing in place, we are ready to extract the locale from
 the parameters and make it available to the application.
 To do this, we need to create a ​before_action​ callback and to
 set the ​default_url_options​. The logical place to do both is
 in the common base class for all of our controllers, which is
 ​ApplicationController​.

	rails40/depot_s/app/controllers/application_controller.rb
	​ 	​class​ ApplicationController < ActionController::Base

	​*
​	 before_action :set_i18n_locale_from_params

	​ 	 ​# ...​

	​ 	 protected

	​*
​	 ​def​ set_i18n_locale_from_params

	​*
​	 ​if​ params[:locale]

	​*
​	 ​if​ I18n.available_locales.map(&:to_s).include?(params[:locale])

	​*
​	 I18n.locale = params[:locale]

	​*
​	 ​else​

	​*
​	 flash.now[:notice] =

	​*
​	 ​"​#{params[:locale]}​ translation not available"​

	​*
​	 logger.error flash.now[:notice]

	​*
​	 ​end​

	​*
​	 ​end​

	​*
​	 ​end​

	​*
​	

	​*
​	 ​def​ default_url_options

	​*
​	 { locale: I18n.locale }

	​*
​	 ​end​

	​ 	​end​

 This ​set_i18n_locale_from_params​ does pretty much what it says:
 it sets the locale from the params, but only if there is
 a locale in the params; otherwise, it leaves the current locale alone.
 Care is taken to provide a message for both the user and the
 administrator when there is a failure.

 And ​default_url_options​ also does pretty much what it says, in
 that it provides a hash of URL options that are to be considered as
 present whenever they aren’t otherwise provided. In this case, we are
 providing a value for the ​:locale​ parameter. This is needed
 when a view on a page that does not have the locale specified attempts
 to construct a link to a page that does. We will see that in use soon.

 With this in place, we can see the results in the following figure:

[image: images/english_translation.png]

Figure 41. English version of the front page

 At this point, the English version of the page is available both at the
 root of the website and at pages that start with ​/en​.
 Additionally, a message on the screen says that the translation is not
 available (as we can see in Figure 42, ​Translation not available​), which will also leave a
 message in the log indicating that the file wasn’t found. It might not
 look like it, but that’s progress.

[image: images/i18n_trans_not_avail.png]

Figure 42. Translation not available

15.2 Iteration J2: Translating the Storefront

 Now it is time to begin providing
 the translated text. Let’s start with the layout, because it is
 pretty visible. We replace any text that needs to be translated with
 calls to ​I18n.translate​. Not only is this method conveniently
 aliased as ​I18n.t​, but there also is a helper provided named
 ​t​.

The parameter to the translate function is a unique dot-qualified
 name. We can choose any name we like, but if we use the ​t​ helper
 function provided, names that start with a dot will first be expanded
 using the name of the template. So, let’s do that.

	rails40/depot_s/app/views/layouts/application.html.erb
	​ 	<!DOCTYPE html>

	​ 	​<html>​

	​ 	​<head>​

	​ 	 ​<title>​Pragprog Books Online Store​</title>​

	​ 	 <%= stylesheet_link_tag ​"application"​, media: ​"all"​,

	​ 	 ​"data-turbolinks-track"​ => true %>

	​ 	 <%= javascript_include_tag ​"application"​, ​"data-turbolinks-track"​ => true %>

	​ 	 <%= csrf_meta_tags %>

	​ 	​</head>​

	​ 	​<body​ class=​"​<%= controller.controller_name %>​"​​>​

	​ 	 ​<div​ id=​"banner"​​>​

	​ 	 <%= image_tag(​"logo.png"​) %>

	​*
​	 <%= @page_title || t(​'.title'​) %>

	​ 	 ​</div>​

	​ 	 ​<div​ id=​"columns"​​>​

	​ 	 ​<div​ id=​"side"​​>​

	​ 	 <% ​if​ @cart %>

	​ 	 <%= hidden_div_if(@cart.line_items.empty?, id: ​'cart'​) ​do​ %>

	​ 	 <%= render @cart %>

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​​

	​*
​	 ​​​<a​ href=​"http://www...."​​>​<%= t(​'.home'​) %>​​​​

	​*
​	 ​​​<a​ href=​"http://www..../faq"​​>​<%= t(​'.questions'​) %>​​​​

	​*
​	 ​​​<a​ href=​"http://www..../news"​​>​<%= t(​'.news'​) %>​​​​

	​*
​	 ​​​<a​ href=​"http://www..../contact"​​>​<%= t(​'.contact'​) %>​​​​

	​ 	 ​​

	​ 	

	​ 	 <% ​if​ session[:user_id] %>

	​ 	 ​​

	​ 	 ​​<%= link_to ​'Orders'​, orders_path %>​​

	​ 	 ​​<%= link_to ​'Products'​, products_path %>​​

	​ 	 ​​<%= link_to ​'Users'​, users_path %>​​

	​ 	 ​​

	​ 	 <%= button_to ​'Logout'​, logout_path, method: :delete %>

	​ 	 <% ​end​ %>

	​ 	 ​</div>​

	​ 	 ​<div​ id=​"main"​​>​

	​ 	 <%= ​yield​ %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	​</body>​

	​ 	​</html>​

 Since this view is named ​layouts/application.html.erb​, the
 English mappings will expand to ​en.layouts.application​.
 Here’s the corresponding locale file:

	rails40/depot_s/config/locales/en.yml
	​ 	en:

	​ 	

	​ 	 layouts:

	​ 	 application:

	​ 	 title: ​"Pragmatic Bookshelf"​

	​ 	 home: ​"Home"​

	​ 	 questions: ​"Questions"​

	​ 	 news: ​"News"​

	​ 	 contact: ​"Contact"​

 Here it is in Spanish:

	rails40/depot_s/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 layouts:

	​ 	 application:

	​ 	 title: ​"Publicaciones de Pragmatic"​

	​ 	 home: ​"Inicio"​

	​ 	 questions: ​"Preguntas"​

	​ 	 news: ​"Noticias"​

	​ 	 contact: ​"Contacto"​

 The format is YAML, the same as the one
 used to configure the databases. YAML simply consists of indented names
 and values, where the indentation in this case matches the structure
 that we created in our names.

 To get Rails to recognize that there are new YAML files, the
 server needs to be restarted.

 At this point, we can see in the following figure
 the actual translated text appearing in our browser window:

[image: images/i18n_title_and_side.png]

Figure 43. Baby steps: translated titles and sidebar

 Next to be updated is the main title as well as the
 ​Add to Cart​
 button.
 Both can be found in the store index template.

	rails40/depot_s/app/views/store/index.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​*
​	​<h1>​<%= t(​'.title_html'​) %>​</h1>​

	​ 	<% cache [​'store'​, Product.latest] ​do​ %>

	​ 	 <% @products.each ​do​ |product| %>

	​ 	 <% cache [​'entry'​, product] ​do​ %>

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 <%= image_tag(product.image_url) %>

	​ 	 ​<h3>​<%= product.title %>​</h3>​

	​ 	 <%= sanitize(product.description) %>

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

	​*
​	 <%= button_to t(​'.add_html'​), line_items_path(product_id: product),

	​ 	 remote: true %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	<% ​end​ %>

 And here’s the corresponding updates to the locales files, first in
 English:

	rails40/depot_s/config/locales/en.yml
	​ 	en:

	​ 	

	​ 	 store:

	​ 	 index:

	​ 	 title_html: ​"Your Pragmatic Catalog"​

	​ 	 add_html: ​"Add to Cart"​

 and then in Spanish:

	rails40/depot_s/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 store:

	​ 	 index:

	​ 	 title_html: ​"Su Catálogo de Pragmatic"​

	​ 	 add_html: ​"Añadir al Carrito"​

 Note that since ​title_html​ and ​add_html​ end in the
 characters ​_html​, we are free to use HTML entity names for
 characters that do not appear on our keyboard. If we did not name the
 translation key this way, what you would end up seeing on the page is
 the markup. This is yet another convention that Rails has adopted to
 make your coding life easier. Rails will also treat names that contain
 ​html​ as a component (in other words, the string
 ​.html.​) as HTML key names.

 By refreshing the page in the browser window, we see the results shown in
 Figure 44, ​Translated heading and button​.

[image: images/i18n_main.png]

Figure 44. Translated heading and button

 Feeling confident, we move on to the cart partial.

	rails40/depot_s/app/views/carts/_cart.html.erb
	​*
​	​<h2>​<%= t(​'.title'​) %>​</h2>​

	​ 	​<table>​

	​ 	 <%= render(cart.line_items) %>

	​ 	

	​ 	 ​<tr​ class=​"total_line"​​>​

	​ 	 ​<td​ colspan=​"2"​​>​Total​</td>​

	​ 	 ​<td​ class=​"total_cell"​​>​<%= number_to_currency(cart.total_price) %>​</td>​

	​ 	 ​</tr>​

	​ 	

	​ 	​</table>​

	​ 	

	​*
​	<%= button_to t(​'.checkout'​), new_order_path, method: :get %>

	​*
​	<%= button_to t(​'.empty'​), cart, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

 And again, here are the translations:

	rails40/depot_s/config/locales/en.yml
	​ 	en:

	​ 	

	​ 	 carts:

	​ 	 cart:

	​ 	 title: ​"Your Cart"​

	​ 	 empty: ​"Empty cart"​

	​ 	 checkout: ​"Checkout"​

	rails40/depot_s/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 carts:

	​ 	 cart:

	​ 	 title: ​"Carrito de la Compra"​

	​ 	 empty: ​"Vaciar Carrito"​

	​ 	 checkout: ​"Comprar"​

 Refreshing the page, we see the cart title and buttons have been
 translated (Figure 45, ​Carrito bonita​).

[image: images/i18n_cart.png]

Figure 45. Carrito bonita

 We now
 notice our first problem. Languages are not the only
 thing that varies from locale to locale; currencies do too. And the
 customary way that numbers are presented varies too.

 So, first we check with our customer, and we verify that we are not
 worrying about exchange rates at the moment (whew!), because that will be
 taken care of by the credit card and/or wire companies, but we do need
 to display the string “USD” or “$US” after the value when we are showing
 the result in Spanish.

 Another variation is the way that numbers themselves are displayed.
 Decimal values are delimited by a comma, and separators for the
 thousands place are indicated by a dot.

 Currency is a lot more complicated than it first appears, and that’s a
 lot of decisions to be made.
 Fortunately, Rails knows to look in your translations file for this
 information; all we need to do is supply it. Here it is for ​en​:

	rails40/depot_s/config/locales/en.yml
	​ 	en:

	​ 	

	​ 	 number:

	​ 	 currency:

	​ 	 format:

	​ 	 unit: ​"$"​

	​ 	 precision: ​2​

	​ 	 separator: ​"."​

	​ 	 delimiter: ​","​

	​ 	 format: ​"%u%n"​

 Here it is for ​es​:

	rails40/depot_s/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 number:

	​ 	 currency:

	​ 	 format:

	​ 	 unit: ​"$US"​

	​ 	 precision: ​2​

	​ 	 separator: ​","​

	​ 	 delimiter: ​"."​

	​ 	 format: ​"%n %u"​

 We’ve specified the unit, precision, separator, and delimiter for
 ​number.currency.​​format​. That much is pretty self-explanatory. The
 format is a bit more involved: ​%n​ is a placeholder for the
 number; ​ ​ is a nonbreaking space character,
 preventing this value from being split across multiple lines;
 and ​%u​ is a placeholder for the unit (see Figure 46, ​Mas dinero, por favor​).

[image: images/i18n_currency.png]

Figure 46. Mas dinero, por favor.

15.3 Iteration J3: Translating Checkout

 Now we feel that we are in the home stretch. The new order page is next.

	rails40/depot_s/app/views/orders/new.html.erb
	​ 	​<div​ class=​"depot_form"​​>​

	​ 	 ​<fieldset>​

	​*
​	 ​<legend>​<%= t(​'.legend'​) %>​</legend>​

	​ 	 <%= render ​'form'​ %>

	​ 	 ​</fieldset>​

	​ 	​</div>​

 Here is the form that is used by this page:

	rails40/depot_s/app/views/orders/_form.html.erb
	​ 	<%= form_for(@order) ​do​ |f| %>

	​ 	 <% ​if​ @order.errors.any? %>

	​ 	 ​<div​ id=​"error_explanation"​​>​

	​ 	

	​ 	 ​<h2>​<%= pluralize(@order.errors.count, ​"error"​) %>

	​ 	 prohibited this order from being saved:​</h2>​

	​ 	

	​ 	 ​​

	​ 	 <% @order.errors.full_messages.each ​do​ |msg| %>

	​ 	 ​​<%= msg %>​​

	​ 	 <% ​end​ %>

	​ 	 ​​

	​ 	

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​*
​	 <%= f.label :name, t(​'.name'​) %>​
​

	​ 	 <%= f.text_field :name, size: 40 %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​*
​	 <%= f.label :address, t(​'.address_html'​) %>​
​

	​ 	 <%= f.text_area :address, rows: 3, cols: 40 %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​*
​	 <%= f.label :email, t(​'.email'​) %>​
​

	​ 	 <%= f.email_field :email, size: 40 %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ class=​"field"​​>​

	​*
​	 <%= f.label :pay_type, t(​'.pay_type'​) %>​
​

	​ 	 <%= f.select :pay_type, Order::PAYMENT_TYPES,

	​*
​	 prompt: t(​'.pay_prompt_html'​) %>

	​ 	 ​</div>​

	​ 	

	​ 	 ​<div​ class=​"actions"​​>​

	​*
​	 <%= f.submit t(​'.submit'​) %>

	​ 	 ​</div>​

	​ 	<% ​end​ %>

 Here are the corresponding locale definitions:

	rails40/depot_s/config/locales/en.yml
	​ 	en:

	​ 	

	​ 	 orders:

	​ 	 new:

	​ 	 legend: ​"Please Enter Your Details"​

	​ 	 form:

	​ 	 name: ​"Name"​

	​ 	 address_html: ​"Address"​

	​ 	 email: ​"E-mail"​

	​ 	 pay_type: ​"Pay with"​

	​ 	 pay_prompt_html: ​"Select a payment method"​

	​ 	 submit: ​"Place Order"​

	rails40/depot_s/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 orders:

	​ 	 new:

	​ 	 legend: ​"Por favor, introduzca sus datos"​

	​ 	 form:

	​ 	 name: ​"Nombre"​

	​ 	 address_html: ​"Dirección"​

	​ 	 email: ​"E-mail"​

	​ 	 pay_type: ​"Forma de pago"​

	​ 	 pay_prompt_html: ​"Seleccione un método de pago"​

	​ 	 submit: ​"Realizar Pedido"​

 See Figure 47, ​Ready to take your money—in Spanish​ for the completed form.

[image: images/i18n_checkout.png]

Figure 47. Ready to take your money—in Spanish

 All looks good until we hit the
 ​Realizar Pedido​

 button prematurely and see the results shown in Figure 48, ​Translation missing​.
 The error messages that Active Record produces can also be translated;
 what we need to do is supply the translations.

[image: images/i18n_translation_missing.png]

Figure 48. Translation missing

	rails40/depot_s/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 activerecord:

	​ 	 errors:

	​ 	 messages:

	​ 	 inclusion: ​"no está incluido en la lista"​

	​ 	 blank: ​"no puede quedar en blanco"​

	​ 	 errors:

	​ 	 template:

	​ 	 body: ​"Hay problemas con los siguientes campos:"​

	​ 	 header:

	​ 	 one: ​"1 error ha impedido que este %{model} se guarde"​

	​ 	 other: ​"%{count} errores han impedido que este %{model} se guarde"​

 Note that messages with counts typically have two forms:
 ​errors.template.header.​​one​ is the message that is produced when
 there is one error, and ​errors.template.​​header.other​ is
 produced otherwise. This gives the translators the opportunity to
 provide the correct pluralization of nouns
 and to match the verbs with the nouns.

 Since we once again made use of HTML entities, we will want these
 error messages to be displayed as is (or in Rails parlance,
 ​raw​).
 We will also need to translate the error messages.
 So again, we modify the form.

	rails40/depot_t/app/views/orders/_form.html.erb
	​ 	<%= form_for(@order) ​do​ |f| %>

	​ 	 <% ​if​ @order.errors.any? %>

	​ 	 ​<div​ id=​"error_explanation"​​>​

	​*
​	 ​<h2>​<%=raw t(​'errors.template.header'​, count: @order.errors.count,

	​*
​	 model: t(​'activerecord.models.order'​)) %>.​</h2>​

	​*
​	 ​<p>​<%= t(​'errors.template.body'​) %>​</p>​

	​ 	

	​ 	 ​​

	​ 	 <% @order.errors.full_messages.each ​do​ |msg| %>

	​*
​	 ​​<%=raw msg %>​​

	​ 	 <% ​end​ %>

	​ 	 ​​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	​<!-- ... -->​

 Note that we are passing the count and model name (which is, itself,
 enabled for translation) on the translate call for the error template
 header.

 With these changes in place, we try again and see improvement in the
 following figure:

[image: images/i18n_mixed_errors.png]

Figure 49. English nouns in Spanish sentences

 That’s better, but the names of the model and attributes bleed through the
 interface. This is OK in English, because the names we picked work for
 English. We need to provide translations for each.

This, too, goes
 into the YAML file.

	rails40/depot_t/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 activerecord:

	​ 	 models:

	​ 	 order: ​"pedido"​

	​ 	 attributes:

	​ 	 order:

	​ 	 address: ​"Dirección"​

	​ 	 name: ​"Nombre"​

	​ 	 email: ​"E-mail"​

	​ 	 pay_type: ​"Forma de pago"​

 Note that there is no need to provide English equivalents for this, because those
 messages are built in to Rails.

 We are pleased to see the model and attribute names translated in the
 following figure; we fill out the form, we submit the order, and
 we get a “Thank you for your order” message.
[image: images/i18n_errors.png]

Figure 50. Model names are now translated too.

We need to update the
 flash messages.

	rails40/depot_t/app/controllers/orders_controller.rb
	​ 	​def​ create

	​ 	 @order = Order.new(order_params)

	​ 	 @order.add_line_items_from_cart(@cart)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @order.save

	​ 	 Cart.destroy(session[:cart_id])

	​ 	 session[:cart_id] = nil

	​ 	 OrderNotifier.received(@order).deliver

	​ 	 format.html { redirect_to store_url, notice:

	​*
​	 I18n.t(​'.thanks'​) }

	​ 	 format.json { render action: ​'show'​, status: :created,

	​ 	 location: @order }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @order.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 Finally, we provide the translations.

	rails40/depot_t/config/locales/en.yml
	​ 	en:

	​ 	

	​ 	 thanks: ​"Thank you for your order"​

	rails40/depot_t/config/locales/es.yml
	​ 	es:

	​ 	

	​ 	 thanks: ​"Gracias por su pedido"​

 See the cheery message in the next figure:

[image: images/i18n_flash.png]

Figure 51. Thanking the customer in Spanish

15.4 Iteration J4: Add a Locale Switcher

 We’ve completed the task, but we really need to advertise its
 availability more. We spy some unused area in the
 top-right side of the layout, so we add a form immediately before
 the ​image_tag​.

	rails40/depot_t/app/views/layouts/application.html.erb
	​ 	​<div​ id=​"banner"​​>​

	​*
​	 <%= form_tag store_path, class: ​'locale'​ ​do​ %>

	​*
​	 <%= select_tag ​'set_locale'​,

	​*
​	 options_for_select(LANGUAGES, I18n.locale.to_s),

	​*
​	 onchange: ​'this.form.submit()'​ %>

	​*
​	 <%= submit_tag ​'submit'​ %>

	​*
​	 <%= javascript_tag ​"$('.locale input').hide()"​ %>

	​*
​	 <% ​end​ %>

	​ 	 <%= image_tag(​"logo.png"​) %>

	​ 	 <%= @page_title || t(​'.title'​) %>

	​ 	​</div>​

 The ​form_tag​ specifies the path to the store as the page to be
 redisplayed when the form is submitted. A
 ​class​ attribute lets us associate the form with some CSS.

 The ​select_tag​ is used to define the one input field for this
 form, namely, locale. It is an options list based on the
 ​LANGUAGES​ array that we set up in the configuration
 file, with the default being the current locale (also made available via
 the ​I18n​ module). We also set up an
 ​onchange​ event handler, which will submit this form whenever
 the value changes. This works only if JavaScript is enabled, but it is
 handy.

 Then we add a ​submit_tag​ for the cases when JavaScript is not
 available. To handle the case where JavaScript is available and the
 submit button is unnecessary, we add a tiny bit of JavaScript that will
 hide each of the input tags in the locale form, even though we know that
 there is only one.

 Next, we modify the store controller to redirect to the store path for a
 given locale if the ​:set_locale​ form is used.

	rails40/depot_t/app/controllers/store_controller.rb
	​ 	​def​ index

	​*
​	 ​if​ params[:set_locale]

	​*
​	 redirect_to store_url(locale: params[:set_locale])

	​*
​	 ​else​

	​ 	 @products = Product.order(:title)

	​*
​	 ​end​

	​ 	​end​

 Finally, we add a bit of CSS.

	rails40/depot_t/app/assets/stylesheets/application.css.scss
	​ 	​.locale ​{

	​ 	 float: ​right;​

	​ 	 margin: ​-0.25em 0.1em;​

	​ 	}

 For the actual selector, see the following figure. We can
 now switch back and forth between languages with a single mouse click.

[image: images/i18n_selector.png]

Figure 52. Locale selector in top right

 At this point, we can now place orders in two languages, and our thoughts
 turn to actual deployment. But because it has been a busy day, it is time to
 put down our tools and relax. We will start on deployment in the morning.

What We Just Did

By the end of this iteration, we’ve done the following:
	

 We set the default locale for our application and provided a
 means for the user to select an alternate locale.

	

 We created translation files for text fields, currency
 amounts, errors, and model names.

	

 We altered layouts and views to call out to the
 ​I18n​ module by way of the

 ​t​
 helper in order to translate textual
 portions of the interface.

Playtime

Here’s some stuff to try on your own:
	

 Add a locale column to the products database, and adjust the index
 view to select only the products that match the locale. Adjust
 the products view so that you can view, enter, and alter this new
 column. Enter a few products in each locale, and test the
 resulting application.

	

 Determine the current exchange rate between U.S. dollars and euros,
 and localize the currency display to display euros when ​ES_es​ is
 selected.

	

 Translate the ​Order::PAYMENT_TYPES​ shown in the drop-down.
 You will need to keep the option value (which is sent to the
 server) the same. Change only what is displayed.

	(You’ll find hints
	at
 ​http://www.pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 16
Task K: Deployment and Production

	
running our application in a production web server,

	
configuring the database for MySQL,

	
using Bundler and Git for version control, and

	
deploying our application using Capistrano.

 Deployment is supposed to mark a happy point in the lifetime of
 our application. It’s when we take the code that we’ve so
 carefully crafted and upload it to a server so that other people
 can use it. It’s when the beer, champagne, and hors d’oeuvres are
 supposed to flow. Shortly thereafter, our application will be
 written about in ​Wired​ magazine, and we’ll be
 overnight names in the geek community.

 The reality, however, is that it often takes quite a bit of up-front
 planning in order to pull off a smooth and repeatable deployment of your
 application.

 By the time we are through with this chapter, our setup will look like
 the following figure:

[image: images/prod_webserver_arch.png]

Figure 53. Application deployment road map

 At the moment, we’ve been
 doing all of our work on one machine, though user interaction with our
 web server ​could​ be done on a separate machine. In the
 figure, the user’s machine is in the center, and the WEBRick web server
 is on the left. This server makes use of SQLite3, various gems you have
 installed, and your application code. Your code may or may not have
 also been placed in Git by this point; either way, it will be by the end
 of the chapter, as will be the gems you are using.

 This Git repository will be replicated on the production server,
 which again could be another machine but need not be. This server will
 be running a combination of Apache httpd and Phusion Passenger. This
 code will access a MySQL database on what may yet be a
 ​fourth​ machine.

 Capistrano will be the tool we use to
 update the deployment server(s) remotely, safely, and repeatably from
 the comfort of our development machine.

 That’s a lot of moving parts!

 Instead of doing it all at once, we will do it in three iterations.
 Iteration K1 will get the Depot application up and running with Apache,
 MySQL, and Passenger—a truly production-quality web server
 environment.

[image: Joe asks:]
Joe asks:
Can We Deploy to Microsoft Windows?

 Although we can deploy applications to Windows environments, the
 overwhelming amount of Rails tools and shared knowledge assumes a Unix-based
 operating system such as Linux or Mac OS X. One such tool,
 Phusion Passenger, is highly recommended by the Ruby on Rails
 development team and covered in this chapter.

 The techniques described in this chapter can be used by those
 deploying to Linux or Mac OS X.

 We will leave Git, Bundler, and Capistrano to a second iteration. These
 tools will enable us to separate our development activities from our
 deployment environment. This means that by the time we are done, we will
 be deploying twice; but that’s only this first time and only to ensure
 that each part is working independently. It also allows us to
 focus on a smaller set of variables at any one time, which will simplify
 the process of untangling any problems that we might encounter.

 In a third iteration, we will cover various administrative and cleanup
 tasks. Let’s get started!

16.1 Iteration K1: Deploying with Phusion Passenger and MySQL

 So far, as we’ve been developing a Rails application on our
 local machine, we’ve probably been using WEBrick
 when we run our server. For the most part, it doesn’t
 matter. The ​rails server​ command will
 sort out the most appropriate way to get our application
 running in development mode on port 3000. However, a deployed
 Rails application works a bit differently. We can’t just fire
 up a single Rails server process and let it do all the
 work. Well, we ​could​, but it’s far from
 ideal. The reason for this is that Rails is single-threaded. It
 can work on only one request at a time.

 The Web, however, is an extremely concurrent environment. Production
 web servers, such as Apache, Lighttpd, and Zeus, can work on
 several requests—even tens or hundreds of requests—at the same
 time. A single-process, single-threaded Ruby-based web server
 can’t possibly keep up. Luckily, it doesn’t have to keep up.
 Instead, the way we deploy a Rails application into
 production is to use a front-end server, such as Apache, to
 handle requests from the client. Then, you use the
 HTTP proxying of Passenger to send requests that should be handled
 by Rails to one of any number of back-end application processes.

Configuring a Second Machine

 If you have a second machine you can use, that’s great. If not, you
 can use a virtual machine. There’s plenty of free software you can use
 for this purpose, such as VirtualBox[46] and Ubuntu.[47] If you go with Ubuntu, we recommend 12.04 LTS.

 Configure this machine using the instructions in Chapter 1, ​Installing Rails​.
 If you like, you can skip the step of installing Rails and instead
 install Bundler.

	​ 	$ ​gem install bundler​

 Next, copy your entire directory containing the Depot application
 from your first machine to your second machine. On the second machine,
 change into that directory and use Bundler to install all of your
 application’s dependencies.

	​ 	$ ​bundle install​

 Verify that your installation is working using any combination of the
 following commands:

	​ 	$ ​rake about​

	​ 	$ ​rake test​

	​ 	$ ​rails server​

 At this point you should be able to launch a browser on either machine
 and see your application. Once you’re satisfied that your application
 is running correctly, stop the server.

 These steps of copying directories and starting and stopping servers
 aren’t generally something you want your application developers to be doing,
 and by the time we’re done with this chapter this will all be
 automated. But for now, knowing what the steps are and that the
 intermediate results are correct has established the base upon which we can
 build our deployment.

Installing Passenger

 The next step is to ensure that the Apache web server is installed and
 running on our second machine.
 Linux users should have already installed
 Apache in Section 1.3, ​Installing on Linux​.
 For Mac OS X users, it’s already installed with
 the operating system, but you’ll need to enable it. For Mac OS X
 releases prior to 10.8, this can be accomplished by going into
 System Preferences > Sharing and enabling
 Web Sharing.

 Starting with Mac OS X 10.8, this needs to be done via the
 Terminal application.

	​ 	$ ​sudo apachectl start​

	​ 	$ ​sudo launchctl load -w /System/Library/LaunchDaemons/org.apache.httpd.plist​

 The next step is to install Passenger.

	​ 	$ ​gem install passenger --version 4.0.8​

	​ 	$ ​passenger-install-apache2-module​

 If the necessary dependencies are not met, the latter command will
 tell you what you need to do. For example, on a Ubuntu 13.04
 (Raring Ringtail), you will find that you need to install
 ​libcurl4-openssl-dev​,
 ​apache2-prefork-dev​,
 ​libapr1-dev​, and ​libaprutil1-dev​. If this happens,
 follow the provided instructions, and try the Passenger install
 command again.

 Once the dependencies are satisfied, this command causes a number of
 sources to be compiled and the configuration files to be updated.
 During the process, it will ask us to update our Apache configuration.
 The first will be to enable your freshly built module and will involve
 adding lines such as the following to our Apache configuration.
 (Note: Passenger will tell you the exact lines to copy and paste into
 this file, so use those, not these. Also, we’ve had to elide the
 path specification in the ​LoadModule​ line to make it fit the
 page. Be sure to use the path specification that Passenger provided
 for you.)

	​ 	LoadModule passenger_module /home/rubys/.rvm/.../ext/apache2/mod_passenger.so

	​ 	PassengerRoot /home/rubys/.rvm/gems/ruby-2.0.0-p0/gems/passenger-4.0.1

	​ 	PassengerDefaultRuby /home/rubys/.rvm/wrappers/ruby-2.0.0-p0/ruby

 To find out where your Apache configuration file is, try issuing the
 following command:

	​ 	$ ​apachectl -V | grep HTTPD_ROOT​

	​ 	$ ​apachectl -V | grep SERVER_CONFIG_FILE​

 On some systems, the command name is ​apache2ctl​; on others,
 it’s ​httpd​. Experiment until you find the correct
 command.

 Instead of modifying this file directly, most modern systems have
 conventions that allow you to maintain your extensions separately.
 On Mac OS X, for example, you may see the following line at the end
 of your ​httpd.conf​ file:

	​ 	Include /private/etc/apache2/other/*.conf

 If you see this line in your ​httpd.conf​, you can
 put the lines that Passenger provided into a
 ​passenger.conf​ file in that directory. On Ubuntu you
 can put these lines into
 ​/etc/apache2/conf.d/passenger​.

Deploying Our Application Locally

 The next step is to deploy our application. Whereas the previous step
 needs to be done only once per server, this step is actually once per
 application. Substitute your host’s name and your application’s
 directory path in the following ​ServerName​
 line:

	​ 	<VirtualHost *:80>

	​ 	 ServerName depot.yourhost.com

	​ 	 DocumentRoot /home/rubys/deploy/depot/public/

	​ 	 <Directory /home/rubys/deploy/depot/public>

	​ 	 AllowOverride all

	​ 	 Options -MultiViews

	​ 	 Order allow,deny

	​ 	 Allow from all

	​ 	 </Directory>

	​ 	</VirtualHost>

 Note that the ​DocumentRoot​ is set to our
 ​public​ directory in our Rails application and that we
 mark the public directory as readable.

 Again, your Apache installation may have conventions for the best
 place to put these instructions. On Mac OS X, check your
 ​httpd.conf​ for the following (possibly commented-out) line:

	​ 	#Include /private/etc/apache2/extra/httpd-vhosts.conf

 If this line is present, consider uncommenting the line and replacing
 the ​dummy-host.example.com​ with your host.

 On Ubuntu, the convention is to place these lines in a file in the
 ​/etc/apache2/sites-available​ directory and then to
 separately enable the site. For example, if you named the file
 ​depot​, then the site can be enabled using the
 following command:

	​ 	sudo a2ensite depot

 If you have multiple applications, repeat this ​VirtualHost​
 block once per application, adjusting the ​ServerName​ and
 ​DocumentRoot​ in each block.
 You will also need to verify that the following line is
 present in the configuration files already:

	​ 	NameVirtualHost *:80

 If this line is not present, add it before a line that contains the
 text ​Listen 80​.

 The final step is to restart our Apache web server.

	​ 	$ ​sudo apachectl restart​

 You will now need to configure your client so that it maps the host
 name you chose to the correct machine. This is done in a file named
 ​/etc/hosts​. On Windows machines, this file can
 be found in ​C:\windows\system32\drivers\etc\​. To
 edit this file, you will need to open the file as an administrator.

 A typical ​/etc/hosts​ line will look like the
 following:

	​ 	127.0.0.1 depot.yourhost.com

 That’s it! We can now access our application using the host
 (or virtual host) we specified. Unless we used a port number
 other than 80, there is no longer any need for us to specify
 a port number on our URL.

 There are a few things to be aware of.

	

 If when restarting your server you see a message that ​The
 address or port is invalid​, this means the
 ​NameVirtualHost​ line is already present, perhaps in
 another configuration file in the same directory. If so, remove
 the line you added because this directive needs to be present
 only once.

	
If we want to run in an environment other than production,
 we can include a ​RailsEnv​ directive in
 each ​VirtualHost​ in our Apache configuration.

	​ 	RailsEnv development

	
We can restart our application without restarting Apache at any
 time by updating or creating a file named
 ​restart.txt​ in the ​tmp​ of
 our application.

	​ 	$ ​touch tmp/restart.txt​

	

	 The output of the ​passenger-install-apache2-module​
 command will tell us where we can find additional documentation.

Using MySQL for the Database

 The SQLite website[48] is refreshingly honest when it comes to describing what
 this database is good at and what it is not good at.

 In particular,
 SQLite is not recommended for high-volume, high-concurrency websites
 with large datasets. And, of course, we want our website to be such
 a website.

 There are plenty of alternatives to SQLite, both free and commercial.
 We will go with MySQL.

 It is available
 via your native packaging tool in Linux, and an installer is provided
 for OS X on the MySQL website.[49]

The ​Mac OS X ver. 10.7 (x86, 64-bit), DMG
 Archive​ version works fine on 10.8. If you don’t want to
 sign up, look for the ​No thanks, just take me to the
 downloads!​ link at the bottom of the page.

 In addition to installing the MySQL database, you will also need to
 add the ​mysql​ gem to the ​Gemfile​.

	rails40/depot_t/Gemfile
	​ 	group :production do

	​ 	 gem 'mysql2'

	​ 	end

 By putting this gem in group ​production​, it will not be
 loaded when running in development or test.

 If you like, you can put
 the sqlite3 gem into (separate) ​development​ and ​test​
 groups.

 Install the gem using ​bundle install​. You
 may need to locate and install the MySQL database development files
 for your operating system first. On Ubuntu, for example, you will
 need to install ​libmysqlclient-dev​.

 You can use the ​mysql​
 command-line client to create your database or if you’re
 more comfortable with tools such
 as ​phpmyadmin​
 or ​CocoaMySQL​, go for
 it.

	​ 	depot>​ mysql -u root​

	​ 	mysql>​ CREATE DATABASE depot_production DEFAULT CHARACTER SET utf8;​

	​ 	mysql>​ GRANT ALL PRIVILEGES ON depot_production.*​

	​ 	 ->​ TO 'username'@'localhost' IDENTIFIED BY 'password';​

	​ 	mysql>​ EXIT;​

 If you picked a different database name, remember it, because
 you will need to adjust the configuration file
 to match the name you picked. Let’s look at that configuration
 file now.

 The ​config/database.yml​ file contains
 information on database connections. It contains
 three sections, one each for the development, test, and
 production databases. The current production section contains the
 following:

	​ 	production:

	​ 	 adapter: sqlite3

	​ 	 database: db/production.sqlite3

	​ 	 pool: 5

	​ 	 timeout: 5000

 We replace that section with something like the following:

	​ 	production:

	​ 	 adapter: mysql2

	​ 	 encoding: utf8

	​ 	 reconnect: false

	​ 	 database: depot_production

	​ 	 pool: 5

	​ 	 username: username

	​ 	 password: password

	​ 	 host: localhost

 Change the username, password, and database fields as necessary.

Loading the Database

 Next, we apply our migrations.

	​ 	depot>​ rake db:setup RAILS_ENV="production"​

 One of two things will happen. If all is set up correctly, you
 will see output like the following:

	​ 	-- create_table("carts", {:force=>true})

	​ 	 ->​ 0.1722s​

	​ 	-- create_table("line_items", {:force=>true})

	​ 	 ->​ 0.1255s​

	​ 	-- create_table("orders", {:force=>true})

	​ 	 ->​ 0.1171s​

	​ 	-- create_table("products", {:force=>true})

	​ 	 ->​ 0.1172s​

	​ 	-- create_table("users", {:force=>true})

	​ 	 ->​ 0.1255s​

	​ 	-- initialize_schema_migrations_table()

	​ 	 ->​ 0.0006s​

	​ 	-- assume_migrated_upto_version(20121130000008, "db/migrate")

	​ 	 ->​ 0.0008s​

 If instead you see an error of some sort, don’t panic!
 It’s probably a simple configuration issue. Here are some
 things to try:

	

 Check the name you gave for the database in
 the ​production:​ section
 of ​database.yml​. It should be the
 same as the name of the database you created
 (using ​mysqladmin​ or some
 other database administration tool).

	

 Check that the username and password
 in ​database.yml​ match what you used when
 you created the
 database.

	

 Check that your database server is running.

	

 Check that you can connect to it from the command line.
 If using MySQL, run the following command:

	​ 	depot>​ mysql depot_production​

	​ 	mysql>

	

 If you can connect from the command line, can you
 create a dummy table? (This tests that the database
 user has sufficient access rights to the database.)

	​ 	mysql>​ create table dummy(i int);​

	​ 	mysql>​ drop table dummy;​

	

 If you can create tables from the command line
 but ​rake db:migrate​ fails, double-check
 the ​database.yml​ file. If there
 are ​socket:​ directives in the file, try
 commenting them out by putting a hash character (#) in
 front of each.

	

 If you see an error saying ​No such file or
 directory…​ and the filename in the error
 is ​mysql.sock​,
 your Ruby MySQL libraries can’t find your MySQL
 database. This might happen if you installed the
 libraries before you installed the database or if you
 installed the libraries using a binary distribution and
 that distribution made the wrong assumption about the
 location of the MySQL socket file. To fix this, the best
 idea is to reinstall your Ruby MySQL libraries. If this
 isn’t an option, double-check that the ​socket:​
 line in your ​database.yml​ file
 contains the correct path to the MySQL socket on your
 system.

	

 If you get the error ​Mysql not loaded​, it means you’re
 running an old version of the Ruby MySQL library. Rails
 needs at least version 2.5.

	

 Some readers also report getting the error message ​Client
 does not support authentication protocol requested by server;
 consider upgrading MySQL client​. To resolve this incompatibility
 between the installed version of MySQL and the libraries used to
 access it, follow the instructions at

 ​http://dev.mysql.com/doc/mysql/en/old-client.html​
 and
 issue a MySQL command such as ​set password for
 ’some_user’@​​’some_host’ = OLD_​​PASSWORD(’newpwd’);​.

	

 If you’re using MySQL under Cygwin on Windows, you may
 have problems if you specify a host
 of ​localhost​. Try using ​127.0.0.1​
 instead.

	

 Finally, you might have problems in the format of
 the ​database.yml​ file. The YAML
 library that reads this file is strangely sensitive to
 tab characters. If your file contains tab characters,
 you’ll have problems.

 (And you thought you’d chosen Ruby
 over Python because you didn’t like Python’s significant
 whitespace, eh?)

 Rerun the ​rake db:setup​ as many times
 as you need to in order to correct any configuration issues you
 may have.

 If all this sounds scary, don’t worry. In reality, database
 connections work like a charm most of the time. And once
 you have Rails talking to the database, you don’t have to
 worry about it again.

 At this point, you are up and running. Nothing looks any different
 when you are running as a single user. The differences become
 apparent only when you have a large number of concurrent users or a large
 database.

 The next step is to split our development
 from our production machine.

16.2 Iteration K2: Deploying Remotely with Capistrano

 If you are a
 large shop, having a pool of dedicated servers that
 you administer so that you can ensure that they are running the same
 version of the necessary software is the way to go. For more modest
 needs, a shared server will do, but we will have to take additional care
 to deal with the fact that the versions of software installed may not
 always match the version that we have installed on our development
 machine.

 Don’t worry, we’ll talk you through it.

Prepping Your Deployment Server

 Although putting our software under version control is a really, really,
 really good idea during development, not putting our software under
 version control when it comes to deployment is downright foolhardy—enough so that the software that we have selected to manage your
 deployment, namely, Capistrano, all but requires it.

 Plenty of software configuration management (SCM) systems are
 available. Subversion, for example, is a particularly
 good one.

 But if you haven’t yet chosen one, go with Git, which is
 easy to set up and doesn’t require a separate server process.

 The
 examples that follow will be based on Git, but if you picked a
 different SCM system, don’t worry. Capistrano doesn’t much care which
 one you pick, just so long as you pick one.

 The first step is to create an empty repository on a machine
 accessible by your deployment servers. In fact, if we have only one
 deployment server, there is no reason that it can’t do double duty as
 your Git server. So, log onto that server, and issue the following
 commands:

	​ 	$ ​mkdir -p ~/git/depot.git​

	​ 	$ ​cd ~/git/depot.git​

	​ 	$ ​git --bare init​

 The next thing to be aware of is that even if the SCM server and our
 web server are the same physical machine, Capistrano will be accessing
 our SCM software as if it were remote. We can make this smoother by
 generating a public key (if you don’t already have one) and then using
 it to give ourselves permission to access our own server.

	​ 	$ ​test -e ~/.ssh/id_dsa.pub || ssh-keygen -t dsa​

	​ 	$ ​cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys​

 Test this by ​ssh​’ing into your own server.
 Among other things, this will ensure that your
 ​known_hosts​ file is updated.

 While we are here, we have one last thing to attend to.
 Capistrano will insert a directory named
 ​current​ between our application directory name and
 the Rails subdirectories, including the ​public​
 subdirectory. This means you will have to adjust your
 ​DocumentRoot​ and ​Directory​ lines
 in your ​httpd.conf​ if you
 control your own server or in a control panel for your shared host.

	​ 	DocumentRoot /home/rubys/deploy/depot/current/public/

	​ 	<Directory /home/rubys/deploy/depot/current/public>

 Restart your Apache server. You will see a warning that the
 ​depot/current/public​ directory doesn’t exist. That’s fine, because
 we will be creating it shortly.

 Finally, ensure that the changes you made to your
 ​Gemfile​ and
 ​config/database.yml​ are copied from the Depot
 application on your second machine to the Depot application on your
 first machine.

 That’s it for the server! From here on out, we will be doing
 everything from your development machine.

Getting an Application Under Control

 The first thing we are going to do is update our
 ​Gemfile​ to indicate that we are using Capistrano.

	rails40/depot_t/Gemfile
	​ 	# Use Capistrano for deployment

	​*
​	gem 'rvm-capistrano', group: :development

 All users will need to uncomment out that one line. RVM users will
 need to add the characters ​rvm-​ where indicated.

 We can now install Capistrano using ​bundle install​. We used
 this command in Iteration G3 to
 install the ​bcrypt-ruby​ gem.

 If you haven’t already put your application under configuration
 control, do so now.

	​ 	$ ​cd your_application_directory​

	​ 	$ ​git init​

	​ 	$ ​git add .​

	​ 	$ ​git commit -m "initial commit"​

 This next step is optional but might be a good idea if either you
 don’t have full control of the deployment server or you have many
 deployment servers to manage. We are going to use a second feature of
 Bundler, namely, the ​package​ command. What it does is put the
 version of the software that you are dependent on into the repository.

	​ 	$ ​bundle package​

	​ 	$ ​git add Gemfile.lock vendor/cache​

	​ 	$ ​git commit -m "bundle gems"​

 We will explain more of the features of Bundler in Section 24.3, ​Managing Dependencies with Bundler​.

 From here, it is a simple matter to push all your code out to the
 server.

	​ 	$ ​git remote add origin ssh://user@host/~/git/depot.git​

	​ 	$ ​git push origin master​

 Be sure to substitute ​user​ and ​host​ with the
 name of your user and host on the remote machine.

 With these few steps, you have gained control over what is being
 deployed. You control ​what​ is being committed to your
 local repository. You control ​when​ this is being pushed
 out to your server. Next up, you will control putting this code into
 production.

Deploying the Application Remotely

 We previously deployed the application locally on a server. Now we
 are going to do a second deployment, this time remotely.

 The prep work is now done. Our code is now on the SCM
 server where it can be accessed by the app
 server. Again, it matters not whether these two servers are the
 same; what is important here are the ​roles​ that are being
 performed.

 To add the necessary files to the project for Capistrano to do its
 magic, execute the following command:

	​ 	$ ​capify .​

	​ 	[add] writing './Capfile'

	​ 	[add] writing './config/deploy.rb'

	​ 	[done] capified!

 From the output, we can see that Capistrano set up two files. The
 first, ​Capfile​, is
 Capistrano’s analog to a ​Rakefile​. You
 need to uncomment out one line. After you do this, you won’t need to
 touch this file further.

	rails40/depot_t/Capfile
	​ 	load 'deploy'

	​ 	# Uncomment if you are using Rails' asset pipeline

	​*
​	load 'deploy/assets'

	​ 	load 'config/deploy' # remove this line to skip loading any of the default tasks

 The second file, namely, ​config/deploy.rb​, contains
 the recipes needed to deploy our application. Capistrano will
 provide us with a minimal version of this file, but the following is
 a somewhat more complete version that you can download and use as a
 starting point.

	rails40/depot_t/config/deploy.rb
	​ 	require ​'bundler/capistrano'​

	​ 	

	​ 	​# be sure to change these​

	​ 	set :user, ​'rubys'​

	​ 	set :domain, ​'depot.pragprog.com'​

	​ 	set :application, ​'depot'​

	​ 	

	​ 	​# adjust if you are using RVM, remove if you are not​

	​ 	set :rvm_type, :user

	​ 	set :rvm_ruby_string, ​'ruby-2.0.0-p247'​

	​ 	require ​'rvm/capistrano'​

	​ 	

	​ 	​# file paths​

	​ 	set :repository, ​"​#{user}​@​#{domain}​:git/​#{application}​.git"​

	​ 	set :deploy_to, ​"/home/​#{user}​/deploy/​#{application}​"​

	​ 	

	​ 	​# distribute your applications across servers (the instructions below put them​

	​ 	​# all on the same server, defined above as 'domain', adjust as necessary)​

	​ 	role :app, domain

	​ 	role :web, domain

	​ 	role :db, domain, :primary => true

	​ 	

	​ 	​# you might need to set this if you aren't seeing password prompts​

	​ 	​# default_run_options[:pty] = true​

	​ 	

	​ 	​# As Capistrano executes in a non-interactive mode and therefore doesn't cause​

	​ 	​# any of your shell profile scripts to be run, the following might be needed​

	​ 	​# if (for example) you have locally installed gems or applications. Note:​

	​ 	​# this needs to contain the full values for the variables set, not simply​

	​ 	​# the deltas.​

	​ 	​# default_environment['PATH']='<your paths>:/usr/local/bin:/usr/bin:/bin'​

	​ 	​# default_environment['GEM_PATH']='<your paths>:/usr/lib/ruby/gems/1.8'​

	​ 	

	​ 	​# miscellaneous options​

	​ 	set :deploy_via, :remote_cache

	​ 	set :scm, ​'git'​

	​ 	set :branch, ​'master'​

	​ 	set :scm_verbose, true

	​ 	set :use_sudo, false

	​ 	set :normalize_asset_timestamps, false

	​ 	set :rails_env, :production

	​ 	

	​ 	namespace :deploy ​do​

	​ 	 desc ​"cause Passenger to initiate a restart"​

	​ 	 task :restart ​do​

	​ 	 run ​"touch ​#{current_path}​/tmp/restart.txt"​

	​ 	 ​end​

	​ 	

	​ 	 desc ​"reload the database with seed data"​

	​ 	 task :seed ​do​

	​ 	 deploy.migrations

	​ 	 run ​"cd ​#{current_path}​; rake db:seed RAILS_ENV=​#{rails_env}​"​

	​ 	 ​end​

	​ 	​end​

 We will need to edit several properties to match our application. We
 certainly will need to change the ​:user​, ​:domain​,
 and ​:application​. The ​:repository​ matches where we
 put our Git file earlier. The ​:deploy_to​ may need to
 be tweaked to match where we told Apache it could find the
 ​public​ directory for the application.

 We’ve also included a few lines to show how to instruct Capistrano
 to make use of RVM.[50]

 If RVM was installed as root on your deployment machine, change
 the ​set :rvm_type​ line to specify ​:system​ instead of
 ​:user​. Adjust the
 ​:rvm_ruby_string​ to match the version of the Ruby interpreter
 that you have installed and want to use.

 If you are not using RVM at all, remove these lines.

 The ​default_run_options​ and ​default_environment​ are
 to be used only if you have specific problems. The “miscellaneous
 options” provided are based on Git, and they disable some
 of the asset processing logic that is meant for prior versions of
 Rails.

 Two tasks are defined. One tells Capistrano how to restart Passenger.
 The other reloads that database with seed data.
 Feel free to adjust these tasks as you see fit.

 The first time we deploy our application, we have to perform an
 additional step to set up the basic directory structure to deploy
 on the server.

	​ 	$ ​cap deploy:setup​

 When we execute this command, Capistrano will prompt us for our
 server’s password. If it fails to do so and fails to log in, we might
 need to uncomment out the ​default_run_options​ line in our
 ​deploy.rb​ file and try again. Once it can connect
 successfully, it will make the necessary directories. After this command
 is done, we can check out the configuration for any other problems.

	​ 	$ ​cap deploy:check​

 As before, we might need to uncomment out and adjust the
 ​default_environment​ lines in our
 ​deploy.rb​. We can repeat this command until it
 completes successfully, addressing any issues it may identify.

 One last task: we load the “seed” data containing our products.

	​ 	$ ​cap deploy:seed​

 At this point, we should be off to the races.

Rinse, Wash, Repeat

 Once we’ve gotten this far, our server is ready to have new versions
 of our application deployed to it any time we want. All we
 need to do is check our changes into the repository and then
 redeploy. At this point, we have two Capistrano files that haven’t
 been checked in. Although they aren’t needed by the app server, we can
 still use them to test the deployment process.

	​ 	$ ​git add .​

	​ 	$ ​git commit -m "add cap files"​

	​ 	$ ​git push​

	​ 	$ ​cap deploy​

 The first three commands will update the SCM server. Once you become
 more familiar with Git, you may want to have finer control over when
 and which files are added, you may want to incrementally commit
 multiple changes before deployment, and so on. It is only the final
 command that will update our app, web, and database servers.

 If for some reason we need to step back in time and go back to a
 previous version of our application, we can use this:

	​ 	$ ​cap deploy:rollback​

 We now have a fully deployed application and can deploy as needed
 to update the code running on the server. Each time we deploy our
 application, a new version of it is checked out onto the server, some
 symlinks are updated, and the Passenger processes are restarted.

16.3 Iteration K3: Checking Up on a Deployed Application

 Once we have our application deployed, we’ll no doubt need to
 check up on how it’s running from time to time. We can do this in two
 primary ways. The first is to monitor the various
 log files output by both our front-end web server and the
 Apache server running our application. The second is to
 connect to our application
 using ​rails console​.
Looking at Log Files

	To get a quick look at what’s happening in our application,
	we can use the ​tail​ command to examine
	log files as requests are made against our application.
	
	The
	most interesting data will usually be in the log files from
	the application itself. Even if Apache is running multiple
 applications, the logged output for each application is placed in
	the ​production.log​
	file for that application.

	Assuming that our application is deployed into the
	location we showed earlier, here’s how we look at our
	running log file:
	

	​ 	# On your server

	​ 	$ ​cd /home/rubys/deploy/depot/current​

	​ 	$ ​tail -f log/production.log​

	Sometimes, we need lower-level information—what’s going on
	with the data in our application? When this is the case, it’s
	time to break out the most useful live server debugging
	tool.

Using Console to Look at a Live Application

	

	We’ve already created a large amount of functionality in our
	application’s model classes. Of course, we created these to
	be used by our application’s controllers. But we can also
	interact with them directly. The gateway to this world is
	the ​rails console​ script.
		We can launch
	it on our server with this:
	​ 	# On your server

	​ 	$ ​cd /home/rubys/deploy/depot/current/​

	​ 	$ ​rails console production​

	​ 	Loading production environment.

	​ 	irb(main):001:0> p = Product.find_by(title: "CoffeeScript")

	​ 	=> #<Product:0x24797b4 @attributes={. . .}

	​ 	irb(main):002:0> p.price = 29.00

	​ 	=> 29.0

	​ 	irb(main):003:0> p.save

	​ 	=> true

	Once we have a console session open, we can poke and prod
	all the various methods on our models. We can create,
	inspect, and delete records. In a way, it’s like having a root
	console to your application.

 Once you put an application into production, we need to take care of a few chores to keep your application
 running smoothly. These chores aren’t automatically taken care
 of for us, but, luckily, we can automate them.

Dealing with Log Files

	As an application runs, it will constantly add data to its log
	file. Eventually, the log files can grow extremely large. To
	overcome this, most logging solutions
	can ​roll over​ log files to create a progressive
	set of log files of increasing age.
	
	This will break up our
	log files into manageable chunks that can be archived or
	even deleted after a certain amount of time has passed.

	The ​Logger​ class supports
	rollover. We need to specify how many (or how often)
 log files we want and the size of each, using a
 line like one of the following in the file
 ​config/environments/production.rb​:

	​ 	config.logger = Logger.new(config.paths[​'log'​].first, ​'daily'​)

Or perhaps this:
	​ 	require ​'active_support/core_ext/numeric/bytes'​

	​ 	config.logger = Logger.new(config.paths[​'log'​].first, 10, 10.megabytes)

 Note that in this case an explicit require of ​active_support​
 is needed because this statement is processed early in the initialization
 of your application—before the Active Support libraries have been
 included. In fact, one of the configuration options that
 Rails provides is to not include Active Support libraries at all.

	​ 	config.active_support.bare = true

 Alternately, we can direct our logs to the system logs for our
 machine.

	​ 	config.logger = SyslogLogger.new

	Find more options at

 ​http://rubyonrails.org/deploy​
 .

Moving On to Launch and Beyond

 Once we’ve set up our initial deployment, we’re ready to
 finish the development of our application and launch it into
 production. We’ll likely set up additional deployment servers,
 and the lessons we learn from our first deployment will tell
 us a lot about how we should structure later deployments. For
 example, we’ll likely find that Rails is one of the slower
 components of our system—more of the request time will be
 spent in Rails than in waiting on the database or
 filesystem. This indicates that the way to scale up is to add
 machines to split up the Rails load.

 However, we might find that the bulk of the time a request
 takes is in the database. If this is the case, we’ll want to
 look at how to optimize our database activity. Maybe we’ll
 want to change how we access data. Or maybe we’ll need to
 custom craft some SQL to replace the default Active Record
 behaviors.

 One thing is for sure: every application will require a
 different set of tweaks over its lifetime. The most important
 activity to do is to listen to it over time and discover what
 needs to be done. Our job isn’t done when we launch our
 application. It’s actually just starting.

While our job is just starting when we first deploy our application to
 production, we have completed our tour of the Depot application. After we
 recap what we did in this chapter, let’s look back at what we have
 accomplished in remarkably few lines of code.
What We Just Did

 We covered a lot of ground in this chapter. We took our code that
 ran locally on our development machine for a single user and placed it
 on a different machine, running a different web server, accessing a
 different database, and possibly even running a different operating
 system.

 To accomplish this, we used a number of products.

	

 We installed and configured Phusion Passenger and Apache httpd, a
 production-quality web server.
	

	

	 We installed and configured MySQL, a production-quality
 database server.
	

	

	 We got our application’s dependencies under control using Bundler
 and Git.
	

	

	 We installed and configured Capistrano, which enables us to
 confidently and repeatably deploy our application.
	

Playtime

 Here’s some stuff to try on your own:

	

 If we have multiple developers collaborating on development, we
 might feel uncomfortable putting the details of the configuration
 of our database (potentially including passwords!) into our
 configuration management system. To address this, copy the
 completed ​database.yml​ into the
 ​shared​ directory, and write a task instructing
 Capistrano to copy this file into your ​current​
 directory each time you deploy.

	

 While this chapter has focused on stable, tried and true,
 and perhaps somewhat conservative deployment choices, the
 fact is that there is a lot of innovation going on in this
 area. At the moment, Capistrano and Git appear to be
 virtually uncontested choices. Everything else is up
 for grabs. Here are some things to play with:

	

 Try replacing rvm with rbenv[51] and ruby-build.[52]

	

 Try replacing mysql with PostgreSQL.[53]

	

 Try replacing both Phusion Passenger and Apache httpd with
 Unicorn[54] and nginx.[55]

 Being agile means more than making the right choices. It requires
 both adaptive planning and rapid and flexible response
 to change.

 (You’ll find hints at

 ​http://pragprog.com/wikis/wiki/RailsPlayTime​
 .)

Footnotes

	[46]	

 ​https://www.virtualbox.org/​

	[47]	

 ​http://www.ubuntu.com/download/desktop​

	[48]	

 ​http://www.sqlite.org/whentouse.html​

	[49]	

 ​http://dev.mysql.com/downloads/mysql/​

	[50]	

 ​https://rvm.io/integration/capistrano/​

	[51]	

 ​https://github.com/sstephenson/rbenv/#readme​

	[52]	

 ​https://github.com/sstephenson/ruby-build#readme​

	[53]	

 ​http://www.postgresql.org/​

	[54]	

 ​http://unicorn.bogomips.org/​

	[55]	

 ​http://wiki.nginx.org/Main​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 17
Depot Retrospective

	
reviewing Rails concepts: model, view, controller, configuration,
 testing, and deployment; and

	
documenting what we have done.

 Congratulations! By making it this far, you have obtained a solid
 understanding of the basics of every Rails application. There is much
 more to learn, which we will pick back up again in Part III. For now,
 relax, and let’s recap what we’ve seen in Part II.

17.1 Rails Concepts

In Chapter 3, ​The Architecture of Rails Applications​ we introduced models,
 views, and controllers. Now let’s see how we applied each of these
 concepts in the Depot application. Then let’s explore how we used
 configuration, testing, and deployment.
Model

 Models are where all of the persistent data retained by your application
 is managed. In developing the Depot application, we created five
 models: ​Cart​, ​LineItem​,
 ​Order​, ​Product​, and
 ​User​.

 By default, all models have ​id​, ​created_at​, and
 ​updated_at​ attributes. To our models, we added attributes of
 type ​string​ (examples: ​title​, ​name​),
 ​integer​ (​quantity​), ​text​
 (​description​, ​address​), and ​decimal​
 (​price​), as well as foreign keys (​product_id​,
 ​cart_id​). We even created a virtual attribute
 that is never stored in the database, namely, a
 ​password​.

 We created ​has_many​ and ​belongs_to​ relationships that
 we can use to navigate between our model objects, such as from
 ​Carts​ to ​LineItems​ to
 ​Products​.

 We employed migrations to update the databases, not only to introduce
 new schema information but also to modify existing data. We
 demonstrated that they can be applied in a fully reversible manner.

 The models we created were not merely passive receptacles for our data.
 For starters, they actively validate the data, preventing errors from
 propagating. We created validations for presence, inclusion,
 numericality, range, uniqueness, format, and confirmation (and length
 too, if you completed the exercises). We created custom validations for
 ensuring that deleted products are not referenced by any line item. We
 used an Active Record hook to ensure that an administrator always
 remains and used a transaction to roll back incomplete updates on failure.

 We also created logic to add a product to a cart, add all line items
 from a cart to an order, encrypt and authenticate a password, and
 compute various totals.

 Finally, we created a default sort order for products for display
 purposes.

View

 Views control the way our application presents itself to the external
 world. By default, Rails scaffolding provides ​edit​,
 ​index​, ​new​, and ​show​, as well as a partial
 named ​form​ that is shared between ​edit​ and
 ​new​. We modified a number of these, as well as created new
 partials for carts and line items.

 In addition to the model-backed resource views, we created entirely new
 views for ​admin​, ​sessions​, and the ​store​
 itself.

 We updated an overall layout to establish a common look and feel for the
 entire site. We linked in a stylesheet. We made use of templates
 to generate JavaScript that takes advantage of Web 2.0 technologies to
 make our website more interactive.

 We made use of a helper to determine when to hide the cart from the main
 view.

 We localized the customer views for display both in English and in Spanish.

 While we focused primarily on HTML views, we also created plain-text views
 and Atom views. Not all of the views were designed for browsers: we
 created views for email too, and those views were able to share partials
 for displaying line items.

Controller

 By the time we were done, we created eight controllers: one each for the
 five models and the three additional ones in order to support the
 views for ​admin​, ​sessions​, and the ​store​
 itself.

 These controllers interacted with the models in a number of ways, from
 finding and fetching data and putting it into instance variables to
 updating models and saving data entered via forms. When done, we either
 redirected to another action or rendered a view. We rendered views in
 HTML, JSON, and Atom.

 We limited the set of permitted parameters on the
 line item controller.

 We created callback actions that were run before selected actions to
 find the cart, set the language, and
 authorize requests. We placed logic common to a number of controllers
 into a concern, namely, the ​CurrentCart​ module.

 We managed sessions, keeping track of the logged-in user (for
 administrators) and carts (for customers). We kept track of the current
 locale used for internationalization of our output. We captured errors,
 logged them, and informed the user via notices.

 We employed fragment caching on the storefront and page-level
 caching on the Atom feeds.

 We also sent confirmation emails on receipt of an order.

Configuration

 While conventions keep to a minimum the amount of configuration required
 for a Rails application, we did do a bit of customization.

 We modified our database configuration in order to use MySQL in
 production.

 We defined routes for our resources, our admin and session controllers,
 and the ​root​ of our website, namely, our
 storefront. We defined a ​who_bought​ member of our
 ​products​ resource in order to access Atom feeds that contain
 this information.

 We created an initializer for i18n purposes and updated the locales
 information for both English (en) and Spanish (es).

 We created seed data for our database.

 We created a Capistrano script for deployment, including the definition
 of a few custom tasks.

Testing

We maintained and enhanced tests throughout.

 We employed unit tests to validation methods. We also tested
 increasing the quantity on a given line item.

 Rails provided basic tests for all our scaffolded controllers, which
 we maintained as we made changes. We added tests along the way for
 things such as Ajax and ensuring that a cart has items before we create
 an order.

 We used fixtures to provide test data to fuel our tests.

 Finally, we created an integration test to test an end-to-end scenario
 involving a user adding a product to a cart, entering an order, and
 receiving a confirmation email.

Deployment

 We deployed our application to a production-quality web server (Apache
 httpd) using a production-quality database server (MySQL). Along the
 way, we installed and configured Phusion Passenger to run our application,
 Bundler to track dependencies, and Git to configuration manage our code.
 Capistrano was employed to orchestrate updating the deployed web server
 in production from our development machine.

 We made use of ​test​ and ​production​ environments to
 prevent our experimentation during development from affecting
 production. Our development environment made use of the lightweight
 SQLite database server and a lightweight web server, most likely
 WEBrick. Our tests were run in a controlled environment with test data
 provided by fixtures.

17.2 Documenting What We Have Done

 To complete our retrospective, let’s take a look at the code from
 two new perspectives.

Rails makes it easy to run Ruby’s RDoc[56] utility on all the
 source files in an application to create good-looking programmer
 documentation. But before we generate that documentation, we
 should probably create a nice introductory page so that future
 generations of developers will know what our application does.

 To do this, edit the
 file ​README.rdoc​,
 and enter anything you think might be useful. This file will be
 processed using RDoc, so you have a fair amount of formatting
 flexibility.

 You can generate the documentation in HTML format using
 the ​rake​ command.

	​ 	depot>​ rake doc:app​

 This generates documentation into the
 directory ​doc/app​. (See Figure 54, ​Our application's internal documentation​.)

[image: images/depot_r_rdoc.png]

Figure 54. Our application’s internal documentation

 Finally, we might be interested to see how much code we’ve written.
 There’s a Rake task for that, too.

	​ 	 depot>​ rake stats​

	​ 	+----------------------+-------+-------+---------+---------+-----+-------+

	​ 	| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

	​ 	+----------------------+-------+-------+---------+---------+-----+-------+

	​ 	| Controllers | 622 | 382 | 9 | 56 | 6 | 4 |

	​ 	| Helpers | 26 | 24 | 0 | 1 | 0 | 22 |

	​ 	| Models | 112 | 72 | 5 | 7 | 1 | 8 |

	​ 	| Mailers | 29 | 11 | 1 | 2 | 2 | 3 |

	​ 	| Javascripts | 50 | 5 | 0 | 0 | 0 | 0 |

	​ 	| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |

	​ 	| Controller tests | 404 | 283 | 8 | 0 | 0 | 0 |

	​ 	| Helper tests | 32 | 24 | 8 | 0 | 0 | 0 |

	​ 	| Model tests | 130 | 90 | 5 | 2 | 0 | 43 |

	​ 	| Mailer tests | 25 | 18 | 1 | 0 | 0 | 0 |

	​ 	| Integration tests | 198 | 138 | 2 | 9 | 4 | 13 |

	​ 	+----------------------+-------+-------+---------+---------+-----+-------+

	​ 	| Total | 1628 | 1047 | 39 | 77 | 1 | 11 |

	​ 	+----------------------+-------+-------+---------+---------+-----+-------+

	​ 	 Code LOC: 494 Test LOC: 553 Code to Test Ratio: 1:1.1

 If you think about it, you have accomplished a lot and with not all
 that much code. Furthermore, much of that code was generated for you.
 This is the magic of Rails.

Footnotes

	[56]	

 ​http://rdoc.sourceforge.net/​

Copyright © 2013, The Pragmatic Bookshelf.

Part 3
Rails in Depth

	 Chapter
	 18
Finding Your Way Around Rails

	
the directory structure of a Rails application,

	
naming conventions,

	
generating documentation for Rails itself,

	
adding Rake tasks, and

	
configuration.

 Having survived our Depot project, you are now prepared to
 dig deeper into Rails. For the rest of the book, we’ll go through
 Rails topic by topic (which pretty much means module by module). You
 have seen most of these modules in action before.
 We will cover not only what each module does but
 also how to extend or even replace the module and why you might want to
 do so.

 The chapters in Part III cover all the major subsystems of Rails: Active
 Record, Active Resource, Action Pack (including both Action
 Controller and Action View), and Active Support. This is followed by an
 in-depth look at migrations.

 Then we are going to delve into the interior of Rails and show how the
 components are put together, how they start up, and how they can be
 replaced. Having shown how the parts of Rails can be put together,
 we’ll complete this book with a survey of a number of popular replacement parts,
 many of which can be used outside of Rails.

 We need to set the scene. This chapter covers
 all the high-level stuff you need to know to understand the rest:
 directory structures, configuration, and environments.

18.1 Where Things Go

 Rails assumes a certain runtime directory layout and provides
 application and scaffold generators, which will create this
 layout for you.
 For example, if we generate ​my_app​ using the command
 ​rails new my_app​, the top-level directory for
 our new application appears as shown in Figure 55, ​All Rails applications have this top-level directory structure​.
 Let’s start with the text
 files in the top of the application directory.

[image: images/rails_layout.png]

Figure 55. All Rails applications have this top-level directory structure.

[image: Joe asks:]
Joe asks:
So, Where’s Rails?

 One of the interesting aspects of Rails is how componentized it
 is. From a developer’s perspective, you spend all your time
 dealing with high-level modules such as Active Record and Action
 View. There is a component called Rails, but it sits below the
 other components, silently orchestrating what they do and making
 them all work together seamlessly. Without the Rails component,
 not much would happen. But at the same time, only a small part
 of this underlying infrastructure is relevant to developers in
 their day-to-day work. We’ll cover the parts
 that ​are​ relevant in the rest of this chapter.

	

 ​config.ru​ configures the Rack
 Webserver Interface, either to create Rails Metal applications
 or to use Rack Middlewares in your Rails application. These are discussed
 further in the Rails Guides.[57]

	

 ​Gemfile​
 specifies the dependencies of your Rails application. You have
 already seen this in use when the ​bcrypt-ruby​ gem was
 added to the Depot application. Application dependencies also include
 the database, web server, and even scripts used for deployment.

 Technically, this file is not used by Rails but rather by your
 application. You can find calls to the Bundler[58] in the ​config/application.rb​ and
 ​config/boot.rb​ files.

	

 ​Gemfile.lock​
 records the specific versions for each of your Rails application’s
 dependencies. This
 file is maintained by Bundler and should be checked into your
 repository.

	

 ​Rakefile​ defines tasks
 to run tests, create documentation, extract the
 current structure of your schema, and
 more. Type ​rake -T​
 at a prompt for the full list. Type
 ​rake -D ​task​​
 to see a more complete description of a specific task.

	

 ​README​ contains general information about the Rails
 framework.

 Now let’s look at what
 goes into each directory (although not necessarily in
 order).

A Place for Our Application

 Most of our work takes place in the ​app​
 directory. The main code for the application lives below the
 ​app​ directory, as shown in Figure 56, ​The main code for our application lives in the app directory​.
	We’ll talk more about the structure of
	the ​app​ directory as we look at the various Rails
 modules such as Active
	Record, Action Controller, and Action View in more detail
	later in the book.

[image: images/app_dir_layout.png]

Figure 56. The main code for our application lives in the ​app​ directory.

A Place for Our Tests

As we have seen in Section 7.2, ​Iteration B2: Unit Testing of Models​, Section 8.4, ​Iteration C4: Functional Testing of Controllers​, and Section 13.2, ​Iteration H2: Integration Testing of Applications​, Rails has ample provisions for testing
 your application, and the ​test​ directory is the home for all
 testing-related activities, including fixtures that define data used by
 our tests.

A Place for Documentation

 While the ​doc​ directory is no longer part of the required directories,
 as we saw in
Section 17.2, ​Documenting What We Have Done​, Rails provides a ​doc:app​ rake task
 to generate documentation, which it places in
 the ​doc/​ directory.

 In addition to this command, Rails provides other tasks that
 generate documentation: ​doc:rails​ will provide documentation
 for the version of Rails you are running, and ​doc:guides​ will
 provide usage guides. Before you build the guides, you will need to
 add the gem ​redcarpet​ to
 your ​Gemfile​ and run ​bundle
 install​.

 Rails also provides other document-related tasks. To see them all, enter
 the command ​rake -T doc​.

A Place for Supporting Libraries

 The ​lib​ directory holds
 application code that doesn’t fit neatly into a model, view, or
 controller. For example, you may have written a library that creates
 PDF receipts that your store’s customers can download.[59] These receipts are sent directly from the
	controller to the browser (using
	the
 ​send_data​
 method). The code that
	creates these PDF receipts will sit naturally in
	the ​lib​ directory.

	The ​lib​ directory is also a good place to
	put code that’s shared among models, views, or
	controllers. Maybe you need a library that validates a credit
	card number’s checksum, that performs some financial
	calculation, or that works out the date of Easter. Anything
	that isn’t directly a model, view, or controller should be
	slotted into ​lib​.

	Don’t feel that you have to stick a bunch of files directly
	into the ​lib​ directory. Feel
	free to create subdirectories in which you
	group related functionality under ​lib​. For
	example, on the Pragmatic Programmer site, the code that
	generates receipts, customs documentation for shipping, and
	other PDF-formatted documentation is in the
	directory ​lib/pdf_stuff​.

 In previous versions of Rails, the files in the ​lib​ directory were
 automatically included in the load path used to resolve
 ​require​
 statements. This is now an option that
 you need to explicitly enable. To do so, place the following in
 ​config/application.rb​:

	​ 	config.autoload_paths += ​%W(​#{Rails.root}​/lib)​

	Once you have files in the ​lib​ directory
 and the ​lib​ added to your autoload paths,
	you can use them in the rest of your application. If the files
	contain classes or modules and the files are named using the
	lowercase form of the class or module name, then Rails will
	load the file automatically. For example, we might have a PDF
	receipt writer in the file ​receipt.rb​ in
	the directory ​lib/pdf_stuff​. As long as our
	class is named ​PdfStuff::Receipt​, Rails will be able
	to find and load it automatically.

	For those times where a library cannot meet these automatic
	loading conditions, you can use
	Ruby’s ​require​
	mechanism.
 If the file is in
	the ​lib​ directory, you can require it
	directly by name. For example, if our Easter calculation
	library is in the file ​lib/easter.rb​, we
	can include it in any model, view, or controller using this:

	​ 	require ​"easter"​

	If the library is in a subdirectory of ​lib​,
	remember to include that directory’s name in
	the ​require​ statement. For example, to include a
	shipping calculation for airmail, we might add the following line:

	​ 	require ​"shipping/airmail"​

A Place for Our Rake Tasks

	 You’ll also find an empty ​tasks​ directory
	 under ​lib​. This is where you can write your own Rake
	 tasks, allowing you to add automation to your project. This
	 isn’t a book about Rake, so we won’t go into it deeply here,
	 but here’s a simple example.
	

	 Rails provides a Rake task to
	 tell you the latest migration that has been performed. But it may be helpful to see a list of ​all​ the
	 migrations that have been performed. We’ll write a Rake task that
	 prints the versions listed in the ​schema_migration​
	 table. These tasks are Ruby code, but they need to be
	 placed into files with the
	 extension ​rake​. We’ll call
	 ours ​db_schema_migrations.rake​.
	
	rails40/depot_t/lib/tasks/db_schema_migrations.rake
	​ 	namespace :db ​do​

	​ 	 desc ​"Prints the migrated versions"​

	​ 	 task :schema_migrations => :environment ​do​

	​ 	 puts ActiveRecord::Base.connection.select_values(

	​ 	 ​'select version from schema_migrations order by version'​)

	​ 	 ​end​

	​ 	​end​

	 We can run this from the command line just like any other
	 Rake task.
	
	​ 	depot>​ rake db:schema_migrations​

	​ 	(in /Users/rubys/Work/...)

	​ 	20121130000001

	​ 	20121130000002

	​ 	20121130000003

	​ 	20121130000004

	​ 	20121130000005

	​ 	20121130000006

	​ 	20121130000007

	 Consult the Rake documentation
	 at
 ​http://rubyrake.org/​
 for more information
	 on writing Rake tasks.
	
A Place for Our Logs

	As Rails runs, it produces a bunch of useful logging
	information. This is stored (by default) in
	the ​log​ directory. Here you’ll find three
	main log files,
	called ​development.log​, ​test.log​,
	and ​production.log​. The logs contain more
	than just simple trace lines; they also contain timing
	statistics, cache information, and expansions of the database
	statements executed.

	Which file is used depends on the environment in which your
	application is running (and we’ll have more to say about
	environments when we talk about the ​config​
	directory in ​A Place for Configuration​).

A Place for Static Web Pages

 The ​public​ directory is the
 external face of your application. The web server takes this directory
 as the base of the application. In here you place ​static​
 (in other words, unchanging) files, generally related to the
 running of the server.

A Place for Script Wrappers

 If you find it
helpful to write scripts that are launched from the command
 line and perform various maintenance tasks for your application, the
 ​bin​ directory is the
 place to put wrappers that call those scripts. You can use
 ​bundle binstubs​ to populate this directory.

 This directory also holds the Rails script. This is the
 script that is run when you run the ​rails​ command from the
 command line. The first argument you pass to that script
 determines the function Rails will perform.

	​console​
	

	 Allows you to interact with your Rails
	 application methods.
	

	​dbconsole​
	

	 Allows you to directly
	 interact with your database via the command line.
	

	​destroy​
	

	 Removes autogenerated files created
	 by ​generate​.
	

	​generate​
	

	 A code generator. Out of the box, it will create
	 controllers, mailers, models, scaffolds, and web services.
	 Run ​generate​ with no arguments for usage information
 on a particular generator; here’s an example:
	
	​ 	rails generate migration

	​new​
	

	 Generates Rails application code.
	

	​runner​
	

 Executes a method in your application outside the context of the
 Web. This is the noninteractive equivalent of ​rails console​.
 You could use this to invoke cache expiry methods from a
 ​cron​ job or handle incoming email.
	

	​server​
	

	 Runs your Rails
	 application in a self-contained web server, using Mongrel
	 (if it is available on your box) or
	 WEBrick. We’ve been using this in our Depot application
	 during development.
	

A Place for Temporary Files

	It probably isn’t a surprise that Rails keeps its temporary
	files tucked in the ​tmp​
	directory. You’ll find subdirectories for cache contents,
	sessions, and sockets in here. Generally these files are cleaned up automatically by
 Rails, but occasionally if things go wrong, you might need to look in
 here and delete old files.

A Place for Third-Party Code

	The ​vendor​
	directory is where third-party code lives.
	You can install Rails and all of its dependencies into
	the ​vendor​ directory, as we saw in ​Getting an Application Under Control​.

	If you want to go back to using the system-wide version of
	gems, you can delete
	the ​vendor/cache​ directory.

A Place for Configuration

 The ​config​ directory contains files that
 configure Rails. In the process of developing Depot, we configured a
 few routes, configured the database, created an initializer, modified some locales,
 and defined deployment instructions. The rest of the configuration was
 done via Rails conventions.

 Before running your application, Rails loads and executes ​config/environment.rb​ and
 ​config/application.rb​.
 The standard environment set up automatically by these files
 includes the following directories (relative to your application’s
 base directory) in your application’s load
	 path:
	
	

	 The ​app/controllers​ directory and its
	 subdirectories
	

	

 The ​app/models​ directory
	

	

 The ​vendor​ directory and the
 ​lib​ contained in each
 ​plugin​ subdirectory
	

	

	 The directories
	 ​app​,
	 ​app/helpers​,
	 ​app/mailers​,
	 ​app/services​, and
	 ​lib​
	

	 Each of these directories is added to the load path only if
	 it exists.
	

 In addition, Rails will load a per-environment configuration file.
 This file lives in the
 ​environments​ directory and is where you place
 configuration options that vary depending on the environment.

 This is done because Rails recognizes that
	your needs, as a developer, are very different when writing
	code, testing code, and running that code in production. When
	writing code, you want lots of logging, convenient reloading
	of changed source files, in-your-face notification of errors,
	and so on. In testing, you want a system that exists in
	isolation so you can have repeatable results. In production,
	your system should be tuned for performance, and users should
	be kept away from
	errors.

	 The switch that dictates the runtime environment is external
	 to your application. This means that no application code
	 needs to be changed as you move from development through
	 testing to production.
 In Chapter 16, ​Task K: Deployment and Production​, we specified
 the environment on the ​rake​ command using a
 ​RAILS_ENV​ parameter and to Phusion Passenger using a
 ​RailsEnv​ line in our Apache configuration file. When
 starting WEBrick with the ​rails server​
 command, we use the ​-e​
	 option.

	​ 	depot>​ rails server -e development​

	​ 	depot>​ rails server -e test​

	​ 	depot>​ rails server -e production​

	If you have special requirements, such as if you favor having a
 ​staging​ environment, you can create your own
	environments. You’ll need to
	add a new section to the database configuration file and a
	new file to the ​config/environments​
	directory.

 What you put into these configuration files is entirely up to you. You
 can find a list of configuration parameters you can set in the
 Configuring Rails Applications guide you generated with the ​rake
 doc:guides​ command in ​A Place for Documentation​. This
 information is also available online.[60]

18.2 Naming Conventions

 Newcomers to Rails are sometimes puzzled by the way it
 automatically handles the naming of things. They’re surprised
 that they call a model class ​Person​ and
 Rails somehow knows to go looking for a database table
 called ​people​. In this section, you’ll learn
 how this implicit naming works.

 The rules here are the default conventions used by Rails. You
 can override all of these conventions using configuration options.

Mixed Case, Underscores, and Plurals

	We often name variables and classes using short phrases. In
	Ruby, the convention is to have variable names where the
	letters are all lowercase and words are separated by
	underscores. Classes and modules are named differently: there
	are no underscores, and each word in the phrase (including the
	first) is capitalized. (We’ll call
	this ​mixed case​, for fairly obvious
	reasons.) These conventions lead to variable
	names such as ​order_status​ and class
	names such as ​LineItem​.

	Rails takes this convention and extends it in two ways. First,
	it assumes that database table names, such as variable names, have lowercase letters and
	underscores between the words. Rails also assumes that table
	names are always plural. This leads to table names such
	as ​orders​
	and ​third_parties​.

	On another axis, Rails assumes that files are named using
	lowercase with underscores.

	Rails uses this knowledge of naming conventions to convert
	names automatically. For example, your application might
	contain a model class that handles line items. You’d define
	the class using the Ruby naming convention, calling
	it ​LineItem​. From this name, Rails would
	automatically deduce the following:

	

	 That the corresponding database table will be
	 called ​line_items​. That’s the class
	 name, converted to lowercase, with underscores between
	 the words and pluralized.
	

	

	 Rails would also know to look for the class definition in
	 a file called ​line_item.rb​ (in
	 the ​app/models​ directory).
	

	Rails controllers have additional naming conventions. If our
	application has a store controller,
	then the following happens:

	

	 Rails assumes the class is
	 called ​StoreController​ and that
	 it’s in a file
	 named ​store_controller.rb​ in
	 the ​app/controllers​ directory.
	

	

	 Rails also looks for a helper module
	 named ​StoreHelper​ in the
	 file ​store_helper.rb​ located in
	 the ​app/helpers​ directory.
	

	

	 It will look for view templates for this controller in the
	 ​app/views/store​ directory.
	

	

	 It will by default take the output of these views and wrap
	 them in the layout template contained
	 in the file ​store.html.erb​
	 or ​store.xml.erb​ in the
	 directory ​app/views/layouts​.
	

	All these conventions are shown in the following tables.

	Model Naming
	Table	line_items
	File	app/models/line_item.rb
	Class	LineItem

	Controller Naming
	URL	http://../store/list
	File	app/controllers/store_controller.rb
	Class	StoreController
	Method	list
	Layout	app/views/layouts/store.html.erb

	View Naming
	URL	http://../store/list
	File	app/views/store/list.html.erb (or .builder)
	Helper	module StoreHelper
	File	app/helpers/store_helper.rb

	There’s one extra twist. In normal Ruby code you have to use
	the ​require​ keyword to include Ruby source files
	before you reference the classes and modules in those
	files. Because Rails knows the relationship between filenames
	and class names, ​require​ is normally not necessary in
	a Rails application. The first
	time you reference a class or module that isn’t known, Rails
	uses the naming conventions to convert the class name to a
	filename and tries to load that file behind the scenes. The
	net effect is that you can typically reference (say) the name
	of a model class, and that model will be automatically loaded
	into your application.

Grouping Controllers into Modules

	So far, all our controllers have lived in
	the ​app/controllers​ directory. It is
	sometimes convenient to add more structure to this
	arrangement. For example, our store might end up with a number
	of controllers performing related but disjoint administration
	functions. Rather than pollute the top-level namespace, we
	might choose to group them into a single ​admin​
	namespace.

[image: David says:]
David says:
Why Plurals for Tables?

 Because it sounds good in conversation. Really. “Select
 a Product from products.” And “Order
 has_many :line_items.”

 The intent is to bridge programming and conversation by
 creating a domain language that can be shared by both. Having
 such a language means cutting down on the mental translation
 that otherwise confuses the discussion of a ​product
 description​ with the client when it’s really implemented as
 ​merchandise body​. These communications gaps are
 bound to lead to errors.

 Rails sweetens the deal by giving you most of the
 configuration for free if you follow the standard
 conventions. Developers are thus rewarded for doing the right
 thing, so it’s less about giving up “your ways”
 and more about getting productivity for free.

	Rails does this using a simple naming convention. If an incoming
	request has a controller named
	(say) ​admin/book​,
	Rails will look for the controller
	called ​book_controller​ in the
	directory ​app/controllers/admin​. That is,
	the final part of the controller name will always resolve to a
	file
	called ​name​​_controller.rb​,
	and any leading path information will be used to navigate
	through subdirectories, starting in
	the ​app/controllers​ directory.

	Imagine that our program has two such groups of
	controllers
	(say, ​admin/​​xxx​
	and ​content/​​xxx​) and
	that both groups define a book controller.
	There’d be a file
	called ​book_controller.rb​ in both
	the ​admin​ and ​content​
	subdirectories of ​app/controllers​. Both of
	these controller files would define a class
	named ​BookController​. If Rails took no
	further steps, these two classes would clash.

	To deal with this, Rails assumes that controllers in
	subdirectories of the
	directory ​app/controllers​ are in Ruby
	modules named after the subdirectory. Thus, the book
	controller in the ​admin​ subdirectory would
	be declared like this:

	​ 	​class​ Admin::BookController < ActionController::Base

	​ 	 ​# ...​

	​ 	​end​

	The book controller in the ​content​
	subdirectory would be in the ​Content​
	module:

	​ 	​class​ Content::BookController < ActionController::Base

	​ 	 ​# ...​

	​ 	​end​

	The two controllers are therefore kept separate inside your
	application.

	The templates for these controllers appear in
	subdirectories of ​app/views​. Thus, the view
	template corresponding to this request:

	​ 	http://my.app/admin/book/edit/1234

	will be in this file:

	​ 	app/views/admin/book/edit.html.erb

	You’ll be pleased to know that the controller generator
	understands the concept of controllers in modules and lets
	you create them with commands such as this:

	​ 	myapp>​ rails generate controller Admin::Book action1 action2 ...​

What We Just Did

 Everything in Rails has a place, and we systematically explored each of
 those nooks and crannies. In each place, files and the data contained
 in them follow naming conventions, and we covered that too. Along the
 way, we filled in a few missing pieces.

	
We generated both API and user guide documentation for Rails.

	
We added a Rake task to print the migrated versions.

	
We showed how to configure each of the Rails
 execution environments.

 Next up are the major subsystems of Rails, starting with the largest,
 Active Record.

Footnotes

	[57]	

 ​http://guides.rubyonrails.org/rails_on_rack.html​

	[58]	

 ​https://github.com/carlhuda/bundler​

	[59]	

	 ...which we did in the Pragmatic Programmer store.
	

	[60]	

 ​http://guides.rubyonrails.org/configuring.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 19
Active Record

	
the ​establish_connection​ method;

	
tables, classes, columns, and attributes;

	
IDs and relationships;

	
create, read, update, and delete operations; and

	
callbacks and transactions.

 Active Record is the object-relational mapping (ORM)
 layer supplied with Rails. It is the part of Rails that implements your
 application’s model.

 In this chapter, we’ll build on the mapping data to rows and columns
 that we did in Depot. Then we’ll look at using Active Record to manage
 table relationships and in the process cover create, read, update, and
 delete operations (commonly referred to in the industry as CRUD
 methods). Finally, we will dig into the Active Record object life cycle
 (including callbacks and transactions).

19.1 Defining Your Data

 In Depot, we defined a number of models, including one for an
 ​Order​. This particular model has a number of
 attributes, such as an ​email​ address of type String. In
 addition to the attributes that we defined, Rails provided an attribute
 named ​id​ that contains the primary key for the record.
 Rails also provides several additional attributes,
 including attributes that track when each row was last
 updated. Finally, Rails supports relationships between models, such as
 the relationship between orders and line items.

 When you think about it, Rails provides a lot of support for models.
 Let’s examine each in turn.

Organizing Using Tables and Columns

 Each subclass of ​ActiveRecord::Base​, such as
 our ​Order​ class, wraps a separate
 database table. By default, Active Record assumes that the name of the
 table associated with a given class is the plural form of the name of
 that class. If the class name
 contains multiple capitalized words, the table name is assumed to have
 underscores between these words.

	Classname	Table Name
	Order	orders
	TaxAgency	tax_agencies
	Batch	batches
	Diagnosis	diagnoses
	LineItem	line_items
	Person	people
	Datum	data
	Quantity	quantities

 These rules reflect Rails’ philosophy that class names should
 be singular while the names of tables should be plural.

 Although Rails handles most irregular plurals correctly, occasionally you
 may stumble across one that is not handled correctly. If you
 encounter such a case, you can add to Rails’ understanding of the
 idiosyncrasies and inconsistencies of the English language by
 modifying the inflection file provided.

	rails40/depot_t/config/initializers/inflections.rb
	​ 	​# Be sure to restart your server when you modify this file.​

	​ 	

	​ 	​# Add new inflection rules using the following format. Inflections​

	​ 	​# are locale specific, and you may define rules for as many different​

	​ 	​# locales as you wish. All of these examples are active by default:​

	​ 	​# ActiveSupport::Inflector.inflections(:en) do |inflect|​

	​ 	​# inflect.plural /^(ox)$/i, '\1en'​

	​ 	​# inflect.singular /^(ox)en/i, '\1'​

	​ 	​# inflect.irregular 'person', 'people'​

	​ 	​# inflect.uncountable %w(fish sheep)​

	​ 	​# end​

	​ 	

	​ 	​# These inflection rules are supported but not enabled by default:​

	​ 	​# ActiveSupport::Inflector.inflections(:en) do |inflect|​

	​ 	​# inflect.acronym 'RESTful'​

	​ 	​# end​

	​ 	

	​ 	ActiveSupport::Inflector.inflections ​do​ |inflect|

	​ 	 inflect.irregular ​'tax'​, ​'taxes'​

	​ 	​end​

 If you have legacy tables you have to deal with or don’t like this
 behavior, you can control the table name associated with a given
 model by setting the ​table_name​ for a given class.

	​ 	​class​ Sheep < ActiveRecord::Base

	​ 	 self.table_name = ​"sheep"​

	​ 	​end​

[image: David says:]
David says:
Where Are Our Attributes?

 The notion of a database administrator (DBA) as a separate
 role from programmer has led some developers to see strict
 boundaries between code and schema. Active Record blurs that
 distinction, and no other place is that more apparent than in
 the lack of explicit attribute definitions in the model.

 But fear not. Practice has shown that it makes little
 difference whether we’re looking at a database schema, a
 separate XML mapping file, or inline attributes in the
 model. The composite view is similar to the separations
 already happening in the Model-View-Control pattern—just on
 a smaller scale.

 Once the discomfort of treating the table schema as part of
 the model definition has dissipated, you’ll start to realize
 the benefits of keeping DRY. When you need to add an attribute to the
 model, you simply have to create a new migration and reload the
 application.

 Taking the “build” step out of schema evolution
 makes it just as agile as the rest of the code. It becomes
 much easier to start with a small schema and extend and change
 it as needed.

 Instances of Active Record classes correspond to rows in a
 database table.
 These objects have attributes corresponding to the columns in
 the table. You probably noticed that our definition of
 class ​Order​ didn’t mention any of the
 columns in the ​orders​ table. That’s
 because Active Record determines them dynamically at
 runtime. Active Record reflects on the schema inside the
 database to configure the classes that wrap tables.

 In the Depot application, our ​orders​
 table is defined by the following migration:

	rails40/depot_r/db/migrate/20121130000007_create_orders.rb
	​ 	​class​ CreateOrders < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 create_table :orders ​do​ |t|

	​ 	 t.string :name

	​ 	 t.text :address

	​ 	 t.string :email

	​ 	 t.string :pay_type

	​ 	

	​ 	 t.timestamps

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 Let’s use the handy-dandy ​rails console​
 command to play with this model. First, we’ll ask for a list of
 column names.

	​ 	depot>​ rails console​

	​ 	Loading development environment (Rails 4.0.0)

	​ 	>>​ Order.column_names​

	​ 	=> ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

 Then we’ll ask for the details of
 the ​pay_type​ column.

	​ 	>>​ Order.columns_hash["pay_type"]​

	​ 	=> #<ActiveRecord::ConnectionAdapters::SQLite3Column:0x00000003618228

	​ 	 @name="pay_type", @sql_type="varchar(255)", @null=true, @limit=255,

	​ 	 @precision=nil, @scale=nil, @type=:string, @default=nil,

	​ 	 @primary=false, @coder=nil>

 Notice that Active Record has gleaned a fair amount of
 information about the ​pay_type​
 column. It knows that it’s a string of at most 255 characters,
 it has no default value, it isn’t the primary key, and it may
 contain a null value. Rails obtained this information by asking
 the underlying database the first time we tried to use
 the ​Order​ class.

 The attributes of an Active Record instance generally
 correspond to the data in the corresponding row of the
 database table. For example,
 our ​orders​ table might contain the
 following data:

	​ 	depot>​ sqlite3 -line db/development.sqlite3 "select * from orders limit 1"​

	​ 	 id = 1

	​ 	 name = Dave Thomas

	​ 	 address = 123 Main St

	​ 	 email = customer@example.com

	​ 	 pay_type = Check

	​ 	created_at = 2013-01-29 14:39:12.375458

	​ 	updated_at = 2013-01-29 14:39:12.375458

 If we fetched this row into an Active Record object, that
 object would have seven attributes. The ​id​ attribute
 would be ​1​ (a ​Fixnum​),
 the ​name​ attribute would be the string ​"Dave
 Thomas"​, and so on.

 We access these attributes using accessor methods. Rails
 automatically constructs both attribute readers and
 attribute writers when it reflects on the schema.

	​ 	o = Order.find(1)

	​ 	puts o.name ​#=> "Dave Thomas"​

	​ 	o.name = ​"Fred Smith"​ ​# set the name​

 Setting the value of an attribute does not change anything
 in the database—we must save the object for this change
 to become permanent.

 The value returned by the attribute readers is cast by
 Active Record to an appropriate Ruby type if possible (so,
 for example, if the database column is a timestamp,
 a ​Time​ object will be returned). If
 we want to get the raw value of an attribute,
 we append ​_before_type_cast​ to
 its name, as shown in the following code:

	​ 	product.price_before_type_cast ​#=> 34.95, a float​

	​ 	product.updated_at_before_type_cast ​#=> "2013-02-13 10:13:14"​

 Inside the code of the model, we can use
 the
 ​read_attribute​

 and
 ​write_attribute​
 private methods. These
 take the attribute name as a string parameter.

 We can see the mapping between
 SQL types and their Ruby representation in the following table. Decimal and Boolean columns are slightly tricky.

	SQL Type	Ruby Class
	int, integer	Fixnum
	float, double	Float
	decimal, numeric	BigDecimal
	char, varchar, string	String
	interval, date	Date
	datetime, time	Time
	clob, blob, text	String
	boolean	See text

 Rails maps columns with Decimals with no decimal places to
 ​Fixnum​ objects; otherwise, it maps
 them to ​BigDecimal​
 objects, ensuring that no precision is lost.

 In the case of Boolean, a convenience method is provided with
 a question mark appended to the column name.

	​ 	user = User.find_by(name: ​"Dave"​)

	​ 	​if​ user.superuser?

	​ 	 grant_privileges

	​ 	​end​

 In addition to the attributes we define, there are a number of
 attributes that either Rails provides automatically or have special
 meaning.

Additional Columns Provided by Active Record

 A number of column names have special significance to
	 Active Record. Here’s a summary:
	
	​created_at, created_on, updated_at,
	 updated_on​
	

	 These are automatically updated with the timestamp of a row’s
	 creation or last update. Make sure the underlying database column is
	 capable of receiving a date, datetime, or string. Rails
	 applications conventionally use the ​_on​ suffix
	 for date columns and the ​_at​ suffix for columns
	 that include a time.
	

	​id​
	

	 This is the default name of a table’s primary key column (in ​Identifying Individual Rows​).
	

	​​xxx_​id​
	

	 This is the default name of a foreign key reference to a table named
	 with the plural form
	 of ​​xxx​​.
	

	​​xxx_​count​
	

	 This maintains a counter cache for the child
	 table ​xxx​.
	

 Additional plugins, such as ​acts_as_list​,[61] may define additional columns.

 Both primary keys and foreign keys play a vital role in database
 operations and merit additional discussion.

19.2 Locating and Traversing Records

 In the Depot application, ​LineItems​ have direct relationships
 to three other models: ​Cart​, ​Order​, and
 ​Product​. Additionally, models can have indirect
 relationships mediated by resource objects. The relationship between
 ​Orders​ and ​Products​
 through ​LineItems​ is an example of such a
 relationship.

 All of this is made possible through IDs.

Identifying Individual Rows

 Active Record classes correspond to tables in a
 database. Instances of a class correspond to the individual
 rows in a database table. Calling ​Order.find(1)​,
 for instance, returns an instance of
 an ​Order​ class containing the data in
 the row with the primary key of ​1​.

 If you’re creating a new schema for a Rails application,
 you’ll probably want to go with the flow and let it add the
 ​id​ primary
 key column to all your tables.
 However, if you need to work with an existing
 schema, Active Record gives you a simple way of overriding the
 default name of the primary key for a table.

 For example, we may be working with an existing legacy schema
 that uses the ISBN as the primary key for
 the ​books​ table.

We specify this in our
 Active Record model using something like the
 following:

	​ 	​class​ LegacyBook < ActiveRecord::Base

	​ 	 self.primary_key = ​"isbn"​

	​ 	​end​

 Normally, Active Record takes care of creating new primary key
 values for records that we create and add to the
 database—they’ll be ascending integers (possibly with some
 gaps in the sequence). However, if we override the primary
 key column’s name, we also take on the responsibility of
 setting the primary key to a unique value before we save a
 new row. Perhaps surprisingly, we still set an attribute
 called ​id​ to do this. As far as
 Active Record is concerned, the primary key attribute is
 always set using an attribute
 called ​id​.
 The ​primary_key=​ declaration sets
 the name of the column to use in the table. In the following
 code, we use an attribute
 called ​id​ even though the primary
 key in the database is ​isbn​:

	​ 	book = LegacyBook.new

	​ 	book.id = ​"0-12345-6789"​

	​ 	book.title = ​"My Great American Novel"​

	​ 	book.save

	​ 	​# ...​

	​ 	book = LegacyBook.find(​"0-12345-6789"​)

	​ 	puts book.title ​# => "My Great American Novel"​

	​ 	p book.attributes ​#=> {"isbn" =>"0-12345-6789",​

	​ 	 ​# "title"=>"My Great American Novel"}​

 Just to make life more confusing, the attributes of the model
 object have the column names ​isbn​
 and ​title​—​id​
 doesn’t appear. When you need to set the primary key,
 use ​id​. At all other times, use the
 actual column name.

	 Model objects also redefine the Ruby
 ​id​

	 and
 ​hash​
 methods to reference the
	 model’s primary key. This means that model objects with
	 valid IDs may be used as hash keys. It also means that
	 unsaved model objects cannot reliably be used as hash keys
	 (because they won’t yet have a valid ID).
	

	 One final note: Rails considers two model objects as equal
	 (using ​==​) if they are instances of
	 the same class and have the same primary key. This means that unsaved model objects may compare as
	 equal even if they have different attribute data. If you
	 find yourself comparing unsaved model objects (which is not
	 a particularly frequent operation), you might need to
	 override the ​==​ method.
	

 As we will see, IDs also play an important role in relationships.

Specifying Relationships in Models

 Active Record supports three types of relationship between
 tables: one-to-one, one-to-many, and many-to-many. You
 indicate these relationships by adding declarations to your models:
 ​has_one​,
 ​has_many​,
 ​belongs_to​, and the wonderfully named
 ​has_and_belongs_to_many​.

One-to-One Relationships

 A one-to-one association (or, more accurately, a
 one-to-zero-or-one relationship) is implemented using a
 foreign key in one row in one table to reference at most a single
 row in another table.
	A ​one-to-one​ relationship might exist between
	orders and invoices: for each order there’s at most one
	invoice.
	
	
	
	
	
	
	
	

[image: images/one_to_one.png]

	As the example shows, we declare this in Rails by adding
	a ​has_one​ declaration to
	the ​Order​ model and by adding
	a ​belongs_to​ declaration to
	the ​Invoice​ model.

	There’s an important rule illustrated here: the model for
	the table that contains the foreign
	key ​always​ has the ​belongs_to​
	declaration.

One-to-Many Relationships

 A one-to-many association allows you to represent a
 collection of objects. For example, an order might have
 any number of associated line items. In the database, all
 the line item rows for a particular order contain a
 foreign key column referring to that
 order.

[image: images/one_to_many.png]

 In Active Record, the parent object (the one that
 logically contains a collection of child objects)
 uses ​has_many​ to declare its
 relationship to the child table, and the child table
 uses ​belongs_to​ to indicate its
 parent. In our example,
 class ​LineItem​ ​belongs_to
 :order​, and the ​orders​
 table ​has_many :line_items​.

	Note that, again, because the line item contains the
	foreign key, it has the ​belongs_to​ declaration.

Many-to-Many Relationships

	Finally, we might categorize our products. A product can
	belong to many categories, and each category may contain
	multiple products. This is an example of
	a ​many-to-many​ relationship. It’s as if each side
	of the relationship contains a collection of items on the
	other side.

[image: images/many_to_many.png]

	In Rails we can express this by adding
	the ​has_and_belongs_to_many​ declaration to both
	models.

 Many-to-many associations are symmetrical—both of the joined
 tables declare their association with each other
 using “habtm.”

 Rails implements many-to-many associations
 using an intermediate join table. This contains foreign key pairs linking the two
 target tables. Active Record assumes that this join table’s
 name is the concatenation of the two target table names in
 alphabetical order. In our example, we joined the
 table ​categories​ to the
 table ​products​, so Active Record will
 look for a join table
 named ​categories_products​.

 We can also define join tables directly.
 In the Depot application, we defined a
 ​LineItems​ join, which joined
 ​Products​ to either
 ​Carts​ or ​Orders​.
 Defining it ourselves also gave
 us a place to store an additional attribute, namely, a
 ​quantity​.

 Now that we have covered data definitions,
 the next thing you would naturally
 want to do is access the data contained within the database, so let’s do
 that.

19.3 Creating, Reading, Updating, and Deleting (CRUD)

 Names such as SQLite and MySQL emphasize that all access to a database
 is via the Structured Query Language (SQL). In most
 cases, Rails will take care of this for you, but that is completely
 up to you. As you will see, you can provide clauses or even entire
 SQL statements for the database to execute.

 If you are familiar with SQL already, as you read this section take
 note of how Rails provides places for familiar clauses such as
 ​select​, ​from​, ​where​, ​group by​,
 and so on. If you are not already familiar with SQL, one of the
 strengths of Rails is that you can defer knowing more about such
 things until you actually need to access the database at this level.

 In this section, we’ll continue to work with
 the ​Order​ model
 from the Depot application for an example. We will be using
 Active Record methods to apply the four basic
 database operations: create, read, update, and
 delete.

Creating New Rows

 Given that Rails represents tables as classes and rows as objects,
 it follows that we create rows in a
 table by creating new objects of the appropriate class. We
 can create new objects representing rows in
 our ​orders​ table by
 calling
 ​Order.new​
 . We can then
 fill in the values of the attributes (corresponding to
 columns in the database). Finally, we call the
 object’s
 ​save​
 method to store the order back
 into the database. Without this call, the order would
 exist only in our local memory.

	rails40/e1/ar/new_examples.rb
	​ 	an_order = Order.new

	​ 	an_order.name = ​"Dave Thomas"​

	​ 	an_order.email = ​"dave@example.com"​

	​ 	an_order.address = ​"123 Main St"​

	​ 	an_order.pay_type = ​"check"​

	​ 	an_order.save

 Active Record constructors take an optional block. If
 present, the block is invoked with the newly created order
 as a parameter. This might be useful if you wanted to
 create and save an order without creating a new local
 variable.

	rails40/e1/ar/new_examples.rb
	​ 	Order.new ​do​ |o|

	​ 	 o.name = ​"Dave Thomas"​

	​ 	 ​# . . .​

	​ 	 o.save

	​ 	​end​

 Finally, Active Record constructors accept a hash of attribute
 values as an optional parameter. Each entry in this hash
 corresponds to the name and value of an attribute to be set. This
 is useful for doing things like storing values from HTML forms
 into database rows.

	rails40/e1/ar/new_examples.rb
	​ 	an_order = Order.new(

	​ 	 name: ​"Dave Thomas"​,

	​ 	 email: ​"dave@example.com"​,

	​ 	 address: ​"123 Main St"​,

	​ 	 pay_type: ​"check"​)

	​ 	an_order.save

 Note that in all of these examples we did not set
 the ​id​ attribute of the new
 row. Because we used the Active Record default of an integer
 column for the primary key, Active Record automatically creates a
 unique value and sets the ​id​
 attribute as the row is saved. We can subsequently
 find this value by querying the attribute.

	rails40/e1/ar/new_examples.rb
	​ 	an_order = Order.new

	​ 	an_order.name = ​"Dave Thomas"​

	​ 	​# ...​

	​ 	an_order.save

	​ 	puts ​"The ID of this order is ​#{an_order.id}​"​

 The
 ​new​
 constructor creates a
 new ​Order​ object in memory; we have
 to remember to save it to the database at some
 point. Active Record has a convenience method,
 ​create​
 , that both
 instantiates the model object and stores it into the
 database.

	rails40/e1/ar/new_examples.rb
	​ 	an_order = Order.create(

	​ 	 name: ​"Dave Thomas"​,

	​ 	 email: ​"dave@example.com"​,

	​ 	 address: ​"123 Main St"​,

	​ 	 pay_type: ​"check"​)

 You can pass
 ​create​
 an array of
 attribute hashes; it’ll create multiple rows in the
 database and return an array of the corresponding model
 objects.

	rails40/e1/ar/new_examples.rb
	​ 	orders = Order.create(

	​ 	 [{ name: ​"Dave Thomas"​,

	​ 	 email: ​"dave@example.com"​,

	​ 	 address: ​"123 Main St"​,

	​ 	 pay_type: ​"check"​

	​ 	 },

	​ 	 { name: ​"Andy Hunt"​,

	​ 	 email: ​"andy@example.com"​,

	​ 	 address: ​"456 Gentle Drive"​,

	​ 	 pay_type: ​"po"​

	​ 	 }])

 The ​real​ reason
 that
 ​new​

 and
 ​create​
 take a hash of values
 is that you can construct model objects directly from form
 parameters.

	​ 	@order = Order.new(order_params)

 If you think this line looks familiar, it is because you have seen
 it before. It appears in
 ​orders_controller.rb​ in the Depot
 application.

Reading Existing Rows

 Reading from a database involves first specifying
 which particular rows of data you are interested
 in—you’ll give Active Record some kind of criteria, and it
 will return objects containing data from the row(s)
 matching the criteria.

 The simplest way of finding a row in a table is by
 specifying its primary key. Every model class supports
 the
 ​find​

 method, which takes one or more primary key values. If
 given just one primary key, it returns an object
 containing data for the corresponding row (or throws
 an ​ActiveRecord::RecordNotFound​ exception). If
 given multiple primary key
 values,
 ​find​
 returns an array of
 the corresponding objects. Note that in this case
 a ​RecordNotFound​ exception is
 raised if ​any​ of
 the IDs cannot be found (so if
 the method returns without raising an error, the length of
 the resulting array will be equal to the number
 of IDs passed as parameters).

	​ 	an_order = Order.find(27) ​# find the order with id == 27​

	​ 	

	​ 	​# Get a list of product ids from a form, then​

	​ 	​# find the associated Products​

	​ 	product_list = Product.find(params[:product_ids])

[image: David says:]
David says:
To Raise or Not to Raise?

 When you use a finder driven by primary keys, you’re
 looking for a particular record. You expect it to
 exist. A call to ​Person.find(5)​
 is based on our knowledge of
 the ​people​ table. We want the row
 with an ID of 5. If this call is unsuccessful—if the
 record with the ID of 5 has been destroyed—we’re in an
 exceptional situation. This mandates the raising of an
 exception, so Rails
 raises ​RecordNotFound​.

 On the other hand, finders that use criteria to search
 are looking for a ​match​.
 So, ​Person.where(name: ’Dave’).first​
 is the equivalent of telling the database (as a black
 box) “Give me the first person row that has the
 name Dave.” This exhibits a distinctly different
 approach to retrieval; we’re not certain up front
 that we’ll get a result. It’s entirely possible the
 result set may be empty. Thus,
 returning ​nil​ in the case of
 finders that search for one row and an empty array for
 finders that search for many rows is the natural,
 nonexceptional response.

 Often, though, you need to read in rows based on criteria
 other than their primary key value. Active Record provides
 additional methods enabling you to express more complex queries.

SQL and Active Record

 To illustrate how Active Record works with SQL, let’s
 pass a simple string to the

 ​where​
 method
 call
 corresponding to a
 SQL ​where​
 clause. For example, to
 return a list of all orders for Dave with a payment type
 of “po,” we could use this:

	​ 	pos = Order.where(​"name = 'Dave' and pay_type = 'po'"​)

 The result will be an
 ​ActiveRecord::Relation​ object containing
 all the matching rows, each neatly wrapped in an
 ​Order​ object.

 That’s fine if our condition is predefined, but how do
 we handle it when the name of the customer
 is set externally (perhaps coming from a web form)? One
 way is to substitute the value of that variable into the
 condition string.

	​ 	​# get the name from the form​

	​ 	name = params[:name]

	​ 	​# DON'T DO THIS!!!​

	​ 	pos = Order.where(​"name = '​#{name}​' and pay_type = 'po'"​)

 As the comment suggests, this really isn’t a good idea. Why? It
 leaves the database wide open to something called a

 ​ SQL injection​

 attack, which
 the Rails Guides that you generated in ​A Place for Documentation​,
 describe in more detail.
 For now, take it as a given that substituting a string from an
 external source into a SQL statement is effectively the same as
 publishing your entire database to the whole online world.

 Instead, the safe way to generate dynamic SQL is to let
 Active Record handle it.
 Doing this allows Active Record to create
 properly escaped SQL, which is immune from SQL injection
 attacks. Let’s see how this works.

 If we pass multiple parameters to a

 ​where​
 call,
 Rails treats the first parameter as a
 template for the SQL to generate. Within this SQL, we
 can embed placeholders, which will be replaced at
 runtime by the values in the rest of the
 array.

 One way of specifying placeholders is to insert one or
 more question marks in the SQL. The first question mark
 is replaced by the second element of the array, the next
 question mark by the third, and so on. For example, we
 could rewrite the previous query as this:

	​ 	name = params[:name]

	​ 	pos = Order.where([​"name = ? and pay_type = 'po'"​, name])

 We can also use named placeholders. We do that by placing placeholders of the
 form ​:name​ into the string and by
 providing corresponding values in a hash, where the
 keys correspond to the names in the query.

	​ 	name = params[:name]

	​ 	pay_type = params[:pay_type]

	​ 	pos = Order.where(​"name = :name and pay_type = :pay_type"​,

	​ 	 pay_type: pay_type, name: name)

 We can take this a step
 further. Because ​params​ is effectively a
 hash, we can simply pass it all to the condition. If we
 have a form that can be used to enter search criteria,
 we can use the hash of values returned from that form
 directly.

	​ 	pos = Order.where(​"name = :name and pay_type = :pay_type"​,

	​ 	 params[:order])

 We can take this even further. If we
 pass just a hash as the condition, Rails generates
 a ​where​ clause using the hash keys as
 column names and the hash values as the values to
 match. Thus, we could have written the previous code
 even more succinctly.

	​ 	pos = Order.where(params[:order])

 Be careful with this latter form of condition: it
 takes ​all​ the key-value pairs in the hash
 you pass in when constructing the condition. An alternative
 would be to specify which parameters to use explicitly.

	​ 	pos = Order.where(name: params[:name],

	​ 	 pay_type: params[:pay_type])

 Regardless of which form of placeholder you use,
 Active Record takes great care to quote and escape the
 values being substituted into the SQL. Use these forms
 of dynamic SQL, and Active Record will keep you safe from
 injection attacks.

Using Like Clauses

	 We might be tempted to do something like the code on the next page
	 to use parameterized ​like​ clauses in
	 conditions.
	
	​ 	​# Doesn't work​

	​ 	User.where(​"name like '?%'"​, params[:name])

	 Rails doesn’t parse the SQL inside a condition and so
	 doesn’t know that the name is being substituted into a
	 string. As a result, it will go ahead and add extra
	 quotes around the value of the ​name​
	 parameter. The correct way to do this is to construct
	 the full parameter to the ​like​ clause and pass
	 that parameter into the
	 condition.
	
	​ 	​# Works​

	​ 	User.where(​"name like ?"​, params[:name]+​"%"​)

 Of course, if we do this, we need to consider that characters
 such as percent signs, should they happen to appear in the
 value of the name parameter, will be treated as wildcards.

Subsetting the Records Returned

 Now that we know how to specify conditions, let’s turn
 our attention to the various methods supported
 by ​ActiveRecord::Relation​, starting with

 ​first​
 and
 ​all​
 .

 As you may have guessed,
 ​first​
 returns
 the first row in the relation. It returns ​nil​ if the
 relation is empty. Similarly,
 ​to_a​

 returns all the rows as an array.
 ​ActiveRecord::Relation​ also supports many
 of the methods of ​Array​ objects, such as

 ​each​
 and
 ​map​
 .
 It does so by implicitly calling the
 ​all​

 first.

	 It’s important to understand that the query is not evaluated
 until one of these methods is used. This enables us to modify
 the query in a number of ways, namely, by calling additional
 methods, prior to making this call. Let’s look at these methods
 now.

order

 SQL doesn’t require rows to be returned in any
 particular order unless we explicitly add
 an ​order by​ clause to the
 query. The
 ​order​

 method lets us specify the criteria we’d normally
 add after the ​order by​
 keywords. For
 example, the following query would return all of Dave’s
 orders, sorted first by payment type and then by
 shipping date (the latter in descending order).

	​ 	orders = Order.where(name: ​'Dave'​).

	​ 	 order(​"pay_type, shipped_at DESC"​)

limit

 We can limit the
 number of rows returned by calling the

 ​limit​
 method. Generally when we use
 the limit method, we’ll probably also want to specify the sort
 order to ensure consistent results. For example, the following
 returns the first ten matching orders:

	​ 	orders = Order.where(name: ​'Dave'​).

	​ 	 order(​"pay_type, shipped_at DESC"​).

	​ 	 limit(10)

offset

 The
 ​offset​

 method goes hand in hand with
 the
 ​limit​
 method.
 It allows us to specify the
 offset of the first row in the result set that will be
 returned.

	​ 	​# The view wants to display orders grouped into pages,​

	​ 	​# where each page shows page_size orders at a time.​

	​ 	​# This method returns the orders on page page_num (starting​

	​ 	​# at zero).​

	​ 	​def​ Order.find_on_page(page_num, page_size)

	​ 	 order(:id).limit(page_size).offset(page_num*page_size)

	​ 	​end​

	 We can use ​offset​ in conjunction
	 with ​limit​ to step through the results of a
	 query ​n​ rows at a time.
	
select

 By default, ​ActiveRecord::Relation​
 fetches all the columns from the underlying database
 table—it issues a ​select * from...​ to the
 database. Override this
 with the
 ​select​
 method, which takes a
 string that will appear in place of the ​*​ in the
 ​select​ statement.

 This method allows us to limit the values returned in
 cases where we need only a subset of the data in a
 table. For example, our table of podcasts might
 contain information on the title, speaker, and date and
 might also contain a large BLOB containing the MP3 of
 the talk. If you just wanted to create a list of
 talks, it would be inefficient to also load the
 sound data for each row. The
 ​select​

 method lets us choose which columns to load.

	​ 	list = Talk.select(​"title, speaker, recorded_on"​)

joins

 The
 ​joins​
 method
 lets us specify a list of additional
 tables to be joined to the default
 table. This parameter
 is inserted into the SQL immediately after the name of
 the model’s table and before any conditions specified by
 the first parameter. The join syntax is
 database-specific. The following code returns a list of
 all line items for the book called ​Programming
 Ruby​:

	​ 	LineItem.select(​'li.quantity'​).

	​ 	 where(​"pr.title = 'Programming Ruby 1.9'"​).

	​ 	 joins(​"as li inner join products as pr on li.product_id = pr.id"​)

readonly

 The
 ​readonly​
 method causes
 ​ActiveRecord::Resource​ to return Active
 Record objects that cannot be stored back into the
 database.

 If we use the
 ​joins​
 or

 ​select​

 method, objects will automatically be
 marked ​readonly​.

group

 The
 ​group​
 method adds a ​group by​
 clause to the SQL.

	​ 	summary = LineItem.select(​"sku, sum(amount) as amount"​).

	​ 	 group(​"sku"​)

lock

 The
 ​lock​
 method takes an optional
 string as a parameter. If we pass it a string,
 it should be a SQL fragment in our database’s syntax
 that specifies a kind of lock. With MySQL, for
 example, a ​share mode​ lock gives us the
 latest data in a row and guarantees that no one else
 can alter that row while we hold the lock. We could
 write code that debits an account only if there are
 sufficient funds using something like the following:

	​ 	Account.transaction ​do​

	​ 	 ac = Account.where(id: id).lock(​"LOCK IN SHARE MODE"​).first

	​ 	 ac.balance -= amount ​if​ ac.balance > amount

	​ 	 ac.save

	​ 	​end​

 If we don’t specify a string value or we give

 ​lock​
 a value of
 ​true​, the database’s default exclusive
 lock is obtained (normally this will be ​"for
 update"​). We can often eliminate the need for this kind
 of locking using transactions (discussed starting in Section 19.5, ​Transactions​).

 Databases can do more than simply find and reliably retrieve
 data; they can also do a bit of data reduction analysis. Rails
 provides access to these methods too.

Getting Column Statistics

	 Rails has the ability to perform statistics on the
	 values in a column. For example, given a table of
	 orders, we can calculate the following:
	
	​ 	average = Order.average(:amount) ​# average amount of orders​

	​ 	max = Order.maximum(:amount)

	​ 	min = Order.minimum(:amount)

	​ 	total = Order.sum(:amount)

	​ 	number = Order.count

	 These all correspond to aggregate functions in the
	 underlying database, but they work in a
	 database-independent manner.

	 As before, methods can be combined.
	
	​ 	Order.where(​"amount > 20"​).minimum(:amount)

	 These functions aggregate values. By default, they
	 return a single result, producing, for example, the
	 minimum order amount for orders meeting some
	 condition. However, if you include the ​group​
	 method, the functions instead produce a series of
	 results, one result for each set of records where the
	 grouping expression has the same value. For example, the
	 following calculates the maximum sale amount for each
	 state:
	
	​ 	result = Order.group(:state).maximum(:amount)

	​ 	puts result ​#=> {"TX"=>12345, "NC"=>3456, ...}​

	 This code returns an ordered hash. You index it using
	 the grouping element (​"TX"​, ​"NC"​,
	 … in our example). You can also iterate over the
	 entries in order using
 ​each​
 .
	 The value of each entry is the value of the
	 aggregation function.
	

	 The ​order​ and ​limit​ methods come
	 into their own when using groups.

For example, the
	 following returns the three states with the highest
	 orders, sorted by the order amount:
	
	​ 	result = Order.group(:state).

	​ 	 order(​"max(amount) desc"​).

	​ 	 limit(3)

	 This code is no longer database independent—in order
	 to sort on the aggregated column, we had to use the
	 SQLite syntax for the aggregation function (​max​,
	 in this case).
	
Scopes

 As these chains of method calls grow longer, making the chains
 themselves available for reuse becomes a concern. Once again,
 Rails delivers. An Active Record ​scope​ can be
 associated with a Proc
 and therefore may have arguments:

	​ 	​class​ Order < ActiveRecord::Base

	​ 	 scope :last_n_days, lambda { |days| where(​'updated < ?'​ , days) }

	​ 	​end​

 Such a named scope would make finding the worth of last week’s
 orders a snap.

	​ 	orders = Order.last_n_days(7)

 Simpler scopes may have no parameters at all.

	​ 	​class​ Order < ActiveRecord::Base

	​ 	 scope :checks, -> { where(pay_type: :check) }

	​ 	​end​

 Scopes can also be combined. Finding the last week’s worth of
 orders that were paid by check is just as easy.

	​ 	orders = Order.checks.last_n_days(7)

 In addition to making your application code easier to write and
 easier to read, scopes can make your code more efficient.
 The previous statement, for example, is implemented as a single SQL
 query.

 ​ActiveRecord::Relation​ objects
 are equivalent to an anonymous scope.

	​ 	in_house = Order.where(​'email LIKE "%@pragprog.com"'​)

 Of course, relations can also be combined.

	​ 	in_house.checks.last_n_days(7)

 Scopes aren’t limited to where conditions; we can do pretty much
 anything we can do in a method call:
 ​limit​, ​order​, ​join​, and so on. Just be
 aware that Rails doesn’t know how to handle multiple
 ​order​ or ​limit​ clauses, so be sure to use
 these only once per call chain.

 In nearly every case, the methods we have been describing
 are sufficient. But Rails is not satisfied with only being able
 to handle nearly every case, so for cases that require a human-crafted query, there is an API for that too.

Writing Our Own SQL

 Each of the methods we have been looking at contributes to the
 construction of a full SQL query string. The
 method
 ​find_by_sql​
 lets our application
 take full control. It accepts a single parameter
 containing a
 SQL ​select​
 statement (or an array containing SQL and placeholder
 values, as for
 ​find​
) and
 returns an array of model objects (that is potentially empty)
 from the result set. The attributes in these models will
 be set from the columns returned by the query. We’d
 normally use the ​select *​
 form to return all columns for a table, but this isn’t
 required.

	rails40/e1/ar/find_examples.rb
	​ 	orders = LineItem.find_by_sql(​"select line_items.* from line_items, orders "​ +

	​ 	 ​" where order_id = orders.id "​ +

	​ 	 ​" and orders.name = 'Dave Thomas' "​)

 Only those attributes returned by a query will be
 available in the resulting model objects. We can
 determine the attributes available in a model object
 using the
 ​attributes​
 ,
 ​attribute_names​
 ,
 and
 ​attribute_present?​
 methods. The
 first returns a hash of attribute name-value pairs, the
 second returns an array of names, and the third
 returns ​true​ if a named attribute
 is available in this model
 object.

	rails40/e1/ar/find_examples.rb
	​ 	orders = Order.find_by_sql(​"select name, pay_type from orders"​)

	​ 	first = orders[0]

	​ 	p first.attributes

	​ 	p first.attribute_names

	​ 	p first.attribute_present?(​"address"​)

 This code produces the following:

	​ 	{"name"=>"Dave Thomas", "pay_type"=>"check"}

	​ 	["name", "pay_type"]

	​ 	false

 ​find_by_sql​
 can also be used to
 create model objects containing derived column data. If
 we use the ​as xxx​ SQL syntax
 to give derived columns a name in the result set, this
 name will be used as the name of the attribute.

	rails40/e1/ar/find_examples.rb
	​ 	items = LineItem.find_by_sql(​"select *, "​ +

	​ 	 ​" products.price as unit_price, "​ +

	​ 	 ​" quantity*products.price as total_price, "​ +

	​ 	 ​" products.title as title "​ +

	​ 	 ​" from line_items, products "​ +

	​ 	 ​" where line_items.product_id = products.id "​)

	​ 	li = items[0]

	​ 	puts ​"​#{li.title}​: ​#{li.quantity}​x​#{li.unit_price}​ => ​#{li.total_price}​"​

 As with conditions, we can also pass an array
 to
 ​find_by_sql​
 , where the first
 element is a string containing placeholders. The rest of
 the array can be either a hash or a list of values to be
 substituted.

	​ 	Order.find_by_sql([​"select * from orders where amount > ?"​,

	​ 	 params[:amount]])

[image: David says:]
David says:
But Isn’t SQL Dirty?

 Ever since developers first wrapped
 relational databases with an object-oriented layer, they’ve
 debated the question of how deep to run the
 abstraction. Some object-relational mappers seek to
 eliminate the use of SQL entirely, hoping for
 object-oriented purity by forcing all queries through
 an OO layer.

 Active Record does not. It was built on the notion that
 SQL is neither dirty nor bad, just verbose in the
 trivial cases. The focus is on removing the need to deal
 with the verbosity in those trivial cases (writing a
 ten-attribute ​insert​ by hand
 will leave any programmer tired) but keeping the
 expressiveness around for the hard queries—the type
 SQL was created to deal with elegantly.

 Therefore, you shouldn’t feel guilty when you
 use
 ​find_by_sql​
 to handle either
 performance bottlenecks or hard queries. Start out using
 the object-oriented interface for productivity and
 pleasure and then dip beneath the surface for a
 close-to-the-metal experience when you need to do so.

	 In the old days of Rails, people frequently resorted to
	 using
 ​find_by_sql​
 . Since then,
	 all the options added to the
	 basic
 ​find​
 method mean you
	 can avoid resorting to this low-level method.
	
Reloading Data

 In an application where the database is potentially
 being accessed by multiple processes (or by multiple
 applications), there’s always the possibility that a
 fetched model object has become
 stale—someone may have written a more recent copy to
 the database.

 To some extent, this issue is addressed by transactional
 support (which we describe in Section 19.5, ​Transactions​). However, there’ll still
 be times where you need to refresh a model object
 manually. Active Record makes this easy—simply call
 its
 ​reload​
 method, and the object’s
 attributes will be refreshed from the database.

	​ 	stock = Market.find_by(ticker: ​"RUBY"​)

	​ 	loop ​do​

	​ 	 puts ​"Price = ​#{stock.price}​"​

	​ 	 sleep 60

	​ 	 stock.reload

	​ 	​end​

 In practice,
 ​reload​
 is rarely
 used outside the context of unit tests.

Updating Existing Rows

 After such a long discussion of finder methods, you’ll be
 pleased to know that there’s not much to say about
 updating records with Active Record.

 If you have an Active Record object (perhaps representing
 a row from our ​orders​ table), you can
 write it to the database by calling its
 ​save​
 method. If this
 object had previously been read from the database, this
 save will update the existing row; otherwise, the save will
 insert a new row.

 If an existing row is updated, Active Record will use its
 primary key column to match it with the in-memory object.
 The attributes contained in the Active Record object
 determine the columns that will be updated—a column will
 be updated in the database only if its value has been
 changed. In the following example, all the values in the
 row for order 123 can be updated in the database table:

	​ 	order = Order.find(123)

	​ 	order.name = ​"Fred"​

	​ 	order.save

 However, in the following example, the Active Record object
 contains just the
 attributes ​id​, ​name​,
 and ​paytype​—only these columns
 can be updated when the object is saved. (Note that you
 have to include the ​id​ column if
 you intend to save a row fetched
 using
 ​find_by_sql​
 .)

	​ 	orders = Order.find_by_sql(​"select id, name, pay_type from orders where id=123"​)

	​ 	first = orders[0]

	​ 	first.name = ​"Wilma"​

	​ 	first.save

 In addition to the
 ​save​
 method,
 Active Record lets us change the values of attributes and
 save a model object in a single call to
 ​update​
 .

	​ 	order = Order.find(321)

	​ 	order.update(name: ​"Barney"​, email: ​"barney@bedrock.com"​)

	
	
	 The
 ​update​
 method is most
	 commonly used in controller actions where it merges data
	 from a form into an existing database row.
	
	​ 	​def​ save_after_edit

	​ 	 order = Order.find(params[:id])

	​ 	 ​if​ order.update(order_params)

	​ 	 redirect_to action: :index

	​ 	 ​else​

	​ 	 render action: :edit

	​ 	 ​end​

	​ 	​end​

 We can combine the functions of reading a row and
 updating it using the class
 methods
 ​update​

 and
 ​update_all​
 . The
 ​update​

 method takes an ​id​ parameter and
 a set of attributes. It fetches the corresponding row,
 updates the given attributes, saves the result to the
 database, and returns the model object.

	​ 	order = Order.update(12, name: ​"Barney"​, email: ​"barney@bedrock.com"​)

 We can pass
 ​update​
 an array of
 IDs and an array of attribute value hashes, and it will
 update all the corresponding rows in the database,
 returning an array of model objects.

 Finally, the
 ​update_all​
 class
 method allows us to specify
 the ​set​
 and ​where​ clauses of the
 SQL ​update​ statement. For
 example, the following increases the prices of all
 products with ​Java​ in their title by
 10 percent:

	​ 	result = Product.update_all(​"price = 1.1*price"​, ​"title like '%Java%'"​)

 The return value of
 ​update_all​

 depends on the database adapter; most (but not Oracle) return the
 number of rows that were changed in the database.

save, save!, create, and create!

 It turns out that there are two versions of
 the ​save​ and ​create​ methods. The
 variants differ in the way they report
 errors.
	

	

		 ​save​
		 returns ​true​ if the record was
		 saved; it returns ​nil​ otherwise.
		

	

		 ​save!​
		 returns ​true​ if the save succeeded; it raises an exception
		 otherwise.
		

	

		 ​create​
		 returns the Active Record object regardless of
		 whether it was successfully saved. You’ll need to
		 check the object for validation errors if you want
		 to determine whether the data was written.
		

	

		 ​create!​
		 returns the Active Record object on success; it raises
		 an exception otherwise.
		

	 Let’s look at this in a bit more detail.
	

 Plain old
 ​save​

 returns ​true​ if the model object is
 valid and can be saved.

	​ 	​if​ order.save

	​ 	 ​# all OK​

	​ 	​else​

	​ 	 ​# validation failed​

	​ 	​end​

 It’s up to us to check on each call
 to
 ​save​
 to see that it did what we
 expected. The reason Active Record is so lenient is
 that it assumes
 ​save​
 is
 called in the context of a controller’s action method
 and that the view code will be presenting any errors
 back to the end user. And for many applications, that’s
 the case.

 However, if we need to save a model object in a context
 where we want to make sure to handle all errors
 programmatically, we should use
 ​save!​
 . This method
 raises a ​RecordInvalid​ exception if the object could not be
 saved.

	​ 	​begin​

	​ 	 order.save!

	​ 	​rescue​ RecordInvalid => error

	​ 	 ​# validation failed​

	​ 	​end​

Deleting Rows

 Active Record supports two styles of row deletion. First,
 it has two class-level
 methods,
 ​delete​
 and
 ​delete_all​
 , that operate at the
 database level.
 The
 ​delete​
 method takes a single
 ID or an array of IDs and deletes the corresponding row(s)
 in the underlying
 table.
 ​delete_all​
 deletes rows
 matching a given condition (or all rows if no condition is
 specified). The return values from both calls depend on
 the adapter but are typically the number of rows
 affected. An exception is not thrown if the row doesn’t
 exist prior to the call.

	​ 	Order.delete(123)

	​ 	User.delete([2,3,4,5])

	​ 	Product.delete_all([​"price > ?"​, @expensive_price])

 The various ​destroy​ methods are
 the second form of row deletion provided by
 Active Record. These methods all work via Active Record
 model objects.

 The
 ​destroy​
 instance method
 deletes from the database the row corresponding to a
 particular model object. It then freezes the contents of
 that object, preventing future changes to the attributes.

	​ 	order = Order.find_by(name: ​"Dave"​)

	​ 	order.destroy

	​ 	​# ... order is now frozen​

 There are two class-level destruction
 methods,
 ​destroy​
 (which takes
 an ID or an array
 of IDs) and
 ​destroy_all​
 (which
 takes a condition). Both methods read the corresponding rows in
 the database table into model objects and call the
 instance-level
 ​destroy​
 method of
 those objects. Neither method returns anything meaningful.

	​ 	Order.destroy_all([​"shipped_at < ?"​, 30.days.ago])

 Why do we need both the ​delete​
 and ​destroy​ class methods?
 The ​delete​ methods bypass the
 various Active Record callback and validation
 functions, while
 the ​destroy​ methods ensure that
 they are all invoked. In general, it is
 better to use the ​destroy​ methods
 if you want to ensure that your database is consistent
 according to the business rules defined in your model
 classes.

 We covered validation in Chapter 7, ​Task B: Validation and Unit Testing​. We
 cover callbacks next.

19.4 Participating in the Monitoring Process

 Active Record controls the life cycle of model objects—it
 creates them, monitors them as they are modified, saves and
 updates them, and watches sadly as they are
 destroyed. Using callbacks, Active Record lets our code
 participate in this monitoring process. We can write code that
 gets invoked at any significant event in the life of an
 object. With these callbacks we can perform complex
 validation, map column values as they pass in and out of the
 database, and even prevent certain operations from completing.

 Active Record defines sixteen callbacks. Fourteen of these form
 before/after pairs and bracket some operation on an
 Active Record object. For example,
 the ​before_destroy​ callback will be
 invoked just before the
 ​destroy​

 method is called, and ​after_destroy​
 will be invoked after. The two exceptions
 are ​after_find​
 and ​after_initialize​, which have no
 corresponding ​before_​​xxx​
 callback. (These two callbacks are different in other ways,
 too, as we’ll see later.)

 In the following figure we can see how Rails wraps the
 sixteen paired callbacks around the basic create, update, and
	destroy operations on model objects. Perhaps surprisingly, the
	before and after validation calls are not strictly
	nested.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image: images/ar_callbacks.png]

Figure 57. Sequence of Active Record callbacks

 The ​before_validation​ and ​after_validation​ calls
 also accept the ​on: :create​ or ​on: :update​ parameter,
 which will cause the callback to be called only on the selected
 operation.

	In addition to these sixteen calls, the ​after_find​
	callback is invoked after any find operation,
	and ​after_initialize​ is invoked after an Active
	Record model object is created.
	
	
	
	
	
	
	
	

	To have your code execute during a callback, you need to write
	a handler and associate it with the appropriate callback.

	There are two basic ways of implementing callbacks.

	The preferred way to define a callback is to declare
	handlers. A handler can be either a method or a
	block.
	You associate a handler with a particular event
	using class methods named after the event. To associate a
	method, declare it as private or protected, and specify its
	name as a symbol to the handler declaration. To specify a
	block, simply add it after the declaration. This block
	receives the model object as a parameter.

	​ 	​class​ Order < ActiveRecord::Base

	​ 	 before_validation :normalize_credit_card_number

	​ 	 after_create ​do​ |order|

	​ 	 logger.info ​"Order ​#{order.id}​ created"​

	​ 	 ​end​

	​ 	 protected

	​ 	 ​def​ normalize_credit_card_number

	​ 	 self.cc_number.gsub!(/[-\s]/, ​''​)

	​ 	 ​end​

	​ 	​end​

	You can specify multiple handlers for the same callback. They
	will generally be invoked in the order they are
	specified unless a handler
	returns ​false​ (and it must be the actual
	value ​false​), in which case the callback chain is
	broken early.

	Alternately, you can define the callback instance methods
	using callback objects, inline methods (using a proc), or inline eval
methods (using a string). See the online documentation for more details.[62]

Grouping Related Callbacks Together

 If you have a group of related callbacks, it may be convenient to
 group them into a separate handler class. These handlers can be
	 shared between multiple models. A handler class is simply a
	 class that defines callback methods
	 (
 ​before_save​
 ,
 ​after_create​
 ,
	 and so on). Create the
	 source files for these handler classes
	 in ​app/models​.
	

	 In the model object that uses the handler, you create an
	 instance of this handler class and pass that instance to the
	 various callback declarations. A couple of examples will
	 make this clearer.
	

	 If our application uses credit cards in multiple places, we
	 might want to share
	 our
 ​normalize_credit_card_number​

	 method across multiple models. To do that, we’d extract the
	 method into its own class and name it after the event we
	 want it to handle. This method will receive a single
	 parameter, the model object that generated the callback.
	
	​ 	​class​ CreditCardCallbacks

	​ 	

	​ 	 ​# Normalize the credit card number​

	​ 	 ​def​ before_validation(model)

	​ 	 model.cc_number.gsub!(/[-\s]/, ​''​)

	​ 	 ​end​

	​ 	​end​

	 Now, in our model classes, we can arrange for this shared
	 callback to be invoked.
	
	​ 	​class​ Order < ActiveRecord::Base

	​ 	 before_validation CreditCardCallbacks.new

	​ 	 ​# ...​

	​ 	​end​

	​ 	

	​ 	​class​ Subscription < ActiveRecord::Base

	​ 	 before_validation CreditCardCallbacks.new

	​ 	 ​# ...​

	​ 	​end​

	 In this example, the handler class assumes that the credit
	 card number is held in a model attribute
	 named ​cc_number​;
	 both ​Order​
	 and ​Subscription​ would have an
	 attribute with that name. But we can generalize the idea,
	 making the handler class less dependent on the
	 implementation details of the classes that use it.
	

	 For example, we could create a generalized encryption and
	 decryption handler. This could be used to encrypt named
	 fields before they are stored in the database and to
	 decrypt them when the row is read back. You could
	 include it as a callback handler in any model that needed the
	 facility.
	

	 The handler needs to encrypt
	 a given set of attributes in a
	 model just before that model’s data is written to the
	 database. Because our application needs to deal with the
	 plain-text versions of these attributes, it arranges to
	 decrypt them again after the save is complete. It also needs
	 to decrypt the data when a row is read from the database
	 into a model object. These requirements mean we have to
	 handle
	 the ​before_save​, ​after_save​,
	 and ​after_find​ events. Because we
	 need to decrypt the database row both after saving and when
	 we find a new row, we can save code by aliasing
	 the
 ​after_find​
 method
	 to
 ​after_save​
 —the same method
	 will have two names.
	
	rails40/e1/ar/encrypt.rb
	​ 	​class​ Encrypter

	​ 	 ​# We're passed a list of attributes that should​

	​ 	 ​# be stored encrypted in the database​

	​ 	 ​def​ initialize(attrs_to_manage)

	​ 	 @attrs_to_manage = attrs_to_manage

	​ 	 ​end​

	​ 	

	​ 	 ​# Before saving or updating, encrypt the fields using the NSA and​

	​ 	 ​# DHS approved Shift Cipher​

	​ 	 ​def​ before_save(model)

	​ 	 @attrs_to_manage.each ​do​ |field|

	​ 	 model[field].tr!(​"a-z"​, ​"b-za"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# After saving, decrypt them back​

	​ 	 ​def​ after_save(model)

	​ 	 @attrs_to_manage.each ​do​ |field|

	​ 	 model[field].tr!(​"b-za"​, ​"a-z"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# Do the same after finding an existing record​

	​ 	 alias_method :after_find, :after_save

	​ 	​end​

	 This example uses trivial
	 encryption—you might want to beef it up before using this
	 class for real.
	

	 We can now arrange for the ​Encrypter​
	 class to be invoked from inside our orders model.
	
	​ 	require ​"encrypter"​

	​ 	​class​ Order < ActiveRecord::Base

	​ 	 encrypter = Encrypter.new([:name, :email])

	​ 	 before_save encrypter

	​ 	 after_save encrypter

	​ 	 after_find encrypter

	​ 	protected

	​ 	 ​def​ after_find

	​ 	 ​end​

	​ 	​end​

	 We create a new ​Encrypter​ object and
	 hook it up to
	 the events ​before_save​, ​after_save​,
	 and ​after_find​. This way,
	 just before an order is saved,
	 the method
 ​before_save​
 in the
	 encrypter will be invoked, and so on.
	

	 So, why do we define an
	 empty
 ​after_find​
 method? Remember
	 that we said that for performance reasons ​after_find​
	 and ​after_initialize​ are treated
	 specially. One of the consequences of this special
	 treatment is that Active Record won’t know to call
	 an ​after_find​ handler unless it
	 sees an actual
 ​after_find​
 method
	 in the model class. We have to define an empty placeholder
	 to get ​after_find​ processing to
	 take place.
	

	 This is all very well, but every model class that wants to
	 use our encryption handler would need to include some eight
	 lines of code, just as we did with
	 our ​Order​ class. We can do better
	 than that. We’ll define a helper method that does all the
	 work and make that helper available to all Active Record
	 models. To do that, we’ll add it to
	 the ​ActiveRecord::Base​
	 class.
	
	rails40/e1/ar/encrypt.rb
	​ 	​class​ ActiveRecord::Base

	​ 	 ​def​ self.encrypt(*attr_names)

	​ 	 encrypter = Encrypter.new(attr_names)

	​ 	

	​ 	 before_save encrypter

	​ 	 after_save encrypter

	​ 	 after_find encrypter

	​ 	

	​ 	 define_method(:after_find) { }

	​ 	 ​end​

	​ 	​end​

	 Given this, we can now add encryption to any model class’s
	 attributes using a single call.
	
	​ 	​class​ Order < ActiveRecord::Base

	​ 	 encrypt(:name, :email)

	​ 	​end​

	 A simple driver program lets us experiment with this.
	
	​ 	o = Order.new

	​ 	o.name = ​"Dave Thomas"​

	​ 	o.address = ​"123 The Street"​

	​ 	o.email = ​"dave@example.com"​

	​ 	o.save

	​ 	puts o.name

	​ 	

	​ 	o = Order.find(o.id)

	​ 	puts o.name

	 On the console, we see our customer’s name (in plain text)
	 in the model object.
	
	​ 	ar>​ ruby encrypt.rb​

	​ 	Dave Thomas

	​ 	Dave Thomas

	 In the database, however, the name and email address are
	 obscured by our industrial-strength encryption.
	
	​ 	depot>​ sqlite3 -line db/development.sqlite3 "select * from orders"​

	​ 	 id = 1

	​ 	user_id =

	​ 	 name = Dbwf Tipnbt

	​ 	address = 123 The Street

	​ 	 email = ebwf@fybnqmf.dpn

	 Callbacks are a fine technique, but they can sometimes
	 result in a model class taking on responsibilities that
	 aren’t really related to the nature of the model. For
	 example, in Section 19.4, ​Participating in the Monitoring Process​, we
	 created a callback that generated a log message when an
	 order was created. That functionality isn’t really part of
	 the basic ​Order​ class—we put it
	 there because that’s where the callback executed.
	
	
	

 When used in moderation, such an approach doesn’t lead to significant
 problems. If, however, you find yourself repeating code, consider using
 Concerns[63] instead.

19.5 Transactions

 A database transaction groups a series of changes
 in such a way that either the database applies all of the changes
 or it applies none of the changes. The classic example of the
 need for transactions (and one used in Active Record’s own
 documentation) is transferring money between two bank
 accounts. The basic logic is simple.

	​ 	account1.deposit(100)

	​ 	account2.withdraw(100)

 However, we have to be careful. What happens if the deposit
 succeeds but for some reason the withdrawal fails (perhaps
 the customer is overdrawn)? We’ll have added $100 to the
 balance in ​account1​ without a
 corresponding deduction
 from ​account2​. In effect, we’ll
 have created $100 out of thin air.

 Transactions to the rescue. A transaction is something like
 the Three Musketeers with their
 motto “All for one and one for all.” Within the scope of a
 transaction, either every SQL statement succeeds or they all
 have no effect. Putting that another way, if any statement
 fails, the entire transaction has no effect on the
 database.

 In Active Record we use the
 ​transaction​
 method to execute a block
 in the context of a particular database transaction. At the
 end of the block, the transaction is
 committed, updating the
 database, ​unless​ an exception is raised within
 the block, in which case the database rolls back all of the changes.
 Because transactions exist in
 the context of a database connection, we have to invoke them
 with an Active Record class as a receiver.

Thus, we could
 write this:

	​ 	Account.transaction ​do​

	​ 	 account1.deposit(100)

	​ 	 account2.withdraw(100)

	​ 	​end​

 Let’s experiment with transactions. We’ll start by creating
 a new database table. (Make sure your database supports
 transactions, or this code won’t work for you.)

	rails40/e1/ar/transactions.rb
	​ 	create_table :accounts, force: true ​do​ |t|

	​ 	 t.string :number

	​ 	 t.decimal :balance, precision: 10, scale: 2, default: 0

	​ 	​end​

 Next, we’ll define a simple bank account class.
 This class defines instance methods to deposit money to and
 withdraw money from the account. It also provides some basic
 validation—for this particular type of account, the
 balance can never be negative.

	rails40/e1/ar/transactions.rb
	​ 	​class​ Account < ActiveRecord::Base

	​ 	 validates :balance, numericality: {greater_than_or_equal_to: 0}

	​ 	 ​def​ withdraw(amount)

	​ 	 adjust_balance_and_save!(-amount)

	​ 	 ​end​

	​ 	 ​def​ deposit(amount)

	​ 	 adjust_balance_and_save!(amount)

	​ 	 ​end​

	​ 	 private

	​ 	 ​def​ adjust_balance_and_save!(amount)

	​ 	 self.balance += amount

	​ 	 save!

	​ 	 ​end​

	​ 	​end​

 Let’s look at the helper
 method,
 ​adjust_balance_and_save!​
 . The
 first line simply updates the balance field. The method then
 calls ​save!​ to save the model data. (Remember
 that
 ​save!​

 raises an exception if the object cannot be saved—we use
 the exception to signal to the transaction that something
 has gone wrong.)

 So, now let’s write the code to transfer money between two
 accounts. It’s pretty straightforward.

	rails40/e1/ar/transactions.rb
	​ 	peter = Account.create(balance: 100, number: ​"12345"​)

	​ 	paul = Account.create(balance: 200, number: ​"54321"​)

	​ 	Account.transaction ​do​

	​ 	 paul.deposit(10)

	​ 	 peter.withdraw(10)

	​ 	​end​

 We check the database, and, sure enough, the money got
 transferred.

	​ 	depot>​ sqlite3 -line db/development.sqlite3 "select * from accounts"​

	​ 	 id = 1

	​ 	 number = 12345

	​ 	balance = 90

	​ 	

	​ 	 id = 2

	​ 	 number = 54321

	​ 	balance = 210

 Now let’s get radical. If we start again but this time try
 to transfer $350, we’ll run Peter into the red, which isn’t
 allowed by the validation rule. Let’s try it:

	rails40/e1/ar/transactions.rb
	​ 	peter = Account.create(balance: 100, number: ​"12345"​)

	​ 	paul = Account.create(balance: 200, number: ​"54321"​)

	rails40/e1/ar/transactions.rb
	​ 	Account.transaction ​do​

	​ 	 paul.deposit(350)

	​ 	 peter.withdraw(350)

	​ 	​end​

 When we run this, we get an exception reported on the
 console.

	​ 	.../validations.rb:736:in `save!': Validation failed: Balance is negative

	​ 	from transactions.rb:46:in `adjust_balance_and_save!'

	​ 	 : : :

	​ 	from transactions.rb:80

 Looking in the database, we can see that the data remains
 unchanged.

	​ 	depot>​ sqlite3 -line db/development.sqlite3 "select * from accounts"​

	​ 	 id = 1

	​ 	 number = 12345

	​ 	balance = 100

	​ 	

	​ 	 id = 2

	​ 	 number = 54321

	​ 	balance = 200

 However, there’s a trap waiting for you here. The
 transaction protected the database from becoming
 inconsistent, but what about our model objects? To see what
 happened to them, we have to arrange to intercept the
 exception to allow the program to continue running.

	rails40/e1/ar/transactions.rb
	​ 	peter = Account.create(balance: 100, number: ​"12345"​)

	​ 	paul = Account.create(balance: 200, number: ​"54321"​)

	rails40/e1/ar/transactions.rb
	​ 	​begin​

	​ 	 Account.transaction ​do​

	​ 	 paul.deposit(350)

	​ 	 peter.withdraw(350)

	​ 	 ​end​

	​ 	​rescue​

	​ 	 puts ​"Transfer aborted"​

	​ 	​end​

	​ 	

	​ 	puts ​"Paul has ​#{paul.balance}​"​

	​ 	puts ​"Peter has ​#{peter.balance}​"​

 What we see is a little surprising.

	​ 	Transfer aborted

	​ 	Paul has 550.0

	​ 	Peter has -250.0

 Although the database was left unscathed, our model objects
 were updated anyway. This is because Active Record wasn’t
 keeping track of the before and after states of the various
 objects—in fact, it couldn’t, because it had no easy way of
 knowing just which models were involved in the
 transactions.

Built-in Transactions

 When we discussed parent and child tables in ​Specifying Relationships in Models​, we said that
 Active Record takes care of saving all the dependent child
 rows when you save a parent row. This takes multiple SQL
 statement executions (one for the parent and one each for
 any changed or new children).

Clearly, this change should
 be atomic, but until now we haven’t been using
 transactions when saving these interrelated objects. Have
 we been negligent?

 Fortunately, no. Active Record is smart enough to wrap all
 the updates and inserts related to a
 particular
 ​save​
 (and also the deletes related to
 a
 ​destroy​
) in a transaction;
 either they all succeed or no data is written permanently to
 the database. You need explicit transactions only when you
 manage multiple SQL statements yourself.

 While we have covered the basics,
 transactions are actually very subtle. They
 exhibit the so-called ACID properties: they’re Atomic,
 they ensure Consistency, they work in Isolation, and
 their effects are Durable (they are made permanent when
 the transaction is committed). It’s worth finding a good
 database book and reading up on transactions if you
 plan to take a database application live.

What We Just Did

 We learned
 the relevant data structures and naming conventions for tables,
 classes, columns, attributes, IDs, and relationships.
 We saw how to create, read, update, and delete this data.
 Finally, we now understand how transactions and callbacks can be used
 to prevent inconsistent changes.

 This, coupled with validation as described in Chapter 7, ​Task B: Validation and Unit Testing​, covers all the essentials of Active
 Record that every Rails programmer needs to know. If you have specific
 needs beyond what is covered here, look to the Rails Guides that you
 generated in ​A Place for Documentation​, for more information.

 The next major subsystem to cover is Action Pack, which covers both the
 view and controller portions of Rails.

Footnotes

	[61]	

 ​https://github.com/rails/acts_as_list​

	[62]	

 ​http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks​

	[63]	

 ​http://37signals.com/svn/posts/3372-put-chubby-models-on-a-diet-with-concerns​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 20
Action Dispatch and Action Controller

	
Representational State Transfer (REST);

	
defining how requests are routed to controllers;

	
selecting a data representation;

	
testing routes;

	
the controller environment;

	
rendering and redirecting; and

	
sessions, flash, and callbacks.

 Action Pack lies at the heart of Rails applications. It consists of three
 Ruby modules: ​ActionDispatch​,
 ​ActionController​, and
 ​ActionView​. Action Dispatch routes requests to
 controllers. Action Controller converts requests into responses. Action
 View is used by Action Controller to format those responses.

 As a concrete example, in the Depot application, we routed the root of the
 site (/) to the
 ​index​
 method of the
 ​StoreController​. At the completion of that method,
 the template in ​app/views/store/index.html.erb​ was
 rendered. Each of these activities was orchestrated by modules in the
 Action Pack component.

 Working together, these three submodules provide support for
 processing incoming requests and generating outgoing responses. In this
 chapter, we’ll look at both Action Dispatch and Action
 Controller. In the next chapter, we will cover Action View.

 When we looked at Active Record, we saw it could be used as a freestanding
 library; we can use Active Record as part of a nonweb Ruby
 application. Action Pack is different. Although it is possible to
 use it directly as a framework, you probably won’t. Instead,
 you’ll take advantage of the tight integration offered by
 Rails. Components such as Action Controller, Action View, and
 Active Record handle the processing of requests, and the Rails
 environment knits them together into a coherent (and easy-to-use)
 whole. For that reason, we’ll describe Action Controller in the
 context of Rails. Let’s start by looking at how Rails applications
 handle requests. We’ll then dive down into the details of routing
 and URL handling. We’ll continue by
 looking at how you write code in a controller. Finally, we will cover
 sessions, flash, and callbacks.

20.1 Dispatching Requests to Controllers

 At its simplest, a web application accepts an incoming request
 from a browser, processes it, and sends a response.

 The first question that springs to mind is, how does the
 application know what to do with the incoming request?
 A shopping cart application will receive requests to display a
 catalog, add items to a cart, create an order, and so on. How does it
 route these requests to the appropriate code?

 It turns out that Rails provides two ways to define how to
 route a request: a comprehensive way that you will use when you need to
 and a convenient way that you will generally use whenever you can.

 The comprehensive way lets you define
 a direct mapping of URLs to actions based on pattern matching,
 requirements, and conditions. The convenient way lets you
 define routes based on resources, such as the models that you define.
 And because the convenient way is built on the comprehensive way, you can
 freely mix and match the two approaches.

 In both cases, Rails encodes information in the request URL and uses a
 subsystem called ​Action Dispatch​ to determine what
 should be done with that request. The actual process is very flexible,
 but at the end of it Rails has determined the name of the

 ​ controller​

 that handles this particular request,
 along with a list of any other request parameters. In the process,
 either one of these additional parameters or the HTTP method itself is
 used to identify the
 ​ action​

 to be invoked in the
 target controller.

	 Rails routes support the mapping between URLs and actions based on
	 the contents of the URL and on the HTTP method used to invoke the
	 request. We’ve seen how to do this on a URL-by-URL basis using
	 anonymous or named routes. Rails also supports a higher-level way
	 of creating groups of related routes. To understand the motivation
	 for this, we need to take a little diversion into the world of
	 Representational State Transfer.
	
REST: Representational State Transfer

	 The ideas behind REST were formalized in Chapter 5 of Roy
	 Fielding’s 2000 PhD
	 dissertation.[64] In a REST approach, servers communicate with
	 clients using stateless connections. All the information
	 about the state of the interaction between the two is
	 encoded into the requests and responses between
	 them. Long-term state is kept on the server as a set of
	 identifiable ​resources​. Clients access these
	 resources using a well-defined (and severely constrained)
	 set of resource identifiers (URLs in our context). REST
	 distinguishes the content of resources from the
	 presentation of that content. REST is designed to support
	 highly scalable computing while constraining application
	 architectures to be decoupled by nature.
	

	 There’s a lot of abstract stuff in this description. What does
	 REST mean in practice?
	

	 First, the formalities of a RESTful approach mean that network
	 designers know when and where they can cache responses to
	 requests. This enables load to be pushed out through the
	 network, increasing performance and resilience while reducing
	 latency.
	

	 Second, the constraints imposed by REST can lead to
	 easier-to-write (and maintain) applications. RESTful
	 applications don’t worry about implementing remotely
	 accessible services. Instead, they provide a regular (and
	 simple) interface to a set of resources. Your application
	 implements a way of listing, creating, editing, and
	 deleting each resource, and your clients do the rest.
	

	 Let’s make this more concrete. In REST, we use a simple
	 set of verbs to operate on a rich set of nouns. If we’re
	 using HTTP, the verbs correspond to HTTP methods (GET,
	 PUT, PATCH, POST, and DELETE, typically). The nouns are the resources in our
	 application. We name those resources using URLs.
	

	 The Depot application that we produced contained a set of
	 products. There are implicitly two resources here. First,
	 there are the individual products. Each constitutes a
	 resource. There’s also a second resource: the collection
	 of products.
	

	 To fetch a list of all the products, we could issue an
	 HTTP GET request against this collection, say on the
	 path ​/products​. To fetch the contents of an
	 individual resource, we have to identify it. The Rails way
	 would be to give its primary key value (that is, its
	 ID). Again we’d issue a GET request, this time against the
	 URL ​/products/1​.
	

	 To create a new product in our collection,
	 we use an HTTP POST request directed at
	 the ​/products​ path, with the post data
	 containing the product to add. Yes, that’s the same path
	 we used to get a list of products. If you issue a GET to
	 it, it responds with a list, and if you do a POST to it,
	 it adds a new product to the collection.
	

 Take this a step further. We’ve
 already seen you can
	 retrieve the content of a product—you just issue a GET request
	 against the path ​/products/1​. To update that
	 product, you’d issue an HTTP PUT request against the same
	 URL. And, to delete it, you could issue an HTTP DELETE
	 request, again using the same URL.
	

	 Take this further. Maybe our system also tracks
	 users. Again, we have a set of resources to deal
	 with. REST tells us to use the same set of verbs (GET,
	 POST, PATCH, PUT, and DELETE) against a similar-looking set of
	 URLs (​/users​, ​/users/1​, and so on).
	

	 Now we see some of the power of the constraints imposed by
	 REST. We’re already familiar with the way Rails
	 constrains us to structure our applications a certain
	 way. Now the REST philosophy tells us to structure the
	 interface to our applications too. Suddenly our world gets
	 a lot simpler.
	

	 Rails has direct support for this type of interface;
	 it adds a kind of macro route facility,
	 called ​resources​. Let’s take a look at how the
 ​config/routes.rb​ file might have looked back in
 ​Creating a Rails Application​.
	
	​ 	Depot::Application.routes.draw ​do​

	​*
​	 resources :products

	​ 	​end​

	 The ​resources​ line caused seven new routes
	 to be added to our application. Along the
	 way, it assumed that the application will have a
	 controller named ​ProductsController​,
	 containing seven actions with given names.
	

	 You can take a look at the routes that were
	 generated for
	 us.
	 We do this by making
	 use of the handy ​rake routes​
 command.
	
	​ 	 Prefix Verb URI Pattern

	​ 	 Controller#​Action​

	​ 	 products GET /products(.:format)

	​ 	 {:action=>"index", :controller=>"products"}

	​ 	 POST /products(.:format)

	​ 	 {:action=>"create", :controller=>"products"}

	​ 	 new_product GET /products/new(.:format)

	​ 	 {:action=>"new", :controller=>"products"}

	​ 	edit_product GET /products/:id/edit(.:format)

	​ 	 {:action=>"edit", :controller=>"products"}

	​ 	 product GET /products/:id(.:format)

	​ 	 {:action=>"show", :controller=>"products"}

	​ 	 PATCH /products/:id(.:format)

	​ 	 {:action=>"update", :controller=>"products"}

	​ 	 DELETE /products/:id(.:format)

	​ 	 {:action=>"destroy", :controller=>"products"}

 All the routes defined are spelled out in a columnar format. The
 lines will generally wrap on your screen; in fact, they had to be
 broken into two lines per route to fit on this page. The columns
 are (optional) route name, HTTP method, route path, and (on a
 separate line on this page) route requirements.
	

 Fields in parentheses are optional parts of the path. Field names
 preceded by a colon are for variables into which the matching part of the
 path is placed for later processing by the controller.

	 Now let’s look at the seven controller actions that these
	 routes reference. Although we created our routes to manage
	 the products in our application, let’s broaden this to talk about resources—after all,
	 the same seven methods will be required for all
	 resource-based routes.
	
	​index​
	

		Returns a list of the resources.
	

	​create​
	

		Creates a new resource from the data in the POST
		request, adding it to the collection.
	

	​new​
	

		Constructs a new resource and passes it to the
		client. This resource will not have been saved on the
		server. You can think of the ​new​ action as
		creating an empty form for the client to fill in.
	

	​show​
	

		Returns the contents of the resource identified
		by ​params[:id]​.
	

	​update​
	

		Updates the contents of the resource identified
		by ​params[:id]​ with the data associated with
		the request.
	

	​edit​
	

		Returns the contents of the resource identified
		by ​params[:id]​ in a form suitable for editing.
	

	​destroy​
	

		Destroys the resource identified by ​params[:id]​.
	

	 You can see that these seven actions contain the four
	 basic CRUD operations (create, read, update, and
	 delete). They also contain an action to list resources
	 and two auxiliary actions that return new and existing
	 resources in a form suitable for editing on the client.
	

 If for some reason you don’t need or want all seven actions, you
 can limit the actions produced using ​:only​ or
 ​:except​ options on your ​resources​.

	​ 	resources :comments, except: [:update, :destroy]

	 Several of the routes are named routes
	 enabling you to use
	 helper functions such as ​products_url​ and
	 ​edit_product_url(id:1)​.

 Note that each route is defined with an optional format specifier.
	 We will cover formats in more detail in
	 ​Selecting a Data Representation​.
	

	 Let’s take a look at the controller code:
	
	rails40/depot_a/app/controllers/products_controller.rb
	​ 	​class​ ProductsController < ApplicationController

	​ 	 before_action :set_product, only: [:show, :edit, :update, :destroy]

	​ 	 ​# GET /products​

	​ 	 ​# GET /products.json​

	​ 	 ​def​ index

	​ 	 @products = Product.all

	​ 	 ​end​

	​ 	

	​ 	 ​# GET /products/1​

	​ 	 ​# GET /products/1.json​

	​ 	 ​def​ show

	​ 	 ​end​

	​ 	

	​ 	 ​# GET /products/new​

	​ 	 ​def​ new

	​ 	 @product = Product.new

	​ 	 ​end​

	​ 	

	​ 	 ​# GET /products/1/edit​

	​ 	 ​def​ edit

	​ 	 ​end​

	​ 	

	​ 	 ​# POST /products​

	​ 	 ​# POST /products.json​

	​ 	 ​def​ create

	​ 	 @product = Product.new(product_params)

	​ 	

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @product.save

	​ 	 format.html { redirect_to @product,

	​ 	 notice: ​'Product was successfully created.'​ }

	​ 	 format.json { render action: ​'show'​, status: :created,

	​ 	 location: @product }

	​ 	 ​else​

	​ 	 format.html { render action: ​'new'​ }

	​ 	 format.json { render json: @product.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# PATCH/PUT /products/1​

	​ 	 ​# PATCH/PUT /products/1.json​

	​ 	 ​def​ update

	​ 	 respond_to ​do​ |format|

	​ 	 ​if​ @product.update(product_params)

	​ 	 format.html { redirect_to @product,

	​ 	 notice: ​'Product was successfully updated.'​ }

	​ 	 format.json { head :no_content }

	​ 	 ​else​

	​ 	 format.html { render action: ​'edit'​ }

	​ 	 format.json { render json: @product.errors,

	​ 	 status: :unprocessable_entity }

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 ​# DELETE /products/1​

	​ 	 ​# DELETE /products/1.json​

	​ 	 ​def​ destroy

	​ 	 @product.destroy

	​ 	 respond_to ​do​ |format|

	​ 	 format.html { redirect_to products_url }

	​ 	 format.json { head :no_content }

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 private

	​ 	 ​# Use callbacks to share common setup or constraints between actions.​

	​ 	 ​def​ set_product

	​ 	 @product = Product.find(params[:id])

	​ 	 ​end​

	​ 	

	​ 	 ​# Never trust parameters from the scary internet, only allow the white​

	​ 	 ​# list through.​

	​ 	 ​def​ product_params

	​ 	 params.require(:product).permit(:title, :description, :image_url, :price)

	​ 	 ​end​

	​ 	​end​

	 Notice how we have one action for each of the RESTful
	 actions. The comment before each shows the format of the
	 URL that invokes it.
	

	 Notice also that many of the actions contain
	 a
 ​respond_to​
 block. As we saw
	 in Chapter 11, ​Task F: Add a Dash of Ajax​, Rails uses this to
	 determine the type of content to send in a response. The
	 scaffold generator automatically creates
	 code that will respond appropriately to requests for HTML
	 or JSON content. We’ll play with that in a little while.
	

	 The views created by the generator are fairly
	 straightforward. The only tricky thing is the need to use
	 the correct HTTP method to send requests to the
	 server. For example, the view for the ​index​
	 action looks like this:
	
	rails40/depot_a/app/views/products/index.html.erb
	​ 	​<h1>​Listing products​</h1>​

	​ 	

	​ 	​<table>​

	​ 	<% @products.each ​do​ |product| %>

	​ 	 ​<tr​ class=​"​<%= cycle(​'list_line_odd'​, ​'list_line_even'​) %>​"​​>​

	​ 	 ​<td>​

	​ 	 <%= image_tag(product.image_url, class: ​'list_image'​) %>

	​ 	 ​</td>​

	​ 	 ​<td​ class=​"list_description"​​>​

	​ 	 ​<dl>​

	​ 	 ​<dt>​<%= product.title %>​</dt>​

	​ 	 ​<dd>​<%= truncate(strip_tags(product.description), length: 80) %>​</dd>​

	​ 	 ​</dl>​

	​ 	 ​</td>​

	​ 	 ​<td​ class=​"list_actions"​​>​

	​ 	 <%= link_to ​'Show'​, product %>​<br​​/>​

	​ 	 <%= link_to ​'Edit'​, edit_product_path(product) %>​<br​​/>​

	​ 	 <%= link_to ​'Destroy'​, product, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>

	​ 	 ​</td>​

	​ 	 ​</tr>​

	​ 	<% ​end​ %>

	​ 	​</table>​

	​ 	​<br​ ​/>​

	​ 	<%= link_to ​'New product'​, new_product_path %>

	 The links to the actions that edit a product and add a
	 new product should both use regular GET methods, so a
	 standard ​link_to​ works fine.
	 However, the request to destroy a product
	 must issue an HTTP DELETE, so the call includes
	 the ​method: :delete​ option
	 to ​link_to​.
	
	
	
	
	
	
Adding Additional Actions

	 Rails resources provide you with an initial set of actions, but
 you don’t need to stop there.
	 In Section 12.2, ​Iteration G2: Atom Feeds​, we added an
	 interface to allow people to fetch a list of people
 who bought any given product.
	 To do that with Rails, we use an extension to
	 the ​resources​
	 call.
	
	
	
	
	
	​ 	Depot::Application.routes.draw ​do​

	​ 	 resources :products ​do​

	​ 	 get :who_bought, on: :member

	​ 	 ​end​

	​ 	​end​

	 That syntax is straightforward. It says “We
	 want to add a new action named ​who_bought​, invoked
	 via an HTTP GET. It applies to each member of the
	 collection of products.”
	

	 Instead of specifying ​:member​, if we instead specified
 ​:collection​, then the route would apply to the collection
 as a whole. This is often used for scoping; for example, you may
 have collections of products on clearance or products that have
 been discontinued.
	
Nested Resources

	 Often our resources themselves contain additional
	 collections of resources. For example, we may want to allow
	 folks to review our products. Each
	 review would be a resource, and collections of review
	 would be associated with each product resource.
	

	 Rails provides a convenient and intuitive way of declaring
	 the routes for this type of situation.
	
	​ 	resources :products ​do​

	​ 	 resources :reviews

	​ 	​end​

	 This defines the top-level set of product
	 routes and additionally creates a set of subroutes for
	 reviews. Because the review resources appear inside the
	 products block, a review resource ​must​ be
	 qualified by a product resource. This
	 means that the path to a review must always be prefixed
	 by the path to a particular product. To fetch the review
	 with ID 4 for the product with an ID of 99, you’d use a
	 path of ​/products/99/reviews/4​.
	

 The named route for
 ​/products/:product_id/reviews/:id​ is
 ​product_review​, not simply ​review​. This
 naming simply reflects the nesting of these resources.

	 As always, you can see the full set
	 of routes generated by our configuration by using the
	 ​rake routes​ command.
	
Routing Concerns

 So far, we have been dealing with a fairly small set of resources. On
 a larger system there may be types of objects for which a
 ​review​ may be appropriate or to which a ​who_bought​
 action might reasonably be applied. Instead of repeating these
 instructions for each resource, consider refactoring your routes using
 ​concerns​ to capture the common behavior.

	​ 	concern :reviewable ​do​

	​ 	 resources :reviews

	​ 	​end​

	​ 	

	​ 	resources :products, concern: :reviewable

	​ 	resources :users, concern: :reviewable

 The preceding definition of the ​products​ resource is equivalent to
 the one in the previous section.

Shallow Route Nesting

 At times, nested resources can produce cumbersome URLs. A solution
 to this is to use shallow route nesting.

	​ 	resources :products, shallow: true ​do​

	​ 	 resources :reviews

	​ 	​end​

 This will enable the recognition of the following routes:

	​ 	/products/1 => product_path(1)

	​ 	/products/1/reviews => product_reviews_index_path(1)

	​ 	/reviews/2 => reviews_path(2)

 Try the ​rake routes​ command to see the full mapping.

Selecting a Data Representation

	 One of the goals of a REST architecture is to decouple
	 data from its representation. If a human uses the URL
	 path ​/products​ to fetch some products, they
	 should see nicely formatted HTML. If an application asks
	 for the same URL, it could elect to receive the results in
	 a code-friendly format (YAML, JSON, or XML,
	 perhaps).
	

	 We’ve already seen how Rails can use the HTTP Accept header
	 in a ​respond_to​ block in the controller. However,
	 it isn’t always easy (and sometimes it’s plain impossible)
	 to set the Accept header. To deal with this, Rails
	 allows you to pass the format of response you’d like as part
	 of the URL. As you have seen, Rails accomplishes
	 this by including a field called ​:format​ in your route
	 definitions.
	 To do this, set
	 a ​:format​
	 parameter in your routes to the file extension of the MIME
	 type you’d like returned.
	
	
	
	
	
	
	
	​ 	GET /products(.:format)

	​ 	 {:action=>"index", :controller=>"products"}

	 Because a full stop (period) is a separator character in
	 route definitions, ​:format​ is treated as just
	 another field. Because we give it a ​nil​ default
	 value, it’s an optional field.
	

	 Having done this, we can use a
 ​respond_to​

	 block in our controllers to select our response type
	 depending on the requested format.
	
	​ 	​def​ show

	​ 	 respond_to ​do​ |format|

	​ 	 format.html

	​ 	 format.xml { render xml: @product.to_xml }

	​ 	 format.yaml { render text: @product.to_yaml }

	​ 	 ​end​

	​ 	​end​

	 Given this, a request to ​/store/show/1​
	 or ​/store/show/1.html​ will return HTML content,
	 while ​/store/show/1.xml​ will return XML,
	 and ​/store/show/1.yaml​ will return YAML. You can
	 also pass the format in as an HTTP request parameter.
	
	​ 	GET HTTP://pragprog.com/store/show/123?format=xml

	 The routes defined by ​resources​ have this
	 facility enabled by default.
	

	 Although the idea
	 of having a single controller that responds with different
	 content types seems appealing, the reality is tricky. In
	 particular, it turns out that error handling can be
	 tough. Although it’s acceptable on error to redirect a user
	 to a form, showing them a nice flash message, you have to
	 adopt a different strategy when you serve XML. Consider your
	 application architecture carefully before deciding to bundle
	 all your processing into single controllers.
	

 Rails makes it simple to develop an application that is based
 on resource-based routing. Many claim it greatly simplifies the
	 coding of their applications. However, it isn’t always appropriate.
	 Don’t feel compelled to use it if you can’t find a way of making it
	 work. And you can always mix and match. Some controllers can be
 resource based, and others can be based on actions. Some controllers
 can even be resource based with a few extra actions.

	

20.2 Processing of Requests

 In the previous section, we worked out how Action Dispatch routes
 an incoming request to the appropriate code in your
 application. Now let’s see what happens inside that code.

Action Methods

 When a controller object processes a request, it looks for a
 public instance method with the same name as the incoming
 action. If it finds one, that method is invoked. If it doesn’t find one
 and the controller implements
 ​method_missing​
 , that method is called,
 passing in the action name as the first parameter and an empty
 argument list as the second.

 If no method can be called, the
 controller looks for a template named after the current
 controller and action. If found, this template is rendered
 directly. If none of these things happens, an
 ​AbstractController::ActionNotFound​ error is generated.

Controller Environment

	The controller sets up the environment for actions (and, by
	extension, for the views that they invoke). Many of these
 methods provide direct access to information contained in the
 URL or request.

	​action_name​
	

	 The name of the action currently being processed.
	
	
	
	
	

	​cookies​
	

	 The cookies associated with the request. Setting values
	 into this object stores cookies on the browser when the
	 response is sent. Rails support for sessions is based on cookies.
	 We discuss sessions in ​Rails Sessions​.
	

	​headers​
	

	 A hash of HTTP headers that will be used in the
	 response. By
	 default, ​Cache-Control​ is set
	 to ​no-cache​. You might want to
	 set ​Content-Type​ headers for
	 special-purpose applications. Note that you shouldn’t set
	 cookie values in the header directly—use the cookie API
	 to do this.
	
	
	
	
	

	​params​
	

	 A hash-like object containing request parameters
	 (along with pseudoparameters generated during
	 routing). It’s hash-like because you can index entries
	 using either a symbol or a
	 string—​params[:id]​
	 and ​params[’id’]​ return the same
	 value. Idiomatic Rails applications use the symbol
	 form.
	
	
	
	
	

	​request​
	

	
	
	 The incoming request object. It includes these attributes:
	
	

		​request_method​ returns the request
		method, one
		of ​:delete​, ​:get​, ​:head​, ​:post​,
		or ​:put​.
		
		
		
	

	

		​method​ returns the same value as
 ​request_method​ except for ​:head​, which it
 returns as ​:get​ because these two are functionally
 equivalent from an application point of view.
	
	
	
	
	

	

		​delete?​, ​get?​, ​head?​, ​post?​,
		and ​put?​
		return ​true​
		or ​false​ based on the request
		method.
		
		
		
		
		
		
		
		
		
		
	

	

		​xml_http_request?​ and
		​xhr?​ return true if this
		request was issued by one of the Ajax helpers. Note
		that this parameter is independent of
		the ​method​ parameter.
		
		
		
		
	

	

		
 ​url​
 ,
		which returns the full URL used for the request.
		
		
		
		
	

	

		
 ​protocol​
 ,
		
 ​host​
 ,
		
 ​port​
 ,
		
 ​path​
 , and
		
 ​query_string​
 ,
		which return components of the URL used for the request, based
 on the following pattern:
 ​protocol://host:port/path?query_string​.
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	

		
 ​domain​
 ,
		which returns the last two components of the domain name of
		the request.
		
		
		
		
	

	

		
 ​host_with_port​
 ,
		which is a ​host:port​ string for
		the request.
		
		
		
		
	

	

		
 ​port_string​
 ,
 which is a ​:port​ string for the request if the port
 is not the default port (80 for HTTP, 443 for HTTPS).

	

	

	
 ​ssl?​
 , which is ​true​
	 if this is an SSL request; in other words, the request
 was made with the HTTPS protocol.
	
	
	
	

	

		
 ​remote_ip​
 , which
		returns the remote IP address as a string. The string may have
		more than one address in it if the client is behind a
		proxy.
		
		
		
		
	

	

		
 ​env​
 , the environment of the
		request. You can use this to access values set by the
		browser, such as this:
		
		
		
		
	
	​ 	request.env[​'HTTP_ACCEPT_LANGUAGE'​]

	

	
 ​accepts​
 , which is an array with
 ​Mime::Type​ objects that represent the
 MIME types in the ​Accept​ header.

	

	
 ​format​
 , which is computed
	 based on the value of the ​Accept​ header, with
 ​Mime::HTML​ as a fallback.
	
	
	
	

	

	
 ​content_type​
 , which is the
	 MIME type for the request. This is useful for ​put​ and
 ​post​ requests.

	

	
 ​headers​
 , which is the
	 complete set of HTTP headers.
	
	
	
	

	

	
 ​body​
 , which is the
	 request body as an I/O stream.
	
	
	
	

	

	
 ​content_length​
 , which is
	 the number of bytes purported to be in the body.
	
	
	
	

	 Rails leverages a gem named Rack to provide much of this
 functionality. See the documentation of
	 ​Rack::Request​ for full details.
	
	
	

	​response​
	

	
	
	
	 The response object, filled in during the handling of the
	 request. Normally, this object is managed for you by Rails.
	 As we’ll see when we look at callbacks in ​Callbacks​,
	 we sometimes access the internals for specialized
	 processing.
	

	​session​
	

	
	
	
	
	
	 A hash-like object representing the current session
	 data. We describe this in ​Rails Sessions​.
	

	
	
	In addition, a ​logger​
	is available throughout Action Pack.
	

Responding to the User

	Part of the controller’s job is to respond to the user. There
	are basically four ways of doing this.

	

	 The most common way is to render a template. In terms of
	 the MVC paradigm, the template is the view, taking
	 information provided by the controller and using it to
	 generate a response to the
	 browser.
	

	

	 The controller can return a string directly to the
	 browser without invoking a view. This is fairly rare but
	 can be used to send error notifications.
	

	

 The controller can return nothing to the browser. This is
 sometimes used when responding to an Ajax request. In all cases,
 however, the controller returns a set of HTTP headers, because
 some kind of response is expected.
	

	

	 The controller can send other data to the client
	 (something other than HTML). This is typically a download of some
	 kind (perhaps a PDF document or a file’s contents).
	

 A controller always responds to the user exactly one time per request.
 This means you should have just one call to a
 ​render​
 ,
 ​redirect_to​
 , or
 ​send_​​xxx​
 ​​
 method in the
 processing of any request. (A ​DoubleRenderError​
 exception is thrown on the second render.)

	Because the controller must respond exactly once, it checks to
	see whether a response has been generated just before it
	finishes handling a request. If not, the controller looks for
	a template named after the controller and action and
	automatically renders it. This is the
	most common way that rendering takes place. You may have
	noticed that in most of the actions in our shopping cart
	tutorial we never explicitly rendered anything. Instead, our
	action methods set up the context for the view and return. The
	controller notices that no rendering has taken place and
	automatically invokes the appropriate template.

	You can have multiple templates with the same name but with
	different extensions (for example, ​.html.erb​, ​.xml.builder​,
	and ​.js.coffee​). If you don’t specify an extension in a
	render request, Rails assumes ​html.erb​.
	

Rendering Templates

	A ​template​ is a file that defines the content of
	a response for our application. Rails supports three template
	formats out of the box:
 ​ erb​

 , which is
	embedded Ruby code (typically with HTML);
	
 ​ builder​

 , a more programmatic way of
	constructing XML content; and
 ​ RJS​

 , which
	generates JavaScript. We’ll talk about the contents of these
	files starting in Section 21.1, ​Using Templates​.

	By convention, the template for action ​action​ of
	controller ​controller​ will be in the
	file
 ​app/views/​controller​/​action​.​type​.​xxx​​
	(where ​type​ is the file type, such as ​html​,
 ​atom​, or ​js​; and
 ​xxx​ is one
	of ​erb​, ​builder​, ​coffee​ or ​scss​).
	The ​app/views​ part of the name is the
	default. You can override this for an entire application by
	setting this:

	​ActionController.prepend_view_path ​dir_path​​

	The
 ​render​

	method is the heart of all rendering in Rails. It takes a hash
	of options that tell it what to render and how to render
	it.

	It is tempting to write code in our controllers that looks
	like this:

	​ 	​# DO NOT DO THIS​

	​ 	​def​ update

	​ 	 @user = User.find(params[:id])

	​ 	 ​if​ @user.update(user_params)

	​ 	 render action: show

	​ 	 ​end​

	​ 	 render template: ​"fix_user_errors"​

	​ 	​end​

	It seems somehow natural that the act of
	calling ​render​ (and ​redirect_to​) should
	somehow terminate the processing of an action. This is not the
	case. The previous code will generate an error
	(because ​render​ is called twice) in the case
	where ​update​ succeeds.

	Let’s look at the render options used in the controller
	here (we’ll look separately at rendering in the view starting
	in ​Partial-Page Templates​):

	​render()​
	

	 With no overriding parameter,
	 the
 ​render​
 method
	 renders the default template
	 for the current controller and action. The following code
	 will render the
	 template ​app/views/blog/index.html.erb​:
	
	​ 	​class​ BlogController < ApplicationController

	​ 	 ​def​ index

	​ 	 render

	​ 	 ​end​

	​ 	​end​

	 So will the following (as the default behavior of a
	 controller is to call
 ​render​
 if
	 the action doesn’t):
	
	​ 	​class​ BlogController < ApplicationController

	​ 	 ​def​ index

	​ 	 ​end​

	​ 	​end​

	 And so will this (because the
	 controller will call a template directly if no action
	 method is defined):
	
	​ 	​class​ BlogController < ApplicationController

	​ 	​end​

	​render(text: ​string​)​
	

	 Sends
	 the given string to the client. No template
	 interpretation or HTML escaping is performed.
	
	​ 	​class​ HappyController < ApplicationController

	​ 	 ​def​ index

	​ 	 render(text: ​"Hello there!"​)

	​ 	 ​end​

	​ 	​end​

	​render(inline:
	 ​string​, [type:
 ​"erb"|"builder"|"coffee"|"scss"​], [locals: ​hash​])​
	

 Interprets ​string​ as the source to a
 template of the given type, rendering the results back to the
 client. You can use the ​:locals​ hash to set the
 values of local variables in the template.
	

	 The following code adds
 ​method_missing​
 to a controller if
	 the application is running in development mode. If the
	 controller is called with an invalid action, this renders
	 an inline template to display the action’s name and a
	 formatted version of the request parameters.
	
	​ 	​class​ SomeController < ApplicationController

	​ 	

	​ 	 ​if​ RAILS_ENV == ​"development"​

	​ 	 ​def​ method_missing(name, *args)

	​ 	 render(inline: ​%{​

	​ 	​ <h2>Unknown action: ​#{name}​</h2>​

	​ 	​ Here are the request parameters:
​

	​ 	​ <%= debug(params) %> }​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​render(action: ​action_name​)​
	

	 Renders the template for a given action in this
	 controller. Sometimes folks use
	 the ​:action​ form
	 of
 ​render​
 when they should use
	 redirects. See the discussion starting in ​Redirects​, for why this is a bad idea.
	
	​ 	​def​ display_cart

	​ 	 ​if​ @cart.empty?

	​ 	 render(action: :index)

	​ 	 ​else​

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

	 Note that calling ​render(:action...)​ does not
	 call the action method; it simply displays the
	 template. If the template needs instance variables, these
	 must be set up by the method that calls the

 ​render​
 method.
	

	 Let’s repeat this, because this is a mistake that
	 beginners often make: calling ​render(:action...)​
	 does not invoke the action method. It simply renders that
	 action’s default template.
	

	​render(template: ​name​,
 [locals: ​hash​])​
	

	 Renders a template
	 and arranges for the resulting text to be sent back to the
	 client. The ​:template​ value must
	 contain both the controller and action parts of the new
	 name, separated by a forward slash. The following code
	 will render the
	 template ​app/views/blog/short_list​:
	
	​ 	​class​ BlogController < ApplicationController

	​ 	 ​def​ index

	​ 	 render(template: ​"blog/short_list"​)

	​ 	 ​end​

	​ 	​end​

	​render(file: ​path​)​
	

 Renders a view that may be entirely outside of your application (perhaps
 one shared with another Rails application). By default, the file
 is rendered without using the current layout. This can be overridden
 with ​layout: true​.
	

	​render(partial:
	 ​name​, …)​
	

	 Renders a partial template. We talk about partial
	 templates in depth in ​Partial-Page Templates​.
	

	​render(nothing: true)​
	

	 Returns nothing—sends an empty body to the browser.
	

	​render(xml: ​stuff​)​
	

	 Renders ​stuff​ as text, forcing the content type to
	 be ​application/xml​.
	

	​render(json: ​stuff​,
	 [callback: ​hash​])​
	

	 Renders ​stuff​ as JSON, forcing the content type to
	 be ​application/json​.
	
	
	 Specifying ​:callback​ will
 cause the result to be wrapped in a call to the named callback
 function.
	

	​render(:update) do |page| ... end​
	

	
	
	 Renders the block as an RJS template, passing in the page
	 object.
	
	​ 	render(:update) ​do​ |page|

	​ 	 page[:cart].replace_html partial: ​'cart'​, object: @cart

	​ 	 page[:cart].visual_effect :blind_down ​if​ @cart.total_items == 1

	​ 	​end​

	All forms of
 ​render​
 take
	optional ​:status​, ​:layout​,
	and ​:content_type​
	parameters. The ​:status​ parameter
 provides the value used in
 the status header in the HTTP response. It defaults to
 ​"200 OK"​. Do not use
 ​render​

 with a 3xx status to do redirects; Rails has a

 ​redirect​
 method for this purpose.

	The ​:layout​ parameter determines whether the result of the rendering
	will be wrapped by a layout. (We first came across
	layouts in Section 8.2, ​Iteration C2: Adding a Page Layout​. We’ll look
	at them in depth starting in Section 21.6, ​Reducing Maintenance with Layouts and Partials​.) If the parameter
	is ​false​, no layout will be
	applied. If set to ​nil​
	or ​true​, a layout will be applied only if
	there is one associated with the current action. If
	the ​:layout​ parameter has a string as
	a value, it will be taken as the name of the layout to use
	when rendering. A layout is never applied when
	the ​:nothing​ option is in effect.

	The ​:content_type​ parameter lets you specify a value
	that will be passed to the browser in
	the Content-Type HTTP header.
	

	Sometimes it is useful to be able to capture what would
	otherwise be sent to the browser in a string. The

 ​render_to_string​

	method takes the same parameters as
 ​render​

	but returns the result of rendering as a string—the
	rendering is not stored in the response object and so will
	not be sent to the user unless you take some additional
	steps.

	Calling ​render_to_string​ does not count as a real
	render. You can invoke the real ​render​ method later
	without getting a ​DoubleRender​ error.

Sending Files and Other Data

	We’ve looked at rendering templates and sending strings in the
	controller. The third type of response is to send data
	(typically, but not necessarily, file contents) to the
	client.
	

send_data
Sends a string containing binary data to the client.
send_data(​data, options…​)

	 Sends a data stream to the client. Typically
	 the browser will use a combination of the content type and
	 the disposition, both set in the options, to determine
	 what to do with this data.
	
	​ 	​def​ sales_graph

	​ 	 png_data = Sales.plot_for(Date.today.month)

	​ 	 send_data(png_data, type: ​"image/png"​, disposition: ​"inline"​)

	​ 	​end​

Options:
	:disposition	string	
	 Suggests to
	 the browser that the file should be displayed inline
	 (option ​inline​) or downloaded and
	 saved (option ​attachment​, the
	 default).
	
	:filename	string	
	 A suggestion to the browser of the default filename to use
	 when saving this data.
	
	:status	string	
	 The status code (defaults to ​"200
	 OK"​).
	
	:type	string	
	 The content type,
	 defaulting
	 to ​application/octet-stream​.
	
	:url_based_filename	boolean	
	 If ​true​ and ​:filename​ are not set, this option prevents
 Rails from providing the basename of the file in the
 Content-Disposition header. Specifying the basename of the file is necessary
 in order to make some browsers handle i18n filenames correctly.
	
	

send_file
Sends the contents of a file to the client.
send_file(​path, options…​)

	 Sends the given file to the client. The method
	 sets
	 the Content-Length, Content-Type, Content-Disposition, and Content-Transfer-Encoding
	 headers.
	
Options:
	:buffer_size	number	
	 The amount sent to the browser in each write if streaming
	 is enabled (​:stream​ is true).
	
	:disposition	string	
	 Suggests to
	 the browser that the file should be displayed inline
	 (option ​inline​) or downloaded and
	 saved (option ​attachment​, the
	 default).
	
	:filename	string	
	 A suggestion to
	 the browser of the default filename to use when saving the
	 file. If not set, defaults to the filename part
	 of ​path​.
	
	:status	string	
	 The status code (defaults to ​"200 OK"​).
	
	:stream	true or false	
	 If ​false​, the entire file is read
	 into server memory and sent to the client. Otherwise, the
	 file is read and written to the client
	 in ​:buffer_size​ chunks.
	
	:type	string	
	 The content type, defaulting
	 to ​application/octet-stream​.
	

	You can set additional headers for
	either ​send_​ method by using
	the ​headers​ attribute in
	the controller.
	
	
	
	

	​ 	​def​ send_secret_file

	​ 	 send_file(​"/files/secret_list"​)

	​ 	 headers[​"Content-Description"​] = ​"Top secret"​

	​ 	​end​

	We show how to upload files starting in Section 21.4, ​Uploading Files to Rails Applications​.

Redirects

	An HTTP redirect is sent from a
	server to a client in response to a request. In effect, it
	says, “I’m done processing this request, and you should go here to see
	the results.” The redirect response includes a
	URL that the client should try next
	along with some status information saying whether this
	redirection is permanent (status code 301) or temporary
	(307). Redirects are
	sometimes used when web pages are reorganized; clients
	accessing pages in the old locations will get referred to the
	page’s new home. More commonly, Rails applications use
	redirects to pass the processing of a request off to some
	other action.

	Redirects are handled behind the scenes by web
	browsers. Normally, the only way you’ll know that you’ve been
	redirected is a slight delay and the fact that the URL of the
	page you’re viewing will have changed from the one you
	requested. This last point is important—as far as the
	browser is concerned, a redirect from a server acts pretty
	much the same as having an end user enter the new destination
	URL manually.

	Redirects turn out to be important when writing well-behaved
	web applications.
	Let’s look at a simple blogging application that supports
	comment posting. After a user has posted a comment, our
	application should redisplay the article, presumably with the
	new comment at the end.

It’s tempting to code this using
	logic such as the following:

	​ 	​class​ BlogController

	​ 	 ​def​ display

	​ 	 @article = Article.find(params[:id])

	​ 	 ​end​

	​ 	

	​ 	 ​def​ add_comment

	​ 	 @article = Article.find(params[:id])

	​ 	 comment = Comment.new(params[:comment])

	​ 	 @article.comments << comment

	​ 	 ​if​ @article.save

	​ 	 flash[:note] = ​"Thank you for your valuable comment"​

	​ 	 ​else​

	​ 	 flash[:note] = ​"We threw your worthless comment away"​

	​ 	 ​end​

	​ 	 ​# DON'T DO THIS​

	​ 	 render(action: ​'display'​)

	​ 	 ​end​

	​ 	​end​

	The intent here was clearly to display the article
	after a comment has been posted. To do this, the developer
	ended the
 ​add_comment​
 method with a
	call to
 ​render(action:'display')​
 . This
	renders the ​display​ view, showing the updated article
	to the end user. But think of this from the browser’s point
	of view. It sends a URL ending in ​blog/add_comment​
	and gets back an index listing. As far as the browser is
	concerned, the current URL is still the one that
	ends in ​blog/add_comment​. This means that if the user
	hits Refresh or Reload (perhaps to see whether anyone else has
	posted a comment), the ​add_comment​ URL will be sent
	again to the application. The user intended to refresh the
	display, but the application sees a request to add another
	comment. In a blog application, this kind of unintentional
	double entry is inconvenient. In an online store, it can get
	expensive.

	In these circumstances, the correct way to show the added
	comment in the index listing is to redirect the browser to
	the ​display​
	action. We
	do this using the Rails
 ​redirect_to​
 method. If the user
	subsequently hits Refresh, it will simply reinvoke
	the ​display​ action and not add
	another comment.

	​ 	​def​ add_comment

	​ 	 @article = Article.find(params[:id])

	​ 	 comment = Comment.new(params[:comment])

	​ 	 @article.comments << comment

	​ 	 ​if​ @article.save

	​ 	 flash[:note] = ​"Thank you for your valuable comment"​

	​ 	 ​else​

	​ 	 flash[:note] = ​"We threw your worthless comment away"​

	​ 	 ​end​

	​*
​	 redirect_to(action: ​'display'​)

	​ 	​end​

	Rails has a simple yet powerful redirection mechanism. It can
	redirect to an action in a given controller (passing
	parameters), to a URL (on or off the current server), or to
	the previous page. Let’s look at these three forms in turn.

	​redirect_to(action: ..., ​options…​)​
	

	 Sends a temporary redirection to the browser based
	 on the values in the ​options​ hash. The target URL is
	 generated using
 ​url_for​
 , so
	 this form of
 ​redirect_to​
 has all
	 the smarts of Rails routing code behind it.
	

	​redirect_to(​path​)​
	

	 Redirects to the given path. If the path does not start
	 with a protocol (such as ​http://​), the protocol
	 and port of the current request will be
	 prepended. This method does not perform any
	 rewriting on the URL, so it should not be used to create
	 paths that are intended to link to actions in the
	 application (unless you generate the path
	 using ​url_for​ or a named route URL generator).
	
	​ 	​def​ save

	​ 	 order = Order.new(params[:order])

	​ 	 ​if​ order.save

	​ 	 redirect_to action: ​"display"​

	​ 	 ​else​

	​ 	 session[:error_count] ||= 0

	​ 	 session[:error_count] += 1

	​ 	 ​if​ session[:error_count] < 4

	​ 	 self.notice = ​"Please try again"​

	​ 	 ​else​

	​ 	 ​# Give up -- user is clearly struggling​

	​ 	 redirect_to(​"/help/order_entry.html"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	​redirect_to(:back)​
	

	 Redirects to the URL given by the ​HTTP_REFERER​
	 header in the current
	 request.
	
	
	
	
	
	​ 	​def​ save_details

	​ 	 ​unless​ params[:are_you_sure] == ​'Y'​

	​ 	 redirect_to(:back)

	​ 	 ​else​

	​ 	 ...

	​ 	 ​end​

	​ 	​end​

	By default all redirections are flagged as temporary (they
	will affect only the current request). When redirecting to a
	URL, it’s possible you might want to make the redirection
	permanent. In that case, set the status in the response header
	accordingly.
	
	
	
	

	​ 	headers[​"Status"​] = ​"301 Moved Permanently"​

	​ 	redirect_to(​"http://my.new.home"​)

	Because redirect methods send responses to the browser, the
	same rules apply as for the rendering methods—you can issue
	only one per request.

 So far, we have been looking at requests and responses in isolation.
 Rails also provides a number of mechanisms that span requests.

20.3 Objects and Operations That Span Requests

 While the bulk of the state that persists across requests belongs in the
 database and is accessed via Active Record, some other bits of state
 have different life spans and need to be managed differently. In the
 Depot application, while the Cart itself was stored in the database,
 knowledge of which cart is the current cart was managed by sessions.
 Flash notices were used to communicate simple messages such as “Can’t
 delete the last user” to the next request after a redirect. And
 callbacks were used to extract locale data from the URLs themselves.

 In this section, we will explore each of these mechanisms in turn.

Rails Sessions

	A Rails session is a hash-like structure that persists across
	requests. Unlike raw cookies, sessions can hold any objects
	(as long as those objects can be marshaled),
	which makes them ideal for holding state information in web
	applications. For example,
	in our store application, we used a session to hold the
	shopping cart object between
	requests. The ​Cart​ object could be used
	in our application just like any other object. But Rails
	arranged things such that the cart was saved at the end of
	handling each request and, more important, that the correct
	cart for an incoming request was restored when Rails started
	to handle that request. Using sessions, we can pretend that
	our application stays around between requests.

 And that leads to an interesting question: exactly where does this
 data stay around between requests? One choice is for the server
 to send it down to the client as a cookie. This is the default
 for Rails 4. It places limitations on the size and increases the
 bandwidth but means that there is less for the server to manage
 and clean up. Note that the contents are (by default)
 encrypted, which means that users can neither see nor tamper
 with the contents.

[image: David says:]
David says:

 The Wonders of a Cookie-Based Session

The default Rails session store sounds like a crazy idea when you
 hear it at first. You’re going to actually store the values on the
 client?! But what if I want to store the nuclear launch codes in the
 session and I can’t have the client actually knowing them?

Yes, the default store is not suitable for storing secrets you need
 to keep from the client. But that’s actually a valuable constraint
 that’ll lead you to avoid the perils of keeping complex objects that
 can go out of date in the session. And the paper dragon of the nuclear
 launch codes is pretty much never a real, relevant concern.

Neither is the size constraint. Cookies can be only about 4KB big, so
 you can’t stuff them with all sorts of malarkey. That again fits the
 best practices of storing only references, like a ​cart_id​, not the
 actual cart.

The key security concern you should be worried about is whether the
 client is actually able to change the session. You want to
 ensure the integrity of the values that you put. It’d be no good if
 the client could change his ​cart_id​ from a 5 to an 8 and get someone
 else’s cart. Thankfully, Rails protects you against exactly this case
 by signing the session and raising an exception that warns of the
 tampering if it doesn’t match.

The benefits you get back is that there is no load on the database
 from fetching and saving the session on every request, and there are no
 cleanup duties either. If you keep your session on the filesystem or in
 the database, you’ll have to deal with how to clean up stale sessions,
 which is a real hassle. No one likes to be on cleanup duty. The
 cookie-based sessions know how to clean up after themselves. What’s
 not to love about that?

 The other option is to store the data on the server.
	There are two parts to this. First, Rails has to keep track of
	sessions. It does this by creating (by default) a 32-hex character key (which means there are 1632 possible combinations). This key is
	called the
 ​ session ID​

 ,
	and it’s effectively random. Rails arranges to store this
	session ID as a cookie (with the
	key ​_session_id​)
	on the user’s browser. Because subsequent requests come into the
	application from this browser, Rails can recover the session
	ID.

	Second, Rails keeps a persistent store of session data on the
	server, indexed by the session ID. When a request comes in,
	Rails looks up the data store using the session ID. The data
	that it finds there is a serialized Ruby object. It
	deserializes this and stores the result in the
	controller’s ​session​ attribute, where the data is
	available to our application code.
	
	The application can add to
	and modify this data to its heart’s content. When it finishes
	processing each request, Rails writes the session data back
	into the data store. There it sits until the next request from
	this browser comes along.

	
	
	
	

	What should you store in a session? You can store anything you
	want, subject to a few restrictions and
	caveats.

	

	 There are some restrictions on what kinds of object you
	 can store in a session. The details depend on the storage
	 mechanism you choose (which we’ll look at shortly). In the
	 general case, objects in a session must be
	 serializable
	 (using Ruby’s ​Marshal​
	 functions). This means, for example, that you cannot store
	 an I/O object in a session.
	

	

	 If you store any Rails model objects in a session, you’ll
	 have to add ​model​ declarations for
	 them. This causes Rails to preload the model class so
	 that its definition is available when Ruby comes to
	 deserialize it from the session store. If the use of the
	 session is restricted to just one controller, this
	 declaration can go at the top of that controller.
	
	​ 	​class​ BlogController < ApplicationController

	​ 	

	​ 	 model :user_preferences

	​ 	

	​ 	 ​# . . .​

	 However, if the session might get read by another
	 controller (which is likely in any application with
	 multiple controllers), you’ll probably want to add the
	 declaration to
	 ​application_controller.rb​
	 in ​app/controllers​.
	

	

	 You probably don’t want to store massive objects in
	 session data—put them in the database, and reference
	 them from the session. This is particularly true for
 cookie-based sessions, where the overall limit is 4KB.
	

	

	 You probably don’t want to store volatile objects in
	 session data. For example, you might want to keep a tally
	 of the number of articles in a blog and store that in the
	 session for performance reasons. But, if you do that, the
	 count won’t get updated if some other user adds an
	 article.
	

	 It is tempting to store objects representing the currently
	 logged-in user in session data. This might not be wise if
	 your application needs to be able to invalidate
	 users. Even if a user is disabled in the database, their
	 session data will still reflect a valid status.
	

	 Store volatile data in the database, and
	 reference it from the session instead.
	

	

	 You probably don’t want to store critical information solely
	 in session data. For example, if your application
	 generates an order confirmation number in one request and
	 stores it in session data so that it can be saved to the
	 database when the next request is handled, you risk losing
	 that number if the user deletes the cookie from their
	 browser. Critical information needs to be in the database.
	

	There’s one more caveat, and it’s a big one. If you store an
	object in session data, then the next time you come back to
	that browser, your application will end up retrieving that
	object. However, if in the meantime you’ve updated your
	application, the object in session data may not agree with the
	definition of that object’s class in your application, and the
	application will fail while processing the request. There are
	three options here. One is to store the object in the database
	using conventional models and keep just
	the ID of the row in the
	session. Model objects are far more forgiving of schema
	changes than the Ruby marshaling library. The second option is
	to manually delete all the session data stored on your server
	whenever you change the definition of a class stored in that
	data.

	The third option is slightly more complex. If you add a
	version number to your session keys and change that number
	whenever you update the stored data, you’ll only ever load
	data that corresponds with the current version of the
	application. You can potentially version the classes
	whose objects are stored in the session and use the
	appropriate classes depending on the session keys associated
	with each request. This last idea can be a lot of work, so
	you’ll need to decide whether it’s worth the effort.

	Because the session store is hash-like, you can save multiple
	objects in it, each with its own key.

	There is no need to also disable sessions for particular actions. Because
 sessions are lazily loaded, simply don’t reference a session in any
 action in which you don’t need a session.

Session Storage

	 Rails has a number of options when it comes to storing your
	 session data. Each has good and bad points. We’ll start by
	 listing the options and then compare them at the end.
	

	 The ​session_store​ attribute
	 of ​ActionController::Base​
	 determines the session storage mechanism—set this attribute
	 to a class that implements the storage strategy. This class
	 must be defined in the ​ActiveSupport::Cache::Store​
	 module. You use
	 symbols to name the session storage strategy; the symbol is
	 converted into a CamelCase class name.
	
	​session_store = :cookie_store​
	

	 This is the default session storage mechanism used by
	 Rails, starting with version 2.0. This
	 format represents objects in their marshaled form, which
	 allows any serializable data to be stored in sessions
 but is limited to 4KB total. This is the option we used in the
 Depot application.

	​session_store = :active_record_store​
	

	 You can use the ​activerecord-session_store​
gem[65] to
 store your session data in your application’s
	 database
	 using ​ActiveRecordStore​.
	

	​session_store = :drb_store​
	

	 DRb is a protocol that allows Ruby
	 processes to share objects over a network
	 connection. Using the DRbStore database manager, Rails
	 stores session data on a DRb server (which you manage
	 outside the web application). Multiple instances of your
	 application, potentially running on distributed servers,
	 can access the same DRb store.
	 DRb uses ​Marshal​ to serialize
	 objects.
	

	​session_store = :mem_cache_store​
	

	 ​memcached​ is a
	 freely available,
	 distributed object caching system maintained by
 Dormando.[66] ​memcached​ is
	 more complex to use than the other alternatives and is
	 probably interesting only if you are already using it
	 for other reasons at your site.
	

	​session_store = :memory_store​
	

	 This option stores the session data locally in the
	 application’s memory. Because no serialization is involved, any
	 object can be stored in an in-memory session. As we’ll
	 see in a minute, this generally is not a good idea for
	 Rails applications.
	

	​session_store = :file_store​
	

	 Session data is stored in flat
	 files. It’s pretty much useless
	 for Rails applications, because the contents must be
	 strings. This mechanism supports the additional
	 configuration
	 options ​:prefix​, ​:suffix​,
	 and ​:tmpdir​.
	

Comparing Session Storage Options

	 With all these session options to choose from, which should
	 you use in your application? As always, the answer is
	 “It depends.”
	

	 There are few absolutes when it comes to performance, and
	 everyone’s context is different. Your hardware, network
	 latencies, database choices, and possibly even the weather
	 will impact how all the components of session storage
	 interact. Our best advice is to start with the simplest
	 workable solution and then monitor it. If it starts to slow
	 you down, find out why before jumping out of the frying pan.
	

 If you have a high-volume site, keeping the size of the session data
 small and going with
 ​cookie_store​ is the way to go.

 If we rule out memory store as being too simplistic, file store as
 too restrictive, and ​memcached​ as overkill, the server-side
 choices boil down to CookieStore, Active Record store, and DRb-based
 storage. Should you need to store more in a session than you can
 with cookies, we recommend you start with an Active Record solution.
 If, as your application grows, you find this becoming a bottleneck,
 you can migrate to a DRb-based solution.
	
Session Expiry and Cleanup

	 One problem with all the server-side session storage solutions is
 that each new session adds something to the session
	 store.
	 This means you’ll eventually need to do some housekeeping or
	 you’ll run out of server resources.
	

	 There’s another reason to tidy up sessions. Many
	 applications don’t want a session to last forever. Once a
	 user has logged in from a particular browser, the
	 application might want to enforce a rule that the user stays
	 logged in only as long as they are active; when they log
	 out or some fixed time after they last use the application,
	 their session should be terminated.
	

	 You can sometimes achieve this effect by expiring the
	 cookie holding the session ID. However, this is open to
	 end-user abuse. Worse, it is hard to synchronize the expiry
	 of a cookie on the browser with the tidying up of the
	 session data on the server.
	

	 We therefore suggest you expire sessions by
	 simply removing their server-side session data. Should a
	 browser request subsequently arrive containing a session ID
	 for data that has been deleted, the application will receive
	 no session data; the session will effectively not be there.
	

	 Implementing this expiration depends on the storage mechanism
	 being used.
	

	 For Active Record--based session storage, use
	 the ​updated_at​ columns in
	 the ​sessions​ table. You can delete all
	 sessions that have not been modified in the last hour
	 (ignoring daylight saving time changes) by having your
	 sweeper task issue SQL such as this:
	
	​ 	​delete​ ​from​ sessions

	​ 	 ​where​ now() - updated_at > 3600;

	 For DRb-based solutions, expiry takes place within the DRb
	 server process. You’ll probably want to record timestamps
	 alongside the entries in the session data hash. You can run
	 a separate thread (or even a separate process) that
	 periodically deletes the entries in this hash.
	

	 In all cases, your application can help this process by
	 calling
 ​reset_session​
 to delete
	 sessions when they are no longer needed (for example, when a
	 user logs out).
	
Flash: Communicating Between Actions

 When we use
 ​redirect_to​
 to transfer
 control to another action, the browser generates a separate
 request to invoke that action. That request will be handled by
 our application in a fresh instance of a controller
 object—instance variables that were set in the original action
 are not available to the code handling the redirected
 action. But sometimes we need to communicate between these two
 instances. We can do this using a facility called
 the ​flash​.

 The flash is a temporary scratchpad for values. It is organized
 like a hash and stored in the session data, so you can store values associated with keys and
 later retrieve them. It has one special property. By default,
 values stored into the flash during the processing of a request
 will be available during the processing of the immediately
 following request. Once that second
 request has been processed, those values are removed from the
 flash.

 Probably the most common use of the flash is to pass error and
 informational strings from one action to the
 next. The intent here is that
 the first action notices some condition, creates a message
 describing that condition, and redirects to a separate action. By
 storing the message in the flash, the second action is able to
 access the message text and use it in a view.
 An example of such usage can be found in
 Iteration E1.

 It is sometimes convenient to use the flash as a way of passing
 messages into a template in the current action. For example,
 our
 ​display​
 method might want to output
 a cheery banner if there isn’t another, more pressing note. It
 doesn’t need that message to be passed to the next action—it’s
 for use in the current request only. To do this, it could
 use ​flash.now​, which updates
 the flash but does not add to the session data.

 While ​flash.now​ creates a transient
 flash entry, ​flash.keep​ does the
 opposite, making entries that are currently in the flash stick
 around for another request cycle. If you pass no parameters
 to ​flash.keep​, then all the flash contents
 are preserved.

 Flashes can store more than just text messages—you can use
 them to pass all kinds of information between actions. Obviously,
 for longer-term information you’d want to use the session
 (probably in conjunction with your database) to store the data,
 but the flash is great if you want to pass parameters from one
 request to the next.

 Because the flash data is stored in the session, all the usual
 rules apply. In particular, every object must be serializable. We
 strongly recommend passing only simple objects in the
 flash.

Callbacks

 Callbacks enable you to write code in your controllers that wrap
 the processing performed by actions—you can write a chunk of
 code once and have it be called before or after any number of
 actions in your controller (or your controller’s
 subclasses). This turns out to be a powerful facility. Using
 callbacks, we can implement authentication
 schemes,
 logging, response
 compression,
 and even response customization.

 Rails supports three types of callbacks: before, after, and
 around. Such callbacks are called just prior to and/or just after the
 execution of actions. Depending on how you define them, they
 either run as methods inside the controller or are passed the
 controller object when they are run. Either way, they get access
 to details of the request and response objects, along with the
 other controller attributes.

Before and After Callbacks

	As their names suggest, before and after callbacks are invoked
	before or after an action. Rails maintains two chains of
	callbacks for each controller. When a controller is about to
	run an action, it executes all the callbacks on the before
	chain. It executes the action before running the callbacks on
	the after chain.

	Callbacks can be passive, monitoring activity performed by a
	controller. They can also take a more active part in request
	handling. If a before action callback
	returns ​false​, then processing of the callback
	chain terminates, and the action is not
	run. A callback may
	also render output or redirect requests, in which case the
	original action never gets invoked.

	We saw an example of using callbacks for authorization in the
	administration part of our store example in Section 14.3, ​Iteration I3: Limiting Access​. We defined an authorization
	method that redirected to a login screen if the current
	session didn’t have a logged-in user.
	We then made this method a before action callback for all the actions
	in the administration controller.

	Callback declarations also accept
	blocks and the names of
	classes.
	If a block is specified, it will be called with the current
	controller as a parameter. If a class is given,
	its
 ​filter​
 class method
	will be called with the controller as a parameter.

	By default, callbacks apply to all actions in a controller (and
	any subclasses of that controller). You can modify this with
	the ​:only​ option, which takes one or
	more actions on which the callback is invoked, and
	the ​:except​ option, which lists
	actions to be excluded from callback.

	The ​before_action​ and ​after_action​
	declarations append to the controller’s chain of callbacks. Use
	the variants
 ​prepend_before_action​

 and
 ​prepend_after_action​
 to
	put callbacks at the front of the chain.

	 After callbacks can be used to modify the outbound response,
	 changing the headers and content if required.
	 Some applications use this technique to perform global
	 replacements in the content generated by the controller’s
	 templates (for example, by substituting a customer’s name for
	 the string ​<customer/>​ in the response
	 body). Another use might be compressing the response if the
	 user’s browser supports it.
	

	Around callbacks wrap the execution of actions. You can write an
	around callback in two different styles. In the first, the
	callback is a single chunk of code. That code is called before
	the action is executed. If the callback code
	invokes ​yield​, the action is executed. When the
	action completes, the callback code continues executing.

Thus,
	the code before the ​yield​ is like a before action callback,
	and the code after the ​yield​ is the after action callback. If
	the callback code never invokes ​yield​, the action is
	not run—this is the same as having a before action callback
	return ​false​.

	The benefit of around callbacks is that they can retain context
	across the invocation of the action.

	As well as passing ​around_action​ the name of a
	method, you can pass it a block or a filter class.

	If you use a block as a callback, it will be passed two
	parameters: the controller object and a proxy for the
	action. Use
 ​call​
 on this second
	parameter to invoke the original action.

	A second form allows you to pass an object as a callback. This
	object should implement a method
	called
 ​filter​
 . This method will be passed
	the controller object. It yields to invoke the action.
	

	Like before and after callbacks, around callbacks
	take ​:only​ and ​:except​ parameters.

	Around callbacks are (by default) added to the
callback chain
	differently: the first around action callback added executes first.
	Subsequently added around callbacks will be nested within
	existing around callbacks.

Callback Inheritance

	If you subclass a controller containing callbacks,
	the callbacks will be run on the child objects as well as in the
	parent. However, callbacks defined in the children will not run
	in the parent.

	If you don’t want a particular callback to run in a child
	controller, you can override the default processing with
	the ​skip_before_action​ and ​skip_after_action​
	declarations. These accept the ​:only​
	and ​:except​ parameters.

	You can use ​skip_action​ to skip any action callback (before,
	after, and around). However, it works only for callbacks that
	were specified as the (symbol) name of a method.

	We made use of ​skip_before_action​ in Section 14.3, ​Iteration I3: Limiting Access​.

What We Just Did

 We learned how Action Dispatch and Action Controller cooperate to
 enable our server to respond to requests. The importance of this can’t
 be emphasized enough. In nearly every application, this is the primary
 place where the creativity of your application is expressed. While
 Active Record and Action View are hardly passive, our routes and our
 controllers are where the action is.

 We started this chapter by covering the concept of REST, which was the
 inspiration for the way in which Rails approaches the routing of requests. We
 saw how this provided seven basic actions as a starting point and how
 to add more actions. We also saw how to select a data representation
 (for example, JSON or XML). And we covered how to test routes.

 We then covered the environment that Action Controller provides for your
 actions, as well as the methods it provides for rendering and redirecting.
 Finally, we covered sessions, flash, and callbacks, each of which is
 available for use in your application’s controllers.

 Along the way, we showed how these concepts were used in the
 Depot application. Now that you have seen each in use and have been
 exposed to the theory behind each, how you combine and use these
 concepts is limited only by your own creativity.

 In the next chapter, we will cover the remaining component of Action
 Pack, namely, Action View, which handles the rendering of results.

Footnotes

	[64]	

		
 ​http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm​

	

	[65]	

 ​https://github.com/rails/activerecord-session_store#installation​

	[66]	

		
 ​http://memcached.org/​

		

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 21
Action View

	
templates,

	
forms including fields and uploading files,

	
helpers, and

	
layouts and partials.

 We’ve seen how the routing component determines which controller
 to use and how the controller chooses an action. We’ve also seen
 how the controller and action between them decide what to render
 to the user. Normally that rendering takes place at the end
 of the action, and typically it involves a template. That’s what
 this chapter is all about. Action View encapsulates all the functionality needed to render
 templates, most commonly generating HTML, XML, or JavaScript back
 to the user. As its name
 suggests, Action View is the view part of
 our MVC trilogy.

 In this chapter, we will start with templates, for which Rails provides a
 range of options. We will then cover a number of
 ways in which users provide input: forms, file uploads, and links. We
 will complete this chapter by looking at a number of ways to reduce
 maintenance using helpers, layouts, and partials.

21.1 Using Templates

 When you write a view, you’re writing a template: something that
 will get expanded to generate the final result. To understand how
 these templates work, we need to look at three areas.

	
Where the templates go

	
The environment they run in

	
What goes inside them

Where Templates Go

	The
 ​render​
 method expects to find
	templates in the
	​app/views​ directory of the current
	application.
	
	Within
	this directory, the convention is to have a separate
	subdirectory for the views of each
	controller. Our Depot application, for
	instance, includes products and store controllers. As a result,
	our application has templates in ​app/views/products​
	and ​app/views/store​. Each directory
	typically contains templates named after the actions in the
	corresponding controller.

	You can also have templates that aren’t named after
	actions. You render such templates from the controller
	using calls such as these:

	​ 	render(action: ​'fake_action_name'​)

	​ 	render(template: ​'controller/name'​)

	​ 	render(file: ​'dir/template'​)

	The last of these allows you to store templates anywhere on your
	filesystem. This is useful if you want to share
	templates across applications.

The Template Environment

	Templates contain a mixture of fixed text and code. The code
	in the template adds dynamic content to the response. That code runs
	in an environment that gives it access to the information
	set up by the controller.
	

	

	 All instance variables of the controller are also
	 available in the template. This is how actions communicate
	 data to the templates.
	

	

	 The controller
	 object’s ​flash​, ​headers​, ​logger​, ​params​, ​request​, ​response​,
	 and ​session​ are available as
	 accessor methods in the view.
	 Apart from the flash, view
	 code probably should not use these directly, because the
	 responsibility for handling them should rest with the
	 controller. However, we do find this useful when
	 debugging. For example, the
	 following ​html.erb​ template uses
	 the
 ​debug​
 method to display the contents of the
	 session, the details of the parameters, and the current
	 response:
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	​ 	​<h4>​Session​</h4>​ ​<%= debug(session) %>​

	​ 	​<h4>​Params​</h4>​ ​<%= debug(params) %>​

	​ 	​<h4>​Response​</h4>​ ​<%= debug(response) %>​

	

	 The current controller object is accessible using the
	 attribute
	 named ​controller​.
	 This allows the template to call any public method in the
	 controller (including the methods
	 in ​ActionController::Base​).
	
	
	
	
	

	

	 The path to the base directory of the templates is
	 stored in the
	 attribute ​base_path​.
	
	
	
	
	

What Goes in a Template

	Out of the box, Rails supports four types of templates.

	

 Builder templates use the Builder library to construct XML
 responses. We talk more about Builder in Section 24.1, ​Generating XML with Builder​.

	

	

 CoffeeScript templates create JavaScript, which can change
 both the presentation and the behavior
 of your content in the browser.

	

	

 ERB templates are a mixture of content and embedded Ruby. They are
 typically used to generate HTML pages. We talk more about ERB in
 Section 24.2, ​Generating HTML with ERB​.

	

	

 SCSS templates create CSS stylesheets to control the
 presentation of your content in the browser.

	

 By far, the one that you will be using the most will be ERB. In fact,
 you made extensive use of ERB templates in developing the Depot
 application.

 So far in this chapter, we have focused on producing output. In Chapter 20, ​Action Dispatch and Action Controller​, we focused on processing input. In a
 well-designed application, these two are not unrelated: the output we
 produce contains forms, links, and buttons that guide the end user to
 producing the next set of inputs. As you might expect by now, Rails
 provides a considerable amount of help in this area too.

21.2 Generating Forms

 HTML provides a number of elements, attributes, and attribute values
 that control how input is gathered. You certainly could hand-code your
 form directly into the template, but there really is no need
 to do that.

 In this section, we will cover a number of ​helpers​ that Rails
 provides that assist with this process. In Section 21.5, ​Using Helpers​, we will show you how you can create your own
 helpers.

 HTML provides a number of ways to collect data in forms.
 A few of the more common
 means are shown in Figure 59, ​Some of the common ways to enter data into forms​. Note that the form itself is not representative of any sort of
 typical use; in general, you will use only a subset of these methods to
 collect data.

 Let’s look at the template that was used to produce that form:

	rails40/views/app/views/form/input.html.erb
	​Line 1 	<%= form_for(:model) ​do​ |form| %>

	​- 	​<p>​

	​- 	 <%= form.label :input %>

	​- 	 <%= form.text_field :input, :placeholder => ​'Enter text here...'​ %>

	​5 	​</p>​

	​- 	​<p>​

	​- 	 <%= form.label :address, :style => ​'float: left'​ %>

	​- 	 <%= form.text_area :address, :rows => 3, :cols => 40 %>

	​- 	​</p>​

	​10 	​<p>​

	​- 	 <%= form.label :color %>:

	​- 	 <%= form.radio_button :color, ​'red'​ %>

	​- 	 <%= form.label :red %>

	​- 	 <%= form.radio_button :color, ​'yellow'​ %>

	​15 	 <%= form.label :yellow %>

	​- 	 <%= form.radio_button :color, ​'green'​ %>

	​- 	 <%= form.label :green %>

	​- 	​</p>​

	​- 	

	​20 	​<p>​

	​- 	 <%= form.label ​'condiment'​ %>:

	​- 	 <%= form.check_box :ketchup %>

	​- 	 <%= form.label :ketchup %>

	​- 	 <%= form.check_box :mustard %>

	​25 	 <%= form.label :mustard %>

	​- 	 <%= form.check_box :mayonnaise %>

	​- 	 <%= form.label :mayonnaise %>

	​- 	​</p>​

	​- 	

	​30 	​<p>​

	​- 	 <%= form.label :priority %>:

	​- 	 <%= form.select :priority, (1..10) %>

	​- 	​</p>​

	​- 	

	​35 	​<p>​

	​- 	 <%= form.label :start %>:

	​- 	 <%= form.date_select :start %>

	​- 	​</p>​

	​- 	

	​40 	​<p>​

	​- 	 <%= form.label :alarm %>:

	​- 	 <%= form.time_select :alarm %>

	​- 	​</p>​

	​- 	<% ​end​ %>

[image: images/form_helpers.png]

Figure 58. Some of the common ways to enter data into forms

 In that template, you will see a number of labels, such as the one on line
 3. You use labels to associate text
 with an input field for a specified attribute. The text of the label will
 default to the attribute name unless you specify it explicitly.

 You use the
 ​text_field​
 and
 ​text_area​

 helpers (on lines 4 and 8, respectively) to gather single-line
 and multiline input fields. You may specify a ​placeholder​,
 which will be displayed inside the field until the user provides a
 value. Not every browser supports this function, but those that don’t
 simply will display an empty box. Since this will degrade gracefully,
 there is no need for you to design to the least common denominator—make use of this feature, because those who can see it will benefit from it
 immediately.

 Placeholders are one of the many small “fit and finish” features
 provided with HTML5, and once again, Rails is ready even if the browser
 your users have installed is not. You can use the

 ​search_field​
 ,

 ​telephone_field​
 ,

 ​url_field​
 ,

 ​email_field​
 ,

 ​number_field​
 , and

 ​range_field​
 helpers to prompt
 for a specific type of input. How the browser will make use of this
 information varies. Some may display the field slightly differently in
 order to more clearly identify its function. Safari on Mac, for
 example, will display search fields with rounded corners and will insert
 a little ​x​ for clearing the field once data entry begins. Some
 may provide added validation. For example, Opera will validate URL fields
 prior to submission. The iPad will even adjust the virtual onscreen
 keyboard to provide ready access to characters such as the ​@​
 sign when entering an email address.

 Although the support for these functions varies by browser, those that
 don’t provide extra support for these functions simply display a plain,
 unadorned input box. Once again, nothing is gained by waiting. If you
 have an input field that’s expected to contain an email address, don’t
 simply use
 ​text_field​
 —go ahead and start using

 ​email_field​
 now.

 Lines 12,
 22, and
 32 demonstrate three different ways to
 provide a constrained set of options. Although the display may vary a bit
 from browser to browser, these approaches are all well supported across all
 browsers. The
 ​select​
 method is particularly
 flexible—it can be passed a simple
 ​Enumeration​ as shown here, an array of pairs of
 name-value pairs, or a ​Hash​. A number of form options
 helpers[67] are available to produce such lists from various sources,
 including the database.

 Finally, lines 37 and
 42 show prompts for a date and time,
 respectively. As you might expect by now, Rails provides plenty of
 options here too.[68]

 Not shown in this example are
 ​hidden_field​
 and

 ​password_field​
 . A hidden field is not
 displayed at all, but the value is passed back to the server. This may
 be useful as an alternative to storing transient data in sessions,
 enabling data from one request to be passed onto the next. Password
 fields are displayed, but the text entered in them is obscured.

 This is more than an adequate starter set for most needs. Should you
 find that you have additional needs, you are quite likely to find a
 helper or gem is already available for you. A good place to start
 is with the Rails Guides.[69]

 Meanwhile, let’s explore how the data forms submit is
 processed.

21.3 Processing Forms

 In the following figure we can see how the various
 attributes in the model pass through the controller to the view,
 on to the HTML page, and back again into the model. The model
 object has attributes such
 as ​name​, ​country​,
 and ​password​. The template uses
 helper methods to construct an
 HTML form to let the user edit the data in the model. Note how
 the form fields are
 named. The ​country​ attribute, for
 example, maps to an HTML input field with the
 name ​user[country]​.

[image: images/mvc_integration.png]

Figure 59. Models, controllers, and views work together.

 When the user submits the
 form, the raw POST data is sent back
 to our application. Rails extracts the fields from the form and
 constructs the ​params​ hash.
 Simple values
 (such as the ​id​ field, extracted by routing from the form
 action) are stored directly in the hash. But, if a parameter
 name has brackets in it, Rails assumes that it is part of more
 structured data and constructs a hash to hold the
 values. Inside this hash, the string inside the brackets acts
 as the key. This process can repeat if a parameter name has
 multiple sets of brackets in it.

	Form Parameters
	​Params​

	​id=123​
	​{ id: "123" }​

	​user[name]=Dave​
	​{ user: { name: "Dave" }}​

	​user[address][city]=Wien​
	​{ user: { address: { city: "Wien" }}}​

 In the final part of the integrated whole, model objects can
 accept new attribute values from
 hashes, which allows us to say this:

	​ 	user.update(user_params)

 Rails integration goes deeper than this. Looking at
 the ​html.erb​ file in
 the preceding figure, we can see that the
 template uses a set of helper methods to create the form’s HTML; these are
 methods such as
 ​form_for​

 and
 ​text_field​
 .

 Before moving on, it is worth noting that ​params​ may be used
 for more than simple text. Entire files can be uploaded. We’ll cover
 that next.

21.4 Uploading Files to Rails Applications

 Your application may allow users to upload files. For example,
 a bug-reporting system might let users attach log files and
 code samples to a problem ticket, or a blogging application
 could let its users upload a small image to appear next to
 their articles.

 In HTTP, files are uploaded as
 a ​multipart/form-data​ POST message. As the name suggests, forms are used to generate
 this type of message.
 Within that form, you’ll use one or
 more ​<input>​ tags with
 ​type="file"​
 . When rendered by a browser, this
 tag allows the user to select a file by name. When the form is
 subsequently submitted, the file or files will be sent back
 along with the rest of the form data.

 To illustrate the file upload process, we’ll show some code
 that allows a user to upload an image and display that image
 alongside a comment. To do this, we first need
 a ​pictures​ table to store the data.

	rails40/e1/views/db/migrate/20121130000004_create_pictures.rb
	​ 	​class​ CreatePictures < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 create_table :pictures ​do​ |t|

	​ 	 t.string :comment

	​ 	 t.string :name

	​ 	 t.string :content_type

	​ 	 ​# If using MySQL, blobs default to 64k, so we have to give​

	​ 	 ​# an explicit size to extend them​

	​ 	 t.binary :data, :limit => 1.megabyte

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 We’ll create a somewhat artificial upload controller just to
 demonstrate the process. The ​get​
 action is pretty conventional; it simply creates a new
 picture object and renders a form.

	rails40/e1/views/app/controllers/upload_controller.rb
	​ 	​class​ UploadController < ApplicationController

	​ 	 ​def​ get

	​ 	 @picture = Picture.new

	​ 	 ​end​

	​ 	 ​# . . .​

	​ 	 private

	​ 	 ​# Never trust parameters from the scary internet, only allow the white​

	​ 	 ​# list through.​

	​ 	 ​def​ picture_params

	​ 	 params.require(:picture).permit(:comment, :uploaded_picture)

	​ 	 ​end​

	​ 	​end​

 The ​get​
 template contains the form that uploads the picture (along
 with a comment). Note how we override the encoding type to
 allow data to be sent back with the response.

	rails40/e1/views/app/views/upload/get.html.erb
	​ 	<%= form_for(:picture,

	​ 	 url: {action: ​'save'​},

	​ 	 html: {multipart: true}) ​do​ |form| %>

	​ 	

	​ 	 Comment: <%= form.text_field(​"comment"​) %>​<br​​/>​

	​ 	 Upload your picture: <%= form.file_field(​"uploaded_picture"​) %>​<br​​/>​

	​ 	

	​ 	 <%= submit_tag(​"Upload file"​) %>

	​ 	<% ​end​ %>

 The form has one other subtlety. The picture uploads into
 an attribute called ​uploaded_picture​. However, the
 database table doesn’t contain a column of that name. That
 means that there must be some magic happening in the model.

	rails40/e1/views/app/models/picture.rb
	​ 	​class​ Picture < ActiveRecord::Base

	​ 	

	​ 	 validates_format_of :content_type,

	​ 	 with: /^image/,

	​ 	 message: ​"must be a picture"​

	​ 	

	​ 	 ​def​ uploaded_picture=(picture_field)

	​ 	 self.name = base_part_of(picture_field.original_filename)

	​ 	 self.content_type = picture_field.content_type.chomp

	​ 	 self.data = picture_field.read

	​ 	 ​end​

	​ 	

	​ 	 ​def​ base_part_of(file_name)

	​ 	 File.basename(file_name).gsub(/[^\w._-]/, ​''​)

	​ 	 ​end​

	​ 	​end​

 We define an accessor
 called
 ​uploaded_picture=​
 to
 receive the file uploaded by the form.
 The object
 returned by the form is an interesting hybrid. It is
 file-like, so we can read its contents with
 the
 ​read​
 method; that’s how we get
 the image data into the ​data​ column. It
 also has the
 attributes ​content_type​ and ​original_filename​, which
 let us get at the uploaded file’s metadata. Accessor methods pick
 all this apart, resulting in a single object
 stored as separate attributes in the database.

 Note that we also add a simple validation to check that the
 content type is of the
 form ​image/​​xxx​. We don’t want someone
 uploading JavaScript.

 The ​save​ action in the controller is
 totally conventional.

	rails40/e1/views/app/controllers/upload_controller.rb
	​ 	​def​ save

	​ 	 @picture = Picture.new(picture_params)

	​ 	 ​if​ @picture.save

	​ 	 redirect_to(action: ​'show'​, id: @picture.id)

	​ 	 ​else​

	​ 	 render(action: :get)

	​ 	 ​end​

	​ 	​end​

 So, now that we have an image in the database, how do we display
 it? One way is to give it its own URL and simply link to that
 URL from an image tag. For example, we could use a URL such
 as ​upload/picture/123​ to return the image for picture
 123. This would use
 ​send_data​
 to return
 the image to the browser. Note how we set the content type and
 filename—this lets browsers interpret the data and supplies a
 default name should the user choose to save the image.

	rails40/e1/views/app/controllers/upload_controller.rb
	​ 	​def​ picture

	​ 	 @picture = Picture.find(params[:id])

	​ 	 send_data(@picture.data,

	​ 	 filename: @picture.name,

	​ 	 type: @picture.content_type,

	​ 	 disposition: ​"inline"​)

	​ 	​end​

 Finally, we can implement the ​show​
 action, which displays the comment and the image. The action
 simply loads the picture model object.

	rails40/e1/views/app/controllers/upload_controller.rb
	​ 	​def​ show

	​ 	 @picture = Picture.find(params[:id])

	​ 	​end​

 In the template, the image tag links back to the action that
 returns the picture content. In Figure 61, ​Uploading a file​, we can see
				 the ​get​
 and ​show​ actions in all their glory.

[image: images/file_upload.png]

Figure 60. Uploading a file

	rails40/e1/views/app/views/upload/show.html.erb
	​ 	​<h3>​<%= @picture.comment %>​</h3>​

	​ 	

	​ 	​<img​ src=​"​<%= url_for(:action => ​'picture'​, :id => @picture.id) %>​"​​/>​

 If you’d like an easier way of dealing with uploading and
 storing images, take a look at thoughtbot’s Paperclip[70] or Rick Olson’s attachment_fu[71] plugins.
 Create a database table that includes a given set of columns
 (documented on Rick’s site), and the plugin will automatically
 manage storing both the uploaded data and the upload’s
 metadata. Unlike our previous approach, it handles storing
 the uploads in either your filesystem or a database table.

 Forms and uploads are just two examples of helpers that Rails provides.
 Next we will show you how you can provide your own helpers and
 introduce you to a number of other helpers that come with Rails.

21.5 Using Helpers

 Earlier we said that it’s OK to put code in templates. Now
 we’re going to modify that statement. It’s perfectly acceptable
 to put ​some​ code in templates—that’s what makes
 them dynamic. However, it’s poor style to put too much code in
 templates.

 There are three main reasons for this. First, the more code you
 put in the view side of your application, the easier it is to
 let discipline slip and start adding application-level
 functionality to the template code. This is definitely poor
 form; you want to put application stuff in the controller and
 model layers so that it is available everywhere. This will pay
 off when you add new ways of viewing the application.

 The second reason is that ​html.erb​ is
 basically HTML. When you edit it, you’re editing an HTML
 file. If you have the luxury of having professional designers
 create your layouts, they’ll want to work with
 HTML. Putting a bunch of Ruby code in there just makes it hard to work with.

 The final reason is that code embedded in views is hard to test,
 whereas code split out into helper modules can be isolated and
 tested as individual units.

 Rails provides a nice compromise in the form of
 helpers. A ​helper​ is simply a module containing
 methods that assist a view. Helper methods are
 output-centric. They exist to generate HTML (or XML, or
 JavaScript)—a helper extends the behavior of a
 template.

Your Own Helpers

 By default, each controller gets its own helper module. Additionally,
 there is an application-wide helper named
 ​application_helper.rb​. It won’t
 be surprising to learn that Rails makes certain assumptions to
 help link the helpers into the controller and its
 views. While all view helpers
 are available to all controllers, it often is good practice to
 organize helpers.
 Helpers that are unique to the views associated with
 the ​ProductController​ tend to be placed in a
 helper module called ​ProductHelper​ in the
 file ​product_helper.rb​ in
 the ​app/helpers​ directory. You don’t have to
 remember all these details—the ​rails generate
 controller​ script creates a stub helper module
 automatically.

 In Section 11.4, ​Iteration F4: Hiding an Empty Cart​, we created such a helper method
 named
 ​hidden_div_if​
 , which enabled us to hide
 the cart under specified conditions. We can use the same technique to
 clean up the application layout a bit. Currently we have the
 following:

	​ 	​<h3>​<%= @page_title || ​"Pragmatic Store"​ %>​</h3>​

 Let’s move the code that works out the page title into
 a helper method. Because we’re in the store controller, we edit the
 file ​store_helper.rb​
 in ​app/helpers​.

	​ 	​module​ StoreHelper

	​ 	 ​def​ page_title

	​ 	 @page_title || ​"Pragmatic Store"​

	​ 	 ​end​

	​ 	​end​

 Now the view code simply calls the helper method.

	​ 	​<h3>​<%= page_title %>​</h3>​

 (We might want to eliminate even more duplication by moving the
 rendering of the entire title into a separate partial template,
 shared by all the controller’s views, but we don’t talk about
 partial templates until ​Partial-Page Templates​.)

Helpers for Formatting and Linking

 Rails comes with a bunch of built-in helper methods, available
 to all views. In this section, we’ll touch on the highlights, but
 you’ll probably want to look at the Action View RDoc for the
 specifics—there’s a lot of functionality in
 there.

Formatting Helpers

 One set of helper methods deals with dates,
 numbers, and text.

	
	​<%= distance_of_time_in_words(Time.now, Time.local(2013, 12, 25)) %>​

	
4 months

	
	​<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: false) %>​

	
1 minute

	
	​<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: true) %>​
	
Half a minute

	
	​<%= time_ago_in_words(Time.local(2012, 12, 25)) %>​

	
7 months

	
	​<%= number_to_currency(123.45) %>​

	
$123.45

	
	​<%= number_to_currency(234.56, unit: "CAN$", precision: 0) %>​

	
CAN$235

	
	​<%= number_to_human_size(123_456) %>​

	
120.6 KB

	
	​<%= number_to_percentage(66.66666) %>​

	
66.667%

	
	​<%= number_to_percentage(66.66666, precision: 1) %>​

	
66.7%

	
	​<%= number_to_phone(2125551212) %>​

	
212-555-1212

	
	​<%= number_to_phone(2125551212, area_code: true, delimiter: " ") %>​

	
(212) 555 1212

	
	​<%= number_with_delimiter(12345678) %>​

	
12,345,678

	
	​<%= number_with_delimiter(12345678, delimiter: "_") %>​

	
12_345_678

	
	​<%= number_with_precision(50.0/3, precision: 2) %>​

	
16.67

 The
 ​debug​
 method dumps out its
 parameter using YAML and escapes the result so it can
 be displayed in an HTML page. This can help when trying to
 look at the values in model objects or request parameters.

 ​<%= debug(params) %>​

	​ 	--- !ruby/hash:HashWithIndifferentAccess

	​ 	name: ​Dave​

	​ 	language: ​Ruby​

	​ 	action: ​objects​

	​ 	controller: ​test​

 Yet another set of helpers deals with text. There are methods to
 truncate strings and highlight words in a string.

	
	​<%= simple_format(@trees) %>​

	

	 Formats a string, honoring line and paragraph breaks. You
	 could give it the plain text of the Joyce Kilmer poem ​Trees​, and it would add
	 the HTML to format it as follows.
	

<p>
	 I think that I shall never see
	
A poem lovely as a tree.</p>
	
	 <p>A tree whose hungry mouth is prest
	
Against the sweet earth’s flowing breast;
	 </p>

	
	​<%= excerpt(@trees, "lovely", 8) %>​

	
...A poem lovely as a tre...

	
	​<%= highlight(@trees, "tree") %>​

	

	 I think that I shall never see
	 A poem lovely as a <strong class="highlight">tree.
	
	 A <strong class="highlight">tree whose hungry mouth is prest
	 Against the sweet earth’s flowing breast;
	

	
	​<%= truncate(@trees, length: 20) %>​

	

	 I think that I sh...

 There’s a method to pluralize nouns.

	
	​<%= pluralize(1, "person") %> but
	 <%= pluralize(2, "person") %>​

	
1 person but 2 people

 If you’d like to do what the fancy websites do and
 automatically hyperlink URLs and email addresses, there are
 helpers to do that. There’s another that strips hyperlinks from
 text.

 Back in Iteration A2, we saw how
 the
 ​cycle​
 helper can
 be used to return the successive values from a sequence each
 time it’s called, repeating the sequence as necessary. This is
 often used to create alternating styles for the rows in a table
 or list. The
 ​current_cycle​
 and

 ​reset_cycle​
 methods are also available.

 Finally, if you’re writing something like a blog site or you’re
 allowing users to add comments to your store, you could offer
 them the ability to create their text in Markdown
 (BlueCloth)[72]
 or Textile (RedCloth)[73]
 format. These are simple formatters that take text with very
 simple, human-friendly markup and convert it into HTML.

Linking to Other Pages and Resources

 The ​ActionView::Helpers::AssetTagHelper​
 and ​ActionView::Helpers::UrlHelper​
 modules contain a number of methods that let you reference
 resources external to the current template. Of these, the most
 commonly used is
 ​link_to​
 , which creates a hyperlink to another
 action in your application.

	​ 	<​%= link_to "Add Comment", new_comments_path %>​

 The first parameter to
 ​link_to​
 is the
 text displayed for the link. The next is a string or hash specifying the
 link’s target.

 An optional third parameter provides HTML attributes for the
 generated link.

	​ 	<%= link_to ​"Delete"​, product_path(@product),

	​ 	 { class: ​"dangerous"​, method: ​'delete'​ }

	​ 	%>

 This third parameter also supports two additional options that
 modify the behavior of the link. Each requires JavaScript to be
 enabled in the browser.

 The ​:method​
 option is a hack—it allows you to make the link look to the
 application as if the request were created by a POST, PUT, PATCH, or
 DELETE, rather than the normal GET method. This is done by
 creating a chunk of JavaScript that submits the request when the
 link is clicked—if JavaScript is disabled in the browser, a
 GET will be generated.

 The ​:data​ parameter allows you to set custom data attributes.
 The most commonly used one is the ​:confirm​
 option, which takes a short message. If present, an unobtrusive JavaScript
 driver will display the message and get the user’s confirmation
 before the link is followed.

	​ 	<%= link_to ​"Delete"​, product_path(@product),

	​ 	 method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ }

	​ 	%>

 The
 ​button_to​

 method works the same as
 ​link_to​
 but
 generates a button in a self-contained form, rather than a
 straight hyperlink. This is the preferred method of
 linking to actions that have side effects. However, these
 buttons live in their own forms, which imposes a couple of
 restrictions: they cannot appear inline, and they cannot appear
 inside other forms.

 Rails has conditional linking methods that generate hyperlinks
 if some condition is met or just return the link text
 otherwise.

 ​link_to_if​
 and

 ​link_to_unless​
 take a condition parameter,
 followed by the regular parameters to ​link_to​. If the
 condition is ​true​ (for ​link_to_if​)
 or ​false​ (for ​link_to_unless​), a regular link
 will be created using the remaining parameters. If not, the name
 will be added as plain text (with no hyperlink).

 The
 ​link_to_unless_current​
 helper
 creates menus in sidebars where the current page name is shown
 as plain text and the other entries are hyperlinks.

	​ 	​​

	​ 	<% ​%w{ create list edit save logout }​.each ​do​ |action| %>

	​ 	 ​​

	​ 	 <%= link_to_unless_current(action.capitalize, action: action) %>

	​ 	 ​​

	​ 	<% ​end​ %>

	​ 	​​

 The
 ​link_to_unless_current​
 helper may also be passed
 a block that is evaluated only if the current action is the action
 given, effectively providing an alternative to the link.
 There also is a
 ​current_page​
 helper method that simply tests whether
 the current request URI was generated by the given options.

 As
 with
 ​url_for​
 ,
 ​link_to​

 and friends also support absolute URLs.

	​ 	<%= link_to(​"Help"​, ​"http://my.site/help/index.html"​) %>

 The
 ​image_tag​
 helper
 creates ​​ tags. Optional ​:size​ parameters (of the
 form ​width​​x​​height​) or separate
 width and height parameters define the size of the image.

	​ 	<%= image_tag(​"/assets/dave.png"​, class: ​"bevel"​, size: ​"80x120"​) %>

	​ 	<%= image_tag(​"/assets/andy.png"​, class: ​"bevel"​,

	​ 	 width: ​"80"​, height: ​"120"​) %>

 If you don’t give an ​:alt​ option, Rails synthesizes one
 for you using the image’s filename.
 If the image path doesn’t start with a / character, Rails
 assumes that it lives under the ​app/assets/images​
 directory.

 You can make images into links by
 combining
 ​link_to​

 and
 ​image_tag​
 .

	​ 	<%= link_to(image_tag(​"delete.png"​, size: ​"50x22"​),

	​ 	 product_path(@product),

	​ 	 data: { confirm: ​"Are you sure?"​ },

	​ 	 method: :delete)

	​ 	%>

 The
 ​mail_to​
 helper
 creates a ​mailto:​ hyperlink that, when
 clicked, normally loads the client’s email
 application. It takes an email
 address, the name of the link, and a set of HTML options. Within
 these options, you can also
 use ​:bcc​, ​:cc​, ​:body​,
 and ​:subject​ to initialize the
 corresponding email fields. Finally,
 the magic
 option ​encode: "javascript"​ uses
 client-side JavaScript to obscure the generated link, making it
 harder for spiders to harvest email addresses from your
 site.
	 Unfortunately, it also means your users won’t see the email link if
	 they have JavaScript disabled in their browsers.

	​ 	<%= mail_to(​"support@pragprog.com"​, ​"Contact Support"​,

	​ 	 subject: ​"Support question from ​#{@user.name}​"​,

	​ 	 encode: ​"javascript"​) %>

 As a weaker form of obfuscation, you can use
 the ​:replace_at​ and ​:replace_dot​ options to
 replace the at sign and dots in the displayed name with other
 strings. This is unlikely to fool harvesters.

 The ​AssetTagHelper​ module also includes
 helpers that make it easy to link to stylesheets and JavaScript
 code from your pages and to create autodiscovery Atom
 feed links. We created links in the layouts for the
 Depot application using the
 ​stylesheet_link_tag​
 and

 ​javascript_link_tag​
 methods in the head.

	rails40/depot_r/app/views/layouts/application.html.erb
	​ 	<!DOCTYPE html>

	​ 	​<html>​

	​ 	​<head>​

	​ 	 ​<title>​Pragprog Books Online Store​</title>​

	​ 	 <%= stylesheet_link_tag ​"application"​, media: ​"all"​,

	​ 	 ​"data-turbolinks-track"​ => true %>

	​ 	 <%= javascript_include_tag ​"application"​, ​"data-turbolinks-track"​ => true %>

	​ 	 <%= csrf_meta_tags %>

	​ 	​</head>​

 The
 ​javascript_include_tag​
 method takes a
 list of JavaScript filenames (assumed to live in
 ​assets/javascripts​) and creates the HTML to load
 these into a page. In addition to ​:all​,
 ​javascript_include_tag​ accepts as a parameter
 the value ​:defaults​, which acts as a shortcut and causes Rails to
 load jQuery.js.

 An RSS or Atom link is a header field that points to a URL in
 our application. When that URL is accessed, the application
 should return the appropriate RSS or Atom XML.

	​ 	​<html>​

	​ 	 ​<head>​

	​ 	 <%= auto_discovery_link_tag(:atom, products_url(format: ​'atom'​)) %>

	​ 	 ​</head>​

	​ 	 . . .

 Finally, the ​JavaScriptHelper​ module
 defines a number of helpers for working with JavaScript. These
 create JavaScript snippets that run in the browser to
 generate special effects and to have the page dynamically
 interact with our application.

 By default, image and stylesheet assets are assumed to live in
 the ​images​ and ​stylesheets​
 directories relative to the
 application’s ​assets​ directory. If the path
 given to an asset tag method starts with a forward slash, then the
 path is assumed to be absolute, and no prefix is
 applied. Sometimes it makes sense to move this static content
 onto a separate box or to different locations on the current
 box. Do this by setting the configuration
 variable ​asset_host​.

	​ 	config.action_controller.asset_host = ​"http://media.my.url/assets"​

 Although this list of helpers may seem to be comprehensive, Rails provides
 many more, new helpers are introduced with each release, and a select
 few are retired or moved off into a plugin where they can be evolved at a
 different pace than Rails. Now would be a good time to review the
 online documentation that you produced in ​A Place for Documentation​,
 to see what other goodies Rails provides for you.

21.6 Reducing Maintenance with Layouts and Partials

 So far in this chapter we’ve looked at templates as isolated
 chunks of code and HTML. But one of the driving ideas behind
 Rails is honoring the DRY principle and eliminating the need for
 duplication. The average website,
 though, has lots of duplication.

	

	 Many pages share the same tops, tails, and sidebars.
	

	

	 Multiple pages may contain the same snippets of rendered
	 HTML (a blog site, for example, may display an article in multiple
 places).
	

	

	 The same functionality may appear in multiple places. Many
	 sites have a standard search component or a polling
	 component that appears in most of the sites’ sidebars.
	

 Rails provides both layouts and partials that
 reduce the need for duplication in these three situations.

Layouts

	 Rails allows you to render pages that are nested inside other
	rendered pages. Typically this feature is used to put the
	content from an action within a standard site-wide page frame
	(title, footer, and sidebar). In fact, if you’ve been using
	the ​generate​ script to create
	scaffold-based applications, then you’ve been using these
	layouts all along.

	When Rails honors a request to render a template from within a
	controller, it actually renders two templates. Obviously, it
	renders the one you ask for (or the default template named
	after the action if you don’t explicitly render
	anything). But Rails
	also tries to find and render a layout template (we’ll talk
	about how it finds the layout in a second). If it finds the
	layout, it inserts the action-specific output into the HTML
	produced by the layout.

	Let’s look at a layout template:

	​ 	​<html>​

	​ 	 ​<head>​

	​ 	 ​<title>​Form: <%= controller.action_name %>​</title>​

	​ 	 <%= stylesheet_link_tag ​'scaffold'​ %>

	​ 	 ​</head>​

	​ 	 ​<body>​

	​ 	

	​ 	 <%= ​yield​ :layout %>

	​ 	

	​ 	 ​</body>​

	​ 	​</html>​

	The layout sets out a standard HTML page, with the head and
	body sections. It uses the current action name as the page
	title and includes a CSS file. In the body, there’s a call
	to ​yield​. This is where the magic takes place. When
	the template for the action was rendered, Rails stored its
	content, labeling it ​:layout​. Inside the layout
	template, calling ​yield​ retrieves this
	text.
	 In fact, ​:layout​ is the default content returned
	 when rendering, so you can write ​yield​ instead
	 of ​yield :layout​. We personally prefer the
	 slightly more explicit version.
	

	If the ​my_action.html.erb​
	template contained this:

	​ 	​<h1>​<%= @msg %>​</h1>​

	the browser would see the following HTML:

	​ 	​<html>​

	​ 	 ​<head>​

	​ 	 ​<title>​Form: my_action​</title>​

	​ 	 ​<link​ href=​"/stylesheets/scaffold.css"​ media=​"screen"​

	​ 	 rel=​"Stylesheet"​ type=​"text/css"​ ​/>​

	​ 	 ​</head>​

	​ 	 ​<body>​

	​ 	

	​ 	 ​<h1>​Hello, World!​</h1>​

	​ 	

	​ 	 ​</body>​

	​ 	​</html>​

Locating Layout Files

	 As you’ve probably come to expect, Rails does a good job of
	 providing defaults for layout file locations, but you can
	 override the defaults if you need something different.
	

	 Layouts are controller-specific. If the current request is
	 being handled by a controller called ​store​, Rails will by
	 default look for a layout
	 called ​store​ (with the
	 usual ​html.erb​
	 or ​xml.builder​ extension) in
	 the ​app/views/layouts​ directory. If you
	 create a layout called ​application​ in
	 the ​layouts​ directory, it will be applied
	 to all controllers that don’t otherwise have a layout
	 defined for them.
	

	 You can override this using
	 the ​layout​ declaration inside a
	 controller. At its simplest, the declaration takes the name
	 of a layout as a string. The following declaration will make
	 the template in the file ​standard.html.erb​
	 or ​standard.xml.builder​ the layout for all
	 actions in the store controller. The layout file will be
	 looked for in the ​app/views/layouts​
	 directory.
	
	​ 	​class​ StoreController < ApplicationController

	​ 	

	​ 	 layout ​"standard"​

	​ 	

	​ 	 ​# ...​

	​ 	​end​

	 You can qualify which actions will have the layout applied
	 to them using the ​:only​
	 and ​:except​
	 qualifiers.
	
	​ 	​class​ StoreController < ApplicationController

	​ 	

	​ 	 layout ​"standard"​, except: [:rss, :atom]

	​ 	

	​ 	 ​# ...​

	​ 	​end​

	 Specifying a layout of ​nil​ turns off
	 layouts for a controller.
	

	 Sometimes you need to change the appearance of a
	 set of pages at runtime. For example, a blogging site might
	 offer a different-looking side menu if the user is logged
	 in, or a store site might have different-looking pages if
	 the site is down for maintenance. Rails supports this need
	 with dynamic layouts. If the parameter to
	 the ​layout​ declaration is a
	 symbol, it’s taken to be the name of a controller instance
	 method that returns the name of the layout to be used.
	
	​ 	​class​ StoreController < ApplicationController

	​ 	

	​ 	 layout :determine_layout

	​ 	 ​# ...​

	​ 	 private

	​ 	

	​ 	 ​def​ determine_layout

	​ 	 ​if​ Store.is_closed?

	​ 	 ​"store_down"​

	​ 	 ​else​

	​ 	 ​"standard"​

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

	 Subclasses of a controller use the parent’s layout
	 unless they override it using the ​layout​
	 directive.
	 Finally, individual actions can choose to render using a
	 specific layout (or with no layout at all) by
	 passing
 ​render​

	 the ​:layout​ option.
	
	​ 	​def​ rss

	​ 	 render(layout: false) ​# never use a layout​

	​ 	​end​

	​ 	​def​ checkout

	​ 	 render(layout: ​"layouts/simple"​)

	​ 	​end​

Passing Data to Layouts

	 Layouts have access to all the same data that’s available to
	 conventional templates. In addition, any instance variables
	 set in the normal template will be available in the layout
	 (because the regular template is rendered before the layout
	 is invoked). This might be used to parameterize headings or
	 menus in the layout. For example, the layout might
	 contain this:
	
	​ 	​<html>​

	​ 	 ​<head>​

	​ 	 ​<title>​<%= @title %>​</title>​

	​ 	 <%= stylesheet_link_tag ​'scaffold'​ %>

	​ 	 ​</head>​

	​ 	 ​<body>​

	​ 	 ​<h1>​<%= @title %>​</h1>​

	​ 	 <%= ​yield​ :layout %>

	​ 	 ​</body>​

	​ 	​</html>​

	 An individual template could set the title by assigning to
	 the ​@title​ variable.
	
	​ 	<% @title = ​"My Wonderful Life"​ %>

	​ 	​<p>​

	​ 	 Dear Diary:

	​ 	​</p>​

	​ 	

	​ 	​<p>​

	​ 	 Yesterday I had pizza for dinner. It was nice.

	​ 	​</p>​

	 In fact, we can take this further. The same mechanism that
	 lets us use ​yield :layout​ to embed the rendering
	 of a template into the layout also lets you generate
	 arbitrary content in a template, which can then be embedded
	 into any other template.
	

	 For example, different templates may need to add their own
	 template-specific items to the standard page sidebar. We’ll
	 use the ​content_for​ mechanism in those templates to
	 define content and then use ​yield​ in the layout to
	 embed this content into the sidebar.
	

	 In each regular template, use a ​content_for​
	 to give a name to the content rendered inside a block. This
	 content will be stored inside Rails and will not contribute
	 to the output generated by the template.
	
	​ 	​<h1>​Regular Template​</h1>​

	​ 	

	​ 	<% content_for(:sidebar) ​do​ %>

	​ 	 ​​

	​ 	 ​​this text will be rendered​​

	​ 	 ​​and saved for later​​

	​ 	 ​​it may contain <%= ​"dynamic"​ %> stuff​​

	​ 	 ​​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<p>​

	​ 	 Here's the regular stuff that will appear on

	​ 	 the page rendered by this template.

	​ 	​</p>​

	 Then, in the layout, you use ​yield :sidebar​ to
	 include this block into the page’s sidebar.
	
	​ 	<!DOCTYPE >

	​ 	​<html>​

	​ 	 ​<body>​

	​ 	 ​<div​ class=​"sidebar"​​>​

	​ 	 ​<p>​

	​ 	 Regular sidebar stuff

	​ 	 ​</p>​

	​ 	

	​ 	 ​<div​ class=​"page-specific-sidebar"​​>​

	​*
​	 ​<%= yield :sidebar %>​

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	 ​</body>​

	​ 	​</html>​

	 This same technique can be used to add page-specific
	 JavaScript functions into the ​<head>​ section
	 of a layout, create specialized menu bars, and so on.
	
Partial-Page Templates

	Web applications commonly display information about the same
	application object or objects on multiple pages. A
	shopping cart might display an order line item on the shopping
	cart page and again on the order summary page. A blog
	application might display the contents of an article on the
	main index page and again at the top of a page soliciting
	comments. Typically this would involve
	copying snippets of code between the different template pages.

	Rails, however, eliminates this duplication with
	the ​partial-page templates​ (more
	frequently called ​partials​). You can think of a
	partial as a kind of subroutine. You invoke it one or more
	times from within another template, potentially passing it
	objects to render as parameters. When the partial template
	finishes rendering, it returns control to the calling
	template.

	Internally, a partial template looks like any other
	template. Externally, there’s a slight difference. The name of the file
	containing the template code must start with an underscore
	character, differentiating the source of partial templates
	from their more complete brothers and sisters.

	For example, the partial to render a blog entry
	might be stored in the
	file ​_article.html.erb​ in the normal views
	directory, ​app/views/blog​.

	​ 	​<div​ class=​"article"​​>​

	​ 	 ​<div​ class=​"articleheader"​​>​

	​ 	 ​<h3>​<%= article.title %>​</h3>​

	​ 	 ​</div>​

	​ 	 ​<div​ class=​"articlebody"​​>​

	​ 	 <%= article.body %>

	​ 	 ​</div>​

	​ 	​</div>​

	Other templates use the
 ​render(partial:)​
 method to
	invoke this.

	​ 	<%= render(partial: ​"article"​, object: @an_article) %>

	​ 	​<h3>​Add Comment​</h3>​

	​ 	. . .

	The ​:partial​ parameter to
 ​render​
 is
	the name of the template to render (but without the leading
	underscore). This name must be both a valid filename and a
	valid Ruby identifier (so ​a-b​
	and ​20042501​ are not valid names for
	partials). The ​:object​ parameter
	identifies an object to be passed into the partial. This object
	will be available within the template via a local variable
	with the same name as the template. In this example,
	the ​@an_article​ object will be
	passed to the template, and the template can access it using
	the local variable ​article​.
	That’s why we could write things such
	as ​article.title​ in the partial.

	You can set additional local variables in the template by
	passing
 ​render​

	a ​:locals​ parameter. This takes a
	hash where the entries represent the names and values of the
	local variables to set.

	​ 	render(partial: ​'article'​,

	​ 	 object: @an_article,

	​ 	 locals: { authorized_by: session[:user_name],

	​ 	 from_ip: request.remote_ip })

Partials and Collections

	 Applications commonly need to display collections of
	 formatted entries. A blog might show a series of articles,
	 each with text, author, date, and so on. A store might
	 display entries in a catalog, where each has an image, a
	 description, and a price.
	

	 The ​:collection​ parameter
	 to
 ​render​
 works in conjunction
	 with the ​:partial​
	 parameter. The ​:partial​ parameter lets us use a
	 partial to define the format of an individual entry, and
	 the ​:collection​ parameter applies
	 this template to each member of the collection.
	

	 To display a
	 list of article model objects using our previously
	 defined ​_article.html.erb​ partial, we
	 could write this:
	
	​ 	<%= render(partial: ​"article"​, collection: @article_list) %>

	 Inside the partial, the local
	 variable ​article​ will be set to
	 the current article from the collection—the variable is
	 named after the template. In addition, the
	 variable ​article_counter​ will have its value set
	 to the index of the current article in the collection.
	

	 The
	 optional ​:spacer_template​ parameter lets you
	 specify a template that will be rendered between each of the
	 elements in the collection. For example, a view might
	 contain the following:
	
	rails40/e1/views/app/views/partial/_list.html.erb
	​ 	<%= render(partial: ​"animal"​,

	​ 	 collection: ​%w{ ant bee cat dog elk }​,

	​ 	 spacer_template: ​"spacer"​)

	​ 	%>

	 This uses ​_animal.html.erb​ to render each
	 animal in the given list,
	 rendering the partial ​_spacer.html.erb​ between
	 each. If ​_animal.html.erb​ contains this:
	
	rails40/e1/views/app/views/partial/_animal.html.erb
	​ 	​<p>​The animal is <%= animal %>​</p>​

	 and ​_spacer.html.erb​ contains this:
	
	rails40/e1/views/app/views/partial/_spacer.html.erb
	​ 	​<hr​ ​/>​

	 your users would see a list of animal names with a line
	 between each.
	
Shared Templates

	 If the first option or ​:partial​
	 parameter to a render call is a simple name, Rails assumes
	 that the target template is in the current controller’s view
	 directory. However, if the name contains one or more /
	 characters, Rails assumes that the part up to the last slash
	 is a directory name and the rest is the template name. The
	 directory is assumed to be
	 under ​app/views​. This makes it easy to
	 share partials and subtemplates across controllers.
	

	 The convention among Rails applications is to store these
	 shared partials in a subdirectory
	 of ​app/views​
	 called ​shared​. Render shared partials
	 using statements such as these:
	
	​ 	<%= render(​"shared/header"​, locals: {title: @article.title}) %>

	​ 	<%= render(partial: ​"shared/post"​, object: @article) %>

	​ 	. . .

	 In this previous example,
	 the ​@article​ object will be
	 assigned to the local
	 variable ​post​ within the
	 template.
	
Partials with Layouts

 Partials can be rendered with a layout, and you can apply a layout
 to a block within any template.

	​ 	<​%= render partial: "user", layout: "administrator" %>​

	​ 	

	​ 	​<%=​ render layout: ​"administrator"​ ​do​ ​%>​

	​ 	​ # ...​

	​ 	​<% end %>​

 Partial layouts are to be found directly in the
 ​app/views​ directory associated with the
 controller, along with the customary underbar prefix, such as
 ​app/views/users/_administrator.html.erb​.

Partials and Controllers

	 It isn’t just view templates that use partials. Controllers
	 also get in on the act. Partials give controllers the ability to
	 generate fragments from a page using the same partial
	 template as the view. This is particularly important
	 when you are using Ajax support to update just
	 part of a page from the controller—use partials, and you
	 know your formatting for the table row or line item that
	 you’re updating will be compatible with that used to
	 generate its brethren initially.
	

 Taken together, partials and layouts provide an effective way to make
 sure that the user interface portion of your application is
 maintainable. But being maintainable is only part of the story;
 doing so in a way that also performs well is also crucial.

What We Just Did

 Views are the public face of Rails applications, and we have seen that
 Rails delivers extensive support for what you need to build robust and
 maintainable user and application programming interfaces.

 We started with templates, of which Rails provides built-in support for
 four types: ERB, Builder, CoffeeScript, and SCSS. Templates
 make it easy for us to provide HTML, XML, CSS, and
 JavaScript responses to any request. We will discuss adding
 another option in Section 25.2, ​Beautifying Our Markup with Haml​.

 We dove into forms, which are the primary means by which users will
 interact with your application. Along the way, we covered uploading
 files.

 We continued with helpers, which enable us to factor out complex
 application logic to allow our views to focus on presentation
 aspects. We explored a number of helpers that Rails provides, ranging
 from simple formatting to hypertext links, which are the final way in
 which users interact with HTML pages.

 We completed our tour of Action View by covering two related ways of
 factoring out large chunks of content for reuse. We use layouts to
 factor out the outermost layers of a view and provide a
 common look and feel. We use partials to factor out common inner
 components, such as a single form or table.

 That covers how a user with a browser will access our Rails application.
 Next up: covering how we define and maintain the schema of the
 database our application will use to store data.

Footnotes

	[67]	

 ​http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html​

	[68]	

 ​http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html​

	[69]	

 ​http://guides.rubyonrails.org/form_helpers.html​

	[70]	

	
 ​https://github.com/thoughtbot/paperclip#readme​

	

	[71]	

	
 ​https://github.com/technoweenie/attachment_fu​

	

	[72]	

 ​https://github.com/rtomayko/rdiscount​

	[73]	

 ​http://redcloth.org/​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 22
Migrations

	
naming migration files,

	
renaming and columns,

	
creating and renaming tables,

	
defining indices and keys, and

	
using native SQL.

 Rails encourages an agile, iterative style of development. We
 don’t expect to get everything right the first time. Instead, we
 write tests and interact with our customers to refine our
 understanding as we go.

 For that to work, we need a supporting set of practices. We write
 tests to help us design our interfaces and to act as a safety net
 when we change things, and we use version control to store our
 application’s source files, allowing us to undo mistakes
 and to monitor what changes day to day.

 But there’s another area of the application that changes, an area
 that we can’t directly manage using version control. The database
 schema in a Rails application constantly evolves as we progress
 through the development: we add a table here, rename a column
 there, and so on. The database changes in step with the
 application’s code.

 With Rails, each of those steps is made possible through the use of a
 ​migration​. You saw this in use throughout the development of
 the Depot application, starting when we created the first
 ​products​ table in ​Generating the Scaffold​, and when we performed such tasks as
 adding a quantity to the ​line_items​ table in Section 10.1, ​Iteration E1: Creating a Smarter Cart​. Now it is time to dig deeper into how
 migrations work and what else you can do with them.

22.1 Creating and Running Migrations

 A migration is simply a Ruby source file in your
 application’s ​db/migrate​ directory. Each
 migration file’s name starts with a number of digits (typically
 fourteen) and an underscore. Those digits are the key to migrations,
 because
 they define the sequence in which the migrations are
 applied—they are the individual migration’s version number.

 The version number is the Coordinated Universal Time (UTC)
 timestamp at the time the migration was created. These numbers contain
 the four-digit year, followed by two digits each for the month, day, hour,
 minute, and second, all based on the mean solar time at the Royal
 Observatory in Greenwich, London. Because migrations tend to be created
 relatively infrequently and the accuracy is recorded down to the second,
 the chances of any two people getting the same timestamp is vanishingly
 small. And the benefit of having timestamps that can be deterministically
 ordered far outweighs the miniscule risk of this occurring.

 Here’s what the ​db/migrate​ directory of our
 Depot application looks like:

	​ 	depot>​ ls db/migrate​

	​ 	20121130000001_create_products.rb

	​ 	20121130000002_create_carts.rb

	​ 	20121130000003_create_line_items.rb

	​ 	20121130000004_add_quantity_to_line_items.rb

	​ 	20121130000005_combine_items_in_cart.rb

	​ 	20121130000006_create_orders.rb

	​ 	20121130000007_add_order_id_to_line_item.rb

	​ 	20121130000008_create_users.rb

 Although you could create these migration files by hand, it’s
 easier (and less error prone) to use a generator. As we saw when
 we created the Depot application, there are actually two
 generators that create migration files.

	

	 The ​model​ generator creates a migration to in turn
	 create the table associated with the model (unless you
	 specify the ​--skip-migration​ option). As the
	 example that follows shows, creating a model
	 called ​discount​ also creates a migration
	 called ​yyyyMMddhhmmss_​​create_discounts.rb​:
	
	​ 	depot>​ rails generate model discount​

	​ 	 invoke active_record

	​*
​	 create db/migrate/20121113133549_create_discounts.rb

	​ 	 create app/models/discount.rb

	​ 	 invoke test_unit

	​ 	 create test/models/discount_test.rb

	​ 	 create test/fixtures/discounts.yml

	

	 You can also generate a migration on its own.
	
	​ 	depot>​ rails generate migration add_price_column​

	​ 	 invoke active_record

	​*
​	 create db/migrate/20121113133814_add_price_column.rb

 Later, starting in ​Anatomy of a Migration​,
 we’ll see what goes in the migration files. But for now,
 let’s jump ahead a little in the workflow and see how to run
 migrations.

Running Migrations

	Migrations are run using the ​db:migrate​ Rake
	task.

	​ 	depot>​ rake db:migrate​

	To see what happens next, let’s dive down into the internals
	of Rails.

	The migration code maintains a table
	called ​schema_migrations​ inside every Rails
	database. This table
	has just one column, called ​version​,
	and it will have one row per successfully applied migration.

	When you run ​rake db:migrate​, the task first looks
	for the ​schema_migrations​ table. If it doesn’t
	yet exist, it will be created.

 The migration code then looks at all the migration files in
 ​db/migrate​ and skips from consideration any that
 have a version number (the leading digits in the filename) that is
 already in the database. It then proceeds to apply the remainder of
 the migrations, creating a row in the
 ​schema_migrations​ table for each.

	If we were to run migrations again at this point, nothing much
	would happen. Each of the version numbers of the migration files would
 match with a row in the database, so
	there would be no migrations to apply.

	However, if we subsequently create a new migration file, it
	will have a version number not in the database. This is true
 even if the version number was ​before​ one or more
 of the already applied migrations. This can happen when multiple
 users are using a version control system to store the migration
 files.
	If we then run migrations, this new migration file—and only this
 migration file—will be executed. This may mean that migrations
 are run out of order, so you might want to take care and ensure that
 these migrations are independent. Or you might want to revert your
 database to a previous state and then apply the migrations in
 order.

	You can force the database to a specific version by
	supplying the ​VERSION=​ parameter to the ​rake
	 db:migrate​ command.

	​ 	depot>​ rake db:migrate VERSION=20121130000009​

	If the version you give is greater than any of the migrations
 that have yet to be applied, these
	migrations will be applied.

	If, however, the version number on the command line is less
	than one or more versions listed in the
 ​schema_migrations​
 table, something different
	happens. In these circumstances, Rails looks for the migration
	file whose number matches the database version
	and ​undoes​ it.
	It repeats this process
	until there are no more versions listed in the
 ​schema_migrations​ table that exceed the number you
	specified on the command line. That is, the
	migrations are unapplied in reverse order to take the schema
	back to the version that you specify.

 You can also redo one or more migrations.

	​ 	depot>​ rake db:migrate:redo STEP=3​

 By default, ​redo​ will roll back one migration and rerun it. To
 roll back multiple migrations, pass the ​STEP=​ parameter.

22.2 Anatomy of a Migration

 Migrations are subclasses of the Rails
 class ​ActiveRecord::Migration​. When necessary,
 migrations can contain methods
 ​up​
 and

 ​down​
 .

	​ 	​class​ SomeMeaningfulName < ActiveRecord::Migration

	​ 	 ​def​ up

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	

	​ 	 ​def​ down

	​ 	 ​# ...​

	​ 	 ​end​

	​ 	​end​

 The name of the class, after all uppercase letters are downcased
 and preceded by an underscore, must match the portion of the filename
 after the version number. For example, the previous class could be
 found in a file named
 ​20121130000017_some_meaningful_name.rb​. No two
 migrations can contain classes with the same name.

 The
 ​up​
 method is responsible for
 applying the schema changes for this migration, while
 the
 ​down​
 method undoes those
 changes. Let’s make this more concrete. Here’s a migration that
 adds an ​e_mail​ column to
 the ​orders​
 table:

	​ 	​class​ AddEmailToOrders < ActiveRecord::Migration

	​ 	 ​def​ up

	​ 	 add_column :orders, :e_mail, :string

	​ 	 ​end​

	​ 	

	​ 	 ​def​ down

	​ 	 remove_column :orders, :e_mail

	​ 	 ​end​

	​ 	​end​

 See how the
 ​down​
 method undoes the
 effect of the
 ​up​
 method?

 You can also see that there is a bit of duplication here. In many
 cases, Rails can detect how to automatically undo a given operation.
 For example, the opposite of
 ​add_column​
 is
 clearly
 ​remove_column​
 . In such cases, by
 simply renaming
 ​up​
 to

 ​change​
 , you can eliminate the need for a

 ​down​
 .

	​ 	​class​ AddEmailToOrders < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 add_column :orders, :e_mail, :string

	​ 	 ​end​

	​ 	​end​

 Now isn’t that much cleaner?

Column Types

	 The third parameter to ​add_column​ specifies the type
	 of the database column. In the previous example, we specified
	 that the ​e_mail​ column has a type
	 of ​:string​. But just what does this mean? Databases
	 typically don’t have column types of ​:string​.

	Remember that Rails tries to make your application independent
	of the underlying database; you could develop using SQLite 3 and
	deploy to Postgres if you wanted, for example. But different databases use
	different names for the types of columns. If you used a SQLite 3
	column type in a migration, that migration might not work if
	applied to a Postgres database. So, Rails migrations insulate
	you from the underlying database type systems by using logical
	types. If we’re migrating a SQLite 3 database,
	the ​:string​ type will create a column of
	type ​varchar(255)​. On Postgres, the same migration
	adds a column with the type ​char varying(255)​.

	 The types supported by migrations
	 are ​:binary​, ​:boolean​, ​:date​,
	 ​:datetime​, ​:decimal​, ​:float​, ​:integer​,
	 ​:string​, ​:text​, ​:time​,
	 and ​:timestamp​.
	 The default
	 mappings of these types for the database adapters in
	 Rails are shown in Figure 62, ​Default mappings of types for database adapters, part 1​ and Figure 63, ​Default mappings of types for database adapters, part 2​. Using these tables, you could work out that a column
	 declared to be ​:integer​ in a migration would have
	 the underlying type ​integer​ in SQLite 3
	 and ​number(38)​ in Oracle.

		db2	mysql	openbase	oracle
	:binary	blob(32768)	blob	object	blob
	:boolean	decimal(1)	tinyint(1)	boolean	number(1)
	:date	date	date	date	date
	:datetime	timestamp	datetime	datetime	date
	:decimal	decimal	decimal	decimal	decimal
	:float	float	float	float	number
	:integer	int	int(11)	integer	number(38)
	:string	varchar(255)
	varchar(255)
	char(4096)
	varchar2(255)

	:text	clob(32768)	text	text	clob
	:time	time	time	time	date
	:timestamp	timestamp	datetime	timestamp	date

		postgresql	sqlite	sqlserver	sybase
	:binary	bytea	blob	image	image
	:boolean	boolean	boolean	bit	bit
	:date	date	date	date	datetime
	:datetime	timestamp	datetime	datetime	datetime
	:decimal	decimal	decimal	decimal	decimal
	:float	float	float	float(8)	float(8)
	:integer	integer	integer	int	int
	:string	(note 1)	varchar(255)	varchar(255)	varchar(255)
	:text	text	text	text	text
	:time	time	datetime	time	time
	:timestamp	timestamp	datetime	datetime	timestamp

	 There are three options you can use when defining most
	 columns in a migration; decimal columns take an
	 additional two options. Each of these options is given as
	 a ​key: value​ pair. The common options are as follows:

	​null: true​ or ​false​
	

	 If ​false​, the underlying
	 column has a ​not
	 null​ constraint added (if the database supports
	 it). Note: this is independent of any ​presence: true​
 validation, which may be performed at the model layer.
	

	​limit: size​
	

	 This sets a limit on the size of the
	 field. This basically
	 appends the string ​(​​size​​)​
	 to the database column type definition.
	

	
	 ​default: value​
	
	

	 This sets the default value for the column. As this is performed
 by the database, you don’t see this in a new model object when you
 initialize it or even when you save it. You have to reload the
	 object from the database to see this value. Note that the
	 default is calculated once, at the point the migration is
	 run, so the following code will set the default column
	 value to the date and time when the migration was
	 run:
	
	​ 	add_column :orders, :placed_at, :datetime, default: Time.now

	 In addition, decimal columns take the
	 options ​:precision​
	 and ​:scale​. The ​:precision​ option
	 specifies the number of significant digits that will be
	 stored, and the ​:scale​ option determines where the decimal
	 point will be located in these digits (think of the scale as
	 the number of digits after the decimal point). A decimal
	 number with a precision of 5 and a scale of 0 can store
	 numbers from -99,999 to +99,999. A decimal number with a
	 precision of 5 and a scale of 2 can store the range -999.99
	 to +999.99.

	 The ​:precision​ and ​:scale​ parameters are
	 optional for decimal columns. However, incompatibilities
	 between different databases lead us to strongly recommend
	 that you include the options for each decimal column.

	 Here are some column definitions using the
	 migration types and options:

	​ 	add_column :orders, :attn, :string, limit: 100

	​ 	add_column :orders, :order_type, :integer

	​ 	add_column :orders, :ship_class, :string, null: false, default: ​'priority'​

	​ 	add_column :orders, :amount, :decimal, precision: 8, scale: 2

Renaming Columns

	 When we refactor our code, we often change our variable names
	 to make them more meaningful. Rails migrations allow us to do
	 this to database column names, too. For example, a week after
	 we first added it, we might decide
	 that ​e_mail​ isn’t the best name for
	 the new column. We can create a migration to rename it using
	 the
 ​rename_column​
 method.
	
	

	​ 	​class​ RenameEmailColumn < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 rename_column :orders, :e_mail, :customer_email

	​ 	 ​end​

	​ 	​end​

 As
 ​rename_column​
 is reversible, separate
	
 ​up​
 and
 ​down​
 methods
	 are not required in order to use it.

	 Note that the rename doesn’t destroy any existing data
	 associated with the column. Also be aware that renaming is not
	 supported by all the adapters.

Changing Columns

	 Use the
 ​change_column​
 method to
	 change the type of a column or to alter the options
	 associated with a column. Use it the same way you’d
	 use ​add_column​, but specify the name of an existing
	 column. Let’s say that the order type column is currently an
	 integer, but we need to change it to be a string. We want to
	 keep the existing data, so an order type of ​123​ will
	 become the string ​"123"​. Later, we’ll use
	 noninteger values such as ​"new"​
	 and ​"existing"​.

	 Changing from an integer column to a string is easy.

	​ 	​def​ up

	​ 	 change_column :orders, :order_type, :string

	​ 	​end​

	 However, the opposite transformation is problematic. We might
	 be tempted to write the obvious
 ​down​

	 migration.

	​ 	​def​ down

	​ 	 change_column :orders, :order_type, :integer

	​ 	​end​

	 But if our application has taken to storing data
	 like ​"new"​ in this column,
	 the
 ​down​
 method will lose
	 it—​"new"​ can’t be converted to an integer. If
	 that’s acceptable, then the migration is acceptable as it
	 stands. If, however, we want to create a one-way
	 migration—one that cannot be reversed—we’ll want to stop
	 the down migration from being applied.
	
	 In this case, Rails
	 provides a special exception that we can
	 throw.

	​ 	​class​ ChangeOrderTypeToString < ActiveRecord::Migration

	​ 	 ​def​ up

	​ 	 change_column :orders, :order_type, :string, null: false

	​ 	 ​end​

	​ 	

	​ 	 ​def​ down

	​ 	 raise ActiveRecord::IrreversibleMigration

	​ 	 ​end​

	​ 	​end​

	 ​ActiveRecord::IrreversibleMigration​ is also the name of
	 the exception that Rails will raise if you attempt to
	 call a method that can’t be automatically reversed from within
	 a
 ​change​
 method.
	

22.3 Managing Tables

 So far we’ve been using migrations to manipulate the columns
 in existing tables. Now let’s look at creating and dropping
 tables.

	​ 	​class​ CreateOrderHistories < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 create_table :order_histories ​do​ |t|

	​ 	 t.integer :order_id, null: false

	​ 	 t.text :notes

	​ 	

	​ 	 t.timestamps

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 ​create_table​

 takes the name of a table (remember, table names are plural)
 and a block. (It also takes some optional parameters that we’ll
 look at in a minute.) The block is passed a table definition
 object, which we use to define the columns in the table.

 Generally the call to
 ​drop_table​
 is not needed,
 as
 ​add_table​
 is reversible.

 ​drop_table​
 accepts a single parameter, which
 is the name of the table to drop.

 The calls to the various table definition methods should look
 familiar—they’re
 similar to the ​add_column​ method we used previously
 except these methods don’t take the name of the table as the first
 parameter, and the name of the method itself is the data type desired.
 This reduces repetition.

 Note that we don’t define the ​id​ column
 for our new table. Unless we say otherwise, Rails migrations
 automatically add a primary key
 called ​id​ to all tables they create. For
 a deeper discussion of this, see
 ​Primary Keys​.

 The ​timestamps​ method creates both the
 ​created_at​ and ​updated_at​ columns, with the
 correct ​timestamp​ data type. Although there is no requirement to
 add these columns to any particular table, this is yet another example
 of Rails making it easy for a common convention to be implemented
 easily and consistently.

Options for Creating Tables

	 You can pass a hash of options as a second parameter
	 to ​create_table​.

	 If you specify ​force: true​, the migration
	 will drop an existing table of the same name before
	 creating the new one. This is a useful option if you want
	 to create a migration that forces a database into a known
	 state, but there’s clearly a potential for data loss.

	 The ​temporary: true​ option creates a
	 temporary table—one that goes away when the application
	 disconnects from the database. This is clearly pointless in
	 the context of a migration, but as we will see later, it does
	 have its uses elsewhere.

	 The ​options: "xxxx"​ parameter lets you
	 specify options to your underlying database. They are added to the end of
	 the ​CREATE TABLE​ statement, right after the closing
	 parenthesis. Although this is rarely necessary with SQLite 3, it
	 may at times be useful with other database servers.
	 For example, some versions of MySQL allow you to
	 specify the initial value of the
	 autoincrementing ​id​ column. We can
	 pass this in through a migration as
	 follows:

	​ 	create_table :tickets, options: ​"auto_increment = 10000"​ ​do​ |t|

	​ 	 t.text :description

	​ 	 t.timestamps

	​ 	​end​

	 Behind the scenes, migrations will generate the following
	 DDL from this table description when configured for MySQL:

	​ 	​CREATE​ ​TABLE​ ​"tickets"​ (

	​ 	 ​"id"​ ​int​(11) ​default​ null ​auto_increment​ ​primary​ ​key​,

	​ 	 ​"description"​ ​text​,

	​ 	 ​"created_at"​ ​datetime​,

	​ 	 ​"updated_at"​ ​datetime​

	​) ​auto_increment​ = 10000;

	 Be careful when using the ​:options​ parameter with
	 MySQL. The Rails MySQL database adapter sets a default option
	 of ​ENGINE=InnoDB​. This overrides any local
	 defaults you may have and forces migrations to use the
	 InnoDB storage engine for new tables. However, if you
	 override ​:options​, you’ll lose this setting; new
	 tables will be created using whatever database engine is
	 configured as the default for your site. You may want to
	 add an explicit ​ENGINE=InnoDB​ to the options
	 string to force the standard behavior in this case.
	 You probably want to keep using InnoDB if you’re using
	 MySQL, because this engine gives you transaction
	 support. You might need transaction support in your
	 application, and you’ll definitely need it in your tests
	 if you’re using the default of transactional test
	 fixtures.

Renaming Tables

	 If refactoring leads us to rename variables and columns, then
	 it’s probably not a surprise that we sometimes find ourselves
	 renaming tables, too. Migrations support
	 the
 ​rename_table​
 method.
	
	
	

	​ 	​class​ RenameOrderHistories < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 rename_table :order_histories, :order_notes

	​ 	 ​end​

	​ 	​end​

	 Rolling back this migration undoes the change by
	 renaming the table back.

Problems with rename_table

	 There’s a subtle problem when we rename tables in
	 migrations.
	

	 For example, let’s assume that in migration 4 we create
	 the ​order_histories​ table and populate
	 it with some data.
	
	​ 	​def​ up

	​ 	 create_table :order_histories ​do​ |t|

	​ 	 t.integer :order_id, null: false

	​ 	 t.text :notes

	​ 	

	​ 	 t.timestamps

	​ 	 ​end​

	​ 	

	​ 	 order = Order.find :first

	​ 	 OrderHistory.create(order_id: order, notes: ​"test"​)

	​ 	​end​

	 Later, in migration 7, we rename the
	 table ​order_histories​
	 to ​order_notes​. At this point we’ll
	 also have renamed the
	 model ​OrderHistory​
	 to ​OrderNote​.
	

	 Now we decide to drop our development database and
	 reapply all migrations. When we do so, the migrations
	 throw an exception in migration 4: our application no
	 longer contains a class
	 called ​OrderHistory​, so the
	 migration fails.
	

	 One solution, proposed by Tim Lucas, is to
	 create local, dummy versions of the model classes needed by
	 a migration within the migration. For example, the
	 following version of the fourth migration will work even if
	 the application no longer has
	 an ​OrderHistory​ class.
	
	​ 	​class​ CreateOrderHistories < ActiveRecord::Migration

	​ 	

	​*
​	 ​class​ Order < ActiveRecord::Base; ​end​

	​*
​	 ​class​ OrderHistory < ActiveRecord::Base; ​end​

	​ 	

	​ 	 ​def​ change

	​ 	 create_table :order_histories ​do​ |t|

	​ 	 t.integer :order_id, null: false

	​ 	 t.text :notes

	​ 	

	​ 	 t.timestamps

	​ 	 ​end​

	​ 	

	​ 	 order = Order.find :first

	​ 	 OrderHistory.create(order: order_id, notes: ​"test"​)

	​ 	 ​end​

	​ 	​end​

 This works as long as our model classes do not contain any
 additional functionality that would have been used in the
 migration—all we’re creating here is a bare-bones version.

Defining Indices

	 Migrations can (and probably should) define indices for
	 tables. For example, we might notice that once our
	 application has a large number of orders in the database,
	 searching based on the customer’s name takes longer than
	 we’d like. It’s time to add an index using the appropriately
	 named
 ​add_index​

	 method.

	​ 	​class​ AddCustomerNameIndexToOrders < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 add_index :orders, :name

	​ 	 ​end​

	​ 	​end​

	 If we give ​add_index​ the optional
	 parameter ​unique: true​, a unique index will
	 be created, forcing values in the indexed column to be
	 unique.

	 By default the index will be given the
	 name ​index_table_on_column​. We can override this
	 using the ​name: "somename"​ option. If we
	 use the ​:name​ option when adding an index, we’ll
	 also need to specify it when removing the index.

	 We can create a ​composite index​—an index on
	 multiple columns—by passing an array of column names
	 to ​add_index​. In this case, only the first
	 column name will be used when naming the index.

 Indices are removed using the
 ​remove_index​

	 method.
	

Primary Keys

	 Rails assumes every table has a numeric primary key
	 (normally called ​id​) and ensures
	 the value of this column is unique for each new row added to
	 a table.

	 We’ll rephrase that.

	 Rails really doesn’t work too well unless each table has a
	 numeric primary key. It is less fussy about the name of the
	 column.
	 So, for your average Rails application, our strong advice is
	 to go with the flow and let Rails have
	 its ​id​ column.

	 If you decide to be adventurous, you can start by using a
	 different name for the primary key column (but keeping it as
	 an incrementing integer). Do this by specifying
	 a ​:primary_key​ option on the ​create_table​
	 call.

	​ 	create_table :tickets, primary_key: :number ​do​ |t|

	​ 	 t.text :description

	​ 	

	​ 	 t.timestamps

	​ 	​end​

	 This adds the ​number​ column to
	 the table and sets it up as the primary key.

	​ 	$ ​sqlite3 db/development.sqlite3 ".schema tickets"​

	​ 	CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT

	​ 	NOT NULL, "description" text DEFAULT NULL, "created_at" datetime

	​ 	DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

	 The next step in the adventure might be to create a
	 primary key that isn’t an integer. Here’s a clue that the
	 Rails developers don’t think this is a good idea: migrations
	 don’t let you do this (at least not directly).

Tables with No Primary Key

	 Sometimes we may need to define a table that has no
	 primary key. The most common case in Rails is for ​join
	 tables​—tables with just two columns where each
	 column is a foreign key to another table. To create a join
	 table using migrations, we have to tell Rails not to
	 automatically add an ​id​ column.
	
	​ 	create_table :authors_books, id: false ​do​ |t|

	​ 	 t.integer :author_id, null: false

	​ 	 t.integer :book_id, null: false

	​ 	​end​

	 In this case, you might want to investigate creating one or
	 more indices on this table to speed navigation between
	 books and authors.
	

22.4 Advanced Migrations

 Most Rails developers use the basic facilities of migrations to
 create and maintain their database schemas. However, every now
 and then it’s useful to push migrations just a bit
 further. This section covers some more advanced migration
 usage.

Using Native SQL

	 Migrations give you a database-independent way of maintaining
	 your application’s schema. However, if migrations don’t
	 contain the methods you need to be able to do what you need
	 to do, you’ll need to drop down to database-specific code. Rails
	 provides two ways to do this. One is with ​options​
	 arguments to methods like
 ​add_column​
 .
	 The second is
	 the
 ​execute​

	 method.

	 When you use ​options​ or
 ​execute​
 ,
	 you might well
	 be tying your migration to a specific database engine, because any SQL
	 you provide in these two locations uses your database’s native syntax.

	 A common example in our migrations is the addition of foreign
	 key constraints to a child table.

	 We could do this by adding a method such as the following to
	 our migration source file:

	​ 	​def​ foreign_key(from_table, from_column, to_table)

	​ 	 constraint_name = ​"fk_​#{from_table}​_​#{to_table}​"​

	​ 	 execute ​%{​

	​ 	​ CREATE TRIGGER ​#{constraint_name}​_insert​

	​ 	​ BEFORE INSERT ON ​#{from_table}

	​ 	​ FOR EACH ROW BEGIN​

	​ 	​ SELECT​

	​ 	​ RAISE(ABORT, "constraint violation: ​#{constraint_name}​")​

	​ 	​ WHERE​

	​ 	​ (SELECT id FROM ​#{to_table}​ WHERE​

	​ 	​ id = NEW.​#{from_column}​) IS NULL;​

	​ 	​ END;​

	​ 	​ }​

	​ 	 execute ​%{​

	​ 	​ CREATE TRIGGER ​#{constraint_name}​_update​

	​ 	​ BEFORE UPDATE ON ​#{from_table}

	​ 	​ FOR EACH ROW BEGIN​

	​ 	​ SELECT​

	​ 	​ RAISE(ABORT, "constraint violation: ​#{constraint_name}​")​

	​ 	​ WHERE​

	​ 	​ (SELECT id FROM ​#{to_table}​ WHERE​

	​ 	​ id = NEW.​#{from_column}​) IS NULL;​

	​ 	​ END;​

	​ 	​ }​

	​ 	 execute ​%{​

	​ 	​ CREATE TRIGGER ​#{constraint_name}​_delete​

	​ 	​ BEFORE DELETE ON ​#{to_table}

	​ 	​ FOR EACH ROW BEGIN​

	​ 	​ SELECT​

	​ 	​ RAISE(ABORT, "constraint violation: ​#{constraint_name}​")​

	​ 	​ WHERE​

	​ 	​ (SELECT id FROM ​#{from_table}​ WHERE​

	​ 	​ ​#{from_column}​ = OLD.id) IS NOT NULL;​

	​ 	​ END;​

	​ 	​ }​

	​ 	​end​

	 Within the
 ​up​
 migration, we can call
	 this new method using this:

	​ 	​def​ up

	​ 	 create_table ... ​do​

	​ 	 ​end​

	​ 	 foreign_key(:line_items, :product_id, :products)

	​ 	 foreign_key(:line_items, :order_id, :orders)

	​ 	​end​

	 However, we may want to go a step further and make
	 our
 ​foreign_key​
 method available to
	 all our migrations. To do this, create a module in the
	 application’s ​lib​ directory, and add
	 the
 ​foreign_key​
 method.

This time,
	 however, make it a regular instance method, not a class
	 method.

	​ 	​module​ MigrationHelpers

	​ 	

	​ 	 ​def​ foreign_key(from_table, from_column, to_table)

	​ 	 constraint_name = ​"fk_​#{from_table}​_​#{to_table}​"​

	​ 	

	​ 	 execute ​%{​

	​ 	​ CREATE TRIGGER ​#{constraint_name}​_insert​

	​ 	​ BEFORE INSERT ON ​#{from_table}

	​ 	​ FOR EACH ROW BEGIN​

	​ 	​ SELECT​

	​ 	​ RAISE(ABORT, "constraint violation: ​#{constraint_name}​")​

	​ 	​ WHERE​

	​ 	​ (SELECT id FROM ​#{to_table}​ WHERE id = NEW.​#{from_column}​) IS NULL;​

	​ 	​ END;​

	​ 	​ }​

	​ 	

	​ 	 execute ​%{​

	​ 	​ CREATE TRIGGER ​#{constraint_name}​_update​

	​ 	​ BEFORE UPDATE ON ​#{from_table}

	​ 	​ FOR EACH ROW BEGIN​

	​ 	​ SELECT​

	​ 	​ RAISE(ABORT, "constraint violation: ​#{constraint_name}​")​

	​ 	​ WHERE​

	​ 	​ (SELECT id FROM ​#{to_table}​ WHERE id = NEW.​#{from_column}​) IS NULL;​

	​ 	​ END;​

	​ 	​ }​

	​ 	

	​ 	 execute ​%{​

	​ 	​ CREATE TRIGGER ​#{constraint_name}​_delete​

	​ 	​ BEFORE DELETE ON ​#{to_table}

	​ 	​ FOR EACH ROW BEGIN​

	​ 	​ SELECT​

	​ 	​ RAISE(ABORT, "constraint violation: ​#{constraint_name}​")​

	​ 	​ WHERE​

	​ 	​ (SELECT id FROM ​#{from_table}​ WHERE ​#{from_column}​ = OLD.id) IS NOT NULL;​

	​ 	​ END;​

	​ 	​ }​

	​ 	 ​end​

	​ 	​end​

	 We can now add this to any migration by adding the following
	 lines to the top of our migration file:

	​*
​	require ​"migration_helpers"​

	​ 	

	​ 	​class​ CreateLineItems < ActiveRecord::Migration

	​ 	

	​*
​	 extend MigrationHelpers

	 The ​require​ line brings the module definition into
	 the migration’s code, and the ​extend​ line adds the
	 methods in the ​MigrationHelpers​ module
	 into the migration as class methods. We can use this
	 technique to develop and share any number of migration
	 helpers.

	 (And, if you’d like to make your life even easier, someone
	 has written a plugin[74] that automatically handles adding
	 foreign key constraints.)

Custom Messages and Benchmarks

 Although not exactly an advanced migration, something that is useful to
 do within advanced migrations is to output our own messages and
 benchmarks. We can do this with the

 ​say_with_time​
 method.

	​ 	​def​ up

	​ 	 say_with_time ​"Updating prices..."​ ​do​

	​ 	 Person.all.each ​do​ |p|

	​ 	 p.update_attribute :price, p.lookup_master_price

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

 ​say_with_time​
 prints the string passed
 before the block is executed and prints the benchmark after the block
 completes.

22.5 When Migrations Go Bad

 Migrations suffer from one serious problem. The underlying DDL
 statements that update the database schema are not
 transactional. This isn’t a failing in Rails—most databases just
 don’t support the rolling back of ​create
	 table​, ​alter table​, and other DDL
 statements.

 Let’s look at a migration that tries to add two tables to a
 database:

	​ 	​class​ ExampleMigration < ActiveRecord::Migration

	​ 	 ​def​ change

	​ 	 create_table :one ​do​ ...

	​ 	 ​end​

	​ 	 create_table :two ​do​ ...

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 In the normal course of events, the
 ​up​

 method adds tables, ​one​
 and ​two​, and
 the
 ​down​
 method removes them.

 But what happens if there’s a problem creating the second
 table? We’ll end up with a database containing
 table ​one​ but not
 table ​two​. We can fix whatever the problem
 is in the migration, but now we can’t apply it—if we try, it
 will fail because table ​one​ already
 exists.

 We could try to roll the migration back, but that won’t work.
 Because the original migration failed, the schema version in
 the database wasn’t updated, so Rails won’t try to roll it
 back.

 At this point, you could mess around and manually change the
 schema information and drop table ​one​. But
 it probably isn’t worth it. Our recommendation in these
 circumstances is simply to drop the entire database, re-create
 it, and apply migrations to bring it back up-to-date. You’ll
 have lost nothing, and you’ll know you have a consistent
 schema.

 All this discussion suggests that migrations are dangerous to
 use on production databases. Should you run them? We really can’t say.
 If you have database administrators in your organization, it’ll be
 their call. If it’s up to you, you’ll have to weigh the risks. But, if
 you decide to go for it, you really must back up your database first.
 Then, you can apply the migrations by going to your application’s
 directory on the machine with the database role on your production
 servers and executing this command:

	​ 	depot>​ RAILS_ENV=production rake db:migrate​

 This is one of those times where the legal notice at the start of
 this book kicks in. We’re not liable if this deletes your data.

22.6 Schema Manipulation Outside Migrations

 All the migration methods described so far in this chapter
 are also available as methods on Active Record connection
 objects and so are accessible within the models, views, and
 controllers of a Rails application.

 For example, you might have discovered that a particular
 long-running report runs a lot faster if
 the ​orders​ table has an index on
 the ​city​ column. However, that index
 isn’t needed during the day-to-day running of the application,
 and tests have shown that maintaining it slows the application
 appreciably.

 Let’s write a method that creates the index, runs a block of
 code, and then drops the index. This could be a private method
 in the model or could be implemented in a library.

	​ 	​def​ run_with_index(*columns)

	​ 	 connection.add_index(:orders, *columns)

	​ 	 ​begin​

	​ 	 ​yield​

	​ 	 ​ensure​

	​ 	 connection.remove_index(:orders, *columns)

	​ 	 ​end​

	​ 	​end​

 The statistics-gathering method in the model can use this as
 follows:

	​ 	​def​ get_city_statistics

	​ 	 run_with_index(:city) ​do​

	​ 	 ​# .. calculate stats​

	​ 	 ​end​

	​ 	​end​

What We Just Did

 While we had been informally using migrations throughout the development
 of the Depot application and even into deployment, in this chapter we
 saw how migrations are the basis for a principled and disciplined
 approach to configuration management of the schema for your database.

 You learned how to create, rename, and delete columns and tables; to
 manage indices and keys; to apply and back out entire sets of changes;
 and even to mix in your own custom SQL into the mix, all in a completely
 reproducible manner.

 At this point we’ve covered the externals of Rails. The next few chapters
 are going to delve deeper. We are going to show you how to take Rails
 apart and put it back together. The first stop along the way is to show you
 how to use select Rails classes and methods outside the context of a
 web server.

Footnotes

	[74]	

	
 ​https://github.com/matthuhiggins/foreigner​

	

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 23
Nonbrowser Applications

	
invoking Rails methods,

	
accessing Rails application data, and

	
manipulating databases remotely.

 Previous chapters focused primarily on server-to-human communications,
 mostly via HTML. But not all web interactions need to directly involve a
 person. This chapter focuses on accessing your Rails application and data
 from within a stand-alone script.

 There are a variety of reasons why you might want to access portions of
 your Rails application from outside a browser. For example, you may
 desire to have your database loaded or synchronized periodically using a
 background job kicked off by a utility like ​cron​. You may have
 existing applications, perhaps even Rails applications, that want to
 directly access the data in (another) Rails application, possibly even on
 a different machine. You might just want a command-line interface, not
 because it is required but just because.

 Whatever your reasons, Rails is there for you. As you will see, you will
 be able to pull in as little or as much of Rails as you need to get
 your job done.

 We will start with the assumption that your application is on the same
 machine as your installation of Rails and your data, and then we will proceed
 to describing how you can do the same things on a remote machine.

23.1 A Stand-Alone Application Using Active Record

 One of the first things you will want unfettered access to is your data.
 You will be pleased to know that you can make full use of Active Record
 from within a stand-alone application. First, we will show you the
 “hard” way to do so (the “scare quotes” is because it isn’t all that
 hard—remember it is Rails we are talking about here, after all).
 Then we will show you the easy way.

 We will start with a stand-alone program that
 uses Active Record to wrap a table of orders in a SQLite 3
 database. After finding the order with a particular ​id​, it
 modifies the purchaser’s name and saves the result in the
 database, updating the original row.

	​ 	require ​"active_record"​

	​ 	

	​ 	ActiveRecord::Base.establish_connection(adapter: ​"sqlite3"​,

	​ 	 database: ​"db/development.sqlite3"​)

	​ 	

	​ 	​class​ Order < ActiveRecord::Base

	​ 	​end​

	​ 	

	​ 	order = Order.find(1)

	​ 	order.name = ​"Dave Thomas"​

	​ 	order.save

 That’s all there is to it—in this case no configuration
 information (apart from the database connection stuff) is required.
 Active Record figured out what we needed based on the database schema
 and took care of all the necessary details.

 Now that you have seen the “hard” way, let’s see the easy way—the
 one where Rails will handle the connection for you and load all of
 your models.

	​ 	require ​"config/environment.rb"​

	​ 	order = Order.find(1)

	​ 	order.name = ​"Dave Thomas"​

	​ 	order.save

 For this to work, Ruby will need to find the
 ​config/environment.rb​ file for the application you
 want to load. You can do this by specifying the full path to this file
 on the require statement or by including the path in the ​RUBYLIB​
 environment variable. Another environment variable to watch out for is
 ​RAILS_ENV​, which is used to select from the development, test,
 and production environments.

 Once we have required this one file, we have access to roughly the same
 parts of our applications as we did when we used
 ​rails console​ in ​Would the Last Admin to Leave…​.

 That was done all with a single require. It couldn’t be easier. But believe it or not,
 at times you will want to access only a portion of the features that
 Rails provides, outside the context of a Rails
 application. We cover that next.

23.2 A Library Function Using Active Support

 Active Support is a set of libraries shared by all Rails
 components. Some of what’s in there is intended for Rails’ internal
 use; however, all of it is available for use by non-Rails applications.

 This could be important if you develop a Rails application and in the
 course of that development you produce a set of classes or even just a set
 of methods that you would like to make use of in a non-Rails application.
 You start by copying and pasting this code into a separate file and then
 find out that it doesn’t run—not because this logic is dependent on your
 application in any way but because it uses other methods and
 classes that Rails provides.

 We will start with a brief survey of some of the most important of these
 and along the way show how they can be made available to your application.

Core Extensions (core-ext)

 Active Support extends some of Ruby’s built-in classes in interesting
 and useful ways. In this section, we’ll quickly list
 the most popular of these core extensions.

	
​Array​:

 ​second​
 ,
 ​third​
 ,

 ​fourth​
 ,
 ​fifth​
 , and

 ​forty_two​
 . These complement the

 ​first​
 and
 ​last​
 methods
 provided by Ruby.

	
​CGI​:

 ​escape_skipping_slashes​
 . As the name implies,
 it differs from
 ​escape​
 in that it doesn’t
 escape slashes.

	
​Class​:
 Accessors for class attributes, delegating accessors, inheritable
 readers and writers, and descendants (aka subclasses). These
 methods are too numerous to enumerate; see the documentation for
 details.

	
​Date​:

 ​yesterday​
 ,
 ​future?​
 ,

 ​next_month​
 , and many, many more.

	
​Enumerable​:

 ​group_by​
 ,

 ​sum​
 ,
 ​each_with_object​
 ,

 ​index_by​
 ,
 ​many?​
 , and

 ​exclude?​
 .

	
​File​:

 ​atomic_write​
 and

 ​path​
 .

	
​Float​:
 Adds an optional ​precision​ argument to

 ​round​
 .

	
​Hash​:

 ​deep_merge​
 ,

 ​except​
 ,

 ​stringify_keys​
 ,

 ​symbolize_keys​
 ,

 ​reverse_merge​
 , and

 ​slice​
 . Many of these methods also have
 variants ending in an exclamation point.

	
​Integer​:

 ​ordinalize​
 ,

 ​multiple_of?​
 .

 ​months​
 ,

 ​years​
 . See also ​Numeric​.

	
​Kernel​:

 ​debugger​
 ,

 ​breakpoint​
 .

 ​silence_warnings​
 ,

 ​enable_warnings​
 .

	
​Module​:
 Accessors for module attributes,
 aliasing support, delegation, deprecation, internal readers and writers,
 synchronization, and parentage.

	
​Numeric​:

 ​bytes​
 ,

 ​kilobytes​
 ,

 ​megabytes​
 , and so on;

 ​seconds​
 ,

 ​minutes​
 ,

 ​hours​
 , and so on.

	
​Object​:

 ​blank?​
 ,
 ​present?​
 ,

 ​duplicable?​
 ,

 ​instance_values​
 ,

 ​instance_variable_​

 ​names​
 ,

 ​returning​
 , and

 ​try​
 .

	
​String​:

 ​exclude?​
 ,

 ​pluralize​
 ,

 ​singularize​
 ,

 ​camelize​
 ,

 ​titleize​
 ,

 ​underscore​
 ,

 ​dasherize​
 ,

 ​demodulize​
 ,

 ​parameterize​
 ,

 ​tableize​
 ,

 ​classify​
 ,

 ​humanize​
 ,

 ​foreign_key​
 ,

 ​constantize​
 ,

 ​squish​
 ,

 ​mb_chars​
 ,

 ​at?​
 ,
 ​from​
 ,

 ​to​
 ,

 ​first​
 ,

 ​last​
 ,

 ​to_time​
 ,

 ​to_date​
 , and

 ​try​
 .

	
​Time​:

 ​yesterday​
 ,
 ​future?​
 ,

 ​advance​
 , and many, many more.

 As you can see, this is a fairly long list. These methods tend to be
 fairly small; many are only a single line of code. Although you will
 probably only ever use a small percentage of these methods, all of them are
 available for use in your Rails application.

[image: David says:]
David says:
Why Extending Base Classes Doesn’t Lead to the Apocalypse

 The awe that seeing ​5.months + 30.minutes​ for the first
 time is usually replaced by a state of panic shortly
 thereafter. If everyone can just change how integers work, won’t
 that lead to an utterly unmaintainable spaghetti
 land of hell? Yes, if everyone did that all the time, it
 would. But they don’t, so it doesn’t.

 Don’t think of Active Support as a collection of random
 extensions to the Ruby language that invites everyone and their
 brother to add their own pet feature to the string class. Think
 of it as a dialect of Ruby spoken universally by all Rails
 programmers. Because Active Support is a required part of Rails,
 you can always rely on that ​5.months​ will work
 in any Rails application. That negates the problem of having a
 thousand personal dialects of Ruby.

 Active Support gives us the best of both worlds when it comes to
 language extensions. It’s contextual standardization.

 As you can also see, there is a lot there. Most of it you won’t ever
 directly use. However, you’ll quickly find yourself adopting a small
 portion of these additional methods as if they were part of the Ruby language. Although all of these methods are documented online,[75] the best way to learn is often to experiment directly by
 using ​rails console​. Here are a few things to try:

	
​2.years.ago​

	
​[1,2,3,4].sum​

	
​5.gigabytes​

	
​"man".pluralize​

	
​String.methods.sort​

Because there is no one best way to identify what subset works for you, simply
 be aware that these methods exist, and check the documentation when you
 find yourself with what seems to be a common need because the Rails developers
 may have already added the method that you find missing.

Additional Active Support Classes

 In addition to extending the base objects provided by Ruby, Active Support
 provides plenty of additional functionality. More so than with the core
 extensions, these classes tend to support specific needs of other
 Rails components, but you are welcome to make use of these functions
 directly.

	
​Benchmarkable​:
 Measures the execution time of a block in a template and records the
 results to the log.

	
​Cache::Store​:
 Offers various implementations of caches, based on files or memory;
 with synchronized or compressed as options.

	
​Callbacks​:
 Provide hooks into the life cycle of an object.

	
​Concern​ and ​Dependencies​:
 Help manage dependencies in a modular way.

	
​Configurable​:
 Provides a config ​Hash​ class variable.

	
​Deprecation​:
 Provides behavior, reporting, and wrapping to support deprecation of
 methods.

	
​Duration​:
 Offers additional methods such as
 ​ago​
 and

 ​since​
 .

	
​Gzip​:
 Offers convenience methods to
 ​compress​
 and

 ​decompress​
 a String.

	
​HashWithIndifferentAccess​:
 Allows both ​params[:key]​ and ​params[’key’]​.

	
​I18n​:
 Provides internationalization support.

	
​Inflections​:
 Handles English’s inconsistent rules for pluralization.

	
​JSON​:
 Provides JavaScript Object Notation encoding and decoding methods.

	
​LazyLoadHooks​:
 Provides support for deferred initialization of modules.

	
​MessageEncryptor​:
 Encrypts values that are to be stored someplace untrustworthy.

	
​MessageVerifier​:
 Generates and verifies signed messages (to prevent tampering).

	
​MultiByte​:
 Provides encoding support (primarily for Ruby 1.8.7).

	
​Notifications​:
 Offers an instrumentation API.

	
​OptionMerger​:
 Offers deep merge lambda expressions.

	
​OrderedHash​ and ​OrderedOptions​:
 Provides ordered hash support (primarily for Ruby 1.8.7).

	
​Railtie​:
 Defines core objects that the rest of the framework can depend on.

	
​Rescueable​:
 Eases exception handling.

	
​StringInquirer​:
 Provides a prettier way to test for equality.

	
​TestCase​:
 Provides a variety of methods for testing rubygems and gem-related
behavior in a secure sandbox.

	
​Time​ and ​TimeWithZone​:
 Offer even more support for time calculations and conversions.

 Although this book will not go into the (currently) forty-nine methods and
 more that, for example, ​TimeWithZone​ alone
 provides, the previous list
 will enable you to find the functions you need in the guides and API
 documentation. But what this book will do is show you how you can use
 these methods in your stand-alone application.

	​ 	require ​"active_support/time"​

	​ 	Time.zone = ​'Eastern Time (US & Canada)'​

	​ 	puts Time.zone.now

 If you, like most people, find yourself addicted to one or more of these
 extensions, you can simply require what you need (for example, ​require
 "active_​​support/basic_object"​ or ​require
 "active_support/core_ext"​) or pull in everything with ​require
 "active_support/all"​.

Using Action View Helpers

 Although this doesn’t exactly fall under the category of
 Active Support, it is close enough. What applies to
 Active Support also applies to other parts of Rails, though most
 routing, controllers, and Action View methods tend to be
 relevant only to the processing of an active web request.

 One notable exception is some of the Action View helpers. Here’s an example of
 how you can access an Action View helper from a stand-alone application:

	​ 	require ​"action_view"​

	​ 	require ​"action_view/helpers"​

	​ 	include ActionView::Helpers::DateHelper

	​ 	puts distance_of_time_in_words_to_now(Time.parse(​"December 25"​))

 All in all, this is only slightly more work than getting access to the much more
 commonly needed Active Support methods, but it’s still quite
 doable.

What We Just Did

 Finally, we broke free from the constraints of the browser and accessed
 Active Support, Action View, and Active Record methods directly from
 stand-alone scripts. This enables us to produce scripts that can be run
 from the command line, integrated into existing applications, or run
 periodically and automatically using facilities such as
 ​cron​.

 Next up, we will explore other separately installable components that
 are included in the bundle when you install Rails.

Footnotes

	[75]	

 ​http://api.rubyonrails.org/classes/ActiveSupport.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 24
Rails’ Dependencies

	
using XML and HTML templates,

	
managing application dependencies,

	
scripting tasks, and

	
interfacing with a web server.

 At this point, we have covered base Rails. But there is much more to the story.
 Much of what makes Rails great is functionality provided by components
 that Rails builds upon.

 These components should be familiar, because you have used each one. Atom
 templates, HTML templates, ​rake db:migrate​, ​bundle
 install​, and ​rails server​ were all used in the development
of the Depot application.

 Although this chapter goes beyond your normal day-to-day activities and
 shows how each component can be used in isolation, it is not meant to be an
 exhaustive description of any of these components. Each component
 requires a small book in itself to do it justice. Instead, the intent
 of this chapter is to introduce you to a number of key components in
 order to provide the background necessary for you to begin self-directed
 explorations.

 We start by introducing you to a number of such dependencies, beginning
 with the underlying templating engines that power views. Then we will
 explore ​Bundler​, which is the component that is used to
 manage dependencies. Finally, we will show how these pieces are put
 together using Rack and Rake.

24.1 Generating XML with Builder

 Builder is a freestanding library that lets you express
 structured text (such as XML) in code.
 A Builder template (in a file with
 an ​xml.builder​ extension) contains Ruby
 code that uses the Builder library to generate XML.

 Here’s a simple Builder template that outputs a list of product
 names and prices in XML:

	rails40/depot_t/app/views/products/index.xml.builder
	​ 	xml.div(class: ​"productlist"​) ​do​

	​ 	

	​ 	 xml.timestamp(Time.now)

	​ 	

	​ 	 @products.each ​do​ |product|

	​ 	 xml.product ​do​

	​ 	 xml.productname(product.title)

	​ 	 xml.price(product.price, currency: ​"USD"​)

	​ 	 ​end​

	​ 	 ​end​

	​ 	​end​

 If this reminds you of the template you created for use with the Atom
 helper in Section 12.2, ​Iteration G2: Atom Feeds​, that’s because the Atom
 helper is built upon the functionality of Builder.

 With an appropriate collection of products (passed in from the
 controller), the template might produce something such as this:

	​ 	​<div​ class=​"productlist"​​>​

	​ 	 ​<timestamp>​2013-01-29 09:42:07 -0500​</timestamp>​

	​ 	 ​<product>​

	​ 	 ​<productname>​CoffeeScript​</productname>​

	​ 	 ​<price​ currency=​"USD"​​>​36.0​</price>​

	​ 	 ​</product>​

	​ 	 ​<product>​

	​ 	 ​<productname>​Programming Ruby 1.9​</productname>​

	​ 	 ​<price​ currency=​"USD"​​>​49.5​</price>​

	​ 	 ​</product>​

	​ 	 ​<product>​

	​ 	 ​<productname>​Rails Test Prescriptions​</productname>​

	​ 	 ​<price​ currency=​"USD"​​>​43.75​</price>​

	​ 	 ​</product>​

	​ 	​</div>​

 Notice how Builder has taken the names of methods and converted
 them to XML tags; when we
 said ​xml.price​, it created a tag
 called ​<price>​ whose contents were the first
 parameter and whose attributes were set from the subsequent
 hash. If the name of the tag you want to use conflicts with an
 existing method name, you’ll need to use
 the
 ​tag!​
 method to generate the tag.

	​ 	xml.tag!(​"id"​, product.id)

 Builder can generate just about any XML you need. It supports
 namespaces, entities, processing instructions, and even XML
 comments. Take a look at the Builder documentation for details.

 Although HTML looks superficially a lot like XML, it is enough of a
 different beast that a different templating engine is generally used to
 produce HTML. We cover that next.

24.2 Generating HTML with ERB

 At its simplest, an ERB template is just a regular HTML
 file. If a template contains no dynamic content, it is simply
 sent as is to the user’s browser. The following is a perfectly
 valid ​html.erb​ template:

	​ 	​<h1>​Hello, Dave!​</h1>​

	​ 	​<p>​

	​ 	 How are you, today?

	​ 	​</p>​

 However, applications that just render static templates tend to
 be a bit boring to use. We can spice them up using dynamic
 content.

	​ 	​<h1>​Hello, Dave!​</h1>​

	​ 	​<p>​

	​ 	 It's <%= Time.now %>

	​ 	​</p>​

 If you’re a JSP programmer, you’ll recognize this as
 an inline expression.
 ERB evaluates any code between ​<%=​
 and ​%>​ and
 converts the results into a string
 using
 ​to_s​
 , escapes HTML special characters, and finally
 substitutes the resulting string into the resulting page. The expression inside the tags can be arbitrary
 code.

	​ 	 ​<h1>​Hello, Dave!​</h1>​

	​ 	 ​<p>​

	​ 	It's <%= require ​'date'​

	​ 	 DAY_NAMES = ​%w{ Sunday Monday Tuesday Wednesday​

	​ 	​ Thursday Friday Saturday }​

	​ 	 today = Date.today

	​ 	 DAY_NAMES[today.wday]

	​ 	 %>

	​ 	 ​</p>​

 Putting lots of business logic into a template is generally
 considered to be a Very Bad Thing, and you’ll risk
 incurring the wrath of the coding police should you get
 caught. We discussed a much better way of handling this
 with helpers in Section 21.5, ​Using Helpers​.

 Sometimes you need code in a template that doesn’t directly
 generate any output. If you leave the equals sign off the
 opening tag, the contents are executed, but nothing is inserted
 into the template. We could have written the previous example
 as follows:

	​ 	<% require ​'date'​

	​ 	 DAY_NAMES = ​%w{ Sunday Monday Tuesday Wednesday​

	​ 	​ Thursday Friday Saturday }​

	​ 	 today = Date.today

	​ 	%>

	​ 	​<h1>​Hello, Dave!​</h1>​

	​ 	​<p>​

	​ 	 It's <%= DAY_NAMES[today.wday] %>.

	​ 	 Tomorrow is <%= DAY_NAMES[(today + 1).wday] %>.

	​ 	​</p>​

 In the JSP world, this is called
 a ​scriptlet​. Again, many folks will
 chastise you if they discover you adding code to
 templates. Ignore them—they’re falling prey to
 dogma. There’s
 nothing wrong with putting code in a template. Just don’t put
 too much code in there (and especially don’t put business logic
 in a template). As we have already seen, you can use helper methods to
 successfully resist this temptation.

 You can think of the HTML text between code fragments as if each
 line were being written by a Ruby
 program. The ​<%…%>​
 fragments are added to that same program. The HTML is
 interwoven with the explicit code that you write. As a result,
 code between ​<%​
 and ​%>​ can affect the output of HTML
 in the rest of the template.

 For example, consider this template:

	​ 	<% 3.times ​do​ %>

	​ 	Ho!​<br​​/>​

	​ 	<% ​end​ %>

 When you insert a value using ​<%=​…​%>​,
 the results will be HTML escaped before being placed directly into the
 output stream. This is generally what you want.

 If, however, the text you’re substituting contains HTML that
	you ​want​ to be interpreted, this will cause the HTML tags
	to be escaped—if you create a string
	containing ​hello​ and then
	substitute it into a template, the user will see
	​hello​ rather
	than ​​hello​​. Rails provides a number of helpers to
 address this case. The following are a few examples.

	The
 ​raw​
 method will cause
 the string to pass right on through to the output without escaping.
 This provides the most amount of flexibility, as well as the least
 amount of security.

	The
 ​raw​
 method will
 HTML escape items in the array that are not HTML safe, join the
 results with the provided string, and return an HTML-safe result.

	The
 ​sanitize​

	method offers some protection. It takes a string containing
	HTML and cleans up dangerous elements: ​<form>​
	and ​<script>​ tags are escaped,
	and
 ​on​
 attributes and links
	starting ​javascript:​ are removed.

	The product descriptions in our Depot application were
	rendered as HTML (that is, they were marked as safe using
	the
 ​raw​
 method). This allowed us to
	embed formatting information in them. If we allowed people
	outside our organization to enter these descriptions, it would
	be prudent to use the
 ​sanitize​
 method
	to reduce the risk of our site being attacked
	successfully.

 These two templating engines are just two of the many gems that Rails
 depends on. At this point, it makes sense to talk about how such
 dependencies are managed.

24.3 Managing Dependencies with Bundler

 Dependency management is a deceptively hard problem. During
 development, you may choose to install updated versions of gems that you
 depend on. Once you do this, you may find yourself not being able to
 reproduce problems that occur in production because your runs are picking up
 different versions of the gems your application depends on. Or perhaps
 you see problems that don’t exist in production.

 It turns out that dependencies are every bit as important to manage as
 your application source code or database schemas. If you are developing
 as part of a team, you want every member of the team to be using the
 same version of the dependencies. When you deploy, you want to ensure
 that the version of the dependencies that you tested with are installed
 on the target machine and are the ones actually used in production.

 Bundler[76] takes care of this, based on a file named
 ​Gemfile​ that is placed in the top of your
 application directory. In this file, you list the dependencies of your
 application. Let’s take a closer look at the ​Gemfile​ for the Depot
 application:

	rails40/depot_u/Gemfile
	​ 	source 'https://rubygems.org'

	​ 	# Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

	​ 	gem 'rails', '4.0.0'

	​ 	

	​ 	# Use sqlite3 as the database for Active Record

	​ 	gem 'sqlite3'

	​ 	group :production do

	​ 	 gem 'mysql2'

	​ 	end

	​ 	# Use SCSS for stylesheets

	​ 	gem 'sass-rails', '~> 4.0.0'

	​ 	

	​ 	# Use Uglifier as compressor for JavaScript assets

	​ 	gem 'uglifier', '>= 1.3.0'

	​ 	

	​ 	# Use CoffeeScript for .js.coffee assets and views

	​ 	gem 'coffee-rails', '~> 4.0.0'

	​ 	

	​ 	# See https://github.com/sstephenson/execjs#readme for more supported runtimes

	​ 	# gem 'therubyracer', platforms: :ruby

	​ 	

	​ 	# Use jquery as the JavaScript library

	​ 	gem 'jquery-rails'

	​ 	gem 'jquery-ui-rails'

	​ 	

	​ 	# Turbolinks makes following links in your web application faster.

	​ 	# Read more: https://github.com/rails/turbolinks

	​ 	gem 'turbolinks'

	​ 	

	​ 	# Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder

	​ 	gem 'jbuilder', '~> 1.2'

	​ 	

	​ 	group :doc do

	​ 	 # bundle exec rake doc:rails generates the API under doc/api.

	​ 	 gem 'sdoc', require: false

	​ 	end

	​ 	

	​ 	# Use ActiveModel has_secure_password

	​ 	gem 'bcrypt-ruby', '~> 3.0.0'

	​ 	

	​ 	# Use unicorn as the app server

	​ 	# gem 'unicorn'

	​ 	

	​ 	# Use Capistrano for deployment

	​ 	gem 'rvm-capistrano', group: :development

	​ 	

	​ 	# Use debugger

	​ 	# gem 'debugger', group: [:development, :test]

 The first line specifies where to find new gems and new versions of
 existing gems. Feel free to repeat this line in order to list your own
 private gem repositories.

 The next line lists what version of Rails to load. Note that it
 specifies a specific version. After this is a comment that you could
 use as an alternative in order to run the latest version of Rails.

 The remaining lines list a few gems that you are using and a few gems
 that you might consider using. Some are placed in groups named
 ​:development​, ​:test​, or ​:production​ and will
 be made available only in those environments.

 Others include an
 optional ​:require​ parameter, which specifies the name to use on
 a ​require​ statement for the cases where it differs from the gem
 name.

 On the line for ​sass-rails​ you see a version specifier that
 is preceded by a comparison operator. Although ​Gemfile​ files support a number
 of such operators, only two are commonly used. ​>=​ is for
 the unfortunately all too rare condition where the author of the ​Gemfile​
 can be trusted to maintain strict backward compatibility so all that is
 needed to be specified is a minimum version number.

 ​~>​ is more widely recommended. Essentially all of the parts
 of the version, with the exception of the last part, must be matched
 exactly, and the last part specifies a minimum. So, ​~> 3.1.4​
 matches any version that starts with a ​3.1​ and is not less than
 ​3.1.4​. Similarly, ​~> 3.0​ means any version string
 that starts with a ​3.​.

 A ​Gemfile​ has a companion file, named
 ​Gemfile.lock​. This second file is generally
 updated by one of two commands: ​bundle install​ and ​bundle
 update​. The difference between the two is rather subtle.

 Before proceeding, it is helpful to look at a ​Gemfile.lock​
 file. Here is a small excerpt:

	​ 	GEM

	​ 	 remote: ​https://rubygems.org/​

	​ 	 specs:

	​ 	 actionmailer (4.0.0)

	​ 	 actionpack (= 4.0.0)

	​ 	 mail (~> 2.5.3)

	​ 	 actionpack (4.0.0)

	​ 	 activesupport (= 4.0.0)

	​ 	 builder (~> 3.1.0)

	​ 	 erubis (~> 2.7.0)

	​ 	 rack (~> 1.5.2)

	​ 	 rack-test (~> 0.6.2)

	​ 	 activemodel (4.0.0)

	​ 	 activesupport (= 4.0.0)

	​ 	 builder (~> 3.1.0)

 ​bundle install​ will use the ​Gemfile.lock​
 as a starting point, and it will install only the versions of the various gems
 as specified in this file. For this reason, it is important that this
 file gets checked into your version control system, because this will ensure
 that your colleagues and deployment targets will all be using the
 same configuration.

 ​bundle update​ will (unsurprisingly) update one or more named
 gems and will update the ​Gemfile.lock​ accordingly.
 If you want to use a specific version of a particular gem, the workflow
 would be to edit the ​Gemfile​ to express your constraints and
 then run ​bundle update​ listing the gems that you want to
 update.

If you don’t specify a list of gems, Bundler will attempt to
 update all gems—this is generally not recommended, particularly when
 close to deployment.

 Bundler also has a runtime component that is used to ensure that your
 application strictly loads only the versions of the gems listed in
 ​Gemfile.lock​. We will explore that further by looking into how
 the server operates.

24.4 Interfacing with the Web Server with Rack

 Rails runs your application in the context of a web server. So far, we
 have used two separate web servers: WEBRick, which comes built into the
 Ruby language, and Phusion Passenger, which integrates with the
 Apache HTTP web server.

A number of other choices are available,
 including Mongrel, Lighttpd, Unicorn, and Thin.

 Based on this, you might come to the conclusion that Rails has code that
 allows it to plug into each of these web servers. In earlier releases
 of Rails, this was true; as of Rails 2.3, this integration was delegated
 to a gem named Rack.

 So, Rails integrates with Rack, Rack integrates with (for example)
 Passenger, and Passenger integrates with Apache httpd.

 Although generally this integration is invisible and taken care of for you
 when you run the command ​rails server​, a file
 named ​config.ru​ is provided that allows you to
 directly start your application under Rack.

	rails40/depot_u/config.ru
	​ 	​# This file is used by Rack-based servers to start the application.​

	​ 	

	​ 	require ::File.expand_path(​'../config/environment'​, __FILE__)

	​ 	run Rails.application

 You can use this file to start your Rails server with the following
 command:

	​ 	rackup

 Starting your server in this way is completely equivalent to running
 ​rails server​.
 To demonstrate the power of what you can do with Rack alone, let’s start
 over with a bare-bones Rack application.

	rails40/depot_u/app/store.rb
	​ 	require ​'builder'​

	​ 	require ​'active_record'​

	​ 	

	​ 	ActiveRecord::Base.establish_connection(

	​ 	 adapter: ​'sqlite3'​,

	​ 	 database: ​'db/development.sqlite3'​)

	​ 	

	​ 	​class​ Product < ActiveRecord::Base

	​ 	​end​

	​ 	

	​ 	​class​ StoreApp

	​ 	 ​def​ call(env)

	​ 	 x = Builder::XmlMarkup.new :indent=>2

	​ 	

	​ 	 x.declare! :DOCTYPE, :html

	​ 	 x.html ​do​

	​ 	 x.head ​do​

	​ 	 x.title ​'Pragmatic Bookshelf'​

	​ 	 ​end​

	​ 	 x.body ​do​

	​ 	 x.h1 ​'Pragmatic Bookshelf'​

	​ 	

	​ 	 Product.all.each ​do​ |product|

	​ 	 x.h2 product.title

	​ 	 x << ​" ​#{product.description}\n​"​

	​ 	 x.p product.price

	​ 	 ​end​

	​ 	 ​end​

	​ 	 ​end​

	​ 	

	​ 	 response = Rack::Response.new(x.target!)

	​ 	 response[​'Content-Type'​] = ​'text/html'​

	​ 	 response.finish

	​ 	 ​end​

	​ 	​end​

 In this application, we are taking advantage of a number of things we
 have learned so far. The first thing we do is to directly require
 ​active_record​ and ​builder​. Then we establish a connection with our
 database and define a class for our ​Product​.
 We won’t need to do any of this once we integrate this application with
 our Rails application, but for now we are going totally bare-bones.

 Then comes the application. It is a simple class that defines
 a single method named
 ​call​
 . This method
 accepts a single parameter named ​env​ that contains information
 about the request and is not used by this application.

 This application uses Builder to create a simple HTML rendering of a
 product list and then builds a response, sets the content type, and
 calls
 ​finish​
 .

 By creating a new rackup file, we can run this as a stand-alone
 application.

	rails40/depot_u/store.ru
	​ 	require ​'rubygems'​

	​ 	require ​'bundler/setup'​

	​ 	

	​ 	require ​'./app/store'​

	​ 	

	​ 	use Rack::ShowExceptions

	​ 	

	​ 	map ​'/store'​ ​do​

	​ 	 run StoreApp.new

	​ 	​end​

 The first thing this script does is to initialize Bundler, which will
 make available the right versions of all the gems that will be
 required. Then it requires the store application.

 Next, it pulls one of the standard ​middleware​ classes
 provided with Rack; this one formats a stack traceback when things go
 wrong. Middleware in Rack is like filters in Rails—both can inspect
 requests and adjust the responses produced.

 You can see the list of middlewares that Rails provides for Rails
 applications using the command ​rake middleware​.

 Finally, we map the ​store​ URI to this application.

 We can start this application using the
 ​rackup​ command.

	​ 	rackup store.ru

 By default, this rackup starts servers using port 9292 instead of port
 3000. You can select the port using the ​-p​ option.

 Visiting this page using your browser results in the rather plain
 rendering of the product listings, as shown in Figure 64, ​A minimal, but workable, product listing​.

[image: images/rackup_store.png]

Figure 61. A minimal, but workable, product listing

 The disadvantage of a native Rack application as compared to a Rails
 application is that less is taken care of for it. The primary advantage
 is that it is possible to avoid some of the overhead of
 Rails and therefore process more requests per second.

 In most cases, you won’t want to create a completely stand-alone
 application but will want to have portions of your site bypass
 Rails’ controller processing. You do this by defining a route.

	rails40/depot_u/config/routes.rb
	​*
​	require ​'./app/store'​

	​ 	Depot::Application.routes.draw ​do​

	​*
​	 match ​'catalog'​ => StoreApp.new, via: :all

	​ 	 get ​'admin'​ => ​'admin#index'​

	​ 	 controller :sessions ​do​

	​ 	 get ​'login'​ => :new

	​ 	 post ​'login'​ => :create

	​ 	 delete ​'logout'​ => :destroy

	​ 	 ​end​

	​ 	 get ​"sessions/create"​

	​ 	 get ​"sessions/destroy"​

	​ 	

	​ 	 resources :users

	​ 	 resources :products ​do​

	​ 	 get :who_bought, on: :member

	​ 	 ​end​

	​ 	

	​ 	 scope ​'(:locale)'​ ​do​

	​ 	 resources :orders

	​ 	 resources :line_items

	​ 	 resources :carts

	​ 	 root ​'store#index'​, as: ​'store'​, via: :all

	​ 	 ​end​

	​ 	​end​

 The server is not the only place where Rails components are used. We
 complete this chapter with a description of a tool you can use to
 orchestrate the execution of tasks.

24.5 Automating Tasks with Rake

 Rake is a program that often is taken for granted. It is used
 to automate tasks, particularly tasks that may have a number of
 dependencies. The tasks are defined by the
 ​Rakefile​ that you will find in your application’s
 root directory.

 ​db:setup​ is an example of such a task. To see what subtasks
 are involved, run Rake with the ​--trace​ and ​--dry-run​
 options.

	​ 	$ ​rake --trace --dry-run db:setup​

	​ 	(in /home/rubys/work/depot)

	​ 	** Invoke db:setup (first_time)

	​ 	** Invoke db:create (first_time)

	​ 	** Invoke db:load_config (first_time)

	​ 	** Invoke rails_env (first_time)

	​ 	** Execute (dry run) rails_env

	​ 	** Execute (dry run) db:load_config

	​ 	** Execute (dry run) db:create

	​ 	** Invoke db:schema:load (first_time)

	​ 	** Invoke environment (first_time)

	​ 	** Execute (dry run) environment

	​ 	** Execute (dry run) db:schema:load

	​ 	** Invoke db:seed (first_time)

	​ 	** Invoke db:abort_if_pending_migrations (first_time)

	​ 	** Invoke environment

	​ 	** Execute (dry run) db:abort_if_pending_migrations

	​ 	** Execute (dry run) db:seed

	​ 	** Execute (dry run) db:setup

 Executing the right steps in the right order is vital for
 repeatable deployments; that’s why this particular task was used in
 ​Loading the Database​.

 You can see a list of available tasks using ​rake --tasks​.
 The tasks that Rails provides are just a starter set; you are welcome to
 create more tasks. You do so simply by creating new files in the
 ​lib/tasks​ directory containing Ruby code.

Here’s an
 example that will back up the production database:

	rails40/depot_u/lib/tasks/db_backup.rake
	​ 	namespace :db ​do​

	​ 	

	​ 	 desc ​"Backup the production database"​

	​ 	 task :backup => :environment ​do​

	​ 	 backup_dir = ENV[​'DIR'​] || File.join(Rails.root, ​'db'​, ​'backup'​)

	​ 	

	​ 	 source = File.join(Rails.root, ​'db'​, ​"production.db"​)

	​ 	 dest = File.join(backup_dir, ​"production.backup"​)

	​ 	

	​ 	 makedirs backup_dir, :verbose => true

	​ 	

	​ 	 require ​'shellwords'​

	​ 	 sh ​"sqlite3 ​#{Shellwords.escape source}​ .dump > ​#{Shellwords.escape dest}​"​

	​ 	 ​end​

	​ 	

	​ 	​end​

 The first line contains a namespace. We put this backup task in the ​db​
 namespace.

 The second line contains a description. This description will show up
 when you list tasks. If you run the ​rake --tasks​ command
 again, you will see that your new task is included along with the
 ones that Rails provided.

 The next line contains the task as well as any dependencies it might
 have. Depending on ​environment​ is roughly equivalent to
 loading everything that ​rails console​ provides.

 The block passed to the task is standard Ruby code. In our example, we
 determine the source and destination directories (where the destination
 will default to ​db/backup​ but can be overridden by a
 ​DIR​ parameter on the command line), then proceed to make
 the backup directory (if necessary), and finally execute the
 ​sqlite3 dump​ command.

 Note that we take care to escape arguments passed to the shell. This
 is important in case any of the directories in question have a
 space in their name.

24.6 Survey of Rails’ Dependencies

 You
 can find a list of your Rails dependencies in the
 ​Gemfile.lock​ file. Some of the names you find in
 there will be obvious; others will not. To assist with this
 exploration, the following is a brief description of the names you will
 find in there.

 Of course, as Rails evolves, this list will inevitably change. But by
 knowing the name of the component, you have the starting point for
 further exploration. A good way to find out more given the name is to
 go to RubyGems.org,[77] enter the gem name in the search field, select the gem,
 and then click either the Documentation or
 Homepage link.

	actionmailer
	
Part of Rails; see Chapter 13, ​Task H: Sending Mail​

	actionpack
	
Part of Rails; see Chapter 20, ​Action Dispatch and Action Controller​

	activemodel
	
Support for Active Record and Active Resource

	activerecord
	
Part of Rails; see Chapter 19, ​Active Record​

	activesupport
	
Part of Rails; see Section 23.2, ​A Library Function Using Active Support​

	rails
	
Container for the entire framework

	railties
	
Part of Rails; see Section 25.4, ​Finding More at RailsPlugins.org​
 for links to more information on the subject

	arel
	
A relational algebra; used by Active Record

	atomic
	
Provides an Atomic class that guarantees atomic updates to its
contained value

	bcrypt-ruby
	
Secure hash algorithm; used by Active Model

	builder
	
A simple way to create XML markup; see Section 24.1, ​Generating XML with Builder​

	capistrano
	
Welcome to easy deployment; see Section 16.2, ​Iteration K2: Deploying Remotely with Capistrano​

	coffee-script
	
Bridge to the JS CoffeeScript compiler

	erubis
	
The implementation of ERB that Rails uses; see Section 24.2, ​Generating HTML with ERB​

	execjs
	
Lets you run JavaScript code from Ruby; used by ​coffee-script​

	highline
	
I/O library for command-line interfaces

	hike
	
Finds files in a set of paths; used by ​sprockets​

	i18n
	
Internationalization support; see Chapter 15, ​Task J: Internationalization​

	jquery-rails
	
Provides jQuery and the jQuery-ujs driver

	jbuilder
	
Provides a simple DSL for declaring JSON structures that
beats massaging giant hash structures

	json
	
An implementation of the JSON specification according to RFC 4627

	mail
	
Mail support; see Chapter 13, ​Task H: Sending Mail​

	mime-types
	
Determines file type based on extension, used by mail

	multi-json
	
Provides swappable JSON backends

	mysql
	
Production database supported by Active Record; see ​Using MySQL for the Database​

	minitest
	
Provides a complete suite of testing facilities supporting
TDD, BDD, mocking, and benchmarking

	net-scp
	
Copies files securely

	net-sftp
	
Transfers files securely

	net-ssh
	
Connects to remote servers securely

	net-ssh-gateway
	
Tunneling connections over SSH

	nokogiri
	
An HTML, XML, SAX, and Reader parser

	polyglot
	
Custom language loaders

	rack
	
Interface between Rails and web servers; see Section 24.4, ​Interfacing with the Web Server with Rack​

	rack-test
	
Testing API for routes

	rake
	
Task automation; see Section 24.5, ​Automating Tasks with Rake​

	sass
	
Provides extensions to CSS3

	sass-rails
	
Generator and Asset support for Sass

	sprockets
	
Preprocesses and concatenates JavaScript source files

	thread_safe
	
A collection of thread-safe versions of common core Ruby classes

	tilt
	
Generic interface to multiple Ruby template engines; used by ​sprockets​

	sqlite3
	
Development database supported by Active Record

	thor
	
Scripting framework used by the ​rails​ command

	treetop
	
Text parsing library, used by mail

	tzinfo
	
Time zone support

	uglifier
	
Compresses JavaScript files

What We Just Did

 We explored a small number of Rails’ dependencies and then showed how
 dependencies themselves can be managed, integrated with a web server,
 and finally orchestrated from the command line. Along the way, we
 finally found out what the ​Rakefile​,
 ​Gemfile​, and ​Gemfile.lock​
 files are that are in the top of our application directory.

 Now that we have gone deeper into Rails, the next place to go is to branch
 out and to cover external plugins that can be used to extend the base
 Rails package that you get when you install Rails.

Footnotes

	[76]	

 ​http://gembundler.com/​

	[77]	

 ​http://rubygems.org​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 25
Rails Plugins

	
adding new classes to your application and

	
adding a new templating language.

 Since the beginning of this book, we’ve talked incessantly about
 convention over configuration in that Rails has sensible
 defaults for just about everything. And more recently in the book, we’ve
 described Rails in terms of the underlying gems that you get when you
 install Rails. Now it is time to put those two thoughts together and
 reveal that the initial set of gems that Rails provides you with is a
 sensible set of defaults—a group of gems that you can both add to and change.

 With Rails, gems are the primary way in which you ​plug in​
 new functionality. Instead of describing this in the abstract, we will
 select a few plugins and use them to illustrate different aspects of how
 plugins are installed and what plugins can do. The fact that many of
 these plugins turn out to be immediately useful for your day-to-day work
 is simply a bonus!

 Let’s start with a simple plugin that can make you money.

25.1 Credit Card Processing with Active Merchant

 In
 Iteration G1 we mentioned that we
 were temporarily punting on handling credit cards. Being able to
 charge a customer is clearly an important part of taking an
 order. Although this functionality isn’t built into the core of Rails,
 there is a gem that provides this.

 You’ve already seen how you control what gems get loaded by your
 application; you do this by editing your ​Gemfile​.
 Since we are going to cover a number of such gems in this chapter, let’s
 add all of the ones that we’ll cover at once. You can
 add these any place you like; we’ve chosen to do so at the end of
 the file.

	rails40/depot_v/Gemfile
	​ 	gem 'activemerchant', '~> 1.31'

	​ 	gem 'haml', '~> 4.0'

	​ 	gem 'kaminari', '~> 0.14'

 You will note that we follow best practices by specifying a minimum
 version and effectively specifying an upper bound on the version number so
 that this demo will pick a version that is unlikely to contain an
 incompatible change.

 As for the gems we added, we will cover each in a separate section. This
 section will focus on Active Merchant.[78]

 With this in place, we can use the ​bundle​
 command to install our dependencies.

	​ 	depot>​ bundle install​

 Depending on your operating system and your setup, you may need to run
 this command as root.

 The ​bundle​ command will actually do much more. It will cross-check gem
 dependencies, find a configuration that works, and download and
 install whatever components are necessary. But this needn’t concern us
 now; we added only one component, and we can rest assured that this one is included
 in the gems that the bundler installed.

 We must do one last thing after updating or installing a new gem:
 restart the server. Although Rails does a good job of detecting and
 keeping up with your latest changes to your application, it is
 impossible to predict what needs to be done when an entire gem is added
 or replaced.
 We won’t be using the server
 in this section but will shortly. Make sure that the server is running
 the Depot application.

 To demonstrate this functionality, we will create a small script, which we
 will place in the ​script​ directory.

	rails40/depot_v/script/creditcard.rb
	​ 	credit_card = ActiveMerchant::Billing::CreditCard.new(

	​ 	 number: ​'4111111111111111'​,

	​ 	 month: ​'8'​,

	​ 	 year: ​'2009'​,

	​ 	 first_name: ​'Tobias'​,

	​ 	 last_name: ​'Luetke'​,

	​ 	 verification_value: ​'123'​

	​)

	​ 	

	​ 	puts ​"Is ​#{credit_card.number}​ valid? ​#{credit_card.valid?}​"​

 There is not much to this script. It creates an instance of an
 ​ActiveMerchant​::​Billing::CreditCard​ class and then
 calls
 ​valid?​
 on this object. Let’s run it.

	​ 	$ ​rails runner script/creditcard.rb​

	​ 	Is 4111111111111111 valid? false

 There’s not much to it; it just worked. Note that no ​require​
 statements were necessary; simply listing the gem you want in your
 ​Gemfile​ makes the function available to your application.

 At this point, you should be able to see how you could use this
 functionality in the Depot application. You know how to add a field to
 the ​Orders​ table via a migration. You know how to add that field to
 the view. You know how to add validation logic to your model, which
 calls the
 ​valid?​
 method that we used earlier. If
 you go to the merchant site, you can even find out how to

 ​authorize​
 and
 ​capture​

 a payment, though this does require you to have a login and a password
 with an existing commerce gateway. Once that is set up, you know how to
 call this logic from your controller.

 Just think: all of that was made possible by the addition of a single
 line to your ​Gemfile​.

 As we stated at the beginning of this chapter, adding gems to your
 ​Gemfile​ is the preferred way to extend Rails. The advantages of
 doing so are numerous: all of your dependencies are tracked by
 Bundler, are all preloaded for immediate use by your application, and
 can be packed for easy deployment.

 This was a very simple addition. Let’s move on to something more
 significant, something that provides a clear alternative to one of the
 gems that Rails depends on.

25.2 Beautifying Our Markup with Haml

 Let’s take a look once again at a simple view that we use in the Depot
 application, in this case, one that presents our storefront:

	rails40/depot_u/app/views/store/index.html.erb
	​ 	<% ​if​ notice %>

	​ 	​<p​ id=​"notice"​​>​<%= notice %>​</p>​

	​ 	<% ​end​ %>

	​ 	

	​ 	​<h1>​<%= t(​'.title_html'​) %>​</h1>​

	​ 	

	​ 	<% cache [​'store'​, Product.latest] ​do​ %>

	​ 	 <% @products.each ​do​ |product| %>

	​ 	 <% cache [​'entry'​, product] ​do​ %>

	​ 	 ​<div​ class=​"entry"​​>​

	​ 	 <%= image_tag(product.image_url) %>

	​ 	 ​<h3>​<%= product.title %>​</h3>​

	​ 	 <%= sanitize(product.description) %>

	​ 	 ​<div​ class=​"price_line"​​>​

	​ 	 ​<span​ class=​"price"​​>​<%= number_to_currency(product.price) %>​​

	​ 	 <%= button_to t(​'.add_html'​), line_items_path(product_id: product),

	​ 	 remote: true %>

	​ 	 ​</div>​

	​ 	 ​</div>​

	​ 	 <% ​end​ %>

	​ 	 <% ​end​ %>

	​ 	<% ​end​ %>

 This code gets the job done. It contains the basic HTML, with
 interspersed bits of Ruby code enclosed in ​<%​ and
 ​%>​ markup. Inside that markup, an equal sign is used to
 indicate that the value of the expression is to be converted to HTML and
 displayed.

 This is not only an
 adequate solution to the problem at hand; it is also all that is really
 needed for a large number of Rails applications. Additionally, it is an
 ideal place to start for books—like this one—where some
 knowledge of HTML may be presumed, but many of the readers are new to
 Rails and often to Ruby. The last thing you would want to do in
 that situation is to introduce yet another new language.

 But now that you are past that learning curve, let’s explore
 a new language—one
 that more closely integrates the production of markup with Ruby code,
 namely, HTML Abstraction Markup Language (Haml).

 To start with, let’s remove the file we just
 looked at.

	​ 	$ ​rm app/views/store/index.html.erb​

 In its place, let’s create a new file.

	rails40/depot_v/app/views/store/index.html.haml
	​ 	- if notice

	​ 	 %p#notice= notice

	​ 	

	​ 	%h1= t('.title_html')

	​ 	

	​ 	- cache ['store', Product.latest] do

	​ 	 - @products.each do |product|

	​ 	 - cache ['entry', product] do

	​ 	 .entry

	​ 	 = image_tag(product.image_url)

	​ 	 %h3= product.title

	​ 	 = sanitize(product.description)

	​ 	 .price_line

	​ 	 %span.price= number_to_currency(product.price)

	​ 	 = button_to t('.add_html'), line_items_path(product_id: product),

	​ 	 remote: true

 Note the new extension:
 ​.html.haml​. This indicates that the template is a Haml
 template instead of an ERB template.

 The first thing you should notice is that the file is considerably
 smaller. Here’s a quick overview of what is going on, based on what the
 first character is on each line:

	
Dashes indicate a Ruby statement that does not produce any
 output

	
Percent signs (​%​) indicate an HTML element.

	
Equal signs (​=​) indicate a Ruby expression that does
 produce output to be displayed. This can be used either on lines by
 themselves or following HTML elements.

	
Dots (​.​) and hash (​#​) characters may be used to
 define class and ​id​ attributes, respectively. This can be combined with
 percent signs or used stand-alone. When used by itself, a ​div​
 element is implied.

	
A comma at the end of a line containing an expression implies a
 continuation. In the previous example, the

 ​button_to​
 call is continued across two
 lines.

 An important thing to note is that indentation is important in Haml.
 Returning to the same level of indentation closes the ​if​ statement,
 loop, or tag that is currently open. In this example, the paragraph is
 closed before the ​h1​, the ​h1​ is closed before the
 first ​div​, but the ​div​ elements nest, with the first
 containing an ​h3​ element and the second containing both a
 ​span​ and a
 ​button_to​
 .

 As you can also see, all of your familiar helpers are available, things
 like
 ​t​
 ,
 ​image_tag​
 , and

 ​button_to​
 . In every
 meaningful way, Haml is as integrated into your application as ERB is.
 You can mix and match: you can have some templates using ERB and others using
 Haml.

 As you have already installed the Haml gem, there truly is nothing more
 you need to do. To see this in action, all you need to do is to visit
 your storefront. What you should see should match
 Figure 65, ​Storefront using Haml​.

[image: images/i18n_selector.png]

Figure 62. Storefront using Haml

 If that looks unremarkable, that’s because it should look
 ​exactly​ like it did before. And that, if you think about it,
 is all the more remarkable because the application layout continues to be
 implemented as an ERB template and the index is implemented using
 Haml. Despite this, everything integrates seamlessly and effortlessly.

 Although this clearly is a deeper level of integration than simply adding a
 task or a helper, it still is an addition. Next, let’s explore a
 plugin that changes a core object in Rails.

25.3 Pagination

 At the moment, we have a few products, a few carts at any one time, and a
 few line items per cart or order, but we can have essentially an
 unlimited number of orders, and we hope to have many—enough so that
 displaying all of them on an orders page will quickly become unwieldy.
 Enter the ​kaminari​ plugin. This plugin extends Rails to
 provide this much-needed function.

 Now let’s generate some test data. We could click repeatedly on the
 buttons we have, but computers are good
 at this. This isn’t exactly seed data, simply something done once and
 thrown away. Let’s create a file in the ​script​
 directory.

	rails40/depot_v/script/load_orders.rb
	​ 	Order.transaction ​do​

	​ 	 (1..100).each ​do​ |i|

	​ 	 Order.create(name: ​"Customer ​#{i}​"​, address: ​"​#{i}​ Main Street"​,

	​ 	 email: ​"customer-​#{i}​@example.com"​, pay_type: ​"Check"​)

	​ 	 ​end​

	​ 	​end​

 This will create a hundred orders with no line items in them. Feel free to
 modify the script to create line items if you are so inclined. Note
 that this code does all this work in one transaction. This isn’t precisely
 required for this activity but does speed up the processing.

 Note that we don’t have any ​require​ statements or
 initialization to open or close the database. We will allow Rails to
 take care of this for us.

	​ 	rails runner script/load_orders.rb

 Now that the setup is done, we are ready to make the changes necessary
 to our application. First, we modify our controller to call

 ​paginate​
 , passing it in the page and the order in which we want the
 results displayed.

	rails40/depot_v/app/controllers/orders_controller.rb
	​ 	​def​ index

	​*
​	 @orders = Order.order(​'created_at desc'​).page(params[:page])

	​ 	​end​

 Next, we add links to the bottom of our index view.

	rails40/depot_v/app/views/orders/index.html.erb
	​ 	​<h1>​Listing orders​</h1>​

	​ 	

	​ 	​<table>​

	​ 	 ​<thead>​

	​ 	 ​<tr>​

	​ 	 ​<th>​Name​</th>​

	​ 	 ​<th>​Address​</th>​

	​ 	 ​<th>​Email​</th>​

	​ 	 ​<th>​Pay type​</th>​

	​ 	 ​<th>​​</th>​

	​ 	 ​<th>​​</th>​

	​ 	 ​<th>​​</th>​

	​ 	 ​</tr>​

	​ 	 ​</thead>​

	​ 	

	​ 	 ​<tbody>​

	​ 	 <% @orders.each ​do​ |order| %>

	​ 	 ​<tr>​

	​ 	 ​<td>​<%= order.name %>​</td>​

	​ 	 ​<td>​<%= order.address %>​</td>​

	​ 	 ​<td>​<%= order.email %>​</td>​

	​ 	 ​<td>​<%= order.pay_type %>​</td>​

	​ 	 ​<td>​<%= link_to ​'Show'​, order %>​</td>​

	​ 	 ​<td>​<%= link_to ​'Edit'​, edit_order_path(order) %>​</td>​

	​ 	 ​<td>​<%= link_to ​'Destroy'​, order, method: :delete,

	​ 	 data: { confirm: ​'Are you sure?'​ } %>​</td>​

	​ 	 ​</tr>​

	​ 	 <% ​end​ %>

	​ 	 ​</tbody>​

	​ 	​</table>​

	​ 	

	​ 	​
​

	​ 	

	​ 	<%= link_to ​'New Order'​, new_order_path %>

	​*
​	​<p>​<%= paginate @orders %>​</p>​

 And
 that is all there is to it! The default is to show thirty entries per
 page, and the links will show up only if there are more than one page
 of orders. The controller specifies the number of orders to display on
 a page using the ​:per_page​ option. See
 the following figure:

[image: images/depot_paginate.png]

Figure 63. Showing ten orders out of more than a hundred

What We Just Did

 Although this chapter did cover a few plugins,
 the purpose of this chapter wasn’t to cover any particular plugin in
 depth but to introduce you to some of the capabilities that plugins can
 provide.

 If we include the gems that we saw in previous chapters, we have seen
 plugins that simply add new features (Active Merchant and
 Capistrano), add some methods to model objects
 (kaminari), add a new templating language (Haml), and even add an interface
 to a new database (mysql).

 If you think about it, there really isn’t all that much that a plugin
 can’t do.

25.4 Finding More at RailsPlugins.org

 At this point, we have covered three
 plugins.
 Here are a few more to explore, grouped by categories:

	
Some plugins implement behavior that was previously in the
 core of Rails and has since been moved out. As an example, instead
 of jQuery, the Prototype library was the one supported by default by
 previous versions of Rails. This has moved into a plugin named ​prototype-rails​.[79] Others, like ​acts_as_tree​,[80] have thrived as plugins. And still others, like
 ​rails_xss​,[81] backport essential functionality from future versions of Rails
 in order to help with migration.

	
Some plugins actually implement significant pieces of common
 application logic and even user interface.
 The ​devise​[82] and ​authlogic​[83] plugins implement user authentication and session management.
 We implemented these functions ourselves in Depot, but this is generally
 something we don’t recommend. We’ve found that laziness pays: if somebody
 else has written a plugin for a function that you need to implement,
 that’s all the more time you can spend on your application.

	

 Some plugins replace large portions of rails.
 For example, ​datamapper​[84] replaces ActiveRecord. The combination of
 ​cucumber​,[85] ​rspec​,[86] and ​web​​rat​[87] can be used separately or together to replace test scripts
 with plain test stories, specifications, and browser simulation.

	

 ​airbrake​[88] and ​exception_notification​[89] will help you monitor errors in your deployed servers.

 Of course, this is but a small fraction of the set of plugins
 available. And this list is continually growing; there undoubtedly will
 be many more available by the time you read this.

 Finally, you can obviously create your own plugins. Although doing so is
 beyond the scope of this book, you can find out more in the Rails
 Guides[90] and documentation.[91]

Footnotes

	[78]	

 ​http://www.activemerchant.org/​

	[79]	

 ​https://github.com/rails/prototype-rails#readme​

	[80]	

 ​https://github.com/rails/acts_as_tree#readme​

	[81]	

 ​https://github.com/rails/rails_xss​

	[82]	

 ​https://github.com/plataformatec/devise#readme​

	[83]	

 ​https://github.com/binarylogic/authlogic#readme​

	[84]	

 ​http://datamapper.org/​

	[85]	

 ​http://cukes.info/​

	[86]	

 ​http://rspec.info/​

	[87]	

 ​https://github.com/brynary/webrat#readme​

	[88]	

 ​https://airbrakeapp.com/pages/home​

	[89]	

 ​https://github.com/rails/exception_notification#readme​

	[90]	

 ​http://guides.rubyonrails.org/plugins.html​

	[91]	

 ​http://api.rubyonrails.org/classes/Rails/Railtie.html​

Copyright © 2013, The Pragmatic Bookshelf.

	 Chapter
	 26
Where to Go from Here

	
reviewing Rails concepts: model, view, controller, configuration,
 testing, and deployment; and

	
links to places for further exploration.

 Congratulations! We’ve covered a lot of ground together.

 In Part I, you installed Rails, verified the installation using a simple
 application, got exposed to the architecture of Rails, and got acquainted
 (or maybe reacquainted) with the Ruby language.

 In Part II, you iteratively built an application, built up test cases
 along the way, and ultimately deployed it using Capistrano. We designed
 this application to touch on all of the aspects of Rails that every
 developer needs to be aware of.

 Whereas Parts I and II of this book each served a single purpose, Part III
 of this book served a dual role.

 For some of you, Part III methodically filled in the gaps and covered
 enough for you to get real work done. For others, this will be the first
 steps of a much longer journey.

 For most of you, the real value is a bit of both. A
 firm foundation is required in order for you to be able to explore
 further. And that’s why we started this part with a chapter that not
 only covered the convention and configuration of Rails but also covered the
 generation of documentation.

 Then we proceeded to devote a chapter each to the model, views, and
 controller, which are the backbone of the Rails architecture. We covered
 topics ranging from database relationships to the REST architecture to HTML
 forms and helpers.

 We covered migration as an essential maintenance tool for
 the deployed application’s database.

 Finally, we split Rails apart and explored the concept of gems from a
 number of perspectives, from making use of individual Rails
 components separately to making full use of the foundation upon which
 Rails is built and finally to building and extending the framework to
 suit your needs.

 At this point, you have the necessary context and background to explore
 deeper whatever areas suit your fancy or are needed to solve that
 vexing problem you face. We recommend you start by visiting the
 Ruby on Rails site[92] and exploring each of the links across the top of that page.
 Some of this will be quick refreshers of materials presented in this book,
 but you will also find plenty of links to current information on how
 report problems, learn more, and keep up-to-date.

 Additionally, please continue to contribute to the wiki and forums
 mentioned in the book’s introduction.

 Pragmatic Bookshelf has more books on
 related Ruby and Rails subjects.[93] There also are plenty of related categories that go beyond Ruby and Rails, such as
 Agile Practices; Testing, Design, and Cloud
 Computing; and Tools, Frameworks, Languages. You can
 find these and other categories at
 ​http://www.pragprog.com/categories​
 .

 We hope you have enjoyed learning about Ruby on Rails as much as we have
 enjoyed writing this book!

Footnotes

	[92]	

 ​http://rubyonrails.org/​

	[93]	

 ​http://www.pragprog.com/categories/ruby_and_rails​

Copyright © 2013, The Pragmatic Bookshelf.

	 Appendix
	 1
Bibliography

	[Bur11]
	Trevor Burnham. CoffeeScript: Accelerated JavaScript Development. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.
	[CC11]
	Hampton Catlin and Michael Lintorn Catlin. Pragmatic Guide to Sass. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.
	[TFH13]
	David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby: The Pragmatic Programmer’s Guide. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, Fourth Edition, 2013.

Copyright © 2013, The Pragmatic Bookshelf.

You May Be Interested In…
Click a cover for more information
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

images/depot_paginate.png
- ¢ [Quarer

ATy

A"

PRAGMATIC BOOKSHELF

Listing orders

images/form_helpers.png
Input [Enter text here...

Mm:
Color: O Red O Yellow O Green

Condiment: O Ketchup O Mustard O Mayonnaise
priory

Start: (2315 (i) (13

images/mvc_integration.png
myapp_controllectt

O ==
B

Ozt
e ptiagenaon.

© tmpras o

prmtrs o s e
ey

i s tpranti
el Y

images/many_to_many.png
(camgre:) (s oot) o)

] | +— [t | L=

= =] =

[e gy e

images/ar_callbacks.png
modelsavel) ‘model.destroy()

befora_validation bera_validation
validation operations validation operations

e valdation ater_validstion

beforasave. bebrasave

before creats bekraupdate beforaLdestroy
insert operation update operation

atellereate aherllptate

ater zave ater_save

images/i18n_selector.png
€ G @ Doaws

B PRAGMATIC BOOKSHELF

Your Pragmatic Catalog

Coteescript
Coteerps syt e . o o
asergs iy g 1.3 e, e Sscrct

images/file_upload.png
o]

images/rackup_store.png
4 » € [D locathost:s292/store

Pragmatic Bookshelf
CoffeeScript

CoffeeScrpis Javascrpt don ight It providesall of JvaScrptsfuncioalty wrspped in
 cleaner, more sucinc synax. Inthe s book o s excing ne lnguage, CoffeeScrpt
gar Trevor Burmham shows you bow o hokd onoal h poweran feibiy of
SovaScrip whle wrking ceare, claner,an sfer code

360
Programming Ruby 1.9 & 2.0

images/one_to_one.png

images/one_to_many.png

images/app_dir_layout.png

images/i18n_errors.png
<) e [Babor

aM@tie PUBLICACIONES DE PRAGMATIC

[E—

i s o st

images/i18n_flash.png
(O ocabort 000

“MEgiy PUBLICACIONES DE PRAGMATIC

Su Catélogo de Pragmatic

Cofteascrpt

images/i18n_translation_missing.png
PUBLICACIONES DE PRAGMATIC

images/i18n_mixed_errors.png

images/depot_r_rdoc.png
€ C (5 il et i en s

The Depot Online Store
ettt e i o .

|

i

I ey

g

images/rails_layout.png
pl

™ Tt v rs vt s
Wopparscis
-
Contpaion and e vt aomers
e —"

1
‘Schema and migration information.

|Gemfie - Gem Dependencies.
b
‘Shared code.

.
T —
i

(T ———
ot 5 s
v —

Unit, functonal, and integration tests, fixtures, and mocks.

Runtime temporary files.

Imported code.

images/prod_webserver_arch.png

images/_covers/elixir.jpg

images/i18n_currency.png
(5 rogorg osks cnine . < \Cl

& G @ (Catotonoe

=MEtite PUBLICACIONES DE PRAGMATIC

Su Catdlogo de Pragmatic

Cofteescript
Cofloesrpt s avaserpt oo e 1 provies st
it sy, o st bk o s excg
cpage,CateScrp i Trvi Brear o
SuaSarp e g s, e, 0 st

moosws [Amsracano

images/i18n_checkout.png
[Croabostronsinsesinen

PUBLICACIONES DE PRAGMATIC

images/_covers/mcmath.jpg

images/i18n_cart.png
(5 rogorg osks cnine . < \Cl

& G @ (Catotonoe

=MEtite PUBLICACIONES DE PRAGMATIC

Su Catdlogo de Pragmatic

Cofteescript
Cofloesrpt s avaserpt oo e 1 provies st
it sy, o st bk o s excg
cpage,CateScrp i Trvi Brear o
SuaSarp e g s, e, 0 st

images/depot_q_user_list.png
& @ @ [locathost000/users

gt PRAGMATIC BOOKSHELF

Listing users
cave. Show Ean Dasioy

New User

images/rails_info_routes.png

images/apple-logo-black.jpg

images/form_flow.png
e e)

images/depot_p_index.png
PRAGMATIC BOOKSHELF

Welcome

images/i18n_title_and_side.png

images/i18n_main.png
(5 rogorg osks cnine . < \Cl

& G @ (Catotonoe

=MEtite PUBLICACIONES DE PRAGMATIC

Su Catdlogo de Pragmatic

Cofteescript
Cofloesrpt s avaserpt oo e 1 provies st
it sy, o st bk o s excg
cpage,CateScrp i Trvi Brear o
SuaSarp e g s, e, 0 st

images/english_translation.png
our Pragmaiic Catalog

Cotiesert

images/i18n_trans_not_avail.png
E—rrrr -
€ G @ [Doamme

Ay PRAGMATIC BOOKSHELF

Cofteescript
ot e ors et s st
e Cteerp e T B show
eS¢

images/depot_p_add_user.png
< 5 € [owhostsomsisersnen

A PRAGMATIC BOOKSHELF

New user

images/depot_p_full_house.png
@ [Sioanon

PRAGMATIC BOOKSHELF

images/depot_p_checkout_result.png
PRAGMATIC BOOKSHELF

images/depot_i_cart.png
€ € [D locatbost3000/crt %

s PRAGMATIC BOOKSHELF

Your Cart

2+ Catesserpt s2m
1 Proganmiog iy 19820 1935
Tow i

Enptycan

images/depot_k_less_ugly.png
LA (B tcabostoos)

A PRAGMATIC BOOKSHELF

Your Cart

Your Pragmatc Catalog

Cofteseriot

images/depot_h_invalid_product.png
(5 Proprog Books Ot =

& @ @ [Orabowson

S PRAGMATIC BOOKSHELF

Coffeescript
CotleSerpt s avaSertdon . i provies
0t s functonaity wragped n 8
cleanr morsSuccnct syma.n o st bk
on s xcing new lnguage, CoeeScrpt gy
Trvor Bumnam shows you how 0k a3
1 power and ity of Savascrpt whe
g e, cieaer, and saor code.

sso (Ao

images/depot_h_cart_empty.png
Yourcartis curently empy

images/form_for.png
Dave”

<%= fom_for @order do | %>
v
<%= tlabel name, "Nam;
<%= tlext_field name , size: 40 %>
<>

<% end %>

Name: [Dave

images/depot_p_checkout_1.png
PRAGMATIC BOOKSHELF

images/yft.png
Your Pragmatic Catalog

——

Your Pragmatic Cataiog

g s v

et
S e gt s s s
i oy ol
e R

e

images/layout_failure.png
5 C [Boatomoompisies

NoMethodError in Products#index

S ——
s s waaon 1
ER O PP ——

[R ——
o e e T T

images/depot_g_exception.png
€ 5 C (B lowabostocojcrs/wibie 7

Activ egordNotFound in

Couldn't find Cart with id=wibble

Extto s e e

Ratta. rot: /hos/rubys v 154 ekt rork/epot
vocatn Toce | v Toce | s e

] T — D

images/depot_g_cart.png
€+ € [B oot

Ay PRAGMATIC BOOKSHELF

Your Pragmatic Cart

« 3« Pty 19820

images/depot_g_cart_undo.png
€+ C [Blocbostsuonjar

ey PRAGMATIC BOOKSHELF

Your Pragmatic Cart

P oy 194 20

images/depot_d_index_1.png
[2) Depot x

& G @ [Obahostsoo %) A

Your Pragmatic Catalog M

CoffeeScript
CoffeeScript is JavaScript done right. It provides all of
JavaScript’s functionality wrapped in a cleaner, more.
succinet syntax. I the fist book on this exciting new
language, CoffeeScript guru Trevor Bumham shows you
"how to hold onto allthe power and flexibilty of JavaScript
while writing clearer, cleaner, and safer code.

360

images/depot_e_index_1.png
osratoss e . - A
[Soabusson

PrAGMATIC BOOKSHELF

oscript
Cotescrpt i JvaScrg o ep. s -
Sovasces oty wigped n aer. e
lanuage, CoftoeSryt ey Tovr B shows Y.
et ot o paver ety of
SevaSrpt v wring s, e, 0 st <

images/depot_c_index.png
) Depot x

€ G @ [Coubornn 8] A

Store#index

Find me in appiviews/store/index.htmi.etb

images/depot_f_add_no_view.png
[5) Progprog Books Onine .

ke PRAGMATIC BOOKSHELF

images/depot_f_dup_product.png
) Pragprog Books Onlne 5t g

ks PRAGMATIC BOOKSHELF

Line e was succesuty reated.

Your Pragmatic Cart

+ Cotteoscript
« Cofteescrpt

images/depot_f_format_price.png
osratoss e . - A
[Soabusson

PrAGMATIC BOOKSHELF

oscript
Cotescrpt i JvaScrg o ep. s -
Sovasces oty wigped n aer. e
lanuage, CoftoeSryt ey Tovr B shows Y.
et ot o paver ety of
SevaSrpt v wring s, e, 0 st <

images/depot_f_formatted_index.png
& @ G [Ouavan

B’

PRAGMATIC BOOKSHELF

Your Pragmatic Catalog

Coffesscript

ot s Jvaerp e . povies -
Snvisrgts ectanany wigpd 13 e, e
e, Gt Tt Bt s .
ovarg e e e, s, 0 e cot

images/depot_b_no_fields.png
o

(R P o —r— Y

New product

images/depot_b_price_error.png
uo—n
N e r—
New product

[T —
ouscrpgon
[epoRuby 1 tho Fartest groving and mort

[Skciting Synamic Language out there. 1f
[vou need o got working. prograss
[ieliveraa fast, you snouta a4 Ruby €0
[your Sootna. <755

imagont

images/depot_a_list.png
o
(R o —Y

Listing products

images/depot_c_list.png
0w =

€ + € [Dloabostomoproduts %) =

Listing products
Coffesseript

Cotteerpt 5 JvaScrs s .t proves st
ey

Programming Ruby 19 £20
Rty 155 Tt o an most xcig e e

Ralls Tost roscriptions
R TotPresrptns 3 compretmsie e sy

Berl Ferl Hsi

images/buyer_flow.png

images/seller_flow.png
S vestenlly
Soave scimen s

erele

images/depot_a_big_desc.png
Dom B
& 0 G @ [Cuabossopoinisies %N

images/depot_a_new.png
6ot B

& 0 G @ [Oeasbostsunoproducsioen 7] X

images/initial_data.png
floguct:

Seller Debni

images/depot_a_admin.png
¢ © (D) =

Listing products

Title Description Image url Price

New Product

images/demo_files.png
class SayControler < ApplicationController
def hello
end

end

demo/
po/
controllers/
L say_controersb
<
Zheac>
<ilesHell, Rai<itie>
<hesd>
ooty
< Hellofom Ralki</ht>
<hody>
ety

models/
views/

: Lsay/ /

H L hellotml.erb

images/hello1.png
o-c[m

Hello from Rails!

images/goodbye1.png
(3 0enor

& € [D localhost:3000/say/go0dbye 7

images/hello2.png
5 ¢ (S

Hello from Rails!

i now 2013.0129 11:0558-0500

images/basic_mvc.png

images/hello3.png
Hello from Rails!

Itis now 2013-01-29 11:10:19 0500

Time to say Goodbye!

images/rails_mvc.png

images/template_missing.png
L) Demot

4 € [D tocalhost:3000/say/hello 7]

images/demo_startscreen.png
€ [Bioubornn

Welcome aboard

Yo iding Rubyon Rl

At ou oo’ smivmens

Geting started

s ot gt g

Use rails generate o creste your models and
contollers

LR T——

Set up roo oute o eplace this page

s ey et e

T —
Creste your database

ke dbcreate s coe et e st
[T ——
P

images/_covers/jkthp.jpg

images/_covers/jvrails2.jpg

images/_covers/tbajs.jpg

images/cover.jpg
ile Web
evelopment
with alls

scripts/book_local.js
function init() {
 alert("In init");
}

images/WigglyRoad.jpg

images/h1-underline.gif

images/_covers/bhh52e.jpg

images/joe.jpg
Y

images/headshots/David.png
(2

