
INTERNET OF THINGS IN AUTOMOTIVE

INDUSTRIES AND ROAD SAFETY:

Electronic Circuits, Program Coding

and Cloud Servers

River Publishers Series in Transport Technology

Rajesh Singh, Anita Gehlot,
Raghuveer Chimata, Bhupendra Singh

and P. S. Ranjit

INTERNET OF THINGS IN AUTOMOTIVE

INDUSTRIES AND ROAD SAFETY:

Electronic Circuits, Program Coding

and Cloud Servers

Rajesh Singh, Anita Gehlot,
Raghuveer Chimata, Bhupendra Singh

and P. S. Ranjit

The aim of this book is to provide a platform to readers through
which they can access the applications of ‘Internet of Things’ in
the Automotive field. Internet of Things in Automotive Industries
and Road Safety provides the basic knowledge of the modules
with interfacing, along with the programming. Several examples
for rapid prototyping are included, this to make the readers
understand about the concept of IoT.

The book comprises of ten chapters for designing different
independent prototypes for the automotive applications, and
it would be beneficial for the people who want to get started
with hardware based project prototypes. The text is based on the
practical experience of the authors built up whilst undergoing
projects with students and industry.

Technical topics discussed in the book include:

•  Role of IoT in automotive industries
•  Arduino and its interfacing with I/O devices
•  Ti Launch Pad and its interfacing with I/O devices
•  NodeMCU and its interfacing with I/O devices
•  Serial Communication with Arduino and NodeMCU

River Publishers River Publishers

Internet of Things in A
utom

otive Industries and R
oad Safety:

Electronic C
ircuits, Program

 C
oding and C

loud Servers
R

ajesh Singh, A
nita G

ehlot, R
aghuveer C

him
ata,

B
hupendra Singh and P. S. R

anjit

River

Internet of Things in Automotive
Industries and Road Safety

Electronic Circuits, Program Coding
and Cloud Servers

RIVER PUBLISHERS SERIES IN TRANSPORT TECHNOLOGY

Series Editors:

HAIM ABRAMOVICH
Technion - Israel Institute of Technology, Israel

THILO BEIN
Fraunhofer LBF, Germany

Indexing: All books published in this series are submitted to the Web of
Science Book Citation Index (BkCI), to CrossRef and to Google Scholar.

The “River Publishers Series in Transport Technology” is a series of
comprehensive academic and professional books which focus on theory and
applications in the various disciplines within Transport Technology, namely
Automotive and Aerospace. The series will serve as a multi-disciplinary
resource linking Transport Technology with society. The book series fulfils
the rapidly growing worldwide interest in these areas.

Books published in the series include research monographs, edited
volumes, handbooks and textbooks. The books provide professionals,
researchers, educators, and advanced students in the field with an invaluable
insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the
following:

• Automotive
• Aerodynamics
• Aerospace Engineering
• Aeronautics
• Multifunctional Materials
• Structural Mechanics

For a list of other books in this series, visit www.riverpublishers.com

Internet of Things in Automotive
Industries and Road Safety

Electronic Circuits, Program Coding
and Cloud Servers

Rajesh Singh
Lovely Professional University

India

Anita Gehlot
Lovely Professional University

India

Raghuveer Chimata
Argonne National Laboratory

USA

Bhupendra Singh
Schematics Microelectronics

Dehradun, India

P. S. Ranjit
Aditya Engineering College

Andhra Pradesh, India

River Publishers

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

River Publishers
Lange Geer 44
2611 PW Delft
The Netherlands

Tel.: +45369953197
www.riverpublishers.com

ISBN: 978-87-70220-10-1 (Hardback)
978-87-70220-09-5 (Ebook)

c©2018 River Publishers

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, mechanical,
photocopying, recording or otherwise, without prior written permission of
the publishers.

Contents

Preface xi

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1
1.1 Introduction to IoT . 1
1.2 Future and Market Potential of IoT 3
1.3 Industry 4.0 . 4
1.4 IoT Model . 6
1.5 IoT Protocol Architecture 7
1.6 IoT Technology . 11
1.7 Functional Block of IoT 14
1.8 IoT Communication Models 15

1.8.1 Request–Response Communication Model 15
1.8.2 Publish Subscribe Communication Model 15
1.8.3 Push–Pull Communication Model 15

1.9 IoT Communication API 17
1.9.1 REST-based Communication API 17
1.9.2 WebSocket-based Communication API 18

1.10 IoT Levels . 19
1.10.1 Level-1 IoT System 19
1.10.2 Level-2 IoT System 19
1.10.3 Level-3 IoT System 20
1.10.4 Level-4 IoT System 21
1.10.5 Level-5 IoT System 22
1.10.6 Level-6 IoT System 23

v

vi Contents

1.11 Domain-Specific IoT and Applications 24
1.11.1 IoT Application in Transport/Logistics 25
1.11.2 IoT Application in the Smart Home 25
1.11.3 IoT Application in Smart Cities 26
1.11.4 IoT Application in Smart Factory 28
1.11.5 IoT Application in Retail 28
1.11.6 IoT Application in E-Health 28
1.11.7 IoT Application in Railroads 30
1.11.8 IoT Application in Automotive Sector 30
1.11.9 IoT Application in Manufacturing 31
1.11.10 IoT Application in Wearables 31
1.11.11 IoT Application in Agriculture 32
1.11.12 IoT Application in Energy Management 32
1.11.13 IoT Application in Industrial Automation 33
1.11.14 IoT Application in Smart Grids 33
1.11.15 IoT Application in Smart Supply Chain 34
1.11.16 IoT Application in Smart Farming 34
1.11.17 IoT Application in Industrial Internet 34
1.11.18 IoT Application in Connected Car 34
1.11.19 IoT Application in Connected Health 35
1.11.20 IoT Application in Poultry 35
1.11.21 IoT Application in Smart Environment 35
1.11.22 IoT Application in Security and Emergency 35
1.11.23 IoT Application in Smart Animal Farming 35
1.11.24 IoT Application in Smart Water 35

1.12 IoT Servers . 35
1.12.1 KAA . 36
1.12.2 Carriots . 36
1.12.3 Temboo . 36
1.12.4 SeeControl IoT 36
1.12.5 SensorCloud . 37
1.12.6 Etherios . 37
1.12.7 Xively . 37
1.12.8 Ayla’s IoT Cloud Fabric 37
1.12.9 thethings.io . 38
1.12.10 Exosite . 38
1.12.11 Arrayent Connect TM 38
1.12.12 OpenRemote . 38
1.12.13 Arkessa . 39

Contents vii

1.12.14 Oracle IoT Cloud 39
1.12.15 Nimbits . 39
1.12.16 ThingWorx . 39
1.12.17 InfoBright . 39
1.12.18 Jasper Control Center 40
1.12.19 Echelon . 40
1.12.20 AerCloud . 40
1.12.21 ThingSpeak . 40
1.12.22 Plotly . 40
1.12.23 GroveStreams . 40
1.12.24 Microsoft research Lab of Things 41
1.12.25 IBM IoT . 41
1.12.26 Blynk . 41
1.12.27 Cayenne APP . 41
1.12.28 Virtuino APP . 41

1.13 Internet of Things Device Design Methodology 41
1.14 Role of IoT in Automotive Industries 43
1.15 Introduction to Arduino 45
1.16 Introduction to NodeMCU 46
1.17 Introduction to GPRS . 48

2 Interfacing of Arduino with Input/Output Devices 51
2.1 Digital Sensor – Capacitive Touch Proximity Sensor 51

2.1.1 Introduction . 51
2.1.2 Circuit Diagram 51
2.1.3 Program Code 53

2.2 Analog Sensor – DC Voltage Sensor 54
2.2.1 Introduction . 54
2.2.2 Circuit Diagram 55
2.2.3 Program Code 56

2.3 Serial Communication with RF Modem 57
2.3.1 Introduction . 58
2.3.2 Circuit Diagram 59

2.3.2.1 Connection of the transmitter 59
2.3.2.2 Connections of the receiver 61

2.3.3 Program Code 62
2.3.3.1 Transmitter Code 62
2.3.3.2 Receiver Code 64

viii Contents

3 Interfacing of ESP8266 with Input/Output Devices 67
3.1 Interfacing of ESP8266 with Analog Sensor 67

3.1.1 Introduction . 67
3.1.2 Circuit Diagram 68
3.1.3 Program Code 68

3.2 Interfacing of ESP8266 with Digital Sensors 70
3.2.1 Introduction . 70
3.2.2 Circuit Diagram 71
3.2.3 Program Code 71

3.3 NodeMCU and Serial Communication 73
3.3.1 Introduction . 73
3.3.2 Circuit Diagram 73
3.3.3 Program Code 74

4 Biometric Car Door Opening System 77
4.1 Introduction . 77
4.2 Circuit Diagram . 77
4.3 Program Code . 78
4.4 Blynk APP . 82

5 Accident Monitoring System 85
5.1 Introduction . 85
5.2 Circuit Diagram . 85
5.3 Program Code . 87

5.3.1 Program Code for Arduino Nano 87
5.3.2 Program Code for NodeMCU 90

5.4 ThingSpeak Server . 93

6 Engine Oil and Coolant Level Monitoring System 97
6.1 Introduction . 97
6.2 Circuit Diagram . 97
6.3 Program Code . 99

6.3.1 Program Code for Arduino Nano 99
6.3.2 Program Code of NodeMCU for ThingSpeak

Server . 101
6.4 ThingSpeak Server . 103

Contents ix

7 Fleet and Driver Management System 105
7.1 Introduction . 105
7.2 Circuit Diagram . 105
7.3 Program Code . 107

7.3.1 Program Code for Ti Launch Pad with Energeia
IDE . 107

7.3.2 Program Code for NodeMCU with Arduino IDE . 109
7.4 Cayenne APP . 111

8 Smart Road Communication System for Mobile Vehicles 113
8.1 Introduction . 113
8.2 Circuit Diagram . 114

8.2.1 Circuit Diagram for the Road Unit for Black Zone 114
8.2.2 Circuit Diagram of the Unit at the Mobile Vehicle . 117

8.3 Program Code from Arduino IDE 118
8.3.1 Program Code for Ti Launch Pad with Energeia

IDE . 118
8.3.2 Program Code for Ti Launch PAD with Energeia

IDE and GPRS 121
8.4 ThingSpeak Server . 129

9 Talking Road Unit at Pin Turn in Hilly Areas 133
9.1 Introduction . 133
9.2 Circuit Diagram . 134

9.2.1 Circuit Diagram of Smart Device 1 134
9.2.2 Circuit Diagram of Smart Device 2 136

9.3 Program Code . 137
9.3.1 Code for Ti Launch Pad for Smart Device 1 137
9.3.2 Program Code for Ti Launch Pad for Smart

Device 2 . 139
9.3.3 Program Code for Node MCU in Smart Device 2 . 141

9.4 BLYNK App . 143

10 Real-time Car Telematics Tracking System 145
10.1 Introduction . 145
10.2 Circuit Diagram . 147

10.2.1 Connection of Smart Device Using NodeMCU/
ESP8266 . 147

10.2.2 Connection of Smart Device Using GPRS Modem 148

x Contents

10.3 Program Code . 149
10.3.1 Program Code for Smart Device Using NodeMCU 149
10.3.2 Program Code for GPRS 152

10.4 BLYNK App . 161
10.5 ThingSpeak Server . 161

References 165

Index 167

About the Authors 169

Preface

The aim of writing this book is to provide a platform to the readers, where they
can access the applications of ‘Internet of Things’ in the field of automotive. The
book provides the basic knowledge of the modules with their interfacing along
with the programming

The objective of this book is to discuss various applications in automotive
industries where ‘Internet of things’ can play important role. Few examples for
rapid prototyping are included, to make the readers understand about the concept
of IoT.

This book comprises of total ten chapters for designing different independent
prototypes for the automotive applications. It would be beneficial for the people
who want to get started with hardware based project prototypes.

This book is entirely based on the practical experience of the authors while
undergoing projects with the students and industries. We acknowledge the sup-
port from Nutty Engineer.com, to use its products to demonstrate and explain the
working of the systems. We would like to thank the publisher for encouraging our
idea about this book and the support to manage the project efficiently. Although
the circuits and programs mentioned in the text are tested on real hardware but
in case of any mistake we extend our sincere apologies. Any suggestions to
improve the contents of the book are always welcome and will be appreciated
and acknowledged.

ACKNOWLEDGEMENTS

We acknowledge the support from Nutty Engineer to use its products to demon-
strate and explain the working of the systems. We would like to thank RIVER
PUBLISHER for encouraging our idea about this book and the support to
manage the project efficiently.

We are grateful to the honorable Chancellor (Lovely Professional Univer-
sity) Ashok Mittal, Mrs. Rashmi Mittal (Pro Chancellor, LPU), Dr. Ramesh
Kanwar (Vice Chancellor, LPU), Dr. Loviraj Gupta (Executive Dean, LPU) for
their support. We are also thankful to the chancellor (UPES) Dr. S. J. Chopra,
Dr. Dependra Jha (Vice Chancellor, UPES), Dr. Kamal Bansal (Dean, SoE,

xi

xii Preface

UPES), Dr. Piyush Kuchhal (Associate Dean, UPES) and Dr. Suresh Kumar
(Director, UPES) for their support and constant encouragement. In addition we
are thankful to our family, friends, relatives, colleagues and students for their
moral support and blessings.

Dr. Rajesh Singh
Dr. Anita Gehlot

Dr. Raghuveer Chimata
Mr. Bhupendra Singh

Dr. P. S. Ranjit

List of Figures

Figure 1.1 Stages of IoT in an automotive industry. 3
Figure 1.2 Four phases of industrialization. 5
Figure 1.3 Industry 4.0 with BMW. 5
Figure 1.4 IoT protocol architecture model. 6
Figure 1.5 IoT architecture. 7
Figure 1.6 IoT communication protocol stack. 8
Figure 1.7 Architecture of IoT. 8
Figure 1.8 Sensor, connectivity, and network layer. 9
Figure 1.9 Gateway and network layer. 9
Figure 1.10 Management service layer. 10
Figure 1.11 Application layer. 10
Figure 1.12 Protocol architecture. 10
Figure 1.13 Taxonomy of research in IoT technologies. 11
Figure 1.14 IoT device components. 14
Figure 1.15 Functional blocks of IoT. 14
Figure 1.16 Request–response communication model. 15
Figure 1.17 Publish subscribe communication model. 16
Figure 1.18 Push–pull communication model. 16
Figure 1.19 Exclusive pair model. 17
Figure 1.20 Communication with REST API. 18
Figure 1.21 Request–response model of RSET. 18
Figure 1.22 Exclusive pair model used by WebSocket APIs. 19
Figure 1.23 IoT level-1. 20
Figure 1.24 IoT level-2. 21
Figure 1.25 IoT level-3. 22
Figure 1.26 IoT level-4. 23
Figure 1.27 IoT level-5. 24
Figure 1.28 IoT level-6. 25
Figure 1.29 Application domains of IoT cloud platforms. 26
Figure 1.30 Application domains of IoT cloud platforms. 27
Figure 1.31 (a) Nest learning Thermostat. (b) Philips Hue. (c) Air

quality sensing network. (d) Amazon Echo. 27

xiii

xiv List of Figures

Figure 1.32 (a) Smart waste and recycling system. (b) City sense –
wireless outdoor lightening system. (c) Libelium’s
smart parking solution. 28

Figure 1.33 Device for retails. 29
Figure 1.34 Smart health system. 29
Figure 1.35 IoT healthcare applications from Philips. 30
Figure 1.36 (a) Health tracker band. (b) Charge HR. (c) Motorola

Moto 360 Sport. 31
Figure 1.37 Landis+Gyr Home energy management. 33
Figure 1.38 Landis+Gyr Grid management. 33
Figure 1.39 View of Arduino Nano. 46
Figure 1.40 View of NodeMCU. 47
Figure 1.41 Detailed pin description. 47
Figure 1.42 GPRS modem. 48
Figure 2.1 Block diagram of the system. 52
Figure 2.2 Capacitive touch sensor. 52
Figure 2.3 Circuit diagram of the system. 53
Figure 2.4 Block diagram of the system. 55
Figure 2.5 Voltage sensor. 55
Figure 2.6 Circuit diagram of the system. 57
Figure 2.7 2.4-GHz RF serial modem. 58
Figure 2.8 Transmitter section. 59
Figure 2.9 Receiver section. 59
Figure 2.10 Circuit diagram of the transmitter sector. 60
Figure 2.11 Circuit diagram of the receiver. 62
Figure 3.1 Block diagram of the system. 67
Figure 3.2 Circuit diagram of the system. 69
Figure 3.3 Block diagram of the system. 70
Figure 3.4 Circuit diagram of the system. 72
Figure 3.5 Block diagram of the system. 73
Figure 3.6 Circuit diagram of the system. 75
Figure 4.1 Block diagram of the system. 78
Figure 4.2 Circuit diagram of the system. 79
Figure 4.3 Create a new project. 83
Figure 4.4 BLYNK APP. 83
Figure 5.1 Block diagram of the system. 86
Figure 5.2 Circuit diagram of the system. 87
Figure 5.3 Window for ThingSpeak. 93
Figure 5.4 New channel in my channels. 93
Figure 5.5 Field showing latitude. 94

List of Figures xv

Figure 5.6 Field showing longitude. 94
Figure 5.7 Field showing pressure sensor 1(mb). 95
Figure 5.8 Pressure sensor 2 (mb). 95
Figure 5.9 Pressure sensor 3 (mb). 96
Figure 6.1 Block diagram of the system. 98
Figure 6.2 Circuit diagram of the system. 99
Figure 6.3 Field showing oil level. 103
Figure 6.4 Field showing coolant level. 104
Figure 7.1 Block diagram of the system. 106
Figure 7.2 Circuit diagram of the system. 107
Figure 7.3 Cayenne APP. 112
Figure 8.1 Block diagram of the road unit for black zone. 114
Figure 8.2 Block diagram of the unit at the mobile vehicle. 114
Figure 8.3 Circuit diagram of the road unit for black zone. 116
Figure 8.4 Circuit diagram of the unit at the mobile vehicle. . . . 117
Figure 8.5 Field showing temperature sensor readings. 130
Figure 8.6 Field showing humidity sensor readings. 130
Figure 8.7 Field showing air pressure (mbar). 131
Figure 8.8 Field showing altitude. 131
Figure 8.9 Field showing latitude. 132
Figure 8.10 Field showing longitude. 132
Figure 9.1 Block diagram for smart device 1. 134
Figure 9.2 Block diagram for smart device 2. 134
Figure 9.3 Circuit diagram of device 1. 136
Figure 9.4 Circuit diagram of smart device 2. 137
Figure 9.5 BLYNK APP. 143
Figure 10.1 Block diagram of a smart device in cars using

ESP8266. 146
Figure 10.2 Block diagram of a smart device in cars using the

GPRS modem. 146
Figure 10.3 Circuit diagram of a smart device using

NodeMCU/ESP8266. 148
Figure 10.4 Circuit diagram of a smart device using NodeMCU and

GPRS modem. 149
Figure 10.5 BLYNK APP. 162
Figure 10.6 Field showing longitude. 162
Figure 10.7 Field showing latitude. 163

List of Tables

Table 1.1 IoT technologies . 12
Table 1.2 IoT supported platform 13
Table 1.3 GPIO of NodeMCU 48
Table 2.1 Component list . 52
Table 2.2 Component list . 56
Table 2.3 Components’ list for the transmitter section 61
Table 2.4 Components’ list for the receiver section 61
Table 3.1 Components’ list . 68
Table 3.2 Components’ list . 70
Table 3.3 Components’ list . 74
Table 5.1 Components’ list . 86
Table 6.1 Components’ list. 98
Table 7.1 Components’ list. 106
Table 8.1 Components’ list for of the road unit for black zone . . . 115
Table 8.2 Components’ list for of the unit at the mobile

vehicle . 115
Table 9.1 Components’ list for smart device 1 135
Table 9.2 Components’ list of smart device 2 135
Table 10.1 Components’ list for the smart device using

NodeMCU . 146
Table 10.2 Components’ list for a smart device using GPRS 147

xvii

List of Abbreviations

API Application program interface
APP Application
ERP Enterprise source planning
GPRS General Packet Radio Service
GPS Global Positioning System
HTTP Hyper Text Transfer Protocol
IDE Integrated development environment
IIoT Industrial Internet of Things
IoT Internet of Things
IPv6 Internet Protocol version 6
LCD Liquid crystal display
LED Light Emitting Diode
MISO Master In Slave Out
MOSI Master Out Slave In
OSI Open Systems Interconnection
PC Personal Computer
REST Representational state transfer
RF Radio Frequency
RFID Radio frequency identification
TCP Transmission Control Protocol
UART Universal synchronous and asynchronous

receiver-transmitter
V2V Vehicle-to-vehicle
WSN Wireless sensor networks

xix

1
Introduction

1.1 Introduction to IoT

As per Cambridge English Dictionary, the meaning of “Internet” is the large
systems of connected computers around the world that allows people to share
information and communicate with each other and Things means “used to
refer in an approximate ways to objects.”

Internet of things (IoT) is the communication between abiotic without
interference of biotic systems, i.e., any product/process/service can interact
within them and with other products or processes without interference of
human beings.

Few examples:

1. Operate AC/Geyser with a mobile.
2. Automatic gate opening of a house.
3. Authorize a person to enter a home in the absence of the owner.
4. Health monitoring system.
5. An automatic interacting system with a driver to avoid the accidents.

The required data can be collected by the IoT-enabled devices from the
existing wide variety of technologies and send the data as and when required
to their identified devices. In present market, smart ACs and heaters act
according to the requirement of the user, using a WiFi system. Even our
cutlery will start informing us about the quantity of food intake as per
calories’ requirement; further, it may depend on BMI and the type of workout.
The old mobile phones, TVs, and house dustbins are becoming smarter. As
per one statistical analysis, IoT-enabled devices will reach upto 31 billion in
numbers by 2020. IPv6 is version of the Internet protocol, which provides
the identification for computers on network and routes the traffic over the
Internet. IPv6 has 128-bit Hex numbers address.

1

2 Introduction

IoT – Key Features

The basic architecture of IoT comprises sensors, actuators, and their enabling
machine language. Artificial intelligence, its connectivity, and its active
engagement can be used by small devices.

Artificial Intelligence: Artificial intelligence is a mathematically developed
manmade machine intelligence, developed in order to perceive the natural
environment to achieve the target. The IoT-enabled artificial intelligence
has the smart algorithm to collect the data and self-communicating among
connected devices through their networks. For example, in a smart bin system
of a production line, if the material gets over, then data will be transferred to
the enterprise resource planning (ERP) system, followed by order received by
the supplier from the ERP and refills the intelligent smart bin.

Connectivity: Connectivity is a major issue in most of the places. Earlier the
industries had connectivity. At present, the XBee, RFID, RX/TX 433MHz,
and WiFi are the devices to provide network connectivity to realize the IoT
applications.

Sensors: A device in the form of sensors/transducers is required to detect the
physical parameters and communicate its data to the destination through the
embedded system.

Active Engagement: The IoT being an active engagement of technologies
makes a paradigm shift over today’s passive engagement among service and
product managements.

Small devices: The IoT is a small device, which enables and ensures more
precision, scalability, and versatility.

IoT Merits

1. In the today scenario, the IoT becomes a part of personal as well as
business life of an individual.

2. It improves the customer engagement with product service.
3. It is an optimized way to use the technology.
4. The data collection is easy.

IoT – Demerits

Though IoT addressed so many meritorious things, it also has some chal-
lenges as well:

1.2 Future and Market Potential of IoT 3

Value Driver

Magnitude (scope,
scale, frequency) /Risk

(security, relability,
accuracy) /

time(latency,timeliness)

Stage
Act

Stage
Create

Stage
communicate

stage
aggrigate

Stage
analyse

Technologies
sensor

Technologies
network

Technologies
standard

Technologies
Augmented
intelligence

Technologies
Augmented
Behaviour

Figure 1.1 Stages of IoT in an automotive industry.

1. Security: In these days, everyone is listening to the word “Cyber secu-
rity” because of each individual communicating with each other through
virtual networks, which becomes an advantage for hackers.

2. Complexity: To make systems/processes more simpler and user friendly,
the complexity of developing them always increases.

3. Compliance: Any service or technology in the real business needs to be
comply with regulations.

The IoT is the integration of sensing, communication, and its analytic capa-
bilities raised overall conventional technologies. The IoT area promises in
helping automotive industries by directly managing their existing assets at
different places, supply chains, and after sales service, dealers and customer
relationships, which helps to understand and access the data/information as
and when required. Figure 1.1 shows the stages of IoT in automotive industry.

1.2 Future and Market Potential of IoT

Society is becoming smart by using the IoT eco-system in day-to-day life
activities, which leads to enrich the lives of human beings. Its application

4 Introduction

started from a smart dustbin to operate the parking garage door. In the
near future, IoT can become multi-trillion dollars’ industry. CISCO revealed
that the use of IoT-enabled devices number may raise to 50 billion against
7.6 billion people [1].

1.3 Industry 4.0

The present conceptual age is dominating the right brained activities like
creativity when compared to logic thinking taken place by the left side brain
information age, as industrial era focused on change in every aspect of life to
digital era, where every dimension of life is being changing.

1. First industrial revolution (1784) – A mechanical weaving loom.
2. Second industrial revolution (1923) – Introduction of a moving assembly

line at Ford Motors.
3. Third industrial revolution (1969) – Introduction of the first pro-

grammable logic controller.
4. Fourth industrial revolution (2014) – Industry4.0 was introduced to

intelligent machines, embedded cyber physical sensors, collaborative
technologies, and network processes [2].

The term Industry 4.0 was used by the German Government, which means
the use of IoT in the manufacturing industry. The term Industry 4.0 refers to
the fourth industrial revolution. Sometimes it is also known as Industrial IoT
(IIoT) [11].

Industry 4.0 is based on the technological concepts of cyber-physical
systems, the IoT, and the Internet of Services. It facilitates the vision of
the Smart Factory. IoT focuses on convenience for individual consumers,
whereas Industrial 4.0 is strongly focused on improving the efficiency, safety,
and productivity of operations with a focus on return on investment. Although
Industry 4.0 is more particular to industry, yet the two terms refer to similar
movements. Industry 4.0 represents a paradigm shift from “centralized” to
“decentralized” smart manufacturing. The BMW adopted Industry 4.0 man-
ufacturing strategy in order to obtain their greater efficiency and flexibility
in their factories. Earlier, the automotive parts were assembled by robots
and human beings (technicians). But most of the insignificant assembly
tasks were performed by human hands, whereas with Industry 4.0, techni-
cians/engineers are working with interactive robots. Figure 1.2 shows the four
stages of industrialization and Figure 1.3 shows the Industry 4.0 with BMW.

1.3 Industry 4.0 5

Water and steam power
was used to run

mechanical production
facilities

Industry 1.0

Electric power was used
to enable work sharing

mass production

Industry 2.0

Electronics and IT were
used to automate

production

Industry 3.0

Cyber-physical systems
were used to monitor,

analyze and automate the
business

Industry 4.0
1

END of 18th century
2 3 4

TodayEarly 1970sBeginning of 20th century

Figure 1.2 Four phases of industrialization.

Figure 1.3 Industry 4.0 with BMW.

Advantages of Industry 4.0 application in Automotive Industry:

• Robots are having interactive nature required to work with humans,
which makes them much safer and user friendly.
• These robots can eliminate hard physical labor being a part of human

team, which leads to increase in production efficiency of the plant.
• Robot can use its energy and mechanical accuracy to support human

work force in healthy conditions for long lasting.

Case studies:

1. Predictive maintenance executed by BOSCH, IBM, and US Depart-
ment of Energy using connectivity and big data analytics leads to the
following points:

• Maintenance cost reduced by 30%
• Unplanned breakdowns reduced by 75%

6 Introduction

• Down time reduced by 45%
• Working condition, safety, and better product quality increased

by 25%.

2. Improvement of internal logistics using the camera/RFID and ERP
system by WURTH leads to the following points:

• Ordering cost reduced by 80%
• Working capital reduced by 20–40%.
• Floor space utilization cost reduced by 20–30%.

1.4 IoT Model

The IoT protocols have the following layers like the existing OSI architecture
model. The protocols used in the different categories are as follows:

1. Infrastructure: 6LowPAN, IPv4/IPv6, and RPL
2. Identification: EPC, uCode, IPv6, and URIs
3. Communication/Transport: WiFi, Bluetooth, and LPWAN
4. Discovery: Physical Web, mDNS, and DNS-SD
5. The Data Protocols: MQTT, CoAP, AMQP, Websocket, and Node
6. Device Management: TR-069 and OMA-DM
7. Semantic: JSON-LD and Web Thing Model
8. Multi-layer Frameworks: Alljoyn, IoTivity, Weave, and Homekit [2].

Figure 1.4 shows the IoT protocol architecture model for various
applications.

IEEE
8.02.15.5

Bluetooth
4.0 Low
energy

RFID/NEC Wi-Fi

XBee

IPv4/ IPv6
6LoWPAN

RPL

TCP TCP/UDP

HTTP CoAP SEP2.0

ONEM2M/ETSI M2M Service Layer

Application1 Application2 Application N

Physical layer

Data link layer

Network layer

Transport layer

Application
layer

Figure 1.4 IoT protocol architecture model.

1.5 IoT Protocol Architecture 7

1.5 IoT Protocol Architecture

Figure 1.5 shows the architecture of IoT. It contains the perception layer,
network layer, and application layer.

Perception Layer – In this layer, the collection of the data takes place
from the environment like air pressure, altitude, temperature, and humidity
from various homogeneous or heterogeneous devices. Intelligent sensors in
wireless sensor networks (WSNs) collect and process the data for differ-
ent applications. Devices like actuators linear/rotational, cameras, intelligent
sensors, and GPS are communicating with each other through different pro-
tocols like XBee, 2.4GHz RF modem, 433MHz RF modem, Bluetooth, nRF
modem, and WiFi for different ranges of communications.

Network Layer – The network layer establishes a link between the per-
ception layer and the application layer. The network layer collects the
information from the perception layer and sends it to the application layer
for further processing.

Application Layer – The application layer bridges the gap between the
application and users.

Figure 1.6 shows other ways of representing the architecture/communicat-
ion protocol stack of IoT. The communication protocol stack of IoT has the

Perception Layer

Network Layer

Application Layer

*Practical application of IoT
technology in to real world
*Protocol are CoAP,MQTT and
XMPP

*Unique addressing scheme to
ensure secure data transfer
* protocol are 6LoWPAN, TCP/
UDP,IPv6,WiFi,XBee

*Collect information from multiple
devices
* Data processing and
communication (Short range)
*Example are RFID, Sensors and
actuators

Objects

Object Abstraction

Service management

Application layer

Business layer

Figure 1.5 IoT architecture.

8 Introduction

Physical layer

Data link layer

Network Layer

Transport layer

Application layer

IEEE15.4, BLE, RFID/ NFC, Wi-Fi

6LoWPAN

IPV6
RPL

X
B
e
e

H
T
T
P

M
Q
T
T

TCP UDP

A
M
P
Q

X
M
P
P

D
D
S

C
o
A
P

Figure 1.6 IoT communication protocol stack.

Sensors connectivity and
Network

Gateway and Network

Management Service

Application

Sensor network, sensors/
actuators, Tags (RFID,

Barcode)

WAN(GSM, UMTS, LTE,
LTE-A)

WiFi, Ethernet, Gateway
Control

Device modeling,
Configuration and

management

Dataflow management,
security control

Environment Energy

Healthcare

Transportation Supply Chain

Survillance

Retail

Figure 1.7 Architecture of IoT.

physical layer, data link layer, network layer, transport layer, and application
layer with its associated protocol. Figure 1.7 shows the IoT architecture.

Figure 1.8 shows other ways of representing the architecture of IoT.
The radio frequency identification device (RFID) tags and sensors are the
important part of an IoT system and these are responsible for collecting the

1.5 IoT Protocol Architecture 9

WiFi Ethernet UWB XBee Bluetooth 6LowPAN Wired

Solid state Infrared
Photo

ionization
Gyroscope

Electro-
chemical

Electro-
mech

Catalytic Accelerometer GPS
Photo-
electric

Sensor network

Sensor and
actuators

Tag

RFID

Barcode (1D,
2D)

LAN PAN

Figure 1.8 Sensor, connectivity, and network layer.

GSM/UMTS LTE LTE-A
WiFi Ethernet

Microcontroller
Radio Comm

Module
Signal processor and

modular
Embedded OS SIM module Encription

Gateway
Network

Gateway

Figure 1.9 Gateway and network layer.

raw data. It has the sensor, connectivity, and the network layer at the bottom
of this layer and has RFID tags or barcode reader, sensors/actuators, and then
the communication networks.

Figure 1.9 shows the gateway and network layer. This layer is responsible
for providing the route to the data, coming from the sensor, connectivity, and
network layer and passes it to the next layer, which is the management service
layer. This layer has large storage capacity to store the data of sensors, RFID
tags, etc. This layer also integrates various network protocols as different IoT
devices work on different kinds of network protocols. The gateway at the
bottom of the Figure 1.9 contains embedded OS, signal processors, micro-
controllers, etc. The gateway networks contain WiFi, Ethernet, local area
network, wide area network (WAN), etc.

Figure 1.10 shows the management service layer used for managing
the IoT services. The management service layer is responsible for securing
analysis of IoT devices, analysis of information (stream analytics and data
analytics), and device management. Data management is required to extract
the necessary information from the enormous amount of raw data collected
by the sensor devices to yield a valuable result of the collected data. The
management service layer has operational support service, which includes
device modeling, device configuration and management, and many more.
A billing support system supports billing and reporting. IoT/M2M applica-
tion service includes analytics platform and security which includes access

10 Introduction

OSS
* Device modeling
* Device management
* Performance management
*Security Management

BSS

*Billing
*Reporting

IoT/M2M application services

Statical
analytics

Data Mining
In motion
analytics

Text Mining
In memory
analytics

Predictive
analytics

Management Service

Figure 1.10 Management service layer.

Environment Energy Transporation Healthcare Retail

Fleet tracking Asset management Supply chain People tracking Survillance

Application management

Figure 1.11 Application layer.

Physical
Layer

Link Layer

Internet layer

Transport
layer

Application
Layer

Devices, objects, Things

IEEE 802.15.4, IEEE 802.11, ISO/IEC 18092:2004, NB-IoT,
EC-GSM-IoT, Bluetooth,ANT, ISA100.11a,EnOcean,LTE-MTC

6LoWPAN, IPv6,uIP,NanoIP

CoAP,MQTT,XMPP,AMQP,LLAP,DDS,SOAP,UDP,TCP,DTLS

REST API, JSON-IPSO objects, Binary Objects

Figure 1.12 Protocol architecture.

controls, encryption, identity access management, business rule management,
and business process management.

Figure 1.11 shows that the application layer forms the topmost layer
of the IoT architecture, which is responsible for effective utilization of the
data collected. The IoT applications include home automation, industrial
automation, healthcare, transportation, surveillance, retail, and tracking.

Figure 1.12 shows the other way to represent the IoT protocol
architecture [5].

Figure 1.13 shows the taxonomy of research in IoT technologies, where
perception, preprocessing, communication, middleware, and application are
the sequence of execution of the primary data collected from the field.

1.6 IoT Technology 11

Perception
(Sensors)

Preprocessing
Communication
(networking)

Middleware Applications

RFID

Infrared
sensors

Chemical/
biosensors

Environmental
sensors

Medical
sensors

Nureal
sensors

Mobile phone
sensor

Magnetometer
sensor

Location sensor

Camera

Movement sensor

Microphone

Light sensor

Proximity sensor

Internet protocol
for smart objects

Low Power
Technologies

Near Field
communication

WSN RFID and WSN

Low power
link layer

Adaptation
layer

Routing
protocol

Application
protocol

Bluetooth Low
power link layer

Low power WiFi

XBee

Application
specific

Database
oriented

Event based

Service based

Semantic based

Energy
conservations

Smart agricuture

Healthcare

Supply chain
management

Home
automation

Figure 1.13 Taxonomy of research in IoT technologies [4].

1.6 IoT Technology

The IoT architecture consists of a collection of active devices/things, digital
and analog sensors, linear and rotational actuators, communication proto-
cols, and developers. Table 1.1 shows the enabling technologies for IoT.
The enabling technologies like WiFi, WiMAX, LRWPAN, Bluetooth, and
LoRA are differentiated with respect to its standard, frequency, data rate,
transmission range, energy consumption, and cost.

Table 1.2 shows the IoT supported platform with its parameters. It
shows IoT-enabled devices to control through Electric Imp 003 Raspberry
Pi BC, Intel Galileo Gen 2, Intel Edison, Beagle Bone Black, Arduino Uno,
Arduino Yun, ARM embed NXP LPC1768, and TelosB. These platforms
have been identified by using parameters like general-purpose unit, clock,
voltage requirement, Flash memory, system memory, integrated development
environments (IDEs), programming languages, input and output connectivity,
and type of processor.

12 Introduction

T
ab

le
1.

1
Io

T
te

ch
no

lo
gi

es
Pa

ra
m

et
er

s
W

iF
i

W
iM

A
X

L
R

W
PA

N
M

ob
ile

B
lu

et
oo

th
L

oR
A

St
an

da
rd

IE
E

E
80

2.
11

a/
c/

b/
d/

g/
n

IE
E

E
80

2.
16

IE
E

E
80

2.
15

.4
X

B
ee

2G
G

SM
,

C
D

M
A

3G
-U

M
T

S,
C

D
M

A
20

00
,

$G
LT

E

IE
E

E
80

2.
15

.1
L

oR
A

W
A

N
R

1.
0

Fr
eq

ue
nc

y
ba

nd
5–

60
G

H
z

2–
66

G
H

z
86

8/
91

5
M

H
z,

2.
4

G
H

z
86

5
M

H
z,

2.
4

G
H

z
2.

4
G

H
z

86
8/

90
0

M
H

z

D
at

a
ra

te
1–

6.
75

M
b/

s
1

M
b/

s–
1

G
b/

s
(fi

xe
d)

50
M

b/
s–

10
0M

b/
s

(m
ob

ile
)

40
–2

50
kb

/s
2G

:5
0–

10
0

kb
/s

3G
:2

00
kb

/s
4G

:0
.1

–1
G

b/
s

1–
24

M
b/

s
0.

3–
50

kb
/s

T
ra

ns
m

is
si

on
ra

ng
e

20
–1

00
m

<
50

km
10

–2
0

m
E

nt
ir

e
ce

llu
la

r
ar

ea
8–

10
m

<
30

km

E
ne

rg
y

co
ns

um
pt

io
n

H
ig

h
M

ed
iu

m
L

ow
M

ed
iu

m
L

ow
V

er
y

lo
w

C
os

t
H

ig
h

H
ig

h
L

ow
M

ed
iu

m
L

ow
H

ig
h

1.6 IoT Technology 13
T

ab
le

1.
2

Io
T

su
pp

or
te

d
pl

at
fo

rm
In

te
lG

al
ile

o
B

ea
gl

e
B

on
e

E
le

ct
ri

c
R

as
pb

er
ry

A
R

M
m

be
d

Pa
ra

m
et

er
s

A
rd

ui
no

U
no

A
rd

ui
no

Y
un

ge
n2

In
te

lE
di

so
n

B
la

ck
IM

P0
03

Pi
N

X
P

L
PC

17
68

Te
lo

s
B

Pr
oc

es
so

r
A

tm
eg

a
32

8p
A

tm
eg

a3
2U

4
an

d
A

th
er

os
A

R
93

31

In
te

lQ
ua

rk
SO

C
X

10
00

In
te

lQ
ua

rk
SO

C
X

10
00

Si
ta

ra
A

M
33

58
B

Z
C

Z
10

0

A
R

M
co

rt
ex

M
4F

B
ro

ad
co

m
B

C
M

28
35

So
c-

ba
se

d
A

R
M

11

A
R

M
co

rt
ex

M
3

M
SP

43
0

O
pe

ra
tin

g
vo

lta
ge

5
V

5,
3

V
5

V
3.

3
V

3.
3

V
3.

3
V

5
V

5
V

3–
3.

6
V

C
lo

ck
sp

ee
d

16
M

H
z

16
,4

00
M

H
z

40
0

M
H

z
10

0
M

H
z

1
G

H
z

32
0

M
H

z
70

0
M

H
z

96
M

H
z

8
M

H
z

B
us

w
id

th
8

32
32

32
32

32
32

32
16

Sy
st

em
m

em
or

y
2

kB
2,

5,
64

kb
25

6
M

B
1

G
B

51
2

M
B

12
0

kb
51

2
M

B
32

kb
10

kb
Fl

as
h

m
em

or
y

32
kb

32
kb

,1
6

M
b

8
M

b
4

G
B

4
G

B
4

M
b

–
51

2
kb

48
kB

E
E

PR
O

M
1

kb
1

kb
8

kb
–

–
–

–
–

–
D

ev
el

op
m

en
t

en
vi

ro
nm

en
t

A
rd

ui
no

ID
E

A
rd

ui
no

ID
E

A
rd

ui
no

ID
E

A
rd

ui
no

ID
E

,
E

cl
ip

se
,I

nt
el

X
D

K

D
eb

ia
n,

an
dr

oi
d,

U
ba

nt
u,

C
lo

ud
9

ID
E

E
le

ct
ri

c
Im

pI
D

E
N

oo
B

S
C

/C
++

SD
K

,
O

nl
in

e
co

m
pi

le
r

E
cl

ip
se

ID
E

Pr
og

ra
m

m
in

g
la

ng
ua

ge
W

ir
in

g
W

ir
in

g
W

ir
in

g
W

ir
in

g,
C

,
C

++
,N

od
e

JS
,

H
T

M
L

5

C
,C

++
,

Py
th

on
,P

er
l,

R
ub

y,
JA

V
A

,
N

od
e8

Sq
ui

rr
el

C
,C

++
,

Py
th

on
,

R
ub

y,
JA

V
A

C
,C

++
C

,N
es

C

I/
O

co
nn

ec
tiv

ity
SP

I,
I2

C
,U

A
R

T,
G

PI
O

SP
I,

I2
C

,
U

A
R

T,
G

PI
O

SP
I,

I2
C

,
U

A
R

T,
G

PI
O

SP
I,

I2
C

,
U

A
R

T,
G

PI
O

,
I2

S

SP
I,

I2
C

,
U

A
R

T,
G

PI
O

,
M

cA
SP

SP
I,

I2
C

,
U

A
R

T,
G

PI
O

SP
I,

D
SI

,
U

A
R

T,
SD

IO
,C

SI
,

G
PI

O

SP
I,

I2
C

,G
PI

O
,

C
A

N
U

SB
se

ri
al

,
G

PI
O

C
om

m
un

ic
at

io
n

st
an

da
rd

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F,

B
L

E
4.

0,
E

th
er

ne
t,

Se
ri

al

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F,

B
L

E
4.

0,
E

th
er

ne
t,

Se
ri

al

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F,

B
L

E
4.

0,
E

th
er

ne
t,

Se
ri

al

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F,

B
L

E
4.

0,
E

th
er

ne
t,

Se
ri

al

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F,

B
L

E
4.

0,
E

th
er

ne
tS

er
ia

l

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F,

B
L

E
4.

0
E

th
er

ne
t,

Se
ri

al

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,
43

3R
F

B
L

E
4.

0,
E

th
er

ne
t,

Se
ri

al

IE
E

E
80

2.
11

b/
g/

n,
IE

E
E

80
2.

15
.4

,4
33

R
F

B
L

E
4.

0,
E

th
er

ne
t,

Se
ri

al

C
C

24
20

14 Introduction

1.7 Functional Block of IoT

An IoT system comprises many functional blocks to facilitate various utilities
to the system such as sensing, identification, actuation, communication, and
management.

Figure 1.14 shows the various components of IoT devices like con-
nectivity, processors, audio/video interfaces, input–output interfaces, storage
interface, memory interface, and graphics. Figure 1.15 shows the functional
blocks of IoT, which consists of physical devices, communication modem,
service, security, management, and application.

USB Host

RJ45/Ethernet

Connectivity

CPU

Processor

NAND/NOR

DDR1/DDR2/DD3

Memory Interface

GPU

Graphics

HDMI

3.5mm Audio

Audio/Video Interfaces

RCA video

SD

MMC

Storage Interface

SDIO

UART

I/O Interfaces

SPI

I2C

CAN

Figure 1.14 IoT device components.

Application

Management Security
Service

Communication

Device

Functional blocks of IoT

Figure 1.15 Functional blocks of IoT.

1.8 IoT Communication Models 15

Client Server Resources

Request

Response

*Receive request from client
*processes requests

*looks up/fetches resources
*prepare responses and sends

response to client

Send request to
server

Figure 1.16 Request–response communication model.

1.8 IoT Communication Models

The communication model of IoT includes request–response communication
model, publish subscribe communication model, push–pull communication
model, and exclusive pair communication model.

1.8.1 Request–Response Communication Model

Figure 1.16 shows the request–response communication model. The request
response is a communication model in which the client sends a request to
the server and the server responds to the request. When the server receives
a request, it decides how to respond, fetches the data, retrieves resource
representations, prepares the response, and then sends the response to the
client.

1.8.2 Publish Subscribe Communication Model

Figure 1.17 shows the block diagram of the publish subscribe communication
model. It includes consumers, consultants, and publishers. Publishers are
source of data availability; they send the same to the aspirants through
consultants as and when requirement raises.

1.8.3 Push–Pull Communication Model

Figure 1.18 shows the push–pull communication model of IoT. Queue plays
the important role in this push–pull communication model. Data is pushed

16 Introduction

Publisher

Broker
Topic-1

Topic-2

Consumer1

Message published to topic1

Message published to topic2

Topic-1
Subscribers:
consumer1
consumer2

Send messages
to topics Topic-2

Subscribers:
consumer3

Consumer2

Consumer3

Figure 1.17 Publish subscribe communication model.

Publisher

Send messages
to queue

Queues

Messages pushed to queues Messages pulled from queues

Consumer-1

Consumer-2

Figure 1.18 Push–pull communication model.

to the queue and pulls back when needs to consume. Queue is helping to
communicate between the manufacturer and the consumer. If there is any
mismatch in between, push and pull systems can be avoided and also they are
acting as a buffer.

Figure 1.19 shows the exclusive pair model. It is a bi-directional, full-
duplex communication model that uses a persistent connection between the
client and the server. Once the connection is set up, it remains open until the
client sends the request to close the connection. The client and the server can
send the messages to each other after the connection setup.

1.9 IoT Communication API 17

Client Server

Request to setup connection

Response to accept the request

Message from client to server

Message from server to client

Connection close request

Connection close responce

Figure 1.19 Exclusive pair model.

1.9 IoT Communication API

The most popular IoT communication application programmable interfaces
(APIs) are representational state transfer (REST) and WebSocket.

1.9.1 REST-based Communication API

The REST or REST services are the way to provide interoperability between
computer systems connected to the Internet. Such a type of web service
provides a request to the system to access and manipulate the textual rep-
resentations of web resources. The system uses the uniform and predefined
set of operations, which expose the arbitrary sets of operations such as
WSDL and SOAP. The web resources are available in World Wide Web
(www) as documents or files identified by their URLs. Figure 1.20 shows
the communication with REST API.

Figure 1.21 shows the request–response model of RSET. The request–
response is a communication model in which the client sends a request to
the server and the server responds to the request. When the server receives
a request, it decides how to respond, fetches the data, retrieves resource
representations, prepares the response, and then sends the response to the
client.

18 Introduction

HTTP server

Authorization
RESTful web service

Resources
URI-Uniform Resource locator

HTTP PacketHTTP Client
REST aware HTTP client

HTTP command

GET
PUT
POST

DELETE

REST Payload

JSON
XML

Figure 1.20 Communication with REST API.

Client Server

Request (GET,PUT, UPDATE or
DELETE) with payload JSON or XML

Response from JSON or XML

Figure 1.21 Request–response model of RSET.

1.9.2 WebSocket-based Communication API

WebSocket is a computer communication protocol, which provides full-
duplex communication channels using a single TCP connection. The Web-
Socket is application program interface (API) in Web IDL and standardized
by the W3C. It is a two-way (bi-directional) conversation and able to establish
the communication between the client and the server.

Figure 1.22 shows the exclusive pair model used by WebSocket APIs.
The exclusive pair is a bidirectional, full-duplex communication model that
uses a persistent connection between the client and the server. Once the
connection is set up, it remains open until the client sends the request to close
the connection. The client and the server can send the messages to each other
after the connection setup. In the exclusive pair communication model, the
server is aware of all the open connections.

1.10 IoT Levels 19

Client Server

Request to setup WebSocket connection

Response accepting the request

Data frame

Data frame

Connection close request

Connection close response

Initial handshake

Close connection

Bidirectional
communication

Figure 1.22 Exclusive pair model used by WebSocket APIs.

1.10 IoT Levels

The IoT levels can be classified into six categories. The details are as follows.

1.10.1 Level-1 IoT System

A level-1 IoT system has a single node/device that performs sensing operation
and/or actuation, stores data, performs analysis, and hosts the application as
shown in Figure 1.23. The system is suitable for modeling low-cost and low-
complexity solutions where the data involved are not big and the analysis
requirements are not computationally intensive. Home automation is the best
example, where a single node can control the lights and appliances in a home
remotely.

1.10.2 Level-2 IoT System

A level-2 IoT system has a single node/device that performs sensing and/or
actuation and local analysis as shown in Figure 1.24. The data are stored in
the cloud and the application is cloud based. The system is suitable where
the data involved are big. However, the primary analysis requirement is not
computationally intensive and can be done locally itself. Smart irrigation is an
example of this level; in this system, a single node monitors the soil moisture
level and controls the irrigation system.

20 Introduction

Resources

Devices

Controller
Service

Database

Representational State
Transfer(REST)/WebSocket

services

Application

REST/WebSocket
communication

LOCAL CLOUD

Monitoring Node performs
analysis, stores data

Figure 1.23 IoT level-1.

1.10.3 Level-3 IoT System

A level-3 IoT system has a single node, where data are stored and analyzed in
the cloud and application is cloud based as shown in Figure 1.25. This type of
system is suitable where data involved are big and the analysis requirements
are computationally intensive. Tracking of package is an example for this,
where a single node at one place always monitors the coordinates of the
package being supplied.

1.10 IoT Levels 21

Resources

Devices

Controller
Service

Database

Representational State
Transfer(REST)/WebSocket

Application

REST/WebSocket
communication

LOCAL CLOUD

Monitoring Node performs
analysis

Cloud storage

REST/WebSocket
communication

Figure 1.24 IoT level-2.

1.10.4 Level-4 IoT System

A level-4 IoT system has multiple nodes that perform local analysis
(Figure 1.26). Data are stored in the cloud. The local and cloud-based
observer nodes can subscribe to and receive information collected in the
cloud from IoT devices. Observer nodes can process information and use
it for various applications. However, observer nodes do not perform any
control functions. These types of systems are suitable where a lot of nodes
are involved in the process and the data are big. The analysis requirements are
computationally intensive. The city noise monitoring is one best example in

22 Introduction

Resources

Devices

Controller
Service

Database

Representational State
Transfer(REST)/WebSocket

Application

REST/WebSocket
communication

LOCAL CLOUD

Cloud storage
and analysis

REST/WebSocket
communication

Monitoring
Node

Figure 1.25 IoT level-3.

the level. The system consists of multiple nodes placed in different locations
for monitoring noise levels in an area.

1.10.5 Level-5 IoT System

A level-5 IoT system has a large number of end nodes and one coordinator
(Figure 1.27). The end node performs the sensing and the coordinator node
collects data from the end nodes and sends it to the cloud. Data are stored and

1.10 IoT Levels 23

Resources

Devices

Controller
Service

Database

Representational State
Transfer(REST)/WebSocket

Application

REST/WebSocket
communication

LOCAL CLOUD

Monitoring Node perform
analysis

Cloud storage

REST/WebSocket
communication

Resources

Devices

Controller
Service

Analytics component
(IoT Intelligence)

Observer
Node

Observer
Node

Figure 1.26 IoT level-4.

analyzed on the cloud. The system is suitable for WSN-based solutions. The
best example is forest fire detection. The system comprises various nodes
placed at different locations of the forest to monitor the fire, temperature,
humidity, and CO2 levels.

1.10.6 Level-6 IoT System

A level-6 IoT system has multiple independent end nodes that perform
sensing and/or actuation and send data to the cloud (Figure 1.28). Data are
the stored on the cloud. The analytics components analyze the data and store
the results in the cloud database. The results are visualized with the cloud-
based application. The centralized controller is aware of the status of all the
end nodes and sends control commands to the nodes. The example is weather

24 Introduction

Resources

Devices

Controller
Service

Database

Representational State
Transfer(REST)/WebSocket

Application

LOCAL CLOUD

Routers/END points

Cloud storage
and analysis

REST/WebSocket
communication

Resources

Devices

Controller
Service Analytics component

(IoT Intelligence)

Observer
Node

Observer
Node

Resources

Devices

Controller
Service

Coordinator

Figure 1.27 IoT level-5.

monitoring system which consists of multiple nodes placed at the different
locations for monitoring temperature, humidity pressure, radiation, and wind
speed. The end nodes are equipped with various sensors. The end nodes send
the data to the cloud in real time using WebSocket service. The data are stored
in the cloud-based server [12].

1.11 Domain-Specific IoT and Applications

Figure 1.29 shows the application domains of IoT cloud platforms in various
fields. The major application domains of IoT are deployment manage-
ment, monitoring management, visualization, research, application domain,
device management, system management, heterogeneity management, data
management, analytics, etc [8].

Figure 1.30 shows the broad application domains of IoT cloud platforms
in various fields. The various fields are RFID, SoA, WSN, and supply chain

1.11 Domain-Specific IoT and Applications 25

Controller
Service

Database

Representational State
Transfer(REST)/WebSocket

Application

LOCAL CLOUD

Multiple monitoring Node

Cloud storage
and analysis

REST/WebSocket
communication

Resources

Devices

Controller
Service Analytics component

(IoT Intelligence)

Observer
Node

Observer
Node

Resources

Devices

Controller
Service

Centralized
controller

Figure 1.28 IoT level-6.

management (SCM), healthcare, smart society, cloud service, social compute,
and security. Further all fields also subdivided into different areas like WSN
category applications are environment, agriculture, infrastructure, etc [6].

1.11.1 IoT Application in Transport/Logistics

In transportation logistics, supply chain plays a major role while delivering
goods from the origin to the destination. In order to control the movement
and ensure supply chain, transparent IoT helps through global positioning
and automatic identification of freight. IoT brings paradigm shift in SCM
globally through intelligent freight movement.

1.11.2 IoT Application in the Smart Home

The major aspects for smart homes can be taken care like resource utilization
(water, energy etc.), security, and comfort. To achieve comfort, these smart

26 Introduction

Application
Domain of IoT

Application
Development Device

Management

System
Management

Heterogeneity
Management

Data
Management

Analytics

Deployment
Management

Monitoring
Management

Visulization

Research

Figure 1.29 Application domains of IoT cloud platforms.

homes will reduce the overall expenditure by eliminating waste. In order to
identify unauthorized entries, complex security system is required.

Figure 1.31(a) shows the Nest Learning Thermostat. This thermostat is
making use of IoT concepts and able to reduce 15% on cooling bills and 12%
on heating bills as an average. Figure 1.31(b) shows the Philips Hue as other
example of smart homes. In this system, the bulb changes 600–800 color
lumens as per mood of the occupant in that room.

Figure 1.31(c) shows the air quality sensing network made up by using
a DIY sensor. The system senses the CO and NO2 and other pollutants in
home environment and determines the air quality. Figure 1.31(d) shows other
home appliances like the Amazon Echo. The seven microphones are inbuilt
and being highly sensitive, listener of words from across various noises, and
answer the same [8].

1.11.3 IoT Application in Smart Cities

The smart cities mean smart waste and recycling process, traffic congestion,
wireless outdoor lighting system, and smart parking system. Some of the

1.11 Domain-Specific IoT and Applications 27

RFID SoA WSN SCM
Health
Care

Smart
Society

Cloud
service

Social
Compute

Security

IoT Domain Tree

EPC

uID

NFC

Beyond
RFID

RFID
Based

Middle
ware
Based

Environment

Agriculture

Infrastructure

Aquaculture

Distributed
SN

SoA/
RFID/NFC

SCMaas

IoTMaas

HomeHealth

eHealth

mHealth

Ubiquitous
health

Hospital
Management

WSN

Road
condition

Traffic

Municipal

Smartcity

Urban
management

Accidental

Smart cycling

Smart sports

Home
entertainment

Tourishm

Logistics

Smart
environment

E-learning

Info exchange

Vechular cloud

Cloud infra

Context
aware

IoTaaS

Location
awrae

Cognitive
science

Control

Sensor
discovery

Fog
computing

Big data

Data Filtering

SIoT

Societal
Data

Object

E-to E

CPS

Hierarchical

lightweight

Multimedia
traffic

Figure 1.30 Application domains of IoT cloud platforms.

Figure 1.31 (a) Nest learning Thermostat. (b) Philips Hue. (c) Air quality sensing network.
(d) Amazon Echo.

characteristics of smart cities are like economy, people, governance, mobility,
environment, and living. Figures 1.32(a)–(c) show the Big belly smart waste
and recycling system, city sense-wireless outdoor lightening system, and
Libelium’s smart parking solution, respectively [7].

28 Introduction

Figure 1.32 (a) Smart waste and recycling system. (b) City sense – wireless outdoor
lightening system. (c) Libelium’s smart parking solution [7].

1.11.4 IoT Application in Smart Factory

Smart factory means smart machinery maintenance, operating expenses
(OPEX), ERP, and attendance logger. In the present scenario global supply
chain, RFID tags are being used to track the products. Due to these conse-
quences, companies will reduce their OPEX and improve their productivity
by proper integration of ERP and other allied systems.

Maintenance of machinery can be facilitated by IoT technology through
different sensors by allowing the capturing of real-time monitoring of health
and performance of machines of the factory.

1.11.5 IoT Application in Retail

IoT helps in price comparison of products in order to benefit the customer as
well as business people. It provides info to customers about price comparison
of different products of the same quality by different vendors, which help
the customers to choose the best vendor for their product, and at the same
time, enterprise will have real-time information about what customer expects.
Figure 1.33 shows the device for retails.

1.11.6 IoT Application in E-Health

Control and prevention are the two main objectives being used since long time
and for long time in healthcare area. IoT enables the doctors to monitor their
patients health from outstation. IoT enables more interactions in an efficient
manner between the patients and doctors, and not only limited to localization
but also through globalization. Important stakeholders of IoT-enabled health
services are private and public hospitals. Figure 1.34 shows the smart health
system.

1.11 Domain-Specific IoT and Applications 29

Figure 1.33 Device for retails.

Figure 1.34 Smart health system.

Philips is one of those tech giants which are making full use of IoT
opportunities available for business. Medication Dispensing Service is one of
the most successful IoT healthcare applications from Philips. Focused around
elderly patients who find it difficult to maintain their medication dosage on
their own, MDS dispenses pre-filled cups as per the scheduled dosage. It noti-
fies automatically when it’s time to take medicine, refill, and malfunctioning
or misses dosage. Figure 1.35 shows the IoT healthcare applications from
Philips.

30 Introduction

Figure 1.35 IoT healthcare applications from Philips.

1.11.7 IoT Application in Railroads

A train can be so long that its locomotives start to climb one hill while its mile
of coal cars are still descending the last one. Cruise control that anticipates the
terrain can save lots of fuel (just like a driver who practices “hypermiling”23
to save gas). It can save even more fuel if it knows something about the
urgency of a train’s schedule and the likelihood that the train will need to pull
onto a siding to wait for another train to pass. The industrial internet promises
to encompass entire railroads in integrated models that optimize everything
from the placement of freight cars within a train to small variations in throttle.
Delivered as a service, software can take into account an enormous range of
contextual data to inform every decision.

1.11.8 IoT Application in Automotive Sector

The following are the IoT applications developed in automotive sector.

Google Car – Google started working on autonomous cars; they started this
project with 10 numbers of cars. In April 2014, they announced that all 10
vehicles completed 1,126,541 km without any major incidents.

Kiva systems – Highly automated self-optimizing warehouse robots are
successfully running different fulfillment centers across the world. Amazon
acquired both kiva and zappos system at $ 0.75 and $ 1.2 billion, respectively.

Automated Guided vehicles – These vehicles are capable of having a
payload of 70 tones and can be controlled precisely by using management
and navigation software and transponders in the terminal road surface with a
positioning accuracy of ±25 mm accuracy [11].

1.11 Domain-Specific IoT and Applications 31

1.11.9 IoT Application in Manufacturing

Manufacturing is becoming broadly accessible to innovators operating at
small scale. Sophisticated prototyping facilities are available at minimal cost
in maker spaces across the world, where anyone with a modestly technical
mindset can make use of newly simple tools – not only microcontrollers
like Arduino, but also 3D printers, laser cutters, and CNC machine tools.
Powerful computer hardware – controllers, radios, and so forth – has become
so inexpensive that, at least at the outset, nearly any problem can be reduced
to a control challenge that can be solved with software. Large-scale man-
ufacturing will be beneficial from similar trends that will make it ever
easier to bring intelligence to big machines. Intelligent software will make
manufacturing more accurate and more flexible. Processors that are powerful
enough to handle real-time streams of sensor data and apply machine-learning
algorithms are now cheap enough to be deployed widely on factory floors
to support such functions as machine-wear detection and nuanced quality-
control observation. Logistics tools that transmit real-time data on shipments
and inventory between manufacturers, shippers, and customers will continue
to reduce inventory costs.

1.11.10 IoT Application in Wearables

Wearables are one of the hottest trends in IoT currently. Apple, Samsung,
Jawbone, and plenty of others all are surviving in a cut throat competition.
Wearable IoT tech is a very large domain and consists of an array of devices.
These devices broadly cover the fitness, health, and entertainment require-
ments. The prerequisite from IoT technology for wearable applications is to
be highly energy efficient or ultralow power and small sized. Here are some
top examples of wearable IoT devices that fulfill these requirements.

Figure 1.36(a) shows the health tracker band and an excellent IoT appli-
cation example in healthcare as well as wearable. It comes with features like

Figure 1.36 (a) Health tracker band. (b) Charge HR. (c) Motorola Moto 360 Sport.

32 Introduction

activity tracking, food logging, and sleep patterns. In addition, it is offered in
many styles and colors. It has features like activity tracking, sleep tracking,
and smart coach. Figure 1.36(b) shows the charge HR and a high-performance
IoT wearable which is provided with many smart features. It tracks heart
rate as well as activities sitting on wrist. It provides the capability to auto-
matically track heart rate, track workouts, monitor-sleeping pattern, get call
notifications, and synchronize data with your PC and hundreds of Smart
Phones wireless and many more. Figure 1.36(c) shows the Motorola Moto
360 Sport. It is time to get healthy space personalized even without smart
phone. Motorola Moto 360 Sport is designed with this fact in mind. It delivers
all the important information that is required from phone directly. It supports
both Android and iOS apps.

1.11.11 IoT Application in Agriculture

Agriculture sector needs very institutive as well as highly scalable technology
solutions. IoT applications can deliver the same to farmers. The agriculture
sector applications are wine quality enhancing, green houses, golf courses
meteorological station network, compost, etc.

1.11.12 IoT Application in Energy Management

Power grids of the future will not only be smart enough but also highly
reliable. Smart grid concept is becoming very popular. The basic idea behind
the smart grids is to collect data in an automated fashion and analyze the
behavior or electricity consumers and suppliers for improving efficiency as
well as economics of electricity use.

Figure 1.37 shows the Landis+Gyr Home energy management. The
advanced metering will make energy management easier for everyone.
Landis+Gyr are a wide range of energy management products. The smart
metering solution offered by Landis+Gyr enables consumers, to better under-
stand their energy needs as well help them with load management. They
have many multi-energy metering solutions to offer for reliable and efficient
energy management.

Figure 1.38 shows the Landis+Gyr grid management and the solutions
are smart programs which provide capabilities to automate, analyze, as well
as response to energy requirements in a smarter manner. They offer leading-
edge tools that help both suppliers and consumers to reduce peak use problem
and increase energy use efficiency.

1.11 Domain-Specific IoT and Applications 33

Figure 1.37 Landis+Gyr Home energy management.

Figure 1.38 Landis+Gyr Grid management.

1.11.13 IoT Application in Industrial Automation

Industrial automation is one of the most profound applications of IoT. With
the help of IoT infrastructure backed with advanced sensor networks, wireless
connectivity, innovative hardware, and machine-to-machine communication,
conventional automation process of industries will transform completely. IoT
automation solutions for industries from all big names like NEC, Siemens,
Emerson, and Honeywell are already in the market. The major area of work
includes Smart structure, machine auto-diagnosis and assets control, indoor
air quality, temperature monitoring, ozone presence, indoor location, and
vehicle auto-diagnosis.

1.11.14 IoT Application in Smart Grids

Smart grid is a special application of IoT, future smart grid promises to use
information about the behaviors of electricity suppliers and consumers in
an automated fashion to improve the efficiency, reliability, and economics

34 Introduction

of electricity. Over 41,000 monthly Google searches highlight the concept’s
popularity.

1.11.15 IoT Application in Smart Supply Chain

Supply chains have been getting smarter for some years already. Solution for
tracking goods, while they are on the road, or getting suppliers to exchange
inventory information has been on the market for years. So while it is
perfectly logic that the topic will get a new push with the IoT, it seems that
so far its popularity remains limited.

1.11.16 IoT Application in Smart Farming

Smart farming is an often-overlooked business case for the IoT because it
does not really fit into the well-known categories such as health, mobility,
or industrial. However, due to the remoteness of farming operations and the
large number of livestock that could be monitored, the IoT could revolutionize
the way farmers work. However, this idea has not yet reached large-scale
attention. Smart farming will become the important application field in the
predominantly agricultural-product exporting countries.

1.11.17 IoT Application in Industrial Internet

The industrial internet is also one of the special IoT applications. While many
market researches such as Gartner or Cisco see the industrial internet as
the IoT concept with the highest overall potential, its popularity currently
does not reach the masses like smart home or wearables do. The industrial
internet, however, has a lot going for it. The industrial internet gets the biggest
push of people on Twitter (∼1,700 tweets per month) compared to other
non-consumer-oriented IoT concepts.

1.11.18 IoT Application in Connected Car

The connected car is coming up slowly. Owing to the fact that the devel-
opment cycles in the automotive industry typically take two to four years,
we have not seen much buzz around the connected car yet. Most large
automakers as well as some brave startups are working on connected car
solutions. In addition, if the BMWs and Fords of this world do not present the
next-generation Internet-connected car soon, other well-known giants will:
Google, Microsoft, and Apple have all announced connected car platforms.

1.12 IoT Servers 35

1.11.19 IoT Application in Connected Health

The connected health means digital-health, telehealth, telemedicine, etc.
These are the major areas of work. The concept of a connected healthcare
system and smart medical devices bears enormous potential not just for
companies also for the well-being of people in general.

1.11.20 IoT Application in Poultry

The major applications are livestock monitoring, cattle health monitoring,
and tracking. Using IoT applications to gather data about the health and well-
being of the cattle, ranchers knowing early about the sick animal can pull out
and help prevent a large number of sick cattle.

1.11.21 IoT Application in Smart Environment

The areas of research are forest fire detection, air pollution, snow level mon-
itoring, landslide and avalanche prevention, and earthquake early detection.

1.11.22 IoT Application in Security and Emergency

The areas of research are perimeter control, radiation presence, explosive, and
hazardous gases.

1.11.23 IoT Application in Smart Animal Farming

The areas of research include hydroponics, offspring care, animal tracking,
toxic gas levels, etc.

1.11.24 IoT Application in Smart Water

The areas of research include portable water monitoring, chemical leak-
age detection, swimming pool remote measurement, pollution levels, water
leakages, and river floods.

1.12 IoT Servers

IoT is merging of various “things” with the use of Internet to establish a
smart connection between people and smart objects. Cloud is one of the
major components of IoT, which provides application-specific services in

36 Introduction

many domains. Currently, many cloud providers are in the market, which
provides suitable IoT-based services for the specific applications.

1.12.1 KAA

KAA is an open source middleware IoT platform with Apache License 2.0
for building smart connections for end-to-end IoT solutions. It provides
services for data exchange between the connected devices, data analytics,
visualization, and IoT cloud services. It supports NoSQL and Big Data base
applications supported, but the major disadvantage is its less support to
hardware modules [http://www.kaaproject.org/].

1.12.2 Carriots

Carriots is platform, helping anyone to build quick IoT applications. It saves
time, cost, and troubles. Platform as a Service (PasS) cloud model is fea-
tured with services like remote device management and control, rule-based
listeners’ activity logging, triggering custom alarms, and data export. It main
advantage is its usability in triggering-based applications, but it is less user
friendly [https://carriots.com].

1.12.3 Temboo

Temboo is a cloud-based platform for application code generation. It involves
less wiring and coding of hardware and software which results in develop-
ment of products in less time. It has more than 90 inbuilt libraries named
“Choreos” for third-party services including Yahoo weather, Amazon cloud,
Twitter micro blogging, Twilio telephony, Ebay product shopping, Flickr
photo management, Facebook Graph API, Google analytics, PayPal payment,
Uber vehicle confirmation, YouTube video streaming, and many more. It
supports all chores-based applications but not suitable for resources-intensive
applications [https://temboo.com].

1.12.4 SeeControl IoT

SeeControl is an IoT cloud platform which is specialized at device mes-
saging and management. Sensor data visualization, analytics, and complete
work flow monitoring can be done by SeeControl. It has open API-based
push/pull architecture for scalable IoT products. Its major advantage is

1.12 IoT Servers 37

its support to push/pull devices, but its visualization is not too good
[http://www.seecontrol.com].

1.12.5 SensorCloud

SensorCloud is an IoT cloud which provides PasS to acquire, visualize,
monitor, and analyze the data received from wired or wireless sensors.
SensorCloud is a powerful tool for cloud computing facilities like data scal-
ability, rapid visualization, and user program analysis. It allows developers
to perform complex mathematical operations on the data. It can manage
a large pool of sensor devices but do not serve in open source devices
[http://www.sensorcloud.com].

1.12.6 Etherios

Etherios supports comprehensive products and services for the connected
enterprises. Its cloud is designed on the PaaS model to enable users for
connecting product and gain real-time visibility into their assets. Etherios
provides the connectivity for modern enterprises and facilitating through
thousands of off-the-shelf wired and wireless solutions designed for a specific
purpose. It is specialized cloud, but the developers are restricted with limited
devices [http://www.etherios.com].

1.12.7 Xively

Xively is a Gravity Cloud technology-based enterprise IoT cloud service.
This LogMeIn owned platform helps companies to manage their product
business by addressing a number of practical needs by scalable, secure,
and reliable connectivity. It also features the right business data processing
services to its IoT-enabled customers through flexible API connectors. It
is easy to integrate with devices but has minimum notification services
[https://xively.com].

1.12.8 Ayla’s IoT Cloud Fabric

Ayla IoT fabric is a PaaS modeled enterprise class. It is a simple and cost-
effective solution for OEMs for connecting any device to the Internet. Ayla
Networks provide software agents embedded in both devices and mobile
device applications for end-to-end support. Ayla’s Agile Mobile Applica-
tion Platform is built with its mobile libraries that provide an optimized

38 Introduction

mobile APP for iOS and Android users. It provides easy mobile appli-
cation development platform but not suitable for small-scale developers
[https://www.aylanetworks.com].

1.12.9 thethings.io

thethings.io is a platform which provides a complete back-end solution for
IoT APP developers through an easy and flexible API. thethings.io is hard-
ware agnostic which allows to connect any device that is capable of using
HTTP, Websockets, MQTT, or CoAP protocols. Real-time, rule-based jobs
can be easily monitored by developing end-to-end connectivity, but it lacks
in self-sustenance [https://thethings.io].

1.12.10 Exosite

Exosite is modular, enterprise-grade IoT software platform which helps to
bring connected products in market. It has cloud platform based on IoT
Software as a Service (SaaS) which provides real-time data visualization and
analytics support to the users. It is a hosted server-based system which has
web service enabled APIs, built in infrastructural framework, lightweight,
and flexible back-end conjugated with UDP, HTTP, and JSON RPC. The
system development is easy with it but it lacks in big data provisions
[https://exosite.com].

1.12.11 Arrayent Connect TM

Arrayent is an IoT platform which enables heterogeneous brands like
Whirlpool, Maytag, and First Alert to connect users’ products to smart
handheld devices and web applications. Arrayent Connect Cloud is an IoT
operating system which is based on the SaaS model. It helps hosting all
devices with Over-the Air firmware updates in low data latency rate. Further,
its secure, reliable, and scalable data sources help users to get retrieved,
processed, and delivered. It is flexible in use but it lacks in triggering-based
services [http://www.arrayent.com].

1.12.12 OpenRemote

OpenRemote is an open source IoT middleware solution which allows users
to integrate any device – protocol – design using available resources like iOS,
Android, or web browsers. A user can design tools for developing completely
customized solutions by using OpenRemote’s cloud service, which leverages

1.12 IoT Servers 39

to integrate a variety of protocols from WiFi to ZigBee. It supports to open
cloud services but has high cost [http://www.openremote.com].

1.12.13 Arkessa

Arkessa provides services like overall connectivity, monitoring, control, and
management between IoT-based devices and enterprises. Arkessa’s mission
is to empower companies to involve into the IoT for the development of
new revenue streams through improved customer satisfaction. It provides
enhanced potential values to received data streams from remote devices.
Arkessa follows the PaaS model to formulate a single enterprise management
portal and integrates machine data streams with the available CRM, ERP, big
data, and other analytics systems for efficient and optimized device manage-
ment services. It has enterprise enabled design facet but its visualization apps
are not proper [http://www.arkessa.com].

1.12.14 Oracle IoT Cloud

It comprises four crucial parameters. It performs operations on received data
including analysis, acquisition, and integration. It supports database but lacks
in connectivity of open source devices [https://cloud.oracle.com/iot].

1.12.15 Nimbits

Nimbits is a cloud server which provides solutions to Edge Computing IoT-
related services. It performs operations like noise filtering and sends data on
the cloud. It is easy to adopt but lacking in the real-time processing of query
[http://www.nimbits.com].

1.12.16 ThingWorx

ThingWorx is a data-driven decision-making cloud. It provides M2M and
IoT services based on SQUEAL. Zero coding facility is available. It has
easier data-intensive application building but a number of devices are limited
[https://thingworx.com].

1.12.17 InfoBright

InfoBright is an IoT-based analytical database platform, which connects busi-
ness to store and act on machine-generated data for a complete eco system
[https://www.infobright.com/index.php/internet-of-things].

40 Introduction

1.12.18 Jasper Control Center

Jasper Control Center is a platform based on Japer control. Control center
is designed to automate the connected devices and help to analyze real-
time behavior patterns. The main target of this is manufacturing, security,
transportation, and home automation. The main advantage is its rule-based
behavior pattern [https://www.jasper.com].

1.12.19 Echelon

Echelon is an IIoT-based platform for cloud with resources like microphones,
hardware devices, and other applications. It addresses the fundamental
requirements of IIoT. It is good for industrial prospective but lacks in basics
for the beginners [http://www.iiot.echelon.com].

1.12.20 AerCloud

AerCloud platform collects, manages, and analyzes sensory data for IoT
and M2M applications. It ensures security and reliability by enabling the
applications through seamless scalability. It is also scalable to M2M services
but not suitable for the developers [http://www.aeris.com].

1.12.21 ThingSpeak

ThingSpeak is an open IoT data platform which is based on public cloud
technology. It has open API which enables receiving of real-time data. It has
data storage, monitoring, and visualization facilities. It has been developed
by Mathworks. It has triggering facility with public cloud, but has limitation
of devices which can be connected simultaneously [https://thingspeak.com].

1.12.22 Plotly

Plotly is a data visualization cloud service provider for public. It provides
data storage, analysis, and visualization services. Python, R, MATLAB, and
Julia-based APIs are implemented in Plotly. It is a good visualization tool for
IoT but with a limited storage facility [https://plot.ly].

1.12.23 GroveStreams

GroveStreams is a public cloud for data visualization. It supports various
data types. It enables seamless monitoring but lacks in statistical services
[https://thingworx.com].

1.13 Internet of Things Device Design Methodology 41

1.12.24 Microsoft Research Lab of Things

Lab of Things is a platform developed by Microsoft. It was developed
for experimental research for academic institutions. It is used for mak-
ing connections between devices for applications like home automation,
energy, healthcare, etc., but it lacks in IoT-supported API [http://www.lab-
of-things.com].

1.12.25 IBM IoT

IBM IoT is an organized architecture cloud platform. It supports complex
industry solutions. It can enable device identity but application prototyping is
difficult [https://internetofthings.ibmcloud.com].

1.12.26 Blynk

It is a platform with iOS and Android apps to control Arduino and Raspberry
Pi over the Internet. It supports graphical interface to build projects just by
dragging the widgets. It supports many IoT modules and ready for IoT.

1.12.27 Cayenne APP

Cayenne is an App for smartphones and computers which allows controlling
the Raspberry Pi and Arduino through the use of a graphical interface. It can
add and control sensors, motors, actuators, GPIO boards, and more. It has
customizable dashboards with drag-and-drop widgets for connection devices.
It supports quick and easy setup.

1.12.28 Virtuino APP

Virtuino platform creates amazing virtual screens on smart phones or tablets
to control the automation system created with arduino or similar boards. It
supports Arduino and can be connected with the HC-05 Bluetooth, Ethernet
Shield, and ESP8266 modules. It supports monitoring sensors values from
the IoT server ThingSpeak.

1.13 Internet of Things Device Design Methodology

The steps to design the IoT-related system are follows.

Step 1: Purpose and requirements specification: The first step in IoT
system design methodology is to define the purpose and requirements of the

42 Introduction

system. In this step, the system purpose, behavior, and requirements (such
as data collection requirements, data analysis requirements, system manage-
ment requirements, data privacy and security requirements, user interface
requirements, etc.) are captured.

This can be understood by applying this to, for example, a smart IoT-
enabled robot system; the purpose and requirements for the system may be
described as follows:

1. Purpose: The robot control system that allows controlling the direction
of robots using IoT.

2. Behavior: The switches on APP provide the data which are 10, 20,
30.serially. According to the received data, the command for robot
to move forward, reverse, left, right and stop.

3. System management requirement: The system should provide remote
monitoring and control functions.

4. Data analysis requirement: The system should perform local analysis of
the data.

5. Application deployment requirement: The application should be
deployed locally on the device, but should be accessible remotely.

Step 2: Process specification: The second step in the IoT design methodol-
ogy is to define the process specification. In this step, the use cases of the IoT
system are formally described based on and derived from the purpose and
requirement specifications.

Step 3: Domain model specification: The third step in the design method-
ology is to define the domain model. The domain model describes the main
concepts, entities, and objects in the domain of the IoT system to be designed.

Step 4: Information model specifications: The fourth step in the IoT design
methodology is to define the information model. The information model
defines the structure of all the information in the IoT system, for example,
attributes of virtual entities, relations, etc. The information model does not
describe the specifics of how the information is represented or stored.

Step 5: Service specifications: The fifth step in the design methodology is to
define the service specifications. Service specifications define the services
in the IoT system, service types, service inputs/output, service endpoints,
service schedules, service preconditions, and service effects.

Step 6: The sixth step in the IoT methodology is to define the IoT level for
the system.

Step 7: Functional group: The seventh step in the design methodology is to
define the functional view. The functional view defines the functions of the

1.14 Role of IoT in Automotive Industries 43

IoT systems grouped into various functional groups. Each functional group
either provides functionalities for interacting with instances of the concepts
defined in the domain or provides information related to these concepts.

Step 8: Operational view specifications: The eighth step in the IoT design
methodology is to define the operational view specifications. In this step,
various options pertaining to the IoT system deployment and operation are
defined, such as service hosting options, storage options, Device options,
application-hosting options, etc.

Examples for operational view specification for robot control using IoT
system are as follows:

Devices: Computing device (NodeMCU), Motor driver L293D, and two DC
geared motors.

Communication APIs: REST APIs.

Communication protocols: Link layer-802.11, Network layer-IPv4/IPv6,
and Transport layer-TCP.

Application: HTTP.

Services:
Controller service: Hosted on device, implemented in Python, and run as

a native service.

Mode Service: REST-ful web service, hosted on device, implemented with
Django-REST framework.

State service: REST-ful web service, hosted on device, implemented with
Django-REST framework.

1.14 Role of IoT in Automotive Industries

The IoT is breaking fresh ground for car manufacturers by introducing
entirely new layers to the traditional concept of a car. This upgrade – the
connected, smart car – comes as a revolutionary way for us to drive and stay
in touch with the world around at the same time. By offering a fancy-free
variety of infotainment services and connected car applications for drivers,
the automotive industry has the potential to become an IoT champion among
other industries. It may fuel the IoT cloud services’ adoption among car
owners and walkers alike. For companies in the automotive sector, entertain-
ment, and maintenance service providers, Kaa offers a stack of plug-and-play
IoT components that streamline the development of connected car applica-
tions by times and ensure smooth integration between separate modules of

44 Introduction

the connected car within a secure cloud environment. Kaa is highly scal-
able and can easily handle thousands of connected vehicles simultaneously,
as well as automatically balance out peak loads in cloud service usage.
With Kaa, it is easy to enable new services over the air and manage different
service subscription plans and user groups. All of these technologies used
within the car are interconnected and centrally controlled. Some of these,
including car-to-infrastructure and positioning, are connectivity features in
their own right. The car as a technology hub has already started fulfilling the
Internet of Everything concept with people, processes, and things interacting
seamlessly.

A complete picture can be obtained by collecting, managing, and ana-
lyzing data, and connecting everything to the Internet. The Internet of Cars
turns into a complete platform in the Internet of Everything. Infotainment
and telematics and safety and security are highly improved with the benefit
of data transfer and connectivity. However, powertrain/fuel economy may not
offer great benefits when working in a connected world.

From a connected vehicles’ perspective, here are some of the major ideas
which can be powered by IoT, and which may soon become very ordinary.

1. Crash Response: Connected cars can automatically send real-time data
about a crash along with vehicle location to emergency teams. This can
save lives by accelerating emergency response.

2. Car Problem Diagnosis: Connected cars are capable of generating prog-
nostic data that can predict a problem before a part even fails, which
would prevent the inconvenience of a breakdown and help consumers
better manage the timing of vehicle care. Preventative maintenance
promises to help reduce repair and warranty costs.

3. Convenience Services: The ability to access a car remotely makes pos-
sible services such as remote door unlock, find my vehicle, and stolen
vehicle recovery.

4. Integrated Navigation: Connected cars can integrate GPS with online
services to respond to driver preferences, routing, fuel availability and
pricing, traffic alerts, points of interest, etc.

5. Traffic Management: Connected car technology can provide transporta-
tion agencies with improved real-time traffic, transit, and parking data,
making it easier to manage transportation systems for reduced traffic and
congestion.

6. Infotainment: Connected cars can provide online, in-vehicle entertain-
ment options that provide streaming music and information through the

1.15 Introduction to Arduino 45

dashboard. AAA has called for limiting certain features while driving to
prevent distractions.

7. Discounts and Promotional Offerings: Companies can provide insurance
or location-based discounts and promotional offerings.

8. Enhanced Safety: Pilot programs for vehicle-to-vehicle (or “V2V”)
and vehicle-to-infrastructure (“V2I”) communications are underway that
will warn drivers of potential collisions, dangerous road conditions, and
other impediments to safe travel. A range of crash prevention tech-
nologies integrated with connected communications such as intersection
assistance likely will reduce the number of crashes in the coming years

1.15 Introduction to Arduino

Arduino is an open-source prototyping platform based on easy-to-use hard-
ware and software. Arduino boards are able to read inputs like digital and
analog sensors and turn it into an output like DC motor, solenoid, relay etc.

The advantages of Arduino platform are as follows:

Inexpensive – Arduino boards are relatively inexpensive compared to other
microcontroller platforms.

Cross-platform – The Arduino Software (IDE) supports on Windows, Mac-
intosh OSX, and Linux operating systems but most microcontroller systems
are limited to Windows.

Simple, clear programming environment – The Arduino Software (IDE)
is easy to use for beginners. It is also flexible enough for advanced users to
developed complex application firmware.

Open source and extensible software – The Arduino software is an open
source tool, can be expanded by adding C++ libraries with it, and adds AVR-C
code directly into your Arduino programs if you want to.

Open source and extensible hardware – The Arduino boards are fall under
a Creative Commons license. So own version can be made by adding more
hardware with it.

Figure 1.39 Shows the view of Arduino nano board. The pins details are
as follows.

Input and Output – Arduino unohas 14 digital pins that can be used as
an input or output. These pins operate at 5 V and an individual provides or
receives 40 mA current. It has an internal pull-up resistor of 20–50 kΩ. The
Arduino Uno has six analog inputs named A0–A5. The resolution of ADC is

46 Introduction

Figure 1.39 View of Arduino Nano.

10 bits (means 1,024 digital levels). In addition, there are some pins that have
specialized functions as follows:

Serial: The Arduino uno has pins 0 (RX) for receive transistor–transistor
logic (TTL) data and 1 (TX) for transmit TTL data using UART mode.

External Interrupts: The pins 2 and 3 are used as interrupt pins and can be
used to read a rising or falling edge, or a change in value.

PWM: The pins 3, 5, 6, 9, 10, and 11 of Arduino Nano are used for
pulsewidth modulation.

SPI: The 10 (SS), 11 (MOSI), 12 (MISO), and 13 (SCK) of Arduino uno are
used as serial peripheral interface (SPI).

LED: Pin 13 of Arduino uno board has an inbuilt LED.

TWI: The pins A4 or SDA pin and A5 or SCL in Arduino nano are used as
two-wire interface (TWI) or inter-IC communication (I2C).

AREF: Aref pin of Arduino nano board provides reference voltage for the
analog inputs.

Reset: The reset pin is used to reset the microcontroller.

1.16 Introduction to NodeMCU

ESP8266 is a low-cost WiFi microchip with TCP/IP stack and microcon-
troller. ESP8266 was produced by Espressif Systems from the Chinese man-
ufacturer from Shanghai. NodeMCU was created shortly after the ESP8266
came out. Its processor has an L106 32-bit RISC architecture running at
80 MHz. It is widely used in IoT applications. The NodeMCU-Amica is a
C++-based firmware.

An Arduino core for the ESP8266 has been developed with WiFi SoC.
This is popularly called as the “ESP8266 Core for the Arduino IDE” and it

1.16 Introduction to NodeMCU 47

has become one of the leading software development platforms for various
ESP8266-based modules and development boards, including NodeMCUs.
Figure 1.40 shows the view of NodeMCU and Figure 1.41 shows the detailed
pin description.

Figure 1.40 View of NodeMCU.

Figure 1.41 Detailed pin description.

48 Introduction

Table 1.3 shows the GPIO (general purpose input/output) of NodeMCU.

Table 1.3 GPIO of NodeMCU
IO Index ESP8266 Pins IO Index ESP8266 Pins
D0 GPIO16 D7 GPIO13
D1 GPIO5 D8 GPIO15
D2 GPIO4 D9 GPIO3
D3 GPIO0 D10 GPIO1
D4 GPIO2 D11 GPIO9
D5 GPIO14 D12 GPIO10
D6 GPIO12

1.17 Introduction to GPRS

The GPRS/GSM Module MicroSIM card TTL Serial Port SIMCOM –
HBK0004 [SIM800L] is designed for global market. It works on frequencies
850 MHz [GSM], 900 MHz [EGSM], 1,800 MHz [DCS], and 1,900 MHz
[PCS]. SIM800 features GPRS multi-slot class 12/class 10 (optional) and
supports the GPRS coding schemes CS-1, CS-2, CS-3, and CS-4. Figure 1.42
shows the view of the GPRS modem.

Figure 1.42 GPRS modem.

1.17 Introduction to GPRS 49

The features of the module are as follows:

1. Module Model: SIM800L Quad-band 850/900/1,800/1,900 MHz.
2. It can be interfaced with 8051/AVR/ARM/PIC/Arduino/Raspberry-pi.
3. It has GPRS multi-slot class 12 connectivity.
4. It is supported by AT Command.
5. It has a real-time clock on it.
6. Its supply voltage range is 3.4–4.4 V.
7. It supports 3.0–5.0 V logic level, which means low power consumption.
8. It has a current consumption of 1 mA in sleep mode.

The SendMessage() and ReadMessage() are two functions that are useful to
send and receive messages, while it is connected with arduino. The SendMes-
sage() is the function created in arduino IDE sketch to send an SMS. By
sending “AT+CMGF=1” to the GPRS modem, it will come to text mode.
For this, Serial.print() function is used. It writes data to the serial port. The
number to which the message needs to be sent is set by the AT command
“AT+CMGS=\”mobile no.\”\r.” An SMS is sent in the next line. Each
command follows a delay of 1 s.

AT commands to send an SMS are as follows:

1. Send AT+CMGF=1 using Serial.println command in Arduino IDE to
set the GPRS/GSM module in text mode.

2. Send AT+CMGS=\“mobile no.\” \r using Serial.println command in
Arduino IDE to send the message to assign a number.

3. Send (char)26; using Serial.println command in Arduino IDE which is
ASCII of cntl+Z to stop the process.

The RecieveMessage() is the function to receive an SMS. The AT command
to receive an SMS is “AT+CNMI=2,2,0,0,0” – just send this command to the
GSM module and apply a 1 s delay. After this, send the SMS to the SIM card
number inside the GSM module. To read the stored messages in the SIM,
send the AT command – “AT+CMGL=\” ALL\”\r” to the module.

AT commands to receive an SMS using Arduino and GPRS/GSM module
are given below:

1. Send AT+CMGF=1 command using Serial.println instruction in
Arduino IDE to set the GSM module in text mode.

2. Send AT+CNMI=2,2,0,0,0 command using Serial.println instruction in
Arduino IDE to receive the SMS.

2
Interfacing of Arduino with Input/Output

Devices

This chapter describes the interfacing of Arduino with input/output devices
like digital sensors, analog sensors, and serial communication.

2.1 Digital Sensor – Capacitive Touch Proximity Sensor

This section shows the interfacing of Arduino NANO with a digital sensor.

2.1.1 Introduction

Figure 2.1 shows the block diagram of the Arduino NANO and external
devices like liquid crystal display (LCD) and digital sensors. It comprises
a +12 V/500 mA power supply, an Arduino Nano, an LCD, and a capacitive
touch sensor (digital sensor). The objective of the system is to display the
sensory data on the LCD by reading the capacitive touch sensor and make
LED ON/OFF.

Figure 2.2 shows the view of the capacitive touch sensor [Sunrom part
−4441]. The output can be configured as active high or low as per the require-
ment. The operating voltage is 2–5.5 V. The calibration delaytime is 0.5 s.
Table 2.1 shows the component list required to develop the system. Figure 2.3
shows the circuit diagram of the system.

2.1.2 Circuit Diagram

The following are the interfacing connections of NodeMCU and the I/O
devices:

1. +5V and GND pins of the Arduino Nano are connected to +5V and
GND pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.

51

52 Interfacing of Arduino with Input/Output Devices

Arduino
Nano

Capacitive Touch
Sensor

Liquid Crystal
Display

LED
indicator

Power
Supply
12V/

500mA

Figure 2.1 Block diagram of the system.

Figure 2.2 Capacitive touch sensor.

Table 2.1 Component list
Component Quantity
Power supply 12 V/1 A 1
Arduino Nano 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3V 1
Capacitive touch sensor 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1

2.1 Digital Sensor – Capacitive Touch Proximity Sensor 53

Figure 2.3 Circuit diagram of the system.

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed terminals of the 10K POT are connected to +5V and GND of the

power supply and variable terminal to pin 3 of the LCD.
5. Pin 12, GND, and pin 11 of the Arduino Nano are connected to pin

4(RS), pin 5(RW), and pin 6(E) of the LCD, respectively.
6. Pin 10, pin 9, pin 8, and pin 7 of the Arduino Nano are connected

to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, and OUT pins of the touch sensor are connected to +5V,
GND, and pin 6 of the Arduino Nano, respectively.

2.1.3 Program Code

/////// Library for LCD16*2
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);
/////// LED and Sensor Pins
const int Touch_Sensor_Pin = 6;
const int LED_pin = 5;
int Touch_sensor_logic = 0;
void setup()

54 Interfacing of Arduino with Input/Output Devices

{
lcd.begin(16, 2);// Initialize LCD 16*2
pinMode(LED_pin, OUTPUT);// set pin 5 as output
pinMode(Touch_Sensor_Pin, INPUT_PULLUP);// set pin 6 as

input when sensor is in active LOW
lcd.setCursor(0,0);// set cursor on LCD
lcd.print("Touch sensor");// print string on LCD
lcd.setCursor(0,1);// setcursor on LCD
lcd.print("based system");// print string on LCD
delay(2000);// provide delay of 2Sec

}

void loop()
{

Touch_sensor_logic= digitalRead(Touch_Sensor_Pin);
if (Touch_sensor_logic == LOW)
{

lcd.clear();
lcd.setCursor(0,1);
lcd.print("Touch Detected");
digitalWrite(LED_pin, HIGH);
delay(20);

}
else
{

lcd.clear();// clear LCD
lcd.setCursor(0,1);// set the cursor on LCD
lcd.print("No Touch");// Print string on LCD
digitalWrite(LED_pin, LOW);// make pin as LOW
delay(20);// provide delay of 20msec

}
}

2.2 Analog Sensor – DC Voltage Sensor

This section describes the interfacing of the analog sensor with the Arduino
NANO.

2.2.1 Introduction

Figure 2.4 shows the block diagram of the Arduino NANO and external
devices like LCD and analog sensors. It comprises a +12 V/500 mA power
supply, an Arduino Nano, an LCD, and a DC voltage sensor. The main
objective is to measure and display the value of the DC voltage sensor on
the LCD.

2.2 Analog Sensor – DC Voltage Sensor 55

Arduino
Nano

DC voltage sensor

Liquid Crystal
Display

LED
indicator

Power
Supply
12V/

500mA

Figure 2.4 Block diagram of the system.

Figure 2.5 Voltage sensor.

The voltage sensor is connected through the voltage divider circuit.
This sensor is capable of reading upto 25 V DC voltage from the source.
The analog voltage resolution is 0.00489 V. The voltage detection range is
0.02445–25 V. Figure 2.5 shows the view of the voltage sensor. Table 2.2
shows the component list to develop the system.

2.2.2 Circuit Diagram

The connections of the system are as follows:

1. +5V and GND pins of the Arduino Nano are connected to +5V and
GND pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.

56 Interfacing of Arduino with Input/Output Devices

Table 2.2 Component list
Component Quantity
Power supply 12 V/1 A 1
Arduino Nano 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3 V 1
DC voltage sensor 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed terminals of the 10K POT are connected to +5V and GND of the

power supply and variable terminal to pin 3 of the LCD, respectively.
5. Pin 12, GND, and pin 11 of the Arduino Nano are connected to pin

4(RS), pin 5(RW), and pin 6(E) of the LCD, respectively.
6. Pin 10, pin 9, pin 8, and pin 7 of the Arduino Nano are connected to

pin 11 (D4), pin 12(D5), pin 13 (D6), and pin 14 (D7) of the LCD,
respectively.

7. +Vcc, GND, and OUT pins of the DC voltage sensor are connected to
+5V, GND, and A0 pin of the Arduino Nano.

Figure 2.6 shows the circuit diagram of the system.

2.2.3 Program Code

/////// Library for LCD16*2
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);
int DC_Volatge_sensor_level=0;
float DC_supply_Voltage_from_input=0;
void setup()

{
lcd.begin (16, 2);// Initialize LCD 16*2
lcd.setCursor (0,0);// setcursor on LCD
lcd.print ("DC Voltage");// print string on LCD
lcd.setCursor (0,1);// setcursor on LCD
lcd.print ("Measurement");// print string on LCD
delay (2000);// set dealy og 2000mSec

2.3 Serial Communication with RF Modem 57

Figure 2.6 Circuit diagram of the system.

}

void loop()

{
DC_Volatge_sensor_level = analogRead(A0);// read analog

sensor and store in variable
DC_supply_Voltage_from_input = DC_Volatge_sensor_level *

(5.0 / 1024.0) * 10;// convert in volatage form
lcd.clear ();// clear the LCD
lcd.setCursor (0,0);// set cursor on LCD
lcd.print ("DC voltage(Vdc):");// print string on LCD
lcd.setCursor (0,1);// set cursor on LCD
lcd.print (DC_supply_Voltage_from_input);// print label

integer on LCD
delay (300);// set delay of 300mSec

}
}

2.3 Serial Communication with RF Modem

This section shows the wireless communication using the RF modem and it
is an example of serial communication.

58 Interfacing of Arduino with Input/Output Devices

Figure 2.7 2.4-GHz RF serial modem.

The 2.4-GHz modem is an STM8- and nRF24L01-based device able to
communicate upto a 50 m range (Figure 2.7). It is capable of transferring
serial data over 2.4 GHz RF and supporting bi-directional communication for
data logging and sensor reading.

The communication protocol is self-controlled and completely transpar-
ent to user interface. When setting an RF serial data communication between
microcontrollers or a microcontroller to a PC, the RF modem is most useful
and easy to implement. It operates at 5 or 3.3 V and onboard jumper to select
the baud rate 9,600 or 115,200. The application of the RF modem includes
sensor network and data collection, metering, smart house product, remote
control, weather station, etc.

2.3.1 Introduction

Figure 2.8 shows the block diagram of the transmitter section with Arduino
NANO and devices like LCD, RF modems, and sensors. It comprises a +12
V/500 mA power supply, an Arduino Nano, an LCD, an MQ6 sensor, and a
temperature sensor. The main objective is to measure and display the MQ6
sensor and temperature sensor on LCD and communicate the information data
packet through the RF modem via serial communication.

Figure 2.9 shows the block diagram of the receiver section with Arduino
NANO and devices like LCD and RF modems. It comprises a +12 V/500
mA power supply, an Arduino Nano, and an LCD. The main objective is to
collect the data packet wirelessly from the transmitter and display the data
information on the LCD.

2.3 Serial Communication with RF Modem 59

Arduino Nano

MQ6 sensor
Temperature

Sensor

LCD20*4

Power
Supply12V/

1Amp

RF Modem

Figure 2.8 Transmitter section.

Arduino Nano LCD20*4

Power
Supply12V/

1Amp

RF Modem

To PC

Figure 2.9 Receiver section.

2.3.2 Circuit Diagram

2.3.2.1 Connection of the transmitter
The connections of the transmitter of the given system are as follows:

1. +5V and GND pins of the Arduino Nano are connected to +5V and
GND pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply,
respectively.

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply,
respectively.

60 Interfacing of Arduino with Input/Output Devices

4. Fixed legs of the 10K POT are connected to +5V and GND of the power
supply and variable leg to pin 3 of the LCD, respectively.

5. Pin 12, GND, and pin 11 of the Arduino Nano are connected to pin
4(RS), pin 5(RW), and pin 6(E) of the LCD, respectively.

6. Pin 10, pin 9, pin 8, and pin 7 of the Arduino Nano are connected to
pin 11 (D4), pin 12(D5), pin 13 (D6), and pin 14 (D7) of the LCD,
respectively.

7. +Vcc, GND, and OUT pins of the MQ135 sensor are connected to +5V,
GND, and A1 pin of the Arduino Nano, respectively.

8. +Vcc, GND, and OUT pins of the touch sensor are connected to +5V,
GND, and A0 pin of the Arduino Nano.

9. +Vcc, GND, TX, and Rx pins of the RF modem are connected to +5V,
GND, RX, and TX pin of the Arduino Nano.

Figure 2.10 shows the circuit diagram of the transmitter of the system.
Table 2.3 shows the components list for the transmitter section and Table 2.4
shows the components list for receiver section.

Figure 2.10 Circuit diagram of the transmitter sector.

2.3 Serial Communication with RF Modem 61

Table 2.3 Components’ list for the transmitter section
Component Quantity
Power supply 12 V/1 A 1
Arduino Nano 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3 V 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1
RF modem 1
RF modem patch 1
MQ6 sensor 1
LM35 sensor 1

Table 2.4 Components’ list for the receiver section
Component Quantity
Power supply 12 V/1 A 1
Arduino Nano 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3 V 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1
RF modem 1
RF modem patch 1

2.3.2.2 Connections of the receiver
The connections of the receiver of the given system are as follows:

1. +5V and GND pins of the Arduino Nano are connected to +5V and
GND pins of the power supply, respectively.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed legs of the 10K POT are connected to +5V and GND of the power

supply and variable leg to pin 3 of the LCD, respectively.
5. Pin 12, GND, and pin 11 of the Arduino Nano are connected to pin

4(RS), pin 5(RW), and pin 6(E) of the LCD respectively.

62 Interfacing of Arduino with Input/Output Devices

Figure 2.11 Circuit diagram of the receiver.

6. Pin 10, pin 9, pin 8, and pin 7 of the Arduino Nano are connected
to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, TX, and RX pins of the RF modem are connected to +5V,
GND, RX, and TX pins of the Arduino Nano, respectively.

Figure 2.11 shows the circuit diagram of the receiver of the system.

2.3.3 Program Code

This section describes the program of the transmitter and receiver sections.

2.3.3.1 Transmitter Code

///////// for Air quality sensor
int MQ135_sensor_pin=A1;
int MQ135_sensor_level=0;
int Touch_sensor_pin=A0;

2.3 Serial Communication with RF Modem 63

int Touch_sensor_state;
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);

void setup()
{
lcd.begin(20,4);// Initialize LCD
Serial.begin(9600);// initialize Serial communication
pinMode(Touch_sensor_pin, INPUT_PULLUP);// make pin A0 as

active LOW input
}

void loop()
{
Touch_sensor_state = digitalRead(Touch_sensor_pin);//read

touch sensor as digital input
MQ135_sensor_level=analogRead(MQ135_sensor_pin);// read

MQ135 sensor as analog input
if(Touch_sensor_state == LOW)// check low state
{
lcd.clear(); // clear LCD
int Touch_sensor_variable=10;
lcd.setCursor(0,0);// set cursor of LCD
lcd.print("TOUCH STATUS:");// print string on LCD
lcd.setCursor(0,1);// set cursor of LCD
lcd.print("Yes");// print string on LCD
lcd.setCursor(0,2);// set cursor of LCD
lcd.print("AIR_Qlty_Level:");// print string on LCD
lcd.setCursor(0,3);// set cursor of LCD
lcd.print(MQ135_sensor_level);// print integer on LCD
Serial.print(Touch_sensor_variable); // send serial data of

touch sensor state
Serial.print(":"); // print semicoulumn as atring
Serial.print(MQ135_sensor_level);// send serial data of
MQ135 sensor state

Serial.print(’\r’);// print ‘\r’ at last of the sensors
packet

delay(50);// set delay of 50mSec
}

else
{
lcd.clear(); // clear LCD screen
int Touch_sensor_variable=20;
lcd.setCursor(0,0);// set cursor on lCD

64 Interfacing of Arduino with Input/Output Devices

lcd.print("TOUCH STATUS:");// print string on LCD
lcd.setCursor(0,1);// set cursor on lCD
lcd.print("Yes");// print string on LCD
lcd.setCursor(0,2);// set cursor on lCD
lcd.print("AIR_Qlty_Level:");// print string on LCD
lcd.setCursor(0,3); set cursor on lCD
lcd.print(MQ135_sensor_level);// print integer on LCD

Serial.print(Touch_sensor_variable); // send serial value
of touch sensor
Serial.print(":"); // print string as semicolumn
Serial.print(MQ135_sensor_level);// send serial value of
MQ135 sensor
Serial.print(’\r’);// print ‘\r’ at last of the data
packet
delay(50);// set delay of 50mSec

}
}

2.3.3.2 Receiver Code
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);

String inputString_arduino = "";
boolean Arduino_stringComplete = false;

int Touch_sensor_level, MQ135_sensor_level;
void setup()

{
lcd.begin(20,4);// initialize LCD
Serial.begin(9600);// initialize Serial communication
inputString_arduino.reserve(200);// reserve string upto 200

bytes
}

void loop()
{
arduino_serialEvent();// call function to read the serial

data of sensors
if(Touch_sensor_level == 10) // check the touch sensor state
{
lcd.clear(); // clear LCD
lcd.setCursor(0,0);// set cursor on LCD
lcd.print("TOUCH STATUS:");// print string on LCD
lcd.setCursor(0,1);// set cursor on LCD

2.3 Serial Communication with RF Modem 65

lcd.print("Yes");// print string on LCD
lcd.setCursor(0,2);// set cursor on LCD
lcd.print("AIR_Qlty_Level:");// print string on LCD
lcd.setCursor(0,3);// set cursor on LCD
lcd.print(MQ135_sensor_level);// print int on LCD
delay(50);// set delay of 50mSec

}
else if(Touch_sensor_level == 20)

{
lcd.clear();
lcd.setCursor(0,0);// set cursor on LCD
lcd.print("TOUCH STATUS:");// print string on LCD
lcd.setCursor(0,1); s//et cursor on LCD
lcd.print("NO ");// print string on LCD
lcd.setCursor(0,2);// set cursor on LCD
lcd.print("AIR_Qlty_Level:");// print string on LCD
lcd.setCursor(0,3);// set cursor on LCD
lcd.print(MQ135_sensor_level);// print integer on LCD
delay(50);// set delay of 50mSec
}

}

void arduino_serialEvent()
{
while (Serial.available()>0)// check serial data
{
char BYTE_serial = (char)Serial.read();// read serial data
from RF modem

inputString_arduino += BYTE_serial;// store data on string
if (BYTE_serial == ’\r’)// cheak last byte as termination
byte of packet

{
Touch_sensor_level=(((inputString_arduino[0]-48)*10)+((

inputString_arduino[1]-48)*1));
MQ135_sensor_level=(((inputString_arduino[3]-48)*100)+((

inputString_arduino[4]-48)*10)+((inputString_arduino
[5]-48)*1));/// only 3 byte can be received for MQ135

}
}

}

3
Interfacing of ESP8266 with Input/Output

Devices

This section describes the interfacing among analog sensors, digital sensors,
actuators, and serial communication devices.

3.1 Interfacing of ESP8266 with Analog Sensor

3.1.1 Introduction

Figure 3.1 shows the block diagram of the NodeMCU and devices like
LCD and analog sensors. It comprises a +12 V/500 mA power supply, a
NodeMCU, an LCD, and an LM35 sensor. The main objective is to display
the sensory data on the LCD. Table 3.1 shows the components list to develop
the system.

NodeMCU

Liquid Crystal
Display

Power
Supply

LM35

Figure 3.1 Block diagram of the system.

67

68 Interfacing of ESP8266 with Input/Output Devices

Table 3.1 Components’ list
Component Quantity
Power supply 12 V/1 A 1
NodeMCU 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3 V 1
DC voltage sensor 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1
LM35 sensor 1

3.1.2 Circuit Diagram

The following are the interfacing connections of NodeMCU and the I/O
devices:

1. +5V and GND pins of the NodeMCU are connected to +5V and GND
pins of the power supply, respectively.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply,
respectively.

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply,
respectively.

4. Fixed legs of the 10K POT are connected to +5V and GND of the power
supply and variable leg to pin 3 of the LCD, respectively.

5. Pin D1, GND, and pin D2 of the NodeMCU are connected to pin 4(RS),
pin 5(RW), and pin 6(E) of the LCD, respectively.

6. Pin D3, pin D4, pin D5, and pin D6 of the NodeMCU are connected
to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, and OUT pins of the LM35 sensor are connected to +5V,
GND, and A0 pins of the NodeMCU.

Figure 3.2 shows the circuit diagram of the system.

3.1.3 Program Code

#include <LiquidCrystal.h>
const int rs = D1, en = D2, d4 = D3, d5 = D4, d6 = D5,

d7 = D6;

3.1 Interfacing of ESP8266 with Analog Sensor 69

Figure 3.2 Circuit diagram of the system.

LiquidCrystal DISPLAY(rs, en, d4, d5, d6, d7);
int LM35_sensor_pin=A0;
void setup()
{
DISPLAY.begin(16, 2);// initialize the LCD
DISPLAY.print("Analog_sensor+LCD");// print string on LCD

}

void loop()
{
int LM35_level=analogRead(LM35_sensor_pin);// read analog

sensor
int LM35_ACTUAL=LM35_level/2;// convert it into equivalent

temperature
DISPLAY.setCursor(0, 2);// set cursor on LCD
DISPLAY.print("LM35_level:");// print string on LCD
DISPLAY.setCursor(0, 2);// set cursor on LCD
DISPLAY.print(LM35_ACTUAL);// print integer on LCD
delay(50);// set delay of 50mSec

}

70 Interfacing of ESP8266 with Input/Output Devices

3.2 Interfacing of ESP8266 with Digital Sensors

3.2.1 Introduction

Figure 3.3 shows the block diagram of the NodeMCU and devices like
LCD and digital sensors. It comprises a +12 V/500 mA power supply, a
NodeMCU, an LCD, and a flame sensor. The main objective is to display
the sensory data on the LCD by reading the flame sensor status. Table 3.2
shows the components list to develop the system.

NodeMCU

Liquid Crystal
Display

Power
Supply

Flame
Sensor

Figure 3.3 Block diagram of the system.

Table 3.2 Components’ list
Component Quantity
Power supply 12 V/1 A 1
NodeMCU 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3 V 1
DC voltage sensor 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1
Flame sensor 1

3.2 Interfacing of ESP8266 with Digital Sensors 71

3.2.2 Circuit Diagram

The following are the interfacing connections of the NodeMCU and the
external devices:

1. +5V and GND pins of the NodeMCU are connected to +5V and GND
pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply,
respectively.

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply,
respectively.

4. Fixed legs of the 10K POT are connected to +5V and GND of power
supply and variable leg to pin 3 of the LCD, respectively.

5. Pin D1, GND, and pin D2 of the NodeMCU are connected to pin 4(RS),
pin 5(RW), and pin 6(E) of the LCD, respectively.

6. Pin D3, pin D4, pin D5, and pin D6 of the NodeMCU are connected
to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, and OUT pins of the flame sensor are connected to +5V,
GND, and D7 pins of the NodeMCU.

Figure 3.4 shows the circuit schematics of the system to read the digital
sensor.

3.2.3 Program Code

#include <LiquidCrystal.h>
const int rs = D1, en = D2, d4 = D3, d5 = D4, d6 = D5,

d7 = D6;
LiquidCrystal DISPLAY(rs, en, d4, d5, d6, d7);
int FLAME_sensor_pin=7;
void setup()
{
DISPLAY.begin(16, 2);// initialize the LCD
DISPLAY.print("DIGITAL_sensor+LCD");// print string on LCD
pinMode(FLAME_sensor_pin,INPUT_PULLUP);// assign pin7 as

input pin
}

void loop()
{
LDR_STATUS=digitalRead(FLAME_sensor_pin);// read digital

sensor

72 Interfacing of ESP8266 with Input/Output Devices

Figure 3.4 Circuit diagram of the system.

if(FLAME_STATUS==LOW)// check status of sensor
{
DISPLAY.setCursor(0, 1);// set cursor on LCD
DISPLAY.print("FLAME STATUS:YES");// print string on LCD
delay(50);// set delay of 50mSec

}
else
{
DISPLAY.setCursor(0, 1);// set cursor on LCD
DISPLAY.print("FLAME STATUS:NO ");// print string on LCD
delay(50); //set delay of 50mSec

}
}

3.3 NodeMCU and Serial Communication 73

3.3 NodeMCU and Serial Communication

This section describes the serial communication using NodeMCU.

3.3.1 Introduction

Figure 3.5 shows the block diagram of the NodeMCU and devices like LCD
and sensors. It comprises a +12 V/500 mA power supply, a NodeMCU, an
LCD, and a flame sensor as digital sensor and an LDR as analog sensor. The
main objective is to display the sensory data on the LCD as well as serial
communication.

Table 3.3 shows the components’ list required to develop the system.

3.3.2 Circuit Diagram

The following are the interfacing connections of the NodeMCU and the
external devices:

1. +5V and GND pins of the NodeMCU are connected to +5V and GND
pins of the power supply, respectively.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply,
respectively.

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply,
respectively.

4. Fixed legs of the 10K POT are connected to +5V and GND of the power
supply and variable leg to pin 3 of the LCD, repectively.

NodeMCU

Liquid Crystal
Display

Power
Supply

Capacitive
Touch
Sensor

Serial monitor
on PC

LDR
Sensor

Figure 3.5 Block diagram of the system.

74 Interfacing of ESP8266 with Input/Output Devices

Table 3.3 Components’ list
Component Quantity
Power supply 12 V/1 A 1
NodeMCU 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
Level converter to 12 to 5 V, 3.3 V 1
DC voltage sensor 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1
Capacitive touch sensor 1
LDR sensor 1

5. Pin D1, GND, and pin D2 of the NodeMCU are connected to pin 4(RS),
pin 5(RW), and pin 6(E) of the LCD, respectively.

6. Pin D3, pin D4, pin D5, and pin D6 of the NodeMCU are connected
to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, and OUT pins of the capacitive touch sensor are connected
to +5V, GND, and D7 pins of the NodeMCU.

8. +Vcc, GND, and OUT pins of the LDR sensor are connected to +5V,
GND, and A0 pins of the NodeMCU.

Figure 3.6 shows the circuit diagram of the system.

3.3.3 Program Code

#include <LiquidCrystal.h>

const int rs = D1, en = D2, d4 = D3, d5 = D4, d6 = D5,
d7 = D6;

LiquidCrystal DISPLAY(rs, en, d4, d5, d6, d7);
int TOUCH_sensor_pin=D7;// connect touch sensor pin on D7 pin
int LDR_sensor_pin=A0;// onnect LDR on A0 pin
void setup()

{
DISPLAY.begin(16, 2);// initialsie LCD
DISPLAY.print("Analog_sensor+LCD");// print string on
LCD

3.3 NodeMCU and Serial Communication 75

Figure 3.6 Circuit diagram of the system.

pinMode(TOUCH_sensor_pin,INPUT_PULLUP);// assign pin
D7 as input
Serial.print(9600);?/ initialize serial communication

}

void loop()
{
int TOUCH_STATUS=digitalRead(TOUCH_sensor_pin);//
read touch sensor
int LDR_LEVEL=analogRead(LM35_sensor_pin);// read LDR

if(TOUCH_STATUS==LOW)// check status
{
DISPLAY.setCursor(0, 1);// set cursor on LCD
DISPLAY.print("TOUCH:YES");// print string on LCD
DISPLAY.setCursor(0, 2);// set cursor on LCD
DISPLAY.print("LDR_LEVEL:");// print string on LCD
DISPLAY.setCursor(5, 2);// set cursor on LCD
DISPLAY.print(LDR_LEVEL);// print integer on LCD
DISPLAY.setCursor(8, 2);// set cursor on LCD

76 Interfacing of ESP8266 with Input/Output Devices

DISPLAY.print(‘‘0C’’);// print string on LCD
Serial.println("TOUCH:YES");// print serial data of
Touch sensor
Serial.println(LDR_LEVEL);// print serial data of
LDR
delay(50);
}
else
{
DISPLAY.setCursor(0, 1);// set cursor on LCD
DISPLAY.print("TOUCH:NO ");// print string on LCD
DISPLAY.setCursor(0, 2);// set cursor on LCD
DISPLAY.print("LDR_LEVEL:");// print string on LCD
DISPLAY.setCursor(5, 2);// set cursor on LCD
DISPLAY.print(LDR_LEVEL);// print integer on LCD
DISPLAY.setCursor(8, 2);// set cursor on LCD
DISPLAY.print(‘‘0C’’);// print string on LCD
Serial.println("TOUCH:YES");// print serial data of
Touch sensor
Serial.println(LDR_LEVEL);// prit integer value of
LDR sensor
delay(50);// set delay of 50 mSec
}}

4
Biometric Car Door Opening System

A car door is used to enter and exit the vehicle which is attached through
suitable mechanisms. The door can be opened manually or operated through
power electronically.

Hatch or station wagon vehicle bodies generally have either three or five
doors. In this case, rear hatch is also considered as a door because it also
allows the passengers to entry.

4.1 Introduction

Figure 4.1 shows the block diagram of the NodeMCU and devices like LCD
and sensors. It comprises a +12 V/500 mA power supply, a 12 to 5 V
convertor, a NodeMCU, an LCD, and a fingerprint sensor. The main objective
is to display the fingerprint authentication data on the LCD by matching
the fingerprint with pre-stored data inside the memory of the fingerprint
sensor. The authentication information with time is uploaded on the cloud
server using the NodeMCU/WiFi modem and the information is displayed on
mobile App (BLYNK App).

4.2 Circuit Diagram

The following are the interfacing connections of the NodeMCU and the
external devices.

1. +5V and GND pins of the NodeMCU are connected to +5V and GND
pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed legs of the 10K POT are connected to +5V and GND of the power

supply and variable leg to pin 3 of the LCD.

77

78 Biometric Car Door Opening System

NodeMCU

Display unit

Power supply
adaptor 12V/

1Amp

Fingureprint
sensor

Serial data

ServerWireless
communication

+12V to 5V/
3.3V convertor

Digital data

Relay
Door look

Figure 4.1 Block diagram of the system.

5. Pin D1, GND, and pin D2 of the NodeMCU are connected to pin 4(RS),
pin 5(RW), and pin 6(E) of the LCD.

6. Pin D3, pin D4, pin D5, and pin D6 of the NodeMCU are connected to
pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD.

7. +Vcc, GND, RX OUT, and SEARCH pins of the fingerprint sensor are
connected to +5V, GND, RX and D7 pins of the NodeMCU.

Figure 4.2 shows the circuit diagram of the system.

4.3 Program Code

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
///// add LCD library
#include <LiquidCrystal.h>
LiquidCrystal lcd(D0, D1, D2, D3, D4, D5);
///// Add softserial library
#include <SoftwareSerial.h>
SoftwareSerial mySerial_one(6,7); // 6 rx /7 tx for

Fingerprint
///// add credentials
char auth[] = "8507cac915f04a1bb4b00987e420afa0";//

authentication token
char ssid[] = "ESPServer_RAJ";// id of hotspot
char pass[] = "RAJ@12345";// password of hotspot
BlynkTimer timer;
int search_pin=5;// attach search pin of fingerprint sensor

to pin 5

4.3 Program Code 79

Figure 4.2 Circuit diagram of the system.

int digitallockpin=4;// attach digital lock pin to pin 4
WidgetLCD LCD_BLYNK(V0); // configure blynk LCD on virtual

pinV0

void READ_SENSOR()// function to read the sensor

{
digitalWrite(search_pin,LOW);/// make serach pin low
delay(50);// set delay of 50mSec
digitalWrite(search_pin,HIGH);/// make serach pin high
int X= mySerial_one.read();// record serial data on X
if(X==0)// check X
{
lcd.setCursor(0,1);// set cursor of LCD
lcd.print("FIRST ");// print string on LCD
LCD_BLYNK.print(0,1,"FIRST ");// print string

on blynk LCD
digitalWrite(digitallockpin,HIGH);// make digital lock pin

high

80 Biometric Car Door Opening System

Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of
blynk

delay(20);// set delay of 50mSec
}
if(X==1)
{
lcd.setCursor(0,1);// setcursor on LCD
lcd.print("SECOND ");// print string on LCD
LCD_BLYNK.print(0,1,"SECOND "); print string

on blynk LCD
digitalWrite(digitallockpin,HIGH);// make digital lock pin

to HIGH
Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of

blynk
delay(20);// set delay of 50mSec
}
if(X==2)

{
lcd.setCursor(0,1);// setcursor on LCD
lcd.print("THIRD ");// print string on LCD
LCD_BLYNK.print(0,1,"THIRD "); //print string

on blynk LCD
digitalWrite(digitallockpin,HIGH); //make digital lock pin

to HIGH
Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of

blynk
delay(20);// set delay of 20mSec
}
if(X==3)

{
lcd.setCursor(0,1);// set cursor on LCD
lcd.print("FOUR ");// print string on LCD
LCD_BLYNK.print(0,1,"FOUR ");// print string

on blynk LCD
digitalWrite(digitallockpin,HIGH);// make digital lock pin

to HIGH
Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of

blynk
delay(20);// set delay of 20mSec
}
if(X==4)
{
lcd.setCursor(0,1);// set cursor on LCD
lcd.print("FIVE ");// print string on LCD
LCD_BLYNK.print(0,1,"FIVE ");// print string on

blynk LCD

4.3 Program Code 81

digitalWrite(digitallockpin,HIGH);// make digital lock pin
to HIGH

Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of
blynk

delay(20);// set delay of 50mSec
}
if(X==5)
{
lcd.setCursor(0,1); //set cursor on LCD
lcd.print("SIX ");// print string on LCD
LCD_BLYNK.print(0,1,"SIX ");// print string on

blynk LCD
digitalWrite(digitallockpin,HIGH);// make digital lock pin

to HIGH
Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of

blynk
delay(20);// set delay of 20mSec
}
if(X==0xFF)
{
lcd.setCursor(0,1);// send data to virtual pin V5 of blynk
lcd.print("Punch The Fingure.. ");// print string on LCD
LCD_BLYNK.print(0,1,"PUNCH THE FINGURE ");// print

string on blynk LCD
digitalWrite(digitallockpin,LOW); //make digital lock pin to

LOW
Blynk.virtualWrite(V5,X);// send data to virtual pin V5 of

blynk
delay(20);// set delay of 20mSec
}

}

void setup()
{
Serial.begin (9600); // initialize serial communication for

GPS
mySerial_one.begin (9600);// initialize for finger print

serial baud rate
lcd.begin(20, 4); // initialize LCD
pinMode(search_pin,OUTPUT);/// set search pin as input pin
pinMode(digitallockpin,OUTPUT);///// set digital lock pin as

output pin
lcd.setCursor(0,0);// set cursor of LCD
lcd.print("welcome");// print string on LCD
Blynk.begin(auth, ssid, pass);// initialize blynk app

82 Biometric Car Door Opening System

timer.setInterval(10000L,READ_SENSOR);//// set sample rate
of read sensor function 10 sec

delay(2000);// set delay of 2000mSec

}
void loop()
{
Blynk.run();//initialize bynk
timer.run(); // Initialize BlynkTimer
}

4.4 Blynk APP

Blynk is iOS and Android platform to design mobile apps. To design the app,
download the latest Blynk library from: https://github.com/blynkkk/blynk-
library/releases/latest

Mobile App can easily be designed just by dragging and drop-
ping widgets on the provided space. Tutorials can be downloaded from:
http://www.blynk.cc

Steps to design Blynk App

1. Step 1: Download and install the Blynk App for your mobile Android
or iphone from http://www.blynk.cc/getting-started/

2. Step 2: Create a Blynk Account
3. Step 3: Create a new project

Click on + for creating a new project and choose the theme dark
(black background) or light (white background) and click on create
(Figure 4.3).

4. Step 4: Auth token is a unique identifier, which will be received on the
email address of the user provided at the time of making the account.
Save this token, as this is required to copy in the main program of the
receiver section.

5. Step 5: Select the device to which smart phone needs to communicate,
e.g., ESP8266 (NodeMCU).

6. Step 6: Open widget box and select the components required for the
project. For this project, five buttons are selected.

7. Step 7: Tap on the widget to get its settings and select virtual terminals
as V1 and V2 for each button, which needs to be defined later on the
program.

8. Step 8: After completing the widget settings, run the project.
9. Front end of the APP for the proposed system (Figure 4.4).

4.4 Blynk APP 83

Figure 4.3 Create a new project.

Figure 4.4 BLYNK APP.

5
Accident Monitoring System

Vehicle population is growing very rapidly compared to the economy and
population growth of country and population growth. This is due to the rapid
growth of technology and its infrastructure, available due to globalization.
This is a very positive sign on one side but another side this advent of tech
also increases the road traffic hazards, which leads to a lot of irreparable
loss. Road safety measures need to improve as well as immediate attention
is required at accidents-prone places, which can save the lives of people who
are victims of accidents.

5.1 Introduction

Figure 5.1 shows the block diagram of the NodeMCU and devices like LCD
and sensors. It comprises a +12 V/500 mA power supply, a 12 to 5 V
convertor, an Arduino Nano, a NodeMCU, an LCD, and a pressure sensor.
The main objective is to display the data of the pressure sensor and location
by GPS coordinates on the LCD by reading the bump or hit on the car. The
sensory information and location by GPS coordinates transfer to the Node
MCU via a serial link. The information with time can be uploaded to the
cloud server using the NodeMCU/WiFi modem. Table 5.1 shows the list of
components to develop the system.

5.2 Circuit Diagram

The following are the interfacing connections of the NodeMCU and the
external devices.

1. +5V and GND pins of the NodeMCU and Arduino Nano are connected
to +5V and GND pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.

85

86 Accident Monitoring System

Arduino
nano

Display unit

Power supply
adaptor 12V/

1Amp

GPS

Serial data

ServerWireless
communication

+12V to 5V/
3.3V convertor

Digital data

NodeMCU

Seria
l data

trans
fer

pressure
sensor1

pressure
sensor 2

pressure
sensor3

Figure 5.1 Block diagram of the system.

Table 5.1 Components’ list
Component Quantity
Power supply 12 V/1 A 1
NodeMCU 1
Arduino Nano 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
DC voltage sensor 1
+12V to +5V convertor 1
LCD20*4 1
LCD breakout board/patch 1
Pressure sensor 3
GPS 1

3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed legs of the 10K POT are connected to +5V and GND of the power

supply and variable leg to pin 3 of the LCD.
5. Pin 12, GND, and pin 11 of the Arduino are connected to pin 4(RS), pin

5(RW), and pin 6(E) of the LCD.
6. Pin 10, pin 9, pin 8, and pin7 of the Arduino are connected to pin

11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, and RX OUT pins of the GPS are connected to +5V,
GND, and RX pins of the Arduino.

8. +Vcc, GND, and OUT pins of pressure sensor 1 are connected to +5V,
GND, and A0 pins of the Arduino.

5.3 Program Code 87

Figure 5.2 Circuit diagram of the system.

9. +Vcc, GND, and OUT pins of pressure sensor 2 are connected to +5V,
GND, and A1 pins of the Arduino.

10. +Vcc, GND, and OUT pins of pressure sensor 3 are connected to +5V,
GND, and A2 pins of the Arduino.

11. The TX pin of the Arduino is connected to the RX pin of the NodeMCU.

Figure 5.2 shows the circuit diagram of the system.

5.3 Program Code

Sections 5.3.1 and 5.3.2 show the program code for Arduino nano and
NodeMCU, respectively.

5.3.1 Program Code for Arduino Nano

#include <TinyGPS.h>// add header of GPS
#include <LiquidCrystal.h>// add header for LCD

88 Accident Monitoring System

LiquidCrystal lcd(13, 12, 11, 10, 9, 8);// pins connection of
LCD with ardiuino

#include <SoftwareSerial.h>// softserial library to make
another serial port

SoftwareSerial mySerial_one(6,7); // 6 as RX pin /7 as TX
pin

//// GPS
TinyGPS gps;
void getgps(TinyGPS &gps);
float latitude, longitude;
byte a;
void getgps(TinyGPS &gps)

{
float latitude, longitude;
decode and display position data
gps.f_get_position(&latitude, &longitude);

lcd.setCursor (0,3);// set cursor of LCD
lcd.print ("Lat:");// print string on LCD
lcd.print (latitude,5);// print latitude value on LCD
Serial.print (latitude);// serial print the value of

latitude
Serial.print (" ");// set gap
lcd.print (" ");// print on lCD

lcd.setCursor (10,3);// set cursor of LCD
lcd.print ("Long:");// print string on LCD
lcd.print (longitude,5);// print longitude value on LCD
Serial.println (longitude);// serial print the value of

longitude
lcd.print (" "); print string on LCD
delay(3000); // wait for 3 seconds

}
void CALL_GPS()
{
byte a;
if (Serial.available() > 0) // if there is data coming

into the serial line
{
a = Serial.read(); // get the byte of data

if(gps.encode(a)) // if there is valid GPS data...

5.3 Program Code 89

{
getgps(gps); // grab the data and display it on the LCD
}

}

}

void setup()
{
Serial.begin(9600); // for GPS
mySerial_one.begin(9600);// for finger print
lcd.begin(20, 4); // initialize LCD
lcd.setCursor(0,0);// set cursor on LCD
lcd.print("welcome to");// print string on LCD
lcd.setCursor(0,0);// set cursor on LCD
lcd.print("GPS Monitoring");// print string on LCD
delay(2000);// wait for 2 sec
lcd.clear();// clear the LCD contents

}

void loop()
{
int pressure_sensor1=analogRead(A0);// read analog pressure

sensor 1
int pressure_sensor2=analogRead(A1);// read analog pressure

sensor 2
int pressure_sensor3=analogRead(A2);// read analog pressure

sensor 3
CALL_GPS(); // call GPS function for longitude and latitude
lcd.setCursor(0,0);// set cursor on LCD
lcd.print("P0:");// print string on LCD
lcd.setCursor(3,0);// set cursor on LCD
lcd.print(pressure_sensor1);// print int value of pressure

sensor 1
lcd.setCursor(10,0);// set cursor on LCD
lcd.print("P1:");// print string on LCD
lcd.setCursor(13,0);// set cursor on LCD
lcd.print(pressure_sensor2);// print int value of pressure

sensor 2
lcd.setCursor(0,1);// set cursor on LCD
lcd.print("P2:");// print string on LCD
lcd.setCursor(3,1);// set cursor on LCD
lcd.print(pressure_sensor3);// print int value of pressure

sensor 3

90 Accident Monitoring System

Serial.print(pressure_sensor1);// send pressure sensor 1
value on serial port

Serial.print(";");// print string on LCD
Serial.print(pressure_sensor2);// send pressure sensor 2

value on serial port
Serial.print(";");//print string on LCD
Serial.print(pressure_sensor3);// send pressure sensor 3

value on serial port
Serial.print(";");//print string on LCD
Serial.print(latitude);// send int value of latitude on

serial port
Serial.print(";");//print string on LCD
Serial.print(longitude);// send int value of latitude on

serial port
Serial.print(’\n’);// print ‘\n’ on LCD
}}

5.3.2 Program Code for NodeMCU

#include <SoftwareSerial.h>
#include <ESP8266WiFi.h>
#include "StringSplitter.h"
SoftwareSerial mySerial(D7,D8,false,256);// make D7 and D8 as

RX and TX pin
String apiKey1 = "O44YTW0Z5WNO17N8";// api key from thinspeak
const char* ssid = "ESPServer_RAJ";// hotspot ID
const char* password = "RAJ@12345";// hotspot password
const char* server = "api.thingspeak.com";
WiFiClient client;
String PRESS_SENSOR1,PRESS_SENSOR2,PRESS_SENSOR3,latitude,

longitude;
String inputString_NODEMCU = ""; // a string to hold

incoming data

void setup()
{
Serial.begin(115200);// initialize serial communication
mySerial.begin(115200);// initialize serial communication
of D7 and D8 pins
inputString_NODEMCU.reserve(200);// reserve bytes
delay(10);// wait for 10mSec
WiFi.begin(ssid, password);// initialize wiFi
communication
Serial.println();// print serial
Serial.println();// print serial
Serial.print("Connecting to ");// print string on LCD

5.3 Program Code 91

Serial.println(ssid);// print ssid

while (WiFi.status() != WL_CONNECTED)// check wifi status
{
delay(500);// wait for 500mSec
Serial.print(".");// print serial
}
Serial.println("");// print serial
Serial.println("WiFi connected");// print string on
serial
}

void loop()
{

if (client.connect(server,80))// check server
{

serialEvent_NODEMCU();// call function to read serial
data from nodeMCU
send1_TX_ACCIDENT_PARA();// Call function to send data

on thingspeak server
}
client.stop();
Serial.println("Waiting");
delay(20000);// thingspeak needs minimum 15 sec

delay between updates
}

void send1_TX_ACCIDENT_PARA()// function to send data on
thingspeak server

{
String postStr = apiKey1;
postStr +="&field1=";
postStr += String(PRESS_SENSOR1);// data on field 1
postStr +="&field2=";
postStr += String(PRESS_SENSOR2);// data on field 2
postStr +="&field3=";
postStr += String(PRESS_SENSOR3);// data on field 3
postStr +="&field4=";
postStr += String(latitude);// data on field 4
postStr +="&field5=";
postStr += String(longitude);// data on field 5
postStr += "\r\n\r\n";
client.print("POST /update HTTP/1.1\n");
client.print("Host: api.thingspeak.com\n");
client.print("Connection: close\n");

92 Accident Monitoring System

client.print("X-THINGSPEAKAPIKEY: "+apiKey1+"\n");
client.print("Content-Type: application/x-www-form-
urlencoded\n");
client.print("Content-Length: ");
client.print(postStr.length());
client.print("\n\n");
client.print(postStr);
Serial.print("Send data to channel-1 ");// send string on
serial
Serial.print("Content-Length: ");// send string on serial
Serial.print(postStr.length());// print length of string
Serial.print("Field-1: ");// send string on serial
Serial.print(PRESS_SENSOR1);// print sensor value 1 on
serial
Serial.print("Field-2: ");// send string on serial
Serial.print(PRESS_SENSOR2);// print sensor value 1 on
serial
Serial.print("Field-3: ");// send string on serial
Serial.print(PRESS_SENSOR3);// print sensor value 1 on
serial
Serial.print("Field-4: ");// send string on serial
Serial.print(latitude);// print latituder value on
serial
Serial.print("Field-5: ");// send string on serial
Serial.print(longitude);// print lonitude value on serial
Serial.println(" data send");// send string on serial

}

void serialEvent_NODEMCU() // function to read serial data
form Arduino Nano

{
while (mySerial.available()>0)// check serial data on RX pin
{
inputString_NODEMCU = mySerial.readStringUntil(’\n’);// Get

serial input from Arduino nano

StringSplitter *splitter = new StringSplitter(
inputString_NODEMCU, ’,’, 5); // use

string splitter to separate the data from arduono nano
StringSplitter(string_to_split, delimiter, limit)
int itemCount = splitter->getItemCount();

for(int i = 0; i < itemCount; i++)

5.4 ThingSpeak Server 93

{
String item = splitter->getItemAtIndex(i);
PRESS_SENSOR1 = splitter->getItemAtIndex(0);// sensor1

data
PRESS_SENSOR2 = splitter->getItemAtIndex(1);// sensor1

data
PRESS_SENSOR3 = splitter->getItemAtIndex(2);// sensor1

data
latitude= splitter->getItemAtIndex(3);// latitude data
longitude=splitter->getItemAtIndex(4);// longitude data

}
inputString_NODEMCU = "";// blank the string again
delay(200);// wait for 200 mSec
}

}

5.4 ThingSpeak Server

1. Sign In to ThingSpeak by creating a new MathWorks account.
2. Click Channels > MyChannels (Figure 5.3).
3. Click New Channel (Figure 5.4).

Figure 5.3 Window for ThingSpeak.

Figure 5.4 New channel in my channels.

94 Accident Monitoring System

Figure 5.5 Field showing latitude.

Figure 5.6 Field showing longitude.

4. Check the boxes next to Fields 1–1. Enter the channel setting values.
Click Save Channel at the bottom of the settings.

5. Check API write key (this key needs to write in the program for local
server).

6. Fields will show the sensory data in the form of graphs (Figures 5.5–5.9).

5.4 ThingSpeak Server 95

Figure 5.7 Field showing pressure sensor 1(mb).

Figure 5.8 Pressure sensor 2 (mb).

96 Accident Monitoring System

Figure 5.9 Pressure sensor 3 (mb).

6
Engine Oil and Coolant Level

Monitoring System

In automobiles, one of the most neglected areas is engine oil and coolant
levels. These two fluids play a vital role in any internal combustion engine. It
is useful to display levels so that users can aware about its condition before it
goes too low. The system is proposed for engine oil and coolant monitoring
and display.

6.1 Introduction

Figure 6.1 shows the block diagram of the system with Arduino Nano,
NodeMCU, and its other devices. It comprises a +12 V/500 mA power
supply, a 12 to 5 V convertor, an Arduino Nano, a NodeMCU, an LCD, and
level sensors. The main objective is to display the level of engine oil and
coolant on the LCD by reading it through sensors. The sensory information
from the Arduino Nano is transferred to the Node MCU via a serial link.
The information with time can be uploaded to the cloud server using the
NodeMCU/WiFi modem. Table 6.1 shows the list of components to develop
the system.

6.2 Circuit Diagram

The following are the interfacing connections of the NodeMCU and the
external devices.

1. +5V and GND pins of the NodeMCU and Arduino Nano are connected
to +5V and GND pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.

97

98 Engine Oil and Coolant Level Monitoring System

Arduino
nano

Display unit

Power supply
adaptor 12V/

1Amp

ServerWireless
communication

+12V to 5V/
3.3V convertor

Digital data

NodeMCU

Seria
l data

trans
fer

Coolant
level
sensor

Engine
oil level
sensor

Figure 6.1 Block diagram of the system.

Table 6.1 Components’ list
Component Quantity
Power supply 12 V/1 A 1
NodeMCU 1
Arduino Nano 1
Jumper wire M-M 20
Jumper wire M-F 20
Jumper wire F-F 20
Power supply extension (to get more +5V and GND) 1
DC voltage sensor 1
+12V to +5V/ 3.3 V convertor 1
LCD20*4 1
LCD breakout board/patch 1
level sensors 2

4. Fixed legs of the 10K POT are connected to +5V and GND of the power
supply and variable leg to pin 3 of the LCD.

5. Pin D1, GND, and pin D2 of the Arduino Nano are connected to pin
4(RS), pin 5(RW), and pin 6(E) of the LCD, respectively.

6. Pin D3, pin D4, pin D5, and pin D6 of the Arduino Nano are connected
to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
respectively.

7. +Vcc, GND, TRIG, ECHO, and OUT pins of the engine oil level are
connected to +5V, GND, and pins 6 and 5 of the Arduino Nano.

8. +Vcc, GND, and SERIAL OUT pins of the coolant level sensor are
connected to +5V, GND, and RX pins of the Arduino Nano.

9. The TX pin of the Arduino Nano is connected to the RX pin of the
NodeMCU.

Figure 6.2 shows the circuit diagram of the system.

6.3 Program Code 99

Figure 6.2 Circuit diagram of the system.

6.3 Program Code

6.3.1 Program Code for Arduino Nano

#include <LiquidCrystal.h>
const int RS = 12, EN = 11, D4 = 10, D5 = 9, D6 = 8, D7 = 7;
LiquidCrystal lcd(RS, EN, D4, D5, D6, D7);
String inputString_ULTRA = "";
String ULTRA_SERIAL;
const int trigPin = 6;// connect trigger pin to pin 6
const int echoPin = 5;// connect trigger pin to pin 6
long duration_TRIG_ECHO;
int distance_TRIG_ECHO;
void setup()
{
Serial.begin(9600); // initialize serial communication
lcd.print(20,4);// initialize LCD
pinMode(trigPin, OUTPUT); // set trigger pin as output
pinMode(echoPin, INPUT); // set echo pin as input
lcd.setCursor(0,0);// set the cursor on LCD
lcd.print("Coolant and Oil");// print string on LCD
lcd.setCursor(0,1);// set the cursor of LCD

100 Engine Oil and Coolant Level Monitoring System

lcd.print("level monitoring");// print string on LCD
delay(100);// wait for 100mSec

}

void loop()
{
ULTRASONIC_READ();// function to read ultrasonic sensor
digitalWrite(trigPin, LOW);// make trigger pin LOW
delayMicroseconds(2);// wait for 10 micro second
digitalWrite(trigPin, HIGH);// make trigger pin HIGH
delayMicroseconds(10);// wait for 10 micro second
digitalWrite(trigPin, LOW);// make trigger pin LOW
duration_TRIG_ECHO = pulseIn(echoPin, HIGH);// read pulse
distance_TRIG_ECHO = (duration/2) / 29.1;// calculate

distance
lcd.setCursor(0,2);// set cursor on LCD
lcd.print("DIS1_SERIAL:");// print string on LCD
lcd.print(ULTRA_SERIAL);// print integer on LCD
lcd.setCursor(0,3);// set cursor on LCD
lcd.print("DIS2_SERIAL:");// print string on LCD
lcd.print(distance_TRIG_ECHO);// print variable on LCD
Serial.print(ULTRA_SERIAL);// print serial the value
Serial.print(";");// print string on serial
Serial.print(distance_TRIG_ECHO); //print serial the value
Serial.print(’\n’);// print new line char on serial
delay(5000);// wait for 5 Sec

}

void ULTRASONIC_READ()// function to read serial data
{
while (Serial.available()>0)// check serial data
{

inputString_ULTRA = Serial.readStringUntil(’\r’);// Get
serial input from ultrasonic sensor

ULTRA_SERIAL=String(((inputString_ULTRA[0]-48)*100) +
((inputString_ULTRA[1]-48)*10)+((inputString_ULTRA[2]-48)*1))

+"."+String(((inputString_ULTRA[4]-48)*10)+((
inputString_ULTRA[5]-48)*1));

}
inputString_ULTRA = "";// make empty the string
delay(20);// wait for 20mSec

}

6.3 Program Code 101

6.3.2 Program Code of NodeMCU for ThingSpeak Server

#include <ESP8266WiFi.h>// add header for ESP8266
#include "StringSplitter.h"// add header for string splitter
String apiKey1 = "O44YTW0Z5WNO17N8";// add API key here
const char* ssid = "ESPServer_RAJ";// ID of Hot spot
const char* password = "RAJ@12345";// password for hotspot
const char* server = "api.thingspeak.com";
WiFiClient client;
String OIL_LEVEL,COOLANT_LEVEL:// define string
String inputString_NODEMCU = ""; // a string to hold

incoming data

void setup()
{
Serial.begin(115200);// initialize serial

communication
delay(10);// wait for 10 sec
WiFi.begin(ssid, password);// initialize wi-fi

communication
Serial.println();
Serial.println();
Serial.print("Connecting to ");// print serial data
Serial.println(ssid);// print ssid

while (WiFi.status() != WL_CONNECTED)
{
delay(500);// wait for 500 mSec
Serial.print(".");// print string on LCD
}
Serial.println("");// print serial
Serial.println("WiFi connected");// print string on

LCD
}

void loop()
{

if (client.connect(server,80)) // check client
{
ULTRASONIC_serialEvent_NODEMCU();// call

serial event

102 Engine Oil and Coolant Level Monitoring System

send1_TX_OIL_COOLANT_PARA();// call the
function to write data to thingspeak

}
client.stop();// command to stop client
Serial.println("Waiting");// serial print the

string
delay(20000);// thingspeak needs minimum 15

sec delay between updates

}

void send1_TX_OIL_COOLANT_PARA()//call the function to write
data to thingspeak

{
String postStr = apiKey1;
postStr +="\&field1=";
postStr += String(OIL_LEVEL);
postStr +="\&field2=";
postStr += String(COOLANT_LEVEL);
postStr += "\r\n\r\n";

client.print("POST /update HTTP/1.1\n");
client.print("Host: api.thingspeak.com\n");
client.print("Connection: close\n");
client.print("X-THINGSPEAKAPIKEY: "+apiKey1+"\n");
client.print("Content-Type: application/x-www-form-
urlencoded\n");
client.print("Content-Length: ");
client.print(postStr.length());
client.print("\n\n");
client.print(postStr);
Serial.print("Send data to channel-1 ");// print string
on serial port
Serial.print("Content-Length: ");// print string on
serial port
Serial.print(postStr.length());// print string on serial
port
Serial.print("Field-4: ");// print string on serial port
Serial.print(OIL_LEVEL);// print value on serial port
Serial.print("Field-5: ");// print string on serial port
Serial.print(COOLANT_LEVEL);// print value on serial port
Serial.println(" data send");// print string on LCD

}
void ULTRASONIC_serialEvent_NODEMCU() // function to read

serial data from

6.4 ThingSpeak Server 103

Arduino Uno

{
while (Serial.available()>0)// check data on serial RX pin
{

inputString_NODEMCU = Serial.readStringUntil(’\n’);// Get
serial input

StringSplitter *splitter = new StringSplitter(
inputString_NODEMCU, ’,’, 3); // new

StringSplitter(string_to_split, delimiter, limit)
int itemCount = splitter->getItemCount();
for(int i = 0; i < itemCount; i++)
{
String item = splitter->getItemAtIndex(i);
OIL_LEVEL= splitter->getItemAtIndex(0);// data of oil
level
COOLANT_LEVEL = splitter->getItemAtIndex(1);// data of
coolant level

}
inputString_NODEMCU = "";// make string empty
delay(200);// wait for 200mSec
}

}

6.4 ThingSpeak Server

Follow the steps discussed in Section 5.4 and check the sensory data on the
server. Figure 6.3 shows the oil level and Figure 6.4 shows the coolant level
w.r.t time

Figure 6.3 Field showing oil level.

104 Engine Oil and Coolant Level Monitoring System

Figure 6.4 Field showing coolant level.

7
Fleet and Driver Management System

In order to trace the vehicle position and optimum utilization of fleet, and
further to monitor the cabin atmosphere like weather driver is alcoholic or
smoking while driving the fleet and driver management system is important.
In this chapter an IoT based system is proposed.

7.1 Introduction

Figure 7.1 shows the block diagram of the system with Ti Launch PAD,
NodeMCU, and other devices. It comprises a +12 V/500 mA power supply, a
12 to 5 V convertor, a Ti Launch PAD, a NodeMCU, an LCD, a GPS, a smoke
sensor, and an alcohol sensor. The main objective is to display the data of fleet
and driver management system using the smoke sensor, alcohol sensor, and
GPS coordinates on the LCD by reading the sensors and GPS values. The
sensory information from the Ti Launch PAD is transferred to the NodeMCU
via a serial link. The information with time is uploaded to the cloud server
using the NodeMCU/WiFi modem. The information is also communicated to
the mobile App. Table 7.1 shows the list of the components to develop the
system.

7.2 Circuit Diagram

The following are the interfacing connections for the system.

1. +5V pin of the power supply is connected to the Vcc pin of the launch
pad and the NodeMCU.

2. GND pin of the power supply is connected to the GND pin of the
Ti Launch pad and the NodeMCU.

3. Pins 1 and 16 of the LCD are connected to GND of the power supply.
4. Pins 2 and 15 of the LCD are connected to +Vcc of the power supply.

105

106 Fleet and Driver Management System

Ti Launch
PAD

Display unit

Power supply
adaptor 12V/

1Amp

GPS

Serial data

Cloud ServerWireless
communication

+12V to 5V/
3.3V convertor

Digital data

Alcohol
detector

smoke
sensor

NodeMCU

IR
detector

Figure 7.1 Block diagram of the system.

Table 7.1 Components’ list
Name of Components Quantity
NodeMCU 1
Ti Launch Pad 1
LCD20*4 1
LCD20*4 patch 1
DC 12V/1Amp adaptor 1
12 to 5 V, 3.3 V converter 1
LED with 330 Ω resistor 1
Jumper wire M to M 20
Jumper wire M to F 20
Jumper wire F to F 20
Smoke sensor MQ6 1
Alcohol sensor MQ3 1
GPS 1
IR detector 1

5. Two fixed lags of POT are connected to +5V and GND of the LCD and
variable lag of the POT is connected to pin 3 of the LCD, respectively.

6. RS, RW, and E pins of the LCD are connected to pin D1, GND, and D2
of the Ti Launch PAD, respectively.

7. D4, D5, D6, and D7 pins of the LCD are connected to pins D3, D4, D5,
and D6 of the Ti Launch PAD.

8. +5V and GND pins of the MQ3 sensor are connected to +5V and GND
pins of the power supply, respectively.

9. OUT1 of the MQ3 sensor is connected to A4 of the Ti Launch PAD.
10. +5V and GND pins of the MQ6 sensor are connected to +5V and GND

pins of the power supply, respectively.
11. OUT2 of the MQ6 sensor is connected to A5 of the Ti Launch PAD.

7.3 Program Code 107

Figure 7.2 Circuit diagram of the system.

12. Connect +Vcc, GND, and OUT pins of the GPS to +5V, GND, and RX
pins of the launch pad.

13. Connect the P1.2 pin of the Ti Launch PAD to the RX pin of the
NodeMCU.

Figure 7.2 shows the circuit diagram of the system.

7.3 Program Code

7.3.1 Program Code for Ti Launch Pad with Energeia IDE

////////////// library for LCD
#include <LiquidCrystal.h>
LiquidCrystal lcd(P2_0, P2_3, P2_4, P2_5, P2_6, P2_7);//

define pin of LCD in Ti Launch pad
//// library for GPS
#include <TinyGPS.h>
TinyGPS gps;
void getgps(TinyGPS &gps);
float latitude, longitude;
byte a;

108 Fleet and Driver Management System

////////////// for Ultrasonic sensor
String inputString_ULTRA = ""; // a string to hold

incoming data
String ULTRA;
void getgps(TinyGPS &gps)
{
float latitude, longitude;
decode and display position data
gps.f_get_position (&latitude, &longitude);
lcd.setCursor (0,3); // set cursor on LCD
lcd.print ("Lat:"); // print string on LCD
lcd.print (latitude,5);//print latitude value on LCD
lcd.print(" ");// print string on LCD
lcd.setCursor(10,3); // set cursor on LCD
lcd.print("Long:"); // print string on LCD
lcd.print(longitude,5); // print longitude value on LCD
lcd.print(" ");// print string on LCD
delay(3000); // wait for 3 seconds

}

void CALL_GPS()
{
byte a;
if (Serial.available() > 0) // if there is data coming into

the serial line
{
a = Serial.read(); // get the byte of data
if(gps.encode(a)) // if there is valid GPS data...

{
getgps(gps); // grab the data of GPS

}
}

}
void setup()
{
lcd.begin(20, 4); // initialize LCD
Serial.begin(9600); // initialize serial communication
lcd.setCursor(0,0); // set cursor on LCD
lcd.print("Fleet tracking"); // print string on LCD
lcd.setCursor(0,1); // set cursor on LCD
lcd.print("and monitoring sys");// set cursor on LCD
delay(4000); // wait for 40 sec
lcd.clear();// clear the contents of LCD

7.3 Program Code 109

}

void loop()
{
int MQ3=analogRead(A0); // read analog pin A0 of MQ3 sensor
int MQ6=analogRead(A1); // read analog pin A1 of MQ6 sensor
////////////////////////// read and display Water flow
lcd.setCursor(0,1);// set the cursor on LCD
lcd.print("Alcohal_Level:");// print string on LCD
lcd.print(MQ3); // print the levels of MQ3 sensor on LCD
lcd.setCursor(0,2); // set the cursor on LCD
lcd.print("Smoke_Level:"); // print string on LCD
lcd.print(MQ6); // print the levels of MQ3 sensor on LCD
Serial.print(MQ3); // print the levels of MQ3 sensor on

serial port
Serial.print(",");// print string on LCD
Serial.print(MQ6); // print the levels of MQ6 sensor on

serial port
Serial.print(","); // print string on LCD
Serial.print(latitude); // print the value of latitude on

serial port
Serial.print(",");// print string on serial port
Serial.print(longitude); // print the value of latitude on

serial port
Serial.print(’\n’); // print string on serial port

}

7.3.2 Program Code for NodeMCU with Arduino IDE

#define CAYENNE_PRINT Serial
#include <CayenneMQTTESP8266.h>
#include <ESP8266WiFi.h>
#include "StringSplitter.h"

// add the credentials of Wi-Fi
char ssid[] = "ESPServer_RAJ"; // hotspot ID
char wifiPassword[] = "RAJ@12345";// hotspot password

// Cayenne authentication info. This should be obtained from
the Cayenne Dashboard.

char username[] = "fac81bb0-7283-11e7-85a3-9540e9f7b5aa";
char password[] = "3745eb389f4e035711428158f7cdc1adc0475946";
char clientID[] = "386b86f0-7284-11e7-b0bc-87cd67a1f8c7";

110 Fleet and Driver Management System

String inputString_NODEMCU = "";// take string to store
serial data

int ALCOHAL,SMOKE,latitude,longitude;// define integer
void setup()
{
pinMode(D0, OUTPUT); // make D0 pin as output
Serial.begin(9600); // initialize serial communication
Cayenne.begin(username, password, clientID, ssid,

wifiPassword);
}

void loop()
{
Cayenne.loop();// initialize cayenne loop
SerialDATA(); // call function for serial data recording
Cayenne.virtualWrite(0, SMOKE); // write variable value on

channel 0 of Cayenne dashboard
Cayenne.virtualWrite(1, ALCOHAL);// // write variable value

on
channel 0 of Cayenne dashboard
Cayenne.virtualWrite(2, latitude);// // write variable value

on
channel 0 of Cayenne dashboard
Cayenne.virtualWrite(3, longitude);// // write variable value

on channel 0 of Cayenne dashboard
delay(500);// wait for 500 mSec

}

CAYENNE_IN_DEFAULT()// cayenne function to write input from
dashboard to hardware

{
CAYENNE_LOG("CAYENNE_IN_(1)(%u) - %s, %s", request.channel,

getValue.getId(), getValue.asString());
int i = getValue.asInt();
if (i>=45)

{
digitalWrite(D0,HIGH); // Make D0 pin HIGH
}
else
{
digitalWrite(D0,LOW); // Make D0 pin HIGH
}

}

7.4 Cayenne APP 111

void serialEvent_NODEMCU() // function to read serial data
from Ti launch pad

{
while (Serial.available()>0)// check serial data
{
inputString_NODEMCU = Serial.readStringUntil(’\n’);//
Get serial input and store in string

StringSplitter ∗splitter = new StringSplitter
(inputString_NODEMCU, ’,’, 4); // new

StringSplitter(string_to_split, delimiter, limit)
int itemCount = splitter->getItemCount();
for(int i = 0; i < itemCount; i++)
{
String item = splitter->getItemAtIndex(i);
SMOKE = splitter->getItemAtIndex(0); // split and record
smoke sensor data
ALCOHAL= splitter->getItemAtIndex(1); // split and record
alcohol sensor data
latitude= splitter->getItemAtIndex(2); // split and record
latitude data

logitude=splitter->getItemAtIndex(3); // split and record
lonitude data

}
inputString_NODEMCU = ""; // make string empty
delay(200); // wait for 200 mSec
}

}

7.4 Cayenne APP

Steps to Add NodeMCU in Cayenne Cloud

1. Install the Arduino IDE and add Cayenne MQTT Library to Arduino
IDE.

2. Install the ESP8266 board package to Arduino IDE.
3. Install the required USB driver on the computer to program the

ESP8266.
4. Connect the ESP8266 to PC/Mac via the data-capable USB cable.
5. In the Arduino IDE, go to the tools menu, select the board, and now the

port ESP8266 is connected to.
6. Use the MQTT username, MQTT password, client ID, as well as ssid[]

and wifiPassord[] in the arduino IDE to write code (Figure 7.3).

112 Fleet and Driver Management System

Figure 7.3 Cayenne APP.

8
Smart Road Communication System for

Mobile Vehicles

In order to avoid the anomalies of roads and bridges, different sensors need
to be installed. These sensors may help to predict the natural disasters and
communicate in advance to the traffic and its controlling departments. In the
real scenario, there are black zones on the road where no internet signals are
available. To develop the system, two different nodes need to be designed:
one node for black zone and other for communicating to the cloud through
the Internet.

8.1 Introduction

Figure 8.1 shows the block diagram of the road unit for black zone with Ti
Launch PAD, XBee (to communicate within black zone), and other devices.
It comprises a +12 V/500 mA power supply, a 12 to 5 V convertor, a Ti
Launch PAD, an XBee, an LCD, a GPS, a DHT11 sensor, BMP180, and a
rain sensor. The main objective is to display the sensory data for the smart
road management system using the DHT11 sensor, BMP180, and rain sensor
on the LCD by reading the sensors. The sensory information from the Ti
Launch PAD is transferred to the XBee via a serial link. This information is
communicated to other nodes to reach at node which has IoT facility.

Figure 8.2 shows the block diagram of the unit at the mobile vehicle.
It comprises a +12 V/500 mA power supply, a 12 to 5V convertor, a Ti
Launch PAD, an XBee, and an LCD. The main objective is to receive the
information through the XBee modem and display the data using the LCD.
Then the sensory information from the Ti Launch PAD is transferred to the
GPRS modem via a serial link. The information is uploaded to the cloud
server ThingSpeak using the GPRS modem.

113

114 Smart Road Communication System for Mobile Vehicles

Ti Launch
PAD

LCD as
display unit

Power supply
adaptor 12V/

1Amp

+12V to 5V/
3.3V convertor

Digital data

Rain
sensor

DHT11

XBeeSerial

BMP180
GPS

Figure 8.1 Block diagram of the road unit for black zone.

Ti Launch
PAD

LCD as
display unitPower supply

adaptor 12V/
1Amp

+12V to 5V/
3.3V convertor

Digital data

XBeeSerial

GPRS

Serial

Figure 8.2 Block diagram of the unit at the mobile vehicle.

Tables 8.1 and 8.2 show the list of the components required to design a
system.

8.2 Circuit Diagram

8.2.1 Circuit Diagram for the Road Unit for Black Zone

1. GND pin of the power supply is connected to the GND pin of the launch
pad and the Ti Launch PAD.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +Vcc of the power supply.

8.2 Circuit Diagram 115

Table 8.1 Components’ list for of the road unit for black zone
S.No Components Quantity
1 GPS 1
2 LCD20*4 1
3 LCD20*4 patch 1
4 DC 12 V/1 A adaptor 1
5 12 to 5 V, 3.3 V converter 1
6 LED with 330 Ω resistor 1
7 Jumper wire M to M 20
8 Jumper wire M to F 20
9 Jumper wire F to F 20
10 DHT11 1
11 BMP180 1
12 Rain sensor 1
13 Ti Launch PAD 1
14 XBee 1
15 XBee breakout board 1

Table 8.2 Components’ list for of the unit at the mobile vehicle
S.No Components Quantity
1 GPRS modem 1
2 LCD20*4 1
3 LCD20*4 patch 1
4 DC 12 V/1 A adaptor 1
5 12 to 5 V, 3.3 V converter 1
6 LED with 330 Ω resistor 1
7 Jumper wire M to M 20
8 Jumper wire M to F 20
9 Jumper wire F to F 20
10 Ti Launch PAD 1
11 XBee 1
12 XBee breakout board 1

4. Two fixed lags of the POT are connected to +5V and GND of the LCD
and variable lag of the POT is connected to pin 3 of the LCD.

5. RS, RW, and E pins of the LCD are connected to pins D1 = P2.0, GND,
and D2 = P2.1 of the Ti Launch PAD.

6. D4, D5, D6, and D7 pins of the LCD are connected to pins D3 = P2.2,
D4 = P2.3, D5 = P2.4, and D6 = P2.5 of the Ti Launch PAD.

7. +5V and GND pins of the DHT sensor are connected to +5V and GND
pins of the power supply, respectively.

8. OUT1 of the DHT sensor is connected to P1 3 of the Ti Launch PAD.

116 Smart Road Communication System for Mobile Vehicles

9. +5V and GND pins of the BMP180 sensor are connected to +5V and
GND pins of the power supply, respectively.

10. SCL and SDA lines of the BMP sensor are connected to A4 and A5 of
the Ti Launch PAD.

11. +5V and GND pins of the rain sensor are connected to +5V and GND
pins of the power supply, respectively.

12. OUT1 of the RAIN sensor is connected to P1 0 of the Ti Launch PAD.
13. Connect +Vcc, GND, and OUT pins of the GPS to +5V, GND, and RX

pins of the launch pad.
14. Connect the P1.2 pin of the Ti Launch PAD to the RX pin of the

NodeMCU.
15. Connect +Vcc, GND, and TX pins of the XBee to +5V, GND, and P1 1

pins of the Ti Launch PAD. Figure 8.3 shows the circuit diagram of the
road unit for black zone.

Figure 8.3 Circuit diagram of the road unit for black zone.

8.2 Circuit Diagram 117

8.2.2 Circuit Diagram of the Unit at the Mobile Vehicle

1. +5V pin of the power supply is connected to the Vcc pin of the launch
pad and GPRS modem.

2. GND pin of the power supply is connected to the GND pin of the launch
pad and the Ti Launch Pad.

3. Pins 1 and 16 of the LCD are connected to GND of the power supply.
4. Pins 2 and 15 of the LCD are connected to +Vcc of the power supply.
5. Two fixed lags of the POT are connected to +5V and GND of the LCD

and variable lag of the POT is connected to pin 3 of the LCD.
6. RS, RW, and E pins of the LCD are connected to pins D1, GND, and D2

of the Ti Launch PAD.
7. D4, D5, D6, and D7 pins of the LCD are connected to pins D3, D4, D5,

and D6 of the Ti Launch PAD.
8. Connect +Vcc, GND, and OUT pins of the GPS to +5V, GND, and RX

pins of the launch pad.
9. Connect the P1.2 pin of the Ti Launch PAD to the RX pin of the GPRS

modem.
10. Connect +Vcc, GND, and RX pins of the XBee to +5V, GND, and P1.2

pins of the Ti Launch PAD. Figure 8.4 shows the circuit diagram of the
unit at the mobile vehicle.

Figure 8.4 Circuit diagram of the unit at the mobile vehicle.

118 Smart Road Communication System for Mobile Vehicles

8.3 Program Code from Arduino IDE

8.3.1 Program Code for Ti Launch PAD with Energeia IDE

///// library for BMP185
#include <Wire.h> // library for I2C mode
#include <Adafruit_BMP085.h> // library for BMP185 sensor
Adafruit_BMP085 bmp;

//// library for GPS
#include <TinyGPS.h> // library for GPS
TinyGPS gps;
void getgps(TinyGPS &gps);
float latitude, longitude;// assign float
byte a; // assume Byte
//////// library for DHT11
#include <dht.h>
dht DHT; // define
#define DHT11_PIN 2 // define pin of DHT11 sensor

/////////////// library for LCD
#include <LiquidCrystal.h> // attach library for LCD
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);// pin of Arduino

Nano is connect to LCD
void setup()
{
Serial.begin(9600); // initialize serial communication
lcd.begin(20, 4); // // initialize LCD
bmp.begin();// initialize BMP180 sensor

}
void loop()
{
lcd.clear(); // clear the previous contents from LCD

int chk = DHT.read11(DHT11_PIN); // read DHT11 sensor
float TEMP=DHT.temperature; // record temperature as float

value
float HUM=DHT.humidity; // record humidity as float value
float PRESS=bmp.readPressure(); // record pressure value as

float
float ALT=bmp.readAltitude(); // record altitude value as

float
int RAIN=analogRead(A0); // read analog pin A0
CALL_GPS(); // call GPS
lcd.setCursor(0,0); // set cursor on LCD

8.3 Program Code from Arduino IDE 119

lcd.print("TEMP:"); // print string on LCD
lcd.print(TEMP); // print value of temperature on LCD
lcd.setCursor(10,0); // set cursor on LCD
lcd.print("HUM:"); // print string on LCD
lcd.print(HUM); // print value of humidity on LCD

////////////////////////// read and display BMP185 data
lcd.setCursor(0,1); // set cursor on LCD
lcd.print("P0:"); // print string on LCD
lcd.print(PRESS); // print value of pressure on LCD
lcd.print("Pa"); // print string on LCD

lcd.setCursor(10,1); // Calculate altitude assuming ’
standard’ barometric & pressure of 1013.25 millibar =
101325 Pascal

lcd.print("A0:"); // print string on LCD
lcd.print(ALT); // print value of altitude on LCD
lcd.print("m"); // print string on LCD

lcd.setCursor(0,2); // Calculate altitude assuming ’
standard’ barometric & pressure of 1013.25 millibar =
101325 Pascal

lcd.print("RAIN_LEVEL:"); // print string on LCD
lcd.print(RAIN); // print value of rain sensor on LCD

Serial.print(TEMP); // print value of temperature on serial
port

Serial.print(","); // print string on serial port
Serial.print(HUM); // print value of humidity on serial
port

Serial.print(","); // print string on serial port
Serial.print(PRESS); // print value of pressure on serial
port

Serial.print(","); // print string on serial port
Serial.print(ALT); // print value of altitude on serial
port

Serial.print(","); // print string on serial port
Serial.print(RAIN); // print value of rain on serial port
Serial.print(","); // print string on serial port
Serial.print(latitude); // print value of latitude on
serial port

Serial.print(","); // print string on serial port

120 Smart Road Communication System for Mobile Vehicles

Serial.print(longitude); // print value of longitude on
serial port

Serial.print(’\n’); // print string on serial port
delay(30);// wait for delay of 30 mSec

}

void getgps(TinyGPS &gps) // function to get the coordinate
of GPS

{
float latitude, longitude;
decode and display position data
gps.f_get_position(&latitude, &longitude);
lcd.setCursor(0,3); // set cursor on LCD
lcd.print("Lat:"); // print string on LCD
lcd.print(latitude,5); // print value of latitude on LCD
lcd.print(" ");// print string

lcd.setCursor(10,3); // set cursor on LCD

lcd.print("Long:"); // print string on LCD
lcd.print(longitude,5); // print value of lonitude on LCD
lcd.print(" "); // print string on LCD
delay(3000); // wait for 3 seconds

}

void CALL_GPS()
{
byte a;
if (Serial.available() > 0) // if there is data coming into

the serial line
{
a = Serial.read(); // record the serial value in variable
if(gps.encode(a)) // if there is valid GPS data...
{
getgps(gps); // get the data and display it on the LCD
}

}

}

8.3 Program Code from Arduino IDE 121

8.3.2 Program Code for Ti Launch PAD with Energeia IDE and
GPRS

#include <SoftwareSerial.h>// add softserial
library
#include <String.h> // add atring as library
SoftwareSerial MyGPRS (P1_6, P1_7); // make pins as
RX and TX pins
char thingSpeakAddress[] = "api.thingspeak.com";
/////////////// library for LCD
#include <LiquidCrystal.h>
LiquidCrystal lcd(P2_0, P2_1,P2_2, P2_3, P2_4, P2_5);
// LCD pin for Ti launch pad
//int8_t answer;
float answer;
float TEMP,HUM,PRESS,ALT,latitude,longitude; //
assume float
String inputString_NODEMCU = ""; // a string to hold
incoming data

void CallGPRS()
{
gprspwr_on();
serialEvent_NODEMCU(); // call function to record
sensors data
//connect gprs to internet

answer = sendATcommand("AT+CGATT?","OK",5,2000); // sand AT
command

answer = sendATcommand("AT+CSTT=\"CMNET\"","OK",3,2000); //
send AT command

answer = sendATcommand("AT+CIICR","OK",3,2000); // send AT
command

answer = sendATcommand("AT+CIFSR","OK",3,2000); // send AT
command

answer = sendATcommand("AT+CIPSPRT=0","OK",3,2000); // //send
AT command

//connect gprs to thingspeak
answer= sendATcommand("AT+CIPSTART=\"tcp\",\"api.thingspeak.

com\",\"80\""," CONNECT OK", 5,2000);
serialEvent_NODEMCU(); // call function

//post data to thingspeak
int param1=TEMP;
int param2=HUM;
int param3=PRESS;

122 Smart Road Communication System for Mobile Vehicles

int param4=ALT;
int param5=RAIN;
int param6=latitude;
int param7=longitude;

answer = senddata1(param1,param2,param3,param4,
param5,param6,param7);
delay(3000);
gprspwr_off();

//put arduino to sleep?
for (int i=0; i<60; i++)
{
delay(150);

}
}

/**gprs
2nd function end************************************/

void setup()
{
// put your setup code here, to run once:
MyGPRS.begin(9600); // the GPRS
baud rate
Serial.begin(9600); // the
computer serial interface baud rate
lcd.begin(20, 4); // initialize LCD
delay(1000); // wait for 1000 mSec
lcd.print("GPRS BASED IoT"); // print string on
LCD
delay(1000); // wait for 1000 mSec

}
void loop()
{
byte l;
serialEvent_NODEMCU(); // call function
CallGPRS(); // call GPRS function
delay(500); // wait for 500 mSec

}

/**/
int8_t senddata1(int data,int data1,int data2,int
data3,int data4,int data5,int data6,int data7)

8.3 Program Code from Arduino IDE 123

{

MyGPRS.println("AT+CIPSEND");
while(MyGPRS.available() > 0) MyGPRS.read();

// Clean the input buffer
delay(500); // wait for 500 mSec
MyGPRS.println("POST /update HTTP/1.1"); //

Send the AT command
while(MyGPRS.available() > 0) MyGPRS.read();

// Clean the input buffer
delay(500); // wait for 500 mSec
MyGPRS.println("Host: api.thingspeak.com");

// Send the AT command
while(MyGPRS.available() > 0) MyGPRS.read();

// Clean the input buffer
delay(500); // wait for 500 mSec
MyGPRS.println("Connection: close"); // Send

the AT command
while(MyGPRS.available() > 0)MyGPRS.read();

// Clean the input buffer
delay(500); // wait for 500 mSec
MyGPRS.println("X-THINGSPEAKAPIKEY:

L5I8F6JM3NKUQNTU");//T1GIUPBKKRDPMWRX");
while(Serial2.available() > 0) Serial2.read();

// Clean the input buffer
delay(500);
MyGPRS.println("Content-Type: application/x-www-

form-urlencoded"); //
Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read();
// Clean the input buffer

delay(500);
MyGPRS.println("Content-Length:92"); // Send

the AT command

while(MyGPRS.available() > 0) MyGPRS.read();
// Clean the input buffer

delay(500);
MyGPRS.println(""); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read();
// Clean the input buffer

delay(500);

124 Smart Road Communication System for Mobile Vehicles

MyGPRS.print("&field1="); // Send the AT
command
MyGPRS.print(data);
MyGPRS.print("&field2="); // Send the AT
command
MyGPRS.print(data1);
MyGPRS.print("&field3="); // Send the AT
command
MyGPRS.print(data2);
MyGPRS.print("&field4="); // Send the AT
command
MyGPRS.print(data3);
MyGPRS.print("&field5="); // Send the AT
command
MyGPRS.print(data4);
MyGPRS.print("&field6="); // Send the AT
command
MyGPRS.print(data5);
MyGPRS.print("&field7="); // Send the AT
command
MyGPRS.print(data6);
MyGPRS.print("&field8="); // Send the AT
command
MyGPRS.print(data7);
while(MyGPRS.available() > 0) MyGPRS.read();
// Clean the input buffer
delay(500); // wait for 500 mSec
MyGPRS.println((char)26);
delay(500); // wait for 500 mSec
while(MyGPRS.available() > 0) MyGPRS.read();
// Clean the input buffer
delay(500); // wait for 500 mSec

answer = 0;
return answer;
}

void gprspwr_on()
{
pinMode(5, OUTPUT); // make pin 5 as output
pin
digitalWrite(5,LOW); // make pin 5 as low
delay(1000); // wait for 1000 mSec

8.3 Program Code from Arduino IDE 125

digitalWrite(5,HIGH); // make pin 5 as high
delay(2000); // wait for 1000 mSec
digitalWrite(5,LOW); // make pin 5 as low
readATcommand("Call Ready",6,10000);
if (answer == 1)
{
}

}

void gprspwr_off()
{
pinMode(5, OUTPUT); //set pin5 as output
digitalWrite(5,LOW); // make pin5 as LOW
delay(1000); // wait for 1000 mSec
digitalWrite(5,HIGH); // make pin5 as LOW
delay(2000); // wait for 1000 mSec
digitalWrite(5,LOW); // make pin5 as LOW
answer = readATcommand("NORMAL POWER DOWN",
2,2000);
if (answer == 1)
{
}

}

boolean gprspwr_status()
{
answer = sendATcommand("AT", "OK", 2, 2000);
if (answer == 0)

{

}
else if (answer == 1)

{

}
return answer;

}
int8_t readATcommand(char* expected_answer1,
unsigned int expected_answers, unsigned
int timeout)
{
uint8_t x=0, answer=0;
boolean complete = 0;
char a;
char response[100];

126 Smart Road Communication System for Mobile Vehicles

unsigned long previous;
String incomingdata;
boolean first;
previous = millis();
for(int i = 0; i < expected_answers; i++)
{
x = 0;
complete = 0;
a = 0;
first = 0;
memset(response, ’\0’, 100); // Initialize
the string do
{
if(MyGPRS.available() != 0)
{
a = MyGPRS.read();
//Serial.println(a,DEC);
if (a == 13)
{
a = MyGPRS.read();
if (a == 10)
{
if (first == 0)
{
}
else
{
complete = 1;

}
}

}
else if(a == 0)
{
}
else
{
response[x] = a;
x++;
first = 1;

}
if(strstr(response, expected_answer1)
!= NULL)
{
answer = 1;
complete = 1;
return answer;

8.3 Program Code from Arduino IDE 127

}
else if(strstr(response, "ERROR") != NULL)
{
answer = 2;

}
}

}
while((complete == 0) && ((millis() - previous)
< timeout));

}

return answer;

}

int8_t sendATcommand(char* ATcommand, char*
expected_answer1, unsigned
int expected_answers, unsigned int timeout)
{

uint8_t x=0, answer=0;
boolean complete = 0, first = 0;
char a;
char response[100];
unsigned long previous;
String incomingdata; // assign string
delay(100); // wait for 100mSec
while(MyGPRS.available() > 0) MyGPRS.read();
// Clean the input buffer

MyGPRS.println(ATcommand); // Send the AT
command
previous = millis();
for(int i = 0; i < expected_answers; i++){
x = 0;
complete = 0;
a = 0;
first = 0;
memset(response, ’\0’, 100); // Initialize
the string
do{
if(MyGPRS.available() != 0)
{

128 Smart Road Communication System for Mobile Vehicles

a = MyGPRS.read();
if (a == 13)
{
a = MyGPRS.read();
if(a == 10){
if (first == 0)
{
//keep going, just ignore it

}
else
{
complete = 1;

}
}

}
else if(a == 0)
{

}
else
{
response[x] = a;
x++;
first = 1;

}
if (strstr(response, expected_answer1)
!= NULL)
{
answer = 1;
complete = 1;

}
else if(strstr(response, "ERROR") != NULL)
{
answer = 2;
complete = 1;

}
}

}
while((complete == 0) && ((millis() -
previous) < timeout));

}
return answer;

8.4 ThingSpeak Server 129

}
void serialEvent_NODEMCU()
{
while (mySerial.available()>0)
{

inputString_NODEMCU = mySerial.readStringUntil
(’\n’);// Get serial input
StringSplitter *splitter = new StringSplitter
(inputString_NODEMCU, ’,’, 8); //
new StringSplitter(string_to_split, delimiter,
limit)
int itemCount = splitter->getItemCount();

for(int i = 0; i < itemCount; i++)
{
String item = splitter->getItemAtIndex(i);
TEMP = splitter->getItemAtIndex(0); //
store temperature
HUM= splitter->getItemAtIndex(1); // store
humidity
PRESS = splitter->getItemAtIndex(2); //
store pressure
ALT= splitter->getItemAtIndex(3); // store
altitude
RAIN= splitter->getItemAtIndex(4); // store
rain level
latitude= splitter->getItemAtIndex(5); //
store latitude
logitude=splitter->getItemAtIndex(6); //
store lonitude

}
inputString_NODEMCU = ""; // make string
empty
delay(200); // wait for 200 mSec
}

8.4 ThingSpeak Server

Follow the steps discussed in Section 5.4 and check the sensory data on
different fields of the server. Figure 8.5 shows the temperature sensor reading,
Figure 8.6 shows the humidity sensor reading, Figure 8.7 shows the air
pressure, Figure 8.8 shows the altitude, Figure 8.9 shows the latitude and
Figure 8.10 shows the longitude.

130 Smart Road Communication System for Mobile Vehicles

Figure 8.5 Field showing temperature sensor readings.

Figure 8.6 Field showing humidity sensor readings.

8.4 ThingSpeak Server 131

Figure 8.7 Field showing air pressure (mbar).

Figure 8.8 Field showing altitude.

132 Smart Road Communication System for Mobile Vehicles

Figure 8.9 Field showing latitude.

Figure 8.10 Field showing longitude.

9
Talking Road Unit at Pin Turn in Hilly Areas

Extra care is always required while driving the automotive vehicles in hilly
regions and blind pin turns. Unless the driver not follows the driving etiquette
on either side, occupants’ safety is in danger. In this direction to address the
identified issue, the system is proposed where sensors placed at both sides
of the turn will talk to the vehicles passing through the area and alert the
opposite vehicle driver during blind turning.

9.1 Introduction

Figure 9.1 shows the block diagram of the smart device1 with Ti Launch PAD,
XBee, and other devices. It comprises a +12 V/500 mA power supply, a 12
to 5 V convertor, a Ti Launch PAD, an XBee, an LCD, a GPS, and IR/motion
sensors 1 and 2. The main objective is to display the information regarding
pin-turn road using IR/motion sensors 1 and 2 on the display unit by reading
the sensors. The sensory information from the Ti Launch PAD is transferred
to the XBee via a serial link to the other side of the pin-turn road.

Figure 9.2 shows the block diagram of smart device 2 with Ti Launch
PAD, XBee, and other devices. It comprises a +12 V/500 mA power supply,
a 12 to 5 V convertor, a Ti Launch PAD, an XBee, and an LCD. The main
objective is to receive the information through the XBee modem and display
the data of the pin-turn road in hilly areas using the display unit. Then the
sensory information for the vehicle presence from the Ti Launch PAD is
transferred to the NodeMCU modem via a serial link. The information is
also uploaded to the cloud sever and mobile app (Blynk APP) using the
NodeMCU.

Tables 9.1 and 9.2 show the list of the components to develop the system.

133

134 Talking Road Unit at Pin Turn in Hilly Areas

Ti Launch
PAD

Display unit

Power supply
adaptor 12V/

1Amp

+12V to 5V/
3.3V convertor

Digital data

Infrared/
motion
sensor1

Infrared/
motion
sensor2

XBeeSerial

Figure 9.1 Block diagram for smart device 1.

Ti Launch
PAD

Display unit

Power supply
adaptor 12V/

1Amp

Data recorder in
Cloud Server

Wireless
communication

+12V to 5V/
3.3V convertor

Digital data

Infrared/
motion
sensor1

Infrared/
motion
sensor2

XBeeSerial

NodeMCU

Serial

Figure 9.2 Block diagram for smart device 2.

9.2 Circuit Diagram

9.2.1 Circuit Diagram of Smart Device 1

1. GND pin of the power supply is connected to the GND pin of the Ti
Launch PAD.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +Vcc of the power supply.
4. Two fixed lags of the POT are connected to +5V and GND of the LCD

and variable lag of the POT is connected to pin 3 of the LCD.

9.2 Circuit Diagram 135

Table 9.1 Components’ list for smart device 1
S.No Components Quantity
1 LCD20*4 1
2 LCD20*4 patch 1
3 DC 12 V/1 A adaptor 1
4 12 to 5 V, 3.3 V converter 1
5 LED with 330 Ω resistor 1
6 Jumper wire M to M 20
7 Jumper wire M to F 20
8 Jumper wire F to F 20
9 Motion sensor 1 1
10 Motion sensor 2 1
11 Ti Launch PAD 1
12 XBee 1
13 XBee breakout board 1

Table 9.2 Components’ list of smart device 2
S.No Components Quantity
1 NodeMCU 1
2 LCD20*4 1
3 LCD20*4 patch 1
4 DC 12 V/1 A adaptor 1
5 12 to 5 V, 3.3 V converter 1
6 LED with 330 Ω resistor 1
7 Jumper wire M to M 20
8 Jumper wire M to F 20
9 Jumper wire F to F 20
10 Ti Launch PAD 1
11 XBee 1
12 XBee breakout board 1
13 Motion sensor 1 1
14 Motion sensor 2 1

5. RS, RW, and E pins of the LCD are connected to pins D1 = P2.0, GND,
and D2 = P2.1 of the Ti Launch PAD.

6. D4, D5, D6, and D7 pins of the LCD are connected to pins D3 = P2.2,
D4 = P2.3, D5 = P2.4, and D6 = P2.5 of the Ti Launch PAD.

7. +5V and GND pins of motion sensor 1 are connected to +5V and GND
pins of the power supply, respectively.

8. OUT1 of motion sensor 1 is connected to P1 3 of the Ti Launch PAD.
9. +5V and GND pins of motion sensor 2 are connected to +5V and GND

pins of the power supply, respectively.
10. OUT1 of motion sensor 2 is connected to P1 3 of the Ti Launch PAD.

136 Talking Road Unit at Pin Turn in Hilly Areas

Figure 9.3 Circuit diagram of device 1.

11. Connect +Vcc, GND, and TX pins of the XBee to +5V, GND, and P1 1
pins of the Ti Launch PAD.

9.2.2 Circuit Diagram of Smart Device 2

1. +5V pin of the power supply is connected to the Vcc pin of the launch
pad and WiFi modem/NodeMCU.

2. GND pin of the power supply is connected to the GND pin of the launch
pad and the Ti Launch PAD.

3. Pins 1 and 16 of the LCD are connected to GND of the power supply.
4. Pins 2 and 15 of the LCD are connected to +Vcc of the power supply.
5. Two fixed lags of the POT are connected to +5V and GND of the LCD

and variable lag of the POT is connected to pin 3 of the LCD.
6. RS, RW, and E pins of the LCD are connected to pins D1 = P2.0, GND,

and D2 = P2.1 of the Ti Launch PAD.
7. D4, D5, D6, and D7 pins of the LCD are connected to pins D3 = P2.2,

D4 = P2.3, D5 = P2.4, and D6 = P2.5 of the Ti Launch PAD.
8. +5V and GND pins of motion sensor 1 are connected to +5V and GND

pins of the power supply, respectively.
9. OUT1 of motion sensor 1 is connected to P1 6 of the Ti Launch PAD.

9.3 Program Code 137

Figure 9.4 Circuit diagram of smart device 2.

10. +5V and GND pins of motion sensor 2 are connected to +5V and GND
pins of the power supply, respectively.

11. OUT1 of motion sensor 2 is connected to P1 7 of the Ti Launch PAD.
12. Connect the P1.2 pin of the Ti Launch PAD to the RX pin of the

NodeMCU.
13. Connect +Vcc, GND, and RX pins of the XBee to +5V, GND, and P1 2

pins of the Ti Launch PAD.

Figures 9.3 and 9.4 show the circuit diagram of smart devices 1and 2,
respectively.

9.3 Program Code

9.3.1 Code for Ti Launch Pad for Smart Device 1

#include <LiquidCrystal.h>
const int rs =P1_0, en = P1_1, d4 =P1_2, d5 = P1_3, d6 =P1_4,

d7 = P1_5;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7); // define pin of

LCD for Ti launch pad

138 Talking Road Unit at Pin Turn in Hilly Areas

String inputStringXBEE_RX="";
int OTHER_SIDE_ACTUAL1,OTHER_SIDE_ACTUAL2; // define int
int pirPin1=P1_6;
int pirPin2=P1_7;
int HORN=P1_0;
void setup()
{
Serial.begin(9600); // initialize serial communication
lcd.begin(20, 4); // initialize LCD
pinMode(pirPin1, INPUT_PULLUP); // set P1_6 as input
pinMode(pirPin2, INPUT_PULLUP); // set P1_7 as input
pinMode(HORN,OUTPUT); // set P1_0 as output
lcd.setCursor(0,1); // set cursor of the LCD
lcd.print("Pin TURN in HILLY area"); // print string on LCD

}
void loop()
{
int MOTION 1=digitalRead (pirPin1); // read PIR sensor1
int MOTION 2=digitalRead (pirPin2); // read PIR sensor2
XBEE_RX (); // call function
if((MOTION1==LOW)&&(MOTION2==LOW)) // check condition
{
int MOTION1=10; //assume int as 10
int MOTION2=10; // assume int as 10
Serial.print (MOTION1); // send serial value of motion
sensor 1

Serial.print (";"); // print string on serialport
Serial.print (MOTION2); // send serial value of motion
sensor 1

Serial.print(’\n’); // print new line character on serial
port

delay(10); // wait for 10 mSec
}
if((OTHER_SIDE_ACTUAL1==10)&&(OTHER_SIDE_ACTUAL1==10))
{
lcd.setCursor (0,2); // set cursor on LCD
lcd.print ("VECHILE PRESENT "); // print string on LCD
digitalWrite (HORN,HIGH); // make horn pin high
}
else

{
int MOTION1=20; // assume int as 20
int MOTION2=20; // assume int as 20
lcd.setCursor(0,2); // set cursor on LCD
lcd.print("VECHILE NOT PRESENT "); // print string on
LCD

9.3 Program Code 139

digitalWrite(HORN,LOW); // make horn pin low
Serial.print(MOTION1); // print value on serial
Serial.print(";");// print string on serial
Serial.print(MOTION2); // print value on serial
Serial.print(’\n’); // print new line character on serial
delay(10); // wait for 10mSec

}

}

void XBEE_RX()
{
while (Serial.available()>0)
{
inputStringXBEE_RX =Serial.readStringUntil(’\n’);// Get

serial input
OTHER_SIDE_ACTUAL1=(((inputStringXBEE_RX[0]-48)*10) + ((

inputStringXBEE_RX[1]-48)*1));
OTHER_SIDE_ACTUAL2=(((inputStringXBEE_RX[3]-48)*10) + ((

inputStringXBEE_RX[4]-48)*1));;

}
inputStringXBEE_RX = ""; // make string empty
delay(100); // wait for 100 mSec
}

9.3.2 Program Code for Ti Launch Pad for Smart Device 2

#include <LiquidCrystal.h>
const int rs =P1_0, en = P1_1, d4 =P1_2, d5 = P1_3, d6 =P1_4,

d7 = P1_5;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7); // assign pins of

LCD to Ti Launch pad

String inputStringXBEE_RX=""; // assign string
int OTHER_SIDE_ACTUAL1,OTHER_SIDE_ACTUAL2; // assume integer
int pirPin1=P1_6; // assign int to PIN1_6
int pirPin2=P1_7; // assign int to PIN1_7
int HORN=P1_0; // assign int to PIN1_0
void setup()
{
Serial.begin (9600); // Initialize serial communication
lcd.begin (20, 4); // Initialize LCD
pinMode (pirPin1, INPUT_PULLUP); // assign pirPin1 as input

140 Talking Road Unit at Pin Turn in Hilly Areas

pinMode (pirPin2, INPUT_PULLUP); // assign pirPin1 as input
pinMode (HORN,OUTPUT); // assign HORN as output
lcd.setCursor(0,1); // set cursor of LCD
lcd.print("Pin TURN in HILLY area"); // print string on LCD
}
void loop()
{

int MOTION1=digitalRead(pirPin1); // read sensor 1
int MOTION2=digitalRead(pirPin2); // read sensor 2
XBEE_RX();
if((MOTION1==LOW)&&(MOTION2==LOW)) // Read condition
{
int MOTION1=10; // assign int value 10
int MOTION2=10; // assign int value 10
Serial.print(MOTION1); // print serial value
Serial.print(";"); // print string on LCD
Serial.print(MOTION2); // print serial value
Serial.print(’\n’); // print new line character on serial
delay(10);
}
if((OTHER_SIDE_ACTUAL1==10)&&(OTHER_SIDE_ACTUAL1==10))
{
lcd.setCursor(0,2); // set cursor of LCD
lcd.print("VECHILE PRESENT "); // print string on LCD
digitalWrite(HORN,HIGH); // make HORN pin HIGH

}

else
{
int MOTION1=20; // assign int as 20
int MOTION2=20; // assign int as 20
lcd.setCursor(0,2); // set cursor of LCD
lcd.print("VECHILE NOT PRESENT "); // print string on
LCD
digitalWrite(HORN,LOW); // make horn pin LOW
Serial.print(MOTION1); // print serial value
Serial.print(";"); // print string on LCD
Serial.print(MOTION2); // print serial value
Serial.print(’\n’); // print new line char on serial
delay(10); // wait for 10 mSec

}
}

9.3 Program Code 141

void XBEE_RX() // function to read serial data
{
while (Serial.available()>0) // check serial
{
inputStringXBEE_RX =Serial.readStringUntil(’\n’);// Get

serial input
OTHER_SIDE_ACTUAL1=(((inputStringXBEE_RX[0]-48)*10) + ((

inputStringXBEE_RX[1]-48)*1));
OTHER_SIDE_ACTUAL2=(((inputStringXBEE_RX[3]-48)*10) + ((

inputStringXBEE_RX[4]-48)*1));;
}
inputStringXBEE_RX = ""; // make string empty
delay(100); // wait for 100 mSec
}

9.3.3 Program Code for Node MCU in Smart Device 2

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
///// add LCD library
#include <LiquidCrystal.h>
LiquidCrystal lcd(D0, D1, D2, D3, D4, D5);
///// add Wi-Fi credentials
char auth[] = "8507cac915f04a1bb4b00987e420afa0";
char ssid[] = "ESPServer_RAJ"; // hotspot ID
char pass[] = "RAJ@12345"; // hotspot password

BlynkTimer timer;
int HORN=D0; // assign HORN as pin D0
WidgetLCD blynkDISPLAY(V1); // assign LCD of blynk app as

virtual pin V1
void READ_SENSOR() // function to read serial data from Ti

Launch Pad
{
XBEE_RX(); // call function
if((OTHER_SIDE_ACTUAL1==10)&&(OTHER_SIDE_ACTUAL2==10)
{
blynkDISPLAY.print(0,1,"motion Detected "); // print

string on lCD
digitalWrite(HORN,HIGH); // make HORN pin HIGH
Blynk.virtualWrite(V2,10); // Write 10 on virtual pin V2
delay(20); // wait for 20mSec
}

142 Talking Road Unit at Pin Turn in Hilly Areas

else

{
lcd.setCursor(0,1); // set cursor of LCD
blynkDISPLAY.print(0,1,"motion NOT Detected"); // print

string on LCD
digitalWrite(HORN,LOW); // Make HORN pin LOW
Blynk.virtualWrite(V2,20); // Write 20 on virtual pin V2
delay(20); // wait for 20mSec
}

}
void setup()
{
Serial.begin(9600); // initialse serial
lcd.begin(20, 4); // initialize LCD
pinMode(HORN,OUTPUT);/// assign HORN pin as output
lcd.setCursor(0,0); // set cursor of LCD
lcd.print("welcome"); // print string on LCD
Blynk.begin(auth, ssid, pass); // initialize blynk APP
timer.setInterval(10000L,READ_SENSOR);//// set sampling time

to sample the READ_SENSOR () function
delay(2000); // wait for 2 Sec

}

void loop()
{
Blynk.run(); // initialse blynk APP
timer.run(); // Initiates BlynkTimer
}

void XBEE_RX()

{
while (Serial.available()>0) // check serial
{

inputStringXBEE_RX =Serial.readStringUntil(’\n’);// Get
serial input
OTHER_SIDE_ACTUAL1=(((inputStringXBEE_RX[0]-48)*10) + ((
inputStringXBEE_RX[1]-48)*1));
OTHER_SIDE_ACTUAL2=(((inputStringXBEE_RX[3]-48)*10) + ((
inputStringXBEE_RX[4]-48)*1));;

9.4 BLYNK App 143

}
inputStringXBEE_RX = ""; // make string empty
delay(100); // wait for 100 mSec
}
}

9.4 BLYNK App

Follow the steps described in Section 4.4 to design the front end of the APP
for the proposed system (Figure 9.5).

Figure 9.5 BLYNK APP.

10
Real-time Car Telematics Tracking System

A tracking device with own power supply that relies on sensors along with the
GPS systems to gather data is the demand of the present scenario. A sensor-
based device is proposed with a vehicle which can get the location as well as
information on idle time, speed, and rash driving. The device is safe for use
in mobility vehicles. The good thing about sensor-based devices is that one
can easily get more information from the tracking system.

10.1 Introduction

The system can be designed in two different methods: one with
ESP8266/NodeMCU and other with GPRS. Figure 10.1 shows the block
diagram of the real-time car telematics tracking using NodeMCU and its
associated external devices like LCD, keypads, and GPS. It comprises a
+12 V/500 mA power supply, a 12 to 5 V convertor, a NodeMCU, an LCD, a
keypad to enter the information, and a GPS. The main objective is to display
the location information or coordinates on the LCD by reading the GPS and
communicate it on the cloud.

Figure 10.2 shows the block diagram of the real-time car telematics
tracking using GPRS modem and other devices. It comprises a +12 V/500
mA power supply, a 12 to 5 V convertor, GPRS as IoT modem, an LCD, a
keypad to enter the data, and a GPS. The main objective is to display and
update the location information or coordinates on the LCD by reading the
GPS. The information is uploaded on the cloud server using the IoT modem.

Tables 10.1 and 10.2 show the components’ list to develop the system.

145

146 Real-time Car Telematics Tracking System

NodeMCU/ESP8266

LCD as
display unit

Power supply
adaptor 12V/

1Amp

+12V to 5V/
3.3V convertor

Digital data

Keypad

GPS

Event recorder in
Cloud Server

Figure 10.1 Block diagram of a smart device in cars using ESP8266.

NodeMCU/
ESP8266

LCD as
display unit

Power supply
adaptor 12V/

1Amp

+12V to 5V/
3.3V convertor

Digital data

Keypad

GPS

Event recorder in
Cloud Server

GPRS
modem

ser
ial

Figure 10.2 Block diagram of a smart device in cars using the GPRS modem.

Table 10.1 Components’ list for the smart device using NodeMCU
S.No Components Quantity
1 GPS 1
2 LCD20*4 1
3 LCD20*4 patch 1
4 DC 12 V/1 A adaptor 1
5 12 to 5 V, 3.3 V converter 1
6 LED with 330 Ω resistor 1
7 Jumper wire M to M 20
8 Jumper wire M to F 20
9 Jumper wire F to F 20
10 NodeMCU 1
11 Four-switch keypad 1
12 Patch for NodeMCU 1

10.2 Circuit Diagram 147

Table 10.2 Components’ list for a smart device using GPRS
S.No Components Quantity
1 GPRS modem 1
2 LCD20*4 1
3 LCD20*4 patch 1
4 DC 12 V/1 A adaptor 1
5 12 to 5 V, 3.3 V converter 1
6 LED with 330 Ω resistor 1
7 Jumper wire M to M 20
8 Jumper wire M to F 20
9 Jumper wire F to F 20
10 NodeMCU 1
11 Four-key keypad 1
12 GPS 1
13 Patch for NodeMCU 1

10.2 Circuit Diagram

10.2.1 Connection of Smart Device Using NodeMCU/ESP8266

The following are the interfacing connections of the NodeMCU and other
devices.

1. +5V and GND pins of the NodeMCU are connected to +5V and GND
pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed legs of the 10K POT are connected to +5V and GND of the power

supply and variable leg to pin 3 of the LCD.
5. Pin D1, GND, and pin D2 of the NodeMCU are connected to pin 4(RS),

pin 5(RW), and pin 6(E) of the LCD.
6. Pin D3, pin D4, pin D5, and pin D6 of the NodeMCU are connected

to pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD,
repectively.

7. +Vcc, GND, and serial-out pins of the GPS are connected to +5V,
GND, and RX pins of the NodeMCU, repectively.

8. Keypad switches are connected to D0, D7, D8, and D9 pins of the
NodeMCU. Figure 10.3 shows the circuit diagram of a smart device
using NodeMCU.

148 Real-time Car Telematics Tracking System

Figure 10.3 Circuit diagram of a smart device using NodeMCU/ESP8266.

10.2.2 Connection of Smart Device Using GPRS Modem

The following are the interfacing connections of the NodeMCU and the
external devices.

1. +5V and GND pins of the NodeMCU are connected to +5V and GND
pins of the power supply.

2. Pins 1 and 16 of the LCD are connected to GND of the power supply.
3. Pins 2 and 15 of the LCD are connected to +5V of the power supply.
4. Fixed legs of the 10K POT are connected to +5V and GND of the power

supply and variable leg to pin 3 of the LCD.
5. Pin D1, GND, and pin D2 of the NodeMCU are connected to pin 4(RS),

pin 5(RW), and pin 6(E) of the LCD.
6. Pin D3, pin D4, pin D5, and pin D6 of the NodeMCU are connected to

pin 11(D4), pin 12(D5), pin 13(D6), and pin 14(D7) of the LCD.
7. +Vcc, GND, and serial-out pins of the GPS are connected to +5V,

GND, and RX pins of the NodeMCU.
8. Keypad switches are connected to D0, D7, D8, and D9 pin of the

NodeMCU.

10.3 Program Code 149

Figure 10.4 Circuit diagram of a smart device using NodeMCU and GPRS modem.

9. +Vcc, GND, and RX pins of the GPRS modem are connected to +5V,
GND, and TX pins of the NodeMCU. Figure 10.4 shows the circuit
diagram of a smart device using NodeMCU and GPRS modem.

10.3 Program Code

10.3.1 Program Code for Smart Device Using NodeMCU

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h> // attach ESP8266 library
#include <BlynkSimpleEsp8266.h> // attach blynk library
#include <LiquidCrystal.h> // add LCD library
LiquidCrystal lcd(D0, D1, D2, D3, D4, D5);
#include <TinyGPS.h> // attach GPS library
TinyGPS gps;
void getgps(TinyGPS &gps);
float latitude, longitude; // assign latitude and longitude

as float
byte a;
WidgetLCD LCD_BLYNK(V0); // assign virtual pin 0 to Blynk LCD

150 Real-time Car Telematics Tracking System

///// add credentials
char auth[] = "8507cac915f04a1bb4b00987e420afa0"; // token
char ssid[] = "ESPServer_RAJ"; // Hot spot ID
char pass[] = "RAJ@12345"; // hot spot password

BlynkTimer timer;
int BUTTON_ONE=D0; // D0 as int
int BUTTON_TWO=D7; // D7 as int
int BUTTON_THREE=D8; // D8 as int
int BUTTON_FOUR=D9; // D9 as int

void READ_SENSOR()
{
CALL_GPS(); // call GPS
Blynk.virtualWrite(V3,latitude); // write latitude on

virtual pin V3 on blynk LCD
Blynk.virtualWrite(V4,longitude); // write latitude on

virtual pin V3 on blynk LCD
int ONE=digitalRead(BUTTON_ONE); // read Button
int TWO=digitalRead(BUTTON_TWO); // read Button
int THREE=digitalRead(BUTTON_THREE); // read Button
int FOUR=digitalRead(BUTTON_FOUR); // read Button
if(ONE==LOW) // check condition
{
lcd.setCursor(0,1); // set cursor on LCD
lcd.print("EMERGENCY L1"); // print string on LCD
LCD_BLYNK.print(0,1"EMERGENCY L1"); // print string on blynk

LCD
Blynk.virtualWrite(V5,ONE); // write value on virtual pin5
delay(20); // wait for 10 mSec
}
if(TWO==LOW) // // check condition
{
lcd.setCursor(0,1); // set cursor on LCD
lcd.print("EMERGENCY L2"); // print string on LCD
LCD_BLYNK.print(0,1"EMERGENCY L2"); // print string on blynk

LCD
Blynk.virtualWrite(V5,TWO); // write on V5
delay(20);// wait for 20 mSec
}
if(THREE==LOW) // check condition
{
lcd.setCursor(0,1); // set cursor on LCD

10.3 Program Code 151

lcd.print("EMERGENCY L3"); // print string on LCD
LCD_BLYNK.print(0,1"EMERGENCY L3"); // print string on blynk

LCD
Blynk.virtualWrite(V5,THREE); // write on V5
delay(20); // wait for 20 mSec
}
if(FOUR==3) // check condition

{
lcd.setCursor(0,1); // set cursor on LCD
lcd.print("EMERGENCY L4"); // print string on LCD
LCD_BLYNK.print(0,1"EMERGENCY L4"); // print string on blynk

LCD
Blynk.virtualWrite(V5,FOUR); // write on V5
delay(20); // wait for 20 mSec
}
}

void setup()
{
Serial.begin(9600); // for GPS
lcd.begin(20, 4);
pinMode(BUTTON_ONE,INPUT); // set pin as input
pinMode(BUTTON_TWO,INPUT); // set pin as input
pinMode(BUTTON_THREE,INPUT); // set pin as input
pinMode(BUTTON_FOUR,INPUT); // set pin as input
lcd.setCursor(0,0); // set cursor on LCD
lcd.print("Car Telematics Sys."); // print string on LCd
Blynk.begin(auth, ssid, pass); // initialse blynk
timer.setInterval(10000L,READ_SENSOR);//// change
delay(3000); // wait for 3000 mSec
lcd.clear(); // clear the contents of LCD

}

void loop()
{
Blynk.run(); // run BLYNK
timer.run(); // Initiates BlynkTimer
}
void getgps(TinyGPS &gps)

{
float latitude, longitude;
decode and display position data
gps.f_get_position(&latitude, &longitude);
lcd.setCursor(0,3); // set cursor on LCD

152 Real-time Car Telematics Tracking System

lcd.print("Lat:"); // print string on LCD
lcd.print(latitude,5); // print latitude value
lcd.print(" "); // print string on LCD
lcd.setCursor(10,3); // set cursor on LCD
lcd.print("Long:"); // print string on LCD
lcd.print(longitude,5); // print longitude
lcd.print(" "); // print string on LCD
delay(3000); // wait for 3000 seconds

}

void CALL_GPS()
{
byte a;
if (Serial.available() > 0) // if there is data coming into

the serial line
{
a = Serial.read(); // get the byte of data
if(gps.encode(a)) // if there is valid GPS data...

{
getgps(gps); // get the data and display it on the LCD

}
}

}

10.3.2 Program Code for GPRS

#include <SoftwareSerial.h>
#include <String.h>
SoftwareSerial MyGPRS(D7,D8);
char thingSpeakAddress[] = "api.thingspeak.com";
/////////////// library for LCD
#include <LiquidCrystal.h>
LiquidCrystal lcd(P2_0, P2_1,P2_2, P2_3, P2_4, P2_5); //

assign pin of LCD to Ti launch pad
//int8_t answer;
float answer;
#include <TinyGPS.h>
TinyGPS gps;
void getgps(TinyGPS &gps);
float latitude, longitude; // assume latitude and longitude

as float
byte a; // assign a as byte

10.3 Program Code 153

///// for keypad
int BUTTON_ONE=D0; // assign D0 as int
int BUTTON_TWO=D7; // assign D7 as int
int BUTTON_THREE=D8; // assign D8 as int
int BUTTON_FOUR=D9; // assign D9 as int
void CallGPRS() // function for GPS
{
gprspwr_on();
CALL_GPS(); // call function
//connect gprs to internet
answer = sendATcommand("AT+CGATT?","OK",5,2000); // send AT

command
answer = sendATcommand("AT+CSTT=\"CMNET\"","OK",3,2000); //

send AT command
answer = sendATcommand("AT+CIICR","OK",3,2000);// send AT

command
answer = sendATcommand("AT+CIFSR","OK",3,2000); // send AT

command
answer = sendATcommand("AT+CIPSPRT=0","OK",3,2000); // send

AT command
answer = sendATcommand("AT+CIPSTART=\"tcp\",\"api.

thingspeak.com\",\"80\"","CONNECT OK",5,2000);
int ONE=digitalRead(BUTTON_ONE); // read input
int TWO=digitalRead(BUTTON_TWO); //read input
int THREE=digitalRead(BUTTON_THREE); // read input
int FOUR=digitalRead(BUTTON_FOUR); // read input

int param1=ONE;
int param2=TWO;
int param3=THREE;
int param4=FOUR;
int param5=latitude;
int param6=longitude;

answer = senddata1(param1,param2,param3,param4,param5,
param6);

delay(3000);
gprspwr_off();

//put arduino to sleep?
for (int i=0; i<60; i++)
{
delay(150);

}
}
/**gprs 2nd function

154 Real-time Car Telematics Tracking System

end************************************/
void setup()
{
// put your setup code here, to run once:
MyGPRS.begin(9600); // the GPRS baud rate
Serial.begin(9600); // the computer serial

interface baud rate
lcd.begin(20, 4);
delay(1000);
lcd.print("GPRS BASED IoT");
delay(1000);
pinMode(BUTTON_ONE,INPUT); // assign pin as input
pinMode(BUTTON_TWO,INPUT); // assign pin as input
pinMode(BUTTON_THREE,INPUT); //assign pin as input
pinMode(BUTTON_FOUR,INPUT); // assign pin as input

}

void loop()
{
byte l;
serialEvent_NODEMCU(); // call function
CallGPRS(); // call GPRS function
delay(500);

}

/***/

int8_t senddata1(int data,int data1,int data2,int data3,
int data4,int data5,int data6,int data7)

{

MyGPRS.println("AT+CIPSEND");
while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer
delay(500);
MyGPRS.println("POST /update HTTP/1.1"); // Send the AT

command
while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer
delay(500);

10.3 Program Code 155

MyGPRS.println("Host: api.thingspeak.com"); // Send the
AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the
input buffer

delay(500);
MyGPRS.println("Connection: close"); // Send the AT

command

while(MyGPRS.available() > 0)MyGPRS.read(); // Clean the
input buffer

delay(500);
MyGPRS.println("X-THINGSPEAKAPIKEY:L5I8F6JM3NKUQNTU");//

T1GIUPBKKRDPMWRX");
while(Serial2.available() > 0) Serial2.read(); // Clean

the input buffer
delay(500);

MyGPRS.println("Content-Type: application/x-www-form-
urlencoded"); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the
input buffer

delay(500);

MyGPRS.println("Content-Length:92"); // Send the AT
command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the
input buffer

delay(500);

MyGPRS.println(""); // Send the AT command

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean
the input buffer

delay(500);
MyGPRS.print("&field1="); // Send the AT command
MyGPRS.print(data);
MyGPRS.print("&field2="); // Send the AT command
MyGPRS.print(data1);
MyGPRS.print("&field3="); // Send the AT command
MyGPRS.print(data2);
MyGPRS.print("&field4="); // Send the AT command
MyGPRS.print(data3);
MyGPRS.print("&field5="); // Send the AT command

156 Real-time Car Telematics Tracking System

MyGPRS.print(data4);
MyGPRS.print("&field6="); // Send the AT command
MyGPRS.print(data5);
MyGPRS.print("&field7="); // Send the AT command
MyGPRS.print(data6);
MyGPRS.print("&field8="); // Send the AT command
MyGPRS.print(data7);

while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the
input buffer

delay(500);
MyGPRS.println((char)26);
delay(500);
while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer
delay(500);

answer = 0;
return answer;

}

void gprspwr_on()
{
pinMode(5, OUTPUT); // set pin as output
digitalWrite(5,LOW); // make pin5 to LOW
delay(1000); // wait for 1000 mSec
digitalWrite(5,HIGH); // make pin5 to LOW
delay(2000); // wait for 1000 mSec
digitalWrite(5,LOW); // make pin5 to LOW
readATcommand("Call Ready",6,10000);
if (answer == 1)
{

}

}

void gprspwr_off()

10.3 Program Code 157

{
pinMode(5, OUTPUT); // set pin 5 as output
digitalWrite(5,LOW); // make pin 5 to LOW
delay(1000); // wait for 1000 mSec
digitalWrite(5,HIGH); // make pin5 to HIGH
delay(2000); // wait for 1000 mSec
digitalWrite(5,LOW); // Make pin 5 to LOW
answer = readATcommand("NORMAL POWER DOWN",2,2000);
if (answer == 1)
{

}

}

boolean gprspwr_status()
{
answer = sendATcommand("AT", "OK", 2, 2000);
if (answer == 0)
{

}
else if (answer == 1)
{

}
return answer;

}

int8_t readATcommand(char∗ expected_answer1, unsigned int
expected_answers, unsigned int timeout)

{
uint8_t x = 0, answer = 0;
boolean complete = 0;
char a;
char response[100];
unsigned long previous;
String incomingdata;
boolean first;

158 Real-time Car Telematics Tracking System

previous = millis();
for(int i = 0; i < expected_answers; i++)
{
x = 0;
complete = 0;
a = 0;
first = 0;
memset(response, ’\0’, 100); // Initialize the string
do
{
if(MyGPRS.available() != 0)
{
a = MyGPRS.read();
//Serial.println(a,DEC);
if (a == 13)
{
a = MyGPRS.read();
//Serial.println(a,DEC);
if (a == 10)
{
if (first == 0)
{
//keep going, just ignore it

}
else
{
complete = 1;

}
}
}
else if(a == 0)
{
}
else
{
response[x] = a;
x++;
first = 1;
}
if(strstr(response, expected_answer1) != NULL)
{
answer = 1;
complete = 1;
return answer;

}

10.3 Program Code 159

else if(strstr(response, "ERROR") != NULL)
{
answer = 2;

}
}

}
while((complete == 0) && ((millis() - previous) < timeout));

}

return answer;
}

int8_t sendATcommand(char∗ ATcommand, char∗ expected_answer1,
unsigned int expected_answers, unsigned int timeout)

{

uint8_t x=0, answer=0;
boolean complete = 0, first = 0;
char a;
char response[100];
unsigned long previous;
String incomingdata;
delay(100); // wait for 100 mSec
//Serial.println("Send AT Command");
while(MyGPRS.available() > 0) MyGPRS.read(); // Clean the

input buffer
MyGPRS.println(ATcommand); // Send the AT command
previous = millis();
for(int i = 0; i < expected_answers; i++)

{
x = 0;
complete = 0;
a = 0;
first = 0;
memset(response, ’\0’, 100); // Initialize the string
do

{
if (MyGPRS.available() != 0)
{

a = MyGPRS.read(); // read GPRS
if (a == 13)
{
a = MyGPRS.read();

160 Real-time Car Telematics Tracking System

if (a == 10){
if (first == 0)
{
//keep going, just ignore it

}
else
{
complete = 1;

}
}
}
else if(a == 0)
{

}
else
{
response[x] = a;
x++;
first = 1;

}
if (strstr(response, expected_answer1)!=NULL)

{
answer = 1;
complete = 1;

}
else if(strstr(response, "ERROR")!=NULL)
{
answer = 2;
complete = 1;

}
}

}
while((complete == 0) && ((millis() - previous) < timeout));

}
return answer;

}
void getgps(TinyGPS&gps)
{
float latitude, longitude;
decode and display position data
gps.f_get_position(&latitude, &longitude);

10.5 ThingSpeak Server 161

lcd.setCursor(0,3); // set cursor on LCD
lcd.print("Lat:"); // print string on LCD
lcd.print(latitude,5); // print value of latitude value
lcd.print(" "); // print string on LCD
lcd.setCursor(10,3);// set cursor on LCD

lcd.print("Long:"); // print string on LCD
lcd.print(longitude,5); // // print value of longitude
value

lcd.print(" "); // print string on LCD
delay(3000); // wait for 3 seconds

}

void CALL_GPS()
{
byte a;
if (Serial.available() > 0) // if there is data coming into

the serial line
{
a = Serial.read(); // get the byte of data
if(gps.encode(a)) // if there is valid GPS data...

{
getgps(gps); // get the data and display it on the

LCD
}

}

}

10.4 BLYNK App

Follow the steps described in Section 4.4 for BLYNK app development and
design front end of APP for the proposed system (Figure 10.5).

10.5 ThingSpeak Server

Follow the steps described in Section 5.4 for ThingSpeak server development
and design front end of the APP for the proposed system, and check the data
on different fields (Figure 10.5). Figure 10.6 shows the longitude, Figure 10.6
shows latitude.

162 Real-time Car Telematics Tracking System

Figure 10.5 BLYNK APP.

Figure 10.6 Field showing longitude.

10.5 ThingSpeak Server 163

Figure 10.7 Field showing latitude.

References

[1] http://saphanatutorial.com/introduction-to-internet-of-things-part-1/
[2] https://www.postscapes.com/internet-of-things-protocols/
[3] http://www.c-sharpcorner.com/UploadFile/f88748/internet-of-things-

part-2/
[4] Sethi, P., and Sarangi, S. R. (2017). Internet of things: architectures,

protocols, and applications. J. Elec. Comput. Eng. 2017.
[5] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7805273
[6] https://internetofthingswiki.com/iot-applications-examples/541/

#Agriculture
[7] http://www.libelium.com/resources/top 50 iot sensor applications

ranking/
[8] https://ac.els-cdn.com/S2314728816300149/1-s2.0-S231472881630014

9-main.pdf? tid=b8305708-1482-11e8-97ae-00000aacb35e&acdnat=15
18941418 2cb9b74701d8abb1b4a8a9ed8c643a7c- IoT PLATFORM
(upto 27)

[9] https://internetofthingswiki.com/top-20-iot-platforms/ IoT platform
[10] Evens, D. (2011). The Internet of Things How the Next Evolution of

the Internet is Changing Everything. Cisco Internet Business Solutions
Group (IBSG). CISCO White Paper, 1(2011), 1–11.

[11] CII (2017). Technological disruption and the automotive industry –
Automotive Industry 4.0 Summit “Connected & Intelligent” Roland
Berger, 32.

[12] https://www.amazon.in/internet-Things-Hands-Arsheep-Bahga/dp/8173
719543

165

Index

A
Accident Monitoring 85
Arduino 11, 13, 45, 51
Automotive industry 3, 5, 34, 43

B
Biometric Car Doo 77
Blynk APP 77, 82, 83, 143

C
Capacitive Touch Proximity

Sensor 51
Cayenne APP 41, 111, 112

D
DC Voltage Sensor 54, 55, 70, 98

E
Engine Oil 97, 98
ESP8266 41, 67, 70, 147

G
GPRS 48, 113, 145, 152

I
IoT 1, 2, 6, 7

N
NodeMCU 43, 46, 48, 68

R
RF Modem 57, 59
Road safety 85

S
Smart Road 113

T
ThingSpeak Serve 93, 101,

103, 129
Tracking device 145

167

About the Authors

Dr. Rajesh Singh is currently associated with Lovely Professional University
as Professor with more than fifteen years of experience in academics. He has
been awarded as gold medalist in M.Tech and honors in his B.E. His area of
expertise includes embedded systems, robotics, wireless sensor networks and
Internet of Things. He has organized and conducted a number of workshops,
summer internships and expert lectures for students as well as faculty. He
has twenty three patents in his account. He has published around hundred
research papers in referred journals/conferences.

Under his mentorship students have participated in national/international
competitions including Texas competition in Delhi and Laureate award of
excellence in robotics engineering in Spain. Twice in last four years he has
been awarded with “certificate of appreciation” and “Best Researcher
award-2017” from University of Petroleum and Energy Studies for exem-
plary work. He got “certificate of appreciation” for mentoring the projects
submitted to Texas Instruments Innovation challenge India design contest,
from Texas Instruments, in 2015. He has been honored with young investiga-
tor award at the International Conference on Science and Information in 2012.
He has published ten books in the area of Embedded Systems and Internet of
Things with reputed publishers like CRC/Taylor & Francis, Narosa, GBS,
IRP, NIPA and RI publication. He is editor to a special issue published by
AISC book series, Springer with title “Intelligent Communication, Control
and Devices”-2017 & 2018.

169

170 About the Authors

Dr. Anita Gehlot is associated with Lovely Professional University as Asso-
ciate Professor with more than ten years of experience in academics. She has
twenty patents in her account. She has published more than fifty research
papers in referred journals and conference. She has organized a number of
workshops, summer internships and expert lectures for students. She has been
awarded with “certificate of appreciation” from University of Petroleum
and Energy Studies for exemplary work. She has published ten books in the
area of Embedded Systems and Internet of Things with reputed publishers
like CRC/Taylor & Francis, Narosa, GBS, IRP, NIPA and RI publication. She
is editor to a special issue published by AISC book series, Springer with title
“Intelligent Communication, Control and Devices-2018”.

Dr. Raghuveer Chimata is currently working as a Postdoctoral Appointee at
Argonne National Laboratory (ANL) working on Quantum Materials Simu-
lations. He completed his Ph.D in Theoretical Material Science mainly into
Spin dynamics, Ultrafast remagnetization dynamics and studying magnetic
properties of Spin Chains and spinels from Uppsala University, Swedan.
And his PG in Master of Computational Sciences in the area of Scien-
tific Computing and Solid State Theory, Uppsala University, Swedan. His
research contributions are published in very reputed International Journals

About the Authors 171

like Physical Review Letters, Computational Material Sciences, Physical
Reviews B 92 etc. . . and many more. His research interests are: Density
Functional Theory (DFT), Hybrid Functionals, Electronic structure calcu-
lations, Magnetic and optical properties of d and f electron systems using
DFT based tools. Spin Dynamics, Magnetic properties of spinels and spin
chain compounds, Ultrafast remagnetization, magnonics, complex magnetic
oxides, magnetic amorphous RE-TE materials and Ultrafast switching.

Bhupendra Singh is Managing director of Schematics Microelectronics and
provides Product design and R&D support to industries and Universities. He
has completed BCA, PGDCA, M.Sc. (CS), M.Tech and has more than eleven
years of experience in the field of Computer Networking and Embedded
systems. He has published ten books in the area of Embedded Systems
and Internet of Things with reputed publishers like CRC/Taylor & Francis,
Narosa, GBS, IRP, NIPA and RI publication.

Dr. P. S. Ranjit is currently associated with Aditya Engineering College,
India. He has so far published more than 34 Research Papers in National and
International Journals and Conferences and published 10 patents in Auto-
motive Technology. He completed his Ph.D in Internal Combustion engines
in the area of Vegetable oils and Hydrogen supplementation from UPES,
Dehradun, M.E. in Mechanical Engineering from University of Madras

172 About the Authors

B.E. in Automobile Engineering from Shivaji University, Kolhapur with
University Second rank and 3 years Diploma in Automobile Engineering
form State Board of Technical Education, Hyderabad.

Dr. P. S. Ranjit actively involved in sponsored research projects. Very
recently 8.1 Million Indian Rupees financially sponsored from Ministry of
New and Renewable Energy (MNRE), Government of India completed in
the area of Hydrogen utilization in SVO based IC Engines. He developed
the Engine Research Laboratory at UPES with NFPA Class I, Division 2,
Group B standards in order to store and handling the ultra-high purity gaseous
Hydrogen.

INTERNET OF THINGS IN AUTOMOTIVE

INDUSTRIES AND ROAD SAFETY:

Electronic Circuits, Program Coding

and Cloud Servers

River Publishers Series in Transport Technology

Rajesh Singh, Anita Gehlot,
Raghuveer Chimata, Bhupendra Singh

and P. S. Ranjit

INTERNET OF THINGS IN AUTOMOTIVE

INDUSTRIES AND ROAD SAFETY:

Electronic Circuits, Program Coding

and Cloud Servers

Rajesh Singh, Anita Gehlot,
Raghuveer Chimata, Bhupendra Singh

and P. S. Ranjit

The aim of this book is to provide a platform to readers through
which they can access the applications of ‘Internet of Things’ in
the Automotive field. Internet of Things in Automotive Industries
and Road Safety provides the basic knowledge of the modules
with interfacing, along with the programming. Several examples
for rapid prototyping are included, this to make the readers
understand about the concept of IoT.

The book comprises of ten chapters for designing different
independent prototypes for the automotive applications, and
it would be beneficial for the people who want to get started
with hardware based project prototypes. The text is based on the
practical experience of the authors built up whilst undergoing
projects with students and industry.

Technical topics discussed in the book include:

•  Role of IoT in automotive industries
•  Arduino and its interfacing with I/O devices
•  Ti Launch Pad and its interfacing with I/O devices
•  NodeMCU and its interfacing with I/O devices
•  Serial Communication with Arduino and NodeMCU

River Publishers River Publishers

Internet of Things in A
utom

otive Industries and R
oad Safety:

Electronic C
ircuits, Program

 C
oding and C

loud Servers
R

ajesh Singh, A
nita G

ehlot, R
aghuveer C

him
ata,

B
hupendra Singh and P. S. R

anjit

River

	Front Cover
	Half Title Page
	RIVER PUBLISHERS SERIES IN TRANSPORT TECHNOLOGY
	Title Page
	Copyright Page
	Contents
	Preface
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 - Introduction
	1.1 Introduction to IoT
	1.2 Future and Market Potential of IoT
	1.3 Industry 4.0
	1.4 IoT Model
	1.5 IoT Protocol Architecture
	1.6 IoT Technology
	1.7 Functional Block of IoT
	1.8 IoT Communication Models
	1.8.1 Request–Response Communication Model
	1.8.2 Publish Subscribe Communication Model
	1.8.3 Push–Pull Communication Model

	1.9 IoT Communication API
	1.9.1 REST-based Communication API
	1.9.2 WebSocket-based Communication API

	1.10 IoT Levels
	1.10.1 Level-1 IoT System
	1.10.2 Level-2 IoT System
	1.10.3 Level-3 IoT System
	1.10.4 Level-4 IoT System
	1.10.5 Level-5 IoT System
	1.10.6 Level-6 IoT System

	1.11 Domain-Specific IoT and Applications
	1.11.1 IoT Application in Transport/Logistics
	1.11.2 IoT Application in the Smart Home
	1.11.3 IoT Application in Smart Cities
	1.11.4 IoT Application in Smart Factory
	1.11.5 IoT Application in Retail
	1.11.6 IoT Application in E-Health
	1.11.7 IoT Application in Railroads
	1.11.8 IoT Application in Automotive Sector
	1.11.9 IoT Application in Manufacturing
	1.11.10 IoT Application in Wearables
	1.11.11 IoT Application in Agriculture
	1.11.12 IoT Application in Energy Management
	1.11.13 IoT Application in Industrial Automation
	1.11.14 IoT Application in Smart Grids
	1.11.15 IoT Application in Smart Supply Chain
	1.11.16 IoT Application in Smart Farming
	1.11.17 IoT Application in Industrial Internet
	1.11.18 IoT Application in Connected Car
	1.11.19 IoT Application in Connected Health
	1.11.20 IoT Application in Poultry
	1.11.21 IoT Application in Smart Environment
	1.11.22 IoT Application in Security and Emergency
	1.11.23 IoT Application in Smart Animal Farming
	1.11.24 IoT Application in Smart Water

	1.12 IoT Servers
	1.12.1 KAA
	1.12.2 Carriots
	1.12.3 Temboo
	1.12.4 SeeControl IoT
	1.12.5 SensorCloud
	1.12.6 Etherios
	1.12.7 Xively
	1.12.8 Ayla’s IoT Cloud Fabric
	1.12.9 thethings.io
	1.12.10 Exosite
	1.12.11 Arrayent Connect TM
	1.12.12 OpenRemote
	1.12.13 Arkessa
	1.12.14 Oracle IoT Cloud
	1.12.15 Nimbits
	1.12.16 ThingWorx
	1.12.17 InfoBright
	1.12.18 Jasper Control Center
	1.12.19 Echelon
	1.12.20 AerCloud
	1.12.21 ThingSpeak
	1.12.22 Plotly
	1.12.23 GroveStreams
	1.12.24 Microsoft Research Lab of Things
	1.12.25 IBM IoT
	1.12.26 Blynk
	1.12.27 Cayenne APP
	1.12.28 Virtuino APP

	1.13 Internet of Things Device Design Methodology
	1.14 Role of IoT in Automotive Industries
	1.15 Introduction to Arduino
	1.16 Introduction to NodeMCU
	1.17 Introduction to GPRS

	Chapter 2 - Interfacing of Arduino with Input/Output Devices
	2.1 Digital Sensor – Capacitive Touch Proximity Sensor
	2.1.1 Introduction
	2.1.2 Circuit Diagram
	2.1.3 Program Code

	2.2 Analog Sensor – DC Voltage Sensor
	2.2.1 Introduction
	2.2.2 Circuit Diagram
	2.2.3 Program Code

	2.3 Serial Communication with RF Modem
	2.3.1 Introduction
	2.3.2 Circuit Diagram
	2.3.2.1 Connection of the transmitter
	2.3.2.2 Connections of the receiver

	2.3.3 Program Code
	2.3.3.1 Transmitter Code
	2.3.3.2 Receiver Code

	Chapter 3 - Interfacing of ESP8266 with Input/Output Devices
	3.1 Interfacing of ESP8266 with Analog Sensor
	3.1.1 Introduction
	3.1.2 Circuit Diagram
	3.1.3 Program Code

	3.2 Interfacing of ESP8266 with Digital Sensors
	3.2.1 Introduction
	3.2.2 Circuit Diagram
	3.2.3 Program Code

	3.3 NodeMCU and Serial Communication
	3.3.1 Introduction
	3.3.2 Circuit Diagram
	3.3.3 Program Code

	Chapter 4 - Biometric Car Door Opening System
	4.1 Introduction
	4.2 Circuit Diagram
	4.3 Program Code
	4.4 Blynk APP

	Chapter 5 - Accident Monitoring System
	5.1 Introduction
	5.2 Circuit Diagram
	5.3 Program Code
	5.3.1 Program Code for Arduino Nano
	5.3.2 Program Code for NodeMCU

	5.4 ThingSpeak Server

	Chapter 6 - Engine Oil and Coolant Level Monitoring System
	6.1 Introduction
	6.2 Circuit Diagram
	6.3 Program Code
	6.3.1 Program Code for Arduino Nano
	6.3.2 Program Code of NodeMCU for ThingSpeak Server

	6.4 ThingSpeak Server

	Chapter 7 - Fleet and Driver Management System
	7.1 Introduction
	7.2 Circuit Diagram
	7.3 Program Code
	7.3.1 Program Code for Ti Launch Pad with Energeia IDE
	7.3.2 Program Code for NodeMCU with Arduino IDE

	7.4 Cayenne APP

	Chapter 8 - Smart Road Communication System for Mobile Vehicles
	8.1 Introduction
	8.2 Circuit Diagram
	8.2.1 Circuit Diagram for the Road Unit for Black Zone
	8.2.2 Circuit Diagram of the Unit at the Mobile Vehicle

	8.3 Program Code from Arduino IDE
	8.3.1 Program Code for Ti Launch PAD with Energeia IDE
	8.3.2 Program Code for Ti Launch PAD with Energeia IDE and GPRS

	8.4 Thing Speak Server

	Chapter 9 - Talking Road Unit at Pin Turn in Hilly Areas
	9.1 Introduction
	9.2 Circuit Diagram
	9.2.1 Circuit Diagram of Smart Device 1
	9.2.2 Circuit Diagram of Smart Device 2

	9.3 Program Code
	9.3.1 Code for Ti Launch Pad for Smart Device 1
	9.3.2 Program Code for Ti Launch Pad for Smart Device 2
	9.3.3 Program Code for Node MCU in Smart Device 2

	9.4 BLYNK App

	Chapter 10 - Real-time Car Telematics Tracking System
	10.1 Introduction
	10.2 Circuit Diagram
	10.2.1 Connection of Smart Device Using NodeMCU/ESP8266
	10.2.2 Connection of Smart Device Using GPRS Modem

	10.3 Program Code
	10.3.1 Program Code for Smart Device Using NodeMCU
	10.3.2 Program Code for GPRS

	10.4 BLYNK App
	10.5 ThingSpeak Server

	References
	Index
	About the Authors
	Back Cover

