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Preface

What Is the Value Proposition for This Book?

This book contains a fast-paced introduction to as much relevant informa-
tion about NLP using R that can be reasonably included in a book of this 
size. Some chapters contain topics that are discussed in great detail with 
many code samples, whereas other chapters contain theoretical founda-
tions of NLP concepts (such as Chapter 4). 

This book helps developers who have a wide range of technical back-
grounds, which is the rationale for the inclusion of a plethora of topics. 
Regardless of your background, please remember the following point: 
this book is essentially a stepping stone for your study of NLP.

You will be exposed to various NLP and machine learning topics in this 
book, some of which are presented in a cursory manner for two reasons. 
First, it’s important that you be exposed to these concepts. In some cases, 
you will find topics that might pique your interest, and hence motivate you 
to learn more about them through self-study; in other cases, you will prob-
ably be satisfied with a brief introduction. Hence, you can decide whether 
to delve into more detail regarding the topics in this book.

Second, a full treatment of all the topics that are covered in this book would 
probably triple its page count, and few people are interested in reading long 
technical books. Hence, this book provides a decent view of the NLP and 
machine learning landscape, based on the belief that this approach will be 
more beneficial for readers who are experienced developers who want to 
learn about NLP and machine learning.

The Target Audience

This book is intended primarily for people who have a solid background 
as software developers. Specifically, this book is for developers who are 



accustomed to searching online for more detailed information about tech-
nical topics. If you are a beginner, there are other books that are more 
suitable for you, and you can find them by performing an online search. 

This book is also intended to reach an international audience of readers 
with highly diverse backgrounds in various age groups. This book uses 
standard English rather than colloquial expressions that might be con-
fusing to those readers. People learn in different ways, which includes 
reading, writing, or hearing new material. This book tries to take these 
approaches into consideration to provide a comfortable and meaningful 
learning experience for the intended readers.

Do I Need to Learn the Theory Portions of This Book?

Once again, the answer depends on the extent to which you plan to 
become involved in NLP and machine learning. In addition to creating 
a model, you will use algorithms to see which ones provide the level of 
accuracy (or some other metric) that you need for your project. The theo-
retical aspects of machine learning can help you perform a forensic analy-
sis of your model and your data, and ideally assist in determining how to 
improve your model.

Why is a Python-based Chapter in This Book?

Chapter 7 is devoted to the Transformer architecture, the BERT model, 
and GPT-related models. The reason for the inclusion of Python-based 
code samples in this chapter is simple: there is a plethora of Python-based 
code available to illustrate how to use the NLP-related APIs of these 
models, whereas R-based code samples are typically unavailable. Most of 
the code samples in Chapter 7 require Python 3.7.

In addition, many of the R-based code samples in Chapter 6 are wrappers 
around Python-based code, which will necessitate installing Python 3 and 
other Python-based NLP libraries. The installation details are provided 
in Chapter 6.

Getting the Most From This Book

Some programmers learn well from prose and others learn well from sam-
ple code (and lots of it), which means that there’s no single style that can 
be used for everyone. 
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Moreover, some programmers want to run the code first, see what it does, 
and then return to the code to delve into the details (and others use the 
opposite approach).

Consequently, there are various types of code samples in this book: some 
are short, some are long, and other code samples build on earlier code 
samples. 

What Do I need to Know for This Book?

Although this book is introductory in nature, some knowledge of R 
for the first three chapters is helpful. In addition, some knowledge of 
Python 3.x for the code samples in Chapter 7 would also be helpful. 
Knowledge of other programming languages (such as Java) can also be 
helpful because of the exposure to programming concepts and con-
structs. The less technical knowledge that you have, the more diligence 
will be required to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance 
through some of the code samples to get an idea of how much is familiar to 
you and how much is new for you.

Does This Book Contain Production-Level Code Samples?

The code samples in this book are for basic NLP tasks. The primary pur-
pose of the code samples is to show you how to solve various NLP-related 
tasks, some of which are performed in conjunction with machine learning. 
Moreover, clarity has a higher priority than writing more compact code 
that is more difficult to understand (and possibly more prone to bugs). If 
you decide to use any of the code in this book in a production website, you 
should subject that code to the same rigorous analysis as the other parts 
of your code base.

What Are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s 
important to have strong desire to learn about NLP, along with the 
motivation and discipline to read and understand the code samples. As 
a reminder, even simple machine language APIs can be a challenge to 
understand the first time you encounter them, so be prepared to read the 
code samples several times.
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How Do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is 
to use Finder to navigate to Applications > Utilities and then 
double click on the Utilities application. Next, if you already have a 
command shell available, you can launch a new command shell by typing 
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a 
Macbook from a command shell that is already visible simply by clicking 
command+n in that command shell, and your Mac will launch another 
command shell.

If you are a PC user, you can install Cygwin (open source at 
https://cygwin.com/) that simulates bash commands or use another toolkit 
such as MKS (a commercial product). Please read the online documenta-
tion that describes the download and installation process. Note that cus-
tom aliases are not automatically set if they are defined in a file other than 
the main start-up file (such as .bash_login). 

Companion Files

All the code samples and figures in this book may be obtained by writing 
to the publisher at info@merclearning.com.

What Are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer 
depends heavily on your objectives. If you are interested primarily in 
NLP, you can learn more advanced concepts, such as attention, trans-
formers, and the BERT-related models.

If you are primarily interested in machine learning, there are some sub-
fields of machine learning, such as deep learning and reinforcement 
learning (and deep reinforcement learning) that might appeal to you. 
Fortunately, there are many resources available, and you can perform 
an Internet search for those resources. One other point: the aspects of 
machine learning for you to learn depend on who you are. The needs of 
a machine learning engineer, data scientist, manager, student, or software 
developer are all different. 

� O. Campesato
� January 2022
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CHAPTER 1
INTRODUCTION TO R

This chapter provides a quick introduction to R programming, with code 
samples that illustrate some basic features of R. If you are already famil-
iar with R, you can probably skim this chapter, just to be sure that you’re 

acquainted with the code and concepts in this chapter.
The first section starts with a brief description of some features of R, fol-

lowed by a description of valid variable names, operators, data types. You will 
also learn how to perform various simple string-related tasks.

The second section discusses vectors, with an assortment of code samples, 
followed by a section that discusses lists in R. The third section discusses matri-
ces and how to manipulate them, and this is followed by an explanation of the 
R seq data type.

This chapter contains an assortment of code samples that show you the 
flexibility of R with respect to defining variables with heterogeneous data (i.e., 
mixed data types). Although you might not need to use all of the features that 
are illustrated in the code samples, read the code samples to become aware of 
those features.  

WHAT IS R? 

R is a popular programming language. You can create R scripts with R 
commands that you can launch from the command line, or you can launch R 
commands inside RStudio. R provides a convenient way to perform statistical 
analysis and reporting operations. In general, if you can think of a feature that 
you need, it probably already exists in R, and if not, you can go to CPAN (which 
contains more than 14,000 modules for R) to install a library that supports that 
feature.
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Features of R

R supports Boolean logic and programmatic constructs, such as loops and 
functions, along with support for recursion. R also supports various data types, 
such as arrays, lists, vectors, and matrices. 

One highly useful data type is a data frame, which is comparable to data 
frames in Pandas (a powerful Python module), both of which are analogous to 
spreadsheets.

In addition, R provides support for many statistical distributions, as well as 
support for charts and graphs.

Installing R, RStudio, and RStudio Cloud

The download links for R depend on your platform. For example, you can 
download R for MacBooks from the following link: 

https://cran.r-project.org/bin/macosx/
Fortunately, the following link enables you to download and install RStudio 

for your platform:
https://www.rstudio.com/products/rstudio/download/
After downloading the appropriate distributions, follow the prompts for the 

installation of R and RStudio for your platform.
One detail to keep in mind is that the R code samples in this book are 

executed from the command line via the rscript utility. However, if you are 
more comfortable working in an IDE, then RStudio is an excellent alternative 
to the command line.

An optional installation is RStudio Cloud, which has a free tier as well as 
various paid tiers, and you can register for a free online account here:

https://rstudio.cloud
RStudio Cloud provides “Studio Primers”, which is a collection of online 

tutorials that show you how to visualize data, perform table-related tasks, per-
form data visualization with ggplot2, work with shiny, and various other tasks.

VARIABLE NAMES, OPERATORS, AND DATA TYPES IN R

A valid variable name in R is a combination of letter, numbers, a period 
(.), or an underscore (_). In addition, a valid variable name starts with a letter 
or period, and must not be followed by a number. For example, the following 
names are valid in R:

var_name2. 
.var_name 
var.name 

However, the following names are not valid in R:

var_name%  (contains a % symbol)
2var_name  (starts with a number) 
.2var_name (dot followed by a num) 
_var_name  (starts with "_")

https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/macosx/
https://rstudio.cloud
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Assigning Values to Variables in R

There are three ways to assign values to variables:

•	using the equals operator: var.1 = c(0,1,2,3)
•	using the leftward operator: var.2 <- c('learn', ‚coding)
•	using the rightward operator: (c(TRUE, 1) -> var.3

Don’t worry if some of the preceding assignments aren’t clear right now. 
Later you will see examples of all three assignments.

Operators in R

R supports arithmetic, relational, and logical operators, along with some 
“miscellaneous” operators that you will learn later in this book. The R operators 
are shown below:

•	arithmetic operators in R: +,-,/,*,%%,%/%,^ 
•	relational operators in R: <, <=, >, >=, ==, != 
•	logical operators in R: &, |, !, &&, ||
•	miscellaneous operators in R: %in%, %>%, %*%

Data Types in R

Although R does not have a set of data types that are as extensive as some 
other programming languages, the data types that it does support enable you 
to solve a wide variety of tasks:

•	Vectors  (homogeneous) 
•	Lists    (heterogeneous) 
•	Matrices (two-dimensional) 
•	Arrays   (multi-dimensional) 
•	Factors  (similar to enum) 
•	Data Frames
•	Series

The following interactive session shows you some examples of working with 
numbers and strings in R:

#1: sqrt(500)
#2:
a <- 500
#3:
a <- as.character(a) print() (a)

a <- Hello‚ b <- ‚ How‚
c <- "are you? "
print(paste(a,b,c))
print(paste(a,b,c, sep = "-")) 
print(paste(a,b,c, sep = "", collapse = ""))
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R supports formatting of numbers and strings, as shown below:

# Formatting Numbers/Strings
# last digit rounded off:
result <- format(23.123456789, digits = 9) print(result)
# scientific notation:
result <- format(c(6, 13.14521), scientific = TRUE) 
print(result)
# minimum # of digits to the right of the decimal point: 
result <- format(23.47, nsmall = 5)
print(result)

WORKING WITH STRINGS IN R 

Listing 1.1 displays the content of strings1.R that illustrates how to ini-
tialize simple variables as strings and how to print them in R.

LISTING 1.1 strings1.R

a <-  "Hello"
b <-  "How"
c <-  "are you? "

print(paste(a,b,c))
print(paste(a,b,c, sep = "-"))
print(paste(a,b,c, sep = "", collapse = ""))

Listing 1.1 initializes the variables a, b, and c with the strings  Hello,  How,  
and are you?, respectively. Next, a print() statement prints the result of 
“pasting” or concatenating the values of a, b, and c. 

The second print() statement is similar, but with a hyphen (-) as a sepa-
rator. The third print() statement is similar to the second, except that no 
character is used as a separator. Launch the code in Listing 1.1 to see the fol-
lowing output:

[1] "Hello How are you? "
[1] "Hello-How-are you? "
[1] "HelloHoware you? "

Uppercase and Lowercase Strings 

Listing 1.2 shows the content of UpperLower.R that illustrates how to 
convert text strings to uppercase and lowercase letters, respectively, with the 
uppercase() and lowercase() functions in R.

LISTING 1.2 UpperLower.R

result <- nchar("Count the number of characters")
print(result)

# Upper case:
result <- toupper("Changing To Upper")
print(result)
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# Lower case:
result <- tolower("Changing To Lower")
print(result)

# Extract 5th to 7th positions:
result <- substring("HelloWorld", 5, 7)
print(result)

Listing 1.2 starts by initializing the variable result with the number of 
characters in a text string, calculating with the built-in R function nchar(). 
Next, result is initialized with a character string that is converted to upper-
case, and then initialized again with a character string that has been converted 
to lowercase. 

Finally, result is initialized with the substring from positions 5 through 7 
inclusive (which corresponds to the index values 4 through 6 inclusive) of the 
string HelloWorld. A print() statement displays the value of result after 
each initialization. Launch the code in Listing 1.2 to see the following output:

[1] 30
[1] "CHANGING TO UPPER"
[1] "changing to lower"
[1] "oWo" 

Other String-Related Tasks

The previous sections showed you various string-related functions for 
detecting uppercase letters and lowercase letters, and how to perform case-
based conversions. There are other string-related tasks that are easy to per-
form with R built-in functions, some of which are listed here:

•	Given a string, find the number of blanks 
•	Given a string, find the number of non-blanks 
•	Given a string, find the number of characters 
•	Given a string, find the number of digits 
•	Reverse a string (a vector of strings)

Listing 1.3 displays the content of string_tasks.R that illustrates how to 
perform the tasks in the preceding list. This code sample is intended to pique 
your interest: it’s a preview of several useful R functions (shown in bold), some 
of which are discussed further in Chapter 3.

LISTING 1.3: string_tasks.R

#Given a string find the number of blanks 
#Given a string find the number of non-blanks 
#Given a string find the number of characters 
#Given a string find the number of digits 

str <- "I love deep dish pizza 2day and 3morrow!"
blank_count  = length(gregexpr(" ", str)[[1]])
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str_length1  = length(str) 
str_length2  = nchar(str) # also works with numbers 
non_blanks   = str_length2 - blank_count
digit_count1 = nchar(gsub("[^0-9]+", "", str))
digit_count2 = nchar(gsub("\\D", "", str))

print(paste0("Original string:  ",str))
print(paste0("count of blanks:  ",blank_count))
print(paste0("Non-blanks:       ",non_blanks))
print(paste0("String length #1: ",str_length1))
print(paste0("String length #2: ",str_length2))
print(paste0("digit count #1:   ",digit_count1))
print(paste0("digit count #2:   ",digit_count2))

tokens1 = strsplit(str, " ")[[1]]
tokens2 = strsplit(str, " ")
print(paste0("Tokens #1:        ",tokens1))
print(paste0("Tokens #2:        ",tokens2))

Listing 1.3 starts by initializing the variable str as a text string, followed 
by initializing blank_count with the number of characters in str, based 
on a combination of the built-in length() function and the gregexpr() 
function. 

The next code snippet initializes str_length2 with the number of char-
acters in the str variable, and then sets non_blank equal to the number of 
non-blank characters in str. 

The next pair of code snippets calculates the number of digits and non-
digits in str. The final section in Listing 1.3 displays the values of the preced-
ing variables and performs calculations using the built-in R function nchar(). 
Launch the code in Listing 1.3 to see the following output:

[1] "Original string:  I love deep dish pizza 2day and 3morrow!"
[1] "count of blanks:  7"
[1] "Non-blanks:       33"
[1] "String length #1: 1"
[1] "String length #2: 40"
[1] "digit count #1:   2"
[1] "digit count #2:   2"
[1] "Tokens #1:        I"        "Tokens #1:      love"    
[3] "Tokens #1:        deep"     "Tokens #1:      dish"    
[5] "Tokens #1:        pizza"    "Tokens #1:      2day"    
[7] "Tokens #1:        and"      "Tokens #1:      3morrow!"
[1] "Tokens #2:        c(\"I\", \"love\", \"deep\", \"dish\", 
\"pizza\", \"2day\", \"and\", \"3morrow!\")"

The next section introduces you to vectors in R and how to initialize them 
with values and display their contents in R.

WORKING WITH VECTORS IN R

A vector in R is a one-dimensional variable. For example, [3] is a 1 × 1 vec-
tor with a single integer value, and [2 −4 8 15] is a 1 × 4 vector of integers. 
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A simple way to create a vector is with the built-in c (“concatenate”) function. 
Listing 1.4 displays the content of VectorStuff.R, which uses simple opera-
tions with vectors.

LISTING 1.4: VectorStuff.R

y =  c(10,20,30,40,50)
print("y:")
print(y)

y =  c(1,2,3)
print("y:")
print(y)

x <- c(10,20,30,40,50)
print("x:")
print(x)

print(paste0("x[2]:      ",x[2]))
print(paste0("length:    ",length(x)))
print(paste0("typeof(x): ",typeof(x)))
print(paste0("x:         ",x))

Listing 1.4 invokes the built-in R function c() to initialize the vector y as 
a vector of 5 integers (c for concatenate), and the print() statement displays 
the contents of the vector y. Next, the vector y is initialized to a vector contain-
ing three integers, and then its values are displayed. 

Notice that the variable x is initialized as a vector of five integers via the 
built-in c() function, this time with a <- symbol instead of an equals (=) sym-
bol. Although the <- symbol is preferred among R aficionados, you can also 
use an equals (=) symbol. The white space is important, as shown in the fol-
lowing code snippets in which the first is an assignment and the second is a 
comparison:

x<-7
x < -7

The next portion of Listing 1.4 displays the third element (index 2) of x, the 
length of x, and the type of x. Launch the code in Listing 1.4 to see the follow-
ing output (notice the last output line):

[1] "y:"
[1] 10 20 30 40 50
[1] "y:"
[1] 1 2 3
[1] "x:"
[1] 10 20 30 40 50
[1] "x[2]:      20"
[1] "length:    5"
[1] "typeof(x): double"
[1] "x:         10" "x:      20" "x:      30" "x:      40"
[5] "x:         50"
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Listing 1.5 displays the content of VectorStuff2.R that shows you addi-
tional simple operations with vectors.

LISTING 1.5: VectorStuff2.R

v <- c(3,8,4,5,0,11, -9, 304)
v <- c(1,2,3,4,0,-1,-2)

# Sort the elements of the vector:
sort.result <- sort(v)
print(paste0("v: ",v))
print(paste0("sorted v: ",sort.result))

#mixed1 <- c(6, a‚ 7, b‚ 8)
#print(paste0("mixed1: ",mixed1))
#print(paste0("class:  ",class(mixed1)))

ul_chars <- character(4)
print(paste0("ul_chars: ",ul_chars))
ul_chars[1] <- "A"
print(paste0("ul_chars: ",ul_chars))

names <- c("dave", "stella", "ralph", "john")
print(paste0("names:      ",names))
print(paste0("length:     ",length(names)))
print(paste0("names[1:2]: ",names[1:2]))
print(paste0("3,4,1,2:    ",names[3:4], names[1:2]))

x <- c(1,2,3,4,5,6)
print(paste0("x[2]:    ",x[2]))
print(paste0("x[8]:    ",x[8]))
print(paste0("x[-3]:   ",x[-3]))
print(paste0("x[2:4]:  ",x[2:4]))

x1 <- c(1,2,3,4)
y1 <- c(4,5,6,7)
print(paste0("x1+y1:   ",x1+y1))

x2 <- c(1,2,3,4)
y2 <- c(4,5)
print(paste0("x2+y2:   ",x2+y2))
print(paste0("x2-y2:   ",x2-y2))
print(paste0("x2*y2:   ",x2*y2))

Listing 1.5 initializes v as a vector of four integers and displays v, then 
sorts the vector v and displays the sorted result. Next, the variable ul_chars 
is initialized as a string of length four, and then the first character is initialized 
with the letter A. 

Next, the variable names is initialized with four names (i.e., strings), and 
various operations are performed to find its length, display the names in posi-
tions 1 and 2, and then change the initial ordering to 3, 4, 1, 2 (and display the 
new ordering of names).
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The next portion of Listing 1.5 initializes x as a vector of integers and shows 
you various operations you can perform on x, such as the elements of x that are 
in position 2, 8, −3, and in the range from 2 to 4.

Launch the code in Listing 1.5 to see the following output:

[1] "v: 1"  "v: 2"  "v: 3"  "v: 4"  "v: 0"  "v: -1" "v: -2"
[1] "sorted v: -2" "sorted v: -1" "sorted v: 0"  "sorted v: 1"  "sorted v: 2"
[6] "sorted v: 3"  "sorted v: 4" 
[1] "ul_chars: " "ul_chars: " "ul_chars: " "ul_chars: "
[1] "ul_chars: A" "ul_chars: "  "ul_chars: "  "ul_chars: " 
[1] "names:      dave"   "names:      stella" "names:      ralph" 
[4] "names:      john"  
[1] "length:     4"
[1] "names[1:2]: dave"   "names[1:2]: stella"
[1] "3,4,1,2:    ralphdave"  "3,4,1,2:    johnstella"
[1] "x[2]:    2"
[1] "x[8]:    NA"
[1] "x[-3]:   1" "x[-3]:   2" "x[-3]:   4" "x[-3]:   5" "x[-3]:   6"
[1] "x[2:4]:  2" "x[2:4]:  3" "x[2:4]:  4"
[1] "x1+y1:   5"  "x1+y1:   7"  "x1+y1:   9"  "x1+y1:   11"
[1] "x2+y2:   5" "x2+y2:   7" "x2+y2:   7" "x2+y2:   9"
[1] "x2-y2:   -3" "x2-y2:   -3" "x2-y2:   -1" "x2-y2:   -1"
[1] "x2*y2:   4"  "x2*y2:   10" "x2*y2:   12" "x2*y2:   20"

Finding NULL Values in a Vector in R 

Listing 1.6 shows the content of simple_vector.R that illustrates how to 
initialize a vector with numbers and an NA value in R.

LISTING 1.6: simple_vector1.R

v <- c(1,2,NA,4)

print("v:")
print(v)

print("length of v:")
print(length(v))

print("null values in v:")
print(is.na(v))

print("numeric values in v:")
print(is.numeric(v))

Listing 1.6 defines vector v, which contains three integers and an NA value. 
Launch the code in Listing 1.6 to see the following output:

[1] "v:" 
[1]  1  2 NA  4
[1] "length of v:"
[1] 4
[1] "null values in v:"
[1] FALSE FALSE  TRUE FALSE
[1] "numeric values in v:"
[1] TRUE
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Updating NA Values in a Vector in R

Listing 1.7 shows the content of missing_mean.R that illustrates how to 
replace NA values with the mean of the non-null values of a vector in R.

LISTING 1.7: missing_mean.R

print("Initial contents of v1:")
v1 <- c(1,2,NA,4)
print(v1)

print("Updated v2:")
v2 <- replace(v1, is.na(v1), mean(v1, na.rm = TRUE))
print(v2)

print("-----------------------")
print("Initial contents of v3:")
v3 <- c(1,2,NA,4,NA,5,6)
print(v3)

print("Updated v4:")
v4 <- replace(v3, is.na(v3), mean(v3, na.rm = TRUE))
print(v4)

Listing 1.7 defines vector v that contains three integers and an NA value, 
after which the NA value in v is replaced with the mean value of the numbers 
in v. Launch the code in Listing 1.7 to see the following output:

[1] "Initial contents of v1:"
[1]  1  2 NA  4
[1] "Updated v2:"
[1] 1.000000 2.000000 2.333333 4.000000
[1] "-----------------------"
[1] "Initial contents of v3:"
[1]  1  2 NA  4 NA  5  6
[1] "Updated v4:"
[1] 1.0 2.0 3.6 4.0 3.6 5.0 6.0 

Sorting a Vector of Elements in R 

Listing 1.8 shows the content of sorting1.R that illustrates how to sort a 
vector of numbers and a vector of strings in R.

LISTING 1.8: sorting1.R

v <- c(13,8,44,5,0,-1,-3,-2)

# Sort the elements of the vector:
sort.result <- sort(v)
print(sort.result)

# Sort in reverse order:
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)
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# Sorting character vectors:
v <- c("Red","Blue","yellow","violet")
sort.result <- sort(v)
print(sort.result)

Listing 1.8 defines the vector v that contains 8 integer values and then sorts 
these values. The next code snippet sorts the numbers in v in decreasing order 
(i.e., from the largest to smallest values).

The final code snippet initializes the vector v with a set of strings and then 
sorts them in alphabetical order. Launch the code in Listing 1.8 to see the fol-
lowing output:

[1] -3 -2 -1  0  5  8 13 44
[1] 44 13  8  5  0 -1 -2 -3
[1] "Blue"   "Red"    "violet" "yellow"

Working with the Built-in Letters Variable in R

Listing 1.9 shows the content of alphabet.R that illustrates the built-in 
variable letters in R.

LISTING 1.9: alphabet.R

# The "letters" vector is a built-in vector in R
print(paste0("letters: ",letters))

# displays the letters in a consecutive fashion:
print(letters)

# extract first 5 letters (comma-separated):
first5 <- paste0(letters[1:5], collapse=",")
print(first5)

Listing 1.9 shows the content of the built-in variable letters, which 
contains the lowercase letters of the English alphabet. The second 
print() statement displays the letters of the alphabet, separated by a 
white space. Finally, the variable first5 is initialized with the first five 
letters in alphabet. Launch the code in Listing 1.9 to see the following 
output:

 [1] "letters: a" "letters: b" "letters: c" "letters: d" "letters: e"

 [6] "letters: f" "letters: g" "letters: h" "letters: i" "letters: j"

[11] "letters: k" "letters: l" "letters: m" "letters: n" "letters: o"

[16] "letters: p" "letters: q" "letters: r" "letters: s" "letters: t"

[21] "letters: u" "letters: v" "letters: w" "letters: x" "letters: y"

[26] "letters: z"

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

 [1] "a,b,c,d,e"
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WORKING WITH LISTS IN R 

A list in R can contain a heterogeneous set of values whereas vectors in R 
must contain values of the same data type (which might be converted implic-
itly). Moreover, a vector data type is one-dimensional, whereas a list data type 
is a multidimensional object.

Listing 1.10 shows the content of ListOperations1.R that illustrates an 
assortment of list-related operations in R.

LISTING 1.10: ListOperations1.R

a <- "abc"
b <- "zzz"
list1 <- c(a, seq(1,3)) # seq() is discussed later
list1[2]
list2 <- c(b, seq(1,10, by=3))
list2[2:3]

list3 <- list2[!is.na(list2)]
list3[1]
list3[!is.na(list3)]
samples1 <- sample(1:50, replace=TRUE)
class(samples1)
list2 <- c(b, seq(1,10), by=3)

#Naming List Elements
# Create a list of a vector, a matrix and a list:
list_data <- list(c("Jan","Feb","Mar"),
matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

# Name the elements of the list:
names(list_data) <- c("1st Quarter", "A_Matrix", "An Inner list")

# display the list:
print(list_data)

Listing 1.10 initializes the variables a and b, followed by the variable list1 
that consists of the contents of the variable a, followed by the integers 1, 2, and 
3. Next, the expression list1[2] displays the contents of the second element 
of list1, which is the value 1.

The next portion of Listing 1.10 initializes the variable list2 that consists 
of the contents of the variable b, followed by the integers 1, 4, 7, and 10. Next, 
the expression list2[2:3] displays the contents of the second and third ele-
ments of list2, which are the values 1 and 4.

The next portion of Listing 1.10 initializes the variable list3 that consists 
of the elements of the variable list2 that are not integers, which is the value 
zzz. Next, the variable samples1 is initialized with the first 50 integers, and 
its data type is displayed, which is integer. 
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The next portion of Listing 1.10 initializes the variable list_data with 
three components (a vector, a matrix, and a list), as shown here:

list_data <- list(c("Jan","Feb","Mar"),
matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

The final portion of Listing 1.10 initializes the names of the elements of the 
variable list_data with three strings, as shown here:
names(list_data) <- c("1st Quarter", "A_Matrix", "An Inner 
list")

Launch the code in Listing 1.10 to see the following output:

[1] "1"
[1] "1" "4"
[1] "zzz"
[1] "zzz" "1"   "4"   "7"   "10" 
[1] "integer"
$'1st Quarter'
[1] "Jan" "Feb" "Mar"

$A_Matrix
     [,1] [,2] [,3]
[1,]    3    5   -2
[2,]    9    1    8

$'A Inner list'
$'A Inner list'[[1]]
[1] "green"

$'A Inner list'[[2]]
[1] 12.3

Listing 1.11 shows the content of ListOperations2.R that illustrates an 
assortment of list-related operations in R.

LISTING 1.11: ListOperations2.R

#Accessing List Elements:
# Create a list of a vector, a matrix and a list:
list_data <- list(c("Jan","Feb","Mar"),
matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

# Name the elements in the list:
names(list_data) <- c("1st Quarter", "A_Matrix", "An Inner 
list")

#Accessing List Elements
# Access the first element of the list:
print(list_data[1])

# Access the 3rd element (which is also a list):  
print(list_data[3])
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# Access the list element using the name of the element:
print(list_data$A_Matrix)

# Merging Two Lists
# Create two lists and merge them:
list1 <- list(1,2,3)
list2 <- list("Sun","Mon","Tue")
merged.list <- c(list1,list2)

# Print() the merged list:
print(merged.list)

Listing 1.11 starts with the initialization of the variable list_data, which 
similar to Listing 1.10, followed by the display of the first and third elements 
of list_data. The next portion of Listing 1.11 initializes the variables list1 
and list2 and then merges their contents. Launch the code in Listing 1.11 to 
see the following output:

$'1st Quarter'
[1] "Jan" "Feb" "Mar"

$'An Inner list'
$'An Inner list'[[1]]
[1] "green"

$'An Inner list'[[2]]
[1] 12.3

     [,1] [,2] [,3]
[1,]    3    5   -2
[2,]    9    1    8
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] "Sun"

[[5]]
[1] "Mon"

[[6]]
[1] "Tue"

Listing 1.12 shows the content of ListOperations3.R that illustrates an 
assortment of list-related operations in R.
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LISTING 1.12: ListOperations3.R

#Convert Lists To Vectors
list1 <- list(1:5)
print(list1)
list2 <- list(10:14)
print(list2)

# Convert the lists to vectors:
v1 <- unlist(list1)
v2 <- unlist(list2)
print(v1)
print(v2)

# Add the vectors:
result <- v1 + v2
print(result)

Listing 1.12 initializes the variables list1 and list2 with the integers 
from 1 to 5 and the integers from 10 to 14, respectively, and then prints their 
contents. Next, the variables v1 and v2 are initialized with the vector-based 
counterparts to list1 and list2, respectively. The final code snippet ini-
tializes the variable result with the sum of v1 and v2. Launch the code in 
Listing 1.12 to see the following output:

[[1]]
[1] 1 2 3 4 5

[[1]]
[1] 10 11 12 13 14

[1] 1 2 3 4 5
[1] 10 11 12 13 14
[1] 11 13 15 17 19

Useful Vector-Related Functions in R

R provides various useful vector related functions, some of which are dis-
played here:

•	append():   add elements to a vector
•	cbind():     combine vectors by row/column
•	sort(x):     sort the vector x
•	unique(x): remove duplicate entries from vector

Listing 1.13 shows the content of vector_functions.R that illustrates 
how to use several of the preceding vector-related functions in R.
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LISTING 1.13: vector_functions.R

# initialize an empty vector:
vect <- c()
print(paste0("vect: ",vect))
vect <- c(vect, 1*1)
print(paste0("vect: ",vect))
vect <- c(vect, 3*3)
print(paste0("vect: ",vect))
vect <- c(vect, 2*2)
print(paste0("vect: ",vect))
vect <- sort(vect)
print(paste0("sort: ",vect))
vect <- append(vect, 100)
print(paste0("vect: ",vect))
vect <- append(vect, 4)
print(paste0("vect: ",vect))
vect <- unique(vect)
print(paste0("vect: ",vect))

Listing 1.13 starts by initializing the variable vect as an empty vector, fol-
lowed by appending the squares of the numbers 1, 3, and 2. The next code 
snippet sorts the elements in vect, and then appends the number 4. The last 
code snippet updates vect with the unique elements in vect. Launch the 
code in Listing 1.13 to see the following output:

[1] "vect: "
[1] "vect: 1"
[1] "vect: 1" "vect: 9"
[1] "vect: 1" "vect: 9" "vect: 4"
[1] "sort: 1" "sort: 4" "sort: 9"
[1] "vect: 1"   "vect: 4"  "vect: 9"  "vect: 100"
[1] "vect: 1"   "vect: 4"  "vect: 9"  "vect: 100" "vect: 4"
[1] "vect: 1"   "vect: 4"  "vect: 9"  "vect: 100"

WORKING WITH MATRICES IN R (1)

A matrix in R is a 2D rectangular dataset. Listing 1.14 shows the content 
of MatrixOperations1.R that illustrates how to use more matrix-related 
functions in R.

LISTING 1.14: MatrixOperations1.R

M = matrix(c(1,2,3,4,5,6), nrow=2,ncol=3,byrow=TRUE)
M
M[,1]
M[2:3]
W <- cbind(c(0.5,0.3),c(0.3,0.5))
W
class(W)

#Arrays multi-dimensional rectangular data sets
dim(as.array(letters))
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U <- array(0, dim=c(2,2,2))
U
V <- array(1, dim=c(2,2,2,2))
V

Listing 1.14 initializes the 2 × 3 matrix M with the integers from 1 to 6 inclu-
sive, and then displays the contents of M, the first column of M. The next code 
snippet initializes the array W with two one-dimensional vectors and displays 
the contents of W as well as the class type of W. 

The final portion of Listing 1.14 initializes the arrays U and V as a vectors of 
the number 2 and then displays their contents. Launch the code in Listing 1.14 
to see the following output:

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6

[1] 1 4
[1] 4 2
     [,1] [,2]
[1,]  0.5  0.3
[2,]  0.3  0.5
[1] "matrix"
[1] 26
, , 1

     [,1] [,2]
[1,]    0    0
[2,]    0    0

, , 2

     [,1] [,2]
[1,]    0    0
[2,]    0    0

Listing 1.15 shows the content of MatrixOperations2.R that illustrates 
how to use more matrix-related functions in R.

LISTING 1.15: MatrixOperations2.R

arr <- array(rep(1:4, each=4), dim=c(2,2,2,2)) 
arr
dim(arr)
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
array1 <- array(c(vector1,vector2),dim = c(3,3,2))

vector1
vector2
array1

Listing 1.15 initializes the variable arr as a four-dimensional array, where 
each of the four “slices” is a 2 × 2 array that contains the values 1, 2, 3, and 4. 
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The next code snippet initializes the variable vector1 with the values 5, 9, 
and 3 and then initializes the variable vector2 with the numbers from 10 to 
15 inclusive. The next code snippet initializes the variable array1 with the 
contents of vector1 and vector2, constructed as a 3 × 3 × 2 array. Launch 
the code in Listing 1.15 to see the following output:

, , 1, 1

     [,1] [,2]
[1,]    1    1
[2,]    1    1

, , 2, 1

     [,1] [,2]
[1,]    2    2
[2,]    2    2

, , 1, 2

     [,1] [,2]
[1,]    3    3
[2,]    3    3

, , 2, 2

     [,1] [,2]
[1,]    4    4
[2,]    4    4

[1] 2 2 2 2
[1] 5 9 3
[1] 10 11 12 13 14 15
, , 1

     [,1] [,2] [,3]
[1,]    5   10   13
[2,]    9   11   14
[3,]    3   12   15

, , 2

     [,1] [,2] [,3]
[1,]    5   10   13
[2,]    9   11   14
[3,]    3   12   15

Listing 1.16 shows the content of MatrixOperations3.R that illustrates 
how to use more matrix-related functions in R.

LISTING 1.16: MatrixOperations3.R

vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
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# use these vectors as input to the array:
result <- array(c(vector1,vector2),dim = c(3,3,2))
print(result)

# third row of the second matrix: 
print(result[3,,2])

# element in the (1st row, 3rd col) of 1st matrix:
print(result[1,3,1])

# print() the 2nd matrix:
print(result[,,2])

Listing 1.16 initializes the variable vector1 with the values 5, 9, and 3, and 
then initializes the variable vector2 with the numbers from 10 to 15 inclu-
sive. The next code snippet initializes the variable result with the contents of 
vector1 and vector2, constructed as a 3 × 3 × 2 array. 

The next code snippet prints the contents of the third row of the second 
matrix, followed by the element in the third column of the first row of the first 
matrix. The final snippet displays the contents of the second matrix. Launch 
the code in Listing 1.16 to see the following output:

, , 1

     [,1] [,2] [,3]
[1,]    5   10   13
[2,]    9   11   14
[3,]    3   12   15
, , 2

     [,1] [,2] [,3]
[1,]    5   10   13
[2,]    9   11   14
[3,]    3   12   15

[1]  3 12 15
[1] 13
     [,1] [,2] [,3]
[1,]    5   10   13
[2,]    9   11   14
[3,]    3   12   15

WORKING WITH MATRICES IN R (2) 

The matrix M is an m × n matrix if it has m rows and n columns. In addition, 
matrix M is a square matrix if m = n. 

As an example, the following code snippet creates a 2 × 3 matrix X whose 
elements are 0:

X <- matrix(0, nrow = 2, ncol = 3) 
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The contents of the matrix X are shown here:

>X 

     [,1] [,2] [,3] 
[1,]    0    0    0 
[2,]    0    0    0   

The API dim(X) returns the dimensionality of a matrix, which equals the 
number of rows and the number of columns. In this example, the dimensional-
ity of X is 3 × 4:

> dim(X)
[1] 3 4

Listing 1.17 shows the content of matrices1.R that illustrates more exam-
ples of matrices in R.

LISTING 1.17: matrices1.R

# Elements are arranged sequentially by row:
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print("Matrix M:")
print(M)

sqrtm = sqrt(M)
print("sqrtm:")
print(sqrtm)

# Elements are arranged sequentially by column.
N <- matrix(c(3:14), nrow = 4, byrow = FALSE)
print("Matrix N:")
print(N)

# Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

P <- matrix(c(3:14),nrow = 4,byrow = TRUE, 
dimnames = list(rownames,colnames))
print("Matrix P:")
print(P)

Listing 1.17 initializes the matrix M as a 4 × 3 matrix that contains the inte-
gers from 3 to 14 inclusive, where the integers populate the rows of M. Next, the 
variable sqrtm is initialized as the square root of the elements in the array M. 

The matrix N is similar to the matrix M, except that N is populated via 
columns instead of rows. Finally, the matrix P is populated with the same values 
as matrix M but with a different syntax. Launch the code in Listing 1.17 to see 
the following output:
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[1] "Matrix M:"
     [,1] [,2] [,3]
[1,]    3    4    5
[2,]    6    7    8
[3,]    9   10   11
[4,]   12   13   14
[1] "sqrtm:"
         [,1]     [,2]     [,3]
[1,] 1.732051 2.000000 2.236068
[2,] 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625
[4,] 3.464102 3.605551 3.741657
[1] "Matrix N:"
     [,1] [,2] [,3]
[1,]    3    7   11
[2,]    4    8   12
[3,]    5    9   13
[4,]    6   10   14
[1] "Matrix P:"
     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14

WORKING WITH MATRICES IN R (3) 

Listing 1.18 shows the content of matrices2.R that illustrates how to dis-
play the contents of elements of matrices in R.

LISTING 1.18: matrices2.R

# Define the column and row names:
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

# Create the matrix:
P <- matrix(c(3:14),nrow = 4,byrow = TRUE, dimnames = list(rownames,colnames))
P

# Access the element at 3rd column and 1st row:
print("P[1,3]:")
print(P[1,3])

# Access the element at 2nd column and 4th row:
print("P[4,2]:")
print(P[4,2])

# Access only the 2nd row:
print("P[2,1]:")
print(P[2,])

# Access only the 3rd column:
print("P[,3]:")
print(P[,3])
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Listing 1.18 initializes the variables rownames and colnames as vectors of 
strings, followed by the 4 × 3 matrix P that is populated “row wise” with the 
integers from 3 to 14 inclusive. 

The next four blocks of code display the contents of various “cells” in P, 
starting with the element in the 3rd column and the 1st row. See the comments 
in the code that specify the location of the elements that are displayed. Launch 
the code in Listing 1.18 to see the following output:

     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14
[1] "P[1,3]:"
[1] 5
[1] "P[4,2]:"
[1] 13
[1] "P[2,1]:"
col1 col2 col3 
   6    7    8 
[1] "P[,3]:"
row1 row2 row3 row4 
   5    8   11   14

WORKING WITH MATRICES IN R (3) 

Listing 1.19 shows the content of matrices3.R that illustrates additional 
operations involving matrices in R.

LISTING 1.19: matrices3.R

# Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print("matrix1:")
print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print("matrix2:")
print(matrix2)

# Add the matrices.
result <- matrix1 + matrix2 
cat("Result of addition","\n")
print(result)

# Subtract the matrices
result <- matrix1 - matrix2
cat("Result of subtraction","\n")
print(result)

Listing 1.19 initializes the variables matrix1 and matrix2 and displays 
their values. Next, the variable result is initialized as the sum of matrix1 
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and matrix2, and then initialized again as the difference of matrix1 and 
matrix2, and the result is displayed in both cases. Launch the code in Listing 
1.19 to see the following output:

[1] "matrix1:"
     [,1] [,2] [,3]
[1,]    3   -1    2
[2,]    9    4    6
[1] "matrix2:"
     [,1] [,2] [,3]
[1,]    5    0    3
[2,]    2    9    4
Result of addition 
     [,1] [,2] [,3]
[1,]    8   -1    5
[2,]   11   13   10
Result of subtraction 
     [,1] [,2] [,3]
[1,]   -2   -1   -1
[2,]    7   -5    2

WORKING WITH MATRICES IN R (4) 

Listing 1.20 shows the content of matrices4.R that illustrates how to mul-
tiply and divide matrices in R.

LISTING 1.20: matrices4.R

# Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print("matrix1:")
print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print("matrix2:")
print(matrix2)

# Multiply the matrices.
result <- matrix1 * matrix2 
cat("Result of multiplication","\n")
print(result)

# Divide the matrices
result <- matrix1 / matrix2
cat("Result of division","\n")
print(result)

Listing 1.20 initializes the variables matrix1 and matrix2 and displays 
their values. Next, the variable result is initialized as the product of matrix1 
and matrix2, and then initialized again as the quotient of matrix1 and 
matrix2, and the result is displayed in both cases. Launch the code in Listing 
1.20 to see the following output:
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[1] "matrix1:"
     [,1] [,2] [,3]
[1,]    3   -1    2
[2,]    9    4    6
[1] "matrix2:"
     [,1] [,2] [,3]
[1,]    5    0    3
[2,]    2    9    4
Result of multiplication 
     [,1] [,2] [,3]
[1,]   15    0    6
[2,]   18   36   24
Result of division 
     [,1]      [,2]      [,3]
[1,]  0.6      -Inf 0.6666667
[2,]  4.5 0.4444444 1.5000000

UPDATING MATRIX ELEMENTS

This section consists of simple examples that illustrate additional ways to 
initialize matrices in R.

Example 1:

> Y <- matrix(1:12, nrow = 3, ncol = 4) 
> Y
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> Y[1, 3]
[1] 7
> Y[1, ]
[1] 1 4 7 10
> Y[, 2]
[1] 4 5 6

Example 2:

> x <- 1:15
> dim(x) <- c(3, 5) >x
[1,]
[2,]
[3,]
1 4
2 5
3 6
7   10   13
8   11   14
9   12   15
[,1] [,2] [,3] [,4] [,5]
> class(x)
[1] "matrix"
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The following example illustrates how to define a submatrix in R:

> Z <- X[1:2, 3:4] 
> Z
     [,1] [,2]
[1,]    0    0
[2,]    0    0

The following snippet assigns x the contents of matrix Y and find the type 
of x:

> x <- Y[1, ]
> class(x)
[1] "integer"

An example of updating one element and one row of a matrix is as follows:

> X[1, 3] <- 1
> X[, 1] <- c(-1, -2, -3) >X
     [,1] [,2] [,3] [,4]
[1,]   -1    0    1    0
[2,]   -2    0    0    0
[3,]   -3    0    0    0
> X[, 4] <- 2 >X
     [,1] [,2] [,3] [,4]
[1,]   -1    0    1    2
[2,]   -2    0    0    2
[3,]   -3    0    0    2

LOGICAL CONSTRAINTS AND MATRICES

You can apply a logical condition to the elements of a matrix, and the result 
is a new matrix that has the same dimensionality. However, the values in the 
new matrix are either TRUE or FALSE, depending on whether or not the logical 
condition is true or false, respectively.

Consider the following example, which returns a value of TRUE for the ele-
ments of X that are positive, and FALSE for the non-positive values:

> X > 0
      [,1]  [,2]  [,3] [,4]
[1,] FALSE FALSE  TRUE TRUE
[2,] FALSE FALSE FALSE TRUE
[3,] FALSE FALSE FALSE TRUE

ASSIGNING VALUES TO MATRIX ELEMENTS

In addition to assigning values to elements during matrix creation opera-
tions, it’s possible to use Boolean conditions to assign values. For example, 
the following expression assigns the value val to the elements of X where the 
Boolean condition L is true:

X[L] <- val 
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The following example assigns NA to element [1, 1] of X:

> X[1, 1] <- NA
> is.na(X)
      [,1]  [,2]  [,3]  [,4]
[1,]  TRUE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE

The following code snippet assigns 0 to all the elements of X whose value 
is NA:

> X[is.na(X)] <- 0 
> X
     [,1] [,2] [,3] [,4]
[1,]    0    0    1    2
[2,]   -2    0    0    2
[3,]   -3    0    0    2

WORKING WITH MATRICES IN R (5) 

The transpose of a matrix is the result of switching rows to columns and 
columns to rows. If we denote the element in row i and column j of the matrix 
A by A(i,j), then the coordinates of the corresponding element in the trans-
pose of A is (j,i).

Listing 1.21 shows the content of Transpose1.R that illustrates how to 
find the transpose of a matrix in R.

LISTING 1.21: Transpose1.R

M = matrix( c(2,6,5,1,10,4), nrow=2,ncol=3,byrow = TRUE)
print() ("contents of M:")
M
t = M %*% t(M)
print() ("contents of t(M):")
t(M)
print() ("contents of t:")
t

Listing 1.21 initializes the 2 × 3 matrix M with integer values, followed by 
the matrix t that is the transpose of matrix M. Launch the code in Listing 1.21 
to see the following output:

[1] "contents of M:"
     [,1] [,2] [,3]
[1,]    2    6    5
[2,]    1   10    4
[1] "contents of t(M):"
     [,1] [,2]
[1,]    2    1
[2,]    6   10
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[3,]    5    4
[1] "contents of t:"
     [,1] [,2]
[1,]   65   82
[2,]   82  117

Listing 1.22 shows the content of Transpose2.R that illustrates how to 
find the transpose of a matrix in R.

LISTING 1.22: Transpose2.R

M = matrix( c(2,6,5,1,10,4,-1,-8,7,23,99,77), nrow=2,ncol=6,byrow = TRUE)
print() ("contents of M:")
M 
t = M %*% t(M) 
print() ("contents of t(M):")
t(M)
print() ("contents of t:")
t

Listing 1.22 is similar to Listing 1.21 that initializes and then displays the 
contents of the matrices M, t, and the product of M and t. Launch the code in 
Listing 1.22 to see the following output:

[1] "contents of M:"
     [,1] [,2] [,3]
[1,]    2    6    5
[2,]    1   10    4
[1] "contents of t(M):"
     [,1] [,2]
[1,]    2    1
[2,]    6   10
[3,]    5    4
[1] "contents of t:"
     [,1] [,2]
[1,]   65   82
[2,]   82  117

WORKING WITH DATES IN R 

Listing 1.23 shows the content of date-values.R that illustrates how to 
work with matrices in R.

LISTING 1.23: date-values.R

mydates <- as.Date(c("2019-06-22", "2021-02-13"))
print("mydates:")
print(mydates)

# number of days between 6/22/19 and 21/12/04
days <- mydates[1] - mydates[2]
print("days:")
print(days)
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# print() today's date
today <- Sys.Date()
format(today, format="%B %d %Y")
print("today:")
print(today)

# convert date info in format 'mm/dd/yyyy' 
strDates <- c("01/05/2021", "08/13/2022")
dates <- as.Date(strDates, "%m/%d/%Y")
print("dates:")
print(dates)

#The default format is yyyy-mm-dd
mydates <- as.Date(c("2020-08-13", "2022-08-13"))
print("mydates:")
print(mydates)

# convert dates to character data
strDates <- as.character(dates)
print("strDates:")
print(strDates)

The code in Listing 1.23 contains code snippets that illustrate how to use 
the as.Date() function to convert strings to dates and how to subtract two 
dates. Launch the code in Listing 1.23 to see the following output:

[1] "mydates:"
[1] "2019-06-22" "2021-02-13"
[1] "days:"
Time difference of -602 days
[1] "December 06 2021"
[1] "today:"
[1] "2021-12-06"
[1] "dates:"
[1] "2021-01-05" "2022-08-13"
[1] "mydates:"
[1] "2020-08-13" "2022-08-13"
[1] "strDates:"
[1] "2021-01-05" "2022-08-13"

THE SEQ FUNCTION IN R 

Earlier in the chapter, you saw a code sample that contains the seq() func-
tion, which is a function in R that generates sequences of data. Listing 1.24 
shows the content of SequenceFunctions.R that illustrates how to work with 
sequences in R.

LISTING 1.24: SequenceFunctions.R

#Generate a sequence from 1 to 10:
x <- seq(10)
x
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#Generate a sequence from -4 to 4:
x <- seq(-4,4)
x

#Generate a sequence from -4 to 4 with a step of 2:
x <- seq(-4,4,by=2)
x

#Generate a sequence from -4 to 4 with a step of 0.5:
x <- seq(-2,2,by=0.5)
x

exp(x)
#[1]     2.718282     7.389056    20.085537    54.5

#Generate 10 equally distributed numbers from -2 to 2:
seq(-2,2,length.out=10)

x = seq(-pi,pi,length=20)
print("PI values:")
print(x)

Listing 1.24 contains code snippets and comments that explain the purpose 
of each code snippet. Launch the code in Listing 1.24 to see the following 
output:

 [1]  1  2  3  4  5  6  7  8  9 10
 [1] -4 -3 -2 -1  0  1  2  3  4
 [1] -4 -2  0  2  4
 [1] -2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0
 [1] -2.0000000 -1.5555556 -1.1111111 -0.6666667 -0.2222222  0.2222222
 [7]  0.6666667  1.1111111  1.5555556  2.0000000
 [1] 0.1353353 0.2231302 0.3678794 0.6065307 1.0000000 1.6487213 2.7182818
 [8] 4.4816891 7.3890561
 [1] "PI values:"
 [1] -3.1415927 -2.8108987 -2.4802047 -2.1495108 -1.8188168 -1.4881228
 [7] -1.1574289 -0.8267349 -0.4960409 -0.1653470  0.1653470  0.4960409
[13]  0.8267349  1.1574289  1.4881228  1.8188168  2.1495108  2.4802047
[19]  2.8108987  3.1415927

Listing 1.25 shows the content of seq-function.R that illustrates how to 
generate a sequence of numbers in R.

LISTING 1.25: seq-function.R

N = 300
set.seed(110)
X = seq(1:N)
Y = X/10+4*sin(X/10)+sample(-1:6,X,replace=T)+rnorm(X)
head(Y,20)

Listing 1.25 initializes the variable N with the value 300, followed by the 
variable X that contains the numbers from 1 to N (see the previous section for 
examples involving the seq() function). 
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Next, the variable Y is initialized as a function that contains a mixture 
of a linear term X/10, the trigonometric sin() function, values from the 
sample() function, and randomly selected values from a normal distribution 
via the rnorm() function. Launch the code in Listing 1.25 to see the following 
output:

 [1] 2.2998879 3.1848840 0.7925252 4.1971693 3.3087362 3.7413279
 [7] 4.4599534 5.9499792 3.3060370 7.0560683 6.1686419 8.4564929
[13] 6.7033295 6.5800118 5.4410868 7.8930577 7.4921991 6.6397045
[19] 5.9008181 5.9036865

SUMMARY

This chapter introduced you to R variables, and how to define variables 
whose type is strings, lists, vectors, and matrices in R. Then you learned ways 
to initialize variables during their creation and how to update the values of 
variables. 

You learned how to update the values of a specific row in two-dimensional 
matrices in R. Moreover, you saw how to use conditional logic to test the val-
ues in a two-dimensional matrix, and also use conditional logic to update the 
elements in a two-dimensional matrix. Finally, you learned how to work with 
dates in R.



CHAPTER 2
LOOPS, CONDITIONAL LOGIC, 
AND DATAFRAMES

This chapter discusses four main topics: working with loops in R, working 
with conditional logic in R, working with data frames in R, and how to 
perform various types of data visualization in R.

The first section of this chapter contains short code samples that illustrate 
various types of loops (including nested loops) in R, which includes for loops, 
while loops, and repeat loops.

The second section discusses conditional logic, starting with simple if-then 
statements. Conditional logic includes if-then-else statements; they can also be 
nested, as shown in one of the code samples in this section.

The third section discusses data frames, an extremely powerful datatype in 
R that are counterparts to data frames in Python Pandas. The fourth section 
discusses data visualization, such as bar charts, line graphs, histograms, scatter 
plots, and pie charts.

WORKING WITH SIMPLE LOOPS IN R

Listing 2.1 shows the content of simpleloop1.R that illustrates a simple 
for loop in R that calculates the sum of some integers.

LISTING 2.1 simpleloop1.R

x <- c(2,5,3,9,8,11,6)

count <- 0
sum <- 0
for (val in x) {
    count = count+1
    sum = sum + val
}
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print(paste0("count: ",count)
print(paste0("sum:   ",sum)

Listing 2.1 initializes the vector x with seven positive integers and the vari-
able count with the value 0. Next, there is a for loop that iterates through the 
elements in x, incrementing the value of count during each iteration. Launch 
the code in Listing 2.1 to see the following output:

[1] "count: 7"
[1] "sum:   44

Working with Other Types of Loops in R 	

In addition to for loops, an example of which you saw in the previous sec-
tion, R supports a while loop and a repeat loop. Later in this chapter, you 
will see an example of a while loop, right after you see how to create a nested 
for loop, which is discussed in the next section.

WORKING WITH NESTED LOOPS IN R 

Listing 2.2 shows the content of nestedloop1.R that illustrates how to 
define a nested loop in R.

LISTING 2.2: nestedloop1.R

x <- c(1,2,3)
y <- c(10,20,30)

for (x1 in x) {
   for (y1 in y) {
      print(paste0("(",x1,",",y1,")"))
   }
}

Listing 2.2 initializes the vectors x and y with positive integers, followed by 
a nested loop that displays pairs of numeric values: the first value is an element 
of x, and the second value is an element of y. Launch the code in Listing 2.2 
to see the following output:

[1] "(1,10)"
[1] "(1,20)"
[1] "(1,30)"
[1] "(2,10)"
[1] "(2,20)"
[1] "(2,30)"
[1] "(3,10)"
[1] "(3,20)"
[1] "(3,30)"

WORKING WITH WHILE LOOPS IN R 

In addition to for loops, R also supports while loops. Listing 2.3 shows 
the content of whileloop1.R that illustrates how to define a while loop in R.
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LISTING 2.3: whileloop1.R

i <- 1

while (i < 6) {
   print(paste0("i: ",i))

   i = i+1
}

Listing 2.3 initializes the variable i with the value 1 and then executes a 
while loop that prints the value of i and then increments the value of i. The 
while loop executes as long as i is less than 6. Launch the code in Listing 2.3 
to see the following output:

[1] "i: 1"
[1] "i: 2"
[1] "i: 3"
[1] "i: 4"
[1] "i: 5"

Instead of hard-coding the value 6 in the while loop, it’s preferable to 
replace the number 6 with a variable that is initialized with the value 6, or 
whichever value you need for your purposes. Now that you have a basic under-
standing of for loops and while loops in R, let’s explore conditional logic in R.

WORKING WITH CONDITIONAL LOGIC IN R 

Conditional logic appears in almost every non-trivial program, regardless 
of the programming language. Conditional logic can vary in complexity from a 
simple if statement to multiple nested if statements, which in turn can con-
tain other if statements. Although complex conditional logic can be a source 
of coding bugs, nothing prevents you from writing such code. At a minimum, 
provide meaningful comments for code blocks to facilitate a better under-
standing of their purpose.

Listing 2.4 shows the content of ifelse1.R that illustrates a simple exam-
ple of conditional logic in a for loop in R.

LISTING 2.4: ifelse1.R

nums = c(5,7,2,9)

for (a in nums) {
   if (a %% 2 == 0) {
     print(paste0(a," is even"))
   } else {
     print(paste0(a," is odd"))
   }
}

Listing 2.4 initializes the variable nums with four positive integers, followed 
by a for loop that displays one message if the current number is even, and a 
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different message of the number is odd. Launch the code in Listing 2.4 to see 
the following output:

[1] "5 is odd"
[1] "7 is odd"
[1] "2 is even"
[1] "9 is odd"

COMPOUND CONDITIONAL LOGIC

Listing 2.5 shows the content of CompoundIfLogic.R that illustrates how 
to check if a number is divisible by multiple numbers.

LISTING 2.5: CompoundIfLogic.R 

x <- 30
print(paste0("x = ",x))

if( (x %% 3 == 0) && (x %% 5 == 0) ) {
   print(paste0("x is a multiple of 3 and 5"))
} else if( x %% 5 == 0) {
   print(paste0("x is a multiple of 5"))
} else if( x %% 3 == 0) {
   print(paste0("x is a multiple of 3"))
} else {
   print(paste0("x is not a multiple of 3 or 5"))
} 

Listing 2.5 initializes the variable x with the value 30 and displays its value. 
The main code block contains a sequence of if/else-if statements, which con-
tinue to execute until a conditional statement is true, after which a print() 
statement displays a message and then the execution of this code stops. For 
example, if the first if statement is true, then the remainder of the code will 
not be executed. If the first if statement is false and the first else-if is true, 
then the other else-if statements are not executed. Launch the code in Listing 
2.5 and enter some values:

[1] "x = 30"
[1] "x is a multiple of 3 and 5"

Now let’s turn to a task that does require conditional logic, such as checking 
if a number is prime.

CHECK IF A NUMBER IS PRIME IN R 

A positive integer greater than 1 is a prime number if its only divisors are 
1 and the number itself. Hence, the set {2, 3, 5, 7, 11, 13} consists of prime 
numbers.  
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One algorithm for determining whether a number N is prime involves 
dividing N by the number 2 and the odd numbers from 3 to N/2: if the 
remainder is 0, then N is a composite number. Otherwise, N is a prime number. 
Note that the upper bound can be reduced from N/2 to sqrt(N), which can 
significantly reduce the computation time for larger values of N.

Listing 2.6 shows the content of PrimeNumber.R that illustrates how to 
work with a loop and conditional logic in R to determine whether a positive 
integer is prime. The upper bound in the for loop can be further decreased to 
become computationally more efficient for large values of num.

LISTING 2.6: PrimeNumber.R

num <- 20

# prime numbers are >= 2
flag = 0
if(num > 1) {
   # check for factors
   flag = 1
   # the following loop works for num > 2
   for(i in 2:(num-1)) {
      if ((num %% i) == 0) {
         print(paste(i,"is a divisor of",num))
         flag = 0
         break
      }
   }
}

if(num == 2)
   flag = 1

if(flag == 1) {
   print(paste(num,"is a prime number"))
} else {
   print(paste(num,"is not a prime number"))
}

Listing 2.6 initializes the value of num to 20 and initializes the variable flag 
to 0. Next, an if statement checks if num is greater than 1: if so, then another 
block of code that consists of a for loop is executed. 

The for loop iterates through the integers from 2 to num-1 inclusive, and if 
any of those numbers divides num with remainder zero, a message is displayed, 
the variable flag is set to 0, and an early exit occurs. 

The remaining portion of Listing 2.6 checks the value of flag and uses its 
value to display an appropriate message. Launch the code in Listing 2.6 to see 
the following output:

[1] "2 is a divisor of 20"
[1] "20 is not a prime number"
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CHECK IF NUMBERS IN AN ARRAY ARE PRIME IN R 

The previous section showed how to determine whether a positive integer 
is a prime number. Listing 2.7 shows the content of PrimeNumbers.R that 
illustrates how to check if any of the numbers in an array are prime.

LISTING 2.7: PrimeNumbers.R

prime <- function(num) {
   # prime numbers are >= 2
   flag = 0
   if(num > 1) {
      # check for factors
      flag = 1
      for(i in 2:(num-1)) {
         if ((num %% i) == 0) {
            flag = 0
            break
         }
      }
   }

   if(num == 2)
      flag = 1

   if(flag == 1) {
      print(paste(num,"is a prime number"))
   } else {
      print(paste(num,"is not a prime number"))
   }
}

for (num in 10:20){
  prime(num)
}

arr <- c(7, 17, 25, 99)
for (num in arr){
  prime(num)
}

Listing 2.7 defines the function prime(), whose code is the same as the 
code in Listing 2.6. The last portion of Listing 2.7 contains a for loop that iter-
ates through the numbers from 10 to 10 and invokes the prime() function to 
determine whether those numbers are prime. 

The second for loop is similar: it also iterates through the numbers in a 
list and invokes the prime() function to determine whether that number is 
prime. Launch the code in Listing 2.7 to see the following output:

[1] "10 is not a prime number"
[1] "11 is a prime number"
[1] "12 is not a prime number"
[1] "13 is a prime number"
[1] "14 is not a prime number"
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[1] "15 is not a prime number"
[1] "16 is not a prime number"
[1] "17 is a prime number"
[1] "18 is not a prime number"
[1] "19 is a prime number"
[1] "20 is not a prime number"
[1] "7 is a prime number"
[1] "17 is a prime number"
[1] "25 is not a prime number"
[1] "99 is not a prime number"

CHECK FOR LEAP YEARS IN R 

Whether a positive integer is a leap year can be determined via nested if 
statements. Listing 2.8 shows the content of CheckForLeapYear.R that illus-
trates how to determine whether a positive integer is a leap year in R.

LISTING 2.8: CheckForLeapYear.R

#########################################
# A year is a leap year provided that:
# 1) it is a multiple of 4 AND
# 2) a century must be a multiple of 400 
#
# => 2000 is a leap year but 1900 is not.
#########################################
year <- 1904

if((year %% 4) == 0) {
    if((year %% 100) == 0) {
        if((year %% 400) == 0) {
            print(paste(year,"is a leap year"))
        } else {
            print(paste(year,"is not a leap year"))
        }
    } else {
        print(paste(year,"is a leap year"))
    }
} else {
    print(paste(year,"is not a leap year"))
}

Listing 2.8 initializes the variable year with the value 1904, followed by 
a set of nested if statements that implement the logic described in the com-
ment block. Launch the code in Listing 2.8 to see the following output:

[1] "1900 is not a leap year"

WELL-FORMED TRIANGLE VALUES IN R 

Recall that three positive numbers (not necessarily integers) are the angles 
of a triangle if the sum of those numbers equals 180. Since the three numbers 
are positive, they must be greater than 0 and less than 180. 
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In addition, the sum of any two of the three numbers must be greater than 
0 and less than 180. Note that this result is for the Euclidean plane, and this is 
not a requirement for elliptic geometry or hyperbolic geometry. 

Listing 2.9 shows the content of SumOfAngles.R that illustrates how to 
determine whether three angles form a triangle in the Euclidean plane.

LISTING 2.9: SumOfAngles.R

a1 = 40, a2 = 80, a3 = 0

a1 = 40
a2 = 80
a3 = 60

print(paste0("a1: ",a1))
print(paste0("a2: ",a2))
print(paste0("a3: ",a3))

# ensure the following are true:
# 1) a1>0 and a1 < 180
# 2) a2>0 and a2 < 180
# 3) a1+a1 < 180

if( ((a1 <= 0) || (a1 >= 180))  ||
    ((a2 <= 0) || (a2 >= 180)) )
{
   print(paste0("angles out of range: ",a1,a2))
} else {
   if( a1+a2 >= 180 ) {
      print(paste0("a1 + a2 is too large:", a1+a2))
   } else {
      a3 = 180 - (a1+a2)
      print(paste0("a1, a2, and a3 form a triangle:", a1," 
",a2," ",a3))
   }
}

Listing 2.9 initializes the variables a1, a2, and a3 with three positive inte-
ger values. The next set of if/else statements implement the logic described in 
the comment block. Launch the code in Listing 2.9 to see the following output:

[1] "a1: 40"
[1] "a2: 80"
[1] "a3: 60"
[1] "a1, a2, and a3 form a triangle:40 80 60"

WHAT ARE FACTORS IN R? 

Factors in R are similar to the enum (enumeration) data type in other pro-
gramming languages. Factors are created via the factor() function. Listing 
2.10 shows the content of factors1.R that illustrates how to define factors 
in R.
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LISTING 2.10: factors1.R

a <-  "Hello"
mycolors <- c('green','green','yellow','red','red','red','green')

# Create a factor object:
myfactors <- factor(mycolors)
print("contents of the myfactors vector:")
print(myfactors)

print("the number of levels in myfactors:")
print(nlevels(myfactors))

Listing 2.10 defines a vector of strings mycolors and then initializes the 
variable myfactors with the “factors” in the variable mycolors, which con-
sists of three distinct colors. Launch the code in Listing 2.10 to see the follow-
ing output:

[1] "contents of the myfactors vector:"
[1] green  green  yellow red    red    red    green 
Levels: green red yellow
[1] "the number of levels in myfactors:"
[1] 3

WHAT ARE DATA FRAMES IN R? 

A data frame in R is comparable to a spreadsheet: you can perform various 
column-related and row-related operations on a data frame, in much the same 
way that you can perform those operations on a spreadsheet. For example, you 
can insert, delete, or move rows and columns. You can update values based on 
various criteria, such as filling in missing values or modifying existing values. 

Data frames are essentially data objects in tabular form, with heterogene-
ous columns of data, created via the data.frame() function. A list in R is 
compatible with data.frame if any of the following is true:

•	Components must be vectors (numeric, character, and logical) or factors.
•	All vectors and factors must have the same lengths.

Matrices and other data frames can be combined with vectors to form a 
data frame if the dimensions are compatible. 

Listing 2.11 shows the content of simple_df.R that defines a data frame 
consisting of the three columns col1, col2, and col3, each of which contains 
three positive integers.

LISTING 2.11: simple_df.R

mydf <- data.frame(
  attr1 <- c(1,2,3),
  attr2 <- c(4,5,6),
  attr3 <- c(7,8,9)
)
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print("contents of attr1 of mydf:")
print(mydf[,1])
print("contents of attr2 of mydf:")
print(mydf[,2])
print("contents of attr3 of mydf:")
print(mydf[,3])

print("contents of column 1 of mydf:")
print(mydf[1,])
print("contents of column 2 of mydf:")
print(mydf[2,])
print("contents of column 3 of mydf:")
print(mydf[3,])

# second dataframe:
attr4 <- c('a','b','c')
attr5 <- c('d','e','f')

mydf2 <- data.frame(
  attr4,
  attr5
)

print("contents of mydf2:")
print(mydf2)

Listing 2.11 initializes the variable mydf as a data frame with the positive 
integers from 1 to 9, which are also used to initialize the variables attr1, 
attr2 , and attr3. The next portion of code displays the contents of the same 
variables, expressed as elements of the variable mydf. 

The next code block addresses the contents of three columns, and the final 
code section initializes the variable mydf2 as a data frame that consists of the 
contents of attr4 and attr5, and then displays its contents. Launch the code 
in Listing 2.11 to see the following output:

[1] "contents of attr1 of mydf:"
[1] 1 2 3
[1] "contents of attr2 of mydf:"
[1] 4 5 6
[1] "contents of attr3 of mydf:"
[1] 7 8 9
[1] "contents of column 1 of mydf:"
  attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
1                   1                   4                   7
[1] "contents of column 2 of mydf:"
  attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
2                   2                   5                   8
[1] "contents of column 3 of mydf:"
  attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
3                   3                   6                   9
[1] "contents of mydf2:"
  attr4 attr5
1     a     d
2     b     e
3     c     f
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The next sequence of sections in this chapter contains examples of per-
forming operations on the contents of data frames in R.

WORKING WITH DATAFRAMES IN R (1) 

Listing 2.12 shows the content of dataframe2.R that illustrates how to 
define a data frame with heterogeneous values in R.

LISTING 2.12: dataframe2.R

# Create the data frame:
emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("John","Jane","Sally","Sarah","Robert"),
 salary = c(1000.12,2515.2,3600.0,1750.0,1800.25),

 start_date =
   as.Date(c("2021-01-01","2021-07-01","2022-02-02", 
"2022-05-05","2021-12-28")),
   stringsAsFactors = FALSE
)

# Print the data frame:
print(emp.data) 

# Get the structure of the data frame:
str(emp.data)

# Print the summary:
print(summary(emp.data)) 

Listing 2.12 initializes the variable emp as a data frame that contains values 
for emp_id, emp_name, salary, and start_date for five fictitious employ-
ees. The remaining code in Listing 2.12 shows the contents of the data frame 
emp, the structure of emp, and a summary report that contains information 
about the minimum, maximum, median, and mean values in the data frame. 
Launch the code in Listing 2.12 to see the following output:

  emp_id emp_name  salary start_date
1      1     John 1000.12 2021-01-01
2      2     Jane 2515.20 2021-07-01
3      3    Sally 3600.00 2022-02-02
4      4    Sarah 1750.00 2022-05-05
5      5   Robert 1800.25 2021-12-28
'data.frame':	 5 obs. of  4 variables:
 $ emp_id    : int  1 2 3 4 5
 $ emp_name  : chr  "John" "Jane" "Sally" "Sarah" ...
 $ salary    : num  1000 2515 3600 1750 1800
 $ start_date: Date, format: "2021-01-01" "2021-07-01" ...
     emp_id    emp_name             salary       start_date        
 Min.   :1   Length:5           Min.   :1000   Min.   :2021-01-01  
 1st Qu.:2   Class :character   1st Qu.:1750   1st Qu.:2021-07-01  
 Median :3   Mode  :character   Median :1800   Median :2021-12-28  
 Mean   :3                      Mean   :2133   Mean   :2021-10-13  
 3rd Qu.:4                      3rd Qu.:2515   3rd Qu.:2022-02-02  
 Max.   :5                      Max.   :3600   Max.   :2022-05-05  
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WORKING WITH DATA FRAMES IN R (2) 

Listing 2.13 shows the content of dataframe3.R that illustrates how to 
display portions of a data frame in R.

LISTING 2.13: dataframe3.R

# Create the data frame:
emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date =
   �as.Date(c("2012-01-01","2013-09-23","2014-11-15", 

"2014-05-11","2015-03-27")),
   stringsAsFactors = FALSE
)

# Print the data frame:
print(emp.data)

# Get the structure of the data frame:
str(emp.data)

# Print the summary:
print(summary(emp.data)) 

# Extract Specific columns:
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

# Extract first two rows:
result <- emp.data[1:2,]
print(result)

# Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

Listing 2.13 starts with the same code as Listing 2.12, with the new section 
of code shown in bold. The new code block initializes the variable result with 
the values for the employee names and employee salaries. Launch the code in 
Listing 2.13 to see the following output:

  emp_id emp_name salary start_date
1      1     Rick 623.30 2012-01-01
2      2      Dan 515.20 2013-09-23
3      3 Michelle 611.00 2014-11-15
4      4     Ryan 729.00 2014-05-11
5      5     Gary 843.25 2015-03-27
'data.frame':   5 obs. of  4 variables:
 $ emp_id    : int  1 2 3 4 5
 $ emp_name  : chr  "Rick" "Dan" "Michelle" "Ryan" ...
 $ salary    : num  623 515 611 729 843
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 $ start_date: Date, format: "2012-01-01" "2013-09-23" ...
     emp_id    emp_name             salary        start_date
 Min.   :1   Length:5           Min.   :515.2   Min.   :2012-01-01
 1st Qu.:2   Class :character   1st Qu.:611.0   1st Qu.:2013-09-23
 Median :3   Mode  :character   Median :623.3   Median :2014-05-11
 Mean   :3                      Mean   :664.4   Mean   :2014-01-14
 3rd Qu.:4                      3rd Qu.:729.0   3rd Qu.:2014-11-15
Max.   :5                      Max.   :843.2   Max.   :2015-03-27
  emp.data.emp_name emp.data.salary
1              Rick          623.30
2               Dan          515.20
3          Michelle          611.00
4              Ryan          729.00
5              Gary          843.25
  emp_id emp_name salary start_date
1      1     Rick  623.3 2012-01-01
2      2      Dan  515.2 2013-09-23
  emp_name start_date
3 Michelle 2014-11-15
5     Gary 2015-03-27

WORKING WITH DATA FRAMES IN R (3) 

Listing 2.14 shows the content of dataframe4.R that illustrates how to 
add a new attribute to a data frame in R.

LISTING 2.14: dataframe4.R

emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date =
   �as.Date(c("2012-01-01","2013-09-23","2014-11-15", 

"2014-05-11","2015-03-27")),
   stringsAsFactors = FALSE
)

# Print the data frame:
print(emp.data)

# Get the structure of the data frame:
str(emp.data)

# Print the summary:
print(summary(emp.data))

# Extract Specific columns:
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

# Extract first two rows:
result <- emp.data[1:2,]
print(result)
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# Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   �start_date = as.Date(c("2012-01-01", "2013-09-23", 
"2014-11-15", "2014-05-11",

      "2015-03-27")),
   stringsAsFactors = FALSE
)

# Add the "dept" column:
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v) 

Listing 2.14 starts with the same code as Listing 2.13, and the new block 
of code is shown in bold. The new code adds a dept attribute (which contains 
five values) to the emp variable. Launch the code in Listing 2.14 to see the fol-
lowing output:

  emp_id emp_name salary start_date
1      1     Rick 623.30 2012-01-01
2      2      Dan 515.20 2013-09-23
3      3 Michelle 611.00 2014-11-15
4      4     Ryan 729.00 2014-05-11
5      5     Gary 843.25 2015-03-27
'data.frame':   5 obs. of  4 variables:
 $ emp_id    : int  1 2 3 4 5
 $ emp_name  : chr  "Rick" "Dan" "Michelle" "Ryan" ...
 $ salary    : num  623 515 611 729 843
 $ start_date: Date, format: "2012-01-01" "2013-09-23" ...
     emp_id    emp_name             salary        start_date
 Min.   :1   Length:5           Min.   :515.2   Min.   :2012-01-01
 1st Qu.:2   Class :character   1st Qu.:611.0   1st Qu.:2013-09-23
 Median :3   Mode  :character   Median :623.3   Median :2014-05-11
 Mean   :3                      Mean   :664.4   Mean   :2014-01-14
 3rd Qu.:4                      3rd Qu.:729.0   3rd Qu.:2014-11-15
Max.   :5                      Max.   :843.2   Max.   :2015-03-27
  emp.data.emp_name emp.data.salary
1              Rick          623.30
2               Dan          515.20
3          Michelle          611.00
4              Ryan          729.00
5              Gary          843.25
  emp_id emp_name salary start_date
1      1     Rick  623.3 2012-01-01
2      2      Dan  515.2 2013-09-23
  emp_name start_date
3 Michelle 2014-11-15
5     Gary 2015-03-27
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  emp_id emp_name salary start_date       dept
1      1     Rick 623.30 2012-01-01         IT
2      2      Dan 515.20 2013-09-23 Operations
3      3 Michelle 611.00 2014-11-15         IT
4      4     Ryan 729.00 2014-05-11         HR
5      5     Gary 843.25 2015-03-27    Finance

WORKING WITH DATA FRAMES IN R (4) 

Listing 2.15 shows the content of dataframe5.R that illustrates how to 
append a new row to a data frame in R.

LISTING 2.15: dataframe5.R

emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),
   start_date = as.Date(c("2012-01-01","2013-09-23", 
"2014-11-15","2014-05-11", "2015-03-27")),
   dept = c("IT","Operations","IT","HR","Finance"),
   stringsAsFactors = FALSE
)

# Create the second data frame:
emp.newdata <-  data.frame(
   emp_id = c (6:8), 
   emp_name = c("Jane","Jack","John"),
   salary = c(578.0,722.5,632.8),
   start_date = as.Date(c("2013-05-21","2013-07-30", "2014-06-17")),
   dept = c("Dev","Sales","BizDev"),
   stringsAsFactors = FALSE
)  
   
# Bind the two data frames:
emp.finaldata <- rbind(emp.data,emp.newdata)
print(emp.finaldata)

Listing 2.15 initializes the variable emp as a data frame containing data for 
five employees, as shown in previous code samples. The next portion of Listing 
2.15 adds three new employees to emp. Launch the code in Listing 2.15 to see 
the following output:

  emp_id emp_name salary start_date       dept
1      1     Rick 623.30 2012-01-01         IT
2      2      Dan 515.20 2013-09-23 Operations
3      3 Michelle 611.00 2014-11-15         IT
4      4     Ryan 729.00 2014-05-11         HR
5      5     Gary 843.25 2015-03-27    Finance
6      6     Jane 578.00 2013-05-21        Dev
7      7     Jack 722.50 2013-07-30      Sales
8      8     John 632.80 2014-06-17     BizDev
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WORKING WITH DATA FRAMES IN R (5) 

Listing 2.16 shows the content of dataframe6.R that illustrates how to 
work with a data frame in R.

LISTING 2.16: dataframe6.R

city <- c("Tampa","Seattle","Hartford","Denver")
state <- c("FL","WA","CT","CO")
zipcode <- c(33602,98104,06161,80294)
   
# Combine above three vectors into one data frame:
addresses <- cbind(city,state,zipcode)
   
# Print a header:
cat("# # # # The First data frame\n")

# Print the data frame:
print(addresses)
   
# Create another data frame with similar columns:
new.address <- data.frame(
   city = c("Oakwood","Saperton"),
   state = c("CO","FL"),
   zipcode = c("80230","33949"),
   stringsAsFactors = FALSE
)  

# Print a header:
cat("# # # The Second data frame\n")
      
# Print the data frame:
print(new.address)

# Combine rows form both the data frames:
all.addresses <- rbind(addresses,new.address)

# Print a header:
cat("# # # The combined data frame\n") 

# Print the result:
print(all.addresses)

Listing 2.16 initializes the variables city, state, and zipcode with five 
cities, states, and zip codes, respectively.  Next, the variable addresses is ini-
tialized with the contents of the preceding three variables. 

Another code block initializes the variable new with another set of location-
related values, and then displays its contents. The final section of code 
concatenates the contents of addresses and new.address, and uses the 
result to initialize the variable all. Launch the code in Listing 2.16 to see the 
following output:

# # # # The First data frame
     city       state zipcode
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[1,] "Tampa"    "FL"  "33602"
[2,] "Seattle"  "WA"  "98104"
[3,] "Hartford" "CT"  "6161" 
[4,] "Denver"   "CO"  "80294"
# # # The Second data frame
      city state zipcode
1  Oakwood    CO   80230
2 Saperton    FL   33949
# # # The combined data frame
      city state zipcode
1    Tampa    FL   33602
2  Seattle    WA   98104
3 Hartford    CT    6161
4   Denver    CO   80294
5  Oakwood    CO   80230
6 Saperton    FL   33949

READING EXCEL FILES IN R

Listing 2.17 shows the content of readXSL.R that illustrates how easily you 
can read an Excel spreadsheet into a data frame in R.

LISTING 2.17: readXLS.R

library(readxl)
dfb <- read_excel("employees.xlsx")

print("The first five rows of employees.xlsx:")
head(dfb)

print("A Summary of employees.xlsx:")
summary(dfb)

In Listing 2.17, after loading the readxl library, the variable dfb is initial-
ized from the contents of the employees.xlsx spreadsheet. The first five 
rows are displayed, followed by a summary, as shown below:

head(dfb)
[1] "The first five rows of employees.xlsx:"
# A tibble: 6 x 10
     id fname lname gender     title    q1    q2    q3    q4 country
  <dbl> <chr> <chr>  <chr>     <chr> <dbl> <dbl> <dbl> <dbl>   <chr>
1  1000  john smith      m marketing 20000 12000 18000 25000     usa
2  2000  jane smith      f developer 30000 15000 11000 35000  france
3  3000  jack jones      m     sales 10000 19000 12000 15000     usa
4  4000  dave stone      m   support 15000 17000 14000 18000  france
5  5000  sara stein      f   analyst 25000 22000 18000 28000   italy
6  6000  eddy bower      m developer 14000 32000 28000 10000  france
[1] "A Summary of employees.xlsx:"
       id          fname              lname              gender         
 Min.   :1000   Length:6           Length:6           Length:6          
 1st Qu.:2250   Class :character   Class :character   Class :character  
 Median :3500   Mode  :character   Mode  :character   Mode  :character  
 Mean   :3500                                                           
 3rd Qu.:4750                                                           
 Max.   :6000                                                           
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    title                 q1              q2              q3       
 Length:6           Min.   :10000   Min.   :12000   Min.   :11000  
 Class :character   1st Qu.:14250   1st Qu.:15500   1st Qu.:12500  
 Mode  :character   Median :17500   Median :18000   Median :16000  
                    Mean   :19000   Mean   :19500   Mean   :16833  
                    3rd Qu.:23750   3rd Qu.:21250   3rd Qu.:18000  
                    Max.   :30000   Max.   :32000   Max.   :28000
       q4          country
 Min.   :10000   Length:6
 1st Qu.:15750   Class :character
 Median :21500   Mode  :character
 Mean   :21833      
 3rd Qu.:27250      
 Max.   :35000   

READING SQLITE TABLES IN R

Listing 2.18 shows the content of readSQLite.R that illustrates how to 
read the contents of a built-in SQLITE database in R.

LISTING 2.18: readSQLite.R

library(RSQLite)
library(DBI)

print("Establishing database connection...")
db = RSQLite::datasetsDb()

# display the tables in the database
print("Reading database tables...")
dbListTables(db)

print("Reading contents of mtcars table...")
dbReadTable(db, "mtcars")

# filter the data
print("Listing rows in the mtcars table...")
dbGetQuery(db, "SELECT * FROM mtcars")

print("Disconnecting database connection...")
dbDisconnect(db)

Listing 2.18 starts by referencing the RSQLite and DBI libraries for manag-
ing database connections. Next, db is initialized with the list of built-in data-
bases in R. The specific table that we want to examine is called mtcars, which 
we access via this code snippet:

dbReadTable(db, "mtcars")

The next portion of Listing 2.18 executes a SELECT statement that retrieves 
all the rows from the mtcars table and displays its contents. The final code 
snippet disconnects from the database. Launch the code in Listing 2.18 to see 
the following output:
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Head
 [1] "Establishing database connection..."
 [1] "Reading database tables..."
 [1] "BOD"              "CO2"              "ChickWeight"      "DNase"
 [5] "Formaldehyde"     "Indometh"         "InsectSprays"     "LifeCycleSavings"
 [9] "Loblolly"         "Orange"           "OrchardSprays"    "PlantGrowth"
[13] "Puromycin"        "Theoph"           "ToothGrowth"      "USArrests"
[17] "USJudgeRatings"   "airquality"       "anscombe"         "attenu"
[21] "attitude"         "cars"             "chickwts"         "esoph"
[25] "faithful"         "freeny"           "infert"           "iris"
[29] "longley"          "morley"           "mtcars"           "npk"
[33] "pressure"         "quakes"           "randu"            "rock"
[37] "sleep"            "stackloss"        "swiss"            "trees"
[41] "warpbreaks"       "women"
 [1] "Reading contents of mtcars table..."
             row_names  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
3           Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
4       Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
5    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
6              Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
7           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
8            Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
9             Merc 230 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
10            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
// rows omitted for brevity
22    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
23         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
24          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
25    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
26           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
27       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
28        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
29      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
30        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
31       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
32          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
[1] "Disconnecting database connection..."

READING TEXT FILES IN R

Listing 2.19 shows the content of readtable.R that illustrates how to read 
data from a text file in R.

LISTING 2.19: readtable.R

# read data and exclude header row
#df <- read.table("a.txt", header = FALSE)
#df

# read tab-delimited data and include header row
df <- read.table("a.txt", header = TRUE, sep = "\t", quote="\"")

#display contents of df:
df

### # Read in csv files
### df <- read.table("test.csv", header = FALSE, sep = ",") 
### df <- read.csv("test.csv", header = FALSE)
### df <- read.csv2("test.csv", header= FALSE)
### # Inspect the result
### df
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# Read a delimited file
### df <- read.delim("test_delim.txt", sep="$") 
### df <- read.delim2("test_delim.txt", sep="$") 
### # Inspect the result
### df

Listing 2.19 initializes the variable df with the contents of the text file 
a.txt without the header row (the first row) and then displays its contents. 

The next code snippet also initializes df with the contents of a.txt, but this 
time it does include the header row, along with the tab character (“\t”) as the 
column separator and the quote character (“) as the character for quoted strings.

The next code block shows how to initialize df with the contents of the CSV 
file test.csv, with different values for header and sep. The final code block 
shows you how to initialize df with the contents of the text file test_delim.
txt, with different values for sep. Launch the code in Listing 2.19 to see the 
following output:

          Name EmpId                          Address
1 Jane Edwards 12345 123 Main Street Chicago Illinois
2   John Smith 23456 432 Lombard Avenue SF California
                                                   V1
1                                  Name,EmpId,Address
2 Jane Edwards,12345,123 Main Street Chicago Illinois
3   John Smith,23456,432 Lombard Avenue SF California
          Name EmpId                          Address
1 Jane Edwards 12345 123 Main Street Chicago Illinois
2   John Smith 23456 432 Lombard Avenue SF California

SAVING AND RESTORING OBJECTS IN R

Listing 2.20 shows the content of save_restore.R that illustrates how to 
read data from a text file in R.

LISTING 2.20: save_restore.R

print("Saving v to file saved_vector.Rdata")
v <- c(1,2,NA,4)
save(v, file="saved_vector.Rdata")

# dataframe:
mydf <- data.frame(
  attr1 <- c(1,2,3),
  attr2 <- c(4,5,6),
  attr3 <- c(7,8,9)
)
print("Saving df to file saved_dataframe.Rdata")
save(mydf, file="saved_dataframe.Rdata")

print("New contents of v:")
v <- c(-1234)
print(v)
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print("New contents of mydf:")
mydf <- data.frame(c(-1234))
print(mydf)

print("Restoring v from file saved_vector.Rdata")
load("saved_vector.Rdata")

print("Restoring mydf from file saved_dataframe.Rdata")
load("saved_dataframe.Rdata")

print("Restored contents of v:")
print(v)

print("Restored contents of mydf:")
print(mydf)

Listing 2.20 consists of three parts. The first part defines and saves a vector 
v and also defines and saves a data frame mydf. The second part assigns dif-
ferent values to v and mydf to test whether they will be assigned the restored 
values. 

The third part restores the values of v and mydf, which confirms that the 
code is working correctly and as expected. Launch the code in Listing 2.20 to 
see the following output:

[1] "Saving v to file saved_vector.Rdata"
[1] "Saving df to file saved_dataframe.Rdata"
[1] "New contents of v:"
[1] -1234
[1] "New contents of mydf:"
  c..1234.
1    -1234
[1] "Restoring v from file saved_vector.Rdata"
[1] "Restoring mydf from file saved_dataframe.Rdata"
[1] "Restored contents of v:"
[1]  1  2 NA  4
[1] "Restored contents of mydf:"
  attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
1                   1                   4                   7
2                   2                   5                   8
3                   3                   6                   9

DATA VISUALIZATION IN R 

R supports an assortment of charts and graphs for displaying data in a 
graphical manner. In fact, R makes it surprisingly easy to render data in graphi-
cal form and to save that graphics data as a PNG file.

Some of the built-in chart-related functions can generate the following 
types of output:

•	Bar charts
•	Line graphs
•	Histograms
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•	Pie charts
•	Box plots

The next sections contain several basic code samples for rendering data as 
bar charts and pie charts.  

WORKING WITH BAR CHARTS IN R (1)

Listing 2.21 shows the content of barchart1.R that illustrates how to dis-
play a bar chart in R.

LISTING 2.21: barchart1.R

# Create the data for the chart:
H <- c(7,12,28,3,41)

# Give the chart file a name:
png(file = "barchart1.jpg")

# Plot the bar chart:
barplot(H)

# Save the file:
dev.off()

In Listing 2.21, after initializing the variable H with five integer values, 
the png() function specifies the filename barchart.jpg, the function 
barplot() generates a bar chart, and then dev() saves the bar chart to the 
file barchart.jpg. Launch the code in Listing 2.21 that generates a bar chart. 
Figure 2.1 shows the contents of barchart.jpg.
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FIGURE 2.1  A bar chart created using the code in Listing 2.21.
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WORKING WITH BAR CHARTS IN R (2)

Listing 2.22 shows the contents of barchart2.R that illustrates how to 
display a bar chart in R.

LISTING 2.22: barchart2.R

# Create the data for the chart:
H <- c(7,12,28,3,41)
M <- c("Mar","Apr","May","Jun","Jul")

# Give the chart file a name:
png(file = "barchart_months_revenue.png")

# Plot the bar chart:
barplot(H,names.arg=M,xlab="Month",ylab="Revenue",col="blue", 
main="Revenue chart",border="red")

# Save the file:
dev.off()

Listing 2.22 extends the code in Listing 2.21 by specifying labels for the hori-
zontal and vertical axes. Launch the code in Listing 2.22 to generate a bar chart.

Figure 2.2 shows the contents of barchart_months_revenue.png.
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FIGURE 2.2  A bar chart created from the code in Listing 2.22.

WORKING WITH LINE GRAPHS IN R (1)

Listing 2.23 shows the content of linegraph1.R that illustrates how to 
display a line graph in R.
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LISTING 2.23: linegraph1.R

# Create the data for the chart:
v <- c(7,12,28,3,41)

# Give the chart file a name:
png(file = "line_graph1.jpg")

# Plot the line graph:
plot(v,type = "o")

# Save the file:
dev.off()

Listing 2.23 is also similar to Listing 2.21, except that a line graph is gener-
ated from the plot() function. Launch the code in Listing 2.23 that generates 
a line graph.

Figure 2.3 shows the contents of line_graph1.jpg.
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FIGURE 2.3  A line graph created from the code in Listing 2.23.

WORKING WITH LINE GRAPHS IN R (2)

Listing 2.24 shows the content of linegraph_labels1.R that illustrates 
how to display a line graph in R.

LISTING 2.24: linegraph_labels1.R

# Create the data for the graph:
v <- c(7,12,28,3,41)

# Give the chart file a name:
png(file = "line_graph_label_colored.jpg")
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# Plot the bar chart:
plot(v, type = "o", col = "red",
     xlab = "Month", ylab = "Rain fall",
     main = "Rain fall chart")

# Save the file:
dev.off()

Listing 2.24 is similar to Listing 2.23 and also adds labels for the horizontal 
and vertical axes. Launch the code in Listing 2.24 to generate a line graph.

Figure 2.4 displays the contents of line_graph_label_colored.jpg.
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FIGURE 2.4  A labeled line graph created with the code from Listing 2.24.

WORKING WITH MULTI-LINE GRAPHS IN R

Listing 2.25 shows the content of multilinegraph1.R that illustrates 
how to display multi-line graphs in R.

LISTING 2.25: multilinegraph1.R

# Create the data for the chart:
v <- c(7,12,28,3,41)
t <- c(14,7,6,19,3)

# Give the chart file a name:
png(file = "line_chart_2_lines.jpg")

# Plot the bar chart.
plot(v, type = "o", col = "red",
     xlab = "Month", ylab = "Rain fall",
     main = "Rain fall chart")

lines(t, type = "o", col = "blue")
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# Save the file:
dev.off()

Listing 2.25 is similar to Listing 2.24, except that two lines are generated. 
Launch the code in Listing 2.25 to generate a line chart. Figure 2.5 shows the 
contents of line_chart2_lines.jpg.
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FIGURE 2.5  A labeled line chart created with the code from Listing 2.25.

WORKING WITH HISTOGRAMS IN R

Listing 2.26 shows the content of histogram1.R that illustrates how to 
display a histogram in R.

LISTING 2.26: histogram1.R

# Create data for the graph:
v <- c(9,13,21,8,36,22,12,41,31,33,19)

# Give the chart file a name:
png(file = "histogram1.png")

# Create the histogram:
hist(v,xlab = "Weight",col = "yellow",border = "blue")

# Save the file:
dev.off()

Listing 2.26 is similar to Listing 2.21, and generates a histogram instead of a 
bar chart. Launch the code in Listing 2.26 to generate a histogram. Figure 2.6 
shows the contents of histogram1.png.
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FIGURE 2.6  A histogram created with the code from Listing 2.26.

WORKING WITH SCATTER PLOTS IN R (1)

Listing 2.27 shows the content of scatterplot1.R that illustrates how to 
display a scatter plot in R.

LISTING 2.27: scatterplot1.R

input <- mtcars[,c('wt','mpg')]
print(head(input))

# Get the input values:
input <- mtcars[,c('wt','mpg')]

# Give the chart file a name:
png(file = "scatterplot.png")

# Plot the chart for cars with weight between
# 2.5 to 5 and mileage between 15 and 30:
plot(x = input$wt,y = input$mpg,
   xlab = "Weight",
   ylab = "Milage",
   xlim = c(2.5,5),
   ylim = c(15,30),
   main = "Weight vs Mileage"
)

# Save the file:
dev.off()
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Listing 2.27 is similar to Listing 2.22, and the code generates a scatter plot 
instead of a bar chart. Launch the code in Listing 2.27 to generate a scatter 
plot. Figure 2.7 shows the contents of scatterplot.png.
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FIGURE 2.7  A scatter plot created with the code from Listing 2.27.

WORKING WITH SCATTER PLOTS IN R (2)

Listing 2.28 shows the content of scatterplotMatrix1.R that illustrates 
how to display a scatter plot in R.

LISTING 2.28: scatterplotMatrix1.R

input <- mtcars[,c('wt','mpg')]
print(head(input))

# Get the input values:
input <- mtcars[,c('wt','mpg')]

# Give the chart file a name:
png(file = "scatterplot_matrices.png")

# Plot the matrices between 4 variables giving 12 plots:
# One variable with 3 others and total 4 variables:

pairs(~wt+mpg+disp+cyl,data = mtcars,
   main = "Scatterplot Matrix")
   
# Save the file:
dev.off()
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Listing 2.28 is similar to Listing 2.21, and generates a scatter plot instead 
of a bar chart. Launch the code in Listing 2.28 to generate a scatter plot. 
Figure 2.8 shows the contents of scatterplot_matrices.png.
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FIGURE 2.8  A scatter plot created with the code from Listing 2.28.

WORKING WITH BOX PLOTS IN R

Listing 2.29 shows the content of boxplot1.R that illustrates how to dis-
play a box plot in R.

LISTING 2.29: boxplot1.R

input <- mtcars[,c('mpg','cyl')]
print(head(input))

# Give the chart file a name:
png(file = "boxplot.png")

# Plot the chart:
boxplot(mpg ~ cyl, data = mtcars, xlab = "Number of Cylinders",
        ylab = "Miles Per Gallon", main = "Mileage Data")

# Save the file:
dev.off()
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Listing 2.29 is similar to Listing 2.22, and generates a box plot instead of a 
bar chart. Launch the code in Listing 2.29 to generate a box plot. Figure 2.9 
shows the contents of boxplot.png.
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FIGURE 2.9  A box plot created using the code from Listing 2.29.

WORKING WITH PIE CHARTS IN R (1)

Listing 2.30 shows the content of piechart1.R that illustrates how to dis-
play a pie chart in R.

LISTING 2.30: piechart1.R

# Create data for the graph:
x <- c(21, 62, 10, 53)
labels <- c("London", "New York", "Singapore", "Mumbai")

# Give the chart file a name:
png(file = "piechart1.jpg")

# Plot the chart:
pie(x,labels)

# Save the file:
dev.off()
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Listing 2.30 is similar to Listing 2.22, and generates a pie chart instead of a 
bar chart. Launch the code in Listing 2.30 to generate a pie chart. Figure 2.10 
shows the contents of piechart1.jpg.
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FIGURE 2.10  A pie chart created from the code in Listing 2.30.

WORKING WITH PIE CHARTS IN R (2)

Listing 2.31 shows the content of piechart3D1.R that illustrates how to 
display a 3D pie chart in R.

LISTING 2.31: piechart3D1.R

# Get the library:
library(plotrix)

# Create data for the graph:
x <-  c(21, 62, 10,53)
lbl <-  c("London","San Francisco","Rio de Janeiro","Rome")

# Give the chart file a name:
png(file = "3d_pie_chart.jpg")

# Plot the chart:
pie3D(x,labels = lbl,explode = 0.1, main = "Pie Chart of Countries ")

# Save the file:
dev.off()

Listing 2.31 is similar to Listing 2.22, and generates a pie chart instead of a 
bar chart. Launch the code in Listing 2.31 to generate a pie chart. Figure 2.11 
shows the contents of 3d_piechart.jpg.
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FIGURE 2.11  A pie chart created from the code in Listing 2.31.

SUMMARY

This chapter introduced you to loops in R, along with nested loops, in order 
to display data in a column format. Next, you learned about conditional logic, 
followed by code samples that illustrates how to write “if” statements, “if-then” 
statements, and “if-then-else” statements in R.

In addition, you learned about data frames in R, with an assortment of code 
samples involving data frames. You learned how to read the contents of text 
files into R data frames. Finally, you learned how to create visualizations in R 
involving bar charts, line graphs, scatter plots, and pie charts.



CHAPTER 3
WORKING WITH FUNCTIONS 
IN R

This chapter discusses some useful built-in R functions and how to define 
your own custom R functions. Later in this chapter, you will  learn how 
to define recursive functions in R and  use them to solve various tasks.

The first section discusses some built-in functions in R, such as statistical 
functions, trigonometric functions, and string-related functions. The second 
section contains examples of working with CSV files, XML files, and JSON 
files, and how to convert them to data frames in R. The third section explains 
how to define custom R functions.

The fourth section introduces you to recursion, which is a very powerful and 
elegant way to solve certain tasks. For example, you will learn how to define 
recursive functions for calculating factorial values, Fibonacci numbers, GCD 
(Greatest Common Divisor), and LCM (Lowest Common Multiple). Note that 
this section also illustrates how to calculate factorial values and Fibonacci num-
bers using an iterative algorithm.

For your convenience, the file library_list.R in Chapter 6 enables you 
to install more than 30 R packages that are used in this book. Feel free to add 
other R packages to this file.

NAN AND FUNCTIONS IN R 

R provides a vast set of built-in functions, some of which you have already 
seen in previous chapters. For example, toupper() and tolower() are 
built-in functions that convert a string to uppercase and lowercase letters, 
respectively.



64  •  Natural Language Processing Using R Pocket Primer

However, sometimes the existing functions in R do not provide the func-
tionality that you need to perform specific tasks. R makes it very easy to define 
your own custom functions.

Listing 3.1 shows the content of BasicFunctions.R that illustrates how 
to handle NaN values in various R functions.

LISTING 3.1 BasicFunctions.R

x <- c(1,2,NA,3)
mean(x)
mean(x, na.rm=TRUE)

#check for missing values
is.na(x) # returns TRUE of x is missing
y <- c(1,2,3,NA)
is.na(y) # returns a vector (F F F T)

table(is.na(x))

sum(is.na(x))

sum(!is.na(x))
v <- c(NA, NA, 0.5, 1, 12, 15, 3)
summary(v)
v <- c(-1, "-nodata-", 0.5, 1, 12, 15, 3)
table(v)

summary(na.omit(x))

Listing 3.1 initializes the variable x as a list with four values (including 
NA) and then invokes the mean() method to calculate mean of those values. 
The second invocation of the mean() method specifies na.rm=TRUE, which 
is required for handling NA values. Launch the code in Listing 3.1 to see the 
following output:

[1] NA
[1] 2
[1] FALSE FALSE  TRUE FALSE
[1] FALSE FALSE FALSE  TRUE

FALSE  TRUE
    3     1
[1] 1
[1] 3
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's
    0.5     1.0     3.0     6.3    12.0    15.0       2
v
     -1 -nodata-     0.5       1      12      15       3
      1        1       1       1       1       1       1
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
    1.0     1.5     2.0     2.0     2.5     3.0
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MATH-RELATED FUNCTIONS IN R

R supports a variety of math-related functions and trigonometric functions, 
as listed below:

•	sqrt()
•	sum())
•	cos()
•	sin()
•	tan()
•	log(x)
•	log10()
•	exp()
•	sqrt()
•	round(x)
•	signif(x)
•	trunc(x) - rounding functions
•	sqrt()
•	sum()
•	%% modulus
•	%/% integer divisilln
•	%*% matrix multiplication
•	%o% outer product (a%o% equivalent to outer(a,b,"*"))

The built-in trigonometric functions in R include sin(x), cos(x), sin(x), 
tan(x), acos(x), asin(x), atan(x), and atan2(y,x). With the exception 
of the function atan2(y,x), the argument for all trigonometric functions in R 
is specified in radians (not degrees).

Listing 3.2 shows the content of TrigFunctions.R that illustrates how to 
use some math functions and trigonometric functions in R.

LISTING 3.2: TrigFunctions.R

# sine(π/2):
print("sin(pi/2):")
sin(pi/2)

# cosine(π):
print("cos(pi):")
cos(pi)

# tangent(π/3):
print("tan(pi/3):")
tan(pi/3)

# cotangent(π/3):
print("cotangent(pi/3):")
1/tan(pi/3)
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#angle x where cos(x) = -1:
print("acos(-1):")
acos(-1)

#angle x where tan(x) = 0.5:
print("atan(0.5):")
atan(0.5)

#atan2() take the y and x values as arguments:
print("atan2(1,2):")
atan2(1,2)

Listing 3.2 invokes the trigonometric functions sin(), cos(), and tan() 
with the value π/3, followed by several other trigonometric functions. Launch 
the code in Listing 3.2 to see the following output:

[1] "sin(pi/2):"
[1] 1
[1] "cos(pi):"
[1] -1
[1] "tan(pi/3):"
[1] 1.732051
[1] "cotangent(pi/3):"
[1] 0.5773503
[1] "acos(-1):"
[1] 3.141593
[1] "atan(0.5):"
[1] 0.4636476
[1] "atan2(1,2):"
[1] 0.4636476
[1] 2

STRING-RELATED FUNCTIONS IN R

The following functions are useful for preprocessing tasks in NLP, and they 
involve the tm_map() function:

•	removeNumbers()
•	removePunctuation()
•	removeWords
•	stemDocument()
•	stripWhiteSpace()
•	tolower()

The removeNumbers() function removes digits in a text string. For exam-
ple, “This Is Short123!” is replaced with “This Is Short!”.

The removePunctuation() function removes punctuation in a text string. 
For example, “This Is Short123!” is replaced with “This Is Short123.” Keep in 
mind that this function also removes characters such as emojis.

The removeWords() function removes the stop words. For example, “This 
Is Short123!” is replaced with “Short123!”.
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The stemCompletion() function takes as arguments the stemmed words 
and a dictionary of complete words, whereas the stemDocument() function 
replaces words with their stem.

The stripWhiteSpace() function removes whitespaces and tab charac-
ters in a text string. For example, “This Is    Short123!” is replaced with “this 
is short123!”. This function removes leading, trailing, and embedded white 
spaces and tab characters.

The tolower() function replaces alphabetic characters with their low-
ercase counterpart. For example, “This Is Short123!” is replaced with “this 
is short123!”. As you can see, digits and punctuation are unaffected by the 
tolower() function. Note that converting a string to lowercase can lose infor-
mation: “rose” might have originally been “Rose” (a proper name).

THE GSUB() FUNCTION IN R

R supports the gsub() function that enables you to perform string-based 
substitutions, along with support for regular expressions.

Listing 3.3 shows the content of gsub_examples.R that illustrates how to 
use gsub() and basic regular expressions in R.

LISTING 3.3: gsub_examples.R

library(tm)

str <- c("123", "this","is","a","sentence!?")

print(paste0("str:",str))
print(paste0(str))
print(paste0(str, collapse=" "))

print(paste0("=> Replace non-alpha with X and spaces with Z:",collapse=" "))
str2 = gsub(pattern="\\W", replace="X",str)
print(paste0(str2, collapse="Z"))

print(paste0("=> Replace digits with blanks and Y for blanks:",collapse=" "))
str3 = gsub(pattern="\\d", replace=" ",str2)
print(paste0(str3, collapse="Y"))

print(paste0("=> Replace initial 't' with periods Y and Z for 
blanks:",collapse=" "))
str4 = gsub(pattern="\\bt", replace=".....",str2)
print(paste0(str4, collapse="Z"))

print(paste0("=> Replace one-character words with SINGLE:",collapse=" "))
str5 = gsub(pattern="\\b[A-z]\\b", replace=" SINGLE ",str2)
print(paste0(str5, collapse="Z"))

print(paste0("=> Remove whitespaces:",collapse=" "))
str6 = stripWhitespace(str2)
print(paste0(str6, collapse=""))

Listing 3.3 initializes the variable str as a text string and displays 
its contents. Next, str2 is initialized as the result of replacing non-
alphabetic characters with the letter X. Note that uppercase patterns are 
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the “opposite” of lowercase patterns. Hence, the pattern \\W machines any 
non-alphabetic character because the pattern \\w matches any alphabetic 
character.

The next portion of Listing 3.3 initializes str3 as the result of replacing 
digits by blank spaces in str2 via the pattern \\d. The next portion of Listing 
3.3 initializes str4 as the result of replacing tab characters (\t) with five adja-
cent periods (.). The final portion of Listing 3.3 initializes str6 as the result of 
removing white spaces from the string str2. Launch the code in Listing 3.3 to 
see the following output:

[1] "str:123"        "str:this"       "str:is"         "str:a"         
[5] "str:sentence!?"
[1] "123"        "this"       "is"         "a"          "sentence!?"
[1] "123 this is a sentence!?"
[1] "=> Replace non-alpha with X and spaces with Z:"
[1] "123ZthisZisZaZsentenceXX"
[1] "=> Replace digits with blanks and Y for blanks:"
[1] "   YthisYisYaYsentenceXX"
[1] "=> Replace initial 't' with periods Y and Z for blanks:"
[1] "123Z.....hisZisZaZsentenceXX"
[1] "=> Replace one-character words with SINGLE:"
[1] "123ZthisZisZ SINGLE ZsentenceXX"
[1] "=> Remove whitespaces:"
[1] "123thisisasentenceXX"

MISCELLANEOUS BUILT-IN FUNCTIONS

The following miscellaneous functions are described briefly, and more 
information is available in the online documentation:

•	grep(): regular expressions
•	identical(): test if two objects are identical
•	length(): returns the number of elements in vector
•	ls(): list objects in current environment
•	order(x): list the sorted element numbers of x
•	range(x): minimum and maximum
•	rep(x,n): repeat the number x, n times
•	rev(x): elements of x in reverse order
•	seq(x,y,n): sequence (x to y, spaced by n)

In addition, R supports the following file-related functions:

•	getwd(): return working directory
•	setwd(): set working directory
•	choose.files(): get path to a file
•	sort(): sorts the #s in a list

You can find additional information by reading the online documentation.
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SET FUNCTIONS IN R

R provides several built-in operators for set-related operations, as listed 
below:

•	union()
•	intersect()
•	setdiff()
•	setequal() 

The set functions union(), intersect(), setdiff(), and setequal() 
discard duplicates in the arguments. Moreover, these set functions apply 
as.vector() to their arguments, which coerces factors to character vectors.

Listing 3.4 shows the content of SetFunctions.R that illustrates how to 
use some arithmetic functions and set-related functions in R.

LISTING 3.4: SetFunctions.R

print("one:")
(one <- c(sort(sample(1:20, 8)), NA))

print("two:")
(two <- c(sort(sample(5:30, 5)), NA))

union(one, two)
intersect(one, two)
setdiff(one, two)
setdiff(two, one)
setequal(one, two)

# is.element(x, y) => identical to x %in% y.
# the elements of one that are in two (9)
is.element(one, two)

# length 6
# the elements of two that are in one (6)
is.element(two, one)

Listing 3.4 starts by displaying a sample set one that consists of integers 
between 1 and 20, followed by the string NA. Next, another sample set two that 
consists of 5 integers between 5 and 30 is displayed, as well as the string NA. 

The next portion of Listing 3.4 involves set-related functions union() and 
intersect() that display the union and intersection, respectively, of the sets 
one and two. Three more set functions are invoked to display the elements in 
set one that are not in set two, then the elements in set two that are not in set 
one, and then the setequal() function that displays TRUE if one and two are 
equal (otherwise FALSE is displayed). 

The final portion of Listing 3.4 displays TRUE for each element of set one 
that is in set two (otherwise FALSE is displayed), followed by similar output 
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when the role of set one and set two is reversed. Launch the code in Listing 3.4 
to see the following output:

[1] "one:"
[1]  3  4  7  8 12 13 14 16 NA
[1] "two:"
[1]  9 11 13 20 28 NA
[1]  3  4  7  8 12 13 14 16 NA  9 11 20 28
[1] 13 NA
[1]  3  4  7  8 12 14 16
[1]  9 11 20 28
[1] FALSE
[1] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
[1] FALSE  TRUE FALSE FALSE FALSE  TRUE

R supports the built-function eigen() for determining eigenvalues and 
eigenvectors in linear algebra. In addition, R supports the built-in function 
deriv() for calculating symbolic and algorithmic derivatives.

THE ÒAPPLYÓ FAMILY OF BUILT-IN FUNCTIONS

The following functions are in the “apply family” of R functions, and they 
are similar to the map() function that is available in many other languages:

•	apply:  apply a function (e.g., mean) 
•	lapply: read multiple files
•	sapply: apply for lists or vectors

Listing 3.5 shows the content of apply_functions.R that illustrates how 
replace a missing value in a column with the mean of the other values in that 
same column.

LISTING 3.5: apply_functions.R

# Create example data
my_data <- data.frame(x1 = 1:5, 
                      x2 = 2:6,
                      x3 = 3,
                      x4 = -1)

print(paste0("Initial array values:",collapse=" "))
my_data                      

# invoke the apply() function:
print(paste0("Row-wise sum of values:",collapse=" "))
apply(my_data, 1, sum)

print(paste0("Column-wise sum of values:",collapse=" "))
apply(my_data, 2, sum)
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# create example list:
my_list <- list(1:5,
                letters[1:3],
                123)

print(paste0("Heterogenous list of values:",collapse=" "))
my_list

print(paste0("Invoke the lapply() function:",collapse=" "))
lapply(my_list, length)

print(paste0("Invoke the sapply() function:",collapse=" "))
sapply(my_list, length)
# 5 3 1

print(paste0("Invoke the vapply() function:",collapse=" "))
vapply(my_list, length, integer(1))

Listing 3.5 starts by initializing my_data and then displaying its contents. 
The next pair of code blocks display the row-wise sum and the column-wise 
sum, respectively, of the values in my_data. 

The next portion of Listing 3.5 initializes a matrix with heterogenous values, 
and then invokes the functions apply(), sapply(), and vapply(). These 
three functions calculate row-based and column-based sums (see the comment 
lines). Launch the code in Listing 3.5 to see the following output:

[1] "Initial array values:"
  x1 x2 x3 x4
1  1  2  3 -1
2  2  3  3 -1
3  3  4  3 -1
4  4  5  3 -1
5  5  6  3 -1
[1] "Row-wise sum of values:"
[1]  5  7  9 11 13
[1] "Column-wise sum of values:"
x1 x2 x3 x4 
15 20 15 -5 
[1] "Heterogenous list of values:"
[[1]]
[1] 1 2 3 4 5

[[2]]
[1] "a" "b" "c"

[[3]]
[1] 123

[1] "Invoke the lapply() function:"
[[1]]
[1] 5
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[[2]]
[1] 3

[[3]]
[1] 1

[1] "Invoke the sapply() function:"
[1] 5 3 1
[1] "Invoke the vapply() function:"
[1] 5 3 1

The next section discusses the dplyr package, which merits an entire 
chapter for a detailed description, but we’ll only cover some of its more salient 
features.

THE ÒMUST LEARNÓ DPLYR PACKAGE IN R

R supports the dplyr package, which is an extremely powerful R pack-
age for managing data frames in R. The dplyr package enables you to select 
columns and filter rows, as well as find distinct values and overlapping val-
ues. Moreover, this package enables you to perform group-by aggregation on 
datasets.

Some frequently used dplyr APIs are listed below:

•	arrange()
•	filter()
•	mutate()
•	select()
•	summarize()

For more information, see the following sites:

•	https://online.datasciencedojo.com/blogs/data-manipulation-and- 
exploration-with-dplyr

•	https://genomicsclass.github.io/book/pages/dplyr_tutorial.html
•	https://bensstats.wordpress.com/2021/09/14/pythonmusings-6-dplyr-

in-python-first-impressions-of-the-siuba-%E5%B0%8F%E5%B7%B4-
module/

The preceding functions can also be used with the group_by() function 
that displays data in a per-group basis.

The arrange() API changes the order of rows (do not confuse this with 
the arange() API that is available in other languages).

The filter() API enables you to select a subset of rows based on a Boolean 
expression. For example, if a column contains integer values, you can select 
the rows for which the integer value is even (or even and larger than 10, or 
even and between 20 and 40, and so forth). There is no practical limit to the 
Boolean expression, and you can use any combination of logical operators, 

https://online.datasciencedojo.com/blogs/data-manipulation-and-exploration-with-dplyr
https://genomicsclass.github.io/book/pages/dplyr_tutorial.html
https://bensstats.wordpress.com/2021/09/14/pythonmusings-6-dplyr-in-python-first-impressions-of-the-siuba-%E5%B0%8F%E5%B7%B4-module/
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such as OR, AND, and NOT. The mutate() API creates new columns (this API 
performs a column insert operation). The select() API selects columns from 
a data frame. The summarise() API provides a summary of the values in 
columns. The group_by() API is similar to the GROUP keyword in SQL 
statements.

Before we continue, make sure that you have installed the dplyr package, 
which can be performed by either of the following code snippets:

# install tidyverse: 
install.packages("tidyverse",repos = "https://cloud.r-project.org")

# install only dplyr:
install.packages("dplyr",repos = "https://cloud.r-project.org")

Listing 3.7 shows the content of dplyr-mtcars.R that illustrates how to 
use the some of the functionality in the dplyr package.

LISTING 3.7: dplyr-mtcars.R

library(datasets)
library(dplyr)

# select columns by name:
print("=> mpg,cyl,dps,qsec:")
selecn = select(mtcars,mpg,cyl,disp,qsec)
head(selecn)

# data filter
#filter(mtcars, mpg > 20)
print("Filter by mpg > 20 and cyl > 5:")
f = filter(mtcars, mpg > 20 & cyl > 5)
head(f)

# add a new column
#dm=mutate(mtcars, TempInC = (Temp - 32) * 5 / 9)
#head(dm)

# summarize and group by data
#print("=> summarize by mpg:")
#summarise(mtcars, mpg)

# group: average wind value per month
# Month is the basis of grouping
#print("=> group by cl and mean by mpg:")
#summarise(group_by(mtcars, cyl), mean(mpg, na.rm = TRUE)) 

Listing 3.7 starts with references to the datasets and dplyr R libraries. 
Next, the R select() function initializes the variable selectn with values from 
the built-in mtcars dataset that pertain to the attributes mpg, cyl, disp, and 
qsec. After the first five rows of selectn are displayed, the variable f is initial-
ized with the rows of mtcars whose mpg is greater than 20 and whose cyl value 
is greater than 5. Launch the code in Listing 3.7 to see the following output:

https://cloud.r-project.org
https://cloud.r-project.org
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[1] "=> mpg,cyl,dps,qsec:"
                   mpg cyl disp  qsec
Mazda RX4         21.0   6  160 16.46
Mazda RX4 Wag     21.0   6  160 17.02
Datsun 710        22.8   4  108 18.61
Hornet 4 Drive    21.4   6  258 19.44
Hornet Sportabout 18.7   8  360 17.02
Valiant           18.1   6  225 20.22
[1] "Filter by mpg > 20 and cyl > 5:"
   mpg cyl disp  hp drat    wt  qsec vs am gear carb
1 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
2 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
3 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 

OTHER USEFUL R PACKAGES

R supports the following useful packages that provide useful APIs, some of 
which you will see discussed in greater detail later in this chapter:

•	caret
•	data.table
•	forcats
•	ggplot2
•	lubridate
•	reticulate
•	shiny
•	stringr
•	tidyr

The caret package (an acronym for Classification and Regression 
Training) facilitates the model training step, with support for regression tasks 
as well as classification tasks.

The data.table package provides APIs for extracting subsets of rows 
and columns of data and also perform data aggregation operations with the 
by_group() API. This package works well for large datasets.

The forcats package is designed to work with categorial variables, which 
are factors in R. The APIs in this package enable you to change the order in 
which factors are displayed by various criteria.

The ggplot2 package is for creating graphics effects, and another graph-
ics-related package is plotly.

The lubridate package contains a set of date-related APIs that enable 
you to work with various date formats as well as time zones, daylight savings 
time, leap years, and so forth.

The reticulate package enables you to use Python code and R code 
together, in R programs and also in RStudio.

The shiny package is for creating interactive Web applications.
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The stringr package contains a comprehensive set of APIs for string-
related functionality. In addition, stringy is built on top of the stringi 
package: the latter contains string-related functions that are not included in 
strings.

The tidyr package is well-suited for data in which each cell contains a 
single value and columns are variable.

THE PIPE OPERATOR %>%

The pipe operator %>% enables you to pipe output from one function to 
the input of another function (that’s why it’s called a pipe). In addition, dplyr 
imports this operator from the magrittr package. Instead of nesting func-
tions (reading from the inside to the outside), piping reads the functions from 
left to right.

Listing 3.8 shows the content of pipe1.R that illustrates how to sort an 
array of random numbers in R.

LISTING 3.8: pipe1.R

library(magrittr)

x <- rnorm(5)
print(paste0("content of x:"))
print(paste0(x))

# Update value of x and assign it to x
x %>% abs %>% sort
print(paste0("content of x:"))
print(paste0(x))

Listing 3.8 starts with references to the magrittr R library, followed by 
initializing the variable x with 5 random values, and then displaying those 
values via the rnorm() function. The next portion of Listing 3.8 “pipes” 
the values in x to the abs() function that returns the absolute value of the 
numbers in its input, and the result is then passed to the sort() function 
that sorts its input values. Launch the code in Listing 3.8 to see the following 
output:

[1] "content of x:"
[1] "1.23041905548521"   "0.426501888248532"  "1.08469130060061"
[4] "-0.995749885650863" "-1.02953061190553" 
[1] "content of x:"
[1] "0.426501888248532" "0.995749885650863" "1.02953061190553"
[4] "1.08469130060061"  "1.23041905548521" 

Listing 3.9 shows the content of pipe2.R that illustrates how to invoke 
additional R functions in a pipeline.
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LISTING 3.9: pipe2.R

library(magrittr)

x <- c(1,2,3,4,5)
print(paste0("content of x:"))
print(paste0(x))

# Perform operations on x:
x %>% log() %>%
    diff() %>%
    exp() %>%
    round(1)

Listing 3.9 initialized x with the integers between 1 and 5 inclusive and dis-
plays those values. The main portion of the code in Listing 3.9 passes the values 
of x to the log() function, then the diff() function, then the exp() function, 
and lastly rounds the final output values to one decimal place. Launch the code 
in Listing 3.9 to see the following output:

[1] "content of x:"
[1] "1" "2" "3" "4" "5"
[1] 2.0 1.5 1.3 1.2 

Listing 3.10 shows the content of pipe3.R that illustrates how to perform 
multiple operations on a vector of numbers in R.

LISTING 3.10: pipe3.R

library(magrittr)

x <- c(-50,20,30,12,-88,100,-500)
print("x:")
print(x)

x %>% abs %>% sort
print("sorted:")
print(x)

#The tee operator %T>%;
rnorm(200) %>%
matrix(ncol = 2) %T>%
plot %>%
colSums

Listing 3.10 initializes the variable x with a list of integer values and then 
passes x to the abs() and sort() functions, which calculate the absolute 
value of each input value, followed by sorting the resulting list of non-negative 
numbers. 

The next portion of Listing 3.10 invokes the rnorm() function that gener-
ates 100 random numbers from a normal distribution. This set of numbers 
is passed to the matrix() function that generates a 100 × 2 matrix before 
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calculating the column sum of both columns. Now launch the code in Listing 
3.10 to see the following output:

[1]  -50   20   30   12  -88  100 -500
[1] "x:"
[1]  12  20  30  50  88 100 500
[1]  3.912239 -4.359854

The next section shows you how to work with CSV files in R, followed by 
sections that illustrate how to work with XML documents and JSON files in R.

WORKING WITH CSV FILES IN R 

R provides built-in functions for reading the contents of a CSV file. 
Listing 3.11 shows the content of the CSV file input.csv that is referenced 
in Listing 3.12.

LISTING 3.11: input.csv

id,name,salary,start_date,dept
1,Rick,623.3,2012-01-01,IT 
2,Dan,515.2,2013-09-23,Operations
3,Michelle,611,2014-11-15,IT
4,Ryan,729,2014-05-11,HR
 ,Gary,843.25,2015-03-27,Finance
6,Nina,578,2013-05-21,IT
7,Simon,632.8,2013-07-30,Operations
8,Guru,722.5,2014-06-17,Finance

In Listing 3.11, there are 8 rows of comma-delimited data records, the fifth 
of which is missing an id value.

Listing 3.12 shows the content of readinputcsv1.R that illustrates how to 
read the contents of a CSV file in R.

LISTING 3.12: readinputcsv1.R

# Some European countries use a ";" as the delimiter in .csv files
# Use read.csv2() as above instead of read.csv

data <- read.csv("input.csv")

print(is.data.frame(data))
print(ncol(data))
print(nrow(data))

print(paste0("First Six Rows of CSV file:",paste=" "))
head(data)

print(paste0("Entire CSV file:",paste=" "))
print(data)

Listing 3.12 invokes the built-in R function read.csv()to initialize the 
variable data with the contents of the CSV file input.csv. The next section 
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in Listing 3.12 displays TRUE if the data is a data frame (and FALSE other-
wise), followed by the number of columns and the number of rows in the data. 
Launch the code in Listing 3.12 to see the following output:

[1] TRUE
[1] 5
[1] 8
[1] "First Six Rows of CSV file: "
  id     name salary start_date       dept
1  1     Rick 623.30 2012-01-01         IT
2  2      Dan 515.20 2013-09-23 Operations
3  3 Michelle 611.00 2014-11-15         IT
4  4     Ryan 729.00 2014-05-11         HR
5 NA     Gary 843.25 2015-03-27    Finance
6  6     Nina 578.00 2013-05-21         IT
[1] "Entire CSV file: "
  id     name salary start_date       dept
1  1     Rick 623.30 2012-01-01         IT
2  2      Dan 515.20 2013-09-23 Operations
3  3 Michelle 611.00 2014-11-15         IT
4  4     Ryan 729.00 2014-05-11         HR
5 NA     Gary 843.25 2015-03-27    Finance
6  6     Nina 578.00 2013-05-21         IT
7  7    Simon 632.80 2013-07-30 Operations
8  8     Guru 722.50 2014-06-17    Finance

In addition to support for delimited text files, R supports another common 
data format called XML, which is discussed in the next section.

WORKING WITH XML IN R 

R provides built-in functions for reading the contents of an XML docu-
ment. Listing 3.13 shows the content of readxml.R that illustrates how to read 
the contents of an XML file in R.

LISTING 3.13: readxml.R

#install.packages("XML",repos = "https://cloud.r-project.org")
library(XML)

# Give the input file name to the function:
result <- xmlParse(file = "input.xml")

# Print the result:
print("Contents of XML file:")
print(result)

Listing 3.13 loads the XML library and the methods library, and then ini-
tializes the variable result with the result of parsing the XML file input.
xml. The last code snippet in Listing 3.4 shows the contents of the XML file. 
Launch the code in Listing 3.13 to see the following output:

https://cloud.r-project.org
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<records>
   <employee>
      <id>1</id>
      <name>rick</name>
      <salary>623.3</salary>
      <startdate>1/1/2012</startdate>
      <dept>it</dept>
   </employee>
// details omitted for brevity
   <employee>
      <id>8</id>
      <name>guru</name>
      <salary>722.5</salary>
      <startdate>6/17/2014</startdate>
      <dept>finance</dept>
   </employee>
</records>

Listing 3.14 shows the contents of the XML document input.xml that is 
referenced in Listing 3.13.

LISTING 3.14: input.xml

<records>
   <employee>
      <id>1</id>
      <name>rick</name>
      <salary>623.3</salary>
      <startdate>1/1/2012</startdate>
      <dept>it</dept>
   </employee>

   <employee>
      <id>2</id>
      <name>dan</name>
      <salary>515.2</salary>
      <startdate>9/23/2013</startdate>
      <dept>operations</dept>
   </employee>

   <employee>
      <id>3</id>
      <name>michelle</name>
      <salary>611</salary>
      <startdate>11/15/2014</startdate>
      <dept>it</dept>
   </employee>

   <employee>
      <id>4</id>
      <name>ryan</name>
      <salary>729</salary>
      <startdate>5/11/2014</startdate>
      <dept>hr</dept>
   </employee>
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   <employee>
      <id>5</id>
      <name>gary</name>
      <salary>843.25</salary>
      <startdate>3/27/2015</startdate>
      <dept>finance</dept>
   </employee>

   <employee>
      <id>6</id>
      <name>nina</name>
      <salary>578</salary>
      <startdate>5/21/2013</startdate>
      <dept>it</dept>
   </employee>

   <employee>
      <id>7</id>
      <name>simon</name>
      <salary>632.8</salary>
      <startdate>7/30/2013</startdate>
      <dept>operations</dept>
   </employee>

   <employee>
      <id>8</id>
      <name>guru</name>
      <salary>722.5</salary>
      <startdate>6/17/2014</startdate>
      <dept>finance</dept>
   </employee>
</records>

READING AN XML DOCUMENT INTO AN R DATAFRAME 

The previous section showed you how to read an XML document in R and 
this section shows you how to populate an R data frame with an XML docu-
ment. Listing 3.15 shows the content of readxmltodataframe.R that illus-
trates how to read the contents of an XML file into an R data frame.

LISTING 3.15: readxmltodataframe.R

library(XML)

# Convert the input xml file to a data frame:
xmldataframe <- xmlToDataFrame("input.xml")

print("Contents of XML dataframe:")
print(xmldataframe)

Listing 3.15 loads the XML library and then initializes the variable 
xmldataframe with the result of parsing the XML file input.xml. The 
last code snippet in Listing 3.15 shows the contents of the data frame 
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xmldataframe, which contains the contents of the XML file input.xml. 
Launch the code in Listing 3.15 to see the following output:

[1] "Contents of XML dataframe:"
  id     name salary  startdate       dept
1  1     rick  623.3   1/1/2012         it
2  2      dan  515.2  9/23/2013 operations
3  3 michelle    611 11/15/2014         it
4  4     ryan    729  5/11/2014         hr
5  5     gary 843.25  3/27/2015    finance
6  6     nina    578  5/21/2013         it
7  7    simon  632.8  7/30/2013 operations
8  8     guru  722.5  6/17/2014    finance

WORKING WITH JSON IN R 

Listing 3.16 shows the content of readjson.R that illustrates how to read 
the contents of a JSON file in R.

LISTING 3.16: readjson.R

# Load the package required to read JSON files:
library("rjson")

# Give the input file name to the function:
result <- fromJSON(file = "input.json")

# Print the result: 
print(result)

Listing 3.16 loads the rjson library and then initializes the variable result 
with the result of parsing the JSON file input.json. The last code snippet in 
Listing 3.16 shows the content of result, which contains the contents of the 
JSON file input.json. Launch the code in Listing 3.16 to see the following 
output:

[1] "Contents of JSON file:"
$ID
[1] "1" "2" "3" "4" "5" "6" "7" "8"

$Name
[1] "Rick"     "Dan"      "Michelle" "Ryan"     "Gary"     "Nina"     "Simon"
[8] "Guru"    

$Salary
[1] "623.3"  "515.2"  "611"    "729"    "843.25" "578"    "632.8"  "722.5"

$StartDate
[1] "1/1/2019"   "9/23/2020"  "11/15/2021" "5/11/2021"  "3/27/2020"
[6] "5/21/2020"  "7/30/2020"  "6/17/2021" 

$Dept
[1] "IT"         "Operations" "IT"         "HR"         "Finance"
[6] "IT"         "Operations" "Finance"
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Listing 3.17 shows the content of the JSON file input.json that is refer-
enced in Listing 3.16.

LISTING 3.17: input.json

{ 
   "ID":["1","2","3","4","5","6","7","8" ],
   "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ],
   "Salary":["623.3","515.2","611","729", "843.25","578","632.8","722.5" ],

   "StartDate":[ "1/1/2019","9/23/2020","11/15/2021","5/11/2021","3/27/2020", 
"5/21/2020","7/30/2020","6/17/2021"],
   "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"]
}

In addition to reading the contents of a JSON file, you can create an R data 
frame that contains JSON-based data, as discussed in the next section.

READING A JSON FILE INTO AN R DATAFRAME 

R also provides the ability to read JSON files into R data frames. Listing 
3.18 shows the content of jsontodataframe.R that illustrates how to read 
the contents of a JSON file into an R data frame.

LISTING 3.18: jsontodataframe.R

#install.packages("rjson",repos = "https://cloud.r-project.org")
library(rjson)

# Give the input file name to the function:
result <- fromJSON(file = "input.json")

# Convert JSON file to a data frame:
json_data_frame <- as.data.frame(result)

print(json_data_frame)

Listing 3.18 loads the rjson library and then initializes the variable 
result with the result of parsing the JSON file input.json. Next, the 
variable json_data_frame is populated with the result of converting the 
result variable to an R data frame. The last code snippet in Listing 3.18 
shows the contents of result, which contains the contents of the JSON file 
input.json. Launch the code in Listing 3.18 to see the following output:

  ID     Name Salary  StartDate       Dept
1  1     Rick  623.3   1/1/2019         IT
2  2      Dan  515.2  9/23/2020 Operations
3  3 Michelle    611 11/15/2021         IT
4  4     Ryan    729  5/11/2021         HR
5  5     Gary 843.25  3/27/2020    Finance
6  6     Nina    578  5/21/2020         IT
7  7    Simon  632.8  7/30/2020 Operations
8  8     Guru  722.5  6/17/2021    Finance

https://cloud.r-project.org
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STATISTICAL FUNCTIONS IN R 

One of the strengths of R is the plethora of built-in statistical functions, 
such as mean(), std(), var(), and cov().

Listing 3.19 shows the content of mean-value1.R that illustrates how to 
calculate the mean of a set of numbers in R. 

LISTING 3.19: mean-value1.R

# create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

# find the mean:
result.mean <- mean(x)
print(result.mean)

# create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)

# find the mean:
result.mean <-  mean(x)
print(result.mean)

# drop NA values and find the mean:
result.mean <- mean(x,na.rm = TRUE)
print(result.mean)

# create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

# find the mean:
result.mean <- mean(x,trim = 0.3)
print(result.mean)

# create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

# find the median:
median.result <- median(x)

Listing 3.19 initializes the vector x and then calculates the mean of the 
values in x, the first time without an NA value and the second time with an 
NA value, which requires na.rm. The next portion of Listing 3.19 calcu-
lates the mean value based on a “trimmed” set of numbers in x, followed 
by the median value. Launch the code in Listing 3.19 to see the following 
output:

[1] 8.22
[1] NA
[1] 8.22
[1] 5.55
[1] 5.6
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SUMMARY FUNCTIONS IN R 

This section contains a code sample with other built-in statistical functions 
in R. Listing 3.20 shows the content of summary-values.R that illustrates 
how to calculate the mean, weighted mean, min, max, median, and standard 
deviation of a set of numbers in R. 

LISTING 3.20: summary-values.R

# define a sample of 50 values:
x <- sample(1:200, size = 50, replace = TRUE)
print(paste0("mean(x):  ", mean(x)))
print(paste0("min(x):   ", min(x)))
print(paste0("max(x):   ", max(x)))
print(paste0("median(x):", median(x)))

# make a copy of x:
y <- x

# randomly set 10 values to NA:
y[sample(1:50, size=10, replace=TRUE)] <- NA
print("mean of y with NA values:")
print(mean(y, na.rm=TRUE))

# Calculate a weighted mean:
scores  <- c(250, 100, 80, 360)
weights <- c(1/2, 1/4, 1/8, 1/8)
print("scores:")
print(scores)
print("weights:")
print(weights)

wm <- weighted.mean(x=scores, w=weights)
print(paste0("weighted mean: ",wm))

print(paste0("Variance of x: ",var(x)))
print(paste0("STD of y:", sd(y, na.rm=TRUE)))

Listing 3.20 initializes the vector x via the sample() function that selects 
a set of 50 values with replacements (in this example) from the integers that 
range from 1 to 200. After initializing x, the next code block displays the 
mean(), min(), max(), and median() values of x. 

The next portion of Listing 3.20 initializes y as a copy of x and then random 
replaces 10 of its values with NA, and then calculates the mean of y with those 
NA values.

The final portion of Listing 3.20 initializes the variables scores and weights, 
displays their values, and then computes the weighted mean of scores and 
weights using the R function weighted.mean(). In addition, the variance of 
x and the standard deviation of y are displayed.
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Launch the code in Listing 3.20 to see the following output: 

[1] "mean(x):  100.12"
[1] "min(x):   2"
[1] "max(x):   196"
[1] "median(x):104"
[1] "mean of y with NA values:"
[1] 92.53659
[1] "scores:"
[1] 250 100  80 360
[1] "weights:"
[1] 0.500 0.250 0.125 0.125
[1] "weighted mean: 205"
[1] "Variance of x: 3314.10775510204"
[1] "STD of y:56.4916354697647"

DEFINING A CUSTOM FUNCTION IN R 

A custom function in R is a function that is written by you. Such a func-
tion has the following syntax, where the ellipsis indicates the location of your 
custom R code:

Myfunc <- function(args) { ... }

Listing 3.21 shows the content of CustomFunctions.R that defines a cus-
tom function to double a number and a custom function to square a number 
in R. 

LISTING 3.21: CustomFunctions.R

double <- function(a)
{
   return (2*a)
}

square <- function(a)
{
   return (a*a)
}

print(paste0("3 doubled: ", double(3)))
print(paste0("3 squared: ", square(3)))

Listing 3.21 defines the custom R functions double() and square() that 
double and square a number, respectively. Launch the code in Listing 3.11 to 
see the following output:

[1] "3 doubled: 6"
[1] "3 squared: 9"
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Listing 3.22 shows the content of CustomFunctionsLoop.R that defines 
a custom function to double a number and a custom function to square a num-
ber in R. 

LISTING 3.22: CustomFunctionsLoop.R

b <- 4

# prints squares of numbers in sequence:
new.function <- function(a) 
{ 
   for(i in 1:a) 
   {
      b <- i^2 
      print(b)
   } 
}
new.function(6)

Listing 3.22 initializes the variable b with the value 4 and then defines the 
function new.function that iterates through a range of numbers and displays 
the squares of those numbers. The last code snippet in Listing 3.22 invokes the 
R function new.function() with the value 6, which generates the following 
output:

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36

You can also define functions that are invoked recursively, which is a topic 
that is discussed in the next section.

RECURSION IN R 

Recursion is powerful and elegant, yet it can be difficult to debug recur-
sion-based functions. Some examples of recursion in R that you will see later in 
this chapter involve calculating factorial values and Fibonacci numbers.

Sometimes it’s easier to define a recursive algorithm to solve a task than to 
do so with a non-recursive function. However, recursive functions have a non-
recursive “counterpart.” It can sometimes be extremely difficult to define the 
non-recursive function that performs the same functionality as the recursive 
function.

The following example includes a recursive function as well as a non-recur-
sive function for calculating factorial values. (It’s much simpler to calculate 
Fibonacci values using a recursive function.)
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CALCULATING FACTORIAL VALUES IN R (NON-RECURSIVE)

Listing 3.23 shows the content of Factorial1.R that illustrates how to 
calculate factorial values without recursion in R.

LISTING 3.23: Factorial1.R

# factorial:  fact(n) = n!
num = 5
factorial = 1

# check is the number is negative, positive or zero
if(num < 0) {
    print("Sorry, factorial does not exist for negative numbers")
} else if(num == 0) {
    print("The factorial of 0 is 1")
} else {
    for(i in 1:num) {
        factorial = factorial * i
    }
    print(paste("The factorial of", num ,"is",factorial))
}

Listing 3.23 starts by prompting for a number and then initializing the vari-
able factorial with the value 1. Some error checking is performed on the input 
value, and if the input is an integer greater than 1, a for loop is executed that 
iteratively multiplies the variable factorial with the numbers from 1 to num 
(i.e., the input number). Launch the code in Listing 3.23 to see the following 
output:

[1] "The factorial of 5 is 120"

CALCULATING FACTORIAL VALUES IN R (RECURSIVE)

Listing 3.24 shows the content of Factorial2.R that illustrates how to 
work with recursion to compute the factorial value of a positive integer in R.

LISTING 3.24: Factorial2.R

# factorial:  fact(n) = n*fact(n-1)

recur_factorial <- function(n) {
    if(n <= 1) {
        return(1)
    } else {
        return(n * recur_factorial(n-1))
    }
}

recur_factorial(5)
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Listing 3.24 defines the recursive function recur_factorial() that 
implements the formula for factorial values that is displayed in the initial 
comment in Listing 3.24. The final code snippet in Listing 3.24 invokes the 
recur_factorial() function with the number 5, after which the factorial 
value of 5 is displayed. Launch the code in Listing 3.24 to see the following 
output:

[1] 120

CALCULATING FIBONACCI NUMBERS IN R (NON-RECURSIVE)

Listing 3.25 shows the content of Fibonacci1.R that illustrates how to 
calculate Fibonacci numbers without recursion in R.

LISTING 3.25: Fibonacci1.R

# Fibonacci:  F(n) = F(n-1) + F(n-2)
nterms = 20

# first two terms
n1 = 0
n2 = 1
count = 2

# check if the number of terms is valid
if(nterms <= 0) {
    print("Please enter a positive integer")
} else {
    if(nterms == 1) {
        print("Fibonacci sequence:")
        print(n1)
    } else {
        print("Fibonacci sequence:")
        print(n1)
        print(n2)

        while(count < nterms) {
            nth = n1 + n2
            print(nth)
            # update values
            n1 = n2
            n2 = nth
            count = count + 1
        }
    }
}

Listing 3.25 initializes terms as 20, which equals the number of Fibonacci 
numbers that will be calculated, as well as the two “start” values for the 
Fibonacci sequence. By convention, these values are 0 and 1.

The next portion of Listing 3.25 contains conditional logic and since 
nterms is greater than 1, the innermost else block is executed. This code block 
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contains a while loop that iteratively computes the third through twentieth 
Fibonacci values. Launch the code in Listing 3.25 to see the following output:

[1] "Fibonacci sequence:"
[1] 0
[1] 1
[1] 1
[1] 2
[1] 3
[1] 5
[1] 8
[1] 13
[1] 21
[1] 34
[1] 55
[1] 89
[1] 144
[1] 233
[1] 377
[1] 610
[1] 987
[1] 1597
[1] 2584
[1] 4181

CALCULATING FIBONACCI NUMBERS IN R (RECURSIVE)

Listing 3.26 shows the content of Fibonacci2.R that illustrates how to 
calculate Fibonacci numbers with recursion in R. 

LISTING 3.26: Fibonacci2.R

# Fibonacci:  F(n) = F(n-1) + F(n-2)
recurse_fibonacci <- function(n) {
    if(n <= 1) {
        return(n)
    } else {
        return(recurse_fibonacci(n-1) + recurse_fibonacci(n-2))
    }
}

# take input from the user
nterms = as.integer(readline(prompt="How many terms? "))

# check if the number of terms is valid
if(nterms <= 0) {
    print("Plese enter a positive integer")
} else {
    print("Fibonacci sequence:")
    for(i in 0:(nterms-1)) {
        print(recurse_fibonacci(i))
    }
}
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Listing 3.26 defines the recursive function recurse_fibonacci() that 
uses recursion to calculate Fibonacci numbers. The recursion occurs in the else 
block of code, which involves a for loop that invokes the recurse_fibonacci() 
function. Launch the code in Listing 3.26 to see the following output:

[1] "Fibonacci sequence:"
[1] 0
[1] 1
[1] 1
[1] 2
[1] 3
[1] 5
[1] 8
[1] 13
[1] 21
[1] 34
[1] 55
[1] 89
[1] 144
[1] 233
[1] 377
[1] 610
[1] 987
[1] 1597
[1] 2584
[1] 4181

CONVERT A DECIMAL INTEGER TO A BINARY INTEGER IN R 

Listing 3.27 shows the content of converttobinary.R that illustrates 
how to convert an integer to a binary number in R.

LISTING 3.27: converttobinary.R

# Convert decimal num into binary num via recursive function

convert_to_binary <- function(n) {
    if(n > 1) {
        convert_to_binary(as.integer(n/2))
    }
    cat(n %% 2)
}

print(paste0("52 in binary:"))
convert_to_binary(52)
cat("\n")

Listing 3.27 defines the function convert_to_binary() that uses recur-
sion to generate the binary string for a decimal number. Given an initial value 
n, this function invokes itself with n/2 as long as n is greater than 1: when it 
does equal 1, the value n %% 2 is displayed, which equals n modulo 2 (i.e., 
either 0 or 1). 
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As the recursive sequence of invocations “unwinds,” the value n %% 2 is 
repeatedly displayed with a different value of n, which generates the binary 
representation of the initial value of n. Launch the code in Listing 3.27 to see 
the following output:

[1] "52 in binary:"
110100

CALCULATING THE GCD OF TWO INTEGERS IN R 

Listing 3.28 shows the content of GCD.R that illustrates how to work use 
recursion to find the GCD (greatest common divisor) of two positive integers 
in R.

LISTING 3.28: GCD.R

# find the GCD of two input numbers
gcd <- function(x, y) {
    # choose the smaller number
    if(x > y) {
        smaller = y
    } else {
        smaller = x
    }
    for(i in 1:smaller) {
        if((x %% i == 0) && (y %% i == 0)) {
            gcd = i
        }
    }
    return(gcd)
}

# take input from the user
num1 = 10
num2 = 24

print(paste("The G.C.D. of", num1,"and", num2,"is", gcd(num1, num2)))

Listing 3.28 defines the function gcd() that calculates the GCD of two 
positive integers. The first step initializes the variable smaller with the 
smaller of x and y. The second step involves a loop that iterates from 1 to 
smaller and updates the value of gcd with the loop variable i whenever x and 
y are divisible by i. When the loop is completed, the variable gcd contains the 
GCD of x and y.

The next portion of Listing 3.28 initializes num1 and num2 and invokes the 
function gcd() with these two variables, after which the GCD of these two 
variables is displayed. Launch the code in Listing 3.28 to see the following 
output:

[1] "The G.C.D. of 10 and 24 is 2"
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CALCULATING THE LCM OF TWO INTEGERS IN R 

Listing 3.29 shows the content of LCM.R that illustrates how to calculate the 
LCM (lowest common multiple) of two positive integers in R.

LISTING 3.29: LCM.R

#  find the GCD of two input numbers
gcd <- function(x, y) {
    gcd1 <- 1
    # choose the smaller number
    if(x > y) {
        smaller = y
    } else {
        smaller = x
    }
    for(i in 1:smaller) {
        if((x %% i == 0) && (y %% i == 0)) {
            gcd1 = i
        }
    }

    return(gcd1)
}

# the LCM involves a simple operation:
lcm <- function(x,y) {
    return((x * y)/gcd(x,y))
}

x = 10 
y = 24

print(paste("The L.C.M. of", x,"and", y,"is", lcm(x, y)))

Listing 3.29 defines the custom R function gcd(x,y) shown in an ear-
lier example, followed by a code snippet that calculates the LCM of two posi-
tive integers. The final portion of Listing 3.29 calculates the LCM of x and y. 
Launch the code in Listing 3.29 to see the following output:

[1] "The L.C.M. of 10 and 24 is 120"

SUMMARY

This chapter introduced you to built-in functions in R, with examples of 
some of the more useful functions that you will probably use in your code. 
Next, you learned how to define your own functions in R so that you can per-
form custom tasks for which there aren’t any convenient built-in R functions.

You learned about recursion in R, and how to define recursive functions 
to calculate various quantities, such as the factorial value of a positive integer, 
Fibonacci numbers, the GCD of two positive integers, and the LCM of two 
positive integers.



CHAPTER 4
NLP CONCEPTS (I)

This chapter introduces you to NLP, starting with a high-level introduc-
tion to some major language groups and the substantive grammatical 
differences among the languages. You will learn some basic concepts in 

NLP, such as text normalization, stop words, stemming, and lemmatization (the 
dictionary form of words), POS (parts of speech) tagging, and NER (named 
entity recognition). This chapter contains a highly eclectic mix of topics.  

While some NLP algorithms are mentioned in this chapter, the relevant 
code samples are provided in Chapter 6. Depending on your NLP background, 
you might decide to read the sections in a non-sequential fashion. If your goal 
is to proceed quickly to the code samples, you can skip some sections in this 
chapter and later return to read those omitted sections.

The first part of the chapter introduces you to NLP and a brief history of 
the major stages of NLP. You will also learn about NLP applications, use cases, 
NLU, and NLG. Then you will learn about word sense disambiguation. This 
section only provides a very brief description of these topics, some of which 
can fill entire books and full-length courses.

The second part of this chapter discusses various NLP techniques and the 
major steps in an NLP-related process. You will also learn about standard NLP-
related tasks, such as text normalization, tokenization, stemming, lemmatiza-
tion, and the removal of stop words. As you will see, some of these tasks (e.g., 
tokenization) involve implicit assumptions that are not true for all languages.

The final section introduces NER (Named Entity Recognition) and topic 
modeling, which pertains to finding the main topic(s) in a text document.

The next section starts with an introduction to NLP, followed by various 
NLP-related concepts.
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WHAT IS NLP?

Natural Language Processing (NLP) is an important branch of AI that per-
tains to processing human languages with machines. You are surrounded by 
NLP through voice assistants, search engines, and machine translation services 
whose purpose is to simplify your tasks and aspects of your daily life.

NLP faces a variety of challenges, such as determining the context of words 
and their many meanings in different sentences in a document or corpus. 
Other challenging tasks include identifying emotions (such as irony and sar-
casm), statements with multiple meanings, and sentences with contradictory 
statements.

Facebook has created an impressive model for language translation, called 
the M2M model, which was trained on more than 2,000 languages and pro-
vides translation between any pair of 100 languages.

In high level terms, there are three main approaches to solving NLP tasks: 
rule-based (oldest), traditional machine learning, and neural networks (most 
recent). Rule-based approaches, which can utilize regular expressions, work 
well on various NLP tasks. Traditional machine learning for NLP tasks (which 
includes various types of classifiers) involves training a model on a training set 
and then making inferences on a test set of data. This approach is still useful 
for handling NLP tasks such as sequence labeling.

By contrast, neural networks take word embeddings (vector-based repre-
sentations of words) as input and are then trained using backward error propa-
gation. Examples of neural network architectures include CNNs, RNNs, and 
LSTMs. Moreover, there has been significant research in combining deep 
learning with NLP, which has resulted in state of the art (SOTA) results. 

In particular, the transformer architecture (which relies on the concept of 
attention) has eclipsed earlier neural network architectures. In fact, the trans-
former architecture is the basis for BERT, which is a pre-trained NLP model 
with 1.5 billion parameters, along with numerous other pre-trained models 
that are based (directly or indirectly) on BERT. Chapter 7 introduces the 
transformer architecture and BERT-related models.

Regardless of the methodology, NLP algorithms involve samples in the 
form of documents or collections of documents containing text. A corpus can 
vary in size, and can be domain specific and/or language specific. In some 
cases, such as GPT-3 (discussed in Chapter 7), models are trained on a corpus 
of 500 gigabytes of text.

As a historical aside, the Brown University Standard Corpus of Present-
Day American English, also called Brown Corpus, was created during the 
1960s for linguistics. This corpus contains 500 samples of English-language 
text, with a total of approximately 1,000,000 words. More information about 
this corpus is here:

https://en.wikipedia.org/wiki/Brown_Corpus
As a concrete example of NLP, consider the task of determining the main 

topics in a document. While this task is straightforward for a text document 

https://en.wikipedia.org/wiki/Brown_Corpus
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consisting of a few pages, finding the main topics of a hundred documents, 
each of which might contain several hundred pages, is impractical to complete 
via a manual process (and if you gave this work to multiple people, you would 
have to pay them).

Fortunately, there is an NLP technique called topic modeling that performs 
the task of analyzing documents and determining the main topics in those doc-
uments. This type of document analysis can be performed in a variety of situ-
ations that involve large amounts of text. Keep in mind that NLP can help you 
analyze documents that contain structured data as well as unstructured data 
(or a combination of both types of data).

The Evolution of NLP

NLP has undergone many changes since the mid-twentieth century, the 
earliest of which might seem primitive when you compare them with mod-
ern NLP. Several major stages of NLP are listed below, starting from 1950 
up until 2020 or so, that highlight the techniques that were commonly used 
in NLP.

•	1950s-1980s: rule-based systems
•	1990s-2000s: corpus-based statistics 
•	2000s-2014: machine learning 
•	2014-2020: deep learning

Early NLP (1950s-1990s) focused primarily on rule-based systems, which 
means that those techniques used a lot of conditional logic. When you con-
sider the structure of a sentence in English, it’s often of the form subject-verb-
object. However, a sentence can have one or more subordinate clauses, each of 
which can involve multiple nouns, prepositions, adjectives, and adverbs. 

Even more complex is maintaining a reference between two sentences, 
such as the following: “Yesterday was a hot day and many people were uncom-
fortable. I wonder what that means for the coming days.”

Although you can infer the meaning of the word “that” in the second sen-
tence, the correct interpretation is difficult using rule-based methods. This 
era of NLP did perform some statistical analyses of sentences to predict which 
words were more likely to follow a given word. 

The next phase of NLP (1990s-2000s) shifted away from a rule-based 
analysis toward a primarily statistical analysis of collections of documents. 
The third phase involved machine learning for NLP, which embraced algo-
rithms, such as decision trees, and structures, such as Markov chains. Once 
again, an important task involved predicting the next word in a sequence of 
words.

The most recent phase of NLP is the past decade and the combination of 
neural networks with NLP. In fact, 2012 was a significant turning point involv-
ing Convolutional Neural Networks (CNNs) that achieved a breakthrough in 
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terms of accuracy specifically for classifying images. Researchers then learned 
how use CNNs in order to analyze audio waves and perform NLP tasks. 

The use of CNNs for NLP then evolved into the use of Recurrent Neural 
Networks (RNNs) and Long Short Term Memory (LSTM), which are two 
architectures that belong to deep learning, for even better accuracy. 

These architectures have been superseded by the Transformer architec-
ture (also considered a part of deep learning) that was developed by Google 
toward the end of 2017. Transformer-based architectures (there are many of 
them) have achieved state-of-the-art performance that surpass all the previous 
attempts in the NLP arena.

A WIDE-ANGLE VIEW OF NLP

This section contains aspects of NLP, as well as many NLP applications and 
use cases, which are summarized in this list:

•	NLP applications
•	NLP use cases
•	NLU (Natural Language Understanding)
•	NLP (Natural Language Generation)
•	Text Summarization
•	Text Classification

The following subsections provide additional information for each topic in 
the preceding list.

NLP Applications and Use Cases

There are many useful and well-known applications that rely on NLP, some 
of which are listed here:

•	Chatbots
•	Search (text and audio) 
•	Advertisement 
•	Automated translation 
•	Sentiment analysis 
•	Document classification
•	Speech recognition 
•	Customer support

In particular, chatbots are receiving a great deal of attention because of their 
increasing ability to perform tasks that previously required human interaction.

Sentiment analysis is a subset of text summarization that attempts to deter-
mine the attitude or emotional reaction of a speaker toward a particular topic 
(or in general). Possible sentiments are positive, neutral, and negative, which 
are typically represented by the numbers 1, 0, and -1, respectively.
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Document classification is a generalization of sentiment analysis and typi-
cally involves more than three possible flags per article:

https://towardsdatascience.com/natural-language-processing-pipeline-
decoded-f97a4da5dbb7 

In addition to the preceding list of sample applications, there are many use 
cases for NLP, some of which are listed below:

•	Question Answering
•	Filter email messages
•	Detect fake news
•	Improve clinical documentation
•	Automatic Text Summarization
•	Sentiment Analysis and Semantics 
•	Machine Translation and Generation
•	Personalized marketing

Some of the use cases in the preceding list (such as sentiment analysis) are 
discussed in later chapters.

NLU and NLG

NLU is an acronym for Natural Language Understanding, and although 
you might not find many books or articles about this topic, it’s a very sig-
nificant subset of NLP. In high-level terms, NLU attempts to understand 
human language to determining the context of a text string or document. 
NLU addresses various NLP tasks, such as sentiment analysis and topic 
classification. 

Another extremely important NLU task is called relation extraction, which 
is the task of extracting semantic relations that may exist in a text string. 
Moreover, the sources of input text can be from chatbots, documents, blog 
posts, and so forth. As a simple example, consider this block of text and notice 
the different meanings of the pronouns “he” and “them:”

“John lived in France and he attended an international school. Mary lived in 
Germany and she also attended an international school. Dave lived in London 
and met both of them in Paris. One of these days, when he has some free time, 
they will meet up again. Steve met all of them on New Year’s Eve.”

Although the preceding paragraph is easy for humans to understand, it 
poses some challenges for NLU, such as determining the correct answers to 
the following questions:

1.	 Who does the first occurrence of “he” refer to?
2.	 Who does the second occurrence of “he” refer to? Is it ambiguous?
3.	 Who does the first occurrence of “them” refer to?
4.	 Who does the second occurrence of “them” refer to? Is it ambiguous?

https://towardsdatascience.com/natural-language-processing-pipeline-decoded-f97a4da5dbb7
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One of the challenges of human language involves the correct interpreta-
tion of words that are used ambiguously in a sentence, and such ambiguity can 
be classified into several types. For example, lexical ambiguity occurs when a 
word has multiple meanings, which can change the meaning of a sentence that 
contains that word. One approach to handling this type of ambiguity involves 
POS (Parts Of Speech) techniques, which is illustrated in the chapter with 
NLTK content.

Another type of ambiguity is syntactical ambiguity, also called grammatical 
ambiguity, which occurs when a sequence of words (instead of a single word) 
has multiple meanings.

Yet another type of ambiguity is referential ambiguity, which can occur 
when a noun in one location is referenced elsewhere via a pronoun, and the 
reference is not completely clear.	

In addition to NLU, another very important subset of NLP is Natural 
Language Generation (NLG), which is the process of producing meaningful 
phrases and sentences in the form of natural language from some internal 
representation. One impressive example of NLG is the ability of GPT-3 (dis-
cussed in Chapter 7) to generate meaningful responses to a wide variety of 
questions.

NLP can be used to analyze speech (not discussed in this book), words, and 
the structure of sentences. As such, we need to become acquainted with text 
classification, which is the topic of the next section.

What is Text Classification?

Text classification is a supervised approach for determining the category or 
class of a text-based corpus, which can be in the form of a blog post, the con-
tents of a book, the contents of a web page, and so forth. The possible classes 
are known in advance, and they do not change; the classes are often (but not 
always) mutually-exclusive.

Text classification involves examining text to determine the nature of its 
content, such as

•	topic labeling (the major topics of a document)
•	the sentiment of the text (positive or negative)
•	the human language of the text
•	categorizing products on websites
•	whether it’s spam

However, most text-based data is unstructured, which complicates the task 
of analyzing text-based documents. From a business perspective, machine 
learning text classification algorithms are valuable when they structure and 
analyze text in a cost-effective manner, thereby expediting business processes 
and decision-making processes.

Text classification is important for customer service, which can involve rout-
ing customer requests based on the (human) language of the text, determining 
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if it’s a request for assistance (products or services), or detecting issues with 
products.

Note that some older text classification algorithms are based on the Bag of 
Words (BoW) that only determines word frequency in documents. The BoW 
algorithm is explained in Chapter 5, and there are code samples for the BoW 
algorithm in Chapter 6.

One more thing: text summarization is related to text classification (but not 
discussed in this book).

INFORMATION EXTRACTION AND RETRIEVAL

The purpose of information extraction is to automatically extract structured 
information from one or more sources, which could contain unstructured data 
in documents. For example, an article might provide the details of an IPO of 
a successful start-up, or the acquisition of one company by another company. 
Information extraction would involve generating a summary sentence from the 
contents of the article. In a larger context, information extraction is related to 
topic modeling (i.e., finding the main topics in a document), which is discussed 
toward the end of this chapter.

Information extraction also requires information retrieval, where the latter 
involves methods for indexing and classifying large documents. Information 
extraction involves various subtasks, such as identifying named entities (i.e., 
nouns for people, places, and companies), automatically populating a template 
with information from an article, or extracting data from tables in a document.

As a simple example, suppose that a program regularly scrapes (retrieves) 
the contents of HTML pages to summarize their contents. One of the first tasks 
that must be performed is data cleaning, which in this case involves removing 
HTML tags, removing punctuation, converting text to lower case, and then 
splitting sentences into tokens (words). Fortunately, the BeautifulSoup Python 
library is well suited for the preceding tasks.

Another area of great interest in NLP is the proliferation of chatbots, which 
interact with users to provide information (such as the directions or hours of 
operation) or perform specific tasks (such as make reservations, book hotels, 
or car rentals). 

WORD SENSE DISAMBIGUATION

Up until several years ago, word sense disambiguation was an elusively 
difficult task because words can be overloaded (i.e., possess multiple mean-
ings). A well-known NYT article describes one humorous misinterpretation in 
machine learning. The following sentence was translated into Russian and then 
translated from Russian into English:

The spirit is willing, but the flesh is weak.
The result of the second translation is here:
The vodka is good, but the meat is rotten.
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Here is the link to the NYT article:
https://www.nytimes.com/1983/04/28/business/technology-the-computer-

as-translator.html
As another simple example of an overloaded word, consider the following 

four sentences:

You can bank on that result.
You can take that to the bank. 
You see that river bank?
Bank the car to the left.

In the preceding four sentences, the word “bank” has four meanings. The 
task of determining the meaning of a word requires some type of context. In 
the not too distant past, the state of word sense disambiguation resulted in a 
precipitous drop in enthusiasm vis-a-vis machine learning. However, the situ-
ation has dramatically improved during the past several years. For example, in 
2018, Microsoft developed a system for translating from Chinese to English; 
the system had an accuracy that was comparable to humans.

NLP TECHNIQUES IN ML

Earlier, you briefly learned about NLU (Natural Language Understanding) 
and NLG (Natural Language Generation). The purpose of NLU is to “under-
stand” a section of text, and then use NLG to generate a suitable response (or 
find a suitable response from a repository). This type of task is also related to 
Question Answering and Knowledge Extraction.

Since there are many types of NLP tasks, there are also many NLP tech-
niques that have been developed, some of which are listed below:

•	text embeddings
•	text summarization
•	text classification
•	sentence segmentation
•	POS (part-of-speech tagging) 
•	NER (Named entity recognition)
•	word sense disambiguation 
•	text categorization
•	topic modeling
•	text similarity
•	syntax and parsing
•	language modeling
•	dialogs
•	probabilistic parsing 
•	clustering

A subset of the items in the preceding list is discussed in this chapter, and in 
some cases, there are associated Python code samples in Chapter 6.

https://www.nytimes.com/1983/04/28/business/technology-the-computer-as-translator.html
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NLP Steps for Training a Model

Although the specific set of text-related tasks depends on the specific task 
that you’re trying to complete, the following set of steps is common:

[1]  convert words to lowercase
[1]  noise removal
[2]  normalization
[3]  text enrichment 
[3]  stopword removal 
[3]  stemming
[3]  lemmatization

The number in brackets in the preceding bullet list indicates the type of 
task. Specifically, the values [1], [2], and [3] indicate “must do,” “should do,” 
and “task dependent,” respectively.

TEXT NORMALIZATION AND TOKENIZATION

Text normalization involves several tasks, such as the removal of 
unwanted hash tags, emojis, URLs, special characters such as “&,” “!,” and 
“$.” However, you might need to make decisions regarding some punctua-
tion marks.

First, what about the period (.) punctuation mark? If you retain every 
period in a dataset, consider whether to treat this character as a token during 
the tokenization step. However, if you remove every period from a dataset, 
this will also remove every ellipsis (three consecutive periods), and also the 
period from the strings “Mr.,” “U.S.A.,” and “P.O.” If the dataset is small, 
perform a visual inspection of the dataset, and if the dataset is very large, 
try inspecting several smaller and randomly selected subsets of the original 
dataset.

Second, although you might think it’s a good idea to remove question marks 
(?), the opposite is true: in general, question marks enable you to identify ques-
tions (as opposed to statements) in a corpus.

Third, you also need to determine whether to remove numbers, which can 
convey quantity when they are separate tokens (“1,000 barrels of oil”) or they 
can be data entry errors when they are embedded in alphabetic strings. For 
example, it’s acceptable to remove the 99 from the string “large99 oranges,” 
but what about the 99 in “99large oranges?”

Another standard normalization task involves converting all words to lower-
case (case folding). Chinese characters do not have uppercase text, so convert-
ing text to lowercase is unnecessary. Text normalization is entirely unrelated to 
normalizing database tables in an RDBMS, or normalizing (scaling) numeric 
data in machine learning tasks. The task of converting categorical (character) 
data into a numeric counterpart.
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Although converting letters to lowercase (aka case folding) is a straight-
forward task, this step can be problematic. For instance, accents are 
optional for uppercase French words, and after case folding some words 
do require an accent. A simple example is the French word peche, which 
means fish or peach with one accent mark, and sin with a different accent 
mark. The Italian counterparts are pesce, pesca, and peccato, respectively, 
and there is no issue regarding accents marks. Incidentally, the plural of 
pesce is pesci (so Joe Pesci is Joe Fish or Joe Fishes, depending on whether 
you are referring to one type of fish or multiple types of fish). To a lesser 
extent, converting English words from uppercase to lowercase can cause 
issues: is the word “stone” from the noun “stone” or from the surname 
“Stone?”

After normalizing a dataset, tokenization involves “splitting” a sentence, 
paragraph, or document into its individual words (tokens). The complexity of 
this task can vary significantly between languages, depending on the nature 
of the alphabet of a specific language. In particular, tokenization is straight-
forward for Indo-European languages because those languages use a space 
character to separate words. 

However, even though tokenization can be straightforward when work-
ing with regular text, the process can be more challenging when working with 
biomedical data that contains acronyms and a higher frequency use of punc-
tuation. One NLP technique for handling acronyms is NER (Named Entity 
Recognition), which is discussed later in this chapter.

Word Tokenization in Japanese

Unlike most languages, the use of a space character in Japanese text is 
optional. Unlike virtually all other languages, Japanese supports multiple alpha-
bets, and sentences often contain a mixture of these alphabets. Specifically, 
Japanese supports Romanji (essentially the English alphabet), Hiragana, 
Katakana (used exclusively for words imported to Japanese from other lan-
guages), and Kanji characters. 

As a simple example, navigate to Google translate in your browser and 
enter the following Romanji sentence, written without white spaces, which 
means “I gave a book to my friend” in English:

watashiwatomodachinihonoagemashita

The partially correct translation is the following text in Hiragana:

わたしはこれだけのほげあげました

Now enter the same Romanji sentence, but this time with spaces between 
each word, as shown here:

watashi wa tomodachi ni hon o agemashita
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Now Google translate produces the following correct translation in 
Hiragana:

私はともだちに本をあげました

Notice that the preceding sentence also contains Kanji characters, starting 
with the Kanji character 私 for “watashi” (I) and the Kanji character 本 for 
“hon” (book).

Mandarin and Cantonese are two more languages that involves compli-
cated tokenization. Both of these languages are tonal, and they use pictographs 
instead of alphabets. An alternative to Mandarin is Pinyin, which is the romani-
zation of the sounds in Mandarin. Interestingly, Mandarin has 6 tones, but only 
4 of those tones are commonly used, whereas Cantonese has 9 tones (with no 
counterpart to Pinyin).

As a simple example, the following sentences are in Mandarin and in 
Pinyin, respectively, and their translation into English is “How many children 
do you have”:

你有几个孩子
Nǐ yǒu jǐ gè háizi
Ni3 you3 ji3ge4 hai2zi (digits instead of tone marks)

The second and third sentences above are both Pinyin. The third sentence 
contains the numbers 2, 3, and 4 that correspond to the second, third, and 
fourth tones, respectively, in Mandarin. The third sentence is used in situa-
tions where the tonal characters are not supported (such as in older brows-
ers). Navigate to Google Translate and type the following words for the source 
language:

ni you jige haizi

Select Mandarin for the target language and you will see the following 
translation:

how many kids do you have

The preceding translation is quite impressive, when you consider that 
the tones were omitted: different tones can significantly change the mean-
ing of words. If you are skeptical, look at the translation of the string “ma” 
when it’s written with the first tone, then the second tone, and again with the 
third tone and the fourth tone: the meanings of these four words are entirely 
unrelated.

Tokenization can be performed via regular expressions (which are dis-
cussed in one of the appendices) and rule-based tokenization. However, rule-
based tokenizers are not well-equipped to handle rare words or compound 
words that are very common in languages such as German. In Chapter 6, you 
will see code samples involving the NLTK tokenizer and the SpaCY tokenizer 
for tokening one or more English sentences.  
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Text Tokenization with Unix Commands

Text tokenization can be performed not only in Python but also from the 
Unix command line. For example, consider the text file words.txt whose 
contents are shown here:

lemmatization: removing word endings edit distance: measure the distance 
between two words based on the number of changes needed based on the 
inner product of 2 vectors a metric for determining word similarity

The following command illustrates how to tokenize the preceding para-
graph using several Unix commands that are connected via the Unix pipe (“|”) 
symbol:

tr -sc ‘A-Za-z’ ‘\n’ < words.txt | sort | uniq

The output from the preceding command is shown below:

1a
2 based
1 between
1 changes
1 determining
2 distance
1 edit
1 endings
1for
1 inner
1 lemmatization
. . . .

As you can see, the preceding output is an alphabetical listing of the tokens 
of the contents of the text file words.txt, along with the frequency of each 
token.

HANDLING STOP WORDS

Stop words are words that are considered unimportant in a sentence. 
Although the omission of such words would result in grammatically incor-
rect sentences, the meaning of such sentences would most likely still be 
recognizable. 

In English, stop words include the words “a,” “an,” and “the,” along with 
common words and prepositions (“inside,” “outside,” and so forth). Stop words 
are usually filtered from search queries because they would return a vast 
amount of unnecessary information. As you will see later, Python libraries such 
as NLTK provide a list of built-in stop words, and you can supplement that list 
of words with your own list. 
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Removing stop words works fine with BoW and tf-idf, both of which are dis-
cussed in the next chapter. A more detailed explanation (and an example) is here:

https://towardsdatascience.com/why-you-should-avoid-removing-stop-
words-aa7a353d2a52 

A universal list of stop words does not exist, and different toolkits (such 
as NLTK and gensim) have different sets of stop words. The Sklearn library 
provides a list of stop words that consists of basic words (“and,” “the,” and 
“her”). However, a list of stop words for the text in a marketing-related web-
site is probably different from such a list for a technical web site. Fortunately, 
Sklearn enables you to specify a custom list of stop words via the hyperparam-
eter stop_words. 

Finally, the following link contains a list of stop words for an impressive 
number of languages:

https://github.com/Alir3z4/stop-words

WHAT IS STEMMING?

Stemming refers to reducing words to their root or base unit, which involves 
truncating word suffixes. A stemmer operates on individual words without any 
context for those words. For example, “fast” is the stem for the words fast, 
faster, and fastest. Stemming algorithms are typically rule-based and involve 
conditional logic. In general, stemming is simpler than lemmatization (dis-
cussed later), and it’s a special case of normalization.

Singular vs. Plural Word Endings

The manner in which the plural of a word is formed varies among lan-
guages. In many cases, the letter “s” “or es” is the plural form of words in 
English. In some cases, English words have a singular form that ends in s/us/x 
(basis/, abacus, and box, respectively), as well as irregular plural forms, such 
as “cactus/cacti” and “appendix/appendices”. German can form the plural of a 
noun with “er” and “en,” such as “buch/bucher” and “frau/frauen”.

Common Stemmers

The following list contains several commonly used stemmers in NLP:

•	Porter stemmer (English)
•	Lancaster stemmer
•	SnowballStemmers (more than 10 languages) 
•	ISRIStemmer (Arabic)
•	RSLPSStemmer (Portuguese)

The Porter stemmer was developed in the 1980s, and while it’s good in a 
research environment, it’s not recommended for production. The Snowball 
stemmer is based on the Porter2 stemming algorithm, and it’s an improved 
version of Porter (about 5% better).

https://towardsdatascience.com/why-you-should-avoid-removing-stopwords-aa7a353d2a52
https://github.com/Alir3z4/stop-words
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The Lancaster stemmer is a good stemming algorithm, and you can even 
add custom rules to the Lancaster stemmer in NLTK (but results can be odd). 
The other stemmers in the preceding list support non-English languages.

As a simple example, the following code snippet illustrates how to define 
two stemmers using the NLTK library:

import nltk
from nltk.stem import PorterStemmer, SnowballStemmer

porter = PorterStemmer()
porter.stem("Corriendo")

snowball = SnowballStemmer("spanish", ignore_stopwords=True) 
snowball.stem("Corriendo")

Notice that the second stemmer defined in the preceding code block also 
ignores the stop words.

Stemmers and Word Prefixes

Word prefixes can pose interesting challenges. For example, the prefix “un” 
often means “not” (such as the word unknown), but not in the case of “univer-
sity.” One approach for handling this type of situation involves creating a word 
list and after removing a prefix, check if the remaining word is in the list: if not, 
then the prefix in the original word is not a negative. Among the few (only?) 
stemmers that provides prefix stemming in NLTK are Arabic stemmers:

•	https://github.com/nltk/nltk/blob/develop/nltk/stem/arlstem.py#L115
•	https://github.com/nltk/nltk/blob/develop/nltk/stem/snowball.py#L372

However, it’s possible to write custom Python code to remove prefixes. 
First, navigate to this URL to see a list of prefixes in the English language:

•	https://dictionary.cambridge.org/grammar/british-grammar/word-for-
mation/prefixes

•	https://stackoverflow.com/questions/62035756/how-to-find-the-prefix-of-
a-word-for-nlp

A Python code sample that implements a basic prefix finder is here:
https://stackoverflow.com/questions/52140526/python-nltk-stemmers- 

never-remove-prefixes

Over Stemming and Under Stemming

Over stemming occurs when too much of a word is truncated, which can 
result in unrelated words having the same stem. For example, consider the fol-
lowing sequence of words:

university, universities, universal, universe 

https://github.com/nltk/nltk/blob/develop/nltk/stem/arlstem.py#L115
https://github.com/nltk/nltk/blob/develop/nltk/stem/snowball.py#L372
https://dictionary.cambridge.org/grammar/british-grammar/word-formation/prefixes
https://stackoverflow.com/questions/62035756/how-to-find-the-prefix-of-a-word-for-nlp
https://stackoverflow.com/questions/52140526/python-nltk-stemmers-never-remove-prefixes
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The stem for the four preceding words is “univers,” even though these 
words have different meanings.

Under stemming is the opposite of over stemming: this happens when a 
word is insufficiently “trimmed.” For example, the words “data” and “datu” 
both have the stem “dat,” but what about the word “date?” This simple exam-
ple illustrates that it’s difficult to create good stemming algorithms.

WHAT IS LEMMATIZATION?

Lemmatization determines whether words have the same root, which 
involves the removal of inflectional endings of words. Lemmatization involves 
the WordNet database during the process of finding the root word of each 
word in a corpus.

Lemmatization finds the base form of a word, such as the base word “good” 
for the three words “good,” “better,” and “best.” Lemmatization determines 
the dictionary form of words and therefore requires knowledge of parts of 
speech. In general, creating a lemmatizer is more difficult than a heuristic 
stemmer. The NLTK lemmatizer is based on the WordNet database.

Lemmatization is also relevant for verb tenses. For instance, the words 
“run,” “runs,” “running,” and “ran” are variants of the verb run. Another exam-
ple of lemmatization involves irregular verbs, such as “to be” and “to have” in 
romance languages. Thus, the collection of verbs “is,” “was,” “were,” and “be” 
are all variants of the verb “be.” There is a trade-off: lemmatization can pro-
duce better results than stemming at the cost of being more computationally 
expensive.

Stemming/Lemmatization Caveats

In case you need to review (or learn) the terms recall and precision, the 
following link contains useful details:

https://en.wikipedia.org/wiki/Precision_and_recall
In the context of this section, stemming and lemmatization are designed for 

“recall,” whereas “precision” tends to suffer. Moreover, results can also differ 
significantly in non-English languages, even those that seem related to English, 
because the implementation details of some concepts are quite different.

Although both techniques generate the root form of inflected words, you 
probably noticed that the stem might not be an actual word, whereas the 
lemma is an actual language word. As a rule of thumb: use stemming if you are 
primarily interested in higher speed, and use lemmatization if you are primar-
ily interested in higher accuracy.

Limitations of Stemming and Lemmatization

Although stemming and lemmatization are suitable for Indo-European lan-
guages, these techniques are not as well-suited for Chinese because a Chinese 
character can be a combination of two other characters, all three of which can 
have different meanings. 

https://en.wikipedia.org/wiki/Precision_and_recall
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For example, the character for mother is the combination of the radical for 
“female” and the radical for “horse.” Hence, separating the two radicals for 
“mother” via stemming and lemmatization change the meaning of the word 
from “mother” to “female.” More detailed information regarding Chinese nat-
ural language processing is available here:

https://towardsdatascience.com/chinese-natural-language-pre-processing-
an-introduction-995d16c2705f

WORKING WITH TEXT: POS

The acronym POS refers to parts of speech, which involves identifying the 
parts of speech for words in a sentence. The purpose of POS tagging is to 
assign a part of speech to the words in a document. However, words can be 
assigned multiple speech tags: for example, drive can be a noun as well as a 
verb. The challenge of POS is to determine the correct tag for each word. 

One approach for sequence labeling involves the HMM (Hidden Markov 
Model), which is based a probabilistic sequence model that is based on a 
Markov chain. One component of HMMs involves transition probabilities, 
which is the probability that a tag will follow a given tag. These probabilities 
can be calculated from the set of bigrams of a given corpus. 

Another component of HMMs is called the emission probabilities, which 
involves the probability that a given tag will be “associated” with a given tag. 
HMMs make several other assumptions, and also leverage the Viterbi algo-
rithm (not discussed in this book) in order to perform a so-called “decoding” 
task. For more information about HMMs and the Viterbi algorithm, perform 
an online search for relevant articles.

POS Tagging 

POS are the grammatical function of the words in a sentence. Consider the 
following simple English sentence:

The sun gives warmth to the Earth.

In the preceding example, “Sun” is the subject, “gives” is the verb, “warmth” 
is the direct object, and “Earth” is the indirect object. In addition, the subject, 
direct object, and direct object are also nouns. Note that the following sen-
tence has the same meaning, but this time the indirect noun must be inferred:

The sun gives the Earth warmth.

Words with multiple meanings are overloaded, and the function of a given 
word depends on the context. Here are three examples of using the word 
“bank” in three different contexts:

He went to the bank.
He sat on the river bank.
He can’t bank on that outcome.

https://towardsdatascience.com/chinese-natural-language-pre-processing-an-introduction-995d16c2705f
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POS tagging refers to assigning a grammatical tag to the words in a cor-
pus, and it is useful for developing lemmatizers. POS tags are used during the 
creation of parse trees and to define NERs (discussed in the next section). 
Chapter 6 contains a Python code sample that uses NLTK to perform POS 
tagging on a corpus (which is just a sentence, but you can easily extend it to an 
entire document).

POS Tagging Techniques

The major POS tagging techniques (followed by brief descriptions) are 
listed below:

•	Lexical Based Methods
•	Rule-Based Methods 
•	Probabilistic Methods 
•	Deep Learning Methods

Lexical Based Methods assign POS tags based on the most frequently 
occurring words in a given corpus. By contrast, Rule-Based Methods use 
grammar-based rules to assign POS tags. For example, words that end in the 
letter “s” are the plural form (which is not always true). Note that this rule 
applies to English and Spanish words. German words that end in the letter “e” 
are often plural forms (but they can be the feminine form of a word as well). 
Italian words ending in “i” or “e” are often the plural form of words (but many 
feminine words also have an “e” ending).

Probabilistic Methods assign POS tags based on the probability of the 
occurrence of a particular tag sequence. Finally, Deep Learning Methods use 
deep learning architectures (such as RNNs) for POS tagging.

WORKING WITH TEXT: NER

NER is an acronym for named entity recognition, which is known by vari-
ous names, including named entity identification, entity chunking, and entity 
extraction. NER is a subtask of information extraction, and its purpose is to 
find named entities in a corpus and then classify those named entities based 
on predefined entity categories. As a result, NER can assist in transforming 
unstructured data to structured data.

In high level terms, a “named entity” is a real-world object that is assigned 
a name, which can be a word or a phrase that distinguishes one “item” from 
other items in a corpus. There are various pre-defined named entity types, 
such as PERSON (people, including fictional), ORG (Companies, agencies, 
institutions), and GPE (Countries, cities, states). Other entity types include 
Ethnicity, Name, Occupation, Quantity, Type, and Unit. A complete list of 
named entity types is here:

https://spacy.io/api/annotation

https://spacy.io/api/annotation
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The extraction of meaningful information is a challenging task, partially due 
to ambiguity, especially in unstructured data. NER has benefited from machine 
learning, such as the kNN algorithm and CRF (Conditional Random Field). 
More recently, NER formed the basis for text extraction in the Transformer 
architecture, which has yielded significant advances in NLP.

Although NER is very useful, there are situations in which NER can pro-
duce incorrect results, such as

•	insufficient number of tokens 
•	too many tokens 
•	incorrectly partitioning adjacent entities
•	assigning an incorrect type

Later in this book you will see Python code samples from NLP toolkits, 
such as NLTK, that provide support for NER.

Abbreviations and Acronyms

As a reminder, an acronym consists of the first letter of several words, such 
as NLP (Natural Language Processing), whereas an abbreviation is a short-
ened form of a word, such as “prof” for professor. Depending on the domain, a 
corpus can contain many acronyms or abbreviations (or both).

Detection of abbreviations is a task of sentence segmentation and tokeniza-
tion processes, which includes disambiguating sentence endings from punctu-
ation attached to abbreviations. This task is domain-dependent and of varying 
complexity (and higher complexity for the medical field).

The following link contains information about CARD (clinical abbreviation 
recognition and disambiguation) that recognizes abbreviations in a corpus:

https://academic.oup.com/jamia/article/24/e1/e79/2631496
In addition, you can customize the tokenizer in spaCy (discussed 

later) by adding extra rules, as described here: https://spacy.io/usage/
linguistic-features.

Furthermore, the PUNKT system was been developed for sentence bound-
ary detection, and it can also detect abbreviations with high accuracy.

Chunking refers to the process of extracting phrases from unstructured 
text. For example, instead of treating “Empire State Building” as three unre-
lated words, they are treated as a single chunk.

NER Techniques

Currently NER techniques can be classified into four general categories, 
as shown below:

•	Rule-based
•	Feature-based supervised learning
•	Unsupervised learning
•	Deep learning

https://academic.oup.com/jamia/article/24/e1/e79/2631496
https://spacy.io/usage/linguistic-features
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Rule-based techniques rely on manually specified rules, which means 
that they do not require annotated data. Unsupervised learning techniques 
do not require labeled data, whereas supervised learning techniques involve 
feature engineering. Various supervised machine learning algorithms for NER 
are available, such as the Hidden Markov Model (HMM), Decision Trees, 
Maximum Entropy Model, Support Vector Machine (SVM), and Conditional 
Random Field (CRF).

Finally, deep learning techniques automatically discover classification 
from the input data. However, deep learning techniques require a significant 
amount of annotated data, which might not be readily available. In addition, 
NER involves some complex tasks, such as detecting nested entities, multi-
type entities, and unknown entities.

WHAT IS TOPIC MODELING?

Topic modeling is a technique for determining topics that exist in a docu-
ment or a set of documents, which is useful for providing a synopsis of arti-
cles and documents. Topic modeling involves unsupervised learning (such as 
clustering), so the set of possible topics are unknown. The topics are defined 
during the process of generating topic models. Topic modeling is generally not 
mutually-exclusive because the same document can have its probability distri-
bution spread across many topics.

In addition, there are hierarchical topic modeling methods for handling 
topics that contain multiple topics. Moreover, topics can change over time; 
they may emerge, later disappear, and then re-emerge as topics.

There are several algorithms available for topic modeling, some of which 
are listed below:

•	LDA (Latent Dirichlet Allocation)
•	LSA (Latent Semantic Analysis)
•	Correlated Topic Modeling

Latent Dirichlet Allocation (LDA) is a well-known unsupervised algorithm 
for topic modeling. In high level terms, LDA determines the word tokens in a 
document and extracts topics from those tokens. LDA is a non-deterministic 
algorithm that produces different topics each time the algorithm is invoked.

By way of analogy, LDA resembles the well-known kMeans algorithm: 
LDA requires that you specify a value for the number of topics, just as kMeans 
requires a value for the number of clusters. Next, LDA calculates the prob-
ability that each word belongs to its assigned “topic” (cluster), and does so 
iteratively until the algorithm converges to a stable solution (i.e., words are no 
longer re-assigned to different topics).

After the clustering-related task is completed, LDA examines each docu-
ment and determines which topics can be associated with that document. 
kMeans and LDA differ in one important respect: kMeans has a one-to-one 
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relationship between an item and a cluster, whereas LDA supports a one-
to-many relationship whereby a document can be associated with multiple 
topics. The latter case makes intuitive sense: the longer the document, the 
greater the possibility that that document contains multiple topics. Moreover, 
LDA computes an associated probability that a document is associated with 
multiple topics. For example, LDA might determine that a document has 
three different topics, with probabilities 60%, 30%, and 10% for those three 
topics.

KEYWORD EXTRACTION, SENTIMENT ANALYSIS, AND TEXT 
SUMMARIZATION

Keyword extraction is an NLP process whereby the most significant and 
frequent words of a document are extracted. There are various techniques for 
performing keyword extraction, such as computing tf-idf values of words in a 
corpus (discussed in Chapter 4) and BERT models (discussed in Chapter 7). 
Other algorithms include TextRank, TopicRank, and KeyBERT, all of which 
are discussed in this article:

https://towardsdatascience.com/keyword-extraction-python-tf-idf-tex-
trank-topicrank-yake-bert-7405d51cd839

Incidentally, NER (described in a previous section) relies on key word 
extraction as a step toward assigning a name to real-world objects. If you gen-
eralize even further, you can think of NER as a special case of relation extrac-
tion in NLU.

Sentiment analysis determines the sentiment of a document, which can 
be positive, neutral, or negative and often represented by the numbers 1, 0, 
and -1, respectively. Sentiment analysis is actually a subset of text summariza-
tion. Sentiment analysis can be implemented using supervised or unsupervised 
techniques, in a number of algorithms, including Naive Bayes, gradient boost-
ing, and random forests.

Text summarization is just what the term implies: given a document, sum-
marize its contents. Text summarization is a two-phase process that involves 
various techniques, including keyword extraction and topic modeling. The 
first phase creates a summary of the most important parts of a document, fol-
lowed by the creation of a second summary that represents a summary of the 
document. 

There are various text summarization algorithms, such as LexRank and 
TextRank. The LexRank algorithm uses a ranking model (based on similarity of 
sentences) in order to categorize the sentences in a document: sentences with 
a higher similarity have a higher ranking. 

TextRank is an extractive and unsupervised technique that determines 
words embeddings for the sentences in a corpus, calculates and stores sen-
tence similarities in a similarity matrix, and then converts the matrix to a graph. 
A summary is based on the top-ranked sentences in the graph.

https://towardsdatascience.com/keyword-extraction-python-tf-idf-textrank-topicrank-yake-bert-7405d51cd839
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SUMMARY

This chapter started with a high-level overview of human languages, how 
they might have evolved, and the major language groups. Next you learned 
about grammatical details that differentiate various languages from each other 
that highlight the complexity of generating native-level syntax as well as native-
level pronunciation. 

In addition, you got a brief introduction to NLP applications, NLP use 
cases, NLU, and NLG. Then you learn about concepts such as word sense dis-
ambiguation, text normalization, tokenization, stemming, lemmatization, and 
the removal of stop words. Finally, you learned about POS (Parts of Speech) 
and NER (Named Entity Recognition) and various algorithms that perform 
topic modeling in NLP.





CHAPTER 5
NLP CONCEPTS (II)

This is the second chapter that discusses NLP concepts, such as word 
relevance, vectorization, basic NLP algorithms, language models, and 
word embeddings. The next chapter contains R-based code samples 

that illustrate many of the concepts that are discussed in this chapter and the 
previous chapter.

The first part of this chapter discusses word relevance, text similarity, and 
text encoding techniques. The second part of this chapter discusses text encod-
ing techniques and the notion of word encodings. The third part of this chapter 
introduces you to word embeddings, which are highly useful in NLP. In addi-
tion, you will learn about vector space models, n-grams, and skip-grams. 

The final section discusses word relevance and dimensionality reduction 
techniques, some of which are based on advanced mathematical concepts. As 
such, these algorithms are covered in a high-level fashion, and you can per-
form an Internet search to find more detailed explanations of these algorithms. 
Alternatively, if you are not interested in the more theoretical underpinnings of 
machine learning algorithms, you can skim through this section of the chapter 
and return to this material when you need to learn more about the details of 
dimensionality reduction algorithms.

WHAT IS WORD RELEVANCE?

If you are wondering what it means to say that a word is “relevant,” there 
is no precise definition. The underlying idea is that the relevance of a word in 
a document is related (proportional) to how much information that word pro-
vides in a document (and the latter is also imprecise). Stated differently, words 
have higher relevance if they enable us to gain a better understanding of the 
contents of a document without reading the entire document.
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If a word rarely occurs in a document, that suggests that the word could 
have higher relevance. However, if a word occurs frequently, then the rel-
evance of the word is generally (but not always) lower. For example, if the 
word “unicorn” has a limited number of occurrences in a document, then it 
has higher word relevance, whereas stop words such as “a,” “the,” and “or” 
have very low word relevance. Another scenario involves word relevance in 
multiple documents: suppose we have 100 documents, and the word “unicorn” 
appears frequently in a single document but not in the other 99 documents. 
Once again, the word “unicorn” probably has significant relevance.

Another factor in the relevance of a word is related to the number of syno-
nyms that exist for a given word. The words “unicorn” and “death” do not have 
direct synonyms (though the latter does have euphemisms), which means that 
in some cases the words will appear more frequently in a document, and yet 
they still have higher word relevance than stop words. 

In addition to determining the words that are relevant in a document or 
a corpus, we might also want to know whether or not two text strings (such 
as sentences or documents) are similar, which is the topic of the next section.

WHAT IS TEXT SIMILARITY?

Text similarity calculates the extent to which a pair of text strings (such as 
documents) are similar to each other. However, two text strings can be similar 
yet they can have different meanings. 

For example, the two sentences “The man sees the dog” and “The dog sees 
the man” contain identical words (and also have the same word relevance), 
yet they differ in their meaning because English is word-order dependent. 
Replace “sees” with “bites” in the preceding pair of sentences to convey a more 
vivid contrast in meaning. Clearly, we need to take into account the context of 
the words in the two sentences, and not just the set of words. 

Note that German is not word order dependent, so the words in a sentence 
can be rearranged without losing the original meaning. German is among the 
languages (such as Lithuanian and Slavic languages) that supports declension 
of articles and adjectives. An example of two identical German sentences is 
shown below, and notice that the word order is reversed in the second sentence:

Der Mann sieht den Hund.
Den Hund sieht der Mann.

The “den” particle represents either the direct object case for masculine 
singular  words or  the indirect object case for plural words. Hence, the “Hund” 
(dog) is the direct object on both of the preceding sentences.

One approach for handling the word order dependency aspect of languages 
such as English involves creating floating point vectors for words. Then we 
can calculate the cosine similarity of two vectors, and if the value is close to 1, 
we infer that the words associated with the vectors are closely related. This 
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technique is called word vectorization, and it’s the topic of a section later in 
this chapter, after the section that discusses the meaning of text encoding.

SENTENCE SIMILARITY

There are various algorithms for calculating sentence similarity, such as the 
Jaccard Similarity, word2vec with the cosine similarity (the latter is discussed 
in this chapter), LDA with the Jenson-Shannon distance, and a universal sen-
tence encoder. 

One class of algorithms involves the cosine similarity, and another class of 
algorithms involves deep learning architectures, such as Transformer, LSTMs, 
and VAEs (and the latter two are beyond the scope of this book). You might be 
surprised to discover that you can even use the kMeans clustering algorithm 
in machine learning to perform sentence similarity. Another technique is the 
Universal Sentence Encoder, as discussed in the next section.

Sentence Encoders

Pre-trained sentence encoders for sentences are the counterpart of word-
2vec and GloVe (both are discussed later in this chapter) for words. The 
embeddings are useful for various tasks, including text classification. Sentence 
encoders can capture additional semantic information when they are trained 
on supervised and unsupervised data. Models that encode words in context are 
also called sentence embedding models.

In particular, Google created the Universal Sentence Encoder that encodes 
text into high dimensional vectors that can be used for various natural language 
tasks, and the pre-trained model is available at the TensorFlow Hub (TFH):

https://tfhub.dev/google/collections/universal-sentence-encoder
One variant of this model was trained with the Transformer encoder, which 

has a higher accuracy, and another variant was trained with Deep Averaging 
Network (DAN), which has a lower accuracy. In fact, there are 11 models avail-
able at the TFH that have been trained to perform different tasks.

WORKING WITH DOCUMENTS

Two tasks pertaining to documents involve document classification (for 
determining the nature of a document) and document similarity (i.e., compar-
ing documents), both of which are discussed in the following subsections.

Document Classification

Document classification can be performed with different levels of granu-
larity, from document-level down to sub-sentence level of granularity. The spe-
cific level that you choose depends on your task-specific requirements.

Document classification can be performed in several ways in machine 
learning. One way to do so involves well-known algorithms such as the SVM 
(Support Vector Machines) and Naive Bayes.

https://tfhub.dev/google/collections/universal-sentence-encoder
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Document Similarity (doc2vec)

There are several algorithms for determining document similarity, includ-
ing Jaccard (not discussed), doc2vec, and BERT (discussed in Chapter 7). 

The doc2vec algorithm an unsupervised algorithm that converts docu-
ments into a corresponding vector and then computes their cosine similarity. 
The doc2vec algorithm learns fixed-length feature embeddings from variable-
length pieces of texts. Despite its name, doc2vec works on sentences and para-
graphs as well as documents. Details about the doc2vec algorithm are in the 
original paper:

https://arxiv.org/abs/1405.4053
The choice of algorithm for document similarity depends on the criteria 

that are used to judge document similarity, such as

•	Tag Overlap
•	Section
•	Subsections
•	Story Style
•	Theme

The following article evaluates several algorithms for document similarity 
that takes into account the items in the preceding bullet list:

https://towardsdatascience.com/the-best-document-similarity-algorithm-
in-2020-a-beginners-guide-a01b9ef8cf05

The following link contains an example of using the doc2vec algorithm:
https://medium.com/@japneet121/document- vectorization-301b06a041

TECHNIQUES FOR TEXT SIMILARITY

In general, a set of documents with the same theme typically contain words 
that are common throughout those documents. In some cases, a pair of docu-
ments might contain only generic words, and yet the documents share the 
same theme. For example, suppose one document only discusses tigers and 
another document only discusses lions. Although these two documents dis-
cuss a different animal, both documents pertain to wild animals, which clearly 
shows that they belong to the same theme. 

There is an indirect connection between the documents that discuss tigers 
and lions: they are both “instances” of the higher-level (and more generic) 
topic called “wild animals.” However, tf-idf values for these two documents 
will not determine that the documents are similar: doing so involves a distrib-
uted representation (such as doc2vec) for the word embeddings of the words 
in the two documents.

The following article performs a comparison of different algorithms for cal-
culating document similarity:

https://towardsdatascience.com/the-best-document-similarity-algorithm-
in-2020-a-beginners-guide-a01b9ef8cf05

https://arxiv.org/abs/1405.4053
https://towardsdatascience.com/the-best-document-similarity-algorithm-in-2020-a-beginners-guide-a01b9ef8cf05
https://medium.com/@japneet121/document- vectorization-301b06a041
https://towardsdatascience.com/the-best-document-similarity-algorithm-in-2020-a-beginners-guide-a01b9ef8cf05
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The preceding article compares the accuracy of tf-idf, Jaccard, USE, and 
BERT (discussed in Chapter 7) on a set of documents to determine document 
similarity. Interestingly, tf-idf is the fastest algorithm (by far) of the four algo-
rithms, and in some cases, tf-idf out-performed the other three algorithms in 
terms of accuracy.

Similarity Queries

Suppose that we have a corpus consisting of a set of text documents. A 
similarity query determines which of those documents is the most similar to a 
given query. Here is a very high-level sequence of steps in the algorithm:

1.	 Index every document in the corpus.
2.	 Find the distance between the query and each document.
3.	 Select the documents with the lowest distance values.

The distance between a query and a document can be computed in several 
ways, and one of the most popular techniques is called the cosine similarity, 
which is explained in more detail later in this chapter. However, the key idea 
involves calculating the (mathematical) cosine of the angle between the two 
vectors, which is between −1 and 1 inclusive. When this floating number is 
close to 1, the angle between the vectors is close to 0, which in turn suggests 
that the words associated with the two vectors are probably close in meaning. 
If the angle between the vectors is close to 1, then the angle between the vec-
tors is close to 90 degrees, which in turn suggests that the words associated 
with the two vectors are probably unrelated. A value of −1 suggests that the 
two words might have opposite meanings (antonyms).

WHAT IS TEXT ENCODING?

Many online articles use the terms text encoding and text vectorization 
interchangeably to indicate a vector of numeric values. However, this chapter 
distinguishes between vectors whose values are calculated by training a neu-
ral network (word vectorization) versus vectors whose values are calculated 
directly (text encoding).

The purpose of this distinction is assist in understanding the differences (as 
well as similarities) among various vectorization documents (i.e., it’s not to be 
pedantic). In simple terms, this distinction is not an industry standard.

Based on the distinction between text encoding and text vectorization, the 
following algorithms are text encodings:

•	BoW
•	N-grams
•	Tf-idf

The algorithms in the preceding list have a simple intuition; however, they 
do not capture the context of words, nor do they track the grammatical aspects 
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(such as subject, verb, noun) of the words in a document. Note that BoW and 
n-grams generate word vectors that have integer values, whereas tf-idf gener-
ates floating point numbers. Moreover, these three techniques can result in 
sparse vectors when the vocabulary is large.

TEXT ENCODING TECHNIQUES

There are three well-known techniques for text encoding (three of which 
involve integer-valued vector), as listed below:

1.	 Document Vectorization 
2.	 One-Hot Encoding
3.	 Index-Based Encoding 

The following subsections provide a summary of each of the preceding 
text encoding techniques. In the next chapter, you will see code samples that 
illustrate these techniques. Another technique involves word embeddings, but 
since this technique involves more complexity than those in the preceding bul-
let list, word embeddings are discussed later. (If you would prefer not to wait: 
word embeddings are calculated by training a shallow neural network or by 
means of a technique called matrix factorization.)

Document Vectorization

Document vectorization creates a dictionary of unique words in the docu-
ment and each word becomes a column in the vector space. Each text becomes 
a vector of 0s and 1s, where 1 indicates the presence of a word and 0 indi-
cates the absence of a word. This is called a one-hot document vectorization. 
Although this does not preserve word order in input text, it’s easy to interpret 
and generate.

As an illustration, the following technique performs document vectoriza-
tion by performing the following steps:

Find the # of unique words in the corpus (let's call this M)
count the occurrences of each unique word in each document
for i = 1 to N (= number of documents):
    for document i create a 1xM vector W
       for j = 1 to M:
            W[j] = 1 if word j is in document i

For example, suppose we have the following 3 documents (N=3):

Doc1: Steve loves deep dish Chicago pizza.
Doc2: Dave also loves Chicago pizza.
Doc3: Both like Guinness.

The list of unique words (M=11) in the preceding three documents is 
shown here:
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{also, both, Chicago, Dave, deep, dish, Guinness, like, loves, pizza, Steve}

A text encoding for Doc1, Doc2, and Doc3 consists of 1 × 11 vectors con-
taining integer values, as shown here:

Doc1: [0,0,1,0,1,1,0,0,1,1,1]
Doc2: [1,0,1,1,0,0,0,0,1,1,0]
Doc3: [0,1,0,0,0,0,1,1,0,0,0]

While document vectorization works reasonably well for a limited num-
ber of unique words, it’s less efficient for a large number of unique words 
because the text encoding of sentences will tend to have many occurrences 
of 0, which is called sparse data. In this example, there are 11 unique words, 
but consider what happens when there are several hundred unique words 
contained in multiple sentences: each sentence is (generally) much shorter 
than the list of unique words, and therefore the corresponding vector con-
tains mostly 0s.

The preceding technique populates vectors with 0 and 1 values. However, 
there is a frequency-based vectorization that uses the frequency of each word 
in the document instead of just its presence or absence. This is accomplished 
by modifying the innermost loop in the preceding code with the following code 
snippet:

W[j] = # of occurrences of word j in document i

One-Hot Encoding (OHE)

A OHE is a compromise between preserving the word order in the 
sequence and the easy interpretability of the result. Each word in a vocabu-
lary is represented as a vector with a single 1 and the remaining values of the 
vector are all 0. For example, if you have a vocabulary of 10 words, then each 
row in a 10 × 10 identity matrix is a one-hot encoding that can be associated 
with one of the ten words in the vocabulary. In general, each row of an nxn 
identity matrix can represent a categorical variable that has n distinct values. 
Unfortunately, this technique can result in a very sparse and very large input 
tensor. Chapter 6 contains a code sample that illustrates a one-hot encoding 
of a vocabulary. 

A OHE relies on a BoW representation of the words in a vocabulary. A 
OHE assumes that words are independent, which means that synonyms are 
represented by different vectors. The size of each vector equals the number 
of words in the vocabulary. Thus, a vocabulary of 100 words is encoded as 100 
vectors, each of which as 100 elements (99 of them are 0 and one of them is 1).

As a simple example, the sentence “I love thick pizza” can be tokenized as 
[“I,” “love,” “thick,” and “pizza”] and one-hot encoded as follows:

[1,0,0,0]
[0,1,0,0]
[0,0,1,0]
[0,0,0,1]
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The sentence “We also love thick pizza” can be encoded as follows:

[0,1,1,1] = [0,1,0,0] + [0,0,1,0] + [0,0,0,1] = [0,1,1,1]

The left-side vector [0,1,1,1] is the component-based sum of the three 
vectors that represent the one-hot encoding of the words love, thick, and 
pizza, respectively. 

There are two points to notice about this encoding. First, the first index of 
this vector is 0 because this sentence contains “we” instead of “i.” Second, the 
words “we” and “also” are not part of the vocabulary: they are OOV (out of 
vocabulary) words.

One algorithm that can handle OOV words is fastText (developed by 
Facebook), which is discussed later in this chapter. Another approach involves 
a model that is based on bi-LSTMs (bidirectional LSTMs), as described here:

https://medium.com/@shabeelkandi/handling-out-of-vocabulary-words-in-
natural-language-processing-based-on-context-4bbba16214d5

The key idea in the preceding link involves determining the most likely 
embedding for OOV words.

Another article regarding OOV words involves the skip-gram model that 
is discussed later in this chapter, but it’s included here in case you are already 
familiar with this model (alternatively, you can wait until after we discuss the 
skip-gram model):

https://towardsdatascience.com/creating-word-embeddings-for-out-of-
vocabulary-oov-words-such-as-singlish-3fe33083d466

Index-Based Encoding

This technique tries to address input data size reduction as well as the 
sequence order preservation. Index-based encoding maps each word to an 
integer index and groups the index sequence into a collection type column. 
Here is the sequence of steps (in high level terms):

•	Create a dictionary of words from the corpus.
•	Map words in the dictionary to indexes.
•	Represent a document by replacing its words with indexes.

Although this technique supports variable-length documents, note that this 
technique creates an artificial (and misleading) distance between documents.

Additional Encoders

Although the previous sections discussed just three-word encoders, there 
are many other encoding techniques available, some of which are in the fol-
lowing list:

•	BaseEncoder
•	BinaryEncoder
•	CatBoostEncoder

https://medium.com/@shabeelkandi/handling-out-of-vocabulary-words-in-natural-language-processing-based-on-context-4bbba16214d5
https://towardsdatascience.com/creating-word-embeddings-for-out-of-vocabulary-oov-words-such-as-singlish-3fe33083d466
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•	CountEncoder
•	HashingEncoder
•	LeaveOneOutEncoder
•	MEstimateEncoder
•	OrdinalEncoder
•	SumEncoder
•	TargetEncoder

We will not cover these word encoders, but information regarding the text 
encoders (along with with Python code snippets) in the preceding list is avail-
able online:

https://towardsdatascience.com/beyond-one-hot-17-ways-of-transforming-
categorical-features-into-numeric-features-57f54f199ea4 

THE BOW ALGORITHM

Based on a dictionary of unique words that appear in a document, the BoW 
algorithm generates an array with the number of occurrences in the document 
of each dictionary word. The advantages of BoW include simplicity and an easy 
way to see the frequency of each word in a document. BoW is essentially an 
n-gram model with n = 1 (n-grams are discussed later in this chapter).

However, BoW does not maintain any word order and no form of context, 
and in the case of multiple documents, BoW does not take into account the 
length of the documents. 

As a simple example, suppose that we have a dictionary consisting of the 
words in the sentence “This is a short sentence.” Then the corresponding 1 × 5 
vector for the dictionary is (this, is, a, short, sentence). Hence, the sentence “This 
sentence” is encoded as the vector (1, 0, 0, 0, 1). As you can see, this (and any 
other) sentence is treated as a “bag of words” in which word order is lost. In gen-
eral, a dictionary consists of a list of N distinct words, and any sentence consisting 
of words from that vocabulary is mapped to a 1 × N vector of zeroes and positive 
integers that indicate the number of times that words appear in a sentence.

The Sklearn library provides a CountVectorizer class that implements 
the BoW algorithm. The CountVectorizer class tokenizes the words in a 
corpus and generates a numeric vector that contains the word counts (fre-
quency) of each word in the corpus. Moreover, this class can also remove stop 
words and examine the most popular N unigrams, bigrams, and trigrams. 

However, words inside CountVectorizer are assigned an index value 
instead of storing words as strings. Here is the set of parameters (and their 
default values) for the CountVectorizer class, which are explained in more 
detail in the Sklearn documentation page for this class:

class sklearn.feature_extraction.text.CountVectorizer(*, 
input='content', encoding='utf-8', decode_error='strict', 
strip_accents=None, lowercase=True, preprocessor=None, 
tokenizer=None, stop_words=None, token_pattern='(?u)\b\w\

https://towardsdatascience.com/beyond-one-hot-17-ways-of-transforming-categorical-features-into-numeric-features-57f54f199ea4
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w+\b', ngram_range=(1, 1), analyzer='word', max_df=1.0, 
min_df=1, max_features=None, vocabulary=None, binary=False, 
dtype=<class 'numpy.int64'>)

As another example, suppose that we have the following set of sentences:

1.	 I love Chicago deep dish pizza.
2.	 New York style pizza is also good.
3.	 San Francisco pizza can be very good.

The set of BoW word/index pairs is as follows:

{'love': 9, 'chicago': 3, 'deep': 4, 'dish': 5, 'pizza': 
11, 'new': 10, 'york': 15, 'style': 13, 'is': 8, 'also': 0, 
'good': 7, 'san': 12, 'francisco': 6, 'can': 2, 'be': 1, 
'very': 14}

The BoW encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza: 
[[0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0]]
New York style pizza is also good: 
[[1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1]]
San Francisco pizza can be very good: 
[[0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0]]

As you have probably deduced, BoW models lose useful information, such 
as the semantics, structure, sequence and context around nearby words in each 
text document.

WHAT ARE N-GRAMS?

An n-gram is a technique for creating a vocabulary from N adjacent words 
together, hence it retains some word positions. The value of N specifies the 
size of the group. In many cases n-grams are from a text or speech corpus when 
items are words, n-grams may be called shingles. One common use for n-grams 
is to supply them to the word2vec algorithm, which in turn calculates vectors 
of floating-point numbers that represent words.

In highly simplified terms, the key idea of n-grams involves determining a 
context word that is missing from a sequence of words. For example, suppose 
we have five consecutive words in which the third word is missing. This is 
called a “bi-gram” because we have two words on the left side and two words 
on the right side of the missing word.

There are two types of n-grams: word n-grams and character n-grams. 
Word n-grams include all of the following:

•	1-gram or unigram when N=1 
•	a bigram or a word pair when N=2
•	a trigram when N=3
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The preceding list also applies to character-based n-grams. In addition, 
the items in n-grams can be any of the following: phonemes, syllables, letters, 
words/base pairs according to the application. Here are examples of 2-grams 
and 3-grams.

Example #1: “This is a sentence” has the following 2-grams (bi-grams): 
(this, is), (is, a), (a, sentence)

Example #2: “This is a sentence” has the following 3-grams (tri-grams): 
(this, is, a), (is, a, sentence)

Example #3: “The cat sat on the mat” has the following 3-grams: 
“The cat sat”
“cat sat on”
“sat on the”
“on the mat”

As yet another example, with the corresponding code deferred until a later 
chapter, suppose that we have the following set of sentences:

I love Chicago deep dish pizza.
New York style pizza is also good.
San Francisco pizza can be very good.

The bigram pairs are as follows:

{'love chicago': 8, 'chicago deep': 3, 'deep dish': 4, 
'dish pizza': 5, 'new york': 9, 'york style': 15, 'style 
pizza': 13, 'pizza is': 11, 'is also': 7, 'also good': 0, 
'san francisco': 12, 'francisco pizza': 6, 'pizza can': 10, 
'can be': 2, 'be very': 1, 'very good': 14}

The n-gram encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:
[[0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0]]
New York style pizza is also good: 
[[1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1]]
San Francisco pizza can be very good:
[[0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0]]

Compare the bigram encoding of the same three sentences using a BoW 
encoding in an earlier section.

Calculating Probabilities with n-grams

As a simple illustration, consider the following collection of sentences, 
which we’ll use to calculate some probabilities:
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1.	 'the mouse ate the cheese'

2.	 'the horse ate the hay'

3.	 'the mouse saw the horse'

4.	 'the mouse scared the horse'

The word “mouse” appears in three sentences, and it’s followed by the word 
“ate” (once) and the word “scared” (once). We can calculate the associated 
probabilities of which of “ate” and “scared” will follow the word “mouse” as 
follows:

Number of occurrences of "mouse ate" = 1
Number of occurrences of "mouse" = 3
probability of "ate" following "mouse" = 1/3

In a similar fashion, we have the following values pertaining to the word 
“scared:”

Number of occurrences of "mouse scared" = 1
Number of occurrences of "mouse" = 3
probability of "scared" following "mouse" = 1/3

As a result, if we have the sequence of words “mouse ___,” we can predict 
that the missing word is “ate” with a probability of 1/3, and it’s “scared” with a 
probability of 1/3. 

As another illustration, consider the following modification of the 
previous collection of sentences, which we’ll also use to calculate some 
probabilities:

1.	 'the big mouse ate the cheese'

2.	 'the big mouse ate the hay'

3.	 'the big mouse saw the horse'

4.	 'the mouse scared the horse'

The word “mouse” appears in three sentences, and it’s followed by the word 
“ate” (twice), the word “saw” (once), and the word “scared” (once). We can 
calculate the associated probabilities of which of “ate,” “saw,” and “scared” will 
follow the word “mouse” as follows:

Number of occurrences of "mouse ate" = 2
Number of occurrences of "mouse" = 4
probability of "ate" following "mouse" = 2/4

In a similar fashion, we have the following values pertaining to the word 
“saw:”

Number of occurrences of "mouse saw" = 1
Number of occurrences of "mouse" = 4
Hence the probability of "saw" following "mouse" = 1/4
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Finally, we have the following values pertaining to the word “scared:”

Number of occurrences of "mouse scared" = 1
Number of occurrences of "mouse" = 4
probability of "scared" following "mouse" = 1/4

As a result, if we have the sequence of words “mouse ___,” we can predict 
that the missing word is “ate” with a probability of 2/4, it’s “saw” with a prob-
ability of 1/4, and it’s “scared” with a probability of 1/4.

You can also calculate the probabilities of the word that follows the pair of 
words “big mouse ___:” the probability that the third word is “ate” is 2/3 and 
the probability that the third word is “saw” is 1/3.

Although these examples are simple (and hardly practical), they illustrate 
the intuition of n-grams. When we look at n-grams for realistic sentences in 
a corpus that contains millions of words, the probabilities (and therefore the 
predictive accuracy) increase dramatically.

Now let’s explore the details of tf (term frequency) and idf (inverse docu-
ment frequency), after which we can look at the tf-idf algorithm in more detail.

CALCULATING TF, IDF, AND TF-IDF

The following subsections discuss the numeric quantities tf, idf, and tf-idf 
(which equals the arithmetic product of tf and idf). As you will see, tf-idf pro-
vides a more accurate assessment of word relevance in a document than using 
just tf or idf.

The tf-idf algorithm is an improvement over BoW because tf-idf takes into 
account the number of occurrences of a given word in each document as well 
as the number of documents that contain that word. As a result, tf-idf indicates 
the relative importance of a specific word in a set of documents. In fact, the 
Sklearn package provides the class TfidfVectorizer that computes tf-idf val-
ues, as you will see later in a code sample.  

What is Term Frequency (TF)?

The term frequency of a word equals the number of times that a word 
appears in a document. If you have a set of documents, and a word that appears 
in several of those documents, then its term frequency can be different in dif-
ferent documents. For example, consider the two documents Doc1 and Doc2:

Doc1 = "This is a short sentence" (5 words)
Doc2 = "yet another short sentence" (4 words) 

We can easily calculate the term frequencies for the words “is” and “short” 
in Doc1 and Doc2, as shown here:

tf(is) = 1/5 for doc1
tf(is) = 0 for doc2
tf(short) = 1/5 for doc1
tf(short) = 1/4 for doc2
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The following example shows you how to use term frequency to calculate 
numeric vectors associated with three documents to determine which pair of 
documents are more closely related.

Let’s suppose that doc1, doc2, and doc3 contain the words “cuisine,” 
“pizza,” “steak,” “shrimp,” and “caviar” with the following frequencies:

         doc1  doc2  doc3 
-------------------------
beer    |  10 | 50 |   20
pizza   |  30 | 50 |   30
steak   |  50 |  0 |   50
shrimp  |  10 |  0 |    0
caviar  |   0 |  0 |    0
-------------------------

Let’s normalize the column vectors in the preceding table, which gives us 
the following table of values:

         doc1  doc2  doc3 
-------------------------
beer    | .10 |.50 |  .20
pizza   | .30 |.50 |  .30
steak   | .50 |  0 |  .50
shrimp  | .10 |  0 |    0
caviar  |   0 |  0 |    0
-------------------------

For simplicity, let’s use an asterisk (*) to denote inner product of each pair 
of columns vectors, which means that we have the following values:

doc1*doc2 = (.10)*(.50)+(.30)*(.50)+0+0+0           = 0.20
doc1*doc3 = (.10)*(.20)+(.30)*(.30)+(.50)*(.50)+0+0 = 0.36
doc2*doc3 = (.50)*(.20)+(.30)*(.30)+0+0+0           = 0.19

Hence, the documents doc1 and doc3 are most closely related, followed 
by the pair doc1 and doc2, and then the pair doc2 and doc3. 

The next section discusses inverse document frequency, followed by tf-idf, 
which we could use instead of the tf values to determine which pair of docu-
ments in the preceding example are most closely related.

What is Inverse Document Frequency (IDF)?

The following example illustrates how to calculate the idf value for the 
words in a set of documents. Given a set of N documents (ex: N = 10):

1.	 for each word in each document:
2.	 set dc = # of documents containing that word
3.	 set idf = log(N/dc)
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Let’s consider the following example with N = 2 and Doc1 and Doc2 defined 
as shown here:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence" 

Then the idf values for “is” and “short” for the documents Doc1 and Doc2 
are shown below:

idf("is") = log(2/1) = log(2)
idf("short") = log(2/2) = 0.

What is tf-idf?

The tf-idf value of a word in a corpus is the product of its tf value and its 
idf value. The tf-idf values are a measure of word relevance (not frequency). 
Recall that tf (term frequency) measures the number of times that words 
appear in a given document, so a high frequency word indicates a topic in a 
document, and has a higher tf.

However, the idf (inverse-document frequency) of a word is inversely pro-
portional to the log of the number of occurrences of a word in multiple docu-
ments. Thus, a word that appears in many documents makes that word less 
valuable, and hence lowers its idf value. By contrast, rare words are more rel-
evant than popular ones, so they help to extract relevance. The tf-idf relevance 
of each word is a normalized data format that also adds up to 1.

Notice that the idf value involves the logarithm of N/dc: this is because 
word frequencies are distributed exponentially, and the logarithm provides a 
better weighting of a word’s overall popularity. In addition, tf-idf assumes a 
document is a “bag of words.”

Note the following idf and tf-idf values:

•	idf = 0 for words that appear in every document
•	tfidf = 0 for words that appear in every document 
•	idf = log(N) for words that appear in one document

In addition, a word that appears frequently in a single document will have 
a higher tf-idf value. Moreover, a word that appears frequently in a document 
is probably part of a topic.

For example, suppose that the word “syzygy” appears in a collection of doc-
uments. The word “syzygy” can be a differentiator because it probably appears 
in a low number of documents of that collection.

After the tf-idf values are computed for the words in the corpus, the words 
are sorted in decreasing order, based on their tf-idf value, and then the highest 
scoring words are selected. The number of selected words depends on you: it 
can be as small as 5 or as large as 100 (or even larger).



130  •  Natural Language Processing Using R Pocket Primer

By way of comparison, BoW and tf-idf differ from word embeddings (dis-
cussed later in this chapter) in two important ways:

1.	 BoW and tf-idf calculate one number per word whereas word embed-
dings create one vector per word

2.	 BoW and tf-idf work better for classifying entire documents, whereas 
word embeddings are useful for determining the context of words in a 
document

Incidentally, you can implement a rudimentary search algorithm based on 
tf-idf scores for the words in a corpus, and make a determination based on the 
most relevant words (which is based on their tf-idf value) in a corpus. Even 
Google Search has used tf-idf assist in determining the top-ranked links to 
return to users.

As another example, with the corresponding code in a later chapter, sup-
pose that we have the following set of sentences:

I love Chicago deep dish pizza.
New York style pizza is also good.
San Francisco pizza can be very good.

The tf-idf pairs are as follows:

{'love': 5, 'chicago': 0, 'deep': 1, 'dish': 2, 'pizza': 7, 
'new': 6, 'york': 10, 'style': 9, 'good': 4, 'san': 8, 
'francisco': 3}

The tf-idf encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:
[[0.47952794 0.47952794 0.47952794 0.         0.         0.47952794  
0.         0.28321692 0.         0.         0.        ]]

New York style pizza is also good: 
[[0.         0.         0.         0.         0.38376993 0.  
0.50461134 0.29803159 0.         0.50461134 0.50461134]]

San Francisco pizza can be very good: 
[[0.         0.         0.         0.5844829  0.44451431 0.  0.         
0.34520502 0.5844829  0.         0.        ]]

Compare the tf-idf encoding of the same three sentences using a BoW 
encoding and an n-gram encoding in an earlier section.

Limitations of tf-idf

The tf-idf value is useful for determining the most relevant words in a set 
of documents, but can be less effective when trying to match a phrase in one 
or more documents. If you allow partial matches, then the set of matching 
phrases can contain phrases that are less relevant.
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For example, suppose a set of documents pertains to various animals, and 
you want to find the documents that contain the phrase “strong racing horse.” 
Would you accept the phrase “strong racing dog” as a match? If this phrase has 
the same tf-idf value as the original search phrase, then tf-idf cannot distin-
guish between them, and so tf-idf cannot reject the latter phrase in the match-
ing set of documents.

A better solution involves word2vec (or even better, an attention-based 
mechanism such as the transformer architecture) because word2vec provides 
word vectors that contain contextual information about words (which is not the 
case for tf-idf values). In Chapter 7, you will learn about a technique that is 
even more powerful than word2vec, which involves the attention mechanism 
that is part of the foundation for the Transformer-based architecture.

BoW models lose useful information, such as the semantics, structure, 
sequence and context around nearby words in each text document. A better 
approach involves statistical language models, as discussed later in this chapter.

What is BM25?

The bm25 algorithm is a modification of the term-frequency of words, 
which involves the following formula:

bm25 = tf/(tf+k), where k = an integer-valued hyper parameter

The bm25 value can be adjusted by specifying different values for k: in all 
cases, the maximum bm25 value is 1.

Another adjustment to consider is the length of a document: a word that 
occurs once in a short document will have a higher TF value than a word that 
appears once in a long document. One way to take the document length into 
account is to replace k by the adjusted term k*doc_len/avg_doc_len, where:

dl = document length 
avg_doc_len = the average length of the documents 

This adjusted term is smaller for shorter documents than for average 
length or longer documents, so a single word that appears in documents will 
be weighted accordingly.

You can also replace k with [1 - b + b*doc_len/avg_doc_len], where b 
is a floating point value between 0 and 1. The preceding expression approaches 
the quantity k*doc_len/avg_doc_len (i.e., the term in the preceding para-
graph) as b approaches 1, and the expression approaches 1 as b approaches 0.

Furthermore, we can replace the expression log(N/df) for the idf value 
with the expression log((N - df + 0.5)/(df + 0.5), which is a special 
case of the expression log(N-df)/df.

Note that the preceding expression is negative for terms that are in more 
than half of the corpus. Hence, we can take the preceding fact into account by 
using the following expression for the idf:

idf = log(1 + (N - df + 0.5))/(df + 0.5) which is approximately 
equal to the expression log(N/df). 



132  •  Natural Language Processing Using R Pocket Primer

Pointwise Mutual Information (PMI)

PMI is an alternative to tf-idf, which works well for both word–context 
matrices as well as term–document matrices. However, PMI is biased toward 
infrequent events. 

A better alternative to PMI is a variant known as Positive PMI (PPMI) that 
replaces negative PMI values with zero (which is conceptually similar to ReLU 
in machine learning). Some empirical results indicate that PPMI has superior 
performance when measuring semantic similarity with word-context matrices.  

THE CONTEXT OF WORDS IN A DOCUMENT

There are two types of context for words: semantic context and pragmatic 
context, both of which are discussed in the following subsections. You will also 
learn about the distributional hypothesis regarding the context of words. The 
distributional hypothesis is based on something called a heuristic, which means 
that it is based on an assumption that is often true. In fact, the assumption is 
true to that extent that its accuracy is reliable enough that it outweighs the 
frequency of its incorrect estimates. 

In a subsequent section, you will also learn about the cosine similarity met-
ric that is used to measure the distance between two floating point vectors that 
represents two words. 

What is Semantic Context?

Semantic context refers to the manner in which words are related to each 
other. For example, if you hear a sentence that starts with “Once in a blue 
____,” you might infer that the missing word is “moon.” Another example is 
“I’m feeling fine and ___,” where the missing word is “dandy.”

The distributional hypothesis asserts that words that occur in a similar con-
text tend to have similar meanings. The context of a word is the set of words 
that commonly occur around that word. For example, in the sentence “the cat 
sat on the mat,” here is the context of the word “sat”:

(“the”, “cat”, “on”, “the”, “mat”)

The key idea is worth repeating here: words with similar contexts share 
meaning and their reduced vector representations will be similar. 

Another interesting concept is pragmatics, which is a subfield of linguistics 
that studies the relationship between context and meaning. As a simple exam-
ple, consider the following sentence: “He was in his prison cell talking on his 
new cell phone while a nurse extracted some of his blood cell samples.” As you 
can see, the word “cell” has three different meanings in the previous sentence, 
and therefore any embedding that takes into account both semantic and prag-
matic context must generate three different vectors. More information about 
pragmatics is available online:

https://en.wikipedia.org/wiki/Pragmatics

https://en.wikipedia.org/wiki/Pragmatics
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Textual Entailment

Another interesting NLP task is called textual entailment, which analyzes 
a pair of sentences to predict whether the facts in the first sentence imply 
the facts in the second sentence. This type of analysis is important in various 
NLP-based applications, and actual results do vary (as you might expect). In 
fact, one of the techniques for training the BERT model is called NSP, which 
is an acronym for Next Sentence Prediction. More details regarding NSP are 
in Chapter 7.

Discrete, Distributed, and Contextual Word Representations

Discrete text representations refer to techniques in which words are repre-
sented independently of each other. For example, the tf-idf value of each word 
in a corpus is based on its term frequency multiplied by the logarithm of its 
inverse document frequency. Thus, the tf-idf value of each word is unaffected 
by the semantics of the other words in the corpus. 

Moreover, if a new document is added to a corpus, or an existing document 
is reduced or increased in size, then the initial tf-idf value will change for some 
of the words in the original corpus. However, the new value does not include 
any of the semantics of the newly added words.

By contrast, distributed text representations create representations that 
are based on multiple words: thus, the representations of words are not 
mutually exclusive. For example, distributed text representations include 
co-occurrence matrices, word2vec, and GloVe, and fastText. Keep in mind 
that word2vec involves a neural network to generate word vectors, whereas 
GloVe uses a matrix-oriented technique (with SVD), which is discussed 
in Chapter 6. In addition, word2vec and GloVe are limited to one word 
embedding for every word, which means that a word that’s used with two or 
more different contexts will have the same embedding for every occurrence 
of that word.

Finally, contextual word representations are representations that take into 
account all the other words in a given sentence. Hence, if a word appears in 
two sentences with two different meanings (i.e., context), then the word will 
have two different word embeddings for the two sentences. This is the funda-
mental idea that underlies the statement “all you need is attention.”

WHAT IS COSINE SIMILARITY? 

You are probably familiar with the Euclidean distance metric for finding 
the distance between a pair of points in the Euclidean plane: their distance 
can be calculated via the Pythagorean theorem. The Euclidean distance met-
ric can be generalized to n-dimensions by generalizing the formula for the 
Pythagorean theorem from two dimensions to n-dimensions.

If we represent words as numeric vectors, then it’s reasonable to ask the 
following question: if two words have similar meanings, then how do we 
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compare their vector representations? One way involves calculating the differ-
ence between the two vectors. For instance, suppose we are in two dimensions 
(because this will simplify the example), and word U is a vector u with com-
ponents [u1,u2], and word V is a vector v with components [u1,u2]. Then 
the difference between these two vectors is U-V, which is the two-dimensional 
vector [u1-v1, u2-v2]. 

However, the difference between these vectors increases significantly if we 
multiply each of these vectors by a positive integer. In essence, we want to 
treat the vectors U  and V as having the same property as 3*u and 10*v (or 
some other multiples of u and v), which we cannot accomplish if we use the 
Euclidean metric.

One solution involves calculating the cosine of the angle between a pair of 
vectors, which is called the cosine similarity of two vectors. The cosine func-
tion is a trigonometric function of the angle between the two vectors. In brief, 
suppose that a right-angled triangle has sides of length a and b, a hypotenuse 
of length c (that’s the slanted side, which is also the longest side), and the angle 
between the sides of length a and c is theta. Then, the cosine of the angle 
theta is defined as follows:

cosine(theta) = a/c 

The preceding formula applies to values of theta between 0 and 90 
degrees (inclusive). Since a and c are positive, then a/c > 0, and since a < c, 
then a/c < 1. In addition, the definition can be extended as follows:

if   0 <= theta <= 90:  cosine(theta) = a/c (as defined above)
if  90 <= theta <= 180: cosine(theta) = (-1)*cosine(180-theta)
if 180 <= theta <= 270: cosine(theta) = (-1)*cosine(270-theta)
if 270 <= theta <= 360: cosine(theta) = (+1)*cosine(360-theta)

The cosine of theta is negative when theta is between 90 and 180, and 
its range of values is between 0 and −1. Since the cosine of theta is between 0 
and 1 when theta is between 0 and 90, we arrive at the following result:

-1 <= cosine(theta) <= 1 (for 0<= theta <= 360)

We can generalize further for angles that are less than 0 or greater than 
360: simply add (or subtract) multiples of 360 until we get an angle between 
0 and 360.

Cosine(-100) = cosine(-100+1*360) = cosine(260) = (-1)*cosine(10)
cosine(750) = cosine(750-2*360) = cosine(30) 

However, two vectors always form an angle that is between 0 and 180 inclu-
sive. Since values of the cosine function are always between −1 and 1 inclusive, 
the cosine similarity of two vectors is also between −1 and 1 inclusive. As a 
reminder, the cosine of 0 degrees is 1, the cosine of 90 degrees is 0, and the 
cosine of 180 degrees is −1. 
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The intuition of cosine similarity is that “closer” vectors have a smaller 
angle between them, which means that the cosine of the angle is closer to 1, 
and so the words have similar meanings. 

Two vectors whose angle between them is close to 90 degrees have a cosine 
similarity that is close to 0, and so the words are less related to each other. 
Finally, two vectors that “point” in opposite directions will have an angle of 180 
degrees, and the cosine of 180 is −1, so the words will be unrelated.

The inner product of two vectors A and B is defined as

A "dot" B = |A|*|B|*cosine(theta)
cosine(theta) = (A "dot" B) /( |A|*|B|) 

Example: suppose that A = [1, 1] B = [2, 0]:
cosine(theta) = (1*2+1*0)/[sqrt(2)*2] = 1/sqrt(2) 
In this case, theta is 45 degrees

Note that vectors are often normalized, which means that they are scaled so 
that their length equals 1. Scaling a vector involves dividing a vector by its mag-
nitude (also called the norm), which is calculated via the Pythagorean theorem. 

Example #1:
If A = [1,1], then |A| = sqrt(1*1+1*1) = sqrt(2), and:
A/|A| = [1/sqrt(2), 1/sqrt(2)] (about [0.707,0.707])

Example #2:
If A = [2,0], then |A| = sqrt(2*2+0*0) = sqrt(4) = 2, and:
A/|A| = [2/2, 0/2] = [1, 0]

Example #3:
If A = [3,4], then |A| = sqrt(3*3+4*4) = sqrt(25) = 5, and:
A/|A| = [3/5, 4/5]

Example #4:
If A = [-4,3], then |A| = sqrt((-4)*(-4)+3*3) = sqrt(25) = 
5, and:
A/|A| = [-4/5, 3/5]

Although cosine similarity works well in many cases, it’s not a perfect solu-
tion. For example, it’s possible to have two sparse vectors representing two 
sentences with similar meaning, even though they have no words in common, 
and yet their cosine similarity could be around 0.6.

In addition to cosine similarity, there are other well-known distance met-
rics, some of which are discussed in one of the appendices.

TEXT VECTORIZATION (AKA WORD EMBEDDINGS)

In common parlance, text vectorization involves the creation of word 
embeddings, where each word embedding is a dense one-dimensional vector 
of floating point numbers. Moreover, the word embeddings are generated by 
means of a shallow neural network. The good news is that there are various 
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publicly available word embeddings available, so you don’t need to be con-
cerned about generating those vectors.

Depending on your task, you might be able to work with small context 
vectors for words, such as 1 × 16 or 1 × 32 vectors. By comparison, the word 
embeddings in the BERT model (discussed in Chapter 7) are 1 × 512 vectors.

Since we can add floating point vectors that have the same number of com-
ponents, we can calculate the average of two or more word vectors. Hence, it’s 
possible to represent a document as the average vector of the individual word 
vectors in that document. However, such a vector is not necessarily meaningful 
with respect to the document.

You can use word embeddings to find co-occurrences. For example, “good” 
and “bad” both appear in a corpus and are near each other in an embedding 
space, despite the fact that “good” and “bad” are antonyms. 

From a different perspective, it might be helpful to think of a word embed-
ding as a projection of the index-based encoding (or a one-hot encoding) into a 
numerical vector to a lower-dimension space. For example, a point P in three-
dimensional Euclidean space can be represented as (x,y,z), and its projec-
tion onto the x-y plane is the point (x,y,0), whereas its projection onto the 
x-z plane is the point (x,0,z).

The new space is defined by the numerical output of an embedding layer 
in a neural network. This results in a close mapping of words with similar role, 
but it does involve a higher degree of complexity.

Text vectorization is typically performed after the other tasks that are 
discussed in Chapter 4, such as normalization, stop word removal, and 
lemmatization.

As you will see later in this chapter, word2vec is one of the first text vec-
torization algorithms that produces word embeddings by training a shallow 
neural network (i.e., a single hidden layer), and every word is represented by 
a vector of floating point numbers. These vectors are context vectors because 
they contain contextual information for the associated words (the meaning of 
context will be explained later).

However, word2vec does have a significant limitation: a word in a docu-
ment can only have a single context vector. Hence, the same context vector is 
used for a given word, regardless of whether that word has a different context 
in different sentences. 

The Transformer architecture (discussed in Chapter 7) achieved a break-
through by overcoming this limitation of word2vec. Thus, the context vector 
for a given word depends on the context of that word in a sentence, which 
means that the same word can be represented by different context vectors.

OVERVIEW OF WORD EMBEDDINGS AND ALGORITHMS

This section contains several subsections, starting with a description of word 
embeddings, followed by brief description of word embedding algorithms. 
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Some of these algorithms, such as CBoW and skip-grams, are discussed in 
more detail later in this chapter. 

In addition to word embeddings, there is the concept of entity embedding 
that generalizes the concept of a word embedding: an entity can be a word, a 
sentence, or a document.

Word Embeddings

According to Wikipedia, word embeddings are defined as:

the collective name for a set of language modeling and feature learning tech-
niques in natural language processing (NLP) where words or phrases from the 
vocabulary are mapped to vectors of real numbers.

The goal is to capture as much semantic information as possible by finding 
a reliable word representation with real-number vectors. Techniques such as 
term frequencies or one-hot encodings do not provide any context for words 
in a sentence or a document. On the other hand, word embeddings do provide 
context for words, which enables you to create more powerful language models.

A word embedding is a representation of the underlying text corpus (i.e., 
a collection of text-based documents). Word embeddings are a context-inde-
pendent embedding or representation. 

Word embeddings are useful for document classification, which involves 
supervised learning (i.e., labeled data). You can also use word embeddings for 
document clustering, which involves unsupervised learning (i.e., unlabeled data).

Word embeddings reduce large one-hot word vectors into smaller vec-
tors while simultaneously preserving some of the meaning and context of the 
words. One of the most popular methods for performing this reduction is 
called word2vec.

Fortunately, word embeddings are useful for analyzing text data in many 
languages (not just English text). Moreover, there are pretrained word embed-
dings available, and it’s worthwhile performing an analysis at those word 
embeddings to see if they meet your needs. If not, then you can certainly cre-
ate custom word embeddings.

Word Embedding Algorithms

There are several well-known word embedding algorithms, as shown in the 
following list:

•	word2vec
•	GloVe
•	Fasttext

The word2vec algorithm consists of two algorithms: CBoW (Continuous 
Bag of Words) and skip-grams. Both word2vec algorithms create word 
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embeddings (i.e., vectors of floating point numbers) by training a shallow neu-
ral network that contains a single hidden layer.

The GloVe algorithm was developed at Stanford (more details are in 
Chapter 6), whereas the fastText algorithm is from Facebook, with more details 
elsewhere in this chapter. One of the most popular Python-based libraries for 
word embeddings is word2vec, which is the topic of the next section. 

WHAT IS WORD2VEC?

A group of Google researchers developed word2vec in 2013, and it has 
become the foundation of NLP that is also incorporated in BERT. Word2vec 
provides an efficient method to represent words as vectors in a lower-dimen-
sional space. 

Word2vec takes text-based input and generates a vector consisting of float-
ing points for each word in a text corpus. This task involves a neural network 
consisting of an input layer, a hidden layer (with no activation function), and 
an output layer that has the same dimension as the input layer. If you have 
studied deep learning, then you probably recognize this neural network as an 
autoencoder. If need be, you can use a dimensionality reduction technique to 
further reduce the dimensionality of the word vectors.

One point to keep in mind is that word2vec is described as an 
unsupervised algorithm because there is no need to label the training data. 
However, the shallow network that is used to generate word embeddings 
involves backward error propagation, which in turn requires labeled data. 
More accurately, word2vec involves self-supervision, which is a subset of 
supervised learning. 

The material presented earlier in this chapter discussed the CBoW model 
(which uses n-grams) and the skip-gram model, both of which are part of word-
2vec. Later you will learn about GloVe, which is another word2vec model.

Word2vec uses cosine similarity to measure the distance between a pair 
of vectors, let’s call them u and v. If the cosine similarity is close to 1 (which 
means the angle is close to 0), then the two words that correspond to vectors 
u and v probably have a similar meaning. If the cosine similarity is close to 0 
(which means the angle is close to 90), then the associated words are probably 
unrelated. Finally, if the cosine similarity is close to −1 (the angle is close to 
180), the associated words are good candidates for antonyms.  

Word2vec is used for making predictions rather than counting words. In 
particular, word2vec is designed to accomplish the following tasks:

•	learn the distributed representations for words
•	focus on the meaning of words
•	attempt to understand meaning and semantic relationships among words
•	does not require labels
•	works similar to deep approaches (such as RNNs) 
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•	is computationally more efficient
•	learns quickly relative to other models

Recall that the context of a word is the set of words that occur on either side 
of a given word. For example, consider the following sentence:

“The quick brown fox jumped over the lazy dog.”

The context of the word “jumped” in the preceding sentence is shown 
here:

(“The”, “quick”, “brown”, “fox”, “over”, “the”, “lazy”, “dog”)

In word2vec, words with similar contexts have similar reduced vector rep-
resentations. Word2vec also has a skip-gram model whose goal is to predict the 
context words that surround a given word. For example, suppose we start with 
the given word “jumped:” the skip-gram model would attempt to predict the 
context that is listed earlier in this section.

The context is derived through an iterative process that produces an 
embedding layer where the rows are vector representations of the words in a 
vocabulary.

In word2vec, every word in a vocabulary is represented as a vector. As a 
result, word2vec groups the vectors of similar words together in a vector space, 
and it detects similarities mathematically. Thus, word2vec creates vectors 
that are distributed numerical representations of word features, such as the 
context of individual words. In addition, word2vec does not require human 
intervention.

There are two well-known techniques that are part of word2vec: CBoW 
and skip-grams.

The Intuition for word2vec

An underlying assumption of word2vec is that the meaning of words can be 
inferred from their surrounding words. Suppose that two words have similar 
neighbors (meaning: the context in which it’s used is about the same), then 
these words are probably quite similar in meaning or are at least related. For 
example, the words “shocked” and “appalled” are usually used in a similar 
context.

Word2vec is well-suited for sentiment analysis based on a corpus of user-
based reviews (such as movies and books). This type of data is unstructured 
because there are almost no restrictions on the content of reviews (beyond a 
profanity rule). Other use cases for word2vec include:

A.	 genes, code, likes, playlists, social media graphs
B.	 other verbal or symbolic series in which patterns may be discerned
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Word2vec can also be used for labeled data as well as unlabeled data. 
Remember that algorithms that are designed to work with supervised data 
tend to require a large set of examples.

The word2vec Architecture

The word2vec architecture options are skip-gram (default) or continuous 
bag of words. Unlike deep neural networks, the input layer and the lone hid-
den layer for the word2vec architecture are not connected with an activation 
function. The output layers have the same dimensionality as the input layer 
(which is essentially an autoencoder). 

The training algorithm is hierarchical softmax (default) or negative sam-
pling. The following link contains information about backward error propaga-
tion in word2vec, with details for CBoW and skip-grams:

http://www.claudiobellei.com/2018/01/06/backprop-word2vec/

Limitations of word2vec

Word2vec provides only one word embedding per word, which is to say that 
a word embedding can only store one vector for each word. Other limitations 
of word2vec are listed below:

•	difficult to train on large datasets
•	fine tuning is not possible
•	training models is a domain-specific task
•	trained on a shallow neural network with one hidden layer

As you will see in Chapter 7, the attention-based mechanism overcomes 
the deficiencies of word2vec.

THE CBOW ARCHITECTURE

Given a set of words, the CBoW model architecture starts with a set of 
surrounding words and then attempts to predict the target word (which is the 
center word). The CBoW model involves a feed forward neural network that 
determines word embeddings. The neural network consists of the following:

1.	 an input layer
2.	 a hidden layer (no activation function)
3.	 an output layer (softmax activation function)

In addition, the input layer and output layer have the same size. Hence, this 
neural network resembles an autoencoder, which “squashes” the input values 
into a smaller vector to obtain a more compact representation of the input data.

Figure 5.1 displays the CBoW architecture and Figure 5.2 in the next sec-
tion displays the skip-grams architecture, both of which are shallow neural 
networks.

http://www.claudiobellei.com/2018/01/06/backprop-word2vec/
http://www.claudiobellei.com/2018/01/06/backprop-word2vec/
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FIGURE 5.1  The CBoW architecture.
SOURCE: ÒEfficient Estimation of Word Representations in Vector Space.Ó

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. [arXiv:1301.3781v2 [cs.CL] (CC BY 4.0)].

WHAT ARE SKIP-GRAMS?

N-grams infer a missing word from the words that appear on both sides 
of the word, whereas skip-grams start with the “missing” word and attempt 
to infer the words that are most likely to appear on both sides of that missing 
word. In a sense, the key idea of skip-grams is sort of like an “inversion” of 
n-grams. 

Skip-gram models predict the surrounding context words of a target word, 
and they are based on a neural network architecture that is discussed later in 
this chapter. In a sense, the skip-gram model works in the opposite manner of 
the CBoW model: skip-gram attempts to predict the surrounding words of a 
target word (which is the center word). 

In slightly more detailed terms, the following sequence of steps provides a 
high-level description of the skip-gram algorithm:

•	Treat the target word and a neighboring context word as positive examples
•	Randomly sample other words in the lexicon to get negative samples
•	Use logistic regression to train a classifier to distinguish those two cases
•	Use the weights as the embeddings

Later you will see a diagram that displays the skip-gram architecture, right 
after you see an example of finding skip-grams, which is discussed in the next 
section.
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An Example of Skip-grams

A skip-gram is a tuple that contains words before and after a given word. The 
size of the type is an integer, which can be as small as 1. In particular, 1-grams, 
2-grams, and 3-grams are also called uni-grams, bi-grams, and tri-grams. 

Let’s consider the following sentence (taken from the previous section):

'the big mouse ate the cheese'

The set of 1-grams for “ate” is as follows:

[mouse, the]

The set of 2-grams is as follows:

[(ate,the), (ate,big), (ate,mouse), (ate, the), (ate,cheese)]

The set of 3-grams is as follows:

[(ate,the,big), (ate,big,mouse), (ate,the,cheese)]

The Skip-gram Architecture

Figure 5.2 displays the skip-gram architecture that is based on a shallow 
neural network.

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT OUTPUTPROJECTION

w(t)

FIGURE 5.2  The skip-gram architecture.
SOURCE: ÒEfficient Estimation of Word Representations in Vector Space.Ó

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. [arXiv:1301.3781v2 [cs.CL] (CC BY 4.0)].
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In order to fully understand this architecture, you need some familiarity 
with basic neural networks, the softmax activation function, and the concept 
of backward error propagation. In essence, the skip-gram architecture (along 
with the n-gram architecture) is based on machine learning concepts. If need 
be, you can read the relevant appendix that discusses neural networks.

As you can see from Figure 5.2, the skip-gram architecture consists of the 
following components:

1.	 the input layer is a single word 
2.	 a hidden layer
3.	 an output layer (predicted context words)

Each word from the corpus is processed through the neural network, and 
after the model has been trained, the hidden layer contains the word embed-
dings. The concept of skip-grams is probably less intuitive than n-grams: how 
can we guess at the words that surround a single word?

Although the skip-gram model has a larger memory requirement, its word 
embeddings are better than those generated by an n-gram model.

Keep in mind the following details regarding the shallow network for the 
skip-gram model:

1.	 there is no bias term
2.	 there is no activation function between the input layer and the hidden 

layer 
3.	 there is a softmax activation function from the hidden layer to the output 

layer 
4.	 the input layer and the output layer have the same size

If you are familiar with CNNs (Convolutional Neural Networks), then you 
already know that the softmax activation function is applied between the right-
most hidden layer and the output layer because it generates a set of positive 
numbers whose sum equals one. Thus, that set of output numbers is a prob-
ability distribution, and the index position with the highest probability value is 
compared with the index of the number 1 in the one-hot encoding of the input 
data: if the index values are equal, then it’s a match (otherwise it’s not a match).

Since the input layer and the output layer have the same size, this shallow 
network is very similar to an autoencoder, whose purpose is to compress the 
one-hot encoded words of a vocabulary into a smaller representation (similar 
to the purpose of PCA in machine learning).

For example, suppose we have a vocabulary of 10,000 words (assume they’re 
English words to keep things simple), and we want to find a representation for 
each word that consists of a 1 × 300 vector of floating point numbers. Then the 
weight matrix between the input layer and the hidden layer is a 10,000 × 300 
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matrix (let’s call it W1), and the matrix between the hidden layer and the out-
put layer is a 300 × 10,000 matrix (let’s call it W2).

The neural network is trained, which means that the weights of the edges 
in the neural network are updated by a process called backward error propaga-
tion. When the training process is completed, we discard everything except for 
the weight matrix W1, which consists of 10,000 rows, each of which is a word 
in the initial vocabulary. Each row is 300 columns wide, and this 1 × 300 vector 
of floating point numbers is the encoding for the current word.

Neural Network Reduction

There are two techniques to reduce the size of the weight matrices in the 
neural network that is described in the previous section:

1.	 subsample frequent words (which decreases the number of training ex-
amples)

2.	 modify the optimization objective via Negative Sampling 

These two techniques reduce the computational complexity and also 
improve the quality of the results.

The concept underlying negative sampling is to modify a small portion of 
the model weights, which involves finding skip-grams for a given word. An 
earlier section showed you how to find the bi-grams of a simple sentence, and 
reproduced here:

[(ate,the), (ate,big), (ate,mouse), (ate, the), (ate,cheese)]

The previous set of bi-grams includes stop words, which you can remove 
during the cleaning process. Alternatively, there is a formula to calculate the 
probability of retaining a word that appears in a vocabulary. If w1 is a word in 
a vocabulary and f(w1) is the frequency of the word in a document, then the 
probability P(w1) that w1 will be retained is given here:

P(w1) = [1 + sqrt(f(w1)*1000] * 0.001/f(w1)

Another important Python library for generating distributed word embed-
dings is GloVe, which is the topic of the next section.

WHAT IS GLOVE?

As you learned earlier in this chapter, word2vec algorithms are based on 
neural networks. By contrast, GloVe uses matrix factorization techniques from 
linear algebra and word-content matrices. GloVe creates a co-occurrence 
matrix for a given (local) context, and then decomposes the global matrix.

GloVe is similar to word2vec, with an important difference: GloVe exploits 
the global co-occurrences of words instead of relying on the local context. 
GloVe proceeds as follows:
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1.	 construct a co-occurrence matrix of dimensionality words x context
2.	 factor the matrix into a matrix of dimensionality word x features 

In the initial matrix, the rows are words and the columns are word frequen-
cies in a corpus. The factored matrix has a lower dimensionality, and the rows 
are the vector representations of the initial words.

GloVe can provide 100-dimensional dense vectors as word embeddings. 
However, there are two important limitations in GloVe. First, GloVe does not 
support OOV (Out of Vocabulary) words. Second, GloVe does not support 
polysemy, which refers to words that have multiple meanings, and meaning is 
determined by the context of the words in a sentence. Consider using models 
that provide support, such as ELMo and USE (Universal Sentence Encoder).

CoVe (McCann, 2017) is based on the GloVe algorithm. CoVe (“contextual 
vectors”) uses machine translation to generate contextual vectors and does not 
use language modeling.

WORKING WITH GLOVE

GloVe is a Python-based library for word embeddings, and it’s an acronym 
for “Global Vectors [for word representation]”. GloVe performs unsupervised 
learning of word embeddings that is based on co-occurrence matrices. As such, 
GloVe combines two techniques:

1.	 Global Matrix Factorization (GMF)
2.	 Local Context Window (LCW)

In brief, Global Matrix Factorization uses matrix factorization methods 
from linear algebra that perform rank reduction on a large term-frequency 
matrix. Note that the matrices can represent term-document frequencies, in 
which case matrix rows are words and the matrix columns are documents (or 
paragraphs). Alternatively, matrices can represent term-term frequencies, with 
words on both axes and measure co-occurrence. 

GMF applied to term-document frequency matrices is called latent seman-
tic analysis (LSA), and the high-dimensional matrix in LSA is reduced via sin-
gular value decomposition (SVD). More details regarding matrix factorization 
are available online:

https://machinelearningmastery.com/introduction-to-matrix-decompositions-
for-machine-learning/

Local context window is a word embedding model that learns semantics 
by passing a window over the corpus line-by-line. This technique predicts the 
surroundings of a given word (e.g., skip-gram model) or predicts a word given 
its surroundings (e.g., CBoW).

The third important Python library for generating distributed word embed-
dings is fastText, which is the topic of the next section.

https://machinelearningmastery.com/introduction-to-matrix-decompositions-for-machine-learning/
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WHAT IS FASTTEXT?

Facebook developed the fastText NLP library, and you can install fastest 
with the following command:

pip3 install fasttext

The fastText library uses unsupervised learning to perform text clustering 
of data, which means that fastText uses a clustering algorithm. The method 
train_unsupervised() in fastText uses the skipgram model to generate 
100-dimensional vectors. In addition, fastText computes the similarity score 
between words, along with the get_nearest_neighbors() method to dis-
play the top 10 words that are the most similar to a given word. Similarity 
scores between pairs of words that are close to 1 indicates that the pair of 
words are more similar in meaning.

FastText leverages word2vec by learning vector representations for each 
word and the n-grams in each word. Next, a vector is created whose values are 
the average values of the representations during each training step. This step 
enables word embeddings to encode sub-word information. FastText vectors 
are more accurate than word2vec vectors based on various criteria. Moreover, 
fastText can handle OOV words because it uses character n-grams; however, 
higher accuracy is accompanied by longer training time.

One useful advantage of vector generation techniques such as fastText is 
that no labeled data is required.

COMPARISON OF WORD EMBEDDINGS

This section contains a summary of the main features of three types of word 
embeddings. The first group consists of the simplest algorithms for producing 
word vectors for words: these algorithms were introduced in this chapter and 
the previous chapter. 

The second group consists of the earliest algorithms that use neural net-
works (i.e., word2vec, GloVe, and fastText) or matrix factorization (such as 
word2vec) for generating distributional word embeddings. 

The third group involves contextual algorithms for creating word embed-
dings, which are essentially state of the art algorithms. For your convenience, 
a bullet list for each of the three groups is given below:

•	Group 1) Discrete word embeddings (BoW, tf, and tf-idf):
Word vectors consist of integers, decimals, and decimals, respectively
Key point: word embedding have zero context

•	Group 2) Distributional word embeddings (word2vec, GloVe, and 
fasttext):
Based on shallow NN, MF, and NN, respectively
Two words on the left and the right (bi-grams) for word2vec
Key point: only one embedding for each word (regardless of its context)
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•	Group 3) Contextual word representation (BERT et al):
transformer architecture (no CNNs/RNNs/LSTMs)
Pays “attention” to ALL words in a sentence
Key point: words can have multiple embeddings (depending on the context)

The algorithms in Group #1 provide one word embedding per word but 
no context is captured in the word embedding. Group #2 algorithms are an 
improvement because they provide context for word embeddings. Finally, 
Group #3 algorithms generate multiple word embeddings for the same word 
that appears in multiple sentences. This feature is a significant improvement 
over Group #2 algorithms, which in turn are a significant improvement over 
Group #1 algorithms.

WHAT IS TOPIC MODELING?

Topic modeling is a technique for finding topics in one or more documents, 
and it’s also a form of dimensionality reduction. There are two underlying 
assumptions:

1.	 each document consists of a mixture of topics 
2.	 each topic consists of a collection of words

Topic models assume that the semantics of a document are governed by 
so-called latent variables that are not immediately observable, which are topics 
that tend to be more abstract than the actual text. The goal of topic modeling 
is to uncover these latent variables (topics) that can reveal the primary content 
of a document or corpus.

Determining the main topics in documents can be performed in various 
ways, which is the topic of the next section.

Topic Modeling Algorithms

There are several well-known algorithms for topic modeling, some of which 
are listed below:

•	LDA (Latent Dirichlet Analysis)
•	LSI (Latent Semantic Indexing)
•	LSA (Latent Semantic Analysis)

LDA and Topic Modeling

LDA is a dimensionality reduction technique that is well-suited for topic 
modeling. LDA is a generative model that assigns topic distributions to docu-
ments. Each document is described by a distribution of topics, and each topic 
is described by a distribution of words. The rest of this section contains a 
high-level description of LDA, which in turn involves concepts such as KL 
Divergence and the JS metric, which are discussed in an appendix.
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LDA starts with a fixed set of topics, where each topic represents a set of 
words. Next, LDA maps documents to a set of topics, and document words are 
mapped to those topics.

LDA is also a clustering method that supports the concept of soft-cluster-
ing, which allows different cluster to overlap (so words can belong to multiple 
clusters). Soft clustering is advantageous because it’s simpler to find similar 
words; however, it’s more difficult to determine distinct clusters in LDA.

Note that LDA differs from the kMeans algorithm because the latter is 
based on hard-clustering, which means that each word belongs to a single 
cluster.

An LDA model assumes that documents contain several overlapping top-
ics, along with the following:

•	topics are based on the words in each document
•	the actual topics may not be known in advance
•	the actual topics do not need to be specified
•	the number of topics must be specified in advance

Recall that LDA supports soft clustering, and therefore the same word can 
appear in multiple topics (i.e., a topic has the role of a cluster). In addition, 
the LDA model is called “latent” because LDA generates the following latent 
(hidden) variables:

•	a distribution over topics for each document
•	a distribution over words for each topics

LDA uses the JS (Jenson-Shannon) metric, which is based on JS Divergence, 
and the latter is based on KL Divergence (more information about these topics 
is in an appendix). Since JS divergence is a metric, it’s also symmetric, which 
means that the similarity of two documents Doc1 and Doc2 is the same as the 
similarity of Doc2 and Doc1 (which is obviously a desirable property).

LDA uses the JS metric to determine which documents in a corpus are the 
most similar to document D by comparing the topic distribution of document 
D to the topic distributions of the documents in the corpus. A smaller JS value 
for a pair of documents indicates greater similarity between the documents.

LDA is related to ANOVA as well as PCA (discussed in an appendix), but 
there are some differences. For instance, ANOVA uses categorical independ-
ent variables and a continuous dependent variable. By contrast, LDA involves 
the “reverse” of ANOVA: it uses continuous independent variables and a cat-
egorical dependent variable. LDA also assumes that the independent variables 
are normally distributed.

LDA and PCA share one particular aspect: both involve calculating lin-
ear combinations of variables. However, LDA tries to model the difference 
between the classes of data, whereas PCA ignores the difference in class.           



NLP Concepts (II)  •  149

Text Classification vs Topic Modeling

Text classification involves supervised learning on documents or articles 
with a known set of labels and also classifies text into a single class. By contrast, 
topic modeling involves unsupervised learning, and it’s a process of analyzing 
documents/articles. Topic modeling finds groups of co-occurring words in text 
documents, and co-occurring related words are “topics.” In cases where the 
set of possible topics is unknown, topic modeling can be used to solve text clas-
sification problems to identify the topics in a document.

LANGUAGE MODELS AND NLP

In brief, a language model is a probability distribution (which is explained 
in an appendix) for sequences of words. Statistical language modeling refers to 
the creation of probabilistic models that predict the next word in a sequence 
based on the words that precede the predicted word. Calculating the prob-
ability of word occurrences involves examples of text. Models can be based on 
individual words, short sequences, sentences, or paragraphs. 

Language models are used in machine learning and unsupervised learn-
ing (search/IR and clustering/topic modeling). A language model also tries to 
distinguish between similar-sounding words. However, language models face 
some challenges, such as data sparsity and determining the likelihood of differ-
ent phrases. One approach involves the use of n-gram models.

According to Christopher Potts [1], language models learn only from 
co-occurrence patterns in the streams of symbols that they are trained on. 
Furthermore, there are at least two issues pertaining to language models:

•	Symbols streams lack crucial information
•	Language models lack communicative intent

Although pure language models do not have a counterpart to machine 
learning models that are trained via labeled datasets, Potts is of the opinion 
that it’s possible for language models to achieve language understanding. 

How to Create a Language Model

There are three main ways to create a new language model in NLP for a 
given task:

•	Create a new model “from scratch”
•	Transfer learning (use a pre-trained model)
•	Transfer learning plus vocabulary enhancement

Language models can also be classified into different subtypes. For exam-
ple, neural language models (also called continuous space language models) 
are based on neural networks. Such models use continuous representations or 
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embeddings of words to make their predictions. More details regarding lan-
guage models are available online:

https://en.wikipedia.org/wiki/Language_model
Language models are the foundation for vector space models, which is the 

topic of the next section.

VECTOR SPACE MODELS

A vector space model (VSM) is based on a mathematical model called a vec-
tor space, and represents text documents as vectors of identifiers (for example, 
using tf-idf weights). If you are unfamiliar with vector spaces, there is a brief 
introduction to vector spaces in one of the appendices.

A VSM consists of a two-dimensional array of (usually) numeric values that 
are based on frequencies. The latter restriction on the data values creates a 
“link” between a VSM and the distributional hypothesis. A VSM whose val-
ues are based on sophisticated algorithms can overcome the shortcomings of 
losing semantics and feature sparsity in BoWs (https://en.wikipedia.org/wiki/
Vector_space_model).

As a point of clarification, the following matrices do not represent vector 
space models:

•	an arbitrary matrix
•	an adjacency matrix for a tree or graph
•	a feature matrix
•	a covariance matrix
•	a correlation matrix
•	a recommender system

Recommender systems are included in the preceding list because they 
populate a user-item matrix whose cells contain a numeric rating of items; 
however, the data in such a matrix is not derived from event frequencies, which 
explains why recommender systems are not VSMs.

Now that you have seen examples of matrices that are not VSMs, the fol-
lowing list contains some examples of vector space models:

•	a term-document matrix (discussed later)
•	a context-document matrix
•	a matrix based on word2vec
•	the LSA (Latent Semantic Analysis) algorithm
•	a pair-pattern matrix

With the preceding in mind, here is a short list of some models that are 
based on (or extend) the VSM model:

•	Generalized vector space model 
•	Latent semantic analysis (LSA) 

https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Vector_space_model
https://en.wikipedia.org/wiki/Vector_space_model
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•	Term Discrimination
•	Rocchio Classification 
•	Random Indexing

Term-Document Matrix

A term-document matrix M is an mxn matrix where n is the number of 
documents and m is the number of unique words in the n documents. The 
value in a cell (i, j) in a term-document matrix M equals the number of 
times that the term i appears in document j. Moreover, the value in a cell 
(i, j) can be based on other calculations, such as tf (term frequency) or tf-
idf values. 

Note that for a large corpus, the matrix M contains mainly zero values, 
which means that M is a sparse matrix (and operations are less efficient). Also 
keep in mind that a tf-idf vector is a vector representation of a document, 
whereas a word2vec vector is a vector representation of a word.

There are two more points of interest regarding a term-document matrix 
M. First, if two documents are similar, then the two corresponding columns 
in M will tend to have similar patterns of numbers, which in turn means 
that their cosine similarity will be closer to 1. Second, instead of focusing 
on column vectors, we can examine row vectors in order to measure word 
similarity.

We can also generalize the concept of a term-document matrix by expand-
ing the meaning of a document to include phrases, sentences, and paragraphs. 
After doing so, the result is a word-context matrix.

Tradeoffs of the VSM

VSMs are not a perfect solution. Some of the advantages and disadvantages 
of a VSM are related to the advantages and disadvantages of the algorithms 
that are used to compute the values in the cells of a VSM.

One advantage of a VSM model is because it’s based on linear algebra. In 
addition, it’s possible to compute a degree of similarity between queries and 
documents in a continuous fashion, which then enables you to rank documents 
according to their possible relevance. Furthermore, VSM models support par-
tial matching.   

However, long documents are poorly represented because they have poor 
similarity values (a small scalar product and a large dimensionality). Word sub-
strings can result in a false positive match, which means that search keywords 
must match the document terms. Unfortunately, documents with a similar con-
text but contain different term vocabulary won’t be associated, which results in 
a false negative match.

In addition, the order in which the terms appear in the document is 
not tracked in the vector space representation, along with the assumption 
that the terms are statistically independent. Even so, some of the disadvan-
tages can be ameliorated by using techniques such as SVD (singular value 
decomposition).
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NLP AND TEXT MINING

In high level terms, text mining performs an analysis of large amounts of 
unstructured data to find patterns in that data. Text mining tasks involve find-
ing keywords, topics, and patterns. The general sequence of steps (tasks) is as 
follows:

•	pre-processing
•	text transformation 
•	attribute selection
•	visualization
•	evaluation

Text mining involves document classification whereby similar documents are 
placed in the same group. Text mining is useful for extracting product-related 
details, such as customer reviews, product issues, and so forth. Applications 
of text mining include spam detection, sentiment analysis, e-commerce and 
customer segmentation. The NLTK library is well-suited for text mining tasks, 
and you will see code samples in Chapter 6.  

Text Extraction Preprocessing and N-Grams

N-grams are one type of language model that assigns numeric probabilities 
to word sequences. For example, the 3-grams of a sentence is a set of tuples of 
length 3, where a tuple consists of three consecutive words in that sentence. 
Note that the terms unigram, bigram, and trigram are often used when n is 1, 
2, or 3, respectively.

RELATION EXTRACTION AND INFORMATION EXTRACTION

In simplified terms, relation extraction (RE), information extraction (IE), 
and relation classification involve various aspects of searching a corpus to find 
subsets of text that describe relationships between words in those subsets of 
text. Relation extraction is a key component of NLU, and in general, relation 
extraction involves extracting relational triplets of text, such as (founder, 
steve_jobs, apple). 

Although these three concepts overlap, they have significant differences. 
Relation extraction involves finding semantic relationships in a corpus. In addi-
tion, relation extraction is a subfield of information extraction (IE), where the 
latter involves extracting structured information from natural language text. 
However, relation extraction differs in one important respect from IE: the lat-
ter also performs disambiguation. The sense2vec algorithm is one algorithm 
for word sense disambiguation that can be used with SpaCy:

https://github.com/explosion/sense2vec
As an example, if you have ever summarized a text document, you probably 

searched for the most important words (typically nouns) and the relationship 

https://github.com/explosion/sense2vec
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between those words: this task is a form of IE. In fact, IE is relevant for 
multiple NLP tasks, including text summarization and question-answering 
systems.

Relation classification is the task of identifying the semantic relation hold-
ing between two nominal entities in text. There is no one-size-fits-all solution 
that works for multiple domains (e.g., healthcare, biology, and chemistry).

One more point of interest is the “Never Ending Language Learning” 
(NELL) semantic machine learning system from Carnegie Mellon University 
that extracts relationships from the open Web:

https://en.wikipedia.org/wiki/Never-Ending_Language_Learning

WHAT IS A BLEU SCORE?

BLEU is an acronym for “Bilingual Evaluation Understudy,”, which is a 
well-known NLP metric. A BLEU score involves a straightforward calculation, 
and since a BLEU score is typically published alongside NLP models, its inclu-
sion has become standard practice.

However, BLEU was created in order to measure machine transla-
tion, and it’s most reliable when it’s calculated on an entire corpus instead of 
a sentence-by-sentence calculation. Perhaps the popularity of BLEU scores 
resulted in a side effect in which BLEU scores are assigned to NLP tasks 
where other measurement tools produce more accurate results. 

BLEU has some significant limitations: it does not take into account sen-
tence structure, which can vary significantly among different languages (see 
the section on “case endings” in Chapter 3), nor does it take into account the 
meaning of sentences.

In simplified terms, BLEU scores involve precision, n-grams, and exact 
matches with reference sentences. BLEU checks how many n-grams in the 
output also appear in the reference translation. However, BLEU does not rec-
ognize synonyms, which means that pairs of sentences that use closely related 
yet different verbs are not considered similar in BLEU. For example, three 
sentences that use the verbs “drink,” “imbibe,” and “consume” would probably 
be considered equivalent, especially in casual conversation, but BLEU does 
not recognize them as such.

ROUGE Score: An Alternative to BLEU

In brief, a ROUGE score is a variant of BLEU that involves recall (BLEU 
uses precision) that determines the number of n-grams of the reference trans-
lation that also appear in the output (BLEU does the opposite). More informa-
tion about ROUGE is available online:

https://www.aclweb.org/anthology/N03-1020/
There are also techniques that are unrelated to BLEU, such as perplexity, 

WER, and F1 score, all of which are discussed in an appendix. Perform an 
online search with the keywords “BLEU score alternatives” and you will find 
many articles that discuss the alternatives to BLEU.

https://www.aclweb.org/anthology/N03-1020/
https://en.wikipedia.org/wiki/Never-Ending_Language_Learning
https://www.aclweb.org/anthology/N03-1020/
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SUMMARY

This chapter started with a brief overview of language models, text encod-
ing techniques, and two types of word context. Then, you learned about word 
embeddings, which are highly useful in NLP. You also got an introduction to 
distance metrics, such as cosine similarity (for measuring the distance between 
two vectors) and document similarity. 

Then you learned about word2vec, which involves CBoW and skip-grams, 
both of which are based on a shallow neural network. Furthermore, you 
learned about GloVE, which is based on matrix factorization instead of neural 
networks. In addition, you learned about the concepts of VSMs (vector space 
models) and topic modeling. 



CHAPTER 6
NLP IN R

This chapter contains NLP-related code samples in R that perform 
NLP-related tasks that are described in previous chapters. This chapter 
contains code samples that involve an R “wrapper” around underlying 

Python code. Hence, you need to install Python for your machine.
For your convenience, the first section contains an R script that you can 

launch from the command line in order to install the R libraries that you 
need for this book. Some of the code samples also contain commented-out 
code snippets for installing R libraries on your machine. The code snippets 
contain a URL that references a repository, an example of which is shown 
here:

install.packages("NLP",repos="https://cloud.r-project.org")

The second section shows you how to perform data cleaning on text strings, 
which includes tasks such as normalization (converting text to lowercase), 
removing stop words, removing punctuation, and removing white spaces. You 
will also see a similar example in which the text string is retrieved from a plain 
text file.

The third section contains examples of NER (Named Entity Recognition), 
as well as the BoW algorithm. The fourth section contains code samples that 
show you how to implement the tf-idf algorithm, as well as the execution of a 
code sample in R that involves the word2vec algorithm.

The final section shows you how to use the NLTK and SpaCy modules in R 
to perform various NLP-related tasks. 

Important: Some of the code samples in this chapter require you to install 
Python, NLTK, gensim, and spaCy your machine, which are available as free 
downloads on the Internet.

https://cloud.r-project.org
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Although there are various errors that you might encounter while 
launching the R code samples, the good news is that you will most likely 
find an online solution for those issues. For example, one SpaCy code sam-
ple had an issue that was resolved simply by upgrading to the latest version 
of SpaCy.

LAUNCH R SCRIPTS FROM THE COMMAND LINE 

In addition to executing R files from inside RStudio, you can also do so 
from the command line with the rscript utility. If you have a MacBook, this 
utility is probably in the /usr/local/bin directory, which you can verify by 
typing the following command:

which rscript

Recall that you can launch an R script (let’s call it abc.R) from the com-
mand line as follows:

rscript abc.R

In fact, you can invoke multiple R scripts from the command line with the 
shell script run_all.sh, whose contents are displayed in Listing 6.1.

LISTING 6.1: run_all.sh

# launch all R scripts in the current directory:
for f in `ls *R`
do
  echo "=> Launching $f..."
  rscript $f
done

# launch all R scripts in all sub-directories:
# for f in 'find . -print| xargs grep "\.R$"' 
# do
#  echo "=> Launching $f..."
#  rscript $f
# done

# launch R scripts starting with the letter "L":
# for f in `ls L*R`
# do
#   echo "=> Launching $f..."
#   rscript $f
# done

Listing 6.1 contains two sections: the first part executes all the R scripts and 
the second part executes all R scripts that are in the current directory and any 
subdirectory. The third part executes a subset of the R scripts in the current 
directory. The second and third portions of Listing 6.1 are commented out, so 
remove the initial #to execute those sections of the shell script.
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Launch the shell script in Listing 6.1 by navigating to the directory that 
contains run_all.sh and then typing the following commands (the first com-
mand is required only once):

chmod +x run_all.sh
./run_all.sh

The output of the preceding shell script depends on the contents of the R 
scripts in the current directory. A sample output might look something like this:

=> Launching SentimentAnalysis2017.R...
=> Launching abc.R...
[1] "=> STRING:a sample STRING; MiXed CasE; NUMBERS 1234; 
MORE! numbers 5678"
[1] "=> LOWERCASE: a sample string; mixed case; numbers 
1234; more! numbers 5678"
[1] "\r"
[1] "=> NO PUNCTUATION: a sample string mixed case numbers 
1234 more numbers 5678"
[1] "=> NO WHITE SPACE: a sample string mixed case numbers 
1234 more numbers 5678"

You can also redirect the standard output to one file and any errors to 
another file, as shown here:

./run_all.sh 1>correct.txt 2>errors.txt

For example, the first portion of correct.txt might look something like 
the following:

=> Launching SentimentAnalysis2017.R... 
=> Launching abc.R...
[1] "=> STRING:a sample STRING; MiXed CasE; NUMBERS 1234; 
MORE! numbers 5678"
[1] "=> LOWERCASE: a sample string; mixed case; numbers 
1234; more! numbers 5678"
[1] "\r" 

In addition, the first portion of errors.txt might look something like the 
following:

=> Launching SentimentAnalysis2017.R... 
Error in file(file, "rt") : cannot open the connection
Calls: read.csv -> read.table -> file
In addition: Warning message:
In file(file, "rt") :
  cannot open file 'str(apple)': No such file or directory
Execution halted

If you prefer, you can also launch run_all.sh so that it runs as back-
ground process, as shown here:

./run_all.sh 1>correct.txt 2>errors.txt &
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Now let’s see how to install the R libraries for the R scripts in this chapter, 
as discussed in the next section.

Installing RStudio Packages 

An R package requires a one-time installation before you can reference the 
package in an R script. For example, the following code snippet installs the 
NLP package for R and then references the NLP package:

install.packages("NLP",repos="https://cloud.r-project.org")
package(NLP)

For your convenience, Listing 6.2 shows the content of package_list.R 
that contains an extensive list of R libraries that you will need for the R scripts 
in this book. Use the rscript command line utility to launch library_
list.R and install the various R libraries.

LISTING 6.2: library_list.R

install.packages("cleanNLP",  repos="https://cloud.r-project.org")
install.packages("devtools", repos="http://cran.us.r-project.org")
install.packages("dplyr",     repos="https://cloud.r-project.org")
install.packages("formattable", repos="https://cloud.r-project.org")
install.packages("ggplot2",   repos="https://cloud.r-project.org")
install.packages("githubinstall",repos="http://cran.us.r-project.org")
install.packages("gutenberger", repos="https://cloud.r-project.org")
install.packages("hcandersenr", repos="https://cloud.r-project.org")
install.packages("janeaustenr", repos="https://cloud.r-project.org")
install.packages("lubridate", repos="https://cloud.r-project.org")
install.packages("magrittr",  repos="https://cloud.r-project.org")
install.packages("NLP",       repos="https://cloud.r-project.org")
install.packages("openNLP",   repos="https://cloud.r-project.org")
install.packages("quanteda", repos="http://cran.us.r-project.org")
install.packages("Rcpp",     repos="http://cran.us.r-project.org")
install.packages("readr",     repos="https://cloud.r-project.org")
install.packages("reshape2",  repos="https://cloud.r-project.org")
install.packages("reticulate", repos="https://cloud.r-project.org")
install.packages("rJava",    repos="http://cran.us.r-project.org")
install.packages("rpart",     repos="https://cloud.r-project.org")
install.packages("RTextTools", repos="https://cloud.r-project.org")
install.packages("scales",    repos="https://cloud.r-project.org")
install.packages("SnowballC", repos="https://cloud.r-project.org")
install.packages("spacyr",    repos="https://cloud.r-project.org")
install.packages("stringr",   repos="https://cloud.r-project.org")
install.packages("syuzhet",   repos="https://cloud.r-project.org")
install.packages("textstem", repos="http://cran.us.r-project.org")
install.packages("tidytext",  repos="https://cloud.r-project.org")
install.packages("tidyverse", repos="https://cloud.r-project.org")
install.packages("tm",        repos="https://cloud.r-project.org")
install.packages("topicmodels", repos="https://cloud.r-project.org")
install.packages("udpipe",   repos="http://cran.us.r-project.org")
install.packages("wordcloud", repos="https://cloud.r-project.org")
# now perform the following installation:

https://cloud.r-project.org
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package(devtools)
install_github("jonathanbratt/RBERT")
install_github("jonathanbratt/RBERTviz")

Listing 6.2 contains a set of install-related commands for installing more 
than 30 R libraries on your machine. Navigate to the directory that contains the 
code in Listing 6.2 and execute the following command:

rscript package_list.R

Now that we have completed the installation-related steps, let’s look at an 
overview of R packages that you can use for cleaning NLP data, as discussed 
in the next section.

NLP PACKAGES IN R 

The following list of R packages provide support for NLP, some of which 
are discussed in this chapter:

•	OpenNLP
•	Quanteda
•	Spacyr
•	Stringr
•	Text2vec
•	Wordcloud

OpenNLP is an R interface to Apache OpenNLP that provides Java-based 
NLP tools. OpenNLP handles NLP tasks such as word tokenization, sentence 
segmentation, POS, NER, and chunking.

Quanteda is a comprehensive framework for performing quantitative text 
analysis in R. Quanteda enables you to work with tokens and n-grams, as well 
as sparse matrices of documents by features.

Spacyr is an R wrapper for the Python-based spaCy library. Spacyr provide 
simple access to spaCy library in a straightforward manner. Install spaCy and 
spacyr through the spacyr function spacy_install().

Stringr provides wrappers for the string package and simplifies working 
with character strings in R. Stringr includes functionality for working with 
sequences of characters surrounded by quotation marks.         

Text2vec provides an efficient framework with a concise API for text analy-
sis and natural language processing. Some of its important features include 
allowing users to easily solve complex tasks, maximize efficiency per single 
thread, transparently scale to multiple threads on multicore machines, and use 
streams and iterators.

TM is a package provides a set of predefined sources, such as DirSource 
and DataframeSource, which handle a directory, a vector interpreting each 
component as a document, or data-frame-like structures (such as CSV files), 
and more.
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Wordcloud is package that creates word clouds, which are typically used to 
visualize text or a corpus of documents.

COMMON TASKS FOR CLEANING NLP DATASETS 

Cleaning data in datasets for real estate, the Titanic dataset, and customer 
churn (among others) involves the following steps:

•	detecting and correcting invalid data
•	imputing values for missing data
•	handling outliers
•	handling imbalanced datasets
•	selecting the most significant features

By contrast, cleaning NLP data involves a different set of tasks, such as 
tokenizing data (i.e., determining word tokens), converting text to lowercase, 
removing punctuation, and removing extra white spaces. 

Cleaning numeric data versus text-based data has little more in common 
than the words “cleaning data.” Later in this chapter you will see simple R code 
samples for performing the following tasks:

•	Tokenization
•	Convert to Lowercase
•	Remove Stop Words
•	Stemming 
•	Lemmatization

Let’s examine why the preceding tasks can be performed more easily in 
some languages and tend to be more complex in other language groups.

Does the Language Make a Difference? 

There are various NLP toolkits available that perform the tasks in the pre-
ceding section, and results tend to be better for English and European lan-
guages. These languages have the following features:

•	Specify a simple delimiter for tokens (such as a space character)
•	Do not involve declension of articles and adjectives
•	Distinguish between singular and plural nouns
•	Contain few accent marks (or none at all)

By contrast, languages such as Japanese, Mandarin, and Cantonese tend 
to be more difficult in terms of cleaning text because of the following reasons:

•	An optional word delimiter (Japanese)
•	Multiple alphabets (Japanese)
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•	Declension of articles and adjectives (Slavic languages)
•	Multiple tones (Mandarin and Cantonese)
•	Same noun for singular and plural (Japanese)

CLEANING NLP DATA IN R 

This section contains simple R scripts for performing various data cleaning 
tasks in NLP. Please refer to the appropriate sections in Chapter 4 if you need 
to review the various topics (such as tokenization) in this chapter.

Tokenization

Listing 6.3 shows the content of tokens1.R that tokenizes a text string.

LISTING 6.3: tokens1.R 

package(Rcpp)
package(quanteda)

str <- "a STRING? with Mixed Case! with numbers 1234 and 5678"
print(paste0("string:",str))

remove_punct<-tokens(str,remove_punct=TRUE, remove_
symbols=TRUE,remove_numbers=TRUE)
print(paste0("=> tokens without punctuation:"))
print(paste0(remove_punct))

Listing 6.3 starts by referencing Rcpp and quanta, and then initializes the 
variable str as a text string and displays its contents. The next code snip-
pet removes punctuation and then removes digits from the string. Launch the 
code in Listing 6.3 to see the following output:

Package version: 3.1.0
Unicode version: 10.0
ICU version: 61.1
Parallel computing: 8 of 8 threads used.
See https://quanteda.io for tutorials and examples.
[1] "string:a STRING? with Mixed Case! with numbers 1234 and 5678"
[1] "=> tokens without punctuation:"
[1] "a"       "STRING"  "with"    "Mixed"   "Case"    "with"    "numbers"
[8] "and"

Remove Punctuation in Strings

Listing 6.4 shows the content of punctuation1.R that removes punctua-
tion from a text string.

LISTING 6.4: punctuation1.R

package(tm)
str <- "a sample STRING!; MiXed CasE; NUMBERS 1234; number 5678"
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print(paste0("=> initial string:"))
print(paste0(str))

# remove punctuation:
str <- lapply(str, removePunctuation)
print(paste0("=> no punctuation:"))
print(paste0(str))

Listing 6.4 starts by referencing the tm package and then initializing the 
variable str as a string consisting of uppercase and lowercase letters, punc-
tuation, and digits. Next, the lapply() function applies the R function 
removePunctuation() to the string str and then the print() statement 
displays the new contents of the variable str. Launch the code in Listing 6.4 
to see the following output:

Loading required package: NLP
[1] "=> initial string:"
[1] "a sample STRING!; MiXed CasE; NUMBERS 1234; number 5678"
[1] "=> no punctuation:"
[1] "a sample STRING MiXed CasE NUMBERS 1234 number 5678"

Convert Strings to Lowercase and Uppercase

Listing 6.5 shows the content of lower_upper_case1.R that displays a 
random set of 10 stop words.

LISTING 6.5: lower_upper_case1.R

str <- "a STRING with Mixed Case with numbers 1234 and 5678"
print(paste0("string:",str))

# convert to lowercase:
str <- lapply(str, tolower)
print(paste0("lowercase:"))
print(paste0(str))

# convert to uppercase:
str <- lapply(str, toupper)
print(paste0("uppercase:"))
print(paste0(str))

Listing 6.5 initializes the variable str as a text string and displays its con-
tents. Next, the lapply() function applies the R function tolower() to the 
string str to convert the contents of str to lowercase and then displays the 
result. In an analogous fashion, the next code snippet invokes the R function 
toupper() to convert the contents of str to uppercase letters. Launch the 
code in Listing 6.5 to see the following output:

[1] "string:a STRING with Mixed Case with numbers 1234 and 5678"
[1] "lowercase:"
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[1] "a string with mixed case with numbers 1234 and 5678"
[1] "uppercase:"
[1] "A STRING WITH MIXED CASE WITH NUMBERS 1234 AND 5678"

Convert File Data to Lowercase and Uppercase

Listing 6.6 shows the content of file1.txt and Listing 6.7 shows the con-
tent of file2.txt, both of which are referenced in Listing 6.8.

LISTING 6.6: file1.txt

this IS A SAMPLE for file #1
its contents are Mixed Case
and it's not just text data
1234 and other numbers 5678

LISTING 6.7: file2.txt

this is a sample for file #2
Some Uppercase Words 
MIXING ALPHANUMERIC characters
!@#$ and 5678 as well

Listing 6.8 shows the content of lower_upper_case2.R that illustrates 
how to read text from two text files and convert the text to lowercase and also 
to uppercase.

LISTING 6.8: lower_upper_case2.R

#Load the files:
file1 <- read.delim("file1.txt")
file2 <- read.delim("file2.txt")
text1 <- c(file1,file2)
print(paste0("=> original text1:"))
print(paste0(text1))

#convert to lowercase:
text1 <- lapply(text1, tolower)
print(paste0("=> lowercase text1:"))
print(paste0(text1))

#convert to uppercase:
text1 <- lapply(text1, toupper)
print(paste0("=> uppercase text1:"))
print(paste0(text1))

Listing 6.8 starts by initializing the variables file1 and file2 with the con-
tents of the text files file1.txt and file2.txt, respectively. The print() 
statement displays a comment, and the head() statement displays 10 ran-
domly selected stop words. Launch the code in Listing 6.8 to see the following 
output:
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Loading required package: NLP
[1] "=> original text1:"
[1] "c(\"its contents are Mixed Case\", \"and it's not just 
text data\", \"1234 and other numbers 5678\")"
[2] "c(\"Some Uppercase Words \", \"MIXING ALPHANUMERIC 
characters\", \"!@#$ and 5678 as well\")"         
[1] "=> lowercase text1:"
[1] "c(\"its contents are mixed case\", \"and it's not just 
text data\", \"1234 and other numbers 5678\")"
[2] "c(\"some uppercase words \", \"mixing alphanumeric 
characters\", \"!@#$ and 5678 as well\")"         
[1] "=> uppercase text1:"
[1] "c(\"ITS CONTENTS ARE MIXED CASE\", \"AND IT'S NOT JUST 
TEXT DATA\", \"1234 AND OTHER NUMBERS 5678\")"
[2] "c(\"SOME UPPERCASE WORDS \", \"MIXING ALPHANUMERIC 
CHARACTERS\", \"!@#$ AND 5678 AS WELL\")"

Stop Words

Listing 6.9 shows the content of stop_words1.R that displays a random 
set of 10 stop words.

LISTING 6.9: stop_words1.R

package(tidytext)
package(tm)

print(paste0("=> sample of 10 stop words:",collapse=" "))
head(sample(stop_words$word, 10), 10)

str  <- c("this is a sentence and it is short")
str <- c("123", "this","is","a","sentence!?")
str2 <- removeWords(str, stopwords())

print(paste0("=> Contents of str:",collapse=" "))
print(paste0(str))

print(paste0("=> 1Contents of str2:",collapse=" "))
print(paste0(str2))

print(paste0("=> 2Contents of str2:",collapse=" "))
print(paste0(str2, collapse=""))

Listing 6.9 starts by referencing the tidytext R package that contains 
a set of stop words. The print() statement displays a comment, and the 
head() statement displays 10 randomly selected stop words. Launch the code 
in Listing 6.9 to see the following output:

[1] "=> sample of 10 stop words:"
[1] "lets"  "highest"  "downs"  "upon"   "anything"  "regarding"
[7] "z"     "hers"     "their"  "not"     
[1] "=> Contents of str:"
[1] "123"    "this"     "is"     "a"      "sentence!?"
[1] "=> 1Contents of str2:"
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[1] "123"    ""         ""       ""       "sentence!?"
[1] "=> 2Contents of str2:"
[1] "123sentence!?"

Stemming in R

Listing 6.10 shows the content of word_stem.R that illustrates how to 
perform stemming in R. If need be, you can read the appropriate section in 
Chapter 4 that discusses how stemming is performed on text.

LISTING 6.10: word_stem.R

package(tm)

# The tm package provides the stemDocument() to stem words,
# which takes in a character vector and returns a character vector,
# or takes in a PlainTextDocument and returns a PlainTextDocument.
# ex: stemDocument(running,runs,ran) returns (run,run,ran)

# a bug in StemDocument:
# https://stackoverflow.com/questions/54197636/how-is-the-correct-
use-of-stemdocument
# A workaround could be using the package quanteda:
#install.packages("quanteda",repos = "http://cran.us.r-project.org")

package(tm)

word = "running"
stemDocument(word, language = "english")

word = "image"
stemDocument(word, language = "english")

word = "poder" # Spanish for "can" or "to be able to"
stemDocument(word, language = "spanish")

word = "potere" # Italian for "can" or "to be able to"
stemDocument(word, language = "italian")

Listing 6.10 starts by referencing the tm package that can perform stem-
ming on text. The remaining portion of Listing 6.10 invokes the stemDocu-
ment() method to stem various words. Launch the code in Listing 6.10 to see 
the following output:

Loading required package: NLP
[1] "run"
[1] "imag"
[1] "pod"
[1] "pot"

Lemmatization

Listing 6.11 shows the content of lemmatization.R that uses the R library 
textstem and the R library udpipe in order to show you three different blocks 
of code that perform lemmatization in R.



166  •  Natural Language Processing Using R Pocket Primer

LISTING 6.11: lemmatization.R

#install.packages("textstem",repos="http://cran.us.r-project.org")
#install.packages("udpipe",repos="http://cran.us.r-project.org")
library(textstem)

# first vector of words:
vector1 <- c("eat", "ate", "eaten")
print("vector of words:")
print(vector1)
print("lemmatized vector of words:")
lemmatize_words(vector1)
cat("\n")

# second vector of words:
vector2 <- c("am", "be", "was")
print("vector of words:")
print(vector2)
print("lemmatized vector of words:")
lemmatize_words(vector2)
cat("\n")

# lemmatize a corpus:
library(udpipe)
docs <- c(doc_a = "When ignorance is bliss, 'tis folly to be wise 
said the Bard",
          doc_b = "Gambarimasho means let's try our best")
anno <- udpipe(docs, "english")
anno[, c("doc_id", "sentence_id", "token", "lemma", "upos")]

Listing 6.11 starts by referencing two libraries, followed by a code block in 
which the variable vector1 is initialized with three verb forms of the verb “eat.” 
Next, the method lemmatize_words() is invoked with the variable vector1, 
which generates the correct output: three occurrences of the verb “eat.”

The second code block initializes the variable vector2 with three verb 
forms of the verb “be.” Next, the method lemmatize_words() is invoked 
with the variable vector2, which generates the correct output: three occur-
rences of the verb “be.”

The third code block initializes the variable docs with two sentences, and 
then invokes the udpipe() method to lemmatize each word in docs. The final 
code snippet displays a tabular output that specifies the document, sentence 
ID, token, and lemmatization of the token, and the POS of the token. Launch 
the code in Listing 6.11 to see the following output, where the correct lemma-
tization of the verbs is shown in bold.

[1] "vector of words:"
[1] "eat"   "ate"   "eaten"
[1] "lemmatized vector of words:"
[1] "eat" "eat" "eat"

[1] "vector of words:"
[1] "am"  "be"  "was"



NLP in R  •  167

[1] "lemmatized vector of words:"
[1] "be" "be" "be"

   doc_id sentence_id        token        lemma  upos
1   doc_a           1         When         when   ADV
2   doc_a           1    ignorance    ignorance  NOUN
3   doc_a           1           is           be   AUX
4   doc_a           1        bliss        bliss   ADJ
5   doc_a           1            ,            , PUNCT
6   doc_a           1            '            ' PUNCT
7   doc_a           1          tis           ti  NOUN
8   doc_a           1        folly        folly   ADV
9   doc_a           1           to           to  PART
10  doc_a           1           be           be   AUX
11  doc_a           1         wise         wise   ADV
12  doc_a           1         said          say  VERB
13  doc_a           1          the          the   DET
14  doc_a           1         Bard         Bard PROPN
15  doc_b           1 Gambarimasho Gambarimasho PROPN
16  doc_b           1        means         mean  VERB
17  doc_b           1          let          let  VERB
18  doc_b           1           's           's  PRON
19  doc_b           1          try          try  VERB
20  doc_b           1          our           we  PRON
21  doc_b           1         best         best   ADJ

Notice that the word gambarisho, which is the Romaji-based spelling of 
the Japanese verb 画MBある (which means “to try one’s best”) is identified as 
a proper noun in the preceding output.

POS (PARTS OF SPEECH) WITH SPACY IN R

POS is discussed in chapter 4, and Listing 6.12 shows the content of 
spacy1.R that illustrates how to find the parts of speech in a text string.

LISTING 6.12: spacy1.R

# => install spacyr with this command:
#devtools::install_github("kbenoit/spacyr", build_vignettes=FALSE)

# R wrapper for spaCy Python package to extract parts of speech:
library(spacyr) 

doc1 <- c("I love Chicago deep dish pizza.")
spacy_parse(doc1, tag = TRUE, entity = FALSE, lemma = FALSE)

Listing 6.12 starts by referencing spacyr, which is a R-based “wrapper” 
around the Python library spaCy. The next code snippet initializes the variable 
doc as a text string, and then invokes the spacy_parse() API to parse the 
contents of doc.
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In brief, the spacy_parse() API invokes the Python spaCy library to 
tokenize and “tag” the tokens in the variable doc. Launch the code in Listing 
6.12 to see the following output:

[1] "Extract POS and tags: "
Finding a python executable with spaCy installed...
spaCy (language model: en_core_web_sm) is installed in /Library/Frameworks/
Python.framework/Versions/3.7/bin/python3
successfully initialized (spaCy Version: 3.1.3, language model: en_core_web_sm)
(python options: type = "python_executable", value = "/Library/Frameworks/
Python.framework/Versions/3.7/bin/python3")
  doc_id sentence_id token_id   token   pos tag
1  text1           1        1       I  PRON PRP
2  text1           1        2    love  VERB VBP
3  text1           1        3 Chicago PROPN NNP
4  text1           1        4    deep   ADJ  JJ
5  text1           1        5    dish  NOUN  NN
6  text1           1        6   pizza  NOUN  NN
7  text1           1        7       . PUNCT   .
[1] "Extract NER and tags: "
  doc_id sentence_id  entity entity_type
1  text1           1 Chicago         GPE
[1] "Extract noun phrases: "
  doc_id sentence_id              nounphrase
1  text1           1                       I
2  text1           1 Chicago_deep_dish_pizza
[1] "Dependency parsing: "
  doc_id sentence_id token_id   token head_token_id  dep_rel entity
1  text1          1       1        I      2    nsubj       
2  text1          1       2     love      2     ROOT       
3  text1          1       3  Chicago      6     nmod  GPE_B
4  text1          1       4     deep      5     amod       
5  text1          1       5     dish      6 compound       
6  text1          1       6    pizza      2     dobj       
7  text1          1       7        .      2    punct       
Python space is already attached.  If you want to switch to a different Python, 
please restart R.
successfully initialized (spaCy Version: 3.1.3, language model: it_core_news_sm)
(python options: type = "python_executable", value = "/Library/Frameworks/
Python.framework/Versions/3.7/bin/python3")
[1] "Parse Italian: "
   doc_id sentence_id token_id       token   pos tag entity
1       R           1        1           R PROPN  SP       
2       R           1        2           e CCONJ  CC       
3       R           1        3         una   DET  RI       
4       R           1        4      lingua  NOUN   S       
5       R           1        5      gratis   ADV   B       
6       R           1        6         per   ADP   E       
7       R           1        7 programmare  VERB   V       
8       R           1        8        roba  NOUN   S       
9       R           1        9 scientifica   ADJ   A       
10      R           1       10           . PUNCT  FS       

POS IN R

POS is an acronym for parts of speech, which includes nouns, adjectives, 
verbs, direct and indirect objects, and so forth.

Listing 6.13 shows the content of pos_tokens1.R that illustrates how to 
display the parts of speech in a text string in R.
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LISTING 6.13: pos_tokens1.R

#install.packages("rJava",repos = "http://cran.us.r-project.org")
#install.packages("NLP",repos = "http://cran.us.r-project.org")
#install.packages("openNLP",repos = "http://cran.us.r-project.org")

package(NLP)
package(openNLP)

sent1 <- paste(c("I love Chicago deep dish pizza!", "Also Pizzeria Uno!"))
str1  <- as.String(sent1)

cat("\n")
print(paste0("contents of str1:"))
str1

cat("str1 tokens:","\n")
sent_annotator <- Maxent_Sent_Token_Annotator()
word_annotator <- Maxent_Word_Token_Annotator()
anntr2 <- annotate(str1, list(sent_annotator, word_annotator))
anntr2

cat("str1 annotations:","\n")
pos_tag_annotator <- Maxent_POS_Tag_Annotator()
anntr3 <- annotate(str1, pos_tag_annotator, anntr2)
anntr3

cat("subset of tokens:","\n")
anntr3_words <- subset(anntr3, type == "word")
anntr3_words 

cat("POS of tokens:","\n")
tags <- sapply(anntr3_words$features, '[[', "POS")
tags

cat("table:","\n")
table(tags)

Listing 6.13 starts by referencing the NLP and openNLP packages, followed 
by initializing the variables sent1 and str1 and then displaying the contents 
of str1. The next portion of Listing 6.12 shows the start and end positions of 
the tokens in the variable str1. 

The next code snippet also shows the start and end positions of the tokens, 
along with the type of token (word versus sentence) and the POS of each 
token. The subsequent code snippet displays the subset of tokens that are of 
type word, and the final code snippet displays only the POS of the tokens. 
Launch the code in Listing 6.13 to see the following output:

[1] "contents of str1:"
I love Chicago deep dish pizza!
Also Pizzeria Uno!
str1 tokens: 
 id type     start end features
  1 sentence     1  31 constituents=<<integer,7>>
  2 sentence    33  50 constituents=<<integer,3>>
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  3 word         1   1 
  4 word         3   6 
  5 word         8  14 
  6 word        16  19 
  7 word        21  24 
  8 word        26  30 
  9 word        31  31 
 10 word        33  36 
 11 word        38  45 
 12 word        47  50 
str1 annotations: 
 id type     start end features
  1 sentence     1  31 constituents=<<integer,7>>
  2 sentence    33  50 constituents=<<integer,3>>
  3 word         1   1 POS=PRP
  4 word         3   6 POS=VBP
  5 word         8  14 POS=NNP
  6 word        16  19 POS=JJ
  7 word        21  24 POS=NN
  8 word        26  30 POS=NN
  9 word        31  31 POS=.
 10 word        33  36 POS=RB
 11 word        38  45 POS=NNP
 12 word        47  50 POS=NNP
subset of tokens: 
 id type start end features
  3 word     1   1 POS=PRP
  4 word     3   6 POS=VBP
  5 word     8  14 POS=NNP
  6 word    16  19 POS=JJ
  7 word    21  24 POS=NN
  8 word    26  30 POS=NN
  9 word    31  31 POS=.
 10 word    33  36 POS=RB
 11 word    38  45 POS=NNP
 12 word    47  50 POS=NNP
POS of tokens: 
 [1] "PRP" "VBP" "NNP" "JJ" "NN" "NN" "." "RB" "NNP" "NNP"
table: 
tags
  .  JJ  NN NNP PRP  RB VBP 
  1   1   2   3   1   1   1 

NER IN R

NER is an acronym for Named Entity Recognition, which was introduced 
in Chapter 4. Listing 6.14 shows the content of ner_example1.R that illus-
trates how to perform NER in R programs.

LISTING 6.14: ner_example1.R

library(magrittr)

# R wrapper for spaCy Python package to extract parts of speech:
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library(spacyr) 

str1 <- c("Mr Smith eats Chicago deep dish pizza!", "Also Pizzeria Uno!")
cat("\n")
print(paste0("contents of str1:"))
str1

parsed1 <- spacy_parse(str1, lemma = FALSE, entity = TRUE, nounphrase = TRUE)
entity_extract(parsed1)

entity_extract(parsed1, type = "all")

entity_consolidate(parsed1) %>%
    tail()

Listing 6.14 starts by referencing two R libraries, and then initializes and 
displays the contents of the string variable str1. The next code snippet invokes 
the API spacy_parse(), just as you saw in a previous code sample. 

The final portion of Listing 6.14 displays three sections of output, starting 
with the parsed tokens of str1. The second and third sections of the out-
put are the same: they display the doc_id, sentence_id, entity, and 
entity_type of the tokens in the first output section. Launch the code in 
Listing 6.14 to see the following output:

[1] "contents of str1:"
[1] "Mr Smith eats Chicago deep dish pizza!"
[2] "Also Pizzeria Uno!"                    
Finding a python executable with spaCy installed...
spaCy (language model: en_core_web_sm) is installed in /Library/Frameworks/
Python.framework/Versions/3.7/bin/python3
successfully initialized (spaCy Version: 3.1.3, language model: en_core_web_sm)
(python options: type = "python_executable", value = "/Library/Frameworks/
Python.framework/Versions/3.7/bin/python3")
  doc_id sentence_id       entity entity_type
1  text1           1        Smith      PERSON
2  text1           1      Chicago         GPE
3  text2           1 Pizzeria_Uno         ORG

  doc_id sentence_id       entity entity_type
1  text1           1        Smith      PERSON
2  text1           1      Chicago         GPE
3  text2           1 Pizzeria_Uno         ORG

   doc_id sentence_id token_id        token    pos entity_type
6   text1           1        6         dish   NOUN            
7   text1           1        7        pizza   NOUN            
8   text1           1        8            !  PUNCT            
9   text2           1        1         Also    ADV            
10  text2           1        2 Pizzeria_Uno ENTITY         ORG
11  text2           1        3            !  PUNCT            

The following link contains more information about entities:
https://spacy.io/usage/linguistic-features#section-named-entities

THE TF-IDF ALGORITHM

In Chapter 4, you learned about the tf-idf algorithm, and this section con-
tains a code sample. Listing 6.15 shows the content of tfidf_sample.R that 
illustrates how to perform tf-idf in R.

https://spacy.io/usage/linguistic-features#section-named-entities
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LISTING 6.15: tfidf_sample.R

library(tm)
#initialize some short documents:
doc1 <- "I love deep dish pizza." 
doc2 <- "Chicago deep dish pizza." 
doc3 <- "New York deep dish pizza." 
doc4 <- "Good toppings and crust."
doc5 <- "Deep dish with Parmigiano cheese."

# create a document list:
doc.list <- list(doc1, doc2, doc3, doc4, doc5)
N.docs <- length(doc.list)
names(doc.list) <- paste0("doc", c(1:N.docs))
query <- "Good pizza"

# create a corpus from the documents and query:
my.docs <- VectorSource(c(doc.list, query))
my.docs$Names <- c(names(doc.list), "query")
my.corpus <- Corpus(my.docs)

#####################################
# => transform the corpus as follows:
# 1) convert to lowercase
# 2) remove stopwords
# 3) remove punctuation
# 4) remove numbers
# 5) remove multiple whitespaces
# 6) remove plural
#####################################

my.corpus2 <- tm_map(my.corpus,  tolower)
my.corpus3 <- tm_map(my.corpus2, removeWords, stopwords("english"))
my.corpus4 <- tm_map(my.corpus3, removePunctuation)
my.corpus5 <- tm_map(my.corpus4, removeNumbers)
my.corpus6 <- tm_map(my.corpus5, stripWhitespace)
my.corpus6

library(SnowballC)
my.corpus7 <- tm_map(my.corpus6, stemDocument)

# create a document/term matrix:
docTermMatrix <- DocumentTermMatrix(my.corpus7)
cat("\n")
paste("*** Document Term Matrix ***",collapse=" ")
docTermMatrix
inspect(docTermMatrix)

# perform tf-idf operation:
docTermMatrix_tfxidf <- weightTfIdf(docTermMatrix)
cat("\n")
paste("*** TF/IDF Matrix ***",collapse=" ")
docTermMatrix_tfxidf
inspect(docTermMatrix_tfxidf)

Listing 6.15 starts by referencing an R library and then initializing 5 vari-
ables as documents. In this code sample, a “document” is simply a text string, 
which makes it easier to understand the output that is displayed later in this 
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section. In general, though, you would replace each document with a bona fide 
document instead of using simple text strings.

The next portion of Listing 6.15 initializes doc.list as the list of five 
documents that are defined in the previous code section. Next, the variable 
doc.docs is defined, and eventually, the variable my.corpus is defined, as 
shown here:

my.corpus <- Corpus(my.docs)

The next sequence of code snippets performs sequential processing on 
my.corpus, as described in the comment block, such as removing stops words 
and punctuation. 

The final portion of Listing 6.15 calculates the document-term matrix 
that is in the variable docTermMatrix, after which the tfidf values can 
be calculated on the entries of this matrix and contained in the variable 
docTermMatrix_tfxidf. Launch the code in Listing 6.13 to see the fol-
lowing output:

[1] 1
<<SimpleCorpus>>
Metadata:  corpus specific: 1, document level (indexed): 0
Content:  documents: 6

[1] "*** Document Term Matrix ***"
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity           : 69%
Maximal term length: 10
Weighting          : term frequency (tf)
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity           : 69%
Maximal term length: 10
Weighting          : term frequency (tf)
Sample             :
    Terms
Docs chicago crust deep dish good love new pizza top york
   1       0     0    1    1    0    1   0     1   0    0
   2       1     0    1    1    0    0   0     1   0    0
   3       0     0    1    1    0    0   1     1   0    1
   4       0     1    0    0    1    0   0     0   1    0
   5       0     0    1    1    0    0   0     0   0    0
   6       0     0    0    0    1    0   0     1   0    0

[1] "*** TF/IDF Matrix ***"
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity           : 69%
Maximal term length: 10
Weighting          : term frequency - inverse document frequency 
(normalized) (tf-idf)
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity           : 69%
Maximal term length: 10
Weighting          : term frequency - inverse document frequency 
(normalized) (tf-idf)
Sample             :
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    Terms
Docs     chees   chicago     crust      deep      dish      good      love
   1 0.0000000 0.0000000 0.0000000 0.1462406 0.1462406 0.0000000 0.6462406
   2 0.0000000 0.6462406 0.0000000 0.1462406 0.1462406 0.0000000 0.0000000
   3 0.0000000 0.0000000 0.0000000 0.1169925 0.1169925 0.0000000 0.0000000
   4 0.0000000 0.0000000 0.8616542 0.0000000 0.0000000 0.5283208 0.0000000
   5 0.6462406 0.0000000 0.0000000 0.1462406 0.1462406 0.0000000 0.0000000
   6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7924813 0.0000000
    Terms
Docs parmigiano     pizza       top
   1  0.0000000 0.1462406 0.0000000
   2  0.0000000 0.1462406 0.0000000
   3  0.0000000 0.1169925 0.0000000
   4  0.0000000 0.0000000 0.8616542
   5  0.6462406 0.0000000 0.0000000
   6  0.0000000 0.2924813 0.0000000

WORKING WITH N-GRAMS

In Chapter 5, you learned about n-grams. Listing 6.16 shows the content of 
ngrams1.R that illustrates how to work with a bi-gram in R.

LISTING 6.16: ngrams1.R

#install.packages('janeaustenr', repos = "http://cran.us.r-project.org")
library(janeaustenr)
library(magrittr)
library(dplyr)
library(tidytext)

# n-grams are discussed in chapter 5
paste0("Bigrams:",collapse=" ")
austen_bigrams <- austen_books() %>%
  unnest_tokens(bigram, text, token = "ngrams", n = 2)
austen_bigrams

paste0("Count bigrams:",collapse=" ")
austen_bigrams %>%
  count(bigram, sort = TRUE)

library(tidyr)
bigrams_separated <- austen_bigrams %>%
  separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word)
paste0("Filtered by street for word2:",collapse=" ")
bigrams_filtered %>%
  filter(word2 == "street") %>%
  count(book, word1, sort = TRUE)

paste0("Filtered by street for word1:",collapse=" ")
bigrams_filtered %>%
  filter(word1 == "street") %>%
  count(book, word2, sort = TRUE)

Listing 6.16 starts by referencing several R libraries, one of which gives 
us access to Jane Austen’s works. The first code block populates the variable 
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austen_bigrams with the set of bigrams from one of her books (Sense and 
Sensibility) via the function unnest_tokens(). The second code block dis-
plays a partial list of bigrams from austen_bigrams, along with the number 
of occurrences of each bigram. 

The third code block initializes the variable bigrams_filtered by extract-
ing the words from austen_bigrams that are not stop words. The fourth code 
block extracts the list of words from austen_bigrams in which the second 
word of a bigram is the word “street.” Similarly, the fifth code block extracts 
the list of words from austen_bigrams in which the first word of a bigram is 
the word “street.” Launch the code in Listing 6.16 to see the following output:

[1] "Bigrams:"
# A tibble: 675,025 × 2
   book                bigram         
   <fct>               <chr>          
 1 Sense & Sensibility sense and      
 2 Sense & Sensibility and sensibility
 3 Sense & Sensibility NA             
 4 Sense & Sensibility by jane        
 5 Sense & Sensibility jane austen    
 6 Sense & Sensibility NA             
 7 Sense & Sensibility NA             
 8 Sense & Sensibility NA             
 9 Sense & Sensibility NA             
10 Sense & Sensibility NA             
# … with 675,015 more rows
[1] "Count bigrams:"
# A tibble: 193,210 × 2
   bigram      n
   <chr>   <int>
 1 NA      12242
 2 of the   2853
 3 to be    2670
 4 in the   2221
 5 it was   1691
 6 i am     1485
 7 she had  1405
 8 of her   1363
 9 to the   1315
10 she was  1309
# … with 193,200 more rows
[1] "Filtered by street for word2:"
# A tibble: 33 × 3
   book                word1           n
   <fct>               <chr>       <int>
 1 Sense & Sensibility harley         16
 2 Sense & Sensibility berkeley       15
 3 Northanger Abbey    milsom         10
 4 Northanger Abbey    pulteney       10
 5 Mansfield Park       wimpole         9
 6 Pride & Prejudice   gracechurch     8
 7 Persuasion          milsom          5
 8 Sense & Sensibility bond            4
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 9 Sense & Sensibility conduit         4
10 Persuasion          rivers          4
# … with 23 more rows
[1] "Filtered by street for word1:"
# A tibble: 17 × 3
   book                word2         n
   <fct>               <chr>     <int>
 1 Sense & Sensibility january       2
 2 Sense & Sensibility marianne      1
 3 Sense & Sensibility set           1
 4 Sense & Sensibility yesterday     1
 5 Pride & Prejudice   elizabeth     1
 6 Pride & Prejudice   monday        1
 7 Pride & Prejudice   sept          1
 8 Mansfield Park       door          1
 9 Mansfield Park       sir           1
10 Emma                happy         1
11 Emma                till          1
12 Northanger Abbey    door          1
13 Northanger Abbey    overtook      1
14 Northanger Abbey    reached       1
15 Northanger Abbey    walking       1
16 Persuasion          afforded       1
17 Persuasion          perfectly     1

TOPIC MODELING IN R

In Chapter 5, you learned about topic modeling. Listing 6.17 shows the 
content of topic_modeling.R that illustrates how to work with topic mod-
eling in R.

LISTING 6.17: topic_modeling.R

#install.packages('topicmodels', repos = "http://cran.us.r-project.org")
library(topicmodels)

data("AssociatedPress")
# specify a seed value so the model output is predictable
ap_lda <- LDA(AssociatedPress, k = 2, control = list(seed = 1234))
ap_lda
library(tidytext)
paste0("Word-topic probabilities:",collapse=" ")
ap_topics <- tidy(ap_lda, matrix = "beta")
ap_topics

Listing 6.17 starts by referencing an R package and then initializing the 
variable ap_lda with the result of invoking the LDA API, which performs 
the Latent Dirichlet Analysis to determine a set of topics in the dataset 
AssociatedPress. 

The next portion of Listing 6.17 determines the probabilities of the occur-
rence of the topics that were determined in the previous code section. Launch 
the code in Listing 6.17 to see the following output:
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A LDA_VEM topic model with 2 topics.
[1] "Word-topic probabilities:"
# A tibble: 20,946 × 3
   topic term           beta
   <int> <chr>         <dbl>
 1     1 aaron      1.69e-12
 2     2 aaron      3.90e- 5
 3     1 abandon    2.65e- 5
 4     2 abandon    3.99e- 5
 5     1 abandoned  1.39e- 4
 6     2 abandoned  5.88e- 5
 7     1 abandoning 2.45e-33
 8     2 abandoning 2.34e- 5
 9     1 abbott     2.13e- 6
10     2 abbott     2.97e- 5
# … with 20,936 more rows

WORKING WITH WORD2VEC IN R

Chapter 5 briefly described word2vec, which comprises the CBoW algo-
rithm and the skip-gram algorithm, and provides floating point context vectors 
for words in a vocabulary. A code sample is available online:

https://gist.github.com/primaryobjects/8038d345aae48ae48988906b05
25d175

Download the code from the previous link, navigate to that subdirectory, 
and launch the following command:

rscript 1-word2vec.R 

After some installation related output, you will see the following output on 
your screen:

trying URL 'http://mattmahoney.net/dc/text8.zip'
Content type 'application/zip' length 31344016 bytes (29.9 MB)
==================================================
downloaded 29.9 MB

Beginning tokenization to text file at temp.prep
Prepping article2.txt
Starting training using file temp.prep

Vocab size (unigrams + bigrams): 192
Words in train file: 224
Starting training using file /Users/staging/Downloads/word2vec-stuff/temp.prep
Vocab size: 4
Words in train file: 25
Filename ends with .bin, so reading in binary format
Reading a word2vec binary file of 4 rows and 200 columns
  |==================================================| 100%
       word similarity to "president"
1 president               1.000000000
2     trump              -0.001098632
3      </s>              -0.071650826
4      said              -0.092222355
Beginning tokenization to text file at temp.prep
Prepping text8
Starting training using file temp.prep

https://gist.github.com/primaryobjects/8038d345aae48ae48988906b0525d175
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Words processed: 17000K     Vocab size: 4399K  
Vocab size (unigrams + bigrams): 2419827
Words in train file: 17005431
Starting training using file /Users/staging/Downloads/word2vec-stuff/temp.prep
Vocab size: 98330
Words in train file: 15857308
Filename ends with .bin, so reading in binary format
Reading a word2vec binary file of 98330 rows and 200 columns
  |==================================================| 100%
          word similarity to "communism"
1    communism                 1.0000000
2    socialism                 0.8277460
3      marxism                 0.7757172
4      marxist                 0.7737221
5    communist                 0.7617577
6    socialist                 0.7435190
7   capitalism                 0.7417053
8    stalinism                 0.7164418
9   capitalist                 0.7134871
10 proletariat                 0.7124533

Additional documentation regarding word2vec in R is available here:
https://www.rdocumentation.org/packages/word2vec/versions/0.3.4/topics/

word2vec

SUMMARY

This chapter showed you how to download and install RStudio, as well as 
how to launch R scripts from the command line via the rscript utility.

Then you learned to perform data cleaning on text strings, which includes 
tasks such as normalization (converting text to lowercase), removing stop 
words, removing punctuation, and removing white spaces. You will also see a 
similar example in which the text string is retrieved from a plain text file.

In addition, you saw an R code sample for POS and also a code sample 
of NER (Named Entity Recognition), as well as the BoW algorithm in R. 
Furthermore, you learned how to implement the tf-idf algorithm and how 
to use the NLTK and SpaCy modules in R to perform various NLP-related 
operations.

https://www.rdocumentation.org/packages/word2vec/versions/0.3.4/topics/word2vec
https://www.rdocumentation.org/packages/word2vec/versions/0.3.4/topics/word2vec


CHAPTER 7
TRANSFORMER, BERT, AND GPT

This chapter is devoted to NLP and modern architectures that support 
NLP-based tasks. Specifically, you will learn about the transformer ar-
chitecture, the pre-trained BERT model and its variants, and features 

of GPT-2 and GPT-3 from OpenAI. 
Please note that this chapter contains Python-based code samples. The 

rationale for the inclusion of Python code is simple: you can quickly find a 
vast set of blog posts, articles, code samples, and Github repositories regard-
ing BERT, the Transformer architecture, and GPT-3 via a simple Internet 
search. Fortunately, most of the code samples are short and involve rudimen-
tary Python constructs, which you can learn from a plethora of free online 
resources.

The first part of this chapter contains a brief introduction to the concept 
of attention, which is a powerful mechanism for generating word embeddings 
that contain context specific information for words in sentences. The concept 
of attention is a key aspect of the transformer architecture. This section also 
contains a summary of the distinguishing characteristics of three types of word 
embeddings, in which the most powerful technique is the attention-based 
approach.

The second part of this chapter provides an overview of the transformer 
architecture that was developed by Google and released in late 2017. This 
section also discusses the T5 (Text-To-Text Transfer Transformer) model that 
converts all NLP tasks into a text-to-text format.

The third part of this chapter introduces you to BERT, along with various 
code samples that illustrate how to invoke some of the BERT APIs. Note that 
this section relies on the installation of the HuggingFace transformers Python 
library.
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The fourth part of this chapter contains a list of several BERT-based trained 
models, along with brief description of their functionality. Some of the mod-
els that are discussed include DistilledBERT, CamemBERT, and FlauBERT. 
The final part of this chapter introduces you to the GPT-based models from 
OpenAI, along with some of the amazing features in GPT-3.

Important: The code samples in this chapter are based on Python, which 
is also required for various code samples in Chapter 5.

In addition, the code samples currently require Python 3.7, which you can 
download from the Internet if you haven’t already done so.

WHAT IS ATTENTION? 

Attention is a mechanism by which contextual word embeddings are deter-
mined for words in a corpus. Unlike word2vec or gloVe, the attention mech-
anism takes into account all the words in a sentence during the process of 
creating a word embedding for a given word. As a result, the same word in 
different (and distinct) sentences will have a different word embedding in each 
of those sentences.

Before the attention mechanism was devised, popular architectures used 
RNNs, LSTMs, or bi-LSTMs. In fact, the attention mechanism was first used 
in conjunction with RNNs or LSTMs. However, the Google team performed 
some experiments involving machine translation tasks on models that relied 
solely on the attention mechanism and the transformer architecture, and dis-
covered that those models achieved higher performance than models that 
included CNNs, RNNs, or LSTMs. This result led to the expression “attention 
is all you need.” The seminal paper regarding the transformer architecture is 
available online:

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a84
5aa-Paper.pdf 

As a quick review, and before delving into details of the attention mecha-
nism, let’s look at a summary of the main types of word embeddings that we 
have encountered, as discussed in the next section.

Types of Word Embeddings 

This section contains a summary of the main features of three types of 
word embeddings. The first group consists of the simplest algorithms for word 
embeddings, and you have already seen them in previous chapters. 

The second group consists of the earliest algorithms that use neural net-
works (word2vec and fasttext) or matrix factorization (gloVe) for generating 
word embeddings. 

The third group involves contextual algorithms for creating contextual 
word representations, which are essentially state of the art algorithms. Here 
is the summary:

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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1.	 Discrete word embeddings (BoW, tf, and tf-idf):
Word vectors consist of integers, decimals, and decimals, respectively
Key point: word embedding have zero context

2.	 Distributional word embeddings (word2vec, GloVe, and fasttext):
Based on shallow NN, MF, and NN, respectively
Two words on the left and the right (bi-grams) for word2vec
Key point: only one embedding for each word (regardless of its context)

3.	 Contextual word representations (such as BERT):
Transformer architecture (no CNNs/RNNs/LSTMs)
Pays “attention” to ALL words in a sentence
Key point: words can have multiple embeddings (depending on the context)

Types of Attention and Algorithms

There are several types of attention mechanisms, three of which are listed 
below:

1.	 self-attention
2.	 global/soft
3.	 local/hard

Self-attention tries to determine how words in a sentence are intercon-
nected with each other. Multi-headed attention uses a block of multiple self-
attention instead of just one self-attention. However, each head processes a 
different section of the embedding vector.

In addition to the preceding attention mechanisms, there are also several 
attention algorithms available:

•	Additive
•	Content-based
•	Dot Product
•	General
•	Location-base
•	Scaled Dot Product <= a transformer uses this algorithm

The formulas for attention mechanisms can be divided into two broad 
types: formulas that involve a dot product of vectors (and sometimes with a 
scaling factor), and formulas that apply a softmax function or a tanh function to 
products of matrices and vectors.

The transformer model uses a scaled dot-product mechanism to calculate 
the attention. If you want more detailed information regarding attention types, 
the following site contains a list of more than 20 attention types:

https://paperswithcode.com/methods/category/attention-mechanisms-1

https://paperswithcode.com/methods/category/attention-mechanisms-1
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AN OVERVIEW OF THE TRANSFORMER ARCHITECTURE 

The Transformer architecture differs from other architectures in the fol-
lowing important ways:

•	it’s primarily based on an attention mechanism 
•	model training can be parallelized
•	no CNNs/RNNs/LSTMs are required

Due to the last point in the preceding list, the encoder-decoder construc-
tion differs from a seq2seq model that often contain RNNs or LSTMs.

The Transformer architecture has two main components: an encoder and 
a decoder. The encoder component has six (sometimes more) concatenated 
encoder elements. Each encoder element has two layers, and the output of the 
first layer is the input for the second layer (like a miniature pipeline). The final 
output of the sixth (or in some cases, the twelfth) encoder component is then 
passed to every decoder element in the decoder component.

Similarly, the decoder component also has 6 (sometimes more) concate-
nated decoder elements, where the output of one element in the input for the 
next element. However, each decoder element consists of three sub-elements, 
one of which is the output from the encoder.

The overall Transformer architecture consists of an encoder component 
that contains six “sub” encoders, as well as a decoder component that also con-
tains six “sub” decoders. Each of these structures, which are loosely analogous 
to filter elements in a CNN.

The input for the encoder is a set of word embeddings that encode the 
words in a sentence. The word embeddings are constructed via the attention 
mechanism, which means that every embedding is based on all the words in 
a given sentence. Hence, a word that appears in two different sentences has 
two different word embeddings in the two sentences. Given a sentence with n 
tokens, the construction of each word embedding involves the remaining (n−1) 
words. Therefore, the attention-based mechanism has order O(N^2), where N 
is the number of unique tokens in the corpus.

The actual input vector for an encoder is called a context vector. This is a 
crucial detail: by contrast, word2vec constructs a single word embedding for 
every word, regardless of whether a given word has a different context in dif-
ferent sentences.

The Transformers Library from HuggingFace 

HuggingFace created a transformers library and an open-source repository 
to develop models based on the transformer architecture that you can access 
online: 

https://github.com/huggingface/transformers
The library provides pre-trained models for NLU (Natural Language 

Understanding) and NLG (Natural Language Generation). In fact, 
HuggingFace provides more than 30 pre-trained models for more than 

https://github.com/huggingface/transformers
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100 languages, along with operability between TensorFlow 2 and PyTorch. 
Furthermore, HuggingFace supports not only BERT-related models, but also 
GPT-2/GPT-3, XLNet, and others.

HuggingFace supports more than 30 architectures, some of which are 
listed here:

•	BART (from Facebook)
•	BERT (from Google)
•	Blenderbot (from Facebook)
•	CamemBERT (from Inria/Facebook/Sorbonne)
•	CTRL (from Salesforce)
•	DeBERTa (from Microsoft Research)
•	DistilBERT (from HuggingFace)
•	ELECTRA (from Google Research/Stanford University)
•	FlauBERT (from CNRS)
•	GPT-2 (from OpenAI)
•	Longformer (from AllenAI)
•	LXMERT (from UNC Chapel Hill)
•	Pegasus (from Google)
•	Reformer (from Google Research)
•	RoBERTa (from Facebook)
•	SqueezeBert
•	T5 (from Google AI)
•	Transformer-XL (from Google/CMU)
•	XLM-RoBERTa (from Facebook AI)
•	XLNet (from Google/CMU)

Check the online documentation for more information regarding these 
architectures.

Transformers are well-suited for various tasks, such as text generation, text 
summarization, and language translation. The next several sections contain 
several short code samples that illustrate how to use the HuggingFace trans-
former to perform NLP-related tasks. Specifically, you will see how to perform 
NER, QnA, and sentiment analysis using the HuggingFace transformer.

Transformer and NER Tasks 

Listing 7.1 shows the content of hf_transformer_ner.py that illustrates 
how to perform a NER task with the HuggingFace transformer.

LISTING 7.1: hf_transformer_ner.py

from transformers import pipeline

nlp = pipeline('ner')
result = nlp("I am a UCSC instructor and my name is Oswald")

print("result:",result)
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Listing 7.1 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with ner as a parameter. Next, 
the variable nlp is invoked with a hard-coded sample sentence. The output is 
assigned to the variable result, whose contents are then displayed. Launch 
the code in Listing 7.1 with the following command:

python3 hf_transformer_ner.py

The preceding command will launch the version of Python that is 
installed on your machine. As you learned in the introduction to this chapter, 
HuggingFace currently supports Python 3.7, but in the future, it’s likely that 
later versions of Python will also be supported.  The preceding command will 
display the following output:

result: [{'word': 'UC', 'score': 0.9993938207626343, 
'entity': 'I-ORG', 'index': 4}, {'word': '##SC', 'score': 
0.9974051713943481, 'entity': 'I-ORG', 'index': 5}, 
{'word': 'Oswald', 'score': 0.9988114833831787, 'entity': 
'I-PER', 'index': 11}]

Transformer and QnA Tasks 

Listing 7.2 shows the content of hf_transformer_qa.py that illustrates 
how to perform a question-and-answer task with the HuggingFace transformer.

LISTING 7.2: hf_transformer_qa.py

from transformers import pipeline

nlp = pipeline('question-answering')

result = nlp({
  'question': "Do you know my name?",
  'context': "My name is Oswald"
})

print("result:",result)

Listing 7.2 starts with an import statement and then initializes the variable 
nlp as an instance of the pipeline class, with question-answering as a 
parameter. Next, the variable nlp is invoked with a question/context pair. The 
output is assigned to the variable result, whose contents are then displayed. 
Launch the code in Listing 7.2 to see the following output:

result: [{'word': 'UC', 'score': 0.9993938207626343, 
'entity': 'I-ORG', 'index': 4}, {'word': '##SC', 'score': 
0.9974051713943481, 'entity': 'I-ORG', 'index': 5}, 
{'word': 'Oswald', 'score': 0.9988114833831787, 'entity': 
'I-PER', 'index': 11}]
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Transformer and Sentiment Analysis Tasks 

Listing 7.3 shows the content of hf_transformer_sentiment.py that 
illustrates how to perform a sentiment analysis task with the HuggingFace 
transformer.

LISTING 7.3: hf_transformer_sentiment.py

from transformers import pipeline

nlp = pipeline('sentiment-analysis')
comment = "Great news that we have pipelines in transformers"

result = nlp(comment) 

print("comment:",comment)
print("sentiment:",result)

Listing 7.3 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with sentiment-analysis as a 
parameter. Next, the variable comment is initialized with a test string, which 
is supplied to the variable nlp. The output is assigned to the variable result, 
whose contents are displayed. Launch the code in Listing 7.3 to see the fol-
lowing output:

comment: Great news that we have pipelines in transformers
sentiment: [{'label': 'POSITIVE', 'score': 0.9985968470573425}]

Transformer and Mask Filling Tasks 

Listing 7.4 shows the content of hf_transformer_mask.py that illus-
trates how to perform a mask-filling task with the HuggingFace transformer.

LISTING 7.4: hf_transformer_mask.py

from transformers import pipeline

nlp = pipeline('fill-mask')
result = nlp("I hope that you <mask> the movie")

print("result:",result)

Listing 7.4 starts with an import statement and then initializes the variable 
nlp as an instance of the pipeline class, with fill-mask as a parameter. Next, 
the variable nlp is invoked with a hard-coded sample sentence. The output is 
assigned to the variable result, whose contents are then displayed. Launch 
the code in Listing 7.4 to see the following output:
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result: [{'sequence': '<s>I hope that you enjoyed the 
movie</s>', 'score': 0.5466918349266052, 'token': 3776, 
'token_str': 'Ġenjoyed'}, {'sequence': '<s>I hope that 
you enjoy the movie</s>', 'score': 0.36409610509872437, 
'token': 2254, 'token_str': 'Ġenjoy'}, {'sequence': 
'<s>I hope that you liked the movie</s>', 'score': 
0.06604353338479996, 'token': 6640, 'token_str': 'Ġliked'}, 
{'sequence': '<s>I hope that you like the movie</s>', 
'score': 0.008552208542823792, 'token': 101, 'token_str': 
'Ġlike'}, {'sequence': '<s>I hope that you loved the 
movie</s>', 'score': 0.003726127091795206, 'token': 2638, 
'token_str': 'Ġloved'}]

This concludes the section of the chapter pertaining to the HuggingFace 
transformer code samples. The next section briefly discusses T5, which is 
another NLP model created by Google.

WHAT IS T5?

T5 is an acronym for Text-To-Text Transfer Transformer. T5 is an encoder-
decoder model that converts all NLP tasks into a text-to-text format, and its 
downloadable code is online:

https://github.com/google-research/text-to-text-transfer-transformer
You can also install T5 by invoking the following command:

pip install t5[gcp]

T5 is pre-trained on a multi-task mixture of unsupervised and supervised 
tasks, and it works well on various tasks, such as translation. T5 is trained using 
a technique called teacher forcing, which means that an input sequence and 
a target sequence are always required for training. The input sequence is 
designated with input_ids, whereas the target sequence is designated with 
output_ids and then passed to the decoder.

Since all tasks (such as classification, question answering, and translation) 
involve this input/output mechanism, the same model can be used for multiple 
tasks.

T5 provides several useful classes when working with T5 models. For exam-
ple, the class transformers.T5Config that enables you to specify configura-
tion information, whose default values are similar to the T5-small architecture. 
Another useful class is transformers.T5Tokenizer that enables you to con-
struct a T5 tokenizer.

T5 does differ from BERT in two significant ways that will become clearer 
after you read the BERT-related material later in this chapter:

•	The inclusion of a causal decoder
•	The use of pre-training tasks instead of a fill-in-the-blank task

https://github.com/google-research/text-to-text-transfer-transformer
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Although you can download code samples for T5, initially it might be sim-
pler to experiment with T5 in a Google Colaboratory notebook (make sure to 
select a TPU for execution):

https://tiny.cc/t5-colab
More information about T5 and details regarding the preceding T5 classes 

(and other classes) is available online:
https://huggingface.co/transformers/model_doc/t5.html

WHAT IS BERT? 

BERT is a pre-trained model that is based on the transformer architecture  
developed in 2017 by Google. There are two version of BERT, called BERT 
Base and BERT Large. BERT Base consists of 12 layers (transformer blocks), 
12 attention heads, and 110 million parameters. BERT Large is a larger pre-
trained model that consists of 24 layers (transformer blocks), 16 attention 
heads, and 340 million parameters.

BERT can be used in conjunction with the Transformers library (discussed 
earlier in this chapter) that provide classes to perform various tasks, such as 
question answering and sequence classification.

BERT Features

BERT has a set of approximately 30,000 learned raw vectors. Moreover, 
just under 80% of those raw vectors correspond to “normal” words (i.e., they 
exist in an English dictionary). The remaining 20% are subwords that are cre-
ated by WordPiece: these subwords have the form ##s or ##ed. The latter 
subwords are useful for detecting the past tense of a verb in a sentence. In 
addition, the BERT vocabulary consists of 45% uppercase and 25% lowercase 
terms (approximately).

How is BERT Trained?

BERT is trained by performing a pre-training step, followed by a fine-
tuning step. The pre-training step involves task-specific data. For example, 
if you want to perform sentiment analysis using BERT, you need a corpus 
of labeled data that specifies whether a sentence has positive or negative 
sentiment. In addition, the dataset is split into a training portion and a test 
portion, just as you would with linear regression or classification tasks.

The fine-tuning step involves training the model on a large set of sample 
tasks. For example, if you want to train BERT to perform a question-answering 
task, then start with the pre-trained model (that was trained on sentiment anal-
ysis) and fine-tune that model by training the model on a corpus of question/
answer data.

https://tiny.cc/t5-colab
https://huggingface.co/transformers/model_doc/t5.html
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How BERT Differs from Earlier NLP Models

There are several important aspects of BERT that differentiate BERT from 
models that involve algorithms such as word2vec. First, BERT does not per-
form a stemming operation: instead, BERT performs subword tokenization via 
WordPiece (discussed later). Stemming discards suffixes, whereas WordPiece 
does not discard the suffixes.

Second, BERT creates contextual word embeddings whereas word2vec 
creates distributional word embeddings. Specifically, BERT uses all the words 
in a sentence in order to generate a word embedding for each word in a given 
sentence, and the word embedding is specific to the sentence in which the word 
appears. As a result, the same word that appears in distinct sentences will have 
different word embeddings, whereas word2vec uses bigrams to calculate word 
embeddings.

Third, BERT does not use cosine similarity to determine the extent to 
which two words are similar to each other. However, it’s possible to use BERT 
with cosine similarities, provided that you fine-tune BERT on suitable data, 
such as the data and code samples in the following repository:

https://github.com/UKPLab/sentence-transformers

THE INNER WORKINGS OF BERT 

BERT implements a number of interesting techniques, some of which are 
listed below:

•	MLM (Masked Language Model)
•	NSP (Next Sentence Prediction)
•	Special tokens ([CLS] and [SEP])
•	Language mask
•	Wordpiece (subword tokenization)
•	SentencePiece

What is MLM?

MLM is an acronym for masked language model, and it’s a BERT pre-train-
ing task, during which BERT processed the contents of Wikipedia (and also 
the BookCorpus dataset). In this task, 15% of the words were replaced with the 
[MASK] token, and BERT then predicted the missing words. Note that this 
task was performed on “chunks” of data that were submitted to BERT.

Many words in Wikipedia involve dates, names of people, and names of 
locations, some of which were replaced by the [MASK] token. During the 
training process, BERT ascertained the missing tokens correctly.

What is NSP?

In addition to MLM, BERT uses NSP, which stands for next sentence 
prediction. NSP combines pairs of sentences in the following way:

https://github.com/UKPLab/sentence-transformers
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•	The second sentence is logically related to the first sentence in 50% of 
the pairs.

•	The second sentence is not logically related to the first sentence in 50% 
of the pairs.

The purpose of NSP is to identify which pairs of sentences are correct and 
which pairs of sentences are incorrect.

Special Tokens

BERT uses two special tokens: [CLS] to indicate the start of a text string 
and [SEP] to separate sentences. For example, consider the following phrase: 

Pizza with four toppings and trimmings
The BERT tokenization of the preceding phrase is as follows:

['[CLS]', 'pizza', 'with', 'four', 'topping', '##s', 'and', 
'trim', '##ming', '##s', '.', '[SEP]']

Listing 7.5 shows the content of bert_special_tokens.py that illus-
trates how to display the special tokens in BERT.

LISTING 7.5: bert_special_tokens.py

import transformers
import numpy as np

# instantiate a BERT tokenizer and model:
print("creating tokenizer...")
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-
uncased', do_lower_case=True)

print("creating model...")
nlp = transformers.TFBertModel.from_pretrained('bert-base-uncased')

# hidden layer with embeddings:
text1      = "cell phone"
input_ids1 = np.array(tokenizer.encode(text1))[None,:]
embedding1 = nlp(input_ids1)
   
print("input_ids1:")
print(input_ids1)
print()
   
print("tokenizer.sep_token:   ",tokenizer.sep_token)
print("tokenizer.sep_token_id:",tokenizer.sep_token_id)
print("tokenizer.cls_token:   ",tokenizer.cls_token)
print("tokenizer.cls_token_id:",tokenizer.cls_token_id)
print("tokenizer.pad_token:   ",tokenizer.pad_token)
print("tokenizer.pad_token_id:",tokenizer.pad_token_id)
print("tokenizer.unk_token:   ",tokenizer.unk_token)
print("tokenizer.unk_token_id:",tokenizer.unk_token_id)
print()
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Listing 7.5 starts with two import statements and then initializes the vari-
able tokenizer as an instance from a pre-trained model. Next, the variable 
nlp is initialized as an instance of a pre-trained model. 

The next portion of Listing 7.5 initializes the variable text1 as a two-word 
string, followed by the variable input-ids1 that consists of the tokens for the 
two words, along with two special tokens. 

The final code block consists of a set of print() statements that display 
several special tokens and their token_id values. Launch the code in Listing 
7.5 to see the following output:

creating tokenizer...
creating model…
input_ids1:
[[ 101 3526 3042  102]]

tokenizer.sep_token:    [SEP]
tokenizer.sep_token_id: 102
tokenizer.cls_token:    [CLS]
tokenizer.cls_token_id: 101
tokenizer.pad_token:    [PAD]
tokenizer.pad_token_id: 0
tokenizer.unk_token:    [UNK]
tokenizer.unk_token_id: 100

BERT Encoding: Sequence of Steps

BERT performs the following sequence of steps, all of which have been 
illustrated via code snippets in previous sections:

Step 1: tokenize the text
Step 2: map the tokens to their IDs 
Step 3: add the special [CLS] and [SEP] tokens

As a simple example, the sentence “I got a book” has a total of six tokens 
(four word tokens, and the start and end tokens), along with the following 
indices:

[CLS]           101
i             1,045
got           2,288
a             1,037
book          2,338
[SEP]           101

Listing 7.6 shows the content of bert_encoding_plus.py that illustrates 
how to display the special tokens in BERT.

LISTING 7.6: bert_encoding_plus.py

import transformers
import numpy as np
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# instantiate a BERT tokenizer and model:
print("creating tokenizer...")
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-
uncased', do_lower_case=True)
print("creating model...")
nlp = transformers.TFBertModel.from_pretrained('bert-base-
uncased')

text="When were you last outside? I have been inside for 2 weeks."

encoding = tokenizer.encode_plus(
   text,
   max_length=32,
   add_special_tokens=True, # Add '[CLS]' and '[SEP]'
   return_token_type_ids=False,
   pad_to_max_length=True,
   return_attention_mask=True,
   return_tensors='pt',  # Return PyTorch tensors
)

print("encoding.keys():")
print(encoding.keys())
print()

print("len(encoding['input_ids'][0]):")
print(len(encoding['input_ids'][0]))
print()

print("encoding['input_ids'][0]:")
print(encoding['input_ids'])
print()

print("len(encoding['attention_mask'][0]):")
print(len(encoding['attention_mask'][0]))
print()

print("encoding['attention_mask']:")
print(encoding['attention_mask'])
print()

print("tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]):")
print(tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]))
print()

Listing 7.6 starts with two import statements and then initializes the varia-
bles tokenizer and nlp in the same fashion as previous code samples. Next, the 
variable text is initialized as a text string, followed by the variable encoding 
that acts as a configuration-like “holder” of parameters and their values.

The final portion of Listing 7.6 consists of six pairs of print() statements, 
each of which displays a parameter/value pair that is defined in the encoding 
variable. Launch the code in Listing 7.6 to see the following output:

creating tokenizer...
creating model…

encoding.keys():
dict_keys(['input_ids', 'attention_mask'])
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len(encoding['input_ids'][0]):
32

encoding['input_ids'][0]:
tensor([[ 101, 2043, 2020, 2017, 2197, 2648, 1029, 1045, 
2031, 2042, 2503, 2005,
         1016, 3134, 1012,  102,    0,    0,    0,    0,    
0,    0,    0,    0,
            0,    0,    0,    0,    0,    0,    0,    0]])

len(encoding['attention_mask'][0]):
32

encoding['attention_mask']:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0]])

tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]):
['[CLS]', 'when', 'were', 'you', 'last', 'outside', '?', 
'i', 'have', 'been', 'inside', 'for', '2', 'weeks', '.', 
'[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', 
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', 
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

SUBWORD TOKENIZATION

OOV is an acronym for out of vocabulary, and it refers to words in a corpus 
that do not belong to a vocabulary. When an OOV word is encountered, BERT 
splits the word into subwords, which is known as subword tokenization. The 
same process is applied to rare words.

Subword tokenization algorithms are based on a heuristic (something 
that’s intuitive and often produces the correct answer). Specifically, words 
that appear more frequently are assigned unique IDs. Lower frequency 
words are split into subwords that retain the meaning of the lower frequency 
words. The following list contains four important subword tokenization 
algorithms:

•	byte-pair encoding (BPE)
•	SentencePiece
•	unigram language model
•	Wordpiece (used in BERT)

Byte-pair encoding for subwords represents frequent words with fewer 
symbols and less frequent words with more symbols. BPE is a bottom-up sub-
word tokenization algorithm that learns a subword vocabulary of a certain size 
(the vocabulary size is a hyper parameter). 
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The first step in this technique involves splitting every word into Unicode 
characters, each of which corresponds to a symbol in the final vocabulary. 
Perform the following sequence of steps repeatedly:

1.	 Find the most frequent symbol bigram (pair of symbols).
2.	 Merge those symbols to create a new symbol and add this to the vocabulary.
3.	 Repeat the preceding steps until a maximum vocabulary size is reached.

GPT-2 views text input as a sequence of bytes instead of unicode charac-
ters; in addition, an id is allocated to every byte in the sequence.

Wordpiece is a subword tokenization algorithm that is very similar to BPE 
(discussed later). The main difference pertains to the specific manner in which 
bigrams are selected for the merging step. Interestingly, RoBERTa (which is 
based on BERT) also involves the use of Wordpiece. Here are some examples 
of subword tokenization in BERT:

"toppings"   is split into "topping" and "##s"
"trimmings"  is split into "trim", "##ming", and "##s"
"misspelled" is split into "mis", "##spel", and "##led"

However, keep in mind that BERT does not provide a mechanism to 
re-construct the original word from its word pieces. Note that ELMo provides 
word-level (not subword) contextual representations for words, which is differ-
ent from BERT. Later in this chapter you will code samples that create BERT 
tokens from English sentences (that include toppings and trimmings).

Since word2vec and GloVe do not compute contextual word embeddings, 
the similarity between two embedded vectors may be of limited value.

BPE is an acronym for Byte Pair Encoding, which is an algorithm that is 
used in the GPT family of models. BPE (also known as digram coding) is a data 
compression algorithm that uses the following technique: given a text string, 
the most common pair of consecutive bytes of data is replaced with a byte that 
does exist in the text string. Each replacement is stored in a look-up table, 
which means that the table can be used to create the original text string. The 
models in the GPT family utilize a modified version of BPE.

For example, suppose we wanted to encode the data consisting of the fol-
lowing string: 

aaabdaaabac 

Since the byte pair aa occurs most often, we replace it with a character that 
does not appear in the string, such as the letter Z. We perform the replace-
ment, which results in the following text string: 

ZabdZabac (where Z=aa) 
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We repeat the substitution step, this time with the pair ab, and replace this 
pair with the letter Y: 

ZYdZYac (where Y=ab Z=aa) 

At this point, we can continue the preceding procedure by selecting ZY 
(which appears twice) and replacing this string with the letter X, as shown 
here:

XdXac (where X=ZY Y=ab Z=aa) 

SentencePiece is another subword tokenizer and a detokenizer for NLP that 
performs subword segmentation. SentencePiece also supports BPE and the 
unigram language model. The original arxiv paper that describes SentencePiece 
is available online:

https://arxiv.org/abs/1808.06226v1

SENTENCE SIMILARITY IN BERT

As you learned previously, word2vec and GloVe use word embeddings to 
find the semantic similarity between two words. However, sentences contain 
additional information as well as relationships between multiple words.

A well-known example that clearly shows the need for contextual awareness 
is illustrated in the following pair of sentences:

The dog did not cross the street because it was too narrow.
The dog did not cross the street because it was too tired.

One technique for sentence similarity involves computing the average of 
the word embeddings of the words in each sentence and then computing the 
cosine similarity of the resulting pair of word embeddings. Alternatively, you 
can use tf-idf instead of word embeddings or another technique. In all of these 
cases, word order is not taken into account, and the word embeddings are 
determined in an unsupervised fashion.

Word Context in BERT

Listing 7.7 shows the content of bert_context.py that illustrates how 
BERT generates a different word vector for the same word that is used in a 
different context.

In order to launch the code in Listing 7.7, make sure that you have installed 
the transformers library by launching the following command in a command 
shell:

pip3 install transformers

This code downloads a 536M BERT model.NOTE

https://arxiv.org/abs/1808.06226v1
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LISTING 7.7: bert_context.py

import transformers

text1 = "cell phone"

# instantiate a BERT tokenizer and model:
tokenizer = transformers.BertTokenizer.from_
pretrained('bert-base-uncased', do_lower_case=True)

nlp = transformers.TFBertModel.from_pretrained('bert-base-
uncased')

# hidden layer with embeddings:
input_ids1 = np.array(tokenizer.encode(text1))[None,:]
embedding1 = nlp(input_ids1)

# display text1 and its context:
print("text1:",text1)
print("embedding1[0][0]:")
print(embedding1[0][0])
print()

text2 = "prison cell"
# hidden layer with embeddings:
input_ids2 = np.array(tokenizer.encode(text2))[None,:]
embedding2 = nlp(input_ids2)
 
# display text2 and its context:
print("text2:",text2)
print("embedding2[0][0]:")
print(embedding2[0][0])

Listing 7.7 starts with import statements and then initializes the variables 
tokenizer, nlp, input_ids1, and embedding1 in exactly the same man-
ner that you have seen in previous code samples. The next block of code dis-
plays the values of text1 and embedding1[0][0].

The next portion of Listing 7.7 is virtually the same as the previous 
code block, based on the replacement of text1 with text2. The output of 
Listing 7.7 is as follows:

input sentence #1:
text1: cell phone
embedding1[0][0]:
tf.Tensor(
[[-0.30501425  0.14509355 -0.18064171 ... -0.3127299  -0.12173399
  -0.09033043]
 [ 0.80547976 -0.15233847  0.61319923 ... -0.7498784   0.00167803
  -0.11698578]
 [ 1.0339862  -0.66511637 -0.17642722 ... -0.24407595  0.03978422
  -0.8694502 ]
 [ 0.87851435  0.10932285 -0.27658027 ...  0.18180653 -0.5829581
  -0.34113947]], shape=(4, 768), dtype=float32)
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text2: cell mate
embedding2[0][0]:
tf.Tensor(
[[-0.24141303  0.1146469  -0.13710016 ... -0.2908613  -0.04577148
   0.2965925 ]
 [ 0.05608664 -1.0035615   0.12738925 ... -0.30271983  0.17530476
   0.7245784 ]
 [ 0.2818157  -0.28047347 -0.6547173  ...  0.04996978  0.01698243
   0.03285426]
 [ 1.039136    0.12364347 -0.2661501  ...  0.09439699 -0.7794917
  -0.24966209]], shape=(4, 768), dtype=float32)

Listing 7.7 also generates the following informative message:

Some weights of the model checkpoint at bert-base-uncased 
were not used when initializing TFBertModel: ['nsp___cls', 
'mlm___cls']
- This IS expected if you are initializing TFBertModel 
from the checkpoint of a model trained on another 
task or with another architecture (e.g. initializing 
a BertForSequenceClassification model from a 
BertForPretraining model).
- This IS NOT expected if you are initializing 
TFBertModel from the checkpoint of a model that 
you expect to be exactly identical (initializing 
a BertForSequenceClassification model from a 
BertForSequenceClassification model).
All the weights of TFBertModel were initialized from the 
model checkpoint at bert-base-uncased. 
If your task is similar to the task the model of the 
ckeckpoint was trained on, you can already use TFBertModel 
for predictions without further training.

Now that you have seen an example where BERT generates a different 
word vector for a word that is used in a different context, let’s look at BERT 
tokens, which is the topic of the next section.

GENERATING BERT TOKENS (1)

Listing 7.8 shows the content of bert_tokens1.py that illustrates how to 
convert a text string to a BERT-compatible string and then tokenize the latter 
string into BERT tokens.

LISTING 7.8: bert_tokens1.py

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

text1 = "Pizza with four toppings and trimmings."
marked_text1 = "[CLS] " + text1 + " [SEP]"
tokenized_text1 = tokenizer.tokenize(marked_text1)
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print("input sentence #1:")
print(text1)
print()

print("Tokens from input sentence #1:")
print(tokenized_text1)
print()

print("Some tokens in BERT:")
print(list(tokenizer.vocab.keys())[1000:1020])
print()

Listing 7.8 imports BertTokenizer and BertModel, and uses the former 
to initialize the variable tokenizer. Next, the variable text1 is initialized to 
a text string, and marked_text1 prepends [CLS] to text1 and then appends 
[SEP] to text1. The last variable that is initialized is tokenized_text1, 
which is assigned the result of invoking the tokenizer() method on the vari-
able marked_text1. 

The next three blocks of print() statements display the contents of text1, 
tokenized_text1, and a range of 20 BERT tokens, respectively. Launch the 
code in Listing 7.8 to see the following output:

input sentence #1:
Pizza with four toppings and trimmings.

Tokens from input sentence #1:
['[CLS]', 'pizza', 'with', 'four', 'topping', '##s', 'and', 
'trim', '##ming', '##s', '.', '[SEP]']

Some tokens in BERT:
['"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', 
'-', '.', '/', '0', '1', '2', '3', '4', '5']

GENERATING BERT TOKENS (2)

Listing 7.9 shows the content of bert_tokens2.py that illustrates how to 
convert a text string to a BERT-compatible string and then tokenize the latter 
string into BERT tokens.

LISTING 7.9: bert_tokens2.py

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

text2 = "I got a book and after I book for an hour, it's time to book it."
marked_text2 = "[CLS] " + text2 + " [SEP]"
tokenized_text2 = tokenizer.tokenize(marked_text2)

print("input sentence #2:")
print(text2)
print()
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print("Tokens from input sentence #2:")
print(tokenized_text2)
print()

# Map token strings to their vocabulary indices:
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)

# Display the words with their indices:
for pair in zip(tokenized_text2, indexed_tokens2):
  print('{:<12} {:>6,}'.format(pair[0], pair[1]))

The first half of Listing 7.9 is almost identical to the first half of Listing 7.8, 
and uses the variable text2 instead of text1. 

The next portion of Listing 7.9 contains two blocks of print() statements 
that display the contents of text2 and tokenized_text2, respectively. The 
next code snippet initializes the variable indexed_tokens2 to the result of 
converting the tokens in tokenized_text2 to id values. 

The final portion of Listing 7.9 contains a loop that displays tokens and 
their associated id values. The output of Listing 7.9 is as follows:

input sentence #2:
I got a book and after I book for an hour, it's time to book it.

Tokens from input sentence #2:
['[CLS]', 'i', 'got', 'a', 'book', 'and', 'after', 'i', 'book', 
'for', 'an', 'hour', ',', 'it', "'", 's', 'time', 'to', 'book', 
'it', '.', '[SEP]']

[CLS]           101
i             1,045
got           2,288
a             1,037
book          2,338
and           1,998
after         2,044
i             1,045
book          2,338
for           2,005
an            2,019
hour          3,178
,             1,010
it            2,009
'             1,005
s             1,055
time          2,051
to            2,000
book          2,338
it            2,009
.             1,012
[SEP]           102

THE BERT FAMILY

BERT has spawned a remarkable set of variations of the original BERT 
model, each of which provides some interesting features. Some of those vari-
ations are listed here:
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•	ALBERT
•	DistilBERT
•	CamemBERT
•	FlauBERT
•	RoBERTa
•	BIO BERT
•	DOC BERT
•	Clinical BERT
•	German BERT

ALBERT (Google Research and Toyota Technological Institute) is 
an acronym for “A Lite BERT for Self-Supervised Learning of Language 
Representations.” Like RoBERTa, ALBERT is significantly smaller than 
BERT, and it’s also more capable than BERT.

ALBERT (unlike BERT) shares its parameters in all layers, which reduces 
the number of parameters, but has no effect on the training and inference 
time. In addition, ALBERT uses embedding matrix factorization, which fur-
ther reduces the number of parameters. Furthermore, ALBERT uses SOP 
(Sentence-Order Prediction), which is an improvement over NSP (Next 
Sentence Prediction). Finally, ALBERT does not use a dropout rate, which 
further increases the model capacity.

ALBERT uses both whole-word masking and n-gram masking, where the 
latter refers to masking multiple sequential words. Here is a code snippet for 
ALBERT:

from transformers import AlbertForMaskedLM, AlbertTokenizer

model1 = AlbertForMaskedLM.from_pretrained('albert-xxlarge-v1')
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')

model2 = AlbertForMaskedLM.from_pretrained('albert-xxlarge-v2')
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')

DistilBERT is a smaller version of BERT that contains 66 million param-
eters, which is 40% of the number of parameters of BERT Base (which has 
110 million parameters). Even so, DistilBERT achieves 97% of BERT accu-
racy and is 60% faster than BERT Base, which makes DistilBERT useful for 
transfer learning. 

Knowledge distillation involves a small model (called the “student”) that 
is trained to mimic a larger model or an ensemble of models (called the 
“teacher”). DistilBERT is an example of a distilled network that is also used in 
production. 

To give you an idea of the type of code required for DistilBERT, here is an 
example of instantiating a DistilBERT tokenizer:

import transformers
tokenizer = transformers.AutoTokenizer.from_
pretrained('distilbert-base-uncased', do_lower_case=True)
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Here is another example of instantiating a DistilBERT tokenizer:

from transformers import DistilBertTokenizer:
tokenizer = DistilBertTokenizer.from.
pretrained('distilbert-base-uncased')

RoBERTa (from Facebook) leverages BERT’s language masking strategy, 
along with modifications of some of BERT’s hyper parameters. Note that 
RoBERTa was trained on a corpus that is at least 10 times larger than the 
corpus for BERT.

Unlike BERT, RoBERTa does not use an NSP (Next Sentence Prediction) 
task. Instead, RoBERTa uses dynamic masking, whereby a masked token is 
actually modified during the training process.

Surpassing Human Accuracy: deBERTa

The deBERTa model from Microsoft recently surpassed human accuracy:
http s://www.microsoft.com/en-us /research/blog/microsoft-deberta-sur-

passes-human-performance-on-the-superglue-benchmark/
The architecture for this model comprises 48 Transformer layers with 

1.5 billion parameters. This model has a GLUE score of 90.8, and a SuperGLUE 
score of 89.9, which exceeds the human performance score of 89.8.

Microsoft intends to integrate DeBERTa with the Turing natural language 
representation model Turing NLRv4 (also from Microsoft). The Turing mod-
els are ubiquitous in the Microsoft ecosystem, including products such as Bing 
and Azure Cognitive Services.

What is Google Smith?

The SMITH model from Google analyzes documents. Very simply, the 
SMITH model is trained to understand passages within the context of an 
entire document. By contrast, BERT is trained to understand words within 
the context of sentences. However, the SMITH model (which outperforms 
BERT) supplements BERT by performing major operations that are not pos-
sible in BERT.

This concludes the BERT-specific portion of the chapter. The next sec-
tion introduces GPT, followed by sections that contain details regarding GPT-2 
(and code samples) as well as GPT-3.

INTRODUCTION TO GPT

GPT stands for Generative Pre-Training (or sometimes called Generative 
Pre-Training Transformers), which is a pre-trained NLP-based model that was 
developed by OpenAI. GPT is trained with unlabeled data via unsupervised 
pre-training (also known as self-supervision). 

GPT is based on the transformer architecture and takes advantage of the 
self-attention mechanism of the transformer. There are several versions of 

https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/
https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/
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GPT, which includes GPT-2 (developed in 2019) and GPT-3 that was released 
in June, 2020. Both GPT-2 and GPT-3 are discussed later in this chapter. 

You should keep in mind the Lottery Ticket Hypothesis, which states that 
in every sufficiently deep neural network, there is a smaller subnetwork that 
can perform just as well as the whole neural network.

Installing the Transformers Package

The installation process involves the following command:

pip3 install transformers

You can perform an upgrade of transformers by invoking the following 
command:

pip3 install -U transformers

However, you might encounter the following error message:

ERROR: After October 2020 you may experience errors when 
installing or updating packages. This is because pip will 
change the way that it resolves dependency conflicts.

We recommend you use --use-feature=2020-resolver to test 
your packages with the new resolver before it becomes the 
default.

sentence-transformers 0.3.7.2 requires 
transformers<3.4.0,>=3.1.0, but you'll have transformers 
4.1.1 which is incompatible.

WORKING WITH GPT-2

This section contains Python code samples that use GPT-2 to perform sen-
timent analysis and the question-and-answer process, also abbreviated as QnA. 
There are some tasks that you can perform in GPT-2 that are comparable in 
GPT-3.

�The Python code samples in this section work with Python 3.7.9 but not 
with Python 3.6 or Python 3.8 (it’s possible that Python 3.7.x will work as 
well).

If you need to install Python 3.7.9, you will also need to execute the follow-
ing commands to install transformers, tensorflow, and scipy:

pip3 install transformers
pip3 install tensorflow
pip3 install scipy

Listing 7.10 shows the content of gpt2_sentiment.py that illustrates 
how to perform sentiment analysis in GPT-2.

NOTE
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LISTING 7.10: gpt2_sentiment.py

# pip3 install transformers
from transformers import pipeline

# pipeline for sentiment-analysis:
cls = pipeline('sentiment-analysis')

text1 = "I love deep dish Chicago pizza."
sentiment1 = cls(text1)
print("sentence: ",text1)
print("sentiment:",sentiment1)
print()

text2 = "I dislike anchovies."
sentiment2 = cls(text2)
print("sentence: ",text2)
print("sentiment:",sentiment2)
print()

text3 = "I dislike anchovies but I like pickled herring."
sentiment3 = cls(text3)
print("sentence: ",text3)
print("sentiment:",sentiment3)

Listing 7.10 contains an import statement and then initializes the variable 
cls as an instance of the pipeline class by specifying sentiment-analysis 
(which is the task for this code sample). 

The next three code blocks perform sentiment analysis on the text strings 
text1, text2, and text3, respectively. Launch the code to see the following 
output:

sentence:  I love deep dish Chicago pizza.
sentiment: [{'label': 'POSITIVE', 'score': 0.9985044598579407}]

sentence:  I dislike anchovies.
sentiment: [{'label': 'NEGATIVE', 'score': 0.9982384443283081}]

sentence:  I dislike anchovies but I like pickled herring.
sentiment: [{'label': 'POSITIVE', 'score': 0.7346124649047852}]

Listing 7.11 shows the content of gpt2_qna.py that illustrates how to 
perform question-and-answer in GPT-2. Note that this Python code sample 
will not work on Python 3.8.x. You must use Python 3.7.

LISTING 7.11: gpt2_qna.py

from transformers import pipeline
  
# pipeline for question-answering:
qna = pipeline('question-answering')

qc_pair = {
    'question': 'What is the name of the repository ?',
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    'context': 'Pipeline have been included in the 
huggingface/transformers repository'
}

if __name__ == "__main__":
  result = qna (qc_pair)
  print("result:")
  print(result)

Listing 7.11 starts with an import statement and then initializes the vari-
able qna as an instance of the pipeline class from the transformers library, 
with question-answering as a parameter. Next, the variable gc_pair is 
initialized as a pair of question/answer strings.

Next, the variable result is initialized with the result of invoking qna with 
gc_pair, and then the contents of result are displayed. Launch the code to 
see the following output: 

result:
{'score': 0.5135953426361084, 'start': 35, 'end': 59, 
'answer': 'huggingface/transformers'}

Listing 7.11 contains an if statement; you might see the following error 
message if you remove the if statement:

#output:
    raise RuntimeError('''
RuntimeError: 
        An attempt has been made to start a new process 
before the current process has finished its bootstrapping 
phase.

        This probably means that you are not using fork to 
start your child processes and you have forgotten to use 
the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the 
program is not going to be frozen to produce an executable.

Listing 7.12 shows the content of gpt2_text_gen.py that illustrates how 
to use generated text from an input string in GPT-2. Note that the default 
model for the text generation pipeline is GPT-2.

LISTING 7.12: gpt2_text_gen.py

from transformers import pipeline

text_gen = pipeline("text-generation")

# specify a max_length of 50 tokens and sampling "off":
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prefix_text = "What a wonderful"
generated_text = text_gen(prefix_text, max_length=50, do_sample=False)[0]

print("=> #1 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

prefix_text = "Once in a "
generated_text = text_gen(prefix_text, max_length=50, do_sample=False)[0]

print("=> #2 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

prefix_text = "Once in a blue "
generated_text = text_gen(prefix_text, max_length=50, do_sample=False)[0]

print("=> #3 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

Listing 7.12 starts with an import statement and then initializes the 
variable text_gen as an instance of the pipeline class by specifying 
text-generation (which is the task for this code sample). 

The next three blocks of code display the completion of the text in 
prefix_text, where the latter is assigned three different text strings. Launch 
the code in Listing 7.12 to see the following output:

=> #1 generated_text['generated_text']:
What a wonderful thing about this is that it's a very simple 
and simple way to get your hands on a new game.

The game is a simple, simple game. It's a simple game. It's a 
simple game. It's
-------------------------------

=> #2 generated_text['generated_text']:
Once in a vernacular, the word "carnage" is used to describe a 
large, open, and well-lit place.

The word "carnage" is used to describe a large, open, and well-
-------------------------------

=> #3 generated_text['generated_text']:
Once in a blue urn, you can see the "C" in the center of the 
"C" and the "A" in the bottom right corner.

The "C" is the "A" and the "A" are
-------------------------------

Listing 7.13 shows the content of gpt2_auto.py that illustrates how to 
perform sentiment analysis in GPT-2. Note that this Python code sample will 
not work on Python 3.8.x. You must use Python 3.7.
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LISTING 7.13: gpt2_auto.py

from transformers import AutoTokenizer, TFAutoModel

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
mymodel = TFAutoModel.from_pretrained("bert-base-uncased")

inputs = tokenizer("I love deep dish Chicago pizza", return_tensors="tf")
outputs = mymodel(**inputs)

print("inputs:  ",inputs)
print("outputs: ",outputs)

Listing 7.13 starts with an import statement and then initializes the vari-
able tokenizer as a generic tokenizer class from bert-base-uncased by 
invoking the from_pretrained() method of the AutoTokenizer class that 
belongs to the transformers library. 

Similarly, mymodel is a general model class from bert-base-uncased 
by invoking the from_pretrained() method of the TFAutoModel class that 
belongs to the transformers library.

Next, the variable inputs is initialized with the result of passing a hard-
coded string to the tokenizer variable. Then the variable outputs is initial-
ized with the result of passing inputs to the variable mymodel. 

The last portion of Listing 7.13 shows the contents of inputs and outputs. 
Launch the code to see the following output:

inputs:   {'input_ids': <tf.Tensor: shape=(1, 8), dtype=int32, 
numpy=array([[  101,  1045,  2293,  2784,  9841,  3190, 10733,   102]],
      dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(1, 8), 
dtype=int32, numpy=array([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 
'attention_mask': <tf.Tensor: shape=(1, 8), dtype=int32, 
numpy=array([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)>}
outputs:  TFBaseModelOutputWithPooling(last_hidden_state=<tf.Tensor: 
shape=(1, 8, 768), dtype=float32, numpy=
array([[[-0.00286604,  0.22725284,  0.0192489 , ..., -0.16997483,
          0.22732456,  0.2084062 ],
        [ 0.37293857,  0.18514417, -0.1804212 , ..., -0.02841423,
          0.92029154,  0.08076832],
        [ 1.0605763 ,  0.68393016,  0.3488946 , ...,  0.23068337,
          0.57474136, -0.2725499 ],
        ...,
        [ 0.36834046,  0.09277615, -0.49751407, ..., -0.21702018,
         -0.15317607, -0.17662546],
        [ 0.2218363 , -0.1452129 , -0.6224062 , ...,  0.19659105,
          0.0055675 ,  0.05520308],
        [ 0.38959947,  0.1536812 , -0.2523777 , ...,  0.3461408 ,
         -0.5905776 , -0.2758692 ]]], 
dtype=float32)>, pooler_output=<tf.Tensor: shape=(1, 768), dtype=float32, 
...
numpy=array([[-8.23929489e-01, -2.69686729e-01,  2.79440969e-01,
         5.52639008e-01, -5.11318594e-02, -8.98018852e-02,
         7.92447925e-01,  1.49121523e-01,  4.11069989e-02,
        -9.99752760e-01,  2.84106694e-02,  4.69654143e-01,
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         9.74410057e-01, -2.57081628e-01,  9.02504683e-01,
        -4.83381122e-01,  3.19796950e-02, -5.14692605e-01,
...
         3.13184172e-01,  3.45878363e-01,  7.98233569e-01,
         4.64420468e-01,  6.13458335e-01,  4.65085119e-01,
         2.03554392e-01, -5.93035281e-01,  8.85935843e-01]], 
dtype=float32)>, hidden_states=None, attentions=None)

Listing 7.14 shows the content of pytorch_gpt_next_word.py that 
illustrates how to predict the next word in a sentence.

LISTING 7.14: pytorch_gpt_next_word.py

import torch
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

# Load pre-trained GPT-2 tokenizer model:
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# encode the words in a sentence:
text = "What is the fastest car in the"
indexed_tokens = tokenizer.encode(text)

# convert tokens to a PyTorch tensor:
tokens_tensor = torch.tensor([indexed_tokens])

# load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')

# "eval" mode deactivates the DropOut modules:
model.eval()

# Predict each token:
with torch.no_grad():
  outputs = model(tokens_tensor)
  predictions = outputs[0]

print("=> list of predictions:")
print(predictions[0, -1, :])
print()

print("=> argmax of predictions:")
print(torch.argmax(predictions[0, -1, :]).item())
print()

# Get the predicted next sub-word
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])

# Print the predicted word
print("=> initial text:")
print(text)
print()

print("=> Predicted next word:")
print(predicted_text)

Listing 7.14 starts with two import statements, the second of which is sort 
of like the counterpart to the import statement in Listing 7.13:
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from transformers import AutoTokenizer, TFAutoModel

Next, the variable tokenizer is created as an instance of a generic gpt2 
model. Then, the variable text is initialized as a text string and passed as 
a parameter to the encode() method of the variable tokenizer, with the 
result assigned to the variable indexed_tokens.

The next portion of Listing 7.14 creates the variable tokens_tensor, 
which is a Torch-based tensor that is created from indexed_tokens. Now 
we can instantiate the variable model as a generic instance of the gpt2 model.

The second half of Listing 7.14 starts by initializing the variables outputs 
and predictions, followed by blocks of print() statements that display the 
values of predictions and the index position with the maximum value. Then, 
the initial text is displayed, followed by the initial text concatenated with the 
predicted word world (that is shown in bold below).

The output of Listing 7.14 is here (this might take a minute or two when 
you launch it the first time due to a file download):

=> list of predictions:
tensor([ -96.1219,  -94.2472,  -96.9560,  ..., -103.5570, -100.5182,
         -95.6672])

=> argmax of predictions:
995

=> initial text:
What is the fastest car in the

=> Predicted next word:
 What is the fastest car in the world

GPT-2 versus BERT

There are some important differences between GPT-2 and BERT. 
Specifically, GPT-2 is not bidirectional and has no concept of masking. GPT-2 
is based on transformer decoder blocks. Moreover, GPT-2 involves supervised 
fine-tuning and outputs only one token at a time.

By contrast, BERT adds the NSP task during training and also has a seg-
ment embedding. BERT uses transformer encoder blocks (not the decoder 
blocks) and also requires pre-training. The fine-tuning process necessitates 
task-specific sample data.

WHAT IS GPT-3?

GPT-3 is an extension of the GPT-2 model, contains more layers and data, 
and is 100 times larger than GPT-2. The largest GPT-3 model has 96 attention 
layers, each of which contains 96 × 128 dimension heads. In addition, GPT-3 
consists of 175 billion parameters and was trained on hundreds of gigabytes of 
text to learn how to predict the next word in a user-supplied text string. 

GPT-3 is a statistical model that determines the probability distribution of 
words in order to generate the appropriate text in response to an input string. 
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Unlike other models that are trained on specific tasks, GPT-3 is designed to 
detect patterns in text strings, which provides the following benefits:

•	GPT-3 is a general purpose (not task-specific) model
•	GPT-3 does not require re-training to handle new prompts
•	GPT-3 achieves SOTA (state of the art) performance on multiple NLP 

tasks 

The performance of GPT-3 is probably due to the fact that GPT-3 was 
trained on a dataset consisting of more than 50 billion words. Although the size 
and cost of GPT-3 is prohibitive for the vast majority of companies, GPT-3 is 
accessible via a simple and cost-effective API. GPT-3 is based on point-in-time 
data that can be several months old instead of continuous training.

GPT-3 Task Strengths and Mistakes

GPT-3 has the ability to perform text generation that is close to human-
level quality. For example, suppose that GPT-3 is given a title and a subtitle, 
along with the word “article” that serves as a prompt word. GPT-3 can then 
write brief articles that often seem to be written by humans.

However, any trained model has limitations, including GPT-3. Moreover, 
bias exists in the corpus that was used to train GPT-3. According to the follow-
ing article, one way in which GPT-3 can misclassify results is to include bias 
toward women and minorities:

https://techcrunch.com/2020/08/07/here-are-a-few-ways-gpt-3-can-go-
wrong/

A more significant example is the use of GPT-3 in a medical chatbot, which 
suggested to a fake patient (who expressed suicidal thoughts) that he kill 
himself:

https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai- 
gpt3-patient-kill-themselves/

GPT-3 Architecture

GPT-3 has eight different model sizes (from 125M to 175B parameters), 
and the smallest GPT-3 model is about the size of BERT-Base and RoBERTa-
Base, with 12 attention layers that in turn have 12 × 64 dimensional heads. 
However, the largest GPT-3 model is ten times larger than T5-11B (the previ-
ous record holder), and has 96 attention layers, which in turn have 96 × 128 
dimension heads.

The GPT-3 Playground

OpenAI provides the Playground, which is a Web-based tool for entering 
prompts in a text field and receiving completions from GPT-3. The Playground 
supports most of the functionality that is available directly through the GPT-3 
API. Moreover, the Playground enables you to interact with GPT-3 without 
writing any code.

https://techcrunch.com/2020/08/07/here-are-a-few-ways-gpt-3-can-go-wrong/
https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-gpt3-patient-kill-themselves/
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Accessing the GPT-3 Playground

Log in at https://openai.com, after which you can access the Playground if 
you are a registered user. Next, enter a text string, click the submit button, and 
then GPT-3 will display its response text.

Here is an interesting feature: each time that you click the submit button, 
GPT-3 uses the existing text as a prompt to generate a new completion. Try 
clicking the submit button repeatedly, and watch the response text that GPT-3 
generates for you.

WHAT IS THE GOAL OF GPT-3?

The aim of the GPT-3 pre-trained model is to directly evaluate the model 
on the test-related data of new tasks; i.e., GPT-3 essentially skips the training-
related data of new tasks and focuses directly on the test-related data, in its 
capacity as a “few shot” learner (discussed later).

By way of comparison, GPT-3 has 175 billion parameters, whereas GPT-2 
has 1.5 billion parameters, and BERT Large has 340 million parameters. GPT-3 
was trained entirely on publicly available datasets, on nearly 500,000,000,000 
words (some of which might contain offensive content). 

GPT-3 achieved state-of-the-art performance on several NLP tasks without 
fine-tuning, at the cost of over $10,000,000. Some of the datasets that were 
used to train GPT-3 are downloadable from this read-only Github repository:

https://github.com/openai/gpt-3
GPT-3 has caught the attention of many people because of various tasks 

that it has performed, including automatic code generation. For example, one 
user typed a paragraph of text describing the following Web application:

1.	 a button that increments a total by USD 3
2.	 a button that decrements a total by USD 5
3.	 a button that displays the current total

GPT-3 then created a React application with the preceding functional-
ity, which prompted a variety of reactions: some people were amused by 
such a simplistic application, whereas others contemplated their future job 
security.

Give GPT-3 an initial sequence of words and GPT-3 will generate various 
responses, such as code generation, news articles, poems, and even make jokes.

GPT-3 generated an interesting poem about Elon Musk (“your tweets are a 
blight”), part of which you can read online:

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-ope-
nai-2020-8

 The key differentiator of GPT-3 is its ability to perform specific tasks with-
out the need for fine-tuning, whereas other models tend to require task-spe-
cific datasets, and they generally do not perform as well on other tasks.

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8
https://openai.com
https://github.com/openai/gpt-3
https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8
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One of the distinguishing characteristics of GPT-3 is its ability to solve 
unseen NLP tasks. This is due to the fact that GPT-3 was trained on a very 
large corpus. GPT-3 also uses “few shot” learning (discussed later in this 
chapter) and can perform the following tasks:

•	translate natural language into code for websites
•	solve complex medical question-and-answer problems 
•	create tabular financial reports 
•	write code to train machine learning models 

The GPT-3 API involves setting the temperature parameter as well as the 
response length parameter. The temperature parameter (whose default value 
is 0.7) affects how much randomness the system uses in generating its replies. 
The response length parameter yields an approximate number of “words” the 
system generates in its response.

GPT-3 has surprised people with its capacity to generate prose as well as 
poetry. Elon Musk is one of the founding members of OpenAI that created 
GPT-3, which generated the following poem about Elon Musk1:

“The SEC said, “Musk,/your tweets are a blight./They really could cost 
you your job,/if you don’t stop/all this tweetingat night.”/…Then Musk cried, 
“Why?/The tweets I wrote are not mean,/I don’t use all-caps/and I’m sure that 
my tweets are clean.”/”But your tweets can move markets/and that’s why we’re 
sore./You may be a genius/and a billionaire,/but that doesn’t give you the right 
to be a bore!”

Zero-Shot, One-Shot, and Few Shot Learners

These three types of learners differ in the number of task examples that 
they are given and also the number of gradient updates that they perform. 

Specifically, a zero-shot learner is a model that predicts an answer based 
solely on an NLP description of the task: no gradient updates are performed. 

A one-shot learner is a model that 1) sees a description of the task and 
2) one example of the task: no gradient updates are performed.

A few-shot learner is a model that 1) sees a description of the task and 
2) a few examples of the task: no gradient updates are performed, and a “few” 
examples can involve between 10 and 100 examples of the task.

With the preceding points in mind, GPT-3 is a “few shot” learner because 
GPT-3 is fine-tuned on a small set of samples. By contrast, most other models 
(including BERT) require an elaborate fine-tuning step. 

GPT-3 TASK PERFORMANCE

For most models, the task of translating sentences from English to Italian 
involves thousands of sentence pairs in order for those models to learn how 

1 https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8
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to perform translation. By comparison, GPT-3 does not require a fine-tuning 
step: it can handle custom language tasks without training data.

Thus, GPT-3 has the ability to perform specific tasks without any special 
tuning, which is something that other models cannot do well. For example, 
GPT-3 can be trained to translate text, generate code, or even write poetry. 
Moreover, GPT-3 can do so with no more than 10 training examples.

One other point to keep in mind: GPT-3 is not just a few-shot learner. It 
can also perform as a zero-shot learner and a one-shot learner. By way of com-
parison, GPT-3 as a zero-shot learner has higher accuracy than a fine-tuned 
RoBERTa model (which previously had SOTA performance).

In terms of reading comprehension, GPT-3 performs best on free-form 
conversational datasets, and performs its worst on datasets that involve mod-
eling structured dialog. However, as a few-shot learner for this task, GPT-3 
outperforms the fine-tuned baseline of BERT. In addition, GPT-3 performs 
well on the SQuAD 2.0 dataset from Stanford, but underperforms on multiple-
choice test questions.

GPT-3 treats each input string as a so-called “prompt” in order to deter-
mine the most suitable response: higher quality prompts generate higher 
quality responses. A completion is another term for the response string that is 
generated by GPT-3. Examples of GPT-3 are available online:

https://beta.openai.com/examples

THE SWITCH TRANSFORMER: ONE TRILLION PARAMETERS

Recently Google researchers announced an NLP model with one trillion 
parameters, which is almost six times as larges at GPT-3 (175 billion param-
eters). This model is one of the largest models ever created, and it is as much 
as four times faster than T5-XXL (the previous largest language model from 
Google).

Instead of using complicated algorithms, the researchers combined a sim-
ple architecture in conjunction with large datasets and parameter counts. 
Since large-scale training is computationally intensive, they adopted a Switch 
Transformer, which is a technique that uses only a subset of the parameters 
of a model. In addition to the model’s sparseness, the Switch Transformer 
adroitly takes advantage of GPUs and TPUs for intense matrix multiplications 
operations.

LOOKING AHEAD

Several important topics are not discussed in this chapter. For example, 
the topic of ethics is much more visible than it was even just a few years ago. 
Various questions have become more prominent in AI, such as the ethical con-
cerns associated with large-scale deployment of AI system, how algorithms 
contribute decision-making processes, the source of data and the extent of 
biases in that data.

https://beta.openai.com/examples
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In health care, questions arise regarding AI-controlled robots prescrib-
ing medicine and performing surgery. Moreover, there are legal issues and 
accountability when robots make mistakes, such as who is responsible (the 
owner or the robot manufacturer?) and determining the type of penalty to 
impose (deactivate one robot or every robot in the same series?).

In parallel with the preceding issues, recent developments in AI are creat-
ing a sense of optimism that breakthroughs may well be on the event horizon. 
Recently OpenAI created DALL-E (derived from Salvador Dali and Pixar’s 
WALL-E), which is 12-billion parameter variation of GPT-3: https://openai.
com/blog/dall-e/

In addition, DeepMind developed AlphaFold, which made a significant 
contribution toward solving the protein folding problem (which has been 
called a “50-year-old problem in biology”). AlphaFold handily won the compe-
tition (by a substantial margin). 

To give you an idea of the impact of AlphaFold, Andrei Lupas, who is an 
evolutionary biologist at the Max Planck Institute for Developmental Biology 
in Tübingen, Germany, stated the following: “The [AlphaFold] model from 
group 427 gave us our structure in half an hour, after we had spent a decade 
trying everything.”

Indeed, the future of NLP and AI in general looks both challenging and 
promising, guided by ethical principles that may lead us to a more mindful 
way of life.

SUMMARY

This chapter started with an introduction to the concept of attention, fol-
lowed by the transformer architecture that was developed by Google and 
released in late 2017. You also learned how to use the transformer model from 
HuggingFace to perform tasks such as NER, QnA, Sentiment Analysis, and 
mask-filling tasks.

Next, you learned about BERT, which is a pre-trained NLP model that is 
based on the transformer architecture, along with some of its features. You also 
saw how to perform sentence similarity in BERT, and how to generate BERT 
tokens. Then you learned about several BERT-based trained models, including 
DistilledBERT, CamemBERT, and FlauBERT. 

In the final portion of this chapter, you learned about GPT-3 and some of 
its remarkable features, and its strengths as well as its weaknesses. You also 
learned about various types of learners and how GPT-3 was trained.

Congratulations! You have reached the end of a fast-paced introduction 
to R and NLP in R. You are in a good position to use the knowledge that you 
acquired in this book as a stepping stone to further your understanding of NLP.

https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/


APPENDIX

INTRO TO PROBABILITY 
AND STATISTICS

This appendix introduces you to concepts in probability, as well as a wide 
assortment of statistical terms and algorithms.

The first section of this appendix starts with a discussion of prob-
ability, how to calculate the expected value of a set of numbers (with associated 
probabilities), and the concept of a random variable (discrete and continuous), 
and a short list of some well-known probability distributions.

The second section of this appendix introduces basic statistical concepts, 
such as mean, median, mode, variance, and standard deviation, along with sim-
ple examples that illustrate how to calculate these terms. You will also learn 
about the terms RSS, TSS, R^2, and F1 score.

The third section of this appendix introduces Gini Impurity, Entropy, 
Perplexity, Cross-Entropy, and KL Divergence. You will also learn about skew-
ness and kurtosis.

The fourth section explains covariance and correlation matrices and how to 
calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a 
well-known dimensionality reduction technique. The final section introduces 
you to Bayes’ Theorem.

WHAT IS A PROBABILITY?

All measurements have some uncertainty. In general, we assume that there 
is a correct value, and we endeavor to find the best estimate of that value.

When we work with an event that can have multiple outcomes, we try to 
define the probability of an outcome as the chance that it will occur, which is 
calculated as follows:

p(outcome) = # of times outcome occurs/(total number of outcomes)
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For example, in the case of a single balanced coin, the probability of tossing 
a head H equals the probability of tossing a tail T: 

p(H) = 1/2 = p(T)

The set of probabilities associated with the outcomes {H, T} is shown in 
the set P:

P = {1/2, 1/2}

Some experiments involve replacement while others involve non-replace-
ment. For example, suppose that an urn contains 10 red balls and 10 green 
balls. What is the probability that a randomly selected ball is red? The answer 
is 10/(10 + 10) = 1/2. What is the probability that the second ball is also red? 

There are two scenarios with two different answers. If each ball is selected 
with replacement, then each ball is returned to the urn after selection, which 
means that the urn always contains 10 red balls and 10 green balls. In this case, 
the answer is 1/2 * 1/2 = 1/4. In fact, the probability of any event is independ-
ent of all previous events (with replacement).

However, if balls are selected without replacement, then the answer 
is 10/20 * 9/19. As you undoubtedly know, card games are also examples of 
selecting cards without replacement.

Another concept is conditional probability, which refers to the likelihood of 
the occurrence of event E1 given that event E2 has occurred. A simple exam-
ple is the following statement:

“If it rains (E2), then I will carry an umbrella (E1).”

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin: whenever 
a head appears, you earn $1 and whenever a tail appears, you earn $1. If you 
toss the coin 100 times, how much money do you expect to earn? Since you will 
earn $1 regardless of the outcome, the expected value (in fact, the guaranteed 
value) is 100.

Now consider this scenario: whenever a head appears, you earn $1 and 
whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how 
much money do you expect to earn? You probably determined the value $50 
(which is the correct answer) by making a quick mental calculation. The more 
formal derivation of the value of E (the expected earning) is here:

E = 100 *[1 * 0.5 + 0 * 0.5] = 100 * 0.5 = 50

The quantity 1 * 0.5 + 0 * 0.5 is the amount of money you expected to earn 
during each coin toss (half the time you earn $1 and half the time you earn 0 
dollars), and multiplying this number by 100 is the expected earning after 100 
coin tosses. Also note that you might never earn $50: the actual amount that 
you earn can be any integer between 1 and 100 inclusive. 
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As another example, suppose that you earn $3 whenever a head appears, 
and you lose $1.50 dollars whenever a tail appears. Then the expected earning 
E after 100 coin tosses is shown here:

E = 100 *[3 * 0.5 − 1.5 * 0.5] = 100 * 1.5 = 150

We can generalize the preceding calculations as follows. Let P = {p1, . . . , pn} 
be a probability distribution, which means that the values in P are non-negative 
and their sum equals 1. In addition, let R = {R1, . . . , Rn} be a set of rewards, 
where reward Ri is received with probability pi. Then the expected value E 
after N trials is as follows:

E = N * [SUM pi*Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P = { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

As a simple example, suppose that the earnings are {3, 0, −1, 2, 4, −1} when 
the values 1, 2, 3, 4, 5, 6, respectively, appear when tossing the single die. Then 
after 100 trials our expected earnings are calculated as follows:

E = 100 * [3 + 0 + −1 + 2 + 4 + −1]/6 = 100 * 3/6 = 50

In the case of two balanced dice, we have the following probabilities of 
rolling 2, 3, . . . , or 12:

p(2) = 1/36
p(3) = 2/36
...
p(12) = 1/36
P = {1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36}

RANDOM VARIABLES

A random variable is a variable that can have multiple values, and each 
value has an associated probability of occurrence. For example, if we let X be a 
random variable whose values are the outcomes of tossing a well-balanced die, 
then the values of X are the numbers in the set {1, 2, 3, 4, 5, 6}. Moreover, each 
of those values can occur with equal probability (which is 1/6).
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In the case of two well-balanced dice, let X be a random variable whose 
values can be any of the numbers in the set {2, 3, 4, . . . , 12}. Then the asso-
ciated probabilities for the different values for X are listed in the previous 
section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables 
because the list of possible values is either finite or countably infinite (such 
as the set of integers). As an aside, the set of rational numbers and the set 
of algebraic numbers are also countably infinite, but the set of non-algebraic 
irrational numbers and the set of real numbers are both uncountably infinite 
(proofs are available online). As pointed out earlier, the associated set of prob-
abilities must form a probability distribution, which means that the probability 
values are non-negative and their sum equals 1.

A continuous random variable is a variable whose values can be any num-
ber in an interval, which can be an uncountably infinite number of values. For 
example, the amount of time required to perform a task is represented by a 
continuous random variable.

A continuous random variable also has a probability distribution that is rep-
resented as a continuous function. The constraint for such a variable is that 
the area under the curve (which is sometimes calculated via a mathematical 
integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known 
probability distributions are listed here:

•	Gaussian distribution
•	Poisson distribution
•	Chi-squared distribution
•	Binomial distribution

The Gaussian distribution is named after Karl F. Gauss, and it is sometimes 
called the normal distribution or the Bell curve. The Gaussian distribution is 
symmetric: the shape of the curve on the left of the mean is identical to the 
shape of the curve on the right side of the mean. As an example, the distribu-
tion of IQ scores follows a curve that is similar to a Gaussian distribution. 

However, the frequency of traffic at a given point in a road follows a Poisson 
distribution (which is not symmetric). If you count the number of people who 
go to a public pool based on five-degree (Fahrenheit) increments of the tem-
perature, followed by five-degree decrements in temperature, that set of num-
bers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list 
and you will find numerous articles that contain images and technical details 
about these (and other) probability distributions.
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FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median, 
mode, variance, and standard deviation. Feel free to skim (or skip) this section 
if you are already familiar with these concepts. As a start point, let’s suppose 
that we have a set of numbers X ={x1, . . . , xn} that can be positive, negative, 
integer-valued or decimal values. 

The Mean

The mean of the numbers in the set X is the average of the values. For 
example, if the set X consists of {−10, 35, 75, 100}, then the mean equals 
(−10 + 35 + 75 + 100)/4 = 50. If the set X consists of {2, 2, 2, 2}, then the mean 
equals (2 + 2 + 2 + 2)/4 = 2. The mean value is not necessarily one of the values 
in the set.

The mean is sensitive to outliers. For example, the mean of the set of num-
bers {1, 2, 3, 4} is 2.5, whereas the mean of the set of number {1, 2, 3, 4, 1000} 
is 202. Since the formulas for the variance and standard deviation involve the 
mean of a set of numbers, both of these terms are also more sensitive to outliers.

The Median

The median of the numbers (sorted in increasing or decreasing order) in 
the set X is the middle value in the set of values, which means that half the 
numbers in the set are less than the median and half the numbers in the set are 
greater than the median. For example, if the set X consists of {−10, 35, 75, 100}, 
then the median equals 55 because 55 is the average of the two numbers 35 
and 75. As you can see, half the numbers are less than 55 and half the numbers 
are greater than 55. If the set X consists of {2, 2, 2, 2}, then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean. 
For example, the median of the set of numbers {1, 2, 3, 4} is 2.5, and the 
median of the set of numbers {1, 2, 3, 4, 1000} is 3. 

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the 
set X is the most frequently occurring value, which means that there can be 
more than one such value. If the set X consists of {2, 2, 2, 2}, then the mode 
equals 2. 

If X is the set of numbers {2, 4, 5, 5, 6, 8}, then the number 5 occurs twice 
and the other numbers occur only once, so the mode equals 5. 

If X is the set of numbers {2, 2, 4, 5, 5, 6, 8}, then the numbers 2 and 5 occur 
twice and the other numbers occur only once, so the mode equals 2 and 5. 
A set that has two modes is called bimodal, and a set that has more than two 
modes is called multi-modal.

One other scenario involves sets that have numbers with the same fre-
quency and they are all different. In this case, the mode does not provide 
meaningful information, and one alternative is to partition the numbers into 
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subsets and then select the largest subset. For example, if set X has the values 
{1, 2, 15, 16, 17, 25, 35, 50}, we can partition the set into subsets whose ele-
ments are in range that are multiples of ten, which results in the subsets {1, 2}, 
{15, 16, 17}, {25}, {35}, and {50}. The largest subset is {15, 16, 17}, so we could 
select the number 16 as the mode.

As another example, if set X has the values {−10, 35, 75, 100}, then parti-
tioning this set does not provide any additional information, so it’s probably 
better to work with either the mean or the median.

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the num-
bers in X and the mean mu of the set X, divided by the number of values in X, 
as shown here:

variance = [SUM (xi − mu)**2 ] / n

For example, if the set X consists of {−10, 35, 75, 100}, then the mean 
equals (−10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

variance = [(−10−50)**2 + (35−50)**2 + (75−50)**2 + (100−50)**2]/4
	 = [60**2 + 15**2 + 25**2 + 50**2]/4
	 = [3600 + 225 + 625 + 2500]/4
	 = 6950/4 = 1,737.50

The standard deviation std is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2, 2, 2, 2}, then the mean equals (2 + 2 + 2 + 2)/4 = 2, 
and the variance is computed as follows:

variance = [(2−2)**2 + (2−2)**2 + (2−2)**2 + (2−2)**2]/4
	 = [0**2 + 0**2 + 0**2 + 0**2]/4
	 = 0

The standard deviation std is the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given 
group, such as the population of a country, the people over 65 in the USA, or 
the number of first year students in a university.

However, in many cases statistical quantities are calculated on samples 
instead of an entire population. Thus, a sample is (a much smaller) subset of the 
given population. See the Central Limit Theorem regarding the distribution of 
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the mean of a set of samples of a population (which need not be a population 
with a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of 
three different techniques that you can investigate:

•	Stratified sampling
•	Cluster sampling
•	Quota sampling

The population variance is calculated by multiplying the sample variance 
by n/(n−1), as shown here:

population variance = [n/(n−1)]*variance

ChebyshevÕs Inequality

Chebyshev’s inequality provides a simple way to determine the minimum 
percentage of data that lies within k standard deviations. Specifically, this ine-
quality states that for any positive integer k greater than 1, the amount of data 
in a sample that lies within k standard deviations is at least 1 − 1/k**2. For 
example, if k = 2, then at least 1 − 1/2**2 = 3/4 of the data must lie within 2 
standard deviations.

The interesting part of this inequality is that it has been mathematically 
proven to be true, i.e., it’s not an empirical or heuristic-based result. An exten-
sive description regarding Chebyshev’s inequality (including some advanced 
mathematical explanations) is available online:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

What is a p-value?

The null hypothesis states that there is no correlation between a depend-
ent variable (such as y) and an independent variable (such as x). The p-value is 
used to reject the null hypothesis if the p-value is small enough (< 0.005) which 
indicates a higher significance. The threshold value for p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are val-
ues that are always between 0 and 1. In fact, p-values are statistical quantities 
to evaluate the null hypothesis, and they are calculated by means of p-value 
tables or via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that is sufficient for 
the material in this book. However, several of those terms can be viewed from 
the perspective of different moments of a function.

In brief, the moments of a function are measures that provide information 
regarding the shape of the graph of a function. In the case of a probability dis-
tribution, the first four moments are defined as follows:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality
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•	The mean is the first central moment
•	The variance is the second central moment
•	The skewness (discussed later) is the third central moment
•	The kurtosis (discussed later) is the fourth central moment

More detailed information (including the relevant integrals) regarding 
moments of a function is available here:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance

What is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. A 
Gaussian distribution is symmetric, which means that its skew value is zero (it’s 
not exactly zero, but close enough for our purposes). In addition, the skewness 
of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-
sided skew means that the long tail is on the left side of the curve, with the 
following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the curve, 
with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed data-
set using one of the following techniques (which depends on the specific 
use-case):

•	Exponential transform
•	Log transform
•	Power transform

Perform an online search for more information regarding the preceding 
transforms and when to use each of these transforms.

What is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense 
that both of them assess the asymmetry of a probability distribution. The kur-
tosis of a distribution is a scaled version of the fourth moment of the distribu-
tion, whereas its skewness is the third moment of the distribution. Note that 
the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts, 
you can perform an online search for information regarding mesokurtic, lepto-
kurtic, and platykurtic types of “excess kurtosis.”

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance
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DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the 
challenges and obstacles that you might encounter when working with datasets. 
This section and subsequent sections introduce you to the following concepts:

•	Correlation versus Causation
•	The bias-variance tradeoff
•	Types of bias
•	The Central Limit Theorem
•	Statistical inferences

Statistics typically involves data samples, which are subsets of observations 
of a population. The goal is to find well-balanced samples that provide a good 
representation of the entire population. 

Although this goal can be very difficult to achieve, it’s also possible to 
achieve highly accurate results with a very small sample size. For example, 
the Harris poll in the USA has been used for decades to analyze political 
trends. This poll computes percentages that indicate the favorability rating 
of political candidates, and it’s usually within 3.5% of the correct percent-
age values. What’s remarkable about the Harris poll is that its sample size 
is a mere 4,000 people that are from the US population that is greater than 
325,000,000 people.

Another aspect to consider is that each sample has a mean and variance, 
which do not necessarily equal the mean and variance of the actual population. 
However, the expected value of the sample mean and variance equal the mean 
and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you take 
a set of samples {S1, S3, . . . , Sn} of a population and you calculate the mean 
of those samples, which is {m1, m2, . . . , mn}. The Central Limit Theorem is 
a remarkable result: given a set of samples of a population and the mean value 
of those samples, the distribution of the mean values can be approximated by 
a Gaussian distribution. Moreover, as the number of samples increases, the 
approximation becomes more accurate.

Correlation versus Causation

In general, datasets have some features (columns) that are more significant 
in terms of their set of values, and some features only provide additional infor-
mation that does not contribute to potential trends in the dataset. For example, 
the passenger names in the list of passengers on the Titanic are unlikely to 
affect the survival rate of those passengers, whereas the gender of the passen-
gers is likely to be an important factor.
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In addition, a pair of significant features may also be “closely coupled” in 
terms of their values. For example, a real estate dataset for a set of houses 
will contain the number of bedrooms and the number of bathrooms for each 
house in the dataset. As you know, these values tend to increase together and 
also decrease together. Have you ever seen a house that has 10 bedrooms and 
1 bathroom, or a house that has 10 bathrooms and 1 bedroom? If you did find 
such a house, would you purchase that house as your primary residence?

The extent to which the values of two features change is called their cor-
relation, which is a number between −1 and 1. Two “perfectly” correlated fea-
tures have a correlation of 1, and two features that are not correlated have a 
correlation of 0. In addition, if the values of one feature decrease when the val-
ues of another feature increase, and vice versa, then their correlation is closer 
to −1 (and might also equal −1).

However, causation between two features means that the values of one fea-
ture can be used to calculate the values of the second feature (within some 
margin of error).

Keep in mind this fundamental point about machine learning models: they 
can provide correlation but they cannot provide causation.

Statistical Inferences

Statistical thinking related processes and statistics, whereas statistical infer-
ence refers to the process by which the inferences that you make regarding a 
population. Those inferences are based on statistics that are derived from sam-
ples of the population. The validity and reliability of those inferences depend 
on random sampling in order to reduce bias. There are various metrics that you 
can calculate to help you assess the validity of a model that has been trained on 
a particular dataset.

STATISTICAL TERMS RSS, TSS, R^2, AND F1 SCORE

Statistics is extremely important in machine learning, so it’s not surprising 
that many concepts are common to both fields. Machine learning relies on a 
number of statistical quantities in order to assess the validity of a model, some 
of which are listed here:

•	RSS
•	TSS
•	R^2

The term RSS is the “residual sum of squares” and the term TSS is the “total 
sum of squares.” Moreover, these terms are used in regression models.

As a starting point so we can simplify the explanation of the preceding 
terms, suppose that we have a set of points {(x1, y1), . . . , (xn, yn)} in the 
Euclidean plane. In addition, let’s define the following quantities:
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•	(x, y) is any point in the dataset
•	y is the y-coordinate of a point in the dataset
•	y_ is the mean of the y-values of the points in the dataset
•	y_hat is the y-coordinate of a point on a best-fitting line

Just to be clear, (x, y) is a point in the dataset, whereas (x, y_hat) is the 
corresponding point that lies on the best fitting line. With these definitions in 
mind, the definitions of RSS, TSS, and R^2 are listed here (n equals the num-
ber of points in the dataset): 

•	RSS = (y − y_hat)**2/n
•	TSS = (y − y_bar)**2/n
•	R^2 = 1 − RSS/TSS

We also have the following inequalities involving RSS, TSS, and R^2:

•	0 <= RSS 
•	RSS <= TSS
•	0 <= RSS/TSS <= 1
•	0 <= 1 − RSS/TSS <= 1
•	0 <= R^2 <= 1

When RSS is close to 0, then RSS/TSS is also close to zero, which means 
that R^2 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is 
close to 1, and R^2 is close to 0. In general, a larger R^2 is preferred (i.e., the 
model is closer to the data points), but a lower value of R^2 is not necessarily 
a bad score.

What is an F1 score?

In machine learning, an F1 score is for models that are evaluated on a 
feature that contains categorical data, and the p-value is useful for machine 
learning in general. An F1 score is a measure of the accuracy of a test, and it’s 
defined as the harmonic mean of precision and recall. Here are the relevant 
formulas, where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive results)
r = (# of correct positive results)/(# of all relevant samples)

F1-score = 1/[((1/r) + (1/p))/2]
	   = 2*[p*r]/[p+r]

The best value of an F1 score is 0 and the worse value is 0. An F1 score is 
for categorical classification problems, whereas the R^2 value is typically for 
regression tasks (such as linear regression).
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GINI IMPURITY, ENTROPY, AND PERPLEXITY

These concepts are useful for assessing the quality of a machine learning 
model and the latter pair are useful for dimensionality reduction algorithms.

Before we discuss the details of Gini impurity, suppose that P is a set of 
non-negative numbers {p1, p2, . . . , pn} such that the sum of all the numbers 
in the set P equals 1. Under these two assumptions, the values in the set P 
comprise a probability distribution, which we can represent with the letter p.

Now suppose that the set K contains a total of M elements, with k1 ele-
ments from class S1, k2 elements from class S2, . . . , and kn elements from 
class Sn. Compute the fractional representation for each class as follows:

p1 = k1/M, p2 = k2/M, . . . , pn = kn/M

As you can surmise, the values in the set {p1, p2, . . . , pn} form a prob-
ability distribution. We’re going to use the preceding values in the following 
subsections.

What is Gini Impurity?

The Gini impurity is defined as follows, where {p1, p2, . . . , pn} is a prob-
ability distribution:

Gini = 1 – [p1*p1 + p2*p2 + · · · + pn*pn] 
        = 1 – SUM pi*pi (for all i, where 1<=i<=n)

Since each pi is between 0 and 1, then pi*pi <= pi, which means that

1 = p1 + p2 + · · · + pn
>= p1*p1 + p2*p2 + · · · + pn*pn
  = Gini impurity

Since the Gini impurity is the sum of the squared values of a set of prob-
abilities, the Gini impurity cannot be negative. Hence, we have derived the 
following result:

0 <= Gini impurity <= 1

What is Entropy?

Entropy is a measure of the expected (“average”) number of bits required 
to encode the outcome of a random variable. The calculation for the entropy 
H (the letter E is reserved for Einstein’s formula) as defined via the following 
formula:

H = (−1)*[p1*log p1 + p2 * log p2 + · · · + pn * log pn]
    = (−1)* SUM [pi * log(pi)] (for all i, where 1<=i<=n)
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Calculating Gini Impurity and Entropy Values

For our first example, suppose that we have three classes A and B and a 
cluster of 10 elements with 8 elements from class A and 2 elements from class 
B. Therefore, p1 and p2 are 8/10 and 2/10, respectively. We can compute the 
Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2]
	 = 1 – [64/100 + 04/100]
	 = 1 − 68/100 
	 = 32/100 
	 = 0.32

We can also calculate the entropy for this example as follows:

Entropy = (−1)*[p1 * log p1 + p2 * log p2]
	 = (−1)*[0.8 * log 0.8 + 0.2 * log 0.2]
	 = (−1)*[0.8 * (−0.322) + 0.2 * (−2.322)]
	 = 0.8 * 0.322 + 0.2 * 2.322
	 = 0.7220

For our second example, suppose that we have three classes A, B, C and a 
cluster of 10 elements with 5 elements from class A, 3 elements from class B, 
and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and 2/10, 
respectively. We can compute the Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2 + p3*p3]
	 = 1 – [25/100 + 9/100 + 04/100]
	 = 1 − 38/100 
	 = 62/100 
	 = 0.62

We can also calculate the entropy for this example as follows:

Entropy = (−1)*[p1 * log p1 + p2 * log p2]
	 = (−1)*[0.5*log0.5 + 0.3*log0.3 + 0.2*log0.2]
	 = (−1)*[−1 + 0.3*(−1.737) + 0.2*(−2.322)]
	 = 1 + 0.3*1.737 + 0.2*2.322
	 = 1.9855

In both examples, the Gini impurity is between 0 and 1. However, while the 
entropy is between 0 and 1 in the first example, it’s greater than 1 in the second 
example (which was the rationale for showing you two examples).

A set whose elements belong to the same class has Gini impurity equal to 
0 and also its entropy equal to 0. For example, if a set has 10 elements that 
belong to class S1, then
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Gini = 1 – SUM pi*pi 
	 = 1 − p1*p1 
	 = 1 – (10/10)*(10/10) 
	 = 1 – 1 = 0

Entropy = (−1)*SUM pi*log pi 
	 = (−1) * p1*log pi 
	 = (−1) * (10/10) * log(10/10) 
	 = (−1)*1*0 = 0

Multi-Dimensional Gini Index

The Gini index is a one-dimensional index that works well because the 
value is uniquely defined. However, when working with multiple factors, we 
need a multidimensional index. Unfortunately, the multi-dimensional Gini 
index (MGI) is not uniquely defined. While there have been various attempts 
to define an MGI that has unique values, they tend to be non-intuitive and 
mathematically much more complex. More information about MGI is avail-
able online:

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5

What is Perplexity?

Suppose that q and p are two probability distributions, and {x1, x2, . . . , xN} 
is a set of sample values that is drawn from a model whose probability distribu-
tion is p. In addition, suppose that b is a positive integer (it’s usually equal to 2). 
Now define the variable S as the following sum (logarithms are in base b not 10):

S = (−1/N) * [log q(x1) + log q(x2) + · · · + log q(xN)]
   = (−1/N) * SUM log q(xi)

The formula for the perplexity PERP of the model q is b raised to the 
power S, as shown here:

PERP = b^S

If you compare the formula for entropy with the formula for S, you can see 
that the formulas as similar, so the perplexity of a model is somewhat related 
to the entropy of a model. 

CROSS-ENTROPY AND KL DIVERGENCE

Cross-entropy is useful for understanding machine learning algorithms, and 
frameworks such as TensorFlow, which supports multiple APIs that involve 
cross entropy. KL divergence is relevant in machine learning, deep learning, 
and reinforcement learning.

As an example, consider the credit assignment problem, which involves 
assigning credit to different elements or steps in a sequence. For example, 

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5
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suppose that users arrive at a Web page by clicking on a previous page, which 
was also reached by clicking on yet another Web page. Then on the final Web 
page users click on an ad. How much credit is given to the first and second 
Web pages for the selected ad? You might be surprised to discover that one 
solution to this problem involves KL Divergence.

What is Cross Entropy?

The following formulas for logarithms are presented here because they are 
useful for the derivation of cross entropy in this section:

•	log (a * b) = log a + log b
•	log (a/b) = log a − log b
•	log (1/b) = (−1) * log b

In a previous section you learned that for a probability distribution P with 
values {p1, p2, . . . , pn}, its entropy is H defined as follows:

H(P) = (−1)*SUM pi*log(pi)

Now let’s introduce another probability distribution Q whose values are 
{q1, q2, . . . , qn}, which means that the entropy H of Q is defined as follows:

H(Q) = (−1)*SUM qi*log(qi)

Now we can define the cross entropy CE of Q and P as follows (notice the 
log qi and log pi terms and recall the formulas for logarithms in the previous 
section):

CE(Q, P) = SUM (pi*log qi) − SUM (pi*log pi) 
	  = SUM (pi*log qi − pi*log pi) 
	  = SUM pi*(log qi − log pi)
	  = SUM pi*(log qi/pi)

What is KL Divergence?

Now that entropy and cross-entropy have been discussed, we can easily 
define the KL Divergence of the probability distributions Q and P as follows:

KL(P||Q) = CE(P, Q) − H(P)

The definitions of entropy H, cross entropy CE, and KL Divergence in this 
appendix involve discrete probability distributions P and Q. However, these 
concepts have counterparts in continuous probability density functions. The 
mathematics involves the concept of a Lebesgue measure on Borel sets (which 
is beyond the scope of this book):

https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Borel_set

https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Borel_set
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In addition to KL Divergence, there is also the JS Divergence (also called 
the Jenson-Shannon Divergence), which was developed by Johan Jensen and 
Claude Shannon (who defined the formula for entropy). The JS Divergence is 
based on the KL Divergence, and it has some differences. The JS Divergence 
is symmetric and a true metric, whereas the KL Divergence is neither. More 
information regarding JS Divergence is available online:

https://en.wikipedia.org/wiki/Jensen–Shannon_divergence

WhatÕs Their Purpose?

The Gini impurity is often used to obtain a measure of the homogeneity 
of a set of elements in a decision tree. The entropy of that set is an alternative 
to its Gini impurity, and you will see both of these quantities used in machine 
learning models. 

The perplexity value in NLP is one way to evaluate language models, which 
are probability distributions over sentences or texts. This value provides an 
estimate for the encoding size of a set of sentences.

Cross entropy is used in various methods in the TensorFlow framework, 
and the KL Divergence is used in various algorithms, such as the dimensional-
ity reduction algorithm t-SNE. 

COVARIANCE AND CORRELATION MATRICES

This section explains two important matrices: the covariance matrix and the 
correlation matrix. Although these are relevant for PCA (Principal Component 
Analysis) that is discussed later in this appendix, these matrices are not specific 
to PCA, which is the rationale for discussing them in a separate section. If you 
are familiar with these matrices, feel free to skim through this section.

The Covariance Matrix

As a reminder, the statistical quantity called the variance of a random vari-
able X is defined as follows:

variance(x) = [SUM (x – xbar)∗(x – xbar)]/n

A covariance matrix C is an n × n matrix whose values on the main diagonal 
are the variance of the variables X1, X2, . . . , Xn. The other values of C are the 
covariance values of each pair of variables Xi and Xj. 

The formula for the covariance of the variables X and Y is a generalization 
of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)∗(y – ybar)]/n

Notice that you can reverse the order of the product of terms (multiplication 
is commutative), and therefore the covariance matrix C is a symmetric matrix:

covariance(X, Y) = covariance(Y, X)

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
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Suppose that a CSV file contains four numeric features, all of which have 
been scaled appropriately, and let’s call them x1, x2, x3, and x4. Then the covar-
iance matrix C is a 4 × 4 square matrix that is defined with the following entries 
(pretend that there are outer brackets on the left side and the right side to 
indicate a matrix):

cov(x1, x1) cov(x1, x2) cov(x1, x3) cov(x1, x4)
cov(x2, x1) cov(x2, x2) cov(x2, x3) cov(x2, x4)
cov(x3, x1) cov(x3, x2) cov(x3, x3) cov(x3, x4)
cov(x4, x1) cov(x4, x2) cov(x4, x3) cov(x4, x4) 

Note that the following is true for the diagonal entries in the preceding 
covariance matrix C:

var(x1, x1) = cov(x1, x1)
var(x2, x2) = cov(x2, x2)
var(x3, x3) = cov(x3, x3)
var(x4, x4) = cov(x4, x4)

In addition, C is a symmetric matrix, which is to say that the transpose of 
matrix C (rows become columns and columns become rows) is identical to 
the matrix C. The latter is true because (as you saw in the previous section) 
cov(x, y) = cov(y, x) for any feature x and any feature y. 

Covariance Matrix: an Example

Suppose we have the two-column matrix A defined as follows:

     x  y
A = | 1  1 | <= 6 × 2 matrix
       | 2  1 |
       | 3  2 |
       | 4  2 |
       | 5  3 |
       | 6  3 |

The mean x_bar of column x is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5, and the 
mean y_bar of column y is (1 + 1 + 2 + 2 + 3 + 3)/6 = 2. Now subtract x_bar 
from column x and subtract y_bar from column y and we get matrix B, as 
shown here:

B = | −2.5  −1 | <= 6 × 2 matrix
       |	−1.5	−1	|
       |	−0.5	 0	|
       |	 0.5	 0	|
       |	 1.5	 1	|
       |	 2.5	 1	|
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Let Bt indicate the transpose of the matrix B (i.e., switch columns with rows 
and rows with columns) which means that Bt is a 2 × 6 matrix, as shown here:

Bt = |−2.5 −1.5 −0.5 0.5, 1.5, 2.5|
        |−1    −1       0    0     1     1   |

The covariance matrix C is the product of Bt and B, as shown here:

C = Bt * B = | 15.25 4 |
                      | 4        8 |

Note that if the units of measure of features x and y do not have a similar 
scale, then the covariance matrix is adversely affected. In this case, the solution 
is simple: use the correlation matrix, which defined in the next section.

The Correlation Matrix

As you learned in the preceding section, if the units of measure of features 
x and y do not have a similar scale, then the covariance matrix is adversely 
affected. The solution involves the correlation matrix, which equals the covari-
ance values cov(x, y) divided by the standard deviation stdx and stdy of x and y, 
respectively, as shown here:

corr(x, y) = cov(x, y)/[stdx * stdy]

The correlation matrix no longer has units of measure, and we can use this 
matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the 
correlation matrix, you are ready for an example of calculating eigenvalues and 
eigenvectors, which are the topic of the next section.

Eigenvalues and Eigenvectors

According to a well-known theorem in mathematics (whose proof you 
can find online), the eigenvalues of a symmetric matrix are real numbers. 
Consequently, the eigenvectors of C are vectors in a Euclidean vector space 
(not a complex vector space).

Before we continue, a non-zero vector x' is an eigenvector of the matrix C if 
there is a non-zero scalar lambda such that C*x' = lambda * x'.

Now suppose that the eigenvalues of C are b1, b2, b3, and b4, in decreas-
ing numeric order from left-to-right, and that the corresponding eigenvectors 
of C are the vectors w1, w2, w3, and w4. Then, the matrix M that consists of 
the column vectors w1, w2, w3, and w4 represents the principal components.

CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

As a simple illustration of calculating eigenvalues and eigenvectors, sup-
pose that the square matrix C is defined as follows:
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C = | 1 3 |
       | 3 1 |

Let I denote the 2 × 2 identity matrix, and let b' be an eigenvalue of C, 
which means that there is an eigenvector x' such that

C* x' = b' * x', or
(C−b*I)*x' = 0 (the right side is a 2 × 1 vector)

Since x' is non-zero, that means the following is true (where det refers to 
the determinant of a matrix):

det(C−b*I) = det |1−b 3 | = (1−b)*(1−b)−9 = 0
	  |3  1−b|  

We can expand the quadratic equation in the preceding line to obtain the 
following: 

det(C−b*I) = (1−b)*(1−b) − 9
	  = 1 − 2*b + b*b − 9
	  = −8 − 2*b + b*b
	  = b*b − 2*b − 8

Use the quadratic formula (or perform factorization by visual inspection) to 
determine that the solution for det(C−b*I) = 0 is b = −2 or b = 4. Next, substi-
tute b = −2 into (C−b*I)x' = 0 and we obtain the following result:

|1−(−2) 3         | |x1| = |0|
|3          1−(−2)| |x2|    |0|

The preceding reduces to the following identical equations:

3*x1 + 3*x2 = 0
3*x1 + 3*x2 = 0

The general solution is x1 = −x2, and we can choose any non-zero value for 
x2, so let’s set x2 = 1 (any non-zero value will do just fine), which yields x1 = −1. 
Therefore, the eigenvector [−1, 1] is associated with the eigenvalue −2. In a 
similar fashion, if x' is an eigenvector whose eigenvalue is 4, then [1, 1] is an 
eigenvector.

Notice that the eigenvectors [−1, 1] and [1, 1] are orthogonal because their 
inner product is zero, as shown here:

[−1, 1] * [1, 1] = (−1)*1 + (1)*1 = 0

In fact, the set of eigenvectors of a square matrix (whose eigenvalues 
are real) are always orthogonal, regardless of the dimensionality of the 
matrix.
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Gauss Jordan Elimination (optional) 

This simple technique enables you to find the solution to systems of linear 
equations “in place,” which involves a sequence of arithmetic operations to 
transform a given matrix to an identity matrix.

The following example combines the Gauss-Jordan elimination technique 
(which finds the solution to a set of linear equations) with the “bookkeeper’s 
method,” which determines the inverse of an invertible matrix (its determinant 
is non-zero).

This technique involves two adjacent matrices: the left-side matrix is the 
initial matrix and the right-side matrix is an identity matrix. Next, perform vari-
ous linear operations on the left-side matrix to reduce it to an identity matrix: 
the matrix on the right side equals its inverse. For example, consider the fol-
lowing pair of linear equations whose solution is x = 1 and y = 2:

2*x + 2*y = 6
4*x − 1*y = 2

Step 1: Create a 2 × 2 matrix with the coefficients of x in column 1 and the 
coefficients of y in column two, followed by the 2 × 2 identity matrix, and a 
column from the numbers on the right of the equals sign:

|	2	 2	| 1 0 | 6 |
|	4	−1	| 0 1 | 2 | 

Step 2: Add (−2) times the first row to the second row:
| 2   2 |   1 0 | 6     |
| 0 −5 | −2 1 | −10 | 

Step 3: Divide the second row by 5:
| 2   2 |    1    0   |     6     |
| 0 −1 | −2/5 1/5 | −10/5 | 

Step 4: Add 2 times the second row to the first row:
| 2   0 |  1/5 2/5 |  2  |
| 0 −1 | −2/5 1/5 | −2 | 

Step 5: Divide the first row by 2:
| 1   0 | −2/10 2/10 |  1  |
| 0 −1 |  −2/5   1/5  | −2 | 

Step 6: Multiply the second row by (−1):
| 1  0 | −2/10 2/10 | 1 |
| 0  1 |   2/5  −1/5 | 2 |

As you can see, the left-side matrix is the 2 × 2 identity matrix, the right-
side matrix is the inverse of the original matrix, and the right-most column is 
the solution to the original pair of linear equations (x = 1 and y = 2).
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PCA (PRINCIPAL COMPONENT ANALYSIS)

PCA is a linear dimensionality reduction technique for determining the 
most important features in a dataset. This section discusses PCA because it’s a 
very popular technique that you will encounter frequently. Other techniques 
are more efficient than PCA, so it’s worthwhile to learn other dimensionality 
reduction techniques as well.

Keep in mind the following points regarding the PCA technique:

•	PCA is a variance-based algorithm.
•	PCA creates variables that are linear combinations of the original 

variables. 
•	The new variables are all pair-wise orthogonal.
•	PCA can be a useful pre-processing step before clustering.
•	PCA is generally preferred for data reduction.

PCA can be useful for variables that are strongly correlated. If most of the 
coefficients in the correlation matrix are smaller than 0.3, PCA is not helpful. 
PCA provides some advantages: less computation time for training a model (for 
example, using only five features instead of 100 features), a simpler model, and 
the ability to render the data visually when two or three features are selected. 
PCA calculates the eigenvalues and the eigenvectors of the covariance (or cor-
relation) matrix C.

If you have four or five components, you won’t be able to display them 
visually, but you could select subsets of three components for visualization, and 
perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:

1.	 Calculate the correlation matrix (from the covariance matrix) C of a dataset. 
2.	 Find the eigenvalues of C. 
3.	 Find the eigenvectors of C. 
4.	 Construct a new matrix that comprises the eigenvectors. 

The covariance matrix and correlation matrix were explained in a previous 
section. You also saw the definition of eigenvalues and eigenvectors, along with 
an example of calculating eigenvalues and eigenvectors. 

The eigenvectors are treated as column vectors that are placed adjacent to 
each other in decreasing order (from left-to-right) with respect to their associ-
ated eigenvectors.

PCA uses the variance as a measure of information: the higher the variance, 
the more important the component. In fact, PCA determines the eigenvalues 
and eigenvectors of a covariance matrix (discussed in a previous section), and 
constructs a new matrix whose columns are eigenvectors, ordered from left-to-
right in a sequence that matches the corresponding sequence of eigenvalues. 
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The left-most eigenvector has the largest eigenvalue, and the next eigenvector 
has the second-largest eigenvalue. This process continues until it reaches the 
right-most eigenvector (which has the smallest eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: if C is a 
symmetric matrix, then there is a diagonal matrix D and an orthogonal matrix 
P (the columns are pair-wise orthogonal, which means their pair-wise inner 
product is zero), such that the following is true:

C = P * D * Pt (where Pt is the transpose of matrix P)

In fact, the diagonal values of D are eigenvalues, and the columns of P are 
the corresponding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, stand-
ard deviation, covariance matrix, correlation matrix, as well as the matrices D 
and P in order to determine the eigenvalues and eigenvectors.

Any positive definite square matrix has real-valued eigenvectors, which also 
applies to the covariance matrix C because it is a real-valued symmetric matrix. 

The New Matrix of Eigenvectors

The previous section described how the matrices D and P are determined. 
The left-most eigenvector of D has the largest eigenvalue, the next eigenvec-
tor has the second-largest eigenvalue, and so forth. This fact is very conveni-
ent: the eigenvector with the highest eigenvalue is the principal component of 
the dataset. The eigenvector with the second-highest eigenvalue is the second 
principal component, and so forth. You specify the number of principal com-
ponents that you want via the n_components hyper parameter in the PCA class 
of Sklearn.

As a simple and minimalistic example, consider the following code block 
that uses PCA for a (somewhat contrived) dataset:

import numpy as np
from sklearn.decomposition import PCA
data = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=2)
pca.fit(X)

Note that there is a trade-off here: we greatly reduce the number of compo-
nents, which reduces the computation time and the complexity of the model, 
but we also lose some accuracy. However, if the unselected eigenvalues are 
small, we lose only a small amount of accuracy.

Now let’s use the following notation:

•	NM denotes the matrix with the new principal components.
•	NMt is the transpose of NM.
•	PC is the matrix of the subset of selected principal components.
•	SD is the matrix of scaled data from the original dataset.
•	SDt is the transpose of SD.
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Then the matrix NM is calculated via the following formula:

NM = PCt * SDtz

Although PCA is a nice technique for dimensionality reduction, keep in 
mind the following limitations of PCA:

•	less suitable for data with non-linear relationships
•	less suitable for special classification problems

A related algorithm is called Kernel PCA, which is an extension of PCA that 
introduces a non-linear transformation so you can still use the PCA approach.

WELL-KNOWN DISTANCE METRICS

There are several similarity metrics available, such as item similarity met-
rics, Jaccard (user-based) similarity, and cosine similarity (which is used to 
compare vectors of numbers). The following subsections introduce you to 
these similarity metrics.

Another well-known distance metric is the taxicab metric, which is also 
called the Manhattan distance metric. Given two points A and B in a rectan-
gular grid, the taxicab metric calculates the distance between two points by 
counting the number of “blocks” that must be traversed in order to reach B 
from A (the other direction has the same taxicab metric value). For example, if 
you need to travel two blocks north and then three blocks east in a rectangular 
grid, then the Manhattan distance is 5.

There are various other metrics available, which you can learn about by 
searching Wikipedia. In the case of NLP, the most commonly used distance 
metric is calculated via the cosine similarity of two vectors, and it’s derived 
from the formula for the inner (“dot”) product of two vectors.

Pearson Correlation Coefficient

The Pearson similarity is the Pearson coefficient between two vectors. 
Given random variables X and Y, and the following terms:

std(X) = standard deviation of X
std(Y) = standard deviation of Y
cov(X, Y) = covariance of X and Y

Then the Pearson correlation coefficient rho(X, Y) is defined as follows:

                       cov(X, Y)
rho(X, Y) = -----------------
                    std(X)*std(Y)

The Pearson coefficient is limited to items of the same type. More informa-
tion about the Pearson correlation coefficient is available online:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Jaccard Index (or Similarity)

The Jaccard similarity is based on the number of users which have rated 
item A and B divided by the number of users who have rated either A or B. 
The Jaccard similarity is based on unique words in a sentence and is unaf-
fected by duplicates, whereas cosine similarity is based on the length of all 
word vectors (which changes when duplicates are added). The choice between 
the cosine similarity and Jaccard similarity depends on whether word dupli-
cates are important. 

The following Python method illustrates how to compute the Jaccard simi-
larity of two sentences.

def get_jaccard_sim(str1, str2):
  set1 = set(str1.split())
  set2 = set(str2.split())
  set3 = set1.intersection(set2)
  # (size of intersection) / (size of union):
  return float(len(set3)) / (len(set1) + len(set2) - len(set3))

The Jaccard similarity can be used in situations involving Boolean values, 
such as product purchases (true/false), instead of numeric values. More infor-
mation is available online:

https://en.wikipedia.org/wiki/Jaccard_index

Local Sensitivity Hashing (optional)

If you are familiar with hash algorithms, you know that they are algorithms 
that create a hash table that associate items with a value. The advantage of hash 
tables is that the lookup time to determine whether an item exists in the hash 
table is constant. 

Of course, it’s possible for two items to collide, which means that they both 
occupy the same bucket in the hash table. In this case, a bucket can consist of a 
list of items that can be searched in more or less a constant amount of time. If 
there are too many items in the same bucket, then a different hashing function 
can be selected to reduce the number of collisions. The goal of a hash table is 
to minimize the number of collisions.

The Local Sensitivity Hashing (LSH) algorithm hashes similar input items 
into the same “buckets.” In fact, the goal of LSH is to maximize the number 
of collisions, whereas traditional hashing algorithms attempt to minimize the 
number of collisions.

Since similar items end up in the same buckets, LSH is useful for data 
clustering and nearest neighbor searches. Moreover, LSH is a dimensional-
ity reduction technique that places data points of high dimensionality closer 
together in a lower-dimensional space, while simultaneously preserving the 
relative distances between those data points. More details about LSH are avail-
able online:

https://en.wikipedia.org/wiki/Locality-sensitive_hashing

https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
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TYPES OF DISTANCE METRICS

Non-linear dimensionality reduction techniques can also have different dis-
tance metrics. For example, linear reduction techniques can use the Euclidean 
distance metric (based on the Pythagorean theorem). 

However, you need to use a different distance metric to measure the dis-
tance between two points on a sphere (or some other curved surface). In the 
case of NLP, the cosine similarity metric is often used to measure the distance 
between word embeddings (which are vectors of floating point numbers that 
represent words or tokens).

Distance metrics are used for measuring physical distances, and some well-
known distance metrics are listed here:

•	Euclidean distance
•	Manhattan distance
•	Chebyshev distance

The Euclidean algorithm also obeys the triangle inequality, which states 
that for any triangle in the Euclidean plane, the sum of the lengths of any pair 
of sides must be greater than the length of the third side.

In spherical geometry, you can define the distance between two points as 
the arc of a great circle that passes through the two points (always selecting the 
smaller of the two arcs when they are different).

In addition to physical metrics, there are algorithms that implement the 
concept of the edit distance (the distance between strings), as listed here:

•	Hamming distance
•	Jaro–Winkler distance
•	Lee distance
•	Levenshtein distance
•	Mahalanobis distance metric
•	Wasserstein metric

The Mahalanobis metric is based on an interesting idea: given a point P 
and a probability distribution D, this metric measures the number of standard 
deviations that separate point P from distribution D. More information about 
Mahalanobis is available online:

https://en.wikipedia.org/wiki/Mahalanobis_distance
In the branch of mathematics called topology, a metric space is a set for 

which distances between all members of the set are defined. Various metrics 
are available (such as the Hausdorff metric), depending on the type of topology.

The Wasserstein metric measures the distance between two probability dis-
tributions over a metric space X. This metric is also called the “earth mover’s 
metric” for the following reason: given two unit piles of dirt, it’s the measure of 
the minimum cost of moving one pile on top of the other pile. 

https://en.wikipedia.org/wiki/Mahalanobis_distance
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The KL Divergence bears some superficial resemblance to the Wasserstein 
metric. However, there are some important differences between them. 
Specifically, the Wasserstein metric has the following properties:

1.	 It is a metric.
2.	 It is symmetric.
3.	 It satisfies the triangle inequality.

The KL Divergence has the following properties:

1.	 It is not a metric (it’s a divergence).
2.	 It is not symmetric: KL(P, Q) != KL(Q, P).
3.	 It does not satisfy the triangle inequality.

Note that the JS (Jenson-Shannon) Divergence (which is based on the KL 
Divergence) is a true metric, which would enable a more meaningful compari-
son with other metrics (such as the Wasserstein metric).

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-
of-wasserstein-metric-compared-to-kullback-leibler-diverg

More information is available online:
https://en.wikipedia.org/wiki/Wasserstein_metric

WHAT IS BAYESIAN INFERENCE?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes’ theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called 
Bayesian probability, and it’s important in dynamic analysis of sequential data.

BayesÕ Theorem

Given two sets A and B, let’s define the following numeric values (all of 
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you’re in B)
P(B|A) = probability of being in B (given you’re in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the 
denominator to obtain these equations:

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-of-wasserstein-metric-compared-to-kullback-leibler-diverg
https://en.wikipedia.org/wiki/Wasserstein_metric
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P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of equations #3 and #4 equal to each another and that 
gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) to obtain this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology

In the previous section we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, as 
discussed below.

First, the posterior probability is P(h|d), which is the probability of hypoth-
esis h given the data d. 

Second, P(d|h) is the probability of data d given that the hypothesis h was 
true.

Third, the prior probability of h is P(h), which is the probability of hypoth-
esis h being true (regardless of the data). 

Finally, P(d) is the probability of the data (regardless of the hypothesis)
We are interested in calculating the posterior probability of P(h|d) from the 

prior probability p(h) with P(D) and P(d|h).

What is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the 
highest probability, which is the maximum probable hypothesis. This can be 
written as follows:

MAP(h) = max(P(h|d))
or
MAP(h) = max((P(d|h) * P(h)) / P(d))
or
MAP(h) = max(P(d|h) * P(h))

Why Use BayesÕ Theorem?

Bayes’ Theorem describes the probability of an event based on the prior 
knowledge of the conditions that might be related to the event. If we know the 
conditional probability, we can use Bayes rule to find out the reverse probabili-
ties. The previous statement is the general representation of the Bayes rule.
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SUMMARY

This appendix started with a discussion of probability, expected values, and 
the concept of a random variable. Then you learned about some basic statisti-
cal concepts, such as mean, median, mode, variance, and standard deviation. 
Next, you learned about the terms RSS, TSS, R^2, and F1 score. In addi-
tion, you were introduced to the concepts of skewness, kurtosis, Gini Impurity, 
Entropy, Perplexity, Cross-Entropy, and KL Divergence. 

Next, you learned about covariance and correlation matrices and how to 
calculate eigenvalues and eigenvectors. Then you were introduced to the 
dimensionality reduction technique known as PCA (Principal Component 
Analysis), after which you learned about Bayes’ Theorem.
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