

Natural Language Processing
Using R

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you
agree that this license grants permission to use the contents contained herein,
including the disc, but does not give you the right of ownership to any of the
textual content in the book/disc or ownership to any of the information or
products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent
of the Publisher. Duplication or dissemination of any text, code, simulations,
images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher
or the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to ensure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used
in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” vary from state to state,
and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at
info@merclearning.com.

mailto:info@merclearning.com

Natural Language Processing
Using R

Pocket Primer

Oswald Campesato

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2022 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission
in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. Natural Language Processing Using R Pocket Primer.
ISBN: 978-1-68392-730-3

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021950959
222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other
digital vendors. Companion files (figures and code listings) for this title are available
by contacting info@merclearning.com. The sole obligation of Mercury Learning and
Information to the purchaser is to replace the disc, based on defective materials or
faulty workmanship, but not based on the operation or functionality of the product.

info@merclearning.com
http://www.merclearning.com
mailto:info@merclearning.com

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

Contents

Preface� vii

Chapter 1: Introduction to R	 1
What is R? 	 1

Features of R	 2
Installing R, RStudio, and RStudio Cloud	 2

Variable Names, Operators, and Data Types in R	 2
Assigning Values to Variables in R	 3
Operators in R	 3
Data Types in R	 3

Working with Strings in R 	 4
Uppercase and Lowercase Strings 	 4
Other String-Related Tasks	 5

Working with Vectors in R	 6
Finding NULL Values in a Vector in R 	 9
Updating NA Values in a Vector in R	 10
Sorting a Vector of Elements in R 	 10
Working with the Built-in Letters Variable in R	 11

Working with Lists in R 	 12
Useful Vector-Related Functions in R	 15

Working with Matrices in R (1)	 16
Working with Matrices in R (2) 	 19
Working with Matrices in R (3) 	 21
Working with Matrices in R (3) 	 22
Working with Matrices in R (4) 	 23
Updating Matrix Elements	 24
Logical Constraints and Matrices	 25
Assigning Values to Matrix Elements	 25
Working with Matrices in R (5) 	 26

Working with Dates in R 	 27
The seq Function in R 	 28
Summary	 30

Chapter 2: Loops, Conditional Logic, and Dataframes	 31
Working with Simple Loops in R	 31

Working with Other Types of Loops in R 	 32
Working with Nested Loops in R 	 32
Working with While Loops in R 	 32
Working with Conditional Logic in R 	 33
Compound Conditional Logic	 34
Check if a Number is Prime in R 	 34
Check if Numbers in an Array are Prime in R 	 36
Check for Leap Years in R 	 37
Well-formed Triangle Values in R 	 37
What are Factors in R? 	 38
What are Data Frames in R? 	 39
Working with Dataframes in R (1) 	 41
Working with Data Frames in R (2) 	 42
Working with Data Frames in R (3) 	 43
Working with Data Frames in R (4) 	 45
Working with Data Frames in R (5) 	 46
Reading Excel Files in R	 47
Reading SQLITE Tables in R	 48
Reading Text Files in R	 49
Saving and Restoring Objects in R	 50
Data Visualization in R 	 51
Working with Bar Charts in R (1)	 52
Working with Bar Charts in R (2)	 53
Working with Line Graphs in R (1)	 53
Working with Line Graphs in R (2)	 54
Working with Multi-Line Graphs in R	 55
Working with Histograms in R	 56
Working with Scatter Plots in R (1)	 57
Working with Scatter Plots in R (2)	 58
Working with Box Plots in R	 59
Working with Pie Charts in R (1)	 60
Working with Pie Charts in R (2)	 61
Summary	 62

Chapter 3: Working with Functions in R	 63
NaN and Functions in R 	 63
Math-Related Functions in R	 65
String-Related Functions in R	 66
The gsub() Function in R	 67

x • Contents

Miscellaneous Built-in Functions	 68
Set Functions in R	 69
The “Apply” Family of Built-in Functions	 70
The “Must Learn” dplyr Package in R	 72
Other Useful R Packages	 74
The Pipe Operator %>%	 75
Working with CSV Files in R 	 77
Working with XML in R 	 78
Reading an XML Document into an R Dataframe 	 80
Working with JSON in R 	 81
Reading a JSON File into an R Dataframe 	 82
Statistical Functions in R 	 83
Summary Functions in R 	 84
Defining a Custom Function in R 	 85
Recursion in R 	 86
Calculating Factorial Values in R (non-recursive)	 87
Calculating Factorial Values in R (recursive)	 87
Calculating Fibonacci Numbers in R (non-recursive)	 88
Calculating Fibonacci Numbers in R (recursive)	 89
Convert a Decimal Integer to a Binary Integer in R 	 90
Calculating the GCD of Two Integers in R 	 91
Calculating the LCM of Two Integers in R 	 92
Summary	 92

Chapter 4: NLP Concepts (I)	 93
What is NLP?	 94

The Evolution of NLP	 95
A Wide-Angle View of NLP	 96

NLP Applications and Use Cases	 96
NLU and NLG	 97
What is Text Classification?	 98

Information Extraction and Retrieval	 99
Word Sense Disambiguation	 99
NLP Techniques in ML	 100

NLP Steps for Training a Model	 101
Text Normalization and Tokenization	 101

Word Tokenization in Japanese	 102
Text Tokenization with Unix Commands	 104

Handling Stop Words	 104
What is Stemming?	 105

Singular vs. Plural Word Endings	 105
Common Stemmers	 105
Stemmers and Word Prefixes	 106
Over Stemming and Under Stemming	 106

What is Lemmatization?	 107

Contents • xi

Stemming/Lemmatization Caveats	 107
Limitations of Stemming and Lemmatization	 107

Working with Text: POS	 108
POS Tagging 	 108
POS Tagging Techniques	 109

Working with Text: NER	 109
Abbreviations and Acronyms	 110
NER Techniques	 110

What is Topic Modeling?	 111
Keyword Extraction, Sentiment Analysis, and Text Summarization	 112
Summary	 113

Chapter 5: NLP Concepts (II)	 115
What is Word Relevance?	 115
What is Text Similarity?	 116
Sentence Similarity	 117

Sentence Encoders	 117
Working with Documents	 117

Document Classification	 117
Document Similarity (doc2vec)	 118

Techniques for Text Similarity	 118
Similarity Queries	 119

What is Text Encoding?	 119
Text Encoding Techniques	 120

Document Vectorization	 120
One-Hot Encoding (OHE)	 121
Index-Based Encoding	 122
Additional Encoders	 122

The BoW Algorithm	 123
What are N-grams?	 124

Calculating Probabilities with n-grams	 125
Calculating tf, idf, and tf-idf	 127

What is Term Frequency (TF)?	 127
What is Inverse Document Frequency (IDF)?	 128
What is tf-idf?	 129
Limitations of tf-idf	 130
What is BM25?	 131
Pointwise Mutual Information (PMI)	 132

The Context of Words in a Document	 132
What is Semantic Context?	 132
Textual Entailment	 133
Discrete, Distributed, and Contextual Word Representations	 133

What is Cosine Similarity? 	 133
Text Vectorization (aka Word Embeddings)	 135
Overview of Word Embeddings and Algorithms	 136

xii • Contents

Word Embeddings	 137
Word Embedding Algorithms	 137

What is word2vec?	 138
The Intuition for word2vec	 139
The word2vec Architecture	 140
Limitations of word2vec	 140

The CBoW Architecture	 140
What are Skip-grams?	 141

An Example of Skip-grams	 142
The Skip-gram Architecture	 142
Neural Network Reduction	 144

What is GloVe?	 144
Working with GloVe	 145
What is fastText?	 146
Comparison of Word Embeddings	 146
What is Topic Modeling?	 147

Topic Modeling Algorithms	 147
LDA and Topic Modeling	 147
Text Classification vs Topic Modeling	 149

Language Models and NLP	 149
How to Create a Language Model	 149

Vector Space Models	 150
Term-Document Matrix	 151
Tradeoffs of the VSM	 151

NLP and Text Mining	 152
Text Extraction Preprocessing and N-Grams	 152

Relation Extraction and Information Extraction	 152
What is a BLEU Score?	 153

ROUGE Score: An Alternative to BLEU	 153
Summary	 154

Chapter 6: NLP in R	 155
Launch R Scripts from the Command Line 	 156

Installing RStudio Packages 	 158
NLP Packages in R 	 159
Common Tasks for Cleaning NLP Datasets 	 160

Does the Language Make a Difference? 	 160
Cleaning NLP Data in R 	 161

Tokenization	 161
Remove Punctuation in Strings	 161
Convert Strings to Lowercase and Uppercase	 162
Convert File Data to Lowercase and Uppercase	 163
Stop Words	 164
Stemming in R	 165
Lemmatization	 165

Contents • xiii

POS (Parts Of Speech) with SpaCy in R	 167
POS in R	 168
NER in R	 170
The tf-idf Algorithm	 171
Working with N-Grams	 174
Topic Modeling in R	 176
Working With word2vec in R	 177
Summary	 178

Chapter 7: Transformer, BERT, and GPT	 179
What is Attention? 	 180

Types of Word Embeddings 	 180
Types of Attention and Algorithms	 181

An Overview of the Transformer Architecture 	 182
The Transformers Library from HuggingFace 	 182
Transformer and NER Tasks 	 183
Transformer and QnA Tasks 	 184
Transformer and Sentiment Analysis Tasks 	 185
Transformer and Mask Filling Tasks 	 185

What is T5?	 186
What is BERT? 	 187

BERT Features	 187
How is BERT Trained?	 187
How BERT Differs from Earlier NLP Models	 188

The Inner Workings of BERT 	 188
What is MLM?	 188
What is NSP?	 188
Special Tokens	 189
BERT Encoding: Sequence of Steps	 190

Subword Tokenization	 192
Sentence Similarity in BERT	 194

Word Context in BERT	 194
Generating BERT Tokens (1)	 196
Generating BERT Tokens (2)	 197
The BERT Family	 198

Surpassing Human Accuracy: deBERTa	 200
What is Google Smith?	 200

Introduction to GPT	 200
Installing the Transformers Package	 201

Working with GPT-2	 201
GPT-2 versus BERT	 207

What is GPT-3?	 207
GPT-3 Task Strengths and Mistakes	 208
GPT-3 Architecture	 208
The GPT-3 Playground	 208

xiv • Contents

Accessing the GPT-3 Playground	 209
What is the Goal of GPT-3?	 209

Zero-Shot, One-Shot, and Few Shot Learners	 210
GPT-3 Task Performance	 210
The Switch Transformer: One Trillion Parameters	 211
Looking Ahead	 211
Summary	 212

Appendix: Intro to Probability and Statistics	 213

Index� 241

Contents • xv

Preface

What Is the Value Proposition for This Book?

This book contains a fast-paced introduction to as much relevant informa-
tion about NLP using R that can be reasonably included in a book of this
size. Some chapters contain topics that are discussed in great detail with
many code samples, whereas other chapters contain theoretical founda-
tions of NLP concepts (such as Chapter 4).

This book helps developers who have a wide range of technical back-
grounds, which is the rationale for the inclusion of a plethora of topics.
Regardless of your background, please remember the following point:
this book is essentially a stepping stone for your study of NLP.

You will be exposed to various NLP and machine learning topics in this
book, some of which are presented in a cursory manner for two reasons.
First, it’s important that you be exposed to these concepts. In some cases,
you will find topics that might pique your interest, and hence motivate you
to learn more about them through self-study; in other cases, you will prob-
ably be satisfied with a brief introduction. Hence, you can decide whether
to delve into more detail regarding the topics in this book.

Second, a full treatment of all the topics that are covered in this book would
probably triple its page count, and few people are interested in reading long
technical books. Hence, this book provides a decent view of the NLP and
machine learning landscape, based on the belief that this approach will be
more beneficial for readers who are experienced developers who want to
learn about NLP and machine learning.

The Target Audience

This book is intended primarily for people who have a solid background
as software developers. Specifically, this book is for developers who are

accustomed to searching online for more detailed information about tech-
nical topics. If you are a beginner, there are other books that are more
suitable for you, and you can find them by performing an online search.

This book is also intended to reach an international audience of readers
with highly diverse backgrounds in various age groups. This book uses
standard English rather than colloquial expressions that might be con-
fusing to those readers. People learn in different ways, which includes
reading, writing, or hearing new material. This book tries to take these
approaches into consideration to provide a comfortable and meaningful
learning experience for the intended readers.

Do I Need to Learn the Theory Portions of This Book?

Once again, the answer depends on the extent to which you plan to
become involved in NLP and machine learning. In addition to creating
a model, you will use algorithms to see which ones provide the level of
accuracy (or some other metric) that you need for your project. The theo-
retical aspects of machine learning can help you perform a forensic analy-
sis of your model and your data, and ideally assist in determining how to
improve your model.

Why is a Python-based Chapter in This Book?

Chapter 7 is devoted to the Transformer architecture, the BERT model,
and GPT-related models. The reason for the inclusion of Python-based
code samples in this chapter is simple: there is a plethora of Python-based
code available to illustrate how to use the NLP-related APIs of these
models, whereas R-based code samples are typically unavailable. Most of
the code samples in Chapter 7 require Python 3.7.

In addition, many of the R-based code samples in Chapter 6 are wrappers
around Python-based code, which will necessitate installing Python 3 and
other Python-based NLP libraries. The installation details are provided
in Chapter 6.

Getting the Most From This Book

Some programmers learn well from prose and others learn well from sam-
ple code (and lots of it), which means that there’s no single style that can
be used for everyone.

xviii • Preface

Moreover, some programmers want to run the code first, see what it does,
and then return to the code to delve into the details (and others use the
opposite approach).

Consequently, there are various types of code samples in this book: some
are short, some are long, and other code samples build on earlier code
samples.

What Do I need to Know for This Book?

Although this book is introductory in nature, some knowledge of R
for the first three chapters is helpful. In addition, some knowledge of
Python 3.x for the code samples in Chapter 7 would also be helpful.
Knowledge of other programming languages (such as Java) can also be
helpful because of the exposure to programming concepts and con-
structs. The less technical knowledge that you have, the more diligence
will be required to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance
through some of the code samples to get an idea of how much is familiar to
you and how much is new for you.

Does This Book Contain Production-Level Code Samples?

The code samples in this book are for basic NLP tasks. The primary pur-
pose of the code samples is to show you how to solve various NLP-related
tasks, some of which are performed in conjunction with machine learning.
Moreover, clarity has a higher priority than writing more compact code
that is more difficult to understand (and possibly more prone to bugs). If
you decide to use any of the code in this book in a production website, you
should subject that code to the same rigorous analysis as the other parts
of your code base.

What Are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s
important to have strong desire to learn about NLP, along with the
motivation and discipline to read and understand the code samples. As
a reminder, even simple machine language APIs can be a challenge to
understand the first time you encounter them, so be prepared to read the
code samples several times.

Preface • xix

How Do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then
double click on the Utilities application. Next, if you already have a
command shell available, you can launch a new command shell by typing
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
Macbook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source at
https://cygwin.com/) that simulates bash commands or use another toolkit
such as MKS (a commercial product). Please read the online documenta-
tion that describes the download and installation process. Note that cus-
tom aliases are not automatically set if they are defined in a file other than
the main start-up file (such as .bash_login).

Companion Files

All the code samples and figures in this book may be obtained by writing
to the publisher at info@merclearning.com.

What Are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. If you are interested primarily in
NLP, you can learn more advanced concepts, such as attention, trans-
formers, and the BERT-related models.

If you are primarily interested in machine learning, there are some sub-
fields of machine learning, such as deep learning and reinforcement
learning (and deep reinforcement learning) that might appeal to you.
Fortunately, there are many resources available, and you can perform
an Internet search for those resources. One other point: the aspects of
machine learning for you to learn depend on who you are. The needs of
a machine learning engineer, data scientist, manager, student, or software
developer are all different.

� O. Campesato
� January 2022

xx • Preface

https://cygwin.com/
mailto:info@merclearning.com

CHAPTER 1
INTRODUCTION TO R

This chapter provides a quick introduction to R programming, with code
samples that illustrate some basic features of R. If you are already famil-
iar with R, you can probably skim this chapter, just to be sure that you’re

acquainted with the code and concepts in this chapter.
The first section starts with a brief description of some features of R, fol-

lowed by a description of valid variable names, operators, data types. You will
also learn how to perform various simple string-related tasks.

The second section discusses vectors, with an assortment of code samples,
followed by a section that discusses lists in R. The third section discusses matri-
ces and how to manipulate them, and this is followed by an explanation of the
R seq data type.

This chapter contains an assortment of code samples that show you the
flexibility of R with respect to defining variables with heterogeneous data (i.e.,
mixed data types). Although you might not need to use all of the features that
are illustrated in the code samples, read the code samples to become aware of
those features.

WHAT IS R?

R is a popular programming language. You can create R scripts with R
commands that you can launch from the command line, or you can launch R
commands inside RStudio. R provides a convenient way to perform statistical
analysis and reporting operations. In general, if you can think of a feature that
you need, it probably already exists in R, and if not, you can go to CPAN (which
contains more than 14,000 modules for R) to install a library that supports that
feature.

2  •  Natural Language Processing Using R Pocket Primer

Features of R

R supports Boolean logic and programmatic constructs, such as loops and
functions, along with support for recursion. R also supports various data types,
such as arrays, lists, vectors, and matrices.

One highly useful data type is a data frame, which is comparable to data
frames in Pandas (a powerful Python module), both of which are analogous to
spreadsheets.

In addition, R provides support for many statistical distributions, as well as
support for charts and graphs.

Installing R, RStudio, and RStudio Cloud

The download links for R depend on your platform. For example, you can
download R for MacBooks from the following link:

https://cran.r-project.org/bin/macosx/
Fortunately, the following link enables you to download and install RStudio

for your platform:
https://www.rstudio.com/products/rstudio/download/
After downloading the appropriate distributions, follow the prompts for the

installation of R and RStudio for your platform.
One detail to keep in mind is that the R code samples in this book are

executed from the command line via the rscript utility. However, if you are
more comfortable working in an IDE, then RStudio is an excellent alternative
to the command line.

An optional installation is RStudio Cloud, which has a free tier as well as
various paid tiers, and you can register for a free online account here:

https://rstudio.cloud
RStudio Cloud provides “Studio Primers”, which is a collection of online

tutorials that show you how to visualize data, perform table-related tasks, per-
form data visualization with ggplot2, work with shiny, and various other tasks.

VARIABLE NAMES, OPERATORS, AND DATA TYPES IN R

A valid variable name in R is a combination of letter, numbers, a period
(.), or an underscore (_). In addition, a valid variable name starts with a letter
or period, and must not be followed by a number. For example, the following
names are valid in R:

var_name2.
.var_name
var.name

However, the following names are not valid in R:

var_name% (contains a % symbol)
2var_name (starts with a number)
.2var_name (dot followed by a num)
_var_name (starts with "_")

https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/macosx/
https://rstudio.cloud

 Introduction to R  •  3

Assigning Values to Variables in R

There are three ways to assign values to variables:

•	using the equals operator: var.1 = c(0,1,2,3)
•	using the leftward operator: var.2 <- c('learn', ‚coding)
•	using the rightward operator: (c(TRUE, 1) -> var.3

Don’t worry if some of the preceding assignments aren’t clear right now.
Later you will see examples of all three assignments.

Operators in R

R supports arithmetic, relational, and logical operators, along with some
“miscellaneous” operators that you will learn later in this book. The R operators
are shown below:

•	arithmetic operators in R: +,-,/,*,%%,%/%,^
•	relational operators in R: <, <=, >, >=, ==, !=
•	logical operators in R: &, |, !, &&, ||
•	miscellaneous operators in R: %in%, %>%, %*%

Data Types in R

Although R does not have a set of data types that are as extensive as some
other programming languages, the data types that it does support enable you
to solve a wide variety of tasks:

•	Vectors (homogeneous)
•	Lists (heterogeneous)
•	Matrices (two-dimensional)
•	Arrays (multi-dimensional)
•	Factors (similar to enum)
•	Data Frames
•	Series

The following interactive session shows you some examples of working with
numbers and strings in R:

#1: sqrt(500)
#2:
a <- 500
#3:
a <- as.character(a) print() (a)

a <- Hello‚ b <- ‚ How‚
c <- "are you? "
print(paste(a,b,c))
print(paste(a,b,c, sep = "-"))
print(paste(a,b,c, sep = "", collapse = ""))

4  •  Natural Language Processing Using R Pocket Primer

R supports formatting of numbers and strings, as shown below:

Formatting Numbers/Strings
last digit rounded off:
result <- format(23.123456789, digits = 9) print(result)
scientific notation:
result <- format(c(6, 13.14521), scientific = TRUE)
print(result)
minimum # of digits to the right of the decimal point:
result <- format(23.47, nsmall = 5)
print(result)

WORKING WITH STRINGS IN R

Listing 1.1 displays the content of strings1.R that illustrates how to ini-
tialize simple variables as strings and how to print them in R.

LISTING 1.1 strings1.R

a <- "Hello"
b <- "How"
c <- "are you? "

print(paste(a,b,c))
print(paste(a,b,c, sep = "-"))
print(paste(a,b,c, sep = "", collapse = ""))

Listing 1.1 initializes the variables a, b, and c with the strings Hello, How,
and are you?, respectively. Next, a print() statement prints the result of
“pasting” or concatenating the values of a, b, and c.

The second print() statement is similar, but with a hyphen (-) as a sepa-
rator. The third print() statement is similar to the second, except that no
character is used as a separator. Launch the code in Listing 1.1 to see the fol-
lowing output:

[1] "Hello How are you? "
[1] "Hello-How-are you? "
[1] "HelloHoware you? "

Uppercase and Lowercase Strings

Listing 1.2 shows the content of UpperLower.R that illustrates how to
convert text strings to uppercase and lowercase letters, respectively, with the
uppercase() and lowercase() functions in R.

LISTING 1.2 UpperLower.R

result <- nchar("Count the number of characters")
print(result)

Upper case:
result <- toupper("Changing To Upper")
print(result)

 Introduction to R  •  5

Lower case:
result <- tolower("Changing To Lower")
print(result)

Extract 5th to 7th positions:
result <- substring("HelloWorld", 5, 7)
print(result)

Listing 1.2 starts by initializing the variable result with the number of
characters in a text string, calculating with the built-in R function nchar().
Next, result is initialized with a character string that is converted to upper-
case, and then initialized again with a character string that has been converted
to lowercase.

Finally, result is initialized with the substring from positions 5 through 7
inclusive (which corresponds to the index values 4 through 6 inclusive) of the
string HelloWorld. A print() statement displays the value of result after
each initialization. Launch the code in Listing 1.2 to see the following output:

[1] 30
[1] "CHANGING TO UPPER"
[1] "changing to lower"
[1] "oWo"

Other String-Related Tasks

The previous sections showed you various string-related functions for
detecting uppercase letters and lowercase letters, and how to perform case-
based conversions. There are other string-related tasks that are easy to per-
form with R built-in functions, some of which are listed here:

•	Given a string, find the number of blanks
•	Given a string, find the number of non-blanks
•	Given a string, find the number of characters
•	Given a string, find the number of digits
•	Reverse a string (a vector of strings)

Listing 1.3 displays the content of string_tasks.R that illustrates how to
perform the tasks in the preceding list. This code sample is intended to pique
your interest: it’s a preview of several useful R functions (shown in bold), some
of which are discussed further in Chapter 3.

LISTING 1.3: string_tasks.R

#Given a string find the number of blanks
#Given a string find the number of non-blanks
#Given a string find the number of characters
#Given a string find the number of digits

str <- "I love deep dish pizza 2day and 3morrow!"
blank_count = length(gregexpr(" ", str)[[1]])

6  •  Natural Language Processing Using R Pocket Primer

str_length1 = length(str)
str_length2 = nchar(str) # also works with numbers
non_blanks = str_length2 - blank_count
digit_count1 = nchar(gsub("[^0-9]+", "", str))
digit_count2 = nchar(gsub("\\D", "", str))

print(paste0("Original string: ",str))
print(paste0("count of blanks: ",blank_count))
print(paste0("Non-blanks: ",non_blanks))
print(paste0("String length #1: ",str_length1))
print(paste0("String length #2: ",str_length2))
print(paste0("digit count #1: ",digit_count1))
print(paste0("digit count #2: ",digit_count2))

tokens1 = strsplit(str, " ")[[1]]
tokens2 = strsplit(str, " ")
print(paste0("Tokens #1: ",tokens1))
print(paste0("Tokens #2: ",tokens2))

Listing 1.3 starts by initializing the variable str as a text string, followed
by initializing blank_count with the number of characters in str, based
on a combination of the built-in length() function and the gregexpr()
function.

The next code snippet initializes str_length2 with the number of char-
acters in the str variable, and then sets non_blank equal to the number of
non-blank characters in str.

The next pair of code snippets calculates the number of digits and non-
digits in str. The final section in Listing 1.3 displays the values of the preced-
ing variables and performs calculations using the built-in R function nchar().
Launch the code in Listing 1.3 to see the following output:

[1] "Original string: I love deep dish pizza 2day and 3morrow!"
[1] "count of blanks: 7"
[1] "Non-blanks: 33"
[1] "String length #1: 1"
[1] "String length #2: 40"
[1] "digit count #1: 2"
[1] "digit count #2: 2"
[1] "Tokens #1: I" "Tokens #1: love"
[3] "Tokens #1: deep" "Tokens #1: dish"
[5] "Tokens #1: pizza" "Tokens #1: 2day"
[7] "Tokens #1: and" "Tokens #1: 3morrow!"
[1] "Tokens #2: c(\"I\", \"love\", \"deep\", \"dish\",
\"pizza\", \"2day\", \"and\", \"3morrow!\")"

The next section introduces you to vectors in R and how to initialize them
with values and display their contents in R.

WORKING WITH VECTORS IN R

A vector in R is a one-dimensional variable. For example, [3] is a 1 × 1 vec-
tor with a single integer value, and [2 −4 8 15] is a 1 × 4 vector of integers.

 Introduction to R  •  7

A simple way to create a vector is with the built-in c (“concatenate”) function.
Listing 1.4 displays the content of VectorStuff.R, which uses simple opera-
tions with vectors.

LISTING 1.4: VectorStuff.R

y = c(10,20,30,40,50)
print("y:")
print(y)

y = c(1,2,3)
print("y:")
print(y)

x <- c(10,20,30,40,50)
print("x:")
print(x)

print(paste0("x[2]: ",x[2]))
print(paste0("length: ",length(x)))
print(paste0("typeof(x): ",typeof(x)))
print(paste0("x: ",x))

Listing 1.4 invokes the built-in R function c() to initialize the vector y as
a vector of 5 integers (c for concatenate), and the print() statement displays
the contents of the vector y. Next, the vector y is initialized to a vector contain-
ing three integers, and then its values are displayed.

Notice that the variable x is initialized as a vector of five integers via the
built-in c() function, this time with a <- symbol instead of an equals (=) sym-
bol. Although the <- symbol is preferred among R aficionados, you can also
use an equals (=) symbol. The white space is important, as shown in the fol-
lowing code snippets in which the first is an assignment and the second is a
comparison:

x<-7
x < -7

The next portion of Listing 1.4 displays the third element (index 2) of x, the
length of x, and the type of x. Launch the code in Listing 1.4 to see the follow-
ing output (notice the last output line):

[1] "y:"
[1] 10 20 30 40 50
[1] "y:"
[1] 1 2 3
[1] "x:"
[1] 10 20 30 40 50
[1] "x[2]: 20"
[1] "length: 5"
[1] "typeof(x): double"
[1] "x: 10" "x: 20" "x: 30" "x: 40"
[5] "x: 50"

8  •  Natural Language Processing Using R Pocket Primer

Listing 1.5 displays the content of VectorStuff2.R that shows you addi-
tional simple operations with vectors.

LISTING 1.5: VectorStuff2.R

v <- c(3,8,4,5,0,11, -9, 304)
v <- c(1,2,3,4,0,-1,-2)

Sort the elements of the vector:
sort.result <- sort(v)
print(paste0("v: ",v))
print(paste0("sorted v: ",sort.result))

#mixed1 <- c(6, a‚ 7, b‚ 8)
#print(paste0("mixed1: ",mixed1))
#print(paste0("class: ",class(mixed1)))

ul_chars <- character(4)
print(paste0("ul_chars: ",ul_chars))
ul_chars[1] <- "A"
print(paste0("ul_chars: ",ul_chars))

names <- c("dave", "stella", "ralph", "john")
print(paste0("names: ",names))
print(paste0("length: ",length(names)))
print(paste0("names[1:2]: ",names[1:2]))
print(paste0("3,4,1,2: ",names[3:4], names[1:2]))

x <- c(1,2,3,4,5,6)
print(paste0("x[2]: ",x[2]))
print(paste0("x[8]: ",x[8]))
print(paste0("x[-3]: ",x[-3]))
print(paste0("x[2:4]: ",x[2:4]))

x1 <- c(1,2,3,4)
y1 <- c(4,5,6,7)
print(paste0("x1+y1: ",x1+y1))

x2 <- c(1,2,3,4)
y2 <- c(4,5)
print(paste0("x2+y2: ",x2+y2))
print(paste0("x2-y2: ",x2-y2))
print(paste0("x2*y2: ",x2*y2))

Listing 1.5 initializes v as a vector of four integers and displays v, then
sorts the vector v and displays the sorted result. Next, the variable ul_chars
is initialized as a string of length four, and then the first character is initialized
with the letter A.

Next, the variable names is initialized with four names (i.e., strings), and
various operations are performed to find its length, display the names in posi-
tions 1 and 2, and then change the initial ordering to 3, 4, 1, 2 (and display the
new ordering of names).

 Introduction to R  •  9

The next portion of Listing 1.5 initializes x as a vector of integers and shows
you various operations you can perform on x, such as the elements of x that are
in position 2, 8, −3, and in the range from 2 to 4.

Launch the code in Listing 1.5 to see the following output:

[1] "v: 1" "v: 2" "v: 3" "v: 4" "v: 0" "v: -1" "v: -2"
[1] "sorted v: -2" "sorted v: -1" "sorted v: 0" "sorted v: 1" "sorted v: 2"
[6] "sorted v: 3" "sorted v: 4"
[1] "ul_chars: " "ul_chars: " "ul_chars: " "ul_chars: "
[1] "ul_chars: A" "ul_chars: " "ul_chars: " "ul_chars: "
[1] "names: dave" "names: stella" "names: ralph"
[4] "names: john"
[1] "length: 4"
[1] "names[1:2]: dave" "names[1:2]: stella"
[1] "3,4,1,2: ralphdave" "3,4,1,2: johnstella"
[1] "x[2]: 2"
[1] "x[8]: NA"
[1] "x[-3]: 1" "x[-3]: 2" "x[-3]: 4" "x[-3]: 5" "x[-3]: 6"
[1] "x[2:4]: 2" "x[2:4]: 3" "x[2:4]: 4"
[1] "x1+y1: 5" "x1+y1: 7" "x1+y1: 9" "x1+y1: 11"
[1] "x2+y2: 5" "x2+y2: 7" "x2+y2: 7" "x2+y2: 9"
[1] "x2-y2: -3" "x2-y2: -3" "x2-y2: -1" "x2-y2: -1"
[1] "x2*y2: 4" "x2*y2: 10" "x2*y2: 12" "x2*y2: 20"

Finding NULL Values in a Vector in R

Listing 1.6 shows the content of simple_vector.R that illustrates how to
initialize a vector with numbers and an NA value in R.

LISTING 1.6: simple_vector1.R

v <- c(1,2,NA,4)

print("v:")
print(v)

print("length of v:")
print(length(v))

print("null values in v:")
print(is.na(v))

print("numeric values in v:")
print(is.numeric(v))

Listing 1.6 defines vector v, which contains three integers and an NA value.
Launch the code in Listing 1.6 to see the following output:

[1] "v:"
[1] 1 2 NA 4
[1] "length of v:"
[1] 4
[1] "null values in v:"
[1] FALSE FALSE TRUE FALSE
[1] "numeric values in v:"
[1] TRUE

10  •  Natural Language Processing Using R Pocket Primer

Updating NA Values in a Vector in R

Listing 1.7 shows the content of missing_mean.R that illustrates how to
replace NA values with the mean of the non-null values of a vector in R.

LISTING 1.7: missing_mean.R

print("Initial contents of v1:")
v1 <- c(1,2,NA,4)
print(v1)

print("Updated v2:")
v2 <- replace(v1, is.na(v1), mean(v1, na.rm = TRUE))
print(v2)

print("-----------------------")
print("Initial contents of v3:")
v3 <- c(1,2,NA,4,NA,5,6)
print(v3)

print("Updated v4:")
v4 <- replace(v3, is.na(v3), mean(v3, na.rm = TRUE))
print(v4)

Listing 1.7 defines vector v that contains three integers and an NA value,
after which the NA value in v is replaced with the mean value of the numbers
in v. Launch the code in Listing 1.7 to see the following output:

[1] "Initial contents of v1:"
[1] 1 2 NA 4
[1] "Updated v2:"
[1] 1.000000 2.000000 2.333333 4.000000
[1] "-----------------------"
[1] "Initial contents of v3:"
[1] 1 2 NA 4 NA 5 6
[1] "Updated v4:"
[1] 1.0 2.0 3.6 4.0 3.6 5.0 6.0

Sorting a Vector of Elements in R

Listing 1.8 shows the content of sorting1.R that illustrates how to sort a
vector of numbers and a vector of strings in R.

LISTING 1.8: sorting1.R

v <- c(13,8,44,5,0,-1,-3,-2)

Sort the elements of the vector:
sort.result <- sort(v)
print(sort.result)

Sort in reverse order:
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)

 Introduction to R  •  11

Sorting character vectors:
v <- c("Red","Blue","yellow","violet")
sort.result <- sort(v)
print(sort.result)

Listing 1.8 defines the vector v that contains 8 integer values and then sorts
these values. The next code snippet sorts the numbers in v in decreasing order
(i.e., from the largest to smallest values).

The final code snippet initializes the vector v with a set of strings and then
sorts them in alphabetical order. Launch the code in Listing 1.8 to see the fol-
lowing output:

[1] -3 -2 -1 0 5 8 13 44
[1] 44 13 8 5 0 -1 -2 -3
[1] "Blue" "Red" "violet" "yellow"

Working with the Built-in Letters Variable in R

Listing 1.9 shows the content of alphabet.R that illustrates the built-in
variable letters in R.

LISTING 1.9: alphabet.R

The "letters" vector is a built-in vector in R
print(paste0("letters: ",letters))

displays the letters in a consecutive fashion:
print(letters)

extract first 5 letters (comma-separated):
first5 <- paste0(letters[1:5], collapse=",")
print(first5)

Listing 1.9 shows the content of the built-in variable letters, which
contains the lowercase letters of the English alphabet. The second
print() statement displays the letters of the alphabet, separated by a
white space. Finally, the variable first5 is initialized with the first five
letters in alphabet. Launch the code in Listing 1.9 to see the following
output:

 [1] "letters: a" "letters: b" "letters: c" "letters: d" "letters: e"

 [6] "letters: f" "letters: g" "letters: h" "letters: i" "letters: j"

[11] "letters: k" "letters: l" "letters: m" "letters: n" "letters: o"

[16] "letters: p" "letters: q" "letters: r" "letters: s" "letters: t"

[21] "letters: u" "letters: v" "letters: w" "letters: x" "letters: y"

[26] "letters: z"

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

 [1] "a,b,c,d,e"

12  •  Natural Language Processing Using R Pocket Primer

WORKING WITH LISTS IN R

A list in R can contain a heterogeneous set of values whereas vectors in R
must contain values of the same data type (which might be converted implic-
itly). Moreover, a vector data type is one-dimensional, whereas a list data type
is a multidimensional object.

Listing 1.10 shows the content of ListOperations1.R that illustrates an
assortment of list-related operations in R.

LISTING 1.10: ListOperations1.R

a <- "abc"
b <- "zzz"
list1 <- c(a, seq(1,3)) # seq() is discussed later
list1[2]
list2 <- c(b, seq(1,10, by=3))
list2[2:3]

list3 <- list2[!is.na(list2)]
list3[1]
list3[!is.na(list3)]
samples1 <- sample(1:50, replace=TRUE)
class(samples1)
list2 <- c(b, seq(1,10), by=3)

#Naming List Elements
Create a list of a vector, a matrix and a list:
list_data <- list(c("Jan","Feb","Mar"),
matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

Name the elements of the list:
names(list_data) <- c("1st Quarter", "A_Matrix", "An Inner list")

display the list:
print(list_data)

Listing 1.10 initializes the variables a and b, followed by the variable list1
that consists of the contents of the variable a, followed by the integers 1, 2, and
3. Next, the expression list1[2] displays the contents of the second element
of list1, which is the value 1.

The next portion of Listing 1.10 initializes the variable list2 that consists
of the contents of the variable b, followed by the integers 1, 4, 7, and 10. Next,
the expression list2[2:3] displays the contents of the second and third ele-
ments of list2, which are the values 1 and 4.

The next portion of Listing 1.10 initializes the variable list3 that consists
of the elements of the variable list2 that are not integers, which is the value
zzz. Next, the variable samples1 is initialized with the first 50 integers, and
its data type is displayed, which is integer.

 Introduction to R  •  13

The next portion of Listing 1.10 initializes the variable list_data with
three components (a vector, a matrix, and a list), as shown here:

list_data <- list(c("Jan","Feb","Mar"),
matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

The final portion of Listing 1.10 initializes the names of the elements of the
variable list_data with three strings, as shown here:
names(list_data) <- c("1st Quarter", "A_Matrix", "An Inner
list")

Launch the code in Listing 1.10 to see the following output:

[1] "1"
[1] "1" "4"
[1] "zzz"
[1] "zzz" "1" "4" "7" "10"
[1] "integer"
$'1st Quarter'
[1] "Jan" "Feb" "Mar"

$A_Matrix
 [,1] [,2] [,3]
[1,] 3 5 -2
[2,] 9 1 8

$'A Inner list'
$'A Inner list'[[1]]
[1] "green"

$'A Inner list'[[2]]
[1] 12.3

Listing 1.11 shows the content of ListOperations2.R that illustrates an
assortment of list-related operations in R.

LISTING 1.11: ListOperations2.R

#Accessing List Elements:
Create a list of a vector, a matrix and a list:
list_data <- list(c("Jan","Feb","Mar"),
matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

Name the elements in the list:
names(list_data) <- c("1st Quarter", "A_Matrix", "An Inner
list")

#Accessing List Elements
Access the first element of the list:
print(list_data[1])

Access the 3rd element (which is also a list):
print(list_data[3])

14  •  Natural Language Processing Using R Pocket Primer

Access the list element using the name of the element:
print(list_data$A_Matrix)

Merging Two Lists
Create two lists and merge them:
list1 <- list(1,2,3)
list2 <- list("Sun","Mon","Tue")
merged.list <- c(list1,list2)

Print() the merged list:
print(merged.list)

Listing 1.11 starts with the initialization of the variable list_data, which
similar to Listing 1.10, followed by the display of the first and third elements
of list_data. The next portion of Listing 1.11 initializes the variables list1
and list2 and then merges their contents. Launch the code in Listing 1.11 to
see the following output:

$'1st Quarter'
[1] "Jan" "Feb" "Mar"

$'An Inner list'
$'An Inner list'[[1]]
[1] "green"

$'An Inner list'[[2]]
[1] 12.3

 [,1] [,2] [,3]
[1,] 3 5 -2
[2,] 9 1 8
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] "Sun"

[[5]]
[1] "Mon"

[[6]]
[1] "Tue"

Listing 1.12 shows the content of ListOperations3.R that illustrates an
assortment of list-related operations in R.

 Introduction to R  •  15

LISTING 1.12: ListOperations3.R

#Convert Lists To Vectors
list1 <- list(1:5)
print(list1)
list2 <- list(10:14)
print(list2)

Convert the lists to vectors:
v1 <- unlist(list1)
v2 <- unlist(list2)
print(v1)
print(v2)

Add the vectors:
result <- v1 + v2
print(result)

Listing 1.12 initializes the variables list1 and list2 with the integers
from 1 to 5 and the integers from 10 to 14, respectively, and then prints their
contents. Next, the variables v1 and v2 are initialized with the vector-based
counterparts to list1 and list2, respectively. The final code snippet ini-
tializes the variable result with the sum of v1 and v2. Launch the code in
Listing 1.12 to see the following output:

[[1]]
[1] 1 2 3 4 5

[[1]]
[1] 10 11 12 13 14

[1] 1 2 3 4 5
[1] 10 11 12 13 14
[1] 11 13 15 17 19

Useful Vector-Related Functions in R

R provides various useful vector related functions, some of which are dis-
played here:

•	append(): add elements to a vector
•	cbind(): combine vectors by row/column
•	sort(x): sort the vector x
•	unique(x): remove duplicate entries from vector

Listing 1.13 shows the content of vector_functions.R that illustrates
how to use several of the preceding vector-related functions in R.

16  •  Natural Language Processing Using R Pocket Primer

LISTING 1.13: vector_functions.R

initialize an empty vector:
vect <- c()
print(paste0("vect: ",vect))
vect <- c(vect, 1*1)
print(paste0("vect: ",vect))
vect <- c(vect, 3*3)
print(paste0("vect: ",vect))
vect <- c(vect, 2*2)
print(paste0("vect: ",vect))
vect <- sort(vect)
print(paste0("sort: ",vect))
vect <- append(vect, 100)
print(paste0("vect: ",vect))
vect <- append(vect, 4)
print(paste0("vect: ",vect))
vect <- unique(vect)
print(paste0("vect: ",vect))

Listing 1.13 starts by initializing the variable vect as an empty vector, fol-
lowed by appending the squares of the numbers 1, 3, and 2. The next code
snippet sorts the elements in vect, and then appends the number 4. The last
code snippet updates vect with the unique elements in vect. Launch the
code in Listing 1.13 to see the following output:

[1] "vect: "
[1] "vect: 1"
[1] "vect: 1" "vect: 9"
[1] "vect: 1" "vect: 9" "vect: 4"
[1] "sort: 1" "sort: 4" "sort: 9"
[1] "vect: 1" "vect: 4" "vect: 9" "vect: 100"
[1] "vect: 1" "vect: 4" "vect: 9" "vect: 100" "vect: 4"
[1] "vect: 1" "vect: 4" "vect: 9" "vect: 100"

WORKING WITH MATRICES IN R (1)

A matrix in R is a 2D rectangular dataset. Listing 1.14 shows the content
of MatrixOperations1.R that illustrates how to use more matrix-related
functions in R.

LISTING 1.14: MatrixOperations1.R

M = matrix(c(1,2,3,4,5,6), nrow=2,ncol=3,byrow=TRUE)
M
M[,1]
M[2:3]
W <- cbind(c(0.5,0.3),c(0.3,0.5))
W
class(W)

#Arrays multi-dimensional rectangular data sets
dim(as.array(letters))

 Introduction to R  •  17

U <- array(0, dim=c(2,2,2))
U
V <- array(1, dim=c(2,2,2,2))
V

Listing 1.14 initializes the 2 × 3 matrix M with the integers from 1 to 6 inclu-
sive, and then displays the contents of M, the first column of M. The next code
snippet initializes the array W with two one-dimensional vectors and displays
the contents of W as well as the class type of W.

The final portion of Listing 1.14 initializes the arrays U and V as a vectors of
the number 2 and then displays their contents. Launch the code in Listing 1.14
to see the following output:

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

[1] 1 4
[1] 4 2
 [,1] [,2]
[1,] 0.5 0.3
[2,] 0.3 0.5
[1] "matrix"
[1] 26
, , 1

 [,1] [,2]
[1,] 0 0
[2,] 0 0

, , 2

 [,1] [,2]
[1,] 0 0
[2,] 0 0

Listing 1.15 shows the content of MatrixOperations2.R that illustrates
how to use more matrix-related functions in R.

LISTING 1.15: MatrixOperations2.R

arr <- array(rep(1:4, each=4), dim=c(2,2,2,2))
arr
dim(arr)
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
array1 <- array(c(vector1,vector2),dim = c(3,3,2))

vector1
vector2
array1

Listing 1.15 initializes the variable arr as a four-dimensional array, where
each of the four “slices” is a 2 × 2 array that contains the values 1, 2, 3, and 4.

18  •  Natural Language Processing Using R Pocket Primer

The next code snippet initializes the variable vector1 with the values 5, 9,
and 3 and then initializes the variable vector2 with the numbers from 10 to
15 inclusive. The next code snippet initializes the variable array1 with the
contents of vector1 and vector2, constructed as a 3 × 3 × 2 array. Launch
the code in Listing 1.15 to see the following output:

, , 1, 1

 [,1] [,2]
[1,] 1 1
[2,] 1 1

, , 2, 1

 [,1] [,2]
[1,] 2 2
[2,] 2 2

, , 1, 2

 [,1] [,2]
[1,] 3 3
[2,] 3 3

, , 2, 2

 [,1] [,2]
[1,] 4 4
[2,] 4 4

[1] 2 2 2 2
[1] 5 9 3
[1] 10 11 12 13 14 15
, , 1

 [,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15

, , 2

 [,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15

Listing 1.16 shows the content of MatrixOperations3.R that illustrates
how to use more matrix-related functions in R.

LISTING 1.16: MatrixOperations3.R

vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)

 Introduction to R  •  19

use these vectors as input to the array:
result <- array(c(vector1,vector2),dim = c(3,3,2))
print(result)

third row of the second matrix:
print(result[3,,2])

element in the (1st row, 3rd col) of 1st matrix:
print(result[1,3,1])

print() the 2nd matrix:
print(result[,,2])

Listing 1.16 initializes the variable vector1 with the values 5, 9, and 3, and
then initializes the variable vector2 with the numbers from 10 to 15 inclu-
sive. The next code snippet initializes the variable result with the contents of
vector1 and vector2, constructed as a 3 × 3 × 2 array.

The next code snippet prints the contents of the third row of the second
matrix, followed by the element in the third column of the first row of the first
matrix. The final snippet displays the contents of the second matrix. Launch
the code in Listing 1.16 to see the following output:

, , 1

 [,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
, , 2

 [,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15

[1] 3 12 15
[1] 13
 [,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15

WORKING WITH MATRICES IN R (2)

The matrix M is an m × n matrix if it has m rows and n columns. In addition,
matrix M is a square matrix if m = n.

As an example, the following code snippet creates a 2 × 3 matrix X whose
elements are 0:

X <- matrix(0, nrow = 2, ncol = 3)

20  •  Natural Language Processing Using R Pocket Primer

The contents of the matrix X are shown here:

>X

 [,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0

The API dim(X) returns the dimensionality of a matrix, which equals the
number of rows and the number of columns. In this example, the dimensional-
ity of X is 3 × 4:

> dim(X)
[1] 3 4

Listing 1.17 shows the content of matrices1.R that illustrates more exam-
ples of matrices in R.

LISTING 1.17: matrices1.R

Elements are arranged sequentially by row:
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print("Matrix M:")
print(M)

sqrtm = sqrt(M)
print("sqrtm:")
print(sqrtm)

Elements are arranged sequentially by column.
N <- matrix(c(3:14), nrow = 4, byrow = FALSE)
print("Matrix N:")
print(N)

Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

P <- matrix(c(3:14),nrow = 4,byrow = TRUE,
dimnames = list(rownames,colnames))
print("Matrix P:")
print(P)

Listing 1.17 initializes the matrix M as a 4 × 3 matrix that contains the inte-
gers from 3 to 14 inclusive, where the integers populate the rows of M. Next, the
variable sqrtm is initialized as the square root of the elements in the array M.

The matrix N is similar to the matrix M, except that N is populated via
columns instead of rows. Finally, the matrix P is populated with the same values
as matrix M but with a different syntax. Launch the code in Listing 1.17 to see
the following output:

 Introduction to R  •  21

[1] "Matrix M:"
 [,1] [,2] [,3]
[1,] 3 4 5
[2,] 6 7 8
[3,] 9 10 11
[4,] 12 13 14
[1] "sqrtm:"
 [,1] [,2] [,3]
[1,] 1.732051 2.000000 2.236068
[2,] 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625
[4,] 3.464102 3.605551 3.741657
[1] "Matrix N:"
 [,1] [,2] [,3]
[1,] 3 7 11
[2,] 4 8 12
[3,] 5 9 13
[4,] 6 10 14
[1] "Matrix P:"
 col1 col2 col3
row1 3 4 5
row2 6 7 8
row3 9 10 11
row4 12 13 14

WORKING WITH MATRICES IN R (3)

Listing 1.18 shows the content of matrices2.R that illustrates how to dis-
play the contents of elements of matrices in R.

LISTING 1.18: matrices2.R

Define the column and row names:
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

Create the matrix:
P <- matrix(c(3:14),nrow = 4,byrow = TRUE, dimnames = list(rownames,colnames))
P

Access the element at 3rd column and 1st row:
print("P[1,3]:")
print(P[1,3])

Access the element at 2nd column and 4th row:
print("P[4,2]:")
print(P[4,2])

Access only the 2nd row:
print("P[2,1]:")
print(P[2,])

Access only the 3rd column:
print("P[,3]:")
print(P[,3])

22  •  Natural Language Processing Using R Pocket Primer

Listing 1.18 initializes the variables rownames and colnames as vectors of
strings, followed by the 4 × 3 matrix P that is populated “row wise” with the
integers from 3 to 14 inclusive.

The next four blocks of code display the contents of various “cells” in P,
starting with the element in the 3rd column and the 1st row. See the comments
in the code that specify the location of the elements that are displayed. Launch
the code in Listing 1.18 to see the following output:

 col1 col2 col3
row1 3 4 5
row2 6 7 8
row3 9 10 11
row4 12 13 14
[1] "P[1,3]:"
[1] 5
[1] "P[4,2]:"
[1] 13
[1] "P[2,1]:"
col1 col2 col3
 6 7 8
[1] "P[,3]:"
row1 row2 row3 row4
 5 8 11 14

WORKING WITH MATRICES IN R (3)

Listing 1.19 shows the content of matrices3.R that illustrates additional
operations involving matrices in R.

LISTING 1.19: matrices3.R

Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print("matrix1:")
print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print("matrix2:")
print(matrix2)

Add the matrices.
result <- matrix1 + matrix2
cat("Result of addition","\n")
print(result)

Subtract the matrices
result <- matrix1 - matrix2
cat("Result of subtraction","\n")
print(result)

Listing 1.19 initializes the variables matrix1 and matrix2 and displays
their values. Next, the variable result is initialized as the sum of matrix1

 Introduction to R  •  23

and matrix2, and then initialized again as the difference of matrix1 and
matrix2, and the result is displayed in both cases. Launch the code in Listing
1.19 to see the following output:

[1] "matrix1:"
 [,1] [,2] [,3]
[1,] 3 -1 2
[2,] 9 4 6
[1] "matrix2:"
 [,1] [,2] [,3]
[1,] 5 0 3
[2,] 2 9 4
Result of addition
 [,1] [,2] [,3]
[1,] 8 -1 5
[2,] 11 13 10
Result of subtraction
 [,1] [,2] [,3]
[1,] -2 -1 -1
[2,] 7 -5 2

WORKING WITH MATRICES IN R (4)

Listing 1.20 shows the content of matrices4.R that illustrates how to mul-
tiply and divide matrices in R.

LISTING 1.20: matrices4.R

Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print("matrix1:")
print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print("matrix2:")
print(matrix2)

Multiply the matrices.
result <- matrix1 * matrix2
cat("Result of multiplication","\n")
print(result)

Divide the matrices
result <- matrix1 / matrix2
cat("Result of division","\n")
print(result)

Listing 1.20 initializes the variables matrix1 and matrix2 and displays
their values. Next, the variable result is initialized as the product of matrix1
and matrix2, and then initialized again as the quotient of matrix1 and
matrix2, and the result is displayed in both cases. Launch the code in Listing
1.20 to see the following output:

24  •  Natural Language Processing Using R Pocket Primer

[1] "matrix1:"
 [,1] [,2] [,3]
[1,] 3 -1 2
[2,] 9 4 6
[1] "matrix2:"
 [,1] [,2] [,3]
[1,] 5 0 3
[2,] 2 9 4
Result of multiplication
 [,1] [,2] [,3]
[1,] 15 0 6
[2,] 18 36 24
Result of division
 [,1] [,2] [,3]
[1,] 0.6 -Inf 0.6666667
[2,] 4.5 0.4444444 1.5000000

UPDATING MATRIX ELEMENTS

This section consists of simple examples that illustrate additional ways to
initialize matrices in R.

Example 1:

> Y <- matrix(1:12, nrow = 3, ncol = 4)
> Y
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> Y[1, 3]
[1] 7
> Y[1,]
[1] 1 4 7 10
> Y[, 2]
[1] 4 5 6

Example 2:

> x <- 1:15
> dim(x) <- c(3, 5) >x
[1,]
[2,]
[3,]
1 4
2 5
3 6
7 10 13
8 11 14
9 12 15
[,1] [,2] [,3] [,4] [,5]
> class(x)
[1] "matrix"

 Introduction to R  •  25

The following example illustrates how to define a submatrix in R:

> Z <- X[1:2, 3:4]
> Z
 [,1] [,2]
[1,] 0 0
[2,] 0 0

The following snippet assigns x the contents of matrix Y and find the type
of x:

> x <- Y[1,]
> class(x)
[1] "integer"

An example of updating one element and one row of a matrix is as follows:

> X[1, 3] <- 1
> X[, 1] <- c(-1, -2, -3) >X
 [,1] [,2] [,3] [,4]
[1,] -1 0 1 0
[2,] -2 0 0 0
[3,] -3 0 0 0
> X[, 4] <- 2 >X
 [,1] [,2] [,3] [,4]
[1,] -1 0 1 2
[2,] -2 0 0 2
[3,] -3 0 0 2

LOGICAL CONSTRAINTS AND MATRICES

You can apply a logical condition to the elements of a matrix, and the result
is a new matrix that has the same dimensionality. However, the values in the
new matrix are either TRUE or FALSE, depending on whether or not the logical
condition is true or false, respectively.

Consider the following example, which returns a value of TRUE for the ele-
ments of X that are positive, and FALSE for the non-positive values:

> X > 0
 [,1] [,2] [,3] [,4]
[1,] FALSE FALSE TRUE TRUE
[2,] FALSE FALSE FALSE TRUE
[3,] FALSE FALSE FALSE TRUE

ASSIGNING VALUES TO MATRIX ELEMENTS

In addition to assigning values to elements during matrix creation opera-
tions, it’s possible to use Boolean conditions to assign values. For example,
the following expression assigns the value val to the elements of X where the
Boolean condition L is true:

X[L] <- val

26  •  Natural Language Processing Using R Pocket Primer

The following example assigns NA to element [1, 1] of X:

> X[1, 1] <- NA
> is.na(X)
 [,1] [,2] [,3] [,4]
[1,] TRUE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE

The following code snippet assigns 0 to all the elements of X whose value
is NA:

> X[is.na(X)] <- 0
> X
 [,1] [,2] [,3] [,4]
[1,] 0 0 1 2
[2,] -2 0 0 2
[3,] -3 0 0 2

WORKING WITH MATRICES IN R (5)

The transpose of a matrix is the result of switching rows to columns and
columns to rows. If we denote the element in row i and column j of the matrix
A by A(i,j), then the coordinates of the corresponding element in the trans-
pose of A is (j,i).

Listing 1.21 shows the content of Transpose1.R that illustrates how to
find the transpose of a matrix in R.

LISTING 1.21: Transpose1.R

M = matrix(c(2,6,5,1,10,4), nrow=2,ncol=3,byrow = TRUE)
print() ("contents of M:")
M
t = M %*% t(M)
print() ("contents of t(M):")
t(M)
print() ("contents of t:")
t

Listing 1.21 initializes the 2 × 3 matrix M with integer values, followed by
the matrix t that is the transpose of matrix M. Launch the code in Listing 1.21
to see the following output:

[1] "contents of M:"
 [,1] [,2] [,3]
[1,] 2 6 5
[2,] 1 10 4
[1] "contents of t(M):"
 [,1] [,2]
[1,] 2 1
[2,] 6 10

 Introduction to R  •  27

[3,] 5 4
[1] "contents of t:"
 [,1] [,2]
[1,] 65 82
[2,] 82 117

Listing 1.22 shows the content of Transpose2.R that illustrates how to
find the transpose of a matrix in R.

LISTING 1.22: Transpose2.R

M = matrix(c(2,6,5,1,10,4,-1,-8,7,23,99,77), nrow=2,ncol=6,byrow = TRUE)
print() ("contents of M:")
M
t = M %*% t(M)
print() ("contents of t(M):")
t(M)
print() ("contents of t:")
t

Listing 1.22 is similar to Listing 1.21 that initializes and then displays the
contents of the matrices M, t, and the product of M and t. Launch the code in
Listing 1.22 to see the following output:

[1] "contents of M:"
 [,1] [,2] [,3]
[1,] 2 6 5
[2,] 1 10 4
[1] "contents of t(M):"
 [,1] [,2]
[1,] 2 1
[2,] 6 10
[3,] 5 4
[1] "contents of t:"
 [,1] [,2]
[1,] 65 82
[2,] 82 117

WORKING WITH DATES IN R

Listing 1.23 shows the content of date-values.R that illustrates how to
work with matrices in R.

LISTING 1.23: date-values.R

mydates <- as.Date(c("2019-06-22", "2021-02-13"))
print("mydates:")
print(mydates)

number of days between 6/22/19 and 21/12/04
days <- mydates[1] - mydates[2]
print("days:")
print(days)

28  •  Natural Language Processing Using R Pocket Primer

print() today's date
today <- Sys.Date()
format(today, format="%B %d %Y")
print("today:")
print(today)

convert date info in format 'mm/dd/yyyy'
strDates <- c("01/05/2021", "08/13/2022")
dates <- as.Date(strDates, "%m/%d/%Y")
print("dates:")
print(dates)

#The default format is yyyy-mm-dd
mydates <- as.Date(c("2020-08-13", "2022-08-13"))
print("mydates:")
print(mydates)

convert dates to character data
strDates <- as.character(dates)
print("strDates:")
print(strDates)

The code in Listing 1.23 contains code snippets that illustrate how to use
the as.Date() function to convert strings to dates and how to subtract two
dates. Launch the code in Listing 1.23 to see the following output:

[1] "mydates:"
[1] "2019-06-22" "2021-02-13"
[1] "days:"
Time difference of -602 days
[1] "December 06 2021"
[1] "today:"
[1] "2021-12-06"
[1] "dates:"
[1] "2021-01-05" "2022-08-13"
[1] "mydates:"
[1] "2020-08-13" "2022-08-13"
[1] "strDates:"
[1] "2021-01-05" "2022-08-13"

THE SEQ FUNCTION IN R

Earlier in the chapter, you saw a code sample that contains the seq() func-
tion, which is a function in R that generates sequences of data. Listing 1.24
shows the content of SequenceFunctions.R that illustrates how to work with
sequences in R.

LISTING 1.24: SequenceFunctions.R

#Generate a sequence from 1 to 10:
x <- seq(10)
x

 Introduction to R  •  29

#Generate a sequence from -4 to 4:
x <- seq(-4,4)
x

#Generate a sequence from -4 to 4 with a step of 2:
x <- seq(-4,4,by=2)
x

#Generate a sequence from -4 to 4 with a step of 0.5:
x <- seq(-2,2,by=0.5)
x

exp(x)
#[1] 2.718282 7.389056 20.085537 54.5

#Generate 10 equally distributed numbers from -2 to 2:
seq(-2,2,length.out=10)

x = seq(-pi,pi,length=20)
print("PI values:")
print(x)

Listing 1.24 contains code snippets and comments that explain the purpose
of each code snippet. Launch the code in Listing 1.24 to see the following
output:

 [1] 1 2 3 4 5 6 7 8 9 10
 [1] -4 -3 -2 -1 0 1 2 3 4
 [1] -4 -2 0 2 4
 [1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
 [1] -2.0000000 -1.5555556 -1.1111111 -0.6666667 -0.2222222 0.2222222
 [7] 0.6666667 1.1111111 1.5555556 2.0000000
 [1] 0.1353353 0.2231302 0.3678794 0.6065307 1.0000000 1.6487213 2.7182818
 [8] 4.4816891 7.3890561
 [1] "PI values:"
 [1] -3.1415927 -2.8108987 -2.4802047 -2.1495108 -1.8188168 -1.4881228
 [7] -1.1574289 -0.8267349 -0.4960409 -0.1653470 0.1653470 0.4960409
[13] 0.8267349 1.1574289 1.4881228 1.8188168 2.1495108 2.4802047
[19] 2.8108987 3.1415927

Listing 1.25 shows the content of seq-function.R that illustrates how to
generate a sequence of numbers in R.

LISTING 1.25: seq-function.R

N = 300
set.seed(110)
X = seq(1:N)
Y = X/10+4*sin(X/10)+sample(-1:6,X,replace=T)+rnorm(X)
head(Y,20)

Listing 1.25 initializes the variable N with the value 300, followed by the
variable X that contains the numbers from 1 to N (see the previous section for
examples involving the seq() function).

30  •  Natural Language Processing Using R Pocket Primer

Next, the variable Y is initialized as a function that contains a mixture
of a linear term X/10, the trigonometric sin() function, values from the
sample() function, and randomly selected values from a normal distribution
via the rnorm() function. Launch the code in Listing 1.25 to see the following
output:

 [1] 2.2998879 3.1848840 0.7925252 4.1971693 3.3087362 3.7413279
 [7] 4.4599534 5.9499792 3.3060370 7.0560683 6.1686419 8.4564929
[13] 6.7033295 6.5800118 5.4410868 7.8930577 7.4921991 6.6397045
[19] 5.9008181 5.9036865

SUMMARY

This chapter introduced you to R variables, and how to define variables
whose type is strings, lists, vectors, and matrices in R. Then you learned ways
to initialize variables during their creation and how to update the values of
variables.

You learned how to update the values of a specific row in two-dimensional
matrices in R. Moreover, you saw how to use conditional logic to test the val-
ues in a two-dimensional matrix, and also use conditional logic to update the
elements in a two-dimensional matrix. Finally, you learned how to work with
dates in R.

CHAPTER 2
LOOPS, CONDITIONAL LOGIC,
AND DATAFRAMES

This chapter discusses four main topics: working with loops in R, working
with conditional logic in R, working with data frames in R, and how to
perform various types of data visualization in R.

The first section of this chapter contains short code samples that illustrate
various types of loops (including nested loops) in R, which includes for loops,
while loops, and repeat loops.

The second section discusses conditional logic, starting with simple if-then
statements. Conditional logic includes if-then-else statements; they can also be
nested, as shown in one of the code samples in this section.

The third section discusses data frames, an extremely powerful datatype in
R that are counterparts to data frames in Python Pandas. The fourth section
discusses data visualization, such as bar charts, line graphs, histograms, scatter
plots, and pie charts.

WORKING WITH SIMPLE LOOPS IN R

Listing 2.1 shows the content of simpleloop1.R that illustrates a simple
for loop in R that calculates the sum of some integers.

LISTING 2.1 simpleloop1.R

x <- c(2,5,3,9,8,11,6)

count <- 0
sum <- 0
for (val in x) {
 count = count+1
 sum = sum + val
}

32  •  Natural Language Processing Using R Pocket Primer

print(paste0("count: ",count)
print(paste0("sum: ",sum)

Listing 2.1 initializes the vector x with seven positive integers and the vari-
able count with the value 0. Next, there is a for loop that iterates through the
elements in x, incrementing the value of count during each iteration. Launch
the code in Listing 2.1 to see the following output:

[1] "count: 7"
[1] "sum: 44

Working with Other Types of Loops in R 	

In addition to for loops, an example of which you saw in the previous sec-
tion, R supports a while loop and a repeat loop. Later in this chapter, you
will see an example of a while loop, right after you see how to create a nested
for loop, which is discussed in the next section.

WORKING WITH NESTED LOOPS IN R

Listing 2.2 shows the content of nestedloop1.R that illustrates how to
define a nested loop in R.

LISTING 2.2: nestedloop1.R

x <- c(1,2,3)
y <- c(10,20,30)

for (x1 in x) {
 for (y1 in y) {
 print(paste0("(",x1,",",y1,")"))
 }
}

Listing 2.2 initializes the vectors x and y with positive integers, followed by
a nested loop that displays pairs of numeric values: the first value is an element
of x, and the second value is an element of y. Launch the code in Listing 2.2
to see the following output:

[1] "(1,10)"
[1] "(1,20)"
[1] "(1,30)"
[1] "(2,10)"
[1] "(2,20)"
[1] "(2,30)"
[1] "(3,10)"
[1] "(3,20)"
[1] "(3,30)"

WORKING WITH WHILE LOOPS IN R

In addition to for loops, R also supports while loops. Listing 2.3 shows
the content of whileloop1.R that illustrates how to define a while loop in R.

Loops, Conditional Logic, and Dataframes  •  33

LISTING 2.3: whileloop1.R

i <- 1

while (i < 6) {
 print(paste0("i: ",i))

 i = i+1
}

Listing 2.3 initializes the variable i with the value 1 and then executes a
while loop that prints the value of i and then increments the value of i. The
while loop executes as long as i is less than 6. Launch the code in Listing 2.3
to see the following output:

[1] "i: 1"
[1] "i: 2"
[1] "i: 3"
[1] "i: 4"
[1] "i: 5"

Instead of hard-coding the value 6 in the while loop, it’s preferable to
replace the number 6 with a variable that is initialized with the value 6, or
whichever value you need for your purposes. Now that you have a basic under-
standing of for loops and while loops in R, let’s explore conditional logic in R.

WORKING WITH CONDITIONAL LOGIC IN R

Conditional logic appears in almost every non-trivial program, regardless
of the programming language. Conditional logic can vary in complexity from a
simple if statement to multiple nested if statements, which in turn can con-
tain other if statements. Although complex conditional logic can be a source
of coding bugs, nothing prevents you from writing such code. At a minimum,
provide meaningful comments for code blocks to facilitate a better under-
standing of their purpose.

Listing 2.4 shows the content of ifelse1.R that illustrates a simple exam-
ple of conditional logic in a for loop in R.

LISTING 2.4: ifelse1.R

nums = c(5,7,2,9)

for (a in nums) {
 if (a %% 2 == 0) {
 print(paste0(a," is even"))
 } else {
 print(paste0(a," is odd"))
 }
}

Listing 2.4 initializes the variable nums with four positive integers, followed
by a for loop that displays one message if the current number is even, and a

34  •  Natural Language Processing Using R Pocket Primer

different message of the number is odd. Launch the code in Listing 2.4 to see
the following output:

[1] "5 is odd"
[1] "7 is odd"
[1] "2 is even"
[1] "9 is odd"

COMPOUND CONDITIONAL LOGIC

Listing 2.5 shows the content of CompoundIfLogic.R that illustrates how
to check if a number is divisible by multiple numbers.

LISTING 2.5: CompoundIfLogic.R

x <- 30
print(paste0("x = ",x))

if((x %% 3 == 0) && (x %% 5 == 0)) {
 print(paste0("x is a multiple of 3 and 5"))
} else if(x %% 5 == 0) {
 print(paste0("x is a multiple of 5"))
} else if(x %% 3 == 0) {
 print(paste0("x is a multiple of 3"))
} else {
 print(paste0("x is not a multiple of 3 or 5"))
}

Listing 2.5 initializes the variable x with the value 30 and displays its value.
The main code block contains a sequence of if/else-if statements, which con-
tinue to execute until a conditional statement is true, after which a print()
statement displays a message and then the execution of this code stops. For
example, if the first if statement is true, then the remainder of the code will
not be executed. If the first if statement is false and the first else-if is true,
then the other else-if statements are not executed. Launch the code in Listing
2.5 and enter some values:

[1] "x = 30"
[1] "x is a multiple of 3 and 5"

Now let’s turn to a task that does require conditional logic, such as checking
if a number is prime.

CHECK IF A NUMBER IS PRIME IN R

A positive integer greater than 1 is a prime number if its only divisors are
1 and the number itself. Hence, the set {2, 3, 5, 7, 11, 13} consists of prime
numbers.

Loops, Conditional Logic, and Dataframes  •  35

One algorithm for determining whether a number N is prime involves
dividing N by the number 2 and the odd numbers from 3 to N/2: if the
remainder is 0, then N is a composite number. Otherwise, N is a prime number.
Note that the upper bound can be reduced from N/2 to sqrt(N), which can
significantly reduce the computation time for larger values of N.

Listing 2.6 shows the content of PrimeNumber.R that illustrates how to
work with a loop and conditional logic in R to determine whether a positive
integer is prime. The upper bound in the for loop can be further decreased to
become computationally more efficient for large values of num.

LISTING 2.6: PrimeNumber.R

num <- 20

prime numbers are >= 2
flag = 0
if(num > 1) {
 # check for factors
 flag = 1
 # the following loop works for num > 2
 for(i in 2:(num-1)) {
 if ((num %% i) == 0) {
 print(paste(i,"is a divisor of",num))
 flag = 0
 break
 }
 }
}

if(num == 2)
 flag = 1

if(flag == 1) {
 print(paste(num,"is a prime number"))
} else {
 print(paste(num,"is not a prime number"))
}

Listing 2.6 initializes the value of num to 20 and initializes the variable flag
to 0. Next, an if statement checks if num is greater than 1: if so, then another
block of code that consists of a for loop is executed.

The for loop iterates through the integers from 2 to num-1 inclusive, and if
any of those numbers divides num with remainder zero, a message is displayed,
the variable flag is set to 0, and an early exit occurs.

The remaining portion of Listing 2.6 checks the value of flag and uses its
value to display an appropriate message. Launch the code in Listing 2.6 to see
the following output:

[1] "2 is a divisor of 20"
[1] "20 is not a prime number"

36  •  Natural Language Processing Using R Pocket Primer

CHECK IF NUMBERS IN AN ARRAY ARE PRIME IN R

The previous section showed how to determine whether a positive integer
is a prime number. Listing 2.7 shows the content of PrimeNumbers.R that
illustrates how to check if any of the numbers in an array are prime.

LISTING 2.7: PrimeNumbers.R

prime <- function(num) {
 # prime numbers are >= 2
 flag = 0
 if(num > 1) {
 # check for factors
 flag = 1
 for(i in 2:(num-1)) {
 if ((num %% i) == 0) {
 flag = 0
 break
 }
 }
 }

 if(num == 2)
 flag = 1

 if(flag == 1) {
 print(paste(num,"is a prime number"))
 } else {
 print(paste(num,"is not a prime number"))
 }
}

for (num in 10:20){
 prime(num)
}

arr <- c(7, 17, 25, 99)
for (num in arr){
 prime(num)
}

Listing 2.7 defines the function prime(), whose code is the same as the
code in Listing 2.6. The last portion of Listing 2.7 contains a for loop that iter-
ates through the numbers from 10 to 10 and invokes the prime() function to
determine whether those numbers are prime.

The second for loop is similar: it also iterates through the numbers in a
list and invokes the prime() function to determine whether that number is
prime. Launch the code in Listing 2.7 to see the following output:

[1] "10 is not a prime number"
[1] "11 is a prime number"
[1] "12 is not a prime number"
[1] "13 is a prime number"
[1] "14 is not a prime number"

Loops, Conditional Logic, and Dataframes  •  37

[1] "15 is not a prime number"
[1] "16 is not a prime number"
[1] "17 is a prime number"
[1] "18 is not a prime number"
[1] "19 is a prime number"
[1] "20 is not a prime number"
[1] "7 is a prime number"
[1] "17 is a prime number"
[1] "25 is not a prime number"
[1] "99 is not a prime number"

CHECK FOR LEAP YEARS IN R

Whether a positive integer is a leap year can be determined via nested if
statements. Listing 2.8 shows the content of CheckForLeapYear.R that illus-
trates how to determine whether a positive integer is a leap year in R.

LISTING 2.8: CheckForLeapYear.R

###
A year is a leap year provided that:
1) it is a multiple of 4 AND
2) a century must be a multiple of 400
#
=> 2000 is a leap year but 1900 is not.
###
year <- 1904

if((year %% 4) == 0) {
 if((year %% 100) == 0) {
 if((year %% 400) == 0) {
 print(paste(year,"is a leap year"))
 } else {
 print(paste(year,"is not a leap year"))
 }
 } else {
 print(paste(year,"is a leap year"))
 }
} else {
 print(paste(year,"is not a leap year"))
}

Listing 2.8 initializes the variable year with the value 1904, followed by
a set of nested if statements that implement the logic described in the com-
ment block. Launch the code in Listing 2.8 to see the following output:

[1] "1900 is not a leap year"

WELL-FORMED TRIANGLE VALUES IN R

Recall that three positive numbers (not necessarily integers) are the angles
of a triangle if the sum of those numbers equals 180. Since the three numbers
are positive, they must be greater than 0 and less than 180.

38  •  Natural Language Processing Using R Pocket Primer

In addition, the sum of any two of the three numbers must be greater than
0 and less than 180. Note that this result is for the Euclidean plane, and this is
not a requirement for elliptic geometry or hyperbolic geometry.

Listing 2.9 shows the content of SumOfAngles.R that illustrates how to
determine whether three angles form a triangle in the Euclidean plane.

LISTING 2.9: SumOfAngles.R

a1 = 40, a2 = 80, a3 = 0

a1 = 40
a2 = 80
a3 = 60

print(paste0("a1: ",a1))
print(paste0("a2: ",a2))
print(paste0("a3: ",a3))

ensure the following are true:
1) a1>0 and a1 < 180
2) a2>0 and a2 < 180
3) a1+a1 < 180

if(((a1 <= 0) || (a1 >= 180)) ||
 ((a2 <= 0) || (a2 >= 180)))
{
 print(paste0("angles out of range: ",a1,a2))
} else {
 if(a1+a2 >= 180) {
 print(paste0("a1 + a2 is too large:", a1+a2))
 } else {
 a3 = 180 - (a1+a2)
 print(paste0("a1, a2, and a3 form a triangle:", a1,"
",a2," ",a3))
 }
}

Listing 2.9 initializes the variables a1, a2, and a3 with three positive inte-
ger values. The next set of if/else statements implement the logic described in
the comment block. Launch the code in Listing 2.9 to see the following output:

[1] "a1: 40"
[1] "a2: 80"
[1] "a3: 60"
[1] "a1, a2, and a3 form a triangle:40 80 60"

WHAT ARE FACTORS IN R?

Factors in R are similar to the enum (enumeration) data type in other pro-
gramming languages. Factors are created via the factor() function. Listing
2.10 shows the content of factors1.R that illustrates how to define factors
in R.

Loops, Conditional Logic, and Dataframes  •  39

LISTING 2.10: factors1.R

a <- "Hello"
mycolors <- c('green','green','yellow','red','red','red','green')

Create a factor object:
myfactors <- factor(mycolors)
print("contents of the myfactors vector:")
print(myfactors)

print("the number of levels in myfactors:")
print(nlevels(myfactors))

Listing 2.10 defines a vector of strings mycolors and then initializes the
variable myfactors with the “factors” in the variable mycolors, which con-
sists of three distinct colors. Launch the code in Listing 2.10 to see the follow-
ing output:

[1] "contents of the myfactors vector:"
[1] green green yellow red red red green
Levels: green red yellow
[1] "the number of levels in myfactors:"
[1] 3

WHAT ARE DATA FRAMES IN R?

A data frame in R is comparable to a spreadsheet: you can perform various
column-related and row-related operations on a data frame, in much the same
way that you can perform those operations on a spreadsheet. For example, you
can insert, delete, or move rows and columns. You can update values based on
various criteria, such as filling in missing values or modifying existing values.

Data frames are essentially data objects in tabular form, with heterogene-
ous columns of data, created via the data.frame() function. A list in R is
compatible with data.frame if any of the following is true:

•	Components must be vectors (numeric, character, and logical) or factors.
•	All vectors and factors must have the same lengths.

Matrices and other data frames can be combined with vectors to form a
data frame if the dimensions are compatible.

Listing 2.11 shows the content of simple_df.R that defines a data frame
consisting of the three columns col1, col2, and col3, each of which contains
three positive integers.

LISTING 2.11: simple_df.R

mydf <- data.frame(
 attr1 <- c(1,2,3),
 attr2 <- c(4,5,6),
 attr3 <- c(7,8,9)
)

40  •  Natural Language Processing Using R Pocket Primer

print("contents of attr1 of mydf:")
print(mydf[,1])
print("contents of attr2 of mydf:")
print(mydf[,2])
print("contents of attr3 of mydf:")
print(mydf[,3])

print("contents of column 1 of mydf:")
print(mydf[1,])
print("contents of column 2 of mydf:")
print(mydf[2,])
print("contents of column 3 of mydf:")
print(mydf[3,])

second dataframe:
attr4 <- c('a','b','c')
attr5 <- c('d','e','f')

mydf2 <- data.frame(
 attr4,
 attr5
)

print("contents of mydf2:")
print(mydf2)

Listing 2.11 initializes the variable mydf as a data frame with the positive
integers from 1 to 9, which are also used to initialize the variables attr1,
attr2 , and attr3. The next portion of code displays the contents of the same
variables, expressed as elements of the variable mydf.

The next code block addresses the contents of three columns, and the final
code section initializes the variable mydf2 as a data frame that consists of the
contents of attr4 and attr5, and then displays its contents. Launch the code
in Listing 2.11 to see the following output:

[1] "contents of attr1 of mydf:"
[1] 1 2 3
[1] "contents of attr2 of mydf:"
[1] 4 5 6
[1] "contents of attr3 of mydf:"
[1] 7 8 9
[1] "contents of column 1 of mydf:"
 attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
1 1 4 7
[1] "contents of column 2 of mydf:"
 attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
2 2 5 8
[1] "contents of column 3 of mydf:"
 attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
3 3 6 9
[1] "contents of mydf2:"
 attr4 attr5
1 a d
2 b e
3 c f

Loops, Conditional Logic, and Dataframes  •  41

The next sequence of sections in this chapter contains examples of per-
forming operations on the contents of data frames in R.

WORKING WITH DATAFRAMES IN R (1)

Listing 2.12 shows the content of dataframe2.R that illustrates how to
define a data frame with heterogeneous values in R.

LISTING 2.12: dataframe2.R

Create the data frame:
emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("John","Jane","Sally","Sarah","Robert"),
 salary = c(1000.12,2515.2,3600.0,1750.0,1800.25),

 start_date =
 as.Date(c("2021-01-01","2021-07-01","2022-02-02",
"2022-05-05","2021-12-28")),
 stringsAsFactors = FALSE
)

Print the data frame:
print(emp.data)

Get the structure of the data frame:
str(emp.data)

Print the summary:
print(summary(emp.data))

Listing 2.12 initializes the variable emp as a data frame that contains values
for emp_id, emp_name, salary, and start_date for five fictitious employ-
ees. The remaining code in Listing 2.12 shows the contents of the data frame
emp, the structure of emp, and a summary report that contains information
about the minimum, maximum, median, and mean values in the data frame.
Launch the code in Listing 2.12 to see the following output:

 emp_id emp_name salary start_date
1 1 John 1000.12 2021-01-01
2 2 Jane 2515.20 2021-07-01
3 3 Sally 3600.00 2022-02-02
4 4 Sarah 1750.00 2022-05-05
5 5 Robert 1800.25 2021-12-28
'data.frame':	 5 obs. of 4 variables:
 $ emp_id : int 1 2 3 4 5
 $ emp_name : chr "John" "Jane" "Sally" "Sarah" ...
 $ salary : num 1000 2515 3600 1750 1800
 $ start_date: Date, format: "2021-01-01" "2021-07-01" ...
 emp_id emp_name salary start_date
 Min. :1 Length:5 Min. :1000 Min. :2021-01-01
 1st Qu.:2 Class :character 1st Qu.:1750 1st Qu.:2021-07-01
 Median :3 Mode :character Median :1800 Median :2021-12-28
 Mean :3 Mean :2133 Mean :2021-10-13
 3rd Qu.:4 3rd Qu.:2515 3rd Qu.:2022-02-02
 Max. :5 Max. :3600 Max. :2022-05-05

42  •  Natural Language Processing Using R Pocket Primer

WORKING WITH DATA FRAMES IN R (2)

Listing 2.13 shows the content of dataframe3.R that illustrates how to
display portions of a data frame in R.

LISTING 2.13: dataframe3.R

Create the data frame:
emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date =
 �as.Date(c("2012-01-01","2013-09-23","2014-11-15",

"2014-05-11","2015-03-27")),
 stringsAsFactors = FALSE
)

Print the data frame:
print(emp.data)

Get the structure of the data frame:
str(emp.data)

Print the summary:
print(summary(emp.data))

Extract Specific columns:
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

Extract first two rows:
result <- emp.data[1:2,]
print(result)

Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

Listing 2.13 starts with the same code as Listing 2.12, with the new section
of code shown in bold. The new code block initializes the variable result with
the values for the employee names and employee salaries. Launch the code in
Listing 2.13 to see the following output:

 emp_id emp_name salary start_date
1 1 Rick 623.30 2012-01-01
2 2 Dan 515.20 2013-09-23
3 3 Michelle 611.00 2014-11-15
4 4 Ryan 729.00 2014-05-11
5 5 Gary 843.25 2015-03-27
'data.frame': 5 obs. of 4 variables:
 $ emp_id : int 1 2 3 4 5
 $ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...
 $ salary : num 623 515 611 729 843

Loops, Conditional Logic, and Dataframes  •  43

 $ start_date: Date, format: "2012-01-01" "2013-09-23" ...
 emp_id emp_name salary start_date
 Min. :1 Length:5 Min. :515.2 Min. :2012-01-01
 1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
 Median :3 Mode :character Median :623.3 Median :2014-05-11
 Mean :3 Mean :664.4 Mean :2014-01-14
 3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15
Max. :5 Max. :843.2 Max. :2015-03-27
 emp.data.emp_name emp.data.salary
1 Rick 623.30
2 Dan 515.20
3 Michelle 611.00
4 Ryan 729.00
5 Gary 843.25
 emp_id emp_name salary start_date
1 1 Rick 623.3 2012-01-01
2 2 Dan 515.2 2013-09-23
 emp_name start_date
3 Michelle 2014-11-15
5 Gary 2015-03-27

WORKING WITH DATA FRAMES IN R (3)

Listing 2.14 shows the content of dataframe4.R that illustrates how to
add a new attribute to a data frame in R.

LISTING 2.14: dataframe4.R

emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date =
 �as.Date(c("2012-01-01","2013-09-23","2014-11-15",

"2014-05-11","2015-03-27")),
 stringsAsFactors = FALSE
)

Print the data frame:
print(emp.data)

Get the structure of the data frame:
str(emp.data)

Print the summary:
print(summary(emp.data))

Extract Specific columns:
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

Extract first two rows:
result <- emp.data[1:2,]
print(result)

44  •  Natural Language Processing Using R Pocket Primer

Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

Create the data frame.
emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),

 �start_date = as.Date(c("2012-01-01", "2013-09-23",
"2014-11-15", "2014-05-11",

 "2015-03-27")),
 stringsAsFactors = FALSE
)

Add the "dept" column:
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v)

Listing 2.14 starts with the same code as Listing 2.13, and the new block
of code is shown in bold. The new code adds a dept attribute (which contains
five values) to the emp variable. Launch the code in Listing 2.14 to see the fol-
lowing output:

 emp_id emp_name salary start_date
1 1 Rick 623.30 2012-01-01
2 2 Dan 515.20 2013-09-23
3 3 Michelle 611.00 2014-11-15
4 4 Ryan 729.00 2014-05-11
5 5 Gary 843.25 2015-03-27
'data.frame': 5 obs. of 4 variables:
 $ emp_id : int 1 2 3 4 5
 $ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...
 $ salary : num 623 515 611 729 843
 $ start_date: Date, format: "2012-01-01" "2013-09-23" ...
 emp_id emp_name salary start_date
 Min. :1 Length:5 Min. :515.2 Min. :2012-01-01
 1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
 Median :3 Mode :character Median :623.3 Median :2014-05-11
 Mean :3 Mean :664.4 Mean :2014-01-14
 3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15
Max. :5 Max. :843.2 Max. :2015-03-27
 emp.data.emp_name emp.data.salary
1 Rick 623.30
2 Dan 515.20
3 Michelle 611.00
4 Ryan 729.00
5 Gary 843.25
 emp_id emp_name salary start_date
1 1 Rick 623.3 2012-01-01
2 2 Dan 515.2 2013-09-23
 emp_name start_date
3 Michelle 2014-11-15
5 Gary 2015-03-27

Loops, Conditional Logic, and Dataframes  •  45

 emp_id emp_name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 843.25 2015-03-27 Finance

WORKING WITH DATA FRAMES IN R (4)

Listing 2.15 shows the content of dataframe5.R that illustrates how to
append a new row to a data frame in R.

LISTING 2.15: dataframe5.R

emp.data <- data.frame(
 emp_id = c (1:5),
 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
 salary = c(623.3,515.2,611.0,729.0,843.25),
 start_date = as.Date(c("2012-01-01","2013-09-23",
"2014-11-15","2014-05-11", "2015-03-27")),
 dept = c("IT","Operations","IT","HR","Finance"),
 stringsAsFactors = FALSE
)

Create the second data frame:
emp.newdata <- data.frame(
 emp_id = c (6:8),
 emp_name = c("Jane","Jack","John"),
 salary = c(578.0,722.5,632.8),
 start_date = as.Date(c("2013-05-21","2013-07-30", "2014-06-17")),
 dept = c("Dev","Sales","BizDev"),
 stringsAsFactors = FALSE
)

Bind the two data frames:
emp.finaldata <- rbind(emp.data,emp.newdata)
print(emp.finaldata)

Listing 2.15 initializes the variable emp as a data frame containing data for
five employees, as shown in previous code samples. The next portion of Listing
2.15 adds three new employees to emp. Launch the code in Listing 2.15 to see
the following output:

 emp_id emp_name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 843.25 2015-03-27 Finance
6 6 Jane 578.00 2013-05-21 Dev
7 7 Jack 722.50 2013-07-30 Sales
8 8 John 632.80 2014-06-17 BizDev

46  •  Natural Language Processing Using R Pocket Primer

WORKING WITH DATA FRAMES IN R (5)

Listing 2.16 shows the content of dataframe6.R that illustrates how to
work with a data frame in R.

LISTING 2.16: dataframe6.R

city <- c("Tampa","Seattle","Hartford","Denver")
state <- c("FL","WA","CT","CO")
zipcode <- c(33602,98104,06161,80294)

Combine above three vectors into one data frame:
addresses <- cbind(city,state,zipcode)

Print a header:
cat("# # # # The First data frame\n")

Print the data frame:
print(addresses)

Create another data frame with similar columns:
new.address <- data.frame(
 city = c("Oakwood","Saperton"),
 state = c("CO","FL"),
 zipcode = c("80230","33949"),
 stringsAsFactors = FALSE
)

Print a header:
cat("# # # The Second data frame\n")

Print the data frame:
print(new.address)

Combine rows form both the data frames:
all.addresses <- rbind(addresses,new.address)

Print a header:
cat("# # # The combined data frame\n")

Print the result:
print(all.addresses)

Listing 2.16 initializes the variables city, state, and zipcode with five
cities, states, and zip codes, respectively. Next, the variable addresses is ini-
tialized with the contents of the preceding three variables.

Another code block initializes the variable new with another set of location-
related values, and then displays its contents. The final section of code
concatenates the contents of addresses and new.address, and uses the
result to initialize the variable all. Launch the code in Listing 2.16 to see the
following output:

The First data frame
 city state zipcode

Loops, Conditional Logic, and Dataframes  •  47

[1,] "Tampa" "FL" "33602"
[2,] "Seattle" "WA" "98104"
[3,] "Hartford" "CT" "6161"
[4,] "Denver" "CO" "80294"
The Second data frame
 city state zipcode
1 Oakwood CO 80230
2 Saperton FL 33949
The combined data frame
 city state zipcode
1 Tampa FL 33602
2 Seattle WA 98104
3 Hartford CT 6161
4 Denver CO 80294
5 Oakwood CO 80230
6 Saperton FL 33949

READING EXCEL FILES IN R

Listing 2.17 shows the content of readXSL.R that illustrates how easily you
can read an Excel spreadsheet into a data frame in R.

LISTING 2.17: readXLS.R

library(readxl)
dfb <- read_excel("employees.xlsx")

print("The first five rows of employees.xlsx:")
head(dfb)

print("A Summary of employees.xlsx:")
summary(dfb)

In Listing 2.17, after loading the readxl library, the variable dfb is initial-
ized from the contents of the employees.xlsx spreadsheet. The first five
rows are displayed, followed by a summary, as shown below:

head(dfb)
[1] "The first five rows of employees.xlsx:"
A tibble: 6 x 10
 id fname lname gender title q1 q2 q3 q4 country
 <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 1000 john smith m marketing 20000 12000 18000 25000 usa
2 2000 jane smith f developer 30000 15000 11000 35000 france
3 3000 jack jones m sales 10000 19000 12000 15000 usa
4 4000 dave stone m support 15000 17000 14000 18000 france
5 5000 sara stein f analyst 25000 22000 18000 28000 italy
6 6000 eddy bower m developer 14000 32000 28000 10000 france
[1] "A Summary of employees.xlsx:"
 id fname lname gender
 Min. :1000 Length:6 Length:6 Length:6
 1st Qu.:2250 Class :character Class :character Class :character
 Median :3500 Mode :character Mode :character Mode :character
 Mean :3500
 3rd Qu.:4750
 Max. :6000

48  •  Natural Language Processing Using R Pocket Primer

 title q1 q2 q3
 Length:6 Min. :10000 Min. :12000 Min. :11000
 Class :character 1st Qu.:14250 1st Qu.:15500 1st Qu.:12500
 Mode :character Median :17500 Median :18000 Median :16000
 Mean :19000 Mean :19500 Mean :16833
 3rd Qu.:23750 3rd Qu.:21250 3rd Qu.:18000
 Max. :30000 Max. :32000 Max. :28000
 q4 country
 Min. :10000 Length:6
 1st Qu.:15750 Class :character
 Median :21500 Mode :character
 Mean :21833
 3rd Qu.:27250
 Max. :35000

READING SQLITE TABLES IN R

Listing 2.18 shows the content of readSQLite.R that illustrates how to
read the contents of a built-in SQLITE database in R.

LISTING 2.18: readSQLite.R

library(RSQLite)
library(DBI)

print("Establishing database connection...")
db = RSQLite::datasetsDb()

display the tables in the database
print("Reading database tables...")
dbListTables(db)

print("Reading contents of mtcars table...")
dbReadTable(db, "mtcars")

filter the data
print("Listing rows in the mtcars table...")
dbGetQuery(db, "SELECT * FROM mtcars")

print("Disconnecting database connection...")
dbDisconnect(db)

Listing 2.18 starts by referencing the RSQLite and DBI libraries for manag-
ing database connections. Next, db is initialized with the list of built-in data-
bases in R. The specific table that we want to examine is called mtcars, which
we access via this code snippet:

dbReadTable(db, "mtcars")

The next portion of Listing 2.18 executes a SELECT statement that retrieves
all the rows from the mtcars table and displays its contents. The final code
snippet disconnects from the database. Launch the code in Listing 2.18 to see
the following output:

Loops, Conditional Logic, and Dataframes  •  49

Head
 [1] "Establishing database connection..."
 [1] "Reading database tables..."
 [1] "BOD" "CO2" "ChickWeight" "DNase"
 [5] "Formaldehyde" "Indometh" "InsectSprays" "LifeCycleSavings"
 [9] "Loblolly" "Orange" "OrchardSprays" "PlantGrowth"
[13] "Puromycin" "Theoph" "ToothGrowth" "USArrests"
[17] "USJudgeRatings" "airquality" "anscombe" "attenu"
[21] "attitude" "cars" "chickwts" "esoph"
[25] "faithful" "freeny" "infert" "iris"
[29] "longley" "morley" "mtcars" "npk"
[33] "pressure" "quakes" "randu" "rock"
[37] "sleep" "stackloss" "swiss" "trees"
[41] "warpbreaks" "women"
 [1] "Reading contents of mtcars table..."
 row_names mpg cyl disp hp drat wt qsec vs am gear carb
1 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
5 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
6 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
7 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
8 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
9 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
10 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
// rows omitted for brevity
22 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
23 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
24 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
25 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
26 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
27 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
28 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
29 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
30 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
31 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
32 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
[1] "Disconnecting database connection..."

READING TEXT FILES IN R

Listing 2.19 shows the content of readtable.R that illustrates how to read
data from a text file in R.

LISTING 2.19: readtable.R

read data and exclude header row
#df <- read.table("a.txt", header = FALSE)
#df

read tab-delimited data and include header row
df <- read.table("a.txt", header = TRUE, sep = "\t", quote="\"")

#display contents of df:
df

Read in csv files
df <- read.table("test.csv", header = FALSE, sep = ",")
df <- read.csv("test.csv", header = FALSE)
df <- read.csv2("test.csv", header= FALSE)
Inspect the result
df

50  •  Natural Language Processing Using R Pocket Primer

Read a delimited file
df <- read.delim("test_delim.txt", sep="$")
df <- read.delim2("test_delim.txt", sep="$")
Inspect the result
df

Listing 2.19 initializes the variable df with the contents of the text file
a.txt without the header row (the first row) and then displays its contents.

The next code snippet also initializes df with the contents of a.txt, but this
time it does include the header row, along with the tab character (“\t”) as the
column separator and the quote character (“) as the character for quoted strings.

The next code block shows how to initialize df with the contents of the CSV
file test.csv, with different values for header and sep. The final code block
shows you how to initialize df with the contents of the text file test_delim.
txt, with different values for sep. Launch the code in Listing 2.19 to see the
following output:

 Name EmpId Address
1 Jane Edwards 12345 123 Main Street Chicago Illinois
2 John Smith 23456 432 Lombard Avenue SF California
 V1
1 Name,EmpId,Address
2 Jane Edwards,12345,123 Main Street Chicago Illinois
3 John Smith,23456,432 Lombard Avenue SF California
 Name EmpId Address
1 Jane Edwards 12345 123 Main Street Chicago Illinois
2 John Smith 23456 432 Lombard Avenue SF California

SAVING AND RESTORING OBJECTS IN R

Listing 2.20 shows the content of save_restore.R that illustrates how to
read data from a text file in R.

LISTING 2.20: save_restore.R

print("Saving v to file saved_vector.Rdata")
v <- c(1,2,NA,4)
save(v, file="saved_vector.Rdata")

dataframe:
mydf <- data.frame(
 attr1 <- c(1,2,3),
 attr2 <- c(4,5,6),
 attr3 <- c(7,8,9)
)
print("Saving df to file saved_dataframe.Rdata")
save(mydf, file="saved_dataframe.Rdata")

print("New contents of v:")
v <- c(-1234)
print(v)

Loops, Conditional Logic, and Dataframes  •  51

print("New contents of mydf:")
mydf <- data.frame(c(-1234))
print(mydf)

print("Restoring v from file saved_vector.Rdata")
load("saved_vector.Rdata")

print("Restoring mydf from file saved_dataframe.Rdata")
load("saved_dataframe.Rdata")

print("Restored contents of v:")
print(v)

print("Restored contents of mydf:")
print(mydf)

Listing 2.20 consists of three parts. The first part defines and saves a vector
v and also defines and saves a data frame mydf. The second part assigns dif-
ferent values to v and mydf to test whether they will be assigned the restored
values.

The third part restores the values of v and mydf, which confirms that the
code is working correctly and as expected. Launch the code in Listing 2.20 to
see the following output:

[1] "Saving v to file saved_vector.Rdata"
[1] "Saving df to file saved_dataframe.Rdata"
[1] "New contents of v:"
[1] -1234
[1] "New contents of mydf:"
 c..1234.
1 -1234
[1] "Restoring v from file saved_vector.Rdata"
[1] "Restoring mydf from file saved_dataframe.Rdata"
[1] "Restored contents of v:"
[1] 1 2 NA 4
[1] "Restored contents of mydf:"
 attr1....c.1..2..3. attr2....c.4..5..6. attr3....c.7..8..9.
1 1 4 7
2 2 5 8
3 3 6 9

DATA VISUALIZATION IN R

R supports an assortment of charts and graphs for displaying data in a
graphical manner. In fact, R makes it surprisingly easy to render data in graphi-
cal form and to save that graphics data as a PNG file.

Some of the built-in chart-related functions can generate the following
types of output:

•	Bar charts
•	Line graphs
•	Histograms

52  •  Natural Language Processing Using R Pocket Primer

•	Pie charts
•	Box plots

The next sections contain several basic code samples for rendering data as
bar charts and pie charts.

WORKING WITH BAR CHARTS IN R (1)

Listing 2.21 shows the content of barchart1.R that illustrates how to dis-
play a bar chart in R.

LISTING 2.21: barchart1.R

Create the data for the chart:
H <- c(7,12,28,3,41)

Give the chart file a name:
png(file = "barchart1.jpg")

Plot the bar chart:
barplot(H)

Save the file:
dev.off()

In Listing 2.21, after initializing the variable H with five integer values,
the png() function specifies the filename barchart.jpg, the function
barplot() generates a bar chart, and then dev() saves the bar chart to the
file barchart.jpg. Launch the code in Listing 2.21 that generates a bar chart.
Figure 2.1 shows the contents of barchart.jpg.

0
10

20
30

40

FIGURE 2.1  A bar chart created using the code in Listing 2.21.

Loops, Conditional Logic, and Dataframes  •  53

WORKING WITH BAR CHARTS IN R (2)

Listing 2.22 shows the contents of barchart2.R that illustrates how to
display a bar chart in R.

LISTING 2.22: barchart2.R

Create the data for the chart:
H <- c(7,12,28,3,41)
M <- c("Mar","Apr","May","Jun","Jul")

Give the chart file a name:
png(file = "barchart_months_revenue.png")

Plot the bar chart:
barplot(H,names.arg=M,xlab="Month",ylab="Revenue",col="blue",
main="Revenue chart",border="red")

Save the file:
dev.off()

Listing 2.22 extends the code in Listing 2.21 by specifying labels for the hori-
zontal and vertical axes. Launch the code in Listing 2.22 to generate a bar chart.

Figure 2.2 shows the contents of barchart_months_revenue.png.

0
10

Mar Apr May
Month

Jun Jul

20

R
ev

en
ue

30
40

Revenue chart

FIGURE 2.2  A bar chart created from the code in Listing 2.22.

WORKING WITH LINE GRAPHS IN R (1)

Listing 2.23 shows the content of linegraph1.R that illustrates how to
display a line graph in R.

54  •  Natural Language Processing Using R Pocket Primer

LISTING 2.23: linegraph1.R

Create the data for the chart:
v <- c(7,12,28,3,41)

Give the chart file a name:
png(file = "line_graph1.jpg")

Plot the line graph:
plot(v,type = "o")

Save the file:
dev.off()

Listing 2.23 is also similar to Listing 2.21, except that a line graph is gener-
ated from the plot() function. Launch the code in Listing 2.23 that generates
a line graph.

Figure 2.3 shows the contents of line_graph1.jpg.

v

10

1 2 3
Index

4 5

20
30

40

FIGURE 2.3  A line graph created from the code in Listing 2.23.

WORKING WITH LINE GRAPHS IN R (2)

Listing 2.24 shows the content of linegraph_labels1.R that illustrates
how to display a line graph in R.

LISTING 2.24: linegraph_labels1.R

Create the data for the graph:
v <- c(7,12,28,3,41)

Give the chart file a name:
png(file = "line_graph_label_colored.jpg")

Loops, Conditional Logic, and Dataframes  •  55

Plot the bar chart:
plot(v, type = "o", col = "red",
 xlab = "Month", ylab = "Rain fall",
 main = "Rain fall chart")

Save the file:
dev.off()

Listing 2.24 is similar to Listing 2.23 and also adds labels for the horizontal
and vertical axes. Launch the code in Listing 2.24 to generate a line graph.

Figure 2.4 displays the contents of line_graph_label_colored.jpg.

1 2 3
Month

Rain fall chart

4 5

10
20R
ai

n
fa

ll
30

40

FIGURE 2.4  A labeled line graph created with the code from Listing 2.24.

WORKING WITH MULTI-LINE GRAPHS IN R

Listing 2.25 shows the content of multilinegraph1.R that illustrates
how to display multi-line graphs in R.

LISTING 2.25: multilinegraph1.R

Create the data for the chart:
v <- c(7,12,28,3,41)
t <- c(14,7,6,19,3)

Give the chart file a name:
png(file = "line_chart_2_lines.jpg")

Plot the bar chart.
plot(v, type = "o", col = "red",
 xlab = "Month", ylab = "Rain fall",
 main = "Rain fall chart")

lines(t, type = "o", col = "blue")

56  •  Natural Language Processing Using R Pocket Primer

Save the file:
dev.off()

Listing 2.25 is similar to Listing 2.24, except that two lines are generated.
Launch the code in Listing 2.25 to generate a line chart. Figure 2.5 shows the
contents of line_chart2_lines.jpg.

1 2 3
Month

Rain fall chart

4 5

10
20R
ai

n
fa

ll
30

40

FIGURE 2.5  A labeled line chart created with the code from Listing 2.25.

WORKING WITH HISTOGRAMS IN R

Listing 2.26 shows the content of histogram1.R that illustrates how to
display a histogram in R.

LISTING 2.26: histogram1.R

Create data for the graph:
v <- c(9,13,21,8,36,22,12,41,31,33,19)

Give the chart file a name:
png(file = "histogram1.png")

Create the histogram:
hist(v,xlab = "Weight",col = "yellow",border = "blue")

Save the file:
dev.off()

Listing 2.26 is similar to Listing 2.21, and generates a histogram instead of a
bar chart. Launch the code in Listing 2.26 to generate a histogram. Figure 2.6
shows the contents of histogram1.png.

Loops, Conditional Logic, and Dataframes  •  57

0.
0

10 20 30
Weight

40

0.
5

1.
0

Fr
eq

ue
nc

y

1.
5

2.
0

Histogram of v

FIGURE 2.6  A histogram created with the code from Listing 2.26.

WORKING WITH SCATTER PLOTS IN R (1)

Listing 2.27 shows the content of scatterplot1.R that illustrates how to
display a scatter plot in R.

LISTING 2.27: scatterplot1.R

input <- mtcars[,c('wt','mpg')]
print(head(input))

Get the input values:
input <- mtcars[,c('wt','mpg')]

Give the chart file a name:
png(file = "scatterplot.png")

Plot the chart for cars with weight between
2.5 to 5 and mileage between 15 and 30:
plot(x = input$wt,y = input$mpg,
 xlab = "Weight",
 ylab = "Milage",
 xlim = c(2.5,5),
 ylim = c(15,30),
 main = "Weight vs Mileage"
)

Save the file:
dev.off()

58  •  Natural Language Processing Using R Pocket Primer

Listing 2.27 is similar to Listing 2.22, and the code generates a scatter plot
instead of a bar chart. Launch the code in Listing 2.27 to generate a scatter
plot. Figure 2.7 shows the contents of scatterplot.png.

15

2.5 3.0 3.5
Weight

4.0 4.5 5.0

20
25

30

Weight vs Mileage
M

ila
ge

FIGURE 2.7  A scatter plot created with the code from Listing 2.27.

WORKING WITH SCATTER PLOTS IN R (2)

Listing 2.28 shows the content of scatterplotMatrix1.R that illustrates
how to display a scatter plot in R.

LISTING 2.28: scatterplotMatrix1.R

input <- mtcars[,c('wt','mpg')]
print(head(input))

Get the input values:
input <- mtcars[,c('wt','mpg')]

Give the chart file a name:
png(file = "scatterplot_matrices.png")

Plot the matrices between 4 variables giving 12 plots:
One variable with 3 others and total 4 variables:

pairs(~wt+mpg+disp+cyl,data = mtcars,
 main = "Scatterplot Matrix")

Save the file:
dev.off()

Loops, Conditional Logic, and Dataframes  •  59

Listing 2.28 is similar to Listing 2.21, and generates a scatter plot instead
of a bar chart. Launch the code in Listing 2.28 to generate a scatter plot.
Figure 2.8 shows the contents of scatterplot_matrices.png.

10

100 200 300 400
10

0
20

0
30

0
40

0

15
20

25
30

4

2 3 4 5

5
6

7
8

4

2
3

4
5

5 6 7 810 15 20 25 30

wt

mpg

disp

cyl

Scatterplot matrix

FIGURE 2.8  A scatter plot created with the code from Listing 2.28.

WORKING WITH BOX PLOTS IN R

Listing 2.29 shows the content of boxplot1.R that illustrates how to dis-
play a box plot in R.

LISTING 2.29: boxplot1.R

input <- mtcars[,c('mpg','cyl')]
print(head(input))

Give the chart file a name:
png(file = "boxplot.png")

Plot the chart:
boxplot(mpg ~ cyl, data = mtcars, xlab = "Number of Cylinders",
 ylab = "Miles Per Gallon", main = "Mileage Data")

Save the file:
dev.off()

60  •  Natural Language Processing Using R Pocket Primer

Listing 2.29 is similar to Listing 2.22, and generates a box plot instead of a
bar chart. Launch the code in Listing 2.29 to generate a box plot. Figure 2.9
shows the contents of boxplot.png.

10

4 6

Number of cylinders

Mileage data

8

15
20

M
ile

s
pe

r g
al

lo
n

25
30

FIGURE 2.9  A box plot created using the code from Listing 2.29.

WORKING WITH PIE CHARTS IN R (1)

Listing 2.30 shows the content of piechart1.R that illustrates how to dis-
play a pie chart in R.

LISTING 2.30: piechart1.R

Create data for the graph:
x <- c(21, 62, 10, 53)
labels <- c("London", "New York", "Singapore", "Mumbai")

Give the chart file a name:
png(file = "piechart1.jpg")

Plot the chart:
pie(x,labels)

Save the file:
dev.off()

Loops, Conditional Logic, and Dataframes  •  61

Listing 2.30 is similar to Listing 2.22, and generates a pie chart instead of a
bar chart. Launch the code in Listing 2.30 to generate a pie chart. Figure 2.10
shows the contents of piechart1.jpg.

New York

Singapore

Mumbai

London

FIGURE 2.10  A pie chart created from the code in Listing 2.30.

WORKING WITH PIE CHARTS IN R (2)

Listing 2.31 shows the content of piechart3D1.R that illustrates how to
display a 3D pie chart in R.

LISTING 2.31: piechart3D1.R

Get the library:
library(plotrix)

Create data for the graph:
x <- c(21, 62, 10,53)
lbl <- c("London","San Francisco","Rio de Janeiro","Rome")

Give the chart file a name:
png(file = "3d_pie_chart.jpg")

Plot the chart:
pie3D(x,labels = lbl,explode = 0.1, main = "Pie Chart of Countries ")

Save the file:
dev.off()

Listing 2.31 is similar to Listing 2.22, and generates a pie chart instead of a
bar chart. Launch the code in Listing 2.31 to generate a pie chart. Figure 2.11
shows the contents of 3d_piechart.jpg.

62  •  Natural Language Processing Using R Pocket Primer

San Francisco

Rio de Janeiro

Rome

London

Pie chart of countries

FIGURE 2.11  A pie chart created from the code in Listing 2.31.

SUMMARY

This chapter introduced you to loops in R, along with nested loops, in order
to display data in a column format. Next, you learned about conditional logic,
followed by code samples that illustrates how to write “if” statements, “if-then”
statements, and “if-then-else” statements in R.

In addition, you learned about data frames in R, with an assortment of code
samples involving data frames. You learned how to read the contents of text
files into R data frames. Finally, you learned how to create visualizations in R
involving bar charts, line graphs, scatter plots, and pie charts.

CHAPTER 3
WORKING WITH FUNCTIONS
IN R

This chapter discusses some useful built-in R functions and how to define
your own custom R functions. Later in this chapter, you will learn how
to define recursive functions in R and use them to solve various tasks.

The first section discusses some built-in functions in R, such as statistical
functions, trigonometric functions, and string-related functions. The second
section contains examples of working with CSV files, XML files, and JSON
files, and how to convert them to data frames in R. The third section explains
how to define custom R functions.

The fourth section introduces you to recursion, which is a very powerful and
elegant way to solve certain tasks. For example, you will learn how to define
recursive functions for calculating factorial values, Fibonacci numbers, GCD
(Greatest Common Divisor), and LCM (Lowest Common Multiple). Note that
this section also illustrates how to calculate factorial values and Fibonacci num-
bers using an iterative algorithm.

For your convenience, the file library_list.R in Chapter 6 enables you
to install more than 30 R packages that are used in this book. Feel free to add
other R packages to this file.

NAN AND FUNCTIONS IN R

R provides a vast set of built-in functions, some of which you have already
seen in previous chapters. For example, toupper() and tolower() are
built-in functions that convert a string to uppercase and lowercase letters,
respectively.

64  •  Natural Language Processing Using R Pocket Primer

However, sometimes the existing functions in R do not provide the func-
tionality that you need to perform specific tasks. R makes it very easy to define
your own custom functions.

Listing 3.1 shows the content of BasicFunctions.R that illustrates how
to handle NaN values in various R functions.

LISTING 3.1 BasicFunctions.R

x <- c(1,2,NA,3)
mean(x)
mean(x, na.rm=TRUE)

#check for missing values
is.na(x) # returns TRUE of x is missing
y <- c(1,2,3,NA)
is.na(y) # returns a vector (F F F T)

table(is.na(x))

sum(is.na(x))

sum(!is.na(x))
v <- c(NA, NA, 0.5, 1, 12, 15, 3)
summary(v)
v <- c(-1, "-nodata-", 0.5, 1, 12, 15, 3)
table(v)

summary(na.omit(x))

Listing 3.1 initializes the variable x as a list with four values (including
NA) and then invokes the mean() method to calculate mean of those values.
The second invocation of the mean() method specifies na.rm=TRUE, which
is required for handling NA values. Launch the code in Listing 3.1 to see the
following output:

[1] NA
[1] 2
[1] FALSE FALSE TRUE FALSE
[1] FALSE FALSE FALSE TRUE

FALSE TRUE
 3 1
[1] 1
[1] 3
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 0.5 1.0 3.0 6.3 12.0 15.0 2
v
 -1 -nodata- 0.5 1 12 15 3
 1 1 1 1 1 1 1
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.0 1.5 2.0 2.0 2.5 3.0

Working with Functions in R  •  65

MATH-RELATED FUNCTIONS IN R

R supports a variety of math-related functions and trigonometric functions,
as listed below:

•	sqrt()
•	sum())
•	cos()
•	sin()
•	tan()
•	log(x)
•	log10()
•	exp()
•	sqrt()
•	round(x)
•	signif(x)
•	trunc(x) - rounding functions
•	sqrt()
•	sum()
•	%% modulus
•	%/% integer divisilln
•	%*% matrix multiplication
•	%o% outer product (a%o% equivalent to outer(a,b,"*"))

The built-in trigonometric functions in R include sin(x), cos(x), sin(x),
tan(x), acos(x), asin(x), atan(x), and atan2(y,x). With the exception
of the function atan2(y,x), the argument for all trigonometric functions in R
is specified in radians (not degrees).

Listing 3.2 shows the content of TrigFunctions.R that illustrates how to
use some math functions and trigonometric functions in R.

LISTING 3.2: TrigFunctions.R

sine(π/2):
print("sin(pi/2):")
sin(pi/2)

cosine(π):
print("cos(pi):")
cos(pi)

tangent(π/3):
print("tan(pi/3):")
tan(pi/3)

cotangent(π/3):
print("cotangent(pi/3):")
1/tan(pi/3)

66  •  Natural Language Processing Using R Pocket Primer

#angle x where cos(x) = -1:
print("acos(-1):")
acos(-1)

#angle x where tan(x) = 0.5:
print("atan(0.5):")
atan(0.5)

#atan2() take the y and x values as arguments:
print("atan2(1,2):")
atan2(1,2)

Listing 3.2 invokes the trigonometric functions sin(), cos(), and tan()
with the value π/3, followed by several other trigonometric functions. Launch
the code in Listing 3.2 to see the following output:

[1] "sin(pi/2):"
[1] 1
[1] "cos(pi):"
[1] -1
[1] "tan(pi/3):"
[1] 1.732051
[1] "cotangent(pi/3):"
[1] 0.5773503
[1] "acos(-1):"
[1] 3.141593
[1] "atan(0.5):"
[1] 0.4636476
[1] "atan2(1,2):"
[1] 0.4636476
[1] 2

STRING-RELATED FUNCTIONS IN R

The following functions are useful for preprocessing tasks in NLP, and they
involve the tm_map() function:

•	removeNumbers()
•	removePunctuation()
•	removeWords
•	stemDocument()
•	stripWhiteSpace()
•	tolower()

The removeNumbers() function removes digits in a text string. For exam-
ple, “This Is Short123!” is replaced with “This Is Short!”.

The removePunctuation() function removes punctuation in a text string.
For example, “This Is Short123!” is replaced with “This Is Short123.” Keep in
mind that this function also removes characters such as emojis.

The removeWords() function removes the stop words. For example, “This
Is Short123!” is replaced with “Short123!”.

Working with Functions in R  •  67

The stemCompletion() function takes as arguments the stemmed words
and a dictionary of complete words, whereas the stemDocument() function
replaces words with their stem.

The stripWhiteSpace() function removes whitespaces and tab charac-
ters in a text string. For example, “This Is Short123!” is replaced with “this
is short123!”. This function removes leading, trailing, and embedded white
spaces and tab characters.

The tolower() function replaces alphabetic characters with their low-
ercase counterpart. For example, “This Is Short123!” is replaced with “this
is short123!”. As you can see, digits and punctuation are unaffected by the
tolower() function. Note that converting a string to lowercase can lose infor-
mation: “rose” might have originally been “Rose” (a proper name).

THE GSUB() FUNCTION IN R

R supports the gsub() function that enables you to perform string-based
substitutions, along with support for regular expressions.

Listing 3.3 shows the content of gsub_examples.R that illustrates how to
use gsub() and basic regular expressions in R.

LISTING 3.3: gsub_examples.R

library(tm)

str <- c("123", "this","is","a","sentence!?")

print(paste0("str:",str))
print(paste0(str))
print(paste0(str, collapse=" "))

print(paste0("=> Replace non-alpha with X and spaces with Z:",collapse=" "))
str2 = gsub(pattern="\\W", replace="X",str)
print(paste0(str2, collapse="Z"))

print(paste0("=> Replace digits with blanks and Y for blanks:",collapse=" "))
str3 = gsub(pattern="\\d", replace=" ",str2)
print(paste0(str3, collapse="Y"))

print(paste0("=> Replace initial 't' with periods Y and Z for
blanks:",collapse=" "))
str4 = gsub(pattern="\\bt", replace=".....",str2)
print(paste0(str4, collapse="Z"))

print(paste0("=> Replace one-character words with SINGLE:",collapse=" "))
str5 = gsub(pattern="\\b[A-z]\\b", replace=" SINGLE ",str2)
print(paste0(str5, collapse="Z"))

print(paste0("=> Remove whitespaces:",collapse=" "))
str6 = stripWhitespace(str2)
print(paste0(str6, collapse=""))

Listing 3.3 initializes the variable str as a text string and displays
its contents. Next, str2 is initialized as the result of replacing non-
alphabetic characters with the letter X. Note that uppercase patterns are

68  •  Natural Language Processing Using R Pocket Primer

the “opposite” of lowercase patterns. Hence, the pattern \\W machines any
non-alphabetic character because the pattern \\w matches any alphabetic
character.

The next portion of Listing 3.3 initializes str3 as the result of replacing
digits by blank spaces in str2 via the pattern \\d. The next portion of Listing
3.3 initializes str4 as the result of replacing tab characters (\t) with five adja-
cent periods (.). The final portion of Listing 3.3 initializes str6 as the result of
removing white spaces from the string str2. Launch the code in Listing 3.3 to
see the following output:

[1] "str:123" "str:this" "str:is" "str:a"
[5] "str:sentence!?"
[1] "123" "this" "is" "a" "sentence!?"
[1] "123 this is a sentence!?"
[1] "=> Replace non-alpha with X and spaces with Z:"
[1] "123ZthisZisZaZsentenceXX"
[1] "=> Replace digits with blanks and Y for blanks:"
[1] " YthisYisYaYsentenceXX"
[1] "=> Replace initial 't' with periods Y and Z for blanks:"
[1] "123Z.....hisZisZaZsentenceXX"
[1] "=> Replace one-character words with SINGLE:"
[1] "123ZthisZisZ SINGLE ZsentenceXX"
[1] "=> Remove whitespaces:"
[1] "123thisisasentenceXX"

MISCELLANEOUS BUILT-IN FUNCTIONS

The following miscellaneous functions are described briefly, and more
information is available in the online documentation:

•	grep(): regular expressions
•	identical(): test if two objects are identical
•	length(): returns the number of elements in vector
•	ls(): list objects in current environment
•	order(x): list the sorted element numbers of x
•	range(x): minimum and maximum
•	rep(x,n): repeat the number x, n times
•	rev(x): elements of x in reverse order
•	seq(x,y,n): sequence (x to y, spaced by n)

In addition, R supports the following file-related functions:

•	getwd(): return working directory
•	setwd(): set working directory
•	choose.files(): get path to a file
•	sort(): sorts the #s in a list

You can find additional information by reading the online documentation.

Working with Functions in R  •  69

SET FUNCTIONS IN R

R provides several built-in operators for set-related operations, as listed
below:

•	union()
•	intersect()
•	setdiff()
•	setequal()

The set functions union(), intersect(), setdiff(), and setequal()
discard duplicates in the arguments. Moreover, these set functions apply
as.vector() to their arguments, which coerces factors to character vectors.

Listing 3.4 shows the content of SetFunctions.R that illustrates how to
use some arithmetic functions and set-related functions in R.

LISTING 3.4: SetFunctions.R

print("one:")
(one <- c(sort(sample(1:20, 8)), NA))

print("two:")
(two <- c(sort(sample(5:30, 5)), NA))

union(one, two)
intersect(one, two)
setdiff(one, two)
setdiff(two, one)
setequal(one, two)

is.element(x, y) => identical to x %in% y.
the elements of one that are in two (9)
is.element(one, two)

length 6
the elements of two that are in one (6)
is.element(two, one)

Listing 3.4 starts by displaying a sample set one that consists of integers
between 1 and 20, followed by the string NA. Next, another sample set two that
consists of 5 integers between 5 and 30 is displayed, as well as the string NA.

The next portion of Listing 3.4 involves set-related functions union() and
intersect() that display the union and intersection, respectively, of the sets
one and two. Three more set functions are invoked to display the elements in
set one that are not in set two, then the elements in set two that are not in set
one, and then the setequal() function that displays TRUE if one and two are
equal (otherwise FALSE is displayed).

The final portion of Listing 3.4 displays TRUE for each element of set one
that is in set two (otherwise FALSE is displayed), followed by similar output

70  •  Natural Language Processing Using R Pocket Primer

when the role of set one and set two is reversed. Launch the code in Listing 3.4
to see the following output:

[1] "one:"
[1] 3 4 7 8 12 13 14 16 NA
[1] "two:"
[1] 9 11 13 20 28 NA
[1] 3 4 7 8 12 13 14 16 NA 9 11 20 28
[1] 13 NA
[1] 3 4 7 8 12 14 16
[1] 9 11 20 28
[1] FALSE
[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
[1] FALSE TRUE FALSE FALSE FALSE TRUE

R supports the built-function eigen() for determining eigenvalues and
eigenvectors in linear algebra. In addition, R supports the built-in function
deriv() for calculating symbolic and algorithmic derivatives.

THE ÒAPPLYÓ FAMILY OF BUILT-IN FUNCTIONS

The following functions are in the “apply family” of R functions, and they
are similar to the map() function that is available in many other languages:

•	apply: apply a function (e.g., mean)
•	lapply: read multiple files
•	sapply: apply for lists or vectors

Listing 3.5 shows the content of apply_functions.R that illustrates how
replace a missing value in a column with the mean of the other values in that
same column.

LISTING 3.5: apply_functions.R

Create example data
my_data <- data.frame(x1 = 1:5,
 x2 = 2:6,
 x3 = 3,
 x4 = -1)

print(paste0("Initial array values:",collapse=" "))
my_data

invoke the apply() function:
print(paste0("Row-wise sum of values:",collapse=" "))
apply(my_data, 1, sum)

print(paste0("Column-wise sum of values:",collapse=" "))
apply(my_data, 2, sum)

Working with Functions in R  •  71

create example list:
my_list <- list(1:5,
 letters[1:3],
 123)

print(paste0("Heterogenous list of values:",collapse=" "))
my_list

print(paste0("Invoke the lapply() function:",collapse=" "))
lapply(my_list, length)

print(paste0("Invoke the sapply() function:",collapse=" "))
sapply(my_list, length)
5 3 1

print(paste0("Invoke the vapply() function:",collapse=" "))
vapply(my_list, length, integer(1))

Listing 3.5 starts by initializing my_data and then displaying its contents.
The next pair of code blocks display the row-wise sum and the column-wise
sum, respectively, of the values in my_data.

The next portion of Listing 3.5 initializes a matrix with heterogenous values,
and then invokes the functions apply(), sapply(), and vapply(). These
three functions calculate row-based and column-based sums (see the comment
lines). Launch the code in Listing 3.5 to see the following output:

[1] "Initial array values:"
 x1 x2 x3 x4
1 1 2 3 -1
2 2 3 3 -1
3 3 4 3 -1
4 4 5 3 -1
5 5 6 3 -1
[1] "Row-wise sum of values:"
[1] 5 7 9 11 13
[1] "Column-wise sum of values:"
x1 x2 x3 x4
15 20 15 -5
[1] "Heterogenous list of values:"
[[1]]
[1] 1 2 3 4 5

[[2]]
[1] "a" "b" "c"

[[3]]
[1] 123

[1] "Invoke the lapply() function:"
[[1]]
[1] 5

72  •  Natural Language Processing Using R Pocket Primer

[[2]]
[1] 3

[[3]]
[1] 1

[1] "Invoke the sapply() function:"
[1] 5 3 1
[1] "Invoke the vapply() function:"
[1] 5 3 1

The next section discusses the dplyr package, which merits an entire
chapter for a detailed description, but we’ll only cover some of its more salient
features.

THE ÒMUST LEARNÓ DPLYR PACKAGE IN R

R supports the dplyr package, which is an extremely powerful R pack-
age for managing data frames in R. The dplyr package enables you to select
columns and filter rows, as well as find distinct values and overlapping val-
ues. Moreover, this package enables you to perform group-by aggregation on
datasets.

Some frequently used dplyr APIs are listed below:

•	arrange()
•	filter()
•	mutate()
•	select()
•	summarize()

For more information, see the following sites:

•	https://online.datasciencedojo.com/blogs/data-manipulation-and-
exploration-with-dplyr

•	https://genomicsclass.github.io/book/pages/dplyr_tutorial.html
•	https://bensstats.wordpress.com/2021/09/14/pythonmusings-6-dplyr-

in-python-first-impressions-of-the-siuba-%E5%B0%8F%E5%B7%B4-
module/

The preceding functions can also be used with the group_by() function
that displays data in a per-group basis.

The arrange() API changes the order of rows (do not confuse this with
the arange() API that is available in other languages).

The filter() API enables you to select a subset of rows based on a Boolean
expression. For example, if a column contains integer values, you can select
the rows for which the integer value is even (or even and larger than 10, or
even and between 20 and 40, and so forth). There is no practical limit to the
Boolean expression, and you can use any combination of logical operators,

https://online.datasciencedojo.com/blogs/data-manipulation-and-exploration-with-dplyr
https://genomicsclass.github.io/book/pages/dplyr_tutorial.html
https://bensstats.wordpress.com/2021/09/14/pythonmusings-6-dplyr-in-python-first-impressions-of-the-siuba-%E5%B0%8F%E5%B7%B4-module/

Working with Functions in R  •  73

such as OR, AND, and NOT. The mutate() API creates new columns (this API
performs a column insert operation). The select() API selects columns from
a data frame. The summarise() API provides a summary of the values in
columns. The group_by() API is similar to the GROUP keyword in SQL
statements.

Before we continue, make sure that you have installed the dplyr package,
which can be performed by either of the following code snippets:

install tidyverse:
install.packages("tidyverse",repos = "https://cloud.r-project.org")

install only dplyr:
install.packages("dplyr",repos = "https://cloud.r-project.org")

Listing 3.7 shows the content of dplyr-mtcars.R that illustrates how to
use the some of the functionality in the dplyr package.

LISTING 3.7: dplyr-mtcars.R

library(datasets)
library(dplyr)

select columns by name:
print("=> mpg,cyl,dps,qsec:")
selecn = select(mtcars,mpg,cyl,disp,qsec)
head(selecn)

data filter
#filter(mtcars, mpg > 20)
print("Filter by mpg > 20 and cyl > 5:")
f = filter(mtcars, mpg > 20 & cyl > 5)
head(f)

add a new column
#dm=mutate(mtcars, TempInC = (Temp - 32) * 5 / 9)
#head(dm)

summarize and group by data
#print("=> summarize by mpg:")
#summarise(mtcars, mpg)

group: average wind value per month
Month is the basis of grouping
#print("=> group by cl and mean by mpg:")
#summarise(group_by(mtcars, cyl), mean(mpg, na.rm = TRUE))

Listing 3.7 starts with references to the datasets and dplyr R libraries.
Next, the R select() function initializes the variable selectn with values from
the built-in mtcars dataset that pertain to the attributes mpg, cyl, disp, and
qsec. After the first five rows of selectn are displayed, the variable f is initial-
ized with the rows of mtcars whose mpg is greater than 20 and whose cyl value
is greater than 5. Launch the code in Listing 3.7 to see the following output:

https://cloud.r-project.org
https://cloud.r-project.org

74  •  Natural Language Processing Using R Pocket Primer

[1] "=> mpg,cyl,dps,qsec:"
 mpg cyl disp qsec
Mazda RX4 21.0 6 160 16.46
Mazda RX4 Wag 21.0 6 160 17.02
Datsun 710 22.8 4 108 18.61
Hornet 4 Drive 21.4 6 258 19.44
Hornet Sportabout 18.7 8 360 17.02
Valiant 18.1 6 225 20.22
[1] "Filter by mpg > 20 and cyl > 5:"
 mpg cyl disp hp drat wt qsec vs am gear carb
1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
3 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

OTHER USEFUL R PACKAGES

R supports the following useful packages that provide useful APIs, some of
which you will see discussed in greater detail later in this chapter:

•	caret
•	data.table
•	forcats
•	ggplot2
•	lubridate
•	reticulate
•	shiny
•	stringr
•	tidyr

The caret package (an acronym for Classification and Regression
Training) facilitates the model training step, with support for regression tasks
as well as classification tasks.

The data.table package provides APIs for extracting subsets of rows
and columns of data and also perform data aggregation operations with the
by_group() API. This package works well for large datasets.

The forcats package is designed to work with categorial variables, which
are factors in R. The APIs in this package enable you to change the order in
which factors are displayed by various criteria.

The ggplot2 package is for creating graphics effects, and another graph-
ics-related package is plotly.

The lubridate package contains a set of date-related APIs that enable
you to work with various date formats as well as time zones, daylight savings
time, leap years, and so forth.

The reticulate package enables you to use Python code and R code
together, in R programs and also in RStudio.

The shiny package is for creating interactive Web applications.

Working with Functions in R  •  75

The stringr package contains a comprehensive set of APIs for string-
related functionality. In addition, stringy is built on top of the stringi
package: the latter contains string-related functions that are not included in
strings.

The tidyr package is well-suited for data in which each cell contains a
single value and columns are variable.

THE PIPE OPERATOR %>%

The pipe operator %>% enables you to pipe output from one function to
the input of another function (that’s why it’s called a pipe). In addition, dplyr
imports this operator from the magrittr package. Instead of nesting func-
tions (reading from the inside to the outside), piping reads the functions from
left to right.

Listing 3.8 shows the content of pipe1.R that illustrates how to sort an
array of random numbers in R.

LISTING 3.8: pipe1.R

library(magrittr)

x <- rnorm(5)
print(paste0("content of x:"))
print(paste0(x))

Update value of x and assign it to x
x %>% abs %>% sort
print(paste0("content of x:"))
print(paste0(x))

Listing 3.8 starts with references to the magrittr R library, followed by
initializing the variable x with 5 random values, and then displaying those
values via the rnorm() function. The next portion of Listing 3.8 “pipes”
the values in x to the abs() function that returns the absolute value of the
numbers in its input, and the result is then passed to the sort() function
that sorts its input values. Launch the code in Listing 3.8 to see the following
output:

[1] "content of x:"
[1] "1.23041905548521" "0.426501888248532" "1.08469130060061"
[4] "-0.995749885650863" "-1.02953061190553"
[1] "content of x:"
[1] "0.426501888248532" "0.995749885650863" "1.02953061190553"
[4] "1.08469130060061" "1.23041905548521"

Listing 3.9 shows the content of pipe2.R that illustrates how to invoke
additional R functions in a pipeline.

76  •  Natural Language Processing Using R Pocket Primer

LISTING 3.9: pipe2.R

library(magrittr)

x <- c(1,2,3,4,5)
print(paste0("content of x:"))
print(paste0(x))

Perform operations on x:
x %>% log() %>%
 diff() %>%
 exp() %>%
 round(1)

Listing 3.9 initialized x with the integers between 1 and 5 inclusive and dis-
plays those values. The main portion of the code in Listing 3.9 passes the values
of x to the log() function, then the diff() function, then the exp() function,
and lastly rounds the final output values to one decimal place. Launch the code
in Listing 3.9 to see the following output:

[1] "content of x:"
[1] "1" "2" "3" "4" "5"
[1] 2.0 1.5 1.3 1.2

Listing 3.10 shows the content of pipe3.R that illustrates how to perform
multiple operations on a vector of numbers in R.

LISTING 3.10: pipe3.R

library(magrittr)

x <- c(-50,20,30,12,-88,100,-500)
print("x:")
print(x)

x %>% abs %>% sort
print("sorted:")
print(x)

#The tee operator %T>%;
rnorm(200) %>%
matrix(ncol = 2) %T>%
plot %>%
colSums

Listing 3.10 initializes the variable x with a list of integer values and then
passes x to the abs() and sort() functions, which calculate the absolute
value of each input value, followed by sorting the resulting list of non-negative
numbers.

The next portion of Listing 3.10 invokes the rnorm() function that gener-
ates 100 random numbers from a normal distribution. This set of numbers
is passed to the matrix() function that generates a 100 × 2 matrix before

Working with Functions in R  •  77

calculating the column sum of both columns. Now launch the code in Listing
3.10 to see the following output:

[1] -50 20 30 12 -88 100 -500
[1] "x:"
[1] 12 20 30 50 88 100 500
[1] 3.912239 -4.359854

The next section shows you how to work with CSV files in R, followed by
sections that illustrate how to work with XML documents and JSON files in R.

WORKING WITH CSV FILES IN R

R provides built-in functions for reading the contents of a CSV file.
Listing 3.11 shows the content of the CSV file input.csv that is referenced
in Listing 3.12.

LISTING 3.11: input.csv

id,name,salary,start_date,dept
1,Rick,623.3,2012-01-01,IT
2,Dan,515.2,2013-09-23,Operations
3,Michelle,611,2014-11-15,IT
4,Ryan,729,2014-05-11,HR
 ,Gary,843.25,2015-03-27,Finance
6,Nina,578,2013-05-21,IT
7,Simon,632.8,2013-07-30,Operations
8,Guru,722.5,2014-06-17,Finance

In Listing 3.11, there are 8 rows of comma-delimited data records, the fifth
of which is missing an id value.

Listing 3.12 shows the content of readinputcsv1.R that illustrates how to
read the contents of a CSV file in R.

LISTING 3.12: readinputcsv1.R

Some European countries use a ";" as the delimiter in .csv files
Use read.csv2() as above instead of read.csv

data <- read.csv("input.csv")

print(is.data.frame(data))
print(ncol(data))
print(nrow(data))

print(paste0("First Six Rows of CSV file:",paste=" "))
head(data)

print(paste0("Entire CSV file:",paste=" "))
print(data)

Listing 3.12 invokes the built-in R function read.csv()to initialize the
variable data with the contents of the CSV file input.csv. The next section

78  •  Natural Language Processing Using R Pocket Primer

in Listing 3.12 displays TRUE if the data is a data frame (and FALSE other-
wise), followed by the number of columns and the number of rows in the data.
Launch the code in Listing 3.12 to see the following output:

[1] TRUE
[1] 5
[1] 8
[1] "First Six Rows of CSV file: "
 id name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
[1] "Entire CSV file: "
 id name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations
8 8 Guru 722.50 2014-06-17 Finance

In addition to support for delimited text files, R supports another common
data format called XML, which is discussed in the next section.

WORKING WITH XML IN R

R provides built-in functions for reading the contents of an XML docu-
ment. Listing 3.13 shows the content of readxml.R that illustrates how to read
the contents of an XML file in R.

LISTING 3.13: readxml.R

#install.packages("XML",repos = "https://cloud.r-project.org")
library(XML)

Give the input file name to the function:
result <- xmlParse(file = "input.xml")

Print the result:
print("Contents of XML file:")
print(result)

Listing 3.13 loads the XML library and the methods library, and then ini-
tializes the variable result with the result of parsing the XML file input.
xml. The last code snippet in Listing 3.4 shows the contents of the XML file.
Launch the code in Listing 3.13 to see the following output:

https://cloud.r-project.org

Working with Functions in R  •  79

<records>
 <employee>
 <id>1</id>
 <name>rick</name>
 <salary>623.3</salary>
 <startdate>1/1/2012</startdate>
 <dept>it</dept>
 </employee>
// details omitted for brevity
 <employee>
 <id>8</id>
 <name>guru</name>
 <salary>722.5</salary>
 <startdate>6/17/2014</startdate>
 <dept>finance</dept>
 </employee>
</records>

Listing 3.14 shows the contents of the XML document input.xml that is
referenced in Listing 3.13.

LISTING 3.14: input.xml

<records>
 <employee>
 <id>1</id>
 <name>rick</name>
 <salary>623.3</salary>
 <startdate>1/1/2012</startdate>
 <dept>it</dept>
 </employee>

 <employee>
 <id>2</id>
 <name>dan</name>
 <salary>515.2</salary>
 <startdate>9/23/2013</startdate>
 <dept>operations</dept>
 </employee>

 <employee>
 <id>3</id>
 <name>michelle</name>
 <salary>611</salary>
 <startdate>11/15/2014</startdate>
 <dept>it</dept>
 </employee>

 <employee>
 <id>4</id>
 <name>ryan</name>
 <salary>729</salary>
 <startdate>5/11/2014</startdate>
 <dept>hr</dept>
 </employee>

80  •  Natural Language Processing Using R Pocket Primer

 <employee>
 <id>5</id>
 <name>gary</name>
 <salary>843.25</salary>
 <startdate>3/27/2015</startdate>
 <dept>finance</dept>
 </employee>

 <employee>
 <id>6</id>
 <name>nina</name>
 <salary>578</salary>
 <startdate>5/21/2013</startdate>
 <dept>it</dept>
 </employee>

 <employee>
 <id>7</id>
 <name>simon</name>
 <salary>632.8</salary>
 <startdate>7/30/2013</startdate>
 <dept>operations</dept>
 </employee>

 <employee>
 <id>8</id>
 <name>guru</name>
 <salary>722.5</salary>
 <startdate>6/17/2014</startdate>
 <dept>finance</dept>
 </employee>
</records>

READING AN XML DOCUMENT INTO AN R DATAFRAME

The previous section showed you how to read an XML document in R and
this section shows you how to populate an R data frame with an XML docu-
ment. Listing 3.15 shows the content of readxmltodataframe.R that illus-
trates how to read the contents of an XML file into an R data frame.

LISTING 3.15: readxmltodataframe.R

library(XML)

Convert the input xml file to a data frame:
xmldataframe <- xmlToDataFrame("input.xml")

print("Contents of XML dataframe:")
print(xmldataframe)

Listing 3.15 loads the XML library and then initializes the variable
xmldataframe with the result of parsing the XML file input.xml. The
last code snippet in Listing 3.15 shows the contents of the data frame

Working with Functions in R  •  81

xmldataframe, which contains the contents of the XML file input.xml.
Launch the code in Listing 3.15 to see the following output:

[1] "Contents of XML dataframe:"
 id name salary startdate dept
1 1 rick 623.3 1/1/2012 it
2 2 dan 515.2 9/23/2013 operations
3 3 michelle 611 11/15/2014 it
4 4 ryan 729 5/11/2014 hr
5 5 gary 843.25 3/27/2015 finance
6 6 nina 578 5/21/2013 it
7 7 simon 632.8 7/30/2013 operations
8 8 guru 722.5 6/17/2014 finance

WORKING WITH JSON IN R

Listing 3.16 shows the content of readjson.R that illustrates how to read
the contents of a JSON file in R.

LISTING 3.16: readjson.R

Load the package required to read JSON files:
library("rjson")

Give the input file name to the function:
result <- fromJSON(file = "input.json")

Print the result:
print(result)

Listing 3.16 loads the rjson library and then initializes the variable result
with the result of parsing the JSON file input.json. The last code snippet in
Listing 3.16 shows the content of result, which contains the contents of the
JSON file input.json. Launch the code in Listing 3.16 to see the following
output:

[1] "Contents of JSON file:"
$ID
[1] "1" "2" "3" "4" "5" "6" "7" "8"

$Name
[1] "Rick" "Dan" "Michelle" "Ryan" "Gary" "Nina" "Simon"
[8] "Guru"

$Salary
[1] "623.3" "515.2" "611" "729" "843.25" "578" "632.8" "722.5"

$StartDate
[1] "1/1/2019" "9/23/2020" "11/15/2021" "5/11/2021" "3/27/2020"
[6] "5/21/2020" "7/30/2020" "6/17/2021"

$Dept
[1] "IT" "Operations" "IT" "HR" "Finance"
[6] "IT" "Operations" "Finance"

82  •  Natural Language Processing Using R Pocket Primer

Listing 3.17 shows the content of the JSON file input.json that is refer-
enced in Listing 3.16.

LISTING 3.17: input.json

{
 "ID":["1","2","3","4","5","6","7","8"],
 "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru"],
 "Salary":["623.3","515.2","611","729", "843.25","578","632.8","722.5"],

 "StartDate":["1/1/2019","9/23/2020","11/15/2021","5/11/2021","3/27/2020",
"5/21/2020","7/30/2020","6/17/2021"],
 "Dept":["IT","Operations","IT","HR","Finance","IT","Operations","Finance"]
}

In addition to reading the contents of a JSON file, you can create an R data
frame that contains JSON-based data, as discussed in the next section.

READING A JSON FILE INTO AN R DATAFRAME

R also provides the ability to read JSON files into R data frames. Listing
3.18 shows the content of jsontodataframe.R that illustrates how to read
the contents of a JSON file into an R data frame.

LISTING 3.18: jsontodataframe.R

#install.packages("rjson",repos = "https://cloud.r-project.org")
library(rjson)

Give the input file name to the function:
result <- fromJSON(file = "input.json")

Convert JSON file to a data frame:
json_data_frame <- as.data.frame(result)

print(json_data_frame)

Listing 3.18 loads the rjson library and then initializes the variable
result with the result of parsing the JSON file input.json. Next, the
variable json_data_frame is populated with the result of converting the
result variable to an R data frame. The last code snippet in Listing 3.18
shows the contents of result, which contains the contents of the JSON file
input.json. Launch the code in Listing 3.18 to see the following output:

 ID Name Salary StartDate Dept
1 1 Rick 623.3 1/1/2019 IT
2 2 Dan 515.2 9/23/2020 Operations
3 3 Michelle 611 11/15/2021 IT
4 4 Ryan 729 5/11/2021 HR
5 5 Gary 843.25 3/27/2020 Finance
6 6 Nina 578 5/21/2020 IT
7 7 Simon 632.8 7/30/2020 Operations
8 8 Guru 722.5 6/17/2021 Finance

https://cloud.r-project.org

Working with Functions in R  •  83

STATISTICAL FUNCTIONS IN R

One of the strengths of R is the plethora of built-in statistical functions,
such as mean(), std(), var(), and cov().

Listing 3.19 shows the content of mean-value1.R that illustrates how to
calculate the mean of a set of numbers in R.

LISTING 3.19: mean-value1.R

create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

find the mean:
result.mean <- mean(x)
print(result.mean)

create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)

find the mean:
result.mean <- mean(x)
print(result.mean)

drop NA values and find the mean:
result.mean <- mean(x,na.rm = TRUE)
print(result.mean)

create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

find the mean:
result.mean <- mean(x,trim = 0.3)
print(result.mean)

create a vector:
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

find the median:
median.result <- median(x)

Listing 3.19 initializes the vector x and then calculates the mean of the
values in x, the first time without an NA value and the second time with an
NA value, which requires na.rm. The next portion of Listing 3.19 calcu-
lates the mean value based on a “trimmed” set of numbers in x, followed
by the median value. Launch the code in Listing 3.19 to see the following
output:

[1] 8.22
[1] NA
[1] 8.22
[1] 5.55
[1] 5.6

84  •  Natural Language Processing Using R Pocket Primer

SUMMARY FUNCTIONS IN R

This section contains a code sample with other built-in statistical functions
in R. Listing 3.20 shows the content of summary-values.R that illustrates
how to calculate the mean, weighted mean, min, max, median, and standard
deviation of a set of numbers in R.

LISTING 3.20: summary-values.R

define a sample of 50 values:
x <- sample(1:200, size = 50, replace = TRUE)
print(paste0("mean(x): ", mean(x)))
print(paste0("min(x): ", min(x)))
print(paste0("max(x): ", max(x)))
print(paste0("median(x):", median(x)))

make a copy of x:
y <- x

randomly set 10 values to NA:
y[sample(1:50, size=10, replace=TRUE)] <- NA
print("mean of y with NA values:")
print(mean(y, na.rm=TRUE))

Calculate a weighted mean:
scores <- c(250, 100, 80, 360)
weights <- c(1/2, 1/4, 1/8, 1/8)
print("scores:")
print(scores)
print("weights:")
print(weights)

wm <- weighted.mean(x=scores, w=weights)
print(paste0("weighted mean: ",wm))

print(paste0("Variance of x: ",var(x)))
print(paste0("STD of y:", sd(y, na.rm=TRUE)))

Listing 3.20 initializes the vector x via the sample() function that selects
a set of 50 values with replacements (in this example) from the integers that
range from 1 to 200. After initializing x, the next code block displays the
mean(), min(), max(), and median() values of x.

The next portion of Listing 3.20 initializes y as a copy of x and then random
replaces 10 of its values with NA, and then calculates the mean of y with those
NA values.

The final portion of Listing 3.20 initializes the variables scores and weights,
displays their values, and then computes the weighted mean of scores and
weights using the R function weighted.mean(). In addition, the variance of
x and the standard deviation of y are displayed.

Working with Functions in R  •  85

Launch the code in Listing 3.20 to see the following output:

[1] "mean(x): 100.12"
[1] "min(x): 2"
[1] "max(x): 196"
[1] "median(x):104"
[1] "mean of y with NA values:"
[1] 92.53659
[1] "scores:"
[1] 250 100 80 360
[1] "weights:"
[1] 0.500 0.250 0.125 0.125
[1] "weighted mean: 205"
[1] "Variance of x: 3314.10775510204"
[1] "STD of y:56.4916354697647"

DEFINING A CUSTOM FUNCTION IN R

A custom function in R is a function that is written by you. Such a func-
tion has the following syntax, where the ellipsis indicates the location of your
custom R code:

Myfunc <- function(args) { ... }

Listing 3.21 shows the content of CustomFunctions.R that defines a cus-
tom function to double a number and a custom function to square a number
in R.

LISTING 3.21: CustomFunctions.R

double <- function(a)
{
 return (2*a)
}

square <- function(a)
{
 return (a*a)
}

print(paste0("3 doubled: ", double(3)))
print(paste0("3 squared: ", square(3)))

Listing 3.21 defines the custom R functions double() and square() that
double and square a number, respectively. Launch the code in Listing 3.11 to
see the following output:

[1] "3 doubled: 6"
[1] "3 squared: 9"

86  •  Natural Language Processing Using R Pocket Primer

Listing 3.22 shows the content of CustomFunctionsLoop.R that defines
a custom function to double a number and a custom function to square a num-
ber in R.

LISTING 3.22: CustomFunctionsLoop.R

b <- 4

prints squares of numbers in sequence:
new.function <- function(a)
{
 for(i in 1:a)
 {
 b <- i^2
 print(b)
 }
}
new.function(6)

Listing 3.22 initializes the variable b with the value 4 and then defines the
function new.function that iterates through a range of numbers and displays
the squares of those numbers. The last code snippet in Listing 3.22 invokes the
R function new.function() with the value 6, which generates the following
output:

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36

You can also define functions that are invoked recursively, which is a topic
that is discussed in the next section.

RECURSION IN R

Recursion is powerful and elegant, yet it can be difficult to debug recur-
sion-based functions. Some examples of recursion in R that you will see later in
this chapter involve calculating factorial values and Fibonacci numbers.

Sometimes it’s easier to define a recursive algorithm to solve a task than to
do so with a non-recursive function. However, recursive functions have a non-
recursive “counterpart.” It can sometimes be extremely difficult to define the
non-recursive function that performs the same functionality as the recursive
function.

The following example includes a recursive function as well as a non-recur-
sive function for calculating factorial values. (It’s much simpler to calculate
Fibonacci values using a recursive function.)

Working with Functions in R  •  87

CALCULATING FACTORIAL VALUES IN R (NON-RECURSIVE)

Listing 3.23 shows the content of Factorial1.R that illustrates how to
calculate factorial values without recursion in R.

LISTING 3.23: Factorial1.R

factorial: fact(n) = n!
num = 5
factorial = 1

check is the number is negative, positive or zero
if(num < 0) {
 print("Sorry, factorial does not exist for negative numbers")
} else if(num == 0) {
 print("The factorial of 0 is 1")
} else {
 for(i in 1:num) {
 factorial = factorial * i
 }
 print(paste("The factorial of", num ,"is",factorial))
}

Listing 3.23 starts by prompting for a number and then initializing the vari-
able factorial with the value 1. Some error checking is performed on the input
value, and if the input is an integer greater than 1, a for loop is executed that
iteratively multiplies the variable factorial with the numbers from 1 to num
(i.e., the input number). Launch the code in Listing 3.23 to see the following
output:

[1] "The factorial of 5 is 120"

CALCULATING FACTORIAL VALUES IN R (RECURSIVE)

Listing 3.24 shows the content of Factorial2.R that illustrates how to
work with recursion to compute the factorial value of a positive integer in R.

LISTING 3.24: Factorial2.R

factorial: fact(n) = n*fact(n-1)

recur_factorial <- function(n) {
 if(n <= 1) {
 return(1)
 } else {
 return(n * recur_factorial(n-1))
 }
}

recur_factorial(5)

88  •  Natural Language Processing Using R Pocket Primer

Listing 3.24 defines the recursive function recur_factorial() that
implements the formula for factorial values that is displayed in the initial
comment in Listing 3.24. The final code snippet in Listing 3.24 invokes the
recur_factorial() function with the number 5, after which the factorial
value of 5 is displayed. Launch the code in Listing 3.24 to see the following
output:

[1] 120

CALCULATING FIBONACCI NUMBERS IN R (NON-RECURSIVE)

Listing 3.25 shows the content of Fibonacci1.R that illustrates how to
calculate Fibonacci numbers without recursion in R.

LISTING 3.25: Fibonacci1.R

Fibonacci: F(n) = F(n-1) + F(n-2)
nterms = 20

first two terms
n1 = 0
n2 = 1
count = 2

check if the number of terms is valid
if(nterms <= 0) {
 print("Please enter a positive integer")
} else {
 if(nterms == 1) {
 print("Fibonacci sequence:")
 print(n1)
 } else {
 print("Fibonacci sequence:")
 print(n1)
 print(n2)

 while(count < nterms) {
 nth = n1 + n2
 print(nth)
 # update values
 n1 = n2
 n2 = nth
 count = count + 1
 }
 }
}

Listing 3.25 initializes terms as 20, which equals the number of Fibonacci
numbers that will be calculated, as well as the two “start” values for the
Fibonacci sequence. By convention, these values are 0 and 1.

The next portion of Listing 3.25 contains conditional logic and since
nterms is greater than 1, the innermost else block is executed. This code block

Working with Functions in R  •  89

contains a while loop that iteratively computes the third through twentieth
Fibonacci values. Launch the code in Listing 3.25 to see the following output:

[1] "Fibonacci sequence:"
[1] 0
[1] 1
[1] 1
[1] 2
[1] 3
[1] 5
[1] 8
[1] 13
[1] 21
[1] 34
[1] 55
[1] 89
[1] 144
[1] 233
[1] 377
[1] 610
[1] 987
[1] 1597
[1] 2584
[1] 4181

CALCULATING FIBONACCI NUMBERS IN R (RECURSIVE)

Listing 3.26 shows the content of Fibonacci2.R that illustrates how to
calculate Fibonacci numbers with recursion in R.

LISTING 3.26: Fibonacci2.R

Fibonacci: F(n) = F(n-1) + F(n-2)
recurse_fibonacci <- function(n) {
 if(n <= 1) {
 return(n)
 } else {
 return(recurse_fibonacci(n-1) + recurse_fibonacci(n-2))
 }
}

take input from the user
nterms = as.integer(readline(prompt="How many terms? "))

check if the number of terms is valid
if(nterms <= 0) {
 print("Plese enter a positive integer")
} else {
 print("Fibonacci sequence:")
 for(i in 0:(nterms-1)) {
 print(recurse_fibonacci(i))
 }
}

90  •  Natural Language Processing Using R Pocket Primer

Listing 3.26 defines the recursive function recurse_fibonacci() that
uses recursion to calculate Fibonacci numbers. The recursion occurs in the else
block of code, which involves a for loop that invokes the recurse_fibonacci()
function. Launch the code in Listing 3.26 to see the following output:

[1] "Fibonacci sequence:"
[1] 0
[1] 1
[1] 1
[1] 2
[1] 3
[1] 5
[1] 8
[1] 13
[1] 21
[1] 34
[1] 55
[1] 89
[1] 144
[1] 233
[1] 377
[1] 610
[1] 987
[1] 1597
[1] 2584
[1] 4181

CONVERT A DECIMAL INTEGER TO A BINARY INTEGER IN R

Listing 3.27 shows the content of converttobinary.R that illustrates
how to convert an integer to a binary number in R.

LISTING 3.27: converttobinary.R

Convert decimal num into binary num via recursive function

convert_to_binary <- function(n) {
 if(n > 1) {
 convert_to_binary(as.integer(n/2))
 }
 cat(n %% 2)
}

print(paste0("52 in binary:"))
convert_to_binary(52)
cat("\n")

Listing 3.27 defines the function convert_to_binary() that uses recur-
sion to generate the binary string for a decimal number. Given an initial value
n, this function invokes itself with n/2 as long as n is greater than 1: when it
does equal 1, the value n %% 2 is displayed, which equals n modulo 2 (i.e.,
either 0 or 1).

Working with Functions in R  •  91

As the recursive sequence of invocations “unwinds,” the value n %% 2 is
repeatedly displayed with a different value of n, which generates the binary
representation of the initial value of n. Launch the code in Listing 3.27 to see
the following output:

[1] "52 in binary:"
110100

CALCULATING THE GCD OF TWO INTEGERS IN R

Listing 3.28 shows the content of GCD.R that illustrates how to work use
recursion to find the GCD (greatest common divisor) of two positive integers
in R.

LISTING 3.28: GCD.R

find the GCD of two input numbers
gcd <- function(x, y) {
 # choose the smaller number
 if(x > y) {
 smaller = y
 } else {
 smaller = x
 }
 for(i in 1:smaller) {
 if((x %% i == 0) && (y %% i == 0)) {
 gcd = i
 }
 }
 return(gcd)
}

take input from the user
num1 = 10
num2 = 24

print(paste("The G.C.D. of", num1,"and", num2,"is", gcd(num1, num2)))

Listing 3.28 defines the function gcd() that calculates the GCD of two
positive integers. The first step initializes the variable smaller with the
smaller of x and y. The second step involves a loop that iterates from 1 to
smaller and updates the value of gcd with the loop variable i whenever x and
y are divisible by i. When the loop is completed, the variable gcd contains the
GCD of x and y.

The next portion of Listing 3.28 initializes num1 and num2 and invokes the
function gcd() with these two variables, after which the GCD of these two
variables is displayed. Launch the code in Listing 3.28 to see the following
output:

[1] "The G.C.D. of 10 and 24 is 2"

92  •  Natural Language Processing Using R Pocket Primer

CALCULATING THE LCM OF TWO INTEGERS IN R

Listing 3.29 shows the content of LCM.R that illustrates how to calculate the
LCM (lowest common multiple) of two positive integers in R.

LISTING 3.29: LCM.R

find the GCD of two input numbers
gcd <- function(x, y) {
 gcd1 <- 1
 # choose the smaller number
 if(x > y) {
 smaller = y
 } else {
 smaller = x
 }
 for(i in 1:smaller) {
 if((x %% i == 0) && (y %% i == 0)) {
 gcd1 = i
 }
 }

 return(gcd1)
}

the LCM involves a simple operation:
lcm <- function(x,y) {
 return((x * y)/gcd(x,y))
}

x = 10
y = 24

print(paste("The L.C.M. of", x,"and", y,"is", lcm(x, y)))

Listing 3.29 defines the custom R function gcd(x,y) shown in an ear-
lier example, followed by a code snippet that calculates the LCM of two posi-
tive integers. The final portion of Listing 3.29 calculates the LCM of x and y.
Launch the code in Listing 3.29 to see the following output:

[1] "The L.C.M. of 10 and 24 is 120"

SUMMARY

This chapter introduced you to built-in functions in R, with examples of
some of the more useful functions that you will probably use in your code.
Next, you learned how to define your own functions in R so that you can per-
form custom tasks for which there aren’t any convenient built-in R functions.

You learned about recursion in R, and how to define recursive functions
to calculate various quantities, such as the factorial value of a positive integer,
Fibonacci numbers, the GCD of two positive integers, and the LCM of two
positive integers.

CHAPTER 4
NLP CONCEPTS (I)

This chapter introduces you to NLP, starting with a high-level introduc-
tion to some major language groups and the substantive grammatical
differences among the languages. You will learn some basic concepts in

NLP, such as text normalization, stop words, stemming, and lemmatization (the
dictionary form of words), POS (parts of speech) tagging, and NER (named
entity recognition). This chapter contains a highly eclectic mix of topics.

While some NLP algorithms are mentioned in this chapter, the relevant
code samples are provided in Chapter 6. Depending on your NLP background,
you might decide to read the sections in a non-sequential fashion. If your goal
is to proceed quickly to the code samples, you can skip some sections in this
chapter and later return to read those omitted sections.

The first part of the chapter introduces you to NLP and a brief history of
the major stages of NLP. You will also learn about NLP applications, use cases,
NLU, and NLG. Then you will learn about word sense disambiguation. This
section only provides a very brief description of these topics, some of which
can fill entire books and full-length courses.

The second part of this chapter discusses various NLP techniques and the
major steps in an NLP-related process. You will also learn about standard NLP-
related tasks, such as text normalization, tokenization, stemming, lemmatiza-
tion, and the removal of stop words. As you will see, some of these tasks (e.g.,
tokenization) involve implicit assumptions that are not true for all languages.

The final section introduces NER (Named Entity Recognition) and topic
modeling, which pertains to finding the main topic(s) in a text document.

The next section starts with an introduction to NLP, followed by various
NLP-related concepts.

94  •  Natural Language Process Using R Pocket Primer

WHAT IS NLP?

Natural Language Processing (NLP) is an important branch of AI that per-
tains to processing human languages with machines. You are surrounded by
NLP through voice assistants, search engines, and machine translation services
whose purpose is to simplify your tasks and aspects of your daily life.

NLP faces a variety of challenges, such as determining the context of words
and their many meanings in different sentences in a document or corpus.
Other challenging tasks include identifying emotions (such as irony and sar-
casm), statements with multiple meanings, and sentences with contradictory
statements.

Facebook has created an impressive model for language translation, called
the M2M model, which was trained on more than 2,000 languages and pro-
vides translation between any pair of 100 languages.

In high level terms, there are three main approaches to solving NLP tasks:
rule-based (oldest), traditional machine learning, and neural networks (most
recent). Rule-based approaches, which can utilize regular expressions, work
well on various NLP tasks. Traditional machine learning for NLP tasks (which
includes various types of classifiers) involves training a model on a training set
and then making inferences on a test set of data. This approach is still useful
for handling NLP tasks such as sequence labeling.

By contrast, neural networks take word embeddings (vector-based repre-
sentations of words) as input and are then trained using backward error propa-
gation. Examples of neural network architectures include CNNs, RNNs, and
LSTMs. Moreover, there has been significant research in combining deep
learning with NLP, which has resulted in state of the art (SOTA) results.

In particular, the transformer architecture (which relies on the concept of
attention) has eclipsed earlier neural network architectures. In fact, the trans-
former architecture is the basis for BERT, which is a pre-trained NLP model
with 1.5 billion parameters, along with numerous other pre-trained models
that are based (directly or indirectly) on BERT. Chapter 7 introduces the
transformer architecture and BERT-related models.

Regardless of the methodology, NLP algorithms involve samples in the
form of documents or collections of documents containing text. A corpus can
vary in size, and can be domain specific and/or language specific. In some
cases, such as GPT-3 (discussed in Chapter 7), models are trained on a corpus
of 500 gigabytes of text.

As a historical aside, the Brown University Standard Corpus of Present-
Day American English, also called Brown Corpus, was created during the
1960s for linguistics. This corpus contains 500 samples of English-language
text, with a total of approximately 1,000,000 words. More information about
this corpus is here:

https://en.wikipedia.org/wiki/Brown_Corpus
As a concrete example of NLP, consider the task of determining the main

topics in a document. While this task is straightforward for a text document

https://en.wikipedia.org/wiki/Brown_Corpus

NLP Concepts (I)  •  95

consisting of a few pages, finding the main topics of a hundred documents,
each of which might contain several hundred pages, is impractical to complete
via a manual process (and if you gave this work to multiple people, you would
have to pay them).

Fortunately, there is an NLP technique called topic modeling that performs
the task of analyzing documents and determining the main topics in those doc-
uments. This type of document analysis can be performed in a variety of situ-
ations that involve large amounts of text. Keep in mind that NLP can help you
analyze documents that contain structured data as well as unstructured data
(or a combination of both types of data).

The Evolution of NLP

NLP has undergone many changes since the mid-twentieth century, the
earliest of which might seem primitive when you compare them with mod-
ern NLP. Several major stages of NLP are listed below, starting from 1950
up until 2020 or so, that highlight the techniques that were commonly used
in NLP.

•	1950s-1980s: rule-based systems
•	1990s-2000s: corpus-based statistics
•	2000s-2014: machine learning
•	2014-2020: deep learning

Early NLP (1950s-1990s) focused primarily on rule-based systems, which
means that those techniques used a lot of conditional logic. When you con-
sider the structure of a sentence in English, it’s often of the form subject-verb-
object. However, a sentence can have one or more subordinate clauses, each of
which can involve multiple nouns, prepositions, adjectives, and adverbs.

Even more complex is maintaining a reference between two sentences,
such as the following: “Yesterday was a hot day and many people were uncom-
fortable. I wonder what that means for the coming days.”

Although you can infer the meaning of the word “that” in the second sen-
tence, the correct interpretation is difficult using rule-based methods. This
era of NLP did perform some statistical analyses of sentences to predict which
words were more likely to follow a given word.

The next phase of NLP (1990s-2000s) shifted away from a rule-based
analysis toward a primarily statistical analysis of collections of documents.
The third phase involved machine learning for NLP, which embraced algo-
rithms, such as decision trees, and structures, such as Markov chains. Once
again, an important task involved predicting the next word in a sequence of
words.

The most recent phase of NLP is the past decade and the combination of
neural networks with NLP. In fact, 2012 was a significant turning point involv-
ing Convolutional Neural Networks (CNNs) that achieved a breakthrough in

96  •  Natural Language Process Using R Pocket Primer

terms of accuracy specifically for classifying images. Researchers then learned
how use CNNs in order to analyze audio waves and perform NLP tasks.

The use of CNNs for NLP then evolved into the use of Recurrent Neural
Networks (RNNs) and Long Short Term Memory (LSTM), which are two
architectures that belong to deep learning, for even better accuracy.

These architectures have been superseded by the Transformer architec-
ture (also considered a part of deep learning) that was developed by Google
toward the end of 2017. Transformer-based architectures (there are many of
them) have achieved state-of-the-art performance that surpass all the previous
attempts in the NLP arena.

A WIDE-ANGLE VIEW OF NLP

This section contains aspects of NLP, as well as many NLP applications and
use cases, which are summarized in this list:

•	NLP applications
•	NLP use cases
•	NLU (Natural Language Understanding)
•	NLP (Natural Language Generation)
•	Text Summarization
•	Text Classification

The following subsections provide additional information for each topic in
the preceding list.

NLP Applications and Use Cases

There are many useful and well-known applications that rely on NLP, some
of which are listed here:

•	Chatbots
•	Search (text and audio)
•	Advertisement
•	Automated translation
•	Sentiment analysis
•	Document classification
•	Speech recognition
•	Customer support

In particular, chatbots are receiving a great deal of attention because of their
increasing ability to perform tasks that previously required human interaction.

Sentiment analysis is a subset of text summarization that attempts to deter-
mine the attitude or emotional reaction of a speaker toward a particular topic
(or in general). Possible sentiments are positive, neutral, and negative, which
are typically represented by the numbers 1, 0, and -1, respectively.

NLP Concepts (I)  •  97

Document classification is a generalization of sentiment analysis and typi-
cally involves more than three possible flags per article:

https://towardsdatascience.com/natural-language-processing-pipeline-
decoded-f97a4da5dbb7

In addition to the preceding list of sample applications, there are many use
cases for NLP, some of which are listed below:

•	Question Answering
•	Filter email messages
•	Detect fake news
•	Improve clinical documentation
•	Automatic Text Summarization
•	Sentiment Analysis and Semantics
•	Machine Translation and Generation
•	Personalized marketing

Some of the use cases in the preceding list (such as sentiment analysis) are
discussed in later chapters.

NLU and NLG

NLU is an acronym for Natural Language Understanding, and although
you might not find many books or articles about this topic, it’s a very sig-
nificant subset of NLP. In high-level terms, NLU attempts to understand
human language to determining the context of a text string or document.
NLU addresses various NLP tasks, such as sentiment analysis and topic
classification.

Another extremely important NLU task is called relation extraction, which
is the task of extracting semantic relations that may exist in a text string.
Moreover, the sources of input text can be from chatbots, documents, blog
posts, and so forth. As a simple example, consider this block of text and notice
the different meanings of the pronouns “he” and “them:”

“John lived in France and he attended an international school. Mary lived in
Germany and she also attended an international school. Dave lived in London
and met both of them in Paris. One of these days, when he has some free time,
they will meet up again. Steve met all of them on New Year’s Eve.”

Although the preceding paragraph is easy for humans to understand, it
poses some challenges for NLU, such as determining the correct answers to
the following questions:

1.	 Who does the first occurrence of “he” refer to?
2.	 Who does the second occurrence of “he” refer to? Is it ambiguous?
3.	 Who does the first occurrence of “them” refer to?
4.	 Who does the second occurrence of “them” refer to? Is it ambiguous?

https://towardsdatascience.com/natural-language-processing-pipeline-decoded-f97a4da5dbb7

98  •  Natural Language Process Using R Pocket Primer

One of the challenges of human language involves the correct interpreta-
tion of words that are used ambiguously in a sentence, and such ambiguity can
be classified into several types. For example, lexical ambiguity occurs when a
word has multiple meanings, which can change the meaning of a sentence that
contains that word. One approach to handling this type of ambiguity involves
POS (Parts Of Speech) techniques, which is illustrated in the chapter with
NLTK content.

Another type of ambiguity is syntactical ambiguity, also called grammatical
ambiguity, which occurs when a sequence of words (instead of a single word)
has multiple meanings.

Yet another type of ambiguity is referential ambiguity, which can occur
when a noun in one location is referenced elsewhere via a pronoun, and the
reference is not completely clear.	

In addition to NLU, another very important subset of NLP is Natural
Language Generation (NLG), which is the process of producing meaningful
phrases and sentences in the form of natural language from some internal
representation. One impressive example of NLG is the ability of GPT-3 (dis-
cussed in Chapter 7) to generate meaningful responses to a wide variety of
questions.

NLP can be used to analyze speech (not discussed in this book), words, and
the structure of sentences. As such, we need to become acquainted with text
classification, which is the topic of the next section.

What is Text Classification?

Text classification is a supervised approach for determining the category or
class of a text-based corpus, which can be in the form of a blog post, the con-
tents of a book, the contents of a web page, and so forth. The possible classes
are known in advance, and they do not change; the classes are often (but not
always) mutually-exclusive.

Text classification involves examining text to determine the nature of its
content, such as

•	topic labeling (the major topics of a document)
•	the sentiment of the text (positive or negative)
•	the human language of the text
•	categorizing products on websites
•	whether it’s spam

However, most text-based data is unstructured, which complicates the task
of analyzing text-based documents. From a business perspective, machine
learning text classification algorithms are valuable when they structure and
analyze text in a cost-effective manner, thereby expediting business processes
and decision-making processes.

Text classification is important for customer service, which can involve rout-
ing customer requests based on the (human) language of the text, determining

NLP Concepts (I)  •  99

if it’s a request for assistance (products or services), or detecting issues with
products.

Note that some older text classification algorithms are based on the Bag of
Words (BoW) that only determines word frequency in documents. The BoW
algorithm is explained in Chapter 5, and there are code samples for the BoW
algorithm in Chapter 6.

One more thing: text summarization is related to text classification (but not
discussed in this book).

INFORMATION EXTRACTION AND RETRIEVAL

The purpose of information extraction is to automatically extract structured
information from one or more sources, which could contain unstructured data
in documents. For example, an article might provide the details of an IPO of
a successful start-up, or the acquisition of one company by another company.
Information extraction would involve generating a summary sentence from the
contents of the article. In a larger context, information extraction is related to
topic modeling (i.e., finding the main topics in a document), which is discussed
toward the end of this chapter.

Information extraction also requires information retrieval, where the latter
involves methods for indexing and classifying large documents. Information
extraction involves various subtasks, such as identifying named entities (i.e.,
nouns for people, places, and companies), automatically populating a template
with information from an article, or extracting data from tables in a document.

As a simple example, suppose that a program regularly scrapes (retrieves)
the contents of HTML pages to summarize their contents. One of the first tasks
that must be performed is data cleaning, which in this case involves removing
HTML tags, removing punctuation, converting text to lower case, and then
splitting sentences into tokens (words). Fortunately, the BeautifulSoup Python
library is well suited for the preceding tasks.

Another area of great interest in NLP is the proliferation of chatbots, which
interact with users to provide information (such as the directions or hours of
operation) or perform specific tasks (such as make reservations, book hotels,
or car rentals).

WORD SENSE DISAMBIGUATION

Up until several years ago, word sense disambiguation was an elusively
difficult task because words can be overloaded (i.e., possess multiple mean-
ings). A well-known NYT article describes one humorous misinterpretation in
machine learning. The following sentence was translated into Russian and then
translated from Russian into English:

The spirit is willing, but the flesh is weak.
The result of the second translation is here:
The vodka is good, but the meat is rotten.

100  •  Natural Language Process Using R Pocket Primer

Here is the link to the NYT article:
https://www.nytimes.com/1983/04/28/business/technology-the-computer-

as-translator.html
As another simple example of an overloaded word, consider the following

four sentences:

You can bank on that result.
You can take that to the bank.
You see that river bank?
Bank the car to the left.

In the preceding four sentences, the word “bank” has four meanings. The
task of determining the meaning of a word requires some type of context. In
the not too distant past, the state of word sense disambiguation resulted in a
precipitous drop in enthusiasm vis-a-vis machine learning. However, the situ-
ation has dramatically improved during the past several years. For example, in
2018, Microsoft developed a system for translating from Chinese to English;
the system had an accuracy that was comparable to humans.

NLP TECHNIQUES IN ML

Earlier, you briefly learned about NLU (Natural Language Understanding)
and NLG (Natural Language Generation). The purpose of NLU is to “under-
stand” a section of text, and then use NLG to generate a suitable response (or
find a suitable response from a repository). This type of task is also related to
Question Answering and Knowledge Extraction.

Since there are many types of NLP tasks, there are also many NLP tech-
niques that have been developed, some of which are listed below:

•	text embeddings
•	text summarization
•	text classification
•	sentence segmentation
•	POS (part-of-speech tagging)
•	NER (Named entity recognition)
•	word sense disambiguation
•	text categorization
•	topic modeling
•	text similarity
•	syntax and parsing
•	language modeling
•	dialogs
•	probabilistic parsing
•	clustering

A subset of the items in the preceding list is discussed in this chapter, and in
some cases, there are associated Python code samples in Chapter 6.

https://www.nytimes.com/1983/04/28/business/technology-the-computer-as-translator.html

NLP Concepts (I)  •  101

NLP Steps for Training a Model

Although the specific set of text-related tasks depends on the specific task
that you’re trying to complete, the following set of steps is common:

[1]  convert words to lowercase
[1]  noise removal
[2]  normalization
[3]  text enrichment
[3]  stopword removal
[3]  stemming
[3]  lemmatization

The number in brackets in the preceding bullet list indicates the type of
task. Specifically, the values [1], [2], and [3] indicate “must do,” “should do,”
and “task dependent,” respectively.

TEXT NORMALIZATION AND TOKENIZATION

Text normalization involves several tasks, such as the removal of
unwanted hash tags, emojis, URLs, special characters such as “&,” “!,” and
“$.” However, you might need to make decisions regarding some punctua-
tion marks.

First, what about the period (.) punctuation mark? If you retain every
period in a dataset, consider whether to treat this character as a token during
the tokenization step. However, if you remove every period from a dataset,
this will also remove every ellipsis (three consecutive periods), and also the
period from the strings “Mr.,” “U.S.A.,” and “P.O.” If the dataset is small,
perform a visual inspection of the dataset, and if the dataset is very large,
try inspecting several smaller and randomly selected subsets of the original
dataset.

Second, although you might think it’s a good idea to remove question marks
(?), the opposite is true: in general, question marks enable you to identify ques-
tions (as opposed to statements) in a corpus.

Third, you also need to determine whether to remove numbers, which can
convey quantity when they are separate tokens (“1,000 barrels of oil”) or they
can be data entry errors when they are embedded in alphabetic strings. For
example, it’s acceptable to remove the 99 from the string “large99 oranges,”
but what about the 99 in “99large oranges?”

Another standard normalization task involves converting all words to lower-
case (case folding). Chinese characters do not have uppercase text, so convert-
ing text to lowercase is unnecessary. Text normalization is entirely unrelated to
normalizing database tables in an RDBMS, or normalizing (scaling) numeric
data in machine learning tasks. The task of converting categorical (character)
data into a numeric counterpart.

102  •  Natural Language Process Using R Pocket Primer

Although converting letters to lowercase (aka case folding) is a straight-
forward task, this step can be problematic. For instance, accents are
optional for uppercase French words, and after case folding some words
do require an accent. A simple example is the French word peche, which
means fish or peach with one accent mark, and sin with a different accent
mark. The Italian counterparts are pesce, pesca, and peccato, respectively,
and there is no issue regarding accents marks. Incidentally, the plural of
pesce is pesci (so Joe Pesci is Joe Fish or Joe Fishes, depending on whether
you are referring to one type of fish or multiple types of fish). To a lesser
extent, converting English words from uppercase to lowercase can cause
issues: is the word “stone” from the noun “stone” or from the surname
“Stone?”

After normalizing a dataset, tokenization involves “splitting” a sentence,
paragraph, or document into its individual words (tokens). The complexity of
this task can vary significantly between languages, depending on the nature
of the alphabet of a specific language. In particular, tokenization is straight-
forward for Indo-European languages because those languages use a space
character to separate words.

However, even though tokenization can be straightforward when work-
ing with regular text, the process can be more challenging when working with
biomedical data that contains acronyms and a higher frequency use of punc-
tuation. One NLP technique for handling acronyms is NER (Named Entity
Recognition), which is discussed later in this chapter.

Word Tokenization in Japanese

Unlike most languages, the use of a space character in Japanese text is
optional. Unlike virtually all other languages, Japanese supports multiple alpha-
bets, and sentences often contain a mixture of these alphabets. Specifically,
Japanese supports Romanji (essentially the English alphabet), Hiragana,
Katakana (used exclusively for words imported to Japanese from other lan-
guages), and Kanji characters.

As a simple example, navigate to Google translate in your browser and
enter the following Romanji sentence, written without white spaces, which
means “I gave a book to my friend” in English:

watashiwatomodachinihonoagemashita

The partially correct translation is the following text in Hiragana:

わたしはこれだけのほげあげました

Now enter the same Romanji sentence, but this time with spaces between
each word, as shown here:

watashi wa tomodachi ni hon o agemashita

NLP Concepts (I)  •  103

Now Google translate produces the following correct translation in
Hiragana:

私はともだちに本をあげました

Notice that the preceding sentence also contains Kanji characters, starting
with the Kanji character 私 for “watashi” (I) and the Kanji character 本 for
“hon” (book).

Mandarin and Cantonese are two more languages that involves compli-
cated tokenization. Both of these languages are tonal, and they use pictographs
instead of alphabets. An alternative to Mandarin is Pinyin, which is the romani-
zation of the sounds in Mandarin. Interestingly, Mandarin has 6 tones, but only
4 of those tones are commonly used, whereas Cantonese has 9 tones (with no
counterpart to Pinyin).

As a simple example, the following sentences are in Mandarin and in
Pinyin, respectively, and their translation into English is “How many children
do you have”:

你有几个孩子
Nǐ yǒu jǐ gè háizi
Ni3 you3 ji3ge4 hai2zi (digits instead of tone marks)

The second and third sentences above are both Pinyin. The third sentence
contains the numbers 2, 3, and 4 that correspond to the second, third, and
fourth tones, respectively, in Mandarin. The third sentence is used in situa-
tions where the tonal characters are not supported (such as in older brows-
ers). Navigate to Google Translate and type the following words for the source
language:

ni you jige haizi

Select Mandarin for the target language and you will see the following
translation:

how many kids do you have

The preceding translation is quite impressive, when you consider that
the tones were omitted: different tones can significantly change the mean-
ing of words. If you are skeptical, look at the translation of the string “ma”
when it’s written with the first tone, then the second tone, and again with the
third tone and the fourth tone: the meanings of these four words are entirely
unrelated.

Tokenization can be performed via regular expressions (which are dis-
cussed in one of the appendices) and rule-based tokenization. However, rule-
based tokenizers are not well-equipped to handle rare words or compound
words that are very common in languages such as German. In Chapter 6, you
will see code samples involving the NLTK tokenizer and the SpaCY tokenizer
for tokening one or more English sentences.

104  •  Natural Language Process Using R Pocket Primer

Text Tokenization with Unix Commands

Text tokenization can be performed not only in Python but also from the
Unix command line. For example, consider the text file words.txt whose
contents are shown here:

lemmatization: removing word endings edit distance: measure the distance
between two words based on the number of changes needed based on the
inner product of 2 vectors a metric for determining word similarity

The following command illustrates how to tokenize the preceding para-
graph using several Unix commands that are connected via the Unix pipe (“|”)
symbol:

tr -sc ‘A-Za-z’ ‘\n’ < words.txt | sort | uniq

The output from the preceding command is shown below:

1a
2 based
1 between
1 changes
1 determining
2 distance
1 edit
1 endings
1for
1 inner
1 lemmatization
. . . .

As you can see, the preceding output is an alphabetical listing of the tokens
of the contents of the text file words.txt, along with the frequency of each
token.

HANDLING STOP WORDS

Stop words are words that are considered unimportant in a sentence.
Although the omission of such words would result in grammatically incor-
rect sentences, the meaning of such sentences would most likely still be
recognizable.

In English, stop words include the words “a,” “an,” and “the,” along with
common words and prepositions (“inside,” “outside,” and so forth). Stop words
are usually filtered from search queries because they would return a vast
amount of unnecessary information. As you will see later, Python libraries such
as NLTK provide a list of built-in stop words, and you can supplement that list
of words with your own list.

NLP Concepts (I)  •  105

Removing stop words works fine with BoW and tf-idf, both of which are dis-
cussed in the next chapter. A more detailed explanation (and an example) is here:

https://towardsdatascience.com/why-you-should-avoid-removing-stop-
words-aa7a353d2a52

A universal list of stop words does not exist, and different toolkits (such
as NLTK and gensim) have different sets of stop words. The Sklearn library
provides a list of stop words that consists of basic words (“and,” “the,” and
“her”). However, a list of stop words for the text in a marketing-related web-
site is probably different from such a list for a technical web site. Fortunately,
Sklearn enables you to specify a custom list of stop words via the hyperparam-
eter stop_words.

Finally, the following link contains a list of stop words for an impressive
number of languages:

https://github.com/Alir3z4/stop-words

WHAT IS STEMMING?

Stemming refers to reducing words to their root or base unit, which involves
truncating word suffixes. A stemmer operates on individual words without any
context for those words. For example, “fast” is the stem for the words fast,
faster, and fastest. Stemming algorithms are typically rule-based and involve
conditional logic. In general, stemming is simpler than lemmatization (dis-
cussed later), and it’s a special case of normalization.

Singular vs. Plural Word Endings

The manner in which the plural of a word is formed varies among lan-
guages. In many cases, the letter “s” “or es” is the plural form of words in
English. In some cases, English words have a singular form that ends in s/us/x
(basis/, abacus, and box, respectively), as well as irregular plural forms, such
as “cactus/cacti” and “appendix/appendices”. German can form the plural of a
noun with “er” and “en,” such as “buch/bucher” and “frau/frauen”.

Common Stemmers

The following list contains several commonly used stemmers in NLP:

•	Porter stemmer (English)
•	Lancaster stemmer
•	SnowballStemmers (more than 10 languages)
•	ISRIStemmer (Arabic)
•	RSLPSStemmer (Portuguese)

The Porter stemmer was developed in the 1980s, and while it’s good in a
research environment, it’s not recommended for production. The Snowball
stemmer is based on the Porter2 stemming algorithm, and it’s an improved
version of Porter (about 5% better).

https://towardsdatascience.com/why-you-should-avoid-removing-stopwords-aa7a353d2a52
https://github.com/Alir3z4/stop-words

106  •  Natural Language Process Using R Pocket Primer

The Lancaster stemmer is a good stemming algorithm, and you can even
add custom rules to the Lancaster stemmer in NLTK (but results can be odd).
The other stemmers in the preceding list support non-English languages.

As a simple example, the following code snippet illustrates how to define
two stemmers using the NLTK library:

import nltk
from nltk.stem import PorterStemmer, SnowballStemmer

porter = PorterStemmer()
porter.stem("Corriendo")

snowball = SnowballStemmer("spanish", ignore_stopwords=True)
snowball.stem("Corriendo")

Notice that the second stemmer defined in the preceding code block also
ignores the stop words.

Stemmers and Word Prefixes

Word prefixes can pose interesting challenges. For example, the prefix “un”
often means “not” (such as the word unknown), but not in the case of “univer-
sity.” One approach for handling this type of situation involves creating a word
list and after removing a prefix, check if the remaining word is in the list: if not,
then the prefix in the original word is not a negative. Among the few (only?)
stemmers that provides prefix stemming in NLTK are Arabic stemmers:

•	https://github.com/nltk/nltk/blob/develop/nltk/stem/arlstem.py#L115
•	https://github.com/nltk/nltk/blob/develop/nltk/stem/snowball.py#L372

However, it’s possible to write custom Python code to remove prefixes.
First, navigate to this URL to see a list of prefixes in the English language:

•	https://dictionary.cambridge.org/grammar/british-grammar/word-for-
mation/prefixes

•	https://stackoverflow.com/questions/62035756/how-to-find-the-prefix-of-
a-word-for-nlp

A Python code sample that implements a basic prefix finder is here:
https://stackoverflow.com/questions/52140526/python-nltk-stemmers-

never-remove-prefixes

Over Stemming and Under Stemming

Over stemming occurs when too much of a word is truncated, which can
result in unrelated words having the same stem. For example, consider the fol-
lowing sequence of words:

university, universities, universal, universe

https://github.com/nltk/nltk/blob/develop/nltk/stem/arlstem.py#L115
https://github.com/nltk/nltk/blob/develop/nltk/stem/snowball.py#L372
https://dictionary.cambridge.org/grammar/british-grammar/word-formation/prefixes
https://stackoverflow.com/questions/62035756/how-to-find-the-prefix-of-a-word-for-nlp
https://stackoverflow.com/questions/52140526/python-nltk-stemmers-never-remove-prefixes

NLP Concepts (I)  •  107

The stem for the four preceding words is “univers,” even though these
words have different meanings.

Under stemming is the opposite of over stemming: this happens when a
word is insufficiently “trimmed.” For example, the words “data” and “datu”
both have the stem “dat,” but what about the word “date?” This simple exam-
ple illustrates that it’s difficult to create good stemming algorithms.

WHAT IS LEMMATIZATION?

Lemmatization determines whether words have the same root, which
involves the removal of inflectional endings of words. Lemmatization involves
the WordNet database during the process of finding the root word of each
word in a corpus.

Lemmatization finds the base form of a word, such as the base word “good”
for the three words “good,” “better,” and “best.” Lemmatization determines
the dictionary form of words and therefore requires knowledge of parts of
speech. In general, creating a lemmatizer is more difficult than a heuristic
stemmer. The NLTK lemmatizer is based on the WordNet database.

Lemmatization is also relevant for verb tenses. For instance, the words
“run,” “runs,” “running,” and “ran” are variants of the verb run. Another exam-
ple of lemmatization involves irregular verbs, such as “to be” and “to have” in
romance languages. Thus, the collection of verbs “is,” “was,” “were,” and “be”
are all variants of the verb “be.” There is a trade-off: lemmatization can pro-
duce better results than stemming at the cost of being more computationally
expensive.

Stemming/Lemmatization Caveats

In case you need to review (or learn) the terms recall and precision, the
following link contains useful details:

https://en.wikipedia.org/wiki/Precision_and_recall
In the context of this section, stemming and lemmatization are designed for

“recall,” whereas “precision” tends to suffer. Moreover, results can also differ
significantly in non-English languages, even those that seem related to English,
because the implementation details of some concepts are quite different.

Although both techniques generate the root form of inflected words, you
probably noticed that the stem might not be an actual word, whereas the
lemma is an actual language word. As a rule of thumb: use stemming if you are
primarily interested in higher speed, and use lemmatization if you are primar-
ily interested in higher accuracy.

Limitations of Stemming and Lemmatization

Although stemming and lemmatization are suitable for Indo-European lan-
guages, these techniques are not as well-suited for Chinese because a Chinese
character can be a combination of two other characters, all three of which can
have different meanings.

https://en.wikipedia.org/wiki/Precision_and_recall

108  •  Natural Language Process Using R Pocket Primer

For example, the character for mother is the combination of the radical for
“female” and the radical for “horse.” Hence, separating the two radicals for
“mother” via stemming and lemmatization change the meaning of the word
from “mother” to “female.” More detailed information regarding Chinese nat-
ural language processing is available here:

https://towardsdatascience.com/chinese-natural-language-pre-processing-
an-introduction-995d16c2705f

WORKING WITH TEXT: POS

The acronym POS refers to parts of speech, which involves identifying the
parts of speech for words in a sentence. The purpose of POS tagging is to
assign a part of speech to the words in a document. However, words can be
assigned multiple speech tags: for example, drive can be a noun as well as a
verb. The challenge of POS is to determine the correct tag for each word.

One approach for sequence labeling involves the HMM (Hidden Markov
Model), which is based a probabilistic sequence model that is based on a
Markov chain. One component of HMMs involves transition probabilities,
which is the probability that a tag will follow a given tag. These probabilities
can be calculated from the set of bigrams of a given corpus.

Another component of HMMs is called the emission probabilities, which
involves the probability that a given tag will be “associated” with a given tag.
HMMs make several other assumptions, and also leverage the Viterbi algo-
rithm (not discussed in this book) in order to perform a so-called “decoding”
task. For more information about HMMs and the Viterbi algorithm, perform
an online search for relevant articles.

POS Tagging

POS are the grammatical function of the words in a sentence. Consider the
following simple English sentence:

The sun gives warmth to the Earth.

In the preceding example, “Sun” is the subject, “gives” is the verb, “warmth”
is the direct object, and “Earth” is the indirect object. In addition, the subject,
direct object, and direct object are also nouns. Note that the following sen-
tence has the same meaning, but this time the indirect noun must be inferred:

The sun gives the Earth warmth.

Words with multiple meanings are overloaded, and the function of a given
word depends on the context. Here are three examples of using the word
“bank” in three different contexts:

He went to the bank.
He sat on the river bank.
He can’t bank on that outcome.

https://towardsdatascience.com/chinese-natural-language-pre-processing-an-introduction-995d16c2705f

NLP Concepts (I)  •  109

POS tagging refers to assigning a grammatical tag to the words in a cor-
pus, and it is useful for developing lemmatizers. POS tags are used during the
creation of parse trees and to define NERs (discussed in the next section).
Chapter 6 contains a Python code sample that uses NLTK to perform POS
tagging on a corpus (which is just a sentence, but you can easily extend it to an
entire document).

POS Tagging Techniques

The major POS tagging techniques (followed by brief descriptions) are
listed below:

•	Lexical Based Methods
•	Rule-Based Methods
•	Probabilistic Methods
•	Deep Learning Methods

Lexical Based Methods assign POS tags based on the most frequently
occurring words in a given corpus. By contrast, Rule-Based Methods use
grammar-based rules to assign POS tags. For example, words that end in the
letter “s” are the plural form (which is not always true). Note that this rule
applies to English and Spanish words. German words that end in the letter “e”
are often plural forms (but they can be the feminine form of a word as well).
Italian words ending in “i” or “e” are often the plural form of words (but many
feminine words also have an “e” ending).

Probabilistic Methods assign POS tags based on the probability of the
occurrence of a particular tag sequence. Finally, Deep Learning Methods use
deep learning architectures (such as RNNs) for POS tagging.

WORKING WITH TEXT: NER

NER is an acronym for named entity recognition, which is known by vari-
ous names, including named entity identification, entity chunking, and entity
extraction. NER is a subtask of information extraction, and its purpose is to
find named entities in a corpus and then classify those named entities based
on predefined entity categories. As a result, NER can assist in transforming
unstructured data to structured data.

In high level terms, a “named entity” is a real-world object that is assigned
a name, which can be a word or a phrase that distinguishes one “item” from
other items in a corpus. There are various pre-defined named entity types,
such as PERSON (people, including fictional), ORG (Companies, agencies,
institutions), and GPE (Countries, cities, states). Other entity types include
Ethnicity, Name, Occupation, Quantity, Type, and Unit. A complete list of
named entity types is here:

https://spacy.io/api/annotation

https://spacy.io/api/annotation

110  •  Natural Language Process Using R Pocket Primer

The extraction of meaningful information is a challenging task, partially due
to ambiguity, especially in unstructured data. NER has benefited from machine
learning, such as the kNN algorithm and CRF (Conditional Random Field).
More recently, NER formed the basis for text extraction in the Transformer
architecture, which has yielded significant advances in NLP.

Although NER is very useful, there are situations in which NER can pro-
duce incorrect results, such as

•	insufficient number of tokens
•	too many tokens
•	incorrectly partitioning adjacent entities
•	assigning an incorrect type

Later in this book you will see Python code samples from NLP toolkits,
such as NLTK, that provide support for NER.

Abbreviations and Acronyms

As a reminder, an acronym consists of the first letter of several words, such
as NLP (Natural Language Processing), whereas an abbreviation is a short-
ened form of a word, such as “prof” for professor. Depending on the domain, a
corpus can contain many acronyms or abbreviations (or both).

Detection of abbreviations is a task of sentence segmentation and tokeniza-
tion processes, which includes disambiguating sentence endings from punctu-
ation attached to abbreviations. This task is domain-dependent and of varying
complexity (and higher complexity for the medical field).

The following link contains information about CARD (clinical abbreviation
recognition and disambiguation) that recognizes abbreviations in a corpus:

https://academic.oup.com/jamia/article/24/e1/e79/2631496
In addition, you can customize the tokenizer in spaCy (discussed

later) by adding extra rules, as described here: https://spacy.io/usage/
linguistic-features.

Furthermore, the PUNKT system was been developed for sentence bound-
ary detection, and it can also detect abbreviations with high accuracy.

Chunking refers to the process of extracting phrases from unstructured
text. For example, instead of treating “Empire State Building” as three unre-
lated words, they are treated as a single chunk.

NER Techniques

Currently NER techniques can be classified into four general categories,
as shown below:

•	Rule-based
•	Feature-based supervised learning
•	Unsupervised learning
•	Deep learning

https://academic.oup.com/jamia/article/24/e1/e79/2631496
https://spacy.io/usage/linguistic-features

NLP Concepts (I)  •  111

Rule-based techniques rely on manually specified rules, which means
that they do not require annotated data. Unsupervised learning techniques
do not require labeled data, whereas supervised learning techniques involve
feature engineering. Various supervised machine learning algorithms for NER
are available, such as the Hidden Markov Model (HMM), Decision Trees,
Maximum Entropy Model, Support Vector Machine (SVM), and Conditional
Random Field (CRF).

Finally, deep learning techniques automatically discover classification
from the input data. However, deep learning techniques require a significant
amount of annotated data, which might not be readily available. In addition,
NER involves some complex tasks, such as detecting nested entities, multi-
type entities, and unknown entities.

WHAT IS TOPIC MODELING?

Topic modeling is a technique for determining topics that exist in a docu-
ment or a set of documents, which is useful for providing a synopsis of arti-
cles and documents. Topic modeling involves unsupervised learning (such as
clustering), so the set of possible topics are unknown. The topics are defined
during the process of generating topic models. Topic modeling is generally not
mutually-exclusive because the same document can have its probability distri-
bution spread across many topics.

In addition, there are hierarchical topic modeling methods for handling
topics that contain multiple topics. Moreover, topics can change over time;
they may emerge, later disappear, and then re-emerge as topics.

There are several algorithms available for topic modeling, some of which
are listed below:

•	LDA (Latent Dirichlet Allocation)
•	LSA (Latent Semantic Analysis)
•	Correlated Topic Modeling

Latent Dirichlet Allocation (LDA) is a well-known unsupervised algorithm
for topic modeling. In high level terms, LDA determines the word tokens in a
document and extracts topics from those tokens. LDA is a non-deterministic
algorithm that produces different topics each time the algorithm is invoked.

By way of analogy, LDA resembles the well-known kMeans algorithm:
LDA requires that you specify a value for the number of topics, just as kMeans
requires a value for the number of clusters. Next, LDA calculates the prob-
ability that each word belongs to its assigned “topic” (cluster), and does so
iteratively until the algorithm converges to a stable solution (i.e., words are no
longer re-assigned to different topics).

After the clustering-related task is completed, LDA examines each docu-
ment and determines which topics can be associated with that document.
kMeans and LDA differ in one important respect: kMeans has a one-to-one

112  •  Natural Language Process Using R Pocket Primer

relationship between an item and a cluster, whereas LDA supports a one-
to-many relationship whereby a document can be associated with multiple
topics. The latter case makes intuitive sense: the longer the document, the
greater the possibility that that document contains multiple topics. Moreover,
LDA computes an associated probability that a document is associated with
multiple topics. For example, LDA might determine that a document has
three different topics, with probabilities 60%, 30%, and 10% for those three
topics.

KEYWORD EXTRACTION, SENTIMENT ANALYSIS, AND TEXT
SUMMARIZATION

Keyword extraction is an NLP process whereby the most significant and
frequent words of a document are extracted. There are various techniques for
performing keyword extraction, such as computing tf-idf values of words in a
corpus (discussed in Chapter 4) and BERT models (discussed in Chapter 7).
Other algorithms include TextRank, TopicRank, and KeyBERT, all of which
are discussed in this article:

https://towardsdatascience.com/keyword-extraction-python-tf-idf-tex-
trank-topicrank-yake-bert-7405d51cd839

Incidentally, NER (described in a previous section) relies on key word
extraction as a step toward assigning a name to real-world objects. If you gen-
eralize even further, you can think of NER as a special case of relation extrac-
tion in NLU.

Sentiment analysis determines the sentiment of a document, which can
be positive, neutral, or negative and often represented by the numbers 1, 0,
and -1, respectively. Sentiment analysis is actually a subset of text summariza-
tion. Sentiment analysis can be implemented using supervised or unsupervised
techniques, in a number of algorithms, including Naive Bayes, gradient boost-
ing, and random forests.

Text summarization is just what the term implies: given a document, sum-
marize its contents. Text summarization is a two-phase process that involves
various techniques, including keyword extraction and topic modeling. The
first phase creates a summary of the most important parts of a document, fol-
lowed by the creation of a second summary that represents a summary of the
document.

There are various text summarization algorithms, such as LexRank and
TextRank. The LexRank algorithm uses a ranking model (based on similarity of
sentences) in order to categorize the sentences in a document: sentences with
a higher similarity have a higher ranking.

TextRank is an extractive and unsupervised technique that determines
words embeddings for the sentences in a corpus, calculates and stores sen-
tence similarities in a similarity matrix, and then converts the matrix to a graph.
A summary is based on the top-ranked sentences in the graph.

https://towardsdatascience.com/keyword-extraction-python-tf-idf-textrank-topicrank-yake-bert-7405d51cd839

NLP Concepts (I)  •  113

SUMMARY

This chapter started with a high-level overview of human languages, how
they might have evolved, and the major language groups. Next you learned
about grammatical details that differentiate various languages from each other
that highlight the complexity of generating native-level syntax as well as native-
level pronunciation.

In addition, you got a brief introduction to NLP applications, NLP use
cases, NLU, and NLG. Then you learn about concepts such as word sense dis-
ambiguation, text normalization, tokenization, stemming, lemmatization, and
the removal of stop words. Finally, you learned about POS (Parts of Speech)
and NER (Named Entity Recognition) and various algorithms that perform
topic modeling in NLP.

CHAPTER 5
NLP CONCEPTS (II)

This is the second chapter that discusses NLP concepts, such as word
relevance, vectorization, basic NLP algorithms, language models, and
word embeddings. The next chapter contains R-based code samples

that illustrate many of the concepts that are discussed in this chapter and the
previous chapter.

The first part of this chapter discusses word relevance, text similarity, and
text encoding techniques. The second part of this chapter discusses text encod-
ing techniques and the notion of word encodings. The third part of this chapter
introduces you to word embeddings, which are highly useful in NLP. In addi-
tion, you will learn about vector space models, n-grams, and skip-grams.

The final section discusses word relevance and dimensionality reduction
techniques, some of which are based on advanced mathematical concepts. As
such, these algorithms are covered in a high-level fashion, and you can per-
form an Internet search to find more detailed explanations of these algorithms.
Alternatively, if you are not interested in the more theoretical underpinnings of
machine learning algorithms, you can skim through this section of the chapter
and return to this material when you need to learn more about the details of
dimensionality reduction algorithms.

WHAT IS WORD RELEVANCE?

If you are wondering what it means to say that a word is “relevant,” there
is no precise definition. The underlying idea is that the relevance of a word in
a document is related (proportional) to how much information that word pro-
vides in a document (and the latter is also imprecise). Stated differently, words
have higher relevance if they enable us to gain a better understanding of the
contents of a document without reading the entire document.

116  •  Natural Language Processing Using R Pocket Primer

If a word rarely occurs in a document, that suggests that the word could
have higher relevance. However, if a word occurs frequently, then the rel-
evance of the word is generally (but not always) lower. For example, if the
word “unicorn” has a limited number of occurrences in a document, then it
has higher word relevance, whereas stop words such as “a,” “the,” and “or”
have very low word relevance. Another scenario involves word relevance in
multiple documents: suppose we have 100 documents, and the word “unicorn”
appears frequently in a single document but not in the other 99 documents.
Once again, the word “unicorn” probably has significant relevance.

Another factor in the relevance of a word is related to the number of syno-
nyms that exist for a given word. The words “unicorn” and “death” do not have
direct synonyms (though the latter does have euphemisms), which means that
in some cases the words will appear more frequently in a document, and yet
they still have higher word relevance than stop words.

In addition to determining the words that are relevant in a document or
a corpus, we might also want to know whether or not two text strings (such
as sentences or documents) are similar, which is the topic of the next section.

WHAT IS TEXT SIMILARITY?

Text similarity calculates the extent to which a pair of text strings (such as
documents) are similar to each other. However, two text strings can be similar
yet they can have different meanings.

For example, the two sentences “The man sees the dog” and “The dog sees
the man” contain identical words (and also have the same word relevance),
yet they differ in their meaning because English is word-order dependent.
Replace “sees” with “bites” in the preceding pair of sentences to convey a more
vivid contrast in meaning. Clearly, we need to take into account the context of
the words in the two sentences, and not just the set of words.

Note that German is not word order dependent, so the words in a sentence
can be rearranged without losing the original meaning. German is among the
languages (such as Lithuanian and Slavic languages) that supports declension
of articles and adjectives. An example of two identical German sentences is
shown below, and notice that the word order is reversed in the second sentence:

Der Mann sieht den Hund.
Den Hund sieht der Mann.

The “den” particle represents either the direct object case for masculine
singular words or the indirect object case for plural words. Hence, the “Hund”
(dog) is the direct object on both of the preceding sentences.

One approach for handling the word order dependency aspect of languages
such as English involves creating floating point vectors for words. Then we
can calculate the cosine similarity of two vectors, and if the value is close to 1,
we infer that the words associated with the vectors are closely related. This

NLP Concepts (II)  •  117

technique is called word vectorization, and it’s the topic of a section later in
this chapter, after the section that discusses the meaning of text encoding.

SENTENCE SIMILARITY

There are various algorithms for calculating sentence similarity, such as the
Jaccard Similarity, word2vec with the cosine similarity (the latter is discussed
in this chapter), LDA with the Jenson-Shannon distance, and a universal sen-
tence encoder.

One class of algorithms involves the cosine similarity, and another class of
algorithms involves deep learning architectures, such as Transformer, LSTMs,
and VAEs (and the latter two are beyond the scope of this book). You might be
surprised to discover that you can even use the kMeans clustering algorithm
in machine learning to perform sentence similarity. Another technique is the
Universal Sentence Encoder, as discussed in the next section.

Sentence Encoders

Pre-trained sentence encoders for sentences are the counterpart of word-
2vec and GloVe (both are discussed later in this chapter) for words. The
embeddings are useful for various tasks, including text classification. Sentence
encoders can capture additional semantic information when they are trained
on supervised and unsupervised data. Models that encode words in context are
also called sentence embedding models.

In particular, Google created the Universal Sentence Encoder that encodes
text into high dimensional vectors that can be used for various natural language
tasks, and the pre-trained model is available at the TensorFlow Hub (TFH):

https://tfhub.dev/google/collections/universal-sentence-encoder
One variant of this model was trained with the Transformer encoder, which

has a higher accuracy, and another variant was trained with Deep Averaging
Network (DAN), which has a lower accuracy. In fact, there are 11 models avail-
able at the TFH that have been trained to perform different tasks.

WORKING WITH DOCUMENTS

Two tasks pertaining to documents involve document classification (for
determining the nature of a document) and document similarity (i.e., compar-
ing documents), both of which are discussed in the following subsections.

Document Classification

Document classification can be performed with different levels of granu-
larity, from document-level down to sub-sentence level of granularity. The spe-
cific level that you choose depends on your task-specific requirements.

Document classification can be performed in several ways in machine
learning. One way to do so involves well-known algorithms such as the SVM
(Support Vector Machines) and Naive Bayes.

https://tfhub.dev/google/collections/universal-sentence-encoder

118  •  Natural Language Processing Using R Pocket Primer

Document Similarity (doc2vec)

There are several algorithms for determining document similarity, includ-
ing Jaccard (not discussed), doc2vec, and BERT (discussed in Chapter 7).

The doc2vec algorithm an unsupervised algorithm that converts docu-
ments into a corresponding vector and then computes their cosine similarity.
The doc2vec algorithm learns fixed-length feature embeddings from variable-
length pieces of texts. Despite its name, doc2vec works on sentences and para-
graphs as well as documents. Details about the doc2vec algorithm are in the
original paper:

https://arxiv.org/abs/1405.4053
The choice of algorithm for document similarity depends on the criteria

that are used to judge document similarity, such as

•	Tag Overlap
•	Section
•	Subsections
•	Story Style
•	Theme

The following article evaluates several algorithms for document similarity
that takes into account the items in the preceding bullet list:

https://towardsdatascience.com/the-best-document-similarity-algorithm-
in-2020-a-beginners-guide-a01b9ef8cf05

The following link contains an example of using the doc2vec algorithm:
https://medium.com/@japneet121/document- vectorization-301b06a041

TECHNIQUES FOR TEXT SIMILARITY

In general, a set of documents with the same theme typically contain words
that are common throughout those documents. In some cases, a pair of docu-
ments might contain only generic words, and yet the documents share the
same theme. For example, suppose one document only discusses tigers and
another document only discusses lions. Although these two documents dis-
cuss a different animal, both documents pertain to wild animals, which clearly
shows that they belong to the same theme.

There is an indirect connection between the documents that discuss tigers
and lions: they are both “instances” of the higher-level (and more generic)
topic called “wild animals.” However, tf-idf values for these two documents
will not determine that the documents are similar: doing so involves a distrib-
uted representation (such as doc2vec) for the word embeddings of the words
in the two documents.

The following article performs a comparison of different algorithms for cal-
culating document similarity:

https://towardsdatascience.com/the-best-document-similarity-algorithm-
in-2020-a-beginners-guide-a01b9ef8cf05

https://arxiv.org/abs/1405.4053
https://towardsdatascience.com/the-best-document-similarity-algorithm-in-2020-a-beginners-guide-a01b9ef8cf05
https://medium.com/@japneet121/document- vectorization-301b06a041
https://towardsdatascience.com/the-best-document-similarity-algorithm-in-2020-a-beginners-guide-a01b9ef8cf05

NLP Concepts (II)  •  119

The preceding article compares the accuracy of tf-idf, Jaccard, USE, and
BERT (discussed in Chapter 7) on a set of documents to determine document
similarity. Interestingly, tf-idf is the fastest algorithm (by far) of the four algo-
rithms, and in some cases, tf-idf out-performed the other three algorithms in
terms of accuracy.

Similarity Queries

Suppose that we have a corpus consisting of a set of text documents. A
similarity query determines which of those documents is the most similar to a
given query. Here is a very high-level sequence of steps in the algorithm:

1.	 Index every document in the corpus.
2.	 Find the distance between the query and each document.
3.	 Select the documents with the lowest distance values.

The distance between a query and a document can be computed in several
ways, and one of the most popular techniques is called the cosine similarity,
which is explained in more detail later in this chapter. However, the key idea
involves calculating the (mathematical) cosine of the angle between the two
vectors, which is between −1 and 1 inclusive. When this floating number is
close to 1, the angle between the vectors is close to 0, which in turn suggests
that the words associated with the two vectors are probably close in meaning.
If the angle between the vectors is close to 1, then the angle between the vec-
tors is close to 90 degrees, which in turn suggests that the words associated
with the two vectors are probably unrelated. A value of −1 suggests that the
two words might have opposite meanings (antonyms).

WHAT IS TEXT ENCODING?

Many online articles use the terms text encoding and text vectorization
interchangeably to indicate a vector of numeric values. However, this chapter
distinguishes between vectors whose values are calculated by training a neu-
ral network (word vectorization) versus vectors whose values are calculated
directly (text encoding).

The purpose of this distinction is assist in understanding the differences (as
well as similarities) among various vectorization documents (i.e., it’s not to be
pedantic). In simple terms, this distinction is not an industry standard.

Based on the distinction between text encoding and text vectorization, the
following algorithms are text encodings:

•	BoW
•	N-grams
•	Tf-idf

The algorithms in the preceding list have a simple intuition; however, they
do not capture the context of words, nor do they track the grammatical aspects

120  •  Natural Language Processing Using R Pocket Primer

(such as subject, verb, noun) of the words in a document. Note that BoW and
n-grams generate word vectors that have integer values, whereas tf-idf gener-
ates floating point numbers. Moreover, these three techniques can result in
sparse vectors when the vocabulary is large.

TEXT ENCODING TECHNIQUES

There are three well-known techniques for text encoding (three of which
involve integer-valued vector), as listed below:

1.	 Document Vectorization
2.	 One-Hot Encoding
3.	 Index-Based Encoding

The following subsections provide a summary of each of the preceding
text encoding techniques. In the next chapter, you will see code samples that
illustrate these techniques. Another technique involves word embeddings, but
since this technique involves more complexity than those in the preceding bul-
let list, word embeddings are discussed later. (If you would prefer not to wait:
word embeddings are calculated by training a shallow neural network or by
means of a technique called matrix factorization.)

Document Vectorization

Document vectorization creates a dictionary of unique words in the docu-
ment and each word becomes a column in the vector space. Each text becomes
a vector of 0s and 1s, where 1 indicates the presence of a word and 0 indi-
cates the absence of a word. This is called a one-hot document vectorization.
Although this does not preserve word order in input text, it’s easy to interpret
and generate.

As an illustration, the following technique performs document vectoriza-
tion by performing the following steps:

Find the # of unique words in the corpus (let's call this M)
count the occurrences of each unique word in each document
for i = 1 to N (= number of documents):
 for document i create a 1xM vector W
 for j = 1 to M:
 W[j] = 1 if word j is in document i

For example, suppose we have the following 3 documents (N=3):

Doc1: Steve loves deep dish Chicago pizza.
Doc2: Dave also loves Chicago pizza.
Doc3: Both like Guinness.

The list of unique words (M=11) in the preceding three documents is
shown here:

NLP Concepts (II)  •  121

{also, both, Chicago, Dave, deep, dish, Guinness, like, loves, pizza, Steve}

A text encoding for Doc1, Doc2, and Doc3 consists of 1 × 11 vectors con-
taining integer values, as shown here:

Doc1: [0,0,1,0,1,1,0,0,1,1,1]
Doc2: [1,0,1,1,0,0,0,0,1,1,0]
Doc3: [0,1,0,0,0,0,1,1,0,0,0]

While document vectorization works reasonably well for a limited num-
ber of unique words, it’s less efficient for a large number of unique words
because the text encoding of sentences will tend to have many occurrences
of 0, which is called sparse data. In this example, there are 11 unique words,
but consider what happens when there are several hundred unique words
contained in multiple sentences: each sentence is (generally) much shorter
than the list of unique words, and therefore the corresponding vector con-
tains mostly 0s.

The preceding technique populates vectors with 0 and 1 values. However,
there is a frequency-based vectorization that uses the frequency of each word
in the document instead of just its presence or absence. This is accomplished
by modifying the innermost loop in the preceding code with the following code
snippet:

W[j] = # of occurrences of word j in document i

One-Hot Encoding (OHE)

A OHE is a compromise between preserving the word order in the
sequence and the easy interpretability of the result. Each word in a vocabu-
lary is represented as a vector with a single 1 and the remaining values of the
vector are all 0. For example, if you have a vocabulary of 10 words, then each
row in a 10 × 10 identity matrix is a one-hot encoding that can be associated
with one of the ten words in the vocabulary. In general, each row of an nxn
identity matrix can represent a categorical variable that has n distinct values.
Unfortunately, this technique can result in a very sparse and very large input
tensor. Chapter 6 contains a code sample that illustrates a one-hot encoding
of a vocabulary.

A OHE relies on a BoW representation of the words in a vocabulary. A
OHE assumes that words are independent, which means that synonyms are
represented by different vectors. The size of each vector equals the number
of words in the vocabulary. Thus, a vocabulary of 100 words is encoded as 100
vectors, each of which as 100 elements (99 of them are 0 and one of them is 1).

As a simple example, the sentence “I love thick pizza” can be tokenized as
[“I,” “love,” “thick,” and “pizza”] and one-hot encoded as follows:

[1,0,0,0]
[0,1,0,0]
[0,0,1,0]
[0,0,0,1]

122  •  Natural Language Processing Using R Pocket Primer

The sentence “We also love thick pizza” can be encoded as follows:

[0,1,1,1] = [0,1,0,0] + [0,0,1,0] + [0,0,0,1] = [0,1,1,1]

The left-side vector [0,1,1,1] is the component-based sum of the three
vectors that represent the one-hot encoding of the words love, thick, and
pizza, respectively.

There are two points to notice about this encoding. First, the first index of
this vector is 0 because this sentence contains “we” instead of “i.” Second, the
words “we” and “also” are not part of the vocabulary: they are OOV (out of
vocabulary) words.

One algorithm that can handle OOV words is fastText (developed by
Facebook), which is discussed later in this chapter. Another approach involves
a model that is based on bi-LSTMs (bidirectional LSTMs), as described here:

https://medium.com/@shabeelkandi/handling-out-of-vocabulary-words-in-
natural-language-processing-based-on-context-4bbba16214d5

The key idea in the preceding link involves determining the most likely
embedding for OOV words.

Another article regarding OOV words involves the skip-gram model that
is discussed later in this chapter, but it’s included here in case you are already
familiar with this model (alternatively, you can wait until after we discuss the
skip-gram model):

https://towardsdatascience.com/creating-word-embeddings-for-out-of-
vocabulary-oov-words-such-as-singlish-3fe33083d466

Index-Based Encoding

This technique tries to address input data size reduction as well as the
sequence order preservation. Index-based encoding maps each word to an
integer index and groups the index sequence into a collection type column.
Here is the sequence of steps (in high level terms):

•	Create a dictionary of words from the corpus.
•	Map words in the dictionary to indexes.
•	Represent a document by replacing its words with indexes.

Although this technique supports variable-length documents, note that this
technique creates an artificial (and misleading) distance between documents.

Additional Encoders

Although the previous sections discussed just three-word encoders, there
are many other encoding techniques available, some of which are in the fol-
lowing list:

•	BaseEncoder
•	BinaryEncoder
•	CatBoostEncoder

https://medium.com/@shabeelkandi/handling-out-of-vocabulary-words-in-natural-language-processing-based-on-context-4bbba16214d5
https://towardsdatascience.com/creating-word-embeddings-for-out-of-vocabulary-oov-words-such-as-singlish-3fe33083d466

NLP Concepts (II)  •  123

•	CountEncoder
•	HashingEncoder
•	LeaveOneOutEncoder
•	MEstimateEncoder
•	OrdinalEncoder
•	SumEncoder
•	TargetEncoder

We will not cover these word encoders, but information regarding the text
encoders (along with with Python code snippets) in the preceding list is avail-
able online:

https://towardsdatascience.com/beyond-one-hot-17-ways-of-transforming-
categorical-features-into-numeric-features-57f54f199ea4

THE BOW ALGORITHM

Based on a dictionary of unique words that appear in a document, the BoW
algorithm generates an array with the number of occurrences in the document
of each dictionary word. The advantages of BoW include simplicity and an easy
way to see the frequency of each word in a document. BoW is essentially an
n-gram model with n = 1 (n-grams are discussed later in this chapter).

However, BoW does not maintain any word order and no form of context,
and in the case of multiple documents, BoW does not take into account the
length of the documents.

As a simple example, suppose that we have a dictionary consisting of the
words in the sentence “This is a short sentence.” Then the corresponding 1 × 5
vector for the dictionary is (this, is, a, short, sentence). Hence, the sentence “This
sentence” is encoded as the vector (1, 0, 0, 0, 1). As you can see, this (and any
other) sentence is treated as a “bag of words” in which word order is lost. In gen-
eral, a dictionary consists of a list of N distinct words, and any sentence consisting
of words from that vocabulary is mapped to a 1 × N vector of zeroes and positive
integers that indicate the number of times that words appear in a sentence.

The Sklearn library provides a CountVectorizer class that implements
the BoW algorithm. The CountVectorizer class tokenizes the words in a
corpus and generates a numeric vector that contains the word counts (fre-
quency) of each word in the corpus. Moreover, this class can also remove stop
words and examine the most popular N unigrams, bigrams, and trigrams.

However, words inside CountVectorizer are assigned an index value
instead of storing words as strings. Here is the set of parameters (and their
default values) for the CountVectorizer class, which are explained in more
detail in the Sklearn documentation page for this class:

class sklearn.feature_extraction.text.CountVectorizer(*,
input='content', encoding='utf-8', decode_error='strict',
strip_accents=None, lowercase=True, preprocessor=None,
tokenizer=None, stop_words=None, token_pattern='(?u)\b\w\

https://towardsdatascience.com/beyond-one-hot-17-ways-of-transforming-categorical-features-into-numeric-features-57f54f199ea4

124  •  Natural Language Processing Using R Pocket Primer

w+\b', ngram_range=(1, 1), analyzer='word', max_df=1.0,
min_df=1, max_features=None, vocabulary=None, binary=False,
dtype=<class 'numpy.int64'>)

As another example, suppose that we have the following set of sentences:

1.	 I love Chicago deep dish pizza.
2.	 New York style pizza is also good.
3.	 San Francisco pizza can be very good.

The set of BoW word/index pairs is as follows:

{'love': 9, 'chicago': 3, 'deep': 4, 'dish': 5, 'pizza':
11, 'new': 10, 'york': 15, 'style': 13, 'is': 8, 'also': 0,
'good': 7, 'san': 12, 'francisco': 6, 'can': 2, 'be': 1,
'very': 14}

The BoW encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:
[[0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0]]
New York style pizza is also good:
[[1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1]]
San Francisco pizza can be very good:
[[0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0]]

As you have probably deduced, BoW models lose useful information, such
as the semantics, structure, sequence and context around nearby words in each
text document.

WHAT ARE N-GRAMS?

An n-gram is a technique for creating a vocabulary from N adjacent words
together, hence it retains some word positions. The value of N specifies the
size of the group. In many cases n-grams are from a text or speech corpus when
items are words, n-grams may be called shingles. One common use for n-grams
is to supply them to the word2vec algorithm, which in turn calculates vectors
of floating-point numbers that represent words.

In highly simplified terms, the key idea of n-grams involves determining a
context word that is missing from a sequence of words. For example, suppose
we have five consecutive words in which the third word is missing. This is
called a “bi-gram” because we have two words on the left side and two words
on the right side of the missing word.

There are two types of n-grams: word n-grams and character n-grams.
Word n-grams include all of the following:

•	1-gram or unigram when N=1
•	a bigram or a word pair when N=2
•	a trigram when N=3

NLP Concepts (II)  •  125

The preceding list also applies to character-based n-grams. In addition,
the items in n-grams can be any of the following: phonemes, syllables, letters,
words/base pairs according to the application. Here are examples of 2-grams
and 3-grams.

Example #1: “This is a sentence” has the following 2-grams (bi-grams):
(this, is), (is, a), (a, sentence)

Example #2: “This is a sentence” has the following 3-grams (tri-grams):
(this, is, a), (is, a, sentence)

Example #3: “The cat sat on the mat” has the following 3-grams:
“The cat sat”
“cat sat on”
“sat on the”
“on the mat”

As yet another example, with the corresponding code deferred until a later
chapter, suppose that we have the following set of sentences:

I love Chicago deep dish pizza.
New York style pizza is also good.
San Francisco pizza can be very good.

The bigram pairs are as follows:

{'love chicago': 8, 'chicago deep': 3, 'deep dish': 4,
'dish pizza': 5, 'new york': 9, 'york style': 15, 'style
pizza': 13, 'pizza is': 11, 'is also': 7, 'also good': 0,
'san francisco': 12, 'francisco pizza': 6, 'pizza can': 10,
'can be': 2, 'be very': 1, 'very good': 14}

The n-gram encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:
[[0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0]]
New York style pizza is also good:
[[1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1]]
San Francisco pizza can be very good:
[[0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0]]

Compare the bigram encoding of the same three sentences using a BoW
encoding in an earlier section.

Calculating Probabilities with n-grams

As a simple illustration, consider the following collection of sentences,
which we’ll use to calculate some probabilities:

126  •  Natural Language Processing Using R Pocket Primer

1.	 'the mouse ate the cheese'

2.	 'the horse ate the hay'

3.	 'the mouse saw the horse'

4.	 'the mouse scared the horse'

The word “mouse” appears in three sentences, and it’s followed by the word
“ate” (once) and the word “scared” (once). We can calculate the associated
probabilities of which of “ate” and “scared” will follow the word “mouse” as
follows:

Number of occurrences of "mouse ate" = 1
Number of occurrences of "mouse" = 3
probability of "ate" following "mouse" = 1/3

In a similar fashion, we have the following values pertaining to the word
“scared:”

Number of occurrences of "mouse scared" = 1
Number of occurrences of "mouse" = 3
probability of "scared" following "mouse" = 1/3

As a result, if we have the sequence of words “mouse ___,” we can predict
that the missing word is “ate” with a probability of 1/3, and it’s “scared” with a
probability of 1/3.

As another illustration, consider the following modification of the
previous collection of sentences, which we’ll also use to calculate some
probabilities:

1.	 'the big mouse ate the cheese'

2.	 'the big mouse ate the hay'

3.	 'the big mouse saw the horse'

4.	 'the mouse scared the horse'

The word “mouse” appears in three sentences, and it’s followed by the word
“ate” (twice), the word “saw” (once), and the word “scared” (once). We can
calculate the associated probabilities of which of “ate,” “saw,” and “scared” will
follow the word “mouse” as follows:

Number of occurrences of "mouse ate" = 2
Number of occurrences of "mouse" = 4
probability of "ate" following "mouse" = 2/4

In a similar fashion, we have the following values pertaining to the word
“saw:”

Number of occurrences of "mouse saw" = 1
Number of occurrences of "mouse" = 4
Hence the probability of "saw" following "mouse" = 1/4

NLP Concepts (II)  •  127

Finally, we have the following values pertaining to the word “scared:”

Number of occurrences of "mouse scared" = 1
Number of occurrences of "mouse" = 4
probability of "scared" following "mouse" = 1/4

As a result, if we have the sequence of words “mouse ___,” we can predict
that the missing word is “ate” with a probability of 2/4, it’s “saw” with a prob-
ability of 1/4, and it’s “scared” with a probability of 1/4.

You can also calculate the probabilities of the word that follows the pair of
words “big mouse ___:” the probability that the third word is “ate” is 2/3 and
the probability that the third word is “saw” is 1/3.

Although these examples are simple (and hardly practical), they illustrate
the intuition of n-grams. When we look at n-grams for realistic sentences in
a corpus that contains millions of words, the probabilities (and therefore the
predictive accuracy) increase dramatically.

Now let’s explore the details of tf (term frequency) and idf (inverse docu-
ment frequency), after which we can look at the tf-idf algorithm in more detail.

CALCULATING TF, IDF, AND TF-IDF

The following subsections discuss the numeric quantities tf, idf, and tf-idf
(which equals the arithmetic product of tf and idf). As you will see, tf-idf pro-
vides a more accurate assessment of word relevance in a document than using
just tf or idf.

The tf-idf algorithm is an improvement over BoW because tf-idf takes into
account the number of occurrences of a given word in each document as well
as the number of documents that contain that word. As a result, tf-idf indicates
the relative importance of a specific word in a set of documents. In fact, the
Sklearn package provides the class TfidfVectorizer that computes tf-idf val-
ues, as you will see later in a code sample.

What is Term Frequency (TF)?

The term frequency of a word equals the number of times that a word
appears in a document. If you have a set of documents, and a word that appears
in several of those documents, then its term frequency can be different in dif-
ferent documents. For example, consider the two documents Doc1 and Doc2:

Doc1 = "This is a short sentence" (5 words)
Doc2 = "yet another short sentence" (4 words)

We can easily calculate the term frequencies for the words “is” and “short”
in Doc1 and Doc2, as shown here:

tf(is) = 1/5 for doc1
tf(is) = 0 for doc2
tf(short) = 1/5 for doc1
tf(short) = 1/4 for doc2

128  •  Natural Language Processing Using R Pocket Primer

The following example shows you how to use term frequency to calculate
numeric vectors associated with three documents to determine which pair of
documents are more closely related.

Let’s suppose that doc1, doc2, and doc3 contain the words “cuisine,”
“pizza,” “steak,” “shrimp,” and “caviar” with the following frequencies:

 doc1 doc2 doc3

beer | 10 | 50 | 20
pizza | 30 | 50 | 30
steak | 50 | 0 | 50
shrimp | 10 | 0 | 0
caviar | 0 | 0 | 0

Let’s normalize the column vectors in the preceding table, which gives us
the following table of values:

 doc1 doc2 doc3

beer | .10 |.50 | .20
pizza | .30 |.50 | .30
steak | .50 | 0 | .50
shrimp | .10 | 0 | 0
caviar | 0 | 0 | 0

For simplicity, let’s use an asterisk (*) to denote inner product of each pair
of columns vectors, which means that we have the following values:

doc1*doc2 = (.10)*(.50)+(.30)*(.50)+0+0+0 = 0.20
doc1*doc3 = (.10)*(.20)+(.30)*(.30)+(.50)*(.50)+0+0 = 0.36
doc2*doc3 = (.50)*(.20)+(.30)*(.30)+0+0+0 = 0.19

Hence, the documents doc1 and doc3 are most closely related, followed
by the pair doc1 and doc2, and then the pair doc2 and doc3.

The next section discusses inverse document frequency, followed by tf-idf,
which we could use instead of the tf values to determine which pair of docu-
ments in the preceding example are most closely related.

What is Inverse Document Frequency (IDF)?

The following example illustrates how to calculate the idf value for the
words in a set of documents. Given a set of N documents (ex: N = 10):

1.	 for each word in each document:
2.	 set dc = # of documents containing that word
3.	 set idf = log(N/dc)

NLP Concepts (II)  •  129

Let’s consider the following example with N = 2 and Doc1 and Doc2 defined
as shown here:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

Then the idf values for “is” and “short” for the documents Doc1 and Doc2
are shown below:

idf("is") = log(2/1) = log(2)
idf("short") = log(2/2) = 0.

What is tf-idf?

The tf-idf value of a word in a corpus is the product of its tf value and its
idf value. The tf-idf values are a measure of word relevance (not frequency).
Recall that tf (term frequency) measures the number of times that words
appear in a given document, so a high frequency word indicates a topic in a
document, and has a higher tf.

However, the idf (inverse-document frequency) of a word is inversely pro-
portional to the log of the number of occurrences of a word in multiple docu-
ments. Thus, a word that appears in many documents makes that word less
valuable, and hence lowers its idf value. By contrast, rare words are more rel-
evant than popular ones, so they help to extract relevance. The tf-idf relevance
of each word is a normalized data format that also adds up to 1.

Notice that the idf value involves the logarithm of N/dc: this is because
word frequencies are distributed exponentially, and the logarithm provides a
better weighting of a word’s overall popularity. In addition, tf-idf assumes a
document is a “bag of words.”

Note the following idf and tf-idf values:

•	idf = 0 for words that appear in every document
•	tfidf = 0 for words that appear in every document
•	idf = log(N) for words that appear in one document

In addition, a word that appears frequently in a single document will have
a higher tf-idf value. Moreover, a word that appears frequently in a document
is probably part of a topic.

For example, suppose that the word “syzygy” appears in a collection of doc-
uments. The word “syzygy” can be a differentiator because it probably appears
in a low number of documents of that collection.

After the tf-idf values are computed for the words in the corpus, the words
are sorted in decreasing order, based on their tf-idf value, and then the highest
scoring words are selected. The number of selected words depends on you: it
can be as small as 5 or as large as 100 (or even larger).

130  •  Natural Language Processing Using R Pocket Primer

By way of comparison, BoW and tf-idf differ from word embeddings (dis-
cussed later in this chapter) in two important ways:

1.	 BoW and tf-idf calculate one number per word whereas word embed-
dings create one vector per word

2.	 BoW and tf-idf work better for classifying entire documents, whereas
word embeddings are useful for determining the context of words in a
document

Incidentally, you can implement a rudimentary search algorithm based on
tf-idf scores for the words in a corpus, and make a determination based on the
most relevant words (which is based on their tf-idf value) in a corpus. Even
Google Search has used tf-idf assist in determining the top-ranked links to
return to users.

As another example, with the corresponding code in a later chapter, sup-
pose that we have the following set of sentences:

I love Chicago deep dish pizza.
New York style pizza is also good.
San Francisco pizza can be very good.

The tf-idf pairs are as follows:

{'love': 5, 'chicago': 0, 'deep': 1, 'dish': 2, 'pizza': 7,
'new': 6, 'york': 10, 'style': 9, 'good': 4, 'san': 8,
'francisco': 3}

The tf-idf encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:
[[0.47952794 0.47952794 0.47952794 0. 0. 0.47952794
0. 0.28321692 0. 0. 0.]]

New York style pizza is also good:
[[0. 0. 0. 0. 0.38376993 0.
0.50461134 0.29803159 0. 0.50461134 0.50461134]]

San Francisco pizza can be very good:
[[0. 0. 0. 0.5844829 0.44451431 0. 0.
0.34520502 0.5844829 0. 0.]]

Compare the tf-idf encoding of the same three sentences using a BoW
encoding and an n-gram encoding in an earlier section.

Limitations of tf-idf

The tf-idf value is useful for determining the most relevant words in a set
of documents, but can be less effective when trying to match a phrase in one
or more documents. If you allow partial matches, then the set of matching
phrases can contain phrases that are less relevant.

NLP Concepts (II)  •  131

For example, suppose a set of documents pertains to various animals, and
you want to find the documents that contain the phrase “strong racing horse.”
Would you accept the phrase “strong racing dog” as a match? If this phrase has
the same tf-idf value as the original search phrase, then tf-idf cannot distin-
guish between them, and so tf-idf cannot reject the latter phrase in the match-
ing set of documents.

A better solution involves word2vec (or even better, an attention-based
mechanism such as the transformer architecture) because word2vec provides
word vectors that contain contextual information about words (which is not the
case for tf-idf values). In Chapter 7, you will learn about a technique that is
even more powerful than word2vec, which involves the attention mechanism
that is part of the foundation for the Transformer-based architecture.

BoW models lose useful information, such as the semantics, structure,
sequence and context around nearby words in each text document. A better
approach involves statistical language models, as discussed later in this chapter.

What is BM25?

The bm25 algorithm is a modification of the term-frequency of words,
which involves the following formula:

bm25 = tf/(tf+k), where k = an integer-valued hyper parameter

The bm25 value can be adjusted by specifying different values for k: in all
cases, the maximum bm25 value is 1.

Another adjustment to consider is the length of a document: a word that
occurs once in a short document will have a higher TF value than a word that
appears once in a long document. One way to take the document length into
account is to replace k by the adjusted term k*doc_len/avg_doc_len, where:

dl = document length
avg_doc_len = the average length of the documents

This adjusted term is smaller for shorter documents than for average
length or longer documents, so a single word that appears in documents will
be weighted accordingly.

You can also replace k with [1 - b + b*doc_len/avg_doc_len], where b
is a floating point value between 0 and 1. The preceding expression approaches
the quantity k*doc_len/avg_doc_len (i.e., the term in the preceding para-
graph) as b approaches 1, and the expression approaches 1 as b approaches 0.

Furthermore, we can replace the expression log(N/df) for the idf value
with the expression log((N - df + 0.5)/(df + 0.5), which is a special
case of the expression log(N-df)/df.

Note that the preceding expression is negative for terms that are in more
than half of the corpus. Hence, we can take the preceding fact into account by
using the following expression for the idf:

idf = log(1 + (N - df + 0.5))/(df + 0.5) which is approximately
equal to the expression log(N/df).

132  •  Natural Language Processing Using R Pocket Primer

Pointwise Mutual Information (PMI)

PMI is an alternative to tf-idf, which works well for both word–context
matrices as well as term–document matrices. However, PMI is biased toward
infrequent events.

A better alternative to PMI is a variant known as Positive PMI (PPMI) that
replaces negative PMI values with zero (which is conceptually similar to ReLU
in machine learning). Some empirical results indicate that PPMI has superior
performance when measuring semantic similarity with word-context matrices.

THE CONTEXT OF WORDS IN A DOCUMENT

There are two types of context for words: semantic context and pragmatic
context, both of which are discussed in the following subsections. You will also
learn about the distributional hypothesis regarding the context of words. The
distributional hypothesis is based on something called a heuristic, which means
that it is based on an assumption that is often true. In fact, the assumption is
true to that extent that its accuracy is reliable enough that it outweighs the
frequency of its incorrect estimates.

In a subsequent section, you will also learn about the cosine similarity met-
ric that is used to measure the distance between two floating point vectors that
represents two words.

What is Semantic Context?

Semantic context refers to the manner in which words are related to each
other. For example, if you hear a sentence that starts with “Once in a blue
____,” you might infer that the missing word is “moon.” Another example is
“I’m feeling fine and ___,” where the missing word is “dandy.”

The distributional hypothesis asserts that words that occur in a similar con-
text tend to have similar meanings. The context of a word is the set of words
that commonly occur around that word. For example, in the sentence “the cat
sat on the mat,” here is the context of the word “sat”:

(“the”, “cat”, “on”, “the”, “mat”)

The key idea is worth repeating here: words with similar contexts share
meaning and their reduced vector representations will be similar.

Another interesting concept is pragmatics, which is a subfield of linguistics
that studies the relationship between context and meaning. As a simple exam-
ple, consider the following sentence: “He was in his prison cell talking on his
new cell phone while a nurse extracted some of his blood cell samples.” As you
can see, the word “cell” has three different meanings in the previous sentence,
and therefore any embedding that takes into account both semantic and prag-
matic context must generate three different vectors. More information about
pragmatics is available online:

https://en.wikipedia.org/wiki/Pragmatics

https://en.wikipedia.org/wiki/Pragmatics

NLP Concepts (II)  •  133

Textual Entailment

Another interesting NLP task is called textual entailment, which analyzes
a pair of sentences to predict whether the facts in the first sentence imply
the facts in the second sentence. This type of analysis is important in various
NLP-based applications, and actual results do vary (as you might expect). In
fact, one of the techniques for training the BERT model is called NSP, which
is an acronym for Next Sentence Prediction. More details regarding NSP are
in Chapter 7.

Discrete, Distributed, and Contextual Word Representations

Discrete text representations refer to techniques in which words are repre-
sented independently of each other. For example, the tf-idf value of each word
in a corpus is based on its term frequency multiplied by the logarithm of its
inverse document frequency. Thus, the tf-idf value of each word is unaffected
by the semantics of the other words in the corpus.

Moreover, if a new document is added to a corpus, or an existing document
is reduced or increased in size, then the initial tf-idf value will change for some
of the words in the original corpus. However, the new value does not include
any of the semantics of the newly added words.

By contrast, distributed text representations create representations that
are based on multiple words: thus, the representations of words are not
mutually exclusive. For example, distributed text representations include
co-occurrence matrices, word2vec, and GloVe, and fastText. Keep in mind
that word2vec involves a neural network to generate word vectors, whereas
GloVe uses a matrix-oriented technique (with SVD), which is discussed
in Chapter 6. In addition, word2vec and GloVe are limited to one word
embedding for every word, which means that a word that’s used with two or
more different contexts will have the same embedding for every occurrence
of that word.

Finally, contextual word representations are representations that take into
account all the other words in a given sentence. Hence, if a word appears in
two sentences with two different meanings (i.e., context), then the word will
have two different word embeddings for the two sentences. This is the funda-
mental idea that underlies the statement “all you need is attention.”

WHAT IS COSINE SIMILARITY?

You are probably familiar with the Euclidean distance metric for finding
the distance between a pair of points in the Euclidean plane: their distance
can be calculated via the Pythagorean theorem. The Euclidean distance met-
ric can be generalized to n-dimensions by generalizing the formula for the
Pythagorean theorem from two dimensions to n-dimensions.

If we represent words as numeric vectors, then it’s reasonable to ask the
following question: if two words have similar meanings, then how do we

134  •  Natural Language Processing Using R Pocket Primer

compare their vector representations? One way involves calculating the differ-
ence between the two vectors. For instance, suppose we are in two dimensions
(because this will simplify the example), and word U is a vector u with com-
ponents [u1,u2], and word V is a vector v with components [u1,u2]. Then
the difference between these two vectors is U-V, which is the two-dimensional
vector [u1-v1, u2-v2].

However, the difference between these vectors increases significantly if we
multiply each of these vectors by a positive integer. In essence, we want to
treat the vectors U and V as having the same property as 3*u and 10*v (or
some other multiples of u and v), which we cannot accomplish if we use the
Euclidean metric.

One solution involves calculating the cosine of the angle between a pair of
vectors, which is called the cosine similarity of two vectors. The cosine func-
tion is a trigonometric function of the angle between the two vectors. In brief,
suppose that a right-angled triangle has sides of length a and b, a hypotenuse
of length c (that’s the slanted side, which is also the longest side), and the angle
between the sides of length a and c is theta. Then, the cosine of the angle
theta is defined as follows:

cosine(theta) = a/c

The preceding formula applies to values of theta between 0 and 90
degrees (inclusive). Since a and c are positive, then a/c > 0, and since a < c,
then a/c < 1. In addition, the definition can be extended as follows:

if 0 <= theta <= 90: cosine(theta) = a/c (as defined above)
if 90 <= theta <= 180: cosine(theta) = (-1)*cosine(180-theta)
if 180 <= theta <= 270: cosine(theta) = (-1)*cosine(270-theta)
if 270 <= theta <= 360: cosine(theta) = (+1)*cosine(360-theta)

The cosine of theta is negative when theta is between 90 and 180, and
its range of values is between 0 and −1. Since the cosine of theta is between 0
and 1 when theta is between 0 and 90, we arrive at the following result:

-1 <= cosine(theta) <= 1 (for 0<= theta <= 360)

We can generalize further for angles that are less than 0 or greater than
360: simply add (or subtract) multiples of 360 until we get an angle between
0 and 360.

Cosine(-100) = cosine(-100+1*360) = cosine(260) = (-1)*cosine(10)
cosine(750) = cosine(750-2*360) = cosine(30)

However, two vectors always form an angle that is between 0 and 180 inclu-
sive. Since values of the cosine function are always between −1 and 1 inclusive,
the cosine similarity of two vectors is also between −1 and 1 inclusive. As a
reminder, the cosine of 0 degrees is 1, the cosine of 90 degrees is 0, and the
cosine of 180 degrees is −1.

NLP Concepts (II)  •  135

The intuition of cosine similarity is that “closer” vectors have a smaller
angle between them, which means that the cosine of the angle is closer to 1,
and so the words have similar meanings.

Two vectors whose angle between them is close to 90 degrees have a cosine
similarity that is close to 0, and so the words are less related to each other.
Finally, two vectors that “point” in opposite directions will have an angle of 180
degrees, and the cosine of 180 is −1, so the words will be unrelated.

The inner product of two vectors A and B is defined as

A "dot" B = |A|*|B|*cosine(theta)
cosine(theta) = (A "dot" B) /(|A|*|B|)

Example: suppose that A = [1, 1] B = [2, 0]:
cosine(theta) = (1*2+1*0)/[sqrt(2)*2] = 1/sqrt(2)
In this case, theta is 45 degrees

Note that vectors are often normalized, which means that they are scaled so
that their length equals 1. Scaling a vector involves dividing a vector by its mag-
nitude (also called the norm), which is calculated via the Pythagorean theorem.

Example #1:
If A = [1,1], then |A| = sqrt(1*1+1*1) = sqrt(2), and:
A/|A| = [1/sqrt(2), 1/sqrt(2)] (about [0.707,0.707])

Example #2:
If A = [2,0], then |A| = sqrt(2*2+0*0) = sqrt(4) = 2, and:
A/|A| = [2/2, 0/2] = [1, 0]

Example #3:
If A = [3,4], then |A| = sqrt(3*3+4*4) = sqrt(25) = 5, and:
A/|A| = [3/5, 4/5]

Example #4:
If A = [-4,3], then |A| = sqrt((-4)*(-4)+3*3) = sqrt(25) =
5, and:
A/|A| = [-4/5, 3/5]

Although cosine similarity works well in many cases, it’s not a perfect solu-
tion. For example, it’s possible to have two sparse vectors representing two
sentences with similar meaning, even though they have no words in common,
and yet their cosine similarity could be around 0.6.

In addition to cosine similarity, there are other well-known distance met-
rics, some of which are discussed in one of the appendices.

TEXT VECTORIZATION (AKA WORD EMBEDDINGS)

In common parlance, text vectorization involves the creation of word
embeddings, where each word embedding is a dense one-dimensional vector
of floating point numbers. Moreover, the word embeddings are generated by
means of a shallow neural network. The good news is that there are various

136  •  Natural Language Processing Using R Pocket Primer

publicly available word embeddings available, so you don’t need to be con-
cerned about generating those vectors.

Depending on your task, you might be able to work with small context
vectors for words, such as 1 × 16 or 1 × 32 vectors. By comparison, the word
embeddings in the BERT model (discussed in Chapter 7) are 1 × 512 vectors.

Since we can add floating point vectors that have the same number of com-
ponents, we can calculate the average of two or more word vectors. Hence, it’s
possible to represent a document as the average vector of the individual word
vectors in that document. However, such a vector is not necessarily meaningful
with respect to the document.

You can use word embeddings to find co-occurrences. For example, “good”
and “bad” both appear in a corpus and are near each other in an embedding
space, despite the fact that “good” and “bad” are antonyms.

From a different perspective, it might be helpful to think of a word embed-
ding as a projection of the index-based encoding (or a one-hot encoding) into a
numerical vector to a lower-dimension space. For example, a point P in three-
dimensional Euclidean space can be represented as (x,y,z), and its projec-
tion onto the x-y plane is the point (x,y,0), whereas its projection onto the
x-z plane is the point (x,0,z).

The new space is defined by the numerical output of an embedding layer
in a neural network. This results in a close mapping of words with similar role,
but it does involve a higher degree of complexity.

Text vectorization is typically performed after the other tasks that are
discussed in Chapter 4, such as normalization, stop word removal, and
lemmatization.

As you will see later in this chapter, word2vec is one of the first text vec-
torization algorithms that produces word embeddings by training a shallow
neural network (i.e., a single hidden layer), and every word is represented by
a vector of floating point numbers. These vectors are context vectors because
they contain contextual information for the associated words (the meaning of
context will be explained later).

However, word2vec does have a significant limitation: a word in a docu-
ment can only have a single context vector. Hence, the same context vector is
used for a given word, regardless of whether that word has a different context
in different sentences.

The Transformer architecture (discussed in Chapter 7) achieved a break-
through by overcoming this limitation of word2vec. Thus, the context vector
for a given word depends on the context of that word in a sentence, which
means that the same word can be represented by different context vectors.

OVERVIEW OF WORD EMBEDDINGS AND ALGORITHMS

This section contains several subsections, starting with a description of word
embeddings, followed by brief description of word embedding algorithms.

NLP Concepts (II)  •  137

Some of these algorithms, such as CBoW and skip-grams, are discussed in
more detail later in this chapter.

In addition to word embeddings, there is the concept of entity embedding
that generalizes the concept of a word embedding: an entity can be a word, a
sentence, or a document.

Word Embeddings

According to Wikipedia, word embeddings are defined as:

the collective name for a set of language modeling and feature learning tech-
niques in natural language processing (NLP) where words or phrases from the
vocabulary are mapped to vectors of real numbers.

The goal is to capture as much semantic information as possible by finding
a reliable word representation with real-number vectors. Techniques such as
term frequencies or one-hot encodings do not provide any context for words
in a sentence or a document. On the other hand, word embeddings do provide
context for words, which enables you to create more powerful language models.

A word embedding is a representation of the underlying text corpus (i.e.,
a collection of text-based documents). Word embeddings are a context-inde-
pendent embedding or representation.

Word embeddings are useful for document classification, which involves
supervised learning (i.e., labeled data). You can also use word embeddings for
document clustering, which involves unsupervised learning (i.e., unlabeled data).

Word embeddings reduce large one-hot word vectors into smaller vec-
tors while simultaneously preserving some of the meaning and context of the
words. One of the most popular methods for performing this reduction is
called word2vec.

Fortunately, word embeddings are useful for analyzing text data in many
languages (not just English text). Moreover, there are pretrained word embed-
dings available, and it’s worthwhile performing an analysis at those word
embeddings to see if they meet your needs. If not, then you can certainly cre-
ate custom word embeddings.

Word Embedding Algorithms

There are several well-known word embedding algorithms, as shown in the
following list:

•	word2vec
•	GloVe
•	Fasttext

The word2vec algorithm consists of two algorithms: CBoW (Continuous
Bag of Words) and skip-grams. Both word2vec algorithms create word

138  •  Natural Language Processing Using R Pocket Primer

embeddings (i.e., vectors of floating point numbers) by training a shallow neu-
ral network that contains a single hidden layer.

The GloVe algorithm was developed at Stanford (more details are in
Chapter 6), whereas the fastText algorithm is from Facebook, with more details
elsewhere in this chapter. One of the most popular Python-based libraries for
word embeddings is word2vec, which is the topic of the next section.

WHAT IS WORD2VEC?

A group of Google researchers developed word2vec in 2013, and it has
become the foundation of NLP that is also incorporated in BERT. Word2vec
provides an efficient method to represent words as vectors in a lower-dimen-
sional space.

Word2vec takes text-based input and generates a vector consisting of float-
ing points for each word in a text corpus. This task involves a neural network
consisting of an input layer, a hidden layer (with no activation function), and
an output layer that has the same dimension as the input layer. If you have
studied deep learning, then you probably recognize this neural network as an
autoencoder. If need be, you can use a dimensionality reduction technique to
further reduce the dimensionality of the word vectors.

One point to keep in mind is that word2vec is described as an
unsupervised algorithm because there is no need to label the training data.
However, the shallow network that is used to generate word embeddings
involves backward error propagation, which in turn requires labeled data.
More accurately, word2vec involves self-supervision, which is a subset of
supervised learning.

The material presented earlier in this chapter discussed the CBoW model
(which uses n-grams) and the skip-gram model, both of which are part of word-
2vec. Later you will learn about GloVe, which is another word2vec model.

Word2vec uses cosine similarity to measure the distance between a pair
of vectors, let’s call them u and v. If the cosine similarity is close to 1 (which
means the angle is close to 0), then the two words that correspond to vectors
u and v probably have a similar meaning. If the cosine similarity is close to 0
(which means the angle is close to 90), then the associated words are probably
unrelated. Finally, if the cosine similarity is close to −1 (the angle is close to
180), the associated words are good candidates for antonyms.

Word2vec is used for making predictions rather than counting words. In
particular, word2vec is designed to accomplish the following tasks:

•	learn the distributed representations for words
•	focus on the meaning of words
•	attempt to understand meaning and semantic relationships among words
•	does not require labels
•	works similar to deep approaches (such as RNNs)

NLP Concepts (II)  •  139

•	is computationally more efficient
•	learns quickly relative to other models

Recall that the context of a word is the set of words that occur on either side
of a given word. For example, consider the following sentence:

“The quick brown fox jumped over the lazy dog.”

The context of the word “jumped” in the preceding sentence is shown
here:

(“The”, “quick”, “brown”, “fox”, “over”, “the”, “lazy”, “dog”)

In word2vec, words with similar contexts have similar reduced vector rep-
resentations. Word2vec also has a skip-gram model whose goal is to predict the
context words that surround a given word. For example, suppose we start with
the given word “jumped:” the skip-gram model would attempt to predict the
context that is listed earlier in this section.

The context is derived through an iterative process that produces an
embedding layer where the rows are vector representations of the words in a
vocabulary.

In word2vec, every word in a vocabulary is represented as a vector. As a
result, word2vec groups the vectors of similar words together in a vector space,
and it detects similarities mathematically. Thus, word2vec creates vectors
that are distributed numerical representations of word features, such as the
context of individual words. In addition, word2vec does not require human
intervention.

There are two well-known techniques that are part of word2vec: CBoW
and skip-grams.

The Intuition for word2vec

An underlying assumption of word2vec is that the meaning of words can be
inferred from their surrounding words. Suppose that two words have similar
neighbors (meaning: the context in which it’s used is about the same), then
these words are probably quite similar in meaning or are at least related. For
example, the words “shocked” and “appalled” are usually used in a similar
context.

Word2vec is well-suited for sentiment analysis based on a corpus of user-
based reviews (such as movies and books). This type of data is unstructured
because there are almost no restrictions on the content of reviews (beyond a
profanity rule). Other use cases for word2vec include:

A.	 genes, code, likes, playlists, social media graphs
B.	 other verbal or symbolic series in which patterns may be discerned

140  •  Natural Language Processing Using R Pocket Primer

Word2vec can also be used for labeled data as well as unlabeled data.
Remember that algorithms that are designed to work with supervised data
tend to require a large set of examples.

The word2vec Architecture

The word2vec architecture options are skip-gram (default) or continuous
bag of words. Unlike deep neural networks, the input layer and the lone hid-
den layer for the word2vec architecture are not connected with an activation
function. The output layers have the same dimensionality as the input layer
(which is essentially an autoencoder).

The training algorithm is hierarchical softmax (default) or negative sam-
pling. The following link contains information about backward error propaga-
tion in word2vec, with details for CBoW and skip-grams:

http://www.claudiobellei.com/2018/01/06/backprop-word2vec/

Limitations of word2vec

Word2vec provides only one word embedding per word, which is to say that
a word embedding can only store one vector for each word. Other limitations
of word2vec are listed below:

•	difficult to train on large datasets
•	fine tuning is not possible
•	training models is a domain-specific task
•	trained on a shallow neural network with one hidden layer

As you will see in Chapter 7, the attention-based mechanism overcomes
the deficiencies of word2vec.

THE CBOW ARCHITECTURE

Given a set of words, the CBoW model architecture starts with a set of
surrounding words and then attempts to predict the target word (which is the
center word). The CBoW model involves a feed forward neural network that
determines word embeddings. The neural network consists of the following:

1.	 an input layer
2.	 a hidden layer (no activation function)
3.	 an output layer (softmax activation function)

In addition, the input layer and output layer have the same size. Hence, this
neural network resembles an autoencoder, which “squashes” the input values
into a smaller vector to obtain a more compact representation of the input data.

Figure 5.1 displays the CBoW architecture and Figure 5.2 in the next sec-
tion displays the skip-grams architecture, both of which are shallow neural
networks.

http://www.claudiobellei.com/2018/01/06/backprop-word2vec/
http://www.claudiobellei.com/2018/01/06/backprop-word2vec/

NLP Concepts (II)  •  141

INPUT

w(t-2)

w(t-1)

w(t)

SUM

w(t+1)

CBOW

w(t+2)

OUTPUTPROJECTION

FIGURE 5.1  The CBoW architecture.
SOURCE: ÒEfficient Estimation of Word Representations in Vector Space.Ó

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. [arXiv:1301.3781v2 [cs.CL] (CC BY 4.0)].

WHAT ARE SKIP-GRAMS?

N-grams infer a missing word from the words that appear on both sides
of the word, whereas skip-grams start with the “missing” word and attempt
to infer the words that are most likely to appear on both sides of that missing
word. In a sense, the key idea of skip-grams is sort of like an “inversion” of
n-grams.

Skip-gram models predict the surrounding context words of a target word,
and they are based on a neural network architecture that is discussed later in
this chapter. In a sense, the skip-gram model works in the opposite manner of
the CBoW model: skip-gram attempts to predict the surrounding words of a
target word (which is the center word).

In slightly more detailed terms, the following sequence of steps provides a
high-level description of the skip-gram algorithm:

•	Treat the target word and a neighboring context word as positive examples
•	Randomly sample other words in the lexicon to get negative samples
•	Use logistic regression to train a classifier to distinguish those two cases
•	Use the weights as the embeddings

Later you will see a diagram that displays the skip-gram architecture, right
after you see an example of finding skip-grams, which is discussed in the next
section.

142  •  Natural Language Processing Using R Pocket Primer

An Example of Skip-grams

A skip-gram is a tuple that contains words before and after a given word. The
size of the type is an integer, which can be as small as 1. In particular, 1-grams,
2-grams, and 3-grams are also called uni-grams, bi-grams, and tri-grams.

Let’s consider the following sentence (taken from the previous section):

'the big mouse ate the cheese'

The set of 1-grams for “ate” is as follows:

[mouse, the]

The set of 2-grams is as follows:

[(ate,the), (ate,big), (ate,mouse), (ate, the), (ate,cheese)]

The set of 3-grams is as follows:

[(ate,the,big), (ate,big,mouse), (ate,the,cheese)]

The Skip-gram Architecture

Figure 5.2 displays the skip-gram architecture that is based on a shallow
neural network.

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT OUTPUTPROJECTION

w(t)

FIGURE 5.2  The skip-gram architecture.
SOURCE: ÒEfficient Estimation of Word Representations in Vector Space.Ó

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. [arXiv:1301.3781v2 [cs.CL] (CC BY 4.0)].

NLP Concepts (II)  •  143

In order to fully understand this architecture, you need some familiarity
with basic neural networks, the softmax activation function, and the concept
of backward error propagation. In essence, the skip-gram architecture (along
with the n-gram architecture) is based on machine learning concepts. If need
be, you can read the relevant appendix that discusses neural networks.

As you can see from Figure 5.2, the skip-gram architecture consists of the
following components:

1.	 the input layer is a single word
2.	 a hidden layer
3.	 an output layer (predicted context words)

Each word from the corpus is processed through the neural network, and
after the model has been trained, the hidden layer contains the word embed-
dings. The concept of skip-grams is probably less intuitive than n-grams: how
can we guess at the words that surround a single word?

Although the skip-gram model has a larger memory requirement, its word
embeddings are better than those generated by an n-gram model.

Keep in mind the following details regarding the shallow network for the
skip-gram model:

1.	 there is no bias term
2.	 there is no activation function between the input layer and the hidden

layer
3.	 there is a softmax activation function from the hidden layer to the output

layer
4.	 the input layer and the output layer have the same size

If you are familiar with CNNs (Convolutional Neural Networks), then you
already know that the softmax activation function is applied between the right-
most hidden layer and the output layer because it generates a set of positive
numbers whose sum equals one. Thus, that set of output numbers is a prob-
ability distribution, and the index position with the highest probability value is
compared with the index of the number 1 in the one-hot encoding of the input
data: if the index values are equal, then it’s a match (otherwise it’s not a match).

Since the input layer and the output layer have the same size, this shallow
network is very similar to an autoencoder, whose purpose is to compress the
one-hot encoded words of a vocabulary into a smaller representation (similar
to the purpose of PCA in machine learning).

For example, suppose we have a vocabulary of 10,000 words (assume they’re
English words to keep things simple), and we want to find a representation for
each word that consists of a 1 × 300 vector of floating point numbers. Then the
weight matrix between the input layer and the hidden layer is a 10,000 × 300

144  •  Natural Language Processing Using R Pocket Primer

matrix (let’s call it W1), and the matrix between the hidden layer and the out-
put layer is a 300 × 10,000 matrix (let’s call it W2).

The neural network is trained, which means that the weights of the edges
in the neural network are updated by a process called backward error propaga-
tion. When the training process is completed, we discard everything except for
the weight matrix W1, which consists of 10,000 rows, each of which is a word
in the initial vocabulary. Each row is 300 columns wide, and this 1 × 300 vector
of floating point numbers is the encoding for the current word.

Neural Network Reduction

There are two techniques to reduce the size of the weight matrices in the
neural network that is described in the previous section:

1.	 subsample frequent words (which decreases the number of training ex-
amples)

2.	 modify the optimization objective via Negative Sampling

These two techniques reduce the computational complexity and also
improve the quality of the results.

The concept underlying negative sampling is to modify a small portion of
the model weights, which involves finding skip-grams for a given word. An
earlier section showed you how to find the bi-grams of a simple sentence, and
reproduced here:

[(ate,the), (ate,big), (ate,mouse), (ate, the), (ate,cheese)]

The previous set of bi-grams includes stop words, which you can remove
during the cleaning process. Alternatively, there is a formula to calculate the
probability of retaining a word that appears in a vocabulary. If w1 is a word in
a vocabulary and f(w1) is the frequency of the word in a document, then the
probability P(w1) that w1 will be retained is given here:

P(w1) = [1 + sqrt(f(w1)*1000] * 0.001/f(w1)

Another important Python library for generating distributed word embed-
dings is GloVe, which is the topic of the next section.

WHAT IS GLOVE?

As you learned earlier in this chapter, word2vec algorithms are based on
neural networks. By contrast, GloVe uses matrix factorization techniques from
linear algebra and word-content matrices. GloVe creates a co-occurrence
matrix for a given (local) context, and then decomposes the global matrix.

GloVe is similar to word2vec, with an important difference: GloVe exploits
the global co-occurrences of words instead of relying on the local context.
GloVe proceeds as follows:

NLP Concepts (II)  •  145

1.	 construct a co-occurrence matrix of dimensionality words x context
2.	 factor the matrix into a matrix of dimensionality word x features

In the initial matrix, the rows are words and the columns are word frequen-
cies in a corpus. The factored matrix has a lower dimensionality, and the rows
are the vector representations of the initial words.

GloVe can provide 100-dimensional dense vectors as word embeddings.
However, there are two important limitations in GloVe. First, GloVe does not
support OOV (Out of Vocabulary) words. Second, GloVe does not support
polysemy, which refers to words that have multiple meanings, and meaning is
determined by the context of the words in a sentence. Consider using models
that provide support, such as ELMo and USE (Universal Sentence Encoder).

CoVe (McCann, 2017) is based on the GloVe algorithm. CoVe (“contextual
vectors”) uses machine translation to generate contextual vectors and does not
use language modeling.

WORKING WITH GLOVE

GloVe is a Python-based library for word embeddings, and it’s an acronym
for “Global Vectors [for word representation]”. GloVe performs unsupervised
learning of word embeddings that is based on co-occurrence matrices. As such,
GloVe combines two techniques:

1.	 Global Matrix Factorization (GMF)
2.	 Local Context Window (LCW)

In brief, Global Matrix Factorization uses matrix factorization methods
from linear algebra that perform rank reduction on a large term-frequency
matrix. Note that the matrices can represent term-document frequencies, in
which case matrix rows are words and the matrix columns are documents (or
paragraphs). Alternatively, matrices can represent term-term frequencies, with
words on both axes and measure co-occurrence.

GMF applied to term-document frequency matrices is called latent seman-
tic analysis (LSA), and the high-dimensional matrix in LSA is reduced via sin-
gular value decomposition (SVD). More details regarding matrix factorization
are available online:

https://machinelearningmastery.com/introduction-to-matrix-decompositions-
for-machine-learning/

Local context window is a word embedding model that learns semantics
by passing a window over the corpus line-by-line. This technique predicts the
surroundings of a given word (e.g., skip-gram model) or predicts a word given
its surroundings (e.g., CBoW).

The third important Python library for generating distributed word embed-
dings is fastText, which is the topic of the next section.

https://machinelearningmastery.com/introduction-to-matrix-decompositions-for-machine-learning/

146  •  Natural Language Processing Using R Pocket Primer

WHAT IS FASTTEXT?

Facebook developed the fastText NLP library, and you can install fastest
with the following command:

pip3 install fasttext

The fastText library uses unsupervised learning to perform text clustering
of data, which means that fastText uses a clustering algorithm. The method
train_unsupervised() in fastText uses the skipgram model to generate
100-dimensional vectors. In addition, fastText computes the similarity score
between words, along with the get_nearest_neighbors() method to dis-
play the top 10 words that are the most similar to a given word. Similarity
scores between pairs of words that are close to 1 indicates that the pair of
words are more similar in meaning.

FastText leverages word2vec by learning vector representations for each
word and the n-grams in each word. Next, a vector is created whose values are
the average values of the representations during each training step. This step
enables word embeddings to encode sub-word information. FastText vectors
are more accurate than word2vec vectors based on various criteria. Moreover,
fastText can handle OOV words because it uses character n-grams; however,
higher accuracy is accompanied by longer training time.

One useful advantage of vector generation techniques such as fastText is
that no labeled data is required.

COMPARISON OF WORD EMBEDDINGS

This section contains a summary of the main features of three types of word
embeddings. The first group consists of the simplest algorithms for producing
word vectors for words: these algorithms were introduced in this chapter and
the previous chapter.

The second group consists of the earliest algorithms that use neural net-
works (i.e., word2vec, GloVe, and fastText) or matrix factorization (such as
word2vec) for generating distributional word embeddings.

The third group involves contextual algorithms for creating word embed-
dings, which are essentially state of the art algorithms. For your convenience,
a bullet list for each of the three groups is given below:

•	Group 1) Discrete word embeddings (BoW, tf, and tf-idf):
Word vectors consist of integers, decimals, and decimals, respectively
Key point: word embedding have zero context

•	Group 2) Distributional word embeddings (word2vec, GloVe, and
fasttext):
Based on shallow NN, MF, and NN, respectively
Two words on the left and the right (bi-grams) for word2vec
Key point: only one embedding for each word (regardless of its context)

NLP Concepts (II)  •  147

•	Group 3) Contextual word representation (BERT et al):
transformer architecture (no CNNs/RNNs/LSTMs)
Pays “attention” to ALL words in a sentence
Key point: words can have multiple embeddings (depending on the context)

The algorithms in Group #1 provide one word embedding per word but
no context is captured in the word embedding. Group #2 algorithms are an
improvement because they provide context for word embeddings. Finally,
Group #3 algorithms generate multiple word embeddings for the same word
that appears in multiple sentences. This feature is a significant improvement
over Group #2 algorithms, which in turn are a significant improvement over
Group #1 algorithms.

WHAT IS TOPIC MODELING?

Topic modeling is a technique for finding topics in one or more documents,
and it’s also a form of dimensionality reduction. There are two underlying
assumptions:

1.	 each document consists of a mixture of topics
2.	 each topic consists of a collection of words

Topic models assume that the semantics of a document are governed by
so-called latent variables that are not immediately observable, which are topics
that tend to be more abstract than the actual text. The goal of topic modeling
is to uncover these latent variables (topics) that can reveal the primary content
of a document or corpus.

Determining the main topics in documents can be performed in various
ways, which is the topic of the next section.

Topic Modeling Algorithms

There are several well-known algorithms for topic modeling, some of which
are listed below:

•	LDA (Latent Dirichlet Analysis)
•	LSI (Latent Semantic Indexing)
•	LSA (Latent Semantic Analysis)

LDA and Topic Modeling

LDA is a dimensionality reduction technique that is well-suited for topic
modeling. LDA is a generative model that assigns topic distributions to docu-
ments. Each document is described by a distribution of topics, and each topic
is described by a distribution of words. The rest of this section contains a
high-level description of LDA, which in turn involves concepts such as KL
Divergence and the JS metric, which are discussed in an appendix.

148  •  Natural Language Processing Using R Pocket Primer

LDA starts with a fixed set of topics, where each topic represents a set of
words. Next, LDA maps documents to a set of topics, and document words are
mapped to those topics.

LDA is also a clustering method that supports the concept of soft-cluster-
ing, which allows different cluster to overlap (so words can belong to multiple
clusters). Soft clustering is advantageous because it’s simpler to find similar
words; however, it’s more difficult to determine distinct clusters in LDA.

Note that LDA differs from the kMeans algorithm because the latter is
based on hard-clustering, which means that each word belongs to a single
cluster.

An LDA model assumes that documents contain several overlapping top-
ics, along with the following:

•	topics are based on the words in each document
•	the actual topics may not be known in advance
•	the actual topics do not need to be specified
•	the number of topics must be specified in advance

Recall that LDA supports soft clustering, and therefore the same word can
appear in multiple topics (i.e., a topic has the role of a cluster). In addition,
the LDA model is called “latent” because LDA generates the following latent
(hidden) variables:

•	a distribution over topics for each document
•	a distribution over words for each topics

LDA uses the JS (Jenson-Shannon) metric, which is based on JS Divergence,
and the latter is based on KL Divergence (more information about these topics
is in an appendix). Since JS divergence is a metric, it’s also symmetric, which
means that the similarity of two documents Doc1 and Doc2 is the same as the
similarity of Doc2 and Doc1 (which is obviously a desirable property).

LDA uses the JS metric to determine which documents in a corpus are the
most similar to document D by comparing the topic distribution of document
D to the topic distributions of the documents in the corpus. A smaller JS value
for a pair of documents indicates greater similarity between the documents.

LDA is related to ANOVA as well as PCA (discussed in an appendix), but
there are some differences. For instance, ANOVA uses categorical independ-
ent variables and a continuous dependent variable. By contrast, LDA involves
the “reverse” of ANOVA: it uses continuous independent variables and a cat-
egorical dependent variable. LDA also assumes that the independent variables
are normally distributed.

LDA and PCA share one particular aspect: both involve calculating lin-
ear combinations of variables. However, LDA tries to model the difference
between the classes of data, whereas PCA ignores the difference in class.

NLP Concepts (II)  •  149

Text Classification vs Topic Modeling

Text classification involves supervised learning on documents or articles
with a known set of labels and also classifies text into a single class. By contrast,
topic modeling involves unsupervised learning, and it’s a process of analyzing
documents/articles. Topic modeling finds groups of co-occurring words in text
documents, and co-occurring related words are “topics.” In cases where the
set of possible topics is unknown, topic modeling can be used to solve text clas-
sification problems to identify the topics in a document.

LANGUAGE MODELS AND NLP

In brief, a language model is a probability distribution (which is explained
in an appendix) for sequences of words. Statistical language modeling refers to
the creation of probabilistic models that predict the next word in a sequence
based on the words that precede the predicted word. Calculating the prob-
ability of word occurrences involves examples of text. Models can be based on
individual words, short sequences, sentences, or paragraphs.

Language models are used in machine learning and unsupervised learn-
ing (search/IR and clustering/topic modeling). A language model also tries to
distinguish between similar-sounding words. However, language models face
some challenges, such as data sparsity and determining the likelihood of differ-
ent phrases. One approach involves the use of n-gram models.

According to Christopher Potts [1], language models learn only from
co-occurrence patterns in the streams of symbols that they are trained on.
Furthermore, there are at least two issues pertaining to language models:

•	Symbols streams lack crucial information
•	Language models lack communicative intent

Although pure language models do not have a counterpart to machine
learning models that are trained via labeled datasets, Potts is of the opinion
that it’s possible for language models to achieve language understanding.

How to Create a Language Model

There are three main ways to create a new language model in NLP for a
given task:

•	Create a new model “from scratch”
•	Transfer learning (use a pre-trained model)
•	Transfer learning plus vocabulary enhancement

Language models can also be classified into different subtypes. For exam-
ple, neural language models (also called continuous space language models)
are based on neural networks. Such models use continuous representations or

150  •  Natural Language Processing Using R Pocket Primer

embeddings of words to make their predictions. More details regarding lan-
guage models are available online:

https://en.wikipedia.org/wiki/Language_model
Language models are the foundation for vector space models, which is the

topic of the next section.

VECTOR SPACE MODELS

A vector space model (VSM) is based on a mathematical model called a vec-
tor space, and represents text documents as vectors of identifiers (for example,
using tf-idf weights). If you are unfamiliar with vector spaces, there is a brief
introduction to vector spaces in one of the appendices.

A VSM consists of a two-dimensional array of (usually) numeric values that
are based on frequencies. The latter restriction on the data values creates a
“link” between a VSM and the distributional hypothesis. A VSM whose val-
ues are based on sophisticated algorithms can overcome the shortcomings of
losing semantics and feature sparsity in BoWs (https://en.wikipedia.org/wiki/
Vector_space_model).

As a point of clarification, the following matrices do not represent vector
space models:

•	an arbitrary matrix
•	an adjacency matrix for a tree or graph
•	a feature matrix
•	a covariance matrix
•	a correlation matrix
•	a recommender system

Recommender systems are included in the preceding list because they
populate a user-item matrix whose cells contain a numeric rating of items;
however, the data in such a matrix is not derived from event frequencies, which
explains why recommender systems are not VSMs.

Now that you have seen examples of matrices that are not VSMs, the fol-
lowing list contains some examples of vector space models:

•	a term-document matrix (discussed later)
•	a context-document matrix
•	a matrix based on word2vec
•	the LSA (Latent Semantic Analysis) algorithm
•	a pair-pattern matrix

With the preceding in mind, here is a short list of some models that are
based on (or extend) the VSM model:

•	Generalized vector space model
•	Latent semantic analysis (LSA)

https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Vector_space_model
https://en.wikipedia.org/wiki/Vector_space_model

NLP Concepts (II)  •  151

•	Term Discrimination
•	Rocchio Classification
•	Random Indexing

Term-Document Matrix

A term-document matrix M is an mxn matrix where n is the number of
documents and m is the number of unique words in the n documents. The
value in a cell (i, j) in a term-document matrix M equals the number of
times that the term i appears in document j. Moreover, the value in a cell
(i, j) can be based on other calculations, such as tf (term frequency) or tf-
idf values.

Note that for a large corpus, the matrix M contains mainly zero values,
which means that M is a sparse matrix (and operations are less efficient). Also
keep in mind that a tf-idf vector is a vector representation of a document,
whereas a word2vec vector is a vector representation of a word.

There are two more points of interest regarding a term-document matrix
M. First, if two documents are similar, then the two corresponding columns
in M will tend to have similar patterns of numbers, which in turn means
that their cosine similarity will be closer to 1. Second, instead of focusing
on column vectors, we can examine row vectors in order to measure word
similarity.

We can also generalize the concept of a term-document matrix by expand-
ing the meaning of a document to include phrases, sentences, and paragraphs.
After doing so, the result is a word-context matrix.

Tradeoffs of the VSM

VSMs are not a perfect solution. Some of the advantages and disadvantages
of a VSM are related to the advantages and disadvantages of the algorithms
that are used to compute the values in the cells of a VSM.

One advantage of a VSM model is because it’s based on linear algebra. In
addition, it’s possible to compute a degree of similarity between queries and
documents in a continuous fashion, which then enables you to rank documents
according to their possible relevance. Furthermore, VSM models support par-
tial matching.

However, long documents are poorly represented because they have poor
similarity values (a small scalar product and a large dimensionality). Word sub-
strings can result in a false positive match, which means that search keywords
must match the document terms. Unfortunately, documents with a similar con-
text but contain different term vocabulary won’t be associated, which results in
a false negative match.

In addition, the order in which the terms appear in the document is
not tracked in the vector space representation, along with the assumption
that the terms are statistically independent. Even so, some of the disadvan-
tages can be ameliorated by using techniques such as SVD (singular value
decomposition).

152  •  Natural Language Processing Using R Pocket Primer

NLP AND TEXT MINING

In high level terms, text mining performs an analysis of large amounts of
unstructured data to find patterns in that data. Text mining tasks involve find-
ing keywords, topics, and patterns. The general sequence of steps (tasks) is as
follows:

•	pre-processing
•	text transformation
•	attribute selection
•	visualization
•	evaluation

Text mining involves document classification whereby similar documents are
placed in the same group. Text mining is useful for extracting product-related
details, such as customer reviews, product issues, and so forth. Applications
of text mining include spam detection, sentiment analysis, e-commerce and
customer segmentation. The NLTK library is well-suited for text mining tasks,
and you will see code samples in Chapter 6.

Text Extraction Preprocessing and N-Grams

N-grams are one type of language model that assigns numeric probabilities
to word sequences. For example, the 3-grams of a sentence is a set of tuples of
length 3, where a tuple consists of three consecutive words in that sentence.
Note that the terms unigram, bigram, and trigram are often used when n is 1,
2, or 3, respectively.

RELATION EXTRACTION AND INFORMATION EXTRACTION

In simplified terms, relation extraction (RE), information extraction (IE),
and relation classification involve various aspects of searching a corpus to find
subsets of text that describe relationships between words in those subsets of
text. Relation extraction is a key component of NLU, and in general, relation
extraction involves extracting relational triplets of text, such as (founder,
steve_jobs, apple).

Although these three concepts overlap, they have significant differences.
Relation extraction involves finding semantic relationships in a corpus. In addi-
tion, relation extraction is a subfield of information extraction (IE), where the
latter involves extracting structured information from natural language text.
However, relation extraction differs in one important respect from IE: the lat-
ter also performs disambiguation. The sense2vec algorithm is one algorithm
for word sense disambiguation that can be used with SpaCy:

https://github.com/explosion/sense2vec
As an example, if you have ever summarized a text document, you probably

searched for the most important words (typically nouns) and the relationship

https://github.com/explosion/sense2vec

NLP Concepts (II)  •  153

between those words: this task is a form of IE. In fact, IE is relevant for
multiple NLP tasks, including text summarization and question-answering
systems.

Relation classification is the task of identifying the semantic relation hold-
ing between two nominal entities in text. There is no one-size-fits-all solution
that works for multiple domains (e.g., healthcare, biology, and chemistry).

One more point of interest is the “Never Ending Language Learning”
(NELL) semantic machine learning system from Carnegie Mellon University
that extracts relationships from the open Web:

https://en.wikipedia.org/wiki/Never-Ending_Language_Learning

WHAT IS A BLEU SCORE?

BLEU is an acronym for “Bilingual Evaluation Understudy,”, which is a
well-known NLP metric. A BLEU score involves a straightforward calculation,
and since a BLEU score is typically published alongside NLP models, its inclu-
sion has become standard practice.

However, BLEU was created in order to measure machine transla-
tion, and it’s most reliable when it’s calculated on an entire corpus instead of
a sentence-by-sentence calculation. Perhaps the popularity of BLEU scores
resulted in a side effect in which BLEU scores are assigned to NLP tasks
where other measurement tools produce more accurate results.

BLEU has some significant limitations: it does not take into account sen-
tence structure, which can vary significantly among different languages (see
the section on “case endings” in Chapter 3), nor does it take into account the
meaning of sentences.

In simplified terms, BLEU scores involve precision, n-grams, and exact
matches with reference sentences. BLEU checks how many n-grams in the
output also appear in the reference translation. However, BLEU does not rec-
ognize synonyms, which means that pairs of sentences that use closely related
yet different verbs are not considered similar in BLEU. For example, three
sentences that use the verbs “drink,” “imbibe,” and “consume” would probably
be considered equivalent, especially in casual conversation, but BLEU does
not recognize them as such.

ROUGE Score: An Alternative to BLEU

In brief, a ROUGE score is a variant of BLEU that involves recall (BLEU
uses precision) that determines the number of n-grams of the reference trans-
lation that also appear in the output (BLEU does the opposite). More informa-
tion about ROUGE is available online:

https://www.aclweb.org/anthology/N03-1020/
There are also techniques that are unrelated to BLEU, such as perplexity,

WER, and F1 score, all of which are discussed in an appendix. Perform an
online search with the keywords “BLEU score alternatives” and you will find
many articles that discuss the alternatives to BLEU.

https://www.aclweb.org/anthology/N03-1020/
https://en.wikipedia.org/wiki/Never-Ending_Language_Learning
https://www.aclweb.org/anthology/N03-1020/

154  •  Natural Language Processing Using R Pocket Primer

SUMMARY

This chapter started with a brief overview of language models, text encod-
ing techniques, and two types of word context. Then, you learned about word
embeddings, which are highly useful in NLP. You also got an introduction to
distance metrics, such as cosine similarity (for measuring the distance between
two vectors) and document similarity.

Then you learned about word2vec, which involves CBoW and skip-grams,
both of which are based on a shallow neural network. Furthermore, you
learned about GloVE, which is based on matrix factorization instead of neural
networks. In addition, you learned about the concepts of VSMs (vector space
models) and topic modeling.

CHAPTER 6
NLP IN R

This chapter contains NLP-related code samples in R that perform
NLP-related tasks that are described in previous chapters. This chapter
contains code samples that involve an R “wrapper” around underlying

Python code. Hence, you need to install Python for your machine.
For your convenience, the first section contains an R script that you can

launch from the command line in order to install the R libraries that you
need for this book. Some of the code samples also contain commented-out
code snippets for installing R libraries on your machine. The code snippets
contain a URL that references a repository, an example of which is shown
here:

install.packages("NLP",repos="https://cloud.r-project.org")

The second section shows you how to perform data cleaning on text strings,
which includes tasks such as normalization (converting text to lowercase),
removing stop words, removing punctuation, and removing white spaces. You
will also see a similar example in which the text string is retrieved from a plain
text file.

The third section contains examples of NER (Named Entity Recognition),
as well as the BoW algorithm. The fourth section contains code samples that
show you how to implement the tf-idf algorithm, as well as the execution of a
code sample in R that involves the word2vec algorithm.

The final section shows you how to use the NLTK and SpaCy modules in R
to perform various NLP-related tasks.

Important: Some of the code samples in this chapter require you to install
Python, NLTK, gensim, and spaCy your machine, which are available as free
downloads on the Internet.

https://cloud.r-project.org

156  •  Natural Language Processing Using R Pocket Primer

Although there are various errors that you might encounter while
launching the R code samples, the good news is that you will most likely
find an online solution for those issues. For example, one SpaCy code sam-
ple had an issue that was resolved simply by upgrading to the latest version
of SpaCy.

LAUNCH R SCRIPTS FROM THE COMMAND LINE

In addition to executing R files from inside RStudio, you can also do so
from the command line with the rscript utility. If you have a MacBook, this
utility is probably in the /usr/local/bin directory, which you can verify by
typing the following command:

which rscript

Recall that you can launch an R script (let’s call it abc.R) from the com-
mand line as follows:

rscript abc.R

In fact, you can invoke multiple R scripts from the command line with the
shell script run_all.sh, whose contents are displayed in Listing 6.1.

LISTING 6.1: run_all.sh

launch all R scripts in the current directory:
for f in `ls *R`
do
 echo "=> Launching $f..."
 rscript $f
done

launch all R scripts in all sub-directories:
for f in 'find . -print| xargs grep "\.R$"'
do
echo "=> Launching $f..."
rscript $f
done

launch R scripts starting with the letter "L":
for f in `ls L*R`
do
echo "=> Launching $f..."
rscript $f
done

Listing 6.1 contains two sections: the first part executes all the R scripts and
the second part executes all R scripts that are in the current directory and any
subdirectory. The third part executes a subset of the R scripts in the current
directory. The second and third portions of Listing 6.1 are commented out, so
remove the initial #to execute those sections of the shell script.

NLP in R  •  157

Launch the shell script in Listing 6.1 by navigating to the directory that
contains run_all.sh and then typing the following commands (the first com-
mand is required only once):

chmod +x run_all.sh
./run_all.sh

The output of the preceding shell script depends on the contents of the R
scripts in the current directory. A sample output might look something like this:

=> Launching SentimentAnalysis2017.R...
=> Launching abc.R...
[1] "=> STRING:a sample STRING; MiXed CasE; NUMBERS 1234;
MORE! numbers 5678"
[1] "=> LOWERCASE: a sample string; mixed case; numbers
1234; more! numbers 5678"
[1] "\r"
[1] "=> NO PUNCTUATION: a sample string mixed case numbers
1234 more numbers 5678"
[1] "=> NO WHITE SPACE: a sample string mixed case numbers
1234 more numbers 5678"

You can also redirect the standard output to one file and any errors to
another file, as shown here:

./run_all.sh 1>correct.txt 2>errors.txt

For example, the first portion of correct.txt might look something like
the following:

=> Launching SentimentAnalysis2017.R...
=> Launching abc.R...
[1] "=> STRING:a sample STRING; MiXed CasE; NUMBERS 1234;
MORE! numbers 5678"
[1] "=> LOWERCASE: a sample string; mixed case; numbers
1234; more! numbers 5678"
[1] "\r"

In addition, the first portion of errors.txt might look something like the
following:

=> Launching SentimentAnalysis2017.R...
Error in file(file, "rt") : cannot open the connection
Calls: read.csv -> read.table -> file
In addition: Warning message:
In file(file, "rt") :
 cannot open file 'str(apple)': No such file or directory
Execution halted

If you prefer, you can also launch run_all.sh so that it runs as back-
ground process, as shown here:

./run_all.sh 1>correct.txt 2>errors.txt &

158  •  Natural Language Processing Using R Pocket Primer

Now let’s see how to install the R libraries for the R scripts in this chapter,
as discussed in the next section.

Installing RStudio Packages

An R package requires a one-time installation before you can reference the
package in an R script. For example, the following code snippet installs the
NLP package for R and then references the NLP package:

install.packages("NLP",repos="https://cloud.r-project.org")
package(NLP)

For your convenience, Listing 6.2 shows the content of package_list.R
that contains an extensive list of R libraries that you will need for the R scripts
in this book. Use the rscript command line utility to launch library_
list.R and install the various R libraries.

LISTING 6.2: library_list.R

install.packages("cleanNLP", repos="https://cloud.r-project.org")
install.packages("devtools", repos="http://cran.us.r-project.org")
install.packages("dplyr", repos="https://cloud.r-project.org")
install.packages("formattable", repos="https://cloud.r-project.org")
install.packages("ggplot2", repos="https://cloud.r-project.org")
install.packages("githubinstall",repos="http://cran.us.r-project.org")
install.packages("gutenberger", repos="https://cloud.r-project.org")
install.packages("hcandersenr", repos="https://cloud.r-project.org")
install.packages("janeaustenr", repos="https://cloud.r-project.org")
install.packages("lubridate", repos="https://cloud.r-project.org")
install.packages("magrittr", repos="https://cloud.r-project.org")
install.packages("NLP", repos="https://cloud.r-project.org")
install.packages("openNLP", repos="https://cloud.r-project.org")
install.packages("quanteda", repos="http://cran.us.r-project.org")
install.packages("Rcpp", repos="http://cran.us.r-project.org")
install.packages("readr", repos="https://cloud.r-project.org")
install.packages("reshape2", repos="https://cloud.r-project.org")
install.packages("reticulate", repos="https://cloud.r-project.org")
install.packages("rJava", repos="http://cran.us.r-project.org")
install.packages("rpart", repos="https://cloud.r-project.org")
install.packages("RTextTools", repos="https://cloud.r-project.org")
install.packages("scales", repos="https://cloud.r-project.org")
install.packages("SnowballC", repos="https://cloud.r-project.org")
install.packages("spacyr", repos="https://cloud.r-project.org")
install.packages("stringr", repos="https://cloud.r-project.org")
install.packages("syuzhet", repos="https://cloud.r-project.org")
install.packages("textstem", repos="http://cran.us.r-project.org")
install.packages("tidytext", repos="https://cloud.r-project.org")
install.packages("tidyverse", repos="https://cloud.r-project.org")
install.packages("tm", repos="https://cloud.r-project.org")
install.packages("topicmodels", repos="https://cloud.r-project.org")
install.packages("udpipe", repos="http://cran.us.r-project.org")
install.packages("wordcloud", repos="https://cloud.r-project.org")
now perform the following installation:

https://cloud.r-project.org

NLP in R  •  159

package(devtools)
install_github("jonathanbratt/RBERT")
install_github("jonathanbratt/RBERTviz")

Listing 6.2 contains a set of install-related commands for installing more
than 30 R libraries on your machine. Navigate to the directory that contains the
code in Listing 6.2 and execute the following command:

rscript package_list.R

Now that we have completed the installation-related steps, let’s look at an
overview of R packages that you can use for cleaning NLP data, as discussed
in the next section.

NLP PACKAGES IN R

The following list of R packages provide support for NLP, some of which
are discussed in this chapter:

•	OpenNLP
•	Quanteda
•	Spacyr
•	Stringr
•	Text2vec
•	Wordcloud

OpenNLP is an R interface to Apache OpenNLP that provides Java-based
NLP tools. OpenNLP handles NLP tasks such as word tokenization, sentence
segmentation, POS, NER, and chunking.

Quanteda is a comprehensive framework for performing quantitative text
analysis in R. Quanteda enables you to work with tokens and n-grams, as well
as sparse matrices of documents by features.

Spacyr is an R wrapper for the Python-based spaCy library. Spacyr provide
simple access to spaCy library in a straightforward manner. Install spaCy and
spacyr through the spacyr function spacy_install().

Stringr provides wrappers for the string package and simplifies working
with character strings in R. Stringr includes functionality for working with
sequences of characters surrounded by quotation marks.

Text2vec provides an efficient framework with a concise API for text analy-
sis and natural language processing. Some of its important features include
allowing users to easily solve complex tasks, maximize efficiency per single
thread, transparently scale to multiple threads on multicore machines, and use
streams and iterators.

TM is a package provides a set of predefined sources, such as DirSource
and DataframeSource, which handle a directory, a vector interpreting each
component as a document, or data-frame-like structures (such as CSV files),
and more.

160  •  Natural Language Processing Using R Pocket Primer

Wordcloud is package that creates word clouds, which are typically used to
visualize text or a corpus of documents.

COMMON TASKS FOR CLEANING NLP DATASETS

Cleaning data in datasets for real estate, the Titanic dataset, and customer
churn (among others) involves the following steps:

•	detecting and correcting invalid data
•	imputing values for missing data
•	handling outliers
•	handling imbalanced datasets
•	selecting the most significant features

By contrast, cleaning NLP data involves a different set of tasks, such as
tokenizing data (i.e., determining word tokens), converting text to lowercase,
removing punctuation, and removing extra white spaces.

Cleaning numeric data versus text-based data has little more in common
than the words “cleaning data.” Later in this chapter you will see simple R code
samples for performing the following tasks:

•	Tokenization
•	Convert to Lowercase
•	Remove Stop Words
•	Stemming
•	Lemmatization

Let’s examine why the preceding tasks can be performed more easily in
some languages and tend to be more complex in other language groups.

Does the Language Make a Difference?

There are various NLP toolkits available that perform the tasks in the pre-
ceding section, and results tend to be better for English and European lan-
guages. These languages have the following features:

•	Specify a simple delimiter for tokens (such as a space character)
•	Do not involve declension of articles and adjectives
•	Distinguish between singular and plural nouns
•	Contain few accent marks (or none at all)

By contrast, languages such as Japanese, Mandarin, and Cantonese tend
to be more difficult in terms of cleaning text because of the following reasons:

•	An optional word delimiter (Japanese)
•	Multiple alphabets (Japanese)

NLP in R  •  161

•	Declension of articles and adjectives (Slavic languages)
•	Multiple tones (Mandarin and Cantonese)
•	Same noun for singular and plural (Japanese)

CLEANING NLP DATA IN R

This section contains simple R scripts for performing various data cleaning
tasks in NLP. Please refer to the appropriate sections in Chapter 4 if you need
to review the various topics (such as tokenization) in this chapter.

Tokenization

Listing 6.3 shows the content of tokens1.R that tokenizes a text string.

LISTING 6.3: tokens1.R

package(Rcpp)
package(quanteda)

str <- "a STRING? with Mixed Case! with numbers 1234 and 5678"
print(paste0("string:",str))

remove_punct<-tokens(str,remove_punct=TRUE, remove_
symbols=TRUE,remove_numbers=TRUE)
print(paste0("=> tokens without punctuation:"))
print(paste0(remove_punct))

Listing 6.3 starts by referencing Rcpp and quanta, and then initializes the
variable str as a text string and displays its contents. The next code snip-
pet removes punctuation and then removes digits from the string. Launch the
code in Listing 6.3 to see the following output:

Package version: 3.1.0
Unicode version: 10.0
ICU version: 61.1
Parallel computing: 8 of 8 threads used.
See https://quanteda.io for tutorials and examples.
[1] "string:a STRING? with Mixed Case! with numbers 1234 and 5678"
[1] "=> tokens without punctuation:"
[1] "a" "STRING" "with" "Mixed" "Case" "with" "numbers"
[8] "and"

Remove Punctuation in Strings

Listing 6.4 shows the content of punctuation1.R that removes punctua-
tion from a text string.

LISTING 6.4: punctuation1.R

package(tm)
str <- "a sample STRING!; MiXed CasE; NUMBERS 1234; number 5678"

162  •  Natural Language Processing Using R Pocket Primer

print(paste0("=> initial string:"))
print(paste0(str))

remove punctuation:
str <- lapply(str, removePunctuation)
print(paste0("=> no punctuation:"))
print(paste0(str))

Listing 6.4 starts by referencing the tm package and then initializing the
variable str as a string consisting of uppercase and lowercase letters, punc-
tuation, and digits. Next, the lapply() function applies the R function
removePunctuation() to the string str and then the print() statement
displays the new contents of the variable str. Launch the code in Listing 6.4
to see the following output:

Loading required package: NLP
[1] "=> initial string:"
[1] "a sample STRING!; MiXed CasE; NUMBERS 1234; number 5678"
[1] "=> no punctuation:"
[1] "a sample STRING MiXed CasE NUMBERS 1234 number 5678"

Convert Strings to Lowercase and Uppercase

Listing 6.5 shows the content of lower_upper_case1.R that displays a
random set of 10 stop words.

LISTING 6.5: lower_upper_case1.R

str <- "a STRING with Mixed Case with numbers 1234 and 5678"
print(paste0("string:",str))

convert to lowercase:
str <- lapply(str, tolower)
print(paste0("lowercase:"))
print(paste0(str))

convert to uppercase:
str <- lapply(str, toupper)
print(paste0("uppercase:"))
print(paste0(str))

Listing 6.5 initializes the variable str as a text string and displays its con-
tents. Next, the lapply() function applies the R function tolower() to the
string str to convert the contents of str to lowercase and then displays the
result. In an analogous fashion, the next code snippet invokes the R function
toupper() to convert the contents of str to uppercase letters. Launch the
code in Listing 6.5 to see the following output:

[1] "string:a STRING with Mixed Case with numbers 1234 and 5678"
[1] "lowercase:"

NLP in R  •  163

[1] "a string with mixed case with numbers 1234 and 5678"
[1] "uppercase:"
[1] "A STRING WITH MIXED CASE WITH NUMBERS 1234 AND 5678"

Convert File Data to Lowercase and Uppercase

Listing 6.6 shows the content of file1.txt and Listing 6.7 shows the con-
tent of file2.txt, both of which are referenced in Listing 6.8.

LISTING 6.6: file1.txt

this IS A SAMPLE for file #1
its contents are Mixed Case
and it's not just text data
1234 and other numbers 5678

LISTING 6.7: file2.txt

this is a sample for file #2
Some Uppercase Words
MIXING ALPHANUMERIC characters
!@#$ and 5678 as well

Listing 6.8 shows the content of lower_upper_case2.R that illustrates
how to read text from two text files and convert the text to lowercase and also
to uppercase.

LISTING 6.8: lower_upper_case2.R

#Load the files:
file1 <- read.delim("file1.txt")
file2 <- read.delim("file2.txt")
text1 <- c(file1,file2)
print(paste0("=> original text1:"))
print(paste0(text1))

#convert to lowercase:
text1 <- lapply(text1, tolower)
print(paste0("=> lowercase text1:"))
print(paste0(text1))

#convert to uppercase:
text1 <- lapply(text1, toupper)
print(paste0("=> uppercase text1:"))
print(paste0(text1))

Listing 6.8 starts by initializing the variables file1 and file2 with the con-
tents of the text files file1.txt and file2.txt, respectively. The print()
statement displays a comment, and the head() statement displays 10 ran-
domly selected stop words. Launch the code in Listing 6.8 to see the following
output:

164  •  Natural Language Processing Using R Pocket Primer

Loading required package: NLP
[1] "=> original text1:"
[1] "c(\"its contents are Mixed Case\", \"and it's not just
text data\", \"1234 and other numbers 5678\")"
[2] "c(\"Some Uppercase Words \", \"MIXING ALPHANUMERIC
characters\", \"!@#$ and 5678 as well\")"
[1] "=> lowercase text1:"
[1] "c(\"its contents are mixed case\", \"and it's not just
text data\", \"1234 and other numbers 5678\")"
[2] "c(\"some uppercase words \", \"mixing alphanumeric
characters\", \"!@#$ and 5678 as well\")"
[1] "=> uppercase text1:"
[1] "c(\"ITS CONTENTS ARE MIXED CASE\", \"AND IT'S NOT JUST
TEXT DATA\", \"1234 AND OTHER NUMBERS 5678\")"
[2] "c(\"SOME UPPERCASE WORDS \", \"MIXING ALPHANUMERIC
CHARACTERS\", \"!@#$ AND 5678 AS WELL\")"

Stop Words

Listing 6.9 shows the content of stop_words1.R that displays a random
set of 10 stop words.

LISTING 6.9: stop_words1.R

package(tidytext)
package(tm)

print(paste0("=> sample of 10 stop words:",collapse=" "))
head(sample(stop_words$word, 10), 10)

str <- c("this is a sentence and it is short")
str <- c("123", "this","is","a","sentence!?")
str2 <- removeWords(str, stopwords())

print(paste0("=> Contents of str:",collapse=" "))
print(paste0(str))

print(paste0("=> 1Contents of str2:",collapse=" "))
print(paste0(str2))

print(paste0("=> 2Contents of str2:",collapse=" "))
print(paste0(str2, collapse=""))

Listing 6.9 starts by referencing the tidytext R package that contains
a set of stop words. The print() statement displays a comment, and the
head() statement displays 10 randomly selected stop words. Launch the code
in Listing 6.9 to see the following output:

[1] "=> sample of 10 stop words:"
[1] "lets" "highest" "downs" "upon" "anything" "regarding"
[7] "z" "hers" "their" "not"
[1] "=> Contents of str:"
[1] "123" "this" "is" "a" "sentence!?"
[1] "=> 1Contents of str2:"

NLP in R  •  165

[1] "123" "" "" "" "sentence!?"
[1] "=> 2Contents of str2:"
[1] "123sentence!?"

Stemming in R

Listing 6.10 shows the content of word_stem.R that illustrates how to
perform stemming in R. If need be, you can read the appropriate section in
Chapter 4 that discusses how stemming is performed on text.

LISTING 6.10: word_stem.R

package(tm)

The tm package provides the stemDocument() to stem words,
which takes in a character vector and returns a character vector,
or takes in a PlainTextDocument and returns a PlainTextDocument.
ex: stemDocument(running,runs,ran) returns (run,run,ran)

a bug in StemDocument:
https://stackoverflow.com/questions/54197636/how-is-the-correct-
use-of-stemdocument
A workaround could be using the package quanteda:
#install.packages("quanteda",repos = "http://cran.us.r-project.org")

package(tm)

word = "running"
stemDocument(word, language = "english")

word = "image"
stemDocument(word, language = "english")

word = "poder" # Spanish for "can" or "to be able to"
stemDocument(word, language = "spanish")

word = "potere" # Italian for "can" or "to be able to"
stemDocument(word, language = "italian")

Listing 6.10 starts by referencing the tm package that can perform stem-
ming on text. The remaining portion of Listing 6.10 invokes the stemDocu-
ment() method to stem various words. Launch the code in Listing 6.10 to see
the following output:

Loading required package: NLP
[1] "run"
[1] "imag"
[1] "pod"
[1] "pot"

Lemmatization

Listing 6.11 shows the content of lemmatization.R that uses the R library
textstem and the R library udpipe in order to show you three different blocks
of code that perform lemmatization in R.

166  •  Natural Language Processing Using R Pocket Primer

LISTING 6.11: lemmatization.R

#install.packages("textstem",repos="http://cran.us.r-project.org")
#install.packages("udpipe",repos="http://cran.us.r-project.org")
library(textstem)

first vector of words:
vector1 <- c("eat", "ate", "eaten")
print("vector of words:")
print(vector1)
print("lemmatized vector of words:")
lemmatize_words(vector1)
cat("\n")

second vector of words:
vector2 <- c("am", "be", "was")
print("vector of words:")
print(vector2)
print("lemmatized vector of words:")
lemmatize_words(vector2)
cat("\n")

lemmatize a corpus:
library(udpipe)
docs <- c(doc_a = "When ignorance is bliss, 'tis folly to be wise
said the Bard",
 doc_b = "Gambarimasho means let's try our best")
anno <- udpipe(docs, "english")
anno[, c("doc_id", "sentence_id", "token", "lemma", "upos")]

Listing 6.11 starts by referencing two libraries, followed by a code block in
which the variable vector1 is initialized with three verb forms of the verb “eat.”
Next, the method lemmatize_words() is invoked with the variable vector1,
which generates the correct output: three occurrences of the verb “eat.”

The second code block initializes the variable vector2 with three verb
forms of the verb “be.” Next, the method lemmatize_words() is invoked
with the variable vector2, which generates the correct output: three occur-
rences of the verb “be.”

The third code block initializes the variable docs with two sentences, and
then invokes the udpipe() method to lemmatize each word in docs. The final
code snippet displays a tabular output that specifies the document, sentence
ID, token, and lemmatization of the token, and the POS of the token. Launch
the code in Listing 6.11 to see the following output, where the correct lemma-
tization of the verbs is shown in bold.

[1] "vector of words:"
[1] "eat" "ate" "eaten"
[1] "lemmatized vector of words:"
[1] "eat" "eat" "eat"

[1] "vector of words:"
[1] "am" "be" "was"

NLP in R  •  167

[1] "lemmatized vector of words:"
[1] "be" "be" "be"

 doc_id sentence_id token lemma upos
1 doc_a 1 When when ADV
2 doc_a 1 ignorance ignorance NOUN
3 doc_a 1 is be AUX
4 doc_a 1 bliss bliss ADJ
5 doc_a 1 , , PUNCT
6 doc_a 1 ' ' PUNCT
7 doc_a 1 tis ti NOUN
8 doc_a 1 folly folly ADV
9 doc_a 1 to to PART
10 doc_a 1 be be AUX
11 doc_a 1 wise wise ADV
12 doc_a 1 said say VERB
13 doc_a 1 the the DET
14 doc_a 1 Bard Bard PROPN
15 doc_b 1 Gambarimasho Gambarimasho PROPN
16 doc_b 1 means mean VERB
17 doc_b 1 let let VERB
18 doc_b 1 's 's PRON
19 doc_b 1 try try VERB
20 doc_b 1 our we PRON
21 doc_b 1 best best ADJ

Notice that the word gambarisho, which is the Romaji-based spelling of
the Japanese verb 画MBある (which means “to try one’s best”) is identified as
a proper noun in the preceding output.

POS (PARTS OF SPEECH) WITH SPACY IN R

POS is discussed in chapter 4, and Listing 6.12 shows the content of
spacy1.R that illustrates how to find the parts of speech in a text string.

LISTING 6.12: spacy1.R

=> install spacyr with this command:
#devtools::install_github("kbenoit/spacyr", build_vignettes=FALSE)

R wrapper for spaCy Python package to extract parts of speech:
library(spacyr)

doc1 <- c("I love Chicago deep dish pizza.")
spacy_parse(doc1, tag = TRUE, entity = FALSE, lemma = FALSE)

Listing 6.12 starts by referencing spacyr, which is a R-based “wrapper”
around the Python library spaCy. The next code snippet initializes the variable
doc as a text string, and then invokes the spacy_parse() API to parse the
contents of doc.

168  •  Natural Language Processing Using R Pocket Primer

In brief, the spacy_parse() API invokes the Python spaCy library to
tokenize and “tag” the tokens in the variable doc. Launch the code in Listing
6.12 to see the following output:

[1] "Extract POS and tags: "
Finding a python executable with spaCy installed...
spaCy (language model: en_core_web_sm) is installed in /Library/Frameworks/
Python.framework/Versions/3.7/bin/python3
successfully initialized (spaCy Version: 3.1.3, language model: en_core_web_sm)
(python options: type = "python_executable", value = "/Library/Frameworks/
Python.framework/Versions/3.7/bin/python3")
 doc_id sentence_id token_id token pos tag
1 text1 1 1 I PRON PRP
2 text1 1 2 love VERB VBP
3 text1 1 3 Chicago PROPN NNP
4 text1 1 4 deep ADJ JJ
5 text1 1 5 dish NOUN NN
6 text1 1 6 pizza NOUN NN
7 text1 1 7 . PUNCT .
[1] "Extract NER and tags: "
 doc_id sentence_id entity entity_type
1 text1 1 Chicago GPE
[1] "Extract noun phrases: "
 doc_id sentence_id nounphrase
1 text1 1 I
2 text1 1 Chicago_deep_dish_pizza
[1] "Dependency parsing: "
 doc_id sentence_id token_id token head_token_id dep_rel entity
1 text1 1 1 I 2 nsubj
2 text1 1 2 love 2 ROOT
3 text1 1 3 Chicago 6 nmod GPE_B
4 text1 1 4 deep 5 amod
5 text1 1 5 dish 6 compound
6 text1 1 6 pizza 2 dobj
7 text1 1 7 . 2 punct
Python space is already attached. If you want to switch to a different Python,
please restart R.
successfully initialized (spaCy Version: 3.1.3, language model: it_core_news_sm)
(python options: type = "python_executable", value = "/Library/Frameworks/
Python.framework/Versions/3.7/bin/python3")
[1] "Parse Italian: "
 doc_id sentence_id token_id token pos tag entity
1 R 1 1 R PROPN SP
2 R 1 2 e CCONJ CC
3 R 1 3 una DET RI
4 R 1 4 lingua NOUN S
5 R 1 5 gratis ADV B
6 R 1 6 per ADP E
7 R 1 7 programmare VERB V
8 R 1 8 roba NOUN S
9 R 1 9 scientifica ADJ A
10 R 1 10 . PUNCT FS

POS IN R

POS is an acronym for parts of speech, which includes nouns, adjectives,
verbs, direct and indirect objects, and so forth.

Listing 6.13 shows the content of pos_tokens1.R that illustrates how to
display the parts of speech in a text string in R.

NLP in R  •  169

LISTING 6.13: pos_tokens1.R

#install.packages("rJava",repos = "http://cran.us.r-project.org")
#install.packages("NLP",repos = "http://cran.us.r-project.org")
#install.packages("openNLP",repos = "http://cran.us.r-project.org")

package(NLP)
package(openNLP)

sent1 <- paste(c("I love Chicago deep dish pizza!", "Also Pizzeria Uno!"))
str1 <- as.String(sent1)

cat("\n")
print(paste0("contents of str1:"))
str1

cat("str1 tokens:","\n")
sent_annotator <- Maxent_Sent_Token_Annotator()
word_annotator <- Maxent_Word_Token_Annotator()
anntr2 <- annotate(str1, list(sent_annotator, word_annotator))
anntr2

cat("str1 annotations:","\n")
pos_tag_annotator <- Maxent_POS_Tag_Annotator()
anntr3 <- annotate(str1, pos_tag_annotator, anntr2)
anntr3

cat("subset of tokens:","\n")
anntr3_words <- subset(anntr3, type == "word")
anntr3_words

cat("POS of tokens:","\n")
tags <- sapply(anntr3_words$features, '[[', "POS")
tags

cat("table:","\n")
table(tags)

Listing 6.13 starts by referencing the NLP and openNLP packages, followed
by initializing the variables sent1 and str1 and then displaying the contents
of str1. The next portion of Listing 6.12 shows the start and end positions of
the tokens in the variable str1.

The next code snippet also shows the start and end positions of the tokens,
along with the type of token (word versus sentence) and the POS of each
token. The subsequent code snippet displays the subset of tokens that are of
type word, and the final code snippet displays only the POS of the tokens.
Launch the code in Listing 6.13 to see the following output:

[1] "contents of str1:"
I love Chicago deep dish pizza!
Also Pizzeria Uno!
str1 tokens:
 id type start end features
 1 sentence 1 31 constituents=<<integer,7>>
 2 sentence 33 50 constituents=<<integer,3>>

170  •  Natural Language Processing Using R Pocket Primer

 3 word 1 1
 4 word 3 6
 5 word 8 14
 6 word 16 19
 7 word 21 24
 8 word 26 30
 9 word 31 31
 10 word 33 36
 11 word 38 45
 12 word 47 50
str1 annotations:
 id type start end features
 1 sentence 1 31 constituents=<<integer,7>>
 2 sentence 33 50 constituents=<<integer,3>>
 3 word 1 1 POS=PRP
 4 word 3 6 POS=VBP
 5 word 8 14 POS=NNP
 6 word 16 19 POS=JJ
 7 word 21 24 POS=NN
 8 word 26 30 POS=NN
 9 word 31 31 POS=.
 10 word 33 36 POS=RB
 11 word 38 45 POS=NNP
 12 word 47 50 POS=NNP
subset of tokens:
 id type start end features
 3 word 1 1 POS=PRP
 4 word 3 6 POS=VBP
 5 word 8 14 POS=NNP
 6 word 16 19 POS=JJ
 7 word 21 24 POS=NN
 8 word 26 30 POS=NN
 9 word 31 31 POS=.
 10 word 33 36 POS=RB
 11 word 38 45 POS=NNP
 12 word 47 50 POS=NNP
POS of tokens:
 [1] "PRP" "VBP" "NNP" "JJ" "NN" "NN" "." "RB" "NNP" "NNP"
table:
tags
 . JJ NN NNP PRP RB VBP
 1 1 2 3 1 1 1

NER IN R

NER is an acronym for Named Entity Recognition, which was introduced
in Chapter 4. Listing 6.14 shows the content of ner_example1.R that illus-
trates how to perform NER in R programs.

LISTING 6.14: ner_example1.R

library(magrittr)

R wrapper for spaCy Python package to extract parts of speech:

NLP in R  •  171

library(spacyr)

str1 <- c("Mr Smith eats Chicago deep dish pizza!", "Also Pizzeria Uno!")
cat("\n")
print(paste0("contents of str1:"))
str1

parsed1 <- spacy_parse(str1, lemma = FALSE, entity = TRUE, nounphrase = TRUE)
entity_extract(parsed1)

entity_extract(parsed1, type = "all")

entity_consolidate(parsed1) %>%
 tail()

Listing 6.14 starts by referencing two R libraries, and then initializes and
displays the contents of the string variable str1. The next code snippet invokes
the API spacy_parse(), just as you saw in a previous code sample.

The final portion of Listing 6.14 displays three sections of output, starting
with the parsed tokens of str1. The second and third sections of the out-
put are the same: they display the doc_id, sentence_id, entity, and
entity_type of the tokens in the first output section. Launch the code in
Listing 6.14 to see the following output:

[1] "contents of str1:"
[1] "Mr Smith eats Chicago deep dish pizza!"
[2] "Also Pizzeria Uno!"
Finding a python executable with spaCy installed...
spaCy (language model: en_core_web_sm) is installed in /Library/Frameworks/
Python.framework/Versions/3.7/bin/python3
successfully initialized (spaCy Version: 3.1.3, language model: en_core_web_sm)
(python options: type = "python_executable", value = "/Library/Frameworks/
Python.framework/Versions/3.7/bin/python3")
 doc_id sentence_id entity entity_type
1 text1 1 Smith PERSON
2 text1 1 Chicago GPE
3 text2 1 Pizzeria_Uno ORG

 doc_id sentence_id entity entity_type
1 text1 1 Smith PERSON
2 text1 1 Chicago GPE
3 text2 1 Pizzeria_Uno ORG

 doc_id sentence_id token_id token pos entity_type
6 text1 1 6 dish NOUN
7 text1 1 7 pizza NOUN
8 text1 1 8 ! PUNCT
9 text2 1 1 Also ADV
10 text2 1 2 Pizzeria_Uno ENTITY ORG
11 text2 1 3 ! PUNCT

The following link contains more information about entities:
https://spacy.io/usage/linguistic-features#section-named-entities

THE TF-IDF ALGORITHM

In Chapter 4, you learned about the tf-idf algorithm, and this section con-
tains a code sample. Listing 6.15 shows the content of tfidf_sample.R that
illustrates how to perform tf-idf in R.

https://spacy.io/usage/linguistic-features#section-named-entities

172  •  Natural Language Processing Using R Pocket Primer

LISTING 6.15: tfidf_sample.R

library(tm)
#initialize some short documents:
doc1 <- "I love deep dish pizza."
doc2 <- "Chicago deep dish pizza."
doc3 <- "New York deep dish pizza."
doc4 <- "Good toppings and crust."
doc5 <- "Deep dish with Parmigiano cheese."

create a document list:
doc.list <- list(doc1, doc2, doc3, doc4, doc5)
N.docs <- length(doc.list)
names(doc.list) <- paste0("doc", c(1:N.docs))
query <- "Good pizza"

create a corpus from the documents and query:
my.docs <- VectorSource(c(doc.list, query))
my.docs$Names <- c(names(doc.list), "query")
my.corpus <- Corpus(my.docs)

#####################################
=> transform the corpus as follows:
1) convert to lowercase
2) remove stopwords
3) remove punctuation
4) remove numbers
5) remove multiple whitespaces
6) remove plural
#####################################

my.corpus2 <- tm_map(my.corpus, tolower)
my.corpus3 <- tm_map(my.corpus2, removeWords, stopwords("english"))
my.corpus4 <- tm_map(my.corpus3, removePunctuation)
my.corpus5 <- tm_map(my.corpus4, removeNumbers)
my.corpus6 <- tm_map(my.corpus5, stripWhitespace)
my.corpus6

library(SnowballC)
my.corpus7 <- tm_map(my.corpus6, stemDocument)

create a document/term matrix:
docTermMatrix <- DocumentTermMatrix(my.corpus7)
cat("\n")
paste("*** Document Term Matrix ***",collapse=" ")
docTermMatrix
inspect(docTermMatrix)

perform tf-idf operation:
docTermMatrix_tfxidf <- weightTfIdf(docTermMatrix)
cat("\n")
paste("*** TF/IDF Matrix ***",collapse=" ")
docTermMatrix_tfxidf
inspect(docTermMatrix_tfxidf)

Listing 6.15 starts by referencing an R library and then initializing 5 vari-
ables as documents. In this code sample, a “document” is simply a text string,
which makes it easier to understand the output that is displayed later in this

NLP in R  •  173

section. In general, though, you would replace each document with a bona fide
document instead of using simple text strings.

The next portion of Listing 6.15 initializes doc.list as the list of five
documents that are defined in the previous code section. Next, the variable
doc.docs is defined, and eventually, the variable my.corpus is defined, as
shown here:

my.corpus <- Corpus(my.docs)

The next sequence of code snippets performs sequential processing on
my.corpus, as described in the comment block, such as removing stops words
and punctuation.

The final portion of Listing 6.15 calculates the document-term matrix
that is in the variable docTermMatrix, after which the tfidf values can
be calculated on the entries of this matrix and contained in the variable
docTermMatrix_tfxidf. Launch the code in Listing 6.13 to see the fol-
lowing output:

[1] 1
<<SimpleCorpus>>
Metadata: corpus specific: 1, document level (indexed): 0
Content: documents: 6

[1] "*** Document Term Matrix ***"
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity : 69%
Maximal term length: 10
Weighting : term frequency (tf)
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity : 69%
Maximal term length: 10
Weighting : term frequency (tf)
Sample :
 Terms
Docs chicago crust deep dish good love new pizza top york
 1 0 0 1 1 0 1 0 1 0 0
 2 1 0 1 1 0 0 0 1 0 0
 3 0 0 1 1 0 0 1 1 0 1
 4 0 1 0 0 1 0 0 0 1 0
 5 0 0 1 1 0 0 0 0 0 0
 6 0 0 0 0 1 0 0 1 0 0

[1] "*** TF/IDF Matrix ***"
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity : 69%
Maximal term length: 10
Weighting : term frequency - inverse document frequency
(normalized) (tf-idf)
<<DocumentTermMatrix (documents: 6, terms: 12)>>
Non-/sparse entries: 22/50
Sparsity : 69%
Maximal term length: 10
Weighting : term frequency - inverse document frequency
(normalized) (tf-idf)
Sample :

174  •  Natural Language Processing Using R Pocket Primer

 Terms
Docs chees chicago crust deep dish good love
 1 0.0000000 0.0000000 0.0000000 0.1462406 0.1462406 0.0000000 0.6462406
 2 0.0000000 0.6462406 0.0000000 0.1462406 0.1462406 0.0000000 0.0000000
 3 0.0000000 0.0000000 0.0000000 0.1169925 0.1169925 0.0000000 0.0000000
 4 0.0000000 0.0000000 0.8616542 0.0000000 0.0000000 0.5283208 0.0000000
 5 0.6462406 0.0000000 0.0000000 0.1462406 0.1462406 0.0000000 0.0000000
 6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7924813 0.0000000
 Terms
Docs parmigiano pizza top
 1 0.0000000 0.1462406 0.0000000
 2 0.0000000 0.1462406 0.0000000
 3 0.0000000 0.1169925 0.0000000
 4 0.0000000 0.0000000 0.8616542
 5 0.6462406 0.0000000 0.0000000
 6 0.0000000 0.2924813 0.0000000

WORKING WITH N-GRAMS

In Chapter 5, you learned about n-grams. Listing 6.16 shows the content of
ngrams1.R that illustrates how to work with a bi-gram in R.

LISTING 6.16: ngrams1.R

#install.packages('janeaustenr', repos = "http://cran.us.r-project.org")
library(janeaustenr)
library(magrittr)
library(dplyr)
library(tidytext)

n-grams are discussed in chapter 5
paste0("Bigrams:",collapse=" ")
austen_bigrams <- austen_books() %>%
 unnest_tokens(bigram, text, token = "ngrams", n = 2)
austen_bigrams

paste0("Count bigrams:",collapse=" ")
austen_bigrams %>%
 count(bigram, sort = TRUE)

library(tidyr)
bigrams_separated <- austen_bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word)
paste0("Filtered by street for word2:",collapse=" ")
bigrams_filtered %>%
 filter(word2 == "street") %>%
 count(book, word1, sort = TRUE)

paste0("Filtered by street for word1:",collapse=" ")
bigrams_filtered %>%
 filter(word1 == "street") %>%
 count(book, word2, sort = TRUE)

Listing 6.16 starts by referencing several R libraries, one of which gives
us access to Jane Austen’s works. The first code block populates the variable

NLP in R  •  175

austen_bigrams with the set of bigrams from one of her books (Sense and
Sensibility) via the function unnest_tokens(). The second code block dis-
plays a partial list of bigrams from austen_bigrams, along with the number
of occurrences of each bigram.

The third code block initializes the variable bigrams_filtered by extract-
ing the words from austen_bigrams that are not stop words. The fourth code
block extracts the list of words from austen_bigrams in which the second
word of a bigram is the word “street.” Similarly, the fifth code block extracts
the list of words from austen_bigrams in which the first word of a bigram is
the word “street.” Launch the code in Listing 6.16 to see the following output:

[1] "Bigrams:"
A tibble: 675,025 × 2
 book bigram
 <fct> <chr>
 1 Sense & Sensibility sense and
 2 Sense & Sensibility and sensibility
 3 Sense & Sensibility NA
 4 Sense & Sensibility by jane
 5 Sense & Sensibility jane austen
 6 Sense & Sensibility NA
 7 Sense & Sensibility NA
 8 Sense & Sensibility NA
 9 Sense & Sensibility NA
10 Sense & Sensibility NA
… with 675,015 more rows
[1] "Count bigrams:"
A tibble: 193,210 × 2
 bigram n
 <chr> <int>
 1 NA 12242
 2 of the 2853
 3 to be 2670
 4 in the 2221
 5 it was 1691
 6 i am 1485
 7 she had 1405
 8 of her 1363
 9 to the 1315
10 she was 1309
… with 193,200 more rows
[1] "Filtered by street for word2:"
A tibble: 33 × 3
 book word1 n
 <fct> <chr> <int>
 1 Sense & Sensibility harley 16
 2 Sense & Sensibility berkeley 15
 3 Northanger Abbey milsom 10
 4 Northanger Abbey pulteney 10
 5 Mansfield Park wimpole 9
 6 Pride & Prejudice gracechurch 8
 7 Persuasion milsom 5
 8 Sense & Sensibility bond 4

176  •  Natural Language Processing Using R Pocket Primer

 9 Sense & Sensibility conduit 4
10 Persuasion rivers 4
… with 23 more rows
[1] "Filtered by street for word1:"
A tibble: 17 × 3
 book word2 n
 <fct> <chr> <int>
 1 Sense & Sensibility january 2
 2 Sense & Sensibility marianne 1
 3 Sense & Sensibility set 1
 4 Sense & Sensibility yesterday 1
 5 Pride & Prejudice elizabeth 1
 6 Pride & Prejudice monday 1
 7 Pride & Prejudice sept 1
 8 Mansfield Park door 1
 9 Mansfield Park sir 1
10 Emma happy 1
11 Emma till 1
12 Northanger Abbey door 1
13 Northanger Abbey overtook 1
14 Northanger Abbey reached 1
15 Northanger Abbey walking 1
16 Persuasion afforded 1
17 Persuasion perfectly 1

TOPIC MODELING IN R

In Chapter 5, you learned about topic modeling. Listing 6.17 shows the
content of topic_modeling.R that illustrates how to work with topic mod-
eling in R.

LISTING 6.17: topic_modeling.R

#install.packages('topicmodels', repos = "http://cran.us.r-project.org")
library(topicmodels)

data("AssociatedPress")
specify a seed value so the model output is predictable
ap_lda <- LDA(AssociatedPress, k = 2, control = list(seed = 1234))
ap_lda
library(tidytext)
paste0("Word-topic probabilities:",collapse=" ")
ap_topics <- tidy(ap_lda, matrix = "beta")
ap_topics

Listing 6.17 starts by referencing an R package and then initializing the
variable ap_lda with the result of invoking the LDA API, which performs
the Latent Dirichlet Analysis to determine a set of topics in the dataset
AssociatedPress.

The next portion of Listing 6.17 determines the probabilities of the occur-
rence of the topics that were determined in the previous code section. Launch
the code in Listing 6.17 to see the following output:

NLP in R  •  177

A LDA_VEM topic model with 2 topics.
[1] "Word-topic probabilities:"
A tibble: 20,946 × 3
 topic term beta
 <int> <chr> <dbl>
 1 1 aaron 1.69e-12
 2 2 aaron 3.90e- 5
 3 1 abandon 2.65e- 5
 4 2 abandon 3.99e- 5
 5 1 abandoned 1.39e- 4
 6 2 abandoned 5.88e- 5
 7 1 abandoning 2.45e-33
 8 2 abandoning 2.34e- 5
 9 1 abbott 2.13e- 6
10 2 abbott 2.97e- 5
… with 20,936 more rows

WORKING WITH WORD2VEC IN R

Chapter 5 briefly described word2vec, which comprises the CBoW algo-
rithm and the skip-gram algorithm, and provides floating point context vectors
for words in a vocabulary. A code sample is available online:

https://gist.github.com/primaryobjects/8038d345aae48ae48988906b05
25d175

Download the code from the previous link, navigate to that subdirectory,
and launch the following command:

rscript 1-word2vec.R

After some installation related output, you will see the following output on
your screen:

trying URL 'http://mattmahoney.net/dc/text8.zip'
Content type 'application/zip' length 31344016 bytes (29.9 MB)
==
downloaded 29.9 MB

Beginning tokenization to text file at temp.prep
Prepping article2.txt
Starting training using file temp.prep

Vocab size (unigrams + bigrams): 192
Words in train file: 224
Starting training using file /Users/staging/Downloads/word2vec-stuff/temp.prep
Vocab size: 4
Words in train file: 25
Filename ends with .bin, so reading in binary format
Reading a word2vec binary file of 4 rows and 200 columns
 |==| 100%
 word similarity to "president"
1 president 1.000000000
2 trump -0.001098632
3 </s> -0.071650826
4 said -0.092222355
Beginning tokenization to text file at temp.prep
Prepping text8
Starting training using file temp.prep

https://gist.github.com/primaryobjects/8038d345aae48ae48988906b0525d175

178  •  Natural Language Processing Using R Pocket Primer

Words processed: 17000K Vocab size: 4399K
Vocab size (unigrams + bigrams): 2419827
Words in train file: 17005431
Starting training using file /Users/staging/Downloads/word2vec-stuff/temp.prep
Vocab size: 98330
Words in train file: 15857308
Filename ends with .bin, so reading in binary format
Reading a word2vec binary file of 98330 rows and 200 columns
 |==| 100%
 word similarity to "communism"
1 communism 1.0000000
2 socialism 0.8277460
3 marxism 0.7757172
4 marxist 0.7737221
5 communist 0.7617577
6 socialist 0.7435190
7 capitalism 0.7417053
8 stalinism 0.7164418
9 capitalist 0.7134871
10 proletariat 0.7124533

Additional documentation regarding word2vec in R is available here:
https://www.rdocumentation.org/packages/word2vec/versions/0.3.4/topics/

word2vec

SUMMARY

This chapter showed you how to download and install RStudio, as well as
how to launch R scripts from the command line via the rscript utility.

Then you learned to perform data cleaning on text strings, which includes
tasks such as normalization (converting text to lowercase), removing stop
words, removing punctuation, and removing white spaces. You will also see a
similar example in which the text string is retrieved from a plain text file.

In addition, you saw an R code sample for POS and also a code sample
of NER (Named Entity Recognition), as well as the BoW algorithm in R.
Furthermore, you learned how to implement the tf-idf algorithm and how
to use the NLTK and SpaCy modules in R to perform various NLP-related
operations.

https://www.rdocumentation.org/packages/word2vec/versions/0.3.4/topics/word2vec
https://www.rdocumentation.org/packages/word2vec/versions/0.3.4/topics/word2vec

CHAPTER 7
TRANSFORMER, BERT, AND GPT

This chapter is devoted to NLP and modern architectures that support
NLP-based tasks. Specifically, you will learn about the transformer ar-
chitecture, the pre-trained BERT model and its variants, and features

of GPT-2 and GPT-3 from OpenAI.
Please note that this chapter contains Python-based code samples. The

rationale for the inclusion of Python code is simple: you can quickly find a
vast set of blog posts, articles, code samples, and Github repositories regard-
ing BERT, the Transformer architecture, and GPT-3 via a simple Internet
search. Fortunately, most of the code samples are short and involve rudimen-
tary Python constructs, which you can learn from a plethora of free online
resources.

The first part of this chapter contains a brief introduction to the concept
of attention, which is a powerful mechanism for generating word embeddings
that contain context specific information for words in sentences. The concept
of attention is a key aspect of the transformer architecture. This section also
contains a summary of the distinguishing characteristics of three types of word
embeddings, in which the most powerful technique is the attention-based
approach.

The second part of this chapter provides an overview of the transformer
architecture that was developed by Google and released in late 2017. This
section also discusses the T5 (Text-To-Text Transfer Transformer) model that
converts all NLP tasks into a text-to-text format.

The third part of this chapter introduces you to BERT, along with various
code samples that illustrate how to invoke some of the BERT APIs. Note that
this section relies on the installation of the HuggingFace transformers Python
library.

180  •  Natural Language Processing Using R Pocket Primer

The fourth part of this chapter contains a list of several BERT-based trained
models, along with brief description of their functionality. Some of the mod-
els that are discussed include DistilledBERT, CamemBERT, and FlauBERT.
The final part of this chapter introduces you to the GPT-based models from
OpenAI, along with some of the amazing features in GPT-3.

Important: The code samples in this chapter are based on Python, which
is also required for various code samples in Chapter 5.

In addition, the code samples currently require Python 3.7, which you can
download from the Internet if you haven’t already done so.

WHAT IS ATTENTION?

Attention is a mechanism by which contextual word embeddings are deter-
mined for words in a corpus. Unlike word2vec or gloVe, the attention mech-
anism takes into account all the words in a sentence during the process of
creating a word embedding for a given word. As a result, the same word in
different (and distinct) sentences will have a different word embedding in each
of those sentences.

Before the attention mechanism was devised, popular architectures used
RNNs, LSTMs, or bi-LSTMs. In fact, the attention mechanism was first used
in conjunction with RNNs or LSTMs. However, the Google team performed
some experiments involving machine translation tasks on models that relied
solely on the attention mechanism and the transformer architecture, and dis-
covered that those models achieved higher performance than models that
included CNNs, RNNs, or LSTMs. This result led to the expression “attention
is all you need.” The seminal paper regarding the transformer architecture is
available online:

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a84
5aa-Paper.pdf

As a quick review, and before delving into details of the attention mecha-
nism, let’s look at a summary of the main types of word embeddings that we
have encountered, as discussed in the next section.

Types of Word Embeddings

This section contains a summary of the main features of three types of
word embeddings. The first group consists of the simplest algorithms for word
embeddings, and you have already seen them in previous chapters.

The second group consists of the earliest algorithms that use neural net-
works (word2vec and fasttext) or matrix factorization (gloVe) for generating
word embeddings.

The third group involves contextual algorithms for creating contextual
word representations, which are essentially state of the art algorithms. Here
is the summary:

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformer, BERT, and GPT  •  181

1.	 Discrete word embeddings (BoW, tf, and tf-idf):
Word vectors consist of integers, decimals, and decimals, respectively
Key point: word embedding have zero context

2.	 Distributional word embeddings (word2vec, GloVe, and fasttext):
Based on shallow NN, MF, and NN, respectively
Two words on the left and the right (bi-grams) for word2vec
Key point: only one embedding for each word (regardless of its context)

3.	 Contextual word representations (such as BERT):
Transformer architecture (no CNNs/RNNs/LSTMs)
Pays “attention” to ALL words in a sentence
Key point: words can have multiple embeddings (depending on the context)

Types of Attention and Algorithms

There are several types of attention mechanisms, three of which are listed
below:

1.	 self-attention
2.	 global/soft
3.	 local/hard

Self-attention tries to determine how words in a sentence are intercon-
nected with each other. Multi-headed attention uses a block of multiple self-
attention instead of just one self-attention. However, each head processes a
different section of the embedding vector.

In addition to the preceding attention mechanisms, there are also several
attention algorithms available:

•	Additive
•	Content-based
•	Dot Product
•	General
•	Location-base
•	Scaled Dot Product <= a transformer uses this algorithm

The formulas for attention mechanisms can be divided into two broad
types: formulas that involve a dot product of vectors (and sometimes with a
scaling factor), and formulas that apply a softmax function or a tanh function to
products of matrices and vectors.

The transformer model uses a scaled dot-product mechanism to calculate
the attention. If you want more detailed information regarding attention types,
the following site contains a list of more than 20 attention types:

https://paperswithcode.com/methods/category/attention-mechanisms-1

https://paperswithcode.com/methods/category/attention-mechanisms-1

182  •  Natural Language Processing Using R Pocket Primer

AN OVERVIEW OF THE TRANSFORMER ARCHITECTURE

The Transformer architecture differs from other architectures in the fol-
lowing important ways:

•	it’s primarily based on an attention mechanism
•	model training can be parallelized
•	no CNNs/RNNs/LSTMs are required

Due to the last point in the preceding list, the encoder-decoder construc-
tion differs from a seq2seq model that often contain RNNs or LSTMs.

The Transformer architecture has two main components: an encoder and
a decoder. The encoder component has six (sometimes more) concatenated
encoder elements. Each encoder element has two layers, and the output of the
first layer is the input for the second layer (like a miniature pipeline). The final
output of the sixth (or in some cases, the twelfth) encoder component is then
passed to every decoder element in the decoder component.

Similarly, the decoder component also has 6 (sometimes more) concate-
nated decoder elements, where the output of one element in the input for the
next element. However, each decoder element consists of three sub-elements,
one of which is the output from the encoder.

The overall Transformer architecture consists of an encoder component
that contains six “sub” encoders, as well as a decoder component that also con-
tains six “sub” decoders. Each of these structures, which are loosely analogous
to filter elements in a CNN.

The input for the encoder is a set of word embeddings that encode the
words in a sentence. The word embeddings are constructed via the attention
mechanism, which means that every embedding is based on all the words in
a given sentence. Hence, a word that appears in two different sentences has
two different word embeddings in the two sentences. Given a sentence with n
tokens, the construction of each word embedding involves the remaining (n−1)
words. Therefore, the attention-based mechanism has order O(N^2), where N
is the number of unique tokens in the corpus.

The actual input vector for an encoder is called a context vector. This is a
crucial detail: by contrast, word2vec constructs a single word embedding for
every word, regardless of whether a given word has a different context in dif-
ferent sentences.

The Transformers Library from HuggingFace

HuggingFace created a transformers library and an open-source repository
to develop models based on the transformer architecture that you can access
online:

https://github.com/huggingface/transformers
The library provides pre-trained models for NLU (Natural Language

Understanding) and NLG (Natural Language Generation). In fact,
HuggingFace provides more than 30 pre-trained models for more than

https://github.com/huggingface/transformers

Transformer, BERT, and GPT  •  183

100 languages, along with operability between TensorFlow 2 and PyTorch.
Furthermore, HuggingFace supports not only BERT-related models, but also
GPT-2/GPT-3, XLNet, and others.

HuggingFace supports more than 30 architectures, some of which are
listed here:

•	BART (from Facebook)
•	BERT (from Google)
•	Blenderbot (from Facebook)
•	CamemBERT (from Inria/Facebook/Sorbonne)
•	CTRL (from Salesforce)
•	DeBERTa (from Microsoft Research)
•	DistilBERT (from HuggingFace)
•	ELECTRA (from Google Research/Stanford University)
•	FlauBERT (from CNRS)
•	GPT-2 (from OpenAI)
•	Longformer (from AllenAI)
•	LXMERT (from UNC Chapel Hill)
•	Pegasus (from Google)
•	Reformer (from Google Research)
•	RoBERTa (from Facebook)
•	SqueezeBert
•	T5 (from Google AI)
•	Transformer-XL (from Google/CMU)
•	XLM-RoBERTa (from Facebook AI)
•	XLNet (from Google/CMU)

Check the online documentation for more information regarding these
architectures.

Transformers are well-suited for various tasks, such as text generation, text
summarization, and language translation. The next several sections contain
several short code samples that illustrate how to use the HuggingFace trans-
former to perform NLP-related tasks. Specifically, you will see how to perform
NER, QnA, and sentiment analysis using the HuggingFace transformer.

Transformer and NER Tasks

Listing 7.1 shows the content of hf_transformer_ner.py that illustrates
how to perform a NER task with the HuggingFace transformer.

LISTING 7.1: hf_transformer_ner.py

from transformers import pipeline

nlp = pipeline('ner')
result = nlp("I am a UCSC instructor and my name is Oswald")

print("result:",result)

184  •  Natural Language Processing Using R Pocket Primer

Listing 7.1 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with ner as a parameter. Next,
the variable nlp is invoked with a hard-coded sample sentence. The output is
assigned to the variable result, whose contents are then displayed. Launch
the code in Listing 7.1 with the following command:

python3 hf_transformer_ner.py

The preceding command will launch the version of Python that is
installed on your machine. As you learned in the introduction to this chapter,
HuggingFace currently supports Python 3.7, but in the future, it’s likely that
later versions of Python will also be supported. The preceding command will
display the following output:

result: [{'word': 'UC', 'score': 0.9993938207626343,
'entity': 'I-ORG', 'index': 4}, {'word': '##SC', 'score':
0.9974051713943481, 'entity': 'I-ORG', 'index': 5},
{'word': 'Oswald', 'score': 0.9988114833831787, 'entity':
'I-PER', 'index': 11}]

Transformer and QnA Tasks

Listing 7.2 shows the content of hf_transformer_qa.py that illustrates
how to perform a question-and-answer task with the HuggingFace transformer.

LISTING 7.2: hf_transformer_qa.py

from transformers import pipeline

nlp = pipeline('question-answering')

result = nlp({
 'question': "Do you know my name?",
 'context': "My name is Oswald"
})

print("result:",result)

Listing 7.2 starts with an import statement and then initializes the variable
nlp as an instance of the pipeline class, with question-answering as a
parameter. Next, the variable nlp is invoked with a question/context pair. The
output is assigned to the variable result, whose contents are then displayed.
Launch the code in Listing 7.2 to see the following output:

result: [{'word': 'UC', 'score': 0.9993938207626343,
'entity': 'I-ORG', 'index': 4}, {'word': '##SC', 'score':
0.9974051713943481, 'entity': 'I-ORG', 'index': 5},
{'word': 'Oswald', 'score': 0.9988114833831787, 'entity':
'I-PER', 'index': 11}]

Transformer, BERT, and GPT  •  185

Transformer and Sentiment Analysis Tasks

Listing 7.3 shows the content of hf_transformer_sentiment.py that
illustrates how to perform a sentiment analysis task with the HuggingFace
transformer.

LISTING 7.3: hf_transformer_sentiment.py

from transformers import pipeline

nlp = pipeline('sentiment-analysis')
comment = "Great news that we have pipelines in transformers"

result = nlp(comment)

print("comment:",comment)
print("sentiment:",result)

Listing 7.3 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with sentiment-analysis as a
parameter. Next, the variable comment is initialized with a test string, which
is supplied to the variable nlp. The output is assigned to the variable result,
whose contents are displayed. Launch the code in Listing 7.3 to see the fol-
lowing output:

comment: Great news that we have pipelines in transformers
sentiment: [{'label': 'POSITIVE', 'score': 0.9985968470573425}]

Transformer and Mask Filling Tasks

Listing 7.4 shows the content of hf_transformer_mask.py that illus-
trates how to perform a mask-filling task with the HuggingFace transformer.

LISTING 7.4: hf_transformer_mask.py

from transformers import pipeline

nlp = pipeline('fill-mask')
result = nlp("I hope that you <mask> the movie")

print("result:",result)

Listing 7.4 starts with an import statement and then initializes the variable
nlp as an instance of the pipeline class, with fill-mask as a parameter. Next,
the variable nlp is invoked with a hard-coded sample sentence. The output is
assigned to the variable result, whose contents are then displayed. Launch
the code in Listing 7.4 to see the following output:

186  •  Natural Language Processing Using R Pocket Primer

result: [{'sequence': '<s>I hope that you enjoyed the
movie</s>', 'score': 0.5466918349266052, 'token': 3776,
'token_str': 'Ġenjoyed'}, {'sequence': '<s>I hope that
you enjoy the movie</s>', 'score': 0.36409610509872437,
'token': 2254, 'token_str': 'Ġenjoy'}, {'sequence':
'<s>I hope that you liked the movie</s>', 'score':
0.06604353338479996, 'token': 6640, 'token_str': 'Ġliked'},
{'sequence': '<s>I hope that you like the movie</s>',
'score': 0.008552208542823792, 'token': 101, 'token_str':
'Ġlike'}, {'sequence': '<s>I hope that you loved the
movie</s>', 'score': 0.003726127091795206, 'token': 2638,
'token_str': 'Ġloved'}]

This concludes the section of the chapter pertaining to the HuggingFace
transformer code samples. The next section briefly discusses T5, which is
another NLP model created by Google.

WHAT IS T5?

T5 is an acronym for Text-To-Text Transfer Transformer. T5 is an encoder-
decoder model that converts all NLP tasks into a text-to-text format, and its
downloadable code is online:

https://github.com/google-research/text-to-text-transfer-transformer
You can also install T5 by invoking the following command:

pip install t5[gcp]

T5 is pre-trained on a multi-task mixture of unsupervised and supervised
tasks, and it works well on various tasks, such as translation. T5 is trained using
a technique called teacher forcing, which means that an input sequence and
a target sequence are always required for training. The input sequence is
designated with input_ids, whereas the target sequence is designated with
output_ids and then passed to the decoder.

Since all tasks (such as classification, question answering, and translation)
involve this input/output mechanism, the same model can be used for multiple
tasks.

T5 provides several useful classes when working with T5 models. For exam-
ple, the class transformers.T5Config that enables you to specify configura-
tion information, whose default values are similar to the T5-small architecture.
Another useful class is transformers.T5Tokenizer that enables you to con-
struct a T5 tokenizer.

T5 does differ from BERT in two significant ways that will become clearer
after you read the BERT-related material later in this chapter:

•	The inclusion of a causal decoder
•	The use of pre-training tasks instead of a fill-in-the-blank task

https://github.com/google-research/text-to-text-transfer-transformer

Transformer, BERT, and GPT  •  187

Although you can download code samples for T5, initially it might be sim-
pler to experiment with T5 in a Google Colaboratory notebook (make sure to
select a TPU for execution):

https://tiny.cc/t5-colab
More information about T5 and details regarding the preceding T5 classes

(and other classes) is available online:
https://huggingface.co/transformers/model_doc/t5.html

WHAT IS BERT?

BERT is a pre-trained model that is based on the transformer architecture
developed in 2017 by Google. There are two version of BERT, called BERT
Base and BERT Large. BERT Base consists of 12 layers (transformer blocks),
12 attention heads, and 110 million parameters. BERT Large is a larger pre-
trained model that consists of 24 layers (transformer blocks), 16 attention
heads, and 340 million parameters.

BERT can be used in conjunction with the Transformers library (discussed
earlier in this chapter) that provide classes to perform various tasks, such as
question answering and sequence classification.

BERT Features

BERT has a set of approximately 30,000 learned raw vectors. Moreover,
just under 80% of those raw vectors correspond to “normal” words (i.e., they
exist in an English dictionary). The remaining 20% are subwords that are cre-
ated by WordPiece: these subwords have the form ##s or ##ed. The latter
subwords are useful for detecting the past tense of a verb in a sentence. In
addition, the BERT vocabulary consists of 45% uppercase and 25% lowercase
terms (approximately).

How is BERT Trained?

BERT is trained by performing a pre-training step, followed by a fine-
tuning step. The pre-training step involves task-specific data. For example,
if you want to perform sentiment analysis using BERT, you need a corpus
of labeled data that specifies whether a sentence has positive or negative
sentiment. In addition, the dataset is split into a training portion and a test
portion, just as you would with linear regression or classification tasks.

The fine-tuning step involves training the model on a large set of sample
tasks. For example, if you want to train BERT to perform a question-answering
task, then start with the pre-trained model (that was trained on sentiment anal-
ysis) and fine-tune that model by training the model on a corpus of question/
answer data.

https://tiny.cc/t5-colab
https://huggingface.co/transformers/model_doc/t5.html

188  •  Natural Language Processing Using R Pocket Primer

How BERT Differs from Earlier NLP Models

There are several important aspects of BERT that differentiate BERT from
models that involve algorithms such as word2vec. First, BERT does not per-
form a stemming operation: instead, BERT performs subword tokenization via
WordPiece (discussed later). Stemming discards suffixes, whereas WordPiece
does not discard the suffixes.

Second, BERT creates contextual word embeddings whereas word2vec
creates distributional word embeddings. Specifically, BERT uses all the words
in a sentence in order to generate a word embedding for each word in a given
sentence, and the word embedding is specific to the sentence in which the word
appears. As a result, the same word that appears in distinct sentences will have
different word embeddings, whereas word2vec uses bigrams to calculate word
embeddings.

Third, BERT does not use cosine similarity to determine the extent to
which two words are similar to each other. However, it’s possible to use BERT
with cosine similarities, provided that you fine-tune BERT on suitable data,
such as the data and code samples in the following repository:

https://github.com/UKPLab/sentence-transformers

THE INNER WORKINGS OF BERT

BERT implements a number of interesting techniques, some of which are
listed below:

•	MLM (Masked Language Model)
•	NSP (Next Sentence Prediction)
•	Special tokens ([CLS] and [SEP])
•	Language mask
•	Wordpiece (subword tokenization)
•	SentencePiece

What is MLM?

MLM is an acronym for masked language model, and it’s a BERT pre-train-
ing task, during which BERT processed the contents of Wikipedia (and also
the BookCorpus dataset). In this task, 15% of the words were replaced with the
[MASK] token, and BERT then predicted the missing words. Note that this
task was performed on “chunks” of data that were submitted to BERT.

Many words in Wikipedia involve dates, names of people, and names of
locations, some of which were replaced by the [MASK] token. During the
training process, BERT ascertained the missing tokens correctly.

What is NSP?

In addition to MLM, BERT uses NSP, which stands for next sentence
prediction. NSP combines pairs of sentences in the following way:

https://github.com/UKPLab/sentence-transformers

Transformer, BERT, and GPT  •  189

•	The second sentence is logically related to the first sentence in 50% of
the pairs.

•	The second sentence is not logically related to the first sentence in 50%
of the pairs.

The purpose of NSP is to identify which pairs of sentences are correct and
which pairs of sentences are incorrect.

Special Tokens

BERT uses two special tokens: [CLS] to indicate the start of a text string
and [SEP] to separate sentences. For example, consider the following phrase:

Pizza with four toppings and trimmings
The BERT tokenization of the preceding phrase is as follows:

['[CLS]', 'pizza', 'with', 'four', 'topping', '##s', 'and',
'trim', '##ming', '##s', '.', '[SEP]']

Listing 7.5 shows the content of bert_special_tokens.py that illus-
trates how to display the special tokens in BERT.

LISTING 7.5: bert_special_tokens.py

import transformers
import numpy as np

instantiate a BERT tokenizer and model:
print("creating tokenizer...")
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-
uncased', do_lower_case=True)

print("creating model...")
nlp = transformers.TFBertModel.from_pretrained('bert-base-uncased')

hidden layer with embeddings:
text1 = "cell phone"
input_ids1 = np.array(tokenizer.encode(text1))[None,:]
embedding1 = nlp(input_ids1)

print("input_ids1:")
print(input_ids1)
print()

print("tokenizer.sep_token: ",tokenizer.sep_token)
print("tokenizer.sep_token_id:",tokenizer.sep_token_id)
print("tokenizer.cls_token: ",tokenizer.cls_token)
print("tokenizer.cls_token_id:",tokenizer.cls_token_id)
print("tokenizer.pad_token: ",tokenizer.pad_token)
print("tokenizer.pad_token_id:",tokenizer.pad_token_id)
print("tokenizer.unk_token: ",tokenizer.unk_token)
print("tokenizer.unk_token_id:",tokenizer.unk_token_id)
print()

190  •  Natural Language Processing Using R Pocket Primer

Listing 7.5 starts with two import statements and then initializes the vari-
able tokenizer as an instance from a pre-trained model. Next, the variable
nlp is initialized as an instance of a pre-trained model.

The next portion of Listing 7.5 initializes the variable text1 as a two-word
string, followed by the variable input-ids1 that consists of the tokens for the
two words, along with two special tokens.

The final code block consists of a set of print() statements that display
several special tokens and their token_id values. Launch the code in Listing
7.5 to see the following output:

creating tokenizer...
creating model…
input_ids1:
[[101 3526 3042 102]]

tokenizer.sep_token: [SEP]
tokenizer.sep_token_id: 102
tokenizer.cls_token: [CLS]
tokenizer.cls_token_id: 101
tokenizer.pad_token: [PAD]
tokenizer.pad_token_id: 0
tokenizer.unk_token: [UNK]
tokenizer.unk_token_id: 100

BERT Encoding: Sequence of Steps

BERT performs the following sequence of steps, all of which have been
illustrated via code snippets in previous sections:

Step 1: tokenize the text
Step 2: map the tokens to their IDs
Step 3: add the special [CLS] and [SEP] tokens

As a simple example, the sentence “I got a book” has a total of six tokens
(four word tokens, and the start and end tokens), along with the following
indices:

[CLS] 101
i 1,045
got 2,288
a 1,037
book 2,338
[SEP] 101

Listing 7.6 shows the content of bert_encoding_plus.py that illustrates
how to display the special tokens in BERT.

LISTING 7.6: bert_encoding_plus.py

import transformers
import numpy as np

Transformer, BERT, and GPT  •  191

instantiate a BERT tokenizer and model:
print("creating tokenizer...")
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-
uncased', do_lower_case=True)
print("creating model...")
nlp = transformers.TFBertModel.from_pretrained('bert-base-
uncased')

text="When were you last outside? I have been inside for 2 weeks."

encoding = tokenizer.encode_plus(
 text,
 max_length=32,
 add_special_tokens=True, # Add '[CLS]' and '[SEP]'
 return_token_type_ids=False,
 pad_to_max_length=True,
 return_attention_mask=True,
 return_tensors='pt', # Return PyTorch tensors
)

print("encoding.keys():")
print(encoding.keys())
print()

print("len(encoding['input_ids'][0]):")
print(len(encoding['input_ids'][0]))
print()

print("encoding['input_ids'][0]:")
print(encoding['input_ids'])
print()

print("len(encoding['attention_mask'][0]):")
print(len(encoding['attention_mask'][0]))
print()

print("encoding['attention_mask']:")
print(encoding['attention_mask'])
print()

print("tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]):")
print(tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]))
print()

Listing 7.6 starts with two import statements and then initializes the varia-
bles tokenizer and nlp in the same fashion as previous code samples. Next, the
variable text is initialized as a text string, followed by the variable encoding
that acts as a configuration-like “holder” of parameters and their values.

The final portion of Listing 7.6 consists of six pairs of print() statements,
each of which displays a parameter/value pair that is defined in the encoding
variable. Launch the code in Listing 7.6 to see the following output:

creating tokenizer...
creating model…

encoding.keys():
dict_keys(['input_ids', 'attention_mask'])

192  •  Natural Language Processing Using R Pocket Primer

len(encoding['input_ids'][0]):
32

encoding['input_ids'][0]:
tensor([[101, 2043, 2020, 2017, 2197, 2648, 1029, 1045,
2031, 2042, 2503, 2005,
 1016, 3134, 1012, 102, 0, 0, 0, 0,
0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0]])

len(encoding['attention_mask'][0]):
32

encoding['attention_mask']:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0]])

tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]):
['[CLS]', 'when', 'were', 'you', 'last', 'outside', '?',
'i', 'have', 'been', 'inside', 'for', '2', 'weeks', '.',
'[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

SUBWORD TOKENIZATION

OOV is an acronym for out of vocabulary, and it refers to words in a corpus
that do not belong to a vocabulary. When an OOV word is encountered, BERT
splits the word into subwords, which is known as subword tokenization. The
same process is applied to rare words.

Subword tokenization algorithms are based on a heuristic (something
that’s intuitive and often produces the correct answer). Specifically, words
that appear more frequently are assigned unique IDs. Lower frequency
words are split into subwords that retain the meaning of the lower frequency
words. The following list contains four important subword tokenization
algorithms:

•	byte-pair encoding (BPE)
•	SentencePiece
•	unigram language model
•	Wordpiece (used in BERT)

Byte-pair encoding for subwords represents frequent words with fewer
symbols and less frequent words with more symbols. BPE is a bottom-up sub-
word tokenization algorithm that learns a subword vocabulary of a certain size
(the vocabulary size is a hyper parameter).

Transformer, BERT, and GPT  •  193

The first step in this technique involves splitting every word into Unicode
characters, each of which corresponds to a symbol in the final vocabulary.
Perform the following sequence of steps repeatedly:

1.	 Find the most frequent symbol bigram (pair of symbols).
2.	 Merge those symbols to create a new symbol and add this to the vocabulary.
3.	 Repeat the preceding steps until a maximum vocabulary size is reached.

GPT-2 views text input as a sequence of bytes instead of unicode charac-
ters; in addition, an id is allocated to every byte in the sequence.

Wordpiece is a subword tokenization algorithm that is very similar to BPE
(discussed later). The main difference pertains to the specific manner in which
bigrams are selected for the merging step. Interestingly, RoBERTa (which is
based on BERT) also involves the use of Wordpiece. Here are some examples
of subword tokenization in BERT:

"toppings" is split into "topping" and "##s"
"trimmings" is split into "trim", "##ming", and "##s"
"misspelled" is split into "mis", "##spel", and "##led"

However, keep in mind that BERT does not provide a mechanism to
re-construct the original word from its word pieces. Note that ELMo provides
word-level (not subword) contextual representations for words, which is differ-
ent from BERT. Later in this chapter you will code samples that create BERT
tokens from English sentences (that include toppings and trimmings).

Since word2vec and GloVe do not compute contextual word embeddings,
the similarity between two embedded vectors may be of limited value.

BPE is an acronym for Byte Pair Encoding, which is an algorithm that is
used in the GPT family of models. BPE (also known as digram coding) is a data
compression algorithm that uses the following technique: given a text string,
the most common pair of consecutive bytes of data is replaced with a byte that
does exist in the text string. Each replacement is stored in a look-up table,
which means that the table can be used to create the original text string. The
models in the GPT family utilize a modified version of BPE.

For example, suppose we wanted to encode the data consisting of the fol-
lowing string:

aaabdaaabac

Since the byte pair aa occurs most often, we replace it with a character that
does not appear in the string, such as the letter Z. We perform the replace-
ment, which results in the following text string:

ZabdZabac (where Z=aa)

194  •  Natural Language Processing Using R Pocket Primer

We repeat the substitution step, this time with the pair ab, and replace this
pair with the letter Y:

ZYdZYac (where Y=ab Z=aa)

At this point, we can continue the preceding procedure by selecting ZY
(which appears twice) and replacing this string with the letter X, as shown
here:

XdXac (where X=ZY Y=ab Z=aa)

SentencePiece is another subword tokenizer and a detokenizer for NLP that
performs subword segmentation. SentencePiece also supports BPE and the
unigram language model. The original arxiv paper that describes SentencePiece
is available online:

https://arxiv.org/abs/1808.06226v1

SENTENCE SIMILARITY IN BERT

As you learned previously, word2vec and GloVe use word embeddings to
find the semantic similarity between two words. However, sentences contain
additional information as well as relationships between multiple words.

A well-known example that clearly shows the need for contextual awareness
is illustrated in the following pair of sentences:

The dog did not cross the street because it was too narrow.
The dog did not cross the street because it was too tired.

One technique for sentence similarity involves computing the average of
the word embeddings of the words in each sentence and then computing the
cosine similarity of the resulting pair of word embeddings. Alternatively, you
can use tf-idf instead of word embeddings or another technique. In all of these
cases, word order is not taken into account, and the word embeddings are
determined in an unsupervised fashion.

Word Context in BERT

Listing 7.7 shows the content of bert_context.py that illustrates how
BERT generates a different word vector for the same word that is used in a
different context.

In order to launch the code in Listing 7.7, make sure that you have installed
the transformers library by launching the following command in a command
shell:

pip3 install transformers

This code downloads a 536M BERT model.NOTE

https://arxiv.org/abs/1808.06226v1

Transformer, BERT, and GPT  •  195

LISTING 7.7: bert_context.py

import transformers

text1 = "cell phone"

instantiate a BERT tokenizer and model:
tokenizer = transformers.BertTokenizer.from_
pretrained('bert-base-uncased', do_lower_case=True)

nlp = transformers.TFBertModel.from_pretrained('bert-base-
uncased')

hidden layer with embeddings:
input_ids1 = np.array(tokenizer.encode(text1))[None,:]
embedding1 = nlp(input_ids1)

display text1 and its context:
print("text1:",text1)
print("embedding1[0][0]:")
print(embedding1[0][0])
print()

text2 = "prison cell"
hidden layer with embeddings:
input_ids2 = np.array(tokenizer.encode(text2))[None,:]
embedding2 = nlp(input_ids2)

display text2 and its context:
print("text2:",text2)
print("embedding2[0][0]:")
print(embedding2[0][0])

Listing 7.7 starts with import statements and then initializes the variables
tokenizer, nlp, input_ids1, and embedding1 in exactly the same man-
ner that you have seen in previous code samples. The next block of code dis-
plays the values of text1 and embedding1[0][0].

The next portion of Listing 7.7 is virtually the same as the previous
code block, based on the replacement of text1 with text2. The output of
Listing 7.7 is as follows:

input sentence #1:
text1: cell phone
embedding1[0][0]:
tf.Tensor(
[[-0.30501425 0.14509355 -0.18064171 ... -0.3127299 -0.12173399
 -0.09033043]
 [0.80547976 -0.15233847 0.61319923 ... -0.7498784 0.00167803
 -0.11698578]
 [1.0339862 -0.66511637 -0.17642722 ... -0.24407595 0.03978422
 -0.8694502]
 [0.87851435 0.10932285 -0.27658027 ... 0.18180653 -0.5829581
 -0.34113947]], shape=(4, 768), dtype=float32)

196  •  Natural Language Processing Using R Pocket Primer

text2: cell mate
embedding2[0][0]:
tf.Tensor(
[[-0.24141303 0.1146469 -0.13710016 ... -0.2908613 -0.04577148
 0.2965925]
 [0.05608664 -1.0035615 0.12738925 ... -0.30271983 0.17530476
 0.7245784]
 [0.2818157 -0.28047347 -0.6547173 ... 0.04996978 0.01698243
 0.03285426]
 [1.039136 0.12364347 -0.2661501 ... 0.09439699 -0.7794917
 -0.24966209]], shape=(4, 768), dtype=float32)

Listing 7.7 also generates the following informative message:

Some weights of the model checkpoint at bert-base-uncased
were not used when initializing TFBertModel: ['nsp___cls',
'mlm___cls']
- This IS expected if you are initializing TFBertModel
from the checkpoint of a model trained on another
task or with another architecture (e.g. initializing
a BertForSequenceClassification model from a
BertForPretraining model).
- This IS NOT expected if you are initializing
TFBertModel from the checkpoint of a model that
you expect to be exactly identical (initializing
a BertForSequenceClassification model from a
BertForSequenceClassification model).
All the weights of TFBertModel were initialized from the
model checkpoint at bert-base-uncased.
If your task is similar to the task the model of the
ckeckpoint was trained on, you can already use TFBertModel
for predictions without further training.

Now that you have seen an example where BERT generates a different
word vector for a word that is used in a different context, let’s look at BERT
tokens, which is the topic of the next section.

GENERATING BERT TOKENS (1)

Listing 7.8 shows the content of bert_tokens1.py that illustrates how to
convert a text string to a BERT-compatible string and then tokenize the latter
string into BERT tokens.

LISTING 7.8: bert_tokens1.py

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

text1 = "Pizza with four toppings and trimmings."
marked_text1 = "[CLS] " + text1 + " [SEP]"
tokenized_text1 = tokenizer.tokenize(marked_text1)

Transformer, BERT, and GPT  •  197

print("input sentence #1:")
print(text1)
print()

print("Tokens from input sentence #1:")
print(tokenized_text1)
print()

print("Some tokens in BERT:")
print(list(tokenizer.vocab.keys())[1000:1020])
print()

Listing 7.8 imports BertTokenizer and BertModel, and uses the former
to initialize the variable tokenizer. Next, the variable text1 is initialized to
a text string, and marked_text1 prepends [CLS] to text1 and then appends
[SEP] to text1. The last variable that is initialized is tokenized_text1,
which is assigned the result of invoking the tokenizer() method on the vari-
able marked_text1.

The next three blocks of print() statements display the contents of text1,
tokenized_text1, and a range of 20 BERT tokens, respectively. Launch the
code in Listing 7.8 to see the following output:

input sentence #1:
Pizza with four toppings and trimmings.

Tokens from input sentence #1:
['[CLS]', 'pizza', 'with', 'four', 'topping', '##s', 'and',
'trim', '##ming', '##s', '.', '[SEP]']

Some tokens in BERT:
['"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',',
'-', '.', '/', '0', '1', '2', '3', '4', '5']

GENERATING BERT TOKENS (2)

Listing 7.9 shows the content of bert_tokens2.py that illustrates how to
convert a text string to a BERT-compatible string and then tokenize the latter
string into BERT tokens.

LISTING 7.9: bert_tokens2.py

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

text2 = "I got a book and after I book for an hour, it's time to book it."
marked_text2 = "[CLS] " + text2 + " [SEP]"
tokenized_text2 = tokenizer.tokenize(marked_text2)

print("input sentence #2:")
print(text2)
print()

198  •  Natural Language Processing Using R Pocket Primer

print("Tokens from input sentence #2:")
print(tokenized_text2)
print()

Map token strings to their vocabulary indices:
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)

Display the words with their indices:
for pair in zip(tokenized_text2, indexed_tokens2):
 print('{:<12} {:>6,}'.format(pair[0], pair[1]))

The first half of Listing 7.9 is almost identical to the first half of Listing 7.8,
and uses the variable text2 instead of text1.

The next portion of Listing 7.9 contains two blocks of print() statements
that display the contents of text2 and tokenized_text2, respectively. The
next code snippet initializes the variable indexed_tokens2 to the result of
converting the tokens in tokenized_text2 to id values.

The final portion of Listing 7.9 contains a loop that displays tokens and
their associated id values. The output of Listing 7.9 is as follows:

input sentence #2:
I got a book and after I book for an hour, it's time to book it.

Tokens from input sentence #2:
['[CLS]', 'i', 'got', 'a', 'book', 'and', 'after', 'i', 'book',
'for', 'an', 'hour', ',', 'it', "'", 's', 'time', 'to', 'book',
'it', '.', '[SEP]']

[CLS] 101
i 1,045
got 2,288
a 1,037
book 2,338
and 1,998
after 2,044
i 1,045
book 2,338
for 2,005
an 2,019
hour 3,178
, 1,010
it 2,009
' 1,005
s 1,055
time 2,051
to 2,000
book 2,338
it 2,009
. 1,012
[SEP] 102

THE BERT FAMILY

BERT has spawned a remarkable set of variations of the original BERT
model, each of which provides some interesting features. Some of those vari-
ations are listed here:

Transformer, BERT, and GPT  •  199

•	ALBERT
•	DistilBERT
•	CamemBERT
•	FlauBERT
•	RoBERTa
•	BIO BERT
•	DOC BERT
•	Clinical BERT
•	German BERT

ALBERT (Google Research and Toyota Technological Institute) is
an acronym for “A Lite BERT for Self-Supervised Learning of Language
Representations.” Like RoBERTa, ALBERT is significantly smaller than
BERT, and it’s also more capable than BERT.

ALBERT (unlike BERT) shares its parameters in all layers, which reduces
the number of parameters, but has no effect on the training and inference
time. In addition, ALBERT uses embedding matrix factorization, which fur-
ther reduces the number of parameters. Furthermore, ALBERT uses SOP
(Sentence-Order Prediction), which is an improvement over NSP (Next
Sentence Prediction). Finally, ALBERT does not use a dropout rate, which
further increases the model capacity.

ALBERT uses both whole-word masking and n-gram masking, where the
latter refers to masking multiple sequential words. Here is a code snippet for
ALBERT:

from transformers import AlbertForMaskedLM, AlbertTokenizer

model1 = AlbertForMaskedLM.from_pretrained('albert-xxlarge-v1')
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')

model2 = AlbertForMaskedLM.from_pretrained('albert-xxlarge-v2')
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')

DistilBERT is a smaller version of BERT that contains 66 million param-
eters, which is 40% of the number of parameters of BERT Base (which has
110 million parameters). Even so, DistilBERT achieves 97% of BERT accu-
racy and is 60% faster than BERT Base, which makes DistilBERT useful for
transfer learning.

Knowledge distillation involves a small model (called the “student”) that
is trained to mimic a larger model or an ensemble of models (called the
“teacher”). DistilBERT is an example of a distilled network that is also used in
production.

To give you an idea of the type of code required for DistilBERT, here is an
example of instantiating a DistilBERT tokenizer:

import transformers
tokenizer = transformers.AutoTokenizer.from_
pretrained('distilbert-base-uncased', do_lower_case=True)

200  •  Natural Language Processing Using R Pocket Primer

Here is another example of instantiating a DistilBERT tokenizer:

from transformers import DistilBertTokenizer:
tokenizer = DistilBertTokenizer.from.
pretrained('distilbert-base-uncased')

RoBERTa (from Facebook) leverages BERT’s language masking strategy,
along with modifications of some of BERT’s hyper parameters. Note that
RoBERTa was trained on a corpus that is at least 10 times larger than the
corpus for BERT.

Unlike BERT, RoBERTa does not use an NSP (Next Sentence Prediction)
task. Instead, RoBERTa uses dynamic masking, whereby a masked token is
actually modified during the training process.

Surpassing Human Accuracy: deBERTa

The deBERTa model from Microsoft recently surpassed human accuracy:
http s://www.microsoft.com/en-us /research/blog/microsoft-deberta-sur-

passes-human-performance-on-the-superglue-benchmark/
The architecture for this model comprises 48 Transformer layers with

1.5 billion parameters. This model has a GLUE score of 90.8, and a SuperGLUE
score of 89.9, which exceeds the human performance score of 89.8.

Microsoft intends to integrate DeBERTa with the Turing natural language
representation model Turing NLRv4 (also from Microsoft). The Turing mod-
els are ubiquitous in the Microsoft ecosystem, including products such as Bing
and Azure Cognitive Services.

What is Google Smith?

The SMITH model from Google analyzes documents. Very simply, the
SMITH model is trained to understand passages within the context of an
entire document. By contrast, BERT is trained to understand words within
the context of sentences. However, the SMITH model (which outperforms
BERT) supplements BERT by performing major operations that are not pos-
sible in BERT.

This concludes the BERT-specific portion of the chapter. The next sec-
tion introduces GPT, followed by sections that contain details regarding GPT-2
(and code samples) as well as GPT-3.

INTRODUCTION TO GPT

GPT stands for Generative Pre-Training (or sometimes called Generative
Pre-Training Transformers), which is a pre-trained NLP-based model that was
developed by OpenAI. GPT is trained with unlabeled data via unsupervised
pre-training (also known as self-supervision).

GPT is based on the transformer architecture and takes advantage of the
self-attention mechanism of the transformer. There are several versions of

https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/
https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/

Transformer, BERT, and GPT  •  201

GPT, which includes GPT-2 (developed in 2019) and GPT-3 that was released
in June, 2020. Both GPT-2 and GPT-3 are discussed later in this chapter.

You should keep in mind the Lottery Ticket Hypothesis, which states that
in every sufficiently deep neural network, there is a smaller subnetwork that
can perform just as well as the whole neural network.

Installing the Transformers Package

The installation process involves the following command:

pip3 install transformers

You can perform an upgrade of transformers by invoking the following
command:

pip3 install -U transformers

However, you might encounter the following error message:

ERROR: After October 2020 you may experience errors when
installing or updating packages. This is because pip will
change the way that it resolves dependency conflicts.

We recommend you use --use-feature=2020-resolver to test
your packages with the new resolver before it becomes the
default.

sentence-transformers 0.3.7.2 requires
transformers<3.4.0,>=3.1.0, but you'll have transformers
4.1.1 which is incompatible.

WORKING WITH GPT-2

This section contains Python code samples that use GPT-2 to perform sen-
timent analysis and the question-and-answer process, also abbreviated as QnA.
There are some tasks that you can perform in GPT-2 that are comparable in
GPT-3.

�The Python code samples in this section work with Python 3.7.9 but not
with Python 3.6 or Python 3.8 (it’s possible that Python 3.7.x will work as
well).

If you need to install Python 3.7.9, you will also need to execute the follow-
ing commands to install transformers, tensorflow, and scipy:

pip3 install transformers
pip3 install tensorflow
pip3 install scipy

Listing 7.10 shows the content of gpt2_sentiment.py that illustrates
how to perform sentiment analysis in GPT-2.

NOTE

202  •  Natural Language Processing Using R Pocket Primer

LISTING 7.10: gpt2_sentiment.py

pip3 install transformers
from transformers import pipeline

pipeline for sentiment-analysis:
cls = pipeline('sentiment-analysis')

text1 = "I love deep dish Chicago pizza."
sentiment1 = cls(text1)
print("sentence: ",text1)
print("sentiment:",sentiment1)
print()

text2 = "I dislike anchovies."
sentiment2 = cls(text2)
print("sentence: ",text2)
print("sentiment:",sentiment2)
print()

text3 = "I dislike anchovies but I like pickled herring."
sentiment3 = cls(text3)
print("sentence: ",text3)
print("sentiment:",sentiment3)

Listing 7.10 contains an import statement and then initializes the variable
cls as an instance of the pipeline class by specifying sentiment-analysis
(which is the task for this code sample).

The next three code blocks perform sentiment analysis on the text strings
text1, text2, and text3, respectively. Launch the code to see the following
output:

sentence: I love deep dish Chicago pizza.
sentiment: [{'label': 'POSITIVE', 'score': 0.9985044598579407}]

sentence: I dislike anchovies.
sentiment: [{'label': 'NEGATIVE', 'score': 0.9982384443283081}]

sentence: I dislike anchovies but I like pickled herring.
sentiment: [{'label': 'POSITIVE', 'score': 0.7346124649047852}]

Listing 7.11 shows the content of gpt2_qna.py that illustrates how to
perform question-and-answer in GPT-2. Note that this Python code sample
will not work on Python 3.8.x. You must use Python 3.7.

LISTING 7.11: gpt2_qna.py

from transformers import pipeline

pipeline for question-answering:
qna = pipeline('question-answering')

qc_pair = {
 'question': 'What is the name of the repository ?',

Transformer, BERT, and GPT  •  203

 'context': 'Pipeline have been included in the
huggingface/transformers repository'
}

if __name__ == "__main__":
 result = qna (qc_pair)
 print("result:")
 print(result)

Listing 7.11 starts with an import statement and then initializes the vari-
able qna as an instance of the pipeline class from the transformers library,
with question-answering as a parameter. Next, the variable gc_pair is
initialized as a pair of question/answer strings.

Next, the variable result is initialized with the result of invoking qna with
gc_pair, and then the contents of result are displayed. Launch the code to
see the following output:

result:
{'score': 0.5135953426361084, 'start': 35, 'end': 59,
'answer': 'huggingface/transformers'}

Listing 7.11 contains an if statement; you might see the following error
message if you remove the if statement:

#output:
 raise RuntimeError('''
RuntimeError:
 An attempt has been made to start a new process
before the current process has finished its bootstrapping
phase.

 This probably means that you are not using fork to
start your child processes and you have forgotten to use
the proper idiom
 in the main module:

 if __name__ == '__main__':
 freeze_support()
 ...

 The "freeze_support()" line can be omitted if the
program is not going to be frozen to produce an executable.

Listing 7.12 shows the content of gpt2_text_gen.py that illustrates how
to use generated text from an input string in GPT-2. Note that the default
model for the text generation pipeline is GPT-2.

LISTING 7.12: gpt2_text_gen.py

from transformers import pipeline

text_gen = pipeline("text-generation")

specify a max_length of 50 tokens and sampling "off":

204  •  Natural Language Processing Using R Pocket Primer

prefix_text = "What a wonderful"
generated_text = text_gen(prefix_text, max_length=50, do_sample=False)[0]

print("=> #1 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

prefix_text = "Once in a "
generated_text = text_gen(prefix_text, max_length=50, do_sample=False)[0]

print("=> #2 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

prefix_text = "Once in a blue "
generated_text = text_gen(prefix_text, max_length=50, do_sample=False)[0]

print("=> #3 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

Listing 7.12 starts with an import statement and then initializes the
variable text_gen as an instance of the pipeline class by specifying
text-generation (which is the task for this code sample).

The next three blocks of code display the completion of the text in
prefix_text, where the latter is assigned three different text strings. Launch
the code in Listing 7.12 to see the following output:

=> #1 generated_text['generated_text']:
What a wonderful thing about this is that it's a very simple
and simple way to get your hands on a new game.

The game is a simple, simple game. It's a simple game. It's a
simple game. It's

=> #2 generated_text['generated_text']:
Once in a vernacular, the word "carnage" is used to describe a
large, open, and well-lit place.

The word "carnage" is used to describe a large, open, and well-

=> #3 generated_text['generated_text']:
Once in a blue urn, you can see the "C" in the center of the
"C" and the "A" in the bottom right corner.

The "C" is the "A" and the "A" are

Listing 7.13 shows the content of gpt2_auto.py that illustrates how to
perform sentiment analysis in GPT-2. Note that this Python code sample will
not work on Python 3.8.x. You must use Python 3.7.

Transformer, BERT, and GPT  •  205

LISTING 7.13: gpt2_auto.py

from transformers import AutoTokenizer, TFAutoModel

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
mymodel = TFAutoModel.from_pretrained("bert-base-uncased")

inputs = tokenizer("I love deep dish Chicago pizza", return_tensors="tf")
outputs = mymodel(**inputs)

print("inputs: ",inputs)
print("outputs: ",outputs)

Listing 7.13 starts with an import statement and then initializes the vari-
able tokenizer as a generic tokenizer class from bert-base-uncased by
invoking the from_pretrained() method of the AutoTokenizer class that
belongs to the transformers library.

Similarly, mymodel is a general model class from bert-base-uncased
by invoking the from_pretrained() method of the TFAutoModel class that
belongs to the transformers library.

Next, the variable inputs is initialized with the result of passing a hard-
coded string to the tokenizer variable. Then the variable outputs is initial-
ized with the result of passing inputs to the variable mymodel.

The last portion of Listing 7.13 shows the contents of inputs and outputs.
Launch the code to see the following output:

inputs: {'input_ids': <tf.Tensor: shape=(1, 8), dtype=int32,
numpy=array([[101, 1045, 2293, 2784, 9841, 3190, 10733, 102]],
 dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(1, 8),
dtype=int32, numpy=array([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(1, 8), dtype=int32,
numpy=array([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)>}
outputs: TFBaseModelOutputWithPooling(last_hidden_state=<tf.Tensor:
shape=(1, 8, 768), dtype=float32, numpy=
array([[[-0.00286604, 0.22725284, 0.0192489 , ..., -0.16997483,
 0.22732456, 0.2084062],
 [0.37293857, 0.18514417, -0.1804212 , ..., -0.02841423,
 0.92029154, 0.08076832],
 [1.0605763 , 0.68393016, 0.3488946 , ..., 0.23068337,
 0.57474136, -0.2725499],
 ...,
 [0.36834046, 0.09277615, -0.49751407, ..., -0.21702018,
 -0.15317607, -0.17662546],
 [0.2218363 , -0.1452129 , -0.6224062 , ..., 0.19659105,
 0.0055675 , 0.05520308],
 [0.38959947, 0.1536812 , -0.2523777 , ..., 0.3461408 ,
 -0.5905776 , -0.2758692]]],
dtype=float32)>, pooler_output=<tf.Tensor: shape=(1, 768), dtype=float32,
...
numpy=array([[-8.23929489e-01, -2.69686729e-01, 2.79440969e-01,
 5.52639008e-01, -5.11318594e-02, -8.98018852e-02,
 7.92447925e-01, 1.49121523e-01, 4.11069989e-02,
 -9.99752760e-01, 2.84106694e-02, 4.69654143e-01,

206  •  Natural Language Processing Using R Pocket Primer

 9.74410057e-01, -2.57081628e-01, 9.02504683e-01,
 -4.83381122e-01, 3.19796950e-02, -5.14692605e-01,
...
 3.13184172e-01, 3.45878363e-01, 7.98233569e-01,
 4.64420468e-01, 6.13458335e-01, 4.65085119e-01,
 2.03554392e-01, -5.93035281e-01, 8.85935843e-01]],
dtype=float32)>, hidden_states=None, attentions=None)

Listing 7.14 shows the content of pytorch_gpt_next_word.py that
illustrates how to predict the next word in a sentence.

LISTING 7.14: pytorch_gpt_next_word.py

import torch
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

Load pre-trained GPT-2 tokenizer model:
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

encode the words in a sentence:
text = "What is the fastest car in the"
indexed_tokens = tokenizer.encode(text)

convert tokens to a PyTorch tensor:
tokens_tensor = torch.tensor([indexed_tokens])

load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')

"eval" mode deactivates the DropOut modules:
model.eval()

Predict each token:
with torch.no_grad():
 outputs = model(tokens_tensor)
 predictions = outputs[0]

print("=> list of predictions:")
print(predictions[0, -1, :])
print()

print("=> argmax of predictions:")
print(torch.argmax(predictions[0, -1, :]).item())
print()

Get the predicted next sub-word
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])

Print the predicted word
print("=> initial text:")
print(text)
print()

print("=> Predicted next word:")
print(predicted_text)

Listing 7.14 starts with two import statements, the second of which is sort
of like the counterpart to the import statement in Listing 7.13:

Transformer, BERT, and GPT  •  207

from transformers import AutoTokenizer, TFAutoModel

Next, the variable tokenizer is created as an instance of a generic gpt2
model. Then, the variable text is initialized as a text string and passed as
a parameter to the encode() method of the variable tokenizer, with the
result assigned to the variable indexed_tokens.

The next portion of Listing 7.14 creates the variable tokens_tensor,
which is a Torch-based tensor that is created from indexed_tokens. Now
we can instantiate the variable model as a generic instance of the gpt2 model.

The second half of Listing 7.14 starts by initializing the variables outputs
and predictions, followed by blocks of print() statements that display the
values of predictions and the index position with the maximum value. Then,
the initial text is displayed, followed by the initial text concatenated with the
predicted word world (that is shown in bold below).

The output of Listing 7.14 is here (this might take a minute or two when
you launch it the first time due to a file download):

=> list of predictions:
tensor([-96.1219, -94.2472, -96.9560, ..., -103.5570, -100.5182,
 -95.6672])

=> argmax of predictions:
995

=> initial text:
What is the fastest car in the

=> Predicted next word:
 What is the fastest car in the world

GPT-2 versus BERT

There are some important differences between GPT-2 and BERT.
Specifically, GPT-2 is not bidirectional and has no concept of masking. GPT-2
is based on transformer decoder blocks. Moreover, GPT-2 involves supervised
fine-tuning and outputs only one token at a time.

By contrast, BERT adds the NSP task during training and also has a seg-
ment embedding. BERT uses transformer encoder blocks (not the decoder
blocks) and also requires pre-training. The fine-tuning process necessitates
task-specific sample data.

WHAT IS GPT-3?

GPT-3 is an extension of the GPT-2 model, contains more layers and data,
and is 100 times larger than GPT-2. The largest GPT-3 model has 96 attention
layers, each of which contains 96 × 128 dimension heads. In addition, GPT-3
consists of 175 billion parameters and was trained on hundreds of gigabytes of
text to learn how to predict the next word in a user-supplied text string.

GPT-3 is a statistical model that determines the probability distribution of
words in order to generate the appropriate text in response to an input string.

208  •  Natural Language Processing Using R Pocket Primer

Unlike other models that are trained on specific tasks, GPT-3 is designed to
detect patterns in text strings, which provides the following benefits:

•	GPT-3 is a general purpose (not task-specific) model
•	GPT-3 does not require re-training to handle new prompts
•	GPT-3 achieves SOTA (state of the art) performance on multiple NLP

tasks

The performance of GPT-3 is probably due to the fact that GPT-3 was
trained on a dataset consisting of more than 50 billion words. Although the size
and cost of GPT-3 is prohibitive for the vast majority of companies, GPT-3 is
accessible via a simple and cost-effective API. GPT-3 is based on point-in-time
data that can be several months old instead of continuous training.

GPT-3 Task Strengths and Mistakes

GPT-3 has the ability to perform text generation that is close to human-
level quality. For example, suppose that GPT-3 is given a title and a subtitle,
along with the word “article” that serves as a prompt word. GPT-3 can then
write brief articles that often seem to be written by humans.

However, any trained model has limitations, including GPT-3. Moreover,
bias exists in the corpus that was used to train GPT-3. According to the follow-
ing article, one way in which GPT-3 can misclassify results is to include bias
toward women and minorities:

https://techcrunch.com/2020/08/07/here-are-a-few-ways-gpt-3-can-go-
wrong/

A more significant example is the use of GPT-3 in a medical chatbot, which
suggested to a fake patient (who expressed suicidal thoughts) that he kill
himself:

https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-
gpt3-patient-kill-themselves/

GPT-3 Architecture

GPT-3 has eight different model sizes (from 125M to 175B parameters),
and the smallest GPT-3 model is about the size of BERT-Base and RoBERTa-
Base, with 12 attention layers that in turn have 12 × 64 dimensional heads.
However, the largest GPT-3 model is ten times larger than T5-11B (the previ-
ous record holder), and has 96 attention layers, which in turn have 96 × 128
dimension heads.

The GPT-3 Playground

OpenAI provides the Playground, which is a Web-based tool for entering
prompts in a text field and receiving completions from GPT-3. The Playground
supports most of the functionality that is available directly through the GPT-3
API. Moreover, the Playground enables you to interact with GPT-3 without
writing any code.

https://techcrunch.com/2020/08/07/here-are-a-few-ways-gpt-3-can-go-wrong/
https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-gpt3-patient-kill-themselves/

Transformer, BERT, and GPT  •  209

Accessing the GPT-3 Playground

Log in at https://openai.com, after which you can access the Playground if
you are a registered user. Next, enter a text string, click the submit button, and
then GPT-3 will display its response text.

Here is an interesting feature: each time that you click the submit button,
GPT-3 uses the existing text as a prompt to generate a new completion. Try
clicking the submit button repeatedly, and watch the response text that GPT-3
generates for you.

WHAT IS THE GOAL OF GPT-3?

The aim of the GPT-3 pre-trained model is to directly evaluate the model
on the test-related data of new tasks; i.e., GPT-3 essentially skips the training-
related data of new tasks and focuses directly on the test-related data, in its
capacity as a “few shot” learner (discussed later).

By way of comparison, GPT-3 has 175 billion parameters, whereas GPT-2
has 1.5 billion parameters, and BERT Large has 340 million parameters. GPT-3
was trained entirely on publicly available datasets, on nearly 500,000,000,000
words (some of which might contain offensive content).

GPT-3 achieved state-of-the-art performance on several NLP tasks without
fine-tuning, at the cost of over $10,000,000. Some of the datasets that were
used to train GPT-3 are downloadable from this read-only Github repository:

https://github.com/openai/gpt-3
GPT-3 has caught the attention of many people because of various tasks

that it has performed, including automatic code generation. For example, one
user typed a paragraph of text describing the following Web application:

1.	 a button that increments a total by USD 3
2.	 a button that decrements a total by USD 5
3.	 a button that displays the current total

GPT-3 then created a React application with the preceding functional-
ity, which prompted a variety of reactions: some people were amused by
such a simplistic application, whereas others contemplated their future job
security.

Give GPT-3 an initial sequence of words and GPT-3 will generate various
responses, such as code generation, news articles, poems, and even make jokes.

GPT-3 generated an interesting poem about Elon Musk (“your tweets are a
blight”), part of which you can read online:

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-ope-
nai-2020-8

 The key differentiator of GPT-3 is its ability to perform specific tasks with-
out the need for fine-tuning, whereas other models tend to require task-spe-
cific datasets, and they generally do not perform as well on other tasks.

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8
https://openai.com
https://github.com/openai/gpt-3
https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8

210  •  Natural Language Processing Using R Pocket Primer

One of the distinguishing characteristics of GPT-3 is its ability to solve
unseen NLP tasks. This is due to the fact that GPT-3 was trained on a very
large corpus. GPT-3 also uses “few shot” learning (discussed later in this
chapter) and can perform the following tasks:

•	translate natural language into code for websites
•	solve complex medical question-and-answer problems
•	create tabular financial reports
•	write code to train machine learning models

The GPT-3 API involves setting the temperature parameter as well as the
response length parameter. The temperature parameter (whose default value
is 0.7) affects how much randomness the system uses in generating its replies.
The response length parameter yields an approximate number of “words” the
system generates in its response.

GPT-3 has surprised people with its capacity to generate prose as well as
poetry. Elon Musk is one of the founding members of OpenAI that created
GPT-3, which generated the following poem about Elon Musk1:

“The SEC said, “Musk,/your tweets are a blight./They really could cost
you your job,/if you don’t stop/all this tweetingat night.”/…Then Musk cried,
“Why?/The tweets I wrote are not mean,/I don’t use all-caps/and I’m sure that
my tweets are clean.”/”But your tweets can move markets/and that’s why we’re
sore./You may be a genius/and a billionaire,/but that doesn’t give you the right
to be a bore!”

Zero-Shot, One-Shot, and Few Shot Learners

These three types of learners differ in the number of task examples that
they are given and also the number of gradient updates that they perform.

Specifically, a zero-shot learner is a model that predicts an answer based
solely on an NLP description of the task: no gradient updates are performed.

A one-shot learner is a model that 1) sees a description of the task and
2) one example of the task: no gradient updates are performed.

A few-shot learner is a model that 1) sees a description of the task and
2) a few examples of the task: no gradient updates are performed, and a “few”
examples can involve between 10 and 100 examples of the task.

With the preceding points in mind, GPT-3 is a “few shot” learner because
GPT-3 is fine-tuned on a small set of samples. By contrast, most other models
(including BERT) require an elaborate fine-tuning step.

GPT-3 TASK PERFORMANCE

For most models, the task of translating sentences from English to Italian
involves thousands of sentence pairs in order for those models to learn how

1 https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8

Transformer, BERT, and GPT  •  211

to perform translation. By comparison, GPT-3 does not require a fine-tuning
step: it can handle custom language tasks without training data.

Thus, GPT-3 has the ability to perform specific tasks without any special
tuning, which is something that other models cannot do well. For example,
GPT-3 can be trained to translate text, generate code, or even write poetry.
Moreover, GPT-3 can do so with no more than 10 training examples.

One other point to keep in mind: GPT-3 is not just a few-shot learner. It
can also perform as a zero-shot learner and a one-shot learner. By way of com-
parison, GPT-3 as a zero-shot learner has higher accuracy than a fine-tuned
RoBERTa model (which previously had SOTA performance).

In terms of reading comprehension, GPT-3 performs best on free-form
conversational datasets, and performs its worst on datasets that involve mod-
eling structured dialog. However, as a few-shot learner for this task, GPT-3
outperforms the fine-tuned baseline of BERT. In addition, GPT-3 performs
well on the SQuAD 2.0 dataset from Stanford, but underperforms on multiple-
choice test questions.

GPT-3 treats each input string as a so-called “prompt” in order to deter-
mine the most suitable response: higher quality prompts generate higher
quality responses. A completion is another term for the response string that is
generated by GPT-3. Examples of GPT-3 are available online:

https://beta.openai.com/examples

THE SWITCH TRANSFORMER: ONE TRILLION PARAMETERS

Recently Google researchers announced an NLP model with one trillion
parameters, which is almost six times as larges at GPT-3 (175 billion param-
eters). This model is one of the largest models ever created, and it is as much
as four times faster than T5-XXL (the previous largest language model from
Google).

Instead of using complicated algorithms, the researchers combined a sim-
ple architecture in conjunction with large datasets and parameter counts.
Since large-scale training is computationally intensive, they adopted a Switch
Transformer, which is a technique that uses only a subset of the parameters
of a model. In addition to the model’s sparseness, the Switch Transformer
adroitly takes advantage of GPUs and TPUs for intense matrix multiplications
operations.

LOOKING AHEAD

Several important topics are not discussed in this chapter. For example,
the topic of ethics is much more visible than it was even just a few years ago.
Various questions have become more prominent in AI, such as the ethical con-
cerns associated with large-scale deployment of AI system, how algorithms
contribute decision-making processes, the source of data and the extent of
biases in that data.

https://beta.openai.com/examples

212  •  Natural Language Processing Using R Pocket Primer

In health care, questions arise regarding AI-controlled robots prescrib-
ing medicine and performing surgery. Moreover, there are legal issues and
accountability when robots make mistakes, such as who is responsible (the
owner or the robot manufacturer?) and determining the type of penalty to
impose (deactivate one robot or every robot in the same series?).

In parallel with the preceding issues, recent developments in AI are creat-
ing a sense of optimism that breakthroughs may well be on the event horizon.
Recently OpenAI created DALL-E (derived from Salvador Dali and Pixar’s
WALL-E), which is 12-billion parameter variation of GPT-3: https://openai.
com/blog/dall-e/

In addition, DeepMind developed AlphaFold, which made a significant
contribution toward solving the protein folding problem (which has been
called a “50-year-old problem in biology”). AlphaFold handily won the compe-
tition (by a substantial margin).

To give you an idea of the impact of AlphaFold, Andrei Lupas, who is an
evolutionary biologist at the Max Planck Institute for Developmental Biology
in Tübingen, Germany, stated the following: “The [AlphaFold] model from
group 427 gave us our structure in half an hour, after we had spent a decade
trying everything.”

Indeed, the future of NLP and AI in general looks both challenging and
promising, guided by ethical principles that may lead us to a more mindful
way of life.

SUMMARY

This chapter started with an introduction to the concept of attention, fol-
lowed by the transformer architecture that was developed by Google and
released in late 2017. You also learned how to use the transformer model from
HuggingFace to perform tasks such as NER, QnA, Sentiment Analysis, and
mask-filling tasks.

Next, you learned about BERT, which is a pre-trained NLP model that is
based on the transformer architecture, along with some of its features. You also
saw how to perform sentence similarity in BERT, and how to generate BERT
tokens. Then you learned about several BERT-based trained models, including
DistilledBERT, CamemBERT, and FlauBERT.

In the final portion of this chapter, you learned about GPT-3 and some of
its remarkable features, and its strengths as well as its weaknesses. You also
learned about various types of learners and how GPT-3 was trained.

Congratulations! You have reached the end of a fast-paced introduction
to R and NLP in R. You are in a good position to use the knowledge that you
acquired in this book as a stepping stone to further your understanding of NLP.

https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/

APPENDIX

INTRO TO PROBABILITY
AND STATISTICS

This appendix introduces you to concepts in probability, as well as a wide
assortment of statistical terms and algorithms.

The first section of this appendix starts with a discussion of prob-
ability, how to calculate the expected value of a set of numbers (with associated
probabilities), and the concept of a random variable (discrete and continuous),
and a short list of some well-known probability distributions.

The second section of this appendix introduces basic statistical concepts,
such as mean, median, mode, variance, and standard deviation, along with sim-
ple examples that illustrate how to calculate these terms. You will also learn
about the terms RSS, TSS, R^2, and F1 score.

The third section of this appendix introduces Gini Impurity, Entropy,
Perplexity, Cross-Entropy, and KL Divergence. You will also learn about skew-
ness and kurtosis.

The fourth section explains covariance and correlation matrices and how to
calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a
well-known dimensionality reduction technique. The final section introduces
you to Bayes’ Theorem.

WHAT IS A PROBABILITY?

All measurements have some uncertainty. In general, we assume that there
is a correct value, and we endeavor to find the best estimate of that value.

When we work with an event that can have multiple outcomes, we try to
define the probability of an outcome as the chance that it will occur, which is
calculated as follows:

p(outcome) = # of times outcome occurs/(total number of outcomes)

214  •  Natural Language Processing Using R Pocket Primer

For example, in the case of a single balanced coin, the probability of tossing
a head H equals the probability of tossing a tail T:

p(H) = 1/2 = p(T)

The set of probabilities associated with the outcomes {H, T} is shown in
the set P:

P = {1/2, 1/2}

Some experiments involve replacement while others involve non-replace-
ment. For example, suppose that an urn contains 10 red balls and 10 green
balls. What is the probability that a randomly selected ball is red? The answer
is 10/(10 + 10) = 1/2. What is the probability that the second ball is also red?

There are two scenarios with two different answers. If each ball is selected
with replacement, then each ball is returned to the urn after selection, which
means that the urn always contains 10 red balls and 10 green balls. In this case,
the answer is 1/2 * 1/2 = 1/4. In fact, the probability of any event is independ-
ent of all previous events (with replacement).

However, if balls are selected without replacement, then the answer
is 10/20 * 9/19. As you undoubtedly know, card games are also examples of
selecting cards without replacement.

Another concept is conditional probability, which refers to the likelihood of
the occurrence of event E1 given that event E2 has occurred. A simple exam-
ple is the following statement:

“If it rains (E2), then I will carry an umbrella (E1).”

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin: whenever
a head appears, you earn $1 and whenever a tail appears, you earn $1. If you
toss the coin 100 times, how much money do you expect to earn? Since you will
earn $1 regardless of the outcome, the expected value (in fact, the guaranteed
value) is 100.

Now consider this scenario: whenever a head appears, you earn $1 and
whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how
much money do you expect to earn? You probably determined the value $50
(which is the correct answer) by making a quick mental calculation. The more
formal derivation of the value of E (the expected earning) is here:

E = 100 *[1 * 0.5 + 0 * 0.5] = 100 * 0.5 = 50

The quantity 1 * 0.5 + 0 * 0.5 is the amount of money you expected to earn
during each coin toss (half the time you earn $1 and half the time you earn 0
dollars), and multiplying this number by 100 is the expected earning after 100
coin tosses. Also note that you might never earn $50: the actual amount that
you earn can be any integer between 1 and 100 inclusive.

Intro to Probability and Statistics  •  215

As another example, suppose that you earn $3 whenever a head appears,
and you lose $1.50 dollars whenever a tail appears. Then the expected earning
E after 100 coin tosses is shown here:

E = 100 *[3 * 0.5 − 1.5 * 0.5] = 100 * 1.5 = 150

We can generalize the preceding calculations as follows. Let P = {p1, . . . , pn}
be a probability distribution, which means that the values in P are non-negative
and their sum equals 1. In addition, let R = {R1, . . . , Rn} be a set of rewards,
where reward Ri is received with probability pi. Then the expected value E
after N trials is as follows:

E = N * [SUM pi*Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P = { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

As a simple example, suppose that the earnings are {3, 0, −1, 2, 4, −1} when
the values 1, 2, 3, 4, 5, 6, respectively, appear when tossing the single die. Then
after 100 trials our expected earnings are calculated as follows:

E = 100 * [3 + 0 + −1 + 2 + 4 + −1]/6 = 100 * 3/6 = 50

In the case of two balanced dice, we have the following probabilities of
rolling 2, 3, . . . , or 12:

p(2) = 1/36
p(3) = 2/36
...
p(12) = 1/36
P = {1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36}

RANDOM VARIABLES

A random variable is a variable that can have multiple values, and each
value has an associated probability of occurrence. For example, if we let X be a
random variable whose values are the outcomes of tossing a well-balanced die,
then the values of X are the numbers in the set {1, 2, 3, 4, 5, 6}. Moreover, each
of those values can occur with equal probability (which is 1/6).

216  •  Natural Language Processing Using R Pocket Primer

In the case of two well-balanced dice, let X be a random variable whose
values can be any of the numbers in the set {2, 3, 4, . . . , 12}. Then the asso-
ciated probabilities for the different values for X are listed in the previous
section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables
because the list of possible values is either finite or countably infinite (such
as the set of integers). As an aside, the set of rational numbers and the set
of algebraic numbers are also countably infinite, but the set of non-algebraic
irrational numbers and the set of real numbers are both uncountably infinite
(proofs are available online). As pointed out earlier, the associated set of prob-
abilities must form a probability distribution, which means that the probability
values are non-negative and their sum equals 1.

A continuous random variable is a variable whose values can be any num-
ber in an interval, which can be an uncountably infinite number of values. For
example, the amount of time required to perform a task is represented by a
continuous random variable.

A continuous random variable also has a probability distribution that is rep-
resented as a continuous function. The constraint for such a variable is that
the area under the curve (which is sometimes calculated via a mathematical
integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known
probability distributions are listed here:

•	Gaussian distribution
•	Poisson distribution
•	Chi-squared distribution
•	Binomial distribution

The Gaussian distribution is named after Karl F. Gauss, and it is sometimes
called the normal distribution or the Bell curve. The Gaussian distribution is
symmetric: the shape of the curve on the left of the mean is identical to the
shape of the curve on the right side of the mean. As an example, the distribu-
tion of IQ scores follows a curve that is similar to a Gaussian distribution.

However, the frequency of traffic at a given point in a road follows a Poisson
distribution (which is not symmetric). If you count the number of people who
go to a public pool based on five-degree (Fahrenheit) increments of the tem-
perature, followed by five-degree decrements in temperature, that set of num-
bers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list
and you will find numerous articles that contain images and technical details
about these (and other) probability distributions.

Intro to Probability and Statistics  •  217

FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median,
mode, variance, and standard deviation. Feel free to skim (or skip) this section
if you are already familiar with these concepts. As a start point, let’s suppose
that we have a set of numbers X ={x1, . . . , xn} that can be positive, negative,
integer-valued or decimal values.

The Mean

The mean of the numbers in the set X is the average of the values. For
example, if the set X consists of {−10, 35, 75, 100}, then the mean equals
(−10 + 35 + 75 + 100)/4 = 50. If the set X consists of {2, 2, 2, 2}, then the mean
equals (2 + 2 + 2 + 2)/4 = 2. The mean value is not necessarily one of the values
in the set.

The mean is sensitive to outliers. For example, the mean of the set of num-
bers {1, 2, 3, 4} is 2.5, whereas the mean of the set of number {1, 2, 3, 4, 1000}
is 202. Since the formulas for the variance and standard deviation involve the
mean of a set of numbers, both of these terms are also more sensitive to outliers.

The Median

The median of the numbers (sorted in increasing or decreasing order) in
the set X is the middle value in the set of values, which means that half the
numbers in the set are less than the median and half the numbers in the set are
greater than the median. For example, if the set X consists of {−10, 35, 75, 100},
then the median equals 55 because 55 is the average of the two numbers 35
and 75. As you can see, half the numbers are less than 55 and half the numbers
are greater than 55. If the set X consists of {2, 2, 2, 2}, then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean.
For example, the median of the set of numbers {1, 2, 3, 4} is 2.5, and the
median of the set of numbers {1, 2, 3, 4, 1000} is 3.

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the
set X is the most frequently occurring value, which means that there can be
more than one such value. If the set X consists of {2, 2, 2, 2}, then the mode
equals 2.

If X is the set of numbers {2, 4, 5, 5, 6, 8}, then the number 5 occurs twice
and the other numbers occur only once, so the mode equals 5.

If X is the set of numbers {2, 2, 4, 5, 5, 6, 8}, then the numbers 2 and 5 occur
twice and the other numbers occur only once, so the mode equals 2 and 5.
A set that has two modes is called bimodal, and a set that has more than two
modes is called multi-modal.

One other scenario involves sets that have numbers with the same fre-
quency and they are all different. In this case, the mode does not provide
meaningful information, and one alternative is to partition the numbers into

218  •  Natural Language Processing Using R Pocket Primer

subsets and then select the largest subset. For example, if set X has the values
{1, 2, 15, 16, 17, 25, 35, 50}, we can partition the set into subsets whose ele-
ments are in range that are multiples of ten, which results in the subsets {1, 2},
{15, 16, 17}, {25}, {35}, and {50}. The largest subset is {15, 16, 17}, so we could
select the number 16 as the mode.

As another example, if set X has the values {−10, 35, 75, 100}, then parti-
tioning this set does not provide any additional information, so it’s probably
better to work with either the mean or the median.

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the num-
bers in X and the mean mu of the set X, divided by the number of values in X,
as shown here:

variance = [SUM (xi − mu)**2] / n

For example, if the set X consists of {−10, 35, 75, 100}, then the mean
equals (−10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

variance = [(−10−50)**2 + (35−50)**2 + (75−50)**2 + (100−50)**2]/4
	 = [60**2 + 15**2 + 25**2 + 50**2]/4
	 = [3600 + 225 + 625 + 2500]/4
	 = 6950/4 = 1,737.50

The standard deviation std is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2, 2, 2, 2}, then the mean equals (2 + 2 + 2 + 2)/4 = 2,
and the variance is computed as follows:

variance = [(2−2)**2 + (2−2)**2 + (2−2)**2 + (2−2)**2]/4
	 = [0**2 + 0**2 + 0**2 + 0**2]/4
	 = 0

The standard deviation std is the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given
group, such as the population of a country, the people over 65 in the USA, or
the number of first year students in a university.

However, in many cases statistical quantities are calculated on samples
instead of an entire population. Thus, a sample is (a much smaller) subset of the
given population. See the Central Limit Theorem regarding the distribution of

Intro to Probability and Statistics  •  219

the mean of a set of samples of a population (which need not be a population
with a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of
three different techniques that you can investigate:

•	Stratified sampling
•	Cluster sampling
•	Quota sampling

The population variance is calculated by multiplying the sample variance
by n/(n−1), as shown here:

population variance = [n/(n−1)]*variance

ChebyshevÕs Inequality

Chebyshev’s inequality provides a simple way to determine the minimum
percentage of data that lies within k standard deviations. Specifically, this ine-
quality states that for any positive integer k greater than 1, the amount of data
in a sample that lies within k standard deviations is at least 1 − 1/k**2. For
example, if k = 2, then at least 1 − 1/2**2 = 3/4 of the data must lie within 2
standard deviations.

The interesting part of this inequality is that it has been mathematically
proven to be true, i.e., it’s not an empirical or heuristic-based result. An exten-
sive description regarding Chebyshev’s inequality (including some advanced
mathematical explanations) is available online:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

What is a p-value?

The null hypothesis states that there is no correlation between a depend-
ent variable (such as y) and an independent variable (such as x). The p-value is
used to reject the null hypothesis if the p-value is small enough (< 0.005) which
indicates a higher significance. The threshold value for p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are val-
ues that are always between 0 and 1. In fact, p-values are statistical quantities
to evaluate the null hypothesis, and they are calculated by means of p-value
tables or via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that is sufficient for
the material in this book. However, several of those terms can be viewed from
the perspective of different moments of a function.

In brief, the moments of a function are measures that provide information
regarding the shape of the graph of a function. In the case of a probability dis-
tribution, the first four moments are defined as follows:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

220  •  Natural Language Processing Using R Pocket Primer

•	The mean is the first central moment
•	The variance is the second central moment
•	The skewness (discussed later) is the third central moment
•	The kurtosis (discussed later) is the fourth central moment

More detailed information (including the relevant integrals) regarding
moments of a function is available here:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance

What is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. A
Gaussian distribution is symmetric, which means that its skew value is zero (it’s
not exactly zero, but close enough for our purposes). In addition, the skewness
of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-
sided skew means that the long tail is on the left side of the curve, with the
following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the curve,
with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed data-
set using one of the following techniques (which depends on the specific
use-case):

•	Exponential transform
•	Log transform
•	Power transform

Perform an online search for more information regarding the preceding
transforms and when to use each of these transforms.

What is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense
that both of them assess the asymmetry of a probability distribution. The kur-
tosis of a distribution is a scaled version of the fourth moment of the distribu-
tion, whereas its skewness is the third moment of the distribution. Note that
the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts,
you can perform an online search for information regarding mesokurtic, lepto-
kurtic, and platykurtic types of “excess kurtosis.”

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance

Intro to Probability and Statistics  •  221

DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the
challenges and obstacles that you might encounter when working with datasets.
This section and subsequent sections introduce you to the following concepts:

•	Correlation versus Causation
•	The bias-variance tradeoff
•	Types of bias
•	The Central Limit Theorem
•	Statistical inferences

Statistics typically involves data samples, which are subsets of observations
of a population. The goal is to find well-balanced samples that provide a good
representation of the entire population.

Although this goal can be very difficult to achieve, it’s also possible to
achieve highly accurate results with a very small sample size. For example,
the Harris poll in the USA has been used for decades to analyze political
trends. This poll computes percentages that indicate the favorability rating
of political candidates, and it’s usually within 3.5% of the correct percent-
age values. What’s remarkable about the Harris poll is that its sample size
is a mere 4,000 people that are from the US population that is greater than
325,000,000 people.

Another aspect to consider is that each sample has a mean and variance,
which do not necessarily equal the mean and variance of the actual population.
However, the expected value of the sample mean and variance equal the mean
and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you take
a set of samples {S1, S3, . . . , Sn} of a population and you calculate the mean
of those samples, which is {m1, m2, . . . , mn}. The Central Limit Theorem is
a remarkable result: given a set of samples of a population and the mean value
of those samples, the distribution of the mean values can be approximated by
a Gaussian distribution. Moreover, as the number of samples increases, the
approximation becomes more accurate.

Correlation versus Causation

In general, datasets have some features (columns) that are more significant
in terms of their set of values, and some features only provide additional infor-
mation that does not contribute to potential trends in the dataset. For example,
the passenger names in the list of passengers on the Titanic are unlikely to
affect the survival rate of those passengers, whereas the gender of the passen-
gers is likely to be an important factor.

222  •  Natural Language Processing Using R Pocket Primer

In addition, a pair of significant features may also be “closely coupled” in
terms of their values. For example, a real estate dataset for a set of houses
will contain the number of bedrooms and the number of bathrooms for each
house in the dataset. As you know, these values tend to increase together and
also decrease together. Have you ever seen a house that has 10 bedrooms and
1 bathroom, or a house that has 10 bathrooms and 1 bedroom? If you did find
such a house, would you purchase that house as your primary residence?

The extent to which the values of two features change is called their cor-
relation, which is a number between −1 and 1. Two “perfectly” correlated fea-
tures have a correlation of 1, and two features that are not correlated have a
correlation of 0. In addition, if the values of one feature decrease when the val-
ues of another feature increase, and vice versa, then their correlation is closer
to −1 (and might also equal −1).

However, causation between two features means that the values of one fea-
ture can be used to calculate the values of the second feature (within some
margin of error).

Keep in mind this fundamental point about machine learning models: they
can provide correlation but they cannot provide causation.

Statistical Inferences

Statistical thinking related processes and statistics, whereas statistical infer-
ence refers to the process by which the inferences that you make regarding a
population. Those inferences are based on statistics that are derived from sam-
ples of the population. The validity and reliability of those inferences depend
on random sampling in order to reduce bias. There are various metrics that you
can calculate to help you assess the validity of a model that has been trained on
a particular dataset.

STATISTICAL TERMS RSS, TSS, R^2, AND F1 SCORE

Statistics is extremely important in machine learning, so it’s not surprising
that many concepts are common to both fields. Machine learning relies on a
number of statistical quantities in order to assess the validity of a model, some
of which are listed here:

•	RSS
•	TSS
•	R^2

The term RSS is the “residual sum of squares” and the term TSS is the “total
sum of squares.” Moreover, these terms are used in regression models.

As a starting point so we can simplify the explanation of the preceding
terms, suppose that we have a set of points {(x1, y1), . . . , (xn, yn)} in the
Euclidean plane. In addition, let’s define the following quantities:

Intro to Probability and Statistics  •  223

•	(x, y) is any point in the dataset
•	y is the y-coordinate of a point in the dataset
•	y_ is the mean of the y-values of the points in the dataset
•	y_hat is the y-coordinate of a point on a best-fitting line

Just to be clear, (x, y) is a point in the dataset, whereas (x, y_hat) is the
corresponding point that lies on the best fitting line. With these definitions in
mind, the definitions of RSS, TSS, and R^2 are listed here (n equals the num-
ber of points in the dataset):

•	RSS = (y − y_hat)**2/n
•	TSS = (y − y_bar)**2/n
•	R^2 = 1 − RSS/TSS

We also have the following inequalities involving RSS, TSS, and R^2:

•	0 <= RSS
•	RSS <= TSS
•	0 <= RSS/TSS <= 1
•	0 <= 1 − RSS/TSS <= 1
•	0 <= R^2 <= 1

When RSS is close to 0, then RSS/TSS is also close to zero, which means
that R^2 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is
close to 1, and R^2 is close to 0. In general, a larger R^2 is preferred (i.e., the
model is closer to the data points), but a lower value of R^2 is not necessarily
a bad score.

What is an F1 score?

In machine learning, an F1 score is for models that are evaluated on a
feature that contains categorical data, and the p-value is useful for machine
learning in general. An F1 score is a measure of the accuracy of a test, and it’s
defined as the harmonic mean of precision and recall. Here are the relevant
formulas, where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive results)
r = (# of correct positive results)/(# of all relevant samples)

F1-score = 1/[((1/r) + (1/p))/2]
	 = 2*[p*r]/[p+r]

The best value of an F1 score is 0 and the worse value is 0. An F1 score is
for categorical classification problems, whereas the R^2 value is typically for
regression tasks (such as linear regression).

224  •  Natural Language Processing Using R Pocket Primer

GINI IMPURITY, ENTROPY, AND PERPLEXITY

These concepts are useful for assessing the quality of a machine learning
model and the latter pair are useful for dimensionality reduction algorithms.

Before we discuss the details of Gini impurity, suppose that P is a set of
non-negative numbers {p1, p2, . . . , pn} such that the sum of all the numbers
in the set P equals 1. Under these two assumptions, the values in the set P
comprise a probability distribution, which we can represent with the letter p.

Now suppose that the set K contains a total of M elements, with k1 ele-
ments from class S1, k2 elements from class S2, . . . , and kn elements from
class Sn. Compute the fractional representation for each class as follows:

p1 = k1/M, p2 = k2/M, . . . , pn = kn/M

As you can surmise, the values in the set {p1, p2, . . . , pn} form a prob-
ability distribution. We’re going to use the preceding values in the following
subsections.

What is Gini Impurity?

The Gini impurity is defined as follows, where {p1, p2, . . . , pn} is a prob-
ability distribution:

Gini = 1 – [p1*p1 + p2*p2 + · · · + pn*pn]
 = 1 – SUM pi*pi (for all i, where 1<=i<=n)

Since each pi is between 0 and 1, then pi*pi <= pi, which means that

1 = p1 + p2 + · · · + pn
>= p1*p1 + p2*p2 + · · · + pn*pn
 = Gini impurity

Since the Gini impurity is the sum of the squared values of a set of prob-
abilities, the Gini impurity cannot be negative. Hence, we have derived the
following result:

0 <= Gini impurity <= 1

What is Entropy?

Entropy is a measure of the expected (“average”) number of bits required
to encode the outcome of a random variable. The calculation for the entropy
H (the letter E is reserved for Einstein’s formula) as defined via the following
formula:

H = (−1)*[p1*log p1 + p2 * log p2 + · · · + pn * log pn]
 = (−1)* SUM [pi * log(pi)] (for all i, where 1<=i<=n)

Intro to Probability and Statistics  •  225

Calculating Gini Impurity and Entropy Values

For our first example, suppose that we have three classes A and B and a
cluster of 10 elements with 8 elements from class A and 2 elements from class
B. Therefore, p1 and p2 are 8/10 and 2/10, respectively. We can compute the
Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2]
	 = 1 – [64/100 + 04/100]
	 = 1 − 68/100
	 = 32/100
	 = 0.32

We can also calculate the entropy for this example as follows:

Entropy = (−1)*[p1 * log p1 + p2 * log p2]
	 = (−1)*[0.8 * log 0.8 + 0.2 * log 0.2]
	 = (−1)*[0.8 * (−0.322) + 0.2 * (−2.322)]
	 = 0.8 * 0.322 + 0.2 * 2.322
	 = 0.7220

For our second example, suppose that we have three classes A, B, C and a
cluster of 10 elements with 5 elements from class A, 3 elements from class B,
and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and 2/10,
respectively. We can compute the Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2 + p3*p3]
	 = 1 – [25/100 + 9/100 + 04/100]
	 = 1 − 38/100
	 = 62/100
	 = 0.62

We can also calculate the entropy for this example as follows:

Entropy = (−1)*[p1 * log p1 + p2 * log p2]
	 = (−1)*[0.5*log0.5 + 0.3*log0.3 + 0.2*log0.2]
	 = (−1)*[−1 + 0.3*(−1.737) + 0.2*(−2.322)]
	 = 1 + 0.3*1.737 + 0.2*2.322
	 = 1.9855

In both examples, the Gini impurity is between 0 and 1. However, while the
entropy is between 0 and 1 in the first example, it’s greater than 1 in the second
example (which was the rationale for showing you two examples).

A set whose elements belong to the same class has Gini impurity equal to
0 and also its entropy equal to 0. For example, if a set has 10 elements that
belong to class S1, then

226  •  Natural Language Processing Using R Pocket Primer

Gini = 1 – SUM pi*pi
	 = 1 − p1*p1
	 = 1 – (10/10)*(10/10)
	 = 1 – 1 = 0

Entropy = (−1)*SUM pi*log pi
	 = (−1) * p1*log pi
	 = (−1) * (10/10) * log(10/10)
	 = (−1)*1*0 = 0

Multi-Dimensional Gini Index

The Gini index is a one-dimensional index that works well because the
value is uniquely defined. However, when working with multiple factors, we
need a multidimensional index. Unfortunately, the multi-dimensional Gini
index (MGI) is not uniquely defined. While there have been various attempts
to define an MGI that has unique values, they tend to be non-intuitive and
mathematically much more complex. More information about MGI is avail-
able online:

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5

What is Perplexity?

Suppose that q and p are two probability distributions, and {x1, x2, . . . , xN}
is a set of sample values that is drawn from a model whose probability distribu-
tion is p. In addition, suppose that b is a positive integer (it’s usually equal to 2).
Now define the variable S as the following sum (logarithms are in base b not 10):

S = (−1/N) * [log q(x1) + log q(x2) + · · · + log q(xN)]
 = (−1/N) * SUM log q(xi)

The formula for the perplexity PERP of the model q is b raised to the
power S, as shown here:

PERP = b^S

If you compare the formula for entropy with the formula for S, you can see
that the formulas as similar, so the perplexity of a model is somewhat related
to the entropy of a model.

CROSS-ENTROPY AND KL DIVERGENCE

Cross-entropy is useful for understanding machine learning algorithms, and
frameworks such as TensorFlow, which supports multiple APIs that involve
cross entropy. KL divergence is relevant in machine learning, deep learning,
and reinforcement learning.

As an example, consider the credit assignment problem, which involves
assigning credit to different elements or steps in a sequence. For example,

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5

Intro to Probability and Statistics  •  227

suppose that users arrive at a Web page by clicking on a previous page, which
was also reached by clicking on yet another Web page. Then on the final Web
page users click on an ad. How much credit is given to the first and second
Web pages for the selected ad? You might be surprised to discover that one
solution to this problem involves KL Divergence.

What is Cross Entropy?

The following formulas for logarithms are presented here because they are
useful for the derivation of cross entropy in this section:

•	log (a * b) = log a + log b
•	log (a/b) = log a − log b
•	log (1/b) = (−1) * log b

In a previous section you learned that for a probability distribution P with
values {p1, p2, . . . , pn}, its entropy is H defined as follows:

H(P) = (−1)*SUM pi*log(pi)

Now let’s introduce another probability distribution Q whose values are
{q1, q2, . . . , qn}, which means that the entropy H of Q is defined as follows:

H(Q) = (−1)*SUM qi*log(qi)

Now we can define the cross entropy CE of Q and P as follows (notice the
log qi and log pi terms and recall the formulas for logarithms in the previous
section):

CE(Q, P) = SUM (pi*log qi) − SUM (pi*log pi)
	 = SUM (pi*log qi − pi*log pi)
	 = SUM pi*(log qi − log pi)
	 = SUM pi*(log qi/pi)

What is KL Divergence?

Now that entropy and cross-entropy have been discussed, we can easily
define the KL Divergence of the probability distributions Q and P as follows:

KL(P||Q) = CE(P, Q) − H(P)

The definitions of entropy H, cross entropy CE, and KL Divergence in this
appendix involve discrete probability distributions P and Q. However, these
concepts have counterparts in continuous probability density functions. The
mathematics involves the concept of a Lebesgue measure on Borel sets (which
is beyond the scope of this book):

https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Borel_set

https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Borel_set

228  •  Natural Language Processing Using R Pocket Primer

In addition to KL Divergence, there is also the JS Divergence (also called
the Jenson-Shannon Divergence), which was developed by Johan Jensen and
Claude Shannon (who defined the formula for entropy). The JS Divergence is
based on the KL Divergence, and it has some differences. The JS Divergence
is symmetric and a true metric, whereas the KL Divergence is neither. More
information regarding JS Divergence is available online:

https://en.wikipedia.org/wiki/Jensen–Shannon_divergence

WhatÕs Their Purpose?

The Gini impurity is often used to obtain a measure of the homogeneity
of a set of elements in a decision tree. The entropy of that set is an alternative
to its Gini impurity, and you will see both of these quantities used in machine
learning models.

The perplexity value in NLP is one way to evaluate language models, which
are probability distributions over sentences or texts. This value provides an
estimate for the encoding size of a set of sentences.

Cross entropy is used in various methods in the TensorFlow framework,
and the KL Divergence is used in various algorithms, such as the dimensional-
ity reduction algorithm t-SNE.

COVARIANCE AND CORRELATION MATRICES

This section explains two important matrices: the covariance matrix and the
correlation matrix. Although these are relevant for PCA (Principal Component
Analysis) that is discussed later in this appendix, these matrices are not specific
to PCA, which is the rationale for discussing them in a separate section. If you
are familiar with these matrices, feel free to skim through this section.

The Covariance Matrix

As a reminder, the statistical quantity called the variance of a random vari-
able X is defined as follows:

variance(x) = [SUM (x – xbar)∗(x – xbar)]/n

A covariance matrix C is an n × n matrix whose values on the main diagonal
are the variance of the variables X1, X2, . . . , Xn. The other values of C are the
covariance values of each pair of variables Xi and Xj.

The formula for the covariance of the variables X and Y is a generalization
of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)∗(y – ybar)]/n

Notice that you can reverse the order of the product of terms (multiplication
is commutative), and therefore the covariance matrix C is a symmetric matrix:

covariance(X, Y) = covariance(Y, X)

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence

Intro to Probability and Statistics  •  229

Suppose that a CSV file contains four numeric features, all of which have
been scaled appropriately, and let’s call them x1, x2, x3, and x4. Then the covar-
iance matrix C is a 4 × 4 square matrix that is defined with the following entries
(pretend that there are outer brackets on the left side and the right side to
indicate a matrix):

cov(x1, x1) cov(x1, x2) cov(x1, x3) cov(x1, x4)
cov(x2, x1) cov(x2, x2) cov(x2, x3) cov(x2, x4)
cov(x3, x1) cov(x3, x2) cov(x3, x3) cov(x3, x4)
cov(x4, x1) cov(x4, x2) cov(x4, x3) cov(x4, x4)

Note that the following is true for the diagonal entries in the preceding
covariance matrix C:

var(x1, x1) = cov(x1, x1)
var(x2, x2) = cov(x2, x2)
var(x3, x3) = cov(x3, x3)
var(x4, x4) = cov(x4, x4)

In addition, C is a symmetric matrix, which is to say that the transpose of
matrix C (rows become columns and columns become rows) is identical to
the matrix C. The latter is true because (as you saw in the previous section)
cov(x, y) = cov(y, x) for any feature x and any feature y.

Covariance Matrix: an Example

Suppose we have the two-column matrix A defined as follows:

 x y
A = | 1 1 | <= 6 × 2 matrix
 | 2 1 |
 | 3 2 |
 | 4 2 |
 | 5 3 |
 | 6 3 |

The mean x_bar of column x is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5, and the
mean y_bar of column y is (1 + 1 + 2 + 2 + 3 + 3)/6 = 2. Now subtract x_bar
from column x and subtract y_bar from column y and we get matrix B, as
shown here:

B = | −2.5 −1 | <= 6 × 2 matrix
 |	−1.5	−1	|
 |	−0.5	 0	|
 |	 0.5	 0	|
 |	 1.5	 1	|
 |	 2.5	 1	|

230  •  Natural Language Processing Using R Pocket Primer

Let Bt indicate the transpose of the matrix B (i.e., switch columns with rows
and rows with columns) which means that Bt is a 2 × 6 matrix, as shown here:

Bt = |−2.5 −1.5 −0.5 0.5, 1.5, 2.5|
 |−1 −1 0 0 1 1 |

The covariance matrix C is the product of Bt and B, as shown here:

C = Bt * B = | 15.25 4 |
 | 4 8 |

Note that if the units of measure of features x and y do not have a similar
scale, then the covariance matrix is adversely affected. In this case, the solution
is simple: use the correlation matrix, which defined in the next section.

The Correlation Matrix

As you learned in the preceding section, if the units of measure of features
x and y do not have a similar scale, then the covariance matrix is adversely
affected. The solution involves the correlation matrix, which equals the covari-
ance values cov(x, y) divided by the standard deviation stdx and stdy of x and y,
respectively, as shown here:

corr(x, y) = cov(x, y)/[stdx * stdy]

The correlation matrix no longer has units of measure, and we can use this
matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the
correlation matrix, you are ready for an example of calculating eigenvalues and
eigenvectors, which are the topic of the next section.

Eigenvalues and Eigenvectors

According to a well-known theorem in mathematics (whose proof you
can find online), the eigenvalues of a symmetric matrix are real numbers.
Consequently, the eigenvectors of C are vectors in a Euclidean vector space
(not a complex vector space).

Before we continue, a non-zero vector x' is an eigenvector of the matrix C if
there is a non-zero scalar lambda such that C*x' = lambda * x'.

Now suppose that the eigenvalues of C are b1, b2, b3, and b4, in decreas-
ing numeric order from left-to-right, and that the corresponding eigenvectors
of C are the vectors w1, w2, w3, and w4. Then, the matrix M that consists of
the column vectors w1, w2, w3, and w4 represents the principal components.

CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

As a simple illustration of calculating eigenvalues and eigenvectors, sup-
pose that the square matrix C is defined as follows:

Intro to Probability and Statistics  •  231

C = | 1 3 |
 | 3 1 |

Let I denote the 2 × 2 identity matrix, and let b' be an eigenvalue of C,
which means that there is an eigenvector x' such that

C* x' = b' * x', or
(C−b*I)*x' = 0 (the right side is a 2 × 1 vector)

Since x' is non-zero, that means the following is true (where det refers to
the determinant of a matrix):

det(C−b*I) = det |1−b 3 | = (1−b)*(1−b)−9 = 0
	 |3 1−b|

We can expand the quadratic equation in the preceding line to obtain the
following:

det(C−b*I) = (1−b)*(1−b) − 9
	 = 1 − 2*b + b*b − 9
	 = −8 − 2*b + b*b
	 = b*b − 2*b − 8

Use the quadratic formula (or perform factorization by visual inspection) to
determine that the solution for det(C−b*I) = 0 is b = −2 or b = 4. Next, substi-
tute b = −2 into (C−b*I)x' = 0 and we obtain the following result:

|1−(−2) 3 | |x1| = |0|
|3 1−(−2)| |x2| |0|

The preceding reduces to the following identical equations:

3*x1 + 3*x2 = 0
3*x1 + 3*x2 = 0

The general solution is x1 = −x2, and we can choose any non-zero value for
x2, so let’s set x2 = 1 (any non-zero value will do just fine), which yields x1 = −1.
Therefore, the eigenvector [−1, 1] is associated with the eigenvalue −2. In a
similar fashion, if x' is an eigenvector whose eigenvalue is 4, then [1, 1] is an
eigenvector.

Notice that the eigenvectors [−1, 1] and [1, 1] are orthogonal because their
inner product is zero, as shown here:

[−1, 1] * [1, 1] = (−1)*1 + (1)*1 = 0

In fact, the set of eigenvectors of a square matrix (whose eigenvalues
are real) are always orthogonal, regardless of the dimensionality of the
matrix.

232  •  Natural Language Processing Using R Pocket Primer

Gauss Jordan Elimination (optional)

This simple technique enables you to find the solution to systems of linear
equations “in place,” which involves a sequence of arithmetic operations to
transform a given matrix to an identity matrix.

The following example combines the Gauss-Jordan elimination technique
(which finds the solution to a set of linear equations) with the “bookkeeper’s
method,” which determines the inverse of an invertible matrix (its determinant
is non-zero).

This technique involves two adjacent matrices: the left-side matrix is the
initial matrix and the right-side matrix is an identity matrix. Next, perform vari-
ous linear operations on the left-side matrix to reduce it to an identity matrix:
the matrix on the right side equals its inverse. For example, consider the fol-
lowing pair of linear equations whose solution is x = 1 and y = 2:

2*x + 2*y = 6
4*x − 1*y = 2

Step 1: Create a 2 × 2 matrix with the coefficients of x in column 1 and the
coefficients of y in column two, followed by the 2 × 2 identity matrix, and a
column from the numbers on the right of the equals sign:

|	2	 2	| 1 0 | 6 |
|	4	−1	| 0 1 | 2 |

Step 2: Add (−2) times the first row to the second row:
| 2 2 | 1 0 | 6  |
| 0 −5 | −2 1 | −10 |

Step 3: Divide the second row by 5:
| 2 2 | 1 0 |  6  |
| 0 −1 | −2/5 1/5 | −10/5 |

Step 4: Add 2 times the second row to the first row:
| 2 0 | 1/5 2/5 |  2  |
| 0 −1 | −2/5 1/5 | −2 |

Step 5: Divide the first row by 2:
| 1 0 | −2/10 2/10 |  1  |
| 0 −1 | −2/5 1/5 | −2 |

Step 6: Multiply the second row by (−1):
| 1 0 | −2/10 2/10 | 1 |
| 0 1 | 2/5 −1/5 | 2 |

As you can see, the left-side matrix is the 2 × 2 identity matrix, the right-
side matrix is the inverse of the original matrix, and the right-most column is
the solution to the original pair of linear equations (x = 1 and y = 2).

Intro to Probability and Statistics  •  233

PCA (PRINCIPAL COMPONENT ANALYSIS)

PCA is a linear dimensionality reduction technique for determining the
most important features in a dataset. This section discusses PCA because it’s a
very popular technique that you will encounter frequently. Other techniques
are more efficient than PCA, so it’s worthwhile to learn other dimensionality
reduction techniques as well.

Keep in mind the following points regarding the PCA technique:

•	PCA is a variance-based algorithm.
•	PCA creates variables that are linear combinations of the original

variables.
•	The new variables are all pair-wise orthogonal.
•	PCA can be a useful pre-processing step before clustering.
•	PCA is generally preferred for data reduction.

PCA can be useful for variables that are strongly correlated. If most of the
coefficients in the correlation matrix are smaller than 0.3, PCA is not helpful.
PCA provides some advantages: less computation time for training a model (for
example, using only five features instead of 100 features), a simpler model, and
the ability to render the data visually when two or three features are selected.
PCA calculates the eigenvalues and the eigenvectors of the covariance (or cor-
relation) matrix C.

If you have four or five components, you won’t be able to display them
visually, but you could select subsets of three components for visualization, and
perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:

1.	 Calculate the correlation matrix (from the covariance matrix) C of a dataset.
2.	 Find the eigenvalues of C.
3.	 Find the eigenvectors of C.
4.	 Construct a new matrix that comprises the eigenvectors.

The covariance matrix and correlation matrix were explained in a previous
section. You also saw the definition of eigenvalues and eigenvectors, along with
an example of calculating eigenvalues and eigenvectors.

The eigenvectors are treated as column vectors that are placed adjacent to
each other in decreasing order (from left-to-right) with respect to their associ-
ated eigenvectors.

PCA uses the variance as a measure of information: the higher the variance,
the more important the component. In fact, PCA determines the eigenvalues
and eigenvectors of a covariance matrix (discussed in a previous section), and
constructs a new matrix whose columns are eigenvectors, ordered from left-to-
right in a sequence that matches the corresponding sequence of eigenvalues.

234  •  Natural Language Processing Using R Pocket Primer

The left-most eigenvector has the largest eigenvalue, and the next eigenvector
has the second-largest eigenvalue. This process continues until it reaches the
right-most eigenvector (which has the smallest eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: if C is a
symmetric matrix, then there is a diagonal matrix D and an orthogonal matrix
P (the columns are pair-wise orthogonal, which means their pair-wise inner
product is zero), such that the following is true:

C = P * D * Pt (where Pt is the transpose of matrix P)

In fact, the diagonal values of D are eigenvalues, and the columns of P are
the corresponding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, stand-
ard deviation, covariance matrix, correlation matrix, as well as the matrices D
and P in order to determine the eigenvalues and eigenvectors.

Any positive definite square matrix has real-valued eigenvectors, which also
applies to the covariance matrix C because it is a real-valued symmetric matrix.

The New Matrix of Eigenvectors

The previous section described how the matrices D and P are determined.
The left-most eigenvector of D has the largest eigenvalue, the next eigenvec-
tor has the second-largest eigenvalue, and so forth. This fact is very conveni-
ent: the eigenvector with the highest eigenvalue is the principal component of
the dataset. The eigenvector with the second-highest eigenvalue is the second
principal component, and so forth. You specify the number of principal com-
ponents that you want via the n_components hyper parameter in the PCA class
of Sklearn.

As a simple and minimalistic example, consider the following code block
that uses PCA for a (somewhat contrived) dataset:

import numpy as np
from sklearn.decomposition import PCA
data = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=2)
pca.fit(X)

Note that there is a trade-off here: we greatly reduce the number of compo-
nents, which reduces the computation time and the complexity of the model,
but we also lose some accuracy. However, if the unselected eigenvalues are
small, we lose only a small amount of accuracy.

Now let’s use the following notation:

•	NM denotes the matrix with the new principal components.
•	NMt is the transpose of NM.
•	PC is the matrix of the subset of selected principal components.
•	SD is the matrix of scaled data from the original dataset.
•	SDt is the transpose of SD.

Intro to Probability and Statistics  •  235

Then the matrix NM is calculated via the following formula:

NM = PCt * SDtz

Although PCA is a nice technique for dimensionality reduction, keep in
mind the following limitations of PCA:

•	less suitable for data with non-linear relationships
•	less suitable for special classification problems

A related algorithm is called Kernel PCA, which is an extension of PCA that
introduces a non-linear transformation so you can still use the PCA approach.

WELL-KNOWN DISTANCE METRICS

There are several similarity metrics available, such as item similarity met-
rics, Jaccard (user-based) similarity, and cosine similarity (which is used to
compare vectors of numbers). The following subsections introduce you to
these similarity metrics.

Another well-known distance metric is the taxicab metric, which is also
called the Manhattan distance metric. Given two points A and B in a rectan-
gular grid, the taxicab metric calculates the distance between two points by
counting the number of “blocks” that must be traversed in order to reach B
from A (the other direction has the same taxicab metric value). For example, if
you need to travel two blocks north and then three blocks east in a rectangular
grid, then the Manhattan distance is 5.

There are various other metrics available, which you can learn about by
searching Wikipedia. In the case of NLP, the most commonly used distance
metric is calculated via the cosine similarity of two vectors, and it’s derived
from the formula for the inner (“dot”) product of two vectors.

Pearson Correlation Coefficient

The Pearson similarity is the Pearson coefficient between two vectors.
Given random variables X and Y, and the following terms:

std(X) = standard deviation of X
std(Y) = standard deviation of Y
cov(X, Y) = covariance of X and Y

Then the Pearson correlation coefficient rho(X, Y) is defined as follows:

 cov(X, Y)
rho(X, Y) = -----------------
 std(X)*std(Y)

The Pearson coefficient is limited to items of the same type. More informa-
tion about the Pearson correlation coefficient is available online:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

236  •  Natural Language Processing Using R Pocket Primer

Jaccard Index (or Similarity)

The Jaccard similarity is based on the number of users which have rated
item A and B divided by the number of users who have rated either A or B.
The Jaccard similarity is based on unique words in a sentence and is unaf-
fected by duplicates, whereas cosine similarity is based on the length of all
word vectors (which changes when duplicates are added). The choice between
the cosine similarity and Jaccard similarity depends on whether word dupli-
cates are important.

The following Python method illustrates how to compute the Jaccard simi-
larity of two sentences.

def get_jaccard_sim(str1, str2):
 set1 = set(str1.split())
 set2 = set(str2.split())
 set3 = set1.intersection(set2)
 # (size of intersection) / (size of union):
 return float(len(set3)) / (len(set1) + len(set2) - len(set3))

The Jaccard similarity can be used in situations involving Boolean values,
such as product purchases (true/false), instead of numeric values. More infor-
mation is available online:

https://en.wikipedia.org/wiki/Jaccard_index

Local Sensitivity Hashing (optional)

If you are familiar with hash algorithms, you know that they are algorithms
that create a hash table that associate items with a value. The advantage of hash
tables is that the lookup time to determine whether an item exists in the hash
table is constant.

Of course, it’s possible for two items to collide, which means that they both
occupy the same bucket in the hash table. In this case, a bucket can consist of a
list of items that can be searched in more or less a constant amount of time. If
there are too many items in the same bucket, then a different hashing function
can be selected to reduce the number of collisions. The goal of a hash table is
to minimize the number of collisions.

The Local Sensitivity Hashing (LSH) algorithm hashes similar input items
into the same “buckets.” In fact, the goal of LSH is to maximize the number
of collisions, whereas traditional hashing algorithms attempt to minimize the
number of collisions.

Since similar items end up in the same buckets, LSH is useful for data
clustering and nearest neighbor searches. Moreover, LSH is a dimensional-
ity reduction technique that places data points of high dimensionality closer
together in a lower-dimensional space, while simultaneously preserving the
relative distances between those data points. More details about LSH are avail-
able online:

https://en.wikipedia.org/wiki/Locality-sensitive_hashing

https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Locality-sensitive_hashing

Intro to Probability and Statistics  •  237

TYPES OF DISTANCE METRICS

Non-linear dimensionality reduction techniques can also have different dis-
tance metrics. For example, linear reduction techniques can use the Euclidean
distance metric (based on the Pythagorean theorem).

However, you need to use a different distance metric to measure the dis-
tance between two points on a sphere (or some other curved surface). In the
case of NLP, the cosine similarity metric is often used to measure the distance
between word embeddings (which are vectors of floating point numbers that
represent words or tokens).

Distance metrics are used for measuring physical distances, and some well-
known distance metrics are listed here:

•	Euclidean distance
•	Manhattan distance
•	Chebyshev distance

The Euclidean algorithm also obeys the triangle inequality, which states
that for any triangle in the Euclidean plane, the sum of the lengths of any pair
of sides must be greater than the length of the third side.

In spherical geometry, you can define the distance between two points as
the arc of a great circle that passes through the two points (always selecting the
smaller of the two arcs when they are different).

In addition to physical metrics, there are algorithms that implement the
concept of the edit distance (the distance between strings), as listed here:

•	Hamming distance
•	Jaro–Winkler distance
•	Lee distance
•	Levenshtein distance
•	Mahalanobis distance metric
•	Wasserstein metric

The Mahalanobis metric is based on an interesting idea: given a point P
and a probability distribution D, this metric measures the number of standard
deviations that separate point P from distribution D. More information about
Mahalanobis is available online:

https://en.wikipedia.org/wiki/Mahalanobis_distance
In the branch of mathematics called topology, a metric space is a set for

which distances between all members of the set are defined. Various metrics
are available (such as the Hausdorff metric), depending on the type of topology.

The Wasserstein metric measures the distance between two probability dis-
tributions over a metric space X. This metric is also called the “earth mover’s
metric” for the following reason: given two unit piles of dirt, it’s the measure of
the minimum cost of moving one pile on top of the other pile.

https://en.wikipedia.org/wiki/Mahalanobis_distance

238  •  Natural Language Processing Using R Pocket Primer

The KL Divergence bears some superficial resemblance to the Wasserstein
metric. However, there are some important differences between them.
Specifically, the Wasserstein metric has the following properties:

1.	 It is a metric.
2.	 It is symmetric.
3.	 It satisfies the triangle inequality.

The KL Divergence has the following properties:

1.	 It is not a metric (it’s a divergence).
2.	 It is not symmetric: KL(P, Q) != KL(Q, P).
3.	 It does not satisfy the triangle inequality.

Note that the JS (Jenson-Shannon) Divergence (which is based on the KL
Divergence) is a true metric, which would enable a more meaningful compari-
son with other metrics (such as the Wasserstein metric).

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-
of-wasserstein-metric-compared-to-kullback-leibler-diverg

More information is available online:
https://en.wikipedia.org/wiki/Wasserstein_metric

WHAT IS BAYESIAN INFERENCE?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes’ theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called
Bayesian probability, and it’s important in dynamic analysis of sequential data.

BayesÕ Theorem

Given two sets A and B, let’s define the following numeric values (all of
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you’re in B)
P(B|A) = probability of being in B (given you’re in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the
denominator to obtain these equations:

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-of-wasserstein-metric-compared-to-kullback-leibler-diverg
https://en.wikipedia.org/wiki/Wasserstein_metric

Intro to Probability and Statistics  •  239

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of equations #3 and #4 equal to each another and that
gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) to obtain this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology

In the previous section we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, as
discussed below.

First, the posterior probability is P(h|d), which is the probability of hypoth-
esis h given the data d.

Second, P(d|h) is the probability of data d given that the hypothesis h was
true.

Third, the prior probability of h is P(h), which is the probability of hypoth-
esis h being true (regardless of the data).

Finally, P(d) is the probability of the data (regardless of the hypothesis)
We are interested in calculating the posterior probability of P(h|d) from the

prior probability p(h) with P(D) and P(d|h).

What is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the
highest probability, which is the maximum probable hypothesis. This can be
written as follows:

MAP(h) = max(P(h|d))
or
MAP(h) = max((P(d|h) * P(h)) / P(d))
or
MAP(h) = max(P(d|h) * P(h))

Why Use BayesÕ Theorem?

Bayes’ Theorem describes the probability of an event based on the prior
knowledge of the conditions that might be related to the event. If we know the
conditional probability, we can use Bayes rule to find out the reverse probabili-
ties. The previous statement is the general representation of the Bayes rule.

240  •  Natural Language Processing Using R Pocket Primer

SUMMARY

This appendix started with a discussion of probability, expected values, and
the concept of a random variable. Then you learned about some basic statisti-
cal concepts, such as mean, median, mode, variance, and standard deviation.
Next, you learned about the terms RSS, TSS, R^2, and F1 score. In addi-
tion, you were introduced to the concepts of skewness, kurtosis, Gini Impurity,
Entropy, Perplexity, Cross-Entropy, and KL Divergence.

Next, you learned about covariance and correlation matrices and how to
calculate eigenvalues and eigenvectors. Then you were introduced to the
dimensionality reduction technique known as PCA (Principal Component
Analysis), after which you learned about Bayes’ Theorem.

A
A Lite BERT (ALBERT), 199
AlphaFold, 212
Attention mechanism

algorithms, 181
description, 180
formulas, 181
types, 181
word embedding types, 180–181

B
Bag of Words (BoW) algorithm, 99

advantages of, 123
CountVectorizer class, 123
word/index pairs, 124

Bayesian inference, 238–239
Bayes’ Theorem, 238–239
BERT model

ALBERT, 199
deBERTa, 200
description, 187
DistilBERT, 199
features, 187
MLM, 188
vs. NLP models, 188
NSP, 188–189
RoBERTa, 200
sentence similarity, 194
sequence of steps, 190–192
SMITH model, 200
special tokens, 189–190

tokens, 196–198
training, 187
word vector, 194–196

Bilingual Evaluation Understudy (BLEU)
score, 153

bm25 algorithm, 131
Brown Corpus, 94
Byte-pair encoding (BPE), 192

C
CBoW architecture, 140–141
Chunking, 110
Context for words

contextual word representations, 133
discrete text representations, 133
distributed text representations, 133
semantic context, 132
textual entailment, 133

Contextual word representations, 133
Correlation matrix, 230
Cosine similarity, 133–135
Covariance matrix, 228–230
Cross-entropy, 227

D
DALL-E, 212
Data frames in R

add a new attribute, 43–45
append a new row, 45
column-related and row-related

operations, 39

INDEX

242  •  Natural Language Processing Using R Pocket Primer

display portions of, 42–43
with heterogeneous values, 41
variable mydf, 40
work with, 46–47

deBERTa, 200
Decoding task, 108
Deep Learning Methods, POS, 109
Digram coding. See Byte-pair encoding

(BPE)
Discrete text representations, 133
Distance metrics, 237–238
DistilBERT, 199
Distributed text representations, 133
Document classification, 97
Document similarity, 118

E
Eigenvalues and eigenvectors, 230
Emission probabilities, 108
Entropy, 224–226

F
FastText library, 146
Functions

apply family, 70–72
custom function, 85–86
file-related functions, 68
gsub() function, 67–68
math-related functions and trigonometric

functions, 65–66
miscellaneous functions, 68
pipe operator, 75–77
recursive function, 86
set functions, 69–70
string-related functions, 66–67
summary functions, 84–85

G
Gauss-Jordan elimination technique, 232
Generative Pre-Training (GPT) transformers

GPT-2, 201–207
vs. BERT, 207

GPT-3
AlphaFold, 212
architecture, 208
benefits, 208
DALL-E, 212
few-shot learner, 210
goals of, 209–210
one-shot learner, 210

Playground, 208–209
strengths and mistakes, 208
switch transformer, 211
task performance, 210–211
zero-shot learner, 210

installation process, 201
versions, 200–201

Gini impurity, 224
Global Matrix Factorization (GMF), 145
GloVe, 144–145
Grammatical ambiguity, 98
gsub() function, 67–68

H
HuggingFace transformer, 182–183

mask-filling task, 185–186
NER task, 183–184
question-and-answer task, 184
sentiment analysis task, 185

I
Information extraction (IE), 152
Inverse Document Frequency

(IDF), 128–129
ISRIStemmer and RSLPSStemmer, 105

J
Jaccard similarity, 236

K
KL Divergence, 227–228
Kurtosis, 220

L
Lancaster stemmer, 106
Latent Dirichlet Allocation (LDA)

algorithm, 111
Lexical ambiguity, 98
Lexical Based Methods, POS, 109
LexRank algorithm, 112
Local context window (LCW), 145
Local Sensitivity Hashing (LSH)

algorithm, 236
Loops

for, 31–32
compound conditional logic, 34
conditional logic, 33–34
nested loop, 32
while loops, 32–33

 Index  •  243

M
Manhattan distance metric. See Taxicab

metric
Masked language model (MLM), 188
Math-related functions and trigonometric

functions, 65–66
Maximum a posteriori (MAP)

hypothesis, 239
Multi-dimensional Gini index (MGI), 226

N
Named Entity Recognition (NER), 102,

170–171
abbreviations and acronyms, 110
challenges, 110
deep learning techniques, 111
feature-based supervised learning, 111
incorrect results, 110
rule-based techniques, 111
types, 109
unsupervised learning techniques, 111

NaN values, 63–64
Natural Language Generation (NLG), 98
Natural Language Processing (NLP)

applications and use cases, 96–97
challenges, 94
corpus, 94
data cleaning

convert to lowercase, 162–164
lemmatization, 165–167
remove punctuation in strings, 161–162
stemming, 165
stop words, 164–165
tokenization, 161

document classification, 117
document similarity, 118
evolution of, 95–96
information extraction and retrieval, 99
keyword extraction, 112
language models and

challenges, 149
creation of, 149–150

lemmatization
limitations, 107–108
warnings, 107

M2M model, 94
named entity recognition (NER)

abbreviations and acronyms, 110
challenges, 110
deep learning techniques, 111

feature-based supervised learning, 111
incorrect results, 110
rule-based techniques, 111
types, 109
unsupervised learning techniques, 111

neural networks, 94
NLU and NLG, 97–98
parts of speech (POS)

challenges of, 108
HMMs, 108
purpose of, 108
tagging, 108–109

rule-based approaches, 94
sentence similarity, 117

sentence encoders, 117
sentiment analysis, 112
stemmers

ISRIStemmer and RSLPSStemmer,
105

Lancaster stemmer, 106
limitations, 107–108
over stemming, 106–107
Porter stemmer, 105
singular vs. plural word endings, 105
Snowball stemmer, 105
under stemming, 107
warnings, 107
word prefixes, 106

steps for training a model, 101
stop words, 104–105
text classification, 98–99
text encoding

BoW and n-grams, 119–120
document vectorization, 120–121
index-based encoding, 122
OHE, 121–122
other encoding techniques, 122–123
tf-idf, 120

text mining, 152
text normalization, 101
text similarity, 116–117

similarity query, 119
tf-idf, 118

text summarization, 112
tokenization

in Japanese, 102–103
rule-based tokenization, 103
with Unix commands, 104

topic modeling, 95, 111–112
traditional machine learning, 94

244  •  Natural Language Processing Using R Pocket Primer

transformer architecture, 94
types and techniques, 100
word relevance, 115–116
word sense disambiguation, 99–100

Natural Language Understanding (NLU), 97
Next sentence prediction (NSP), 188–189
n-grams, 152

with bi-gram, 174–176
2-grams and 3-grams, 125
probability calculation, 125–127
types, 124

NLTK tokenizer and SpaCY tokenizer, 103

O
OpenNLP, 159
Out of vocabulary (OOV), 192

P
Parts of speech (POS)

challenges of, 108
HMMs, 108
purpose of, 108
spacy_parse(), 168
tagging, 108–109
in a text string, 167–170

Pearson correlation coefficient, 235
Perplexity, 226
Pointwise Mutual Information (PMI), 132
Porter stemmer, 105
Positive PMI (PPMI), 132
Principal component analysis (PCA), 233–235
Probabilistic Methods, POS, 109
Probability

conditional probability, 214
description, 213–214
distributions, 216
expected value calculation, 214–215
random variable, 215–216

discrete vs. continuous, 216

Q
Quanteda, 159

R
R

assign values to variables, 3
built-in chart-related functions

bar charts, 52–53
box plots, 59–60
histograms, 56–57

line graphs, 53–55
multi-line graphs, 55–56
pie charts, 60–62
scatter plots, 57–59

check for leap years, 37
convert_to_binary() function, 90–91
CSV files, 77–78
custom function, 85–86
data frames

add a new attribute, 43–45
append a new row, 45
column-related and row-related

operations, 39
display portions of, 42–43
with heterogeneous values, 41
variable mydf, 40
work with, 46–47

data types, 3–4
dates, 27–28
dplyr package, 72–74
factorial value calculation

with recursion, 87–88
without recursion, 87

factors in, 38–39
features, 2
Fibonacci number calculation

with recursion, 89–90
without recursion, 88–89

GCD of two integers, 91
installation, 2
JSON file, 81–82
LCM of two integers, 92
lists, 12–15
matrices, 16–27
named entity recognition, 170–171
NLP

data cleaning, 160–167
packages, 159–160

operators, 3
packages, 74–75
prime numbers

numbers in an array, 36–37
PrimeNumber.R, 35

reading excel files in, 47–48
reading sqlite tables in, 48–49
reading text files in, 49–50
recursion, 86
RStudio package installation, 158–159
save and restore objects, 50–51
scripts from the command line, 156–158

 Index  •  245

seq() function, 28–30
statistical functions, 83
strings
blank_count and non_blank

initialization, 6
blank_count initialization, 6
number of digits and non-digits

calculation, 6
print() statement, 4
string_tasks.R, 5–6
str_length2 initialization, 6
uppercase and lowercase strings, 4–5

sum of angles, 37–38
variable names, 2
vector related functions, 15–16
vectors

built-in variable letters, 11
finding NULL values, 9
sorting, 10–11
updating NA values, 10
VectorStuff.R, 7
VectorStuff2.R, 8

XML files, 78–80
read the contents of, 80–81

Referential ambiguity, 98
Relation extraction (RE), 97, 152
RoBERTa, 200
ROUGE score, 153
RStudio, 2
RStudio Cloud, 2
Rule-Based Methods, POS, 109

S
Semantic context, 132
Sentence embedding models, 117
SentencePiece, 194
Sentence similarity, 194
Sentiment analysis, 96
Set functions, 69–70
Skewness, 220
Skip-grams

architecture, 142
backward error propagation, 144
high-level description, 141
neural network reduction, 144
shallow network, 143

SMITH model, 200
Snowball stemmer, 105
Spacyr, 159
Statistics

Central Limit Theorem, 221

Chebyshev’s inequality, 219
correlation vs. causation, 221–222
F1 score, 223
mean, 217
median, 217
mode, 217–218
moments of a function, 219–220
population, sample, and population

variance, 218–219
p-values, 219
RSS, TSS and R^2, 222–223
statistical inferences, 222
variance and standard deviation, 218

Stemming
ISRIStemmer and RSLPSStemmer, 105
Lancaster stemmer, 106
limitations, 107–108
over stemming, 106–107
Porter stemmer, 105
singular vs. plural word endings, 105
Snowball stemmer, 105
under stemming, 107
warnings, 107
word prefixes, 106

Stop words, 104–105
Stringr, 159
String-related functions, 66–67
Subword tokenization

byte-pair encoding, 192
SentencePiece, 194
unigram language model, 194
Wordpiece, 193

Syntactical ambiguity, 98

T
Taxicab metric, 235
Teacher forcing, 186
Term frequency (TF), 127–128
Text classification, 98–99
Text encoding

BoW and n-grams, 119–120
document vectorization, 120–121
index-based encoding, 122
OHE, 121–122
other encoding techniques, 122–123
tf-idf, 120

TextRank algorithm, 112
Text-To-Text Transfer Transformer

(T5), 186–187
Textual entailment, 133
Text2vec, 159

246  •  Natural Language Processing Using R Pocket Primer

Text vectorization, 135–136
tf-idf algorithm, 129, 171–174

vs. BoW, 130
limitations of, 130–131

Topic modeling, 95, 111–112, 147, 176–177
LDA, 147–148
vs. text classification, 149

Transformer architecture
encoder and decoder component, 182
HuggingFace, 182–183

mask-filling task, 185–186
NER task, 183–184
question-and-answer task, 184
sentiment analysis task, 185

Transition probabilities, 108

V
Vector space model (VSM), 150

advantages and disadvantages of, 151
term-document matrix, 151

W
Wordcloud, 160
Word embeddings

comparison of, 146–147
definition, 137
document classification and

clustering, 137
fastText algorithm, 138
GloVe algorithm, 138
word2vec algorithm, 137

Wordpiece, 193
Word sense disambiguation, 99–100
Word2vec, 177–178

architecture, 140
CBoW and skip-grams, 139
cosine similarity, 138
limitations of, 140
making predictions, 138
use cases, 139

Word vectorization, 117

	Cover
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	Chapter 1: Introduction to R
	What is R?
	Features of R
	Installing R, RStudio, and RStudio Cloud

	Variable Names, Operators, and Data Types in R
	Assigning Values to Variables in R
	Operators in R
	Data Types in R

	Working with Strings in R
	Uppercase and Lowercase Strings
	Other String-Related Tasks

	Working with Vectors in R
	Finding NULL Values in a Vector in R
	Updating NA Values in a Vector in R
	Sorting a Vector of Elements in R
	Working with the Built-in Letters Variable in R

	Working with Lists in R
	Useful Vector-Related Functions in R

	Working with Matrices in R (1)
	Working with Matrices in R (2)
	Working with Matrices in R (3)
	Working with Matrices in R (3)
	Working with Matrices in R (4)
	Updating Matrix Elements
	Logical Constraints and Matrices
	Assigning Values to Matrix Elements
	Working with Matrices in R (5)
	Working with Dates in R
	The seq Function in R
	Summary

	Chapter 2: Loops, Conditional Logic, and Dataframes
	Working with Simple Loops in R
	Working with Other Types of Loops in R

	Working with Nested Loops in R
	Working with While Loops in R
	Working with Conditional Logic in R
	Compound Conditional Logic
	Check if a Number is Prime in R
	Check if Numbers in an Array are Prime in R
	Check for Leap Years in R
	Well-formed Triangle Values in R
	What are Factors in R?
	What are Data Frames in R?
	Working with Dataframes in R (1)
	Working with Data Frames in R (2)
	Working with Data Frames in R (3)
	Working with Data Frames in R (4)
	Working with Data Frames in R (5)
	Reading Excel Files in R
	Reading SQLITE Tables in R
	Reading Text Files in R
	Saving and Restoring Objects in R
	Data Visualization in R
	Working with Bar Charts in R (1)
	Working with Bar Charts in R (2)
	Working with Line Graphs in R (1)
	Working with Line Graphs in R (2)
	Working with Multi-Line Graphs in R
	Working with Histograms in R
	Working with Scatter Plots in R (1)
	Working with Scatter Plots in R (2)
	Working with Box Plots in R
	Working with Pie Charts in R (1)
	Working with Pie Charts in R (2)
	Summary

	Chapter 3: Working with Functions in R
	NaN and Functions in R
	Math-Related Functions in R
	String-Related Functions in R
	The gsub() Function in R
	Miscellaneous Built-in Functions
	Set Functions in R
	The “Apply” Family of Built-in Functions
	The “Must Learn” dplyr Package in R
	Other Useful R Packages
	The Pipe Operator %>%
	Working with CSV Files in R
	Working with XML in R
	Reading an XML Document into an R Dataframe
	Working with JSON in R
	Reading a JSON File into an R Dataframe
	Statistical Functions in R
	Summary Functions in R
	Defining a Custom Function in R
	Recursion in R
	Calculating Factorial Values in R (non-recursive)
	Calculating Factorial Values in R (recursive)
	Calculating Fibonacci Numbers in R (non-recursive)
	Calculating Fibonacci Numbers in R (recursive)
	Convert a Decimal Integer to a Binary Integer in R
	Calculating the GCD of Two Integers in R
	Calculating the LCM of Two Integers in R
	Summary

	Chapter 4: NLP Concepts (I)
	What is NLP?
	The Evolution of NLP

	A Wide-Angle View of NLP
	NLP Applications and Use Cases
	NLU and NLG
	What is Text Classification?

	Information Extraction and Retrieval
	Word Sense Disambiguation
	NLP Techniques in ML
	NLP Steps for Training a Model

	Text Normalization and Tokenization
	Word Tokenization in Japanese
	Text Tokenization with Unix Commands

	Handling Stop Words
	What is Stemming?
	Singular vs. Plural Word Endings
	Common Stemmers
	Stemmers and Word Prefixes
	Over Stemming and Under Stemming

	What is Lemmatization?
	Stemming/Lemmatization Caveats
	Limitations of Stemming and Lemmatization

	Working with Text: POS
	POS Tagging
	POS Tagging Techniques

	Working with Text: NER
	Abbreviations and Acronyms
	NER Techniques

	What is Topic Modeling?
	Keyword Extraction, Sentiment Analysis, and Text Summarization
	Summary

	Chapter 5: NLP Concepts (II)
	What is Word Relevance?
	What is Text Similarity?
	Sentence Similarity
	Sentence Encoders

	Working with Documents
	Document Classification
	Document Similarity (doc2vec)

	Techniques for Text Similarity
	Similarity Queries

	What is Text Encoding?
	Text Encoding Techniques
	Document Vectorization
	One-Hot Encoding (OHE)
	Index-Based Encoding
	Additional Encoders

	The BoW Algorithm
	What are N-grams?
	Calculating Probabilities with n-grams

	Calculating tf, idf, and tf-idf
	What is Term Frequency (TF)?
	What is Inverse Document Frequency (IDF)?
	What is tf-idf?
	Limitations of tf-idf
	What is BM25?
	Pointwise Mutual Information (PMI)

	The Context of Words in a Document
	What is Semantic Context?
	Textual Entailment
	Discrete, Distributed, and Contextual Word Representations

	What is Cosine Similarity?
	Text Vectorization (aka Word Embeddings)
	Overview of Word Embeddings and Algorithms
	Word Embeddings
	Word Embedding Algorithms

	What is word2vec?
	The Intuition for word2vec
	The word2vec Architecture
	Limitations of word2vec

	The CBoW Architecture
	What are Skip-grams?
	An Example of Skip-grams
	The Skip-gram Architecture
	Neural Network Reduction

	What is GloVe?
	Working with GloVe
	What is fastText?
	Comparison of Word Embeddings
	What is Topic Modeling?
	Topic Modeling Algorithms
	LDA and Topic Modeling
	Text Classification vs Topic Modeling

	Language Models and NLP
	How to Create a Language Model

	Vector Space Models
	Term-Document Matrix
	Tradeoffs of the VSM

	NLP and Text Mining
	Text Extraction Preprocessing and N-Grams

	Relation Extraction and Information Extraction
	What is a BLEU Score?
	ROUGE Score: An Alternative to BLEU

	Summary

	Chapter 6: NLP in R
	Launch R Scripts from the Command Line
	Installing RStudio Packages

	NLP Packages in R
	Common Tasks for Cleaning NLP Datasets
	Does the Language Make a Difference?

	Cleaning NLP Data in R
	Tokenization
	Remove Punctuation in Strings
	Convert Strings to Lowercase and Uppercase
	Convert File Data to Lowercase and Uppercase
	Stop Words
	Stemming in R
	Lemmatization

	POS (Parts Of Speech) with SpaCy in R
	POS in R
	NER in R
	The tf-idf Algorithm
	Working with N-Grams
	Topic Modeling in R
	Working With word2vec in R
	Summary

	Chapter 7: Transformer, BERT, and GPT
	What is Attention?
	Types of Word Embeddings
	Types of Attention and Algorithms

	An Overview of the Transformer Architecture
	The Transformers Library from HuggingFace
	Transformer and NER Tasks
	Transformer and QnA Tasks
	Transformer and Sentiment Analysis Tasks
	Transformer and Mask Filling Tasks

	What is T5?
	What is BERT?
	BERT Features
	How is BERT Trained?
	How BERT Differs from Earlier NLP Models

	The Inner Workings of BERT
	What is MLM?
	What is NSP?
	Special Tokens
	BERT Encoding: Sequence of Steps

	Subword Tokenization
	Sentence Similarity in BERT
	Word Context in BERT

	Generating BERT Tokens (1)
	Generating BERT Tokens (2)
	The BERT Family
	Surpassing Human Accuracy: deBERTa
	What is Google Smith?

	Introduction to GPT
	Installing the Transformers Package

	Working with GPT-2
	GPT-2 versus BERT

	What is GPT-3?
	GPT-3 Task Strengths and Mistakes
	GPT-3 Architecture
	The GPT-3 Playground
	Accessing the GPT-3 Playground

	What is the Goal of GPT-3?
	Zero-Shot, One-Shot, and Few Shot Learners

	GPT-3 Task Performance
	The Switch Transformer: One Trillion Parameters
	Looking Ahead
	Summary

	Appendix: Intro to Probability and Statistics
	Index

