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PREFACE

Newtonian mechanics is taught as part of every physics program 
for several reasons. It is a towering intellectual achievement; it has 
diverse applications; and it provides a context for teaching modelling 
and problem solving. I have tried to give equal prominence to all 
three missions in this text. To do this I have included some advanced 
material as well as the customary introductory topics. The book 
therefore is designed to be studied over an extended time-frame 
somewhat beyond the first year of a university physics program. This 
enables me to develop the problem-solving aspects more fully than 
in many other texts, as well as including some more advanced con-
tent. In particular I have tried to show how problems are approached 
in order to bring out the way one goes about constructing a solution 
or model. Tidy solutions and appropriate models rarely come fully 
formed, yet many texts present them as such, assuming that students 
will learn through their own trial and error. I think the trial-and-
error process needs to be taught.

Each chapter begins with a problem, for which the following 
text provides the background to a solution. I hope that knowing what 
the question is makes the following material more digestible. I have 
included some end-of-chapter questions, but not drill exercises. 
These are so readily available (and constructible) that it seemed an 
extravagant use of paper to write yet more. The text itself  contains 
some solved drill exercises which help to illustrate a particular 
 concept.

The level of mathematics varies through some of the chapters. 
The more difficult sections can be omitted on first reading. I have 
assumed that students will be taking a parallel course in mathe-
matical methods, but the early parts of chapters use plug-and-chug 
 verification to avoid overburdening the student. On the other hand, 
if we avoid mathematical sophistication entirely, it is not possible to 
reach the required level of skill to build up the modelling expertise 
that Newtonian mechanics is supposed to teach.
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xii • PrefaCe

It will be clear to readers that my approach to many subjects is 
not entirely conventional. For example, Newton’s third law is treated 
first, weight is introduced before mass, energy is introduced before 
the equations of motion. This last I do for the particular reason of 
making contact with contemporary physics: the physics of elemen-
tary particles is encapsulated (roughly speaking) in an expression for 
the (quantum) energy of the Universe, and their dynamics follows 
from this. It also makes direct contact with Hamiltonian mechanics, 
an understanding of which makes quantum mechanics a little less 
impenetrable.

Much of the material for this book was developed in collabora-
tion. I am particularly grateful to Dr. Edwin Thomas who not only 
originated some of the problems but read an initial version of the 
text and helped in proofreading for accuracy. It goes without saying 
that any remaining errors are mine alone. Sarah Symons and Naomi 
Banks also made helpful suggestions.

Derek Raine
Leicester

March 2021
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CHAPTER 1
Mechanical  
Models

1.1 INTRODUCTION

We observe that the world changes. At first most of these changes 
appear random, but then we begin to observe the regularity of day 
and night, the periodicities of the seasons, the flow of water, and the 
transforming effect of fire. We wonder if we can perhaps control 
some of these changes. Gradually, we learn that to exploit nature, we 
must first understand changes. Progress in understanding change 
means describing it and isolating regularities, it means that under-
standing a surface complexity in terms of deep simplicity. We might 
link the start of this endeavor to Plato’s challenge to the academi-
cians of Athens to understand the complex movement of the stars 
and the planets in terms of motion on interlinked circles. We might 
highlight the development of kinematics in Oxford and Paris in the 
thirteenth century, isolating the features of motion under constant 
acceleration and describing it graphically. We could note the com-
plexity of Ptolemy’s epicycles brought to order by Kepler’s discovery 
of the elliptical motion of the planet Mars, and Galileo’s experimen-
tal finding that bodies fall with constant acceleration. Or, we could 
begin with the laws of motion as synthesized by Newton from the 
work of Huygens and Descartes into a code that can unravel the 
motion of all bodies – unless they are moving near the speed of light 
or inhabit the micro-world of the atom. Wherever we start, this is 
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2  •  NewtoNiaN MechaNics, 2/E

above all a story of progress in stripping away the inessentials for the 
given purpose; in short, a story of how to make models of the world 
in the language of mathematics. 

This book is about that story: as a history, it is one of the greatest 
narratives of human endeavor; and as current science, it is one of the 
most significant underpinnings of modern technology. 

Let us begin, amusingly and totally unfairly, with a speech to 
the British Association for the Advancement of Science given by 
 Dionysius Lardner in 1838. Lardner said “Men might as well project 
a voyage to the Moon as attempt to employ steam navigation against 
the stormy North Atlantic Ocean.” One hundred and fifty years 
separated the accomplishment of the two events but neither was as 
impossible as he had predicted. We do not have any record of why 
Lardner thought we could not travel to the Moon, but we do know 
why he thought that steamships could not cross the Atlantic. He 
believed that the resistance of a ship increases with its size; so more 
coal is required to feed the boilers of the larger ship that produce the 
power to overcome the resistance. But the size of the ship then has 
to be increased to carry the extra coal, which in turn increases the 
resistance requiring ever more coal. Eventually, Lardner believed 
that the maximum range would be reached using (presumably) an 
infinite amount of coal in an infinitely large ship. 

A little mathematics, and some knowledge of ship design, 
enables us to see how the problem is, in fact, overcome. In order to 
proceed, it is easier to imagine ourselves in the frame of reference of 
the ship (or, stated more simply, just imagine ourselves on the ship). 
Then, the resistance force on the ship is proportional to the rate at 
which it destroys the momentum of the sea that tries to flow past it. 
This is proportional to the transverse cross-sectional area of the ship. 
Let us take some length scale L to characterize the size of the ship, 
the width or length, for example. Then, we imagine the ship to grow 
proportionately as we increase L (e.g., multiply all lengths by factor 
2). The area will increase as ∝ L2 with the scale, L (so by a factor of 
4 if we double L). However, the amount of coal carried increases as 
the volume, which increases more rapidly (∝ L3). Thus, larger ships 
are, in fact, more suited to long distances than small ones. We can 
do even better if we make the ship long and thin (which is why ships 
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MechaNical Models  •  3

are long and thin): we can increase the volume, while the transverse 
area remains almost constant.

What do we learn from this? First, that we need mathematics, or 
at least mathematical ideas, to clinch an argument, not mere words. 
Second, that to apply mathematics we need to simplify the situation 
to retain only what is relevant: here, it does not matter what the ship 
is made of, or even how it differs from a cuboid; the properties of 
the sea are unimportant, other than that it flows. And, we can adopt 
a convenient point of view (from the ship or from the land) in assess-
ing the problem: the outcome cannot depend on which frame of 
reference we choose. 

1.2 MODELS

We are going to look at a systematic way of thinking about mod-
els in physics. Let us introduce this through another example. Con-
sider the orbit of the Earth around the Sun. There are two agents 
involved here: the Earth and the Sun; they are, if you like, the play-
ers on the stage. The Sun is going to be an external agent: that is to 
say, its properties are going to be fixed and unaffected by the pres-
ence of the Earth. Its only role will be to exert a gravitational pull 
on the Earth. Our second agent, the Earth, will treat it as a point 
mass with the properties that it has a position and a velocity. The two 
agents interact through the gravity of the Sun, which falls off with 
the inverse square of the distance between the Sun and the Earth. 
With this set-up, we look for possible orbits of the Earth around the 
Sun which repeat – that is to say which the Earth – in this model will 
track year after year. The outcome, as you probably know, is that the 
Earth must move in an elliptical orbit with the Sun at a special point 
called the focus of the ellipse, which particularly depends on how 
the system was formed (i.e., on the initial conditions). 

Is this what really happens? No. The Sun is not at rest – it too 
moves under the influence of the gravity of the Earth, the Earth 
is not a point, it is not spherical, also it spins and the pair interacts 
through solar radiation and the solar wind as well as through grav-
ity. And, that is before; we have taken account of the influence of 
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4  •  NewtoNiaN MechaNics, 2/E

the other planets of the solar system. Some of these differences do 
not affect the orbit, but some do. The point of the model is that it 
allows us to investigate the effect of the hypothesis that gravity fol-
lows an inverse square law. No other law would provide us with the 
gross features of the orbits. The model can then be extended under 
the same hypothesis to see if we can account for the detailed depar-
tures of the orbit from a perfect ellipse by adding in the previously 
omitted details to a more comprehensive model. Once we have used 
these models to establish our hypothesis about the nature of gravity, 
this will become part of our knowledge of physics that will be used 
in any other situations where we need to model gravitational interac-
tions, for example in other planetary systems: our models should be 
consistent and we develop a body of knowledge of the laws of phys-
ics to ensure this. 

To complete the story, you may know that things work out pretty 
well for the inverse square law, but not exactly once Einstein comes 
on the scene. Einstein’s general theory of relativity enables us to say 
that the hypothesis of the inverse square law is not exactly true – 
no model based on it will agree exactly with all observations of the 
motion of the planets. In Einstein’s theory of relativity, there are, in 
effect, forces of gravity on the Earth (and on the other planets) that 
modify the inverse square law, and which do enable us to account for 
planetary motion precisely.1 

We use Einstein’s theory to calculate departures from  Newtonian 
gravity in any model of bodies orbiting under gravity. So let us think 
about the orbit of a GPS satellite around the Earth. To calculate this, 
we would need a model of the Earth. There is a number to choose 
from: 

1.	 The Earth is a uniform sphere.

2.	 The Earth is a non-uniform sphere with density varying 
with radius.

3.	 The Earth is an ellipsoid.

1  Even Einstein’s theory may not be the final word: string theories, for example, 
suggest that there may be higher-order corrections to the equations of general 
 relativity, although these would have a negligible effect on the solar system. 
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MechaNical Models  •  5

4.	 The Earth is a body the mass distribution (and shape) of 
which has been mapped (to some level of accuracy).

5.	 The Earth is exactly the shape and density of the Earth (the 
real world “experiment”).

All (except the last) are approximations. Whether they are useful 
depends on what we want to do. Which model is the most appropri-
ate to study the following? We will leave you to decide. 

a)	 Satellite orbits

b)	 Earthquake determinations of the structure of the core

c)	 Tidal forces

d)	 Weather prediction

e)	 Solar system models.

1.3 ESTIMATES

Before we tackle a problem in detail, it is important to build an 
approximate model to get a rough idea of what to expect. Here is a 
historical example.

Newton attempted to test his postulate of the universal inverse 
square law of gravity by estimating the gravity required to keep the 
Moon in orbit. A body orbiting in a circle at radius R moves through a 
distance of order R in a quarter of a period (T/4), so the acceleration 
(distance per unit time) due to gravity at the body is approximately 
R/(T/4)2. Comparing the acceleration due to gravity produced by the 
Earth at its surface (g = 9.81 m s−2) with the gravity of the Earth at 
the Moon (gm), we have therefore 

=
2

m m
9.81 .16

g T
g R

The Moon is at a distance Rm = 4 × 108 m and its orbital period 
is a month (= 2.5 × 106 s), so we have g/gm ~ 104.

Newtonian Mechanics_2E_Ch_01_1pp.indd   5Newtonian Mechanics_2E_Ch_01_1pp.indd   5 3/4/2021   2:44:32 PM3/4/2021   2:44:32 PM



6  •  NewtoNiaN MechaNics, 2/E

What would the inverse square law give us? If g ∝ 1/R2 then  
g/gm = (Re/Rm)2 where Re (=6400 km) is the radius of the Earth, so 
we should have g/gm = (Re/Rm)2 ~ 5 × 103. This is a factor 2 out, not 
bad for our rough estimate. 

Newton used a much better estimate for the acceleration of 
the Moon, but a rather worse estimate of the distance to the Moon, 
with the result that for several years, he did not believe the inverse 
square law to be exact. With a better knowledge of the distance to 
the Moon, the numbers worked out and Newton went on to write 
the Principia.

Two important points to remember in making estimates: quanti-
ties raised to high powers need to be known fairly accurately to get 
a good estimate; on the other hand only rough values are needed for 
quantities raised to fractional powers. Also, if a quantity is bounded 
by a large range, then the geometric mean is the best estimate for 
that quantity. For example, a useful estimate of a quantity that var-
ies between 1 and 100 is usually not 50.5 (the arithmetic mean) but

× ∼1 100 10 (the geometric mean). 

It is useful to practice using approximate models and approxi-
mate values to obtain the order of magnitude estimates. Here are 
some examples: which of the following are true?

a)	 1 foot = 1 light nanosecond. (The speed of light is 3 × 108 m s−1.)

b)	 ½ degree ~ the angle subtended by a penny coin at arm’s 
length.

c)	 A piece of paper folded 25 times could stretch to the Moon.

1.4 UNITS AND DIMENSIONS

In the SI system, the standard base units in mechanics are the 
meter, kilogram, and second, corresponding to the dimensions of 
mass [M], length [L], and time [T]. Apart from the need to attach 
units to physical quantities, the dimensions of derived quantities are 
useful in several ways. 
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MechaNical Models  •  7

Dimensions have to balance in an equation, a fact which often 
allows one to check an equation – provided the equation is writ-
ten with all the physical quantities in symbols and not subsumed in 
numerical values. 

Dimensions also allow us to associate various physical meanings 
to a quantity. For example, force is mass times acceleration so has 
dimensions [F] = MLT−2. This can be written as MLT−1/T, that is, as 
the rate of change of momentum (because it is mass times velocity – 
or momentum – per unit time). Similarly, pressure is force per unit 
area, so has dimensions [P] = [F]/L2 = ML−1T−2. This can be written 
as ML2T−2/L3 or energy (∝ mv2) per unit volume. This can be quite 
useful if one wants to estimate pressure.

For example, the pressure at the center of the Sun supports the 
Sun against its own gravity, so the energy per unit volume must be 
roughly equal to the gravitational energy. In Chapter 6, we shall see 
that the gravitational potential energy can be estimated as GM2/R4, 
where M is the mass of the Sun, R its radius, and G Newton’s gravi-
tational constant. Putting in values for the solar mass and radius, 
we find that the pressure at the center of the Sun must be of order 
1014 N m−2. This is a remarkable result: we have used a little mathe-
matical physics to construct a “device” that “measures” the pressure 
at the center of the Sun. (Actually, we could go further: this pressure 
must also be roughly the energy density of the solar plasma, from 
which we could estimate the temperature of the solar interior.) 

Finally, one can sometimes use dimensional analysis to extract 
the dependence of one physical quantity on others. For example, the 
drag of a body in a fluid must have the dimensions of a force and must 
depend on the area of the body, A, its speed v (a body at rest expe-
riences no drag), and the density of the medium ρ (at low enough 
density the medium may as well not be there). The only combination 
of A, v, and ρ that has the dimension of a force (MLT−2) is Aρv2. Of 
course, the shape of the body will add a numerical factor. In addi-
tion, there would be a viscous drag on the body, which can also be 
estimated by dimensional considerations, up to a numerical factor.

The disadvantage of units is that there are many different ones 
in use for the same quantity. This is partly historical and partly, some-
times, for the convenience of using numerical values as close as possible 
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to order unity. This being so, it is often necessary to convert between 
units. There are various algorithmic ways of doing this. For example,

V (miles h−1) = V (m s−1) × (miles m−1) × (s hr−1) 
 = V (m s−1) × (8/5 × 1000)−1 × 3600 miles hr−1

because there are 8/5 × 1000 m in a mile and 3600 s in an h. Note 
that meters (m) and seconds (s) cancel from the intermediate for-
mula. Your speed in miles per second will be less than that in meters 
per second by a factor of the number of meters in a mile (divide by 
8/5 × 1000) and your speed in meters per hour will be greater than 
that in meters per second by the number of seconds in an hour (mul-
tiply by 3600).

1.5 EQUATIONS

Estimates inform mathematics as well as numerical calculations. 
The most important aspect, once one has learned to work with sym-
bols and not numerical values, is to learn to neglect small quantities. 
Let us look at some examples. 

Suppose we put a girdle around the Earth, that is we wrap a rope 
around its circumference. Suppose the rope has a length L = 2πR + 
δ (where R is the radius of the Earth). How high off the ground is 
it? Most people would guess that the height is very much less than 
δ because the extra δ has to stretch all the way around the world.2 
This is a not very interesting question from a practical point of view, 
but let us see how the mathematics works out using a simple model 
of a spherical Earth. Let the height off of the ground be h. We have:

( )p p d+ = +2 2R h R

2 The philosopher Ludwig Wittgenstein liked to quote this as an example where 
a mental picture of the relation between big and small leads us astray: pouring a 
glass of water into the ocean does not have much effect on sea level. Quoted in, 
for example, Wittgenstein and the Philosophy of Mind, Ed Jonathan Ellis & Daniel 
Guevara (2012) OUP.
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so

.2h
d
p=

Thus, adding a meter to the length gives a height of about 15 cm – on 
whatever planet you choose! 

Why has it worked out like this? Dividing through by 2πR, we 
can write the equation another way:

1 1 .2
h
R R

d
p+ = +

In other words, a 1% change in the circumference (δ/R) pro-
duces a roughly 1 1

~2 6p
% (proportionate) increase in the radius 

(h/R) because the radius and circumference are linearly related. Put 
this way, the answer is entirely reasonable. 

Consider next a completely different problem. What rise in sea 
level would result from a 1 degree rise in sea temperature? What 
model shall we choose? The simplest one, which we shall take as our 
starting point, is a sphere of radius R covered to a uniform depth h 
in a thin layer of water. Suppose that the coefficient of expansion of 
water is α. Then, the change in volume of the sea on expansion is α 
times the original sea volume: 

 ( ) ( ) ( )3 3 3 34 4 4 4
– –3 3 3 3R h R h R h Rp d p a p p + + + = +    (5.1)

This looks like a lot of work; however, our model has both h << 
R and δ << R. So, expanding the brackets and canceling, we can 
approximate: 

 ( )p d p a+ ∼2 24 4  R h R h  (5.2)

neglecting the extra terms with powers of δ and h higher than the 
first, or

 hd a∼  (5.3)

since h << R. 
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Equation (5.1) makes it look as if the final answer should involve 
the radius of the Earth, R. The result (5.3) shows that the relative 
rise (δ/h) is independent of the radius of the planet. Is this rea-
sonable? We cannot make a dimensional argument here, because 
there are too many lengths involved: the final answer could have 
been multiplied by any number of factors of h/R. The easiest way to 
see that the result is reasonable is to imagine a strip of water from 
around the circumference laid out (approximately) on a flat surface. 
Then, it does not matter how long the strip is: the rise in height will 
always be the same when it expands. Another way of seeing this is 
to compare it to putting a girdle around the Earth: the extra height 
(radius) is accommodated by a proportionate increase in length (cir-
cumference) without reference to the radius of the planet. 

Note that we could have written down Equation (5.2) immedi-
ately by approximating the volume of a thin covering of the ocean 
on a sphere as area × depth. So, this is another check on the model.

For our final example, we look at the fall-off of pressure with 
height in the Earth’s atmosphere. Suppose that a student, asked 
to estimate the height of the atmosphere, claims that the inverse 
square law of gravity means that gravity gets weaker as you get to 
greater heights in the atmosphere, and hence, that the top of the 
atmosphere is where gravity is so much weaker than it cannot stop 
the air molecules escaping. What do we make of this?

Of course, to be fair it all depends on what you mean by the top 
of the atmosphere, but we can agree that what most people mean by 
a significant atmosphere does not extend as far as low Earth orbit at a 
few hundred kilometers. (It is actually much less the FAI3 defines the 
boundary between the atmosphere and outer space as the  Karman 
line at 100 km.) We can see that the student’s answer must be wrong 
with just a little appreciation of mathematics. The acceleration due 
to gravity, g, falls off with radius from the center of the Earth as an 
inverse square: 21 .g R∝  The only length scale in the gravitational 
model is the radius R. (The presence of the atmosphere does not 
alter this: gravity is essentially unaffected by the atmosphere.) So 
R is the length scale on which gravity gets significantly weaker, a 

3 Fédération Aéronautique Internationale.
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scale very much greater than the height of the atmosphere. Thus, as 
far as the atmosphere is concerned we can treat g as approximately 
constant. The explanation for the thinness of the layer of atmosphere 
around the Earth must lie elsewhere. 

Another way of looking at this is to work out how much g changes 
by over a height h << R. We do not do this by tapping numbers into 
a calculator. Instead, we derive a feeling for the way g falls off by 
expanding the inverse square law for h << R: 

( )2 2 3
1 1 2

~ – ,
h

g
R RR h

∝
+

using the binomial theorem ( )x x
x x

� � � ��
�
�

�
�
�

�

�
�

�

�
�

� �� 2 2 1
2

1
� �… � for   

and neglecting terms in higher powers of h/R. So close to the sur-
face, g falls off linearly with height.

The Earth is 6400 km in radius, so if the atmosphere were to 
extend this by as much as 200 km, it would amount to no more than 
3%. Gravity is an inverse square law, so a 3% increase in radius means 
roughly a 6% decrease (double 3%) in gravity: scarcely noticeable. 
The atmosphere would extend by several Earth radii if the explana-
tion given were really true. In fact, the height of the atmosphere is 
governed by the amount of air, and the way pressure falls off with 
height in an approximately constant gravitational field and has a true 
scale height (height to fall by a factor 1/e) of around 8 km. 

1.6 CHAPTER SUMMARY

●  Physics in general, and mechanics in particular, involves 
making mathematical models of the world. 

●  A model seeks to simplify reality as much as possible for the 
purpose to which it is being put.

●  A model is defined in terms of the agents and their inter-
actions. Simplification, therefore, means identifying the 
significant agents and their essential interactions. 
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●  Models in mechanics should be described in terms of math-
ematical symbols for dimensional quantities with the entry 
of numerical values reserved for the final step. This allows 
dimensions to be checked for consistency. 

●  The mathematics should be approximated appropriately 
to the model, especially in the neglect of small quantities 
where justified. This enables the results to be interpreted 
more readily. 

●  The result of a model should be expressed and explained in 
words (and/or graphically) and examined to check that it is 
reasonable.
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CHAPTER 2
Forces

In this chapter, we are going to address the following problem:

Problem 1: The figure shows a horse and cart. In due course, 
the farmers will have had enough of being photographed and will 
want to transport their harvest to market or storage. How does the 
horse pull the cart? 

What are the forces in and on the system of horse and cart; why 
do these forces move the cart in some circumstances but not others 
(e.g., if the cart is too laden)?

Picture credit: http://www.flickr.com/photos/hartlepool_museum/5933914248/sizes/z/in/ 
photostream/
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2.1 ACTION AND REACTION

We start by considering various cases where the forces on a body 
are in equilibrium, hence where the forces do not change the state 
of motion of the body.

Figure 2.1: Horizontal forces on a block at rest on a horizontal plane

Consider a block at rest on a flat plane as in Figure 2.1. We 
imagine that the block is subject to equal and opposite horizontal 
forces acting through a common point, as indicated by the arrows. 
By symmetry, the block cannot move. If the forces on a body do not 
change its state of motion, we say that the forces are in equilibrium. 
This suggests that a body that does not move must be acted on by 
equal and opposite forces in both magnitude and direction, hence 
must be subjected to no net force (or no forces at all).

If forces of the same magnitude in Figure 2.1 were not to act 
through a common point, we should have a more complicated situ-
ation in which the block could tip over. We shall deal with this later: 
for the moment, all forces on an extended body are assumed to act 
through a common point. Alternatively, we can consider the body 
to be a point particle with no extension, so that all forces on it act 
through the same point by construction.

Figure 2.2: Vertical forces on a block at rest on a horizontal plane. The reaction force R is 
equal and opposite to the weight W
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Consider now a block at rest on a flat plane as in Figure 2.2. If 
we were to imagine ourselves in the role of the plane, for example, 
by holding the block in our hand, we would feel the block pushing 
down. We attribute this to the weight of the block. Let us call this 
force W.

Thus, the block has a weight W, which is the force acting down 
on the plane. Experience shows that an unbalanced force causes an 
object to move. So we expect that the plane must act back on the 
block with a force equal and opposite to the weight of the block. In 
fact, if we imagine ourselves now in the role of the block, we feel this 
reaction as our weight. This is shown in Figure 2.2, where each force 
is represented by an arrow that points in the direction of the force 
and has a length proportional to the magnitude of the force.

The SI unit of force is the Newton (N), where 1 N = 1 kg m s−2.

Actually, in general, everyday experience alone does not always 
show that an unbalanced force causes an object to move. In one of 
the earliest systematic considerations of the issue, Aristotle pointed 
out that a man cannot move a ship.1 It was Newton’s insight to argue 
that the reason for this was not, directly, the weight of the ship, but 
the resistance offered by the water. Thus, even in this case, the ship 
does not move perceptibly because the forces on it are balanced. 
More than that, Newton proposed that in all cases, an action is bal-
anced by an equal and opposite reaction – even when the reaction is 
not obviously visible. Thus, we have

Newton’s Third law: 

To every Action there is an equal and opposite Reaction.

Note that the law refers to the action and reaction between two 
agents (the block and the plane above): the action of agent A on B is 
equal and opposite to that of B on A. Each agent is acted on by the 
respective reaction.

There is a lot of confusion on the issue of action–reaction pairs 
and you may well have been told that what you have just read is 
wrong. The reason offered is that action–reaction pairs have to be of 

1 Since water has no static friction, in principle, a man should be able to move a ship 
ever so slowly, but not, at least in Aristotle’s experience, perceptibly.
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the same type. So, for example, the gravitational force of the Earth 
on the block must be equal to the gravitational force of the block on 
the Earth and that the electrostatic force of the block on the plane is 
balanced by the electrostatic force of the plane on the block. These 
statements are true: each of these pairs of forces have to be equal in 
all circumstances. But when we observe that a block is in fact at rest 
on a plane, we are under no compunction to consider the origin of 
weight or of the material forces. We are free to restrict the system of 
interest to us to the block and the plane. In that case, it is a matter 
of contingent truth (if the system is in equilibrium) that the action of 
the weight is balanced by the reaction of the plane. 

2.2 FORCES IN EQUILIBRIUM 

We now put this together in Figure 2.3. The block is again at rest 
by symmetry. The forces form a closed figure.

Figure 2.3: Forces on a block at rest on a horizontal plane. In equilibrium, the forces acting 
through a point form a closed figure

Experimentally, we find that if the forces acting through a point 
are applied at an angle (rather than horizontally and vertically), they 
will still balance if they form a closed figure.

Figure 2.4 shows another example of three forces applied at an 
angle to a body. The forces balance since they form a closed figure. 
The diagram shows why this is. The forces are labeled B, R, and G. 
The arrows are drawn in the direction of the forces and their lengths 
represent the magnitude of the forces. Horizontally, the force G to 
the left is balanced by the force R to the right and vertically, the 
forces R and G are balanced by B. This balance will always be the 
result if the forces form a closed figure.
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Figure 2.4: Forces in equilibrium form a closed figure. The horizontal (→) and vertical com-
ponents (↑) are indicated by subscripts. The components of forces in horizontal and vertical 
directions balance and hence balance in any pair of orthogonal direction. This implies that 

forces behave as vectors

A necessary condition for a body to be in static 
 equilibrium is that the forces on it balance. Forces balance if they 

form a closed figure.

This is a necessary condition only (it must be satisfied by bodies 
in equilibrium, but it is not sufficient to guarantee that a body is in 
equilibrium) because we have assumed that the forces act through 
a point. 

The fact that forces forming a closed figure balance is equivalent 
to the parallelogram law of force and hence to the fact that force is a 
vector, that is, it behaves “like an arrow on the page” having a length 
and direction. To see this, consider the triangle of forces in Figure 
2.5. Since the triangle is a closed figure, the forces balance, so the 
net force must be zero. Thus (Figure 2.5a)

0.AB BC CA+ + =
  

Figure 2.5: The fact that forces in equilibrium form a closed figure is equivalent to the 
 parallelogram law

Equivalently (Figure 2.5b)

 –AB BC CA AC+ = =
   

 (2.1)

Equation (2.1) is the parallelogram law in Figure 2.5c, since 
:BC AD=

 

.AB AD AC+ =
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The vector AC


 is called the resultant of AB


 and .BC


Figure 2.6 also shows how a force can be broken into orthogonal 
components. To express this algebraically, as well as in pictures, we 
introduce vectors i and j, each of unit length, in the horizontal and 
vertical directions, respectively (Figure 2.6). 

Figure 2.6: The decomposition of a force into components. The vectors i and j are orthogo-
nal unit vectors (i.e., are perpendicular to each other and have unit length)

From Figure 2.6, we can then write for a force F, with magnitude F:

 
cos sin

x y

F F F

F F

q q= +
= +

i j
i j  (2.2)

In three dimensions, we again find that forces in equilibrium form a 
closed figure. To obtain the analog of Equation (2.2), we  introduce a 
third unit vector k orthogonal to i and j, whence (Figure 2.7):

F = F sin θ cosφ i + F sinθ sin φ j + F cos θ k

= Fx i +Fy j + Fz k

Figure 2.7: A vector F in three dimensions in terms of its components

We can now see the relation between the condition that balanced 
forces form a closed figure, and that the components of the net force 
in any direction are zero. If the forces form a closed figure, then the 
vector sum is zero; hence,
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0,x y zF F F F= + + =∑ ∑ ∑ ∑i j k

from which

0x y zF F F= = =∑ ∑ ∑ ,

and hence the components in the directions of the axes sum to 
zero. But the axes can be chosen in any three orthogonal directions; 
hence, for a body in equilibrium, the components of force in any 
directions sum to zero.

Example: What is the resultant of a force F1= 5 N and a force of 
F2 = 2 N acting in directions an angle 30o apart (Figure 2.8)?

Solution (1): The parallelogram law

The cosine rule gives

2 2 2 o
1 2 1 2– 2 cos150

3
25 4 20 46.32

F F F F F= +

= + + × =

So F = 6.8 N. The sine rule then gives
osin150

sin 2 0.156.8a = × =

and α = 8.5o to F1. 

F

F 1

F 2

30˚α

Figure 2.8: Addition of forces

Solution (2): Resolving forces

Since we can choose the axes arbitrarily, let F1 = 5i; then

F2 = 2 cos 30o i + 2 sin 30o j, 

and

( )1 2 5 3 .= + = + +i jF F F
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Thus, ( )22 5 3 1 25 10 3 3 1 37.66.F = + + = + + + =

Then 1

1

. 25 5 3
cos 0.996.8 5

F F
F F

a +
= = =×  so α = 8.1o.

The two equivalent methods appear to yield slightly different 
results! Which is the more accurate? Near α = 0 the cosine is chang-
ing slowly so we need a very accurate value for cosα to get an accu-
rate value for α, whereas the inverse sin function is changing rapidly, 
so gives greater accuracy. Keeping three decimal places in solution 2 
also gives α = 8.5o in agreement with Solution 1.This is a useful lesson 
(but definitely does not mean that you should indulge in the rookie 
error of quoting all 32 decimal places on your calculator display).

2.3 HORSE BEFORE CART

Let us return to the horse and cart and trace all the action–reaction 
pairs as it starts to move off. First of all, assume that the brakes have 
been applied to the wheels so they are not free to turn. We will release 
them shortly once the horse is ready. Imagine yourself as the horse.

Your weight is supported by the reaction on your hoofs from the 
ground. You push backwards on the ground and the ground responds 
by pushing you forwards with an equal force, assuming that friction is 
sufficient to prevent you from slipping. You pull on the cart and the 
cart pulls you back with an equal and opposite force.

Figure 2.9: Forces on the horse (white arrows) and on the cart (black arrows). The forces on 
the Earth balance the vertical arrows (Picture: Microsoft Clip Art)
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Now imagine yourself as the cart.

Your weight is supported by the reaction on your wheels from the 
ground. The horse is pulling you forward and you are pulling back on 
the horse. The pull is communicated to the axle. The wheels cannot 
rotate because the brakes are on and they also cannot slip as long as 
the friction from the ground is sufficient to pin the points of contact 
to the ground. The horse and cart remain at rest. 

To complete the picture, imagine yourself as the Earth. 

You are pulling on the horse and cart by your gravity and they are 
pulling on you equally by their gravity. Furthermore, they are push-
ing on you by their weight, compressing you slightly and you are 
pushing back with the pressure generated by the compression.

Note that the gravitational attraction of the Earth on the horse 
and cart is equal and opposite to the gravitational attraction of the 
horse and cart for the Earth, and that the compressional force on 
the horse and cart is equal and opposite to the vertical compres-
sional force on the Earth. The effect of these forces on the Earth 
is small and we neglect them; the corresponding reaction forces on 
the horse and cart are respectively equal in magnitude to the cor-
responding actions. However, the effect of these forces is rather 
larger on the horse and cart because of the rather different mass of 
the horse and cart compared to the mass of the Earth. We will see 
why the  magnitude of the effects differ when we come to Newton’s 
 second law. 

Notice carefully that the forces on any stationary agent bal-
ance; these forces on a single agent do not constitute action and reac-
tion pairs, which must act on different agents! Confusing this issue 
leads to the puzzle as to how the horse can pull the cart: if their action 
and reaction balance, so the argument goes, there is no net force to 
accelerate the cart from rest. In Figure 2.9, the white arrows indicate 
forces acting on the horse (the reaction of the cart and the ground) and 
the black arrows indicate forces acting on the cart (the action of the 
horse and the ground). Each will accelerate if the forces acting on it do 
not balance.
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2.4 STATIC FRICTION

Before we release the brakes on the wheels, the cart will move 
off only if the force on it is sufficient to overcome the friction 
between the wheels and the ground and cause it to skid. How large 
is the frictional force? Experiment shows that the frictional force will 
be just large enough to balance the applied force on the cart up to a 
maximum given by

 m=maxF R, (2.3)

where R is the normal reaction of the ground on the cart. In the sim-
ple case that we have only the weight of the cart W pulling down, we 
have seen that R = W (Figure 2.2). The quantity µ is called the coef-
ficient of friction. Its value is usually in the range 0 < µ < 1, although 
values greater than unity are possible. Once the force on the cart 
exceeds this maximum, friction will no longer maintain the balance of 
forces. Note that the coefficient of friction µ depends on the materi-
als in contact, but not on their apparent surface areas in contact (Sec-
tion 2.8). This result was first published by Amontons in 1699.

2.5 SLIDING FRICTION

Clearly, it is only possible to move the cart with the brakes on if 
the friction when the wheels are sliding is less than when they are 
at rest, since otherwise sliding would produce a greater restraining 
force than the one we are supposing has been overcome. We there-
fore have to distinguish between sliding friction and static friction. 
Static friction is variable up to a maximum value. What about slid-
ing friction? Suppose it were to have a constant magnitude. Then 
once the cart was in motion friction would never balance the applied 
force and the cart would continue to accelerate forever. Even if our 
experience with horse drawn vehicles is limited, our experience with 
motorized transport shows that this does not happen. Therefore, as 
the speed of sliding increases, so too must the friction: sliding friction 
is a velocity-dependent force. The functional dependence of the force 
on speed is something that has to be  determined  experimentally: all 
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we know is that it must be an increasing function of speed. Simple 
models are –slidingF v∝  or – .slidingF v v∝ (You might be tempted to 
write v2 instead of ,v v  but if you do this you need to take care that 
you adjust the sign so that the friction always opposes the motion i.e. 
that the frictional force changes sign when the motion reverses.).

2.6 A FRICTION PARADOX

Before we leave friction, we need to address a question that puz-
zles a lot of students. Imagine a block moving at constant speed under 
the balance of an external force and an equal opposing frictional 
force. We know that friction causes a loss of energy as heat; so energy 
must be supplied to the block by the external force to keep its speed 
constant. This is common experience: we will return to the concep-
tual details later. Here is the puzzle: change your frame of reference 
by running with constant speed alongside the block. Now what you 
see is a block at rest with two equal and opposite forces in balance. So 
there should be no heat dissipation! How can we have removed the 
need to supply energy to the block just by viewing it from a different 
platform? Of course, this is not possible, so where is the fallacy?

To solve the puzzle, we need to understand the origin of friction. 
Friction cannot arise between exactly smooth surfaces: it requires 
fluctuations in the surfaces. In the final instance, these are provided 
by the atomic nature of matter, although in practice few surfaces 
are smooth down to the atomic scale. The roughness means that 
the interaction between the surfaces is not constant: friction cannot 
be a constant force. Only when we take a macroscopic average of 
the fluctuating force, do we get an apparently smooth behavior. If 
the frictional force is not exactly constant, then it cannot balance a 
constant external force moment by moment. Sometimes the body 
accelerates a little, sometimes it decelerates, maintaining a constant 
speed only on average and dissipating energy in the process. This 
behavior is the same whether we view it from a fixed point or from 
a uniformly moving platform. The fluctuating nature of frictional 
forces resolves the paradox.
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2.7 ROLLING FRICTION

Let us return to the horse and cart and release the brakes. The 
wheels are now free to rotate. The frictional force now acts to stop 
the wheels from sliding. This means that the point of contact with 
the ground is prevented from sliding forward, so the friction still 
acts backward. As the wheels turn, they experience a rolling friction 
from the changing contact with the ground. This must be less than 
the sliding friction or the wheels would slide rather than roll. There 
is also a velocity-dependent sliding friction from the axle bearings, 
which now also contributes to prevent the horse from accelerating 
the cart to ever greater speeds.

2.8 CONTACT AREA

There is one more problem we need to clear up: how does fric-
tion depend on the area of contact between two surfaces? The para-
dox is this: according to the formula F = µR, the maximum frictional 
force between two objects depends only on the reaction on one 
object on the other and not on the apparent area of contact. So why 
would we increase the area of the tires on a car to increase the road 
holding?

The well-known example of the impossibility of separating two 
books with the pages interleaved appears to demonstrate precisely 
this dependence of the force on contact area. In fact, it does no such 
thing. The resolution of this paradox is that each page has the increas-
ing weight of all the pages above it providing the frictional response. 
Thus, two 500 page books require a force 250 times greater than that 
between two sheets of paper, not because of the increased area but 
because of the weight of the pages. 

Car tires are another story entirely: a skidding tire leaves a strip 
of rubber on the road, so this is not solid friction between two sur-
faces: it is harder to strip off a layer of rubber from a wider tire than 
from a narrower one.
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We can understand this better if we consider that between two 
rough surfaces (hence, in practice, between any surfaces), the area 
of actual contact in a unit of visible area depends on the pressure. An 
increasing pressure deforms the surfaces leading to a greater area of 
contact, proportional to the pressure. The frictional force depends 
on the total number of points of contact, hence to the pressure times 
the area, or reaction force, between the surfaces, and not on the vis-
ible areas of overlap.

2.9  TORQUE: THE MOMENT OR COUPLE OF 
A FORCE

Our next problem is how do we explain that a wheel with equal 
and opposite forces (from the ground and the axle) nevertheless 
moves? The resolution will be that the forces in this case do not act 
through the same point.

Consider the simple situation shown in Figure 2.10. Two blocks 
of equal weight W are placed equidistant from the pivot point (or 
fulcrum) of a lever. We assume that the weight of the arm of the 
 balance can be neglected.

Figure 2.10: Two equal blocks at equal distances from the fulcrum of a lever. The upward 
reaction from the fulcrum balances the weights

Since the arrangement is symmetrical, there can be no prefer-
ence for one of the blocks to move down and the other up, so the 
system does not move. Therefore, the forces on the lever arm must 
balance. If we now move one of the blocks toward the pivot, the 
forces will still balance but the arm will nevertheless tip. Observa-
tion shows that it tips down on the side with the weight further from 
the pivot.
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Figure 2.11: The arm will balance when wX = Wx. Under this condition, there is zero couple 
on the system

More detailed experiments show that for the weights to balance, 
we must have

 .wX Wx=  (2.4)

Actually, of course, experiment can never tell us this exactly, but we 
assume that it to be exactly true and see where that leads.

First, we need to give names to the quantities in Equation (2.4). 
We select a point in space: any one will do, but usually a convenient 
one suggests itself. In this case, we choose the fulcrum. We then 
define the moment G of a force (or its couple or torque) about the 
chosen point to be the force multiplied by the perpendicular dis-
tance to the line of action of the force (Figure 2.12). In vectors, G is 
the vector product (or cross product)

 G r F.= ∧  (2.5)

So G has a direction perpendicular to the plane containing the force 
and our chosen point about which it is acting and a magnitude rF.

Figure 2.12: The moment G of a force about a point P is given by the vector product of the 
force and a vector from P to the line of action of the force

In fact, we can take the cross product of F with any vector from P to 
the line of action of F, r′ say, because

( )– .′ ′∧ = + ∧ = ∧  r F r r r F r F

The final equality arises because r′ - r is parallel to F so (r′ - r) ∧  
F = 0. If r is chosen to be perpendicular to F, then the magnitude of 
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the couple G is just G = |G| = rF in a direction normal to the plane 
of r and F.

We now assert:

For a body to be in static equilibrium, the moments of the 
forces on it must balance (i.e., the net moment must vanish).

To show this assertion is meaningful, we have to show that if the 
moments balance about one point, they balance about any other. To 
do this, assume that forces Fi act at points xi and that these forces are 
in equilibrium. Then, we have

0i =∑F ,

and 

0.i i∧ =∑x F

Now change the origin to X. We have to show that 

( ) 0.i i+ ∧ =∑ X x F

But 

( ) 0,i i i i i+ ∧ = ∧ + ∧ =∑∑ ∑X x F X F x F

since each sum (of forces and moments) vanishes, which is what we 
set out to prove.

2.10 CONDITION FOR STATIC EQUILIBRIUM

We can now summarize our results. For a body in static equi-
librium:

i)	 the vector sum of the forces acting on the body must 
equal zero

ii)	 the moment of the forces on the body about any point 
must equal zero.
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Although we shall not show it, these conditions are also sufficient 
for a body to be in equilibrium, that is, if the forces on a body satisfy 
these conditions, then the forces must be in equilibrium. Thus, to 
solve a problem in statics, we set the sums of each component of the 
forces to zero and the moment to zero:

0x y zF F F= = =∑ ∑ ∑ ,

and

( ) ( ) ( ) 0,
yx z

∧ = ∧ = ∧ =∑ ∑ ∑r F r F r F

where the sums are over all the forces acting on the body. We call 
this resolving and taking moments.

2.11 CENTER OF GRAVITY

It is convenient to remove the lever arm or balance now and 
consider the abstract point about which the moments of a system of 
weights would be zero. We call this the center of gravity. For two 
weights w and W, it is defined by dividing the line between them in 
the ratio X:x such that

 0.wX Wx+ =  (2.6)

In general, it is the point about which the moment of the weights is 
G = 0.

We can now describe why the lever balances under the Archi-
medean condition (2.4): this condition ensures that the center of 
gravity coincides with the fulcrum. Thus, the overall forces on the 
beam and the weights (gravity and the reaction from the fulcrum) 
not only balance in magnitude and direction but also in point of 
application.

Example: Center of Gravity

The most comfortable way to carry an object across your shoul-
der is to balance it at the center of gravity. Find the center of gravity 
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of the spade in Figure 2.13. The handle is a cylinder of length h = 
0.8 m weighing W = 8 N, and the blade is a rectangle of length b = 
20 cm weighing w = 5 N.

Figure 2.13: A model of a spade

Solution: If the center of gravity is a distance x from the top of the 
handle, then taking moments of the top of the handle

( ) 2 2
b h

W w x w h W + = + + 
 

,

from which

5 0.2 8 0.8
0.85 8 2 5 8 2

59cm.

x    = + +   + +   
=

2.12 AN EXAMPLE

A traditional example of a statics problem that is tackled by 
resolving forces and taking moments is that of ladder against a wall. 
The figure shows the forces involved, where W, the weight of the 
ladder, acts through the center of gravity of the ladder, which we 
assume to be the midpoint. The ladder has length 2l.

Figure 2.14: A ladder against a wall
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We solve the problem by resolving the forces and taking 
moments.

Resolving horizontally: 

 ;rF R= ′  (2.7)

and resolving vertically:

 .rF R W′ + =  (2.8)

Taking moments of the point of contact with the wall:

 cos 2 sin 2 cos .rWl F l Rla a a+ =  (2.9)

Consider first the case in which the wall is frictionless (i.e., when 
the friction from the wall is much less than that from the ground). 
We get

 rF R Wm m= =  (2.10)

at the point of slipping. So from (2.9),

cos 2 sin 2 cosW W Wa m a a+ = ,

or

 1
tan .2a m=  (2.11)

For stability then, we require α > tan−1(1/2µ). Once again we try 
out a numerical example to check this is reasonable. For example, if 
µ = 0, so all the surfaces are frictionless, we require α > π/2, which 
is impossible, as it should be the ladder cannot stay against the wall 
without friction. At the other extreme, if µ = 1, then α = tan−10.5, so 
the ladder cannot rest at a shallower angle than about 27o.

Let us now introduce friction on the wall, so at the point of slid-
ing .rF Rm′ ′′ =  Then, using (2.8),

( ) ( )– – –r r rF R W F W R W Fm m m m m mm′= = = =′ ′ ′ ,

so 

 .1r
W

F
m

mm= + ′  (2.12)
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Then from Equations (12.3) and (2.7), we have

( ) ( ) ( )2 sin – cos – cos – cosr r rF W F W R W Fa a m a m a′= = ′=′ ′ .

A little algebra using (2.12) gives

1–
tan .2

mm
a m

′
=

Thus, the friction on the wall reduces the angle at which the ladder 
slips, as you would expect. If both µ = 1 and µ′ = 1, then the lad-
der will not slip at all. Note how the mathematics gives a precise 
answer if we need it, but we also check against special cases where 
we think we know the result to see if the model and the calculation 
are  correct. 

2.13 PROBLEM SUMMARY

To summarize, we are interested in the motion of the horse and 
cart together, so this is our agent. We are not interested in the reac-
tion back on the Earth, so this provides the environment; that is, to 
say, it can act on the agents, but we are not concerned with their 
action back on it. The horse and cart are at rest while the forces and 
couples on them balance, or, equivalently, while the net force and 
net couple are zero. Both forces and couples are vectors so their 
components, taken in convenient directions, must balance. Thus, 
the system will remain at rest while the net vertical and horizontal 
forces are zero. Vertically, Newton’s third law tells us that if there is 
no vertical acceleration, then the reaction from the ground equals 
the weight of the combined system. The reaction will be distributed 
between the wheels of the cart and the horse’s hooves. To determine 
at which point a hoof slips or a cart wheel slides, we should need to 
know how the reaction is distributed, because for each point of con-
tact, with reaction force R the horizontal friction cannot exceed µR.

Horizontally, the reaction of the ground on the horse’s hooves 
provides the force to propel the system forward. Rolling friction with 
the ground and sliding friction in the bearings resist this motion. 
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Once the horizontal forces balance, the motion is again at a steady 
speed.

We can divide the system into parts if we wish – and this might 
be important if we are considering the strength of the coupling 
between the horse and the cart for example – but as far as the sys-
tem as a whole is concerned Newton’s third law guarantees that the 
internal forces cancel. Consider the schematic diagram in Figure 
2.15 representing the horizontal forces on the horse and cart.

Figure 2.15: A schematic diagram of the forces on the horse H and cart C. Fr is the frictional 
force from the ground; Fh is the force the horse exerts on the cart; Fc is the force exerted by 

the cart on the horse and Fr′ is the friction on the cart.

Looking at each agent, the cart and the horse, separately, we have 
for the static equilibrium of the horse

,r cF F=

and for the cart,

.r hF F′ =

Newton’s third law gives us 

,h cF F=

from which we can deduce that 

.r rF F′=

This is the condition for the static equilibrium of the system as a 
whole, indicated by the dashed rectangle in Figure 2.15. The cancel-
lation of internal action–reaction pairs, Newton’s third law, guaran-
tees that we can divide the system into parts in any convenient way.

Later, we shall see how Newton’s other laws enable us to calcu-
late the acceleration of a system in which the forces do not balance. 
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Problem 2: For the second part of this chapter, we are going to 
address the following problem:

The figure shows the Great Pyramid of Giza together with a pic-
torial illustration of one idea for the way in which it was built, known 
as the ramp theory. According to this view, the building stones were 
hauled up the ramps. The theory is disputed by scholars because the 
ramps must be shallow and this implies that a vast amount of mate-
rial is required to build the ramps. Some remains of ramp-like struc-
tures are known, but the absence of more visible evidence makes the 
theory problematic.

Clearly, a crucial aspect of the theory is the angle of the ramp: 
the stone blocks typically weigh 60 tons wt; up what angle is a team 
of men likely to be able to haul a stone block?

Great Pyramid of Giza, also known as the Pyramid of Khufu or Pyramid of Cheops  
(http://www.lifeslittlemysteries.com/2174-cost-build-great-pyramid.html CREDIT: Nina | Creative 

Commons http://www.cheops-pyramide.ch/khufu-pyramid/ramp-models.html)

2.14 INCLINED PLANES

Figure 2.16: The forces acting on a block on an inclined plane
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Our problem is to determine the optimum angle at which to pull a 
block up an inclined plane by a rope. We shall approach the problem 
in stages, including some false avenues, in order to illustrate various 
aspects of problem solving.

Think of the block as an agent (or if you prefer, think of yourself 
as the block) and consider the forces on it. There is its weight W 
vertically downward, the reaction of the surface normal to the plane 
R and the friction Fr along the plane, and finally, the force F pulling 
the block. Once again we represent the direction of a force by an 
arrow in that direction and the magnitude of the force by the length 
of the arrow.

We shall do a simpler example first by considering the case θ = 
0 when the force F is in a direction parallel to the plane. We could 
balance forces horizontally and vertically, which would involve three 
forces in each case. It looks simpler to balance forces parallel to the 
plane and normal to the plane. Of course, both methods (and any 
other resolution) lead to the same result. 

Resolving parallel to the plane in Figure 2.16 (with θ = 0), we 
have

sinrF F W a= + ,

where 0 ≤ α < π/2 is the slope of the plane. Resolving normal to the 
plane:

cosR W a= .

At the point of slipping, cosrF R Wm m a= =  so 

 cos sin .F W Wm a a= +  (2.13)

The stationary (maximum or minimum) value of F is obtained by 
setting dF/dα = 0. Differentiation of (2.13) with respect to α shows 

that the derivative is zero for –1cot .a m=  For this α, ( )
1

2 2cos 1a m m= +  

and ( )
1
22sin 1 1 .a m= +  So F has the value 

( )
1

2 21 .F Wm= +
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For α = 0, we have ( )
1

2 21 ,F W Wm m= ≤ +  so –1cota m=  must be a 

maximum, not a minimum. Assuming µ < 1, the smallest value for F 
is µW at α = 0 (i.e., no slope at all). 

So following the algebra, we seem to have come to the conclu-
sion that the slope only makes things worse in terms of minimizing 
the force! However, if we take α = 0, we do not raise the block at 
all. The practical answer, other things being equal, seems to be that 
we want the gentlest slope possible. Of course, this is obvious! The 
more we wish to raise the block vertically, the more we have to pull! 
So we learn two things: first, to think about what outcome we expect 
before doing a calculation and second that we need to interrogate 
the mathematics, not be led blindly by it. Here we needed to check 
whether the stationary value for the force is a minimum and to not 
be misled by the hope that that is indeed what we would find. 

A more relevant calculation might be to determine the angle 
required for a given force (which we would choose as the maximum 
the workers could exert). We have to solve Equation (2.13) for α. 
The result is not very illuminating, but the method is, so we shall 
present it here. We isolate either the sin or the cos term on one side 
of the equation and square. Isolating the sin term on the left-hand 
side and squaring gives

2 2sin ( – cos ) .
F
Wa m a=

We can now substitute for sin2α in terms of cos2α, giving an equation 
involving only cosine terms: this was the point of the initial manipu-
lation. Using sin2α = 1 − cos2α, we get 

2
2 2

2
2

( 1)cos – cos ( –1) 0.
F F

W W
mm a a+ + =

This operation has yielded a quadratic for cosα (with no sinα terms) 
with the solution

 
2 2

2

1–
cos ,

1
mb m b

a
m

± +
=

+
 (2.14)
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where b = F/W. Now we want b < 1, that is, F < W, or else there is no 
point in dragging the block up a slope. If we take the negative square 
root with b < 1, this gives cos 0a <  or α > π/2 which is obviously not 
possible. Thus, we take the positive root. 

Figure 2.17: The function cosa plotted against b = F/W from Equation (2.14) for µ = 0.5

Finally, look again at the expression, we have obtained in Equa-

tion (2.14). For b = 0, we have ( )–1/22cos 1 .a m= +  Does this mean 

that is we apply a zero force (F = b W = 0) the block will levitate up 
the slope? Clearly not! So what is wrong? As a clue consider that if 
F = 0, the block will, if anything, slide down the plane. So our solu-
tion does not apply to the problem that we set for small values of F 
or b. It is useful to draw a graph. Figure 2.17 shows cosα plotted 
against b for a value of µ = 0.5. At the peak of the curve, cosα = 1 
or α = 0. This is therefore the point at which the force is sufficient 
to move the block on a flat plane. Values to the left of this are not 
solutions of the problem; only for values of b to the right of the maxi-
mum do we get a valid slope. 

Newtonian Mechanics_2E_Ch_02_3pp.indd   36Newtonian Mechanics_2E_Ch_02_3pp.indd   36 3/30/2021   11:51:02 AM3/30/2021   11:51:02 AM



Forces  •  37

2.15 PULLING AT AN ANGLE ON A FLAT PLANE

We can now investigate how much difference pulling at an angle 
up an inclined plane would make. However, before we do this, con-
sider pulling at an angle 0q ≠  on a flat plane (α = 0). Before we do 
any calculation, let us see why we expect an optimum angle. If the 
angle θ in Figure 2.18 is negative, the block is pulled onto the plane 
so the reaction force is bigger than it might otherwise be and fric-
tion is increased. If the angle θ is too large and positive, much of the 
effort is going into lifting the block off of the plane, and while this 
reduces friction, the component of force pulling the block along the 
plane is diminished. Somewhere in between, we expect to find the 
choice of θ that minimizes the force required. 

Figure 2.18: Pulling a block at an angle

Resolving forces horizontally in Figure 2.18, we have

cosrF F q=

and resolving vertically, 

sin .W R F q= +

The block will slide once ,rF Rm=  so using this and eliminating R 
gives

 ( – sin ) cosW F Fm q q= , (2.15)

or 

 .cos sin
W

F
m

q m q= +  (2.16)
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This gives the force required for a given value of the angle q. For the 
minimum force, we differentiate (2.15) (or 2.16) with respect to q 
and set dF/dq = 0 to get

–1tan .q m=

This is reasonable: for negligible friction (µ << 1), q is small: 
there is no point in pulling anything other than close to horizontally. 
For the minimum force, we find from (2.16) 

 
2

.
1

W
F

m

m
=

+
 (2.17)

This also tells us that if µ is small, there is not much point in adjust-
ing the angle: for q = 0, F = µW so adjusting the angle has reduced 
the force in Equation (2.17) only by terms of order µ2. We would be 
far better off reducing µ because the force required depends lin-
early on µ. So reducing µ by a factor 2 would roughly halve the force 
required.

At the other extreme, for large µ, consider the case that µ has its 
maximum value of µ = 1. Then pulling at 45o (i.e., q = tan−11) reduces 
the required force in (2.17) by a factor of √2, and this is the best we 
can do by adjusting the angle. Incidentally, in this case, we really do 
have a minimum and not a maximum: for example, if q = 0, we have

21

W
F W

mm
m

= >
+

,

that is, for angles away from the stationary point, the force required 
is larger, hence, the stationary point is a minimum.

Alternatively, we can solve (2.15) for q for a given force. The 
result is again not very illuminating, but the method is. We could 
follow the approach we used to solve (2.13), but there is a more 
interesting way. Compare (2.13):

cos sinF W Wm a a= + .

and (2.15), rewritten as 

W cos sin .
F

Fq qm= +
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We see that the transformations W ↔ F (or b → 1/b), µ → 1/µ and 
θ ↔ α converts one equation into the other. Therefore, the solution 
of the second equation is found by applying this transformation to 
the solution, Equation (2.14), of the first equation: from Equation 
(2.14), we get

–1 –1 –2 –2

–2

1–
cos

1
m b m b

q
m
+ +

=
+

and tidying up: 
2 2 2 2

2

–1
cos .

1
b b m mmq b m

 + +
 =
 + 

This idea of transforming one problem (that we have solved) into 
another (which we wish to solve), and thereby obtaining the solu-
tion by transformation, is exploited in various contexts in theoretical 
physics.

2.16  PULLING AT AN ANGLE ON AN 
INCLINED PLANE

Now to the calculation for the inclined plane: Figure (2.18) 
shows the forces forming a closed figure, which will be the case up 
until the block is about to slip. We could once again resolve forces 
horizontally and vertically, but this will involve three forces in each 
case and some trigonometric functions of α + θ. It seems as if it 
might be easier to consider the balance of forces parallel to the plane 
and perpendicular to it.

Resolving parallel to the plane:

 cos sin .rF F Wq a= +  (2.18)

Resolving perpendicular to the plane:

 cos sin .W R Fa q= +  (2.19)
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Once more, if the block is just about to slip, the frictional force 
is directly related to the normal reaction through the coefficient of 
friction for the two surfaces, µ by

 .rF Rm=  (2.20)

We can in principle solve these equations for the angle θ. We start 
by combining Equations (2.18) to get F as a function of θ for fixed 
W and µ giving 

 cos ( cos – sin ) sinF W F Wq m a q a= + . (2.21)

We can find the angle that minimizes F by putting 0.
dF
dq =  Dif-

ferentiating (2.21) gives

cos – sin – sin – cos
dF dF

F Fd dq q m q m qq q= ,

or, when we put dF/dθ = 0,

–1tanmq q m= =

for the value of θ at the minimum. Is this answer reasonable? If µ 
is small, then θm is small and we should pull almost parallel to the 
plane to minimize the effort required to move the block: we cannot 
reduce by much the already small friction. As µ increases, we need 
a larger angle to the plane. The angle θm is independent of the slope 
α of the ramp, which is perhaps a bit unexpected. But what force do 
we have to exert? We have assumed this can be adjusted at will. Let 
us substitute θm back into Equation (2.21) and see. This gives 

( )
2

2 2

1
cos sin

1 1
F W

m m a a
m m

 
 + = +
 + + 

,

or

 ( )
2

1
cos sin .

1
F W m a a

m
= +

+
 (2.22)

The maximum value of cos sinm a a+  is 2(1 )m√ +  when α = cot−1 µ. 
Then F = W and θ + α = π/2. In other words, the ramp is of no ben-
efit: we may as well lift the weight vertically! 

Newtonian Mechanics_2E_Ch_02_3pp.indd   40Newtonian Mechanics_2E_Ch_02_3pp.indd   40 3/30/2021   11:51:04 AM3/30/2021   11:51:04 AM



Forces  •  41

So a more realistic calculation might be to investigate the angle 
of the ramp given a fixed force. We have just found that the best 
angle θ is independent of the ramp angle α, so we put θ = tan−1µ 
and solve (2.22) for α. But apart from the factor √(1 + µ2), this is the 
same as (2.13). So from the solution to (2.13), Equation (2.14), we 
have 

2 2

2

1–
cos .

1
mb m b

a
m

+ +
=

+

where now 
2 1 .

F
Wb m= +

2.17 SOLUTION OF PROBLEM 2

Let us put in some values. A stone block in the pyramid has a 
weight of about 60,000 N. Let us assume it is being moved on roll-
ers, so friction might be µ = 0.1 (say). A man can pull rather less than 
his body weight, so say 300 N. Suppose we employ 50 men to move 
the block so b ~ F/W ~ 0.25. From (2.14), we get α ~ 7o. The length 
of the ramp to the height of the pyramid must therefore be cot 7° ~ 
9. So the length of the ramp should be ~10 times its height. 

Unfortunately, this estimate depends sensitively on the value of 
b and µ. We should therefore add some error bars. We have, fixing 
µ and varying b,

( ) ( )

1
–2 2 2

2

– 1–
cos – sin  ~ – ,

1

mdb bdb m b
d a a da db m b

m
+

= =
+

where we have taken µ2 << 1 and b 2 << 1 for our assumed values 
of µ and b. So ( )~ 0.15 sin7 ~1.2 .da db db°  In degrees, this gives 

~70 .da db°  So we need to know b to 1% to get α to a factor of 2 
(since db = 0.01 gives dα ~ 7o, comparable with the value we found 
for α). A similar conclusion holds for µ. It is worthwhile  remembering 
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that this problem is generic: since a function varies slowly near a sta-
tionary point, locating a maximum or minimum accurately requires 
accurate data! 

Figure 2.19: Near a minimum, a small change in b gives an inaccurate estimate of α

2.18 TIPPING POINT

Where along the side of the block should we attach the rope? 
Intuitively, we know that it should be at the lowest point, since this 
not only stops the block from tipping but also helps to lift it off of the 
ground and minimize the friction. How can we show this? We do an 
easier problem first. 

Figure 2.20: Considering the block as an extended body, the position at which the rpe is 
 attached will determine if it tips or slides

In Figure 2.20, we consider that a square block is just at the point 
of tipping when it starts to slide. How do we know this is a tipping 
point? Consider approaching the situation by increasing the force 
gradually while the block refuses to slide. As the force increases, the 
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far end of the block will begin to leave the ground. At this point, the 
reaction force must be through the only point of contact with the 
ground, which must also be where friction is acting. 

Why do we draw the figure like this and not with the block tip-
ping over (Figure 2.21)? It would be perfectly possible to analyze 
the situation mathematically with the block at an arbitrary angle, but 
toppling from this position is more likely than toppling from the hor-
izontal. We can see this because once the block starts to tip off of the 
ground, the line of action of the weight moves toward the pivot end. 
So the weight exerts less of a restoring moment as the block tips. In 
other words, if the block is going to slip without tipping, it had better 
do so by the time the block is about to pivot off the ground or it will 
not do so at all. So this is a situation where a little intuition can save 
us some complication in the mathematics. 

Figure 2.21: A block at tipping point

To solve the problem, we consider the block to be at the point of 
sliding and resolve horizontally in Figure 2.20:

 cos ,rF F Rq m= =  (2.23)

and vertically:

 
cos

sin (1 tan ),
F

W R F
q

q m qm= + = +  (2.24)

where the final expression arises by substituting for R from Equa-
tion (2.23). We now also take moments about the point of contact in 
Figure 2.20. Of course, in reality, rather than in the two-dimensional 
projection of the figure, this is a line, not a point, but nevertheless, 
we usually talk about taking moments about a point! We choose this 
point because the unknown quantities Fr and R have zero moment 
about this point. They are therefore automatically eliminated from 
the resulting equation, thereby simplifying the resulting algebra. 
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We know that taking moments about any other point would lead to 
the same result eventually. The moment equation about the line of 
 contact is

 cos .2
h

W xF q=  (2.25)

We now solve these Equations (2.24) and (2.25) for x/h in terms of θ 
by eliminating W/F. A little algebra gives

 
1 1

(tan ).2
x
h q m= +  (2.26)

This is the condition for the block to slide just at the point where 
it is about to topple. To find the condition that it slides before top-
pling, we could rework the equations with Fr > µR at the point of 
toppling (because the friction in this case would have to be larger 
than it actually is to prevent slipping). More simply, we can see that 
if the point of application is lower than implied by (18.4), the couple 
on the block will be reduced and it is less likely to topple. Therefore, 
the block will slide before toppling if 

1 1
(tan ).2

x
h q m≤ +

We look at some special cases to check the answer is reasonable and 
to draw some conclusions. Consider first the case θ = 0. Then x/h ≤  
1/(2µ). Thus, for µ ≤ 1/2, it does not matter where we attach the 
rope: the block will always slide before toppling. For µ = 1, we get  
x ≤ h/2 and we must attach the rope at or below the half-way point. 
In this situation, we can see that the block cannot tip because there 
is no clockwise moment; so this is in agreement with our result.

If we now choose the angle θ for the minimum force, tanθ = µ 
(from Section 2.15), we get 

2 1
.2

x
h

m
m
+

≤

The right-hand side is always >1. To see this, consider 
( )22 –11

–1 0.2 2
mm

m m
+

= >  Thus, if we choose the angle to correspond 
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to the minimum force, the block will always slide before tipping. 
This is something we might expect the ancient Egyptians to have 
discovered by trial and error in the course of laying many thousands 
of blocks.

2.19 TIPPING ON AN INCLINED PLANE

Figure 2.22: Block on an inclined plane

A slightly different problem occurs for a block on an inclined plane 
(Figure 2.22). Once again, we consider the simpler case of a cubical 
block of side h, first for a block that is not being pulled. The block 
will now tip, if it tips at all, about the lower edge so if the block is 
at the point of sliding as it is about to topple the reaction force will 
act through the lower edge. To look at the condition on the slope 
of the plane, once again we could resolve the forces parallel to and 
normal to the plane and take moments about a convenient point, in 
this case, to get the equation with the fewest forces, about the lower 
edge, P. Since the block is sliding down the slope, the frictional force 
acts up the plane. 

However, looking at the diagram (Figure 2.22), we see that W 
produces an unbalanced couple about the lower edge at P. Thus, at 
the point of toppling, W must also act through the edge P. So if top-
pling occurs at the point of slipping, α = 45o. If α < 45o, the block 
slip before it topples.

Resolving normal to the plane

 cos .R W a=  (2.27)
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Resolving parallel to the plane

sin cos ,rW F R Wa m m a= ≤ =

using (2.27) in the final step. Thus, the block will topple before slip-
ping if µ. With α = 45o, this gives µ = 1, that is, the block will slip 
before it topples if µ < 1.

Figure 2.23: The block tips or slides depending on the point of application  
and the angle of the rope

Finally, we look at a block pulled up an inclined plane (Figure 2.23). 
Our experience shows us not to plunge straight into the equations. 
So what do we expect? As we have drawn the figure, the moment of 
F about P is clockwise, hence acts to tip the block about the leading 
edge at Q. If the angle θ is increased sufficiently, or the distance x 
is decreased, then the moment of F about P will act to tip the block 
instead about the trailing edge at P. The condition for the situation 
in Figure 2.23 is 

tan .
x
hq <

Assume again that the block is on the point of tipping when it starts 
to slide. Resolving along the plane:

sin cosrW F Fa q+ = ,

and normal to the plane:

sin cos .F R Wq a+ =
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Again, taking moments about the leading edge: 

cos –4
cos .

2

Wh
xF

p a
q

 
 
 =

Putting tan θ = µ for the minimum force and solving for x, we get

21 (cos sin )
.2 1

[cos sin –1 sin ]

x
h

m a a
m

a a am

 
 + + =    + +    

In this equation, we have written the denominator in such a way that 
it is obvious that for µ < 1, the trigonometric factor in curly brackets 
is <1 because the denominator is greater than the numerator. Thus, 
on an inclined plane, we must attach the rope nearer the base; that 
is, we appear to have shown that the slope makes it more likely that 
the block will topple before sliding! How can we understand this?

There are two factors at work. On the one hand, the moment 
of the weight about the leading edge increases as the slope gets 
steeper acting as a stabilizing influence against tipping. On the other 
hand, the reaction on the ground is less because the component of 
the weight normal to the slope is the reduced. Thus, we require a 
larger applied force before the friction reaches its limiting value, 
making the block more prone to tipping. Only the calculation can 
tell us which of these are the dominant effect. The pyramid build-
ers will not have done any of these calculations (although they were 
pretty nifty with trigonometry) so we have not learnt much about 
the Ancient Egyptians; what we have learnt is something of how to 
construct and interrogate mathematical models.

2.20 LEVERS

Consider now how blocks might be levered into place. The 
 figure shows two arrangements: where is the fulcrum best placed? 
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Figure 2.24: Various ways of applying a lever

Figure 2.24 shows the forces on the lever: the applied force, F, the 
load, L, and the reaction from the fulcrum, R. Note how we have 
drawn the forces in the figure, namely normal to the lever. The 
forces will have components parallel to the lever, and these must 
balance, but they will not help lift the weight; thus, the equilibrium 
of the parallel components is irrelevant to the problem so we need 
not consider it. 

Since we are interested in the relationship between the applied 
force and the load we take moments about the fulcrum. In the first 
case, we get

( ) ,aL a b F= +

and therefore, 

.
aL

F a b= +

In the second case, we have

,aL bF=

so

.
aL

F b=

The applied force is clearly smaller in the first case, because the 
lever arm (the distance from the applied force to the fulcrum) is 
longer in this case. 
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2.21 STRESS AND STRAIN

Finally, we consider how the blocks may have been pulled up a 
ramp by ropes. Over a limited range of the force F applied to it, a 
rope obeys Hooke’s law:

F kx= ,

where x is the extension (the change in length) and k is a constant 
which will depend on the material and dimensions of the rope. Since 
we do not have a sample of Egyptian rope on which to evaluate k the 
equation in this form is not very useful. At a more fundamental level, 
the constant k is related to Young’s modulus Y of the material: 

YA
k l= .

This enables us to express the relation in a more fundamental way: 
for a rope of length l and cross-sectional area A 

.
F x

YA l=

The quantity F/A (force per unit area) is defined as the stress applied 
to the material, and x/l (extension divided by original length) is the 
strain, so Hooke’s law can be stated as stress ∝ strain, with Young’s 
modulus as the constant of proportionality. 

At large stresses, the material will deviate from this law: beyond 
the so-called elastic limit the material will not return to its original 
state when the stress is removed, and eventually of course the rope 
will break. 

Example: As an example, the ancient Egyptians invented the 
method of making ropes by twisting fibers together. The breaking 
stress of hemp which the pyramid builders would have plaited into 
ropes, might have been around 108 N m−2. To exert a force of say 
5 × 104 N on a 50,000 N block of stone would require rope with 
a cross-section of 5 × 104/108 = 5 × 10−4 m2, so about five ropes of 
6 mm radius.
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2.22 CHAPTER SUMMARY

●  Force is a vector quantity with magnitude and direction and 
point of application

●  Newton’s Third Law: Between any pair of agents, to every 
action, there is an equal and opposite reaction

●  A body is in static equilibrium if the net force and the net 
couple on it (about any fixed point) are zero; in particular 
the components of force must balance in every direction

●  The maximum static frictional force on a body is given by 
the coefficient of friction µ times the reaction force R and is 
independent of area

●  The center of gravity of a body is the point about which the 
moment of its weight is zero

●  To solve a problem in mechanics, we 

i)	 draw a diagram

ii)	 identify the agents and their interactions on the dia-
gram 

iii)	 think what answer you expect 

iv)	 express the problem mathematically by considering 
the forces on each agent 

v)	 express the solution analytically in symbols (if possible) 

vi)	 check the dimensions are correct 

vii)	 check the answer looks reasonable for special cases 

viii)	 express the solution graphically if possible 

ix)	 express the solution in words and decide if the solution 
meets our expectations; if not investigate why not 

x)	 substitute numerical values if required in consistent 
units (and check that the order of magnitude of the 
outcome is reasonable). 
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2.23 EXERCISES

1.	 Figure 2.25 shows (schematically) a bulldozer of mass M 
pushing a smaller block of mass m. Add the missing forces 
due to friction, labeling them F9 on the bulldozer and F10 on 
the block. 

	 What are the relations (greater than, equal to, or less than) 
between the following forces:

Figure 2.25: Bulldozer and block, question 1

a)	 F7 and F8

b)	 F9 and F8

c)	 F3, F4, and F2

d)	 F5 and F10?

 What is the relation between F2 and the mass of the 
 bulldozer?

 What is the acceleration of the system in terms of the 
masses of the bulldozer and block and the forces acting on 
the system?

2.	 The diagram (Figure 2.26) shows a model of a nutcracker 
consisting of two equal hinged levers of length l pushing 
on a spherical nut of radius a. The coefficient of friction 
between the nut and the levers is µ. A force F is applied at 
right angles at the end of each of the levers.
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Figure 2.26: A model nutcracker and nut (question 2)

 Draw a diagram of the forces acting on the nut and of the 
forces on the levers.

 If the contact between the nut and the lever is a distance x 
along the lever, by taking moments about the hinge show 
that the normal reaction on the nut is Fl/x.

 By considering the horizontal forces acting on the nut, show 
that the nut will start to slip when x = a/µ at which point the 
normal force on the nut is µlF/a. Deduce that, other things 
being equal, it is easier to crack a smaller nut.

3.	 Point weights W1 and W2 are separated by a distance d.

a)	 Show that their center of gravity is a distance

W d
W W

2

1 2+

 from W1 and find its distance from W2. 

Figure 2.27: An L-shaped figure (question 3)
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b)	 Find the center of gravity of the uniform L-shaped 
figure shown in Figure 2.27 if a = b = 10 cm and  
h = w = 2 cm.

c)	 Describe the orientation of the object if it is hung from 
the corner at O.

4.	 A typical femur has a Young’s modulus of 17,900 N mm−2, 
a length of 500 mm and a cross-sectional area of 330 mm2. 
How much shorter is your femur when you are you stand-
ing up? 

5.	 Figure 2.2 shows a horizontal rod fixed at A but free to 
expand to the right. The spring constant is 10 Nm−1 (i.e., a 
force of 10 N produces a contraction of 1 m) and the coef-
ficient of expansion of the rod (i.e., the fractional increase 
in length per degree) is 2 × 10−5 m per degree. The length 
of the rod is 1 m supported on a knife edge at its center. 
A mass of 0.1 kg is hung from the right end. 

a)	 The system is initially in equilibrium with the rod hori-
zontal. Show that the force exerted on the rod by the 
spring is 0.1g. In which direction does it act?

b)	 With the position of the knife-edge fixed with respect to 
A, the rod is now heated by 1°C. Neglecting the mass of 
the rod, through what angle does it move?

 Is this the basis of a useful thermometer?

Figure 2.28: Question 5
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Figure 2.29: Question 6

 Figure 2.29 shows a proposed perpetual motion machine. It 
is argued that the force on the two balls on the left if greater 
than the force on the ball on the right, so the machine will 
turn forever. What is the fallacy?
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CHAPTER 3
Kinematics

Problem 1: Motion in one dimension

“According to the court report he was traveling at 60 mph. Had 
he been obeying the 30 mph speed limit he would have stopped in 
half the distance.” What is wrong? What should it say? 

3.1 CONSTANT SPEED

Let us start with one of the iconic pictures of kinematics first 
proposed by the 14th century French philosopher Nicole Oresme. 
This is a graph of the speed of a body moving at constant speed 
against time (Figure 3.1). Since 

Figure 3.1: Constant speed in one-dimension

by definition, v  = distance/time = x/t, we have x = vt: that is, the 
distance traveled is the area under the graph. Alternatively, we plot 
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distance against time. The speed is then the slope of the graph. 
This graphical representation resolved a long-standing puzzle. The 
puzzle was this: what does it mean to divide unlike quantities, that 
is, quantities with different units? We certainly cannot add or sub-
tract them; dividing like quantities is valid, of course, since it gives 
a pure number. Oresme’s graphs elucidate the meaning of speed as 
distance divided by time.

Suppose we transform to a frame of reference x′ moving with 
constant speed u in the positive x-direction. Then the x coordinate 
transforms as

 ′ = − .x x ut  (3.1)

So

 .
x x

v u v ut t −′ = = −
′

=  (3.2)

The transformation law (3.1) between coordinates is called a Gali-
lean transformation and Equation (3.2) is the addition law for veloci-
ties in one dimension. 

3.2 CONSTANT ACCELERATION

If a body moves under constant acceleration, we can draw simi-
lar graphs to those for constant speed. Then from the area under 
the graph of acceleration against time, we have v = at. Similarly, the 
acceleration is the slope of the graph of v against t. We can go one 
step further: the distance traveled is the area under the v–t graph so, 
assuming the body starts from rest, x = ½ at2 (the area of a triangle 
is ½ × base × height). If the body starts with a speed u, there is and 
additional area ut to add on so 

 = + 21
.2x ut at  (3.3)
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Figure 3.2: Constant acceleration

For a body starting from rest, we have 

= =
2

21
,2 2

v
x at a

or 

2 2 ,v ax=

which gives us a relation between speed and distance rather than 
speed and time. 

You might guess that starting from a speed u, this equation 
becomes 

( )2 2 .v u ax− =

It is instructive to see why this must be wrong. If we reverse the sign 
of acceleration a (so the body is slowing down from its initial speed), 
then the right-hand side changes sign, but the left-hand side (being 
a square) does not. Therefore, this cannot be a valid formula. 

We can obtain the correct result starting from (3.3) and putting 
t = (v – u)/a; after some algebra, we arrive at

 2 2 2 .v u ax= +  (3.4)

But it is more instructive to see how this arises from the Galilean 
transformation. Let the motion be viewed from a frame moving 
at constant speed u along the positive x axis. Then, in this frame, 

;x x ut′ = −  and v′ = v − u. Thus
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( )2 2
2 2 2 ,

auv
v ax a x ut ax a= = +′ = +′

or

2 2 2 ,v uv ax− = ′

and so

( )2 2 2 2 2 ,v u u v u ax′− − = − ′=

which is the result (in the primed frame) we were seeking to prove. 

Finally, the most general approach is to use calculus. For a body 
undergoing constant acceleration a from an initial speed u, we have

 =
2

2 .
d x

a
dt

 (3.5)

Integrating gives

,
dx

u atdt = +

where u is a constant or 

 .v u at= +  (3.6)

Thus, u is the speed at t = 0. Integrating again, we get

 
21
,2x ut at= +  (3.7)

assuming that the body starts from x = 0 at t = 0. Given the accelera-
tion, the motion of the body is completely determined once we spec-
ify the initial speed and position. Thus, Equations (3.6) and (3.7) 
contain all the information about the motion, and we have seen that 
we can manipulate them to obtain the speed–distance relation of 
Equation (3.4). However, it is sometimes useful to know that we can 
obtain (3.4) directly by integration in the following way. To obtain a 

Newtonian Mechanics_2E_Ch_03_1pp.indd   58Newtonian Mechanics_2E_Ch_03_1pp.indd   58 3/4/2021   2:50:47 PM3/4/2021   2:50:47 PM



Kinematics  •  59

speed–distance relation, we convert (3.5) from distance and time to 
distance and speed, we have 

2

2 ,
d x dv dv ds dv

a vdt ds dt dsdt
 = = = = 
 

where the third equality is obtained from the chain rule of calculus. 
If a is a constant, this integrates immediately to (3.4). 

The advantage of this method is that it can be applied whatever 
the law of motion. So, for example, if the need arose, we could use 
this method to solve for the motion of a body with a constant rate of 
change of acceleration. 

3.3  A BODY PROJECTED VERTICALLY  
UNDER GRAVITY

Let us take as an example a body projected vertically from height 
y = 0 with speed v subject to a deceleration –g. We expect the body 
to reach a maximum height at which point its speed will be zero. It 
will then return to the origin with acceleration g. The two parts of 
the motion are symmetrical – the speed on the way down is the same 
as that on the way up at corresponding points. If this were not the 
case, we could extract the additional energy on the way up or down 
and create a perpetual motion machine. So the interesting issues are 
the maximum height and the time taken. The motion is governed by

 21
– 2y vt gt=  (3.8)

on the way up. You might think that this equation needs to be modi-
fied for the downward leg, since v is now negative. In fact, the sym-
metry of the two parts ensures that the same equation holds for each 
leg. To be convincing, we shall show this explicitly in a moment. 
First let us calculate the maximum height. 
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The simplest approach is to complete the square:

 
2 21

.2 2
v v

y g t g g
 = − − +    (3.9)

The maximum occurs when the negative term is as small as possible, 

namely zero. So 
2

2max
v

y h g= =  at .
v

t g=  Of course, the same result 

can be obtained by differentiation to find the maximum. This result 
is valid whatever the downward motion, so we can use it to set up the 
equation for the fall. 

The body starts at 
2

2
v

y g=  at time v
t g=  with speed 0. The 

acceleration is still in the −y direction, so is still −g. Thus, using 
2

0
1

,2y y ut at= + +  we have

22 1
0 ,2 2

v v
y g tg g

 = + − − 
 

which is the same as (3.8). Rearranging, we get, for t > v/g, 

21
2 ,y vt gt= −

which is, naturally, the same as (3.8). So we do not have to consider 
the up and down motion separately. 

Problem 1: We can now tackle the problem. It is often useful 
to begin a problem by creating a visual representation, in this case a 
graph. Since the problem is dealing with speed and distance, we use 
these as axes. 

Figure 3.3: Stopping distance, problem 1
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A convenient unit here is to measure speed in units of 30 mph. In 
the absence of any other information, we assume constant decelera-
tion. Then stopping distance s2 from a speed of 2 units with decel-
eration a is given by

24 2 .as=

The distance s1 in stopping from 1 speed unit is given by 

11 ,2as=

from which it is clear that 1

2

1
4

s
s =  and not 

1
.2  We see that the stop-

ping distance increases as the square of the speed under constant 
deceleration. One might argue that constant dissipation of energy 
would be a better assumption. We shall return to this once we have 
formally introduced the concept of energy. 

Problem 2 (Motion in two dimensions):

One of the first military applications of mathematics (certainly 
one of the first for financial gain) was Galileo’s application of projec-
tile motion to aiming a canon. Our problem in the following sections 
is a slight variation on the theme: Given the height of a castle wall 
what is the angle of release of a projectile from the top of the wall 
that gives it maximum range? 

3.4 MOTION IN TWO DIMENSIONS

Another of Galileo’s many achievements was the recognition that 
the orthogonal components of motion in two dimensions are inde-
pendent: we can treat vertical and horizontal motion separately and 
combine the results. This is an empirical result; in relativity theory, it 
is not true. Thus, various combinations arise: constant speed in both 
directions; constant speed in one and constant acceleration in the 
other; constant acceleration in both directions. We treat each in turn.
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3.5 ADDITION OF VELOCITIES

Since the orthogonal components of velocity are independent, 
we can add them separately. Thus, if 

1 2u u= +i ju ,

and 

1 2v v= +i jv ,

then

( ) ( )1 1 2 2u v u v= + = + + +i jw u v .

This is equivalent to the parallelogram law, as shown in Figure 3.4. 

Figure 3.4: The addition of two vectors by components is  
equivalent to the parallelogram law

Example: A missile appears to be approaching you from 30° north 
of west. If you are flying north at the same speed as the missile, what 
is the true direction of travel of the missile?

Figure 3.5: Example triangle of velocities of relative motion

From the isosceles triangle in the figure, the true direction is 30° 
south of east. 
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3.6 PROJECTILE MOTION

In this section, we add motion at constant speed in the horizon-
tal direction to motion at constant acceleration vertically downward. 
This describes, for example, the motion of a projectile in the absence 
of air resistance, which is what we need to solve problem 2. Let’s 
start with some simpler examples.

Example 1: A projectile launched from a tower

Figure 3.6: Launch of a projectile horizontally from a tower

Suppose we launch a projectile horizontally with speed v from a 
height h. Where does the projectile land? This problem nicely illus-
trates the independence of the horizontal and vertical motion. We 
begin by sketching a diagram and deciding (carefully) the direction 
of our axes and the origin. Suppose y is measured vertically upward 
and x horizontally with the origin at the top of the tower. For the 
horizontal motion at constant speed, we have

 
= ,x vt

 
(3.10)

and for the vertical motion at constant acceleration from rest

 2= – .y gt  (3.11)
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The projectile hits the ground when – ,y h=  hence when 2– –h gt=  

or .
h

t g=  Thus, the range is

.
h

R v g=

First let us check that this is dimensionally correct: 

[ ]
1
21

2 ,
L

R LT L
LT

−
−

 = = 
 

 which is right. And obviously, the range 

increases with increasing v and h, and we would also expect the pro-
jectile to go further if the acceleration due to gravity was weaker. 
Note that we could not have guessed the result by dimensional anal-
ysis alone, because there are two length scales in the problem: h and 

2

.
v
g

 The range is the geometric mean of these:

1
2 2

.
v

R hg
 

=  
 

Finally, we derive the form of the trajectory. Equations (3.10) and 
(3.11) give the curve in parametric form (with t as the parameter). 
We eliminate t to get the coordinate form: 

2
2 ,

g
y x

v
= −

which is an inverted parabola through the origin. 

Example 2: The range of a projectile on a flat surface

Consider next a projectile launched from the point x = 0, y = 0 
at an angle θ to the vertical with speed v. First think about what we 
expect. The projectile reaches a highest point and falls back again. In 
the absence of air resistance, the motion about the highest point is 
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symmetrical. We can see this in several ways. Sending the projectile 
in the negative x-direction must be equivalent to reversing the initial 
trajectory and shifting the origin: so the second half of one trajec-
tory must be the same as the first half of the other. Alternatively, we 
know that the horizontal and vertical motions are independent. We 
can eliminate the horizontal motion by viewing the trajectory from a 
moving frame and we already know that the vertical motion alone is 
symmetrical about the highest point. 

We sketch the expected motion:

Figure 3.7: Range of a projectile on a flat surface

Now we know what to expect, we can proceed to analyses the motion 
mathematically. Considering the horizontal motion at constant speed 
vsinθ in time t:

 sin .x v tq=  (3.12)

For the vertical motion, we have 

 21
( cos ) .2y v t gtq= −  (3.13)

Considering only the vertical motion, we see that y = 0 at t = 0 and 

at 

1
2

range
2 cos

.
v

t t g
q = =  

 
 The former is of course the time of launch 

and the latter is the time at which the projectile returns to its launch 
height. We can find the maximum height by completing the square 
in (3.13):

 q q = + 
 

2 2
21

– – cos cos .2 2
v v

y g t g g  (3.14)
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So y is a maximum when the term in the bracket on the right of 

(3.14) vanishes, hence at max cos .
v

t t g q= =  At this time, the height of 

the projectile, from (3.14), is 2 2cos / 2 .v gq  

Alternatively, we can use calculus. Differentiating y in (3.13) 
with respect to t, we get

 q= −cos .
dy

v gtdt  (3.15)

from which we obtain dy/dt = 0 at

max cos
v

t t g q.= =

Note that physically dy/dt = 0 means that the vertical speed is zero 
at the maximum height, which is correct. It also suggests yet another 
approach: we can use the constant acceleration formula for speed, 
v = u + at, to obtain (3.15) directly. This gives us tmax and hence  
trange = 2 tmax by symmetry.

To calculate the range, we put t = trange in (3.12) to get 

2 2

range range
2

sin cos sin sin 2
v v

x v t g gq q q q.= = =

At this point, we should check the dimensions of the result: [v2]/
[g] has dimensions L2 T−2/L T−2 = L, which is correct. We could 
guess that the range is of the form 2 /v g, because this is here the 
only  quantity with the dimensions of length that enters the prob-
lem; but the dimensionless factor, sin2θ, could be obtained only by 
 calculation. 

This result enables us to calculate the angle of projection to 
obtain the maximum range: the maximum value of sin2θ is 1 when 
θ = π/4 or 45o. Thus, 2 /v g is the maximum range. 

Finally, we look at the geometrical form of the trajectory. Equa-
tions (3.12) and (3.13) are parametric equations for the trajectory. 
We can obtain the direct form by eliminating the parameter t:
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 q q
 = −  
 

2
21

cot / in .2 s
x

y x g v  (3.16)

This is the equation of a parabola. It is perhaps clearer if we 
complete the square:

( )
2 2

2cos cos ,2 sin 2
g x v v

y v g gq qq
 = − − + 
 

which once more gives us the maximum height, ymax = (v2 / 2g)cos2θ 
at xmax = ( 2 /v g )sinθ cosθ, from which we can deduce the range 
xrange = 2 xmax. 

Example 3: The range of a projectile on a slope 

We consider next the length of a ski jump assuming a given angle 
of launch θ and a given constant slope of the jump α (Figure 3.8). 

What do we expect? Initially, the projectile cannot “know” the slope 
of the surface: it will move exactly as if it were launched on a hori-
zontal plane. Only when the projectile reaches y = 0 does it become 
apparent that the surface is not there. So the motion is a continua-
tion of the parabola until it hits the slope. This turns the problem 
into one of the intersection of two curves, the trajectory and the 
slope. We begin by sketching this in Figure 3.8.

Figure 3.8: Range on a slope

Next we find the curves. We already know the equation of the trajec-
tory (Equation (3.16))

2
21

cot / .2 sin
x

y x g vq q
 = −   
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The equation of the slope is 

tany x a= − .

The two intersect when

a q q
 − = −  
 

2
21

tan cot /2 sin .
x

x x g v

Thus, the intersection point is either x = 0 (which is obviously cor-
rect) or 

2
2

range
2

(tan cot )sin
v

x x g a q q.= = +

As a check, if α = 0, we regain our previous result for xrange. Note that 
this is not the length of the jump, which is measured down the slope: 
the range down the slope is R = xrange /tanα. 

But now the launch angle for maximum range is no longer 45o. 
Again, before we do the calculation, what do we expect? In the 
extreme case that the slope is almost vertical, we can see that the 
range will be larger if the launch angle is shallower giving a higher 
horizontal component. 

To find the actual angle, we have to differentiate and set the 
result to zero:

2
2 2(2(tan cot )sin cos – sin cosec ) 0.rangedx v

d g a q q q qq q= + =

Multiplying out terms in the bracket and using the double angle 
formulae gives

2tan sin 2 2cos 1 tan sin 2 cos2 0,a q q a q q+ − = + =

from which tan 2 cotq a= −  or tan 2 tan .2
pq a = + 

 
 Therefore, the 

maximum range occurs for 

.2 4
a pq = +
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You might guess this from the case where α = π/2, for which the 
launch should be horizontal (so we have to add α/2 = π/4 to π/4 to 
get θ = π/2), but we need the calculation to verify this. 

Solution of Problem 2:

We want to find the angle of launch for the maximum range from 
a tower. This is a much harder problem than those we have tackled 
so far. It is not the same as the range obtained at 45° from the top of 
the tower nor is it obtained by launching at a 45° angle from a point 
behind the tower. A slightly shallower launch from further behind 
the tower that passes through the top of the tower might land at 
a larger distance from the tower, even though it is not a maximum 
range from the point of launch. We shall go through the calculation 
to the point where we can show that the angle for the maximum 
range is somewhat <45° to the vertical. 

We will use the same axes as in Example 2 with the origin of 
coordinates at the top of the tower and y measured vertically 
upward. Then we can write down the horizontal and vertical motion 
as before:

21
sin ; cos .2x vt y vt gtq q= = −

Figure 3.9: Range from a tower

The range is given by the value of x = R when y = −H. Let the time 
when this occurs be t = T. Then 

 q= sin ,R vT  (3.17)
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and

 
21

– cos – .2H vT gTq=
 

(3.18)

We have taken some care to distinguish the current coordinates (x, 
y, t) from the values associated with the range (R, −H, T) to be clear 
about what is constant and what is variable. The height H is fixed, 
so (3.18) gives us the time T as a function of the launch angle θ. 
Equation (3.17) then gives the range as a function of θ, which is the 
quantity we are seeking to maximize. We could try to eliminate T 
and differentiate R to find the maximum. Often, it is easier to dif-
ferentiate first and eliminate dT/dθ and T because the equations will 
be linear in dT/dθ. Thus, from (3.17)

0 cos sin ,
dR dT

vT vd dq qq q= = +

so 

cot .
dT

Td qq = −

Also from (3.18):

0 sin cos .
dH dT dT

vT v gTd d dq qq q q= − = − + −

Eliminating ,
dT
dq  we obtain a simple equation for T as a function of θ:

 sec .
v

T g q=  (3.19)

Now (3.17) will give the range in terms of θ. But we do not yet 
know θ. However, using (3.19) in (3.18) will give us θ: substituting 
for T gives a simple equation for sinθ that can be solved to yield:

 
q

 
 

= < 
 +
 

1
2

2

1 1 1
cos .

2 21
gH
v

 
(3.20)
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Thus, θ > 45°. This method requires a lot less algebra than solving 
for T(θ) and setting dR/dθ = 0 explicitly. 

We can check that θ → 45° as H → 0, which recovers our pre-
vious result. Furthermore, we can see that the height of the tower 
starts to make a significant difference only if H > v2/g or if v < √gH. 
This suggests a different problem: how does the range vary with 
height for a given angle – in other words, how much range advantage 
do you gain by releasing a projectile from a height? 

Let us do this in the case that θ is adjusted for the maximum 
range at each height. We can avoid solving (3.18) again because we 
already know that for this case, T is given by (3.19); also θ is given by 
(3.20). Thus, the expression (3.17) for the range with these substitu-
tions simplifies to 

 

1
2 2

2
2

1 .
gHv

R g v
 = +    

(3.21)

So we find also that the height makes a significant difference to the 
range only if H > v2/g. If H >> v2/g, we can neglect the 1 in the 

square root, whence 

1
2 2

,
v

R Hg
 

=  
 

 the geometric mean of the two 

length scales v2/g and H. In this case, cos 0q ∼  or θ ∼ π/2, and we 
are back to the case of an approximately horizontal launch. In other 
words, once the tower is high enough to make a big difference to the 
range, the best angle of launch is not very different from horizontal. 

Another way of looking at (3.21) is to write it in terms of the 
parameter v2/gH = λ (say):

 
1
22

1 .
R
H l l

 = +    (3.22)

Thus, R is smaller or larger than H by a factor that depends on λ. 
We can sketch this dependence: for small λ, R/H increases approxi-
mately as λ1/2 changing to an approximately linear dependence for 
large values. Figure 3.10 shows this dependence. 
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Figure 3.10: A plot of x (1+2/x)1/2 against x (Equation (3.22))  
showing the change from y ∼ x1/2 to y ∼ x

3.7 APPROXIMATE SOLUTIONS

Suppose we could not solve problem 2 exactly. We should then 
try to identify a small parameter in terms of which we can find an 
approximate solution. This is an important technique, so let us illus-
trate it in this case (even though we know an exact solution). Return 
to Equations (3.17) and (3.18), our first task is to identify a small 
parameter. If something is going to be small, then it has to be dimen-
sionless (all dimensional quantities are “large” if you measure them 
in “small” units). This suggests that in order to find a small param-
eter, we should make these equations dimensionless. So we define a 
new time variable and a new range:

,
Tg
vt =

.
R
Hr =

Notice the choice of notation that reminds us of the origin of 
each of the variables as a time and a length (ideally, we would have 
used t and r but t is already in use, so we use τ and a matching Greek 
ρ; it is never a waste of time to think about what to call a variable, 
since it often saves the effort of having to recall its physical signifi-
cance). In terms of these dimensionless variables, Equations (3.17) 
and (3.18) become 
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r t q=

2

sin ,
v
gH

 
(3.23)

 
t t q− − =

2 2
2 cos 1 0.2

v v
gH gH  

(3.24)

Thus, the dimensionless parameter is identified as 
2

.
v
gHl =  Solving 

(3.24) for τ gives us 
1

2 22
cos (cos ) .t q q l= + +

There are two following limits: 

(i) if λ → 0, then 
1
22t l

 →   
 and then, from (3.23), 

2 sin .r l q→  Thus, the maximum range is ρ = √2λ at θ = π/2 and  

(ii) if λ → ∞, 
1
2

2
2

cos cos 1 2cos 1 / ( cos )
cos

t q q q l q
l q

 ∼ + + ∼ +  
 and 

2 sin cos tan .r l q q q∼ +  Since λ → ∞, we can ignore tanθ so the 
maximum value of ρ is ρ ~ λ. 

This agrees with (3.22) in the two limits λ → 0 and λ → ∞.

3.8 AIR RESISTANCE

Now suppose we add air resistance to a projectile problem. Will 
the range be larger because the time of flight is longer? It seems 
unlikely. Is the time of flight longer in fact, since the maximum 
height will be less, so the downward journey might take less time 
rather than more? We seem to need a calculation to solve the prob-
lem. However, several issues appear to present themselves. First, 
with air resistance we cannot separate out the horizontal and the 
vertical motions, because the component of the resistance in both 
the horizontal and the vertical directions will depend on the overall 
speed. Thus, second, it seems that we have to make a model of the 
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forces on the system, and that it is therefore not simply a problem 
that can be solved in kinematics. On the other hand, whether the 
range shrinks in the presence of resistance should not really depend 
on a model for the resistance, but simply on its decelerating effect. 

So here is a trick. Suppose we look at the motion from a frame of 
reference moving with the horizontal motion of the projective with-
out air resistance. In this frame of reference, there is only a vertical 
motion: the projectile appears to go straight up and come straight 
down. If we now look at the motion with resistance from this frame, 
the projectile must always appear to be moving backward. Thus, the 
range must be shorter than without resistance. 

3.9 ADDITION OF ACCELERATIONS

In principle, we can consider the case of constant acceleration in 
both the horizontal and the vertical directions. An example would be 
a particle accelerated in a horizontal electric field while falling under 
gravity. Let us calculate the angle of projection that now gives the 
maximum range. One might argue that increasing the angle of projec-
tion (closer to vertical) will increase the time of flight allowing more 
time for the horizontal acceleration to act; alternatively, we can afford 
to decrease the angle to give a greater initial horizontal component 
because the extra horizontal acceleration will more than take up the 
slack. So in this case, only the calculation will tell us the correct answer.

For the horizontal motion, we now have 

 21
sin ,2x ut atq= +  (3.25)

and for the vertical motion, as usual

 q= − 21
cos ,2y ut gt  (3.26)

Putting y = 0, we get 

range 2 cos
u

t g q= ,
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and hence, 

2 2
2

22 cos sin 2 cos .
u u a

R g g
q q q= +

To get the maximum, we put 0
dR
dq = , to get

2 2

2
2 2

0 cos2 sin 2 ,
u u a
g g

q q= −

or

11
tan .2

g
aq −=

First we check that this agrees with the result we already have for 
constant speed in the x-direction: if a → 0, we recover θ = π/4. And 
we find that for an a ≠ 0, the acceleration in the x-direction leads to 

a reduction in the angle of launch 1(tan / 2).
g
a p− <

We can solve for the shape of the trajectory in space by eliminat-

ing t from (3.25) and (3.26). If 
2

sin
u

t a q>  and 
2

cos ,
u

t g q>  we can 

approximate the trajectory as y = −x. 

3.10 OTHER FORMS OF ACCELERATION

We shall see in Section 5.5 that a body supplied with a constant 

power has an acceleration 
k

a v= ′  where k is a constant. We can solve 

the kinematics of this situation by putting .
dv

a v ds=  From

= ′
dv k

v ds v
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separating the variables and integrating gives

 
31

,3 v ks=  (3.27)

assuming the body starts from rest at s = 0. Putting 
ds

v dt=  and inte-
grating again, we find

3
2s t∝

again assuming that s = 0 at t = 0. This would be an appropriate 
approximate model for drag racers. 

3.11 CHAPTER SUMMARY

●  Kinematics deals with the description of the motion of 
bodies without regard to the forces required to sustain such 
motion. 

●  For motion in one dimension 

i)  at constant speed: s = vt is the area under a graph 
of velocity–time graph, and v = s/t is the slope of a 
 distance–time graph.

ii)  at constant acceleration, a = v/t, s = ut + ½ at2 is the 
area under a velocity–time graph, from which v2 =  
u2 + 2as. 

●  For motion in two dimensions, horizontal and vertical 
 motions are independent (in the absence of air resistance); 
thus velocities add as vectors and accelerations add as 
 vectors. 

●  General formulae for distance and speed can be deduced 
from a = d2x/dt2 and a = vdv/dx.

●  Models should be expressed in dimensionless variables to 
identify small parameters.
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3.12 EXERCISES

1.	 A sprint race can be considered to consist of a phase of 
constant acceleration a lasting for T seconds followed by a 
run at constant speed v to the finish line. Write down the 
relationship for distance x in terms of a, T and total time t, 
and use the data below to find a, v, and T. 
Record for 60 m sprint = 6.39 s
Record for 100 m sprint = 9.58 s 

2.	 Usain Bolt of Jamaica won the Olympic gold medal in the 
men’s 100 m in a world record of 9.69 s. He then broke 
that record to win the World Championship final in Berlin 
in 9.58 s. In the Olympics, he slowed up in the final 5 m. 
Assuming that otherwise the two records would have been 
the same and that he ran at a constant speed except for that 
final 5 m, what was his deceleration (assumed constant)? 
(the more accurate model of question 1 would give a better 
estimate) 

3.	 A greyhound track has two straight sides joined by semi-
circular arcs. A (mechanical) hare moves at constant speed 
u round the track. The dogs are released when the hare is 
ahead of them by a distance d. If the dogs were to run with 
constant  acceleration, a, how long would it take them to 
catch the hare? Guessing some reasonable values, estimate 
this time. 

4.	 The acceleration due to gravity on the Moon is 1/6th of that 
on the Earth. By what factor does this change the maximum 
range of a projectile launched with a given speed?

5.	 A package is dropped from a plane moving with speed v 
at height h. Neglecting air resistance, how far from the 
intended landing spot should the package be dropped?

6.	 The musician Percy Grainger is said to have claimed that 
he could hit a tennis ball over a house from the front 
 garden and run round to catch it in the back garden. Is 
this  feasible?
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CHAPTER 4
EnErgy

For our problem for this chapter, we return to the pyramid of 
Giza:

Problem:

We can assume that the Great Pyramid of Giza was built dur-
ing the reign of the pharaoh Kufu which lasted for 23 years. It has a 
square base of side 230.4 m and an original height of 146.7 m. Can 
we estimate how many laborers were required? 

To address this problem, we need to introduce the concepts of 
work and potential energy. 

4.1 WORK

It is important to realize that in physics today, we have no knowl-
edge of what energy is.

Richard Feynman was a Nobel prize winning physicist with a 
great interest in physics education. The quotation above is taken 
from his famous set of lectures. The fact that “we have no knowledge 
of what energy is” is unfortunate, because it is this property of physi-
cal agents from which their interactions follow. I would go so far as 
to say that the fundamental laws of physics are specified in terms of 
the various forms of energy and the attempts to unify physics can 
be described as attempts to specify a single form of energy as the 
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theory of everything.1 This is the reason that we choose to start from 
a hypothesis for the mathematical formulation of energy, rather than 
the more usual route through Newton’s laws of motion. In fact, we 
shall derive Newton’s laws in the next chapter. 

In fact, most science textbooks define energy as: “energy is the 
capacity to do work,” which is indeed what Feynman goes on to do. 
This does not tell us what energy is, but it does tell us how we can use 
the concept. Strictly speaking, the capacity to do work defines free 
energy, but if we confine ourselves to mechanical systems, where 
agents do not have internal random motions, the concepts of energy 
and free energy amount to the same thing. 

If we are going to make use of this definition of energy, we need 
a definition of work. If a constant force F moves a body through a 
distance s in a straight line, we define the work done as

work = force × distance,

or

 .FsΩ=  (4.1)

If F is measured in Newtons and s in meters, then W is given in 
Joules (we use W as the symbol for work so as not to cause confusion 
with W for weight). 

4.2 KINETIC ENERGY AND WORK

Next we can relate the work done on a body to the gain in its 
energy of motion or its kinetic energy. 

Consider the free fall of a weight under gravity from rest through 
a height h. From the formulae for constant acceleration, we have

   2 2 .v gh=  (4.2)

1  The Standard Model of particle physics, which encompasses all known physics 
(except gravity), describes the world in terms of an expression for the sum of the 
energies of all the fundamental particles together with their energies of interaction.
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To relate this to work, we need the force on the body. On a static 
body, we know the force of gravity is the weight W of the body. Thus, 
as we release the body from rest, the force on the body is W. 

We also know that we can describe the motion from any frame of 
reference moving with constant velocity. Therefore, there is nothing 
special about the initial position: the body moving at speed v seen 
from the initial frame will appear momentarily at rest in a frame fall-
ing with speed v. Therefore, the force on the body is its weight W at 
all times during its descent. 

Thus, the work done on the body in falling a distance h is W = 
Wh. According to our definition, the energy acquired by the body 
must be related to W. Since we cannot have a theory without assum-
ing something, let us assume that the two are directly proportional:

2.vΩ∝

The validity of the theory this leads to will have to be tested against 
experiment. With hindsight, we choose not to investigate the con-
sequences of assuming W to be a more general function of v2. It 
may seem rather odd to define mass in this way; as we said above, 
more conventionally, it is defined implicitly through Newton’s laws 
of motion and instrumentally via the momentum balance. Our 
approach here reflects the contemporary approach to fundamental 
theories that start from an expression for the relevant type of energy.

For the constant of proportionality, we choose m/2, so

 21
.2Wh mvΩ= =  (4.3)

Thus, the energy of motion, or kinetic energy, is

 21
.2KE mv=  (4.4)

In fact, there are some fundamental constraints on the choice of the 
expression for EK in Equation (4.4). The expression must be inde-
pendent of the origin of time, so it must be unchanged if we make 
the transformation of variables ,t t c→ ′ +  where c is a constant. 
Thus, we do not expect to see an explicit reference to time t in a 
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fundamental expression for energy. So the constant of proportional-
ity cannot explicitly depend on time. Furthermore, we expect the 
fundamental laws to be reversible, hence not to specify an arrow of 
time, since our observation of the world suggests that irreversibility 
is associated with dissipation, which is not a property of individual 
particles. Thus, EK must remain unchanged if we let t → −t, and 
therefore, it can contain only even powers of v. 

4.3 DEFINITION OF MASS

From (4.3) and (4.2), we have

;Wh mgh=

thus, the parameter m is defined as

.
W

m g=

We call this the mass of the body. 

Notice that we have not defined what mass is: the parameter m 
will have to be identified with a measurable quantity by compari-
son with experiment. Clearly, we want the energy to be an extensive 
quantity (so doubling the size of the body doubles the energy, other 
things being equal). So m must account for the amount of material 
in the body.

The definition of mass was troublesome to Newton, who defined 
it as the quantity of matter, a definition that one might consider to 
be not entirely transparent. In his influential exegesis of Newtonian 
mechanics, Ernst Mach defined mass as a measureable quantity in the 
context of a ballistic balance, essentially by measuring the quantity mv.2 

 Here we have defined mass as the parameter m = W/g: the mass of a 
body is determined by weighing it and dividing by the local accelera-
tion due to gravity, which is the “everyday” definition. Since mass is 
a property of a body (as it turns out) and not of the environment, the 

2  Ernst Mach, The Science of Mechanics.
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value of m for a body is fixed once for all independently of the actual 
local value of the gravitational field (including zero). Of course, this 
is not an operational definition of mass in the absence of gravity nor 
does it strictly place mass as a logically primitive concept. For this, 
we should return to Mach and the momentum balance. 

We cannot prove any of these definitions: we simply have to 
determine if they are consistent with experiment and observation. 
We do indeed find consistency provided that we are dealing with 
bodies moving at speeds much less than that of light. That suggests 
that it is unlikely that alternatives to Newtonian mechanics would be 
successful, although such attempts exist. For higher speeds, relativ-
ity theory provides a different starting point. 

With our definition of mass, we can now introduce the standard 
SI units. Alongside the meter for distance and the second for time, 
we have the kilogram for mass: 

if g is the local acceleration of gravity, a kilogram is the mass of 
a body that weighs g N.

We should emphasize again that this is not how SI units are actu-
ally defined. Rather the kilogram used to be taken as a fundamen-
tal quantity, relating to a platinum object in Paris, and force (the 
 Newton) taken as a derived unit. As of May 2019, the kilogram is 
defined by taking the fixed numerical value of the Planck constant, 
h, to be 6.62607015 × 10−34 when expressed in the unit J s, which is 
equal to kg m2 s−1, where the meter and the second are defined in 
terms of the speed of light, c, and the hyperfine transition frequency 
of the caesium-133 atom, ∆ν, respectively. Nevertheless, in practice, 
we compare masses by weighing, just as we are doing here.

4.4 WORK AND POTENTIAL ENERGY

For a constant force F acting on an agent over a distance s, we 
defined a quantity Fs, as the magnitude of the work done on the 
agent by the external force. If the force opposes the motion we want 
this to represent a gain in energy of the body. For example, if we 
raise a body in a gravitational field, in which case, the weight acts in 
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the opposite direction to the motion, we want to say that the body 
has acquired energy, so we define the work done on the body as –Fs. 
If the force acts in the x-direction and its magnitude is a function of 
distance, this becomes 

( )
0

.
s
F x dxΩ= −∫

In general, the force can vary in both magnitude and direction. Sup-
pose that it acts along a curve x = x(t); then the work done is the line 
integral

 0 0
– ( ( )). .

t td
t dt dtdtΩ = =∫ ∫

x
F x Fv  (4.5)

Consider now pulling a block very slowly up a slope at angle a, 
so the speed of the block remains infinitesimally small. Then, the 
forces on the block must almost balance, so F = Wsina. Moving the 
block up, the slope of a distance s requires work Wsina × s = Wh, 
where h is the vertical distance raised. 

Figure 4.1: Block on an inclined plane

This leads to the interesting observation that the work done is the 
same whether the block has been pulled up a frictionless slope or 
raised vertically. The observation can be generalized: 

A force is called conservative if the integral in (4.5) is indepen-
dent of the path.

If F is a conservative force, then for a given initial point, the 
 integral in (4.5) defines a function ( )PE xW =  of spatial position, 
x(s). We call such a function the potential energy of the system (with 
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respect to the fixed reference point). Usually, the reference point is 
taken as spatial infinity or as the origin of coordinates 

To summarize, the work done, W, is always given by (4.5) but is 
not in general a function of position because it depends on the path; 
in the case of a conservative force, Equation (4.5) defines a function 
of position equal to the work done along any path; this is the poten-
tial energy that we write as ( ).PE x

4.5 CONSERVATIVE FORCES

Equation (4.5) gives us a relation between the force and the 
work done when the force acts along a path. But it is not possible to 
use it directly to test if a force is conservative: we cannot evaluate it 
along every possible path. So we should like to find an instrumental 
criterion (i.e., one we can apply in practice).

If the force is conservative, so the integral is independent of the 
path, we can invert the relation (4.5) to get the force in terms of the 
potential energy. In the force acts in a constant direction, we have

( ) ( )
0

– ,
x

PE x F x dx′ ′= ∫
from which 

.PdE
F dx= −

The force is the gradient of the potential energy.

In three dimensions, 

( ) ( )
0

–
x

PE d′ ′= ∫x F x x

implies that 

 
– ,– , ,P P P

P
E E E

Ex y z
∂ ∂ ∂ = ≡ ∇ ∂ ∂ ∂ 

F
 

(4.6)
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where the vector PE∇  (read as “grad EP”) is defined by (4.6), that is, 
( ) ( )/ , / , /f x f x f y f z∇ = ∂ ∂ ∂ ∂ ∂ ∂ . 

Now, if F = ( , , )x y zF F F  is the gradient of a scalar as in (4.6), and 
therefore, if F is conservative, then we can show that

 ( ) 0,PE∇ ∧ = ∇ ∧∇ =F x  (4.7)

where the vector ∇ ∧ F (read as “curl F”) is defined by

 , , .y yz z x xF FF F F F
z y x z y x

∂ ∂∂ ∂ ∂ ∂ 
∇ ∧ = − − − ∂ ∂ ∂ ∂ ∂ ∂ 

F  (4.8)

Equation (4.7) is therefore a necessary condition for a conservative 
force which we can test in practice. 

We can also show that (4.7) is a sufficient condition, that is, if 
it is satisfied, then F is indeed conservative. The proof (which uses 
results from vector calculus) is as follows.

Consider the work done along any two paths P1 and P2 between 
points A and B. Then

1 2 1 2–
0,

P P P P s
F dx F dx F dx F dS− = = ∇ ∧ =∫ ∫ ∫ ∫

where the central integral is taken round the closed curve P1 - P2 and 
the second equality follows from Stoke’s theorem. It follows that if 

0F∇ ∧ = , then the integrals along any two paths are the same and F 
is conservative, which is what we set out to prove. 

Example 1: Any radial force of the form F = F(r) r̂ is conservative. 
We have

( ) ( ),F r
F x y zr= + +i j k

from which

( ) ( ) ( )

( ) ( ) ( ) ( )
2 3 2 3

–

– – 0,

x

F r F r
F z yy r z r

F r F r F r F r
yz yz zy zy

r r r r

∂ ∂   ∇ ∧ =    ∂ ∂   

= + =
′ ′
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with corresponding results for the other components. Forces of this 
form are therefore conservative. 

Just in case, it seems that all forces might be conservative, here 
is one that is not. 

Example 2: A force of the form ,= ∧ωF r  with w a constant vec-
tor, is not conservative. Calculating ∇ ∧ F  from (4.8), we can show 
that 2 0.∇ ∧ = ≠ωF  The fact that F is not conservative and is clear 
if we draw a picture (Figure 4.2). The force is azimuthal about the 
z-axis, so the work done depends on whether the path is clockwise 
or counterclockwise. 

Figure 4.2: Lines of force F = ww ∧ r

4.6 NONCONSERVATIVE FORCES

All of the fundamental forces (gravity, electromagnetism, and 
the weak and strong nuclear forces) are conservative. Nonconser-
vative forces arise when we consider only a subsystem and not the 
universe as a whole. For example, consider a body falling through 
the air. If we were to take account of the interaction of the body with 
each atom of air, then the total mechanical energy would be con-
served: the energy of motion of the falling body would be reduced 
but that of the air atoms would be raised. Such a calculation would 
be both impractical and of no interest: our only concern is the falling 
body. So we replace the effect of the air atoms by a frictional force. 
We say that the mechanical energy of the falling body is converted 
irreversibly into heat. The irreversibility is statistical in nature: we 
never find a macroscopic falling body with increased kinetic energy 
and cooler air, because this is overwhelmingly unlikely.
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4.7 FRICTION AND “ZERO WORK FORCES”

Friction is another obvious example of a nonconservative force. 
The work done by friction along a path is dissipated as heat and can-
not be recovered by returning to the starting point. That much is 
straightforward. A great deal of confusion arises however when we 
look in more detail at the role of frictional forces in motion. Let us 
return to the horse and cart of Chapter 2. 

The force accelerating the horse–cart appears to be the reaction 
to the frictional force from the road on the horse’s hooves. Accord-
ing to our discussion so far, this force must do work on the horse and 
cart to supply the gain in kinetic energy. Now, as everyone knows, 
the energy to accelerate a cart does not come from the road but 
from the horse’s metabolism (or muscles). This has given rise to the 
suggestion in some quarters that since all the work done comes from 
the horse and none (apparently) from the road, some moving forces 
do no work! But Newton’s laws (as with any physical laws) cannot be 
suspended. So how do we explain this? 

Once again, it goes back to an understanding of the microscopic 
origins of the force we are dealing with. It is easier to start from a 
simpler situation: that of pushing against a spring, say when an object 
rebounds from a wall. The compression of the object (and the wall) on 
impact stores the kinetic energy as elastic energy and returns most of 
it on rebound. This is exactly what happens as the cart moves along the 
road. At each instant, there is a compression of the road by the horse’s 
hoofs and a rebound. Energy does indeed flow from the horse to the 
road and back to the horse and cart. If we look just at the forces on 
the horse and cart as a body, the force from the road supplies all the 
kinetic energy (and frictional losses). This does not tell us how the road 
acquired the energy. As far as the analysis of the forces on the system 
is concerned, the road could have been supplied with a compression 
wave that is then ridden by the horse and cart and drives it forward. 

4.8 CONSERVATION OF ENERGY

In Section 2, we introduced the idea of kinetic energy by relat-
ing it to work, on the assumption that for the falling object, the two 
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were interconvertible without loss. Here we generalize this to all 
mechanical systems. As our starting point for mechanics, we make 
the fundamental assumption that the total energy of a system that is 
subject to conservative forces only is constant. Thus, we assume that 
the law of conservation of energy

constantK PE E E= + =

for a conservative system. 

It will turn out that this is a profound statement about the physi-
cal world. We shall see in Chapter 10 that it is related to the invari-
ance of physical systems in time: that the repetition of a mechanical 
experiment at any time in the future will give the same results as it 
does today. 

For our body falling from rest under gravity at height h to the 
ground at h = 0, we have

21
0 02mgh mv+ = +

in agreement with (4.2).

4.9 UNITS FOR ENERGY

Before we turn to some examples, we shall introduce some use-
ful units for energy in addition to the SI unit of the Joule.

The electron volt (eV) is defined as the work done in moving an 
electron charge through a potential of 1 V. We have 1 eV = 1.602 × 
10−19 J.

The kilowatt hour (kWh): the watt (W) is defined as 1 J s−1. Thus, 
a kWh is 3.6 × 106 J.

Tons of TNT: 1 gram TNT = 4,184 J so 1 ton of TNT equivalent 
is equal to 4.2 × 109 J.
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4.10 EXAMPLE

The table shows some data on the Airbus A380 super-jumbo air-
plane taken from the Airbus Website. We can use this to estimate 
the kinetic energy of the plane at maximum cruising speed with half-
empty fuel tanks. We can also estimate the speed of the A380 on 
takeoff.

http://www.eads-nv.com/1024/en/eads/eads_websites/index/A.html

Normal cruising speed Mach  0.85
Maximum takeoff weight 560,000 kg
Operating empty weight  276,800 kg 

Maximum payload (without fuel)  90,800 kg
Maximum cruising speed Mach 0.89 (945 km h−1) 

Max thrust of each of four engines 355 kN
Length of runway at max load 2,750 m

The mass of the plane with half-empty fuel tanks is 

Mass empty + Payload + Half fuel = 463,800 kg

(where the mass of a full load of fuel is obtained by subtract-
ing the empty weight and the maximum payload from the maximum 
takeoff weight). A speed of 945 km h−1 corresponds to 263 m s−1. So 
the kinetic energy is

½ Mv2 = 1.6 × 1010 J.
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This looks like a large number but can we get some idea of how 
large it is by comparison with something we might know? We can 
compare it the explosive energy in TNT. We know that 1 ton of TNT 
has an energy equivalent of 4.2 × 109 J. So 1.6 × 1010 J is equivalent 
to 3.8 tons TNT or almost four 1,000 lb bombs! 

We turn now to an estimate of the speed of the A380 on takeoff 
from the additional data shown in the table. Note that the quoted 
“weight” is in fact the mass. The thrust of the four engines gives us 
the force, F, on the plane. The length of the runway gives us the dis-
tance, s, over which this force acts and hence the work done. Assum-
ing this goes into kinetic energy, that is, that there are no losses of 
energy, we can equate the work done to the gain in energy of ½Mv2. 
From this, we can find v as follows:

1
22Fs

v M
 =  
 

1
22 4 355000N 2750m

560000kg
× × × =   

1118ms .−=

or about 420 km h−1. The actual takeoff speed is 250 km h−1 so there 
are quite considerable losses.

4.11 BOUND SYSTEMS

Given that the total energy of a system is constant, there are 
three possibilities: 0, 0, 0.E E E< > =  If the potential energy is set 
to be zero at infinity, then these cases correspond, respectively, to 
bound, unbound, and marginally stable systems. For example, if  
E < 0 (and since EK > 0), then 0P KE E E= − <  and so the system can-
not get to infinity (where EP = 0). The system is therefore confined 
(or bound). 
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4.12 VIRTUAL WORK 

We can now understand the principal of the lever in terms of 
work. Suppose that the lever is in balance and displace it through a 
small angle dq. Then 

,Wx wXδθ = δθ

that is, the work done on one weight by lifting it xdq equals the work 
done by the other weight in falling Xdq. Thus, there is nothing to 
be gained by displacing the lever. This is true only if the lever is in 
equilibrium; otherwise, there would be a net moment and the bal-
ance would tip. 

Figure 4.3: Principle of virtual work for a lever

This is a general property of systems in static equilibrium: the net 
work done on or by a system in equilibrium for a small displacement 
is zero. This is called the principle of virtual work. 

Had we not found the equilibrium of the lever by other means, 
we could have used the principle of virtual work to derive the Archi-
medes formula for the equality of the moments of the weights. For 
more complicated structures, we can use the principle to determine 
the equilibrium configuration. 

4.13 ELASTIC ENERGY

The energy stored in a material that has undergone extension 
or compression is called elastic energy. For a material that is being 
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stretched or compressed in one direction let the original length be 
L. Suppose that the material is extended by a length x. We define the 
strain x of the material as the quantity

.x
Lx =

If the force applied to the material is F and the cross-section area 
of the material perpendicular to the extension is A, the stress on the 
material is defined as F/A. 

A particularly simple type of elastic material is one that obeys 
Hooke’s law, which states that stress is proportional to strain: 

,
F

YA x=

where Y is Young’s modulus of the material. We can write this as 
follows:

,F kx=

where k = AY/L. All materials obey the law for small enough exten-
sions. 

Let us calculate how much work is done in stretching the mate-
rial. We have

2 2

0 0

1
.2 2

x x AYx AY
Fdx dx x kxL LΩ= = = =′∫ ∫

The energy per unit volume is given by

21
.2 YAL x=

Ω

4.14 EXAMPLE – BUNGEE JUMPING

As an example of elastic energy, let’s look at a bungee jump. We 
shall assume that the bungee cord obeys Hooke’s law. The height of 
the jump must be greater than L + x, the original length of the cord 
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plus the extension. The gravitational potential energy lost in a jump 
of height h by a body of mass M is Mgh, where h must be at least 
L + x and ignoring the mass of the cord. This must be absorbed by 
the extension of the cord, so we equate it to ½kx2. This gives a qua-
dratic equation for x:

 ( ) 21
.2Mg L x kx+ =  (4.9)

A convenient dimensionless parameter here is obviously

2Mg
kL

l =

and our quadratic equation becomes

 2 0,x lx l− − =  (4.10)

where x = x/L. Rather than the exact solution, we can look at two 
extremes, x << λ and x ~ λ.

If x >> λ, and we can neglect the second term in the quadratic 
equation. This gives equation

,x l=

or reinstating physical quantities 

1
22

.
MgL

x k
 =  
 

The extension goes up as the square root of the length of the 
unstretched cord. For consistency in this case, we must have λ << 1. 
This is the case of a stiff cord with a large elastic modulus, and the 
extension is less than the original length since it corresponds to put-
ting L + x ~ L on the left-hand side of (4.9).

If x ~ l and l > 1, we can ignore the final term in the quadratic 
Equation (4.10). Then we get 

x l=

or 
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2
;

Mg
x k=

the extension is independent of the initial length. Of course, this 
happens because if the extension is large, we can ignore the small 
contribution from the original length of cord to the overall height. 
This approximation corresponds to putting L ~ 0 on the left of (4.9). 

Of course, the exact solution can be found from the quadratic 
Equation (4.10):

( )21
4 ,2x l l l= + +

from which we can rederive the two limiting cases for l >> 1 and 
l << 1. 

4.15 SOLUTION TO THE PROBLEM 

The pyramid at Giza is a store of potentially energy of all the 
work done by the laborers who built it. Conversely, it has the poten-
tial to do work if it falls down. Of course, the laborers expended 
more energy than this, since their ramps (if that is what they used) 
were not frictionless. 

Let the pyramid have semivertex angle a, height h, base side b, 
and density r. Adding the potential energy of each slice, thickness 
dx a distance x from the top, the potential energy of the pyramid is 
given by

( ) ( ) ( )
2

22 4 2

0

2

1

0

2

2 tan 1

1
,12

h

P
b

E g h x x dx g h dh

gb h

r a r x x x

r

 = − = − 
 

=

∫ ∫

or if we put / :x hx =  

( )
2

4 2 2

0

2
1 1

1 .12P
b

E gh d gb hh r x x x r = − =   ∫
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In terms of its mass 

( )22 2

0

1
2 t 3 ,an

h
M x dx hbr a r= =∫

the potential energy is
1

.4PE Mgh=

From the data, and taking the density of stone to be  
2,700 kg m−3, the mass is

97 10 kgM = ×

and the potential energy

122.5 10 J.PE = ×

How much work can a man do in a day? We know this must be of 
order of the daily intake of food, say 1,000 kcal ~ 250 kJ (the daily 
calorie count for laborers might be ∼4,000 kcal/day, but the conver-
sion to mechanical work is about 25% efficient). The pyramid could 
therefore be built in 107 man-days. This excludes cutting the stones 
and building the ramps (if that was how it was done). So the mini-
mum number of men required to build the pyramid in 20 years, or 
7,300 days, is 1,400. The report of the Greek historian Herodotus 
that it took the labor of 100,000 men to build the pyramid seems to 
be a little bit of fake news. 

4.16 CHAPTER SUMMARY

●  We can define the mass of a body as its weight divided by 
the local acceleration due to gravity (recognizing that this is 
not the fundamental definition)

●  The work done by a force F moving through a distance x is 
defined as the force × distance or W = ∫ F dx 
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●  If the force is conservative, the work done is independent of 
path and defines a potential energy EP = ∫ F dx

●  The kinetic energy of a body of mass m moving with speed v 

is defined as 21
2KE mv=

●  For conservative forces, mechanical energy is conserved: 
constantK PE E E= + =

●  The energy of a bound system is negative

●  The stress on an elastic body of cross-section A transverse to 
a force F is F/A.

●  The strain of an elastic body of length l extended by an 
amount x is x = x/l. 

●  Hooke’s law states that (for small strains) F/A = Yx, where Y 
is Young’s modulus of the elastic material. 

●  The energy per unit volume stored in an elastic body is 
21

2 .Yx

4.17 EXERCISES

1.	  A block of mass M is prevented from sliding down a plane 
inclined at an angle q to the horizontal by a horizontal force 
F. The coefficient of friction between the block and the 
plane is µ. What is the force required? Under what condi-
tion or conditions is F = 0? How much work would have to 
be done to raise the block by a vertical height h allowing for 
the dissipation by friction. 

2.	  The Golden Gate bridge is supported by steel cables of 
typical length l00 m exerting a force of 3 × 107 N. What is 
the minimum radius of a cable? What is the stored energy 
in a cable?

	 The breaking stress of prestressed steel is 1,500 MPa and its 
Young’s modulus is 200 GPa. 
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3.	  One model of a leg is a simple pendulum (ignoring the knee 
joint). Estimate the *maximum kinetic energy of a leg at 
normal walking speed. What angle of swing would your esti-
mate imply? How high off the ground would the leg swing? 

	 As the leg hits the ground the energy is stored in the Achil-
les tendon. Estimate the extension of the tendon given the 
following data.

	 Young’s modulus Y = 8 × 108 N m−2

	 Area A = 89 mm2

	 Length l = 250 mm
	 Maximum extension dl = 15 mm

	 Assuming this model can also be used for running what 
is the maximum energy that can be stored in the tendon? 
Hence, what does the model predict for the maximum run-
ning speed? Comment on your estimate.

	 In this model, how would the length of stride scale with the 
length of leg?

4.	  A jumping flea accelerates from rest to a speed of  
1 ms−1 in 10−3 s. The mass of a flea is 0.5 × 10−6 kg and the 
maximum power from insect muscle is 60 W kg−1. About 
20% of the mass of a flea is muscle. 

	 How much kinetic energy does the flea acquire in a jump? 
	 Can muscle alone power the jump?
	 At the base of each hind leg of the flea is a pad of  volume 

1.4 × 10−4 mm3 of resilin, an elastic material with a Young’s 
modulus of 1.7 × 106 Nm−2. Show that enough energy can be 
stored to power the jump by compressing the resilin pads. 

5.	  Work out (i) the stress and (ii) the stored energy in the 
Achilles tendon from the following data: 

	 Force exerted on the tendon = 4,700 N 
	 Cross-section = 89 mm2 
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	 Length = 250 mm
	 Extension = 15 mm

	 Compare this with the average kinetic energy of a marathon 
runner. 

	 Show that running shoes make relatively little contribu-
tion to the stored energy (rubber has a Young’s modulus of 
<0.36 N mm−2).

Newtonian Mechanics_2E_Ch_04_2pp.indd   99Newtonian Mechanics_2E_Ch_04_2pp.indd   99 3/19/2021   3:03:50 PM3/19/2021   3:03:50 PM



Newtonian Mechanics_2E_Ch_04_2pp.indd   100Newtonian Mechanics_2E_Ch_04_2pp.indd   100 3/19/2021   3:03:50 PM3/19/2021   3:03:50 PM



CHAPTER 5
Motion

Problem: The lead shot used in shotgun cartridges consists of 
small spherical pellets 2–3mm in diameter made by pouring mol-
ten lead through a frame suspended in a high tower, a method used 
since its invention by William Watts in 1782. In order to produce 
spherical shot, the lead must solidify before the pellet has reached 
terminal velocity. How high should the tower be? 

Figure 5.1: Walters coop shot tower

http://freeaussiestock.com/free/Victoria/Melbourne/slides/walters_coop.htm
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5.1 NEWTONIAN DYNAMICS

To attack a problem such as this we have to go beyond kinematics, 
since we are not given the acceleration, and beyond energy conserva-
tion (since energy is dissipated) and look at how the motion of a body 
depends on the forces acting on it. This general problem was solved by 
Newton in his three laws of motion. Since these laws form the starting 
point for dynamics, they cannot be derived and are justified only by 
agreement with their experimental consequences. However, we shall 
look first briefly at some of the background to the laws. We shall then 
see that in simple cases the Newtonian equations of motion can be 
derived from the conservation of energy. In our final chapter, we shall 
generalize this approach by making energy the fundamental quantity. 

Let us start with a casual observation of everyday life: bodies 
appear to require a force to keep them in motion. A momentary 
reflection shows that this is not true: there is no visible force act-
ing on a falling body and conversely, on ice, in the absence of an 
 opposing force, you will continue to slide, at least for some time. A 
better hypothesis might therefore be that bodies have natural states 
of motion from which they deviate only if subject to some force. This 
was Aristotle’s view: namely, that it required a force to stop things 
from falling. Aristotle also knew about the roughly circular perpetual 
motion of the planets, so he postulated that the natural motion of 
“heavenly bodies” was circular, from which they would depart only 
subject to an applied force. (To explain the different natural motion 
of terrestrial and celestial bodies, Aristotle postulated that they were 
made of different materials.) 

In order to describe Aristotle’s natural motions, we require a 
standard of rest with respect to which bodies can be said to be mov-
ing. Aristotle chose the Earth as his absolute reference frame. If 
casual observation is all that is available, this is not a stupid theory. 
To go beyond, it requires some detailed experiments and a willing-
ness to suspend judgment on what one already “knows” (namely that 
bodies apparently stop moving in the absence of a force).

The first problem with Aristotle’s theory arose in the consid-
eration of projectile motion: what is the force that is keeping the 
projectile moving forward (given that its natural motion is vertical)? 
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And why does it (apparently) stop moving forward (when it falls)? 
Various ideas were tried, such as the motive power of air, or the wan-
ing of the initial impetus from the thrower. But the real undermin-
ing observation was that the Earth is not at rest. If that is the case, 
why do bodies projected vertically not fall away from the point of 
projection? As Galileo pointed out, this observation must mean that 
physics does not distinguish between frames of reference in constant 
relative motion (and his detractors that it must mean that the Earth 
does not move, an argument that has been settled in Galileo’s favor.) 
This means that force cannot be the cause of velocity.1

So a better hypothesis might be that a force on a body changes 
its speed. Well, that does not work for the planets, which move with 
approximately constant speeds but in constantly changing direc-
tions. So an even better hypothesis is that a force on a body causes a 
change in velocity (speed and direction of motion). 

This is not yet Newtonian mechanics. We have to postulate the 
nature of the change in velocity brought about by a force. The sim-
plest proposal is to relate force to acceleration:

,F ma=

where m is a constant characteristic of the body. This is Newton’s 
second law. 

This, however, only shifts the previous problem of an absolute 
standard of rest up one level: to make this law work, we appear to 
have to specify an absolute state of zero acceleration, with respect 
to which all nonzero accelerations can be referred. Newton never 
solved this problem. Instead, he postulated the first law, which sim-
ply asserts that there is such a state and we can all find out what it is 
by validating the second law. So to summarize:

Newton’s first law
There exists a state of motion that is unaccelerated that can 

serve as a reference frame for other states of motion. A body subject 

1  Suppose that forces caused bodies to move, so that the equation of motion of a 
body was, say, F = mv. Then changing to a frame moving with speed u would change 
this to F = mv − mu: the same force causes a different speed, or F + mu = mv, and 
a fictitious force mu appears, contrary to experience.
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to no forces will move with constant velocity (or remain at rest) in 
this frame of reference.

Once we have identified one such frame, then any observer mov-
ing with constant velocity in that frame will provide another such frame 
of unaccelerated motion. Thus, Newton’s first law actually asserts the 
existence of a class of reference frames (or motions of observers). We 
call these inertial frames of reference or inertial observers.

Newton’s second law
In an inertial frame of reference, a body of mass m subject to a 

force F will undergo an acceleration a given by

.F ma=

The fact that this definition of mass is the same as that in Chapter 3 
will become apparent shortly, so we shall not complicate matters by 
making the distinction. 

It should be clear now why the first law is not a consequence 
of the second: it is trivially true from the second law that if F = 0, 
then a = 0, but this is not what the first law asserts. Instead, the first 
law asserts the existence of a universal frame of reference with zero 
acceleration. This is a prerequisite for the second law, not a conse-
quence of it. 

It may have occurred to the reader that asserting the existence 
of such a frame (or frames) of reference is not the same as specify-
ing how to find it (or them): who are the inertial observers? We shall 
take this up again later; for now, it is sufficient to note that the Earth 
is a good enough inertial frame (because we find that Newton’s sec-
ond law holds if we think of ourselves as at rest) for most engineer-
ing purposes, and a frame of reference in which the distant stars are 
on average nonrotating is a good enough inertial frame for all other 
purposes (such as the motion of the planets in the solar system).

5.2 EQUATIONS OF MOTION

In standard university courses, we normally think of deriving 
an energy equation from Newton’s equations of motion. This is not 
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how equations of motion are derived in fundamental physics (in, for 
example, the standard model of particle physics or string theory). 
We start by postulating a functional form for the energy of the sys-
tem and derive the laws of motion from that. So that is what we shall 
do here for a simple one-dimensional system. In more complex situ-
ations, with many degrees of freedom, we need special techniques 
to extract the equations of motion from the energy for each degree 
of freedom, but the principle is the same and we shall address these 
situations in Chapter 11. 

Thus, following Chapter 4, we start from an energy function 
E(x) for a particle, with constant mass m, position x(t), moving in 

one dimension subject to a conservative force Pd
:d

E
F x= −

 ( )2
P

1
,2E mx E x= +  (5.1)

where 
d

.d
x

x t=  The first term on the right-hand side is the energy of 

the free system (without any interactions); the second gives its inter-
actions with the world. In this case, when the world only makes an 
appearance through parameters in EP, we call EP a potential energy. 
We now impose the condition that E is conserved:

Pd d
0 .d d

E E
mxx xt x= = +    

Dividing by ,x  we get

 
Pd

– ,d
E

m x x= 
 

(5.2)

which is the equation of motion of the particle, or Newton’s second 
law, if we identify P– d /dF E x= . Notice that the parameter m appear-
ing in the energy (5.1) also appears in the equation of motion (5.2), 
justifying our identification of it as the particle mass in both cases. 

If the mass of the body is not constant, then we get

( ) Pd d
.d d

E
m xt x= − 
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The quantity p m x=    is the momentum of the particle. Thus, we get 
the more general for of the second law, namely that 

force equals rate of change of momentum.

However, unless we explicitly state otherwise, we shall assume 
that particle masses are constant. 

5.3 AN EXAMPLE

The Chinese F1 grand prix is held on the Shanghai circuit. At 
corner 14 drivers decelerate from 326 km h−1 to 85 km h−1. The cir-
cuit map (http://www.vivaf1.com/shanghai.php) gives the decelera-
tion as 5.97g. What is the braking distance? What is the force exerted 
given that the minimum mass of an F1 car is 642 kg?

Since we are given speed and a deceleration to find the distance, 
we use

2 2– 2 .v u as=

Then, converting km h−1 to m s−1 by dividing by 3.6,

2 2 (2((23.6) – (90.5) )/ 5.97 9.81) 65.2 m.s ¥ ¥ ==

Adding say 60 kg for the mass of the driver, the braking force is 
given by

702 5.97 4191N.F ¥= =

5.4 MOTION IN HIGHER DIMENSIONS

Clearly setting the time derivative of the single quantity E to 
zero produces only one equation, so we have to modify the approach 
for motion in two or three dimensions. We shall look at the full the-
ory in Chapter 11, but here is roughly how it works. We have 
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P
1

( )2E m E= +2
x x

where 2 .= ⋅  x x x  We now make a small change:

( ) P
1

0  ,2E m m Ed d d — d= = ⋅ + ⋅ ⋅+   x x x x x

Where

, , .
f f f

f x y z
∂ ∂ ∂ ∇ =  ∂ ∂ ∂ 

So
p0 m t + Ed d= ⋅ ∇ ⋅ x x x

P( )m E— d= + ⋅x x

Since the increments in (x, y, z) are independent we have, finally

.Pm E—= −x

5.5 RATE OF DOING WORK

A body, or agent, of mass m and speed v has a stock of energy of 
motion, or kinetic energy, of ½mv2. The flow of energy into or out of 
the body is the rate at which the stock is changing. This turns out to 
be the rate of doing work on the body by any external force acting 
on it. 

We have
2d 1

.d 2 mx mxx xFt
  = = 
 

  

We identify Fx  as the rate of doing work, since 
x

F x F tt
d

d dd= = 

Fx td  is the work done in time δt. The change in kinetic energy in a 
displacement δx is the work done, or, equivalently, the rate of change 
of kinetic energy equals the rate of doing work. The rate of doing 
work is also called the power.
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Example: In a race, the dragster with the highest terminal speed 
at the end of the run wins. We would like to know how the termi-
nal speed depends on the power. In this case, we have a relation 
between speed v and distance s from Equation (2.8) in Chapter 2 

31
,3 v ks=

where k is a constant. Power is defined as the rate of doing work; so 
for an acceleration, a = k/v, the power is

k
P m v mkv= =

that is, the power is constant. Thus, k = P/m and 
1
33

.
Ps

v m
 =   

The terminal speed depends on the power to the 1/3. This is why the 
power to double the top speed of a road car from (say) 100–200 mph 
must be increased about eight-fold.

5.6 INERTIAL FORCES

If we transform between frames of reference at constant relative 
velocity, Newton’s laws are unchanged, and therefore, physics is the 
same for the two observers. To see this, let 

–x x vt=′

be the coordinates of a point viewed by an observer moving with 
speed v in the positive x direction. Then

2 2

2 2
d d

,
d d

x x
m m F

t t

′
= =

Newtonian Mechanics_2E_Ch_05_2pp.indd   108Newtonian Mechanics_2E_Ch_05_2pp.indd   108 3/20/2021   3:13:16 PM3/20/2021   3:13:16 PM



Kinematics  •  109

and the observer cannot tell which frame of reference they are in by 
carrying out a Newtonian experiment. 

Now consider two frames that are accelerating relatively. We 
have 

21
2 ,x x at′ = +

and
2 2

2 2
d d

.
d d

x x
m m ma F ma

t t

′
= + = +

Thus, in the x′ frame, the body is subject to an additional force ma. 
This is a common experience: whenever a vehicle accelerates, the 
occupants feel an additional force. These additional forces, which 
appear for accelerating observers, are called inertial forces. They are 
also called “fictitious forces,” although they are quite real for the 
occupants of the vehicle. 

This discussion means that care is needed in identifying the 
frame of reference in which a dynamical system is being described. 
Newton’s laws, with no additional inertial forces, hold only in inertial 
frames of reference. 

5.7 SYSTEMS OF PARTICLES

So far, we have dealt with a single body treated as a particle, 
having a mass but no extension. To apply the theory to real objects, 
we should consider an assemblage of particles. We shall find that 
the translational motion of an extended body can be determined by 
consideration of the motion of the center of mass. This will justify 
our application of the equations of motion to extended objects, such 
as the shot pellet, as if they were point particles. 

Suppose we have particles of mass mi positioned at coordinates 
xi with external forces Fi and let the internal force of particle j on 
particle i be fij. Then for each particle, Newton’s second law reads
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.i ij i
j i

iF f m x
π

+ =∑ 

Summing over all particles, we get

.i ij i i
i i j i i

m
π

Â Â Â Â+ = F f x

But, by Newton’s third law, the force particle i exerts on particle j is 

equal and opposite to that of particle j on particle i: – ( );ij ji j iπ=f f  so 

the sum over the internal forces cancels, and we are left with

2

2
d

.
di i i

i i

m
tÂ Â 

=   
 

F x

We define the center of mass, analogous to the center of gravity, by

,i i
i

M mÂ=X x

where M = Σi mi (Section 2.11). Thus, finally,

,i
i

MÂ = F X

and the translational motion of the body is equivalent to the total 
external forces acting on the total mass placed at the center of mass. 
We shall discuss the rotational motion in Chapter 9. 

5.8 EXAMPLE: MOTION UNDER AIR RESISTANCE

Air resistance or drag on a body is proportional to the square of 
its speed. The equation governing the change in speed is therefore

2,
d
d
v

kvt = −

Newtonian Mechanics_2E_Ch_05_2pp.indd   110Newtonian Mechanics_2E_Ch_05_2pp.indd   110 3/20/2021   3:13:17 PM3/20/2021   3:13:17 PM



Kinematics  •  111

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 2 4 6 8 10
x

Figure 5.2: Motion under air resistance starting from an initial speed. The dashed line gives 
the approximate solution at late times

where k is a constant. The solution for a body with an initial speed 
u is given by 

11
,ktv u− =

or

 .1
u

v ukt= +  (5.3)

Initially, while t << 1/uk, v is approximately constant. If t is very large 
(much greater than 1/ku in fact) we can neglect 1 compared to ukt. 
So at late times, v is proportional to 1/t. The graph of v against t must 
therefore look roughly like the dashed curve in Figure 5.2. The exact 
solution is given by the full curve. 

The speed initially decays at a rate –ku2; if this were to be main-
tained, the decay would be linear in t and the time for v to reach 
zero would be

0
2

0

1
.

d
– d

v u
kuv ku

t

t = = =
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From the exact Solution (5.3), we see that this is the time required 
for the initial speed to be halved. Thus, assuming a constant decay 
rate gives us an estimate of the time required for the initial speed to 
decay significantly. This is an important general result: the timescale 
of decay of a quantity can be estimated by dividing its initial value by 
its initial rate of decay, as if the rate of decay were constant. 

5.9 SKY DIVE

Another example of motion under the combined effect of gravity 
and air resistance is an attempt to sky dive through the sound barrier 
in free fall from a height of 39 km above sea level. The difficulty of 
the problem is the varying density of the atmosphere, which leads 
to a dependence of the air resistance on height as well as speed. An 
approximation to the density over the relevant range of height is 

–

1 – ,
p

s
z
ar r  =  

 

where z is measured down through the atmosphere from the start of 
the jump in km, sr  is the density of air at this point, a = 108 km is a 
constant and 15.9p ~ . The equation of motion is

–
2d

– 1 –d ,
pv z

mv mg K vz a
 =  
 

where K is a constant. Putting 21
,2 ve =  the equation of motion 

becomes

 

d
2 1 .d

pz
k gz a

e e
−

 + = 
   

(5.4)

We choose k = K /m such that at sea level ( 39 km)z= , the termi-

nal speed is 92 km h−1.. This gives –10.13km .k =  In these units, 
51.27 10g ¥=  km h−2. There are two regimes: one where gravity 
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dominates over the initial fall, followed by one where air resistance 
dominates. In the first phase,

 .gze ≈  (5.5)

The boundary between the phases, at 0,z z=  say, is defined by  
d /dze = 0 or

0
02 1

pz
k ga e

−
  = 
 

or, using (5.5), 

 

–
0

02 1 – 1.
pz

k za ª 
    

(5.6)

Figure 5.3: Numerical solution for the energy per unit mass plotted against distance fallen 
for the sky dive (Equation (5.4))

Unfortunately, it is difficult to obtain an approximate solution of this 
equation (because of the high value of the power p). We can how-
ever solve the differential equation numerically and show how this 
is consistent with (5.6). Figure 5.3 shows that the speed reaches a 
maximum at 10 kmz ~  with ε ∼ 0.9 × 106 km2 h−2, corresponding to 

31.34 10v ~ ¥  km h−1 or 838 mph. This is roughly consistent with the 
approximation (5.6) for the turning point of the graph. The official 
figure for the speed reached was 834 mph. 
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5.10 TOWER PROBLEM

We are now ready to tackle the problem of the shot tower. We 
shall present this in terms of several model of increasing detail and 
accuracy. Throughout, we shall treat the pellet as a single body of 
mass m. 

5.11 MODEL 1

Let us begin by sketching what we expect. In Figure 5.4, we 
have sketched the velocity of a shot pellet against distance from the 
top of the tower. To avoid a lot of minus signs, we take distance and 
speed to be positive in the downward direction. Initially, the speed 
is small, so the resistance to motion 

Figure 5.4: The speed (measured downward) plotted against height (measured from the top 
of the tower) for the falling pellet.

offered by the air is small and the graph must look like constant 
acceleration. Eventually, air resistance will balance gravity and the 
pellet will reach a terminal velocity. The graph is quite complicated 
so to start with we do not attempt to find an exact solution with 
all factors in play. Instead we approximate the different regimes: an 
initial phase where the body is in free fall and a final phase where 
it has reached terminal speed, and an approximation for where the 
two phases meet. 
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The constant acceleration phase then is relatively easy. From the 
graph, we see the relation between speed and height (or distance) so 
from Chapter 3, we use

d
,d

v
v gz =

or 

2 2 .v gz=

5.12 MODEL 2: TERMINAL SPEED 

Moving on now to the terminal phase, we need to decide what 
the force that is acting against gravity. There are two possibilities: 
viscosity and drag. We can look up the formula for the force in each 
case or we can estimate it. So as not to interrupt the calculation, let 
us quote the relevant formulae and see how we could have estimated 
them later. For the viscous force (resulting from the shear as the air 
flows past the sides of the drop) on a sphere of radius a moving with 
speed v through a medium of viscosity η, we have Stokes’ formula:

 visc 6 .F a vp h=  (5.7)

For the drag force (resulting from the destruction of momentum 
of the air impacting a blunt body), we have

 
2

drag
1

,2 DF C A vr=  (5.8)

where ρ is the density of air, 2A ap=  is the area of the cross-section 
of the body normal to the flow, and CD is a constant that depends on 
the shape of the body but is usually around 0.5. 

How do we know which to use? Well, of course, both forces are 
acting, so we should use the sum of the two. This is rarely a good 
idea: it complicates matters without offering much illumination.  
At least to start with, we use whichever is the larger. When v is very 
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small, the viscous term (5.7) must dominate the drag force (5.8) 
because for v small, 2 .v v  In fact, we have drag viscF F<  if 

12
.

D
v C a

h
< r

Putting in some values for the larger size of shot (a = 3 mm), and 
taking the density of lead to be 11,000 kg m−3, we get that viscosity 
dominates drag if 

 

– 5
– 2 –112 1.5 10

10 ms .0.5 0.003 11000v
¥ ¥< ¥ ¥ ~

 
(5.9)

So initially (when 0)v ~ , we have to consider only viscosity. Let us 
then estimate the viscous term: We have, taking the larger size of 
shot 

– 5 – 66 6 0.003 1.5 10  10 N.a v v vp h p ¥ ¥ ¥= ~

Thus, there is a gravitational force accelerating the pellet and a vis-
cous force opposing the motion. Let us compare the magnitude of 
these, we have 

2 13 44
11,000 9.8 10 N 6 if 10 ms .3Mg a a v v¥ p ¥ p h <− −= ~ 

So in the initial fall, for small speeds, we can clearly neglect  viscosity 
relative to gravity: the initial motion is just free fall under gravity. 
(One might guess this from the observation that air is not a particu-
larly viscous medium, so drag is almost always more important for 
macroscopic bodies.) However, from Equation (5.9), the drag will 
become more important than viscosity once 2 110 msv > − −  and will 
balance the gravitational force once

 
21

.2 DC A v Mgr =
 

(5.10)

Thus, the maximum speed, or terminal speed, vt, of the shot is given 
by solving (5.10) for v:

1 1 1
2 2 2 –1lead

air

2 8 8 0.003 9.81 11,000
37ms .3 3 0.5 1.29t

D D

Mg ag
v C A C

r
r r

× × ×     = =     × ×     
~ ~
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We can estimate the distance, sf, to reach this speed by using the free 
fall equation:

2
lead

air

4
68m.2 3

t
f

D

v a
s g C

r
r= = ~

This corresponds to a time

2
4s.f

f
s

t g= ~

Since the body is not freely falling, but accelerating more slowly, this 
is an underestimate. 

To solve the problem posed by the cooling of the shot, we need 
to consider the time of fall. We can assume that this is set by the time 
required for the shot to cool, which we suppose for the sake of argu-
ment is >1 s (the time in free fall). Thus the fall can be approximated 
by two phases: one in free fall at constant acceleration, followed by a 
period at a constant speed of 8 m s−1. The time of fall is thus

total ,f
t

h
t t v= +

where h is the height fallen at the terminal speed or

( )total .f f t fH h s t t v s= + = − +

5.13 MODEL 3 

In fact, this problem can be solved exactly, so we have the oppor-
tunity to compare our approximation with the exact solution. The 
equation of motion is

2d 1
– .d 2 D a

v
mv mg C Avz r=

Dividing through by the mass of the pellet, we have

2d
,d 2 f

v v
v gz s= −
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where 
4

3
L

f
D a

a
s C

r
r

 =     as above. The equation confirms our earlier 

analysis that for length scales <sf, gravity is important, and for length 
scales >sf, the drag term dominates. To see this, we approximate vdv/
dz as v2/z. Then 

2 .1 1
2 f

g
v

z s+
~

So for z < 2sf, we can ignore the drag term. 

The first thing to do is to tidy up the equation of motion by intro-
ducing some dimensionless variables. One reason is that otherwise 
we would find ourselves writing out the constants such as CD again 
and again as we work through the algebra. A more important reason 
is that the collection of constants obscures the meaning of the equa-
tion. We make z dimensionless by dividing by sf: so define

.2 f

z
x s=

(The factor of 2 is included with hindsight to tidy up the working.) 
If we now define 

,
2 f

v
u

s g
=

the equation of motion takes the dimensionless form

2
2d

1 – .d
u

ux =

The two regimes are now clear. For u2 << 1, we have u2 ~ x or u ~ √x. 
As u2 → 1, du2/dx → 0, so u2 = 1 is the limiting value for u2. 

The equation of motion is a first-order separable differential 
equation so the exact solution can be obtained by rearrangement 
and integration:
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2
2

2d ,
1 –

u
u x

u
=∫

or 

 
–2 1 – ,xu e=  (5.11)

where we have chosen the constants of integration such that u2 = 0 at 
x = 0. Note that u2 → 1 as x → ∞, and that for finite x, u never actu-
ally reaches 1. This means that the terminal speed is never reached 
exactly. However, for all practical purposes, unless we require a high 
level of accuracy, we can take terminal speed to be reached at around 
x = 1, as we did in Model 2 above.

We now have to solve for distance as a function of time. Since ds/
dt = v, or, equivalently, 

2d
,d f

gx
ut s=

we define a timescale T = √(sf/2g) and put 

.
t

tTt = =

Then, the equation of motion becomes 

–d
1 – ,d

xx
u et = =

from (5.11) with the initial conditions x = 0 at τ = 0. You might 
be tempted to think that this cannot be integrated analytically 
and instead try to solve it numerically using a standard numerical 
method. The problem would then be that at x = 0, we have dx/dt = 
0. Thus, numerically, x never changes and the solution appears to be 
x = 0 for all time. The numerical equation solver needs some help, 
which we would give it by expanding the solution about x = 0 and 
setting the initial conditions at t = δ. So, for small x, by expanding 
the exponential, we get

1
2,

d
d

x
xt ~
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from which
1
22 .xt =

The initial conditions become x = (δ/2)2 at τ = δ (where δ would then 
be given some small value, say 10−2).

In fact, the equation can be solved exactly: we get

 ( )
( )

1
–1 – 2

1
– 2

d
2 tanh 1 – e

1 –
,

e

x

x

xt = =∫  
(5.12)

with the constants of integration chosen to satisfy τ = 0 at x = 0. 

x

t
0 21 43 65

0
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Figure 5.5: Exact solution (solid line) and approximate solution (dashed line) for the time 
against distance fallen. The exact solution approaches –t=x 2 ln2 as t → +∞

We can invert (5.12) to give x as a function of t:

2

– ln 1 – tanh .2x
t  =      

This is plotted in Figure 5.5. We have also shown on the fig-
ure the approximate solution for early times, x = (τ/2)2. The fig-
ure shows how the graph departs from this solution and becomes  
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approximately a straight line – 2 ln 2x ~ t  around τ = 2. Note how 
taking drag into account reduces the required height of the tower. 

Finally, we should express the solution in physical units: 

 

1 1
2 2–12 3

tanh 1 – exp – .3 8
L D a

D a L

a C z
t gC a

r r
r r

      =              

You should check that the prefactor has the units of time and that 
the argument of the exponent is dimensionless. 

From this, it is clear that the length scale 

8
23

L
f f

D a

a
s sC

r
r= =′

divides the behavior of the trajectory into two phases; For ,fz s′
we have approximately free fall and for fz s′  drag starts to become 
important. This agrees with our previous approximate solution. 

Solving for z gives
21

238
ln 1 tanh .3 2

DL a

D a L

gCa
z tC a

r r
r r

  
   = − −       

Finally, we should put in some numerical values. Shotgun pellets are 
around 6 mm in diameter ( 3a =  mm); the density of lead is 11,300 kg 
m−3; the density of air is 1.29 kg m−3. If the time required for lead to 
solidify were around 5 s (say), this would give a height of about 4.4sf 
∼ 250 m, in agreement with the graph of Figure 5.5. 

In fact, towers are rather shorter than this because the lead must 
solidify in the free-fall phase if the pellets are to be spherical, as we 
see next.

5.14 THE SHAPE OF THE SHOT

The problem asked us to determine the shape of the shot. To do 
this, we transform our point of view to the reference frame of the 
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shot. In the initial phase, under free fall, in frame of reference of the 
falling shot the acceleration is zero, so the shot is weightless. What 
does this mean for the shape? In the absence of gravity, the surface 
tension of the lead will form the drop into a sphere. In the constant 
velocity phase, the drag on the drop prevents it from moving (rela-
tive to us as observers falling with it, now at constant speed). A drop 
at rest under gravity, on a table say, adopts a flattened shape. So this 
is the shape of the shot both in our frame and, of course, in the frame 
of the tower. Tear shaped raindrops are a myth! 

5.15 UPTHRUST

A solid body immersed in a fluid (by which we mean a gas or 
liquid) displaces an equal volume of the fluid. Prior to the introduc-
tion of the solid body, the displaced volume was neither sinking nor 
rising. The gravitational force on it must therefore have been bal-
anced by the force of the surrounding medium; in other words, any 
volume of fluid experiences an upthrust equal to its weight. Since 
this upthrust is the result of the action of the surrounding medium, 
it must still be present after the solid body is introduced. Thus, we 
arrive at Archimedes’ Principle:

A solid body immersed in a fluid experiences an upthrust equal 
to the weight of the fluid it displaces. 

An obvious corollary is that a less dense object will float in a 
denser fluid. 

A body of mass M, density ρb, falling in a fluid of density ρf 

experiences an upthrust f
b

M
gr r

 
    and therefore has an effective 

weight of 

eff 1 – .f

b
W W

r
r

 =  
 

Archimedes’ Principle generates various paradoxes. Suppose we 
weigh an object (W) and a tub of water (w) separately. The  combined 
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weight is W + w. Now place the object in the tub and assume no 
water is spilt. Is the weight now Weff + w? This is impossible because 
we could generate a perpetual motion machine just by adding and 
removing the weight (using the upthrust as a driver). The paradox 
is resolved if we appreciate that the weight cannot be in static equi-
librium immersed in the fluid: it will be falling. The fall imparts 
downward momentum to the fluid which impacts the bottom of the 
container with a downward force; perhaps this is just sufficient to 
keep the overall system with a weight W. This seems strange since 
the body might be falling quite slowly if the medium is more viscous 
than water. 

What happens when the weight hits the bottom then? Does 
a weight resting on the bottom of a container not experience an 
upthrust? Indeed, it must be the same argument we used to deduce 
Archimedes’ principle. 

For the resolution, we must take into account the rise in the 
fluid level in the tub. This will increase the pressure at the bottom 
just enough to compensate for the upthrust on the body. 

Another paradox emerges if we try to find the weight of air by 
accurately weighing a balloon empty and comparing this with the 
weight of an inflated balloon. We would discover that air is appar-
ently weightless. 

In fact, we know that air does have weight. To explain why this 
attempt to measure the weight of air has failed, we could bring in 
Archimedes’ principle according to which there is an upthrust on the 
balloon equal to the weight of air it displaces – that is, an upthrust 
that exactly balances the weight of air inside it. 

But you do not need a theory to see this (or more correctly, the 
theory is only a concise expression of what you already intuitively 
know). The fallacy is the same as the fact that you cannot see a blue 
balloon against a blue background. If the filled balloon weighed 
more than the empty one, then it would fall to the ground. But you 
cannot make the air inside a region heavier than it was previously by 
putting a balloon round it. 
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5.16 SIMPLE HARMONIC MOTION 

Newton’s laws enable us to find the motion of a body under a 
given force. One important example is the simple harmonic oscil-
lator. It is useful to have in mind a concrete picture. One example 
is a body on a spring that is displaced from its equilibrium position 
(Figure 5.6) assuming that the spring obeys Hooke’s law. 

In equilibrium, we assume that the spring has an extension x0 

(measured downward), then

0.W kx=

 
Figure 5.6: Mass on a spring

Once displaced the spring will oscillate; if the total extension of the 
spring is x + x0, then

( )0– – .mx W k x x kx= + =

We can simplify the notation slightly by defining ω2 = k/m, so the 
equation of motion becomes

 
2 .x xw= −  (5.13)

Equation (5.13) defines simple harmonic motion: in general, any 
system (not just a spring) which obeys this equation of motion is 
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said to be a simple harmonic oscillator (SHO) or undergo simple 
harmonic motion (SHM) 

As usual we try to describe the motion before turning to the 
mathematical analysis. The physical picture of a spring tells us 
that the motion should be oscillatory. The body slows down as it 
approaches the extremes of the displacement and speeds up as it 
accelerates through the equilibrium position at x = 0. If we start the 
body from a displacement x(0) at t = 0, with some downward speed, 
and if we measure x as positive in the downward direction, we expect 
something like Figure 5.7 for the displacement (dashed line) and 
speed (solid line). 

Figure 5.7: Sketch of the expected motion of a mass on a spring starting from a nonzero 
displacement and zero speed. The speed is a maximum at zero displacement

Turning now to the mathematical analysis, the general solution of 
Equation (5.13) is

 cos sin ,x a t b tw w= +  (5.14)

where a and b are arbitrary constants. This can be verified by dif-
ferentiation:

 – sin cos ,x a t b tw w w w= +  (5.15)

and hence 

2 2 2 2– cos – sin – ( cos sin ) – .x a t b t a t b t xw w w w w w w w= = + =
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The constants a and b are fixed by the starting conditions at t = 0. 
For example, we might know that x = x(0) at t = 0 and x(0). Then at 
t = 0, from (5.14)

( )0 cos0 ,x a a= =

and from (5.15),

0 cos0b bw w= =

so b = 0 and a = x(0). Hence, the solution for this set of initial condi-
tions is 

(0)cos .x x tw=

t
42

0

1

−1

0.5

−0.5

6 10 128

Figure 5.8: The displacement cost (dashed line) and velocity sint (solid line) of a  
harmonic oscillator started from rest with unit initial displacement

Figure 5.8 illustrates the solution graphically and confirms the gen-
eral form of our initial expectation. It also shows (from the periodic-
ity properties of the cosine function) that ω is the angular frequency 
of the oscillation, or, equivalently, that f = ω/2π is the frequency and 
T = 1/f = 2π/ω is the period. 
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5.17 WHY SHM IS IMPORTANT

To see why SHM plays such an important role in mechanics con-
sider a body, coordinate x acted upon by a force that varies as some 
function F(x). Assume that at some point x0, the force vanishes:

( )0 0.F x =

Newton’s second law tells us that a body placed at this point (with 
zero speed) will remain there. Thus, x0 is an equilibrium point. 
(There may be more than one.) Now consider a small displacement 
x = x0 + ε. Then 

( ) ( )0 0
0

d
,d

F
x F x F x xe e e  = = + = + + 

 





using the Taylor expansion of F(x0 + ε). If we neglect higher-order 
terms, the equation of motion becomes

0

d
.d

F
xe e =  

 


If dF/dx at x0 is negative, we can set it to −ω2
. This will be the case 

if x0 is a point of stable equilibrium. For small displacements about 
a stable equilibrium point, any system behaves (approximately) as 
an SHO. (If dF/dx at x0 is positive, ε will grow exponentially until it 
can no longer be assumed to be small. In this case, the equilibrium 
is unstable.)

We shall investigate oscillatory motion more fully in Chapter 8. 

5.18 ENERGY OF A HARMONIC OSCILLATOR

Since we view energy as the fundamental dynamical quantity, we 
would like to derive the equations of motion of a harmonic oscillator 
from an expression for energy. There are several ways to do this. One 
general method is to reverse the process that leads us from energy to 
the equations of motion. For a harmonic oscillator, we have
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– .mx kx=

Multiplying by x:

– .mxx kxx= 

We can write this as

2 2d 1 d 1
,d 2 d 2mx kxt t

   =   
   



in which form the equation can be integrated: 

 

2 21 1
,2 2E m x kx = + 

 


 
(5.16)

where E is a constant (which must be the energy since the first con-
tribution to the sum is the known kinetic energy) and k = mω2. 

Alternatively, we know the kinetic energy is 21
2 mx  so we have 

only to find the potential energy from the relation

Pd
– – .d

E
F kx x= =

Integrating, we get 2
P

1
2E kx=  and, adding the kinetic energy, a total 

energy that agrees with (5.16). 

5.19 CHAPTER SUMMARY

●  Newton’s first law: There exists a state of motion that is 
unaccelerated that can serve as a reference frame for other 
states of motion. A body subject to no forces will move 
with constant velocity (or remain at rest) in this frame of 
reference.

●  Newton’s second law: In an inertial frame of reference, a 
body of mass m subject to a force F will undergo an accel-
eration a given by F ma.=
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●  In a noninertial frame of reference, additional “inertial 
forces” appear in the equations of motion.

●  The equations of motion for a conservative system can be 
obtained by differentiating the total energy

( )2
P

1
.2E mx E x= +

●  The rate of doing work by a force F on a body moving with 
speed v is F v.

●  The translational motion of the body is equivalent to the 
total external forces acting on the total mass placed at the 
center of mass

●  Solving Newton’s equations of motion usually requires 
 approximations. Relevant approximations can be obtained 
by introducing dimensionless variables and identifying small 
parameters. 

●  Archimedes’ Principle: A solid body immersed in a fluid 
experiences an upthrust equal to the weight of the fluid it 
displaces.

●  The displacement from equilibrium x(t) of an SHO satisfies 
the equation of motion: 2– .x xw=

5.20 EXERCISES

1.	 The acceleration of a body moving in a straight line with 
speed v through a certain medium is given as −kv. Write 
down the equation of motion of the body.

	 Show that such a body, starting with speed u, moves accord-
ing to 

 
–(1 – e )ktu

x k=

	 and hence comes to rest in a finite distance u/k.
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2.	 Investigate damped SHM with a damping proportional to 
4rv  for small r. 

3.	 In Figure 5.9, the chain on the right-hand slope is more 
massive than the chain on the left. Therefore, the chain will 
move clockwise forever. What is the fallacy? 

Figure 5.9: Question 3

4.	 Estimate the rate of doing work against drag by a car on a 
motorway.

5.	 A helium balloon with a rigid envelope is released from rest 
in still air. What is its maximum height and how long does 
it take to reach it? (Party balloons have a radius of 0.1143 m 
and a mass of 0.0185 kg.)
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CHAPTER 6
MoMentuM

Problem: The figure shows a small ball balanced on a much larger 
one falling together toward a solid floor. What happens next? 

6.1 CONSERVATION

The velocity of a free particle is constant, so its momentum, mv 
is constant. More generally, from Newton’s law in the form 

d d
,d dmt t

  = 
 

x
F

we see that, if there is no external force, the rate of change of the 
momentum is zero and hence the momentum is constant whether 
or not the mass varies.

We can generalize this result to a system of particles. Suppose we 
have particles of mass mi positioned at coordinates xi with  external 
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forces Fi and let the internal force of particle j on particle i be fij. 
Then for each particle, Newton’s second law reads

.i ij i
j i

m i
π

Â+ = F f x

Summing over all particles, we get

.i ij i
i i j i i

m i
π

ÂÂ Â Â+ = F f x

But – ( )ij ji j iπ=f f  by Newton’s third law; so the sum over the inter-
nal forces cancels and we are left with

d
.di i i

i i

mtÂ Â 
=   

 
F x

If the net external force is zero, then 

 

d
0.d i i

i

mt Â 
=  

 
x

 
(6.1)

We define the position vector X of the center of mass (CM) by 

,i
i

m MÂ =ix X

where M is the total mass. (Compare Equation (2.11); if we arrange 
for the origin to be at the CM, the net moment of the masses is 
zero. Note also that the CM is not the same as the center of gravity 
if the acceleration due to gravity varies across the system, although 
you are unlikely to need to know this except in examinations.) Thus, 
(6.1) gives

constant .i i
i

m MÂ = = 

x X

In words, the total momentum is the momentum of the total mass 
moving with the CM; if a system of particles is subject to no net 
external force, then the momentum of the system is conserved.
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6.2 CONSERVATION AND INVARIANCE 

In general, if the energy of the system is independent of position, 
momentum is conserved. This is trivial to show for a single  particle 
of constant mass subject to conservative forces. We have

K PE E E= + ,

with 
2

2
K

1
2 2

p
E mv m= =  and Pd

0.d
E
x =  Thus

Pd dd d d
0 d d d d d

p p p pE E x
t m t x t m t= = + = ,

so
d

0d
p
t = ,

and p = constant. We shall show this more generally in Chapter 11. 

6.3 IMPULSE

More generally, if now a system is subject to a force over some 
time interval, we can write

d d .p F t=∫ ∫
The left-hand side is the change in momentum over the time inter-
val. We call the right-hand side the impulse. Thus, we have

Change in momentum = Impulse.

We can compare this with the corresponding relation for energy:

Change in energy = Work done.

Example: The speed of a soccer ball can be up to about 30 m s−1. 
The time of contact between the foot and ball has been measured 
at 0.05 s, and the mass of a soccer ball is 0.45 kg. What is the force 
exerted by the player?  
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We have F t m v∆ = ∆  in an obvious notation. Thus, 

30
0.45 270N.0.05F ¥= =

Thus, a player exerts a force of about one-third of their weight.

6.4 COLLISIONS IN ONE DIMENSION

The conservation of momentum is useful in analyzing collisions 
where there are, by definition, no external forces (only internal 
forces). In a collision, we are often interested only in the situations 
before and after the event and not in following the details through 
the collision. 

Figure 6.1: A collision with one body (mass M) initially at rest

Consider a body of mass m moving with speed u on a frictionless 
surface in a collision with a body of mass M at rest (Figure 6.1). Let 
the speeds after collision be v and V, respectively. We assume that 
the collision conserves energy as well as momentum. Such collisions 
are termed elastic. One case we can solve without calculation is that 
of equal masses, M = m. Since energy is conserved, these collisions 
are reversible. But in this case, the time reversed collision must look 
exactly like the original collision (since the masses are identical). 
Thus, the solution must be v = 0 and V = u; the moving body comes 
to rest and the originally stationary body moves off with the speed of 
the incoming body. 

How can we make this symmetry more obvious? If we view the 
collision in a frame moving with speed u/2, we should see incoming 
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particles each with speed u/2 (and opposite directions). The symme-
try is now clear: the motion of each particle must be reversed in the 
collision. In the original frame, this corresponds to an interchange 
of speeds. 

Figure 6.2: The collision of Figure 6.1 with equal mass particles viewed from a frame  
moving to the right with speed u/2

If the masses of the two particles are not equal, we might guess that 
the CM frame would be a good way to look at the collision: in this 
frame, the momentum must be zero before the collision and there-
fore zero after the collision. The only way this can happen is for the 
particle velocities to be reversed. Figure 6.2 shows the result.

Figure 6.3: The collision of Figure 6.1 from the CM frame moving to the right with  
speed w = mu/(M + m) in the laboratory frame. In the CM frame to conserve momentum,  

the particle velocities are reversed. To obtain the laboratory frame speeds add  
w (vectorially) to each

There are several ways to obtain the velocities in the CM frame. One 
way (we give an alternative in Section 6.5) is to note that if the par-
ticles are separated by a distance x, then the distances to the CM are 

/( )Mx M m+  and /( )mx M m+  and hence the speeds are /( )Mx M m+  =  
/( )Mu M m+  and /( )mu M m+  toward the CM. During collision, 

these speeds are reversed in direction. Since the mass M was ini-
tially at rest in the laboratory frame, to get the speeds in this frame, 
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we add /( )mu M m+  to each having regard to direction. Thus, the 
laboratory frame speeds after the collision are

2 ,mu mu mu
V M m M m M m= + =+ + +

for the mass M, and

,
m MMu mu

v uM m M m M m
−

= − + =+ + +

for the mass m. 

To give us confidence in dealing with collisions, let us derive this 
result in a less elegant but more straightforward way. The general 
rule is to write down the equations for conservation of momentum 
and conservation of energy. For the collision depicted in Figure 6.1, 
we have for conservation of momentum in the laboratory frame:

 ,mu mv MV= +  (6.2)

and for conservation of energy,

 2 2 21 1 1
.2 2 2mu mv MV= +  (6.3)

Note that we measure all velocities in the same direction and let the 
algebra take care of the actual signs. In principle, both bodies could 
continue to move in the same direction after collision. We have to 
solve these equations for v and V. There is a neat trick that reduces 
the algebra. We write Equations (6.2) and (6.3) as

 ( )– ,m u v MV=  (6.4)

and

 ( )( )2 2 2– – .mu mv m u v u v MV= + =  (6.5)

Dividing Equation (6.5) by (6.4), we get

.u v V+ =
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Substituting back for V into (6.4) gives

 
–

,
m M

v um M= +  (6.6)

and hence

 
2

.
m

V um M= +  (6.7)

We see that if M > m, the direction of motion of the incoming 
 particle is reversed. 

6.5 CENTER OF MOMENTUM FRAME

Collisions are often easier to analyze in a frame in which the 
total momentum is zero (the center of momentum frame). Note that 
in this frame, both the initial and final momenta must be zero since 
momentum is conserved in collisions as collisions involve no external 
forces on the system. So suppose we have a body mass M moving 
at speed U and a mass m moving at u. To bring the total momen-
tum to zero, we view the collision from a frame moving with speed 
w such that 

 ( ) ( )– – 0.U w M u w m+ =  (6.8)

Note that by specifying all the velocities in the same +x-direction the 
signs will look after themselves. Solving (6.8) for w, we find

 .
MU mu

w M m
+

= +  (6.9)

This is the speed of the center of momentum frame viewed from the 
laboratory (rest) frame.

In the center of momentum frame, before collision, the mass M 
moves with speed

 ( )
CM

–
– ,

m U u
U U w M m= = +  (6.10)
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and the mass m with speed

 ( )
CM

–
– .

M u U
u u w M m= = +  (6.11)

Let the speed after collision be VCM and vCM, respectively, in the CM 
frame. Then conservation of momentum implies

 CM CM 0.MV mv+ =  (6.12)

If the collision is elastic, then conservation of energy gives

( ) ( )2 2
2 2 2 2

CM CM CM CM    
m U u M u U

MV mv MU mu M mM m M m
− −   + = + = +   + +   

 ( )2– .
mM

U uM m= +  (6.13)

Thus, using (6.12) to eliminate VCM,

( )
CM

221 –
m mM

mv U uM M m
 + =  + 

,

or

CM ( – ).
M

v U uM m±= +

We take the positive sign, otherwise CM CM,v u=  and the collision 
would have no effect. In the laboratory frame, the speed is

 ( )
CM

2 –
.

MU m M u
v v w M m

+
= + = +  (6.14)

If M = m, we recover v = U as in our first example, and if U = 0, we 
recover ( ) /( )v m M u M m= − +  as in (6.6).

We have also for the mass M:

CM ( – )
m

V u UM m= + ,
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and 

 ( )
CM

2 –
.

mu M m U
V V w M m

+
= + = +  (6.15)

6.6 INELASTIC COLLISIONS 

Another interesting example is where the particles stick together 
after a collision (e.g., in a possible road traffic accident) or where 
they split apart (as in an explosion). In neither case can we conserve 
both energy and momentum. Since there are no external forces act-
ing, it is momentum that must be conserved. From the point of view 
of the calculation, we replace the conservation of energy by a further 
condition on the final speeds. 

For example, if the particles stick together, we have VCM =  
vCM = 0 in the centre of momentum frame. The loss in energy is 
equal to the initial energy and therefore, from Equations (6.10) and 
(6.11),

( )22 2
CM CM

1 1
– .2 2

mM
E mu MU U uM m∆ = + = +

In an explosion, we have u = U = 0, and 

2 21 1
2 2mv MV E+ = ∆ .

Conservation of momentum gives 0mv MV+ = , so

21
12

M
E MVm

 ∆ = +   ,

or

( )

1
22

.
m E

V M m M
∆ =  + 

If M + m is a constant (the mass of the bomb), then the larger 
 fragment carries off less energy by a factor (m/M)1/2. This means 
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that the smaller fragments can do more damage (depending on how 
many share the energy). 

6.7 THE PROBLEM

We can now look at our initial problem as a series of elastic 
 collisions.

Figure 6.4: The figure on the left shows the balls at the point of initial impact (with the 
 separation of the balls exaggerated); the figure on the right shows the subsequent collision

In the first stage, the big ball collides with the floor and has its 
motion reversed. We then have a collision between a small ball of 
mass m falling with speed u and a large ball of mass M rising with 
speed u.

Thus, from Equations (6.14) and (6.15) with U = −u

3 –
–

1

m
M

v u um
M

 
  

=
+

 ,

if m ≪ M, and 

3
1 –

– .
1

m
MV u um
M

~=
+

Thus, we expect the small ball to fly rapidly up once the big ball hits 
the floor. There is a transfer of energy from the larger to the smaller 
ball. This makes a surprisingly effective demonstration. 
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6.8 COLLISIONS IN TWO DIMENSIONS

Noncollinear collisions are a bit more difficult because we now 
have to conserve momentum in two directions. The general setup is 
shown in Figure 6.5

Figure 6.5: Bodies of masses m1 and m2 with speeds u1 and u2, respectively, traveling 
at  angles θ1 and θ2 to the horizontal collide elastically. After the collision, the bodies 

move with the speeds and angles shown

We are given the initial parameters and have to find the final val-
ues after collision. Assume the collision is elastic. Then conservation 
of momentum (see Figure 6.5) yields

       ||P =  m1u1cosθ1 + m2u2cosθ2 = m1v1cosφ1 + m2v2cosφ2 (6.16a)

       P⊥ =  −m1u1sinθ1 + m2u2sinθ2 = m1v1sinφ1 − m2v2sinφ2 (6.16b)

and conservation of energy gives

 
2 2 2 2

1 1 2 2 1 1 2 2.E m u m u m v m v= + = +  (6.17)

So we apparently have three equations for four unknowns. How do 
we fix this? Imagine repeating the experiment many times with the 
same initial angles and speeds: the result will be a variety of angles 
for the outgoing particles, because the angles will depend on just 
how glancing a blow they receive. So one of the emerging angles has 
to be given in order to determine the problem. Let this be φ1. Then, 
eliminating φ2 from (6.16a) and (6.16b),

(P|| - m1v1 cosφ1)2 + (P⊥ - m1v1 sinφ1)2 = m2
2 v2

2 = E - m1v1
2,

which is a quadratic equation for v1. We can then obtain v2 and hence 
φ2; but the general solution is far from illuminating. So let us take a 
specific example that does lead to a nice result. 
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We put m1 = m2 = m and u1 = 0. Then Equations (6.16a) and 
(6.16b) give

 u2 cosθ2 = v2 cosφ2 + v1 cosφ1, (6.18)

 u2 sinθ2 = v2 sinφ1 − v2 sinφ2, (6.19)

and (6.17) gives

 2 2 2
2 1 2.u v v= +  (6.20)

Thus, squaring and adding (6.18) and (6.19), we have

u2
2 = v1v2 (cosφ1 cosφ2 - sinφ1 sinφ2) + v2

2 + v1
2.

Using (6.20), we get

(cosφ1 cosφ2 - sinφ1 sinφ2) = cos(φ1 + φ2) = 0,

or

φ1 + φ2 = 
2
p .

This is a useful result for snooker players. The cue ball and the target 
will move at 90° after collision.

6.9 COLLISION TIMESCALES

Since we can treat collisions by simply conserving momentum 
before and after the event, it is unnecessary to go into the details of what 
happens in a collision. However, the details can be important in clarify-
ing what assumptions we are making in treating collisions in this way.

On impact, in a collision between two bodies, the bodies deform 
and this deformation is transmitted through the bodies with the 
speed of sound in the material of the bodies. The deformation of 
each body lasts on the order of the time it takes sound to cross the 
body and hence to transmit the force of impact to the body as a 
whole. If the force between the bodies is of order F and the time of 
impact of order ∆t, the body is subject to an impulse of order F∆t. 
This is equal to the change in momentum (Section 6.3). 
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The impact of a golf club on the ball provides an interesting 
application. One might think that this is not a case of a momen-
tum conserving collision because the golf club is being driven by the 
golfer. The ball and club head do not appear therefore to be an iso-
lated system without external forces. However, the time of contact is 
about the sound crossing time of the golf ball which is about 0.5 ms. 
The time for the sound wave to travel up the shaft is about 1 ms. By 
the time, the golfer is aware of the impact the golf ball is well on its 
way. We can therefore treat the impact as conserving momentum.  

6.10 ROCKET EQUATION

An interesting application of the conservation of momentum is 
the motion of a rocket. The expulsion of momentum in the exhaust 
gases is balanced by the gain in momentum of the rocket.  

Figure 6.6: Derivation of the rocket equation; the rocket is moving from left to right

Suppose the rocket, mass m, ejects a mass δm with relative speed ve. 
If the speed of the rocket is v before the gas is ejected and v + δv 
after ejection conservation of momentum gives

( )( ) ( )e– – .mv m m v v m v vd d d= + +

Note that we write m + δm for the mass of the rocket so that we can 
use the standard calculus approach that dm/dt < 0 corresponds to a 
loss of mass. Canceling terms gives 

e0 ,m v mvd d= +
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and hence, in the limit, 

e

d d
– .

v m
v m=

This integrates to

e elog i
f

f

m
v v m=

for the final speed in terms of the initial and final masses. This is the 
rocket equation.

The rocket equation can be used to demonstrate the advantage 
of discarding the rocket casing along the way in multiple stage rock-
ets to achieve higher speeds for a given payload. 

6.11 CHAPTER SUMMARY

●  In a system subject to no external forces momentum is 
 conserved.

●  The change in momentum of a system equals the impulse 
of the external forces ∫ F dt

●  In an elastic collision momentum and energy are conserved.

●  Collisions are often best looked at from the CM frame.

●  The rocket equation gives the speed of a rocket in terms of 
the initial and current mass if the exhaust speed relative to 
the rocket is constant.

6.12 EXERCISES

1.	 Show that with the inclusion of gravity the rocket equation 
for near Earth flight becomes

e e
–

log –i

f

i fm m m
mv v g m

 
 
 

=


,
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	 where ṁ  is the mass rate at which fuel is being burnt 
 (assumed constant). It is possible to achieve a mass ration 
of mi /mf ∼ 10 and a ratio of thrust to launch weight of ≤ 2. 
Show that this is insufficient to achieve escape speed from 
the Earth’s surface in a single stage rocket. 

2.	 For the special case of an n-stage rocket with identical 
stages and constant exhaust speed, find the final speed as a 
function of n and the fuel to mass ratio.

3.	 The HS-601 HP satellite uses XIPS ion thrust engines to 
perform north-south station keeping and to control roll 
and yaw. The xenon ions are ejected with a velocity of 
33,600 m s−1. The specific impulse (defined below) is 3400 s 
with a mass flow rate of 0.6 mg s−1. Calculate the thrust and 
the power required from the solar array. The initial satellite 
mass is of order 1680 kg with about 380 kg of xenon fuel; if 
a single ion thrust motor were fired continuously, find the 
time to reach maximum speed and comment on the result. 

 The specific impulse of a rocket, I, is defined in terms of the 
thrust F (in Newtons) by F = Im⋅ g.

4.	 Neutrons in a nuclear reactor are released from fissile 
 material with energies of a few MeV and must be slowed 
down to speeds of a few km s−1 to maintain a chain reac-
tion. They are slowed by elastic collisions with the nuclei 
of a moderator. How many head-on collisions would be 
required for a boron moderator? (In practice, the number 
is larger because glancing collisions are less effective in 
exchanging energy.) 

5.	 Suppose two bodies have speeds u1 and u2 before a collision 
and speeds v1 and v2 afterward. The coefficient of restitu-
tion is defined by 

2 1

2 1

–
.–

v v
e u u=

 Regulations of the Association of Tennis Professionals 
(ATP) specify the height to which a ball must bounce on a 
hard surface. A ball dropped from a height of 254 cm will 
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have a velocity of 7.06 m s−1 just before it hits the ground. 
According to the regulations, the tennis ball must then 
bounce to a height of between 135 cm and 147 cm, meaning 
the ball must have a velocity of between 5.14 m s−1 and  
5.36 m s−1 as it leaves the ground. Calculate the range of 
 acceptable values for the coefficient of restitution. How 
much energy is lost in the impact?

6.	 A bouncing ball dropped from a height h loses a fraction f of 
its energy on impact with the ground. What is the length of 
time before it comes to rest? (The time is finite even though 
the number of bounces is infinite.) 
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CHAPTER 7
Orbital MOtiOn

Problem: The rings of Saturn and the accretion of material by a 
black hole are just two phenomena that depend on the “tidal” forces 
of gravity. Under what conditions does gravity disrupt an orbiting 
body?  

Image of the tidal disruption of Comet Shoemaker–Levy in the gravitational field of 
 Jupiter (May 17, 1994) (NASA Image: STScI, http://hubblesite.org/newscenter/newsdesk/ 

archive/releases/1994/21/image/b)

7.1 ANGULAR SPEED: GEOMETRIC APPROACH

Consider first a body moving uniformly round a circle; say a mass 
on the end of a string or a planet in a circular orbit about its parent 
sun. It is clumsy to describe this motion in Cartesian coordinates  
(x, y); it is much simpler to use polar coordinates (r, θ). The motion 
is then described by
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( )0, constant say ,r q w= = =



and hence

constant and .r tq w= =

The quantity ω is called the angular speed of the body. In one 
 revolution, θ changes by 2π so the time to complete one revolution is

2
.T

p
w=

We call T the period of the orbit. The number of orbits per unit time 
is the frequency f = 1/T.

We can see in Figure 7.1 that if in a time δt, the body moves 
through an angle δθ and it travels a distance δs = rδθ. Its linear 
speed v is therefore 

d
.dv r rt

q w= =

Another way to see this for uniform motion is to consider that the 
body moves round the circle, a distance of 2πr in a time T, so 

2 2
.

r
v r rT T

p p w= = =

Figure 7.1: Circular motion
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7.2 ANGULAR SPEED: ALGEBRAIC APPROACH

As an alternative to the geometric approach, we can describe the 
motion of a body in vectorial form. This will be useful in cases where 
the geometric picture is more complicated. Let r̂ be a unit vector in 
the radial direction, and let θθ̂ be a unit vector tangential to the circle 
(Figure 7.2)

From the figure, we have 

r̂ = cosθ i + sinθ j,

and 

θθ̂  = -sinθ i + cosθ j.

Hence, 

q q q q= +
ˆd

– sin cosdt
r

i j 

= ω θθ̂ .

Figure 7.2: Angular speed in vector form

This agrees with the figure where we see that δ r̂ is in the direction of 
θθ̂ and has magnitude |r̂ | δθ = δθ (for small enough δθ). Similarly,

q q q q=
ˆd

– cos – sindt i j 

θ

 
w= − ˆ.r

 
(7.1)
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Now consider 

ˆ,r=r r

the position vector of the body. We have

 
d ˆˆ .d r rt w= +
r

r θ  (7.2)

If ṙ = 0 (for circular motion), this tells us that the velocity of the body 
is rω in the tangential direction. We also see, although this is obvious 
anyway, that if the body is not moving in a circle, the radial compo-
nent of the velocity (r̂ ⋅ dr/dt) is dr/dt.

7.3 ANGULAR VELOCITY AS A VECTOR

Any motion can be decomposed into a translation and a rotation 
about an axis. We can therefore think of the angular velocity as hav-
ing a magnitude and direction if we assign the direction as the axis of 
rotation. We can then write the relation between angular velocity ωω 
and the linear velocity v of a body at position r as

.Ÿ=ωv r

For example, if ωω = (0, 0, ω), then a point in the x– y plane has veloc-
ity (ω y, −ω x, 0).

7.4  ANGULAR ACCELERATION: GEOMETRIC 
APPROACH

Suppose a point moves with constant speed in a circle. The 
velocity vector of the body is tangential to the circle. In Figure (7.3), 
the velocity vectors from two neighboring points have been put into 
a triangle, so we can see clearly the change in velocity. There are 
two ways of calculating the change in radial speed. The tips of the 
velocity vectors v and v + δv lie on a circle because the lengths of 
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both sides of the triangle represent the same speed v. This triangle 
therefore is exactly like the one in Figure 7.2, where we compared 
two points on a circle. 

So, just as in Section 7.1, where we had δs = r δθ, here we have 
δv = v δθ. Dividing by δt, we get that the acceleration dv/dt is given 
by 

 
2

2d d
.d d

v v
v v rt t r

q w w= = = =  (7.3)

Alternatively, the change is velocity is in the radial direction and 
hence perpendicular to the tangent. From the triangle on the right 
of Figure (7.3), the acceleration is

sin
.

v v
vt t t

d dq dq
d d d= =

Figure 7.3: Angular acceleration

The various equivalent forms in Equation (7.3) are obtained by 
using v = rω and they are all useful forms to remember. The expres-
sion rω 2 for the acceleration is just what we might guess on dimen-
sional grounds: rω 2 is the only way, up to a constant, that we can 
make an acceleration from a length r and an angular speed ω per 
unit time. 

Note that the component of acceleration tangential to the circle 
is zero because the speed of the body is constant. The direction of 
the acceleration is therefore radial, toward the center of the circle; 
we call this a centripetal acceleration.
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7.5  ANGULAR ACCELERATION: ALGEBRAIC 
APPROACH

Continuing with the vectorial approach, we have from (7.2)

w= +ˆd ˆ.d rr rt
r

 θ

So differentiating again, we get 

2

2

ˆd d dˆ
dd

ˆ
ˆ ˆ

dr r r r rt tt
w w w= + + + +

r r
r 
  

θ
θ θ

 2 ˆ( – ) (ˆ ) .r rw= + +r 
 ω ω θ2 r r  (7.4)

If the motion is circular at constant speed, this tells us that the radial 
component of acceleration is just −rω2, where the minus sign shows 
that it is toward the center. As a bonus, we get the acceleration for 
a general planar motion in polar coordinates: for the radial compo-
nent of the acceleration (taking the scalar product of (7.4) with r̂) 
from (7.4)

 ( )2 ;ra r rw= −  (7.5)

and for the tangential acceleration,

 ( )21 d
2 ,da r r rr tq w w w= + =  (7.6)

where ω = dθ/dt.

7.6 ANGULAR MOMENTUM 

Consider a particle of mass m moving in a plane subject to no 
nonradial forces. Then from (7.6),

( )21 d
0,dm rr t w =
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and therefore,
2 constant.mr w =

Furthermore, the direction of the angular velocity will remain con-
stant, normal to the plane. In contrast, the linear momentum mv is 
not constant in direction even if |v| = rω is constant in magnitude. 
We therefore define a new quantity, the angular momentum, by

 ( ) ( )2 – .m m mr mŸ Ÿ= = ∧ = ⋅ω ω ωh r v r r r r  (7.7)

For the motion of a body in a plane, with no nonradial forces, r and 
ωω are perpendicular so . 0=ωr  and from (7.7), the angular momen-
tum vector h is in the direction of the angular velocity and is con-
stant in magnitude and direction.

We shall generalize this from particles to extended bodies in 
Chapter 9.

7.7 CIRCULAR MOTION: DYNAMICS

For the general motion of a body in three dimensions, we have 
seen that Newton’s second law can be written in vector form as

.m =x F

This is not, however, the most convenient way to deal with motion 
under forces directed toward a central fixed point. Rather we use 
the polar form for the acceleration derived in Section 7.5. Then

 ( )2
rm r r Fw− =  (7.8)

from (7.5) and 

 ( )21 d
.dm r Fr t qw =  (7.9)

from (7.6). For a radial force Fθ = 0, so r2ω = constant. Notice that 
this does not imply that the motion is circular (i.e., that r is a con-
stant) because the angular speed might be changing. How is that 
possible? A radial force can act to change the speed of the body if the 
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motion is not perpendicular to the radius. However, for the moment, 
we shall restrict ourselves to circular motion. Then both r and ω are 
constant for a given body. The only point at issue is how the angular 
speed in these circumstances depends on the radius of the circular 
orbit. In general, if r̈ = 0, from (7.1) 

w
− =  

 

1
2

.rF
mr

If Fr = constant, then 

w
−

∝
1
2,r

and

∝
1
2,v r

so the angular speed decreases with r and the linear speed increases. 

A more interesting example is Fr = kr with k a constant. Then 
ω is constant, so two bodies at different radii from the center will 
remain along the same radius vector that they start from. This is the 
force law between quarks in hadrons (strongly interacting particles) 
such as the proton. If we assume that the mass of the proton is con-
centrated in the quarks (which is not really true, but will do for this 
exercise) and if we assume the quarks orbit at about the speed of 
light (which is in fact a good first approximation), then we can work 
out the radius R of a proton from its angular momentum. We have

R cw =

from the assumption that the quarks move at light speed. The angu-

lar momentum of a proton is 
1
2, where p= /2h  and h is Planck’s 

constant.

Thus, 
1

,2mRc = 

from which (to order of magnitude) 

Newtonian Mechanics_2E_Ch_07_3pp.indd   154Newtonian Mechanics_2E_Ch_07_3pp.indd   154 3/30/2021   11:59:19 AM3/30/2021   11:59:19 AM



Orbital MOtiOn  •  155

1510 m,R mc
−~ ~



which is around the right value. 

Another example is a circular orbit with constant angular 
momentum. If mr2 ω = constant, then F = mrω2 ∝ 1/r3. This is the 
(fictitious!) force law implied by the tractor beam of the Starship 
Enterprise.  

7.8 PARTICLE IN A MAGNETIC FIELD

An example of circular motion with a more complicated force 
law is an electrically charged particle, charge e, in a magnetic field. 
The force is orthogonal to the field, B, and the velocity v of the 
particle and has a magnitude vBsinθ, where θ is the angle between 
v and B. The equation of motion for a circular orbit in a plane per-
pendicular (θ = π/2) to a constant field is

2

.
v

m eBvr =

Thus, v ∝ r and ω is constant, independent of r. The angular fre-
quency ω = eB/m is called the Larmour frequency. Since the period 
is independent of r, a fixed frequency voltage can keep  particles 
accelerating in circular orbits. This is the principle of the cyclotron. 

It is interesting to work out the radius of the orbit of a particle 
moving with speed c (or, for pedantic readers, speed close to c). This is

.
mc

r eB=

For an electron in the Earth’s magnetic field, r ~ 10 m. This suggests, 
rather remarkably, that we could accelerate electrons to close to the 
speed of light in desktop machines with magnetic field strengths 
only a few orders of magnitude greater than that of the Earth. The 
fallacy (unfortunately) is that relativity makes an enormous differ-
ence as the particles approach the speed of light.
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7.9 CENTRIFUGAL FORCE

Newton’s laws hold in an inertial frame. In such frames, a body 
is held in a circular orbit as a result of a force toward the center 
that produces an acceleration toward the center. For example, the 
attentive parent insists that the child on the roundabout should hold 
on tight, because the tension in her arms will provide the necessary 
force to produce the required acceleration toward the center. If the 
child lets go, she is not hurled off from the roundabout so much as 
that she continues in the tangential motion required by Newton’s 
first law. But what about the child’s view from the roundabout? 

From the child’s frame of reference, the roundabout is at rest 
and the world is going round. Why does the child have to hang on in 
a system in which she is at rest? The answer is that Newton’s laws do 
not hold in a rotating frame, because such a frame is not an inertial 
one. We can derive the correct equations of motion in a noninertial 
frame of reference only by starting in an inertial frame and making 
a transformation. We give the complete picture in the next section, 
but we already know what the answer must come out to be if New-
tonian mechanics is to be consistent. In a frame of reference rotat-
ing with a body at angular speed ω relative to an inertial frame, the 
equation of motion is

2 0 ,r rF mr maw− = =

where ar is the radial acceleration. So the radial acceleration in 
the rotating frame of reference is indeed zero, but a new term has 
appeared on the left to oppose the tension in the child’s arms. This 
is called an inertial force. This force (and other such forces) appears 
whenever we view the world from a noninertial frame. (Note the 
slightly confusing nomenclature: inertial forces appear in non- 
inertial frames.) 

In this particular situation, of constant rotation about a fixed 
axis, we have a name for the inertial force: it is called centrifugal 
force. We see that the centrifugal force is in the opposite direction to 
the force holding the body in orbit, hence outward. The important 
fact is that centrifugal forces can only arise in noninertial frames. In 
inertial frames, there are only “real” forces and centripetal (toward 
the center) accelerations.
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Example: Astronauts are trained to withstand high g-forces by 
being swung round lying on a rotating arm. The maximum centrifu-
gal acceleration a pilot can tolerate without blacking out if he lies 
with feet outward is about 8g. Assuming the centrifuge arm is about 
3 m what is the angular speed? 

We identify the most useful form of the radial acceleration here 
as rω2 and set it equal to 8g. Then

1
2 18

5 rad s ,
g
rw ~ − =  

 

or a period of about a second for one rotation!  

7.10 ROTATING FRAMES 

In three dimensions, inertial forces are more complicated. Let 
a body have position vector r′ in an inertial frame. Let us consider a 
frame rotating with angular velocity ω relative to the inertial frame 
(we can always add translation later). Let the position vector of the 
body in this noninertial frame be r. Then the velocity of the body 
relative to the inertial frame is composed of two components: the 
speed in the rotating frame and the speed of the rotating frame as 
seen from the inertial frame. Thus, we can write

d d
,d dt t

′
= + ∧

r r
rω

or
d d

.d dt t
′  = + ∧ 

 
ωr

r

We see that the rate of change in the rotating frame is obtained by 
applying the operator (d/dt + ωω∧) to a vector. Thus, to obtain the 
acceleration in the rotating frame, we apply this operator to the 
velocity: 

2

2
d d d

d dd t tt

′   = + ∧ + ∧  
  

ω ωr
r

Newtonian Mechanics_2E_Ch_07_3pp.indd   157Newtonian Mechanics_2E_Ch_07_3pp.indd   157 3/30/2021   11:59:20 AM3/30/2021   11:59:20 AM



158  •  NewtoNiaN MechaNics, 2/E

2

2
d d d

2 .d dd t tt
= + ∧ + ∧ ∧ + ∧

ωω ω ωr r
r r

If the rotation is steady, we can ignore the last term. 

If we apply Newton’s law F m= ′r  in the inertial frame, we have, 
in the rotating frame,

2

2
d d d

– 2 – .d d d
m m m mt t t

∧ ∧ ∧ − ∧ =
ωω ω ωr r

F r r

The term −mωω∧ωω∧r is called the centrifugal force and the term 
−2mωω∧dr/dt, or −2mωω∧v, is called the Coriolis force. Note, once 
more, that these forces appear only in a rotating frame. So, for exam-
ple, a body observed from a rotating Earth will be seen to experience 
these forces.

As a historical example (known as Newton’s bucket), imagine you 
have a bucket of water supposedly at rest in front of you. The water 
surface is flat (apart from the very minor curvature due to surface ten-
sion at the sides of the bucket. If you now spin the bucket rapidly in a 
turntable, the water surface will adopt a parabolic form. An observer 
spinning round with the bucket will see a bucket at rest and a para-
bolic surface. The deformation of the water surface for no apparent 
reason indicates to this observer that they are not in an inertial frame.

It is not quite true that the surface of my stationary bucket is flat: 
if you could measure it arbitrarily accurately, you should find that it 
is slightly curved. This would tell me that the Earth is spinning and 
is therefore not an inertial frame.

If ωω is perpendicular to both r and v, then the acceleration 
reduces to

2 2
2

2 2
d d

– ,
d dt t

w
′
=

r r
r

which is the more familiar form of the centrifugal acceleration

Example: What is the ratio of the effective acceleration due to grav-
ity at the equator and at the poles as a result of the Earth’s rotation?
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We have 

2
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2
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0.997=

7.11 GRAVITY

The most important central force on a large scale is that of grav-
ity. Gravity is a relatively very weak force compared to the other fun-
damental forces (electromagnetism and the weak nuclear and strong 
forces). It takes the whole mass of the Earth to produce the modest 
acceleration of 9.81 m s-2 at its surface. But because it is long range 
and because there is no cancellation with antigravity, it usually domi-
nates on macroscopic scales. 

Newton’s law of gravitation gives the force between two par-
ticles of masses M1 and M2 separated by a distance r as

1 2
2 ,

M M
F G

r
=

where G = 6.67 × 10-11 N kg-2 m2 is Newton’s constant. The force is 
attractive and acts along the line joining the two particles. In vector 
form, we can express it as:

= 1 2
3– ,

M M
G

r
F r

or

= 1 2
2

ˆ– ,
M M

G
r

F r

where r̂ is a unit vector.
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Figure 7.4: Gravitational action and reaction

Because gravity is a relatively weak force (the Earth produces an 
acceleration of only 1g) measuring G is quite difficult and its value 
is one of the least precisely known of the fundamental constants. 
Of course, if we take the mass of the Earth as known, then we can 
calculate G from the local acceleration due to gravity g, but this is 
circular because we need G to find the mass of the Earth. The value 
of G is determined using experimental setups that measure the force 
between two large masses, essentially sophisticated versions of that 
in Figure 7.4.

Example: As an example of the relative weakness of gravity let us 
estimate the gravitational attraction between Romeo and Juliet. 
Taking them to be point masses separated by 0.5 m, and allowing 
Juliet to be a little lighter than Romeo at 60 kg compared to 70 kg, 
gives a force of around 10−6 N. We can visualize how small this is 
if we look at the mutual potential energy (Equation (13.1) below): 

Romeo Juliet /0.5mGM M  is about 5 × 10−7 J. Assuming a watch battery 
lasts 5 years, this is sufficient to power a watch for less than a second. 

7.12 EXTENDED BODIES

In the previous section, we have stated Newton’s law of gravity 
for point particles and assumed it can be applied to extended bod-
ies. This requires some justification (which was one of the difficul-
ties that held up Newton for some time). For a spherical body (with 
a spherically symmetric mass distribution), the justification can be 
obtained by explicit integration. The setup is shown in Figure 7.5. 
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Figure 7.5: The gravitational force due to a uniform sphere

We evaluate the force on a point mass m at the point Q due to 
the spherical distribution of mass, density ρ(R) centered on a point 
O a distance r from Q. The net force will be in the direction QO by 
symmetry so we shall evaluate this component only. Consider the 
element of mass at the point P, specified by the polar coordinates θ 
and φ with OQ as the z-axis. The force along QP is

2

2
sin d d d

d .
Gm R R

F
l

r q q
=

f

The component in the z-direction is

( cos )
d cos d .

r R
l

F F
qy −

=

Using the cosine rule, we have
2 2 22 cos .l r rR Rq= − +

Thus, our integral becomes

( )
r q q q

q
=

+
∫∫∫

2

3
2 2 2

sin ( – cos )d d d

– 2 cos
z

Gm R r R R
F

r rR R

f
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over the mass sphere. The φ integration just gives a factor of 2π. To 
evaluate the remaining integrals, note that we can write

( )

2

1
2 2 2

d  d(cos )
2 ,

2 cos
z

R R
F Gm r

r rR R

∂ r qp ∂
q

=
− +

∫∫

with the limits on cos θ being 1 and -1. Now

( )
( )

( ) ( )[ ]

q q
q

−
−

 
= − − + 

 − +

= − − − + =

∫
111 2 2 2

11 2 2 2 1

d(cos ) 1
2 cos

2 cos

1 2
.

r rR RrR
r rR R

r R r RrR r

So finally, we get

2
2

1
4 d ,z

GmM
F Gm R Rr r r

∂p r∂= =∫
where M is the mass of the gravitating body. This is exactly the same 
as if the body were a point mass at its center. 

The Earth is approximately spherical. So, as far as its gravita-
tional attraction is concerned, we are justified in treating it to a first 
approximation as a point mass at its center. 

A nonspherical body certainly does not behave like a point mass 
except approximately at large distances. This is more difficult to jus-
tify (see Section 7.23).

7.13  GRAVITATIONAL POTENTIAL AND 
POTENTIAL ENERGY 

In Section 4.4, we defined potential energy at a point in two 
(equivalent) ways: as the work done by a conservative force in mov-
ing a mass from a fixed reference point to the point in question and 
as a function the gradient of which gives the force. For the inverse 
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square law of gravity, applying this second definition, we write for a 
point mass m,

 = = −  
 2

d
.d

GMm GMm
F r rr

Thus, the gravitational potential energy of a point mass m in the field 
of a mass M is

 = −P .
GMm

E r  (7.10)

Incidentally, the fact that the gravitational force can be written as the 
gradient of a function proves that gravity is conservative. 

It is often not convenient to continually refer to the potential 
energy of a particular mass m; rather we can refer to the potential 
energy of a unit mass. We call the potential energy of a unit mass the 
gravitational potential and write it as φ(r)

Calculating the work done in bringing a unit mass from infinity 
to a point a radial distance r from the origin along a radial trajectory 
gives

2 d .
r

GM GM
r rr

∞

= = −∫f

To find the potential energy of a distribution of N point masses Mi at 
points ri, we sum over the distribution:

( )
=

= ∑
1

– .
–

N
i

ii

M
r G

r r
f

In the limit of a continuous distribution, each element contributes a 
mass ρ dV, and the potential energy becomes

( ) r ′= −
′−∫ d .r G V

r r
f

This expression will be useful later when we compare a general 
extended body to a spherical mass. 
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7.14 ESCAPE SPEED 

The total energy of a body of mass m at a distance r from a 
spherical body of mass M is

 = + = −2
K P

1
.2

Mm
E E E mv G r

 (7.11)

If there are no other external forces on the body, then the energy is 
a constant which can be positive or negative (or zero). If E < 0, then 
the maximum value for r is 

=max ,
GMm

r E

when v = 0. The two bodies are therefore bound. If E > 0, then  
rmax → +∞; the separation of the bodies can be arbitrarily large. We 
say the bodies are unbound. 

The marginal case is E = 0. To achieve this, we must have
1
2

esc
2

.
GM

v v r
 = =  
 

We call this the escape speed. It is the speed of a body just sufficient 
to take it to infinity, that is, to allow it to escape the parent body start-
ing from a radial distance r from the center. 

Example: One simple illustration of the weakness of gravity is 
afforded by the escape speed from Deimos, the smaller of the two 
Moons of Mars. Use the following data to show that a human athlete 
can jump off of its surface into space. 

Data: Mass 1.48 × 1015 kg, radius 6.2 km.

The escape speed is 
1

11 15 2
1

esc 3
2 6.67 10 1.48 10

5.6ms .
6.2 10

v
¥ ¥ ¥ ¥

¥

−
− 

= = 
 

We can compare this to the takeoff speed of a good high jumper: 
–12 12ms .v gh ~=
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7.15 RADIAL INFALL

If the motion under gravity is purely radial, then we can obtain a 
complete picture of the motion. We have θ = constant, ω = 0, so the 
radial equation of motion (Newton’s second law) is

 2 .
GMm

mr
r

= −  (7.12)

There are several ways of integrating this equation exactly, which 
we shall come to in a moment, but first let us do some estimates. 
Suppose you are falling from a height of h above the Earth, say in 
an airplane in a nosedive (neglecting air resistance). How long is it 
before you hit the ground?

If the fall time is t, we can estimate the acceleration as h/t2 (based 
on dimensions: [acceleration] = L/T2). So

2 2 .
h GM
t r
~

If h is 2 km (say), then 

1 1
2 23

11 24

2000
6370 10 14s.

6.67 10 6 10
h

t r GM~ ~ ¥ ¥ ~
¥ ¥ ¥−

   
     

Notice that the time is independent of the mass of the falling 
body. In the absence of air resistance, all bodied fall with the same 
 acceleration. 

Example: Another example is the time it would take for the Sun 
to collapse if the interior pressure were removed. In this case,  

h ~ R⊙ and we have ( )~
1

3 2/t R GM
 

 ~ 1600 s! The fact that this time 

is much shorter than the age of the Earth (and hence of the Sun) 
tells us that the Sun must be supported by internal pressure. 
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Now suppose we need to integrate the equation of motion (7.12) 
to obtain a more detailed picture of radial infall. The first thing we 
do is to choose some dimensionless variables so that we do not clut-
ter the solution with factors of G and M. Specifically, if we identify 
a convenient radial scale R, we can define new variables x and τ by

 ,
r

x R=  (7.13)

 

1
–3 2

.
R

tGMt
 

=  
 

 (7.14)

Note that the scaling of t can be obtained from dimensional analy-
sis but it also follows from the previous example, where we found 

( )
1

3 2/R GM  to be a timescale, or from Kepler’s third law that we 

 discuss below (Section 7.16). Using the new variables, (7.12) becomes

 
2

2 2
d 1

– .
d

x
xt

=  (7.15)

Let us denote dx/dτ by x′. Then we can integrate (7.15) by multiply-
ing through by x′:

t t
′   ′ ′′ ′= = =   

   
2

2
d 1 d 1

– ,d 2 d
x

x x x xx

and hence

 

1
222

 2 ,x x e = − + 
 

′
 

(7.16)

where e ′=2 21
2 x (0) is the (dimensionless) initial energy per unit 

mass as x → ∞. Using ε rather than x′(0) itself tidies up the factors of 
2. Note that we take the negative square root in (7.16) to represent 
an infalling body. Continuing, we can integrate (7.16):

 

( )
( )

1
2

1
2 2

1
d 0 .

2
1

x
x

x

t t
e

− = −
+

∫  (7.17)
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The integral can be performed by substituting 2
2

1
sinh ,x q

e
=  giving, 

eventually,

 ( ) ( )
1 11

3 12 22
1

0 1 sinh ,
2

x x xt t e e e e− −  
− = − + −  

  
 (7.18)

where x = 0 at τ = τ(0). If the infalling body starts with zero energy 
at x = +∞, then ε = 0. It is an interesting mathematical exercise to 
work out the limit of (7.18) as ε → 0, but it is much easier to start 
again from (7.17)! The complexity of (7.18) illustrates the value of an 
approximate solution (Figure 7.6).

Figure 7.6: The solid line shows the approximate infall ( )t t− = −
3
20

2
3

x  and the 

dashed curve the exact solution (7.18) for ε 2 = 0.2 with the condition that both go through 
the origin (τ (0) = 0)

Example: Show that a body falling radially from rest to r = 0 at  
t = 0 satisfies

( ) ( )
2

213
33

2 ,
3

2r GM t = − 
 

for t < 0.

We integrate (7.16) with ε = 0. Thus,
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t= −∫ ∫
1
2d 2 d ,x x

or
3
22

2 .3 x t= −

Reinstating the physical variables from (7.13) and (7.14) gives the 
result. 

7.16 CIRCULAR ORBITS

Figure 7.7: A circular orbit

Consider now a bound system. What are the stationary states? 
Consider first just two bodies of mass m and M with M ≫ m. If we 
neglect the force of the smaller body on the larger body, then the 
latter will remain at rest in an inertial frame. We look for solutions 
in which r = constant, that is, circular motion. Using (7.3) for the 
acceleration, the equation of motion is

2
2

GMm
mr

r
w=

by Newton’s second law.

Thus, the body remains in the fixed orbit if it has an angular 
speed:
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1
2

3
GM
r

w  =  
 

 (7.19)

As usual, having obtained the formula we try to understand it. The 
equation tells us that only one specific angular speed will keep the 
body in orbit at a specific distance r. This is reasonable: if the body 
moves too quickly for the gravitational force that is exerted on it, it 
will fly off at a tangent. If it movers too slowly, it will fall toward the 
center. In either case, the radial distance cannot remain constant.  

The formula also tells us that the angular speed falls off with dis-
tance. This means that the period T = 2π/ω increases with distance. 
In fact:

 

1
2 32

24
.T rGM

p 
=  
 

 (7.20)

This is Kepler’s third law for the special case of a circular orbit. It 
tells us in words that the square of the period is proportional to the 
cube of the orbital radius. This can be verified in the Solar System, 
given that the Sun is indeed much more massive than the planets 
and that the orbits of the planets are approximately circular. 

Example: The Sun is 8 light minutes away, the Moon 1.25 light sec-
onds. Using the ratio of the length of the month to the length of the 
year, estimate the ratio of the mass of the Sun to that of the Earth.

We have 
3 1
2 2Earth

Moon Moon
.

T r M
T r M

   =    
   

 



Note that there is no need to convert the light travel times to SI units 
since we are dealing with ratios. (But the units need to be consistent, 
so we shall use light seconds for the orbital radii of both the Sun and 
Moon and months for their orbital periods.) Substituting numerical 
values, we get

2 3
6Moon 12 1.25

2.5 101 480 ,
M

M ~ ¥ −   =    
   

which is a slight underestimate.
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7.17 VIRIAL THEOREM

From Equation (7.19), the kinetic energy of a body of mass m in 
a circular orbit of radius r about a body of mass M  is

2 21 1
.2 2

GMm
mr rw =

Thus, for a body in a circular orbit, using (7.9):

 K P2 0.E E+ =  (7.21)

This is a particular example of the Virial Theorem that asserts a 
 relationship of this form in all cases of a system in a sufficiently sym-
metrical state of equilibrium. Note that the virial theorem gives an 
actual value for 2EK + EP, in contrast to the energy Equation (7.10) 
which asserts only that E = EK + EP is some constant <0. The virial 
theorem in the form (17.1) is not valid for a body in an elliptical 
orbit (which is where the symmetry requirement comes in). There 
is a more complicated form of the theorem for this case, but that is 
beyond the scope of this discussion.

7.18 CHANGING ORBITS

Here is an argument that sometimes seems paradoxical. If we 
are in a spacecraft in orbit and we burn the motor and increase the 
speed, the radius of the orbit will increase. If our speed were to 
increase above escape velocity, then we would escape from orbit. 
But the equation for orbital velocity is v = (GM/r)1/2 so according to 
this as v increases r gets smaller not larger! What have we missed?

This makes it look as if formulae either do not work or only serve 
to complicate the issue. The problem is that a formula is valid only 
in the model for which it was derived. In general, the orbital veloc-
ity is not (GM/r)1/2; it cannot be: quite obviously, the orbital veloc-
ity at any point can be whatever you want it to be by burning your 
rocket motors. Therefore, the formula can only hold under certain 
restricted circumstances. In fact, the formula gives the speed of a 
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body in a circular orbit. If we burn our rocket motors, we shall no 
longer be in a circular orbit. In fact, to get from one circular orbit to 
another, we obviously have to depart from a circle. We shall look at 
the form of the more general orbit in the next section. 

There is another apparent paradox involved here. Notice that in a 
circular orbit, the smaller the radius of the orbit the greater the speed. 
So we can make our rocket go faster by attempting to slow down. 
(Point the rocket motors in the direction of travel). However, we can 
do this only at the expense of losing height – in the same way that we 
can increase our speed by jumping off of a chair. There is no paradox! 

7.19 ELLIPTICAL ORBITS

To investigate if there are more general orbits than circular, 
we need the general equation of motion of a body under a central 
inverse square law of force. In deriving the equations of motion in 
Section 7.7 (Equations (7.7) and (7.8)), we assumed that the orbit 
lay in a plane. To start with we would like to see if this is always the 
case. We need the general equations of motion in three dimensions, 
which means writing Newton’s second law for an orbit about a cen-
tral mass M as a vector equation:

= 3– .
GM
r

r r

Then

( )Ÿ Ÿ Ÿ Ÿ= + = + =3
d

– 0 0.d
GM

t r
   r r r r r r r r

Thus, the angular momentum mr ∧ ṙ must be constant in both direc-
tion and magnitude and hence the motion must be in a plane. This 
means that we can use the equations of motion in polar coordinates 
we developed in Section 7.7. 

For the angular motion, we have 

( )21 d
0,d rr t q =
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and hence,

 2 constant.r hq = =  (7.22)

The quantity h is the conserved angular momentum per unit mass of 
the body. The radial equation is

2
2 ,r r

r
mq− =

where μ = GM. Clearly, we can eliminate θ from these equations to 
get an equation for r:

2

3 2 .
h

r
r r

m
− = −

It is not obvious how to set about solving this equation. In any case, 
it would give us r as a function of time, which is not what we want to 
determine the shape of the orbit: we need r as a function of θ. So let 
us first transform the derivatives with respect to time to derivatives 
with respect to θ. We have

2
d d d

,d d d
r hr r

t t r
q

q
′

= =

where 
d
d

r
r q′ = , and

2 2

2 2 2 3 2
d d d 2

– ,d dd
r h r hr r h h

tt r r r r
q

q
′′ ′ = =   

   

′

so finally,

 m′′ ′
=

2

2 3 2
2 1

– – – .
r r

rr r h
 (7.23)

This is no easier to solve directly. However, the presence of r′2 sug-
gests that we try the substitution u = 1/r: then

2– ,
r

u
r

′
′ =

and
2

2 3
2

– .
r r

u
r r
′′ ′

= +′′
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Thus, substituting for r″ and r′ in terms of u″ and u′ in (7.23), we 
arrive at the simple linear oscillator form:

2 .u u
h
m

+ =′′

The fact that u - μ/h2 satisfies a harmonic oscillator equation tells us 
that the orbits are all periodic. Solving for u, the shape of the orbit 
is given by

2 cos ,u k
h
m q= +

where k is a constant determined by the initial conditions (the value 
of u at θ = 0). It is more convenient to write this as 

 
1

(1 cos ),u e
l

q= −
 

(7.24)

where l = h2/μ and e ≤ 1 is some constant (unrelated to the base of 
natural logarithms) called the eccentricity of the orbit.

If we plot this curve, we find that it is some sort of oval: in fact, 
it is an ellipse. The approach to proving this depends on how we 
define an ellipse. Below and in the end-of-chapter exercises, we give 
a couple of relations between (7.24) and more usual definitions of 
an ellipse.

2a

Figure 7.8: If r1 + r2 = constant the point P traces out an ellipse. F1 and F2 are the two  
foci of the ellipse

Consider first figure (7.21). There are two ways we can describe 
the figure by placing the central mass at either of the two focal 
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points, F1 and F2. Thus, according to (7.23), the figure is equivalently 
described by

1(1 cos ) ,r e lq− =

and 

2(1 cos ) .r e la− =

Adding these equations, we get

1 2 1 22 ( cos cos ) r r l e r rq a+ = + +

But also, by simple trigonometry, the separation of the two foci is 
given by

1 2cos cos constant 2 ,r rq a l+ = =

say. Thus,

 1 2 1 22 ( cos cos ) 2 2 constant.r r l e r r l eq a l+ = + + = + =  (7.25)

The constancy of the “length of string” between pegs at the two foci 
as the figure is traced out is one definition of an ellipse. 

Note that the gravitating central body is at one focus, not at the 
geometric center. 

7.20 PROPERTIES OF THE ELLIPSE

We can deduce certain properties of the orbit form the Equation 
(7.24). When θ = π/2, we have r = l. This radius vector from the focus 
to the ellipse perpendicular to its major axis is called the semilatus 
rectum.

When θ = 0, r = l/(1 − e) and when θ = π, r = l/(1 + e), so the 
major axis, length 2a by definition, is

2
2

2 ,1 1 1
l l l

a e e e
= + =− + −

Newtonian Mechanics_2E_Ch_07_3pp.indd   174Newtonian Mechanics_2E_Ch_07_3pp.indd   174 3/30/2021   11:59:30 AM3/30/2021   11:59:30 AM



Orbital MOtiOn  •  175

or

 ( )21 .l a e= −
 

(7.26)

Considering the picture with θ = π, r = l/(1 + e), we now have 

 1
l

a aeel = − =+  (7.27)

(using (7.26)) so, from (7.25)

 2
1 2 2 2 2 .r r l e a a+ = + =  (7.28)

If we now consider the triangle in Figure 7.9, by symmetry and using 
(7.25), (7.27), and (7.28)

( ) 2
1 2

1
.2r r r l e a a= + = + =

Thus,

( )2 2 2 2 2 21 ,b a a e a e= − = −

and

 ( )
1

2 21 .b a e= −  (7.29)

This illustrates a very important point about planetary orbits. The 
largest value of e for solar system planets is about 0.1 for Mars. Thus, 
from (7.29), the difference in the lengths of the major and minor axes 
of the orbit of Mars is about 1%. To all intents and purposes, sketches 
of planetary orbits in the Solar System should look like circles.

Figure 7.9: Parameters of the ellipse
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This small departure form a circle is a consequence of the dif-
ference between the axes being of order e2, the ellipticity of the 
ellipse. On the other hand, the displacement of the foci from the 
center is of order e, the eccentricity of the ellipse. The closest and 
furthest approaches of a planet to the Sun, situated at one focus, are 
significantly different.

The usual Cartesian form of the ellipse is given by 

22

2 2 1,
yx

a b
+ =

where the origin is at the center of the ellipse, not at a focus. It 
is a challenge to derive this from our definition; for the interested 
reader, some hints are given in one of the end-of-chapter questions. 

Finally, in this section, we summarize the connection between 
the geometrical parameters of the ellipse and the physical parame-
ters. Physically, the ellipse is defined by the angular momentum per 
unit mass h2 and the energy per unit mass ε = −GM/2a. To derive the 
expression for energy consider the orbiting body at the position of 
periastron (closest approach to the parent star), r = a(1 + e), θ = 0. 
Then 

( ) ( )22 2 2 21 1
1 ,2 21

GM GM
r a er a e

e w w= − + = − + +
+

because the motion is orthogonal to the radius vector at this point. 
But

( )22 21 .a e hw + =

Substituting for ω and using h2 = GMl together with (7.26) gives 
(after some algebra) 

.2
GM

ae = −

Since the energy is constant, we have also the so-called vis-viva 
(“energy of motion”) equation
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21
.2 2

GM GM
v r a− = −

Geometrically, the ellipse is defined by the semilatus rectum l and 
the eccentricity e with

e= = −
2 2

2  and   1 .2
h h

l eGM

So, given the geometry of the orbit, we can work out the energy and 
angular momentum per unit mass, and given the energy and angular 
momentum of the orbit. we can work out the shape of the ellipse. 

7.21 KEPLER’S LAWS 

Prior to Newton’s solution for the shape of an orbit under an 
inverse square law attractive force, Kepler had determined the 
properties of the orbit of the planet Mars through careful observa-
tion. He summarized his results in three laws: 

1.	 The orbit is an ellipse with the Sun at one focus

2.	 The radius vector from the Sun to the planet sweeps out 
equal areas in equal times

3.	 The square of the orbital period is proportional to the cube 
of the semimajor axis

The third law relates, of course, not just to Mars but to the plan-
etary system as a whole and to the moons of the giant planets. 

We have just seen how to derive the first law (Section 7.19) if the 
central body is much more massive than the planet. For the second 
law, consider a circular orbit of radius r. The area of the circle swept 
out per unit time is the area of a triangle of base rω and height r so 

21
.2A rw=  But w =2 ,r h  a constant and since r is constant so is .A  

This is Kepler’s second law for a cicular orbit. We have seen how to 
derive the third law for circular orbits in Section 7.16 (Equation 7.20).
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The third law has to be modified to take account of the fact that 
the central body is not stationary but that two bodies orbit about 
their common CM. Let us calculate this effect.  

The equations of motion for the two bodies with position vectors 
R1 and R2 are

 
= 1 2

1 1 12
ˆ– ,

Gm m
m

R
R R

 
(7.30)

and

− = 1 2
2 2 22

ˆ– ,
Gm m

m R R
R

where R = R1 - R2. Adding the equations tells us that the accelera-
tion R  is in the direction of R and hence that the bodies lie on oppo-
site ends of a diameter. Since ( )1 2 CM 1 1 2 2 0,m m m m+ = =+  R R R  the 
bodies revolve around their common CM. Furthermore, (7.30) gives 

( )1 2 1
1 2

1

ˆ
,

G m m
R
+

=

R
R

so the orbiting bodies appear to be subject to the gravity of the sum 
of their masses. Thus, Kepler’s third law (for bodies of mass m and 
M) becomes

( )

2
2 34

.T R
G M m

p
=

+

7.22  DERIVATION OF KEPLER’S LAWS FOR 
ELLIPTICAL ORBITS

For the general case of elliptical orbits, Kepler’s laws can be 
derived from the Newtonian equations of motion in Section 7.19. 
We shall restrict our discussion to orbits about a fixed central mass. 
We have already seen that the first law is satisfied. The conservation 
of angular momentum (7.22) is equivalent to the second law just as 
in the case of circular orbits discussed in Section 7.21. For the third 
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law, we start from an expression for the angular speed from (7.22) 
and (7.23):

 
2

2 (1 cos ) .
h
l

q e q= +

 
(7.31)

Using 
2

,
h

l m=  we have ( )=
3 1

2 2 2/ /h l l GM  so (7.31) gives 

( )

3
2 2

1 20 0
2

d
d .

(1 cos ) 

Tl
t T

GM

p q
e q

= =
+∫ ∫

Thus the period, T, is given by

( )
3

2 ,
a

T fGM e=

which is Kepler’s third law. 

7.23  EXTENDED BODIES: MULTIPOLE 
EXPANSION

We have seen that the gravity of a uniform spherical body is 
equivalent to a point mass at its center.  For more complicated con-
figurations of mass, we have to sum (or integrate) over the mass dis-
tribution to obtain the gravitational field. In these cases, it is easier 
to obtain the gravitational potential first (because it is a scalar) and 
then differentiate to find the magnitude and direction of the force.  

Consider first two equal masses, m, separated by a distance 
d (Figure 7.10). The gravitational potential at r, denoted here by 
φ(r), is

( )
1 2

– –
Gm Gm

r r r=f

– – .
–2 2

Gm Gm
=

+
d d

r r
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Figure 7.10: A gravitational quadrupole

If we look at this field far from the masses, so r ≫ d, we can expand 
the denominators:

2 1
2 2

1 1

( cos )2 4
d

r rd q
=

+ + +
d

r

q q º= + + +
2 2

2
2 3 3

1 3
cos – cos .82 8

d d d
r r r r

Thus, to lowest nonzero order in d,

2
2

3
2

– – (3cos – 1).
4

Gm Gmd
r r

q=f

We call this a gravitational quadrupole. There is an obvious possibil-
ity of extension to various octopoles (put two quadrupoles together 
in various ways) and higher moments. What would have been the 
lowest-order dipole term, linear in d/r2, has canceled because we 
have taken the CM as the origin of coordinates.

For a continuous mass distribution, we have

 ( )r ′=
′−
′

∫–  d ,
G r

Vf
r r

 (7.32)

which can also be expanded in multipole moments if r ≫ r′. The first 
two terms are

q º= − − − +2
3 (3cos 1) ,

GM Q
r r

f

Newtonian Mechanics_2E_Ch_07_3pp.indd   180Newtonian Mechanics_2E_Ch_07_3pp.indd   180 3/30/2021   11:59:35 AM3/30/2021   11:59:35 AM



Orbital MOtiOn  •  181

where again we have assumed that the origin of coordinates in the 
CM to remove the dipole (1/r2) term. Higher-order terms involve 
increasingly negative powers of r multiplied by various polynomial 
functions of θ called Legendre polynomials, Pn(θ), the expressions 
for which can be obtained from published tables.   

7.24 THE POISSON EQUATION

From (7.32), we can derive a differential equation that must be 
satisfied by the Newtonian gravitational potential:

 ∇2 φ = -4πGρ, (7.33)

where, ∇2 φ ≡ ∇.∇φ (or div(grad φ)) and is, in Cartesian coordinates,
2 2 2

2
2 2 2 .

x y z
∂ ∂ ∂—
∂ ∂ ∂

= + +
f f ff

Equation (7.33) is called Poisson’s equation. 

For the interested reader, we can derive (7.33) from (7.32) as 
follows. Surround the point r = r′ by a small sphere Sε of radius ε and 
unit normal n, so r − r′ = ε n. Surround the whole system by a large 
sphere outside the matter distribution, then we have

( ) ( )

( )
e

r r

r

′∇ = − =
−

′ ′ ′ ′
′ ′

′
′

−

=
−

∫ ∫

∫

2 1 1
.  d .  d

1
. d ,

S

G V G V

G S

f r r
r r r r

r' n 
r r

∇∇ ∇ ∇

∇

where the first step follows because ρ(r′) is not a function of r; in 
the intermediate step, we have used the fact that the derivative of 
|r - r′| with respect to r′ is the negative of that with respect to r; 
the last step follows from the divergence theorem (or Gauss’s theo-
rem) which relates a volume integral of the divergence of a vector 
to a surface integral, and we have neglected the contribution from 
the distant sphere. The remaining integral is over the small sphere 
surrounding the point r − r′. Since ρ is approximately constant in 
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a small enough region, we can take it out of the integral and the 
expression  becomes  

( )r e q q p re
 ∇ = = − 
 ∫2 21

. sin  d  d 4 ,G r Gf fn∇

since ∇∇(1/ε) = -(1/ε 2)n.

We can now summarize Newtonian gravity in two equations:

1.	 Poisson’s equation for the gravitational potential and 

2.	 The appropriate form of Newton’s second law for a gravita-
tional force:

 =
2

2
d

– .
dt

r f∇  (7.34)

Notice that the mass of the moving body does not appear in (7.34).

7.25  MOTION INSIDE MATTER: FALLING 
THROUGH THE EARTH

We can use Poisson’s equation to determine the gravitational 
field inside a matter distribution, for example, in the interior of the 
Earth. 

For a spherical system (where φ depends only on the radial coor-
dinate r) Poisson’s equation (7.33) can be shown to take the form

 p r  = − 
 

2
2

1 d d
4 .d dr Gr rr

f  (7.35)

To integrate this, let us take ρ to be constant. We now want the 
potential to vanish at r = 0 not at r = ∞ so we integrate from r to 0. 
Integrating (7.35) then gives 

 
22

.3 r Gp r=f
 

(7.36)

We could also obtain this result directly by assuming that the mate-
rial external to radius r makes no contribution to the gravitational 
force at r. Then
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( )= − = − 2
d

,d
GM r

F r r
f

where M(r) is the mass within a radius r. Setting ( ) 34
3M r rp r=  

(recalling that we have assumed ρ to be constant) and integrating 
gives us (7.36). Note that (7.37) is not the same as assuming only the 
total interior mass contributes to the gravitational potential φ: as can 
be seen from (7.36), φ is not equal to -GM(r)/r. (Why is what is true 
for the force not true for the potential? A spherical mass distribu-
tion acts as if from a central point only for an inverse square law; the 
potential does not satisfy an inverse square law.) 

Thus, a body falling though a radial shaft through the Earth 
 satisfies

p r= − = −
2

2
d d 4

.d 3d
r

Grrt
f

This is the equation for SHM. We can use it to estimate the free-fall 
time through the Earth which is not a very practical exercise but an 
amusing piece of useless information. It is, however, instructive to 
try to guess the result before doing the calculation.   

Estimating r̈ as R/T2 on dimensional grounds as usual, and taking 
5500 kg m-3 for the density of the Earth, we have

p r 
 
 

~ ~

1
– 24

814s,3T G

which is, perhaps surprisingly, independent of the radius of the 
Earth! Why is this? 

The answer is that the period of SHM is independent of ampli-
tude! On a larger planet, a body would have further to fall, but, if ρ is 
the same, the acceleration would be greater, and so would the speed 
over much of the fall. This compensates for the larger distance. So 
this turns out to be an interesting example of a case of exact SHM 
for large amplitudes. Perhaps equally surprising is the fact that the 
time is the same if we dig the shaft radially or along a chord. (See the 
end-of-chapter exercises.) 

Newtonian Mechanics_2E_Ch_07_3pp.indd   183Newtonian Mechanics_2E_Ch_07_3pp.indd   183 3/30/2021   11:59:37 AM3/30/2021   11:59:37 AM



184  •  NewtoNiaN MechaNics, 2/E

The exact solution to (7.38) is obtained by noting this is the 
equation of SHM with angular frequency ( )w p r= √ 4 /3G , so the 
period (in the model of constant density) is 2π larger than our esti-
mate above. 

7.26 TIDAL FORCES

Figure 7.11: Tides raised on the Earth by the Moon

The force of the Moon on the Earth is greater on the side nearer 
the Moon than on the opposite side. On a spherical Earth, this dif-
ferential force would affect sea level on both the side of the Earth 
facing the Moon and the side facing away, giving rise to two tides a 
day as the Earth spins underneath the bulges in the ocean. In prac-
tice, tides are affected by local geography, so two tides every 12 h is 
a very rough approximation. 

To see the effect, consider the difference in gravitational accel-
eration at the Earth’s center and at its surface due to the Moon, 
directly below the Moon:

( )
∆ = 2 2

E

–
–

Gm Gm
g

DD r

~ E
3

2
– ,

G mr
D

where we have used the fact that rE ≪ D to expand the denominator 
by the binomial theorem and to neglect terms of order (rE/D)2 and 
higher. Similarly, on the far side, we have

( )
∆ = − −

+
~ E

2 2 3
E

2
.

Gm Gm Gmr
g

D DD r
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In both cases, gravity is weakened by the presence of the Moon. 
Putting in values gives Δg~10−7g.

Example: We can estimate the height, h, of the tides by looking 
at the change in radius of the Earth that would give this change in 
gravitational acceleration. We have

( )2
,

E

GM
g g

r h
= − ∆

+

or, approximately,

− = − ∆2 3
E E

,
GM GMh

g g
r r

and hence
∆

= ~E 0.6m.
g

h r g

This simplified theory ignores the motion of the center of gravity of 
the Earth due to the Moon that causes the Earth to oscillate around 
its mean orbit. Since the seas are free to flow, they do not follow the 
oscillation in step which adds to the tidal amplitude. Actual tides also 
vary greatly round this value as a result of local geography. 

7.27 SOLUTION OF THE PROBLEM: ROCHE LIMIT

We are now in a position to solve the original problem of the 
breakup of a star by a black hole. In fact, there is nothing special 
about a black hole as far as its gravity is concerned. The external 
gravitational field of a nonrotating hole is the same as that of a nor-
mal spherical body of the same mass, so the discussion would be the 
same for, say, a moon orbiting a planet. 

A star will break up if the tidal forces on it exceed its own gravity. 
In the notation of Section 7.26 breakup occurs if 

  .g g∆ ~
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Thus, the condition for a star of radius R approaching at a distance 
D is

3 2
2

,
GMR Gm
D R

~

or
1
32M

D R m
 =  
 

is the distance of closest approach. This is called the Roche limit. For 
a black hole and a star, we can scale this in terms of the Sun:

1
387 10 2 m.

R M M
D R M m¥   =   

  


 

So for a star like the Sun approaching a black hole in the center of a 
galaxy, with typically a mass of 810 M



 and a radius of 3 × 1011 m, the 
distance of closest approach is around 4 × 1011 m or a few times the 
distance between the Earth and Sun. 

7.28 WHAT IS GRAVITY?

Finally, we turn to a common problem at this point that occurs 
to students which is: what exactly is gravity? Students are in good 
company – the problem also occurred to Newton’s contemporaries. 
What they wanted was a mechanical picture of how the Sun could 
affect the distant planets. Newton’s answer was, in effect, that we 
could not say anything more about gravity than how it acted. 

This is a key moment in the development of science. The fact is 
that only observation and experiment tells us what exists in the world 
not our commonsense notions or everyday experience. Gravity is not 
reducible to anything else, mechanical or otherwise, but is a separate 
component of the world. Since Newton’s time we have discovered 
other forces that constitute these fundamental components, such as 
electricity and magnetism, which, despite a century of effort before 
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Maxwell, were also found not to be reducible to local mechanical 
interactions.

Figure 7.12: The rubber sheet analogy for the effect of a massive body (here the Earth) on 
the geometry of the space–time around it.

http://upload.wikimedia.org/wikipedia/commons/2/22/Spacetime_curvature.png

On the other hand, we may learn more about how to describe 
gravity and these other forces. In Einstein’s general theory of rela-
tivity, gravity arises from the geometry of space–time as illustrated 
by the well-known rubber sheet analogy in Figure 7.12: the shape 
of space created by the Sun in its vicinity is what accounts for the 
inverse square law and keeps the planets their orbits.

Einstein’s general theory of relativity has two parts: one, a theory 
of gravity and, two, the special theory of relativity. The first part, the 
theory of gravity, is still a theory of curved space and time even if 
we do not include special relativity to take account of strong gravi-
tational fields and near light speeds. From this point of view (due to 
Cartan in 1922), Newtonian gravity is also a theory of the structure 
of space–time. Let us see briefly how this works. 

The key is the principle of equivalence which is the main 
 physical input into the theory. This tells us (in essence) that by per-
forming experiments of restricted precision in a restricted region of 
space, we cannot distinguish between a situation in which we are 
observers at rest in a gravitational field and one in which we are 
observers in a laboratory (e.g., a spaceship) undergoing constant 
acceleration in the absence of gravity. From the first point of view, all 
bodies (subject to no nongravitational forces) fall with equal accel-
eration. One can express this by saying that the passive gravitational 
mass of a body mP (the mass of a body that determines its response 
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to a gravitational field) and its inertial mass m are equal: ma = mPg 
implies a = g, independent of m, if m = mP. From the second point 
of view of a uniformly accelerated system, all bodies subject to no 
forces are seen to fall with the acceleration of the observer. 

This has significant implications for Newtonian mechanics. It 
means that, once we admit the existence of gravity, we cannot iden-
tify the local inertial frames by any local experiments. This follows 
from what we have just said in the paragraph above, where we could 
not distinguish between an accelerated (i.e., noninertial) frame 
and on at rest (hence supposedly inertial). You might argue that we 
should just look out of the window and check whether the stars are 
at rest. But there is no causal connection between the stars and the 
local experiments: the falling bodies should not care whether the 
stars are rushing round or not. So a proper theory of gravity will not 
care whether we use inertial frames or not.

To obtain a theory of gravity, we now look at the same facts from 
a different viewpoint. The equivalence principle tells us equally that 
if we fall freely in a gravitational field, we cannot detect the effects 
of gravity by any local experiment. (All bodies will be weightless.) 
Thus, we know what physics in a gravitational field looks like from 
the point of view of a local freely falling observer: it looks exactly 
like physics without gravity! However, it is very inconvenient to keep 
hopping between local frames to do physics. (There is not really 
any technique for doing this.) We have to refer back to some global 
frame (it doesn’t matter which). So to obtain our Newtonian theory 
of gravity, we simply transform from the local frame (where we know 
the physics) to the global reference frame (where we can do calcula-
tions). For the locally freely falling observer, the equation of motion 
of a body with coordinate ξ, subject to no nongravitational forces, is

 
2

2
d

0.
dt

x
=  (7.37)

For simplicity, we shall stick to motion in one dimension. We trans-
form this equation to a general global frame of reference, x = x(ξ). 
We have

 d d d
,d d d

x x
t t

x
x=  (7.38)
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and

 

2 2 22 2 2 2

2 2 2 2
d d d d d d d d

d d d dd d d d
,

x x x x x
t x tt t
x x x

xx x
     = + =     
       

(7.39)

using (7.37) and (7.38) to obtain the final expression. Thus, rear-
ranging (7.39), the equation of motion in the general x-frame can 
be written

 ( ) + Γ = 
 

22

2
d d

0,dd
x x

x tt
 (7.40)

where 

( )
2 2

2 .
x

x x
∂x ∂
∂ ∂x

 Γ = −   

Equation (7.40) is the equation of motion of a body in a gravitational 
field in Newtonian physics, but now expressed in terms of a quantity, 
Γ (called an affine connection). The affine connection is a property 
of space–time because (although we cannot show it here) it allows 
us to identify vectors that are parallel to each other in an arbitrary 
curvilinear coordinate system (in which case they will not have coor-
dinates that are proportional).  Even in Newtonian theory, therefore, 
taking account of the equivalence principle, gravity appears, not as 
an additional force on the right of the equation of motion, but as a 
property of space–time on the left. We do not need to specify the 
infinity of local freely falling frames nor do we have to specify the 
inertial frames by some slight of hand. Rather we give Γ in any con-
venient frame and use (7.40) (or its generalization to three dimen-
sions) to predict the path of a particle. 

The second part of the problem is to relate Γ to the distribu-
tion of matter, since this is what determines the effect of gravity. To 
recover Newtonian physics, we impose

d
in one space dimension ,dx

 Γ = ∇ ≡ 
 

ff

where φ is a solution of Poisson’s equation. In fact, ∇2φ turns out to 
be the curvature of Newtonian space–time, so the Poisson  equation 
relates the curvature of space–time to the distribution of matter, 
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analogously to the relation in general relativity. On the other hand, 
a major difference between Newtonian theory and relativity is that 
the curvature in Newtonian physics does not affect the behavior of 
rods and clocks.

7.29 CHAPTER SUMMARY

●  Angular speed ω and linear speed v a related by v = rω or in 
vector form v = ωω ∧∧ r

●  The period of a circular orbit at constant angular speed ω is 
T = 2π/ω

●  The angular acceleration of a body moving in a circle of 
radius r is rω2 = v2/r toward the center

●  In general, the radial and tangential components of accel-

eration are ( )w= − 2 ,ra r r

( )q w w w= + = 21 d
2 da r r rr t




●  Angular momentum is defined by h = mr ∧ v
●  For an observer in a rotating frame of reference −mωω∧ωω∧r 

is called the centrifugal force and −2mωω∧v is called the 
Coriolis force

●  Newton’s law of gravitation gives the force between two 
particles of masses M1 and M2 separated by a distance r as 

1 2
2

M M
F G

r
= , where G = 6.67 × 10−11 N kg−2m2 is Newton’s 

constant

●  The gravitational potential of a mass distribution is

 ( ) r ′=
′∫– d ;

–
r G V

r r
f

●  The gravitational potential of a point mass is  

∞
= =∫ 2 d – .

r GM GM
r rr

f
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●  Newton’s law for a circular orbit is 2
2

GMm
mr

r
w=

●  The orbit of a body under an inverse square law of force is 

an ellipse given by 1 1
(1 cos )er l

q= −

●  The Poisson equation for the gravitational potential of a 
distribution of matter, density ρ is 2 – 4 Gp r∇ =f

7.30 EXERCISES

1.	 Tidal power extracts energy from the rotation of the Earth 
through its interaction with the Moon. In the process the 
potential energy of the Earth–Moon system is lost as the 
Moon escapes into space. It is interesting therefore to cal-
culate the energy in the Earth–Moon system. Show that this 
is about 5% of the Earth’s rotational energy.   

2.	 The Sun is losing mass constantly via the conversion of 
nuclear fuel and a solar wind. How does the loss of mass 
affect the orbit of the Earth? What impact does this have on 
climate change?

3.	 Show that the orbit of a body under an inverse cube law of 
force is a logarithmic spiral. 

4.	 In the text, we considered bound orbits. If the total energy 
of a two-body system is positive, show that the orbit of a test 
body (i.e., one with a mass much less than that of the central 
body) will be hyperbolic. Show further that the orbit will 
be hyperbolic also if the inverse square law of force were 
repulsive. (This meant that Rutherford’s experiments on 
scattering alpha particles from nuclei did not allow him to 
distinguish whether the particles had like or unlike charges.) 

5.	 Estimate the length of the seasons on Mars assuming they 
are defined by dividing the angle θ from the Sun to Mars 
into four quadrants of 90o.

Newtonian Mechanics_2E_Ch_07_3pp.indd   191Newtonian Mechanics_2E_Ch_07_3pp.indd   191 3/30/2021   11:59:43 AM3/30/2021   11:59:43 AM



Newtonian Mechanics_2E_Ch_07_3pp.indd   192Newtonian Mechanics_2E_Ch_07_3pp.indd   192 3/30/2021   11:59:43 AM3/30/2021   11:59:43 AM



CHAPTER 8
OscillatiOns

Question: How can a pendulum stabilize a building in high 
winds?

The Tour Sans Fins (“Tower without Ends”) was a tower 
planned in La Defénse in Paris that has since been canceled. The 
spelling Tour Sans Fins (rather than the apparently correct French 
fin) comes from the idea that this tower had no ends, even if one 
were to look up or down at it, hence “ends” and not “end.” The Tour 
Sans Fins was meant to be 400 m tall and would have been the tall-
est skyscraper in Europe. It would have used a large pendulum to 
damp any oscillations induced by high winds. Why would high winds 
induce oscillations? How can a coupled pendulum damp them? 

8.1 RESONANCE

Consider an SHO, natural frequency ω0, subject to a periodic 
force with angular frequency ω. The equation of motion of the oscil-
lator is 

 

2
2
02

d
cos .

d
x

x f t
t

w w+ =
 

(8.1)

Let us look for a solution of the form ( )cos .x A tw= +  Substituting 
into (8.1), we get
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2 2
0– ,A A fw w+ =

and therefore, 

 
2 2
0

cos( ).
–
f

x tw
w w

= +
 

(8.2)

If we adjust the value of ω toward 0w , by altering the frequency of 
the forcing term, we see that the amplitude becomes increasingly 
large. This is the phenomenon of resonance. 

A simple example is a child’s swing. A swing has a natural frequency 
with which, once started, it will rock to and fro. Giving the swing a 
push in synchrony with its natural frequency increases the amplitude. 
In fact, also any multiple of the period will amplify the motion. Eventu-
ally, the swing goes over the top, in which case, it will not behave as a 
swing – because the rope will slacken. More usually, at some stage, the 
resistance to motion increases and further pushing just compensates 
for this, so there is no further increase in the amplitude. On the other 
hand, pushing at random, or out of step, will sometimes decelerate the 
swing, sometimes accelerate it, with the result that there is only a small 
overall effect.

There are many examples of resonance on bridges as a result of 
people marching in step across them with a step that is some mul-
tiple of a natural frequency of oscillation of the bridge structure. A 
well-publicized example was the Millennium Bridge over the river 
Thames which turned out to have sideways modes of oscillation that 
were excited by the swaying motion of walking. The movement of 
the bridge was such as to cause the pedestrians to sway in step creat-
ing a positive feedback effect. 

Not all bridge structures have noticeable resonant frequencies 
because their motion is heavily damped: the energy is redistributed 
before it can build up in one mode of oscillation. If this is not the 
case a pronounced resonance can end up with the bridge collapsing. 

Less obvious examples of resonance can be found in planetary 
systems. Rather than perturbing each other’s motion and random-
izing it, which is the more usual situation, the periods of the three 
inner Galilean Moons of Jupiter (Io, Europa, and Ganymede) are 
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in simple ratios (1:2:4). Their gravitational influence on each other 
then holds them in stable orbits. 

Two metronomes on a common platform provide a demonstra-
tion of the way in which energy is shared between resonant modes of 
oscillation. The metronomes are initially out of step, so the net force 
on the supporting structure is zero. But any small component that is 
in step gets enhanced and amplified until the two metronomes get 
locked in synchrony. In other words, energy is gradually fed into the 
platform at the resonant frequency of the whole system that gradu-
ally feeds back to the metronomes to bring them into resonance. We 
shall treat this situation more fully in Section 10. 

Example: A swing, natural period T, is launched with an angular 

speed −ω (ω > 0, ω 2
)T

p
≠  at an angle θ0 ( 0 0).q >  How high does 

it rise on the return? If the swing is in addition subject to a force 
cosf tw , with ω close to ω0, what is its amplitude? 

Figure 8.1: In the example, the angle of the swing is measured anticlockwise from the vertical 

Assuming that the swing is an SHO the equation of motion for the 
angle θ with the vertical is

2
0 0,q w q+ =

where 0 2 /Tw p= . The solution is

2
cos ,A tT

pq  = +  

where A and φ are constants (Chapter 5). 
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At 0t = , we are given 

 
0 cos ,Aq =   (8.3)

and 

 0

2
sin .

t

d A
dt T
q pw

=

 − = = −  


 
(8.4)

Thus, 

 0
tan ,2

Tw
pq=  (8.5)

and 

 

2 2
2
02 .

4
T

A
w q

p
= +

 
(8.6)

The maximum height on the return is θ = A, obtained when 
2

2tT
p p+ = , (at which point 0q = ). Thus the maximum angle is 

obtained from (8.6) and, from (8.5), occurs first at time 

–1

0
– tan .2 2

T T
t T

w
p pq=

We should check that this is reasonable: we expect the maximum 
angle to be reached somewhat before a full period, which is what 
we have. 

If the swing is also subject to a force cosf tw , then

 ( )0 2 2
0

cos cos
f

A t tq w w
w w

= + +
−

  (8.7)

as can be verified by back-substitution in (8.1). (For readers famil-
iar with the solution of differential equations, this is the sum of the 
complementary function and a particular integral.) At 0t = , we have, 
from (8.7) and its derivative with respect to time,

 0 2 2
0

cos ,
f

Aq
w w

= +
−

f  (8.8)

and

 0– – sin .Aw w=   (8.9)
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Comparing (8.8) with (8.3) and (8.9) with (8.4), we see that the 
solutions (8.5) and (8.6) are still valid provided we replace by 

( )2 2
0 0– / –fq w w . The maximum height is obtained when 0q = , or 

when t satisfies

 
( )0 2 2

0
sin sin 0.

f
A t tw w

w w
+ + =

−
f

 
(8.10)

We cannot solve this analytically in general for t, but if ω is suf-
ficiently close to ω0 the forcing term will dominate over the initial 
setup. Thus, to a first approximation, we ignore the first term in 
Equation (8.10) and obtain 

1
2

,t t
p
w= =

for the first approximation, t1, to the time at which the amplitude 
is a maximum. Rather than trying to get a better approximation for 
the time at maximum, it is more instructive to see that we do not 
need this in order to get the correction to the amplitude.  Putting 

1 / 2 / /t t d w p w d w= + = +  in (8.7), expanding the cosine terms in 
the small quantity /d w, and remembering that A, like δ, has been 
assumed to be a quantity of first-order smallness, we have

( )0 0
max 2 2

0
cos(2 ) cos 2 2

–
f

A
w wq p d p pdw w w w
 = + + + + 
 



0
2 2
0

cos 2 ,
f

A
wp w w w

  ∼ + +   −  


and δ does not appear. The reason is that the value of a function 
near its maximum (or minimum) is very insensitive to the value of 
its argument by virtue of the fact that it is evaluated at a stationary 
point. This is the converse of the situation we met in Section 2.17. 

For completeness, we could get a better approximation to the 
time at maximum displacement by putting 1 /t t d w= +  in (8.10) with 
δ small, expanding the sin functions and retaining only first-order 
terms. With some algebra, this gives 

( )2 2
0 0

1 sin 2 .
A

t t f
w w wd p w

−   = + = +    
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8.2 DAMPING

Clearly Equation (8.2) cannot hold if the driving frequency ω 
is arbitrarily close to the natural frequency ω0 because the ampli-
tude cannot in practice become arbitrarily large. Either the simple 
harmonic approximation breaks down for large amplitudes, or we 
cannot neglect the dissipation of energy in some form. Here we 
explore this latter alternative. Rather than try to formulate a realistic 
mechanical model of dissipation, we construct a simple mathemati-
cal model. 

A suitable model might be the exponential decay of the displace-
ment. In that case, we should have

–e .rtx A=

Now we want an equation for our oscillator that involves the unknown 
displacement x, not an explicit function of time, so  consider

–d
– e – ,d

rtx
rA rxt = =

and
2

2
d d

– .dd
x x

r tt
=

For pure exponential decay, the acceleration depends on the veloc-
ity, d /dx t. This suggests that to incorporate damping, we modify the 
harmonic oscillator equation by adding a term linear in the velocity. 
The equation of motion of the driven damped harmonic oscillator 
becomes

 
2

2
02

d d
cos .dd

x x
r x f ttt

w w+ + =  (8.11)

We have not shown that any realistic physical system obeys this 
equation, but, conveniently, linear damping of this form is tracta-
ble mathematically and exponential decay in the absence of driving 
forces is a reasonable model. Note how, if we reverse the sign of the 
time, –t t→ , the equation for the SHO (8.1), without the damp-
ing term, is unchanged: we say that it is time symmetric. But the 
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damping term in Equation (8.11) changes sign, so the solution of 
the modified equation will be quite different. Damping, as the name 
implies, has a direction in time. 

Consider first the case with no driving force, f = 0. 

 w+ + =
2

2
02

d d
0.dd

x x
r xtt

 (8.12)

We shall go straight to the solution of the equation of motion to get 
the time dependence of the displacement for an oscillator undergo-
ing damped harmonic motion. You can check the solution:

 ( )= +
– 2

0 e cos ,
rt

x x pt   (8.13)

where 

 w
  = −     

1
2 2

2
0 2

r
p  (8.14)

by substitution of (8.13) back into Equation (8.12). Here p is the 
angular frequency of oscillation (in radians per unit time). Notice 
that the coupling to the external resistive medium alters the natural 
frequency and period: the new frequency p is not exactly the natural 
frequency ω0, although, if the damping is not too great, they will be 
close. 

The quantity φ is an arbitrary phase. This is fixed by how the 
oscillator is started off and not by the equation of motion. For exam-
ple, a pendulum might be struck at its lowest point or dropped from 
an extremity. If we start the oscillator at t = 0 from x = 0, then we 
should have to put φ = π/2 (since cosπ/2 = 0). The amplitude, x0 in 
(8.12), is also determined by the starting conditions, for example, 
how hard the pendulum is struck. 

Notice that the exact exponential decay of the amplitude x to 1/e 
of its original value takes place over a timescale of 2/r, not 1/r, as one 
might have expected from the approximate way in which we set up 
the model. Because the solution eventually decays to zero, it repre-
sents a transient phenomenon – as one might expect for a dissipative 
process with no driving force. 

Newtonian Mechanics_2E_Ch_08_2pp.indd   199Newtonian Mechanics_2E_Ch_08_2pp.indd   199 22-03-2021   15:27:2722-03-2021   15:27:27



200 • NewtoNiaN MechaNics, 2/E

Example: A simple pendulum of mass m, length l, is set in motion 
from a small displacement θ = θ0 with a linear speed v such that the 
small angle approximation holds at all times. If the damping force 
is −mrdθ/dt. What is the condition for the pendulum to come to rest 
after <1 cycle? 

We expect the motion to be damped in less than a cycle is the 
damping time 1/r is less than the period, ( )p √2 /l g . 

The equation of motion for the angle of swing is the damped 
harmonic equation

q q w q+ + =
2

2
02

d d
0,dd

r tt

with w =0 / .g l  The general solution is

( )q −= +0e cos ,rtx pt 

where 

 
w
  = −     

2

1
2 2

0 2 .
r

p
 

(8.15)

Initially, at t = 0, we have θ = θ0, so 

q =0 0 cosx 

Also initially, dθ/dt = v/l so

( )q q= =
1

2 2 2
0 0 0 0 0– cos – sin – – – ,

v
x r x p r x p l 

from which we can find 0x . The solution is 

( )
1

2 2
–2 0

0 – e cos ,rtr v
ptp lp

qq q
  = + +  

   


with p given by (8.14). Looking at the exponential factor e ,pt−  the 
pendulum will damp in less than a cycle (rt ∼ 1 for t < 2π/p) if
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,2
p

r p>

or, substituting for p from (8.15) and solving for r,

0
4

.5r w>

This says that the damping rate exceeds the oscillator frequency, or 
the damping timescale is less than a period, as we expected. (Of 
course, since the decay is exponential, mathematically, the pendu-
lum never comes to rest, but the amplitude of oscillation will be 
small compared to the initial displacement after the specified time, 
here half a cycle.) We refer to this case as critical damping (if the 
decay timescale is exactly a period) or overdamping, if it is less. 

8.3 QUALITY FACTOR 

The amplitude of a damped harmonic oscillator, with damp-
ing coefficient r, falls by a factor 1/e in a time 2/r. What about the 
energy? The energy of an SHM is

( ) ( )

2 2 2
0

2 2 2 2 2 2
0 0 0 0 0 0

2 2
0 0

1 1
2 2
1 1

sin cos2 2
1

.2

E mx m x

mx t m x t

mx

w

w w w w

w

= +

= + + +

=



 

So the energy is proportional to the square of the amplitude. For a 
damped oscillator, the expression is more complicated, but, if the 
damping is small, the differences are inconsequential, and in any 
case, the energy is still proportional to the square of the amplitude. 

Thus, the time for the energy of an oscillator to decay by a factor 
of 1/e is 1/r. 
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Figure 8.2: Damped harmonic motion with a moderate Q-factor: the amplitude decays 
 appreciably in about three periods. 

It is sometimes useful to express the decay time in terms of the 
period of oscillation: this is the Q-value or quality factor of the oscil-
lator, which measures the time (in radians) for the energy to decay 
by a factor 1/e: 

w
= 0 .Q r

For a bell, we want a high Q (low dissipation), for the Tour Sans 
Fins, we would want a low Q (heavy damping). 

8.4 FORCED OSCILLATIONS

Let us return to Equation (8.11) including the forcing term:

 
w w+ + =

2
2
02

d d
cos .dd

x x
r x f ttt  

(8.16)

The solution consists of two contributions: one that corresponds 
to the free motion of the unforced oscillator and one that arises in 
response to the forcing term. Because the equation is linear in x, 
we add these solutions to obtain the general solution. However, we 
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saw in the example in Section 8.2 that, without the forcing term, the 
displacement dies out in a time 1/r. We refer to this part of the solu-
tion as transients. The transients will be the same as for the unforced 
oscillator and will die out in a time 1/r. Thus, on longer timescales, 
we are justified in neglecting the terms in the solution that die out 
and in retaining only those that come from the forcing term. The 
time taken for the transients to die out is obviously just the time for 
the system to adjust to a steady state. So 1/r is also the timescale for 
the oscillator to build up the energy it absorbs from the forcing term 
to its steady value. 

Neglecting transients, the solution of (8.16) is

 

( )

( )

w

w w w

=
 
  

+
1

2 22 2 2 2
0

sin –

–

,
t

x f

r



 

(8.17)

where 

 
2 2

0–
tan .r

w w
w=  (8.18)

This can be verified by back-substitution of (8.17) in (8.16) using the 
identity

w w w=sin( – ) sin cos – cos sin .t t t  

We shall look at how to derive this solution in Section 8.8. Note that 
the solution (8.17) does not depend on the initial conditions, that is, 
on how we set the oscillator in motion at time 0.t =  This memory has 
been lost with the decay of the transients. 

There are two factors in (8.17) which we shall look at sepa-
rately. There is a factor multiplying amplitude f of the forcing term. 
There is also a phase lag (φ + π/2) between the driving term and the 
response. We shall look at each of these. (The fact that the phase 
lag is (φ + π/2) is obtained by writing ( ) ( )w w p=sin – cos – – /2t t   
and comparing this with the driving term, cosωt; the difference is  

p+ / )– ( 2).  
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8.5 IMPEDANCE 

We rewrite the solution for our harmonically driven oscillator as

( )w= −sin ,
f

x tZ 

where the impedance Z is defined as

 
( )

1
2 22 2 2 2

0– .Z rw w w = +     
(8.19)

This has a minimum, and therefore the amplitude has a maximum 
where

w w
w

= = +
2

2 2 2
02

d
0 2( – ) .

d
Z

r

(Note that to find the maximum, it is marginally easier to differenti-
ate Z2 rather than Z and much easier to differentiate with respect to 
ω2 than ω.) Thus, resonance occurs for

w w w w
 

= + ≈ + 
 

1
2 22

2
0 0

0
,2 4

r r

where the final expression is valid for r << ω0, that is, for large Q. 
This is the normal situation: otherwise, the system is heavily damped 
and the notion of resonance is somewhat meaningless. The resonant 
frequency is shifted slightly away from the natural frequency ω0 by 
the coupling to a resistive medium. In addition, the amplitude is 
now finite at resonance. 

The impedance defines the magnitude of the response of the 
oscillator in terms of the magnitude of the forcing term. In a simple 
purely resistive electrical circuit, the force would be the applied 
(alternating) voltage and the response would be the current. In this 
case, the impedance would just be the resistance of the circuit. 

Note that the speed x  is given by

( )w w= −cos .
f

x tZ
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The maximum amplitude is now given by minimizing (Z/ω)2, which 
occurs for = 0.w w  We call this velocity resonance. In the case of 
velocity resonance, the driving frequency is equal to the natural 
 frequency. 

8.6 ENERGY AND PHASE

We have seen that the driving force and the response are in gen-
eral not in phase. To discuss further, the role of phase we need first 
to consider the energy of the oscillator. 

Since the power delivered to the oscillator is the rate of doing 
work we want to calculate the average value of fv fx=  over a period 

2
T

p
w= . The integral

0

1
d

T
P xf tT= ∫ 

 
( )w w w= ∫

2

0

1
cos – cos d

Tf
t t tZ T 

 
(8.20)

gives us the power per unit mass (since f is the force per unit mass). 
Before we evaluate the integral, let us see if we can get some idea 
of its important features from a picture. We want to know the result 
of integrating the product of two trigonometric functions. If these 
are π/2 (or 3π/2) out of phase, then over a period, the product is as 
often negative as it is positive, so the average is zero. This occurs if 
the displacement and force are exactly in phase (because then the 
velocity and force are π/2 out of phase). If r = 0, then, from (8.18), 

p= ± /2  (depending on whether ω2 is less than or greater than 2
0w ) 

so the phase difference between the displacement and forcing term 
is φ + π/2 = 0 or π and we get zero dissipation, which is what we 
should expect. 

Only if the phase difference between the force and the speed 
is different from π/2 will there be dissipation. At the other extreme, 
if the speed and force are in phase, corresponding to φ = 0, there 
is a π/2 phase difference between the oscillator amplitude and the 
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 driving force; then the power dissipated at resonance is 2
0 /2 .f m r  

In other words, dissipation is effected by introducing a phase lag 
between the oscillator displacement and the driving force. 

The mean power supplied over a period T can be expressed in 
terms of the impedance by performing the integration in (8.20). We 
get for the power per unit mass

w w w w= +∫
2

0

1
(cos cos sin sin )cos  d .

Tf
P t t t tZ T  

 

2

cos .2
f

Z
w

= 
 

(8.21)

Note that in a steady state, the power supplied must equal the power 
dissipated. 

8.7 POWER CURVE

In Figure 8.3, we show the shape of the power delivered to the 
oscillator as a function of the driving frequency ω from Equations 
(6.2) and (5.1) for Q = 2.2 and Q = 10. 

Let us look at its properties. The curve peaks at the resonant 
frequency ω0 (i.e., x = 1). As a measure of the width of the peak, 
we use the width of the curve at half its height. To obtain this, we 
proceed as follows. 

Up to a constant factor, the curve is given by

 ( )
w w

w w w
∝ =

+

2 2

22 2 2 2
0

cos .
–

r
P Z r



 
(8.22)

At the resonant frequency, ω = ω0, the right-hand side of (8.22) is 
just 1. So the frequency ω at half, the height is given by 

( )
w

w w w
=

+

2 2

22 2 2 2
0

1
,2–

r

r
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Figure 8.3: Power curve for Q = 2.2 (left) and Q = 10 (right) plotted against ω/ω0 

or

 
2 2

0– .rw w w= ±  (8.23)

Near ω = ω0, we have

( )( ) ( )w w w w w w w w w= + ∼2 2
0 0 0 0 0– – 2 – ,

and so we can rewrite (8.23) as

( )0 0 02 – ~ .rw w w w±

It follows that ( )w w w=∆ = ±0– 2
r

 and the width of the peak at half 

height is r. The curve shows that to drive the oscillator to a sig-
nificant amplitude requires a force with frequency within r/2 of ω0. 
(You can derive this result by solving the quadratic Equation (7.2) 
exactly for ω and approximating the result, but there is little point 
in going to the trouble of obtaining an exact result only to then 
approximate it.) 

Incidentally, we use the power curve to define the width because 
it is essentially symmetrical about the resonant frequency. (It cannot 
be exactly symmetrical because it goes to zero between ω = ω0 and 
ω = 0 on one side and between ω0 and infinity on the other. We 
could have plotted the amplitude or velocity, in which case the shape 
of the curve and the widths would have been somewhat different. 
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Finally, we get the so-called bandwidth theorem by multiplying 
the resonance width by the decay (or rise) time: 

w× = × =d
1

1.t r r

This tells us that a lightly dissipative system (small ∆ω) takes a long 
time to build up energy to the steady state. This is reasonable because 
a lightly damped system can build up a large amplitude at resonance. 

Example: It is claimed that an opera singer can break a wine glass 
by singing a loud sustained note at the resonant frequency of the 
glass. Is this a reasonable claim? 

According to the Metropolitan Opera Guild an opera singer can 
sing with a sound intensity up to Ip= 125 dB, so let us take 100 dB as 
a ball-park figure at the glass. This is related to air pressure by 

–5 –2202 10 10 2Nm .
pI

p = × × =

This gives us the force per unit mass, pA/m, on a wineglass of area A, 
mass m. The power per unit mass is of order

w 2 22

22 2
p Af

P Z rm
 

since Z rw=  at resonance (Equation (5.1)). We can estimate r from 
the damping time: if, say τ = 5 s, then r = 1/τ = 0.2 s−1. The mass, 
excluding the base and stem (which do not resonate), is around 40 g 
(say). This gives a power, mP, of around 0.25 W. The stored energy 
is mPτ ∼ 1.25 J. We have to see if this is enough to break the glass. It 
is equivalent to dropping the glass on to a hard surface from a height 
Pτ/g ∼ 3 m which is easily sufficient to break a glass. 

8.8 COMPLEX EXPONENTIALS 

This section is a digression on the use of complex numbers which 
turns out to simplify greatly the solution of differential equations like 
that of the damped driven oscillator (linear equations with constant 
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coefficients). The technique of using complex numbers comes down 
to the fact that cos sinie iq q q= +  and that it is easier to manipulate 
exponentials than the trigonometric functions themselves, which 
can always be recovered by taking real or imaginary parts. 

To see how this works, consider the solution of the differential 
equation for the driven damped oscillator but now in the form:

 
ww+ + =

2
2
02

d
ed ,

d
d

i tz z
r z ftt  

(8.24)

where x = ℜ(z) (the real part of z) and f cos ωt = ℜ(f ei tw ). We solve 
the complex equation (8.24) and recover the physical solution by 
taking the real part at the end of the calculation. 

To solve (8.24), we take a trial solution

w= ,ei tz A

and substitute into (8.24). This gives 

2 2
0

.
–

f
A

irw w w
=

+ +

We can separate A into real and imaginary parts by multiplying 
denominator and numerator by 2 2

0– – irw w w+  (the complex conju-
gate of the denominator). This gives

( )
( ) ( )

2 2
0

2 22 2 2 2 2 2 2 2
0 0

–
– .

– –

f fr
A i

r r

w w w

w w w w w w
=

+ +

The real part of wei tA  is

 

( )
( ) ( )

w w ww w
w w w w w w

+
+ +

2 2
0

2 22 2 2 2 2 2 2 2
0 0

–
cos sin ,

– –

f fr
t t

r r
 

(8.25)

from which we can deduce the solution given in Equation (8.17) as 
follows. We rewrite (8.25) as

( ) ( )

( ) ( )

w w ww w w w w

w w w w w w

 
 
  + +      + +    

 
  

1 2 2–2 022 2 2 2
0 1 1

2 22 22 2 2 2 2 2 2 2
0 0

–
– – cos sin

– –

r
f r t t

r r

Newtonian Mechanics_2E_Ch_08_2pp.indd   209Newtonian Mechanics_2E_Ch_08_2pp.indd   209 22-03-2021   15:27:3122-03-2021   15:27:31



210 • NewtoNiaN MechaNics, 2/E

( ) { }
1

–2 22 2 2 2
0 – sin cos cos sinf r t tw w w w w = + − +  

 

( )

( )
1

2 22 2 2 2
0

sin –

–

f t

r

w

w w w

=
 +  



with 
w w

w
−

=
2 2

0tan .r

8.9 FOURIER ANALYSIS

Why does a tower sway in the wind and not just bend? The 
answer has something to do with the nonsteady nature of the wind. 
Even if the wind is steady upstream, the building breaks up the flow. 
The building is therefore subject to a time-varying force. Does the 
building sway in time to the force? 

We have seen that an oscillator will respond with a large ampli-
tude motion to a periodic driving force only if we impose a force 
near its resonant frequency. The wind, of course, does not know the 
resonant frequency of the building, so why does it affect the build-
ing? The reason is that any general time-varying quantity can be bro-
ken down into a sum of harmonic (sine and cosine) oscillations of 
different frequencies. The wind exerts a force at all frequencies but 
with differing amplitudes. 

Let us look at a particular example. Suppose for the sake of 
argument that the force of the wind is periodic with a square wave 
form as shown in Figure 8.4. This is not realistic, but it illustrates the 
point. The other curves in this figure illustrate how the square wave 
form can be reconstructed by adding together a set of sine waves 
with appropriate amplitudes. For a continuous periodic signal, any 
desired accuracy can be achieved by taking the series to enough 
terms. (This is not quite true for a discontinuous function such as 
the square wave shown: with a finite number of terms in the series, 
there will always be small discrepancies between the function and 
the series near the points of discontinuity.)
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Figure 8.4: Successive approximations to a periodic square wave x = 1, 0 < x < π;  

x = −1, π < x < 2π. Dotted line 
p

=y x
4

sin ; dashed line 
p

= +( )y x x
4 1

sin sin3
3

; solid line 

p
= + +( )y x x x

4 1 1
sin sin3 sin5

3 5

 

The square wave is just one example: any periodic waveform 
can be approximated as a sum of harmonic functions, a result that is 
known as Fourier’s theorem (and the series are called Fourier series). 
The theorem actually does more than this: it tells us how to calculate 
how much of each sine and cosine term to add, but we are not going 
to need this. In fact, Fourier’s theorem also applies to nonperiodic 
waveforms, if we allow integrals over a continuous range of frequen-
cies as well as sums over a discrete set. 

The nonsteady wind is made up of harmonic oscillations of vari-
ous frequencies and amplitudes. We see now that the component 
of the wind at (or near) the natural frequency of the tower causes it 
to sway. 

8.10 COUPLED OSCILLATORS

Let us return to the Tour Sans Fins. To control the swaying of the 
building in the wind, the architect proposed the following solution: 
a damped pendulum suspended from the top and running down a 
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shaft in the middle of the building that would dissipate all the wind 
energy absorbed by the building. How would it work? To find out we 
clearly need to extend our model oscillator to include two coupled 
oscillators, representing the building and the pendulum.

We can introduce a coupling between two oscillators by letting 
the force on one depend on the coordinates of the other in any way 
we please. A nicer model is to start from an energy equation. The 
case we shall deal with here is equivalent to using Hooke’s law for 
elastic bodies. The energy for this model is given by 

 
( )22 2 2

1 2 1 2
1 1 1

.2 2 2E mx mx m x xw= + + − 

 
(8.26)

Figure 8.5: The normal mode of oscillation of two equal masses connected by a spring. The 
quantities x1 and x2 are the displacements from equilibrium of the masses. We can think of 

the system as two oscillators joined together by joining two springs (with their  
accompanying masses). In the coupled system, the masses oscillate with a common  

frequency with equal and opposite displacements. 

Differentiating with respect to t gives us Equation (8.27):

 
( )

( )
w

w

= + + 2
1 1 2 2 2 1 1 2

2
2 1 2

0 –

– – .

mx x m x x m x x x

m x x x

    



 (8.27)

The equations of motion for the two oscillators then follow if we col-
lect terms in 1 x  and 2x . This gives us 

 w w+ =2 2
1 1 2,x x x  (8.28)

 
2 2

2 2 1.x x xw w+ =  (8.29)
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These equations couple the two oscillators. To solve them, we need 
to uncouple the equations. We can do this by adding and  subtracting. 

Adding (8.28) and (8.29) gives us 

+ =1 2 0,x x 

or 

1 2– ,x x=

from which we see that the oscillators must move in opposite 
directions. This is just what we would expect from conservation of 
momentum: the total momentum is fixed at zero. 

Subtracting (8.29) from (8.28) gives us 

( )w= 2
1 2 1 2– – 2 – ,x x x x 

which shows that the separation of the oscillators, 1 2–x x , follows 
SHM with frequency √2ω. This is the so-called normal mode of the 
system in which (by definition) each oscillator has the same fre-
quency. We might call this a breathing mode. 

We now vary the scenario so that the coupling strength is an 
independent parameter. The energy for this model is

w w= + + +2 2 2 2 2 2
1 1 2 2 1 2

1 1 1 1
–2 2 2 ,2E mx m x mx m x gx x 

where g  is the coupling strength. The equations of motion are

w+ =2
1 1 2,x x gx

2
2 2 1.x x gxw+ =

Adding and subtracting, we get

 ( )( )w+ = +2
1 2 1 2( ) – – ,x x g x x   (8.30)

and

 ( ) ( )2
1 2 1 2( – ) – – .x x g x xw= +   (8.31)
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The normal modes have frequencies ( )
1

2 2– gw w+ =  and 

( )
1

2 2gw w−= + . The effect of the coupling is to perturb the natural 
frequencies of the oscillators. To see the behavior in more detail, we 
solve (8.30) and (8.31) to get 

( ) ( )1 cos cos ,x a t b tw w+ + − −= + + + 

 ( ) ( )2 cos cos .x a t b tw w+ + − −= + − + 
 (8.32)

To see what is happening, we need a small mathematical trick. We 
write the solution for x1 as

( ) ( )

( ) ( )

w w

w w

+ +

+ +

+ +
= + + +

+ + +

1 – –

– –

cos cos2 2
– –

cos – cos ,2 2

a b a b
x t t

a b a b
t t

 

 

with a similar expression for x2 with the replacement b → – b. Then, 
using the trigonometric identities

+ −
+ =cos cos 2cos cos2 2

A B A B
A B

+ −
− = −cos cos 2sin sin ,2 2

A B A B
A B

and assuming 2 ,gw   we get 

w w

w w

+

+

 = + + + 
 

 + + 
 

1 –

–

( )cos( )cos – ( – )2

sin ( ) sin 2

gt
x a b t a b

gt
t

 

 

 
w w

w w

+ −

+ −

 = + + + 
 

 + + 
 

2 ( – )cos( ) cos – ( )2

sin ( ) sin ,2

gt
x a b t a b

gt
t

 

 

 (8.33)

where we have approximated

w w w+ ∼ – ,2
g
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and

w w w− ∼ + /2 ,g

and we have set 

– –
–

( ) –
, .2 2= + +

+
+

=
   

 

Note that x2 is obtained from x1 by setting b → − b in accordance 
with Equations (8.32). Each factor in Equations (8.33) is a prod-
uct of a rapid oscillation (frequency ω) and a slower oscillation (fre-
quency g/ 2ω). This enables us to picture the motion. The masses 
oscillate at the resonant frequency ω, with an envelope or amplitude 
that has a period 4πω /g. The energy is therefore exchanged between 
the oscillators on this timescale, 2πω /g, which is much greater than 
the natural period 2π /ω.

If we set one oscillator in motion, while the other remains at 
rest, we see that energy will be transferred back and forth between 
the oscillators. This is the situation we described in Section 8.1. 

Note that if 0a ≠ , we no longer have 1 2– x x=  , so momentum is 
apparently not conserved. There are two ways of looking at this. The 
first is that the forces in the system are not independent of position 
(because the equations of motion refer to coordinate values and not 
just differences); in this case, we would not expect momentum to 
be conserved. The other way of looking at it is to enlarge the system 
to include the spring: then the overall conservation of momentum 
is preserved by a flow of momentum along the spring. This is an 
important general point: whenever action at a distance is involved a 
full analysis requires all components of the system to be considered. 

8.11 COUPLED OSCILLATORS WITH DISSIPATION

We now add a dissipative term to one of the oscillators, so the 
equations of motion become

 w+ + =2
1 1 1 1 2,x rx x gx   (8.34)
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 w+ =2
2 2 2 1.x x gx  (8.35)

We look for a solution of the form 

 1 1 2 2e ; e .i t i tx a x aw w= =  (8.36)

Substituting (8.36) in to (8.34) and (8.35), we get 

( )2 2
1 1 2– – 0i r a gaw w w+ + =

 ( )2 2
1 2 2– – 0.ga aw w+ + =  (8.37)

For 1 2 0a a ≠ , we require the determinant of the coefficients in (8.37) 
to vanish:

 ( )( )w w w w w+ + =2 2 2 2 2
1 2– – – 0,i r g

 (8.38)

or

 ( )w w w w w w w w w− + + + =4 3 2 2 2 2 2 2 2
1 2 2 1 2– – 0.ir i r g

 (8.39)

(You can verify (8.38) by elementary means by solving the pair of 
simultaneous equations for the unknown amplitudes a1 and a2: you 
will find that a1 = a2 = 0 unless (8.38) holds.) We now assume that 
the coupling and the resistance are small. Our first approximation, 
from (8.38), is

( )( )2 2 2 2
1 2– – 0.=   

So we have two solutions: either ω ∼ ω1 or ω ∼ ω2. In the first case, 
our next approximation is (from (8.38)) 

( )w w w
w w w

w w+

+
∼ = +

2 2 2
1 1 22 2 2

1 2 2
1 2

–
,

–

g i r

and from (8.37)

2 1 2 2
1 2

– .
–
g

a a
w w

=

Similarly, if ω ∼ ω2, we obtain
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w w w
w w

∼ = +
2

2 2 2
– 2 2 2

1 2
,

–
g

and
w w

=
2 2
1 2

2 1
–

.a a g

The general solution is then

( )

( )

2
– 2

1 1 1 2 2 2
1 2 1

2

2 2 2 2
1 2 1

1
cos 1 – e2 –

1
cos 1 2 –

rtg
x a t

g
b t

w
w w w

w
w w w

  
   =

    
  
   + +

    

( )

( )

2 2 2
–1 2 2

2 1 1 2 2 2
1 2 1

2

22 2 2 2 2
2 1 1 2 1

– 1
cos 1 – 2 –

1
cos 1 2– –

e
rtg

x a tg

bg g
t

w w
w

w w w

w
w w w w w

  
   =

    
  
   + +

    

Let us see what it tells us: the ω+ ∼ ω1 mode decays on a timescale 
2/r leaving the ω− ∼ ω2 mode oscillating forever. This cannot be cor-
rect. The coupling should be feeding energy from x2 to x1 where it 
is dissipated. There is, in the solution, we have obtained so far, no 
timescale over which this happens. The problem is clearly that the 
ω2 mode is not dissipative. In fact, we can see that there is no phase 
difference between x1 and x2 in this mode, so there is no transfer of 
energy between the oscillators. This means that we have not taken 
the approximation far enough. A more accurate expression for ω− is 
obtained in the next approximation:

 ( )
w w w

w w w w w

 
 ∼ = + +
  

2

– 2 2 2 2 2
1 2 2 2 1

1 ,
– 2 –

g ir

and
w w 

=  
 

2 2
1 2

2 1– ,
– ir

a ag g
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giving a phase difference 

2 2
1 2

tan .
–
r

w w
=

The ω− mode is now dissipative, transferring energy to x1 on a tim-
escale 2 2 2 2

2 1( – ) / .rgw w

Note that there is an apparent singularity at 0.g =  However, 
0g =  breaks the conditions of the approximation. It would lead to 

ω1 = ω2, but we must have 
2 2

2 2
1 22 2 2 2

1 2 1 2
and

– –
g g

w w
w w w w

 

in order that the frequencies are perturbed by small amounts. Thus, 
ω1 and ω2 must be sufficiently different, whence 0.g ≠  If the oscil-
lators are not coupled ( 0g = ), then the behavior is quite  different. 

8.12 FORCED COUPLED OSCILLATORS

Consider finally a model of the pendulum in the tower: the case 
where the undamped oscillator is subject to an external periodic 
force. We know that the system will absorb energy from the driv-
ing force only if it is near resonance, so we need only consider this 
case. (Only the resonant frequencies in the wind cause the build-
ing to sway.) To gain some insight, consider first a simple model of 
masses on a spring. Suppose the masses are very unequal and the 
larger mass is damped. At the larger mass most of the energy travel-
ing along the spring will be reflected. Thus, there will be very little 
damping. Alternatively, consider the case where the smaller mass is 
damped. Since its energy is much less than that of the larger mass, 
however, effectively it drains energy from the larger mass its rate of 
dissipation is limited by the relatively small store it has to dissipate 
at any time. Thus, we expect that we shall have effective dissipa-
tion only if the masses are close. This is an example of impedance 
 matching. 
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For our general oscillators, we model this case by first taking 
1 2g g≠ . The aim is then to show that damping is effective if, in fact, 
1 2g g∼ . For simplicity, we assume that 1 2 0= =    although this is 

not essential. The equations of motion are therefore 

 
2

1 1 0 1 1 2x rx x g xw+ + =   (8.40)

 
2

2 0 2 2 1 ei tx x g fx ww+ = +  (8.41)

where we assume the real parts of all quantities are implied. We 
shall also assume that the damping constant r is small ( 2

0)r w and 
that the coupling is relatively weak so that it can be treated as a per-
turbation to the harmonic oscillations. 

We have seen in Section 8.11 that the unforced motion of the 
oscillators is damped. This means that we can neglect the effects of 
initial conditions and consider the steady state driven entirely by the 
forcing term. We therefore look for solutions of the form

1 1 2 2e ; e .i t i tx a x aw w= =

If we neglect the effect of the damping on the resonant frequency, 
we find 

2 2
0 1 2 .g gw w= ±

With this value of ω, we can now solve (8.41) and (8.42), to a first 
approximation:

w
 

= −  
 

1 2
2

)(
1 ,

g g
a f i r

and 
1

1 .
ig

a rw=

The dissipation timescales are equal if

w w=1 2 1( )
,

g g g
r r
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or 1 2.g g=  For our masses on a spring, this means that the dissipa-
tion is most effective if the masses are equal, as we proposed. This 
is a special example of a more general result that energy transfer is 
most effective if the impedances of the systems are matched. Our 
conclusion is that the pendulum will effectively suppress the motion 
of the tower in the wind if the tower and the pendulum are imped-
ance matched. 

8.13 CHAPTER SUMMARY

●  The equation of motion for the displacement of a damped, 
driven harmonic oscillator is 

2
0 0e ,i tx r x x f ww+ + = 

  where the real parts of complex quantities are to be taken. 

●  Impedance is the ratio of the driving term to the response 
(displacement) 

●  Resonance occurs when an oscillator is driven by a periodic 
force close to its natural frequency; the resonant frequency 
occurs at minimum impedance. 

●  The quality factor Q of an oscillator is defined by Q r
w

=  

and is the number of periods for the amplitude to decline by 
a factor of e. 

●  In a damped oscillator, the driving term and displacement 
(or velocity) are out of phase. If the phase difference is φ, 
the rate of dissipation is proportional to cos .  

8.14 EXERCISES

1. Once in motion the amplitude of a child’s swing can be 
increased by pumping the oscillation by adjusting position 
in time with the swing. Because the effect is to alter the 
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parameters of the swing (its natural length or moment of 
inertia), the process is called parametric amplification or 
parametric resonance. 

 Consider therefore an SHO subject to a periodic variation 
of its natural frequency:

 w e w+ + =2
0 0(1 sin 2 ) 0,t xx  (8.42)

   where ε ≪ 1. If we neglect the perturbation the solution is, 
say, 

( )cos .x A tw= +

  Setting φ = 0 for simplicity show that (8.42) can be written

2 2
0 0 0 0

1
(sin sin 3 ).2x x t tw ew w w+ = − +

   Show that this gives rise to a linearly growing solution for 
x(t). Show further that the power supplied over a cycle is 
given by 

3 2
0

1
,4P Aew=

   and hence that the energy of the oscillator grows  
exponentially. 

2. A spherical buoy floats half-submerged in water and is 
observed undergo small oscillations about this equilibrium 
position with frequency ω. Show that the mass of the buoy is

3 69
,4 gp w r

 where ρ is the density of water and g is the acceleration due 
to gravity. 

3. Two equal masses are joined by a spring. One of the masses 
is highly damped. The other mass is set in motion. Investi-
gate the behavior of the system. 

4. Estimate the Q-value of a tuning fork.
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5. Show that velocity resonance occurs when a damped 
harmonic oscillator is driven at its natural frequency 
 (Section 8.5). 

6. Fill in the missing steps in Section 8.12. 

7. An oscillator with displacement satisfying the equation of 
motion 

2
0 0x r x xw+ + = 

 is critically damped if 2 2
04 .r w=  Show that in this case the 

solution of the equation of motion is

( )– 2e ,
rt

x at b= +

 where a and b are arbitrary constants.
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CHAPTER 9
Rigid Bodies

Problem: Galileo is credited with establishing that all bodies fall 
with the same acceleration under gravity. He did this not by drop-
ping bodies from the leaning tower of Pisa, as legend has it, but by 
rolling balls down an inclined plane. This has the advantage of dilut-
ing gravity, which makes it easier to measure the time of fall with the 
methods available to Galileo. However, Galileo was fortunate in the 
shapes of bodies he chose to compare.

Picture credit: David Wilmot (Creative Commons)
(http://commons.wikimedia.org/wiki/File%3ALeaning_Tower_of_Pisa_(1).jpg).

Does the shape of the rolling object make any difference?   
Would Galileo have made his discovery if he had compared the roll-
ing motion of spheres and cylinders?
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9.1 ROTATIONAL ENERGY

When we consider the kinetic energy of a body in linear motion, 
we do not have to worry about the distribution of mass because all 
parts of the body are moving with the same speed. But the different 
parts of an extended body that is rotating are all moving at different 

speeds, so we cannot say that the kinetic energy is just 21
2 mv .

To get the correct formula, consider a point mass, δm, rotating 
about a point O at a distance r with speed v. Its angular speed is  

ω = v/r. Its kinetic energy is 2 2 21 1
2 2mv mrd d w= . Now consider a 

rigid body rotating about O. All parts of the body have the same ω 
but their distances from O will be different. Thus, the kinetic energy 
will be

( )2 2
K

1
2 ,E mrd w= ∑

where the sum is over all the elements of mass in the body. We write 
this as 

2
K

1
2 ,E Iw=

where I is called the moment of inertia of the body. In practice, we 
work out I as an integral:

2 2 d
d   d .d

m
I r m r rr= =∫ ∫

9.2 MOMENTS OF INERTIA

Start with a simple example: the moment of inertia of a rod of 
length l pivoted at one end. We have dm = ρdx, so

 2 2

0

1
d .3

l
I x x mlr= =∫  (9.1)
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We might have been tempted to guess that we could replace the rod 
by an equal mass at its CM. This would give I = m(l/2)2. Why is the 
factor in (9.1) 1/3 and not 1/4? The reason is that the factor of x2 in 
the integral (9.1) for the moment of inertia weights the contributions 
of segments of the rod toward the more distant contributions. The 
equivalent mass is not at the CM but a bit farther out.

Next another simple example: the moment of inertia of a disc:

2 2 2 2
D D

0

1 1
2  d .2 2

R
I r r r R R M Rp r p r= = =∫

To work out the rotational energy of the Earth, therefore, we need 
its moment of inertia. To get this accurately involves knowledge of 
the radial mass distribution m(r). However, we can estimate it by 
taking the Earth to be a uniform sphere, of density ρ, radius RE,   
and mass ME.

Moment of inertia of a uniform sphere:

( ) ( )

( )

2 4
S D

22 2 2
E E

1 1
d d2 2

1 2
d2 5 ,

R R

R R

R

R

I M r z z r z z

R z z M R

rp

rp

− −

−

= =

= − =

∫ ∫

∫
where the final integral can be obtained either by expanding the 
bracket or with the substitution z = R cosθ.

Moment of inertia of a uniform cylinder:

For a uniform cylinder of radius R, height H rotating about its 
axis of symmetry, we have

2 4 2
C

0 0

1 1
2 d d .2 2

H R
I r r r h R H MRp r p r= = =∫ ∫

About a perpendicular axis through the center, we have

/2 2 2 3 2 2
CM

0
.

1 1
2 d 12 12

H
I h R h H R MHp r p r= = =∫
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And about a perpendicular axis through one end:

2 2 3 2 2
E

0

1 1
d 3 3 .

H
I h R h H R MHp r p r= = =∫

Note that

2

E CM .2
H

I I M  = +  
 

This is an example of the parallel axis theorem:

2
CMI I Mr= +

for the moments of inertia about the CM and about a parallel axis a 
distance r apart. 

Example: Find the moment of inertia IV of a square laminar of side 
2a of surface density σ about one vertex with respect of an axis nor-
mal to the plane of the square. 

Figure 9.1: Moment of inertia of a square laminar

Consider first a strip width dx at x from the center. The moment of 
inertia about the center is

3
2 2

d d d d .3
a

x
a

a
I x y y x

ss
−

= =∫
Using the parallel axes theorem, the moment of inertia of this strip 
about the center is 

( ) 2
Cd d 2 d .xI I a x xs= +
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The moment of inertia of the square about the center is
3

2 2 4
C

2 8
d 2 d 2 d .3 3

a a

x
a a

a
I I a x x a x x a

ss s s
− −

 
= + = + = 

 ∫ ∫

Using the parallel axes theorem again, with M the mass of the 
 laminar, 

( ) ( )2 2 2 4 4 2
C

8 32 8
2 4 2 .3 3 3VI I M a a a a a Mas s s= + = + = =

Example: Estimate the rotational energy of the Earth. 

We have for the rotational energy, ER

( )
2

22 2 2 24 6 24
R E E 7~0.2 6 10 6

1 1 2
3 1

10 2 10 J.
02 5E I M R ww p = = × × × × × ∼ × 

 ×

To get some idea of the size of this number, we can compare it to the 
world’s energy consumption. It is sufficient to provide the current 
world demands for power for about a billion years. It is also about a 
million times the energy falling on the Earth from the Sun in a year.   

Of somewhat more practical use, we could estimate the energy 
that can be stored in a flywheel, for example, for regenerative brak-
ing in a car or bus, or for smoothing out peaks in demand on the 
national electricity grid. Current technology allows rotation rates in 
excess of 25 000 rpm and is able to provide an energy store of 400 kJ 
per kg using composite materials.

9.3 ANGULAR MOMENTUM

The angular momentum of a point mass δm velocity v with posi-
tion vector r is δm(r ∧ v). For a rigid body, angular velocity ωω, this 
becomes

( ) 2 .m m mr Id d d= ∧ = ∧ ∧ = =∑ ∑ ∑ω ω ωH r v r r
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Expanding the triple vector product gives us

H = Σδm r2 ωω  - Σδm r (r ⋅ ωω).

For a planar body rotating about an axis perpendicular to the plane  
r and ωω are orthogonal, so the final term vanishes. More generally, 
we write r as a sum of components parallel to ωω and perpendicular 
to ω: .⊥= +



r r r  Then the final term is

( ) ( )( )2 2 .m r r rd w⊥ ⊥ ∑ + − +   

r r

Now, if the body is rotating about an axis of symmetry, 

( ) 0,m rd w⊥∑ =


r

because contributions from opposite sides of the axis (r→ → -r→) will 
cancel. Also, r↑(r↑ω) = r↑ω̂ (r↑ω) = r↑

2ωω, so collecting terms leaves

H = Σδm r⊥
2 ωω.

So for a body rotating about an axis of symmetry, the angular momen-
tum is 

 H = Iω, (9.2)

where I = Σδm r2 sin2θ with θ the angle between the axis and the 
position vector to δm. The quantity I is called the moment of inertia 
of the body about the symmetry axis. If the rotation is not about an 
axis of symmetry, the relation between the angular momentum and 
angular velocity is still given by (9.2), but the moment of inertia is 
then represented by a 3 × 3 matrix which can be obtained by writing 
the equation out in component form. We get 

Hx = Ixxωx + Ixyωy + Ixzωz,

where Ixx = Σδm (y2 + z2), Ixy = -Σδm xy, etc. with corresponding 
equations for Hy and Hz.
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If there is no net external couple on a system, angular momen-
tum is conserved. We can see this as follows:

 CM
d d

  ,d dm m Mt td d = ∧ + ∧ = ∧ = ∧ 
 ∑ ∑H v
v v r r F R F  (9.3)

which is zero if there is no net couple (RCM ∧ F = 0).

9.4 THE RECEDING MOON

The Moon recedes from the Earth at the rate of 3.8 cm a year 
as a result of tidal torques exerted by the Earth on the Moon. How 
can we explain this? Estimate the resulting change in the length of 
the day.

Let HM be the magnitude of the angular momentum of the 
Moon, and let the Earth have moment of inertia IE and angular 
speed ωE. Conservation of angular momentum implies

 δHM = -IEδωE. (9.4)

But the change in angular momentum of the Moon, if its distance 
changes by δR, is

 M
M

2
 .

R
H Mv R M RP

pd d d= =  (9.5)

where PM is the orbital period of the Moon. Equating the two expres-
sions for δHM gives

 
E

M E

2
 .

R
M RP I

pdw d=
 

(9.6)

If PE is the length of the day, then 

E E2
E M EE

2 2 2
,

R
P M RP P IP

p p pdw d d d = = − = − 
 

where the final equality follows from (9.6). Thus, with = 2
E E E

2
5I M R ,
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7E E E
2 2

E M E M E E

380 0005 1 5 1
~ 0.038 5 10 .2 28 2 60 6000

P P MR R P M R R
P P I P M R

d d d −= = × × × ∼ ×

The fractional change in the length of the day is 5 × 10−7 over a year, 
so the day decreases by 0.04 s a year. 

9.5 SPACE TETHER

In near Earth orbit, the atmosphere is still dense enough to 
produce a drag force on the international space station. In order to 
remain in orbit, the space station must therefore be supplied with 
energy. An efficient way of doing this is to use the energy of visiting 
space shuttles as they undock, by paying out the shuttle on a long 
tether. How would this work? 

Given that the dissipation of energy is small, we can ignore these 
frictional losses in considering the orbits. Therefore, the total energy 
must be conserved. Since there are no external couples acting on the 
system, the angular momentum must be conserved. This gives us a 
clue as to what is proposed. If the shuttle is losing angular momen-
tum as well as energy, then that angular momentum and energy 
must be transferred to the space station. What affect will this have: 
one might guess that it will boost the space station to a higher orbit. 

Figure 9.2: A shuttle tethered to a space station

We give the shuttle a little nudge toward the Earth to start things 
off. Looked at in the rotating reference frame, there is a net down-
ward force on the lower mass, here the shuttle, since gravity closer 
to the Earth is greater than the centrifugal force, and an outward 
one on the upper mass, here the space station, since gravity   is less 
than the centrifugal force. Since the link between them is not rigid, 
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these forces will cause the tether to be paid out without any further 
expenditure of energy. 

As the shuttle falls, its kinetic energy and potential energy 
change. In a circular orbit = −K P/2,E E  so half the potential energy 
it loses goes into kinetic energy. An increase in kinetic energy means 
that the shuttle speeds up. This is correct: bodies closer in go round 
faster. But where has the other half of the change in potential gone? 
The only possibility is into increasing the energy of the space station. 

9.6 EQUATION OF MOTION

Equation (9.2) gives us the equation of motion of a rotating sys-
tem that is subject to external torques:

=
d

,dt
H

G

or, more simply, for rotation about a fixed axis of symmetry,

d
,dI Gt

w
=

or

q
=

2

2
d

.
d

I G
t

In the spirit of Chapter 5, we can derive this from the energy of the 
system. We have

( )w q= + = +2
K U

1
,2E E E I U

and hence,

ww wq= = +
d d d

0 .d d d
E U

It t

Identifying d /dG U q= −  gives us the equation of motion. 
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9.7 COMPOUND PENDULUM

A simple pendulum is a point mass on a massless string undergo-
ing small angle oscillations. If we make the support rigid and mas-
sive, we have a compound pendulum. How would we expect this to 
change the period? For simplicity, consider a rod of length l mass m 
pivoted at one end. The only quantities that can enter the expression 
for the period are again m, l, and g. So the period is proportional to

( )
1
2/l g  but with a different constant of proportionality. To receive 

this, we have to solve the equations of motion. 

Figure 9.3: A compound pendulum

We have 

sin2
l

G mg Iq q= = 

where I = 1/3 ml2. Thus,

3
2

g
lq q=

for small oscillations and the period is

2
2 .3

l
gp

The effect of adding mass nearer the pivot is to shorten the period 
as we might expect. 
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9.8 A MODEL OF RUNNING

The following is an extract from the Harvard University Gazette 
(April 30, 1998):

Sternlight guessed that an upper limit on the frequency of stride 
might restrict a person’s running speed. She measured stride fre-
quency and length, the amount of time a runner’s foot is in contact 
with the ground, and the time each foot is in the air. The latter is 
called “swing time.”

To Sternlight’s amazement, whether people ran fast or slow, or 
whether they ran uphill or downhill, everyone had approximately the 
same swing time at top speed. 

Those running 14 miles an hour and those running 27 miles an hour 
both took between 0.37 and 0.40 second to swing one leg in front of 
the other.

“What limits top speed, then, is the minimum time you take to swing 
your leg into position for the next step,” Sternlight concludes. “That’s 
evidently a fundamental limit for all humans. What determines how 
fast you can run is how fast you’re going when you reach that limit.”

According to this theory, the leg is a compound pendulum. The 
average leg length is 0.95 m, so the swing time (one half a period) 
becomes 1.96/2 = 0.98 s. The typical stride length of a sprinter is 1 
m at a speed of 10 m s−1 so a stride time of 0.1 s, very different form 
0.98 s. Clearly, there is something wrong! The pendulum model is 
satisfactory for slow walking (0.5 m s−1 with a step of 0.3 m giving a 
step period of 0.6 s which is somewhat closer to 0.98 s) but running 
is clearly qualitatively different from fast walking.   

9.9 ROLLING AND SLIPPING

Return now to a question we left unanswered in Chapter 2.   
Under what conditions does a cart wheel roll rather than slip as the 
horse and cart move off. What do we expect? Clearly, we must not 
accelerate away too quickly, so we are seeking a limit on the initial 
acceleration. This could in principle depend on all the parameters 
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in the problem: the mass of the cart, M; the radius of a wheel, r; the 
acceleration due to gravity, g; and the coefficient of friction μ. How-
ever, dimensionally, we are restricted to a ∼ f(μ)g, where f is some 
unknown function. This is as far as we can get without a calculation.

Figure 9.4: Does the wheel slip before rolling?

So consider the situation in Figure 9.4, where now the wheel 
is not treated as a point mass, and the points of application of the 
forces therefore matter. 

Resolving the forces vertically, we have

 R = Mg. (9.7)

Resolving horizontally, we have

 F - Fr = Ma. (9.8)

Taking moments about the point of contact between the wheel and 
the ground:

 Fr = Iω̇ , (9.9)

where I is the moment of inertia of the wheel. For there to be no 
slipping, 

rω̇  = a,

so, from (9.9),

Mar + rFr = Ia.

Putting Fr = μMg and I = 21
2 Mr  and solving for a, rolling will occur 

before slipping if

a < 2μg.
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9.10 GALILEO’S INCLINED PLANE

We can now tackle the problem of Galileo’s inclined plane. 
The task is to determine the acceleration down the plane of rolling 
objects of different shapes. 

We can determine the equation of motion of a rolling body from 
the conservation of energy. Suppose the body has mass M, moment 
of inertia I, radius a, speed v, and is at vertical distance z below its 
starting point. The total energy E of the body is given by the sum of 
the translational kinetic energy, the rotational energy, and the poten-
tial energy: 

2 21 1
constant,2 2E Mv I Mgzw= + − =

where ω = v/a. Thus,

2
d d d d

0 – ,d d d d
E v I v z

Mv v Mgt t t ta
= = +

where if the body rolls on a slope that makes an angle α with the 
horizontal,

d
sin .d

z
vt a=

The acceleration is therefore

 

2

sind
,d

1

gv
t I

Ma

a
=

+
 (9.10)

which is constant. The constant acceleration formulae, starting from 
rest, give the travel time:

a
   = +   

  

1 1
2 2

2 2
2

1 .
sin

z I
T

g Ma

Comparing objects of similar shape, we have I/Ma2 = constant, so the 
times are the same, independent of mass and radius. But  comparing 
spheres and cylinders, we have 
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1
2

1
2s

1
c 2

2
1 5 14

,15
1

1 2

T
T

 +    = =  
  + 

 

a 3% difference, probably beyond the accuracy that Galileo could 
achieve at a time when there were no accurate clocks.

Suppose we had not thought of starting from energy conserva-
tion. How would we apply Newton’s law’s directly?

Taking moments about the point of contact, we have

0sin ,G Mga Ia w= = 

where I0 = I + Ma2 is the moment of inertia about the point of con-
tact and v = aω. Dividing through by Ma2 gives (9.10). 

9.11 SPIN AND PRECESSION

Consider a spinning top or gyroscope. It not only spins about its 
axis, but this axis of rotation will in general rotate about some fixed 
direction. The rotation of the axis is called precession. Why then 
does a spinning top precess? 

To understand precession, we need to appeal to the vectorial 
property of torque and angular momentum. The force of gravity, 
acting through the center of gravity of the top, creates a couple G 
about the point of contact, perpendicular to the plane of the spin 
and the vertical. Since there are no other couples acting, the angular 
momentum orthogonal to G is conserved. Thus, the vertical com-
ponent of the spin angular momentum, which is orthogonal to G, 
remains constant. The spin axis can therefore at most rotate about 
the vertical: this is precession. 
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Figure 9.5: Precession

The rate of precession is given by equating the rate of change of 
angular momentum to the couple on the system. We give a purely 
vectorial derivation first, and then a slightly easier version from the 
geometry. The precession angular speed is a vector ωωp in the direc-
tion of the unit vector k such that

 d
.d p pt w= ∧ = ∧kωH

H H  (9.11)

The couple on the system is given by 

 ˆ .mgr= ∧kG H  (9.12)

Equating (9.11) and (9.12) and using H = Iωω gives

p
mgr
Iw w=

for the rate of precession. Note that if ω decreases, for example, 
because of friction, the precession speeds up: this is verified by 
casual observation as a spinning top comes to rest, although this sim-
ple model does not tell us anything about the stability of the motion, 
which is in fact more complicated once ωp > ω.

Alternatively, from figure,

sin sin .pH H H tq w∆ = ∆ = ∆f f
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Thus, the system precesses at a rate ωp given by

d
sin sind p

H
H mgrt w= = ,f f

from which, as before, with H = Iω,

.p
mgr
Iw w=

9.12 EULER EQUATIONS

As our final application of rigid body dynamics and the conserva-
tion of angular momentum, we answer the question: why do falling 
bodies tumble? By a tumbling motion, we mean the precession of 
the axis of spin in a falling body. 

The precession of a free body is a bit more complicated than the 
systems we have dealt with so far. It arises if the body is not spheri-
cally symmetric. In the simplest case, the body will have cylindrical 
symmetry, with the moments of inertia about two perpendicular axes 
equal. 

The equations of motion are obtained by considering the motion 
of the body in the rotating frame. If the time derivative in the rotat-
ing frame is denoted by d/dt, it is not true that dH/dt = G. This is 
because Newton’s laws hold only in an inertial frame. If the frame of 
reference is rotating with angular velocity ωω, then viewed from an 
inertial frame, there is an additional rate of change of the angular 
momentum of ωω ∧ H. Thus the correct equations of motion are

 
d

.dt
 + ∧ = 
 

ω H G  (9.13)

We now have to relate H to the moments of inertia. We shall not go 
into details: we just note that by definition of the principle moments 
of inertia (I1, I2, I3) about the three principal axes of symmetry of the 
body, we have

( )1 1 2 2 3 3, , .I I Iw w w=H
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In the case in question, the body is in free fall so G = 0. Equation 
(9.13) in components becomes

( )1 1 2 3 2 3 1,I I I Gw w w+ − =

 ( )2 2 3 1 3 1 2,I I I Gw w w+ − =

 ( )3 3 1 2 1 2 3.I I I Gw w w+ − =

In the case in question, the body is in free fall so G = 0. If I2 = I3 = 
C and we set I1 = A, with A > C, we get

1 0,Aw =

so ω1 = constant. Then

( )2 3 1 0C C Aw w w+ − =

 
( )3 1 2 0C A Cw w w+ − =

from which 

2 2 3 3 0,C Cw w w w+ = 

and hence, 

2 2
2 3 constant.w w+ =

Thus, ωω = (ω1, ω2, ω3) rotates about the one axis, that is, the body 
precesses at a rate determined by A − C. We can now see why a 
freely falling body tumbles. 

9.13 CHAPTER SUMMARY

●  The kinetic energy of a body rotating with angular speed ω 

is 2
K

1
2 ,E Iw=  where 2I mrd= ∑  is the moment of inertia of 

the body about the axis of rotation 
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●  The parallel axis theorem gives the moment of inertia I of a 
body of mass M about an axis parallel to one though the CM 
at a distance r: 2

CMI I Mr= +

●  The angular momentum of a body rotating with angular 
velocity ωω is H = Iωω

●  The equation of motion of a body subject to a couple G 

about a fixed axis is 
d
dt =
H

G.

●  Euler’s equations for the general motion of a body are

d
.dt

 + ∧ = 
 

ω H G

9.14 EXERCISES

1.	 A Fairground rotor consists of a cylindrical room which can 
be spun about its axis of symmetry. Intrepid members of 
the public stand with their backs to the wall while the room 
is spun up, at which point, the floor is removed. The people 
inside find themselves stuck to the wall. How fast must a 
4 m rotor be spinning before the floor can be lowered? 

2.	 Volvo engineers have experimented with a 0.2 m flywheel 
with a mass of 6 kg for regenerative breaking. The carbon 
fiber flywheel can rotate at up to 60 000 rpm. How much 
energy can it store?   

3.	 A cylindrical body of radius a and mass M is released from 
rest on a plane inclined at angle θ. What is the condition 
that it rolls before slipping?

4.	 Precession of the Earth: Because it is not a perfect sphere 
the moment of inertia of the Earth about a polar axis, A, 
is greater than that about a perpendicular axis through 
the center, C. Show that the period of free precession is 

( ) 1

2
.

C
A C

p
w−

 Evaluate this and decide if it accounts for the 

precession of the equinoxes on a 26 000 year timescale.

Newtonian Mechanics_2E_Ch_09_2pp.indd   240Newtonian Mechanics_2E_Ch_09_2pp.indd   240 3/26/2021   2:28:00 PM3/26/2021   2:28:00 PM



CHAPTER 10
Stability of Motion

Problem: In what orientation does a dumbbell spaceship orbit?

Creative Commons: NASA Goddard Photo & Video, 2012

10.1 PERTURBATIONS

A dynamical system in equilibrium may be subject to an exter-
nal perturbation. If the perturbation is small, we can compute its 
effect by approximation. There are two possible outcomes: the sys-
tem returns to its equilibrium or it moves (or stays) away from it. 
In practice, in the latter case, the system may reach a new equilib-
rium or move chaotically: we cannot tell what eventually happens 
from the approximation for a small displacement if the displacement 
becomes large; all we can say is that the original equilibrium was 
unstable. The problem of determining the orientation of a  spacecraft 
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 therefore reduces to finding the orientation that is stable to a small 
perturbation. 

We can also use this approach as a trick to obtain solutions for 
problems where a part of the force can be regarded as a small addi-
tion, even if this has no physical meaning, or even if it is not in prac-
tice an actual perturbation. We shall begin by illustrating this with 
some examples. 

10.2 CUBIC POTENTIAL

Consider a particle of mass m moving in the potential (some-
times called the anharmonic potential)

 
( ) 2 2 2 31 1

,2 3x x xw ew= −f
 

(10.1)

where ε is a small quantity and the factor of 1/3 has been chosen for 
later convenience. The total energy per unit mass is therefore 

2 2 2 2 31 1 1
 .2 2 3E x x xw w= + − e

Differentiating with respect to t gives the equation of motion 

 2 2 2d
0.d

E
x x xt w w= + − = e  (10.2)

Before we solve this, let us see what we might expect. The stationary 
points of the potential (10.1) are at 

2 2 2d
0 ,d x xx w w= = −

f e

that is, at x = 0 and x = 1/ε. Since f(x) is a cubic, it has one maximum 
and one minimum, and since f → −∞ as x → +∞, the stationary 
point at x = 1/ε is the minimum. The particle therefore now oscil-
lates about x = 1/ε. 

In addition, the x2 term has the same sign when x is both posi-
tive and negative; it represents a force in the positive x-direction. 
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(We can see this in several ways: 2 2d
;dF xx e w= − = +

f
 or when x is 

positive, the x3 term in the potential has the opposite sign from the 
simple harmonic term.) So the anharmonic term adds to the acceler-
ation on the positive side and reduces the acceleration on the nega-
tive side. The particle therefore spends more time on the positive 
side of the origin, as we might expect from the previous argument 
that the center of oscillation has shifted to positive x. 

Let us derive these results formally. As a first approximation to 
the solution of (10.2), we ignore the term in ε. Thus, from (10.2),

2 ,x xw= −

and hence, our first approximation is

 0 cos( ).x a tw= +  (10.3)

As the next approximation, we could put x = x0 + δ, substitute this 
into (10.2) and ignore terms quadratic and above in the small quan-
tities ε and δ. A quicker way is to approximate the small term we 
have so far, neglected using the approximate solution we have just 
obtained in (10.3). This gives 

( )2 2 2 2 2 2
0 cos  .x x x a tw w w w+ ≈ = + e e f

We cannot solve this (directly) with a cos2 term on the right, so we 
use the double angle formula to turn this into a cosine term:

( )2 2 21
 [1 cos2 ].2x x a tw w w+ = + + e f

The solution is 

( ) ( )2 2 2
1

1 1
cos  cos2 .2 2x a t a a tw w w= + + − +f e e f

The effect of the anharmonic term has been to shift the mean dis-
placement to 

2 2
1

1
 ,2x aw= e
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since the means of the cosine terms over a period are zero. So the 
particle does indeed spend more time with x positive. Applied to a 
pair of atoms in a solid, this means that the atoms spend more time 
at greater separation from their equilibrium than closer together. 
Since the amplitude of oscillation, a, depends on temperature, this 
is responsible for the expansion of solids on heating. 

10.3 MOTION OF THE PLANET MERCURY

As a second example, we consider the motion of a planet accord-
ing to general relativity. The effect of relativity is to add a small correc-
tion to the Newtonian equations of planetary motion (Section 7.19):

2
2 2

3GM GM
u u u

h c
+ = +′′

for a planet with angular momentum per unit mass h in orbit about 
a star of mass M (with 2 2d /d )u u′′ =  . The small parameter here is ε = 
h2/c2, where c is the speed of light. So we can write

 
23 ,u u k kue+ = +′′  (10.4)

where k = GM/h2. The first approximation (ignoring the term  
in ε) is

0 (1 cos ).u k e= + 

If we look at what we expect to happen before we plunge into the 
solution, it will make the process of solving the equation easier. 
Equation (10.4) is similar to (10.1) except for the constant k on the 
right hand side. So we try to remove that by letting u = v + k:

( )2 3 21 6 3 3 .v k v k kve e e+ − = +′′

If we ignore the v2 term now we have the equation of an ellipse, but 

with a modified period in f, namely 
1

2 22 /(1 6 ) .kp e−  We see there-

fore that the perturbation increases the period of the orbit in space, 
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which means that the body moves through a greater angle in return-
ing to the same orbital distance 1/u. If we focus on the point in the 
orbit at its closest to the parent star (the periastron), this precesses 
round the orbit. 

With this in mind as a second approximation, we try 

( ) ( )( )1 1 1 cos 1 ,u k ed d= + + +  

where we have assumed a shift in the periastron. Substituting back 
in (10.4) gives

( )( ) ( )( ) ( ) ( )( )2
1 1– 1 cos 1 [1 cos 1k e k ed d d d d+ + + + + + + 

( ) ( )( )2 2
1 3 [1 cos 1 ] .k k k ee d d= + + + +f

We now ignore terms that are of higher order than linear in the small 
quantities δ, δ1, and ε to obtain

3 3
12 cos 3 6 cos .ke k k k k ed d e e− + + = + +f f

Thus, comparing terms independent of f and in cosf, we get

3 2
1 3     and    3 .k kd e d e= = −

So the solution is

( ) ( )( )2 21 3 (1 cos 1 3 .u k k e ke e= + + − f

In one orbit, u returns to its starting value in an angle

( )2
2

2
2 1 3 .

1 3
k

k
p p e
e

= ≈ +
−

f

The periastron therefore advances by 6πεk2 per orbit or by 6πεG2M2/
h2c2 in physical units. For planets in orbit around the Sun, we speak 
of the precession of the perihelion. The predication of the correct 
perihelion precession of Mercury (which is the most easily measured 
in the solar system because of its short period and large eccentricity) 
is one of the observational tests of general relativity. 
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10.4 STABILITY: GENERAL FORMULATION

We now turn to the problem of stability to a small perturbation. 
It is often easier to treat each case independently, but we begin with 
a general formulation. Suppose we have an equation of motion

( )
2

2
d

, ,
d

x
f x t

t
=

with solution ( )0 .x x t=  To investigate the stability of this solution, we 
look at what happens if we add a small perturbation: ( ) ( )0x x t te= + :

( ) ( )
0

2

0 02
d
d x

f
x f x xt

e e ∂ + = + +… ∂ 

by Taylor expansion, so

( )( )2
0

2

,d
 .

d
f x t t

xt
e e

∂
= ∂

If /f x∂ ∂  > 0 at 0x x= , ε will grow exponentially; if /f x∂ ∂  < 0 at  
0x x= , ε will oscillate. Thus, the equilibrium point is stable if  

/f x∂ ∂  < 0 at this point. 

10.5  AN EXAMPLE OF STABILITY: NON-
NEWTONIAN ORBITS 

Consider a body moving in a plane orbit subject to an inverse 

nth power law nF kr−= . The orbit equation is

 2,nu u ku −′′ + =  (10.5)

which can be derived in exactly the same way as the inverse square 
case (Section 7.19). Consider a circular orbit u = u0 = constant = 

2
0 ,nku −  or

 3
0 1nku − =  (10.6)
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and suppose we add a perturbation ε(φ) so that 0 .u u e= +  Then 
from (10.5) to first order in ε 

( ) ( ) ( )2 3
0 0 02 2 ,n nk u u k n u ne e e e e− −′′ + = + − = − = −

where the zeroth-order terms cancel using (10.6). Therefore,

 ( )3 .ne e′′ = −  (10.7)

If n < 3, Equation (10.7) has oscillatory solutions so ε always remains 
small. The original solution before the perturbation is stable. If 
n > 3, the solution to (10.7) is a growing exponential, so the solution 
is unstable. For n = 3, the solution also grows (linearly). We therefore 
have stability if n < 3, and instability for larger n. 

It is intriguing to consider how Newtonian gravity might appear 
if the dimension of space were >3. In three dimensions, the inverse 
square behavior of the gravitational force arises from the solution of 
Poisson’s equation (Section 7.24) for the gravitational potential. If 
the gravitational potential in a space with higher dimensions satisfies 
the higher dimensional analog of Poisson equation, then the gravita-
tional force will fall off faster than an inverse square. This means that 
circular orbits would not be stable in universes with spatial dimen-
sion >3. 

For comparison, the general theory of Section (10.4) applied to 
Equation (10.5) asks us to evaluate

( ) ( ) ( )0

320
0

d
| 1 2 3,d

nn
u u

f u
u ku n ku nu u

−−
=

∂
= − + = − + − = −∂

from which we obtain the conditions on stability as before. 

10.6 A WARNING

As a warning against blindly applying the small perturbation 
algorithm, consider the equation of motion of a harmonic oscillator 
perturbed by a small quartic potential. The equation of motion is 

2 3 0.x x xw e+ + =
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So as a first approximation (ignoring the term in ε), we try

0 sin .x tw=

Then, for our second approximation, we must solve

2 3 sinx x tw e w+ = −

 
( )3 3 e e ,4

i t i tw we
= − −

 
(10.8)

where ℐ indicates the imaginary part and we have used the identity 
sin3θ = 3 sinθ - 4 sin3θ. We try

3
1 e ,ei t i tx At Bw w= +

where the extra factor of t in the first term arises because ei tw  satis-
fies the homogeneous equation. Substitution in (10.8) fixes A and B:

1 2
3

sin sin 3   sin .832 
x t t t t

e ew w www
= − +

There is clearly a problem with the final term: it is supposed to be 
a small correction, but if we wait long enough, it will cease to be 
relatively small. The problem arises because we have tried to fix the 
period of oscillation to be unchanged as a result of the perturbation. 
In fact, the true approximation is

2
3 3

sin sin 3 ,8 8 32 
x t t

e e ew ww ww
   = + − −   
   

which we can find by following the procedure of Section (10.3).

10.7 SOLUTION TO PROBLEM

We are now in a position to address the problem of the orienta-
tion of the spacecraft. 

To do this, we cannot treat the body in orbit as a point mass. 
So we need to make some sort of model (or approximation) to the 
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shape of the body. Clearly, we want to keep it simple and not try to 
represent the detailed structure of the hypothetical space station. 
Figure 10.1 shows two possible models: we can make the dumbbells 
equal in mass and neglect mass of the joining section, or we can 
neglect the mass of the dumbbells and consider the mass to reside in 
the linear section. It does not matter which model we use to under-
stand the problem and to illustrate the principles involved. We shall 
restrict ourselves to the first model in the following discussion: 

Figure 10.1: Models of a space station. On the left, we consider two massive spheres  
connected by a massless strut; on the right, a massive strut connecting two massless spheres 

(which can therefore be neglected to give a cylindrical mass)

So we can return now to the problem of the orientation of the space-
craft. Figure 10.2 shows two possible orientations. The symmetry 
in each case means that there can be no net force or torque on the 
spacecraft, so in both of these pictures, the spacecraft is in equilib-
rium. The problem therefore is to determine which of these equi-
libria is stable. 

So far, we have been looking at the spacecraft from the point of 
view of an orbit about a stationary Earth. That is to say, we have been 
using the Earth as our frame of reference. This is quite straightfor-
ward if the satellite can be described as a point mass, but for the 
motion of an extended body, it is quite complicated. Putting our-
selves in the frame of reference of the 

Figure 10.2: Two possible equilibrium orientations of the space station
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satellite appears to remove the orbital motion, so the behavior of 
the satellite can be described more simply. However, we must make 
the transformation to the rotating frame of the satellite correctly. 
In a rotating frame of reference, Newton’s laws of motion no lon-
ger hold. We say that a rotating frame is not an inertial frame: in a 
rotating frame bodies apparently subject to no forces appear to fly 
outward! We therefore have to amend Newton’s laws by introducing 
additional forces to account for this behavior. An example, sufficient 
for our purpose here, is the centrifugal force. With the inclusion of 
centrifugal forces Newton’s second law is valid in a rotating refer-
ence frame (see Chapter 8 for a general discussion).

Figure 10.3 shows why it is easier to consider the motion of the 
spacecraft in the rotating frame. Viewed from the Earth in an inertial 
frame the spacecraft rotates relative to a fixed direction as a result 
of its orbital motion. In the rotating frame, the equilibrium orienta-
tion remains fixed. We can therefore consider the motion about an 
equilibrium orientation most easily in the rotating frame provided 
that we include the outward centrifugal force. 

Imagine then that the satellite is at rest and the Earth is spinning 
beneath it. To answer the question of stability, we imagine a small 
displacement of the satellite from equilibrium and look at the forces 
that then act on it. 

Figure 10.3: Orbits from the point of view of a rotating frame of reference
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In case I on the left in Figure 10.4, dumbbell a is closer to the Earth 
than dumbbell b. What does this mean for the gravitational force 
on each? Since the strength of gravity falls off with distance from 
the Earth, the force on the closer dumbbell a is greater. We can see 
that this creates a moment about the CM that pulls the system back 
to the vertical. What about the outward centrifugal force? That on 
the dumbbell a is weaker than on b, which again acts to restore the 
system to equilibrium. So the equilibrium here is stable. A similar 
argument shows that the orientation II in Figure 10.4 is unstable. 

The result depends on the nonuniformity of the gravitational 
field – the fact that it changes with distance – which generates an 
imbalance of gravitational forces. Recall from Chapter 7 that forces 
that arise from the nonuniformity of gravity are also called tidal 
forces. 

Before we leave the subject of stability of equilibrium, we shall 
look at a slightly different approach from the point of view of energy. 
This is useful because it provides a picture that translates into many 
other contexts. It is also often easier to use for calculations. That is 
because, in contrast to forces, energy is a scalar quantity, so we do 
not have to worry about directions. 

Figure 10.4: In a rotating frame, the spaceship is at rest while the Earth spins  
about a fixed center beneath it. As seen from the North pole, the Earth rotates  

anticlockwise in the rest frame of the satellite
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In the rotating frame, the dumbbell is subject not only to the 
gravitational force but also to the centrifugal force. Both have an 
associated potential energy. For gravity, we know that the poten-
tial energy is GMm/r. For the energy associated with the centrifu-
gal term, we must find the work done by the force mrω2 in mov-
ing from the CM of the dumbbell at R to the center of the upper 
dumbbell at R + δ (Figure 10.5). This is the integral of the force 
over the distance:

2 2 21
Centrifugal potential energy d .2mr r mrw w= − = −∫

Figure 10.5: The centrifugal force and gravity in the frame of the spaceship

This is the loss in potential energy, since we are moving in the direc-
tion of the force, which does the work. So the potential energy is 
negative. The difference in potential energy between the CM and 
the dumbbell center is given by

( )221
2

GMm
m RR w dd− − ++

2 21
.2

GMm
m RR w − − −  
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Expanding this to lowest order in δ, we get

( )d d w d d
 

∆ = − − + +… − + + 
 

2
2 2

2
1

1 22
GMm GmM

U m RR R RR

 2 23
.2 mw d= −

Figure 10.6: The dumbbell spacecraft is displaced by a small angle θ from its  
equilibrium

For the lower dumbbell, we get a similar contribution (it depends 
on δ 2 so has the same sign) and therefore the total potential energy 
of the two dumbbells is

2 23 .U mw d∆ = −  

Imagine that the satellite is perturbed from its equilibrium 
position by a small angle θ (Figure 10.6). We can see from the dia-
gram that the radial distance of each dumbbell from the center is 
δ = d cosθ. So we now have an expression for energy as a function 
of the system coordinate, θ. Figure 10.7 shows a sketch of cos2θ 
plotted against θ. We can see that there is a minimum at θ = 0 and 
the maximum at θ = π/2. Thus orientation (a) is stable and (b) is 
unstable. 
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Figure 10.7: θ = 0 is at the bottom of the potential energy curve, hence a stable point. θ = 0 
is at a maximum so is an unstable configuration

Finally, we can look at the equations of motion. The couple on the 
system is /U q− ∂∆ ∂  and the kinetic energy of rotation about the CM 

is 21
2 Iq , so the equation of motion is 

2 23 d .I mq w q= −

This is SHM with period ( )2 22 / 3 dmp w√ , so upon a small perturba-
tion, the system oscillates about the equilibrium at θ = 0. 

10.8  PHASE PORTRAITS: HARMONIC 
OSCILLATOR 

Often we want look not only at linear stability but also at what 
happens to an unstable system or at the range of stable behaviors 
open to a system. If we cannot solve the equations of motion (or 
even if we can), the problem can be approached by looking at the 
phase plane. This is a plot of the momentum (or speed) against posi-
tion. The resulting plots are called phase portraits. We illustrate this 
first for the SHO

The equation of motion is 

2– .x xw=
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Figure 10.8: Phase portrait for a harmonic oscillator. The arrows show the trajectories  
of the oscillator in the phase plane (The plot was obtained using Maple symbolic  

computing software.)

We begin by rewriting this in dimensionless variables by defining 
:tt w=

 .x x= −  (10.9)

To obtain the phase portraits, we need to rewrite this as a set of 
first-order equations. We define 

 ,x p=  (10.10)

so (10.9) becomes

 .p x= −  (10.11)

Finally, we eliminate time altogether by dividing (10.11) by (10.10): 

d
.d

p x
x p= −

We can now graph the solutions in the x–p plane (Figure 10.8). If x 
and p are positive, the slope of the trajectory is negative, so an arrow 
in this quadrant slopes downward; similarly in the other quadrants. 
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Joining the arrows gives the trajectories through any given starting 
point. The plot in Figure (10.8) (and those below) was obtained 
using Maple symbolic computing software. 

The advantage of this approach is that it shows us all solutions. 
In this case, the solutions are cycles (circles in fact). The disadvan-
tage of this picture is that we lose any information about time.

10.9 PHASE PORTRAITS: DAMPED OSCILLATOR

If we add a linear damping term to the oscillator, the equations 
of motion become

,x p=

,p x rp= − −

where r is the damping rate constant. Figure 10.9 shows the system 
tending to a limit point at the origin. 

Figure 10.9: Phase portraits for the damped harmonic oscillator showing  
the systems tending to a limit point at the origin
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Figure 10.10: Phase portraits for a large amplitude pendulum;  
the coordinates x = ± π represent the same point

A finite amplitude pendulum has equation of motion:

,x p=

sin ,p x= −

where x is here the angular displacement from equilibrium. The 
behavior in Figure 10.10 is periodic since we identify x = −π with 
x = π. For large enough displacements or momenta, the momentum 
does not change sign: on these trajectories, the pendulum swings 
over the top. 

10.10 CHAOS

If we now add force and resistance to the finite amplitude pen-
dulum, something strange happens. For certain values of the forcing 
amplitude, the motion becomes chaotic. This is difficult to see in the 
phase plane so we use a Poincaré section. In a Poincaré section, we 

Newtonian Mechanics_2E_Ch_10_2pp.indd   257Newtonian Mechanics_2E_Ch_10_2pp.indd   257 22-03-2021   10:29:4622-03-2021   10:29:46



258 • NewtoNiaN MechaNics, 2/E

plot the position of the point in the phase plane once every period of 
the driving force. Thus, a periodic motion is represented in a Poin-
care section as a single point. If we plot the representative point for 
the pendulum once, any transients have died out against the strength 
of the forcing term, for a given resistance and forcing frequency, we 
obtain the famous bifurcation diagram (Figure 10.11).

Note that for each value of the forcing strength, the plot shows 
the Poincare section. Initially, the motion is periodic so there is 
only a single point for a given value of the forcing. As the control is 
increased, the period doubles so the point returns to its initial loca-
tion only after two cycles of the driving term. After a sequence of 
such period doublings, the motion becomes chaotic. The sequence 
repeats in compressed fashion infinitely often. 

3.705
−2.2

−2.1

−2.0

−1.9

−1.8

3.706 3.707 3.708 3.709 3.710

0
f

θ

Figure 10.11: Bifurcation diagram for the damped driven pendulum. At each value of the 
forcing strength, the value of the steady state angle of the pendulum, θ at a fixed phase 
of the driving term is plotted (from http://www.physics.udel.edu/~jim/PHYS460_660_11S/

oscillations&chaos/The chaotic pendulum.htm)

10.11 CHAPTER SUMMARY

●  Equations of motion with a small parameter can be approxi-
mately solved in a power series in the small parameter
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●  If the small parameter represents a perturbation to an equi-
librium solution, the solution can be used to test for stability 
of the equilibrium

●  A phase portrait is a plot of the system in the coordinate–
momentum plane. 

10.12 EXERCISES 

1. Construct a general theory of linear stability for an equation 
of the form

 

2

2
d d

, dd
x x

f x tt
 =  
 

2. For potentials of the form 

 (a) ( ) ( )U x x K x= −  and (b) ( ) ( )( )U x x K x H x= − − ,

 where H and K are constants find the stable and unstable 
points of equilibrium.

3. The potential 

( ) 2 2 4,x x xw l= +

 where ω2 and λ are constants, is often used to model depar-
tures from SHM. Investigate the equilibrium points and 
their stability for λ > 0 and λ < 0.
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CHAPTER 11
Lagrangian and 
 HamiLtonian mecHanics

Problem: What is the general solution of the equations of 
motion of a dynamical particle system? 

To understand the question, let us ask a simpler one: what is the 
general solution of a problem in statics? The answer comes from 
the principle of virtual work. Consider all the possible small dis-
placements of the system. These are called virtual displacements; 
virtual work is the work done in making these displacements. The 
principle of virtual work then states that the equilibrium configura-
tions of a mechanical system are those for which the virtual work is 
zero. Equivalently, a conservative system is in static equilibrium if 
the potential energy U(xi) is a minimum. 

The equivalence of the two statements for a conservative system 
comes from

,i i ii ii

U
U x F x Wxd d d d∂

= = − = −∂∑ ∑
so a minimum of the potential energy (δU = 0) corresponds to zero 
net work done (δW = 0) by the forces Fi = -∂U/∂xi.

Can we state a similar principle for dynamical systems such that 
the trajectory of the system is obtained by a minimum (or extre-
mum) principle? 
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11.1 PRINCIPLE OF LEAST ACTION 

To keep things simple, at first, we consider particles with masses 
mi at positions xi(t) moving in one dimension, with potential energy 
U(xi). The potential energy might arise from mutual interactions 
between the particles (e.g., their mutual gravity) or from an external 
source (e.g., the Earth’s gravity). We then start from Newton’s laws 
in the form:

 – .i i
i

U
m xx

∂
= ∂

  (11.1)

Assume now that the trajectory of the ith particle is varied by an 
amount δxi(t). Multiplying (11.1) through by δxi, summing over i and 
integrating with respect to t, we get

1

0

d 0,
t

i i i
t i

i
i

U
m x x txx d d∂ + = ∂ ∑∫ 

where the integral runs from an initial time t0 to the current time t1  
and the sum is over all the particles in the system. We now integrate 
the first term by parts to get

 d d d  ∂  =   ∂ ∑ ∑∫
11

0 0

– – d 0.
tt

i i i i i i it t ii

U
m x x m x x x tx
  

 (11.2)

Since the variation in the trajectories is a matter of choice, we can 
require all the δxi(t) to vanish at times t0 and t1. The first term on the 
left of (11.2) is then zero. Using

2 2 ,x x xd d=  

and

i
ii

U
U xxd d∂
= ∂∑

allows us to put (11.2) in the form

d  − − = 
 ∑∫ 21

 d 0,2 i im x U t
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where the variation δ refers to a variation of the path of the 
dynamical system, ( ) ( ) ( ) ,i i ix t x t x td→ +  with fixed end points, 

( ) ( )0 1 0i ix t x td d= = . Thus, we postulate that the quantity

1

0

21
– d2

t

i
t

ixS m U t =  
 ∑∫ 

is stationary along a trajectory of a dynamical system. The quan-
tity S is called the action and the quantity KE U= −  (the kinetic 
energy minus the potential energy) is called a Lagrangian (for 
 Newtonian dynamics) after Lagrange who synthesized these discov-
eries. Dynamical models often take the postulate of a form for the 
Lagrangian as their starting point.

The principle formalizes our heuristic energy minimization to 
obtain the equations of motion in Chapter 5. The important conse-
quence of deriving the equations of motion from an action principle 
is that the equations of motion are then automatically consistent 
among themselves. This is why all modern dynamical theories, for 
example, in particle physics, start by postulating a form for the action.

11.2 EULER–LAGRANGE EQUATIONS

Rather than have to resort to first principles every time, we 
approach a new problem, we derive the form of the equations of 
motion for a general Lagrangian once and for all. Let the Lagrang-
ian ( ),i iq q=    be a function of the generalized coordinates qi and 
q̇i, and let 

( )1

0

,  d , 
t

i i
t

S q q t= ∫ 

Figure 11.1: A trajectory q(t) and a neighboring trajectory with fixed end points
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where the integral is along a trajectory of the system qi = qi(t). Note 
that we have used the symbols qi here for the coordinates, and not 
xi, to emphasize that the coordinates in the Lagrangian need not be 
Cartesian.

We imagine that we make a small change in the trajectory keep-
ing the end points fixed (Figure 11.1). Then 

( ) ( ) ( ) ( )( )1

0

, d ,
t

i i i i
t

S S q t q t q t q t td d d+ = + +∫  

( ) ( )( ) ( ) ( )d d
 ∂ ∂ ≈ + +  ∂ ∂  

∑∫
1

0

, d ,
t

i i i i
t i ii

q t q t q t q t tq q
 



 


where we have expanded  to first order in the small variation (as a 
Taylor series). We integrate the final term by parts in order to get the 
integrand in terms of δ qi alone (and not δ qi):

 ( )
1

1 1

0 0
0

d
 d .d

tt t

i i i
t ti i it

q t q q tq q t qd d d∂ ∂ ∂   = −   ∂ ∂ ∂   ∫ ∫

  

  
 (11.3)

We have chosen δ qi(t) such that it vanishes at the end points. So the 
first term of the right of (11.3) is zero. This gives us

( ) ( )
1

0

d
d ,d

t

i i
t i i

S q t q t tq t qd d d∂ ∂  = −   ∂ ∂  ∫


 

which must hold for every choice of δ qi(t). This can be the case only 
if the coefficient of δ qi(t) vanishes. So we obtain finally

 
∂ ∂

− =∂ ∂
d

0d i it q q

 
 (11.4)

for each coordinate i. The equations of motion in the form (11.4) are 
called the Euler–Lagrange equations. 

It may seem that we have not gained much by writing Newton’s 
laws in this elaborate fashion, but in fact, it is much easier to con-
struct the scalar energies (kinetic and potential energies) for a com-
plicated system than it is to apply the laws of motion from the forces 
directly. Let us look at some examples.
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11.3 NEWTON’S LAWS

Given that our “derivation” in Section 11.1 was far from rigor-
ous, we should check that the Euler–Lagrange equations really are 
equivalent to Newton’s second law. For a collection of point masses 
mi at xi with potential energy U(xi), we have

( )21
.2 i i i

i

m x U x = −  ∑ 

The generalized coordinates qi are here the Cartesian coordinates xi 
so the Euler–Lagrange equations become 

( )∂ ∂ ∂
= + =∂ ∂ ∂

d d
– 0,d d i i

i i i
x

U
mt x x t x



 

or

,–ii i
i

x
U

m Fx
∂

= =∂


which is Newton’s law, as required. Note that in differentiating with 
respect to ẋi, we treat it as an independent variable − think of it as vi 
if you prefer. Note also that the sum in (11.5) is over EK - EP not over 
the particle energies EK + EP.

11.4 SIMPLE HARMONIC OSCILLATOR

For an SHO, the Lagrangian is 

2 2 21 1
2 ,2mx m xw= −

and the Euler–Lagrange equation (with qi ≡ x) is 

2d d
0,d di i

mx m xt q q t x x w∂ ∂ ∂ ∂
− ≡ − = + =∂ ∂ ∂ ∂
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from which the usual oscillator equation follows. (This is of course 
how we knew to construct the Lagrangian; alternatively, we see it has 
the general form EK - EP specialized to a harmonic oscillator.)

11.5 ACCELERATION IN POLAR COORDINATES

Let us do something a bit more useful. In Chapter 7, we saw how 
to derive the components of acceleration for motion in the plane in 
polar coordinates. The Euler–Lagrange equations give a much sim-
pler derivation. For a particle of unit mass with kinetic energy only 
the Lagrangian is 

( )2 2 2
K

1
.2E r r q= = + 



There are two Euler–Lagrange equations, one each for r and for θ. 
These give

q∂ ∂ = − = − ∂ ∂ 
2d

dra r rt r r






 

and

q q qqq
∂ ∂ = − = +  ∂∂ 

2d
2 ,da r rt

 





 

which are the required components of acceleration.

11.6 ROTATING COORDINATE SYSTEM

The Lagrange method also gives a relatively easy way of obtain-
ing the equations of motion in a rotating coordinate system. Con-
sider a particle of unit mass at location r. If it has velocity v in the 
rotating frame and velocity V in the inertial frame, then

.= + ∧ωV v r

The Lagrangian is
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( )[ ]( )= = ⋅ = ⋅ + ⋅ ∧ + ∧ ∧ ⋅21 1 1
22 2 2V V V v v v r r rω ω ω

( )[ ]( )= ⋅ + ∧ ⋅ + ∧ ∧ ⋅
1

2 ,2 v v v r r rω ω ω

where we have exploited the cyclic properties of the scalar triple 
product. 

Then

( ) ( )d d
– – ,d dt t

∂ ∂
− = + ∧ ∧ ∧ ∧∂ ∂ v r v r

v r
ω ω ω ω 

and, assuming ωω is constant,

 ( )d
2 ,dt= + ∧ + ∧ ∧ω ω ωv

a v r  (11.5)

with additional terms in ωω̇  if ωω is not constant.

If you are troubled by the differentiation with respect to vectors, 
then we can add indices, so v is replaced by vi, r by ri, and ωω ∧ r by 
(ωω ∧ r)i. Then

( ) ( )( )

( ) ( )( )

22

22

1
2 –2

1
– 2 – .2

i i i i i i ii
i

i i i i i i ii
i

v v v r r r r

v v r v r r r

w w w

w w w

= + ∧ +

= ∧ +

∑

∑



Then, from the first form for , 

( ) ,i i
i

vv
∂

= + ∧∂
 ω r

and from the second,

( ) ( ) ( ) ( )( )2– – . – – .i ii i ii
r rr w∂

= ∧ + = ∧ ∧ ∧∂ v r v rω ω ω ω ω

Putting these together in the Euler–Lagrange equations gives the 
ith component of (11.5):

( ) ( )2d .
d

i i i ia v vt w= + ∧ + ∧ ∧ω ω r
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11.7 BEAD ON A WIRE

Here is a more interesting, if artificial, example that illustrates 
the power of the method for dynamical problems. Consider a circu-
lar hoop of wire rotating with constant speed in a horizontal plane 
about a point of its circumference with a bead of unit mass free to 
slide on the wire. What is the equation of motion of the bead relative 
to the wire? (Figure 11.2)

Figure 11.2: A bead is free to slide on a wire frame which is rotating in a horizontal plane 
about the origin

The position of the bead is given by

( )cos cos ,x a t a tw w q= + +

( )sin sin ,y a t a tw w q= + +

where θ, the generalized coordinate, is a function of t. The kinetic 
energy is

( )2 2
K

1
2E x y= = + 

2 2 2 2 2( ) 2 ( )cos ,a a aw q w w q w q= + + + + 

which is the complete Lagrangian, because there is no potential 
energy. The equation of motion of the bead is

 2 sin 0.q w q+ =  (11.6)
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The interest of the problem is that the motion turns out to be the 
same as that of a compound pendulum under gravity. 

Having obtained the result, we should be able to explain it. In 
fact, from the point of view of an observer rotating with the hoop, 
the bead slides on a wire in a gravitational field aω 2. In this frame of 
reference, we can derive (11.6) directly.

11.8 CYCLOIDAL PENDULUM

0 1 2 3 4 5 6
0

0.5

1

2

1.5

Figure 11.3: The cycloid x = (q – sin q ), y = (1 + cos q )

A bead slides without friction under gravity on a wire in the 
shape of a vertical cycloid

( sin ), (1 cos )x a y aq q q= − = +

where y measures the height of a point on the cycloid and  
θ ( )0 2q p≤ ≤  is a generalized coordinate.

We want to find the equations of motion for θ. We have

2 21 1
2 2mx my mgy= + − 

2 2 2 2 21 1
( cos ) sin (1 cos ).2 2m a m a mgaq q q q q q= − + − +  
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The Euler–Lagrange equations are therefore

21
sin cos cos 0.2 2 2 2 2

g
a

q q qq q+ − = 

If we put cos 2u
q

= , we get

0,4
g

u ua+ =

which shows that the bead executes SHM. Note that we have not 
made the small angle approximation here: the cycloidal pendulum 
is exactly harmonic independent of the amplitude of the motion of 
the bead. 

11.9 SPHERICAL PENDULUM

The Lagrange method is also useful if we want to look at small 
amplitude oscillations of a system. If we are interested only in small 
oscillations, then we can approximate the Lagrangian directly, rather 
than working out the exact equations of motion and then approxi-
mating. We shall use the spherical pendulum as an illustration. This 
comprises a bob of mass M on the end of a weightless rod free to 
move on the interior surface of a sphere.

Figure 11.4: The spherical pendulum

Let θ be the angle of the rod with the vertical, φ the rotation angle, 
and let the length of the rod be l. The Lagrangian is
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22 2 2 21 1
sin (1 cos ).2 2Ml Ml Mglq q q= + − −  f

The first step is to remove all the constants as far as possible. An addi-
tive constant can be neglected. An overall constant in the Lagrang-
ian will not contribute to the Euler–Lagrange equations so we can 
take out a constant factor. One might be tempted to divide through 
by Ml2, but this would leave a dimensional factor in the potential 
energy. Instead, we take out a factor of Mgl; 

2 2
21 d 1 d

sin – cos .2 d 2 d
l l
g t g t

qq q   = +   
   


f

We can also rescale the time t in favor of a dimensionless time τ

1
2

.
g

tlt  =   

This gives us a new Lagrangian with much less clutter:

2 2 21 1
sin cos ,2 2q q q′ ′= + + f

where the prime denotes differentiation with respect to τ. There 
are two  Euler–Lagrange equations, one for each of the generalized 
coordinates θ and φ. These are 

( )qt t
∂ ∂

= =′∂ ∂
′2d d

– sin 0,d d
  ff f

and

q q q qt q q
∂ ∂ ′′ ′− = + =′∂ ∂

2d
– cos sin sin 0.d

  f

One solution is 

2
0 0/sin constant,p q′ ′= = =ff f

1
0 2

0

1
cos constant,q q −= = =

′f
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where pφ is a constant (proportional to the angular momentum per 
unit mass). As we might expect, the bob swings round at a constant 
angle to the vertical related to its speed. In other words, the bob 
behaves as a conical pendulum with period 

 
2

.
l

T g
p
0

= ′f f  (11.7)

In general, we cannot solve the equations of motion analytically. In 
Figure 11.5, we show the phase portraits the θ ′ - θ plane for the 
case pφ = 2 computed numerically. The pendulum oscillates in θ 
between an upper and lower value. 

We now perturb the motion of the conical pendulum. Let 

θ = θ 0 + ε,

φ = φ 0 + δ.

Figure 11.5: Numerical solutions of the θ – equation showing trajectories in the phase 
plane. θ oscillates between upper and lower values

In deriving the approximate Lagrangian, we can ignore constant 
terms, since these will not contribute to the Euler–Lagrange equa-
tions. We can also ignore terms linear in ε and δ because the action 
stationary at the equilibrium solution (so the first order variation 
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vanishes). We therefore need to calculate the second-order terms in 
ε and δ. The Lagrangian becomes approximately:

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0

1
( sin 4 cos sin (cos sin ) cos ).2 d q d q q q q q′ ′ ′= + + −′ + +′ e f e f e e

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0

1
( sin 4 cos sin (cos sin ) cos ).2 d q d q q q q q′ ′ ′= + + −′ + +′ e f e f e e

The equations of motion are 

 d q e q qt d d t
  ′− = + = 
 

′′
2

0 0 0 0
d d d d

 ( sin 2 cos sin ) 0, d d d d
  f  (11.8)

and
2 2 2

0 0 0 0 0 0 0
d d d

– – 2 cos sin (cos – sin cos ) 0.d d dt e d q q e q q qe e
  ′′ ′ ′= − + = ′ 

′  f f

2 2 2
0 0 0 0 0 0 0

d d d
– – 2 cos sin (cos – sin cos ) 0.d d dt e d q q e q q qe e

  ′′ ′ ′= − + = ′ 
′  f f  (11.9)

Equation (11.8) gives

 
2

0 0 0 0 sin 2 cos sin constant. d q e q q′ ′ ′+ =f
 

(11.10)

If we consider the case where we do not perturb the angular momen-
tum, the constant in (11.9) can be set to zero. We can then use (11.9) 
to eliminate δ ′ from (11.9) that becomes

ε″ = -ε φ′02 (1 + 2cos2 θ 0 - cosθ0).

This is SHM: the pendulum oscillates in altitude θ with a period 

1
2 2

0 0 0

2
.

(1 2cos cos )

l
T gq

p

q q
=

′ + −f

The period of the azimuthal (φ) motion is also perturbed slightly 
from its original value Tφ (Equation (11.7)), but in general, the two 
periods will be unequal. The azimuthal angle at which the altitude 
θ is a maximum (or minimum) therefore precesses round the orbit. 
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11.10 COMPOUND PENDULUM

Figure 11.6: A compound pendulum

Many textbook examples of the Lagrange method are artificial 
because they are chosen to give equations of motion that can be 
solved analytically. In practice the Lagrange method lets us set up 
the equations of motion of real systems which can then be solved 
numerically. Here is an example where we use the method to obtain 
the equations of motion, and extract some information, but would 
need numerical methods to get a complete solution. The example is 
the compound pendulum. This comprises two rods of lengths 2a and 
2b and mass M and m, respectively, which can pivot freely about a 
support at the top of one and about the point where they are joined.  
This is a model of a golf swing (pivoted at the shoulder and wrist) 
and of the medieval siege weapon, the trebuchet. In both cases, the 
idea is to put more energy into the projectile at the end of the pen-
dulum (the golf ball or the missile) than would be possible with an 
unjointed pendulum. 

The potential energy of the system (Figure 11.6) is straightforward:

q q= + +(1 – cos ) [2 (1 – cos ) (1 – cos )]U Mga mg a b f

( )2 (1 – cos ) (1 – cos ).M m ga mgbq= + + f
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The kinetic energy is more complicated. It comprises the rotational 
energy of the upper strut plus the rotational and translational energy 
of the lower strut. In these cases, it is often safer to deduce the 
kinetic energy from first principles. Taking the top pivot as origin, 
the x and y coordinates of a point on the upper strut a distance λa 
from the pivot are

1 1sin , – cos ,x a y al q l q= =

where 0 ≤ λ ≤ 2.

For the lower strut, the corresponding coordinates are

2 22 sin sin , –2 cos – cos .x a b y a bq l q l= + =f f

Assuming the mass density, ρ per unit length, is uniform, the ele-
ments of mass are ρ adλ on the top link and ρ bdλ on the bottom 
strut. The kinetic energy is

( ) ( ) ( ) ( )r l l qq l l qq l qq l l qq l + + + + +  ∫
2 2 2 2 2

0

1
 d cos    d sin   d  2 cos   cos     d 2 sin sin  .2 a a a a b a b b a b    ff f f

( ) ( ) ( ) ( )r l l qq l l qq l qq l l qq l + + + + +  ∫
2 2 2 2 2

0

1
 d cos    d sin   d  2 cos   cos     d 2 sin sin  .2 a a a a b a b b a b    ff f f

( ) ( ) ( ) ( )r l l qq l l qq l qq l l qq l + + + + +  ∫
2 2 2 2 2

0

1
 d cos    d sin   d  2 cos   cos     d 2 sin sin  .2 a a a a b a b b a b    ff f f

Performing the integrations, we get

2 2 2 2
K

2 2
2 cos ( – ),3 3E M m a mb mabq q q = + + + 

 
  f f f

where M = 2 ρ a is the mass of the upper strut and m = 2ρ b is the 
mass of the lower strut. 

To simplify slightly, we take the case where a = b and to simplify 
drastically we assume m << M and that we are interested only in 
small oscillations. Then, ignoring terms higher than quadratic, 

( )2 2 2 2 2 2 22 2 1 1
2 – 2 – .3 3 2 2M m a ma ma M m ga mgaq q q = + + + + 

 
   f f f
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We can simplify this by taking out a common factor of Mga and 
transforming to a dimensionless time

.
g

tat =

Then, letting μ = m/M be our small parameter,

( )2 2 2 22 2 1 1
2 1 2 – .3 3 2 2m q m mq m q m  ′ ′ ′= + + + −


′ +


 f f f

The Euler–Lagrange equations of motion, for θ and φ, respectively, 
are

 ( )1
4 1 2 03 m q m m q  ′′ ′′+ + + + = 
 

f  (11.11)

4
0.3 q′′ ′′+ + =f f

We deduce that the two eigenfrequencies are 

 

3
0.67 .2

gm
M aw±

 
= ± 
   

(11.12)

To check, note that if μ = 0, there is no φ-term in the Lagrangian, so 
the only equation of motion is (11.11) with μ set to 0; this is SHM 
with a (dimensionless) frequency of √3/2, which agrees with (11.12) 
in this limit. 

Thus the frequency of the pendulum is split into two close fre-
quencies by the addition of the small mass of the lower strut. We 
can refer to Section 8.10 to see what happens rather than repeating 
the exercise. The system beats at the difference of the two eigen-
frequencies and energy is transferred between the two struts on the 
corresponding long  timescale. From (11.11), we see that the ampli-
tude of the θ oscillation is m/M times that of the φ-oscillation. This 
is reasonable if the energy is to be transferred between the larger 
and smaller masses. Thus, if we set the top strut in motion initially, 
what we see is the top strut oscillating with a small amplitude which 
gradually decreases as the lower strut starts to oscillate with a (rela-
tively) large amplitude; the situation is then gradually reversed. We 
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can guess from this how a trebuchet works. Under the right con-
ditions, the energy of the massive arm is largely concentrated into 
the smaller arm and hence into the projectile. It is analogous to the 
whiplash effect.    

11.11 SMALL OSCILLATIONS REVISITED

With a general formulation, we can approach the problem of 
small oscillations in greater generality than in Chapter 10. Rather 
than starting from the equations of motion and adding a small per-
turbation to the coordinates, we manipulate the Lagrangian to the 
form where it yields directly the small oscillations equations. 

Let us start from a general form for the Lagangian:

( )= −∑ ∑1
.2 ij i j i

ij i

T q  q q V 

For small displacements about equilibrium, qi = q0i + ε i,

( )e e e e
 

∂ = + − ∂ ∂ 
 

∑
2

0 0
1

   , 2 ij i j i j
i jij

T V xx x
 

where the linear terms have disappeared because q0 satisfies the 
equations of motion. Then, taking εi as the generalized coordinates 
of the system, the Euler–Lagrange equations give

 ( ) 0,ij j ij j
j

T Ve e+ =∑   (11.13)

where we have defined 

0

2

.ij
i j

V
V x x

=

 ∂
=  ∂ ∂ x x

Equation (11.13) is a linear equation with constant coefficient 
(because Tij and Vij are evaluated at the equilibrium point x0). So we 
look for a solution εj = aj eiω t, giving
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2( ) 0.ij j ij j
j

T a V aw− + =∑

This set of equations has only the trivial solution aj = 0 for all j unless 
the system of equations is singular. Thus (in matrix notation), for a 
nontrivial solution to the oscillation amplitudes, we require 

 det(ω2 T - V) = 0. (11.14)

Solving (11.14) for ω gives the eigenfrequencies (or normal modes) 
of the system. The system is stable if the imaginary part of ω satisfies 
ℐ(ω) ≤ 0. If T is the identity matrix, then the squared eigenfrequen-
cies, ω2, are the eigenvalues of the matrix V. 

11.12 AN EXAMPLE

Consider masses m1 and m2 attached at the trisection points of a 
massless spring. Let the masses oscillate in a line as in Figure 11.7. 
The problem is to ascertain whether we can adjust the masses m1 

and m2  to obtain any given pair of eigenfrequencies. 

Figure 11.7: Mass points on a massless spring

Let the displacements of the masses from equilibrium be y1 and y2. 
The kinetic energy of the system is

2 2
K 1 1 2 2

1 1
2 2 ,E m y m y= + 

and the potential energy is

( )22 2
1 1 2 2

1 1
2 2 ,U ky k y y ky= + − +

where k is the elastic constant of the spring. Then (in the notation 
of Section 11.11)
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2 2
K K

1 1 1 2 1

2 2
2K K

2 1 2 2

0
,

0

E E
y y y y m

T
mE E

y y y y

 ∂ ∂
 ∂ ∂ ∂ ∂   = =   ∂ ∂  
 ∂ ∂ ∂ ∂ 

and
2 2

1 1 1 2

2 2

2 1 2 2

2
.

2

U U
y y y y k k

V
k kU U

y y y y

 ∂ ∂
 ∂ ∂ ∂ ∂ −  = =  − ∂ ∂  
 ∂ ∂ ∂ ∂ 

The frequencies of the normal modes (eigenfrequencies) are 
given by 

 
2

1

2
2

2
det 0.

2

m k k

k m k

w

w

 − −
=  − − 

 (11.15)

Let 2
1 1/k m w=  and 2

2 2/k m w= . Then (11.15) becomes

( )4 2 2 2 2 2
1 2 1 22 3 0.w w w w w w− + + =

The solutions for the frequencies of the normal modes are

 ( ) ( )22 2 2 2 2 2 2
1 2 1 2 1 23 .w w w w w w w= + ± + −  (11.16)

Now we choose any two frequencies ωa and ωb say and see if we can 
solve (11.16) for ω1 and ω2. There are a few shortcuts that are worth 
noting.

We have to solve

 ( ) ( )22 2 2 2 2 2 2
1 2 1 2 1 23 ,aw w w w w w w= + + + −  (11.17)

 ( ) ( )22 2 2 2 2 2 2
1 2 1 2 1 23 ,bw w w w w w w= + − + −  (11.18)

for ω1 and ω2. Adding (11.17) and (11.18) gives

 ( )2 2 2 2
1 2

1
.2 a bw w w w+ = +  (11.19)

Newtonian Mechanics_2E_Ch_11_2pp.indd   279Newtonian Mechanics_2E_Ch_11_2pp.indd   279 3/20/2021   4:13:36 PM3/20/2021   4:13:36 PM



280  •  NewtoNiaN MechaNics, 2/E

Subtracting (11.17) from (11.18) and squaring gives

 ( ) ( )2 22 2 2 2 2 2
1 2 1 2

1
3 .4 a bw w w w w w− = + −  (11.20)

Using (11.19) to eliminate (ω1
2 + ω2

2) from (11.20) with some rear-
rangement gives

 2 2 2 2
1 2

1
.3 a bw w w w=  (11.21)

We can now use (11.19) and (11.21) to find ω1 and ω2. We have

( ) ( )2 2 2 2 2
1 2 1 1 2 2

1 2
2 2 3

,a b a bw w w w w w w w w w− = − + = + −

and 

( ) ( )2 2 2 2 2
1 2 1 1 2 2

1 2
2 .2 3a b a bw w w w w w w w w w+ = + + = + +

Extracting ω1 and ω2 is now straightforward. We obtain finally:

( ) ( )w w w w w w w w w   = + + + + −      

1 1
2 22 2 2 2

1
1 1 2 1 1 2
2 2 2 23 3

,a b a b a b a b

( ) ( )w w w w w w w w w   = + + +      

1 1
2 22 2 2 2

2
1 1 2 1 1 2

.– –2 2 2 23 3
a b a b a b a b

The issue now is whether these values are real for all values of ωa and 
ω b. Let x = ωa/ω b. Then

( )2 2 21 2 4
0 if 1 0,2 3 3

a b a b x xw w w w+ − = − + =

that is, x = √ 3 or 1/√ 3. Between these values the argument of the 
square root is negative. Thus, we can adjust the masses to achieve 
frequency ratios in the range ωa /ωb > √3 or ωa /ω b < 1/√3. In other 
words, there is a bandgap of nonallowed frequencies. 
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11.13 HAMILTONIAN MECHANICS

The Lagrange equations provide us with a general method, 
but not with a general solution of the equations of motion. Ham-
ilton tried to develop the theory further to achieve such a general 
solution. Although he did not succeed, his work today is of upmost 
importance for the analysis of dynamical systems and the develop-
ment of quantum mechanics. 

The idea of Hamiltonian mechanics is to write the equations of 
motion in first-order form. To do this, we first define a canonical 
momentum

 .p dq
∂

=



 (11.22)

The Hamiltonian function, H, a function of q and p, is then obtained 
from

 .H pq= −   (11.23)

In the general case that the Lagrangian (and hence the Hamilto-
nian) are time dependent, we get for a small variation of coordinates  

d
H

H pq p q q q tq q t
∂ ∂ ∂d d d d d d∂ ∂= + − − +  



 

,
H

pq p q tt
∂d d d∂= − + 

using (11.22) and the Euler–Lagrange equations. Here q  and p  are 
considered to be functions of p and q. Since variations δ q, δ p, and 
δ t are independent, we obtain

 ∂
∂=

d
,d

q H
t p

 (11.24)

 d
,d

p H
t q

∂
∂= −  (11.25)

and
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 d
.d

H H
t t

∂
∂=  (11.26)

These are the equations of motion in Hamiltonian form.   

The action is now

 ( )dS pq H t= −∫   (11.27)

integrated along a trajectory. Minimizing S (with respect to p and q) 
we retrieve Hamilton’s equations (11.25) and (11.24). 

Next we show that the momenta can be obtained from the action:

 .
S

p q
∂
∂=  (11.28)

To do this, we vary the end point of the trajectory in the integral in 
(11.27). We have then

( )d  dS p q H t p q H td d d d= − = −∫
because this is what we add to the integral when we vary the final 
end point by δ t and δ q(t). Since δ q and δ t are independent, we 
obtain both (11.28) and

 ( , ).
S

H q pt
∂
∂ = −  (11.29)

This gives us an important result: the action S is the solution of the 
partial differential equation

 
∂ ∂
∂ ∂

 + = 
 

, 0.
S S

H qt q  (11.30)

Equation (11.30) is the Hamilton–Jacobi equation. A general 
 solution of this equation would in principle be the solution to all 
mechanics problems. More practically, it gives us a novel picture of 
classical mechanics which provides a starting point for the quantum 
picture. 
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More generally, if a system is defined by more than one general-
ized coordinate, ( )º= 1 2, , , nq q qq , then the momenta are

 ,S=p ∇  (11.31)

and the Hamilton–Jacobi equation becomes

1 2
1 2

, , , , , , , 0.n
n

S S S S
H q q qt q q q

∂ ∂ ∂ ∂º º∂ ∂ ∂ ∂
 + = 
 

The Hamilton–Jacobi equation can be thought of as showing the 
evolution of the surfaces S = constant in space (in the q-coordinates).  
From (11.31), this means that the particle trajectories are ortho-
gonal to the surfaces S = constant (because ∇∇S is the normal to  
S = constant).

11.14  CONSERVATION LAWS AND NOETHER’S 
THEOREM

Suppose that  is independent of position. Then the dynamics is 
unchanged by translation q → q + ε. Also, from the Euler–Lagrange 
equations,

d
0,dt q

∂
∂

  = 
 


and hence

constant.p q
∂
∂= =




So the conservation of momentum is linked to the invariance of a 
system under translation.

Similarly, if  is independent of an angle, φ say, then

∂
∂

= constant



f

expresses the conservation of the corresponding component of 
angular momentum. 
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Finally, if  is independent of t, then

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 − = + − − = 
 

d
0,d q q q q qt q q q q q

    

  

    


so 

constant .q qp H Eq
∂
∂ − = − = = = 




 

We shall show that the constant E is the energy, by looking at the 
special case 

( )21
.2 mq U q= −

For this Lagrangian, we have

( )21
,2H q mq U qq

∂
= − = +∂
 






which is indeed the total energy. We also see that 

H = E.

Thus, if the Lagrangian (and Hamiltonian) does not depend explic-
itly on time (except through the dynamical variables p and q), then 
the Hamiltonian is numerically equal to the energy, and the energy 
is conserved. So time translation invariance is related to conserva-
tion of energy. 

These results are part of a general theorem (Noether’s theorem) 
linking symmetries of the Lagrangian to conserved quantities. To 
state the theorem, we first have to distinguish between continu-
ous and discrete symmetries. For example, reflection symmetry  
(x → −x) is a discrete symmetry, while translation (x → x + δ x) is a 
continuous symmetry, since the system can be varied by arbitrarily 
small amounts. Roughly speaking then, Noether’s theorem states 
that:  to a continuous symmetry of the action, there corresponds a 
quantity that does not change over time. 
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11.15 ENERGY AND THE HAMILTONIAN

In this section, lets add a few remarks about energy. First, we 
have just seen that, where it exists and is independent of time, the 
Hamiltonian gives us an expression for the conserved energy of a 
system. Thus, we do not expect to be able to describe a system in 
which there is dissipation (energy is not conserved) directly in terms 
of a Hamiltonian. (We would introduce an environment which can 
exchange energy with the system.) Where it exists, the  Hamiltonian 
tells us how to construct the energy of each of the agents of the 
 system and how these agents can exchange energy through their 
interactions. Note that energy is not itself an agent − it cannot 
“do” anything but is exchanged between agents when they act on 
each other. 

Confusion can arise when we allow passive agents into the sys-
tem, which is agents that can act but are not acted upon. In this case, 
the interaction energy appears as a potential energy in the subsys-
tem under consideration. Here are two examples. 

Consider a body in a constant gravitational field raised to a 
height z. The Hamiltonian is

( )
2

, .2
p

H z p mgzm= +

It might appear from this that there is some store of energy called 
“poptential energy” in the only active agent in the system. This leads 
to confusion in locating where this energy is and how it “acts.” We 
can clarify this by including a fuller set of agents, namely the body 
and the gravitational field:

( ) ( )
2

21
, , d .2 2z

p
H p q mz Vm= + ∇ + ∇∫f f f

We see here there are two stores of energy (the kinetic energy of 
the body and the energy of the field − the first and last terms on the 
right) and an interaction that transfers energy between the two. (In 
Newtonian mechanics, the speed of gravity is infinite so the field 
energy is instantaneously shared with the Earth; if you prefer you 
can think of the more complete set of agents as the body and the 
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Earth.)  The potential energy now appears as a sort of pathway for 
the transfer of energy between the interacting agents. 

Let us look at another example: a mass (bob) on a spring. Here 
energy of the spring makes a somewhat mysterious appearance 
as the potential energy of the bob. A more complete description 
explains the mystery. The agents are the spring and the bob. The bob 
has a kinetic energy and the spring has a kinetic and elastic energy 
and they interact through the highly inelastic glue that binds them 
together.  The Hamiltonian has the form

( )
2 2

221
( , , , ) 2 2 ,2

p P
H p z P Z kZ z Zm M= + + + Λ −

where the lowercase symbols refer to the bob and the uppercase 
ones to the spring and the interaction Λ(z - Z)2 ties the two together. 
If we let M → 0 (massless spring) and Λ → +∞ (inelastic glue), we 
can recover the SHM equation for the bob. The point is that in the 
fuller description of the system, the energy stores are exchanged 
between the two agents not between two types of energy of the bob. 

One final point. We are not arguing that we should abandon the 
highly useful concept of potential energy. The point is that if you find 
the idea of energy troublesome in some context, then a Hamiltonian 
formulation for the system as a whole will probably sort things out.  
It is not necessary to be able to write down explicit expressions for 
the Hamiltonian to outline this fuller description.

11.16  ACTION ANGLE VARIABLES AND 
INTEGRABLE SYSTEMS

An important distinction can be made in the types of behavior 
of dynamical; systems related to their integrability. We shall explain 
this through an example. 

Consider the harmonic oscillator again. The Hamiltonian is

2
2 21

.2 2
p

H m qm w= +
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Note that H is a function of p and q. Now define new coordinates J 
and θ by

2 cos ,p m Jw q=

2
 sin .

J
q m qw=

The Hamiltonian becomes

H = ωJ.

The coordinates J and ω are known as action angle variables. In 
terms of these variables, the system is completely integrable: Ham-
ilton’s equations become

 J = constant, θ = ω t + constant, 

so the motion takes place on a circle. Whenever we can find a trans-
formation that puts the Hamiltonian into action angle form, H = J ⋅ ωω,  
we say the system is integrable. The motion takes place on 
the n-dimensional generalization of a circle which is a torus in 
 n-dimensions. (It is not possible to picture this beyond n = 2!) 

However, not all systems are integrable. Suppose we give our 
oscillator a small perturbation:

H = Jω + ε f (J, ω)

Hamilton’s equations become

d
 ,d

J f
t e q

∂
= − ∂

d
.d

f
t J
q w e ∂= + ∂

Next we expand f in a complex Fourier series: 

( ) ( ), e .ik
k

k

f J f J qq =∑

So
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( )d
 e ,d

ik
k

k

J
ik f Jt

qe= − ∑

( )d
e .d

ik
k

k

f Jt
qq w e ′= + ∑

The solutions are, to first order in ε,

( )0 e ,ik t
k

k

t f J wq w e ′= + ∑

( )0( e ) .kik t

k

f J
J ik

k
we w= ∑

In n-dimensions, we should have

( )e ⋅′= + ∑ 0 e ,i tt f J ωθ ω k
k

k

( )e ⋅= ⋅∑ 0( e ) .i t f
i kk

k k
J

J k ω
ω

So J → ±∞ if there are modes with k ⋅ ωω = 0. This is a signal of non-
integrable behavior and leads to systems exhibiting chaotic (unpre-
dictable) motions in the absence of dissipation. This behavior is 
called Hamiltonian chaos. 

11.17 QUANTUM THEORY

Our final task is to prepare to leave classical mechanics for quan-
tum mechanics. There are two routes. The first is the Heisenberg 
picture that we obtain as follows.   

We write the Hamiltonian equations of motion in terms of a 
Poisson bracket, defined by

∂ ∂∂ ∂{ } ∂ ∂ ∂ ∂
 = − 
 

, .
F FG G

F G q p q p
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Then with F = p and G = q

{ } { } { }= = =, –1, , 0, , 0,p q p p q q

and 

, ,
H

q H qp
∂{ } ∂= = 

{ }, .
H

p H pq
∂
∂= − = 

We get the quantum equations of motion by replacing q by the 
 operator q̂  and p by the operator p̂  and the Poisson bracket by a 
 commutator

[ ]ˆ ˆ ˆ ˆ ˆ ˆ, – .p q p q q p= 

The alternative approach to quantum mechanics is the Schrödinger 
picture. Here we start from the Hamilton–Jacobi equation with 
 Cartesian coordinate q = x:

, .
S

E H xx
∂
∂

 =  
 

We replace H by the operator

∂
∂

 − 
 

, ,H i xx

and S by the wave function ψ. So, for example, if 

( )
2

,2
p

H V xm= +

we get 

∂ yy y
∂

= − +
2 2

2 ,2E Vm x


the (time independent) Schrödinger wave equation. Classical 
mechanics then turns out to be the geometrical optics approxima-
tion to the waves of the quantum theory. 
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11.18 CHAPTER SUMMARY

●  The equations of motion of a conservative dynamical system 
can be obtained by minimizing the action of the system

●  The action is the integral over time of the Lagrangian,  
 = Kinetic energy − Potential energy = T - U

●  The Euler–Lagrange equations of motion for a system 
with Lagrangian  and generalized coordinates qi are 

i

∂ ∂
∂ ∂− =

d
0d it q q

 

●  The frequencies of small oscillations are given by  
det(ω2 T - V) = 0, where the matrices T and V are defined 
by the quadratic terms in the kinetic and potential energies, 
 respectively 

●  The equations of motion can be written in terms 
of the Hamiltonian, H(q, p) in first-order form 

∂ ∂
∂ ∂= = −

d d
and .d d

q pH H
t p t q

●  If the Hamiltonian is not explicitly dependent on time, then 
H = E, the total energy 

●  Noether’s theorem states that to a continuous symmetry of 
the action there corresponds a quantity that does not change 
over time   

11.19 EXERCISES

1.	 Figure 11.8 shows two rigid massless rods with masses M1, 
M2, and M3 attached.  The lower rod has length 2L and is 
supported on a frictionless pivot about its midpoint. The 
upper rod has length 2l and is linked to the top of the first 
rod by a frictionless pivot at its bottom end.
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Figure 11.8: Exercise 1

	 	Show that the coordinates (x, y) of the three masses relative 
to a coordinate system through the support are

1 1 1 1

2 1 2 2

3 1 2 3 1 2

sin , – sin
– sin , – cos

– sin 2 sin , cos 2 co

,
,

.s

x L y L

x L y L

x L l y L l

q q
q q
q q q q

= =
= =
= + = +

  Hence (or otherwise) show that the Lagrangian for the 
motion of the rods is

2 2 2 2 2 2 2 2
1 1 2 2 3 1 3 2

3 1 2 1 2 1 2

1 1 2 1 3 1

2

1 1 1
22 2 2

2 (cos cos sin sin )
cos – cos – ( cos

2 cos ).

M L M L M L M l

LM

M gL M gL M g L

l

q q q q

q q q q q q
q q q

q

= + + +

+ +
+
+

   

 



  Derive the equations of motion for small oscillations about 
the position of equilibrium with the rods upright. By seek-
ing a solution with θ1 and θ2 ∝ exp(iωt) (or otherwise) show 
that there is a mode of oscillation that is stable.

 Why is this position nevertheless unstable? 

2.	 In spherical polar coordinates, the kinetic energy of a unit 
mass particle is

2 2 2 2 2 2
K sin .E r r rq q= + + 

 f

  Find the components of acceleration in spherical polar 
 coordinates.
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3.	 The Lagrangian for a particle in an electromagnetic field is

( ) ( )2 2 21
, , ,2 x y z x y z xA yB zC= + + + + + +   f

  where A, B, and C are functions of position x, y, and z. 
Derive the equations of motion.

4.	 A triatomic molecule is modeled as a central mass M joined 
by springs, with spring constants k, to two masses m in a 
linear configuration. Find the modes of oscillation and their 
frequencies.

5.	 A uniform rod of mass M, length l, is freely pivoted at one 
end. Investigate its possible motion under gravity. 

6.	 A point particle of mass m is attached to the end of a mass-
less rod the other end of which is free to slide on a planar 
curve of the form y = f (x). Investigate the motion of the 
system. 
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A
Acceleration

addition, 74
angular, 150
centrifugal, 158
constant, 56
polar coordinates, 266

Action
angle variables, 286
reaction, 20

Addition of velocities, 62
Air resistance, 73
Archimedes’ principle, 122
Aristotle, 102

B
Bandwidth theorem, 208
Bifurcation diagram, 258
Bound systems, 91

C
Center of gravity, 28
Centre of Mass frame, 135, 137
Centrifugal force, 156
Chaos, 257
Circular orbits, 168
Coefficient of friction, 22
Collisions, 134

elastic, 134
inelastic, 139

Complex exponentials, 208
Compound pendulum, 232, 274
Conservation

momentum, 133, 141, 143
Coriolis force, 158
Couple, 26
Coupled oscillators, 211, 215, 218
Critical damping, 201
Cubic potential, 242
Cycloidal pendulum, 269

D
Damping, 198
Dimensional analysis, 7
Dimensions, 7
Dissipation, 215

E
Eccentricity, 173
Ellipse, 3, 4, 173, 174, 176, 177,  

191, 244
Ellipticity, 176
Energy, 79

conservation, 88
rotational, 224, 227
units, 89
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Equations of motion, 104, 282
Equilibrium, 14, 16, 17, 27
Estimates, 5
Euler equations, 238
Euler–Lagrange equations, 263

F
Force(s)

conservative, 84, 85
drag, 115
fictitious, 109
non-conservative, 87

Forced oscillations, 202
Fourier analysis, 210
Fourier series, 211
Fourier’s theorem, 211
Friction, 88

rolling, 24
sliding, 22
static, 22

Fulcrum, 25

G
Galilean transformation, 56
Galileo, 103, 235
Gravitation

Newton’s law, 159
Gravitational potential, 162, 163,  

179, 181

H
Hamiltonian, 281
Hamilton–Jacobi equation, 282, 289
Hamilton’s equations, 282
Harmonic oscillator, 124, 127, 193, 195, 

221, 265, 286
damped, 201, 220
driven, damped, 198
energy, 127
phase portrait, 254

Heisenberg picture, 288
Hooke’s law, 49, 124, 212

I
Impedance, 204
Impedance matching, 218
Impulse, 133

Inclined plane, 33, 39
Inertial forces, 109
Inertial frame, 157
Integrable systems, 286
Inverse square law, 4, 5, 6, 163, 171, 

177, 191

K
Kepler’s Laws, 177
Kepler’s third law, 169, 178
Kinetic energy, 80

L
Lagrangian, 263
Least action, 262
Lever(s), 25, 47, 92

M
Magnetic field, 155
Mars, 175, 177
Mass, 82
Mechanical Models
Mercury, 244
Models, 3
Moment, 26
Moments of inertia, 224
Momentum, 106, 131

angular, 152, 227
Motion

circular, 153
Multipole expansion, 179

N
Newton’s constant, 159
Newton’s first law, 103
Newton’s second law, 103, 104, 109, 

131, 171, 265
Newton’s third law, 15, 132
Noether’s theorem, 283
Normal modes, 278

O
Orbital motion, 147
Orthogonal components, 18
Oscillator

damped, 256
Overdamping, 201
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P
Parallel axis theorem, 226
Parallelogram law, 19
Periastron, 245
Perturbations, 241
Phase, 199, 203, 205, 218
Phase portraits, 254
Poisson bracket, 288
Poisson equation, 181
Potential energy, 83, 84, 162
Power, 107, 206
Precession, 236
Principle of equivalence, 187

Q
Quadrupole, 180
Quality factor, 201
Quantum theory, 289

R
Radial infall, 166
Range

of a projectile, 64, 67
Relativity, 244
Resonance, 193

velocity, 205
Resultant, 18
Roche limit, 185
Rocket equation, 143
Rolling, 233
Rotating coordinate system, 266
Rotating frames, 157

S
Schrödinger equation, 289
Schrödinger picture, 289
Semi-latus rectum, 174

SHM. See Simple harmonic motion
Simple harmonic motion, 124, 127, 

183, 213, 254, 259, 270, 273
SI system, 6
Slipping, 233
Small oscillations, 277
Speed, 55

angular, 147, 148
escape, 164
terminal, 114, 115

Spherical pendulum, 270
Spin, 236
Stability, 246
Static friction, 22
Stokes’s formula, 115
Strain, 49
Stress, 49

T
Tidal forces, 184
Tipping point, 42
Torque, 25

V
Velocity

angular, 150
Virial Theorem, 170
Virtual work, 92
Viscosity, 115

W
Weight, 15
Work, 79, 80, 107

Y
Young’s modulus, 49
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