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C H A P T E R1
APPROXIMATIONS AND ERRORS

IN COMPUTATION

Chapter Objectives

 Introduction
 Accuracy of numbers
 Errors
 Useful rules for estimating errors
 Error propagation
 Error in the approximation of a function
 Error in a series approximation
 Order of approximation
 Growth of error
 Objective type of questions

 1.1 Introduction

The limitations of analytical methods in practical applications have led 
scientists and engineers to evolve numerical methods. We know that exact 
methods often fail in drawing plausible inferences from a given set of tabulat-
ed data or in finding roots of transcendental equations or in solving non-linear 
differential equations. There are many more such situations where analytical 
methods are unable to produce desirable results. Even if analytical solutions 
are available, these are not amenable to direct numerical interpretation. 
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The aim of numerical analysis is therefore, to provide constructive methods 
for obtaining answers to such problems in a numerical form.

With the advent of high speed computers and increasing demand for 
numerical solution to various problems, numerical techniques have become 
indispensible tools in the hands of engineers and scientists.

The input information is rarely exact since it comes from some mea-
surement or the other and the method also introduces further error. As 
such, the error in the final result may be due to an error in the initial data 
or in the method or both. Our effort will be to minimize these errors, so as 
to get the best possible results. We therefore begin by explaining various 
kinds of approximations and errors which may occur in a problem and de-
rive some results on error propagation in numerical calculations.

 1.2 Accuracy of Numbers

1. Approximate numbers. There are two types of numbers: exact and ap-
proximate. Exact numbers are 2, 4, 9, 13, 7/2, 6.45,... etc. But there 
are numbers such as 4/3 (  1.33333...), 2  ( 1.414213...) and  (  
3.141592...) which cannot be expressed by a finite number of digits. 
These may be approximated by numbers 1.3333, 1.4142 and 3.1416, re-
spectively. Such numbers which represent the given numbers to a cer-
tain degree of accuracy are called approximate numbers.

2. Significant figures. The digits used to express a number are called signif-
icant digits (figures). Thus each of the numbers 7845, 3.589, and 0.4758 
contains four significant figures while the numbers 0.00386, 0.000587, 
and 0.0000296 contain only three significant figures since zeros only 
help to fix the position of the decimal point. Similarly the numbers 
45000 and 7300.00 have two significant figures only.

3. Rounding off. There are numbers with large number of digits, e.g., 
22/7  3.142857143. In practice, it is desirable to limit such numbers 
to a manageable number of digits such as 3.14 or 3.143. This process of 
dropping unwanted digits is called rounding off.

4. Rule to round off a number to n significant figures: 

  (i) Discard all digits to the right of the nth digit. 
 (ii) If this discarded number is

 (a)  less than half a unit in the nth place, leave the nth digit un-
changed;
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 (b)  greater than half a unit in the nth place, increase the nth digit 
by unity;

 (c)  exactly half a unit in the nth place, increase the nth digit by unity if it 
is odd other wise leave it unchanged.

For instance, the following numbers rounded off to three significant 
figures are: 

7.893 to 7.89

12.865 to 12.9

6.4356 to 6.44

3.567 to 3.57

84767 to 84800

5.8254 to 5.82

Also the numbers 6.284359, 9.864651, and 12.464762 are rounded off 
to four places of decimal at 6.2844, 9.8646, 12.4648; respectively.

Obs. The numbers thus rounded off to n significant figures (or 
n decimal places) are said to be correct to n significant figures 
(or n decimal places).

 1.3 Errors

In any numerical computation, we come across the following types of 
errors:

1. Inherent errors. Errors which are already present in the statement of a 
problem before its solution, are called inherent errors. Such errors arise 
either due to the given data being approximate or due to the limitations 
of mathematical tables, calculators, or the digital computer. Inherent er-
rors can be minimized by taking better data or by using high precision 
computing aids.

2. Rounding errors arise from the process of rounding off the numbers 
during the computation. Such errors are unavoidable in most of the cal-
culations due to the limitations of the computing aids. Rounding errors 
can, however, be reduced:

  (i)  by changing the calculation procedure so as to avoid subtraction of nearly 
equal numbers or division by a small number; or 

 (ii)   by retaining at least one more significant figure at each step than that given 
in the data and rounding off at the last step.

NOTE
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3. Truncation errors are caused by using approximate results or on replacing an 
infinite process by a finite one. If we are using a decimal computer having a 
fixed word length of four digits, rounding off 13.658 gives 13.66 whereas trun-
cation gives 13.65.

For example, if       
2 3 4

1
2! 3! 4!

x x x x
e x X  (say)

 is replaced by    
2 3

1
2! 3!
x x

x X  (say), then the truncation error is 
X – X.

Truncation error is a type of algorithm error.

4. Absolute, Relative, and Percentage errors. If X is the true value of a 
quantity and X is its approximate value, then |X – X | i.e, |Error| is called 
the absolute error Ea..

The relative error is defined by 


Error
i.e.,

True valuer
X X

E
X

and the percentage error is 
 100 100 .p r

X X
E E

X

If X  be such a number that   ,X X X  then X  is an upper limit on 
the magnitude of absolute error and measures the absolute accuracy.

Obs. 1. The relative and percentage errors are independent of 
the units used while absolute error is expressed in terms of these 
units.
Obs. 2. If a number is correct to n decimal places then the error 

 1
10 .

2
n  For example, if the number is 3.1416 correct to 4 deci-

mal places, then the error  41
10 0.00005.

2

1.4 Use ful Rules for Estimating Errors

To estimate the errors which creep in when the numbers in a calcula-
tion are truncated or rounded off to a certain number of digits, the follow-
ing rules are useful.

If the approximate value of a number X having n decimal digits is X, 
then

NOTE
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1. Absolute error due to truncation to k digits

  | X  X | < 10n-k

2. Absolute error due to rounding off to k digits

   
1

10
2

n kX X

3. Relative error due to truncation to k digits

 
  110 kX X

X

4. Relative error due to rounding off to k digits

 
  11

10
2

kX X
X

Obs. 1. If a number is correct to n significant digits, then the 

maximum relative error 
1

10 .
2

n  If a number is correct to d 

decimal places, then the absolute error 
1

10 .
2

d

Obs. 2. If the first significant figure of a number is k and the 
number is correct to n significant figures, then the relative error 
< 1/
(k  10n1).

Let us verify this result by finding the relative error in the number 
864.32 correct to five significant figures.

Here k  8, n  5 and

Absolute error  
1

0.01 0.005.
2

�

 Relative error 



   
 

 
   4 4 1

0.005 5 1 1
864.32 864320 2 86432 2 80000

1 1 1
                              . ., .

2 8 10 8 10 10ni e
k

Hence the result is verified.

NOTE
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EXAMPLE 1.1 

Round off the numbers 865250 and 37.46235 to four significant figures 
and compute Ea, Er, Ep in each case.

Solution: 

(i) Number rounded off to four significant figures  865200

 Ea  | X  X1 |  | 865250  865200 |  50

  


    51 0.00235

6.27 10
37.46235r

X X
E

X

  Ep  Er  100  6.71  10-3

(ii) Number rounded off to four significant figures = 37.46

  Ea
  | X  X1 | = | 37.46235  37.46000 | = 0.00235 

 
    51 0.00235

6.27 10
37.46235r

X X
E

X

 Ep  Er  100  6.27  103

EXAMPLE 1.2 

Find the absolute error if the number X  0.00545828 is 

  (i) truncated to three decimal digits.
 (ii) rounded off to three decimal digits.

Solution: We have X  0.00545828 = 0.545828  102

 (i)  After truncating to three decimal places, its approximate value 
X  0.545  102

 Absolute error = |X  X | = 0.000828  102

                              = 0.828 x 10-5 < 1023

This proves rule (1).

 (ii)  After rounding off to three decimal places, its approximate value 
X = 0.546  102

 Absolute error = |X  X|

                             = | 0.545828  0.546 |  102

                             = 0.000172 × 102 = 0.172  105

which is < 0.5  1023. This proves rule (2).
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EXAMPLE 1.3

Find the relative error if the number X  0.004997 is 

  (i) truncated to three decimal digits 
 (ii) rounded off to three decimal digits.

Solution: We have X = 0.004997 = 0.4997  102

(i)  After truncating to three decimal places, its approximate value 
X  0.499  102.

 Relative error 
 



   
 



2 2

2

0.4997 10 0.499 10
0.4997 10

X X
X

 0.140  102 < 10 13 

This proves rule (3).

 (ii)  After rounding off to three decimal places, the approximate value of the 
given number

X  0.500 x 10-2 

Relative error 
 



   
 



2 2

2

0.4997 10 0.500 10
0.4997 10

X X
X

                              0.600  10-3  0.06  10-31

which is less than 0.5  10-31. This proves rule (4).

Exercises  1.1

1. Round off the following numbers correct to four significant figures: 
3.26425, 35.46735, 4985561, 0.70035, 0.00032217, and 18.265101.

2. Round off the number 75462 to four significant digits and then calculate 
the absolute error and percentage error.

3. If 0.333 is the approximate value of 1/3, find the absolute and relative 
errors.

4. Find the percentage error if 625.483 is approximated to three significant 
figures.

5. Find the relative error in taking n  3.141593 as 22/7.

6. The height of an observation tower was estimated to be 47 m, whereas 
its actual height was 45 m. Calculate the percentage relative error in the 
measurement.



8 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

7. Suppose that you have a task of measuring the lengths of a bridge and a 
rivet, and come up with 9999 and 9 cm, respectively. If the true values 
are 10,000 and 10 cm, respectively, compute the percentage relative 
error in each case.

8. Find the value of ex using series expansion     
2 3

1
2! 3!

x x x
e x  for 

x  0.5 with an absolute error less than 0.005.

9. 29 5.385  and 3.317  correct to 4 significant figures. Find the 
relative errors in their sum and difference.

10.  Given: a  9.00 ± 0.05, b  0.0356 ± 0.0002, c  15300  100, d  62000 
 500. Find the maximum value of absolute error in a  b  c  d.

11.  Two numbers are 3.5 and 47.279 both of which are correct to the signifi-
cant figures given. Find their product.

12.  Find the absolute error and the relative error in the product of 432.8 
and 0.12584 using four digit mantissa.

13.  The discharge Q over a notch for head H is calculated by the formula 
Q  kH5/2 where k is a given constant. If the head is 75 cm and an error 
of 0.15 cm is possible in its measurement, estimate the percentage error 
in computing the discharge.

14.  If the number p is correct to 3 significant digits, what will be the maxi-
mum relative error?

1.5 Error P ropagation

A number of computational steps are carried out for the solution of a 
problem. It is necessary to understand the way the error propagates with 
progressive computation.

If the approximate values of two numbers X and Y be X and Y, respec-
tively, then the absolute error

 Eax  X  X’ and Eay  Y – Y

1. Absolute error in addition operation
X  Y  (X  Eax)  (Y  Eay)

 X  Y  Eax  Eay
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 |(X  Y)  (X  Y)|  |Eax  Eay|  |Eax|  |Eay|

Thus the absolute error in taking (X + Y) as an approximation to (X + Y) 
is less than or equal to the sum of the absolute errors in taking X as an 
approximation to X and Y as an approximation to Y.

2. Absolute error in subtraction operation
X  Y  (X  Eax)  (Y  Eay)

 (X Y)  (Eax   Eay)

         |(X  Y)  (X  Y)|  |Eax  Eay|  |Eax|  | Eay|
Thus the absolute error in taking (X  Y) as an approximation to (X  Y) 
is less than or equal to the sum of the absolute errors in taking X as an 
approximation to X and Y as an approximation to Y.

3. Absolute error in multiplication operation
To find the absolute error Ea in the product of two numbers X and Y, we 
write 

Ea (X  Eax) (Y  Eay)  XY
where Eax and Eay are the absolute errors in X and Y, respectively. Then

Ea  XEay + YEax + EaxEay
Assuming Eax and Eay are reasonably small so that Eax Exy can be ignored. 
Thus Ea  XEay  YEax approximately.

4. Absolute error in division operation
Similarly the absolute error Ea in the quotient of two numbers X and Y 
is given by

  


  
 

ax ayax
a

ay ay

YE XEX E X
E

Y E Y Y Y E  

  



2 1 /

ax ay

ay

YE XE

Y E Y

 


 2 ,
ax ayYE XE

Y
 assuming Eay/Y to be small.

 
 
  
 

ayax
EEX

Y X Y
 

EXAMPLE 1.4 

Find the absolute error and relative error in  6 7 8  correct to 
4 significant digits.
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Solution: 

We have   6 2.449, 7 2.646, 8 2.828  

    6 7 8 7.923.S

Then the absolute error Ea in S, is

 Ea  0.0005  0.0007  0.0004  0.0016 

This shows that S is correct to 3 significant digits only. Therefore, we 
take S  7.92 Then the relative error Er is

  
0.0016

0.0002.
7.92rE

EXAMPLE 1.5

The area of cross-section of a rod is desired up to 0.2% error. How ac-
curately should the diameter be measured?

Solution: 

If A is the area and D is the diameter of the rod, then 
  
   
 

2

.
2 4
D

A D D  

Now error in area A is 0.2%, i.e., 0.002 which is due to the error in the 
product D  D.

We know that if Ea is the absolute error in the product of two numbers 
X and Y, then 

 Ea  XaYE  YEaX

Here, X  Y  D and EaX  EaY  ED, therefore 

 Ea  DED  DED or 0.002  2DED

Thus, Ed  0.001/D, i.e., the error in the diameter should not exceed 
0.001 D1.

EXAMPLE 1.6

Find the product of the numbers 3.7 and 52.378 both of which are cor-
rect to given significant digits.

Solution: 

Since the absolute error is greatest in 3.7, therefore we round off the 
other number to 3 significant figures, i.e., 52.4.
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 Their product P  3.7  52.4  193.88  1.9388  102.

Since the first number contains only two significant figures, therefore 
retaining only two significant figures in the product, we get

 P = 1.9  102.

1.6 Err or in the Approximation of a Function

Let y = f(x1, x2) be a function of two variables x1, x2. If x1, x2 be the 
errors in x1, x2, then the error y in y is given by

 y + y = f(x1 + x1, x2 +  x2)

Expanding the right hand side by Taylor’s series, we get

  
  

      
  

1 2 1 2
1 2

,
f f

y y f x x x x
x x

 

 + terms involving higher powers of x1 and x2 (i)

If the errors x1, x2 are so small that their squares and higher powers 
can be neglected, then (i) gives

 
 

    
 1 2

1 2

f f
y x x

x x
 approximately.

Hence, 
 

    
 1 2

1 2

y y
y x x

x x
 

In general, the error y in the function y  f(x1, x2,  xn) corresponding 
to the errors xi in xi (i = 1, 2,  n) is given by


  

       
  1 2

1 2
n

n

y y y
y x x x

x x x

and the relative error in y is 
     

    
  

1 2

1 2
.n

r
n

y y y y xx x
E

y x y x y x y
 

EXAMPLE 1.7

If u  4x2y3/z4 and errors in x, y, z are 0.001, compute the relative 
maximum error in u when x  y  z  1.

Solution: 

Since   
  

  

3 2 2 2 3

4 4 5

8 12 16
, ,

xy x y x yu u u
x y zz z z
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3 2 2 2 3

4 4 5

8 12 16
.

xy x y x yu u u
u x y z x y z

x y z z z z
Since the errors x, y, z may be positive or negative, we take the ab-

solute values of the terms on the right side, giving

        
3 2 2 2 3

max 4 4 5

8 12 16xy x y x y
u x y z

z z z
 8(0.001)  12(0.001)  16(0.001)  0.036 

Hence the maximum relative error  (u)max/u  0.036/4 = 0.009. 

EXAMPLE 1.8

Find the relative error in the function  1 2
1 2 .nmm m

ny ax x x

Solution: 

We have logy  log a  m1 log x1  m2 log x2 ...  mn log xn

  
 

 
1 2

1 1 2 2

1 1
,  etc.

y ym m
y x x y x x

Hence  



    
   
  

 
   

1 2

1 2

1 2
1 2

1 2

n
r

n

n
n

n

y y y xx x
E

x y x y x y

xx x
m m m

x x x
Since the errors x1, x2,, xn may be positive or negative, we take the 

absolute values of the terms on the right side. This gives:

   
 

   1 2
1 2max

1 2

n
r n

n

xx x
E m m m

x x x
Cor. Taking a  1, m1  m2  mn  1, we have

y  x1x2 xn.

then 
 

   1 2

1 2

n
r

n

xx x
E

x x x

Thus the relative error of a product of n numbers is approximately equal 
to the algebraic sum of their relative errors.
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1.7 Error  in a Series Approximation

We know that the Taylor’s series for f(x) at x  a with a remainder after 
n terms is

 
   

 

 

 






       


  



2

1
1

( ) ( ) ( ) ( )
2!

( ) ( )
1 !

n
n

n

x a
f x f a x a f a x a f a f a

x a
f a R x

n

where 
 

   .( ) ( ),
!

n
n

n
x a

R x f a x
n

If the series is convergent, Rn(x)  0 as n   and hence if f(x) is ap-
proximated by the first n terms of this series, then the maximum error will 
be given by the remainder term Rn(x). On the other hand, if the accuracy 
required in a series approximation is preassigned, then we can find n, the 
number of terms which would yield the desired accuracy.

EXAMPLE 1.9

Find the number of terms of the exponential series such that their sum 
gives the value of ex correct to six decimal places at x  1.

Solution: We have 
 




      


2 3 1

1 ( )
2! 3! 1 !

n
x

n
x x x

e x R x
n

 (i)

where   ( ) ,
!

0 .
n

n
x

R x
n

xe  

 Maximum absolute error (at   x) 
!

n
xx

e
n

 and the maximum relative 
error 

!

nx
n

Hence (Er)max at x  1 is 1
.

!n
For a six decimal accuracy at x  1, we have

 61 1
10 ,

! 2n
 i.e., n! > 2  106 which gives n = 10.

Thus we need 10 terms of the series (i) in order that its sum is correct 
to six decimal places.
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EXAMPLE 1.10

The function f(x) = tan1 x can be expanded as

   


       


3 5 2 1
11tan 1 ,

3 5 2 1

n
nx x x

x x
n

Find n such that the series determine tan1 x correct to eight significant 
digits at x  1.

Solution: 

If we retain n terms in the expansion of tan-1 x, then (n + 1)th term

  


 


2 1

1
2 1

n
n x

n

  




1
2 1

n

n
 for x = 1.

To determine tan1 (1) correct to eight significant digits accuracy 

 


 


81 1
10

2 1 2

n

n
 i.e., 2n + 1 > 2 × 108 or  8 1

10
2

n  

Hence n = 108 + 1.  

1.8 Order of Approximation

We often replace a function f(h) with its approximation (h) and the 
error bound is known to be (hn), n being a positive integer so that

 |f(h)  (h) |  | hn| for sufficiently small h.

Then we say that (h) approximates f(h) with order of approximation 
O(hn) and write f(h)  (h)  O(hn).

For instance,       


2 3 4 51
1

1
h h h h h

h
 

is written as      


2 3 41
1

1
h h h O h

h
 (i)

to the 4th order of approximation.

Similarly      
2 4 6 8

cos( ) 1
2! 4! 6! 8!
h h h h

h

to the 6th order of approximation becomes 
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2 4

6cos( ) 1
2! 4!
h h

h O h  (ii)

The sum of (i) and (ii) gives 

             
2 4

1 3 4 61 cos( ) 2
2! 4!
h h

h h h h O h O h  (iii)

 Since     
4

4 4

4!
h

O h O h  and O(h4)  O(h6)  O(h4)

 (iii) takes the form          
2

1 3 41 cos( ) 2 ,
2
h

h h h h O h  which 

is of the 4th order of approximation.

Similarly the product of (i) and (ii) yields 

       

     


 
           
 

 
    
 

2 4
1 2 3 2 3 6

2 4
4 4 6

1 cos( ) 1 1 1
2! 4!

1
2! 4!

h h
h h h h h h h h O h

h h
O h O h O h

                  
2 3 4 6 7

5 4 6 4 611 11
1

2 2 24 24 24 24
h h h h h

h h O h O h O h O h  (iv)

Since O(h4) O(h6)  O(h10)

and               
4 6 7

5 4 6 10 411 11
24 24 24 24
h h h

h O h O h O h O h

 (iv) is reduced to         
2 3

1 41 cos( ) 1 ,
2 2
h h

h h h O h  which is of 
the 4th order of approximation.

1.9 Growth of Error

Let e (n) represent the growth of error after n steps of a computation 
process.

If |e(n) | ~ n , we say that the growth of error is linear. 

If |e(n) | ~ n , we say that the growth of error is exponential. 

If  > 1, the exponential error grows indefinitely as n  , and 

if 0 <  < 1, the exponential error decreases to zero as n  .
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Exercises 1.2

1. Find the  smaller root of the equation x2  400x  1  0, correct to four 
decimal places.

2. If r  h(4h5 – 5), find the percentage error in r at h  1, if the error in h 
is 0.04.

3. If R  10 x3y2z2 and errors in x, y, z are 0.03, 0.01 and 0.02, respectively 
at x  3, y  1, z  2. Calculate the absolute error and % relative error in 
evaluating R.

4. If R  4xy2/z3 and errors in x, y, z are 0.001, show that the maximum 
relative error at x  y  z  1 is 0.006.

5. If 
 
  
 

21
2

r
V h

h
 and the error in V is at the most 0.4%, find the per-

centage error allowable in r and h when r  5.1 cm and h  5.8 cm.

6. Find the value of 
0.8

0

sin x
I dx

x
 correct to four decimal places.

7. Using the series    
3 5

sin ,
3! 5!
x x

x x   evaluate sin 25° with an ac-

curacy of 0.001.

8. Determine the number of terms required in the series for log (1  x) to 
evaluate log 1.2 correct to six decimal places.

9. Use the series 
  

      
   

3 51
log 2

1 3 5e
x x x

x
x

 to compute the value of 

log (1.2) correct to seven decimal places and find the number of terms 
retained.

10. Find the order of approximation for the sum and product of the follow-
ing expansions:

     
2 3

41
2 3!

h h h
e h O h  and     

2 4
6cos( ) 1 .

2! 4!
h h

h O h

11. Given the expansions:

    
3 5

7sin( )
3! 5!
t t

t t O t  and     
2 3

6cos( ) 1
2! 4!
t t

t O t

Determine the order of app roximation for their sum and product. 
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1.10 Objective Type of Questions

Exercises 1.3

Select the correc t answer or fill up the blanks in the following questions:

1. If x is the true value of a quantity and x1 is its approximate value, then the 
relative error is
(a) |x1 – x|/x1 (b) |x – x1|/x (c) |x1/x| (d) x/|x1 – x|.

2. The relative error in the number 834.12 correct to five significant fig-
ures is 

3. If a number is rounded to k decimal places, then the absolute error is

(a) 11
10

2
k   (b) 1

10
2

k  (c) 1
10

3
k  (d) 1

10 .
4

k

4. If  is taken  3.14 in place of 3.14156, then the relative error is 

5. Given x  1.2, y  25.6, and z  4.5, then the relative error in evaluating 
w  x2  y/z is

6. Round off values of 43.38256, 0.0326457, and 0.2537623 to four signifi-
cant digits: 

7. Round relative maximum error in 3x2y/z when dx  dy  dz  0.001 at 
x  y  z  1: 

8. If both the digits of the number 8.6 are correct, then the relative error 
is

9. If a number is correct to n significant digits, then the relative error is

(a) 1
10

2
n  (b) 

11
10

2
n

 (c) 
1

10
2

n  (d)  11
10 .

2
n

10. If   3 5 7  is rounded to four significant digits, then the absolute 
error is 

11.  102 101  correct to three significant figures is

12. Approximate values of 1/3 are given as 0.3, 0.3, and 0.34. Out of these 
the best approximation is 
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13. The relative error if 2/3 is approximated to 0.667, is

14. If the first significant digit of a number is p and the number is correct to 
n significant digits, then the relative error is 
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2.1 Introduction

An expression of the form f(x)  a0 x
n  a1 x

n1    an1 x  an

where a’s are constants (a0  0) and n is a positive integer, is called a polyno-
mial in x of degree n. The polynomial f(x)  0 is called an algebraic equation 
of degree n. If f(x) contains some other functions such as trigonometric, log-
arithmic, exponential etc., then f(x)  0 is called a transcendental equation.

Def. The value  of x which satisfies f(x)  0  (1)

is called a root of f(x)  0. Geometrically, a root of (1) is that value of x 
where the graph of y  f(x) crosses the x-axis.

The process of finding the roots of an equation is known as the solution 
of that equation. This is a problem of basic importance in applied math-
ematics.

If f(x) is a quadratic, cubic, or a biquadratic expression, algebraic solu-
tions of equations are available. But the need often arises to solve higher 
degree or transcendental equations for which no direct methods exist. Such 
equations can best be solved by approximate methods. In this chapter, we 
shall discuss some numerical methods for the solution of algebraic and tran-
scendental equations.

2.2 Basic Properties of Equations

 I. If f(x) is exactly divisible by x  , then  is a root of f(x)  0.

II. Every equation of the nth degree has only n roots (real or imaginary).

 Conversely if 1, 2, …, n are the roots of the nth degree equation 
f(x)  0, then

 f(x)  A(x  1)(x  2) … | (x  n)
where A is a constant.

Obs. If a polynomial of degree n vanishes for more than n 
values of x, it must be identically zero.NOTE

 Comparison of Iterative methods
 Objective type of questions
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EXAMPLE 2.1

Solve the equation 2x3  x2  13x  6  0.

Solution: By inspection, we find x  2 satisfies the given equation.

O X

Y

x= a

y = f(x)

f(b)

f(a)
x b=α

FIGURE  2.1

 2 is its root, i.e., x  2 is a factor of 2x3  x2  13x  6.

Dividing this polynomial by x  2, we get the quotient 2x2  5x  3

and remainder 0.

Equating this quotient to zero, we get 2x2  5x  3  0.

Solving this quadratic, we get

 

25 [5 4.2.( 3)]
3,1 / 2.

2.2
x
   

 

Hence the roots of the given equation are 2,  3, 1/2.

III.   Intermediate value property. If f(x) is continuous in the interval [a, b] 
and f(a), f(b) have different signs, then the equation f(x)  0 has at least 
one root between x  a and x  b.

  Since f(x) is continuous between a and b, so while x changes from a to b, 
f(x) must pass through all the values from f(a) to f(b) [Figure 2.1]. But 
one of these quantities f(a) or f(b) is positive and the other negative, it 
follows that at least for one value of x (say ) lying between a and b, f(x) 
must be zero. Then  is the required root.

IV.  In an equation with real coefficients, imaginary roots occur in conjugate 
pairs, i.e., if   i is a root of the equation f(x)  0, then   i must 
also be its root.

  Similarly if a  b  is an irrational root of an equation, then a  b  
must also be its root.

Obs. Every equation of the odd degree has at least one real 
root.NOTE
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This follows from the fact that imaginary roots occur in conju-
gate pairs.

EXAMPLE 2.2 

Solve the equation 3x3  4x2  x  88 = 0, one root being 2  7i.

Sol. Since one root is 2 7i , the other root must be 2 7i .

 The factors corresponding to these roots are ( 2 7 )x i   and 
( 2 7 )x i 

or     2 22 7 2 7 2 7 4 11x i x i x x x         

is a divisor of  3x3  4x2  x  88 (i)

Division of (i) by x2  4x  11 gives 3x  8 as the quotient.

Thus the depressed equation is 3x  8  0. Its root is  8/3.

Hence the roots of the given equation are 2 7 8/3i  .

V. Descarte’s rule of signs. The equation f(x)  0 cannot have more posi-
tive roots than the changes of signs in f(x); and more negative roots than the 
changes of signs in f(x).

For instance, consider the equation f(x)  2x7 − x5  4x3 − 5  0 (i)

Signs of f(x) are          −                   −

Clearly f(x) has 3 changes of signs (from  to − or − to ).

Thus (i) cannot have more than 3 positive roots.

Also f( x)  2( f)7   (− x)5  4( x)3 − 5
  − 2x7  x5  4x3 − 5

This shows that f(x) has 2 changes of signs.

Thus (i) cannot have more than 2 negative roots.

Obs. Existence of imaginary roots. If an equation of the nth de-
gree has at the most p positive roots and at the most q negative 
roots, then it follows that the equation has at least n 
 (p  q) imaginary roots.

NOTE
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Evidently (i) above is an equation of the 7th degree and has at 
the most 3 positive roots and 2 negative roots. Thus (i) has at 
least 2 imaginary roots.

VI. Relations between roots and coefficients. If 1, 2 3 , n are the 
roots of the equation

a0x
n  a1x

n-1  a2x
n-2   an1 x  an  0 (1)

then  1
1

0

a
a

 

 

2
1 2

0

a
a

  

 

3
1 2 3

0
,

a
a

    

 
1 2 3

0
( 1)n n

n
a
a

     

EXAMPLE 2.3 

Solve the equation x3 − 7’x2  36  0, given that one root is double of 
another.

Solution: 

Let the roots be , ,  such that   2.

Also      7,       0,   − 36
             3    7 (i)

           22  3  0  (ii)

                   22  − 36 (iii)

Solving (i) and (ii), we get   2,   − 2.

[The values   0,   7 are inadmissible, as they do not satisfy (iii)].

Hence the roots are 3, 6 and − 2.

EXAMPLE 2.4 

Solve the equation x4 − 2x3  4x2  6x − 21  0, given that the sum of two 
its roots is zero. 
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Solution: 

Let the roots be , , ,  such that     0.

Also          2

                  2

Thus the quadratic factor corresponding to ,  is of the form x2  0x  p 
and that corresponding to ,  is of the form of x2 − 2x  q.

  x4 − 2x3  4x2  6x − 21  (x2  p)(x2 − 2x  q)  (i)
Equating coefficients of x2 and x from both sides of (i), we get

   4  p  q 6   2p
   p  −3, q  7.

Hence the given equation is equivalent to

              (x2  3)(x2  2x  7)  0

 The roots are x  ± 3, 1 ± i 6.

EXAMPLE 2.5

Find the condition that the cubic x3 − lx2  mx  n  0 should have its 
roots in

(a) Arithmetical progression (b) Geometrical progression.

Solution: 

 (a)  Let the roots be a − d, a, a  d so that the sum of the roots  3a  l i.e., 
a  l/3.

  Since a is the root of the given equation a3 − la2  ma − n  0

   Substituting a  l/3, we get 2l3 − 9lm  27n  0 which is the required 
condition.

 (b)  Let the roots be a/r, a, ar, then the product of the roots  a3  n.

  Since a is a root of the given equation

   a3 − la2  ma − n  0

  Putting a  (n)1/3, we get n  ln2/3  mn1/3  n  0 or m  ln1/3

  Cubing both sides, we get m3  l3n

 which is the required condition.
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EXAMPLE 2.6

If , ,  are the roots of the equation x3  px  q  0, find the value of 

(a) 2,  (b) 4.

Solution: 

We have                          0  (i)
       p  (ii)
   q  (iii)
(a) Multiplying (i) and (ii), we get

 2  2  2  2  2  2  3  0
or  2   3  3q   [by (iii)]

(b) Multiplying the given equation by x, we get
 x4  px2  qx  0

Putting x  , ,  successively and adding, we get

 4  p2  q  0 or 4   p2  q(0) .(iv)
Now squaring (i), we get

 2  2  2  2(    )  0 or 2   2p [by (ii)]
Hence, substituting the value of 2 in (iv), we obtain

 4   p( 2p)  2p2

Exercises 2.1

1. Form the equation of the fourth degree whose roots are 3  i and 7.

2. Solve the equation:
  (i) x3  6x  20  0, one root being 1  3i.
 (ii) x4  2x3  22x2  62x  15  0 given that 2  3  is a root.

3. Show that x7  3x4  2x3 − 1  0 has at least four imaginary roots.

4. The equa tion x4 - 4x3   ax2  4x  b  0 has two pairs of equal roots. Find 
the values of a and b.

Solve the equations (5–7):

5. 2x4 − 3x3 − 9x2  15x- 5  0, given that the sum of two of its roots is zero.

6. x3 − 4x2 − 20x  48  0 given that the roots  and  are connected by the 
relation   2  0.
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7. x3 − 12x2  39x  28  0, roots being in arithmetical progression.

8. O, A, B, C are the four points on a straight line such that the distances of 
A, B, C from O are the roots of equation ax3  3bx2  3cx  d  0. If B is 
the middle point of AC, show that a2d − 3abc  2b3  0.

9. If , ,  are the roots of the equation x3  4x − 3  0, find the value of 
1  1  1.

2.3 Transformation of Equations

1.  To find an equation whose roots are m times the roots of the given 
equation, multiply the second term by m, third term by m2 and so on (all 
missing terms supplied with zero coefficients).

For instance, let the given equation be
 3x4  6x3  4x2  8x  11  0 (i)

To multiply its roots by m, put y  mx (or x  y/m) in (i). Then

 3(y/m)4  6(y/m)3  4(y/m)2  8(y/m)  11  0
or multiplying by m4, we get

 3y4  m(6y3)  m2(4y2) − m3(y)  m4(11)  0
This is same as multiplying the second term by m, third term by m2, and 

so on in (i).

Cor. To find an equation whose roots are with opposite signs to those of 
the given equation, change the signs of every alternative term of the given 
equation beginning with the second.

Changing the signs of roots of (i) is same as multiplying its roots by  1.

 The required equation will be

3x4  ( 1)6x3  ( 1)24x2  ( 1)3 8x  ( 1)4 11  0

or                                                    3x4  6x3  4x3  8x  11  0

which is (i) with signs of every alternate term changed beginning with the 
second.

2. To find an equation whose roots are reciprocal of the roots of the given 
equation, change x to 1/x.
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EXAMPLE 2.7 

Solve 6x311x2  3x  2  0, given that its roots are in harmonic 
progression.

Solution: 

Since the roots of the given equation are in H.P., the roots of the equa-
tion having reciprocal roots will be in A.P. 

The equation with reciprocal roots is
 6(1/x)3 − 11(1/x)2 − 3(1/x)  2  0

or                               2x3  3x2 11x  6  0 (i)

Since the roots of the given equation are in H.P., therefore, the roots 
of (i) are in A.P.

Let the roots be a − d, a, a  d. Then 3a  3/2 and a(a2 − d2)  − 3.

Solving these equations, we get a  1/2, d  5/2. Thus the roots of (i) 
are 2, 1/2, 3.

Hence the roots of the given equation are −1/2, 2, 1/3.

EXAMPLE 2.8

If , ,  be the roots of the cubic x3 − px2  qx - r  0, form the equation 
whose roots are y  1/,   1/,   1/.

Solution: 

If x is a root of the given equation and y, a root of the required equa-
tion, then

 
1 1 1 1

( )
r r

y r
x

  
     

  


Thus x  (r  1)/y.

Substituting this value of x in the given equation, we get

 
3 2

1 1 1
0

r r r
p q r

y y y

       
        
     

or ry3 − q(r  1)y2  p(r  1)2y − (r  1)3  0

which is the required equation.
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3. Reciprocal equations. If an equation remains unaltered on changing x to 
be 1/x, it is called a reciprocal equation.

Such equations are of the following types:

 (i)  A reciprocal equation of an odd degree having coefficients of terms 
equidistant from the beginning and end equal. It has a root  − 1.

 (ii)  A reciprocal equation of an odd degree having coefficients of terms 
equidistant from the beginning and end equal but opposite in sign. 
It has a root  1.

 (iii)  A reciprocal equation of an even degree having coefficients of terms 
equidistant from the beginning and end equal but opposite in sign. 
Such an equation has two roots  1 and −1.

The substitution x  1/x  y reduces the degree of the equation to half 
its former degree.

EXAMPLE 2.9

Solve: (i) 6x5 − 41x4  97x3 − 97x2  41x − 6  0

(ii) 6x6 − 25x5  31x4 − 31x2  25x − 6  0.

Solution: 

(i) This is a reciprocal equation of odd degree with opposite signs.

 x  1 is a root.

Dividing L.H.S. by x − 1, the equation reduces to

 6x4 − 35x3  62x2 − 35x  6  0

Dividing by x2, we have 2
2

1 1
6 35 62 0x x

xx

   
       

   

Putting 
1

x y
x

  and 2 2
2

1
2,x y

x
    we get

6(y2  2)  35y  62  0  or  6y2  35y  50  0

or (3y  10)(2y  5)  0   1 10 5
  or  

3 2
x

x
   

i.e.,      3x2  10x  3  0  or  2x2  5x  2  0

i.e.,    (3x  1)(x  3)  0 or  (2x  1)(x  2)  0

 
1

,3
3

x   or  
1

,2
2

x
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Hence the roots are 
1 1

1, ,3 ,2.
3 2

(ii) This is a reciprocal equation of even degree with opposite signs. 

 x  1,  1 are its roots.

Dividing L.H.S. by x  1 and x  1, the given equation reduces to

6x4  25x3  37x2  25x  6  0.

Dividing by x2, we get 2
2

1 1
6 25 37 0x x

xx

   
       

   
 

Putting 
1

x y
x

   and 2 2
2

1
2,x y

x
    it becomes

6y2  25y  25  0  or  (2y  5)(3y  5)  0

   
1 5

2
x y

x
     or   5

3
i.e.,  2x2  5x  2  0  or  3x2  5x  3  0

 
1

2,
2

x  or 
 5 11
6

x
 



Hence the roots are 1,  1, 2, 1 5 11
,

2 6
i

2.4  Synthetic Division of a Polynomial 
by A Linear Expression

The division of the polynomial f(x)  a0x
n  a1x

n1  a2x
n2  an1 x  

an by a binomial x   is affected compactly by synthetic division as follows:

a0 a1

b0

a2
an1 an

b1
bn2 bn1

a0

( b0)

a1+ b0

( b1)

a2+ b1 
an1 

bn2

( bn1)

an+ bn1

(R)

Hence quotient  b0x
n1  b1x

n2  bn1 and remainder  R

Explanation: 

(i)  Write down the coefficients of the powers of x (supply-
ing missing powers of x by zero coefficients) and write  on 
extreme right.
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 (ii)  Put a0 ( b0) as the first term of 3rd row and multiply it by a and 
write the product under a1 and add, giving a1  ab0 ( b1).

(iii)  Multiply b1 by a and write the product under a2 and add, giving 
a2  ab1 ( b2) and so on.

(iv)  Continue this process until we get R.

1. To diminish the roots of an equation f(x)  0 by h, divide f(x) by x − h 
successively. Then with the successive remainders, determine the coef-
ficients of the required equation.

Let the given equation be
 a0x

n  a1x
n1   an1 x  an  0 (i)

To diminish its roots h, put y  x − h (or x  y  h) in (i) so that

 a0 (y  h)n  a1 (y  h)n1   an  0 (ii)
On simplification, it takes the form

 A0y
n  A1y

n-1   An  0 (iii)
Its coefficients A0, A1, , An can easily be found with help of synthetic 

division. For this, we put y  x − h in (iii) so that

 A0(x  h)n  A1(x  h)n-1   An  0
Clearly (i) and (iv) are identical. If we divide L.H.S. of (iv) by x − h, the 

remainder is An and the quotient Q  A0 (x − h)n-1  A1 (x − h)n-1  An1. 
Similarly if we divide Q by x − h, the remainder is An1 and the quotient is 
Q1 (say). Again dividing Q1 by x − h, An2 will be obtained and so on.

Obs. To increase the roots by h, we take h negative.

EXAMPLE 2.10

Transform the equation x3 − 6x2  5x  8  0 into another in which the 
second term is missing.

Solution: 

Sum of the roots of the given equation  6.

Due to the fact that the second term in the transformed equation is 
missing, the sum of the roots will be zero.

Since the equation has 3 roots, if we decrease each root by 2, the sum of 
the roots of the equation will become zero. To diminish the roots by 2, we 
divide x3  6x2  5x  8 by x  2 successively.

NOTE
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1 6
2

5


8
6 2

4
2

3
4

2

2
2

7

1 0

Thus the transformed equation is x3 − 7x  2  0.

2. Synthetic division of a polynomial by a quadratic expression. The 
division of the polynomial f(x) by the quadratic x2 − x −  is carried out 
by the following synthetic scheme:

a0 a1

b0

a2

b1

b0

a3
an1

b2
bn2

b1
bn3

an

bn2





a0

( b0)

a1+ b0

( b1)

a2+ b1 + b0 
,

( b2)

a3+ b2 
b1,

( b3) 
an+ bn2

(bn1)(bn)

Hence the quotient  b0 x
n− 2  b1 x

n−3   bn2 and the remainder 
 bn−1 xbn

.

EXAMPLE 2.11

Divide 2x5 − 3x4  4x3 − 5x2  6x - 9 by x2 − x  2 synthetically.

Solution: 

2 3

2

4

1

4

5

1

2

6

4

2

9

8

1

2
2 1 1 4 4 1

Hence the quotient  2x3  x2  x  4 and the remainder  4x  1.
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Exercises 2.2

1. Find the equation whose roots are 3 times the roots of x3  2x2 − 4x  1  0.

2. Change the sign of the roots of the equation x7  3x5  x3 − x2  7x  1  0.

3. Find the equation whose roots are the negative reciprocals of the roots 
of x4  7x3  8x2−9x  10  0.

4. Solve the equation 81x3 − 18x2 − 36x  8  0, given that its roots are in 
H.P.

5. Solve: (i) 6x5  x4 − 43x3 − 43x2  x  6  0. 
(ii) 4x4 − 20x3  33x2 − 20x  4  0.

6. Find the equation whose roots are the roots of: x4  x3 − 3x2 − x  2  0 
each diminished by 3.

7. Show that the equation x4 − 10x3  23x2 − 6x − 15  0 can be transformed 
into a reciprocal equation by diminishing the roots by 2. Hence solve the 
equation.

8. Find the equation of squared differences of the roots of the cubic 
x3  6x2  7x  2  0.

9. If , ,  are the roots of the equation 2x3  3x2  x− 1  0, form the 
equation whose roots are (1 − )−1, (1 − )−1, and (1 − )−1.

10. Divide 15x7 − 16x6  30x5 − 3x4 − 5x3 − 2x2  5x  8 by x2 − x  1 syntheti-
cally.

2.5 Iterative Methods

The limitations of analytical methods for the solution of equations 
have necessitated the use of iterative methods. An iterative method begins 
with an approximate value of the root which is generally obtained with the 
help of Intermediate value property of the equation (Section 2.2). This 
initial approximation is then successively improved iteration by iteration 
and this process stops when the desired level of accuracy is achieved. The 
various iterative methods begin their process with one or more initial ap-
proximations. Based on the number of initial approximations used, these 
ite rative methods are divided into two categories: Bracketing Methods 
and Open-end Methods.
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Bracketing methods begin with two initial approximations which brack-
et the root. Then the width of this bracket is systematically reduced until 
the root is reached to desired accuracy. The commonly used methods in 
this category are:

1. Graphical method

2. Bisection method

3. Method of False position.
Open-end methods are used on formulae which require a single starting 

value or two starting values which do not necessarily bracket the root. The 
following methods fall under this category:

1. Secant method

2. Iteration method

3. Newton-Raphson method

4. Muller’s method

5. Horner’s method

6. Lin-Bairstow method.

2.6 Graphical Solution of Equations

Let the equation be f(x)  0.

  (i) Find the interval (a, b) in which a root of f(x)  0 lies.

 (ii) Write the equation f(x)  0 as  (x)   (x)

      where (x) contains only terms in x and the constants.

(iii)  Draw the graphs of y   (x) and y   (x) on the same scale and 
with respect to the same axes.

(iv)  Read the abscissae of the points of intersection of the curves y   
(x) and y   

These are the initial approximations to the roots of f(x)  0.

Sometimes it may not be convenient to write the given equation f(x)  0 
in the form  (x)   (x). In such cases, we proceed as follows:

  (i) Form a table for the value of x and y  f(x) directly.
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 (ii) Plot these points and pass a smooth curve through them.

(iii) Read the abscissae of the points where this curve cuts the x-axis.

These are rough approximations to the roots of f(x)  0.

EXAMPLE 2.12

Find graphically an approximate value of the root of the equation

3− x  ex−1.

Solution: 

Let f(x)  ex−1  x − 3  0 (i)

   f(1)  1  1 − 3  − ve and

  f(2)  e  2 − 3  2.718 − 1   ve
 A root of (i) lies between x  1 and x  2.

Let us write (i) as ex−1  3 − x.

The abscissa of the point of intersection of the curves

 y  ex−1 (ii) 
and                                  y  3 − x (iii)

will give the required root.

To plot (ii), we form the following table of values:

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

y  ex−1 1.11 1.22 1.35 1.49 1.65 1.82 2.01 2.23 2.46 2.72

Taking the origin at (1, 1) and 1 small unit along either axis  0.02, 
we plot these points and pass a smooth curve through them as shown in 
Figure 2.2.

To draw the line (iii), we join the points (1, 2) and (2, 1) on the same 
scale and with the same axes.

From the figure, we get the required root to be x  1.44 nearly.
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(1, 1) 1.2 1.4 1.6 1.8 2.0
0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Y

X

y =
3 – x

x = 1.44

y =
e

x–
1

FIGURE  2.2

EXAMPLE 2.13

Obtain graphically an approximate value of the root of x  sin x  /2.

Solution: 

Let us write the given equation as sin x  x  /2.

The abscissa of the point of intersection of the curve y  sin x and the 
line y  x − /2 will give a rough estimate of the root.

To draw the curve y  sin x, we form the following table:
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x 0 /4 /2 3 /4 

y 0 0.71 1 0.71 0

Taking 1 unit along either axis  /4  0.8 nearly, we plot the curve as 
shown in Figure 2.3.

Also we draw the line y  x − /2 to the same scale and with the same 
axes. From the graph, we get x  2.3 radians approximately.

Y

0

y = sin
x x = 2.3

X

y = x –
 π/2

–π/2

π/2 3π/2 ππ/4

FIGURE 2.3

EXAMPLE 2.14

Obtain graphically an approximate value of the lowest root of 
cos x cosh x  − 1.

Solution: 

Let f(x)  cos x cosh x  1  0 (i)

  f(0)   ve, f(/2)   ve and   − ve.

The lowest root of (i) lies between x  /2 and x  .

Let us write (i) as cos x  − sech x.

The abscissa of the point of intersection of the curves

 y  cos x (ii) 
and  y  − sech x  (iii)
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will give the required root.

To draw (ii), we form the following table:

x  /2  1.57 3/4  2.36   3.14

y  cos x 0 0.71 1

Taking the origin at (1.57, 0) and 1 unit along either axis  /8,  0.4 
nearly, we plot the cosine curve as shown in Figure 2.4.

Y

x = 1.57
0

0.290.29 x = 2.36        x = 3.14

y = – sech x
X

y = cos x

Y

FIGURE 2.4 

To draw (iii), we form the following table:

x 1.57 2.36 3.14

cosh x 2.51 5.34 11.57

y  − sech x 0.4 0.19 0.09

Then we plot the curve (iii) to the same scale with the same axes.

From the above figure, we get the lowest root to be approximately 
x  1.57  0.29  1.86.

Exercises 2.3

Find the approximate value of the root of the following equations 
graphically (1–4):

1. x3  x − 1  0 

2. x3 − 6x2  9x− 3  0



38 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

3. tan x  1.2 x

4. x  3 cos (x − /4).

2.7 Rate of Convergence

Let x0, x1, x2, ……. be the values of a root () of an equation at the 0th, 
1st, 2nd ……. iterations while its actual value is 3.5567. The values of this 
root calculated by three different methods, are as given below:

Root 1st method 2nd method 3rd method

x0 5 5 5

x1 5.6 3.8527 3.8327

x2 6.4 3.5693 3.56834

x3 8.3 3.55798 3.55743

x4 9.7 3.55687 3.55672

x5 10.6 3.55676

x6 11.9 3.55671

The values in the 1st method do not converge toward the root 3.5567. 
In the 2nd and 3rd methods, the values converge to the root after 6th and 
4th iterations, respectively. Clearly 3rd method converges faster than the 
2nd method. This fastness of convergence in any method is represented by 
its rate of convergence.

If e be the error then ei    xi  xi1  xi.

If ei+1/ei is almost constant, convergence is said to be linear, i.e., slow.

If ei+1/ei is nearly constant, convergence is said to be of order p, i.e., 
faster.

2.8 Bisection Method

This method is based on the repeated application of the intermediate 
value property. Let the function f(x) be continuous between a and b. For 
definiteness, let f(a) be negative and f (b) be positive. Then the first approxi-

mation to the root is 1
1

( ).
2

x a b 
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0

Y

a x2

b

f(b)

y 
= f

(x)

Xf(b)
x3

x1

FIGURE 2.5 

If f (x1)  0, then x1 is a root of f (x)  0. Otherwise, the root lies between 
a and x1 or x1 and b according as f (x1) is positive or negative. Then we bisect 
the interval as before and continue the process until the root is found to 
desired accuracy.

In the Figure 2.4, f(x1) is  ve, so that the root lies between a and x1. 

Then the second approximation to the root is x2  1
2

 (a  x1). If f (x2) is − ve, 

the root lies between x1 and x2. Then the third approximation to the root is 

x3   1
2

 (x1  x2) and so on.

Obs. 1. Since the new interval containing the root, is exactly 
half the length of the previous one, the interval width is reduced 

by a factor of 1
2

at each step. At the end of the nth step, the new 

interval will therefore, be of length (b − a)/2n. If on repeating 
this process n times, the latest interval is as small as given  then 
(b −a)/2n  
or     n  [log (b − a) − log ]/log 2.
This gives the number of iterations required for achieving an 
accuracy .

In particular, the minimum number of iterations required for 
converging to a root in the interval (0, 1) for a given  are as 
under:
: 10−2 10−3 10−4

n:  7 10 14

NOTE
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Rate of Convergence. As the error decreases with each step by a 

factor of 
1

,
2

,(i.e., en+1/en  
1
2

), the convergence in the bisection method is 
linear.

EXAMPLE 2.15 

(a)  Find a root of the equation x3 − 4x − 9  0, using the bisection 
method correct to three decimal places.

(b)  Using bisection method, find the negative root of the equation 
x3 − 4x  9  0.

Solution: 

(a) Let f(x)  x3  4x  9

Since f(2) is − ve and f(3) is  ve, a root lies between 2 and 3.

 First approximation to the root is

 x1  1
2

 (2  3)  2.5.

Thus f (x1)  (2.5)3 − 4(2.5) − 9  − 3.375 i.e., −ve.
 The root lies between x1 and 3. Thus the second approximation to 

the root is
 x2  1

2
 (x1  3)  2.75.

Then         f (x2)  (2.75)3 − 4(2.75) − 9  0.7969 i.e., ve.
 The root lies between x1 and x2. Thus the third approximation to the 

root is
                          x3  1

2
 (x1  x2)  2.625.

Then         f (x3)  (2.625)3 − 4(2.625) − 9  − 1.4121 i.e., −ve.

The root lies between x2 and x3. Thus the fourth approximation to the 
root is

                          x4  1
2

(x2  x3)  2.6875.

Repeating this process, the successive approximations are

x5  2.71875, x6  2.70313, x7  2.71094
x8  2.70703,  x9  2.70508, x10  2.70605
x11  2.70654,  x12  2.70642
Hence the root is 2.7064.
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(b)If , ,  are the roots of the given equation, then − , − , −  are 
the roots of (− x)3 − 4(− x)  9  0 

The negative root of the given equation is the positive root of
 x3 − 4x −9  0 which we have found above to be 2.7064.

EXAMPLE 2.16

Using the bisection method, find an approximate root of the equation 
sin x  1/x, that lies between x  1 and x  1.5 (measured in radians). Carry 
out computations up to the 7th stage

Solution: 

Let f(x)  x sin x  1. We know that 1r  57.3°.

Since f(1)  1 × sin(1)  1  sin (57.3°)  1   0.15849

and f(1.5)  1.5 × sin (1.5)r  1  1.5 × sin (85.95)°  1  0.49625;

a root lies between 1 and 1.5.

 First approximation to the root is x1  1
2

(1  1.5)  1.25

Then f(x1)  (1.25) sin (1.25)  1  1.25 sin (71.625°)  1  0.18627 and 
f(1) < 0. 

 A root lies between 1 and x1  1.25.

Thus the second approximation to the root is x2  1
2

(1  1.25)  1.125.

Then f(x2)  1.125 sin (1.125)  1  1.125 sin (64.46)°  1  0.01509 and 
f(1) < 0.

 A root lies between 1 and x2  1.125.

Thus the third approximation to the root is x3  1
2

(1  1.125)  1.0625.

Then f(x3)  1.0625 sin (1.0625)  1  1.0625 sin (60.88)  1   0.0718 
< 0 and f(x2) > 0, i.e., now the root lies between x3  1.0625 and x2  1.125.

 Fourth approximation to the root is x4  1
2

(1.0625  1.125)  1.09375

Then       f(x4)   0.02836 < 0 and f(x2) > 0,

i.e., The root lies between x4  1.09375 and x2  1.125.

 Fifth approximation to the root is x5  1
2

 (1.09375  1.125)  1.10937
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Then  f(x5)   0.00664 < 0  and f(x2) > 0.

 The root lies between x5  1.10937 and x2  1.125.

Thus the sixth approximation to the root is

 x6  1
2

(1.10937  1.125)  1.11719

Then f(x6)  0.00421 > 0. 

But f(x5) < 0.

 The root lies between x5  1.10937 and x6  1.11719.

Thus the seventh approximation to the root is 

 x7 
1
2

(1.10937  1.11719)  1.11328

Hence the desired approximation to the root is 1.11328.

EXAMPLE 2.17

Find the root of the equation cos x  xex using the bisection method 
correct to four decimal places.

Solution: 

Let f(x)  cos x  xex.

Since f(0)  1 and f(1)   2.18, so a root lies between 0 and 1.

 First approximation to the root is x1  1
2

(0  1)  0.5

Now f(x1)  0.05 and f(1)   2.18, therefore the root lies between 1 and 
x1  0.5.

 Second approximation to the root is x2  1
2

(0.5  1)  0.75

Now f(x2)   0.86 and f(0.5)  0.05, therefore the root lies between 0.5 
and 0.75.

 Third approximation to the root is x3  1
2

(0.5  0.75)  0.625

Now f(x3)   0.36 and f(0.5)  0.05, therefore the root lies between 0.5 
and 0.625.

 Fourth approximation to the root is x4  1
2

 (0.5  0.625)  0.5625



SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS • 43

Now f(x4)   0.14 and 0.5  0.05, therefore the root lies between 0.5 
and 0.5625.

 Fifth approximation is x5  1 1
2

(0.5  0.5625)  0.5312

Now f(x5)   0.04 and f(0.5)  0.05, therefore the root lies between 0.5 
and 0.5312.

 Sixth approximation is x6  1
2

(0.5  0.5312)  0.5156

Hence the desired approximation to the root is 0.5156.

EXAMPLE 2.18

Find a positive real root of x log10
 x  1.2 using the bisection method.

Solution: 

Let f(x)  x log10
x  1.2.

Since f(2)   0.598 and f(3)  0.231, so a root lies between 2 and 3.

 First approximation to the root is x1  1
2

(2  3)  2.5.

Now f(2.5)   0.205 and f(3)  0.231, therefore a root lies between 2.5 
and 3.

 Second approximation to the root is x2  1 1
2

 (2.5  3)  2.75.

Now f(2.75)  0.008 and f(2.5)   0.205, therefore, a root lies between 
2.5 and 2.75.

 Third approximation to the root is x3  1
2

(2.5  2.75)  2.625

Now f(2.625)   0.1 and f(2.75)  0.008, therefore a root lies between 
2.625 and 2.75.

 Fourth approximation to the root is x4  1
2

(2.625  2.75)  2.687

Hence the desired root is 2.687.

2.9  Method of False Position or Regula-Falsi Method or 
Interpolation Method

This is the oldest method of finding the real root of an equation f(x)  0 
and closely resembles the bisection method.
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Here we choose two points x0 and x1 such that f(x0) and f(x1) are of op-
posite signs i.e., the graph of y  f(x) crosses the x-axis between these points 
(Figure 2.6). This indicates that a root lies between x0 and x1 and conse-
quently f (x0) f (x1) < 0.

Equation of the chord joining the points A[x0, f(x0)] and B[x1, f(x1)] is

  
   

 1 0
0 0

1 0

f x f x
y f x x x

x x


  



Y

0 x0 P(x)

x3 x2 x1

A[x0, f(x0)]

B[x1, f(x1)]

X

FIGURE 2.6

The method consists in replacing the curve AB by means of the chord 
AB and taking the point of intersection of the chord with the x-axis as an 
approximation to the root. So the abscissa of the point where the chord cuts 
the x-axis (y  0) is given by

    
 1 0

2 0 0
1 0

x x
x x f x

f x f x


 


 (1)

which is an approximation to the root.

If now f (x0) and f (x2) are of opposite signs, then the root lies between x0 
and x2. So replacing x1 by x2 in (1), we obtain the next approximation x3. (The 
root could as well lie between x1 and x2 and we would obtain x3 accordingly). 
This procedure is repeated until the root is found to the desired accuracy. 
The iteration process based on (1) is known as the method of false position.



SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS • 45

Rate of Convergence. This method has linear rate of convergence 
which is faster than that of the bisection method.

EXAMPLE 2.19

Find a real root of the equation x3  2x  5  0 by the method of false 
position correct to three decimal places.

Solution:

Let   f(x)  x3  2x  5

so that  f(2)   1 and f (3)  16,

i.e., A root lies between 2 and 3.

 Taking x0  2, x1  3, f (x0)   1, f(x1)  16, in the method of false 
position, we get

    
 1 0

2 0 0
1 0

1
2 2.0588

17
x x

x x f x
f x f x


    


 (i)

Now f(x2)  f (2.0588)   0.3908

i.e., The root lies between 2.0588 and 3.

 Taking x0  2.0588, x1  3, f(x0)   0.3908, f(x1)  16, in (i), we get

  3
0.9412

2.0588 0.3908 2.0813
19.3908

x    

Repeating this process, the successive approximations are

x4  2.0862,  x5  2.0915,  x6  2.0934,

x7  2.0941,  x8  2.0943 etc.

Hence the root is 2.094 correct to three decimal places.

EXAMPLE 2.20

Find the root of the equation cos x  xex using the regula-falsi method 
correct to four decimal places. 

Solution: 

Let f(x)  cos x  xex  0

so that f(0)  1, f (1)  cos 1  e   2.17798
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i.e., the root lies between 0 and 1.

 Taking x0  0, x1  1, f (x0)  1 and f (x1)   2.17798 in the regula-falsi 
method, we get

    
 1 0

2 0 0
1 0

1
0 1 0.31467

3.17798
x x

x x f x
f x f x

     


 (i)

Now f(0.31467)  0.51987 i.e., the root lies between 0.31467 and 1.

 Taking x0  0.31467, x1  1, f(x0)  0.51987, f(x1)   2.17798 in (i), 
we get

 3
0.68533

0.31467 0.51987 0.44673
2.69785

x    

Now f(0.44673)  0.20356 i.e., the root lies between 0.44673 and 1.

 Taking x0  0.44673, x1  1, f (x0)  0.20356, f(x1)   2.17798 in (i), 
we get

 4
0.55327

0.44673 0.20356 0.49402
2.38154

x    

Repeating this process, the successive approximations are

x5  0.50995, x6  0.51520, x7  0.51692

x8  0.51748, x9  0.51767, x10  0.51775 etc.

Hence the root is 0.5177 correct to four decimal places.

EXAMPLE 2.21

Find a real root of the equation x log10x  1.2 by regula-falsi method 
correct to four decimal places.

Solution: 

Let  f(x)  x log10 x  1.2

so that f(1)   ve, f(2)   ve and f(3)   ve.

 A root lies between 2 and 3.

Taking x0  2 and x1  3, f(x0)   0.59794 and f(x1)  0.23136, in the 
method of false position, we get

     
 1 0

2 0 0
1 0

2.72102
x x

x x f x
f x f x


  


 (i)
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Repeating this process, the successive approximations are

x4  2.74024, x5  2.74063 etc.

Hence the root is 2.7406 correct to 4 decimal places.

EXAMPLE 2.22

Use the method of false position, to find the fourth root of 32 correct 
to three decimal places.

Solution: 

Let x  (32)1/4 so that x4  32  0

Take f(x)  x4  32. Then f(2)   16 and f(3)  49, i.e., a root lies be-
tween 2 and 3.

 Taking x0  2, x1  3, f(x0)   16, f(x1)  49 in the method of false 
position, we get

    
 1 0

2 0 0
1 0

16
2 2.2462

65
x x

x x f x
f x f x


    


 (i)

Now f(x2)  f(2.2462)   6.5438 i.e., the root lies between 2.2462 and 3.

 Taking x0  2.2462, x1  3, f(x0)   6.5438, f(x1)  49 in (i), we get

  3
3 2.2462

2.2462 6.5438 2.335
49 6.5438

x


   


Now f(x3)  f(2.335)   2.2732 i.e., the root lies between 2.335 and 3.

 Taking x0  2.335 and x1  3, f(x0)   2.2732 and f(x1)  49 in (i), we 
obtain

 
 4

3 2.335
2.335 2.2732 2.3645

49 2.2732
x


   



Repeating this process, the successive approximations are x5  
2.3770, x6  2.3779 etc. Since x5  x6 upto three decimal places, we take 
(32)1/4  2.378.

2.10 Secant Method

This method is an improvement over the method of false position as it 
does not require the condition f(x0) f(x1) < 0 of that method (Figure 2.5). 
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Here also the graph of the function y  f (x) is approximated by a secant line 
but at each iteration, two most recent approximations to the root are used 
to find the next approximation. Also it is not necessary that the interval must 
contain the root.

Taking x0, x1 as the initial limits of the interval, we write the equation of 
the chord joining these as

  
   

 1 0
1 1

1 0

f x f x
y f x x x

x x


  



Then the abscissa of the point where it crosses the x-axis (y  0) is given 
by

    
 1

2 1 1
1 0

ox x
x x f x

f x f x


 


which is an approximation to the root. The general formula for succes-
sive approximations is, therefore, given by

    
 1

1
, 1.

1
n n

n n n
n n

x x
x x f x n

f x f x

 
  

 

Rate of Convergence. If at any interation f(xn)  f(xn-1), this method 
fails and shows that it does not converge necessarily. This is a drawback of 
secant method over the method of false position which always converges. 
But if the secant method once converges, its rate of convergence is 1.6 
which is faster than that of the method of false position.

EXAMPLE 2.23 

Find a root of the equation x3  2x  5  0 using the secant method cor-
rect to three decimal places.

Solution: 

Let f(x)  x3  2x  5 so that f(2)   1 and f(3)  16.

 Taking initial approximations x0  2 and x1  3, by the secant method, 
we have

 
   

 1 0
2 1 1

1 0

3 2
3 16 2.058823

16 1
x x

x x f x
f x f x

 
    



Now  f(x2)   0.390799
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 2 1

3 2 2
2 1

2.081263
x x

x x f x
f x f x


  



and  f(x3)   0.147204

  
   

 3 2
4 3 3

3 2

2.094824
x x

x x f x
f x f x


  



and  f(x4)  0.003042

     
 4 3

5 4 4
4 3

2.094549
x x

x x f x
f x f x


  



Hence the root is 2.094 correct to three decimal places

EXAMPLE 2.24

Find the root of the equation xex  cos x using the secant method cor-
rect to four decimal places.

Solution:

Let  f(x)  cos x  xex  0.

Taking the initial approximations x0  0, x1  1

so that f (x0)  1, f (x1)  cos 1  e   2.17798

Then by the secant method, we have

    
   1 0

2 1 1
1 0

1
1 2.17798 0.31467

3.17798
x x

x x f x
f x f x


     



Now f (x2)  0.51987

  
   

   2 1
3 2 2 3

2 1

0.44673 0.20354
x x

x x f x and f x
f x f x


   



  
   

 3 2
4 3 3

3 2

0.53171
x x

x x f x
f x f x


  



Repeating this process, the successive approximations are x5  0.51690, 
x6  0.51775, x7  0.51776 etc.

Hence the root is 0.5177 correct to four decimal places.

Obs. Comparing Examples 2.18 and 2.21, we notice that the 
rate of convergence in the secant method is definitely faster 
than that of the method of false position

NOTE
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2.11 Iteration Method

To find the roots of the equation f(x)  0 (i)

by successive approximations, we rewrite (i) in the form x  (x) (ii)

The roots of (i) are the same as the points of intersection of the straight 
line y  x and the curve representing y  (x).Figure 2.7 illustrates the 
working of the iteration method which provides a spiral solution.

Let x  x0 be an initial approximation of the desired root . Then the 
first approximation x1 is given by x1  (x0)

Now treating x1 as the initial value, the second approximation is 
x2  (x1)

Proceeding in this way, the nth approximation is given by xn  (xn1)

0 x0 x2 x3 x1

y

x

y =
 x

y = φ(x)

FIGURE 2.7

Sufficient condition for convergence of iterations. It is not certain 
whether the sequence of approximations x1, x2,..., xn always converges to the 
same number which is a root of (1) or not. As such, we have to choose the 
initial approximation x0 suitably so that the successive approximations x1, 
x2,..., xn converge to the root . The following theorem helps in making the 
right choice of x0:

Theorem:

If (i)  be a root of f (x)  0 which is equivalent to x  (x),

(ii) I, be any interval containing the point x  ,

(iii) |(x) | < 1 for all x in I,

then the sequence of approximations x0, x1, x2,..., xn will converge to the 
root  provided the initial approximation x0 is chosen in I.
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Proof. Since  is a root of x  (x), we have   ()

If xn1 and xn be 2 successive approximations to , we have xn  (xn1)

 xn    (xn1)  ()  (i)

By mean value theorem, 
   

 1

1

n

n

x

x




  
 


 where xn1 <  < 

Hence (1) becomes xn    (xn1  ) ()

If | (xi) |  k < 1 for all i, then

  | xn   |  k | xn1   | (2)

Similarly  | xn1   |  k | xn2   |

i.e.,  |xn   |  k2 | xn2   |

Proceeding in this way,  | xn   |  kn | x0   |

As n  , the R.H.S. tends to zero, therefore, the sequence of approxi-
mations converges to the root .

Obs. 1. The smaller the value of (x), the more rapid will be 
the convergence.
2. This method of iteration is particularly useful for finding the 
real roots of an equation given in the form of an infinite series.

Acceleration of convergence. From (2), we have

 | xn   |  k | xn1   |, k < 1.
It is clear from this relation that the iteration method is linearly conver-

gent. This slow rate of convergence can be improved by using the following 
method:

Aitken’s 2 method. Let xi1, xi, xi+1 be three successive approxima-
tions to the desired root  of the equation x  (x). Then we know that

  xi  k(  xi1),   xi+1  k(  xi)

Dividing, we get 1

1 1i

i ix x
x x





 


 

Whence 
 21

1
1 12

i i
i

i i i

x x
x

x x x



 


 

 
  (3)

NOTE
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But in the sequence of successive approximations, we have

xi  xi+1  xi

 2xi  (x1)  (xi+1  xi)  xi+1  xi

 xi+2  xi+1  (xi+1  xi)  xi+2  2xi+1  xi

     2xi1  xi+1  2xi  xi1

Hence (3) can be written as   xi+1  
 2

2
1

i

i

x

x




 (4)

which yields successive approximations to the root .

EXAMPLE 2.25

Find a real root of the equation cos x  3x  1 correct to three decimal 
places using

(i) Iteration method 

(ii) Aitken’s 2 method.

Solution: 

(i) We have f(x)  cos x  3x  1  0

         f(0)  2   ve and f(/2)   3 /2  1   ve

 A root lies between 0 and /2.

Rewriting the given equation as x  1
3

 (cos x  1)  (x), we have

      sin 1
and | | | sin | 1 in 0, / 2

3 3
x

x x x       .

Hence the iteration method can be applied and we start with x0  0. 
Then the successive approximations are,

x1  (x0)  1
3

 (cos 0  1)  0.6667

x2  (x1)  1
3

 (cos 0.6667  1)  0.5953

x3  (x2)  1
3

 (cos 0.5953  1)  0.6093

x4  (x3)  1
3

 (cos 0.6093  1)  0.6067
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x5  (x4)  1
3

 (cos 0.6067  1)  0.6072

x6  (x5)  1
3

(cos 0.6072  1)  0.6071

Hence x5 and x6 being almost the same, the root is 0.607 correct to three 
decimal places. (ii) We calculate x1, x2, x3 as above. To use Aitken’s method, 
we have

x x 2x

x1  0.667

x2  0.5953

x3  0.6093

 0.0714

0.014
0.0854

 Hence  
   

2 2
2

4 3 2
1

0.014
0.6093 0.607

0.0854
x

x x
x


    



which corresponds to six iterations in normal form.

Thus the required root is 0.607.

EXAMPLE 2.26

Using iteration method, find a root of the equation x3  x2  1  0 cor-
rect to four decimal places.

Solution: 

We have f(x)  x3  x2  1  0

Since f(0)   1 and f(1)  1, a root lies between 0 and 1.

Rewriting the given equation as x  (x  1)1/2  (x), we have (x)  

− 1
2

(x  1)3/2 and | (x) | < 1 for x < 1. Hence the iteration method can be 

applied. Starting with x0  0.75, the successive approximations are

           
 1 0

0

1
( )

1
0.7559

x
x x 


 

   2 1
0.75

1
( ) 0.754

59
6

1
6x x


  

                       x3  0.75492, x4  0.75487, x5  0.75488

Hence x4 and x5 being almost the same, the root is 0.7548 correct to 
four decimal places.



54 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

EXAMPLE 2.27

Apply iteration method to find the negative root of the equation x3  2x 
 5  0 correct to four decimal places.

Solution: 

If , ,  are the roots of the given equation, then  ,  ,   are the 
roots of

 ( x)3  2 ( x)  5  0
 The negative root of the given equation is the positive root of

 f (x)  x3  2x  5  0. (i)
Since f(2)   1 and f (3)  16, a root lies between 2 and 3.

Rewriting (i) as x  (2x  5)1/3  (x),

we have (x)  1
3

 (2x  5)2/3. 2 and | (x) | < 1 for x < 3.

 The iteration method can be applied:

Starting with x0  2. The successive approximations are

 x1  x0)  (2x0  5)1/3  2.08008

 x2  (x1)  2.09235, x3  2.09422

 x4  2.09450, x5  2.09454

Since x4 and x5 being almost the same, the root of (i) is 2.0945 correct 
to four decimal places.

Hence the negative root of the given equation is  2.0945.

EXAMPLE 2.28

Find a real root of 2x  log10
 x  7 correct to four decimal places using 

the iteration method.

Solution: 

We have f(x)  2x  log10
 x  7

               f(3)  6  log10
3  7  6  0.4771  7   1.4471

               f(4)  8  log10
4  7  8  0.602  7  0.398

 A root lies between 3 and 4.
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Rewriting the given equation as x  
1
2

(log10x  7)  (x), we have

 10
1 1

( ) log
2

x e
x
 

   
 

 | (x) | < 1 when 3 < x < 4  [ log10e  0.4343]

Since | f(4)| < | f(3)|, the root is near to 4.

Hence the iteration method can be applied. Taking x0  3.6, the succes-
sive approximations are

x1   (x0)  
1
2

(log10 3.6  7)  3.77815

x2   (x1)  
1
2

(log10 3.77815  7)  3.78863

x3   (x2)  
1
2

(log 3.78863  7)  3.78924

x4   (x3)  
1
2

(log 3.78924  7)  3.78927

Hence x3 and x4 being almost equal, the root is 3.7892 correct to four 
decimal places.

EXAMPLE 2.29

Find the smallest root of the equation

        

2 3 4 5

2 2 2 21 x 0
2! 3! 4! 5!

x x x x
      

Solution: 

Writing the given equation as

 
       

 
2 3 4 5

2 2 2 21
2! 3! 4! 5!

x x x x
x x      

Omitting x2 and higher powers of x, we get x  1 approximately.

Taking x0  1, we obtain

 
       1 0 2 2 2 2

1 1 1 1
1 1.2239

2! 3! 4! 5!
x x       

  
 

 

 

 

 

 

 

 

2 3 4 5

2 1 2 2 2 2

1.2239 1.2239 1.2239 1.2239
1 1.3263

2! 3! 4! 5!
x x       
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Similarly  x3  1.38,  x4  1.409,  x5  1.425

x6  1.434,  x7  1.439,  x8  1.442.

The values of x7 and x8 indicate that the root is 1.44 correct to two deci-
mal places.

Exercises 2.4

1. Find a root of the following equations, using the bisection method cor-
rect to three decimal places:

(i) x3  x  1  0   (ii) x3  x2  1  0

(iii) 2x3  x2  20x  12  0  (iv) x4  x  10  0.

2. Evaluate a real root of the following equations by bisection method:
(i) x  cos x  0    (ii) ex  x  0

(iii) ex  4 sin x.

3. Find a real root of the following equations correct to three decimal 
places, by the method of false position:

(i) x3  5x  1     (ii) x3  4x  9  0

(iii) x6  x4  x3  1  0.

4. Using the regula falsi method, compute the real root of the following 
equations correct to three decimal places:

(i) xex  2    (ii) cos x  3x  1

(iii) xex  sin x    (iv) x tan x   1

(v) 2x  log x  7

(vi) 3x  sin x  ex.

5. Find the fourth root of 12 correct to three decimal places by the inter-
polation method.

6. Locate the root of f (x)  x10  1  0, between 0 and 1.3 using the bisec-
tion method and method of false position. Comment on which method 
is preferable.
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7. Find a root of the following equations correct to three decimal places by 
the secant method:

(i) x3  x2  x  7  0  (ii) x  ex  0

(iii) x log10x  1.9.

8. Use the iteration method to find a root of the equations to four decimal 
places:

(i) x3  x2  100  0 (ii) x3  9x  1  0

(iii) x  1
2

  sin x (iv) tan x  x

(v) ex  5x  (vi) 2x  x  3  0 which lies between ( 3,  2).

9. Evaluate 30  by (i) secant method (ii) iteration method correct to 
four decimal places.

10. Find the root of the equation 2x  cos x  3 correct to three decimal 
places using (i) iteration method, (ii) Aitken’s 2 method.

11. Find the real root of the equation 

 
3 5 7 9 11

... 0.443
3 10 42 216 1320
x x x x x

x        

correct to three decimal places using iteration method

2.12 Newton-Raphson Method

Let x0 be an approximate root of the equation f(x)  0. If x1  x0  h be 
the exact root, then f(x1)  0.

 Expanding f(x0  h) by Taylor’s series f(x0)  h f (x0)  
2

2!
h  f (x0)  0

Since h is small, neglecting h2 and higher powers of h, we get f(x0)  h 
f (x0)  0

 or  
 
 

0

0'

f x
h

f x
  (1)

 A closer approximation to the root is given by

 
 
 

0
1 0

0

.
'

f x
x x

f x
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Similarly starting with x1, a still better approximation x2 is given by

 
 
 

0
2 1

1'

f x
x x

f x
  .

In general, 
 
 

 1

f
0, 1, 2....

f '
n

n n
n

X
X X n

X     (2)

which is known as the Newton-Raphson formula or Newton’s iteration 
formula.

Obs. 1. Newton’s method is useful in cases of large values of 
f (x) i.e., when the graph of f(x) while crossing the x-axis is 
nearly vertical.

For if f (x) is small in the vicinity of the root, then by (1), h will 
be large and the computation of the root is slow or may not be 
possible. Thus this method is not suitable in those cases where 
the graph of f(x) is nearly horizontal while crossing the x-axis.

Obs. 2. Geometrical interpretation. Let x0 be a point near the 
root  of the equation f(x)  0 (Figure 2.8). Then the equation of 
the tangent at A0[x0, f(x0)] is

 y  f(x0)  f (x0) (x  x0).

It cuts the x-axis at x1  x0   
 

0

0'

f x

f x

which is a first approximation to the root . If A1 is the point 
corresponding to x1 on the curve, then the tangent at A1 will cut 
the x-axis at x2 which is nearer to  and is, therefore, a second 
approximation to the root. Repeating this process, we approach 
the root  quite rapidly. Hence the method consists in replacing 

NOTE

Y

0 Xx2 x1 x0

A1
A2

y = f(x)
A[x0, f(x0)]

FIGURE 2.8
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the part of the curve between the point A0 and the x-axis by 
means of the tangent to the curve at A0.

Obs. 3. Newton’s method is generally used to improve the 
result obtained by other methods. It is applicable to the solution 
of both algebraic and transcendental equations.

Convergence of Newton-Raphson Method. Newton’s formula con-
verges provided the initial approximation x0 is chosen sufficiently close to 
the root.

If it is not near the root, the procedure may lead to an endless cycle. 
A bad initial choice will lead one astray. Thus a proper choice of the initial 
guess is very important for the success of Newton’s method.

Comparing (2) with the relation xn+1  (xn) of the iteration method, 
we get

 
 
 1( )

'
n

n n n
n

f x
x x x

f x   

In general,  
 
 

( )
'

f x
x x

f x
    which gives  

   

  2

"
( )

'

f x f x
x

f x
 

  
Since the iteration method (Section 2.10) converges if |  (x) | < 1

 Newton’s formula will converge if | f(x) f (x) | < |f (x) |2 in the interval 
considered. Assuming f(x), f (x) and f (x) to be continuous, we can select 
a small interval in the vicinity of the root , in which the above condition is 
satisfied. Hence the result.

Newtons method converges conditionally while the regula-falsi method 
always converges. However when the Newton-Raphson method converges, 
it converges faster and is preferred.

Newton’s method has a quadratic convergence.

Suppose xn differs from the root  by a small quantity n so that

x0    n and xn+1   n+1.

Then (2) becomes 

 
 1 '

n
n n

n

f

f


  



i.e., 1
( )
'( )

n
n n

n

f
f


  





60 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

 
     

   

1
2

2!
'

n n

n
n

f f f

f f

       
 

   




 by Taylor’s expansion

 
   

   
 
 

 

1
2 22 . [ 0]

2

n n
n

n
n

f f f
f

f f f

        
    

      





This shows that the subsequent error at each step is proportional to the 

square of the previous error and as such the convergence is quadratic. Thus 
the Newton-Raphson method has second order convergence.

EXAMPLE 2.30

Find the positive root of x4  x  10 correct to three decimal places, 
using the Newton-Raphson method.

Solution:

Let   f(x)  x4  x  10

so that  f(1)   10   ve, f(2)  16  2  10  4   ve.

 A root of f(x)  0 lies between 1 and 2.
Let us take x0  2
Also  f(x)  4x3  1
Newton-Raphson’s formula is

             
 
 1

n
n n

n

f x
x x

f x  


Putting n  0, the first approximation x1 is given by

 
 
 

 
 

0
1 0

0

3

2
2

' 2'

4 4
2 2 1.871

314 2 1

f x f
x x

ff x
   

    
 

Putting n  1 in (i), the second approximation is

 

 
 

 
 

   

 

1
2 1

1

4

3

1.871
1.871

' 1.871'

1.871 1.871 10
1.871

4 1.871 1
0.3835

1.871 1.856
25.199

f x f
x x

ff x
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Putting n  2 in (ii), the third approximation is

 

 
 

   

 

4
2

3 2 3
2

1.856 1.856 10
1.856

' 4 1.856 1
0.010

1.856 1.856
24.574

f x
x x

f x
 

   


  

Here x2  x3. Hence the desired root is 1.856 correct to three decimal 
places.

EXAMPLE 2.31

Find by Newton’s method, the real root of the equation 3x  cos x  1, 
correct to four decimal places.

Solution: 

Let  f(x)  3x  cos x  1

 f(0)   2   ve, f(1)  3  0.5403  1  1.4597   ve.
So a root of f(x)  0 lies between 0 and 1. It is nearer to 1. Let us take 

x0  0.6.

Also f (x)  3  sin x
 Newton’s iteration formula gives

 

 
 1

3 cos 1
3 sin'

sin cos 1
3 sin

n n n
n n n

nn

n n n

n

f x x x
x x x

xf x

x x x
x



 
   



 




 (i)

Putting n  0, the first approximation x1 is given by

                

     
 

0 0 0
1

0

sin cos 1 0.6 sin 0.6 cos 0.6 1
3 sin 3 sin 0.6

0.6 0.5729 0.82533 1
0.6071

3 0.5729

x x x
x

x
   

 
 

  
 


Putting n  1 in (i), the second approximation is

 

   
 

1 1 1
2

1

sin cos 1 0.6071sin 0.6071 cos 0.6071 1
3 sin 3 sin 0.6071

0.6071 0.57049 0.8213 1
0.6071

3 0.57049

x x x
x

x
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Here x1  x2. Hence the desired root is 0.6071 correct to four decimal 
places.

EXAMPLE 2.32

Using Newton’s iterative method, find the real root of x log10 x  1.2 
correct to five decimal places.

Solution: 

Let  f(x)  x log10 x  1.2

f(1)   1.2   ve, f(2)  2 log10 2  1.2  0.59794   ve

and f(3)  3 log10 3  1.2  1.4314  1.2  0.23136   ve.

So a root of f(x)  0 lies between 2 and 3. Let us take x0  2.

Also   10 10 10
1

' log . log log 0.43429f x x x e x
x

   

 Newton’s iteration formula gives

 
 
 1

0.43429 12
log10 0.43429'

n n
n n

nn

f x x
x x

xf x


  


 (i)

 Putting n  0, the first approximation is

 0
1

10 0 10

0.43429 12 0.43429 2 12
log 0.43429 log 2 0.43429

0.86858 12
2.81

0.30103 0.43429

x
x

x
   

 
 


 



Similarly putting n  1, 2, 3, 4 in (i), we get

 

2
10

10

10

10

0.43429 2.81 1.2
2.741

log 2.81 0.43429
0.43429 2.741 1.2

3 2.74064
log 2.741 0.43429

0.43429 2.741 1.2
4 2.74065

log 2.74064 0.43429
0.43429 2.74065 1.2

5 2.74065
log 2.74065 0.43429

x

x

x

x

 
 



 
 



 
 



 
 


Here x4  x5. Hence the required root is 2.74065 correct to five decimal 

places.
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2.13  Some Deductions From Newton-Raphson Formula

We can derive the following useful results from the Newton’s iteration 
formula:

(1) Iterative formula to find 1/N is xn + 1  xn(2  Nxn)

(2) Iterative formula to find N  is xn + 1 
1
2

 (xn  N/xn)

(3) Iterative formula to find 1/ N  is xn + 1 
1
2

 (xn  1/Nxn)

(4) Iterative formula to find k N  is xn + 1  1
k

[(k  1) xn  N/xn
k1)]

Proofs. (1) Let x  1/N or 1/x  N  0

Taking f(x)  1/x  N, we have f (x)   x2.

Then Newton’s formula gives

 

 
 

 

 

1

2

1 / 1
2.

2'

2

n n
n n n n n

n nn

n n n n n

f x x N
x x x x N x

x xf x

x x Nx x Nx



 
       

   

    

(2) Let x  N  or x2  N  0.

Taking f(x)  x2  N, we have f (x)  2x.

Then Newton’s formula gives

 
 
 

 
2

1
1

/
2 2'

n n
n n n n n

nn

f x x N
x x x x N x

xf x


    

(3) Let x  
1
N

 or x2  
1
N
 0

Taking f(x)  x2  1/N, we have f (x)  2x.

 Then Newton’s formula gives

 
 
 

2

1
1 / 1 1

2 2'
n n

n n n n
n nn

f x x N
x x x x

x Nxf x

 
       

 

(4) Let x  k N  or xk  N  0

Taking f(x)  xk  N, we have f (x)  kxk1
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Then Newton’s formula gives

 
 
 

 1 1 1

1
1 .

'

h
n n

n n n nk k
n n n

f x x N N
x x x k x

kf x kx x  

 
      

 

EXAMPLE 2.33

Evaluate the following (correct to four decimal places) by Newton’s it-
eration method:

(i) 1/31   (ii) 5   (iii) 1 / 14   (iv) 24 3

(v) (30)1/5.

Solution: 

(i) Taking N  31, the above formula (1) becomes

 xn + 1  xn(2  31xn)
Since an approximate value of 1/31  0.03, we take x0  0.03.

Then  x1  x0(2  31x0)  0.03(2  31 × 0.03)  0.0321

 x2  x1(2  31x1)  0.0321(2  31 × 0.0321)  0.032257

 x3  x2(2  31x2)  0.032257(2  31 × 0.032257)  0.03226

Since x2  x3 upto four decimal places, we have 1/31  0.0323.

(ii) Taking N  5, the above formula (2), becomes  1
1

5 / .
2n n nx x x  

Since an approximate value of 5 2,   2, we take x0  2.

Then    

 

 

1 0 0

2 1 1

3 2 2

1 1
5 2 5 2 2.25

2 2
1

5 2.2361
2
1

5 2.2361
2

x x x

x x x

x x x

    

  

  

Since x2  x3 upto four decimal places, we have 5   2.2361.

(iii) Taking N  14, the above formula (3), becomes 1
1

[ 1 (14 )]
2n n nx x x  

Since an approximate value of 
1

1 / 14 1/ 16 0.25,
4

    we take 
x0  0.25,
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Then    

   

   

1 1
1 0 0

1 1
2 1 1

1 1
3 2 2

1 1
[ 14 ] 0.25 14 0.25 0.26785

2 2
1 1

14 0.26785 14 0.26785 0.2672618
2 2
1 1

14 0.2672618 14 0.2672618 0.2672612
2 2

x x x

x x x

x x x

 

 

 

       

          

          

Since x2  x3 upto four decimal places, we take 1/ 14 0.2673.

(iv) Taking N  24 and k  3, the above formula (4) becomes

  2
1

1
2 24

3n n nX X X
   

Since an approximate value of (24)1/3  (27)1/3  3, we take x0  3.

Then     2
1 0 0

1 1
2 24 6 24 9 2.88889

3 3
X X X    

 
     

   

22
2 1 1

22
3 2 2

1 1
2 24 2 2.88889 24 / 2.88889 2.88451

3 3
1 1

2 24 / 2 2.88451 24 / 2.88451 2.8845
3 3

X X X

X X X

       

       

Since X2  X3 up to four decimal places, we take (24)1/3  2.8845.

(v) Taking N  30 and k   5, the above formula (4) becomes

    6 5
1

1
6 30 6 30

5 5
n

n n n n
X

X X X X
    


Since an approximate value of (30)1/5  (32)1/5  1/2, we take x0  1/2

 Then    5 50
1 0

1
6 30 6 30 2 0.506495

5 10
X

X X      

         
5 51

2 1
0.50625

(6 30 ) [6 30(0.50625) ] 0.506495
5 5

X
X x    

5 52
3 2

0.506495
(6 30 ) [6 30(0.506495) ] 0.506496

5 5
X

X X    

Since x2  x3 up to four decimal places, we take (30)1/5  0.5065.
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Exercises 2.5

1. Find by Newton-Raphson method, a root of the following equations cor-
rect to three decimal places:

(i) x3  3x  1  0  (ii) x3  2x  5  0

(iii) x3  5x  3  0  (iv) 3x3  9x2  8  0.

2. Using Newton’s iterative method, find a root of the following equations 
correct to four decimal places:

(i) x4  x3  7x2  x  5  0 which lies between 2 and 3.

(ii) x5  5x2  3  0.

3. Find the negative root of the equation x3  21x  3500  0 correct to 2 
decimal places by Newton’s method.

4. Using Newton-Raphson method, find a root of the following equations 
correct to three decimal places:

(i) x2  4 sin x  0

(ii) x sin x  cos x  0 or x tanx  1  0

(iii) ex  x3  cos 25x which is near 4.5

(iv) x log10 x  12.34, start with x0  10.

(v) cos x  xex  (vi) 10x  x  4  0.

5. The equation 
1 1

2  
2 1

xe
x x

  
 

has two roots greater than  1. Calcu-

late these roots correct to five decimal places.

6. The bacteria concentration in a reservoir varies as C  4e2t  e0.1t. 
Using the Newton Raphson (N.R.) method, calculate the time required 
for the bacteria concentration to be 0.5.

7. Use Newton’s method to find the smallest root of the equation ex sin x  
1 to four decimal places.

8.  The current i in an electric circuit is given by i  10et sin 2t where t is 
in seconds. Using Newton’s method, find the value of t correct to three 
decimal places for i  2 amp.

9.  Find the iterative formulae for finding 3,N N  where N is a real num-
ber, using the Newton-Raphson formula.
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Hence evaluate: 
(a) 10

(b) 21
(c) the cube-root of 17 to three decimal places.

10. Develop an algorithm using the N.R. method, to find the fourth root of 
a positive number N and hence find 4 32

11. Evaluate the following (correct to three decimal places) by using 
the Newton-Raphson method.
(i) 1/18   (ii) /1 15   (iii) (28)1/4.

12.  Obtain Newton-Raphson extended formula

 
 
 

   

  

2
0 0 0

1 0 2
0 0

| | "1
2' '

f x f x f x
x x

f x f x
  

for the root of the equation f(x)  0.

Hence find the root of the equation cos x  xex correct to five decimal 
places.

Solution: 

Expanding f(x) in the neighborhood of x0 by Taylor’s series; we have

         0 0 0 0 00 f fx f x x x f x x x f x        to first approxi-
mately.

Hence the first approximation to the root is given by

 x1  x0   f(x0)/f (x) (i)
Again by Taylor’s series to the second approximation, we get

 f(x1)  f(x0)  (x1  x0) f (x0) 
1
2!

 (x1  x0)2 f (x0)

Since x1 is an approximation to the root, f(x1)  0

 f(x0)  (x1  x0) f (x0)  1
2

(x1  x0)
2 f (x0)  0

or 
 
 

 
 

 0 0
1 0 0

0 0

1
"

2' '

f x f x
x x f x

f x f x

  
   
  

 [by (i)]

whence follows the desired formula. [This is known as the Chebyshev 
formula of third order.]
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2.14 Muller’s Method

1. This method is a generalization of the secant method as it doesn’t require 
the derivative of the function. It is an iterative method that requires 
three starting points. Here, y  f(x) is approximated by a second degree 
parabola passing through these three points (xi 2, yi 2), (xi 1, yi 1) and 
(xi, yi) in the vicinity of the root. Then a root of this quadratic is taken as 
the next approximation xi + 1 to the root of f(x)  0.

2. Let xi 2, xi 1, xi be three approximations to the root  of the equation 
f(x)  0 and yi 2, yi 1, yi be the corresponding values of f(x).

Assuming the equation of the parabola through the points (xi 2, yi 2), 
(xi 1, yi 1) and (xi, yi) to be

0 xi−2 xi−1

f(x)

f(x)

xxi+1
xi

yi

yi−1

yi−2

FIGURE 2.9

 
2 ,y ax bx c    (1)

we get                       

2
2 2 2

2
1 1 1

2

i

i

i i

i i

i i i

y ax bx c

y ax bx c

y ax bx c

  

  

  

  


   

 (2)

Eliminating a, b, c from (1) and (2), we obtain

 

2

2
2 2

2
1 1

2

1

2 1
0

1 1

1

i i i

i i i

i i i

y x x

y x x

y x x

y x x

 

 






which can be written as
  

  
  

  
  
  

1 2
2

2 1 2 1 2 1

2 1

2 1

i i i
i

i i i i i i i i

i i
i

i i i i

x x x xi x x x x
y y

x x x x x x x x

x x x x
y

x x x x

 


     

 

 

   
 

   

 


 

  (3)

and
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We now define  1 2

1 1 2 1 2
, andi i i i i

i i
i i i i i i

x x x x x x
x x x x x x

 

    

  
    

  
 (4)

Then (3) simplifies to

   2 2 2
2 1 12i i i i i i i i i

i
i i

y y y y i y i y i
y y


             

  
 

 (5)

From (4), we get x  xi  (xi  xi 1)  (6)

Now to find a better approximation to the root, we need the unknown 
quantity . To determine , we put y  0 in (5) giving

 (yi 2 i yi 1i  yi ) i 
2  i  i yi  0 (7)

Where        2 2
2 1  ( )i i i i i i i iy y y        

Dividing throughout by i2 and solving for 1/, we get

 
 2 4 2 11

2
i i i i i i i i i i

i i

y y y y

y

             

 

Since x is close to xi,  should be small in magnitude. Therefore the sign 
should be so chosen to make the numerator largest in magnitude. Then (6) 
gives a better approximation to the root.

Obs. This method is iterative and converges for almost all ini-
tial approximations quadratically. In case no better approxima-
tions are known, we take, xi 2   1, xi 1  0, and Xi  1.

EXAMPLE 2.34

Apply Muller’s method to find the root of the equation cos x  xex which 
lies between 0 and 1.

Solution: 

Let y  cos x  xex

Taking the initial approximations as

xi 2   1, xi 1  0, xi  1

We obtain  yi 2  cos 1  e1, yi 1  1, yi  cos 1  e

NOTE

As a direct solution of (7) usually leads to inaccurate results, we solve it for l/.
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  x  1, i  1, i  2

and  i  (cos 1  e1)  4  3(cos 1  e).

 From (7), we get two values of 1. (i)

We choose the ve sign so that the numerator in (i) is largest in magni-
tude and obtain    0.5585.

 The next approximation to the root is given by (6) as

 xi + 1  xi  (xi  xi  1)  1  0.5585  0.4415.
Repeating the above process, we get

 xi + 2  0.5125, xi + 3  0.5177, xi + 4  0.5177
Hence the root is 0.518 correct to three decimal places.

Exercises 2.6

Using Muller’s method, find a root of the following equations, correct 
to three decimal places:

1. x3  2x  1  0 2. x3  x2  x  1  0.

3. x3  2x2  10x  20  0 taking x0  0, x1  1 and x2  2.

4. log x  x  3 taking x0  0.25, x1  0.5 and x2  1.

2.15 Roots of Polynomials Equations

The methods so far discussed for finding the roots of equations can 
also be applied to polynomials. These methods, however, do not work well 
when the polynomial equations contain multiple or complex roots. We now 
discuss methods for finding all the real and complex roots of polynomials. 
These methods are especially designed for polynomials and cannot be ap-
plied to transcendental equations. We begin with Horner’s method which 
is the best for finding the approximate values of real roots of a numerical 
polynomial equation.

Approximate Solution of Polynomial Equations—Horner’s 
Method

This method consists in diminution of the roots of an equation by suc-
cessive digits occurring in the roots.
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If the root of an equation lies between a and a  1, then the value of 
this root will be a.bcd......, where b, c, d...... are digits in its decimal part. To 
obtain these, we proceed as follows: 

  (i)  Diminish the roots of the given equation by a so that the root of the 
new equation is o. bcd......

 (ii)  Then multiply the roots of the transformed equation by 10 so that 
the root of the new equation is b. cd......

(iii)  Now diminish the root by b and multiply the roots of the resulting 
equation by 10 so that the root is c.d......

 (iv)  Next diminish the root by c and so on. By continuing this process, 
the root may be evaluated to any desired degree of accuracy digit by 
digit. The method will be clear from the following example:

EXAMPLE 2.35

Find by Horner’s method, the positive root of the equation x3  x2 
 x  100 = 0 correct to three decimal places.

Solution: 

Step I. Let f(x)  x3  x2  x  100

By Descartes’ rule of signs, there is only one positive root. Also 
f(4)   ve and f (5)  ve, therefore, the root lies between 4 and 5.

Step II. Diminish the roots of given equation by 4 so that the trans-
formed equation is

 x3  13x2  57x  16  0 (i)
Its root lies between 0 and 1. (We draw a zig-zag line above the set of 

figures 13, 57, 16 which are the coefficients of the terms in (i) as shown 
below.) Now multiply the roots of (i) by 10 for which attach one zero to 
the second term, two zeros to the third term, and three zeros to the fourth 
term. Then we get the equation

f1(x)  x3  130x2  5700x  16000  0 (ii)
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1 1 1 100 (4.264)
 4 20 84
 5 21 16000
 4 36 11928
 9 5700 4072000
 4    264 3788376
 130 5964 28362400
      2 268
 132 623200
     2      8196
 134 631396
 2 8232
 1360 63962800
       6
 1366
       6
 1372
 6
 13780

Its root lies between 0 and 10.

Clearly f1(2)  ve, f1(3)  ve.

 The root of (ii) lies between 2 and 3, i.e,. first figure after the decimal 
is 2.

 Step III. Diminish the roots of f1(x)  0 by 2 so that the next trans-
formed equation is

 x3  136x2  6232x  4072  0. (iii)

Its root lies between 0 and 1. (We draw the second zig-zag line above 
the set of figures 136, 6232,  4072). Multiply the roots of (iii) by 10, i.e., 
attach one zero to second term, two zeros to the third term, and three zeros 
to the fourth term. Then the new equation is

f2(x)  x3  1360x2  623200x  4072000  0

Its root lies between 0 and 10, which is nearly  
4072000

6
623200

 .

Hence the second figure after the decimal place is 6.

Step IV. Diminish the roots of f2(x)  0 by 6, so that the transformed 
equation is
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 x3  1378x2  639628x  283624  0.
Its root lies between 0 and 1. (We draw the third zig-zag line above the 

set of figures 1378, 639628,  283624.) As before multiply its roots by 10, 
i.e., attach one zero to the second term, two zeros to the third term, and 
three zeros to the fourth term. Then the equation becomes

f3(x)  x3  13780x2  63962800x  283624000  0

Its root lies between 0 and 10, which is nearly 283624000
4.

63962800
   Thus 

the roots of f3(x)  0 are to be diminished by 4, i.e., the third figure after 
the decimal place is 4. But there is no need to proceed further as the root is 
required correct to three decimal places only.

Hence the root is 4.264.

Obs. 1. After two steps of diminishing, we apply the principle of trial 
divisor in which we divide the last coefficient by the last but one coefficient 
to get the next integer by which the roots are to be diminished. These last 
two coefficients should have opposite signs.

Obs. 2. At any stage if the trial divisor suggests the next integer to be 
zero, then we should again multiply the roots by 10 and write zero in the 
decimal place of the root.

EXAMPLE 2.36

Find the cube root of 30 correct to three decimal places, using Horner’s 
method.

Solution: 

Step I. Let x  3 30  i.e. f(x)  x3  30  0

Now  f(3)   3 (ve), f(4)  34 (ve)

 The root lies between 3 and 4.

Step II. Diminish the roots of the given equation by 3 so that the trans-
formed equation is

 x3  9x2  27x  3  0  (i)
Its roots lies between 0 and 1. (We draw a zig-zag line above the set 

of numbers 9, 27,  3 which are the coefficients of the terms in (i)). Now 
multiply the roots of (i) by 10 for which attach one zero to the second term, 
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two zeros to the third term, and three zeros to the fourth term. Then we 
get the equation

 f1(x)  x3  90x2  2700x  3000  0 (ii)
Its roots lies between 0 and 10.

Clearly f1(1)  ve, f2(2)  ve

 The root of (ii) lies between 1 and 2, i.e., first figure after the decimal 
place is 1.

 Step III. Diminish the roots of f1(x)  0 by 1, so that the next trans-
formed equation is

  x3  93x2  2883x  209  0. (iii)
Its root lies between 0 and 1. (We draw a second zig-zag line above the 

set of figures 93, 2883,  209). Multiply the roots of (iii) by 10, i.e., attach 
one zero to second term, two zeros to the third term, and three zeros to the 
fourth term. Then the new equation is

 f2(x)  x3  930x2  288300x  209000  0.
Its root lies between 0 and 10, which is nearly  209000/288300  

0.724 > 0 and < 1.

Hence second figure after the decimal place is 0.

1 0 0 30 (3.107
 3 9 27
 3 9 30000 
 3 18 2791 
 6 2700 209000000 
 3 91  
 90 2791  
 1 92
 91 28830000
 1
 92
 1
 9300

Step IV. Diminish the root of f2(x)  0 by 0 and then multiply its roots 
by 10 so that

 f3(x)  x3  9300x2  28830000x  209000000  0
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Its root lies between 0 and 10, which is nearly

  209000000/28830000  7.2 > 7 and < 8.
Thus the roots of f3(x)  0 are to be diminished by 7, i.e., the third figure 

after the decimal is 7.

Hence the required root is 3.107.

Exercises 2.7

1. Find by Horner’s method, the root (correct to three decimal places) of 
the equations (i) x3  3x  1  0 which lies between 1 and 2.  (ii) x3  x  1 
 0. (iii) x3  3x2  2.5  0 which lies between 1 and 2.

2. Using Horner’s method, find the largest real root of x3  4x  2  0 
correct to three decimal places.

3. Show that a root of the equation x4  x3  4x2  16  0 lies between 2 and 
3. Find its value correct up to two decimal places by Horner’s method.

4. Find the negative root of the equation x3  9x2  18  0 correct to two 
decimal places by Horner’s method.

5. Find the cube root of 25, correct to four decimal places, using Horner’s 
method

2.16 Multiple Roots

If  is a root of f(x)  0 of order m, then f()  0, f ()  0,,
 fm  1()  0 and fm ()  0. Such an equation can be written as f(x)  (x  )m 
(x)  0. In other words, if  is a root of f(x)  0 repeated m times, then it is 
also a root of f (x)  0 repeated (m  1) times, of f (x)  0 repeated (m  2) 
times and so on.

Multiple roots by Newton’s method. Let  be a root of the polyno-
mial equation f(x)  0 which is repeated m times, If x0, x1, x2,, xn + 1, be its 
successive approximations then on the lines of Newton’s iterative method, 

we have 1
( )
( )

n
n n

n

f x
x x m

f x  


which is called the generalized Newton’s formula. It reduces to Newton-
Raphson formula for m  1.



76 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Obs. 1. If initial approximation x0 is sufficiently close to the root 
, then the expressions

 0 0 0
0 0 0

0 0 0

( ) ( ) ( )
, ( 1) , ( 2) ,

( ) ( ) ( )
f x f x f x

x m x m x m
f x f x f x

 
    

  


will have the same value.

Obs. 2. Generalized Newton’s formula has a second order con-
vergence for determining a multiple root. (see Example 2.38).

EXAMPLE 2.37

Find the double root of the equation x3  x2  x  1  0.

Solution: 

Let                 f(x)  x3  x2  x  1

So that  f (x)  3x2  2x  1, f (x)  6x  2

Starting with x0  0.9, we have

 
 
 

0
0

0

2 0.019
2 0.9 1.003

0.37

f x
x

f x


   


and  
 
 

 0
0

0

0.37
2 1 0.9 1.009

3.4

f x
x

f x

 
    



The closeness of these values implies that there is a double root near 
x  1.

 Choosing x1  1.01 for the next approximation, we get

 
 
 

1
1

1

2 0.002
2 1.01 1.0001

0.0403
f x

x
f x


   



  
 
 

1
1

1

0.0403
2 1 1.01 1.0001

4.06
f x

x
f x


    



This shows that there is a double root at x  1.0001 which is quite near 
the actual root x  1.

EXAMPLE 2.38

Show that the generalized Newton’s formula xn 1  xn  2f(xn)/f (xn) 
gives a quadratic convergence when the equation f(x)  0 has a pair of 
double roots in the neighborhood of x  xn.

NOTE
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Solution: 

Suppose x   is a double root near x  xn.

Then f()  0, f ()  0  (i)

We have  
 
 1

2 n
n n

n

f

f


  

 

Expanding f(  ) and f (  ) in powers of n and using (i), we get

 

   

   

   

   

 

   

 
 

2 2

1 2

2 2

2
2! 3!

2!

1
3 approx.

2
1 1
6 6

2

n n

n
n

n

n n

n
n

n n
n

f f

f f

f f

f f

f f
ff f



  
     

 
 

 
      

 

 
       

 


   

  
   

     





which shows that n + 1 n
2 and so the convergence is of second order.

2.17 Complex Roots

We know that the complex roots of an equation occur in conjugate 
pairs, i.e., if   i is a root of f(x)  0,   i is also its root. In other words, 
[x  (  i)] and [x  (  i)] are factors of f(x) or (x    i) (x    i)  
x2  2x  2  2 is a factor of f(x). This implies that we should try to isolate 
complex roots by finding the appropriate quadratic factors of the original 
polynomial. A method which is often used for finding such quadratic factors 
of polynomials is the Lin-Bairstow’s method. However Newton’s method 
can also be used to find the complex roots of a polynomial equation which 
we illustrate below:

EXAMPLE 2.39

Solve x4  5x3  20x2  40x  60  0, by Newton’s method given that all 
the roots of the given equation are complex.
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Solution: 

Let f(x)  x4  5x3  20x2  40x  60  0 (i)

so that f(x)  4x3  15x2  40x  40

 Newton-Raphson method gives

 

 
 

4 3 2

1 3 2

4 3 2

3 2

5 20 40 60
4 15 40 40

3 10 20 60
4 15 40 40

n n n n n
n n n

n n n n

n n n

n n n

f x x x x x
x x x

f x x x x

x x x

x x x



   
   

   

  


  

Putting n  0 and taking x0  2(1  i) by trial, we get

 
     

     
 

4 3 2

1 3 2

3 2 2 10 2 2 20 2 2 60
1.92 1

4 2 2 15 2 2 40 2 2 40

i i i
x i

i i i

     
  

     

Similarly

 
     

     

4 3

2 3 2

3 1.92 1.92 10 1.92 1.92 20 1.92 1.92 60

4 1.92 1.92 15 1.92 1.92 40 1.92 1.92 40
1.915 1.908

i i i
x

i i i
i

     


     

 
Since complex roots occur in conjugate pairs so the roots of (i) are 1.915  

1.908i up to three places of decimals. Assuming that the other pair of roots 
of (i) is   i, we have

Sum of the roots  (  i)  (  i)  (1.915  1.908i)  (1.915  
1.908i)  5

i.e., 2  3.83  5 or   0.585.

Also the product of roots  (2  2) {(1.915)2  (1.908)2}  60

which gives   2.805. Hence the other two roots are 0.5852.805i.

2.18 Lin-Bairstow’s Method

This method is often used for finding the complex roots of a polynomial 
equation with real coefficients, such as

 f(x)  xn  a1 x
n1  a2 x

n2   an1 x  an  0. (1)
Since complex roots occur in pairs as ± i , each pair corresponds to 

a quadratic factor

 {x  (  i )} {x  (  i )}  x2  2 x  2  2
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which is of the form x2  px  q.

If we divide f(x) by x2  px  q, we obtain the quotient Qn2  xn2  b1 x
n3 

  bn2 and the remainder Rn  Rx  S.

Thus f(x)  (x2  px  q) (xn2  b1 x
n3   bn2)  Rx  S. (2)

If x2  px  q divides f(x) completely, the remainder Rx  S  0, i.e., 
R  0, S  0. Obviously R and S both depend upon p and q. So our problem 
is to find p and q such that

 R (p, q)  0, S (p, q)  0. (3)
Let p  p, q  q be the actual values of p and q which satisfy (3). 

Then

R (p  p, q  q)  0, S (p  p, q  q)  0. (4)

To find the corrections  p,  q, we expand these by Taylor’s series and 
neglect second and higher order terms.

  
 

 

, 0

, 0

R R
R p q p q

p q

S S
S p q p q

p q

 
       


         

 (5)

We solve these simultaneous equations for p and q and then the 
procedure is repeated with the corrected values for p and q. Now to com-
pute the coefficients bi, R, and S, we compare the coefficients of like pow-
ers of x in (2) giving

 b1  a1  p
 b2  a2  pb1  q

          ................................

 bi  ai  pbi1  qbi2  (6)
          .................................

 R  an1  pbn2  qbn3, S  an  qbn2

We now introduce bn1 and bn and define

 bi  ai   p bi 1  q bi 2, i  1, 2,  n (7)
where           b0  1, b1  0  b2

Comparing the last two equations with those of (6), we get

       bn1  an1  p bn2  q bn3  R
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                      bn  an  p bn1  q bn2  S  p bn1

giving            R  bn1 and S  bn  p bn1 (8)

Substituting these values in (5), we get

 

1 1
1

1 1
1 1

0

0

n n
n

n n n n
n n n

b b
b p q

p p

b b b b
b pb p b p p q

p p q q

 


 
 

 
    
 

      
           
      

Multiplying the first of these equations by p and subtracting from the 
second, we get

 

1 1
1

1

0

0

n n
n

n n
n n

b b
p q b

p q

b b
b p b

p q

 




 
      

            

 (9)

Now differentiating (7) w.r.t. p and q partially and noting that all ai’s are 
constants and all bi’s are functions of p and q, we have

 

1 2 1 1
1

1 2 1 1
2

; 0

; 0

i i
i

i i
i

b b b bbi
b p q

p p p p p

b b b bbi
b p q

q q q q q

   


   


   
          


              

 (10)

Also from (6), we get

 

0 1 1 2 1
0 0 0

2 1
1 1

2 2 1
1 1

0 ; , ;

o

o

b b b b b
b b p b

p q p q q

b b
b p b pb

p p

b b b
b p p b pb

q q q

    
     

    

 
   

 

  
    

  

Thus we have 32 1 2and
bb b b

q p q p
  

 
   

By mathematical induction, we shall prove that 1i ib b
q p
 


 
, for all i
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Let the result be true for i  r, then 1r rb b
q q
 


 
 (11)

But using (10)

 2 1r r r
r

b b b
b p q

q q q
   
  

  

and 1 1 1,r r r r r
r

b b b b b
b p q br p q

p p p q q
      
     

    
 [by (11)]

This shows that 2 1r rb b
q q
  


 
 i.e., the result is true for i  r  1. But 

it is for i  1 and should this be i 2. Hence by induction, it is true for all 
values of i.

Now writing 1
1, 0,1,2, , 1i i

i
b b

c i n
q p




 
   

 
  (12)

the equations in (10) can be expressed as

 ci1  bi1  p ci2  q ci3, ci2  bi2  p ci3  q ci4

These can be compressed into a single equation

 ci  bi  p ci1  q ci2

with c0  0, c1  0, i  1, 2,..., (n  1) (13)

Thus ci is computed from bi in exactly the same way as bi from ai in (7).

Differentiating the relations in (8) and using (12), we get

 1 1
2 3,n n

n n
b bR R

c c
p p q q

 
 

  
   

   

and                     1 1 2 1
1n

n n n n
bS bn

b p c pc b
p p p   

  
     

  

 
1

2 3
cn

n n
bS bn

p c P
p q q


 

 
   

  

Substituting these in (5), we get

 bn1  cn2 p  cn3 q  0
and bn  pbn1  ( cn1  pcn2  bn1) p  ( cn2  pcn3) q  0

or 
 

–2 –3 –1

–1 –1 –2–  
n n n

n n n n

c p c q b

c b p c q b

   

   





 (14)



82 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

After finding the values of bi’s and ci’s from (7) and (13) and putting in 
(14), we obtain the approximate values of p and q, say p0 and q0. If 
p0, q0 are the initial approximations then their improved values are p1  p0  
p0, q1  q0  q0. Now taking p1 and q1 as the initial values and repeating 
the process, we can get better values of p and q.

Obs. The values of bi’s and ci’s are found by the following 
(synthetic division) scheme:

a0( 1) a1 a2 a3  an2 an1
an

 pb0  pb1  pb2   pbn3  pbn2  pbn1
 p

 qb0  qb1   qbn1  qbn3  qbn2
 q

b0( 1) b1 b2 b3  bn2 bn1
bn

 pc0  pc1  pc2   pcn3  pcn2
 p

 qc0  qc1   qcn4  qcn3
 q

c0( 1) c1 c2 c3  . cn2 cn1

EXAMPLE 2.40

Solve x4  5x3  20x2  40x  60  0, given that all the roots of f(x)  0 are 
complex, by using the Lin-Bairstow method

Solution: 

Starting with the values p0   4, q0  8, we have

1 5 20 40 60

− 4 4  32  0 4

−  8 8 64 −8

1 1 8 0(bn-1) 4(bn)

4 12 48 4

−8 24 8

1 3( cn3) 12( cn2) 24( cn1)

 cn1  bn1  24  0  24

NOTE
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Corrections p0 and q0 are given by

           cn2 p0  cn3 q0  bn1 i.e., 12 p0  3 q0  0
 (cn1  bn1) p0  cn2 q0  bn i.e., 24 p0  12 q0   4

Solving, we get p0  0.1667, q0   0.6667

                p1  p0  p0   3.8333

                            q1  q0  q0  7.333

Now repeating the same process, i.e., dividing f(x) by x2  3.8333x  
7.3333, we get

1 5 20 40 60

3.8333 4.4723 31.4116 0.125 3.8333

7.3333 8.5558 60.092 7.3333

1 1.1667 8.1944 0.0326 0.217

(bn+1) (bn)

3.8333 10.2219 42.4845 3.8333

7.3333 19.555 7.3333

1  2.6666( cn3) 11.083( cn2) 22.8969( cn1)

  cn1  bn1  22.8969  0.0326  22.9295

Corrections p1 and q1 are given by

 11.083 p1  2.6666 q1   0.0326
 22.9295 p1  11.083 q1   0.217

Solving, we get p1  0.0033 and q1   0.0269

 p2  p1  p1   3.83, q2  q1  q1  7.3064.
So one of the quadratic factors of f(x) is

 x2  3.83 x  7.3064. (i)
If  ± i  be its roots, then 2  3.83, 2  2  7.3064 giving   1.9149 

and   1.9077.

Hence a pair of roots is 1.9149  1.9077 i

To find the remaining two roots of f(x)  0, we divide f(x) by (i) as fol-
lows [by Section 2.5 (3)]:
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1 5 20 40 60

3.83 4.4811 31.4539 3.83

7.3064 8.5485 60.0038 7.3064

1 1.17 8.2125 0.0024 0.0038

 0  0

 The other quadratic factor is x2  1.17x  8.2125.

If  ±i  be its roots, then 2   1.17, 2  2  8.2125 giving  0.585 
and  2.8054.

Hence the other pair of roots is 0.585 ± 2.8054 i.

2.19 Graeffe’s Root Squaring Method

This method has an advantage over the other methods in that it does 
not require any prior information about the roots. But it is applicable to 
polynomial equations only and is capable of giving all the roots. Consider 
the polynomial equation

 xn  a1 x
n1  a2 x

n2    an1 x  an  0  (1)
Separating the even and odd powers of x and squaring, we get

 (xn  a2 x
n2 a4 x

n4 )2  (a1 x
n1  a3 x

n3 )2

Putting x2  y and simplifying, the new equation becomes

 yn  b1 y
n1    bn1 y  bn  0 (2)

where   

 

2
1 1 2

2
2 2 1 3 4

2

2

2 2

1 n
n n

b a a

b a a a a

b a

 

  




  



 

(3)

If 1, 2,  n be the roots of (1) then the roots of (2) are 1
2, 2

2,  n
2.

After m squarings, let the new transformed equation be

 zn  c1 z
n1   cn1 z  cn  0 (4)

whose roots 1, 2, , n are such that i  i2m, i  1, 2, n.

Assuming that | 1 | > | 2 | >  > | n |, then | 1 | >> | 2 | >> >> | n 
| where >> stands for “much greater than.”
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Thus 2 2

1 1 1 1

| | | |
, ,

| | | |
n

n n

n

 

  
 

   
  are negligible as compared to unity. 

 (5)

Also i being an even power of i is always positive.

 From (4), we have

 

32
1 1 1 1

1 1

3
1 2 2 2 1 2

1

. . 1

. . 1

c i e c

c i e c

 
      

  

 
       

 









  

   

4
1 2 3 3 3 1 2 3

1

1 2 1 2

. ., 1

.....................................................................................

1 . . 1n n
n n n n

c i e c

c i e c

 
         

 

         

 

 

Hence by (5), we get c1   1, c2  1 2, c3  1 2 3, 

i.e.,  1   c1, 2   c2/c1, 3   c3/c2,, n   cn/cn1

Now since 1  i
2m,  i  (i)

1/2m  | ci/ci1 | (6)

Thus we can determine 1, 2, n, the roots of (1).

Obs. 1. Double root. If the magnitude of ci is half the square of 
the magnitude of the corresponding coefficient in the previous 
equation after a few squarings, then it shows that i is a double 
root of (1). We find this double root as follows:

 

1
k+1

1
and -k k

k
k

c c
c ck





   

  
2 2 21 1

1
1 1

. ., mk k
k k k k k

k k

c c
i e

c c
 


 

          (7)

This gives the magnitude of the double root and substituting in (1), we 
can find its sign.

Obs. 2. Complex roots. If r and r+1 form a complex pair r 
e±i

r, then the coefficients of xn-r in successive squarings would 
fluctuate both in magnitude and sign by an amount 2r

m cos 
mr.

NOTE
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For m sufficiently large r and r can be determined by

 
(2 )2 1 1

r
1 1

p ,2p cos
m mr r

r r

c c
r m r

c c
 

 

    (8)

If (1) has only one pair of complex roots say: r e
±ir    i , then we 

can find all the real roots. Thereafter  is given by

1  2    r1  2  r+2   n   a1 (9)

and  is given by  2 2 2 2 2orr n r     

EXAMPLE 2.41

Find all roots of the equation x3  2x2  5x  6  0 by Graeffe’s method, 
squaring three times

Solution: 

Let  f(x)  x3  2x2  5x  6  0 (i)
        
By Descartes rule of signs, there being two changes of sign, (i) has two 

positive roots.

Also  f( x)   x3  2x2  5x  6
       
i.e., one change in sign, there is one negative root.

Rewriting (i) as x3  5x  2x2  6 and squaring, 

we get  y (y  5)2  (2y  6)2 where y  x2

or y (y2  49)  14 y2  36 ...(ii)

Squaring again and putting y2  z, we obtain z (z  49)2  (14 z  36)2

or z(z2  1393)  98 z2  1296 (iii)
Squaring once again and putting z2  u, 

we get u (u  1393)2  (98 u  1296)2

or u3  6818 u2  1686433 u  1679616  0 (iv)

If the roots of (iv) are 1, 2, 3, then 1   c1  6818,

 

2
2

1

3

1686433
247 3501.

6818
3 1679616

0.996.
2 1686433

c
c
c
c
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If 1, 2, 3 be the roots of (i), then

| 1 |  (1)
1/8  3.014443  3

| 2 |  (2)
1/8  1.991425  2

| 3 |  (3)
1/8  0.999499  1

The sign of a root is found by substituting the root in f(x)  0. We find 
f(3)  0, f( 2)  0, f(1)  0.

Hence the roots are 3,  2, 1.

EXAMPLE 2.42

Apply Graeffe’s method to find all the roots of the equation x4  3x  1 
 0.

Solution: 

We have f(x)  x4  3x  1  0 (i)
       

 There being two changes in sign, (i) has two positive real roots and 
no negative real root.

Thus the remaining two roots are complex.

Rewriting (i) as x4  1  3x, and squaring, we get (y2  1)2  9y where 
y  x2.

Squaring again and putting y2  z, we obtain
 (z  1)4  81z or, z4  4z3  6z2  77z  1  0 (ii)

or          z4  6z2  1   z(4z2  77)

Squaring once again and putting z2  u, we get (u2  6u  1)2  u(4u  
77)2

or u4  4u3  654u2  5917u  1  0 (iii)

If 1, 2, 3, 4 be the roots of (i), then the roots of (iii) are 1
8, 2

8, 3
8, 

4
8. Thus (iii) gives

 

8
1 1

8
2 2

8
3 3

8
4 4

4 . ., 1.1892
654

163.5 . ., 1.891
4

5917
9.0474 . ., 1.3169

654
1

0.00017 . ., 0.3379
5917

i e

i e

i e

i e
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From (ii) and (iii), we observe that the magnitudes of the coefficients c1 
and c4 have become constant. This indicates that 1 and 4 are the real roots 
whereas 2 and 3 are a pair of complex roots.

 The real roots 1  1.1892 and 4  0.3379.

Now let us find the complex roots 2
e±i2    i.

From (iii), its magnitude is given by

 
 32 2 162 1

2 2
2 1

5917
or 1479.25

4
c
c




    

Where 2 1.5781.

 Also from (i), 1  2  4  0

This gives    
1
2

 (1  4)   0.7636 and    2 2
2p 1.381 

Hence the complex roots are  0.7636 ± 1.381 i.

Exercises 2.8

1. Find a double root of the equation x3  5x2  8x  4  0 which is near 1.8.

2. Find the multiplicity and the multiple root of the equation x4  11x3  
36x2  16x  64  0 which is near 3.9.

3. Apply theNewton’s method to find a pair of complex roots of the equa-
tion x4  x3  5x2  4x  4  0 starting with x0  i.

4. Apply Lin-Bairstow method to find a quadratic factor of the equation x4 
 5x3  3x2  5x  9 close to x2  3x  5.

5. Find the roots of the equation x4  9x3  36x2  51x  27  0 to three 
decimal places using the Bairstow iterative method.

6. Find the quadratic factors of the equation x4  8x3  39x2  62x  50  
0 by using the Lin-Bairstow method (up to the third iteration) starting 
with p0  0, q0  0.

7. Solve x3  8x2  17x  10  0 by Graeffe’s method.

8. Apply Graeffe’s method to find all the roots of the equation x3  6x2  
11x  6  0.
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9. Solve the equation x3  5x2  17x  20  0 by Graeffe’s method, squaring 
three times.

10. Find all the roots of the equation x3  4x2  5x  2  0 by Graeffe’s 
method, squaring thrice.

11. Determine all roots of the equation x3  9x2  18x  6  0 by Graeffe’s 
method.

2.20 Comparison of Iterative Methods

1. Convergence in the case of the bisection method is slow but steady. It is, 
however, the simplest method and it never fails.

2. The method of false position is slow and it is first order convergent. Con-
vergence however, is guaranteed. Most often, it is found superior to the 
bisection method.

3. The secant method is not guaranteed to converge. But its order of 
convergence being 1.62, it converges faster than the method of false 
position. This method is considered most economical giving reasonably 
rapid convergence at a low cost.

4. Of all the above methods, Newton-Raphson method has the fastest rate 
of convergence. The method is quite sensitive to the starting value. Also 
it may diverge if f (x) is near zero during the iterative cycle.

5. For locating the complex roots, Newton’s method can be used. Muller’s 
method is also effective for finding complex roots.

6. If all the roots of the given equation are required then the Lin-Bairstow 
method is recommended. After a quadratic factor has been found, then 
the Lin-Bairstow method must be applied on the reduced polynomial. 
If the location of some roots is known, first find these roots to a desired 
accuracy and then apply the Lin-Bairstow method on the reduced 
polynomial.

7. If the roots of the given polynomial are real and distinct then Graeffe’s 
root squaring method is quite useful.
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2.21 Objective Type of Questions

Exercises 2.9

Select the correct answer or fill up the blanks in the following questions:

1. The order of convergence in the Newton-Raphson method is
(a)  (b) 3 (c) 0  (d) none.

2. The Newton-Raphson algorithm for finding the cube root of N is...........

3. The bisection method for finding the roots of an equation f(x)  0 is..........

4. In theRegula-falsi method, the first approximation is given by.............

5. If f(x)  0 is an algebraic equation, the Newton-Raphson method is 
given by xn+1  xn  f (xn)/?

(a) f (xn1)  (b) f (xn1) (c) f (xn)  (d) f  (xn).

6. In the Regula-falsi method of finding the real root of an equation, the 
curve AB is replaced by......

7. Newton’s iterative formula to find the value of N  is..............

8. A root of x3  x  4  0 obtained using the bisection method correct to 
two places, is........ .

9. Newton-Raphson formula converges when............ .

10. In the case of bisection method, the convergence is
(a) linear (b) quadratic (c) very slow.

11. Out of the method of false position and the Newton-Raphson method, 
the rate of convergence is faster for............ .

12. Using Newton’s method, the root of x3  5x  3 between 0 and 1 correct 
to two decimal places, is........ .

13. The Newton-Raphson method fails when
(a) f (x) is negative  (b) f (x) is too large

(c) f (x) is zero   (d) Never fails.
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14. The condition for the convergence of the iteration method for solving 
x  (x) is......

15. While finding a root of an equation by the Regula-falsi method, the 
number of iterations can be reduced......... .

16. Newton’s method is useful when the graph of the function while cross-
ing the x-axis is nearly vertical.  (True or False)

17. The difference between a Transcendental equation and polynomial 
equation is......... .

18. The interval in which a real root of the equation x3  2x  5  0 lies is....... .

19. The iterative formula for finding the reciprocal of N is xn + 1 ......... .

20. While finding the root of an equation by the method of false position, 
the number of iterations can be reduced...... .





C H A P T E R3
SOLUTION OF SIMULTANEOUS 
ALGEBRAIC EQUATIONS 

Chapter Objectives

 Introduction to determinants
 Introduction to matrices
 Solution of linear simultaneous equations
 Direct methods of solution: Cramer’s rule, Matrix inversion 

method, Gauss elimination method, Gauss-Jordan method, 
Factorization method

 Iterative methods of solution: Jacobi’s method, Gauss-Seidal 
method, Relaxation method

 Ill-conditioned equations
 Comparison of various methods
 Solution of non-linear simultaneous equations—Newton-Raphson 

method
 Objective type of questions

3.1 Introduction to Determinants

1. Definition. The expression 
1 1

2 2

a b

a b  is called a determinant of 

the second order and stands for ‘a1b2 – a2b1’. It contains four num-
bers a1, b1, a2, b2 (called elements) which are arranged along two 
horizontal lines (called rows) and two vertical lines (called columns).
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Similarly 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 (i)

is called a determinant of the third order. It consists of nine elements which 
are arranged in three rows and three columns. 

In general, a determinant of the nth order is of the form 

 

11 12 13 1

21 22 23 2

1 2 3

........

........
.....................................
.....................................

.........

n

n

n n n nn

a a a a

a a a a

a a a a

which is a block of n2 elements in the form of a square along n rows and n 
columns. The diagonal through the left- hand top corner which contains the 
elements a11, a22, a33, , ann is called the leading diagonal. 

Expansion of a determinant. The cofactor of an element in a determi-
nant is the determinant obtained by deleting the row and the column which 
intersect at that element, with the proper sign. The sign of an element in 
the ith row and jth column is (–1)ij. The cofactor of an element is usually 
denoted by the corresponding capital letter.

For instance, the cofactor of b3 in (i) is 
1 13 2

3
2 2

( 1)
a c

B
a c

 

A determinant can be expanded in terms of any row or column as 
follows: 

Multiply each element of the row (or column) in terms of which we 
intend expanding the determinant, by its cofactor and then add up all these 
products. 

 Expanding (i) by R1(i.e. 1st row), 

 

1 1 1 1 1 1

2 2 2 2 2 2
1 1

3 3 3 3 3 3

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2

1

( ) ( ) ( )

a A b B c C

b c a c a b
a b c

b c a c b b

a b c b c b a c a c c a b a b
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Similarly expanding by C2 (i.e. 2nd column), 

 

1 1 2 2 3 3

2 2 1 1 1 1
1 2

3 3 3 3 2 2

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1

3

( ) ( ) ( )

b B b B b B

a c a c a c
b b b

a c a c a c

b a c a c b a c a c b a c a c

  

  

     

EXAMPLE 3.1

Find the value of 

0 1 2 3
1 0 3 0
2 3 0 1
3 0 1 2



Solution:

Since there are two zeros in the second row, therefore, expanding by 
R2, we get 

 

1 1

1 2 3 0 1 3
3 0 1 0 3 2 3 1 0
0 1 2 3 0 2

(Expand By ) (Expand by )
[1(0 2 1 1) 3(2 2 1 3) 0]

3[0 (2 2 3 1) 3(2 0 3 3)]
( 1 3) 3( 1 27) 4 84 88.

C R

   

        

        

       

Basic properties. The following properties enable us to simplify and 
evaluate a given determinant without expanding it: 

 I.  A determinant remains unaltered by changing its rows into col-
umns and columns into rows. 

 II.  If two parallel lines of a determinant are interchanged, the deter-
minant retains its numerical value but changes in sign. 

 III.  A determinant vanishes if two of its parallel lines are identical. 
 IV.  If each element of a line is multiplied by the same factor, the 

whole determinant is multiplied by that factor. 
 V.  If each element of a line consists of m terms, the determinant can 

be expressed as the sum of m determinants. 
 VI.  If to each element of a line there can be added equi-multiples 

of the corresponding elements of one or more parallel lines, the 
determinant remains unaltered. 
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For instance 
1 1 1 1 1

2 2 2 2 2

3 3 33 3

a pb qc b c

a pb qc b c

a pb qc b c

 

 

 

 
1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

0 0

a b c b b c c b c

a b c p b b c q c b c

a b c b b c c b c

  

  

 

Rule for multiplication of determinants:

 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3 1

1 2 1 2 1 2 2 2 2 2 2 2 3 3 3 2 3 2

1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3 3

a b c l m n

a b c l m n

a b c l m n

a l b m c n a l b m c n a l b m c n

a l b m c n a l b m c n a l b m c n

a l b m c n a l b m c n a l b m c n



     

      

     

i.e., the product of two determinants of the same order is itself a deter-
minant of that order.

EXAMPLE 3.2.

If 

2 3

2 3

2 3

1

1 0

1

a a a

b b b

c c c



 



in which a, b, c are different, show that abc  1.

Solution:

As each term of C3 in the given determinant consists of two terms, we 
express it as a sum of two determinants.

 

2 3 2 3 2

2 3 2 3 2

2 3 2 3 2

2 2

2 2 2

2 2 2

1 1

1 1

1 1

2 1

1

1

a a a a a a a a

b b b b b b b b

c c c c c c c c

a a a a a

abc b b b b b

c c c c c

 

   

 

 

[From (iv)]
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[Taking common a, b, c from R1, R2, R3, respectively of the first determi-
nant and – 1 from C3 of the second determinant]

 

2 2

2 2

2 2

1 1

1 1

1 1

a a a a

abc b b b b

c c c c

 

[Passing C3 over C2 and C1 in the second determinant]

 

2

2

2

1

1 ( 1) 0

1

a a

b b abc

c c

 

Hence abc  1, since 

2

2

2

1

1 0

1

a a

b b

c c

  as a, b, c are all different.

EXAMPLE 3.3

Solve the equation 
2 2 3 3 4

2 3 3 4 4 5 0
3 5 5 8 10 17

x x x

x x x

x x x

  

   

  

Solution:

Operating R3 – (R1  R2), we get

 
2 2 3 3 4

2 3 3 4 4 5 0
0 1 3 8

x x x

x x x

x

  

   



 (Operate R2 – R1 and R1  R3)

or 
2 2 4 6 12
1 1 1 0

0 1 3 8

x x x

x x x

x

  

   



or 
1 2 6

( 1)( 2) 1 1 1 0
0 1 3 8

x x

x
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To bring one more zero in C1, operate R1 – R2.

  

0 1 5
( 1)( 2) 1 1 1 0

0 1 3 8
x x

x

  



Now expand by C1.

  – (x  1)(x  2)(3x  8 – 5)  0 or – 3(x  1)(x  2)(x  1)  0.

Thus x   – 1, – 1, – 2.

EXAMPLE 3.4

Prove that 

1 1 1 1
1 1 1 1 1 1 1 1

1
1 1 1 1
1 1 1 1

a

b
abc

c a b c d
d



  
     

 



Solution:

Let  be the given determinant.

Taking a, b, c, d common from R1, R2, R3, R4 respectively, we get

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

1

a a a a

b b b b
abcd

c c c c

d d d d

   

   

   

   










[Operate R1  (R2  R3  R4) and take out the common factor from R1]

 
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

1 1 1 1

1
(1 )

1

1

b b b b
abcd a b c d

c c c c

d d d d

   
   

   

   


    





 [Operate C2 – C1, C3 – C1, C4 – C1] 

 
1

1

1

1 0 0 0

1 0 01 1 1 1
1

0 1 0

0 0 1

b
abcd

a b c d c

d







 
     

 



SOLUTION OF SIMULTANEOUS ALGEBRAIC EQUATIONS • 99

 1 1 1 1
1abcd

a b c d
 

     
 

EXAMPLE 3.5

Evaluate 

2 2

2 2

2 2

a ab c ca b c b

ab c b bc a c a

b aca b bc a c

      

       

      

Solution:

By the rule of multiplication of determinants, the resulting determinant

 
11 12 13

21 22 23

31 32 33

d d d

d d d

d d d



where d11  (a2  2)  (ab  c )c  (ca – b )(– b)   (a2  b2  c2  2)

           d12  (a2   2)(– c)  (ab  c )    (ca – b)a  0, d13  0,

           d21  0, d22   (a2  b2  c2  2), d23  0.

           d31  0, d32  0, d33   (a2  b2  c2  2).

Hence,

 

 

2 2 2 2

2 2 2 2

2 2 2 2

33 2 2 2 2

( ) 0 0

0 ( ) 0

0 0 ( )

.

a b c

a b c

a b c

a b c

   

    

   

    

Exercises 3.1

1. If

2 3

2 3

2 3

1

1 0

1

x x x

y y y

z z z



 



,then prove, without expansion, that xyz  – 1 where 

x, y, z are unequal.
Prove the following results: (2 and 3)
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2. 

4
a b a b

a a c c abc

b c b c



 



3. .

4 5 6
5 6 7
6 7 8

0

x

y

z

x y z

.is a perfect square.

4. 

2 3

2 3

2 3

3 3

1

1

1

1

a a a bcd

b b b cda

c c c dab

c d d abc









vanishes.

5. Solve the equation 
1 2 1 3 1

2 4 3 6 3 0
4 1 6 4 8 4

x x x

x x x

x x x

  

  

  

.

6. Find the value of the determinant (M) if M  3A2  AB  B2

where 
2 1 1 5 0 1
1 2 1 , 1 0 1
0 1 0 0 2 3

A B



 



without evaluating A and B independently.

3.2 Introduction to Matrices

Definition. A system of mn numbers arranged in a rectangular array of m 
rows and n columns is called an m × n matrix. Such a matrix is denoted by

 

11 12 1

21 22 2

1 2

n

n
ij

m m mn

a a a

a a a
A a

a a a

 
 
      
 
 




 


Special matrices

1. Row and column matrices. A matrix having a single row is called a row 
matrix while a matrix having a single column is called a column matrix.
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2. Square matrix. A matrix having n rows and n columns is called a square 
matrix. A square matrix is said to be singular if its determinant is zero 
otherwise it is called non-singular.
The elements aii in a square matrix form the leading diagonal and their 
sum aii is called the trace of the matrix.

3. Unit matrix. A diagonal matrix of order n which has unity for all its di-
agonal elements is called a unit matrix of order n and is denoted by In.

4. Null matrix. If all the elements of a matrix are zero, it is called a null 
matrix.

5. Symmetric and skew-symmetric matrices. A square matrix [aij] is said to 
be symmetric when aij  aji for all i and j.
If aij  – aji for all i and j so that all the leading diagonal elements are zero, 
then the matrix is called skew-symmetric. Examples of symmetric and 
skew-symmetric matrices are respectively

 

0
and 0

0

a h g h g

h b f h f

g f c g f

   
   

   
      

6. Triangular matrix. A square matrix all of whose elements below the 
leading diagonal are zero is called an upper triangular matrix. A square 
matrix all of whose elements above the leading diagonal are zero is 
called a lower triangular matrix.

Operations on matrices

1. Equality of matrices. Two matrices A and B are said to be equal if and 
only if (i) they are of the same order,

and (ii) each element of A is equal to the corresponding element of B.

2. Addition and subtraction of matrices. If A and B are two matrices of the 
same order, then their sum A  B is defined as the matrix each element 
of which is the sum of the corresponding elements of A and B.
Similarly A – B is defined as the matrix whose elements are obtained by 
subtracting the elements of B from the corresponding elements of A.

3. Multiplication of a matrix by a scalar. The product of a matrix A by a 
scalar k is a matrix whose each element is k times the corresponding ele-
ments of A.
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4. Multiplication of matrices. Two matrices can be multiplied only when 
the number of columns in the first is equal to the number of rows in the 
second. Such matrices are said to be conformable. Thus if A and B be 
(m × n) and (n × p) matrices, then their product C  AB is defined and 
will be a (m × p) matrix. The elements of C are obtained by the following 
rule: Element cij of C = sum of the products of corresponding elements of 
the ith row of A with those of the jth column of B.

For example, if

11 12 13
11 12

21 22 23
21 22

31 32 33
31 32

41 42 43

 and 

a a a
b b

a a a
A B b b

a a a
b b

a a a

 
  
     
    

 

then 

11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23 31 21 12 22 22 23 32

31 11 32 21 33 31 31 12 32 22 33 32

41 11 42 21 43 32 41 12 42 22 43 32

a b a b a b a b a b a b

a b a b a b a b a b a b
AB

a b a b a b a b a b a b

a b a b a b a b a b a b

    
         
 

    

Obs. 1. In general AB  BA even if both exist.
2. If A be a square matrix, then the product AA is defined as A2. 
Similarly A.A2  A3 etc.

EXAMPLE 3.6

Evaluate 3A – 4B, where 
3 4 6 4 0 4

and 4
5 1 7 8 0 12

A B
   

    
   

Solution:

We have
9 12 18 4 0 4

3 and 4
15 3 21 8 0 12

A B
   

    
   

EXAMPLE 3.7

If A 
0 1 2 1 2
1 2 3 and 1 0
2 3 4 2 1

B

   
   

    
      

, form the product AB. Is BA 

Defined?

NOTE
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Solution:

Since the number of columns of A  the number of rows of B (each 
being  3). The product AB is defined and

 2
0.1 1. 1 2.2 0. 2 1.0 2. 1 3 2
1.1 2 1 3.2 1. 2 2.0 3 1 5 5
2.1 3. 1 4.2 2. 2 3.0 4. 1 7 8

          
   
            
             

Again since the number of columns of B  the number of rows of A.

 The product BA is not defined.

EXAMPLE 3.8.

If 
3 2 2
1 3 1 ,
5 4 4

A

 
 
 
  

 find the matrix B, such that

3 4 2
1 6 1
5 6 4

AB

 
 
 
  

Solution:

Let 

3 2 2
1 3 1
5 3 4

3 2 2 3 2 2 3 2 2
3 3 3

5 33 4 5 3 4 5 3 4

3 4 2
1 6 1
5 6 4

l m n

AB p q r

u v w

l p u m q v n r w

l p u m q v n r w

l p u m q v n r w

  
  
  
    

      
 
       
       

 
 
 
  

Equating corresponding elements, we get

 3l  2p  2u  3,   l  3p  u  1,   5l  3p  4u  5  (i)

3m  2q  2v  4,  m  3q  v  6,  5m  3q  4v  6 (ii)

 3n  2r  2w  2,  n  3r  w  1,  5n  3r  4w  4 (iii)

Solving the equations (i), we get l  1, p  0, u  0

Similarly equations (ii) give m  0, q  2, v  0

and equations (iii) give n  0, r  0, w  1

(given)
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Thus 
1 0 0
0 2 0
0 0 1

B

 
 
 
  

Related matrices

I. Transpose of a matrix. The matrix obtained from a given matrix A, by 
interchanging rows and columns, is called the transpose of A and is de-
noted by A¢.

Obs. 1. For a symmetric matrix, A¢  A and for a skew-sym-
metric matrix, A¢  – A.

2. The transpose of the product of two matrices is the product 
of their transposes taken in the reverse order

i.e., (AB)  BA.
3. Any square matrix A can be written as

 
1 1

( ) ( ) (say)
2 2

A A A A A B c      

such that 
1 1

( ) ( )
2 2

B A A A A B       

i.e., B is a symmetric matrix

and 
1 1

( ) ( )
2 2

c A A A A c       

i.e.,. C is a skew-symmetric matrix.

Thus every square matrix can be expressed as the sum of a sym-
metric and a skew-symmetric matrix.

II. Adjoint of a square matrix A is the transposed matrix of cofactors of 
A and is written as adj A. Thus the adjoint of the matrix

  
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

 is 
a b c A A A

a b c B B B

a b c C C C

   
   
   
      

III. Inverse of a matrix. If A is a non-singular square matrix of order n, 
then a square matrix B of the same order such that AB = BA = I, is then 
called the inverse of A, I being a unit matrix.

NOTE
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The inverse of A is written as A1 so that A A1  A1 A  I

Also 
1 AdjA

A
A

 

Obs. 1. Inverse of a matrix, when it exists, is unique.

2. (A1)1  A.

3. (AB)1  B1 A1.

EXAMPLE 3.9

Find the inverse of 

1 1 3
1 3 3
2 4 4

A

 
 
  
    

Solution:

Here 
1 1 1

2 2 2

3 3 3

1 1 3
1 3 3
2 4 4

a b c

A a b c

a b c

   
   
     
        

 (say)

and 
1 2 3

1 2 3

1 2 3

24 8 12
adj 10 2 6

2 2 2

A A A

A B B B

C C C

     
   
    
      

Hence 1

24 8 12
1

10 2 6
8

2 2 2

adj A
A

A


   
 

   
  

Note: For other methods of finding the inverse of a matrix refer to 
chapter 4.

Rank of a matrix. If we select any r rows and r columns from any ma-
trix A, deleting all other rows and columns, then the determinant formed 
by these r × r elements is called the minor of A of order r. Clearly there will 
be a number of different minors of the same order, got by deleting different 
rows and columns from the same matrix.

Def. A matrix is said to be of rank r when

 I. it has at least one non-zero minor of order r, and 
 II. every minor of order higher than r vanishes.

NOTE
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Elementary transformations of a matrix. The following operations, 
three of which refer to rows and three to columns are known as elementary 
transformations:

 I. The interchange of any two rows (columns).
 II. The multiplication of any row (column) by a non-zero number.
 III.  The addition of a constant multiple of the elements of any row 

(column) to the corresponding elements of any other row 
(column).

Notation. The elementary row transformations will be denoted by the fol-
lowing symbols:

(i) Rij for the interchange of the ith and jth rows.

(ii) kRi for multiplication of the ith row by k.

(iii) Ri  pRj for addition to the ith row, p times the ith row.

The corresponding column transformation will be denoted by writing 
C in place of R. These transformations, being precisely those performed on 
the rows (columns) of a determinant, need no explanation.

Obs. 1. Elementary transformations do not change either the 
order or rank of a matrix. While the value of the minors may get 
changed by the transformations I and II, their zero or non-zero 
character remains unaffected.

Equivalent matrix. Two matrices A and B are said to be equivalent if one 
can be obtained from the other by a sequence of elementary transforma-
tions. Two equivalent matrices have the same order and the same rank. The 
symbol is used for equivalence.

Elementary matrix. An elementary matrix is that, which is obtained from 
a unit matrix, by subjecting it to any of the elementary transformations.

Normal form of a matrix. Every non-zero matrix A of rank r, can be 

reduced by a sequence of elementary transformations, to the form
0

0 0
rI 

 
 which is called the normal form of A.

NOTE
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EXAMPLE 3.10

Determine the rank of the following matrices:

(i) 
1 2 3
1 4 2
2 6 5

 
 
 
  

 (ii) 

0 1 3 1
0 0 1 1
3 1 0 2
1 1 2 0

  
 
 
 
 
 

Solution:

 (i) Operate R2 – R1 and R3 – 2R1 so that the given matrix

 
1 2 3

~ 0 2 1
0 2 1

A

 
 

  
  

 (say)

Obviously, the third order minor of A vanishes. Also its second order 
minors formed by its second and third rows are all zero. But another second 
order minor is

 
1 3

1 0.
0 1
 

   

Hence R(A), the rank of the given matrix, is 2.

(ii) Given matrix

 

0 1 3 1
1 0 0 0

~
3 1 3 1
1 1 3 1

  
 
 
  
 

  

 

0 1 3 1
1 0 0 0

~
3 0 0 0
1 0 0 0

  
 
 
 
 
 

[Operating C3 – C1, C4 – C1]  [Operating R3 – R1, R4 – R1]

 

0 1 3 1
1 0 0 0

~
0 0 0 1
0 0 0 1

  
 
 
 
 

 

 

0 1 0 0
1 0 0 0

~
0 0 0 0
0 0 0 0

A

 
 
  
 
 

(say)

[Operating R3 – 3R2, R4 – R2]  [Operating C3  3C2, C4  C2]

Obviously, the fourth order minor of A is zero. Also every third order 
minor of A is zero.
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But, of all the second order minors, only
0 1

1 0.
1 0
 

  
 

Hence R(A), the rank of the given matrix, is 2.

Consistency of a system of linear equations. Consider the system of m 
linear equations in n unknowns

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

..................................................

n n

n n

m mn n

a x a x a x k

a x a x a x k

am x a x a x km

   


    


    






To determine whether these equations are consistent or not, we find 
the ranks of the matrices

 

11 12 1

21 22 2

1 2 3

n

n

m m m

a a a

a a a
A

a a a

 
 
  
 
 




 


 and 

11 12 1 1

21 22 2 2

1 2

n

n

m m mn m

a a a k

a a a k
K

a a a k

 
 
  
 
 





  


A is the coefficient matrix and K is called the augmented matrix.

If R(A)  R(K), the equations (i) are inconsistent, i.e., have no solution.

If R(A) = R(K) = n, the equations (i) are consistent and have a unique 
solution.

If R(A) = R(K) < n, the equations are consistent but have an infinite 
number of solutions. 

System of linear homogeneous equations. Consider the homogeneous 
linear equations

 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0
0

................................................
0

n n

n n

m mn n

a x a x a x

a x a x a x

am x a x a x

   


    


    





Find the rank r of the coefficient matrix A by reducing it to the triangu-

lar form by elementary row operations.

   I.  If r = n, the equations (i) have only a trivial solution x1 = x2 =  = 
xn = 0.
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  If r < n, the equations have (n – r) independent solutions. (r can-
not be > n) The number of linearly independent solutions of (i) is 
(n – r) means, if arbitrary values are assigned to (n – r) of the vari-
ables, the values of the remaining variables can be uniquely found.

 II.  When m < n (i.e., the number of equations is less than the number 
of variables) the solution is always other than x1 = x2 =  = xn = 0.

III.  When m = n (i.e., the number of equations  the number of vari-
ables) the necessary and sufficient condition for solutions other 
than x1 = x2 =  = xn = 0 is that | A | = 0 (i.e., the determinant of the 
coefficient matrix is zero).

EXAMPLE 3.11

Test for consistency and solve

 5x  3y  7z = 4, 3x  26y  2z = 9, 7x  2y  10z = 5.

Solution:

We have 
5 3 7 4
3 26 2 9
7 2 20 5

x

y

z

    
    

    
        

Operate 1 2

15 9 21 12
 3 , 5 , 15 130 10 45

7 2 10 5

x

R R y

z

    
    

    
        

Operate 2 1

15 9 21 12
- ,  0 121 11 33

7 2 10 5

x

R R y

z

    
    

     
        

Operate 1 3 2

35 21 49 28
7 1

,5 , , 0 11 1 3
8 11

35 10 50 25

x

R R R y

z

    
    

     
        

Operate 3 1 2 1

5 3 7 4
1

, , 0 11 1 3
7

0 0 0 0

x

R R R R y

z
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In the last set of equations, the number of non-zero rows in the coef-
ficient matrix is two, and its rank is two. Also the number of non-zero rows 
in the augmented matrix being, its rank of two.

Now, the ranks of coefficient matrix and augmented matrix being equal, 
the equations are consistent. Also the given system is equivalent to

 5x  3y  7z  4, 11y – z  3.

  33 7 16
and

11 11 11 11
z

y x z   

where z is a parameter.

Hence 
7 3

,
11 11

x y   and z 0 is a particular solution.

EXAMPLE 3.12

Examine the system of equations 3x  3y  2z = 1, x  2y = 4, 
10y  3z = – 2, 2x – 3y – z = 5 for consistency and then solve it.

Solution:

We have
3 3 2 1 1 2 0 4
1 2 0 4 3 3 2 1

 or 
0 10 3 2 0 10 3 2
2 3 1 5 2 3 1 5

x x

y y

z z

       
          
                                   

          

 [Interchanging R1 and R2]

or 

1 2 0 4
0 3 2 11
0 10 3 2
0 7 1 3

x

y

z

   
                  

     

 [Operating R2 – 3R1, R4 – 2R1]

or 

1 2 0 4
0 1 2 / 3 11 / 3
0 0 29 / 3 116 / 3
0 0 17 / 3 68 / 3

x

y

z

   
                  

   

 [Operating 3 2 4 2
10 7

,
4 3

R R R R  ]

or 

1 2 0 4
0 1 2 / 3 11 / 3
0 0 29 / 3 116 / 3
0 0 0 0

x

y

z

   
                  

   

 [Operating 4 3
17
29

R R ]
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Now in the last set of equations, the number of non-zero rows in the 
coefficient matrix is three, and its rank is three.

Also the number of non-zero rows in the augmented matrix is three, 
and its rank is three.

Since the ranks of the coefficient and the augmented matrices are 
equal, the given equations are consistent.

Also number of unknowns  rank of the coefficient matrix.

Hence the given equations have a unique solution given by

 2 11 29 116
2 4, , ,

3 3 3 3
x y y z z    

These equations show z  – 4, y  1, x  2.

EXAMPLE 3.13

Investigate the values of  and  so that the equations

 2x  3y  5z = 9, 7x  3y – 2z = 8, 2x  3y  z  ,
have (i) no solution, (ii) a unique solution, and (iii) an infinite number 

of solutions.

Solution:

We have 
2 3 5 9
7 3 2 8
2 3

x

y

z

    
    

     
         

The system admits a unique solution if and only if, the coefficient ma-
trix has the rank of 3.This requires that

 
2 3 5
7 3 2 15(5 ) 0
2 3

 
 

    
  

Thus for a unique solution   5 and  may have any value. If   5, the 
system will have no solution for those values of  for which the matrices

 

2 3 5 2 3 5 9
7 3 1 and 7 3 2 8
2 3 2 3 5

A K
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are not of the same rank. But A has the rank 2 and K does not have the 
rank of 2 unless   9. Thus if  5 and   9, the system will have no solu-
tion.

If   5 and   9, the system will have an infinite number of solutions.

EXAMPLE 3.14

Solve the equations

 4x  2y  z  3w = 0, 6x  3y  4z  7w = 0, 2x  y  w = 0.
Solution:

Rank of the coefficient matrix

 
4 2 1 3 4 2 1 3
6 3 4 7 ~ 0 0 5 / 2 5 / 2
2 1 0 1 0 0 1 / 2 1 / 2

   
   
   
       

 [Operating 2 1 3
3 1

, 1
3 2

R R R R  ]

 
4 2 1 3

~ 0 0 5 / 2 5 / 2
0 0 2 0

 
 
 
  

 [Operating 3 2
1
5

R R ]

is 2 which is less than the number of variables.

 The number of independent solutions  4 – 2  2.

Also the given system is equivalent to

 4x  2y  z  3w  0
 z  w  0

 1
, ( ).

2
z w x y w  

Choosing w  k1 and x  k2, we have y  – 2k2 – k1 and z  – k1.

EXAMPLE 3.15

Find the values of k for which the system of equations (3k – 8) x  3y 
3z = 0, 3x  (3k – 8)y  3z = 0, 3x  3y  (3k – 8) z = 0 has a non-trivial 
solution.

Solution

For the given system of equations to have a non-trivial solution, the 
determinant of coefficient matrix should be zero.
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i.e., 
3 8 3 3 3 2 3 3

3 3 8 3 0 or 3 2 3 8 3 0
3 3 3 8 3 2 3 3 8

k k

k k k

k k k

 

    

  

or 
1 3 3

(3 2) 1 3 8 3 0
1 3 3 8

k k

k

  



 [Operating C1  (C2  C3)]

or 
1 3 3

(3 2) 0 3 11 0 0
0 0 3 11

k k

k

  



 [Operating R2 – R1, R3 – R1]

or  (3k – 2) (3k – 11)2  0 where k  2/3 or 11/3.

Exercises 3.2

1. Find x, y, z and w given that 3 
6 4

1 2 3
x y x x y

z w w z w

     
            

2. If 
1 3 0 2 3 4
1 2 1 , 1 2 3 ,

0 0 2 1 1 2
A B

   
   
     
      

compute AB, BA and show that

 AB  BA.

3. Express the matrix 

0 5 3
1 1 1
4 5 9

 
 
 
  

 as the sum of symmetric and skew-

symmetric matrices.

4. If
2 5 3
3 1 2 ,
1 2 1

A

 
 
 
  

find adj A and A–1.

5. If 
1 2 2

1
2 1 2 ,

3
2 2 1

A

 
 

  
   

prove that A1  A.
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6. Factorize the matrix 
5 2 1
7 1 5
3 7 4

 
 

 
  

into the form LU, where L is the 

lower triangular and U is the upper triangular matrix.

7. Determine the ranks of the following matrices:

(i) 
1 3 4 3
3 9 12 3
1 3 4 1

 
 
 
  

  (ii) 

1 2 3 0
2 4 3 2
3 2 1 3
6 8 7 5

 
 
 
 
 
 

8. Examine for consistency the following equations and then solve these:
  (i) x  2y  1, 7x  14y  12.
 (ii) 2x – 3y  7z  5, 3x  y – 3z  13, 2x  19y – 47z  32. 
(iii) x  2y  z  3, 2x  3y  2z  5, 3x – 5y  5z  2, 3x  9y – z  4.

9. Investigate for what values of   and  the simultaneous equations 
x  y  z  6, x  2y  3z 10, x  2y z  , have (i) no solution, (ii) a 
unique solution, (iii) an infinite number of solutions.

10. Determine the values of   for which the following set of equations may 
possess non-trivial solutions

3x1  x2 – x3  0, 4x1 – 2x2 – 3x3  0, 2x1  4x2  x3  0.

For each permissible value of ë, determine the general solution.

3.3 Solution of Linear Simultaneous Equations

Simultaneous linear equations occur quite often in engineering and sci-
ence. The analysis of electronic circuits consisting of invariant elements, 
analysis of a network under sinusoidal steady-state conditions, determina-
tion of the output of a chemical plant, and finding the cost of chemical 
reactions are some of the Exercises which depend on the solution of si-
multaneous linear algebraic equations. The solution of such equations can 
be obtained by Direct or Iterative methods. We describe below some such 
methods of solution.
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3.4 Direct Methods of Solution

(1) Method of determinants—Cramer’s rule. Consider the equations

 
1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  


   

If the determinant of coefficients is

 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c



then           
1 1 1

2 2 2

3 3 3

xa b c

x xa b c

xa b c

  [Operate C1  yC2  zC3]

                      
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

a x b y c z b c d b c

a x b y c z b c d b c

a x b y c z b c d b c

 

   

 

Thus                  
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

d b c a b c

x d b c a b c

d b c a b c

   provided   0  (2)

Similarly  
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a d c a b c

y a d c a b c

a d c a b c

   (3)

and              
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a b d a b c

z a b d a b c

a b d a b c

   (4)

The equations (2), (3), and (4) giving the values of x, y, z constitute 
the Cramer’s rule1 which reduces the solution of the linear system (1) to a 
problem in evaluation of determinants.

1. Gabriel Cramer (1704—1752), was a Swiss mathematician.
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Obs. 1. Cramer’s rule fails for   0.

2. This method is quite general but involves a lot of labor when the 
number of equations exceeds four. For a 10 × 10 system, Cramer’s rule re-
quires about 70,000,000 multiplications. We shall explain another method 
which requires only 333 multiplications, for the same 10 × 10 system. As 
such, Cramer’s rule is not at all suitable for large systems.

EXAMPLE 3.16

Apply Cramer’s rule to solve the questions

 3x  y  2z = 3, 2x – 3y – z = – 3, x  2y  z = 4.
Solution:

Here             

3 1 2
2 3 1 8
1 2 1

   



3 1 2
1 1

3 3 1 (8) 1,
8

4 2 1

3 3 2
1 1

2 3 1 (16) 2
8

1 4 1

x

y

     


    


and    

3 1 3
1 1

2 3 3 ( 8) 1
8

1 2 4
z     


Hence x  1, y  2 and z  – 1.

(2) Matrix inversion method. Consider the equations

 
1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  


   

 (1)

NOTE
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If 
1 1 1 1

2 2 2 2

3 3 3 3

, and ,
a b c x d

A a b c X y D d

a b c z d

     
     
       
          

then the equations (1) are equivalent to the matrix equation 

 AX  D. (2)
Multiplying both sides of (2) by the inverse matrix A1, we get

 A1 AX = A1 D or IX = A1 D  [ A1A = I]

or                       X = A1 D

i.e.,                    
1 2 3 1

1 2 3 2

1 2 3 3

1
x A A A d

y B B B d
A

z C C C d

     
     

      
          

where A1, B1, etc. are the cofactors of a1, b1, etc. in the determinant | A |.

Hence equating the values of x, y, z to the corresponding elements in 
the product on the right side of (3) we get the desired solution.

Obs. This method fails when A is a singular matrix, i.e., | A |  
0. Although this method is quite general, it is not suitable for 
large systems since the evaluation of A1 by cofactors becomes 
very cumbersome. We shall now explain some methods which 
can be applied to any number of equations.

EXAMPLE 3.17

Solve the equations 3x  y  2z = 3; 2x – 3y – z = – 3; x  2y  z = 4 by 
matrix inversion method. (cf. Example 3.16)

Solution:

 Here 
1 1 1

2 2 2

3 3 3

3 1 2
2 3 1
1 2 1

a b c

A a b c

a b c

   
   
      
      

 (say)


1 2 3 1

1 2 3 2

1 2 3 3

1 3 5 3 1
1 1

3 1 7 3 2
8

7 5 11 4 1

x A A A d

y B B B d
A

z C C C d

           
           

                 
                        

NOTE
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Hence x  1, y  2, z  – 1.

Gauss elimination method. In this method, the unknowns are elimi-
nated successively and the system is reduced to an upper triangular system 
from which the unknowns are found by back substitution. The method is 
quite general and is well-adapted for computer operations. Here we shall 
explain it by considering a system of three equations for the sake of clarity.

Consider the equations

 

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  


   
 (1)

Step I. To eliminate x from the second and third equations.

Assuming a1  0, we eliminate x from the second equation by subtract-
ing (a2/a1) times the first equation from the second equation. Similarly we 
eliminate x from the third equation by eliminating (a3/a1) times the first 
equation from the third equation. We thus, get the new system

Assuming a1  0, we eliminate x from the second equation by subtract-
ing (a2/a1) times the first equation from the second equation. Similarly we 
eliminate x from the third equation by eliminating (a3/a1) times the first 
equation from the third equation. We thus, get the new system

 

1 1 1 1

2 2 2

3 3 3

a x b y c z d

b y c z d

b y c z d

  


    


     

 (2)

Here the first equation is called the pivotal equation and a1 is called the 
first pivot.

Step II. To eliminate y from third equation in (2).

Assuming 2 0,b   we eliminate y from the third equation of (2), by 
subtracting 3 2( )b b   multiplied by times the second equation from the third 
equation. We thus, get the new system

 

1 1 1 1

2 2 2

3 3

a x b y c z d

b y c z d

c z d

  



    


   

 (3)
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Here the second equation is the pivotal equation and 2  b  is the new 
pivot.

Step III. To evaluate the unknowns.

The values of x, y, z are found from the reduced system (3) by back 
substitution.

Obs. 1. On writing the given equations as

 
1 1 1 1

2 2 2 2

3 3 3 3

a b c x d

a b c y d

a b c z d

    
    

    
        

 i.e., AX  D,

 this method consists in transforming the coefficient matrix A to the 
upper triangular matrix by elementary row transformations only.

2. Clearly the method will fail if any one of the pivots a1, 2b, or 
3c  becomes zero. In such cases, we rewrite the equations in a 

different order so that the pivots are non-zero.

3. Partial and complete pivoting. In the first step, the numerically 
largest coefficient of x is chosen from all the equations and 
brought as the first pivot by interchanging the first equation with 
the equation having the largest coefficient of x. In the second 
step, the numerically largest coefficient of y is chosen from the 
remaining equations (leaving the first equation) and brought 
as the second pivot by interchanging the second equation with 
the equation having the largest coefficient of y. This process is 
continued until we arrive at the equation with the single variable. 
This modified procedure is called partial pivoting.

If we are not keen about the elimination of x, y, z in a specified order, then 
we can choose at each stage the numerically largest coefficient of the entire 
matrix of coefficients. This requires not only an interchange of equations 
but also an interchange of the position of the variables. This method of 
elimination is called complete pivoting. It is more complicated and does not 
appreciably improve the accuracy.

EXAMPLE 3.18

Apply Gauss elimination method to solve the equations x  4y – z = – 5; 
x  y – 6z = – 12; 3x – y – z = 4.

NOTE



120 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Solution:

 Check sum
We have  x  4y – z  – 5  – 1 (i)

 x  y – 6z  – 12  – 16 (ii)

 3x – y – z  4 5 (iii)

Step I. To eliminate x, operate (ii) – (i) and (iii) – 3(i):

 Check sum
 – 3y – 5z  – 7  – 15 (iv)

 – 13y  2z  19   8  (v)

Step II. To eliminate y, operate (v) 13
3

  (iv):

 Check sum
 71 148

3 3
z  73 (vi)

Step III. By back-substitution, we get

From (vi): 
148

2.0845
71

z 

From (iv): 
7 5 148 81

1.1408
3 3 71 71

y
 

    
 

From (i): 
81 148 117

5 4 1.6479
71 71 71

x
   

        
   

Hence, x  1.6479, y  – 1.1408, z  2.0845.

Note. A useful check is provided by noting the sum of the coefficients 
and terms on the right, operating on those numbers as on the equations and 
checking that the derived equations have the correct sum.

Otherwise: We have 

1 4 1 5
1 1 6 12
3 1 1 4

x

y

z

     
    

      
         

Operate R2 – R1 and R3 – 3R1, 
1 4 1 5
0 3 5 7
0 13 2 19

x

y

z
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Operate 3 2

1 4 1 5
13

, 0 3 5 7
3

0 0 71 / 3 148 / 3

x

R R y

z

     
    

        
        

Thus, we have z  148/71  2.0845,

3y  7 – 5z  7 – 10.4225  – 3.4225, i.e., y  – 1.1408

and x  – 5 – 4y  z  – 5  4 (1.1408)  2.0845  1.6479

Hence x  1.6479, y  – 1.1408, z  2.0845.

EXAMPLE 3.19

Solve 10x – 7y  3z  5u = 6, – 6x  8y – z – 4u = 5, 3x  y  4y  11u = 
2, 5x – 9y – 2z  4u = 7 by the Gauss elimination method.

Solution:

 Check sum
We have  10x – 7y  3z  5u  6  17  (i)
 – 6x  8y – z – 4u  5 2  (ii)
 3x  y  4z  11u  2  21  (iii)
 5x – 9y – 2z  4u  7  5  (iv)
Step I. To eliminate x, operate 

 
6 3 5

( ) ( ), , ( ) ( ) , ( ) ( ) :
10 10 10

ii i iii i iv i
     

          

 Check sum
       3.8y  0.8z – u  8.6  12.2  (v)
   3.1y  3.1z  9.5u  0.2  15.9  (vi)
 – 5.5y – 3.5z  1.5u  4  – 3.5  (vii)

Step II. To eliminate y, operate 3.1 5.5
( ) ( ) , ( ) ( ) :

3.8 3.8
vi v vii v

   
         

2.4473684z  10.315789u  – 6.8157895  (viii)

– 2.3421053z  0.0526315u  16.447368  (ix)

Step III. To eliminate z, operate 
2.3421053

( ) ( ) :
2.4473684

ix viii
  

    
9.9249319u  9.9245977
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Step IV. By back-substitution, we get

 u  1, z  – 7, y  4 and x  5.

EXAMPLE 3.20

Using the Gauss elimination method, solve the equations: x  2y  
3z – u = 10, 2x  3y – 3z – u  1, 2x – y  2z  3u = 7, 3x  2y – 4z  3u = 2.

Solution:

We have 

1 2 3 1 10
2 3 3 1 1
2 1 2 3 7
3 2 4 3 2

x

y

z

u

    
             
    

    

Operate R2 – 2R1, R3 – 2R1, R4 – 3R1

 

1 2 3 1 10
0 1 9 1 19
0 5 4 5 13
0 4 13 6 28

x

y

z

u

     
                
    

      

Operate R3 – 5R2, R4 – 4R2 

1 2 3 1 10
0 1 9 1 19
0 0 41 0 82
0 0 23 2 48

x

y

z

u

    
              
    
    

Thus, we have 41z  82, i.e., z  2.

 23z  2u  48, i.e., 46  2u  48,    u  1

 – y – 9z  u  – 19, i.e., – y – 18  1  – 19,   y  2

 x  2y  3z – u  10, i.e., x  4  6 – 1  10,  x  1

Hence  x  1, y  2, z  2, u  1.

Gauss-Jordan method. This is a modification of the Gauss elimination 
method. In this method, elimination of unknowns is performed not in the 
equations below but in the equations above also, ultimately reducing the 
system to a diagonal matrix form, i.e., each equation involving only one 
unknown. From these equations, the unknowns x, y, z can be obtained readily.

Thus in this method, the labor of back-substitution for finding the un-
knowns is saved at the cost of additional calculations.
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Obs. For a system of 10 equations, the number of multipli-
cations required for the Gauss-Jordan method is about 500 
whereas for the Gauss elimination method we need only 333 
multiplications. This shows that though the Gauss-Jordan meth-
od appears to be easier but requires 50 percent more operations 
than the Gauss elimination method. As such, the Gauss elimina-
tion method is preferred for large systems.

EXAMPLE 3.21

Apply the Gauss-Jordan method to solve the equations

x  y  z = 9; 2x – 3y  4z = 13; 3x  4y  5z = 40.

Solution:

We have  x  y  z  9  (i)

 2x – 3y  4z  13  (ii)

 3x  4y  5z  40  (iii)

Step I. To eliminate x from (ii) and (iii), operate (ii) – 2(i) and (iii) – 3(i):

 x  y  z  9  (iv)

 – 5y  2z  – 5  (v)

 y  2z  13 (vi)

Step II. To eliminate y from (iv) and (vi), operate (iv)  
1
5

 (v) and (vi) 

 
1
5

 (v):

 
7

8
5

x z   (vii)

 5 2 5y z    (viii)

 
12

12
5

z  (ix)

Step III. To eliminate z from (vii) and (viii), operate (vii) 7
12

 (ix) and 

(viii) 5
6

 (ix):

 x  1

 – 5y  – 15

 
12

12
5

z

Hence the solution is x  1, y  3, z  5.

NOTE
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Otherwise: Rewriting the equations as 
1 1 1 9
2 3 4 13
3 4 5 40

x

y

z

    
    

     
        

Operate R2 – 2R1, R3 – 3R1, 
1 1 1 9
0 5 2 5
0 1 2 13

x

y

z

    
    

      
        

Operate 3 2

1 1 1 9
1

, 0 5 2 5
5

0 0 12 / 5 12

x

R R y

z

    
    

       
        

Operate – R2, 5R3 

1 1 1 9
0 5 2 5
0 0 12 60

x

y

z

    
    

     
        

Operate 2 3 3

1 1 1 9
1 1

, 0 5 0 15
6 12

0 0 1 5

x

R R R y

z

    
    

     
        

Operate 2

1 1 1 9
1

0 1 0 3
5

0 0 1 5

x

R y

z

    
    

    
        

Operate R1 – R2 – R3 

1 0 0 1
0 1 0 3
0 0 1 5

x

y

z

    
    

    
        

Hence x  1, y  3, z  5.

Obs. Here the process of elimination of variables amounts to 
reducing the given coefficient metric to a diagonal matrix by 
elementary row transformations only.

EXAMPLE 3.22

Solve the equations 10x – 7y  3z  5u = 6; – 6x  8y – z – 4u = 5; 3x 
y  4z  11u = 2; and 5x – 9y – 2z  4u = 7 by the Gauss-Jordan method.

 (cf. Example 3.19)

NOTE
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Solution:

We have  10x – 7y  3z  5u  6 (i)

 – 6x  8y – z – 4u  5 (ii)

 3x  y  4z  11u  2  (iii)

 5x – 9y – 2z  4u  7 (iv)

Step I. To eliminate x, operate 

 
6 3 5

( ) ( ) , ( ) ( ) , ( ) ( ) :
10 10 10

ii i iii i iv i
        

                  

 10x – 7y  3z  5u  6  (v)

 3.8y  0.8z – u  8.6  (vi)

 3.1y  3.1z  9.5u  0.2  (vii)

 – 5.5y – 3.5z  1.5u  4  (viii)

Step II. To eliminate y, operate 

 
7 3.1 5.5

( ) ( ) , ( ) ( ) , ( ) ( ) :
3.8 3.8 3.8

v vi vii vi viii vi
        

                  

         10x  4.4736842z  3.1578947u  21.842105 (ix)

                                     3.8y  0.8z – u  8.6  (x)

                   2.4473684z  10.315789u  – 6.8157895 (xi)

                – 2.3421053z  0.0526315u  16.447368  (xii)

Step III. To eliminate z, operate 

 
4.473684 0.8 2.3421053

( ) ( ) , ( ) ( ) , ( ) ( ) :
2.4473684 2.4473684 2.4473684

ix xi x xi xii xi
        

                  

                                10x – 15.698923u  34.301075

                               3.8y – 4.3720429u  10.827957

                   2.4473684z  10.315789u  – 6.8157895

                                         9.9247309u  9.9245975

Step IV. From the last equation u  1 nearly.

Substitution of u  1 in the above three equations gives x  5, y  4, 
z  – 7.
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Factorization method2. This method is based on the fact that every 
square matrix A can be expressed as the product of a lower triangular matrix 
and an upper triangular matrix, provided all the principal minors of A are 
non-singular, i.e., if A  [aij], then

 
11 12 13

11 12
11 21 22 23

21 22
31 32 33

0, 0, 0, etc.
a a a

a a
a a a a

a a
a a a

 
   

         

Also such a factorization if it exists, is unique.

Now consider the equations

                                 a11x1  a12x2  a13x3  b1

 a21x1  a22x2  a23x3  b2

                                 a31x1  a32x2  a33x3  b3

which can be written as AX  B  (1)

where 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

, and 
a a a x b

A a a a X x B b

a a a x b

     
     
       
          

Let A  LU,

where 
11 12 13

21 22 23

31 32 33

1 0 0
1 0  and 0

1 0 0

u u u

L l U u u

l l u

   
   
    
      

Then (1) becomes  LUX  B  (3)

Writing                 UX  V,  (4), (3) becomes LV  B

which is equivalent to the equations v1  b1, l21v1  v2  b2, l31v1  l32v2 
 v3  b3

Solving these for v1, v2, v3, we know V. Then, (4) becomes

 u11x1  u12x2  u13x3  v1, u22x2  u23x3  v2, u33x3  v3,

from which x3, x2, and x1 can be found by back-substitution.

2. Another name given to this decomposition is Triangulization method.
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To compute the matrices L and U, we write (2) as

 
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0
1 0 0

1 0 0

u u u a a a

l u u a a a

l l u a a a

    
    

    
        

Multiplying the matrices on the left and equating corresponding ele-
ments from both sides, we obtain

  (i) u11  a11, u12  a12, u13  a13

 (ii) l21u11  a21 or l21  a21/a11; l31u11  a31 or l31  a31/a11

(iii) l21u12  u22  a22 or 21
22 23 13

11

a
u a a

a
 

(iv) l31u12  l32u22  a32 or 31
32 32 12

22 11

1 a
l a a

u a

 
  

 

 (v) l31u13  l32u23  u33  a33 which gives u33.

Thus we compute the elements of L and U in the following set order:

(i) First row of U,   (ii) First column of L, 
(iii) Second row of U,  (iv) Second column of L,
(v) Third row of U.
This procedure can easily be generalized.

Obs. This method is superior to the Gauss elimination method 
and is often used for the solution of linear systems and for find-
ing the inverse of a matrix. The number of operations involved 
in terms of multiplications for a system of 10 equations by this 
method is about 110 as compared with 333 operations of the 
Gauss method. Among the direct methods, the factorization 
method is also preferred as the software for computers.

EXAMPLE 3.23

Apply the factorization method to solve the equations:

3x  2y  7z = 4; 2x  3y  z = 5; 3x  4y  z = 7.

Solution:

Let 
11 12 13

21 22 23

31 32 33

1 0 0 3 2 7
1 0 0 2 3 1

1 0 0 3 4 1

u u u

l u u

l l u

    
    

    
        

 (i.e., A),

NOTE
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so that

 (i)  R1 of U :  u11  3,  u12  2,      u13  7.

 (ii)  C1 of L :  l21u11  2,    l21  2/3,

    l31u11  3,     l31  1.

 (iii)  R2 of U :  l21u12  u22  3,    u22  5/3,

    l21u13  u23  1,    u23  – 11/3.

 (iv)  C2 of L :  l31u12  l32u22  4   l32  6/5.

 (v)  R3 of U : l31u13  l32u23  u33  1   u33  – 8/5.

Thus 
1 0 0 3 2 7

2 / 3 1 0 0 5 / 3 11 / 3
1 6 / 5 1 0 0 8 / 5

A

   
   
     
      

Writing UX  V, the given system becomes

 
1

2

3

1 0 0 4
2 / 3 1 0 5

1 6 / 5 1 7

v

v

v

    
    

    
        

Solving this system, we have v1  4,

 1 2
2

5
3

v v   or 2
7
3

v 

 1 2 3
6

7
5

v v v    or 3
1
5

v 

Hence the original system becomes

 
3 2 7 4
0 5 / 3 11 / 3 7 / 3
0 0 8 / 5 1 / 5

x

y

z

    
    

     
        

i.e., 
5 11 7 8 1

3 2 7 4, ,
3 3 3 5 5

x y z y z z      

By back-substitution, we have

 z  – 1/8, y  9/8 and x  7/8.
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EXAMPLE 3.24

Solve the equations 10x – 7y  3z  5u = 6; – 6x  8y – z – 4u = 5; 
3x  y  4z  11u = 2; 5x – 9y – 2z  4u = 7 by factorization method.

 (cf. Example 3.19)

Solution:

Let

11 12 13 14

21 22 22 24

31 32 34

41 42 43 44

1 0 0 0 10 7 3 5
1 0 0 0 6 8 1 4

1 0 0 0 0 3 1 4 11
1 0 0 0 5 9 2 4

u u u u

l u u u

l l u

l l l u

    
              
    

    

  (i.e., A)

so that

 (i)  R1 of U: u11  10, u12  – 7, u13  3, u14  5

 (ii)  C1 of L: l21  – 0.6, l31  0.3, l41  0.5

 (iii)  R2 of U: u22  3.8, u23  0.8, u24  – 1

 (iv)  C2 of L: l32  0.81579, l42  – 1.44737

 (v)  R3 of U: u33  2.44737, u34  10.31579

 (vi)  C3 of L: l43  – 0.95699

 (vii)  R4 of U: u44  9.92474

Thus 

1 0 0 0 10 7 3 5
0.6 1 0 0 0 3.8 0.8 1

0.3 0.81579 1 0 0 0 2.44737 10.31579
0.5 1.44737 0.95699 1 0 0 0 9.92474

A

  
       
  

   

Writing UX  V, the given system becomes

 

1 0 0 0 1 6
0.6 1 0 0 2 5

0.3 0.81577 1 0 3 2
0.5 1.44737 0.95699 1 4 7

v

v

v

v

     
                
     

      

Solving this system, we get
 v1  6, v2  8.6, v3  – 6.81579, v4  9.92474.
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Hence the original system becomes

 

10 7 3 5 6
0 3.8 0.8 1 8.6
0 0 2.44737 10.31579 6.81579
0 0 0 9.92474 9.92474

x

y

z

u

    
            
    
    

i.e., 10x – 7y  3z  5u  6, 3.8y  0.8z – u  8.6,

 2.44737z  10.31579u  – 6.81579, u  1.
By back-substitution, we get

 u  1, z  – 7, y  4, x  5.

Exercises 3.3

Solve the following equations by Cramer’s rule:

1. x  3y  6z  2; 3x – y  4z  9; x – 4y  2z  7.

2. x  y  z  6.6; x – y  z  2.2; x  2y  3z  15.2.

3. x2z3/y  e8; y2z/x  e4; x3y/z4  1.

4. 2vw – wu  uv  3uvw; 3vw  2wu  4uv  19uv; 6vw  7wu – uv  17uvw.

5. 3x  2y – z  t  1; x – y – 2z  4t  3; 2x – 3y  z – 2t  – 2; 5x– 2y  3z  
2t  0.

Solve the following equations by the matrix inversion method:

6. x  y  z  3; x  2y  3z  4; x  4y  9z  6.

7. x  y  z  1; x  2y  3z  6; x  3y  4z  6. 

8. 2x – y  3z  8; x – 2y – z  – 4; 3x  y – 4z  0. 

9. 2x1  x2  2x3  x4  6; 4x1  3x2  3x3 – 3x4  – 1; 6x1 – 6x2  6x3  12x4  
36, 2x1  2x2 –x3  x4  10.

10. In a given electrical network, the equations for the currents i1, i2, and  i3 
are 

3i1  i2  i3  8; 2i1 – 3i2 – 2i3  – 5; 7i1  2i2 – 5i3  0.

Calculate i1 and i3 by (a) Cramer’s rule, (b) matrix inversion.
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Solve the following equations by the Gauss elimination method:

11. x  y  z  9; 2x – 3y  4z  13; 3x  4y  5z  40 

12. 2x  2y  z  12; 3x  2y  2z  8; 5x  10y – 8z  10. 

13. 2x – y  3z  9; x  y  z  6; x – y  z  2. 

14. 2x1  4x2  x3  3; 3x1  2x2 – 2x3  – 2; x1 – x2  x3  6. 

15. 5x1  x2  x3  x4  4; x1  7x2  x3  x4  12; x1  x2  6x3  x4  – 5; x1  x2  
x3  4x4  – 6.

Solve the following equations by the Gauss-Jordan method:

16. 2x  5y  7z  52; 2x  y – z  0; x  y  z  9. 

17.  2x – 3y  z  – 1; x  4y  5z  25; 3x – 4y  z  2.

18. x  y  z  9; 2x  y – z  0; 2x  5y  7z  52. 

19. x  3y  3z  16; x  4y  3z  18, x  3y  4z  19

20. 2x1  x2  5x3  x4  5; x1  x2 – 3x3  4x4  – 1;

21. 3x1  6x2 – 2x3  x4  8; 2x1  2x2  2x3 – 3x4  2.
Solve the following equations by the factorization method:

22. 2x  3y  z  9; x  2y  3z  6; 3x  y  2z  8.

23. 10x  y  z  12; 2x  10y  z  13; 2x  2y  10z  14.

24. 10x  y  2z  13; 3x  10y  z  14; 2x  3y  10z  15.

25. 2x1 – x2  x3  – 1; 2x2 – x3  x4  1; x1  2x3 – x4  – 1; x1  x2  2x4  3.

3.5 Iterative Methods of Solution

The preceding methods of solving simultaneous linear equations are 
known as direct methods, as these methods yield the solution after a certain 
amount of fixed computations. On the other hand, an iterative method is 
that in which we start from an approximation to the true solution and ob-
tain better and better approximations from a computation cycle repeated 
as often as may be necessary for achieving a desired accuracy. Thus in an 
iterative method, the amount of computation depends on the degree of ac-
curacy required.

For large systems, iterative methods may be faster than the direct 
methods. Even the round-off errors in iterative methods are smaller. In 
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fact, iteration is a self correcting process and any error made at any stage of 
computation gets automatically corrected in the subsequent steps.

Simple iterative methods can be devised for systems in which the coef-
ficients of the leading diagonal are large as compared to others. We now 
describe three such methods:

(1) Jacobi’s iteration method. Consider the equations

 
1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  


   

 (1)

If a1, b2, c3 are large as compared to other coefficients, solve for x, y, z, 
respectively.

Then the system can be written as

 

1 1 1
1

2 2 2
2

3 3 3
3

1
( )

1
( )

1
( )

x d b y c z
a

y d a x c z
b

z d a x b y
c


   



  


  


 (2)

Let us start with the initial approximations x0, y0, z0 for the values of x, 
y, z, respectively. Substituting these on the right sides of (2), the first ap-
proximations are given by

 

1 1 1 0 1 0
1

1 2 2 0 2 0
2

1 3 3 0 3
3

1
( )

1
( )

1
( )o

x d b y c z
a

y d a x c z
b

z d a x b y
c

  

  

  

Substituting the values x1, y1, z1 on the right sides of (2), the second ap-
proximations are given by

 

2 1 1 1 1 1
1

2 2 2 1 2 1
2

2 3 3 1 3 1
3

1
( )

1
( )

1
( )

x d b y c z
a

y d a x c z
b

z d a x b y
c
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This process is repeated until the difference between two consecutive 
approximations is negligible.

Obs. In the absence of any better estimates for x0, y0, z0, these 
may each be taken as zero.

EXAMPLE 3.25

Solve, by Jacobi’s iteration method, the equations

20x  y – 2z = 17; 3x  20y – z = – 18; 2x – 3y  20z = 25.

Solution:

We write the given equations in the form

 

1
(17 2 )

20
1

( 18 3 )
20
1

(25 2 3 )
20

x y z

y x z

z x y


   



   



   

 (i)

We start from an approximation x0  y0  z0  0.

Substituting these on the right sides of the equations (i), we get

 1 1 1
17 18 25

0.85, 0.9, 1.25
20 20 20

x y z     

Putting these values on the right sides of the equations (i), we obtain

 

2 1

2

2 1

1
(17 1 2 ) 1.02

20
1

( 18 3 1) 0.965
20
1

(25 2 1 3 ) 1.03
20

x y z

y x z

z x y

   

    

   

Substituting these values on the right sides of the equations (i), we have

 

3 2 2

3 2 2

3 2 2

1
(17 2 ) 1.00125

20
1

( 18 3 ) 1.0015
20
1

(25 2 3 ) 1.00325
20

x y z

y x z

z x y

   

    

   

NOTE
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Substituting these values, we get

 

4 3 3

4 3 3

4 3 3

1
(17 2 ) 1.0004

20
1

( 18 3 ) 1.000025
20
1

(25 2 3 ) 0.9965
20

x y z

y x z

z x y

   

    

   

Putting these values, we have

 

5 4 4

5 4 4

5 4 4

1
( 17 2 ) 0.999966

20
1

( 18 3 ) 1.000078
20
1

(25 2 3 ) 0.999956
20

x y z

y x z

z x y

    

    

   

Again substituting these values, we get

 

6 5 5

6 5 5

6 5 5

1
( 17 2 ) 1.0000

20
1

( 18 3 ) 0.999997
20
1

(25 2 3 ) 0.999992
20

x y z

y x z

z x y

    

    

   

The values in the fifth and sixth iterations being practically the same, 
we can stop. Hence the solution is

 x  1, y  – 1, z  1.

EXAMPLE 3.26

Solve by Jacobi’s iteration method, the equations 10x  y – z = 11.19, 
x  10y  z = 28.08, – x  y  10z = 35.61, correct to two decimal places.

Solution:

Rewriting the given equations as

 
1 1 1

(11.19 ), (28.08 ), (35.61 )
10 10 10

x y z y x z z x y        

We start from an approximation, x0  y0  z0  0.
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First iteration

 1 1 1
11.19 28.08 35.61

1.119, 2.808, 3.561
10 10 10

x y z     

Second iteration

 

2 1 1

2 1 1

2 1 1

1
(11.19 ) 1.19

10
1

(28.08 ) 2.34
10
1

(35.61 ) 3.39
10

x y z

y x z

z x y

   

   

   

Third iteration

 

3 2 2

3 2 2

3 2 2

1
(11.19 ) 1.22

10
1

(28.08 ) 2.35
10
1

(35.61 ) 3.45
10

x y z

y x z

z x y

   

   

   

Fourth iteration

 

4 3 3

4 3 3

4 3 3

1
(11.19 ) 1.23

10
1

(28.08 ) 2.34
10
1

(35.61 ) 3.45
10

x y z

y x z

z x y

   

   

   

Fifth iteration

 

5 4 4

5 4 4

5 4 4

1
(11.19 ) 1.23

10
1

(28.08 ) 2.34
10
1

(35.61 ) 3.45
10

x y z

y x z

z x y

   

   

   

Hence  x  1.23, y  2.34, z  3.45
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EXAMPLE 3.27

Solve the equations

              10x – 2x2 – x3 – x4  3
          – 2x1  10x2 – x3 – x4  15
          – x1 – x2  10x3 – 2x4  27

– x1 – x2 – 2x3  10x4  – 9, by the Gauss-Jacobi iteration method.

Solution:

Rewriting the given equation as

 

1 2 3 4

2 1 3 4

3 1 2 4

4 1 2 3

1
(3 2 )

10
1

(15 2 )
10
1

(27 2 )
10
1

( 9 2 )
10

x x x x

x x x x

x x x x

x x x x

   

   

   

    

We start from an approximation x1  x2  x3  x4  0.

First iteration

 x1  0.3, x2  1.5, x3  2.7, x4  – 0.9.
Second iteration

 

1

2

3

4

1
[3 2(1.5) 2.7 ( 0.9)] 0.78

10
1

[15 2(0.3) 2.7 ( 0.9)] 1.74
10
1

[27 0.3 1.5 2( 0.9)] 2.7
10
1

[ 9 0.3 1.5 2( 0.9)] 0.18
10

x

x

x

x

     

     

     

      

Proceeding in this way, we get

Third iteration x1  0.9, x2  1.908, x3  2.916, x4  – 0.108

Fourth iteration x1  0.9624, x2  1.9608, x3  2.9592, x4  – 0.036

Fifth iteration x1  0.9845, x2  1.9848, x3  2.9851, x4  – 0.0158

Sixth iteration x1  0.9939, x2  1.9938, x3  2.9938, x4  – 0.006
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Seventh iteration x1  0.9939, x2  1.9975, x3  2.9976, x4  – 0.0025

Eighth iteration x1  0.999, x2  1.999, x3  2.999, x4  – 0.001

Ninth iteration x1  0.9996, x2  1.9996, x3  2.9996, x4  – 0.004

Tenth iteration x1  0.9998, x2  1.9998, x3  2.9998, x4  – 0.0001

Hence x1  1, x2  2, x3  3, x4  0.

Gauss-Seidal iteration method. This is a modification of Jacobi’s 
method. As before the system of equations:

 
1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  


   

 (1)

is written as  1 1 1
1

2 2 2
2

3 3 3
3

1
( )

1
( )

1
( )

x d b y c z
a

y d a x c z
b

z d a x b y
c


   



  


  


 (2)

Here also we start with the initial approximations x0, y0, z0 for x, y, z, 
respectively which may each be taken as zero. Substituting y  y0, z  z0 in 
the first of the equations (2), we get

 1 1 1 0 1 0
1

1
( )x d b y c z

a
  

Then putting x  x1, z  z0 in the second of the equations (2), we have

 1 2 2 1 2 0
2

1
( )y d a x c z

b
  

Next substituting x  x1, y  y1 in the third of the equations (2), we ob-
tain

 1 3 3 1 3 1
3

1
( )z d a x b y

c
  

and so on, i.e., as soon as a new approximation for an unknown is found, it 
is immediately used in the next step.

This process of iteration is repeated until the values of x, y, z are ob-
tained to a desired degree of accuracy.
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Obs. 1. Since the most recent approximations of the unknowns 
are used while proceeding to the next step, the convergence in 
the Gauss-Seidal method is twice as fast as in Jacobi’s method.

2. Jacobi and Gauss-Seidal methods converge for any choice of 
the initial approximations if in each equation of the system, the 
absolute value of the largest co-efficient is almost equal to or is 
at least one equation greater than the sum of the absolute values 
of all the remaining coefficients.

EXAMPLE 3.28

Apply the Gauss-Seidal iteration method to solve the equations 20x  
y – 2z = 17; 3x  20y – z = – 18; 2x – 3y  20z = 25.  (cf. Example 3.25)

Solution:

We write the given equations in the form

 
1

(17 2 )
20

x y z    (i)

 
1

( 18 3 )
20

y x z     (ii)

 
1

(25 2 3 )
20

z x y    (iii)

First iteration

Putting y  y0, z  z0 in (i), we get 1 0 0
1

(17 2 ) 0.8500
2

x y z   

Putting x  x1, z  z0 in (ii), we have 1 1 0
1

( 18 3 ) 1.0275
20

y x z    

Putting x  x1, y  y1 in (iii), we obtain 1 1 1
1

(25 2 3 ) 1.0109
20

z x y   

Second iteration

Putting y  y1, z  z1 in (i), we get 2 1 1
1

(17 2 ) 1.0025
20

x y z   

Putting x  x2, z  z1 in (ii), we obtain 2 2 1
1

( 18 3 ) 0.9998
20

y x z    

Putting x  x2, y  y2 in (iii), we get 2 2 2
1

(25 2 3 ) 0.9998
20

z x y   

NOTE
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Third iteration, we get

 

3 2 2

3 3 2

3 3 3

1
(17 2 ) 1.0000

20
1

( 18 3 ) 1.0000
20
1

(25 2 3 ) 1.0000
20

x y z

y x z

z x y

   

    

   

The values in the second and third iterations being practically the same, 
we can stop.

Hence the solution is x  1, y  – 1, z  1.

EXAMPLE 3.29

Solve the equations 27x  6y – z = 85; x  y  54z = 110; 6x  15y  2z 
= 72 by the Gauss-Jacobi method and the Gauss-Seidel method.

Solution:

Rewriting the given equations as

 
1

(85 6 )
27

x y z    (i)

 
1

(72 6 2 )
15

y x z    (ii)

 1
(110 )

54
z x y    (iii)

(a) Gauss-Jacobi’s method

We start from an approximation x0  y0  z0  0

First iteration

 1 1 1
85 72 110

3.148, 4.8, 2.037
27 15 54

x y z     

Second iteration

 

2 1 1

2 1 1

2 1 1

1
(85 6 ) 2.157

27
1

(72 6 2 ) 3.269
15
1

(110 ) 1.890
54

x y z

y x z

z x y
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Third iteration

 

3 2 2

3 2 2

3 2 2

1
(85 6 7 ) 2.492

27
1

(72 6 2 ) 3.685
15
1

(110 ) 1.937
54

x y z

y x z

z x y

   

   

   

Fourth iteration

  

4 3 3

4 3 3

4 3 3

1
(85 6 ) 2.401

27
1

(72 6 2 ) 3.545
15
1

(110 ) 1.923
54

x y z

y x z

z x y

   

   

   

Fifth iteration

 

5 4 4

5 4 4

4 3 3

1
(85 6 ) 2.432

27
1

(72 6 2 ) 3.583
15
1

(110 ) 1.927
54

x y z

y x z

z x y

   

   

   

Repeating this process, the successive iterations are:

 x6  2.423, y6  3.570, z6  1.926
 x7  2.426, y7  3.574, z7  1.926
 x8  2.425, y8  3.573, z8  1.926
 x9  2.426, y9  3.573, z9  1.926

Hence x  2.426, y  3.573, z  1.926

(b) Gauss-Seidal method
First iteration

Putting y  y0  0, z  z0  0 in (i), 1 0 0
1

(85 6 ) 3.14
27

x y z   

Putting x  x1, z  z0 in (ii), 1 0
1

1 (72 6 2 ) 3.541
15

y x z   

Putting x  x1, y  y1 in (iii), 1 1 1
1

(110 ) 1.913
54

z x y   
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Second iteration

 

2 1 1

2 1

2 2 2

1
(85 6 ) 2.432

27
1

2 (72 6 2 ) 3.572
15
1

(110 ) 1.926
54

x y z

y x z

z x y

   

   

   

Third iteration

 

3 2 2

3 3 2

3 3 3

1
(85 6 ) 2.426

27
1

(72 6 2 ) 3.573
15
1

(110 ) 1.926
54

x y z

y x z

z x y

   

   

   

Fourth iteration

 

4 3 3

4 4 3

4 4 4

1
(85 6 ) 2.426

27
1

(72 6 2 ) 3.573
15
1

(110 ) 1.926.
54

x y z

y x z

z x y

   

   

   

Hence x  2.426, y  3.573, z  1.926.

Obs. We have seen that the convergence is quite fast in the 
Gauss-Seidal method as compared to the Gauss-Jacobi method.

EXAMPLE 3.30

Apply the Gauss-Seidal iteration method to solve the equations: 
10x1 – 2x2 – x3 – x4 = 3; – 2x1  10x2 – x3 – x4 = 15; – x1 – x2  10x3  2x4 = 27; 
– x1 – x2 – 2x3  10x4 = – 9. (cf. Example 3.27)

Solution:

Rewriting the given equations as

 x1  0.3  0.2x2  0.1x3  0.1x4  (i)

NOTE
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 x2  1.5  0.2x1  0.1x3  0.1x4  (ii)
 x3  2.7  0.1x1  0.1x2  0.2x4  (iii)
 x4  – 0.9  0.1x1  0.1x2  0.2x3  (iv)

First iteration

Putting x2  0, x3  0, x4  0 in (i), we get x1  0.3

Putting x1  0.3, x3  0, x4  0 in (ii), we obtain x2  1.56

Putting x1  0.3, x2  1.56, x4  0 in (iii), we obtain x3  2.886

Putting x1  0.3, x2  1.56, x3  2.886 in (iv), we get x4  – 0.1368.

Second iteration

Putting x2  1.56, x3  2.886, x4  – 0.1368 in (i), we obtain x1  0.8869

Putting x1  0.8869, x3  2.886, x4  – 0.1368 in (ii), we obtain x2  1.9523

Putting x1  0.8869, x2  1.9523, x4  – 0.1368 in (iii), we have x3  2.9566

Putting x1  0.8869, x2  1.9523, x3  2.9566 in (iv), we get x4  – 0.0248.

Third iteration

Putting x2  1.9523, x3  2.9566, x4  – 0.0248 in (i), we obtain x1  0.9836

Putting x1  0.9836, x3  2.9566, x4  – 0.0248 in (ii), we obtain x2  1.9899

Putting x1  0.9836, x2  1.9899, x4  – 0.0248 in (iii), we get x3  2.9924

Putting x1  0.9836, x2  1.9899, x3  2.9924 in (iv), we get x4  – 0.0042.

Fourth iteration. Proceeding as above

x1  0.9968, x2  1.9982, x3  2.9987, x4  – 0.0008.

Fifth iteration is x1  0.9994, x2  1.9997, x3  2.9997, x4  – 0.0001.

Sixth iteration is x1  0.9999, x2  1.9999, x3  2.9999, x4  – 0.0001

Hence the solution is x1  1, x2  2, x3  3, x4  0.

(3) Relaxation method3. Consider the equations

 a1x  b1y  c1z  d1

 a2x  b2y  c2z  d2

 a3x  b3y  c3z  d3

3. This method was originally developed by R.V. Southwell in 1935, for application to structural engi-
neering Exercises
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We define the residuals Rx, Ry, Rz by the relations

 
1 1 1 1

2 2 2 2

3 3 3 3

x

y

z

R d a x b y c z

R d a x b y c z

R d a x b y c z

   

   


    

 (1)

To start with we assume x  y  z  0 and calculate the initial residuals. 
Then the residuals are reduced step by step, by giving increments to the 
variables. For this purpose, we construct the following operation table:

Rx Ry Rz

x  1
y  1
z  1

a1
b1
c1

a2
b2
c2

a3
b3
c3

We note from the equations (1) that if x is increased by 1 (keeping y and 
z constant), Rx, Ry, and Rz decrease by a1, a2, a3, respectively. This is shown 
in the above table along with the effects on the residuals when y and z are 
given unit increments. (The table is the transpose of the coefficient matrix).

At each step, the numerically largest residual is reduced to almost zero. 
To reduce a particular residual, the value of the corresponding variable is 
changed; e.g., to reduce Rx by p, x should be increased by p/a1.

When all the residuals have been reduced to almost zero, the incre-
ments in x, y, z are added separately to give the desired solution.

Obs. 1. As a check, the computed values of x, y, z are substi-
tuted in (1) and the residuals are calculated. If these residuals 
are not all negligible, then there is some mistake and the entire 
process should be rechecked.

2. Relaxation method can be applied successfully only if the 
diagonal elements of the coefficient matrix dominate the other 
coefficients in the corresponding row, i.e., if in the equations (1)

 
1 1 1

2 2

3 3 3

2

a b c

b a c

c a b

 

 

 

where > sign should be valid for at least one row.

NOTE
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EXAMPLE 3.31

Solve, by the Relaxation method, the equations:

 9x – 2y  z = 50; x  5y – 3z = 18; – 2x  2y  7z = 19.
Solution:

The residuals are given by

 Rx  50 – 9x  2y – z;
 Ry  18 – x – 5y  3z;
 Rz  19  2x – 2y – 7z

The operations table is 

Rx Ry Rz

x  1
y  1
z  1

9
2

1

1
5
3

2
2
7

The relaxation table is

Rx Ry Rz

x=y=z 0
x  5
z  14
y  5
x  1
z  1
y  0.8
y  0.23
y  0.13
y  0.112

50
5
1

11
2
3
1.4
1.17
0
0.224

18
13
25
0

1
4

0
0.69
0.56
0

 19 (i)
 29 (ii)
 1 (iii)
 9 (iv)
 7 ( v)
 0 ( vi)
 1.6 (vii)
 0.69 (viii)
 0.17 (ix)
 0.054 ( x)

 x  6.13, y  4.31, z  3.23.
Thus                    x  6.13, y  4.31, z  3.23

[Explanation. In (i), the largest residual is 50. To reduce it, we give 
an increment x  5 and the resulting residuals are shown in (ii). Of these 
Rx  29 is the largest and we give an increment z  4 to get the results in 
(iii). In (vi) Ry  – 4 is the (numerically) largest and we give an increment 
y  – 4/5  – 0.8 to obtain the results in (vii). Similarly the other steps have 
been carried out.]
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EXAMPLE 3.32 

Solve the equations:

10x – 2y – 3z = 205; – 2x  10y – 2z = 154; – 2x – y  10z = 120 by Re-
laxation method. 

Solution:

 The residuals are given by

 Rx  205 – 10x  2y  3z;
 Ry  154  2x – 10y  2z;
 Rz  120  2x  y – 10z.

The operations table is

Rx Ry Rz

x  1
y  1
z  1

10
2
3

2
10

2

2
1

10

The relaxation table is

Rx Ry Rz

x = y = z = 0
x  20
y  19
z  18
x  10
y  6
z  2
x  2
z  1
y  1

205
5
43
97
-3
9
15
-5
-2
0

154
194
4
40
60
0
4
8
10
0

120
160
179
-1
19
25
5
9
-1
0

 x  32, y  26, z  21.
Hence  x  32, y  26, z  21.

Exercises 3.4

1. Solve by Jacobi’s method, the equations: 5x – y  z  10; 2x  4y  12; 
x  y  5z  – 1; starting with the solution (2, 3, 0).
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2. Solve by Jacobi’s method the equations:
13x  5y – 3z  u  18; 2x  12y  z – 4u  13; x – 4y  10z  u  29; 

2x  y – 3z  9u  31.

3. Solve the equations 27x  6y – z  85; x  y  54z  40; 6x  15y  2z  
72 by

(a) Jacobi’s method (b) Gauss-Seidal method. 

Solve the following equations by Gauss-Seidal method:

4. 2x  y  6z  9; 8x  3y  2z  13; x  5y  z  7.

5. 28x  4y – z  32; x  3y  10z  24; 2x  17y  4z  35 

6. 10x  y  z  12; 2x  10y  z  13; 2x  2y  10z  14. 

7. 7x1  52x2  13x3  104; 83x1  11x2 – 4x3  95; 3x1  8x2  29x3  71.

8. 3x1 – 0.1x2 – 0.2x3  7.85; 0.1x1  7x2 – 0.3x3  – 19.3; 0.3x1 – 0.2x2  10x3 
 71.4.
Solve, by the Relaxation method, the following equations:

9. 3x  9y – 2z  11; 4x  2y  13z  24; 4x – 4y  3z  – 8. 

10. 10x – 2y – 2z  6; – x  10y – 2z  7; – x – y  10z  8. 

11. – 9x  3y  4z  100  0; x – 7y  3z  80  0; 2x  3y – 5z  60  0.

12. 54x  y  z  110; 2x  15y  6z  72; – x  6y  27z  85 

3.6 Ill-Conditioned Equations

A linear system is said to be ill-conditioned if small changes in the co-
efficients of the equations result in large changes in the values of the un-
knowns. On the contrary, a system is well-conditioned if small changes in 
the coefficients of the system also produce small changes in the solution. 
We often come across ill-conditioned systems in practical applications. Ill-
conditioning of a system is usually expected when the determinant of the 
coefficient matrix is small. The coefficient matrix of an ill-conditioned sys-
tem is called an ill-conditioned matrix. 

While solving simultaneous equations, we also come across two forms 
of instabilities: Inherent and Induced. Inherent instability of a system is 
a property of the given problem and occurs due to the problem being ill-
conditioned. It can be avoided by reformulation of the problem suitably. 
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Induced instability occurs because of the incorrect choice of method.

(2) Iterative method to improve accuracy of an ill-conditioned 
system. Consider the system of equations

 
1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

  

  


   

 (1)

Let x, y, z be an approximate solution. Substituting these values on 
the left-hand sides, we get new values of d1, d2, d3 as d1, d2, d3 so that the 
new system is

 

1 1 1 1

2 2 2 2

3 3 33 3

a x b y c z d

a x b y c z d

a x b y c z d

     

     

     

 (2)

Subtracting each equation in (2) from the corresponding equations in 
(1), we obtain

 
1 1 1 1

2 2 2 2

3 3 3 3

e e e

e e e

e e e

a x b y c z k

a x b y c z k

a x b y c z k

  

  


   

 (3)

where xe  x – x, ye  y – y, ze  z – z and ki  di – di

We now solve the system (3) for xe, ye, ze giving x  x  xe, y  y  ye and 
z  z  ze,which will be better approximations for x, y, z. We can repeat the 
procedure for improving the accuracy.

EXAMPLE 3.33

Establish whether the system 1.01x  2y = 2.01; x  2y = 2 is well con-
ditioned or not?

Solution:

Its solution is x  1 and y  0.5.

Now consider the system x  2.01y  2.04 and x  2y  2

which has the solution x  – 6 and y  4.

Hence the system is ill-conditioned.
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EXAMPLE 3.34

An approximate solution of the system 2x  2y – z = 6; x  y  2z = 8; – x 
 3y  2z = 4 is given by x = 2.8, y = 1, and z = 1.8. Using the above iterative 
method, improve this solution.

Solution:

Substituting the approximate values x  2.8, y  1, z  1.8 in the given 
equations, we get

 
2(2.8) 2(1) 1.8 5.8
2.8 2 2(1.8) 7.4

2.8 3(1) 2(1.8) 3.8

  

  


    

 (i)

Subtracting each equation in (i) from the corresponding given equa-
tions, we obtain

 
2 2 0.2

2 0.6
3 2 0.2

e e e

e e e

e e e

x y z

x y z

x y z

  

  


    

 (ii)

where xe  x – 2.8, ye  y – 1, ze  z – 1.8.

Solving the equations (ii), we get xe  0.2, ye  0, ze  0.2.

This gives the better solution x  3, y  1, z  2, which incidently is the 
exact solution.

Exercises 3.5

1. Establish whether the system of equations
 10x  8y  9z  6w  33,
 6x  7y  5z  5w  23,
 8x  10y  7z  7w  32,
 9x  7y  10z  5w  31

is well-conditioned or not?

2. An approximate solution of the equations x  4y  7z  5; 2x  5y  8z 
 7; 3x  6y  9.1z 9.1 is given by x  1.8, y  – 1.2, z  1. Improve this 
solution by using the iterative method.
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3.7 Comparison of Various Methods

Direct and iterative methods have their advantages and disadvantages 
and a choice of method depends on a particular system of equations. The 
direct methods yield a solution in a finite number of steps for any non-
singular set of equations, while in an iterative method the amount of com-
putation depends on the accuracy desired. In general, it is preferable to 
use a direct method for the solution of a linear system. However for large 
systems, an iterative method yields the solution faster and should therefore 
be preferred.

Gauss elimination method requires more of recording and is quite time 
consuming for operations. As such it is more expensive from the program-
ming point of view. Among the direct methods, Crout’s triangularization 
method is used more often for the solution of a linear system and as soft-
ware for computers.

The rounding off errors also get propagated in the elimination method 
whereas in the iteration techniques only the rounding off errors committed 
in the final iteration have any effect. In general, the iteration methods have 
smaller round-off errors for iteration since it is a self- correcting technique. 
Thus the use of an iterative method for ill-conditioned system is preferable.

On the other hand, an iterative method may not always converge. 
When it converges, the iterative method is definitely better than the direct 
methods.

We come across two types of instabilities while solving a linear system 
of equations, i.e.,

Inherent instability and Induced instability.

Inherent instability occurs due to the set of equations being ill-
conditioned and as such is a property of the problem itself. It can, however, 
be avoided by a suitable reformulation of the problem.

On the other hand, induced instability occurs due to an incorrect choice 
of the method of solution.

3.8 Solution of Non-Linear Simultaneous Equations

Newton-Raphson method. Consider the equations

 f(x, y)  0, g(x, y)  0  (1)
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If an initial approximation (x0, y0) to a solution has been found by a 
graphical method or otherwise, then a better approximation (x1, y1) can be 
obtained as follows:

Let x1  x0  h, y1  y0  k, so that

 f(x0  h, y0  k)  0, g(x0  h, y0  k)  0 (2)
Expanding each of the functions in (2) by Taylor’s series to first degree 

terms, we get approximately

 
0

0 0

0
0 0

0

0

f f
f h k

x y

g g
g h k

x y

 
     


       

 (3)

where 
0 0

0 0 0
0 ,

( , ),
x y

f f
f f x y

x x

  
  

  
etc.

Solving the equations (3) for h and k, we get a new approximation to 
the root as

 x1  x0  h, y1  y0  k.
This process is repeated until we get the values to the desired accuracy.

Obs. 1. This method will not converge unless the starting 
values of the roots chosen are close to the actual roots.

2. The method can be extended to three equations in three vari-
ables. But it is very cumbersome to obtain a meaningful solu-
tion unless the entire information about the equations and their 
physical context is available.

Otherwise. Whenever it is possible, one of the variables may be elimi-
nated from the given equations giving a single polynomial equation in the 
other variable. Then find this variable to a desired degree of accuracy by 
the Newton-Raphson method. Sometimes the above polynomial equation 
is seen to have a root by trial. If so, reduce this equation to the next lower 
degree equation and find its other root by the Newton-Raphson method. 
Having found this variable to a required degree of accuracy, the other vari-
able can at once, be found from one of the given equations.

NOTE
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EXAMPLE 3.35

Solve the system of non-linear equations:

 x2  y = 11, y2  x = 7.
Solution:

An initial approximation to the solution is obtained from a rough graph 
of (1), as x0  3.5 and y0  – 1.8.

We have f  x2  y – 11 and g  y2  x – 7 so that

 2 ,
f

x
x




  1

g
x





 1,
g
x




  2 .

g
y

y





Then Newton-Raphson’s equations (3) above will be

 7h  k  0.55, h – 3.6k  0.26.
Solving these, we get h  0.0855, k  – 0.0485

 The better approximation to the root is

 x1  x0  h  3.5855, y1  y0  k  – 1.8485.
Repeating the above process, replacing (x0, y0) by (x1, y1), we obtain 

x2  3.5844, y2  – 1.8482.

Otherwise. Eliminating y from the given equations, we get

 x4 – 22x2  x  114  0
By trial, x  3 is its root.

 The reduced equation is x3  3x2 – 13x – 38  0

To find the other root, we apply the Newton-Raphson method to

 f(x)  x3  3x2 – 13x – 38.
Taking x0  3.5, we get x2  3.5844.

Thus y  11 – x2 gives y  – 1.848 for x  3.5844

Also y  – 2 for x  3.



152 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

EXAMPLE 3.36

Solve the equations 2x2  3xy  y2 = 3, 4x2  2xy  y2 = 30 correct to 
three decimal places, using Newton-Raphson method, given that x0 = – 3 
and y0 = 2.

Solution:

We have f  2x2  3xy  y2 – 3 and g  4x2  2xy  y2 – 30, 

So that 4 3 , 3 2

8 2 . 2 2

f f
x y x y

x y

g g
x y x y

x y

 
   

 

 
   

 

Now 2 2
0 0 0 0 0

2 2
0 0 0 0 0

0 0 0 0

2 3 3 1

4 2 30 2

6, 5; 20, 2

f x x y y

g x x y y

g gf f
x y x y

    

    

  
   

   

Then Newton-Raphson equations (3) above will be

 20h  2k  – 2; 6h  5k  1

Solving these equations, we get h  3 4
0.1364, 0.3636

22 11
k   

 The better approximation is

x1  x0  h  – 3 – 0.1364  – 3.1364

y1  y0  k  2  0.3636  2.3636

Repeating the above process and replacing (x0, y0) by (x1, y1), we obtain 
x2  – 3.131, y2  2.362

Again proceeding as above and replacing (x1, y1) by (x2, y2), we obtain 
x3  – 3.1309, y3  2.3617

Since the values x2, y2 and x3, y3 are approximately equal, the solution 
correct to three decimal places is x  – 3.131, y  2.362.

Exercises 3.6

1. Solve the equations x2  y  5, y2  x  3.

2. Solve the non-linear equations x  2(y  1), y2  3xy – 7 correct to three 
decimals.
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3. Find a root of the equations xy  x  9, y2  x2  7.

4. Use the Newton-Raphson method to solve the equations x  x2  y2, y  
x2 – y2 correct to two decimals, starting with the approximation (0.8, 0.4).

5. Solve the non-linear equations x2 – y2  4, x2  y2  16 numerically with 
x0  y0  2.828 using the Newton-Raphson method. Carry out two itera-
tions.

3.9 Objective Type of Questions

Exercises 3.7

Select the correct answer or fill up the blanks in the following questions:

1. As soon as a new value of a variable is found by iteration, it is used imme-
diately in the following equations, this method is called

(a) Gauss-Jordan method  (b) Gauss-Seidal method

(c) Jacobi’s method  (d) Relaxation method.

2. The difference between direct and iterative method of solving simulta-
neous linear equations is ............ 

3. In solving simultaneous equations by the Gauss-Jordan method, the 
coefficient matrix is reduced to ............ matrix.

4. The condition for the convergence of the Gauss-Seidal matrix is that in 
each equation of the system ............ .

5. A matrix in which aij  0 for i  j is called ............ .

6. Solutions of simultaneous non-linear equations can be obtained using
(a) Method of iteration  (b) Newton-Raphson method

(c) None of the above.

7. To which form is the coefficient matrix is transformed when AX  B is 
solved by Gauss elimination method?

8. Guass-Seidal iteration converges only if the coefficient matrix is diago-
nally dominant. (True or False)
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9. What is “partial pivoting” and “complete pivoting” in the solution of 
linear simultaneous

equations.

10. The convergence in the Gauss-Seidal method is ...... than that in Jacobi’s 
method:

(a) more fast  (b) more slow

(c) slow  (d) equal. 

11. By the Gauss elimination method, solve x  y  2 and 2x  3y  5.



C H A P T E R4
MATRIX INVERSION AND 
EIGENVALUE PROBLEM

Chapter Objectives

 Introduction
 Matrix inversion
 Gauss elimination method
 Gauss-Jordan method
 Factorization method
 Partition method
 Iterative method
 Eigenvalues and eigenvectors
 Properties of eigenvalues
 Bounds for eigenvalues
 Power method
 Jacobi’s method
 Given’s method
 House-holder’s method
 Objective type of questions

4.1 Introduction

There are two main numerical exercises which arise in con-
nection with the matrices. One of these is the problem of finding 
the inverse of a matrix. The other problem is that of finding the 
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eigenvalues and the corresponding eigenvectors of a matrix. When a student 
first encounters an eigenvalue problem, it appears to him somewhat artifi-
cial and theoretical only. In fact the computation of eigenvalues is required 
in many engineering and scientific problems. For instance, the frequencies 
of the vibrations of beams are the eigenvalues of a matrix. Eigenvalues are 
also required while finding the frequencies associated with

  (i)  the vibrations of a system of masses and springs,
 (ii)  the symmetric vibrations of an annular membrane,
(iii)  the oscillations of a triple pendulum,
(iv)  the torsional oscillations of a uniform cantilever,
 (v)  the torsional oscillations of a multi-cylinder engine etc.

Once the physical formulation in any of the above situations is com-
pleted, all these Exercises have the same mathematical approach: that of 
finding an eigenvalue for a numerical matrix.

4.2 Matrix Inversion

In Section 3.2(4), we have already defined the inverse of a non-singular 
square matrix A, to be another matrix B of the same order such that AB  
BA  I, I being a unit matrix of the same order.

The inverse of a matrix A is written as A1 so that AA1  A1A  I.

Thus the inverse of a matrix exists if and only if it is a non-singular 
square matrix. Also inverse of a matrix, when it exists is unique.

There are several methods of finding the inverse of a matrix. Of these, 
the method of obtaining the inverse with the help of an adjoint has al-
ready been illustrated by Example 3.9. But it requires a lot of calculations. 
As such, we shall now, describe some other methods which require less 
of computational labor and can be easily extended to matrices of higher 
order.

4.3 Gauss Elimination Method

The method involves the same procedure as explained in Section3.4(3). 
Here we take a unit matrix of the same order as the given matrix A and 
write it as AI.
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Now making simultaneous row operations on AI, we try to convert A 
into an upper triangular matrix and then to a unit matrix. Ultimately when 
A is transformed into a unit matrix, the adjacent matrix (emerged out from 
the transformation of I) gives the inverse of A. To increase the accuracy, the 
largest element in A is taken as the pivot element for performing the row 
operations.

4.4 Gauss-Jordan Method

This is similar to the Gauss elimination method except that instead of 
first converting A into upper triangular form, it is directly converted into 
the unit matrix.

In practice, the two matrices A and I are written side by side and the 
same row transformations are performed on both. As soon as A is reduced 
to I, the other matrix represents A–1.

EXAMPLE 4.1

Using Gauss-Jordan method, find the inverse of the matrix

 
1 1 2
1 3 3
2 4 4

 
 

 
    

Solution:

Writing the given matrix side by side with the unit matrix of order 3, 
we have

1 1 3 : 1 0 0
1 3 3 : 0 1 0
2 4 4 : 0 0 1

 
 

 
    

 (Operate R2 – R1 and R3  2R1)

1 1 3 : 1 0 0
~ 0 2 6 : 1 1 0

0 2 2 : 2 0 1

 
 

  
  

 (Operate 1
2

R2 and 1
2

R3)

1 1 3 : 1 0 0
0 1 3 : 1 2 1 2 0
0 1 1 : 1 0 1 2

 
 

  
  

  (Operate R1 – R2 and R3  R2)
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1 0 6 : 3 2 1 2 0
0 1 3 : 1 2 1 2 0
0 0 2 : 1 2 1 2 1 2

 
 

  
  



 [Operate R1  3R3, R2 – 3
2

R3 and 1
2

R2]

  
1 0 0 : 3 1 3 2
0 1 0 : 5 4 1 4 3 4
0 0 1 : 1 4 1 4 1 4

 
 
 
  



Hence the inverse of the given matrix is 

3 1 3 2
5 4 1 4 3 4
1 4 1 4 1 4

 
 
   
    

EXAMPLE 4.2

Using Gauss-Jordan method, find the inverse of the matrix 
2 2 3
2 1 1
1 3 5

 
 
 
  

Solution:

 Writing the given matrix side by side with the unit matrix of order 3, 
we have

2 2 3 : 1 0 0
2 1 1 : 0 1 0
1 3 5 : 0 0 1

 
 
 
  

 (Operate 
1
2

 R1)

1 1 3 2 : 1 2 0 0
2 1 1 : 0 1 0
1 3 5 : 0 0 1

 
 
 
  

  (Operate R2 – 2R1, R3 – R1)

1 1 3 2 : 1 2 0 0
0 1 2 : 1 1 0
0 2 7 2 : 1 2 0 1

 
 

   
  

  (Operate R1  R2, R3  2R2)

1 0 1 2 : 1 2 1 0
0 1 2 : 1 1 0
0 0 1 2 : 5 2 2 1
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1 0 1 2 : 1 2 1 0
0 1 2 : 1 1 0
0 0 1 2 : 5 2 2 1

  
 

 
   

  (Operate (– 2) R3)

1 0 1 2 : 1 2 1 0
0 1 2 : 1 1 0
0 0 1 : 5 4 2

  
 

 
   

  (Operate R1  1
2

 R3, R2 – 2R3)

1 0 0 : 2 1 1
0 1 0 : 9 7 4
0 0 1 : 5 4 2

  
 

 
   



Hence the inverse of the given matrix is 

2 1 1
9 7 4

5 4 2

  
 
 
   

4.5 Factorization Method

In this method, we factorize the given matrix as A  LU  (1)

where L is a lower triangular matrix with unit diagonal elements and U 
is an upper triangular matrix 

i.e., 21

31 32

1 0 0
1 0

1
L l

l l

 
 
 
  

 and 
11 12 13

22 23

0 33

0
0

u u u

U u u

l u

 
 
 
  

 [Section3.4(5)1]

Now (1) gives A1  (LU)1  U1L1 (2)

To find L1, let L1  X, where X is a lower triangular matrix.

Then LX  I

i.e., 
11

21 21 22

31 32 32 33

1 0 0 0 0 1 0 0
1 0 0 0 1 2 0

1 22 0 0 1

x

l x x

l l x x x

    
    

    
        

Multiplying the matrices on the L.H.S. and equating the corresponding 
elements, we have

  x11  1, x22  1, x33  1 (3)
 l21x11  x21  0, l31x11  l32x21  x31  0

and            l32x22  x32  0 (4)
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(3) gives x11  x22  x33  1

(4)  x21  – l21x11, x31  – (l31  l32x21) and x32  – l32

Thus L1  X is completely determined.

To find U1, let U1  Y, where Y is an upper triangular matrix.

Then YU  I

i.e., 
11 12 13 11 12 13

22 23 22 23

33 33

1 0 0
0 0 0 1 0
0 0 0 0 0 0 1

y y y u u u

y y u u

y u

    
    

    
        

Multiplying the matrices on the L.H.S. and then equating the corre-
sponding elements, we have

 y11u11  1, y22u22  1, y33u33  1 (5)

and  
11 12 12 22 11 13 12 23 13 33

22 23 23 33

 0,  0
   0

y u y u y u y u y u

y u y u

    

 



  (6)

From (5),  y11  1/u11, y22  1/u22, y33  1/u33

From (6),  y12  – y11u12/u22, y13  – (y11u13  y12u23)/u33; y23  –y22u23/u33.

 We get U1  Y, completely.

Hence, by (2), we obtain A1.

EXAMPLE 4.3

Using the factorization method, find the inverse of the matrix

 

50 107 36
25 54 20
31 66 21

A =

 
 
 
  

Solution:

Taking      21

31 32

1 0 0
1 0

1
L l

l l

 
 
 
  

 and 
11 12 13

22 23

33

0
0 0

u u u

U u u

u

 
 
 
  

                   
11 12 13

21 22 23

31 32 33

50 107 36 1 0 0
25 54 20 1 0 0
31 66 21 1 0 0

u u u

A LU l u u

l l u
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    50  u11, 107  u12, 36  u13;

                25  l21u11, 54  l21u12  u22, 20  l21u13  u23; 

                31  l31u11, 66  l21u12  l32u22, 21  l31u13  l32u23  u33

or                 u11  50, u12  107, u13  36, l21  1/2, u22  1/2, u23  2,

                 l31  31/50, l32  – 17/25, u23  1/25.

Thus 
1 0 0

1 2 1 0
31 50 17 25 1

 
 
 
  

 and 
50 107 36
0 1 2 2
0 0 1 25

U

 
 
 
  

To find L1, let L1  X. Then LX  I

i.e., 
11

21 22

31 32

1 0 0 0 0 1 0 0
1 2 1 0 0 0 1 0

31 50 17 25 1 0 0 0 1

x

x x

x x

    
    

    
        

  11 11 21

22 11 21 31

22 32 33

1
1, 0,

2
31 17

1, 0,
50 25

17
0, 1.

25

x x x

x x x x

x x x

  

   

   

or 11 22 33 21 31 32
1 24 17

1, , ,
2 25 25

x x x x x x     

Thus 1

1 0 0
1 2 1 0

24 25 17 25 1
L X

 
 

   
  

To find U1, let U1  Y. Then YU  I

i.e., 
11 12 13

22 23

33

50 107 36 1 0 0
0 0 1 2 2 0 1 0
0 0 0 0 1 25 0 0 1

y y y

y y

y

    
    

    
        

 50y11  1, 50y12  107y22  0, 50y13  107y23  36y33  0

 22 33 33 33
1 1 1

1, 2 0, 1.
2 2 25

y y y y   

or  y11  1/50, y22  2, y33  25, y12  – 107/25, y23  – 100, y13  196.



162 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

So that  1

1 50 107 25 196
0 2 100
0 0 25

U
 
 
  
  

Hence, 1 1 1

1 50 107 25 196 1 0 0
0 2 100 1 2 1 0
0 0 25 24 2 5 17 2 5 1

186 129 196
95 66 100
24 17 25

A U L  

  
  

     
    

 
    
  

4.6 Partition Method

According to this method, if the inverse of a matrix An of order n is 
known, then the inverse of a matrix An+1 of order (n  1) can be determined 
by adding (n  1)th row and (n  1)th column to An.

Suppose 
1 2

3

:

:

A A

A

A

 
 
 
   

  and 
1 2

1

3

:

:

X X

A

X x



 
 
 
  



where A2, X2 are column vectors and A3, X3 are row vectors (i.e., trans-
poses of column vectors A3, X3) and , x are ordinary numbers.

Also we assume that A11 is known. Actually A3 and X3 are column vec-
tors since their transposes are row vectors.

Now AA1  In+1 gives

 A1X1  A1X3  In (1)

 A1X2  A2x  0 (2)

 A3X1  X3  0 (3)

 A3X2  x  1 (4)

From (2), X2  – A11 A2 x (5)

and using this, (4) gives ( – A3A1
1 A2)x  1. (6)

Hence x and then X2 can be found.

Also from (1),  –1
1 2 31 –  nX A I A X   (7)
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and using this, (3) gives  –1 –1
3 1 2 3 3 1– –A A A X A A      (8)

whence X3 and then X1 are determined.

Thus, having found 1 2 3, ,X X X  and x, A1 is completely known.

Obs. The partition method is also known as the “Escalator method.”

EXAMPLE 4.4

Using the partition method, find the inverse of A  

13 14 6 4
8 1 13 9
6 7 3 2
9 5 16 11

 
  
 
 
 

Solution:

We have  
1 2

3

13 14 6 : 4
8 1 13 : 9 :
6 7 3 : 2 .............

:
9 5 16 : 11

A A

A

A

 
              
  

    

so that              1 2

13 14 6 4
8 1 13 . 9
6 7 3 2

A A

   
        
      

 

                         3 9 5 16 and =11.A     

We find          
1

1

94 0 188
1

54 3 121
94

62 7 125
A

 
 

   
  

Let           
1 2

1

3

:
....... ..... .....

' :

X X

A
X



 
 
 
  

. Then AA-1  I

Hence   1
3 1 2

94 0 188 4
1

9 5 16 54 3 121 9
94

62 7 125 2

0
1 1035

9 5 16 1
94 94

65

A A A

  
          
    

 
      
  

NOTE
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  ( – A3A1
1 A2) x  1 [(6) of Section 4.6]]

becomes, 
1035

11 1 . ., 94
95

x i e x
 
   

 

Also  
1

2 1 2

94 0 188 4 0
1

54 3 121 9 94 1
94

62 7 125 2 65
X A A x



    
    

          
        

 [(5) of Section 4.7]

Then –1 –1
3 1 2 3 3 1–  –)A A A X A A     

becomes     3 3
1035 1

11 416,97, 913 whench X 416,97,913
94 94

X
 

       
 

Finally X1  A1
1 (I – A2X3) [(7) of Section 4.6]

where  2 3

4 1664 388 3652
9 416,97,913 3744 873 8217
2 832 194 1826

A X

   
   

       
      

 1

94 0 188 1665 388 3652 1 0 2
1

54 3 121 3744 872 8217 5 1 11
94

62 7 125 832 194 1825 287 67 630
X

       
    

          
            

Hence  
1 21

3

1 0 2 0
5 1 11 1

287 67 630 65
416 97 913 94

X X
A

X x


 
            
 
  

EXAMPLE 4.5

If A and C are non-singular matrices, then show that

 
1 1

1 1 1

0 0A A

B C C BA C

 

  

  
  

    

Hence find inverse of 

1 0 0 0
0 2 0 0
3 0 4 0
0 1 0 3
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Solution:

Let the given matrix be 
A O

M
B C

 
 
 

 and its inverse be 1 P Q
M

R S
  
 
 

 

both in the  portioned form where A, B, C, P, Q, R, S are all matrices.

  1 0A P Q
MM I

B C R S
   
   
  

or 
0 0 0

0
AP R AQ S I

IBP CR BQ CS

    
       

  Equating corresponding elements, we have

 AP  0R  I, AQ  0S  0, BP  CR  0, BQ  CS  I.
Second relation gives AQ  0 i.e. Q  0 as A is non-singular.

First relation gives AP  I,  i.e. P  A1.

First third equation, BP  CR  0, i.e., CR  – BP  – BA1

 C1 CR  – C1BA1 or IR  – C1 BA1 or R  – C1 BA1

From fourth equation, BQ  CS  I, or CS  I or S  C1

Hence 
1

1
1 1 1

0A
M

C BA C




  

 
 
  

4.7 Iterative Method

Suppose we wish to compute A1 and we know that B is an approximate 
inverse of A. Then the error matrix is given by E  AB – I

or                             AB  I  E

           (AB)1  (I  E)1 i.e. B1 A–1  (I  E)1

or                              A1  B(I  E)1  B(I – E  E2 –......),

provided the series converges.

Thus we can find further approximations of A1, by using A1  B(1 – E 
 E2 –...)
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EXAMPLE 4.6

Using the iterative method, find the inverse of

 

1 10 1 0.4 2.4 1.4
2 0 1 taking 0.14 0.14 0.14
3 3 2 0.85 3.8 2.8

A B

   
   
     
       

Solution:

Here 
1 10 1 0.4 2.4 1.4 1 0 0
2 0 1 0.14 0.14 0.14 0 1 0
3 3 2 0.85 3.8 2.8 0 0 1

0.05 0 0
0.05 0 0
0.08 0.02 0.02

E AB I

   
         
       

 
   
   

 

 2

0.0025 0 0
0.0025 0 0
0.0064 0.0004 0.0004

E

 
 
 
   

To the second approximation, we have

 A1  B(1 – E  E2)  B – BE  BE2

 

0.4 2.4 14 0.02 0.12 0.07
0.0025 0.14 0.14 0.02 0.12 0.07

0.85 3.8 2.8 0.0122 0.1132 0.0532

0.001 0.006 0.0035 0.421 2526 1474
0.001 0.006 0.0035 0..161 0.266 0.

0.0014 0.0095 0.0053

     
   
       
          

  
 
    
  

214
0.836 3.677 2.742

 
 
 
   

Exercises 4.1

Use Gauss-Jordan method to find the inverse of the following matrices:

1. 
2 3 4
4 3 1
1 2 4

 
 
 
  

2. 
0 1 2
1 2 3
3 1 1
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3. 
8 4 3
2 1 1
1 2 1

 
 
 
  

Use factorization method, to find the inverse of the following matrices:

4. 

3 2 1
2 3 2
1 2 2

 
 
 
  

5. 
2 2 4
2 3 2
1 1 1

 
 
 
   

6. 
5 2 1
7 1 5
3 7 4

 
 

 
  

7. 
10 2 1
2 20 2
2 3 10

 
 

 
  

Apply the partition method to obtain the inverse of the following matrices:

8. 
1 1 1
4 3 1
3 5 3

 
 

 
  

 

9. 

1 3 3 2
1 4 3 4
1 3 4 5
2 5 3 2

 
 
 
 
 
 

10. Using iterative method, find the inverse of the matrix 
5 2
3 1

A
 
  

 

taking  
0.1 0.2
0.3 0.4

B
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11. Apply iterative method to find more accurate inverse of 
1 10 1
2 0 1 ,
3 3 2

A

 
 
 
  

assuming the initial inverse matrix to be 

0.43 2.43 1.43
0.14 0.15 0.14
0.85 3.85 0.85

 
 

 
   

4.8 Eigenvalues and Eigenvectors

If A is any square matrix of order n with elements aij, we can find a col-
umn matrix X and a constant  such that AX  X or AX – IX  0 or [A – I]
X  0.

This matrix equation represents n homogeneous linear equations

                       (a11 – )x1  a12 x2 ......  a1n xn  0

 a21 x1  (a22 – ) x2 ......  a2nxn  0 (1)
                       ...........................................................
                         an1x1  an2x2 .....  (ann – ) xn  0

which will have a non-trivial solution only if the coefficient determinant 
vanishes, i.e.,

 
11 12 1

21 22 2

1 2

.............
....... 0

............

n

n

n n nn

a a a

a a a

a a a



  



 (2)

 On expansion, it gives an nth degree equation in , called the charac-
teristic equation of the matrix A. Its roots i (i  1, 2,..... n) are called the 
eigenvalues or latent roots and corresponding to eacheigenvalue, the equa-
tion (2) will have a non-zero solution

 X  [x1, x2,........, xn]
which is known as the eigenvector. Such an equation can ordinarily be 
solved easily. However for larger systems better methods are to be applied.

Cayley-Hamilton theorem. Every square matrix satisfies its own charac-
teristic equations i.e., if the characteristic equation for the nth order square 
matrix A is

 | A – I |  (– 1)n n  k1 
n1 ......  kn  0

then                               (– 1)n An  k1 A
n1  kn  0.
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EXAMPLE 4.7

Find the eigenvalues and eigenvectors of the matrix 
5 4
1 2
 
 
 

Solution:

The characteristic equation is [A – I]  0

i.e.,. 25 4
or 7 6 0

1 2
 

       

or (l – 6) (l – 1)  0   l   6, 1.

Thus the eigenvalues are 6 and 1.

If x, y be the components of an eigenvector corresponding to the eigen-
value , then

  
5 4

0
1 2

x
A I X

y

  
        

Corresponding to l  6, we have 
1 4

0
1 4

x

y

  
    

which gives only one independent equation – x  4y  0

 
1
yx

y
  giving the eigenvector (4, 1).

Corresponding tol  1, we have 
4 4

0
1 1

x

y

  
  

  
 which gives only one 

independent equation x  y  0.

 
1 1

yx



 giving the eigenvector (1, – 1).

EXAMPLE 4.8

Find the eigenvalues and eigenvectors of the matrix

 
8 6 3
6 7 4

2 4 3
A

 
 
   
  

Solution:

The characteristic equation is

 3 2

8 6 2
6 7 4 18 45 0

2 4 3
A I
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or   3 15 0 0,3,15.     

Thus the eigenvalues of A are 0, 3, 15.

If x, y, z be the components of an eigenvector corresponding to the 
eigenvalue , we have

  
8 6 2

6 7 4 0
2 4 3

x

A IX y

z

    
  

        
     

 (i)

Putting l  0, we have 8x – 6y  2z  0, – 6x  7y – 4z  0, 
2x – 4y  3z  0.

These equations determine a single linearly independent solution 
which may be taken as (1, 2, 2) so that every non-zero multiple of this vec-
tor is an eigenvector corresponding to   0. (ii)

Similarly, the eigenvectors corresponding to   3 and   15 are the 
arbitrary nonzero multiples of the vectors (2, 1, – 2) and (2, – 2, 1) which 
are obtained from (i).

Hence the three eigenvectors may be taken as (1, 2, 2), (2, 1, – 2), 
(2, – 2, 1).

Obs. The eigenvector [x, y, z] such that x2  y2  z2  1 is said 
to be normalized. In particular, if we choose x  1/3, y  2/3, 
z  2/3 in (ii), the corresponding normalized eigenvector will be 
(1/3, 2/3, 2/3).

EXAMPLE 4.9

Using the Cayley-Hamilton theorem, find the inverse of the matrix

(i)
1 4

3
A
 
  

 (ii ) 
2 1 1

A 0 1 0

1 1 2

 
 
 
  

Solution:

(i) The characteristic equation of the matrix is

 21 4
0 or 4 5 0

2 3


    


NOTE
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By Cayley-Hamilton theorem, we have A2 – 4A – 5  0

Multiplying by A1, we get A – 4I – 5A1  0

or  
1 4 1 0 3 41 1 1

1 4 4
2 3 0 1 2 15 5 5

A Z I
       
                  

(ii) The characteristic equation of the matrix is

 3 2

2 1 1
0 1 0 0 or 5 7 3 0
1 2 1



        



By the Cayley-Hamilton theorem, we have A3 – 5A2  7A – 3I  0 (i)

Multiplying (i) by A1, we get

  2 1 -1 21
5 7 3 0 or A = 5 7

3
A A I A A A       (ii)

But 2

2 1 1 2 1 1 5 4 4
0 1 0 0 1 0 0 1 0
1 1 2 1 1 2 4 4 5

A

    
    
     
        

  2

5 4 4 2 1 1 1 0 0 2 1 1
5 7 0 1 0 5 0 1 0 7 0 1 0 0 3 0

4 4 5 1 1 2 0 0 1 1 1 2
A A I

        
       

            
               

Hence from (ii), 1

2 1 1
1

0 3 0
3

1 1 2
A

  
 

  
   

4.9 Properties of Eigenvalues

We now state, some of the important properties of eigenvalues for 
ready reference:

   I.  The sum of the eigenvalues of matrix A is the sum of the elements 
of its principal diagonal.

 II.  If  is an eigenvalue of matrix A, then 1/ is the eigenvalue of A1.

III.   If  is an eigenvalue of an orthogonal matrix, then 1/ is also its 
eigenvalue.
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IV.   If 1, 2,......, n are the eigenvalues of  matrix A, then Am has the 
eigenvalues 1m, 2

m,......, nm (m being a positive integer).

  V.  If a square matrix A has n linearly independent eigenvectors, then 
a matrix P can be found such that P–1 AP is a diagonal matrix whose 
diagonal elements are the eigenvalues of A.

  The transformation of A by a non-singular matrix P to P1 AP is 
called a similarity transformation.

 VI.  Any similarity transformation applied to a matrix leaves its eigen-
values unchanged.

4.10 Bounds for Eigenvalues

If  is an eigenvalue of  matrix A, then for some k (1  k  n),

 1 2  (say),kk k k kn ka a a a p     
i.e., all the eigenvalues of A lie in the union of the n circles with centers 

akk and radii k.

Proof. Let  be an eigenvalue of an arbitrary square matrix A and X be 
the corresponding eigenvector. Then AX  X

or a11 x1  a12 x2 ......  a1n xn  x1

 .....................................................
 ak1 x1  ak2 x2 ......  akn xn   xk

 .................................................... 
 an1 x1  an2 x2 ......  ann xn  xn

If xk be the largest component of X, then | xm/xk |  1 (m  1, 2, , n) ...(1)

Dividing the kth equation by xk, we obtain

ak1 (x1/xk) ......  ak, k–1 (xk–1/xk)  akk    akn(xn/xk)  

or  – akk  ak1 (x1/xk)    ak, k–1 (xk–1/xk)   akn(xn/xk)

Taking absolute values on both sides and using the theorem 
| a  b |  | a |  | b |, we obtain

 |  – akk |  |ak1 |   | ak, k–1 |  |akn |  k (say) [by (1)]

This shows that all the eigenvalues of A lie within or on the union of the 
circles with centers akk and radii k.
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As A and A have the same eigenvalues, the above theorem is also true 
for columns. These circles are called the Gerschgorin circles

The bounds thus obtained being all independent  all the eigenvalues of 
A must lie in the intersection of these bounds. These bounds are called the 
Gerschgorin bounds.

The above theorem gives us the possible location of the eigenvalues and 
also helps us to estimate their bounds. If any of the Gerschgorin circles is 
isolated, then it contains exactly one eigenvalue.

EXAMPLE 4.10

Using Gerschgorin circles, determine the limits of the eigenvalues of 

the matrix 
1 3 2
3 4 6
2 6 1

A

 
 
 
  

Solution:

The three Gerschgorin circles are

(a) | z – 1 |  | 3 |  | 2 |  5

(b) | z – 4 |  | 3 |  | 6 |  9

(c) | z – 1 |  | 2 |  | 6 |  8

One eigenvalue lies within the circle having the center at (1, 0) and 
radius 5.

Second eigenvalue lies within the circle having the center at (4, 0) and 
radius 9.

Third eigenvalue lies within the circle having the center at (1, 0) and 
radius 8.

Since the circle (a) lies within the circles (b) and (c), therefore all the 
eigenvalues of A lie within the region defined by (b) and (c). thus – 5    
13 and – 7    9.

Hence the limits to the eigenvalues are given by – 7    13.
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4.11 Power Method

In many engineering problems, it is required to compute the numeri-
cally largest eigenvalue and the corresponding eigenvector. In such cases, 
the following iterative method is quite convenient which is also well-suited 
for machine computations.

If X1, X2 
 Xn are the eigenvectors corresponding to the eigenvalues 1, 

2,  n, then an arbitrary column vector can be written as

                      X  k1X1  k2X2   knXn

Then        AX  k1 AX1  k2 AX2   kn AXn

  k1 1X1  k2 2X2   kn nXn

Similarly    A2X  k11
2X1  k22

2X2   knn
2Xn

and                    ArX  k1 1 rX1  k2 2 rX2 .  kn n 
rXn

If | 1 | > | 2 | >  > | n |, then 1 is the largest root and the contribution 
of the term k11

rX1 to the sum on the right increases with r and, therefore, 
every time we multiply a column vector by A, it becomes nearer to the ei-
genvector X1. Then we make the largest component of the resulting column 
vector unity to avoid the factor k1.

Thus we start with a column vector X which is as near the solution as 
possible and evaluate AX which is written as (1) X(1) after normalization. 
This gives the first approximation (1) to the eigenvalue and X(1) to the eigen-
vector. Similarly we evaluate AX(1)  (2) X(2) which gives the second approxi-
mation. We repeat this process until [X(r) – X(r–1)] becomes negligible. Then 
(r) will be the largest eigenvalue and X(r), the corresponding eigenvector.

This iterative procedure for finding the dominant eigenvalue of a ma-
trix is known as

Rayleigh’s power method.

Obs. Rewriting AX  X as A1 AX   A1 X or X  A1X.

We have 1 1
A X X 


If we use this equation, then the above method yields the small-
est eigenvalue.

NOTE
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EXAMPLE 4.10

Determine the largest eigenvalue and the corresponding eigenvector of 

the matrix 
5 4

1 2

 
 
 

Solution:

Let the initial approximation to the eigenvector corresponding to the 

largest eigenvalue of A be 
1
0

X
 
 
 

Then  (1) (1)5 4 1 5 1
5

1 2 0 1 0.2
AX X

      
          
      

So the first aporoximation to the eigenvalue is (1)  5 and the corre-

sponding eigenvector is X(1) 1
0.2
 
 
 

Now      1 2 25 4 1 5.8 1
5.8

1 2 0.2 14 0.241
AX X

      
          
      

Thus the second aporoximation to the eigenvalue is (2)  5.8 and the 

corresponding eigenvector is X(2)  1
0.241
 
 
 

, repeating the above process, 

we get

 

     

     

     

     

2 3 3

3 4 4

4 5 5

5 6 6

5 4 1 1
5.966

1 2 0.241 0.248

5 4 1 1
5.966

1 2 0.249 0.250

5 4 1 1
5.999

1 2 0.250 0.25

5 4 1 1
6

1 2 0.25 0.25

AX X

AX X

AX X

AX X

    
       
    

    
       
    

    
       
    

    
       
    

Clearly (5)  (6) and X(5)  X(6) upto 3 decimal places. Hence the largest 

eigenvalue is 6 and the corresponding eigenvector is 
1

0.25
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EXAMPLE 4.11

Find the largest eigenvalue and the corresponding eigenvector of the 

Matrix 
2 1 0
1 2 1

0 1 2

 
 
  
  

 using the power method. Take [1, 0, 0]T as the  ini-

tial eigenvector.

Solution:

Let the initial approximation to the required eigenvector be 
X  [1, 0, 0].

Then    1 1

2 1 0 1 2 1
1 2 1 0 1 2 0.5

0 1 2 0 0 0
AX X

      
      
              
            

So the first approximation to the eigenvalue is 2 and the corresponding 
eigenvector

X(1)  [1, – 0.5, 0].

Hence       1 2 2

2 1 0 1 2.5 1
1 2 1 0.5 2 0.8

0 1 2 0 0.5 0.2
AX X

      
      
               
            

Repeating the above process, we get

            

           

     

2 3 3 3 4 4

4 5 5 5 6 6

6 7 7

1 0.87
2.8 1 ; 3.43 1

0.43 0.54

0.80 0.76
3.41 1 ; 3.41 1

0.61 0.65

0.74
3.41 1

0.67

AX X AX X

AX X AX X

AX X

   
   

          
      

   
   

          
      

 
 

    
  

Clearly (6)  (7) and X(6)  X(7) approximately.
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Hence the largest eigenvalue is 3.41 and the corresponding eigenvector 
is [0.74, – 1, 0.67]

EXAMPLE 4.12

Obtain by the power method, the numerically dominant eigenvalue and 
eigenvector of the matrix

 

15 4 3
10 12 6
20 4 2

A

  
 
   
   

Solution:

Let the initial approximation to the eigenvector be X  [1, 1, 1]. Then

    1 1

15 4 3 1 8 0.444
10 12 6 1 4 18 0.222
20 4 2 1 18 1

AX X

        
      
             
              

So the first approximation to eigenvalue is – 18 and the corresponding 
eigenvector is [– 0.444, 0.222, 1].

Now       1 1 2

15 4 3 0.444 1
10 12 6 0.222 10.548 0.105
20 4 2 1 0.736

AX X

      
    
          
          

 The second approximation to the eigenvalue is – 10.548 and the ei-
genvector is [1, – 0.105, – 0.736].

Repeating the above process

 

       

           

       

2 3 3 3 4 4

4 5 5 5 6 6

6 7 7 7

0.930 1
18.948 0.361 ; 18.394 0.415

1 0.981

0.995 1
19.698 0.462 ; 19.773 480

1 0.999

0.997
19.922 0.490 ; 19

1

AX X AX X

AX X AX X

AX X AX

   
   

         
      

   
   

         
      

 
 

    
  

   8 8

1
.956 495

0.999
X
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Since (7)  (8) and X(7)  X(8) approximately, therefore the dominant 
eigenvalue and the corresponding eigenvector are given by

    8 8

1 1
19.956 0.495 . ., 20 0.5

0.999 1
X i e

    
   

     
      

Hence the dominant eigenvalue is 20 and eigenvector is [– 1, 0.5, 1].

Exercises 4.2

1. Find the eigenvalues and eigenvectors of the matrices.

(a) 
1 4
3 2
 
 
 

           (b) 
1 2
5 4
 

  

2. Find the latent root and the latent vectors of the matrices

(a) 
2 0 1
0 2 0
1 0 2

 
 
 
  

     (b) 
2 2 3

2 1 6
1 2 0

  
 

 
   

  (c) 
6 2 2
2 3 1

2 1 3

  
 
  
  

3. Using the Cayley-Hamilton theorem, find the inverse of

(a) 
1 1 2
0 2 0
0 0 3

 
 

 
  

  (b) 

2 1 1
0 1 0
1 1 2

 
 
 
  

           (c) 
2 1 1
1 2 1

1 1 2

 
 
  
  

4. Using Gerschgorim circles, find the limits of the eigenvalues of the 

matrix 
2 2 0
2 5 0
0 0 3

A

 
 
 
  

5. Find, by power method, the larger eigenvalue of the following matrices:

(a) 
1 2
3 4
 
 
 

         (b) 
4 1
1 3
 
 
 

6. Find the largest eigenvalue and the corresponding eigenvector of the 
matrices:

(a) 
1 3 1
3 2 4
1 4 10

 
 
 
  

 (b) 
1 3 2
4 4 1
6 3 5
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(c) 
25 1 2
1 3 0
2 0 4

 
 
 
  

taking [1, 0, 0]T as initial eigenvector.

Obs. The iteration method is a special method as it gives the 
largest or the smallest eigenvalue only. Now we shall describe 
three modern methods for finding all the eigenvalues of a real 
symmetric matrix A.

The eigenvalues of A are given by the diagonal elements when 
A is reduced to either the diagonal matrix D or the lower 
triangular matrix L or the upper triangular matrix U. Thus the 
methods of finding eigenvalues of A are based on reducing A to 
D or L or U.

4.12 Jacobi’s Method

Let A be a given real symmetric matrix. Its eigenvalues are real and 
there exists a real orthogonal matrix B such that B1 AB is a diagonal ma-
trix D. Jacobi’s method consists of diagonalizing A by applying a series of 
orthogonal transformations B1, B2,, Br such that their product B satisfies 
the equation B1 AB  D.

For this purpose, we choose the numerically largest non-diagonal ele-

ment aij and form a 2 × 2 submatrix 1 .
ij ij

ji jj

a a
A

a a

 
 
 

Where aij  aji, which can easily be diagonalized.

Consider an orthogonal matrix  1

cos sin
sin cos

B
   

   
 so that B1

-1B1

Then 1
1 1

cos sin cos sin
sin cos sin cos

aii aij
B A B

aji ajj
        

          

 
 

 

2 2

2 2

1
cos sin sin 2 , cos2 sin 2

2
1

cos2 sin 2 , sin cos sin 2
2

ii jj ij ij jj ii

ij jj ii ii jj jj

a a a a a a

a a a a a a

 
      

 
        

 (1)

Now this matrix will reduce to the diagonal form, if aij cos 2  1
2

(ajj – 
aii) sin 2  0

NOTE
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i.e., if 

 
2

tan 2
ii jj

aij
a a




 (2)

This equation gives four values of , but to get the least possible rota-
tion, we choose – /4    /4.

Thus (1) reduces to a diagonal matrix.

As a next step, the largest non-diagonal element (in magnitude) in the 
new rotated matrix is found and the above procedure is repeated using the 
orthogonal matrix B2.

In this way, a series of such transformations are performed so as to 
annihiliate the non-diagonal elements. After making r transformations, we 
obtain 

 
1 1 1 –1

1 1 1 –1r r r rB B B AB B B B AB  
   

As r  , B1 AB approaches a diagonal matrix whose diagonal ele-
ments are the eigenvalues of A.

Also the corresponding columns of B  B1B2
Br, are the eigenvectors 

of A.

EXAMPLE 4.13

Using Jacobi’s method, find all the eigenvalues and the eigenvectors of 
the matrix

 

1 2 2

2 3 2

2 2 1

A

 
 
 
 
 

Solution:

Here the largest non-diagonal element is a13  a31  2. Also a11  1 and 
a33  1

 13

11 33

2 2 2
tan 2

1 1
a

a a


  
 

i.e., 2  /2 or   /4

Then 1
1 1

cos 0 sin 1 2 0 1 2
0 1 0 0 1 0 and B

sin 0 cos 1 2 0 0 1 2

B B
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 The first transformation gives

 

1
1 1 1

1 1/ 2 21/ 2 0 1/ 2 1/ 2 0 1/ 2
0 1 0 1/ 2 3 1/ 2 0 1 0

1/ 2 0 1/ 2 2 1/ 2 1 1/ 2 0 1/ 2

3 2 0
2 3 0
0 0 1

D B AB

        
      
    

    

 
 
 
  

Now the largest non-diagonal element is a12  a21  2. Also a11  3 and 
a22  3.

  12

11 22

2 2 2
tan 2

0
a

a a


  


i.e.,       2  /2 or   /4.

Then         2

1 1 02 2cos sin 0
sin cos 0 1 1 02 2

0 0 1 0 0 1
B

       
     
     

 The second transformation gives

1
2 1 2

1 1 0 1 1 02 2 2 23 2 0 5 0 0
1 1 0 2 3 0 1 1 0 0 1 02 2 2 2
0 0 1 0 0 1 0 0 1 0 0 1

B D B

      
      
         
             

Hence the eigenvalues of the given matrix are 5, 1, – 1 and the corre-
sponding eigenvectors are the columns of

1 2

1 1 0 1 1 12 2 2 2 21 0 12 2
0 1 0 1 1 0 1 1 02 2 2 2

0 0 11 0 1 1 2 1 12 2 2 2

B B B

            
      
    

    

A disadvantage of Jacobi’s method is that the element annihili-
ated by a transformation, may not remain zero during the sub-
sequent transformations. Given’s suggested a reduction which 
does not disturb zeros already formed. But instead of leading to a 
diagonal matrix as in Jacobi’s method, the Given’s method leads 
to a tri-diagonal matrix. The eigenvalues and eigenvectors of the 
original matrix have to be found from those of the tri-diagonal 
matrix.

NOTE
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EXAMPLE 4.14

Obtain using Jacobi’s method, all the eigenvalues and eigenvectors of 
the matrix

 
1 1 0.5
1 1 0.25

0.5 0.25 2
A

 
 
 
  

Solution:

Here the largest non-diagonal element is a12  1.

Also a11  1, a22  1.

  12

11 12

2 2 1
tan 2 .

0
a

a a


  


i.e.,                    2   or   
2 4
 

    .

Then 1 1 1

1 1 02 2cos sin 0
sin cos 0 1 1 0 andB 1=B2 2

0 0 1 1 0 1
B

       
       
     

 The first transformation is

1
1 1 1

1 1 0 1 1 02 2 2 21 1 1 2
1 1 0 1 1 1 4 1 1 02 2 2 2
0 0 1 0 0 11 1 4 12

D B AB

     
    
       
    

    

             

2 0 3 2 8

0 0 2 8

3 2 8 22 8

 
 
  
 
 

Now the largest non-diagonal element of  D1 is a13  3 2/8 . Also, 
11  2, 33  2.

  13

11 33

2
tan 2 , . .,2 or

2 4
i e

  
   

 

Then  2

cos 0 sin 1 0 12 2
0 1 0 0 1 0

sin 0 cos 1 0 12 2

B
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 The second transformation gives

1
2 2 1 2

2 0 3 2/81/ 2 0 1/ 2 1/ 2 0 1/ 2
0 1 0 0 0 2/8 0 1 0

1/ 2 0 1/ 2 3 2/8 2/8 2 1/ 2 0 1/ 2

D B D B

        
      
    

     

      
2.530 0.125 0
0.125 0 0.125

0 0.125 147

 
 
   
  

Repeating the above steps, we obtain

                            3

0.998 0.049 0
0.049 0.998 0

0 0 1
B

 
 
  
  

and 1
3 3 2 3

2.536 0.000 0.006
0.000 0.006 0.125

0.006 0.125 1469
D B D B

 
 

     
  

Hence the eigenvalues of A are 2.536, – 0.006, 1.469 approximately and 
the corresponding eigenvectors are the columns of 

 
1 2 3

0.531 0.721 0.444
0.461 0.686 0.562
0.710 0.094 0.698

B B B B

  
 

   
  

4.13 Given’s Method

If A is a real symmetric matrix, then Given’s method consists of the 
following steps:

Step I. To reduce A to a tri-diagonal symmetric matrix:

To begin with, consider the matrix 
11 12 13

1 12 22 23

13 23 33

a a a

A a a a

a a a

 
 
 
  

 (1)

and the orthogonal rotation matrix B1 in the plane (2, 3) as 

 1

1 0 0
0 cos sin
1 sin cos

B
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Then  
11 12 13

1
1 1 1 12 22 23

13 23 33

1 0 1 1 0 1
0 cos sin 0 cos sin
0 sin cos 0 sin cos

a a a

B A B a a a

a a a



    
    
           
            

In the resulting matrix, (1, 3) element  – a12 sin   a13 cos . It will be 
zero, if – a12 sin   a13 cos   0, i.e., if tan   a13/a12.  (2)

Thus with this value of , the above transformation gives zeros in (1, 3) 
and (3, 1) positions.

Now we perform rotation in the plane (2, 4) and put the resulting ele-
ment (1, 4)  0. This would not affect the zeros obtained earlier. Proceeding 
in this way, the transformations are applied to the matrix so as to annihilate 
the elements (1, 3), (1, 4), (1, 5),, (1, n), (2, 4), (2, 5),, (2, n) in this 
order. Finally we arrive at the tri-diagonal matrix

 

1 1

1 2 2

2 3

1 1

1

0 0 0
0 0

0 3 0p=

0 0 0 0
n n

n n

p q

q p q

q p q

p q

q P
 



 
 
 
 
 
 
  





  
 

Step II. To find the eigenvalues of a tri-diagonal matrix.

Let the resulting tri-diagonal matrix after first transformation be

 
11 12

12 22 23

23 33

0

0

  
 
   
   

 (3)

Then the eigenvalues of (1) and (3) are the same. To obtain the eigen-
values of (3), we have

  
11 12

12 22 23 3

23 33

0

0

0

f







  
 
      

 
  

 [say]

  f0()  1, f1()  11 –   11 –  f0()

        11 12 2
2 22 1 12 0

12 22

f f f
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Expanding f3() in terms of the third row, we get

     11 12 11
3 33 23

12 22 12 23

0
f        

    
     

i.e.,  f3()  (33 – ) f2() – (23)
2 f1() (4)

In general, the recurrence formula is
 fk()  (kk – ) fk–1() – (k–1, k)2 fk–2(), 2  k  n (5)

The equation fk()  0 is the characteristic equation which can be solved 
by any standard method. Thus the roots of (5) will be the eigenvalues of the 
given symmetric matrix.

Step III. To find the eigenvectors of the tri-diagonal matrix.

If Y is an eigenvector of the tri-diagonal matrix P and if B1, B2, Bj are 
the orthogonal matrices employed in reducing the matrix A to the form 
P, then the corresponding eigenvector of A is given by X  B1B2... Bj Y.

Obs. 1. The number of rotations required for the Given’s 
method are equivalent to the number of non-tri-diagonal 
elements of the matrix. In the case of a 3 × 3 matrix, only one 
rotation is required; whereas for a 4 × 4 matrix, three rotations 
are needed and so on.

The amount of computation goes on decreasing from one 
rotation to the next, as the order of the matrix for computation 
also starts reducing.

Obs. 2. The sequence of functions f0(), f1(), f2(), fk() 
is called the Strum sequence. A table of this sequence for 
various values of  is prepaired and the number of changes in 
sign of the Strum sequence is calculated. Then the difference 
between these number of changes of sign for consecutive values 
of  gives an approximate location of the eigenvalues. Once the 
location of the eigenvalues is known, their exact values can be 
found by any iterative method, e.g., Newton-Raphson method.

EXAMPLE 4.15

Using Given’s method, reduce the following matrix to the tri-diagonal 
form:

 

2 1 3
1 4 2
3 2 3

A

 
 
 
  

NOTE
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Solution:

There being only one non-tri-diagonal element a13( 3) which has to be 
reduced to zero, only one rotation is required.

To annihilate a13, we define the orthogonal matrix in the plane (2, 3) as:

 

1 0 0
0 cos sin
0 sin cos

B

 
 
    
   

where  is found from the formula
13

12

3
tan 3

1
a
a

    and hence sin   3/ 10  and cos   1/ 10 .

 
11 12

1
1 12 22 23

23 33

0

0
A B AB

  
 

     
   

where  11  2, 12  a12 cos   a13 sin   10   3.16,

22  a22 cos2   2a23 sin  cos   a33 sin
2   4.3

23  (a33 – a22) sin  cos   a23(cos2  – sin2 )  – 1.9

33  a22 sin
2   a33 cos2   3.9.

Hence A is reduced to the tri-diagonal matrix 
2 3.16 0

3.16 4.3 19
0 19 3.9

 
 

 
  

Note. An alternative procedure for reduction of a symmetric matrix to 
the tri-diagonal form has been suggested by Householder. This method, 
though more complicated, requires half as much computation, as the 
Given’s method. In any case, it is a substantial improvement on the 
Given’s procedure since it reduces an entire row and column by a single 
transformation. In this method, the matrix is reduced to tri-diagonal form 
using elementary orthogonal transformations

4.14 House-Holder’s Method

Consider an nth order real symmetric matrix A  [aij]. This method con-
sists in pre and post-multiplying A by a real symmetric orthogonal matrix 
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P such that PAP reduces to the tridiagonal form.

Let the matrix P be of the form P  I – 2ww (1)

ww  w12  w2
2   wn

2  1 (2)

Then         P  (I – 2ww)  I – 2ww  P

And      PP  (I – 2ww) (I – 2ww)

                          I – 4ww  4ww. ww  I [by (2)

Thus P is a symmetric orthogonal matrix.

Now take w with first (k – 1) zero components, so that

                   wk  [0, 0,, 0, xk, , xn] (3)

Since wkwk  1, we have xk
2  xk + 1

2  xn
2  1

Then Pk
1APk  PkAPk  PkAPk

We now form successively Ak  PkAk–1 Pk; k  2, 3,, n – 1.

As a first transformation, we determine x’s so that zeros are created in 
the positions

(1, 3), (1, 4),, (1, n) and (3, 1), (4, 1),, (n, 1)

 As a second transformation, we find x’s so that zeros are created in the 
positions (2, 4), (2, 5),, (2, n) and (4, 2), (5, 2),, (n, 2).

After (n – 2) such transformations, we arrive at a tri-diagonal matrix.

EXAMPLE 4.16

Using House-holder’s method, reduce the following matrix to the tridi-
agonal form:

 

1 4 3
4 1 2
3 2 1

A

 
 
 
  

Solution:

Let                           
11 12 13

12 22 23

13 23 33

a a a

A a a a

a a a

 
 
 
  

Here we take                2 2 30, ,w x x    
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so that 2
2 2 2 2 3

2 3 3

1 0 0

1 2 0 1 2 1 2
0 1 2 1 2

P w w x x x

x x x

 
       
    

Now the element (1, 3) of PAP can become zero only if the correspond-
ing element in AP is zero. The first row elements of AP are a11, a12 – 2p1x2, 
a13 – 2p1x3 where p1  a12 x2  a13 x3.

 We require that a13 – 2p1x3  0 (i)

Since the sum of the squares of the elements in any row is invariant 
under an orthogonal transformation, we have

 
2 2 2 2 2
11 12 13 11 12 1 2 ( 2 x ) +0 a a a a a p    

or  2 2
12 1 2 132 | 12a p x a a    (ii)

For the given matrix, (i) and (ii) become

 3 – 2p1x3  0 (iii)

  2 2
1 24 2 4 3 5p x     (iv)

where p1  4x2  3x3

Multiplying (iii) by x3 and (iv) by x2 and adding, we get

 2 2
3 2 1 3 2 23 4 2 (( ) 5x x p x x x     [ 2 2

2 3x x  ]
i.e., p1 – 2p1   5x2 or p1   5x2 (v)

Substituting in (iv), we obtain 4 – 2 (5x2)x2  5

which gives x2  1/ 10  or x2  3/ 10

From (iii),  
2

3
3

2 1
3

10p x
x    [by(v)

Since x3 contains x2 in the denominator, we obtain best accuracy if x2 is 
large

 Choosing  2 3
3 10 1

10
3

,
10 3 10

x x   

Taking  ve sign, we get 2 3
3 1

and
10 10

x x 

  2 22P I w w 
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01 0 0

3 30 1 0 2 / 10 0, / 10 ,1/ 10
0 0 1 1/ 10

1 0 0
0 4 5 3 5
0 3 5 4 5

  
  

    
     

 
 
   
   

Hence PAP
1 0 0 1 4 3 1 0 0
0 4 5 3 5 4 1 2 0 4 5 3 5
0 3 5 4 5 3 2 1 0 3 5 4 5

   
   
       
         

 

1 0 0 1 5 0 1 5 0
0 4 5 3 5 4 2 1 5 73 25 14 25
0 3 5 4 5 3 11 5 2 5 0 3 5 11 25

     
    
          
             

which is the required tri-diagonal matrix.

Exercises 4.3

1. Using Jacobi’s method, find all the eigenvalues and the eigenvectors of 
the matrices:

(a) 
5 0 1
0 2 0
1 0 5

 
 

 
  

  (b) 
2 3 1
3 2 2
1 2 1

 
 
 
  

2. Reduce the matrix 
1 1 1 2
1 1 1 4

1 2 1 4 2

 
 
 
  

 to the tri-diagonal form, using the 

Householder’s method

3. Apply  Householder’s method, to find the eigenvalues of the matrix 

2 1 1
1 2 1
1 1 2
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4. Transform the matrix 
1 2 2
2 1 2
2 2 1

 
 
 
  

to the tri-diagonal form using Given’s 

method. Hence find the largest eigenvalue and the corresponding ei-
genvector of the tri-diagonal matrix.

5. Find the eigenvalues of the matrix 
2 0

2 0
0 0 3

i

i

 
 
 
  

4.15 Objective Type of Questions

Select the correct answer or fill up the blanks in the following questions:

1. The eigenvalues of a triangular matrix are..........

2. Inverse of 
5 3
3 2
 
 
 

 is..........

3. The most suitable initial eigenvector out of 
1 1

,
1 0
  
  
  

, and 
0
0
 
 
 

to find the 

larger eigenvalue of the matrix
1 4
3 2
 
 
 

 in one iteration, is..........

4. Two eigenvalues of the matrix 
2 2 1
1 3 1
1 2 2

A

 
 
 
  

re equal to 1 each, then the 

eigenvalues of A1 are..........

5. Eigenvalues of 
1 4
3 2
 
 
 

 are..........

6. If  is an eigenvalue of a matrix A, then 1/ is the eigenvalue of..........

7. The product of two eigenvalues of the matrix 
6 2 2
2 3 1

2 1 3

 
 
  
  

is 16, then 

the third eigenvalue is..........
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8. The Power method works satisfactorily only if the matrix A has a...... 
eigenvalue.

9. Eigenvalues of the matrix 
1 1

1 1
i

i

 
  

 are..........

10. If  is an eigenvalue of an orthogonal matrix, then 1/ is also its..........

11. Dominant eigenvalues of 
1 2
3 4
 
 
 

 by the Power method are..........

12. The eigenvalues of an idempotent matrix are..........

13. If the eigenvalues of a matrix A are – 4, 3, 1, then the dominant eigen-
value of A is.......

14. If 
2 2 1
1 3 1 ,
1 2 2

A

 
 
 
  

 then A1 ..........

15. The eigenvalue that can the obtained by using the Power method is.......

16. If  is the largest eigenvalue of the matrix A, then the relation giving the 
smallest eigenvalue is.......





C H A P T E R5
EMPIRICAL LAWS AND 
CURVE-FITTING

Chapter Objectives

 Introduction 
 Graphical method
 Laws reducible to the linear law 
 Principle of least squares
 Method of least squares 
 Fitting a curve of the type y  a  bx2, etc.
 Fitting of other curves
 Most Plausible values
 Method of group averages
 Laws containing three constants
 Method of moments 
 Objective type of questions.

5.1 Introduction

In many branches of Applied Mathematics, it is required to ex-
press a given data, obtained from observations, in the form of a law 
connecting the two variables involved. Such a law inferred by some 
scheme, is known as the empirical law. For example, it may be de-
sirable to obtain the law connecting the length and the tempera-
ture of a metal bar. At various temperatures, the length of the bar 
is measured. Then, by one of the methods explained below, a law 
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is obtained that represents the relationship existing between temperature 
and length for the observed values. This relation ship can then be used to 
predict the length at an arbitrary temperature.

Scatter diagram. To find a relationship between the set of paired observa-
tions x and y, we plot their corresponding values on the graph, taking one 
of the variables along the x-axis and other along the y-axis, i.e., (x1, y1), (x2, 
y2), (xn, yn). The resulting diagram showing a collection of dots is called a 
scatter diagram. A smooth curve that approximates the above set of points 
is known as the approximating curve.

Curve fitting. Several equations of different types can be obtained to ex-
press the given data approximately. But the problem is to find the equation 
of the curve of “best fit” which may be most suitable for predicting the un-
known values. The process of finding such an equation of ‘best fit’ is known 
as curve-fitting.

If there are n pairs of observed values then it is possible to fit the given 
data to an equation that contains n arbitrary constants, and we can solve n 
simultaneous equations for n unknowns. If we desired to obtain an equation 
representing these data but have less then n arbitrary constants, then we 
can have recourse to any of these four methods: Graphical method, method 
of least-squares, method of group averages, and method of moments. The 
graphical method and the method of averages fail to give the values of the 
unknown constants uniquely and accurately, while the other methods do. 
The method of least squares is probably the best to fit a unique curve to a 
given data. It is widely used in applications and can be easily implemented 
on a computer.

5.2 Graphical Method

When the curve representing the given data is a linear law y  mx  c; 
we proceed as follows:

  (i)  Plot the given points on the graph paper taking a suitable scale.

 (ii) Draw the straight line of best fit such that the points are evenly 
distributed about the line.

(iii)  Taking two suitable points (x1, y1) and (x2, y2) on the line, calculate 
m, the slope of the line and c, its intercept on the y-axis.
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When the points representing the observed values do not approximate 
to a straight line, a smooth curve is drawn through them. From the shape 
of the graph, we try to infer the law of the curve and then reduce it to the 
form y  mx  c.

5.3 Laws Reducible to the Linear Law

We give below some of the laws in common use, indicating the way 
these can be reduced to the linear form by suitable substitutions:

1. When the law is y  mxn  c
Taking xn  X and y  Y, the above law becomes Y  mX  c

2.  When the law is y  axn.
Taking logarithms of both sides, it becomes log10y  log10a  n log10x
Putting log10x  X and log10y  Y, it reduces to the form
Y  nX  c, where c  log10a.

3. When the law is y  axn  b log x.

Writing it as
log log

ny x
a b

x x
  and taking xn/log x  X and y/log x  Y, the 

given law becomes, Y  aX  b.

4. When the law is y  aebx.
Taking logarithms, it becomes log10 y  (b log10 e)x  log10a.
Putting x  X and log10 y  Y, it takes the form Y  mX  c
where m  b log10e and c  log10a.

5. When the law is xy  ax  by.

Dividing by x, we have 
y

y b a
x

  .

Putting y/x  X and y  Y, it reduces to the form Y  bX  a.

EXAMPLE 5.1

R is the resistance to motion of a train at speed V; find a law of the type 
R  a  bV2 connecting R and V, using the following data:

V (km/hr): 10 20 30 40 50

R (kg/ton): 8 10 15 21 30
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Solution:

Given law is R  a  bV2 (i)

Taking V2  x and R  y,

(i) becomes, y  a  bx  (ii)

which is a linear law.

Table for the values of x and y is as follows:

x: 
y: 

100 
8 

400
10 

 900 
15 

1600 
21 

2500
30

Plot these points. Draw the straight line of best fit through these points 
(Figure 5.1).

(0, 0) 400 800 1200 1600 2000 2400 2800
0

10

20

30

40

(100,8)
(400,10)

(900,15)
(1600,21)
M

N

L

(2500,30)

X

Y

FIGURE 5.1

Slope of this line ( b)

 
21 15 6

1600 900 700
0.0085 nearly.

MN
LM


  




Since L(900, 15) lies on (ii),

 15  a  0.0085 × 900,

where                                  a  15 – 7.65  7.35 nearly.

EXAMPLE 5.2

The following values of x and y are supposed to follow the law 
y  ax2  b log10x. Find graphically the most probable values of the constants 
a and b.
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x 2.85 3.88 4.66 5.69 6.65 7.77  8.67

y 16.7 26.4 35.1 47.5 60.6 77.5 93.4

Solution:

Given law is y  ax2  b log10x

i.e., 
2

10log log10x

y x
a b

x
   (i)

Putting  x2/log10 x  X and y/ log10x  Y,

(i) becomes                  Y  aX  b (ii)

This is a linear law.

Table for the values of X and Y is as follows:

X  x2/log10 x 17.93 25.56 32.49 42.87 53.75 67.80 80.83

Y  y/log10 x 35.59 44.83 52.50 69.90 73.65 87.04 99.56

Points P1 P2 P3 P4 P5 P6 P7

Plot these points and draw the straight line of best fit through these points 
(Figure 5.2).

15 25 35 45 55 65 75
X35

0

45

55

65

75

85

95

Y

P 1

P 2

P 3

P 4

P 5

M

P 6

FIGURE 5.2

Slope of this line ( a) 5

3

73.65 52.50 21.15
0.99

53.75 32.49 21.26
MP
P M
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Since P3 lies on (ii), therefore,

 52.50  0.99 × 32.49  b
where                            b  20.2

Hence (i) becomes        y  (0.99) x2  (20.2) log10
x.

EXAMPLE 5.3

The values of x and y obtained in an experiment are as follows:

x  2.30 3.10 4.00 4.92 5.91 7.20

y  33.0 39.1 50.3 67.2 85.6 125.0

The probable law is y  aebx. Test graphically the accuracy of this law 
and if the law holds good, find the best values of the constants.

Solution:

Given law is y  aebx (i)

Taking logarithms to base 10, we have
 log10

y  log10a  (b log10e) x

Putting x  X and log10
y  Y, it becomes

y  (b log10e) X  log10a (ii)

Table for the values of X and Y is as under:

X  x 2.30 3.10 4.00 4.92 5.91 7.20

Y  log10 y 1.52 1.59 1.70 1.83 1.93 2.10

Points P1 P2 P3 P4  P5 P6

Scale: 1 small division along x-axis  0.1

 10 small divisions along y-axis  0.1.

Plot these points and draw the line of best fit. As these points are lying 
almost along a straight line, the given law is nearly accurate (Figure 5.3).

Now the slope of this line ( log10 ) 0.12e MN
b

NM
  

where 
10

0.12
0.12 2.303 0.276

log
b

e
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Since the point L (4, 1.71) lies on (ii), therefore,

 1.71  0.12 × 4  log10 a where a  17 nearly.
Hence the curve of best fit is y  17 e0.276 x.

X
P1

0
(2, 1.5) 3 4 5 6 7 8

P 2

P 3

P 4

P 5

P 6

1.6

1.7

1.8

1.9

2.0

2.1

Y

L(4,1.71)

N(5,1.83)

M

FIGURE 5.3

Exercises 5.1

1. If p is the pull required to lift the weight by means of a pulley block, find 
a linear law of the form p  a  bw, connecting p and w, using the follow-
ing data:

w(lb): 50 70 100 120

p(lb): 12 15 21 25

Compute p, when w  150 lb.

2. Convert the following equations to their linear forms:
(i) y  ax  bx2   (ii) y  b/[x(x – a)].

3. The resistance R of a carbon filament lamp was measured at various 
values of the voltage V and the following observations were made:

Voltage V... 62 70 78 84 92

Resistance R... 73 70.7 69.2 67.8 66.3
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Assuming a law of the form ,
a

R b
V

   find by graphical method the best 
values of a and b.

4. Verify if the values of x and y, related as shown in the following table, 
obey the law .y a b x  If so, find graphically the values of a and b.

x: 500  1,000 2,000 4,000 6,000

y: 0.20 0.33 0.38 0.45 0.51

5. The following table gives the pressure p and the volume v at various 
instants during the expansion of steam in a cylinder. Show that the equa-
tion of the expansion is of the form pvn  c and find the values of n and c 
approximately.

p: 200 100 50 30 20 10

v: 1.0 1.7 2.9 4.8 5.9 10

6. The following values of T and l follow the law T  aln. Test if this is so 
and find the best values of a and n.

T  1.0 1.5 2.0 2.5

l  25 56.2 100 1.56

Fit the curve y  aebx to the following data:

x: 0 2 4

y: 5.1 10 31.1

The following are the results of an experiment on friction of bearings. 
The speed being kept constant, corresponding values of the coefficient 
of friction and the temperature are shown in the table:

t: 120 110 100 90 80 70 60

: 0.0051 0.0059 0.0071 0.0085 0.00102 0.00124 0.00148

If  and t are given by the law   aebt, find the values of a and b by 
plotting the graph for  and t.

5.4 Principle of Least Squares

The graphical method has the obvious drawback of being unable to give 
a unique curve of fit. The principle of least squares, however, provides an 
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elegant procedure of fitting a unique curve to a given data.

Let the curve y  a  bx  cx2   kxm

be fitted to the set of data points (x1, y1), (x2, y2),, (xn, yn).

0

Y

X

en

(1)
Pn

ei

e1

L1 L2 Li Ln

M1
e2

M2

Mi

Mn

P1(x1, y1) 

Pi(xi, yi) 

P2

FIGURE 5.4

Now we have to determine the constants a, b, c,... k such that they 
represents the curve of best fit. In the case of n  m, when substituting the 
values (xi, yi) in (1), we get n equations from which a unique set of n con-
stants can be found. But when n > m, we obtain n equations which are more 
than the m constants and hence cannot be solved for these constants. So we 
try to determine the values of a, b, c,  k which satisfy all the equations as 
nearly as possible and thus may give the best fit. In such cases, we apply the 
principle of least squares.

At x  xi, the observed (experimental) value of the ordinate is yi and the 
corresponding value on the fitting curve (1) is a  bxi  cxi

2   kxi
m (  i, 

say) which is the expected (or calculated) value (Figure 5.4). The difference 
of the observed and the expected values, i.e., yi – i(  ei) is called the error 
(or residual) at x  xi. Clearly some of the errors e1, e2,, en will be positive 
and others negative. Thus to give equal weightage to each error, we square 
each of these and form their sum, i.e., E  e1

2  e2
2   en

2.

The curve of best fit is that for which e’s are as small as possible, i.e., the 
sum of the squares of the errors is a minimum. This is known as the prin-
ciple of least squares and was suggested by a French mathematician Adrien 
Marie Legendre in 1806.

Obs. The principle of least squares does not help us to 
determine the form of the appropriate curve which can fit a 

NOTE
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given data. It only determines the best possible values of the 
constants in the equation when the form of the curve is known 
before hand. The selection of the curve is a matter of experience 
and practical considerations.

5.5 Method of Least Squares

For clarity, suppose it is required to fit the curve y  a  bx  cx2 to 
a given set of observations (x1, y1), (x2, y2), , (x5, y5). For any xi, the ob-
served value is yi and the expected value is i  a  bxi  cxi

2 so that the error 
ei  yi – i. 

 The sum of the squares of these errors is

 
2 2 2

1 2 5

2 2 2 2 2 2
1 1 1 2 2 2 5 5 5[ ( )] [ )] [ ( )]

E e e e

y a bx cx y bx cx y a bx cx

  

           





For E to be minimum, we have

 
2 2 2

1 1 1 2 2 2

2 2
5 5 5

0 2[ ( )] 2[ ( )]

2[ ( )]

E
y a bx cx y a bx cx

a
y a bx cx


        



    
 (1)

 2 2
1 1 1 1 2 2 2 2

2
2 5 5 5

0 2 [ ( )] 2 [ ( )]

2 [ ( )]

E
x y a bx cx x y a bx cx

b
x y a bx cx


        



    

 (2)

 2 2 2 2
1 1 1 1 2 2 2 2

2 2
5 5 5 5

0 2 [ ( )] 2 [ ( )]

2 [ ( )]

E
x y a bx cx x y a bx cx

b
x y a bx cx


        



    

 (3)

Equation (1) simplifies to

 2 2 2
1 2 5 1 2 5 1 2 5 5  ( ) ( )y y y a b x x x c x x x             

i.e, 2 5yi a b xi cxi      (4)

Equation (2) becomes
2 2 2

1 1 2 2 5 5 1 2 5 1 2 5

3 3 3
1 2 5

( ) ( )

( )

x y x y x y a x x x b x x x

c x x x

          

   

  


i.e., 2 3

i i i i ix y a x b x x x      
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Similarly (3) simplifies to 

 2 2 3 4
i i i i ix y a x b x c x      

The equations (4), (5) and (6) are known as normal equations and can 
be solved as simultaneous equations in a, b, c. The values of these constants 
when substituted in (1) give the desired curve of best fit.

Obs. On calculating 
2 2 2

2 2 2, ,
E E E

a b c
  

  
 and substituting the values 

of a, b, c just obtained, we will observe that each is positive, i.e,. 
E is a minimum.

Working procedure

(a) To fit the straight line y  a  bx

        (i) Substitute the observed set of n values in this equation.

       (ii)  Form normal equations for each constant, i.e., y  na  bx, 
xy  ax  bx2.

          [The normal equation for the unknown a is obtained by mul-
tiplying the equations by the coefficient of a and adding. The 
normal equation for b is obtained by multiplying the equations 
by the coefficient of b (i.e. x) and adding.]

      (iii)  Solve these normal equations as simultaneous equations for a 
and b.

       (iv)  Substitute the values of a and b in y  a  bx, which is the 
required line of best fit.

(b) To fit the parabola: y  a  bx  cx2

         (i) Form the normal equations y  na  bx  cx2

xy  ax  bx2  cx3 and x2y  ax2  bx3  cx4

              [The normal equation for c has been obtained by multiplying the 
equations by the coefficient of c (i.e., x2) and adding.]

        (ii) Solve these as simultaneous equations for a, b, c.

       (iii)  Substitute the values of a, b, c in y  a  bx  cx2, which is the 
required parabola of best fit.

(c)  In general, the curve y  a  bx  cx2   kxm1 can be fitted to a 
given data by writing m normal equations.

NOTE
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EXAMPLE 5.4

If P is the pull required to lift a load W by means of a pulley block, find 
a linear law of the form P  mW  c connecting P and W, using the follow-
ing data:

P  12 15 21 25

W  50 70 100 120

where P and W are taken in kg-wt. Compute P when W  150 kg.

Solution:

The corresponding normal equations are

 
2

4P c m W

WP c W m W

    

     

 (i)

The values of W etc. are calculated by means of the following table:

W P W2 WP
50 12 2500 600
70 15 4900 1050

100 21 10000 2100
120 25 14400 3000

Total = 340 73 31800 6750

 The equations (i) become 73  4c  340m and 6750  340c  31800m

i.e.,                                2c  170m  365 (ii)

and  34c  3180m  675  (iii)

Multiplying (ii) by 17 and subtracting from (iii), we get m  0.1879

 from (ii),                                       c  2.2785

Hence the line of best fit is P  2.2759  0.1879 W

When W  150 kg, P  2.2785  0.1879 × 150  30.4635 kg.

EXAMPLE 5.5

Fit a straight line to the following data:

x 6 7 7 8 8 8 9 9 10

y 5 5 4 5 4 3 4 3 3
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Solution:

Let the straight line be y  ax  b.

Then the normal equations are y  ax  9b

 xy  ax2  bx  (i)

The values of x, y etc. are calculated below:

x y xy x2

6
7
7
8
8
8
9
9
10

5
5
4
5
4
3
4
3
3

30
35
28
40
32
24
36
27
30

36
49
16
64
64
64
81
81

100
x  72 y  36 xy  282 x2  588

 The equations (i) become 36  72a  9b and 282  588a  72b
i.e.,                                     8a  b  4  (ii)
 98a  12b  47 (iii)
Multiplying (ii) by 12 and subtracting from (iii), we get a  – 0.5.

From (ii), b  8.

Hence the required line of best fit is y  – 0.5x  8.

EXAMPLE 5.6

Fit a second degree parabola to the following data:

x 0 1 2 3 4

y 1 1.8 1.3 2.  6.3

Solution:

Let u  x – 2 and v  y so that the parabola of fit y  a  bx  cx2 becomes
 v  A  Bu  Cu2

The normal equations are

 

2

2 2

2 2 3 4

5 or 12.9 5 10

or 11.3 10

or 33.5 10 34

v A B u C u A C

uv A u B u C u B

u v A u B u C u A C
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Solving these as simultaneous equations, we get

     A = 1.48, B = 1.13, C = 0.55
 (i) becomes; v = 1.48 +1.13u + 0.55u2

                     y = 1.48 + 1.13(x  2) + 0.55(x  2)2

Hence y = 1.42  1.07x +0.55x2

Obs. For the sake of convenience and ease in calculations, it 
is sometimes advisable to change the origin and scale with the 
substitutions X  (x – A)/h and Y  (y – B)/h, where A and B are 
the assumed means (or middle values) of x and y series, respec-
tively and h is the width of the interval.

EXAMPLE 5.7

Fit a second degree parabola to the following data:

x  1.0 1.5 2.0 2.5 3.0 3.5 4.0

y  1.1 1.3 1.6 2.0 2.7 3.4 4.1 

Solution:

We shift the origin to (2.5, 0) and take 0.5 as the new unit. This amounts 
to changing the variable x to X, by the relation X  2x – 5.

Let the parabola of fit be y  a  bX  cX2.

The values of X etc. are calculated as below:

x X y Xy X2 X2y X3 X4

1.0
1.5
2.0
2.5
3.0
3.5
4.0

–3
–2
–1
0
1
2
3

1.1
1.3
1.6
2.0
2.7
3.4
4.1

–3.3
–2.6
–1.6
0.0
2.7
6.8

12.3

9
4
1
0
1
4
9

9.9
5.2
1.6
0.0
2.7

13.6
36.9

–27
–8
–1
0
1
8

27

81
16
1
0
1

16
81

Total 0 16.2 14.3 28 69.9 0 196

The normal equations are

 7a  28c  16.2, 28b  14.3, 28a  196c  69.9
Solving these as simultaneous equations, we get

 a  2.07, b  0.511, c  0.061.
                y  2.07  0.511X  0.061 X2

NOTE
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Replacing X by 2x – 5 in the above equation, we get

 y  2.07  0.511 (2x – 5)  0.061 (2x – 5)2

which simplifies to y  1.04 – 0.198x  0.244x2

This is the required parabola of best fit.

EXAMPLE 5.8

Fit a second degree parabola to the following data:

x: 1989 1990 1991 1992 1993 1994 1995 1996 1997

y: 352 356 357 358 360 361 361 360 359

Solution:

Taking u  x – 1993 and v  y – 357, the equation y  a  bx  cx2 
becomes

 v  A  Bu  Cu2  (i)

x u 
x – 1993

y v 
y – 357

uv u2 u2v u2 u4

1989
1990
1991
1992
1993
1994
1995
1996
1997

–4
–3
–2
–1
0
1
2
3
4

352
356
357
358
360
361
361
360
359

–5
–1
0
1
3
4
4
3
2

20
3
0

–1
0
4
8
9
8

16
9
4
1
0
1
4
9

16

–80
–9
0
1
0
4

16
27
32

–64
–27
–8
–1
0
1
8

27
64

256
81
16
1
0
1

16
81

256
Total u  0 v  11 uv  51 u2  60 u2v  – 9 u3  0 u4  708

The normal equations are

 2 3

2 2 3 4

9  or 11 9 60
17

or 51 60 or 
20

or – 9 60 708

v A B u C u A C

uv A u B u C u B B

u v A u B u C u A C

       

        

        

On solving these equations, we get 
694 17 247

, ,
231 20 924

A B C  

 (i) becomes 2694 17 247
231 20 924

v u u  
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or 2694 17 247
357 ( 1993) ( 1993)

231 20 924
y x x     

or 
2 2694 33881 247 17 247 3986 247

(1993)
231 20 924 20 924 924

y x x x


     

or 23 – 1694.05 – 1061792.32 357 0.85 1065.52 – 0.267y x x x   

Hence 2–1062526.37 1066.37 – 0.267y x x 

Exercises 5.2

1. By the method of least squares, find the straight line that best fits the fol-
lowing data:

x: 1 2 3 4 5

y: 14 27 40  55 68

2. In some determinations of the value v of carbon dioxide dissolved in a 
given volume of water at different temperatures , the following pairs of 
values were obtained:

  0 5 10 15

v  1.80 1.45 1.18 1.00
Obtain by the method of least squares, a relation of the form v  a  b 
which best fits to these observations.

3. A simply supported beam carries a concentrated load P(lb) at its mid-
point. Corresponding to various values of P, the maximum deflection Y 
(in) is measured. The data are given below:

P: 100 120 140 160 180 200

Y: 0.45 0.55 0.60 0.70 0.80 0.85

Find a law of the form Y  a  bP.

4. The result of measurement of electric resistance R of a copper bar at 
various temperatures t° C are listed below:

t: 19 25 30 36 40 45 50

R: 76 77 79 80 82 83 85

Find a relation R  a  bt when a and b are constants to be determined 
by you.
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5. A chemical company, wishing to study the effect of extraction time (t) 
on the efficiency of an extraction operation (e) obtained the data shown 
in the following table:

t: 27 45 41 19 3 39 19 49 15 31

e: 57 64 80 46 62 72 52 77 57 68

Fit a straight line to the given data by the method of least squares.

6. Find the parabola of the form y  a  bx  cx2 which fits most closely 
with the observations:

x: – 3 – 2 – 1 0 1 2 3

y:  4.63 2.11 0.67 0.09 0.63 2.15 4.58 

7. By the method of least squares, fit a parabola of the form 
y  a  bx  cx2, to the following data:

x: 2 4 6 8 10

y: 6.07 12.85 31.47 57.38 91.29
Fit a parabola y  a  bx  cx2 to the following data:

x: 1 2 3 4 5 6 7 8 9
y: 2 6 7 8 10 11 11 10 9 

8. The velocity V of a liquid is known to vary with temperature T according 
to a quadratic law V  a  b T  CT2. Find the best values of a, b, c for 
the following table:

T: 1 2 3 4 5 6 7

V: 2.31 2.01 3.80 1.66 1.55 1.46 1.41 

9. The following table gives the results of the measurements of train resis-
tance, V is the velocity in miles per hour, R is the resistance in pounds 
per ton:

V: 20 40 60 80 100 120

R: 5.5 9.1 14.9 22.8 33.3 46.0

If R is related to V by the relation R  a  bV  cV2, find a, b and c.

5.6 Fitting A Curve of the Type

(1) y  a  bx2  (2) y  ax  bx2

(3) y  ax  b/x   (4) ax2  b/x.



210 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

(1) y  a  bx2

Putting x2  X, we have y  a  bX  (i)

which is a linear equation. Its normal equations are

 y  na  bX; yX  aX  bX2
Solving these, we get a and b. Substituting these values of a, b and re-

placing X by x2 in (i), we obtain the desired equation of best fit.

(2) y  ax  bx2

Rewriting this equation as y/x  a  bx and putting y/x  Y, we have

 Y  a  bx (i)
Its normal equations are

 Y  na  bx; Yx  ax  bx2

Solving these we get a and b. Replacing Y by y/x in (i), we obtain the 
desired equation of best fit.

(3) y  ax  b/x

Rewriting this equation as xy  ax2  b

and putting x2  X and xy  Y, we have Y  b  aX (i)

Its normal equations are

 Y  nb  X; XY  bX  aX2

Solving these equations, we get a and b. Replacing X by x2 and Y by xy 
in (i), we obtain the desired equation of best fit.

(4) y  ax2  b/x

Rewriting this equation as xy  ax3  b and putting x3  X and xy  Y, 
we have

 Y  b  aX (i)
Its normal equations are

 Y  bn  aX; XY  bX  X2

Solving these equations, we get a and b. Replacing X by x3 and Y by xy, 
we obtain the desired equation of best fit.
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EXAMPLE 5.9

Find the least squares fit of the form y  a0  a1x
2 to the following data

x:  – 1 0 1 2

y:  2 5 3 0
Solution:

Putting x2  X, we have y  a0  a1X (i)

 The normal equations are

 y  4a  a1X; Xy  a0X  a1X2.
The values of X, X2 etc. are calculated below:

X y X X2 XY

–1
0
1
2

2
5
3
0

1
0
1
4

1
0
1
16

2
0
3
0

y  10 X  6 X2  18 XY  5

 The normal equations become 10  400  6a1; 5  600  18a1

Solving these equations we get, a0  4.167, a1  – 1.111.

Hence the curve of best fit is

 y  4.167 – 1.111X i.e., y  4.167 – 1.111x2.

EXAMPLE 5.10 

Using the method of least squares, fit the curve y  ax2  b/x to the fol-
lowing data:

x: 1 2 3 4

y:  –1.51 0.99 8.88 7.66
Solution:

Rewriting the given equation as xy  ax3  b and putting x3  X and 
xy  Y, we get

 Y  aX  b (i)
 The normal equations are

 Y  aX  4b; XY  aX2  bX
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The values of X, Y etc. are calculated below:

X y X x3 Y xy XY X2

1
2
3
4

–1.51
0.99
3.88
7.66

1
8

27
64

–1.51
1.98

11.64
30.64

–1.51
15.84

314.28
1960.96

1
64

729
4096

X  100 Y  42. 75 XY  2289.57 X2  4890

 The normal equations become

 42.75  100a  4b
 2289.57  4890a  100b

Solving these equations, we get a  0.51, b  – 2.06

Hence the curve of best-fit is Y  0.51X ÷ 2.06

i.e., 

5.7 Fitting of Other Curves

(1) y  axb

Taking logarithms, log10 y  log10 a  blog10x

i.e.,  Y  A  bX (i) 
where X  log10 x, Y  log10 y and A  log10 a.

 The normal equations for (i) are

 Y  nA  bX, XY  AX  bX2

from which A and b can be determined. Then a can be calculated from 
A  log10 a.

(2) y  aebx  (Exponential curve)

Taking logarithms, log10 y  log10 a  bx log10 e

i.e., Y  A  Bx where Y  log10 y, A  log10 a and B  b log10 e

Here the normal equations are Y  nA  Bx, xY  Ax  Bx2 from 
which A, B can be found and consequently a, b can be calculated.

(3) xya  b (or pv  k)  (Gas equation)

Taking logarithms, log10 x  a log10 y  log10 b
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or  

This is of the form Y = A + BX

where 10 10 10
1 1

log , log , log ,X x Y y A b B
a a

   

Here also the problem reduces to finding a straight line of best fit 
through the given data.

EXAMPLE 5.11

An experiment gave the following values:

v (ft/min): 350 400 50  600

t (min): 61 26 7 2.6

It is known that v and t are connected by the relation v  atb. Find the 
best possible values of a and b. 

Solution:

We have log10 v  log10
 a  b log10 t

or Y  A  bX where X  log10t, Y  log10 v, A  log10 a.

 The normal equations are

Y  4A  bX   (i)

XY  AX  bX2 (ii)

Now X etc. are calculated as in the following table:

v t X log10t Y  log10v XY X2

350 61 1.7853 2.5441 4.542 3.187

400 26 1.4150 2.6021 3.682 2.002

500 7 0.8451 2.6990 2.281 0.714

600 2.6 0.4150 2.7782 1.153 0.172

Total 4.4604 10.6234 11.658 6.075

 Equations (i) and (ii) become

 4A  4.46b  10.623; 4.46A  6.075b  11.658
Solving these, A  2.845, b  – 0.1697 

 a  antilog A  antilog 2.845  699.8.
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EXAMPLE 5.12

Predict the mean radiation dose at an altitude of 3000 feet by fitting an 
exponential curve to the given data:

Altitude (x): 50 450 780 1200 4400 4800 5300

Dose of radiation (y): 28 30 32 36 51 58 69

Solution:

Let y  abx be the exponential curve.

Then log10y  log10a  x log10b

or  Y  A  Bx where Y  log10 y, A  log10 a, B  log10 b

 The normal equations are

 Y  7A  B x (i)
 x Y  Ax  B x2 (ii)

Now x etc., are calculated as follows:

x Y Y  log10 y xY x2

50 28 1.447158 72.3579 2500

450 30 1.477121 664.7044 202500

780 32 1.505150 1174.0170 608400

1200 36 1.556303 1867.5636 1440000

4400 51 1.707570 7513.3080 19360000

4800 58 1.763428 8464.4544 23040000

5300 69 1.838849 9745.8997 28090000

  16980 11.295579 29502.305 72743400

 Equations (i) and (ii) become

                       11.295579  7A  16980B

 29502.305  16980A  72743400B
Solving these equations, we get A  1.4521015, B  0.0000666289

  log10 y  Y  1.4521015  0.0000666289 x

Hence y(at x  3000)  44.874 i.e., 44.9 approx.
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EXAMPLE 5.13

Fit a curve of the form y  aebx to the following data:

x:  0 1 2 3

y: 1.05 2.10 3.85 8.30
Solution:

Taking logarithms of both sides, the given equation becomes

 log10 y  log10 a  bx log10 e

i.e.,  Y  A  bx where Y  log10 y, A  log10 a, B  b log10 e
  The normal equations are

 Y  4A  Bx; xY  Ax  Bx2.
Now x, Y etc. are calculated as in the table below:

x Y Y x2 xY

0 1.05 0.0212 0 0

1 2.10 0.3222 1 0.3222

2 3.85 0.5855 4 1.1710

3 8.30 0.9191 9 2.7573

x  6 Y  1.8480 x2  14 xY  4.2505

Substituting these values in the normal equations, we get

 4A  6B  1.848; 6A  14B  4.2505.

Solving these equations, A  0.0185, B  0.2956

   antilog A  1.0186, b  B/log10 e  0.6806

Hence the required curve of best fit is y  1.0186 e0.6806x.

EXAMPLE 5.14

The pressure and volume of a gas are related by the equation pV  k, 
and k being constants. Fit this equation to the following set of observa-
tions:

p (kg/cm2): 0.5 1.0 1.5 2.0 2.5 3.0

V (litres): 1.62 1.00 0.75 0.62 0.52 0.46
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Solution:

We have log10 p   log10 V  log10 k

or 10 10 10
1 1

log log logV k P 
 

or 10 10 10
1 1

where log , log , log ,Y A BX X P Y V A k B     
 

 The normal equations are

 Y  6A  BX (i)

 XY  AX  BX2  (ii)
Now X etc. are calculated as follows:

p V X  log10 p Y  log10 V XY X2

0.5 1.62 –0.3010 0.2095 –0.0630 0.0906
1.0 1.00 0.0000 0.0000 –0.0000 0.0000
1.5 0.75 0.1761 –0.1249 –0.0220 0.0310
2.0 0.62 0.3010 –0.2076 –0.0625 0.0906
2.5 0.52 0.3979 –0.2840 –0.1130 0.1583
3.0 0.46 0.4771 –0.3372 –0.1609 0.2276

Total 1.0511 – 0.7442 – 0.4214 0.5981

 Equations (i) and (ii) become

 6A  1.0511B  – 0.7442; 1.0511A  0.5981B  – 0.4214

Solving these, we get A  0.0132, B  – 0.7836.

   – 1/B  1.276

and k  antilog (A)  antilog (0.0168)  1.039.

Hence the equation of best fit is pV1.276  1.039.

5.8 Most Plausible Values of Unknowns

Consider m linear equations in n unknowns:

 

11 1 12 2 1 1

12 1 22 2 2 2

1 1 2 2

..............................................

n n

n n

mn n m

a x a x a x k

a x a x x x k

am x am x a x k

  


   


   






 (1)
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When m  n, we can find a set of values of the unknowns uniquely.

When m > n, i.e., the number of equations is greater than the number 
of unknowns, it may not be possible to find these values uniquely. Then we 
find those values of x1, x2,xn which satisfy (1) as nearly as possible. Apply-
ing the principle of least squares, these values 

can be obtained by minimizing 2
1 1 2 2

1

( )
m

i i in n i
x

E a x a x a x k


     

using the conditions of minima, i.e.,

 
1 2

0, 0, , 0,
n

E E E
x x x
  
  

  


we get n equations. Solving these equations, we get most plausible val-
ues of x1, x2, xn.

EXAMPLE 5.15

Find the most plausible values of x, y, and z from the equations x – 3y 
– 3z  – 14, 4x  y  4z  21, 3x  2y – 5z  5 and x – y  2z  3, by forming 
the normal equations.

Solution:

Let E  (x – 3y – 3z  14)2  (4x  y  4z – 21)2 
  (3x  2y – 5z – 5)2  (x – y  2z – 3)2

The most plausible values of x, y, z will be those which make E mini-
mum. These will be given by

 0, 0, 0
E E E
x y z
  
  

  

 

  2 –  2 –  3   0 .

2( 3 3 14) 2(4 4 21)4 2(3 2

.,2

5 5)

 6 8

3

7  8

E
x y z x y z x y

x y z
x

x y

z

i e


           

 



 





 (i)

Similarly  0 gives 6 15 70
E

x y z
y

   



and  0 gives 54 107
E

y z
z

  



Solving (i), (ii), and (iii) we get the desired values x  2.47, y  3.55, 
z  1.92.
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Exercises 5.3

1. If V (km/hr) and R(kg/ton) are related by a relation of the type R  a  
bV2, find by the method of least squares a and b with the help of the fol-
lowing table:

V  10 20 30 40 50
R  8 10 15 21 30

2. Using the method of least squares fit the curve y  ax  bx2 to following 
observations:

x: 1 2 3 4 5
y: 1.8 5.1 8.9 14.1 19.8

3. Fit the curve y  ax  b/x to the following data:

x: 1 2 3 4 5 6 7 8
y: 5.4 6.3 8.2 10.3 12.6 14.9 17.3 19.5

4. Estimate y at x  2.25 by fitting the indifference curve of the form 
xy  Ax  B to the following data:

x: 1 2 3 4
y: 3 1.5 6 7.5

5. Fit a least square geometric curve y  axb to the following data:

x: 1 2 3 4 5
y: 0.5 2 4.5 8 12.5

6. Predict y at x  3.75, by fitting a power curve y  axb to the given data:

x: 1 2 3 4 5 6
y: 2.98 4.26 5.21 6.10 6.80 7.50

7. Obtain a relation of the form y  kxm for the following data by the 
method of least squares:

x: 1 2 3 4 5
y: 7.1 27.8 62.1 110 161

8. Fit the exponential curve y  aebx to the following data:

x:  2 4 6 8
y: 25 38 56 84

9. Fit the curve of the form y  aebx to the following data:

x: 77 100 185 239 285
y: 2.4 3.4 7.0 11.1 19.6
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10. Growth of bacteria (N) in a culture after t hrs. is given in the following 
table:

t: 0 1 2 3 4 5 6
N: 32 47 65 92 132 190 275

Fit a curve of the form N  abt and estimate N when t  7.

11. The voltage v across a capacitor at time t seconds is given by the follow-
ing table:

t: 0 2 4 6 8
v: 15 0 63 28 12 5.6

Use the method of least squares to fit a curve of the form v  aekt to this 
data.

12. Obtain the least square fit of the form f(t)  ae–3t  be–2t for the data:

x:  0.1  0.2 0.3 0.4
f(t): 0.76 0.58 0.44 0.35

13. Find the most plausible values of x and y from the equations x  3y  
7.03, x  y  3.01, 2x – y  0.03, 3x  y  4.97, by forming the normal 
equations.

14. Obtain the most plausible values of x, y and z from the equations:
x  2y  z  1, – x  y  2z  3, 2x  y  z  4, 4x  2y – 5z  – 7

5.9 Method of Group Averages

Let the straight line y  a  bx (1)

fit the set of n observations (x1, y1), (x2, y2), , (xn, yn) quite closely. 
(Figure 5.5).

0

y = a + bx

Y

XL1 L2 Ln

M1
M2

Mn
P1(x1, y1) 

L3

M3

P2(x2, y2) 

P3(x3, y3) 

Pn(xn, yn) 

FIGURE 5.5
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When x  x1, the observed (or experimental) value of y  y1  L1P1

and from (1), y  a  bx1  L1M1, which is known as the expected (or 
calculated) value of y at L1.

Then  e1  observed value at L1 –expected value at L1

 y1 – (a  bx1)  M1P1,

which is called the error (or residual) at x1. Similarly the errors for the 
other observations are

 e2  y2 – (a  bx2)  M2P2

 ..
 en  yn – (a  bxn)  MnPn

Some of these errors may be positive and others negative. 

The method of group averages is based on the assumption that the sum 
of the residuals is zero. To find the constants a and b in (1), we require two 
equations. As such we divide the data into two groups: the first containing 
k observations (x1, y1), (x2, y2) (xk, yk); and the second group having the 
remaining n – k observations (xk+1, yk+1), (xk+2, yk+2),,(xn, yn).

Assuming that the sum of the errors in each group is zero, we get

 {y1 – (a  bx1)}  {y2 – (a  bx2)}   {yk – (a  bxk)}  0
 {yk+1 – (a  bxk+1)}  {yk+2 – (a  bxk+2)}   {yn – (a  bxn)}  0

On simplification, we obtain

 

1 2 1 2

1 2 1 2

k k

k K k K

y y y x x x
a b

k k
y y yn x x xn

a b
n k n k

   

   
 

   
 

 

 

 

In (2), 1 2 1 2
1 1

( )and ( )k kx x x y y y
k k

       are simply the aver-

age values of x’s and y’s of the first group. Hence the equations (2) and (3) 
are obtained from (1) by replacing x and y by their respective averages of 
the two groups. Solving (2) and (3), we get a and b.

Obs. The main drawback of this method is that a different 
grouping of the observations will give different values of a and 
b. In practice, we divide the data in such a way that each group 
contains almost an equal number of observations.

NOTE
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EXAMPLE 5.16

The latent heat of vaporization of steam r, is given in the following table 
at different temperatures t:

t: 40 50 60 70 80 90 100 110
r: 1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.  1030.8

For this range of temperature, a relation of the form r  a  bt is known 
to fit the data. Find the values of a and b by the method of group averages.

Solution:

Let us divide the data into two groups each containing four readings. 
Then we have

t r t r
40 1069.1 80 1049.3
50 1063.6 90 1041.8
60 1058.2 100 1036.3
70 1052.7 110 1030.8

t  220 r  4243.6 t  380 r  4158.2

Substituting the averages of t’s and r’s of the two groups in the given 
relation, we get

4243.6 220
. . 1060.9 55

4 4
a b i e a b     (i)

4158.2 380
. . 1039.55 95

4 4
a b i e a b     (ii)

Solving (i) and (ii), we obtain

 a  1090.26, b  – 0.534.

EXAMPLE 5.17

The observations in the following table fit a law of the form y  axn. 
Estimate a and n by the method of group averages.

x: 10 20 30 40 50 60 70 80
y: 1.06 1.33 1.52 1.68 1.81 1.91 2.01 2.11
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Solution:

We have                      y  axn

Taking logarithms,  log10 y  log10 a  n log10 x

i.e.                                    Y  A  nX (i)

where                                    X  log10 x, Y  log10 y, A  log10 a

Divide the data into two groups each containing four pairs of values, 
so that

x y X  log10 x Y  log10 y

10 1.06 1.0253 0.0253
20 1.33 1.3010 0.1238
30 1.52 1.4771 0.1818
40 1.68 1.6021 0.2253

X  5.4055 Y  0.5562
50 1.81 1.6990 0.2577
60 1.91 1.7782 0.2810
70 2.01 1.8451 0.3032
80 2.11 1.9031 0.3243

X  7.2254 Y  1.1662

Substituting the averages of X’s and Y’s of the two groups in (i), we get

 

0.5562 5.4055
. ., 0.1390 1.3514

4 4
A n i e A n   

 (ii)

 
11662 7.2254

. ., 0.2916 1.8064
4 4

A n i e A n     (iii)

(iii) – (ii) gives 0.1526  0.455 n i.e., n  0.3354

From (ii), A  – 0.3142 i.e., log10 a  – 0.3142

where a  antilog ( – 0.3142)  0.4851

5.10 Laws Containing Three Constants

We have so far applied the above method to fit the data to laws involv-
ing two constants only. But at times we come across laws of the form

 y  a  bx  cx2, y  a  bxc and y  a  becx
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each of which contains three constants. To fit such laws to a set of observa-
tions, we devise the following procedures to reduce these to laws previously 
discussed.

(1) Equation y  a  bx  cx2

Let (x1, y1) be a point on the curve satisfying the given data so that

 2
1 1 1y a bx cx  

Then                       2 2
1 1 1( ) ( )y y b x x c x x    

or                   1
1

( )
1

y y
b c x x

x x


  


Putting x  x1  X and (y – y1)/(x – x1)  Y, it takes the linear form 
Y  b  cX.

Now b and c can be found by the graphical method or the method of 
averages.

(2) Equation y  a  bxc

It can be rewritten as y – a  bxc (1)

To find a, let (x1, y1), (x2, y2), (x3, y3) be three particular points on the 
curve (1) such that x1, x2, x3 are in geometric progression

i.e.,                     
2

1 3 2x x x  (2)

Then                 1 1

2 2

 

 

c

c

y a bx

y a bx

 

 

and                  3 3
cy a bx 

      2 2 2
1 3 1 3 2

2 2
2 2

( )( ) ( ) ( )

( ) ( )  

c c

c

y a y a b x x b x

bx y a

   

  

 [by (2)]

  

or               2
1 3 2 1 3 2( 2 )a y y y y y y   

which gives a. Now (1) reduces to a law containing two constants b and c 
only.

Taking logarithms, (1) becomes

                    log10(y – a)  log10 b  c log10 x

or                        Y  B  cX  (3)

where X  log10 x, Y  log10 (y – a), B  log10 b.
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Hence we can find b and c as before from (3).

(3) Equation y  a  becx

It can be written as y – a  becx (1)

To find a, let (x1, y1), (x2, y2), (x3, y3) be three particular points on the 
curve (1) such that x1, x2, x3 are in arithmetic progression 

i.e.,  x1  x3  2x2 (2)
Then                    31 2

1 2 3,        and    cxcx cxy a be y a be y a be     
1 3 2(2 2 2

1 2
)

3( )–  –    –( ) ( ) ( )x xc cxy a y a b e be y a   

or              2
1 3 2 1 3 2–  2  –( )a y y y y y y 

which gives a. Now (1) reduces to a law containing two constants b and 
c only.

Taking logarithms, (1) becomes

       log10 (y – a)  log10 b  cx log10 e

or                                      Y  B  Cx (3)

where     Y  log10 (y – a), B  log10 b, C  c log10 e.

Hence we can find b and c as before from (3).

EXAMPLE 5.18

The corresponding values of x and y are given by the following table:

x: 87.5  84.0  77.8 63.7  46.7 36.9

y: 292 283 270 235 197 181

Fit a parabola of the form y  a  bx  cx2, by the method of group 
averages.

Solution:

Taking x  84, y  283 as a particular point on y  a  bx  cx2, we get

       283  a  b(84)  c(84)2 (i)

 y – 283  b(x – 84)  c[x2 – (84)2]

or 
283

( 84)
84

y
b c x

x


  


 i.e,. Y  b  cX (ii)

where X  x  84, Y  (y – 283)/(x – 84).
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Now we have the following table of values:

x y  X  x  84  Y  (y – 283)/(x – 84)

87.5 292 171.5 2.571

84.0 283 — —

77.8 270 161.8 2.097

X  333.3 Y  4.668

63.7 235 147.7 2.364

46.7 197 130.7 2.306

36.9 181 120.9 2.166

X  399.3 Y  6.836

Substituting the averages of X and Y in (ii), we get

 . . 2
4.66

.33 
8 33

= b
3.3

 
2 2

 + 166.65 cib ec   (iii)

 
6.836 399.3

. . 2.28 = b + 131.1 c
3 3

b c i e   (iv)

(iv) – (iii) gives c  0.0014

and (iii) gives b  2.0967 i.e., 2.1 nearly

From (i), we get a  96.9988 i.e., 97 nearly.

Hence the parabola of fit is y  97  2.1x  0.0014x2

EXAMPLE 5.19

The train resistance R (lbs/ton) is measured for the following values of 
its velocity V (km/hr):

V: 20 40 60  80  100

R: 5 9 14 25 36

If R is related to V by the formula R  a  bVn, find a, b, and n.

Solution:

To find a, we take the following three values of v which are in G.P.:

 v1  20,  v2  40,  v3  80

Then  R1  5,  R2  9,  R3  25
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  (R1 – a)(R3 – a)  (R2 – a)2

where  
2

1 3 2

1 3 2
3.67

2
R R R

a
R R R


 

 

Thus R – 3.67  bVn or log10 (R – 3.67)  log10 b  n log10 V

Y  k  nX (i)

where X  log10 V, Y  log10 (R – 3.67), k  log10 b.

Now we have the following table of values:

V R X  log10 V Y  log10 (R – 3.67)

20 5 1.3010 0.1238
40 9 1.602 1 0.7267
60 14 1.7782 1.0141

X  4.6813 Y  1.8646
80 25 1.9031 1.3290

100 36 2.0000 1.5096
X  3.9031 Y  2.8386

Substituting the averages of X’s and Y’s in (1), we obtain

 
1.8646 4.6813

 . . 0.6215    1.5604 
2 2

k n i e k n     (ii)

 
2.8386 3.9031

. . 1.4193    1.9516 
2 2

k n i e k n     (iii)

Solving (ii) and (iii), we get n  2.04, k  – 2.56 approx.

  b  antilog k  antilog (– 2.56)  0.0028.

Exercises 5.4

1. Fit a straight line of the form y  a  bx to the following data by the 
method of group averages:

x: 0 5 10 15 20 25
y: 12 15 17 22 24 30

2. Apply the method of group averages to work out Example 4.13.
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3. The weights of a calf taken at weekly intervals are given below:

Age: 1 2 3 4 5 6 7 8 9 10
Weight: 52.5 58.7 65.0 70.2 75.4 81.1 87.2 95.5 102.2 108.4

Find a straight line of best fit.

4. Work out Example 5.1, by the method of group averages.

5. The head of water H (ft) and the quantity of water Q(ft3) flowing per 
second are related by the law Q  CHn. Find the best values of C and n 
by the method of group averages for the following data:

H: 1.2 1.4 1.6 1.8 2.0 2.4
Q: 4.2 6.1 8.5 11.5 14.9 23.5.

6. Using the method of averages, fit a parabola y  ax2  bx  c to the fol-
lowing data:

x: 20 40 60 80 100 120
y: 5.5 9.1 14.9 22.8 33.3 46.0

7. While testing a centrifugal pump, the following data is obtained. It is 
assumed to fit the equation y  a  bx  cx2, where x is the discharge in 
liter/sec and y, head in meter of water. Find the values of the constants 
a, b, c by the method of group averages.

x: 2 2.5 3 3.5 4 4.5 5 5.5 6
y: 18 17.8 17.5 17 15.8 14.8 13.3 11.7 9

8. By the method of averages, fit a curve of the form y  aebx to the follow-
ing data:

x: 5 15 20 30 35 40
y: 10 14 25 40 50 62 

9. In an experiment, the voltage v is observed for the following values of 
the current i:

i: 0.5 1 2 4 8 12
v: 160 120 94 75 62 56

If v and i are connected by the relation v  a  bik, find a, b, and k.

10. The variables s and t are connected by the relation s  a  bent and their 
corresponding values are given in the following table:

t: 1 2 6 8 11
s: 12.7 12.5 11.6 11.3 11

Find the best possible values of a, b, and n.
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5.11 Method of Moments

Let (x1, y1), (x2, y2), , (xn, yn) be the set of n observations such that

 x2 – x1  x3 – x2   xn – xn–1  h (say)
We define the moments of the observed values of y as follows:
m1, the 1st moment  hy
m2, the 2nd moment  hxy
m3, the third moment  hx2y and so on.
Let the curve fitting the given data be y  f(x). Then the moments of the 

calculated values of y are

1, the 1st moment   ydx

2, the 2nd moment   xy dx

3, the 3rd moment   x2y dx and so on.

This method is based on the assumption that the moments of the ob-
served values of v are respectively equal to the moments of the calculated 
values of y, i.e., m1  1, m2  2, m3  3 etc. These equations (known as 
observation equations) are used to determine the constants in f(x). 

m’s are calculated from the tabulated values of x and y while ’s are 
computed as follows:

In Figure 5.6, y1 the ordinate of P1(x  x1), can be taken as the value of y 
at the mid-point of the interval (x1– h/2, x1  h/2). Similarly yn, the ordinate 
of Pn(x  xn), can be taken as the value of y at the mid-point of the interval 
(xn – h/2, xn  h/2). If A and B be the points such that

OA  x1 – h/2 and OB  xn  h/2,

then 
1

/2

1 /2
( )

nx h

x h
ydx f x dxa


   

1

/2

2 /2
( )

nx h

x h
xf x dx




   

1

/2 2
3 /2

( )
nx h

x h
x f x dx




   and so on.



EMPIRICAL LAWS AND CURVE-FITTING • 229

A

h′/2

0

Y

XL1 L2

P1(x1, y1) 

P2(x2, y2) 

Pn(xn, yn) 

L2B

h/2 h/2

FIGURE 5.6

EXAMPLE 5.20

Fit a straight line y  a  bx to the following data by the method of mo-
ments:

x: 1 2 3 4

y:  16 19 23 26
Solution:

Since only two constants a and b are to be found, it is sufficient to cal-
culate the first two moments in each case. Here h  1.

m1  hy  1(16  19  23  26)  84

m2  hxy  1(1 × 16  2 × 19  3 × 22  4 × 26)  227.

To compute the moments of calculated values of y  a  bx, the limits 
of integration will be 1 – h/2 and 4  h/2, i.e., 0.5 and 4.5.

 
4.524.5

1 0.5
0.5

( ) 4 10
2
x

a bx dx ax b a b      

 
4.5

2 0.5

91
( ) 10 .

3
x a bx dx a b    

Thus, the observation equations mr  r (r  1, 2) are

 
91

4 10 84; 10 227
3

a b a b   

Solving these, a  13.02 and b  3.19.

Hence the required equation is y  13.02  3.19x.
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EXAMPLE 5.21

Given the following data:

x : 0 1 2 3 4
y : 1 5 10 22 38

find the parabola of best fit by the method of moments.

Solution:

Let the parabola of best fit be y  a  bx  cx2 (i)

Since three constants are to be found, we calculate the first three mo-
ments in each case. Here h  1.

 m1  hy  1(1  5  10  22  38)  76

 m2  hxy  1(0  5  20  66  152)  243

 m3  hx2y  1(0  5  40  198  608)  851

For computing the moments of calculated values of (i), the limits of 
integration will be 0 – h/2 and 4  h/2, i.e., – 0.5 and 4.5.

 

4.5 2
1 0.5

4.5 2
2 0.5

4.5 2 2
3 0.5

( ) 5 10 30.4

( ) 10 30.4 102.5

( ) 30.4 102.5 369.1

a bx cx dx a b c

x a bx cx dx a b c

x a bx cx dx a b c







      

      

      





Thus the observation equations mr  r (r  1, 2, 3) are

             5a  10b  30.4c  76

      10a  30.4b  102.5c  243

 30.4a  102.5b  369.1c  851

Solving these equations, we get a  0.4, b  3.15, c  1.4.

Hence the parabola of best fit is y  0.4  3.15x  1.4x2.

Exercises 5.5

1. Use the method of moments to fit the straight line y  a  bx to the data:

x: 1 2 3 4
y: 0.17 0.18 0.23 0.32
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2. Fit a straight line to the following data, using the method of moments:

x:  1 3 5 7 9
y: 1.5 2.8 4.0 4.7 6.0

3. Fit a parabola of the form y  a  bx  cx2 to the data:

x: 1 2 3 4
y: 1.7 1.8 2.3 3.2

by the method of moments.

4. By using the method of moments, fit a parabola to the following data:

x:  1 2 3 4
y:  0.30 0.64 1.32 5.40

5.12 Objective Type of Questions

Exercises 5.6

Select the correct answer or fill up the blanks in the following questions:

1. The method of group averages is based on the assumption that the sum 
of the residuals is

2. y  axb  c in linear form is..

3. To fit the straight line y  mx  c to n observations, the normal equations 
are
  (i) y  nx  cm, xy  c x2  cn.
 (ii) y  mx  nc, xy  mx2  cx.
(iii) y  cx  mn, xy  cx2  mx.

4. To fit y  abx by least square method, normal equations are

5. The observation equations for fitting a straight line by method of 
moments are

6. The principle of ‘least squares’ states that

7. y  ax2  b log10 x reduced to linear law takes the form.

8. Given 
: 0 1 2

,
: 0 1.1 2.1

x

y

 
 
 

 then the straight line of best fit is.
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9. The method of moments is based on the assumption that.

10. In y  a  bx, x  50, y  80, xy  1030, x2  750, and n  10, then 
a , b ..

11. The gas equation pvr  k can be reduced to y  a  bx where a . 
b  .

12. 
x

y
ax b




 in linear form is

13. If y  kemx, then the first normal equation is log10 y 
(a) kn  mx    (b) kx  mx2

(c) n log10 k  m log10ex  (d) klog10y  mx.

14. If y  a  bx  cx2 and

x: 0 1 2 3 4

y: 1 1.8 1.3 2.5 7.3

then the first normal equation is
(a) 15  5a  10b  29c  (b) 15  5a  10b  31c

(c) 12.9  5a  10b  30c  (d) 34  5a  10b  27c.

15. If y  2x  5 is the best fit for 8 pairs of values of (x, y) by the method of 
least squares, and y  120, then x 

(a) 35 (b) 40

(c) 45  (d) 30.

16. If y  a  bx2 and n is the number of observations, then the first normal 
equations is y 

(a) na  bx2    (b) na x  bx2

(c) na  bx3    (d) na y  byx2.



C H A P T E R6
FINITE DIFFERENCES

Chapter Objectives

 Introduction
 Finite differences
 Differences of a polynomial
 Factorial notation
 Reciprocal factorial function
 Inverse operator of 
 Effect of an error on a difference table
 Other difference operators
 Relations between the operators
 To find one or more missing terms
 Application to summation of series
 Objective type of questions

6.1 Introduction

The calculus of finite differences deals with the changes that 
take place in the value of the function (dependent variable), due to 
finite changes in the independent variable. Through this, we also 
study the relations that exist between the values assumed by the 
function, whenever the independent variable changes by finite 
jumps whether equal or unequal. On the other hand, in infinitesi-
mal calculus, we study those changes of the function which occur 
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when the independent variable changes continuously in a given interval. In 
this chapter, we shall study the variations in the function when the indepen-
dent variable changes by equal intervals.

6.2 Finite Differences

Suppose that the function y  f(x) is tabulated for the equally spaced 
values x  x0, x0  h, x0  2h,,x0  nh giving y  y0,y1,y2,,yn.To determine 
the values of f(x) or f (x) for some intermediate values of x, the following 
three types of differences are found useful:

Forward differences. The differences y1  y0, y2  y1,, yn  yn  1when 
denoted by y0, y1,, yn  1 respectively are called the first forward dif-
ferences where  is the forward difference operator. Thus the first forward 
differences are yr  yr + 1  yr.

Similarly these second forward differences are defined by 2yr  
yr + 1  yr.

In general, pyr  p1yr+1  p1yr defines the pth forward differences. 
These differences are systematically set out in Table 6.1.

In a difference table, x is called the argument and y the function or the 
entry. y0, the first entry, is called the leading term and y0, 

2y0,
3y0 etc. are 

called the leading differences.

TABLE 6.1 Forward Difference Table

Value of x Value of y 1st diff. 2nd diff. 3rd diff. 4th diff. 5th diff.
x0 y0

y0

x0  h y1 2y0

y1 3y0

x0  2h y2 2y1 4y0

y2 3y1 5y0

x0  3h y3 2y2 4y1

y3 3y2

x0  4h y4 2y3

y4

x0  5h y5
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Obs. 1. Any higher order forward difference can be expressed 
in terms of the entries. 
We have  D2y0  Dy1

  Dy0  (y2  y1)  (y1  y0)  y2  2y1  y0

3y0  2y1  2y0  (y3  2y2  y1)  (y2  2y1  y0) 

                              y3  3y2  3y1  y0

4y0  3y1  3y0 

 (y4  3y3  3y2  y1)  (y3  3y2  3y1  y0)
                              y4  4y3  6y2  4y1  y0

The coefficients occurring on the right-hand side being the 
binomial coefficients, we have in general,

 ny0  yn  nc1 yn 1  nc2 yn  2    (  1)n y0.

Obs.2.The operator  obeys the distributive, commutative, and 
index laws

i.e.,  (i) [f(x)±(x)]  f(x)± (x).

 (ii) [cf(x)]  cf(x),c being a constant.

 (iii)  m n f(x)  m  n f(x), m and n being positive integers. In 
view of (i) and (ii),  is a linear operator.

But [f(x).(x)]f(x). (x).

Backward differences. The differences y1  y0, y2  y1,,yn  yn  1 when 
denoted by y1, y2,, yn respectively, are called the first backward dif-
ferences where 

TABLE 6.2 Backward Difference Table

Value of x Value of y 1st diff. 2nd diff. 3rd diff. 4th diff. 5th diff.
x0 y0

y1

x0  h y1 2y2

y2 3y3

x0  2h y2 2y3 4y4

y3 3y4 5y5

x0  3h y3 2y4 4y5

y4 3y5

x0  4h y4 2y5

y5

x0  5h y5

NOTE
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is the backward difference operator. Similarly we define higher order 
backward differences. Thus we have yr  yr  yr  1, 

2yr  yr  yr  1, 
3yr  2yr  2

r  1, etc.

These differences are exhibited in the Table 6.2.

Central differences. Sometimes it is convenient to employ another sys-
tem of differences known as central differences. In this system, the central 
difference operator  is defined by the relations: 

 y1  y0  y1/2, y2  y1  y3/2, , yn  yn  1  yn  1/2

Similarly, higher order central differences are defined as
y3/2  y1/2  2y1, y5/2  y3/2  2y2, ,2y2  2y1  3y3/2 and so on.

These differences are shown in Table 6.3.

TABLE 6.3 Central Difference Table

Value of x Value of y 1st diff. 2nd diff. 3rd diff. 4th diff. 5th diff.
x0 y0

y1/2

x0  h y1 2y1

y3/2 3y3/2

x0  2h y2 2y2 4y2

y5/2 3y5/2 5y5/2

x0  3h y3 2y3 4y3

y7/2

x0  4h y4 2y4 3y7/2

y9/2

x0  5h y5

We see from this table that the central differences on the same horizon-
tal line have the same suffix. Also the differences of odd order are known 
only for half values of the suffix and those of even order for only integral 
values of the suffix.

It is often required to find the mean of adjacent values in the same col-
umn of differences. We denote this mean by . 

Thus 2 2 2
1 1/2 3/2 3/2 1 2

1 1
,

2
)

2
( ( ),y y y y y y         etc.

Obs. The reader should note that it is only the notation which 
changes and not the differences. e.g. 

NOTE
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 y1  y0  y0  y1  y1/2.

Of all the formulae, those involving central differences are most 
useful in practice as the coefficients in such formulae decrease 
much more rapidly.

EXAMPLE 6.1

Evaluate (i)  tan 1x (ii) (exlog 2x) (iii) (x2/cos 2x) (iv)(nCr + 1).

Solution:

(i)          –1 –1 –1

–1 –1
2

tan tan – tan

tan tan
1 ( )

( )

1

x x h x

x h x h
x h x hx x

  

    
    

     

(ii)   log 2 log 2 – log 2

log 2 – log 2 log 2

( ) ( )

( – log 2)

x x h x

x h x h x h x

e x e x h e x

e x h e x e x e x



  

 

  



   log ( ) log 2x h x h xx h
e e e x

x
 

 

      log 1 1 log 2x h hh
e e e x

x

  
       

(iii)     22 2

2 2

cos2 cos2( ) cos2

( ) cos2 cos2( )
cos2( )cos2

x x h x
x x h x

x h x x x h
x h x

  
   

 

  




                                    2 2 2cos2 cos2 cos2

cos2( )cos2

x h x x x x x h

x h x

      




                  
2 2( ) ( )2 cos2 2  sin sin 2

 c
( )

( c)os2 os2
hx h x x h x h

x h x
  




(iv)      1
1 1 1–( )n n n

r r rC C C
   

          1 !   !   
   

( ) ( )
  

1 ! ! 1 ! 1 !( ) ( ) ( ) ( )
n n

r n r r n r


 
    

   !   1 
     1

1 ! 1 !
( )

( ) ( )
n n

r n r n r
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!   1  !
    

1 ! 1 !
( )

( ) ( ) ! !
n

r
n r n

c
r n r n r r n r


  

    

EXAMPLE 6.2

Evaluate (i) 2
2

5 12 
5 16

x
x x

+⎛ ⎞Δ ⎜ ⎟+ +⎝ ⎠
   (ii) 2cos 2x

(iii) 2(abcx)  (iv)n(ex)

Interval of differencing being unity

Solution:

(i):
  

2 2 25 12 5 12 2 3
   

2 5 16 2 3 2 3

2 3
2 3

1 1 1 1
2 3

3 2 4 3

1 1
2 3

( 2)( 3) ( 3)( 4)

1 1
2

( 3)( 4) ( 2)(

x x
x x x x x x

x x

x x x x

x x x x

x x x x

     
       

         

    
      
     

    
       
       

   
      
      

  
   3)

1 1
3

( 4)( 5) ( 3)( 4)
4 6

( 2)( 3)( 4) ( 3)( 4)( 5)
2(5 16)

( 2)( 3)( 4)( 5)

x x x x

x x x x x x
x

x x x x

 
 
 

 
  
    

 
     




   

(ii) 2 cos2x  {cos2(x  h)  cos2x}

cos2(xh)cos2x

[cos2(x2h)cos2(xh)][cos2(xh)cos2x]

2sin(2x3h)sinh2sin(2xh)sinh

2sinh[sin(2x3h)sin(2xh)]
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   2sinh[2cos(2x  2h)sinh]   4sin2hcos(2x  2h).

(iii)      (abcx)  a(bcx)  a[bc(x  1)  bcx]  abcx(bc  1)

2(abcx)  [(abcx)]  a(bc  1)(bcx)

                          a(bc  1) (bc(x  1)  bcx)  a[bc  1]2bcx

(iv)             exex1ex(e1)ex


2ex(ex

)[(e1)ex
]

                  (e1)ex(e1)(e1)ex(e1)
2ex

Similarly 3ex(e1)
3ex

,
4ex(e1)

4ex
, 

and     nex  (e  1)nex.

EXAMPLE 6.3

If y  a(3)x  b( 2)x and h  1, prove that (2    6)y  0.

Solution:

We have y  a(3)x  b(  2)x

 y  [a(3)x  1  b(  2)x  1]  [a(3)x  b(  2)x] 

 2a(3)x  3b(  2)x

and             2y  [2a(3)x  1  3b(  2)x  1]  [2a(3)x  3b(  2)x]

                           4a(3)x  9b(  2)x

Hence(2    6)y  [4a(3)x  9b(  2)x]  (2a(3)x  3b(  2)x] 
  6[a(3)x  b(  2)x]  0

EXAMPLE 6.4

Find the missing yx
 values from the first differences provided:

yx 0 — — — — —

yx
0 1 2 4 7 11

Solution:

Let the missing values be y1, y2, y3, y4, y5. Then we have

yx 0 y1 y2 y3 y4 y5

yx
0 1 2 4 7 11
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 y1  0  1, y2  y1  2, y3  y2  4, y4  y3  7, y5  y4  11

i.e., y1  1, y2  2  y1  3, y3  4  y2  7, y4  7  y3  14, 

 y5  11  y4  25.

6.3 Differences of A Polynomial

The nth differences of a polynomial of the nth degree are constant and 
all higher order differences are zero.

Let the polynomial of the nth degree in x, be

  f(x)  axn  bxn  1  cxn  2    kx  l
       f(x)  f(x  h)  f(x)

  a[(x  h)n  xn]  b[(x  h)n  1  xn  1]    kh

  anhxn  1  bxn  2  cxn  3    kx  l (1)

where b, c, ,l are the new constant coefficients.

Thus the first differences of a polynomial of the nth degree 
is a polynomial of degree (n1).

Similarly 

 2f(x)  [f(x  h)  f(x)]  f(x  h)  f(x)

   anh[(x  h)n  1  xn  1]  b[(x  h)n  2  xn  2]    kh

                         an(n  1)h2xn  2  bxn  3  cxn  4    k, by(1)

∴ The second differences represent a polynomial of degree 
(n2)

Continuing this process, for the nth differences we get a 
polynomial of degree zero i.e.

 nf(x)an(n1)(n2)...1.hn an !hn 
(2)

which is a constant. Hence the (n1)th and higher differences of a 
polynomial of nth degree

will be zero.

Obs. The converse of this theorem is also true, i.e., if the nth 
differences of a function tabulated at equally spaced intervals 
are constant, the function is a polynomial of degree n. This 

NOTE
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fact is important in numeric alanalysis as it enables us to 
approximate a function by a polynomial of nth degree, if it s nth 
order differences become nearly constant.

EXAMPLE 6.5

Evaluate 10[(1  ax)(1  bx2)(1  cx3)(1  cx3)(1  dx4)].

Solution:

10[(1  ax)(1  bx2)(1  cx3)(1  dx4)]  10[abcdx10  ( )x9  ( )x8  ...  1]

  abcd 10(x10) [ 10(xn)  0 for n<10]

 abcd(10!) [by(2)above]

Exercises 6.1

1. Write forward difference table if

x: 10 20 30 40
y: 1.1 2.0 4.4 7.9

2. Construct the table of differences for the data below:

x: 0 1 2 3 4
f(x): 1.0 1.5 2.2 3.1 4.6

Evaluate 3f(2).

3. If u0  3, u1  12,u2  81,u3  2000, u4  100, calculate 4u0.

4. Show that 3yi  yi + 3  3yi + 2  3yi + 1  yi.

5. If y  x3  x2  2x  1,evaluate the values of y for x  0,1, 2, 3, 4, 5 from 
the difference table. Find the value of y at x  6 by extending the table 
and verify that same value is obtained by substitution.

6. Form a table of differences for the function f(x)  x3  5x  7 for 
x   1, 0, 1, 2, 3, 4, 5.

Continue the table to obtain f(6).

7. Extend the following table to two more terms on either side by con-
structing the difference table:

x: –0.2 0.0 0.2 0.4 0.6 0.8 1.0
y: 2.6 3.0 3.4 4.28 7.08 14.2 29.0.
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8. Show that

(i) ( )1
( ) ( ) ( 1)

f x
f x f x f x

  
  

 
 (ii) ( )

log ( ) log 1
( )
f x

f x
f x

 
   
 

9. Evaluate (taking interval of differencing as unity)

(i) (x  cosx) (ii) –1 1
tan  

n
n

 
  

 

(iii)  (e3xlog2x) (iv)(2x/x!)

10. Evaluate:
  (i) 2cos 3x (ii) 2

2

1
5 6x x

 
  
  

(iii) n(e2x  3) (iv) 1n

x
 

  
 

(v) n sin (ax  b)

11. If f(x)eaxb
, show that its leading differences form a geometric 

progression

12. Prove that
  (i) y3  y2  y1  2y0  3y0 (ii)2y8  y8  2y7  y6

(iii) 2y
5
y

6
2y

5
y

4
.

13. Evaluate:
 (i)4 [(1  x)(1  2x)(1  3x)(1  4x)],(h  1).
(ii)10[(1  x)(1  2x2)(1  3x3)(1  4x4)], if the interval of differencing is 2.

6.4 Factorial Notation

A product of the form x(x  1)(x  2)(x  r  1) is denoted by [x]r and 
is called a factorial.

In particular [x]  x,[x]2  x(x  1),[x]3  x(x  1)(x  2),etc.

In general [x]n  x(x  1)(x  2) .....(x  n  1)

If the interval of differencing is h, then [ ] ( )( ) ( )2 1nx x x h x h x n h      
which is called a factorial polynomial or function of degree n.

The factorial notation is of special utility in the theory of finite differ-
ences. It helps in finding the successive differences of a polynomial directly 
by simple rule of differentiation.
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To show that n[x]n  n! and n  1[x]n  0

We have

 

 

–1

] ]

( )( )( ) ( )

( )( )

–

– – 2 – 1

– – – 2 – 1

– – – 2 –

( )

( ) ( )[ ( ]

[

– )

]

n n n

n

x x h x

x h x h h x h h x h n h

x x h x h x n h

x x h x n h x h x nh h

nh x

  

     

























 (i)

Similarly 2[x]n  {nh[x]n  1}  nh[x]n  1

Replacing n by n  1 in (i), 

we get  2[x]n  nh.(n  1)h[x]n  2  n(n  1)h2[x]n  2

Proceeding in this way, we obtain n  1[x]n  n(n  1)2hn  1x

 n[x]n  n(n  1)2.hn  1x

             n(n  1)2.1.hn  1(x  h  x)

  n!hn (ii)

Also  n  1[x]n  n!hn  n!hn  0

In particular, when h  1,we have

 [x]n  n[x]n  1 and n[x]n  n! (iii)

Similarly r[ax  b]n  n(n  1)(n  r  1)arhr[ax  b]n  r

Thus we have an important result:

 [x]n  n[x]n 1; [ax  b]n  an[ax  b]n  1 (iv)

i.e., the result of differencing [x]n is analogous to that of differentiating 
xn.

Obs.1. As it is easier to find x[x]n than r xn, xn must always 
be expressed as a factorial polynomial before finding x.

Obs.2. Every polynomial of degree n can be expressed as a 
factorial polynomial of the same degree and vice versa.

EXAMPLE 6.6

Express y  2x3  3x2  3x  10 in factorial notation and hence show that 
3y  12.

NOTE
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Solution:

First method: Let y  A[x]3  B[x]2  C[x]  D.

Using the method of synthetic division (p.29), we divide by x, 
x1, x2, etc. successively. Then

1

x3 x2 x
  10  D2 –3 3

– 2 –1

2 2
—

–1
4 2  C

3 2
— 3  B

2  A

Hence             y  2[x]3  3[x]2  2[x]  10

∴ y 2 × 3[x]
23 × 2[x]2

2y  6 × 2[x]  6

3y  12, which shows that the third differences of y are constant, as 
they should be.

Obs. The coefficient of the highest power of x remains un-
changed while transforming a polynomial to factorial notation.

Second method (Direct method):

Let             y  2x3  3x2  3x  10

                             2x(x  1)(x  2)  Bx (x  1)  Cx  D

Putting         x 0,10D.

Putting           x 1, 23310 CD
∴                    C 8D 8102

Putting           x 2, 16 12 6 10 2B 2C  D

  
1 1

2 ( 4 10) 3
2 2

B C D      

Hence             y  2x(x  1)(x  2)  3x(x  1)  2x  10

                 2[x]3  3[x]2  2[x]  10

           y  2×3[x]2  3 × 2[x]  2,2y  6 × 2[x]  6, 3y  12.

NOTE
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EXAMPLE 6.7

Express u  x4  12x3  24x2  30x  9 and its successive differences in 
factorial notation. Hence show that 5u  0.

Solution:

Let u  A[x]4  B[x]3  C[x]2  D[x]  E.

Using the method of synthetic division, we divide by x, x1,
x2, x3 successively.

Then

1
x4   x3    x2         x

9(  E)1 – 12    24      – 30
0    1 – 11        13

2
1 – 11    13 – 17 (  D)
0    2 – 18

3
1 – 9 –  5(  C)
0    3
1(  A) – 6(  B)

Hence u  [x]4  6[x]3  5[x]2  17[x]  9

            u  4[x]3  18[x]2  10[x]  17

2u  12[x]2  36[x]  10

3u  24[x]  36

4u  24 and 5u  0.

EXAMPLE 6.8

If f(x)  (2x  1)(2x  3)(2x  5)(2x  15), find the value of 4f(x)

Solution:

We have 8 15 13 3 1
( ) 2

2 2 2 2
f x x x x x

     
          

     
 [There are 8 factors]

 
8

8 15
2

2
x
 

   

       
7 6

8 2 815 15
( ) 2 8 ; ( ) 2 8 7

2 2
f x x f x x
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5

3 8 15
( ) 2 56 6

2
f x x

 
      

                  
4

3 8 15
( ) 2 336 5

2
f x x

 
      

  8 15 13 11 9
2 1680

2 2 2 2
x x x x
    

         
    

                               26880 (2x  9) (2x  11) (2x  13) (2x  15)

6.5 Reciprocal Factorial Function

The function
1

( 1)( 2) ( )x x x n   
 is denote d by   nx   and is called a 

reciprocal factorial function.

If the interval of differencing is h, then

   1
( )( 2 ) ( )

nx
x h x h x nh

 
   

Which is called a reciprocal factorial function of order n

Differences of

                  [ ] [ ]n n nx x h x      

 
2

1 1
( )( ) ( )( )( ) ( )

1
( )

( )( ) ( )

...2 3 ... 1

[ 1 ]
2 3 ... 1

x h x h x nhx h x h x n h

x h x n h
x h x h x n h

  


   

  








 

                           nh [x]  (n  1) (i)

Similarly 2[x]n  (  1)2n(n  1)h2[x]  (n  2)

In general, x[x]h  (  1)rn(n  1)...(n  r  1)hr[x](n  r) (ii)

In particular when h  1,r[x]  n  (  1)rn(n  1)...(n  r  1)(x)(n  r)

Similarly r[ax  b]n  (  1)rn(n  1) ... (n  r  1)arhr[ax  b](n + r) (iii)

Thus we have an important result:

           – – 1 – – 1  –  ;   –n n n nx n x ax b na ax b        (iv)
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6.6 Inverse Operator of 

The process of finding yx
 when yx is given is known as inverse finite 

difference operation.

i.e., If  yx  ux then yx    1ux

The symbol 1 or1/ is called the inverse of the operator .

Thus we have two important results

  
 

 
 1 1 

1 1;    
1 ( 1)

n n
n nx ax b

x ax b
n a n

 
  
    

 

        
   

 
   – 1 – 1  

1 1 ;   
1 ( 1)

n n
n nx ax b

x ax b
n a n

 
   

    
   

i.e.,   1 is analogous to D  1or integration in calculus.

EXAMPLE 6.9

Obtain the function whose first difference is 2x3  3x2  3x  10.

Solution:

Let f(x) be the function whose first difference is given.

We first express f(x) as a factorial polynomial. Referring to Example 
6.6, we have

f(x)  2[x]3  3[x]2  2[x]  10

     f(x)    1{2[x]3  3[x]2  2[x]  10}

 
4 3 2

1[ ] [ ] [ ]
2 3 2 10[ ]

4 3 2
x x x

x   

        – 1 – 2  – 3 – 1 – 2
1

( )  ( )
2

– 1  – 10x x x x x x x x x  

 4 3 21 7
2 12

2 2
x x x x   

EXAMPLE 6.10

If 
1

(3 1)(3 4)(3 7)
y

x x x


    evaluate 2y. Also find 1y.
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Solution:

(i) We have 
3

3

1 1 1 2
( 1 / 3)( 4 / 3)( 7 / 3) 27 33

y x
x x x

 
      

 
41

( 3) 2/3
27

y x
     

 
52 1

( 3)( 4) 2/3
27

y x
      

      
4 1
9 1/3 4/3 7/3 10/3 13/3x x x x x

 
    

 
108

(3 1)(3 4)(3 7)(3 10)(3 13)x x x x x


    

(ii)        
31

2/3
27

y x
   

    

3

1 2/31 1 1
27 2 54 1/3 4/3

x
y

x x




  

  
  

 
1 1
6 (3 1)(3 4)x x


 

6.7 Effect of an Error on a Difference Table

Suppose there is an error  in the entry y5
 of a table. As higher differ-

ences are formed, this error spreads out and is considerably magnified. Let 
us see, how it effects the difference table.

The below table shows that:

 (i) The error increases with the order of differences.

 (ii)  The coefficients of ’s in any column are the binomial coefficients of 
(1 )n

. Thus the errors in the fourth difference column are ,
4, 6,4, .

 (iii)  The algebraic sum of the errors in any difference column 
is zero.

 (iv)  The maximum error in each column, occurs opposite to 
the entry containing the error, i.e., .y

5
.
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The above facts enable us to detect errors in a difference table.

x y y 2y 3y 4y
x0 y0

y0
x1 y1 2y0

y1 3y0
x2 y2 2y1 4y0

y2 3y1
x3 y3 2y2 4y1  

y3 3y2  
x4 y4 2y3   4y2  4

y4   3y3  3
x5 y5   2y4  2 4y3  6

y5   3y4  3
x6 y6 2y5   4y4  4

y6 3y5  
x7 y7 2y6 4y5  

y7 3y6
x8 y8 2y7

y8
x9 y9

EXAMPLE 6.11

One entry in the following table is incorrect and y is a cubic polynomial 
in x. Use the difference table to locate and correct the error.

x: 0 1 2 3 4 5 6 7
y: 1 1 1 1 1 — — —

Solution:
The difference table is as under:

x y y 2y 3y
0 25

 4
1 21 1

 3 2
2 18 3

0 6
3 18 9

9 0
4 27 9

18 4
5 45 13

31 3
6 76 16

47
7 123
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y being a polynomial of the third degree, 3y must be constant, i.e., .the 
same. The sum of the third differences being 15, each entry under 3y must 
be 15/5, i.e., 3. Thus the four entries under 3y are in error which can be 
written as

 3  (  1), 3  3(  1), 3  3(  1),3  (  1)

Taking  1, we find that the entry corresponding to x3 is in 
error.

∴ y 18

Thus the true value of y 1818(1) 19.

EXAMPLE 6.12

Assuming that the following values of y belong to a polynomial of de-
gree 4, compute the next three values:

x: 0 1 2 3 4 5 6 7
y: 1 –1 1 –1 1 — — —

Solution:

We construct the difference table from the given data.

x y y 2y 3y 4y
0 y0  1
  2
1 y1   1 4

2   8
2 y2  1   4 16
  2  8
3 y3   1 4 16

2 3y2

4 y4  1 2y3 16
y4 3y3

5 y5 2y4 16
y5 3y4

6 Y6 2y5

y6

7 y7
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Since the values of y belong to a polynomial of degree 4, the fourth dif-
ferences must be constant. But 4y  16.

∴ The other fourth order differences must also be 16. Thus,

 4y1  16  3y2  3y1

i.e., 3y2  3y1  4y1  8  16  24

 2y3  2y2  3y2  4  24  28

 y4  y3  2y3  2  28  30

and y5  y4  y4  1  30  31

Similarly starting with 4y2  16,

we get  3y3  40, 2y4  68, y5  98, y6  129.
Starting with 4y3  16, 

we obtain 3y4  56, 2y5  124, y6  222, y7  351.

Exercises 6.2

1. Express x3  2x2  x  1into factorial polynomial. Hence show that 
4f(x)  0.

2. Express 3x4  4x3  6x2  2x  1 as a factorial polynomial and find differ-
ences of all orders.

3. Find the first and second differences of x4  6x3  11x2  5x  8 with 
h  1. Show that the fourth difference is constant.

4. Obtain the function whose first difference is (i) 2x3  3x2  5x  4.
(ii) x4  5x3  3x  4.

5. Show that [x(x1)(x2)(x3)]4(x1)(x2)(x3).

6. Find 4f(x)when f(x)  (2x  1)(2x  3)(2x  5)...(2x  19). 

7. If 
1

,
(4 1)(4 5)(4 9)

y
x x x


    find 2y and 1y.

8. Givenlog1002, log1012.0043, log1032.0128, log1042.0170, 
find log 102.

9. Find the first term of the series whose second and subsequent terms 
are 8, 3, 0,1,0.
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10. Write down the polynomial of lowest degree which satisfies the fol-
lowing set of numbers: 0, 7, 26, 63, 124, 215, 342, 511

6.8 Other Difference Operators

We have already introduced the operators , , and . Besides these, 
there are the operators E and μ, which we define below:

Shift operator E is the operation of increasing the argument x by h so that 
E f(x)  f(x  h), E2f(x)  f(x  2h), E3f(x)  f(x  3h) etc.

The inverse operator E  1is defined by E  1f(x)  f(x  h)

If yx is the function f(x), then Eyx  yx  h,E
  1yx  yx  h,E

nyx  yx + nh, where 
n may be any real number.

Averaging operator µis defined by the equation  1 1
2 2

1
.

2x
x x h

y y h y
 

  

Obs. In the difference calculus E is regarded as the fundamen-
tal operator and ,, , µ can be expressed in terms of E.

6.9 Relations Between the Operators

We shall now establish the following identities:

  (i)   E  1 (ii)   1  E1

(iii)   E1/2  E1/2 (iv) 1/2 –1/21
2

( )E E 

 (v)   E  E  E1/2 (vi) E  ehD.

Proofs.(i)yx  yx + h  yx  Eyx  yx  (E  1)yx

This shows that the operators  and E are connected by the sym-
bolic relation

E1 or E1.

Obs. These relations imply that the effect of operator E on yx is 
the same as that of the operators (1  ) on yx.The operator’s E 
and  do not have any existence as separate entities.

(ii)  yx  yx  yx  h  yx  E  1yx  (1  E  1)yx

      1  E  1

NOTE

NOTE
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(iii)  1/2 1/2 1/2 1/2
1 1
2 2

x x x x
x h x h

y y y E y E y E E y 

 
      

           1/2 1/2E E 

(iv)      1 1 1 1
2 2 2 2

1 1
2 2

1 1 1
2 2 2x x x x

x h x h
y y y E y E y E E y

 

 
      

        1/2 1/21
2

E E   

(v) Eyx  E(yx  yx  h)  Eyx  Eyx  h  yx + h  yx  yx

∴       E
     Eyx  yx + h  yx + h  yx  yx

     E  
 

1/2
1 1 1
2 2 2

1 1 1
 –

2 2 2 x h x x
x h x h x h

E yx y y h y h h y y y
  

        

 E1/2  
Hence   E  E  E1/2

(vi) 
2

( ) ( ) ( ) ( )
2!

( )
h

Ef x f x h f x hf x f x      

 [by Taylor’s series]

    
2

2( ) ...
2!

.
h

f x hDf x D f x  

 
2 2 3 3

1 ( ) ( )
2! 3!

hDh D h D
hD f x e f x

 
      
 



 
hDE e

Cor.   1 hDE e 

A table showing the symbolic relations between the various 
operators is given below for ready reference To prove such rela-
tions between the operators, always express each operator in 
terms of the fundamental operator E.

NOTE
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Relations between the various operators

In terms of E    hD

E —   1 (1  )1

1  1
2 

2

  (1  2/4)

ehD

 E  1 — (1  )1  1 1
2 

2  

(1  2/4)

ehD  1

 1  E  1 1  (1  )  1 —  1
2 

2

  (1  2/4)

1  e hD

 E1/2  E - 1/2 (1  )  1/2 (1  )1/2 — 2sinh(hD/2)

 1
2 (E1/2  E1/2) (1  /2)

(1  )1/2

(1  /2)
(1  )1/2

(1  2/4) cosh(hD/2)

hD log E log(1  ) log(1  )1 2sinh 1(/2) —

EXAMPLE 6.13

Prove that 
2

2 ,
x

x x
x

Ee
e e

E e

 
  

 
,the interval of differencing being h.

EXAMPLE 6.14

Prove with the usual notations, that

  (i) hD  log(1  )   log(1  )  sinh1()

 (ii) (E1/2  E 1/2)(1  )1/2  2  

(iii)       2

(iv) 3y2  3y5.

Solution:

(i) We know that ehD  E  1  

                        hD  log(1  )

Also           hD  log E   log(E1)   log(1  ) [ E1  1  ]

We have prove that   1/2 1/21
2

E E 

and  1/2 1/2E E 

   1/2 1/2 1/2 1/21
2

E E E E    
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 ( ) ( )11 1 sinh( )
2 2

hD hDE E e e hD− −= − = − =

i.e., 1sinh ( )hD μδ−=
Hence hD  log(1  )   log(1  )  sinh  1().

(ii) (E1/2  E1/2)(1  )1/2

                            (E1/2  E1/2)E1/2  E  1  1    1  2  .

We know that               E  1,   1  E1 and   E1/2  E1/2

                              E  2  E1  (E1/2  E1/2)2  2

Also                        (E  1)(1  E1)  E  E1  2

                                         (E1/2  E1/2)2  2.

Hence                   2
.

(iv)                    3y2  (E  1)3y2 [   E  1]

                                         (E3  3E2  3E  1)y2

                                         y5  3y4  3y3  y2 (1)

3y5  (1  E  1)3y5 [  1  E1]

                                         (1  3E1  3E2  E3)y5

                                         y5  3y4  3y3  y2 (2)

From (1) and (2),               3y
2 
3y

5

EXAMPLE 6.15

Prove that

  (i) 
2

21
1

2 4

 
    
 

 (ii) 2 2 21
1 1

2
 

     
 

(iii) 22 1
1

42 (1 )
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Solution:

(i) 
2

21
1

2 4

 
   
 

 
1/2 –1/2 2 1/2 –1/2 1/2 1/2 2/4– –  1

1
( ) ( ) ( ] [ )

2
E E E E E E  

             –1 1/2 –1/2 11
– 2 –  ( ) ( ) [ 2 / 4   ]

2
( )E E E E E E    

 –1 1/2 –1/2 1/2 –1/2( ) ( )(– 2 – /2)E E E E E E+ + +=

 –1 –11
[( ) ( )]

2
– 2 – – 1 .E E E E E   

(ii) We know that   E1/2  E  1/2 and   (E1/2  E  1/2)/2.

 L.H.S.  1  22  1  (E1/2  E  1/2)2(E1/2  E  1/2)2/4

         
–1 2 2 –2 –1[ ( ) ]

1 1 1
4 – 2 2

4
( ) ( )

4 4
E E E E E E      

R.H.S.  ( ) ( )
2 2 2

22 1/2 1/2 11 1 11 1 1 2
2 2 2

E E E Eδ − −⎛ ⎞ ⎡ ⎤ ⎡ ⎤= + = + − = + − −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦

          E E 

Hence  
2

2 2 21
1 1

2
 

     
 

(iii) Since  1/2 1/2 1/2 1/21
1,   and  

2
E E E E E      

∴  2 2 1 1
2 1 2 1 1 2

E E
E E

   
 

  

                             
 1/2 1/21

2
E E   

 (1)

Also      22 1/2 1/2 11 1 1
1 1 1 2

4 4 4
E E E E      

             
     

 

 1 1/2 1/21 1
( 2) ( )

2 2
E E E E         (2)



FINITE DIFFERENCES • 257

Hence from (1) and (2), we get

 22 1
1

42 1

 
    

 

EXAMPLE 6.16 

Prove that 2
1

1 5
1 '

2 12n ny h y

 
      

 


Solution:

We have  1 1 1y n n ny y E y     

            
2 2 3 3

1 1 1
2! 3!

hD
n n

h D h D
e y hD y

 
        
 



                       
2 2

1
2! 3! n
hD h D

hD y
 
    
 



                       
2 2

1
2! 3! n
hD h D

h Dy
 
    
 



Since                         -1 1 ,hDE e    

                      2 31 1
log 1

2 3
hD      

                           

2 3
1

2 3

1 1 1
1

2 2 3

1 1 1
'

6 2 3

ny h

y n



  
        

 

 
       

  



 

Hence 2
1

1 5
1 '

2 12n ny h y

 
      

 


6.10 To Find One or More Missing Terms

When one or more values of y  f(x) corresponding to the 
equidistant values of x are missing, we can find these using any of 
the following two methods:

First method: We assume the missing term or terms as a, b etc. and form 
the difference table. Assuming the last difference as zero, we solve these 
equations for a, b. These give the missing term/terms.



258 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Second method: If n entries of y are given, f(x) can be represented by 
a(n  1)th degree polynomial, i.e., n y  0. Since   E  1, therefore 
(E  1)n y  0. Now expanding (E  1)n and substituting the given values, 
we obtain the missing term/terms.

EXAMPLE 6.17

Find the missing term is the table:

x: 2 3 4 5 6
y: 45.0 49.2 54.1 … 67.4

Solution:

Let the missing value be a. Then the difference table is as follows:

X y y 2y 3y 4y

2 45.0(  y0)

4.2

3 49.2(  y1) 0.7

4.9 a  59.7

4 54.1(  y2)   59.0 240.2  4a

a  54.1 180.5  3a

5 a(  y3) 121.5  2a

67.4  

6 67.4(  y4)

We know that  4y  0, i.e., 240.2  4a  0. 

Hence                  a  60.05.

Otherwise. As only four entries y0,y1,y2,y3 are given ,therefore y  f(x) can 
be represented by a third degree polynomial.

 3y  constant or 4y  0, i.e., (E  1)4y  0

i.e., (E4  4E3  6E2  4E  1) y  0 or y4  4y3  6y2  4y1  y0  0

Let the missing entry y3 be a so that

 67.44a6(54.1)4(49.2)450 or 4a240.2

Hence a60.05.
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EXAMPLE 6.18

Find the missing values in the following data:

x: 45 50 55 60 65
y: 3.0 ... 2.0 ...   2.4

Solution:

Let the missing values be a, b. Then the difference table is as 
follows:

x y y 2y 3y
45 3(  y0)

a  3
50 a(  y1) 5  2a

2  a 3a  b  9
55 2(  y2) b  a  4

b  2 3.6  a  36
60 b(  y3)   0.4  2b

  2.4  b
65   2.4 (  y4)

As only three entries y0, y2, y4 are given, y can be represented by a sec-
ond degree polynomial having third differences as zero.

 3y0  0 and 3y1  0

i.e., 3a  b  9, a  3b  3.6

Solving these, we get a2.925, b0.225.

Otherwise. As only three entries y0  3, y2  2, y4   2.4 are given, y can 
be represented by a second degree polynomial having third differences as 
zero.

 3y0  0 and 3y1  0

i.e.,                    (E  1)3y0  0 and (E  1)3y1  0

i.e., (E3  3E2  3E  1)y0  0; (E3  3E2  3E  1).y1  0

or      y3  3y2  3y1  y0  0; y4  3y3  3y2  y1  0

or  y3  3y1  9; 3y3  y1  3.6

Solving three, we get y
1
2.925, y

2
0.225.
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EXAMPLE 6.19

The following table gives the values of y which is a polynomial of degree 
five. It is known that f(3)is in error. Correct the error.

x: 0 1 2 3 4 5 6
y: 1 2 33 254 1025 3126 7777

Solution:

Let the correct value of y when x3 be a. Then the difference table is 
as follows:

x: y: y 2y 3y 4y 5y 6y
0 1

1
1 2 30

31 a  94
2 3 a  64 12164a

a  33 11223a 232010a
3 A 10582a 1104  6a 488020a

1025a 18  3a 2560 – 10a
4 1025 1076  a 1456 – 4a

2101 1474  a
5 3126 2550

4651
6 7777

Since y is a polynomial of fifth degree, the sixth difference 6y  0

i.e., 4880  20a  0

Hence  a 244.

Otherwise. As y is a polynomial of fifth degree, the sixth difference 6y  0

i.e.,    (E  1)6y  0

or (E6  6E5  15E4  20E3  15E2  6E  1)y0  0

or                  y6  6y5  15y4  20y3  15y2  6y1  y0  0

i.e.,      7777  6(3126)  15(1025)  20y3  15 (33)  6 (2)  1  0

       4880  20y3  y3  244

Hence the error 254244 10.
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EXAMPLE 6.20

If y10  3, y11  6, y12  11, y13  18, y14  27, find y4.

Solution:

Taking y14 as u0, we are required to find y4, i.e., .u 10.Then the difference 
table is

x u u 2u 3u
x 4 y10  u  4  3

3
x  3 y11  u3  6 2

5 0
x  2 y12  u  2  11 2

7 0
x  1 y13  u  1  18 2

9
x0 y14  u0  27

Then       y4  u10  (E  1)10u0  (1  )10u8

   2 3
0

10.9 10.9.8
1 10

2 1.2.3
u

 
      

 


                        u0  10u0  452u0  1203u0

2710 × 945 × 2120 × 027.

EXAMPLE 6.21

If yx is a polynomial for which fifth difference is constant and y1  y7  
 784, y2  y6  686, y3  y5  1088, find y4.

Solution:

Starting with y1instead of y0, we note that 6y1  0 [ 5y1 is constant]

i.e., (E  1)6y1  (E6  6E5  15E4  20E3  15E2  6E  1)y1  0

 y7  6y6  15y5  20y4  15y3  6y2  y1  0

or (y7  y1)  6(y6  y2)  15 (y5  y3)  20y4  0

i.e., 4 1 7 2 6 3 5
1

( ) 6( ) 15( )
20

y y y y y y y       

          1
784 6 686 15 1088 571

20
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EXAMPLE 6.22

Using the method of separation of symbols, prove that

(i)     
2 3

2 3
1 2 3 1 1 11 1 1

x x x
u x u x u x u u u

x x x
   

           
     

 

(ii)  
32 2 3

2 331 2
0 0 0 0 01! 2! 3! 2! 3!

xu xu x u x x x
u e u x u u u

 
            
 

 

Solution:

(i) L.H.S  2 3
1 1 1xu x Eu x Eu+ + +

          ( )2 2 1
1

11 . ,
1

x xE x E u x u
xE

= + + + =
−

  taking sum of infinite G.P.

        ( ) 1
1

1 1
x u

x
⎡ ⎤= ⎢ ⎥− + Δ⎣ ⎦

  1E = + Δ⎡ ⎤⎣ ⎦

         

1

1 1
1 1

1 1 1
x xx u u

x x x x

−Δ⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟− − Δ − −⎝ ⎠ ⎝ ⎠

        ( )
2 2

121
1 1 1
x x x u
x x x

⎛ ⎞Δ Δ= + +⎜ ⎟⎜ ⎟− − −⎝ ⎠

        
( ) ( )

2 3

1 1 12 31 1
x x xu u u

x x
= + Δ + Δ +

− −
  R.H.S

(ii) L.H.S. 
2 3

2 3
0 0 0 01! 2! 3!

x x xu Eu E u E u= + + + +

  
2 2 3 3

(1 )
0 0 0 01 .

1! 2! 3!
+Δ Δ⎛ ⎞

= + + + + = = =⎜ ⎟
⎝ ⎠

 xE x x xxE x E x E u e u e u e e u  

 
2 2 3 3

01
1! 2! 3!

⎛ ⎞Δ Δ Δ= + + + +⎜ ⎟
⎝ ⎠

x x x xe u

 
2 3

2 3
0 0 0 01! 2! 3!

x x x xe u u u u
⎛ ⎞

= + Δ + Δ + Δ +⎜ ⎟
⎝ ⎠

   R.H.S



FINITE DIFFERENCES • 263

Exercises 6.3

1. Explain the difference between 
   
  

   

22

and x
x

x

u
u

E Eu
.

2. Evaluate taking h as the interval of differencing:

(i) 
2

sin x
E

  (ii).        2 2 , 1x x h

(iii) 
2 3

3

x
Ex

  (iv)  
 
 

  
 



2 2 sin
sin

sin
x h

x h
E E x h

3. With the usual notations, show that

(i)  1 hDe   (ii)   
  

 
12

sinh
2

D
h

(iii)     1 1 1  (iv) 2

4. Prove that

(i) ( ) ( )1/2 1/21 1− −= Δ + Δ = ∇ − ∇δ

(ii) 
  

2
2 1

4
  (iii)      1 2 1 2 1E E E

5. Show that 
(i)   E1/2  E1/2

(ii)    
1
2

 (iii) 1  2/2  (1  22) 

6. Show that

(i) 
 

2

2
   (ii) 

  
   
 

1 22 2
1 2 1

4 2
E

(iii) 
21

2

r
rE μ δ⎛ ⎞= +⎜ ⎟⎝ ⎠

 (iv) 
( ) ( )

2 2
2 1 2 1

μ
λ λ

+ Δ + ∇= =
+ Δ + ∇

7. Prove that

(i) 
 

 
 

  (ii)      1 1 11E E E

(iii) 




 
0

i
i

E   (iv) 2 2 2 3 3 4 47
12

∇ = − + −h D h D h D
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8. Prove that    2
5 6 5 42 .y y y y

9. Prove with usual notations, that

(i)  r r
k k rf f  

(ii)        2 1k k k kf f f f  (iii) 




  
1

2
0

0

n

k n
k

f f f

10. Estimate the missing term in the following table:

x: 0 1 2 3 4

f(x) 1 3 9  81

11. Find the missing terms in the following table:

x: 1 1.5 2 2.5 3 3.5

y: 6 ? 10 20 ? 1.5

12. Find the missing values in the following table:

0 1 2 3 4 5 6

5 11 22 40 … 140 …

13. Estimate the production for 2004 and 2006 from the following data:

Year: 2001 2002 2003 2004 2005 2006 2007
Production: 200 200 260 … 350 … 430

14. If    13 14 15 161, 3, 1, 13U U U U , find U8

15. Evaluate y4 from the following data (stating the assumptions you make)

0 8 1 7

2 6 3 5

1.9243, 1.9590
1.9823, 1.9956

+ = + =
+ = + =

y y y y
y y y y

 

Using the method of separation of symbols, prove that

16.  u
0
u

1
u

2
u

n
n1C

1
u

0
n1C

2
u

0
n1C

3
2u

0


 n1C
n1

nu
0

17. nu
x
u

xn
nC

1
u

xn1
nC

2
u

xn2
(1)

nu
x

18. y
x
 y

n
n - xC

1
y

n  1
n - xC

2
2y

n2 
(1)

nxnxy
n(n  x)

.
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6.11 Application to Summation of Series

The calculus of finite differences is very useful for finding the 
sum of a given series. The inverse operator 1(Section 6.6) is espe-
cially useful to find the sum of a series. This is explained below:

If ur  yr  yr  1  yr

then u1  y2  y1, u2  y3  y2 
 un  1  yn  yn  1, un  yn + 1  y1

 u1  u2  ...  un  yn + 1  y  
 


11
1

r n
yr r

Thus 
  


11
11

n r n
u ur r rr

  yr   1 ur]

The method is best illustrated by the following examples

EXAMPLE 6.23

Find the sum to n terms of the series

(i) 2.3.4 + 3.4.5 + 4.5.6 +

(ii) 1 1 1
3.4.5 4.5.6 5.6.7

+ + +

Solution:

(i) Let
1

2.3.4 3.4.5 4.5.6 ( 1)( 2)( 3)
=

= + + + + + +∑ 
n

r
r

u n n n  

            31 2 3 3ru r r r r

 
 




    11
1

1

n
r n

r r r
r

u u

 

    

     

     

  

     

     

4 41
4 4

4
1

4 3 2 1 4.3.2.1
4
1

4 3 2 1 24
4

n

n n n n

n n n n

(ii) Let 
   

   
 





    
  

   
  

 
1

3

1 1 1 1
3.4.5 4.5.6 5.6.7 2 3 4

1
1

2 3 4

n

r
r

r

u
n n n

u r
r r r
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     11 31 1
1 1

1

1
n

r nr n
r r r r

r

u u r

 
    

 
 



  
    

  

12
2 2

1

1 1
2 2

2 2

r n

r

r
n

     

   
      

      

1 1 1 1 1 1
2 3 4 3.4 2 12 3 4n n n n

EXAMPLE 6.24 

Sum the following series 
3 3 3 31 2 3 n   

Solution:

Denoting 3 3 3 31 ,2 ,3 , ,n by 0 1 2, , ,u u u   respectively, the required sum

                 S  0 1 2 1nu u u u    

       2 11 nE E E      2
1 0 2 0,u Eu u E u   

 

 

    

    

0 0

2 3
0

2
0 0

1 1 1
1

1 1 1 2
1 .... 1

2! 3!

1 1 2
.....

2! 3!

n

n

E
u u

E
n n n n n

n u

n n n n n
n u u

  
 

 
   

          

  
     

Now  u0  u1  u0  23  13  7, 2u0  u2  2u1  u0  33  2.23  13  12,

3u0  u3  3u2  3u1  u0  43  3.33  3.23  13  6
and 4u0,

5u0,are all zero as ur  r3 is a polynomial of third degree

Hence 
        1 1 2 1 2 3

.7 12 .6
2 6 24

n n n n n n n n n
S n

     
   

  
    22

2 1
2 1

4 2
n n n

n n
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EXAMPLE 6.25 

Prove Montmort’s theorem that

 
   

2 2
2 0 0 0

0 1 2 2 31 1 1

u x u x u
u u x u x

x x x

 
       

  
 

Hence find the sum of the series 21.2 2.3 3.4 x x+ + + + ∞
Solution:

 2 2 2 3 3
0 1 2 01u u x u x xE x E x E u         

 

 

   

   

     

0 0

1

0 0

2 2

02

2
20

0 02 3

1 1
1 1 1

1 1
1

1 1 1

1
1

1 1 1

1 1 1

u u
xE x

x
u u

x x x x

x x
u

x x x

u x x
u u

x x x



 
  

 
    

     

   
    

    

      
  





Now let us construct the difference table for the coefficients of the 
given series:

u u 2u 3u
u0  2

4
u1  6 2

6 0
u2  12 2

8 0
u3  20 2

10
u4  30

This shows that u0  2,u0  4, 2u0  2, 3u0  4u0 etc. all  0.

Thus 1.2  2.3x  3.4x2   
                         u0  u1x  u2x

2  
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2
20

0 02 31 1 1

u x x
u u

x x x
      

  


                             

2

2 3 3

2 4 2 2
1 1 1 1

x x
x x x x

   
   

Exercises 6.4

Using the method of finite differences, sum the following series:

1. 2.5  5.8  8.11  11.14  n terms.

2. 1.2.32.3.43.4.5.to n terms

3. 1 1 1
1.2.3 2.3.4 3.4.5

   to n terms

4. 
1 1 1

4.5.6 5.6.7 6.7.8
   to n terms

5. 2 2 2 21 2 3 n   

6. Show that
2 2

21 2
0 0 0 01! 2! 1! 2!

xu x u x x x
u e u u u

 
          
 

 

Hence sum the series

(i)
3 3 3

3 2 32 3 4
1

1! 2! 3!
x x x     

(ii) 
2 3 4 54 10 20 35 56

1
1! 2! 3! 4! 5!
x x x x x

      

7. Using Montmort’s theorem find the sum of the series
(i) 2 31.3 3.5 5.7 7.9x x x    
(ii) 2 2 2 2 2 3 21 2 3 4x x x n      

8. show that 2 –1
1 1 2 1 3 1 1

n n nu nC u C u C u u r       
Hence evaluate 14  24  34    n4.

9. Sum the series 1.2xn  2.32xn  3.43xn  4.54xn  to n terms
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10. Show that 2 3 41 1.3 1.3.5
2 2.4 2.4.6

n n n nx x x x        to n terms  

   1/2 1/2
n n

x x    

6.12 Objective Type of Questions

Exercises 6.5

Select the correct answer or fill up the blanks in the following questions:

1.   
(a)  (b)    (c)   .

2. Which one of the following results is correct:
(a) xn  nxn  1 (b) x(n)  nx(n  1)

(c) nex  ex (d)  cosx   sinx.

3. If f(x)  3x3  2x2  1, then 3f(x)  

4. The relationship between the operators E and D is.

5. The (n  1)th order difference of the nth degree polynomial is

6. If y(x)  x(x  1) (x  2), then y(x)  . .

7. x3  2x2  x  1 in factorial form  ...

8. Taking has the interval of differencing, 2x3  

9. In terms of E,  .

10. The form of the function tabulated at equally spaced intervals with sixth 
differences constant, is

11. If the interval of differencing is unity, then 4[(1  x)(1  2x)(1  3x)]  


12. Taking the interval of differencing as unity, the first difference of 
x4  3x3  2x  1 is  .

13. The missing values of y in the following data:

yx: 0 ... ... ... 25
yx: 1 2 4 7 11, are.



270 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

14. 3[(1  x)(1  3x)(1  5x)]  (interval of differencing being 1)

15. tan1 x.

16. If y  x2  2x  2, taking interval of differencing as unity,2y  .

17. Relation between  and E is given by..

18. The kth difference of a polynomial of degree k is

19. ryk in terms of backward differences  .

20. The value of (2/E)ex  .

21. The relation between the shift operator E and second order backward 
difference operator 2 is

22. The value of n(ex)  (intervalofdifferencingbeing1).

23. Relationship between E,  and  is

24. If the fifth and higher order differences of a function vanish, then the 
function represents a polynomial of degree.

25. The value of E 1  .

26. If E2ux  x2 and h  1, then ux  .

27. Given y0  2, y1  4, y2  8, y4  32,then y3  .

28. y0  1, y1  5, y2  8, y3  3, y4  7, y5  0, then 5y6  
(a) 61 (b)  62
(c) 62 (d)  61.

29. Given x  1 2 3
f (x)3 815, then 2f (1)
(a) 3 (b) 4
(c) 2 (d) 1

30. (E1/2  E–1/2)(1)1/2 
(a) 1 (b) – 1
(c) 2 (d) – 2.

31. Which one is incorrect?
(a) E  1  (b) (5)  0
(c) (f1 f2)   f1  f2 (d) (f1 . f2)  f1 f2.
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32. –   2. (True or False)

33.    E  E–1. (True or False)

34. E  e–hD . (True or False)

35. If f(x)  ex,then 6ex  (eh – 1)6ex. (True or False)

36. n  nEn/2 (True or False)

37. (1 )(1 – )  1. (True or False)

38. With the usual notations, match the items on right hand side with those 
in left hand side:

  (i) E (a) 1
2

(  ) 

 (ii) hD (b)   
(iii)  (c)  
(iv)  (d)  log(1  )
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 Iterative method
 Objective type of questions

7.1 Introduction

Suppose we are given the following values of y  f(x) for a set of values 
of x:

x: x0 x1 x2  xn

y: Y0 y1 y2 
 yn.

Then the process of finding the value of y corresponding to any value of 
x  xi between x0 and xn is called interpolation. Thus interpolation is the 
technique of estimating the value of a function for any intermediate value 
of the independent variable while the process of computing the value of the 
function outside the given range is called extrapolation. The term interpola-
tion however, is taken to include extrapolation.

If the function f(x) is known explicitly, then the value of y correspond-
ing to any value of x can easily be found. Conversely, if the form of f(x) is not 
known (as is the case in most of the applications), it is very difficult to de-
termine the exact form of f(x) with the help of tabulated set of values (xi, yi). 
In such cases, f(x) is replaced by a simpler function (x) which assumes the 
same values as those of f(x) at the tabulated set of points. Any other value 
may be calculated from (x) which is known as the interpolating function or 
smoothing function. If (x) is a polynomial, then it called the interpolating 
polynomial and the process is called the polynomial interpolation. Similarly 
when (x) is a finite trigonometric series, we have trigonometric interpola-
tion. But we shall confine ourselves to polynomial interpolation only.

The study of interpolation is based on the calculus of finite differences. 
We begin by deriving two important interpolation formulae by means of 
forward and backward differences of a function. These formulae are often 
employed in engineering and scientific investigations.

7.2 Newton’s Forward Interpolation Formula

Let the function y  f(x) take the values y0, y1, , yn corresponding to 
the values x0, x1, , xn of x. Let these values of x be equispaced such that 
xi  x0  ih (i  0, 1, ). Assuming y(x) to be a polynomial of the nth degree 
in x such that 0 0 1 1( ) ( ), , , .( )n ny x y y x y y x y   We can write
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0 1 0 2 0 1 3 0 1 2– ( – )(( ) ( ) ( )( )( )– ) – – –y x a a x x a x x x x a x x x x x x   

 0 1 –1– –( )( ) ( – )n na x x x x x x    (1)

Putting x  x0, x1, , xn successively in (1), we get

0 0 1 0 1 1 0 2 0 1 2 0 2 2 0 2 1, – , ( – )( ) ( )( )– –y a y a a x x y a a x x a x x x x     
and so on.

From these, we find that 0 0 0 1 0 1 1 0 1, ( )– –a y y y y a x x a h    

  1 0
1

  a y
h

   

Also 1 2 1 1 2 1 2 2 0 2 1

2
1 2 0 2

( ) ( )( )

2

y y y a x x a x x x x

a h a hh y h a

       

   

   2
2 1 0 02 2

1 1
2 2!

a y y y
h h

    

Similarly 3
3 03

1
3!

a y
h

   and so on.

Substituting these values in (1), we obtain

 
2 3

0 0 0
0 0 0 1 0 1 22 3( ) ( ) ( )( ) ( )( )( )

2! 3!
y y y

y x y x x x x x x x x x x x x
h h h
  

            

 (2)
Now if it is required to evaluate y for x x0  ph, then

0 1 0 0( ) , ( ) ( 1) ,x x ph x x x x x x ph h p h          

0 0 0( ) ( ) ( 1) ( 2)x x x x x x p h h p h           etc.

Hence, writting y(x) = y(x0 + ph) = yp, (2) becomes

 2 3
0 0 0 0

( 1) ( 1)( 2)
2! 3!p

p p p p p
y y p y y y

  
      

 
 

0

( 1) -1

3!
np p p n
y

 
  


  (3)

It is called Newton’s forward interpolation formula as (3) contains y0 
and the forward differences of y0

Otherwise: Let the function y  f(x) take the values y0, y1, y2,corre-
sponding to the values x0, x0  h, x0  2h,  of x. Suppose it is required to 
evaluate f(x) for x  x0  ph, where p is any real number.
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For any real number p, we have defined E such that

 ( ) ( )pE f x f x ph 

 0 0 0( ) ( ) (1 )p p
py f x ph E f x y      [ E  1  ]

2 3
0 0

( 1) ( 1)( 2)
1

2! 3!
p p p p p

p y y
   
       
 

  (4)

[Using binomial theorem]

i.e., 2 3
0 0 0 0

( 1) ( 1)( 2)
2! 3!p

p p p p p
y y p y y y

  
       

If y  f(x) is a polynomial of the nth degree, then n1y0 and higher dif-
ferences will be zero.

Hence (4) will become

 

2 3
0 0 0 0

0

( 1) ( 1)( 2)
2! 3!

( 1) 1

3!

p

n

p p p p p
y y p y y y

p p p n
y

  
       

  
 





Which is same as (3)

Obs. 1. This formula is used for interpolating the values of y 
near the beginning of a set of tabulated values and extrapolating 
values of y a little backward (i.e.,  to the left) of y0.

Obs. 2. The first two terms of this formula give the linear inter-
polation while the first three terms give a parabolic interpola-
tion and so on.

7.3 Newton’s Backward Interpolation Formula

Let the function y  f(x) take the values y0, y1, y2,  corresponding to 
the values x0, x0  h, x0  2h,  of x. Suppose it is required to evaluate f(x) 
for x  xn  ph, where p is any real number. Then we have

yp  f(xn  ph)  Ep f(xn)  (1 – )-p yn [ E1  1 – ]

    2 3
0

( 1) ( 1)( 2)
1

2! 3! n
p p p p p

p y y
   

        


 [using binomial theorem]

NOTE
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i.e.,  2 3( 1) ( 1)( 2)
2! 3!p n n n n

p p p p p
y y p y y y

  
         (1)

It is called Newton’s backward interpolation formula as (1) contains yn 
and backward  differences of yn 

Obs. This formula is used for interpolating the values of y near 
the end of a set of tabulated values and also for extrapolating 
values of y a little ahead (to the right) of yn

EXAMPLE 7.1

The table gives the distance in nautical miles of the visible horizon for 
the given heights in feet above the earth’s surface:

x  height: 100 150 200 250 300 350 400
y  distance: 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the values of y when

(i) x  160 ft. (ii) x  410.

Solution:

The difference table is as under:

x y  2 3 4

100 10.63
2.40

150 13.03 – 0.39
2.01 0.15

200 15.04 – 0.24 – 0.07
1.77 0.08

250 16.81 – 0.16 – 0.05
1.61 0.03

300 18.42 – 0.13 – 0.01
1.48 0.02

350 19.90 – 0.11
1.37

400 21.27

(i) If we take x0  160, then y0 13.03, y0  2.01, 2y0  – 0.24, 
3  0.08, 4 y0  – 0.05

NOTE
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Since x  160 and h  50,  0 10
0.2

50
x x

p
h


  

 Using Newton’s forward interpolation formula, we get

 2 3
218 0 0 0 0

( 1) ( 1)( 2)
2! 3!p

p p p p p
y y y p y y y

  
       

 4
0

( 1)( 2)( 3)
4!

p p p p
y

  
  

y160  13.03  0.402  0.192  0.0384  0.00168  13.46 nautical miles

(ii) Since x  410 is near the end of the table, we use Newton’s back-
ward interpolation formula.

 Taking xn  400, 10
0.2

50
nx x

p
h


    

Using the line of backward difference

 yn 21.27,  yn 1.37, 2 yn – 0.11, 3 yn 0.02 etc.
 Newton’s backward formula gives

                 
  2

410 400 400 400

1

2!

p p
y y p y y


    

 3 4
400 400

( 1)( 2) ( 1)( 2)( 3)
3! 4!

p p p p p p p
y y

    
      

                         
 

 
0.2 1.2

21.27 0.2 1.37 0.11
2!

   

                             
  

 
   

 
0.2 1.2 2.2 0.2 1.2 2.2 3.2

0.02 0.01
3! 4!

  

                        21.27 0.274 0.0132 0.0018 0.0007    

            21.53 nautical miles

EXAMPLE 7.2

From the following table, estimate the number of students who ob-
tained marks between 40 and 45:

Marks: 30—40 40—50 50—60 60—70 70—80

No. of students: 31 42 51 35 31
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Solution:

First we prepare the cumulative frequency table, as follows:

Marks less than (x): 40 50 60 70 80

No. of students (yx): 31 73 124 159 190

Now the difference table is

x yx  yx 2 yx 3yx 4yx
40 31

42
50 73 9

51 – 25
60 124 – 16 37

35 12
70 159 – 4

31
80 190

We shall find y45, i.e., the number of students with marks less than 45. 

Taking x0 40, x  45, we have

 0 5
0.5

10
x x

p
h


    [ h  10]

 Using Newton’s forward interpolation formula, we get

 
2 3

45 40 40 40 40
( 1) ( 1)( 2)

2!
  

3!
 

p p p p p
y y p y y y

  
        

                                                                              4
40

( 1)( 2)( 3)
4!

 
p p p p

y
  

 

        
 

0.5 0.5 0.5 0.5 15
31 0.5 42 9 25

2 6
  

       

 
    0.5 0.5 15 2.5

37
24

  
 

 31  21 – 1.125 – 1.5625 – 1.4453

 47.87, on simplification. 

The number of students with marks less than 45 is 47.87, i.e., 48. But 
the number of students with marks less than 40 is 31.

Hence the number of students getting marks between 40 and 45  
48 – 31  17.
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EXAMPLE 7.3.

Find the cubic polynomial which takes the following values:

x: 0 1 2 3
f(x): 1 2 1 10

Hence or otherwise evaluate f(4).

Solution:

The difference table is

x f(x) f(x) 2f(x) 3f(x)

0 1

1

1 2 – 2

– 1 12

2 1 10

9

3 10

We take x0  0 and 0x
p x

h


   [ h  1]

 Using Newton’s forward interpolation formula, we get

     

2 3

3 2

( 1) ( 1)( 2)
( ) (0) (0) (0) (0)

1 1.2 1.2.3
( 1) ( 1)( 2)

1 1 2 12
2 6

2 7 6 1

x x x x x x
f x f f f f

x x x x x
x

x x x

  
      

  
    

   
which is the required polynomial.

To compute f(4), we take xn  3, x  4 so that 1nx x
p

h


   [ h  1]

Obs. Using Newton’s backward interpolation formula, we get

 2 3( 1) 2( 1)
(4) (3) (3) (3) (3)

1.2 1.2.3
= 10 + 9 + 10 + 12 = 41

p p pp p
f f p f f f

 
      

NOTE
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which is the same value as that obtained by substituting x  4 in 
the cubic polynomial above.

The above example shows that if a tabulated function is a 
polynomial, then interpolation and extrapolation give the same 
values.

EXAMPLE 7.4

Using Newton’s backward difference formula, construct an interpolat-
ing polynomial of degree 3 for the data: f (– 0.75)  – 0.0718125, f (– 0.5) 
 – 0.02475, f (– 0.25)  0.3349375, f (0)  1.10100. Hence find f (– 1/3).

Solution:

The difference table is

x y y 2y 3y
– 0.75 – 0.0718125

0.0470625
– 0.50 – 0.02475 0.312625

0.3596875 0.09375
– 0.25 0.3349375 0.400375

0.7660625
0 1.10100

We use Newton’s backward difference formula

 2 3
3 3 3 3

( 1) ( 1)( 2)
( )

1! 2! 3!
p p p p p p

y x y y y y
  

      

taking       3
0

0, 4
0.25

x x
x p x

h


      0.25h

          
4 4 1

1.10100 4 0.7660625  0.400375
2

( )
( )

4 (4 1)(4 2)
(0.09375)

6
x x

x

x

x
y x x

 



  

               

2 3 2

3 2

1.101 3.06425 3.251 0.81275 0.75 0.125

4.001 4.002 1.101

x x x x x x

x x x

      

   

 Pu t  1
,

3
x  so that 
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3

2

 4.001 4.002 1
1 1 1

.101

 0.17

1
3 3

4
3

5
3

y
       
          



  
       

EXAMPLE 7.5

In the table below, the values of y are consecutive terms of a series of 
which 23.6 is the 6th term. Find the first and tenth terms of the series:

x: 3 4 5 6 7 8 9

y: 4.8 8.4 14.5 23.6 36.2 52.8 73.9

Solution:

The difference table is

x y y 2y 3y 4y

3 4.8
3.6

4 8.4 2.5
6.1 0.5

5 14.5 3.0 0
9.1 0.5

6 23.6 3.5 0
12.6 0.5

7 36.2 4.0 0
16.6 0.5

8 52.8 4.5
21.1

9 73.9

To find the first term, use Newton’s forward interpolation formula with 
x0  3, x  1, h  1, and p  – 2. We have

 
        2 2 3 2 3 4

(1) 4.8 3.6 2.5 0.5 3.1
1 1.2 1.2.3

y
     

       

To obtain the tenth term, u se Newton’s backward interpolation for-
mula with xn 9, x  10, h  1, and p  1.This gives

  
   1 1 2 1(2) 3

10 73.9 21.1 4.5 0.5 100
1 1.2 1.2.3

y        
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EXAMPLE 7.6

Using Newton’s forward interpolation formula show 

  
2

3 ( 1)
2

n n
n


 

Solution:

If sn  sn3, then 3
1 ( ) 1ns n  

      3 33
1 1 1n n ns s s n n n        

Then     3 32 2
1 2 1 3 9 7n n ns s s n n n n         

               3 2 2
1n n ns s s  

                             2 23 1 9 1 7 3 9 7 6 12n n n n n           

                   4 3 3
1 6 1 12 6 12 6n n ns s s n n        

and         5 5 ...... 0n ns s   

Since the first term of the given series is 1, therefore taking n  1, s1 1, 
 s1  8, 2 s1  19, 3s1  18, 4 s1 6.

Substituting these in the Newton’s for war d interpolation formula, i.e.,

2 3
1 1 1

( )( ) ( )( )( )
( )

2!
 1  2 1 2 3  

 – 1   
3!

n n n n n
s s n s s s

    
      

 4
1

( )( )( )( )
4!

1 2 3 4n n n n
s

   


                            ( ) ( )(
19

 1 8 – 1 – 1 – 2) ( )( )(3 – 1 – 2 – 3
2

)sn n n n n n n   

4
2

3 21 1
  – 1 – 2 – 3 – 4  

( 1)
( )( )( )( ) ( )

2
2

4 4
n n n n n

n
n

n
n

 
 


 




Exercises 7.1

1. Using Newton ’s forward formula, fin d the value of f(1.6), if

x: 1 1.4 1.8 2.2

f(x): 3.49 4.82 5.96 6.5

2. From the following table find y when x  1.85 an d 2.4 by Newton’s inter-
polation formula:

x: 1.7 1.8 1.9 2.0 2.1 2.2 2.3

y  ex: 5.474 6.050 6.686 7.389 8.166 9.025 9.974
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3. Express the value of  in terms of x using the following data:

x: 40 50 60 70 80 90
: 184 204 226 250 276 304

Also find  at x  43.

4. Given  sin 45°  0.7071, sin 50°  0.7660, sin 55°  0.8192, 
sin 60°  0.8660, find sin 52° using Newton’s forward formula.

5. From the following table:

x: 0.1 0.2 0.3 0.4 0.5 0.6

f(x): 2.68 3.04 3.38 3.68 3.96 4.21

find f(0.7) approximately.

6. The area A of a circle of diameter d is given for the following values:

d: 80 85 90 95 100

A: 5026 5674 6362 7088 7854
Calculate the area of a circle of diameter 105

7. From the following table:

x°: 10 20 30 40 50 60 70 80

cos x: 0.9848 0.9397 0.8660 0.7660 0.6428 0.5000 0.3420 0.1737
Calculate cos 25° and cos 73° using the Gregory-1 Newton formula.

8. A test performed on a NPN transistor gives the following result:

Base current f (mA) 0 0.01 0.02 0.03 0.04 0.05

Collector current IC (mA) 0 1.2 2.5 3.6 4.3 5.34

Calculate (i) the value of the collector current for the base current of 
0.005 mA.
(ii) the value of base current required for a collector correct of 4.0 mA.

9. Find f(22) from the following data using Newton’s backward formulae.

x: 20 25 30 35 40 45
f(x): 354 332 291 260 231 204

10. Find the number of men getting wages between Rs. 10 and 15 from the 
following data:

Wages in Rs: 0—10 10—20 20—30 30—40

Frequency: 9 30 35 42
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11. From the following data, estimate the number of persons having in-
comes between 2000 and 2500:

Income Below 500 500–1000 1000–2000 2000–3000 3000–4000
No. of persons 6000 4250 3600 1500 650

12. Construct Newton’s forward interpolation polynomial for the following 
data:

x: 4 6 8 10

y: 1 3 8 16

Hence evaluate y for x  5. 

13. Find the cubic polynomial which takes the following values:
y(0)  1, y(1)  0, y(2)  1 and y(3)  10.

Hence or otherwise, obtain y(4). 

14. Construct the difference table for the following data:

x: 0.1 0.3 0.5 0.7 0.9 1.1 1.3

f (x): 0.003 0.067 0.148 0.248 0.370 0.518 0.697

Evaluate f (0.6) 

15. Apply Newton’s backward difference formula to the data below, to ob-
tain a polynomial of degree 4 in x:

x: 1 2 3 4 5
y: 1 – 1 1 – 1 1

16. The following table gives the population of a town during the last six 
censuses. Estimate the increase in the population during the period 
from 1976 to 1978:

Year: 1941 1951 1961 1971 1981 1991
Population:
(in thousands)

12 15 20 27 39 52

17. In the following table, the values of y are consecutive terms of a series of 
which 12.5 is the fifth term. Find the first and tenth terms of the series.

x: 3 4 5 6 7 8 9

y: 2.7 6.4 12.5 21.6 34.3 51.2 72.9



286 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

18. Using a polynomial of the third degree, complete the record given be-
low of the export of a certain commodity during five years:

Year: 1989 1990 1991 1992 1993
Export: 
(in tons)

443 384 — 397 467

19. Given u1 40, u3  45, u5  54, find u2 and u4.

20. If u1  10, u1  8, u2  10,u4  50, find u0 and u3.

21. Given y0  3, y1   12, y2   81, y3   200, y4  100, y5  8, without form-
ing the difference table, find 5y0.

7.4  Central Difference Interpolation Formulae

In the preceding sections, we derived Newton’s forward and backward 
interpolation formulae which are applicable for interpolation near the be-
ginning and end of tabulated values. Now we shall develop central differ-
ence formulae which are best suited for interpolation near the middle of 
the table.

If x takes the values x0 – 2h, x0 – h, x0, x0  h, x0  2h and the correspond-
ing values of y  f(x) are y–2, y–1, y0, y1, y2, then we can write the difference 
table in the two notations as follows:

x y 1st diff. 2nd diff. 3rd diff. 4th diff.

x0 – 2h y2

y2 ( y3/2)

x0 – h y1 2y2( 2y1)

y1 ( y1/2) 3y2 ( 3y1/2)

x0 y0 2y1 ( 2y0) 3y2( 4y0)

y0 ( y1/2) 3y1 ( 3y1/2)

x0  h y1 2y0( 2y1)

y1( y3/2)

x0  2h y2
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7.5 Gauss’s Forward Interpolation Formula

The Newton’s forward interpolation formula is

 2 3
00 0 00

( 1) ( 1)( 2)
1.2 1.2.3

p p p p
yy y p

p
y y

  
        (1)

We have 2y0 – 2y1  3 y1

i.e.,                           2 y0  2 y1 3 y1 (2)

Similarly               3y0  3y1 4y1 (3)

4 y0  4 y1 5 y1 etc. (4)

Also 3 y1– 3y2  4 y2

i.e.,              3 y1  3 y2 4y2

Similarly             4 y1  4 y2 5 y2etc. (5)

Substituting for 2 y0, 
3 y0, 

4 y0 from (2), (3), (4)..in (1), we get

   2
0 0

3 3 4
1 1 1 1

( 1) ( 1)( 2)
1.2 1.2.3p

p p
y y p y

p p p
y y y y   

  
       

 
 4 5

1 1

( 1)( 2) 3

1.2.3.4

p p p p
y y 

  
  

Hence 0
3

1 10
2( 1) ( 1)( 2)

2! 3!p
p p p p p

yy y p y y 

 
 


  

    4
2

( 1)( 2) 3

4!

p p p
y

  
    [using (5)]

which is called Gauss’s forward interpolation formula.

Cor. In the central differences notation, this formula will be

 

2 3
0 1 2 1 2 1 2

4
1 2

( 1) ( 1)( 2)
2! 3!

( 1)( 2)( 3)
4!

p
p p p p p

y y p y y y

p p p p
y

  
      

  
 

Obs. 1. It employs odd differences just below the central line 
and even difference on the central line as shown below:

 
y0                    

3y1                   
5y2               

7y3

y0                    
2y1                   

4y2               
6y3  Central line

NOTE
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Obs. 2. This formula is used to interpolate the values of y for p 
(0 < p < 1) measured forwardly from the origin.

7.6 Gauss’s Backward Interpolation Formula

The Newton’s forward interpolation formula is

 2 3
00 0 0

( 1) ( 1)( 2)
1.2 1.2.3p

p p p p
yy y p

p
y y

  
        (1)

We have  y0 –  y1  2 y1

i.e.,                y0   y1  2 y1 (2)

Similarly  2y0  2 y1  3 y1 (3)

3 y0  3 y1  4 y1 etc. (4)

Also     3 y1 – 3 y2  4 y2

i.e.,            3 y1  3 y2 4 y2 (5)

Similarly          4 y1  4 y2 5 y2etc. (6)

Substituting for  y0, 
2 y0, 

3 y0, from (2), (3), (4) in (1), we get

 

   

2 3
1 1

3 4

2
0 1

4 5
1 1 1

1

1

( 1)
1.2

( 1)( 2) ( 1)( 2)( 3)
1.2.3 1.2

(  )

 
.3.4

p
p p

y y

p p p p p

y y p

p p
y y y y

y y 

  





 


  

    
     

 



 



         

2
0 1

3
1 1

4 5
1 1

( 1) ( 1) ( 1)
1.2 1.2.3

( 1) ( 1)( 2) ( 1)

  

    
( 2)( 3)

1.2.3.4 1.2.3.4
   

p p p p p
y y

p p p p p p p p
y y

y p y  

 



  
   

     
   

 







 

 

2 3 4
1 20 1 2

4 5
2 2

( 1) ( 1) ( 1)
1.2 1.2.3

    

( 1) ( 1)( 2)
1.2.3.4

 

p p p p p
y y y

p p p p
y y

y p y   

 

  
    

  
  

 







  [using (5) and (6)

Hence 2 3
1 20 1

4
2

( 1) ( 1) ( 1)
2! 3!

( 1) (

 

1)( 1)
4!

y
p p p p p

y y

p p p

yp y p

p
y

  



  
   

  
 

  



which is called Gauss’s backward interpolation formula.
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Cor. In the central differences notation, this formula will be

2 3
0

4
0

0 1 2 1 2
( 1) ( 1) ( 1)

2! 3!
( 2)( 1) (

 

1)
4!

 

py y
p p p p p

y y

p p p p
y

p y 


 

 
   

  
  





Obs. 1. This formula contains odd differences above the central 
line and even differences on the central line as shown below:

 y0                       
2y1                   

4y2               
6y3Central line

y–2    3y–2        5y–3

Obs. 2. It is used to interpolate the values of y for a negative 
value of p lying between – 1 and 0.

Obs. 3. Gauss’s forward and backward formulae are not of 
much practical use. However, these serve as intermediate steps 
for obtaining the important formulae of the following sections.

7.7 Stirling’s Formula

Gauss’s forward interpolation formula is

 
0

4
2

0 1
2 3

1
( 1) ( 1) ( 1)

 
2! 3!

( 1) ( 1)( 2)
4

 
!

p
p p p p

y y

p p p

y

p
y

y y p  



  
   

  













 (1)

Gauss’s backward interpolation formula is
2 3

2

4

0 1 1

2

( 1) ( 1) ( 1)
2! 3!

( 2)( 1) (

 

 
1)

4!

py y
p p p p p

y y

p p p p
y

p y  



  
   

  



 









 (2)

Taking the mean of (1) and (2), we obtained

  

2 2
2

1

3 3 2 2
1

0

2
2

0

4

1 ( 1)
2! 3!

( 1

2

)
4

 

2 !
 

p
p p p

y

y y p p
y

y y
y y p 

 


 
  

   
 



 

 
  










 (3)

Which is called Stirling’s formula.

NOTE
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Cor. In the central difference notation, (3) takes the form

 
2 2 2

3
0 0

2 2 2
2 4

0 0 0
( 1 ) ( 1 )

2! 3!
  

4!
 p

p p p p p
y yy y yy p

 
         

For    0 1 1 2 1 2 0
1 1
2 2

y y y y y       

    3 3 3 3 3
1 2 1 2 1 2 0

1 1
2 2

y y y y y          etc.

Obs. This formula involves means of the odd differences just 
above and below the central line and even differences on this 
line as shown below:

3 5
1 2 12 4 6

0 1 2 33 5
0 1 0

y y y
y y y y

y y y
  

  


      
                

       

 Central line.

7.8 Bessel’s Formula

Gauss’s forward interpolation formula is

 

2 3

4

0 11

2

0
( 1) ( 1) ( 1

 
)

2! 3!
( 1) ( 1)

 
( 1)

4!

py y
p p p p p

y y

p p

p

p p

y

y

 



  
   

  
 

 







We have 2y0 – 2y–1  3y–1 (1)

i.e.,                            2y–1  2y0 – 3y–1 (2)
Similarly 4y–2  4y–1 – 4y–2 etc.
Now (1) can be written as

 0 0

2
2 2 3

1 1 1

2
4 4

2 2

( 1) ( 1)1 1
2! 2 2 3!

( 1)( 2) 1 1
4!

 

 
2 2

p
p p p p

y y y

p p

y y

y y

y p

p

  

 

  
      

 

  
 

 

   
 





 

 

 

2 2 3
1 0 1

2 2 2
3 4

1 2

4 5
1

0

1

0
( 1) ( 1)1 1

2 2! 2 2!
( 1) ( 1)( 2) ( 1)( 2)1 1

3! 2 !

 

4 2 4!

p p p p
y y y

p p p p

y p

p p p p
y y

y y

y  

 

 


 

    

    
    

  

 


 [Using (2), (3) etc.]

NOTE
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Hence 
2 2

1 0 3
0 0 1

1
( 1)( 1) 2

2! 2 3!
 p

p p pp p y y
yy yy p 


 
      

      (4)

Which is known as Bessel’s formula.

Cor. In the central difference notation, (4) becomes

0 1 2 1 2 1
2 3

2

2
4

1

1
(

 
1)( 1) 2

2! 2!
( 1) ( 1)( 2)

4!

p

p p pp p

p

y y p y y y

y
p p p

 
    

     


  

 

for    2 2 2 4 4
1 2 1 2

4
1 0 2 1

1 1
2

,
2

y y y yy y           etc.,

Obs. This is a very useful formula for practical purposes. It 
involves odd differences below the central line and means of 
even differences of and below this line as shown below 

2 4 6
1 2 1

3 5 7
0 1 2 3

2 4 6
0 1 0

y y y
y y y y

y y y

  

  



            
        
            

Central line
.

7.9 Laplace-Everett’s Formula

Gauss’s forward interpolation formula is

2 3
0 0 11

4 5
2 2

( 1) ( 1) ( 1)
2! 3!

( 1) ( 1)( 2) ( 2)( 1) ( 1)( 2)
5

 

4! !

p
p p p p p

y y

p p p p p p p p p
y

y y

y

y p  

 

  
   

      
  

 






 (1) 

We eliminate the odd differences in (1) by using the relations
3 2 2 5 4 4

0 1 0 –1 0 –1 –2 –1 –2– , – , –y y y y y y y y y         etc.

Then (1) becomes

 

 

2 2
0 1 0 1

2
1 0

4
2

4 4
1 2

( 1) ( 1) ( 1)
2! 3!

( 1) ( 1)( 2) ( 2)( 1) ( 1)( 2)
4

(

! 5!

) p
p p p p p

y y y

p p p p

y y p y y

p p p p p
y

y y

 



 

  
    

      
  

 

 







NOTE

y0
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2 2
1 1 0

4
2

4

0

1

( 1)( 2) ( 1) ( 1)
(1 )

3! 3!
( 1) ( 1)( 2)( 3)

5!
( 2)( 1) ( 1)( 2)

5!

p p p p p p
p y y y

p p p p p
y

p p p p
y

y p

p







   
     

   
 

   
 





To change the terms with negative sign, putting p  1 – q, we obtain
2 2 2 2 2 2

2 4
1 2

2 2 2 2 2 2
2 4

0

1 0 2

( 1 ) ( 1 )( 2 )
3! 5!

( 1 ) ( 1 )( 2 )
3! 5!

p
q q q q q

y y

p p p p p
y

y qy

py y

 



  
   

  
    

  



This is known as Laplace-Everett’s formula.

Obs. 1. This formula is extensively used and involves only even 
differences on and below the central line as shown below:

                            y0          
2y1    4y2                      

6y3 Central  line
                            —      —        —      —

1y   
2

0y   
4

1y   
6

2y

Obs. 2. There is a close relationship between Bessel’s formula 
and Everett’s formula and one can be deduced from the other 
by suitable rearrangements. It is also interesting to observe that 
Bessel’s formula truncated after third differences is Everett’s 
formula truncated after second differences.

7.10 Choice of an Interpolation Formula

So far we have derived several interpolation formulae such as Newton’s 
forward, Newton’s backward, Gauss’s forward, Gauss’s backward, Stirling’s, 
Bessel’s and Everett’s formulae for calculating yp from equispaced values 
which are called classical formulae. Now, we have to see which formula 
yields most accurate results in a particular problem.

The coefficients in the central difference formulae are smaller and 
converge faster than those in Newton’s formulae. After a few terms, the 
coefficients in the Stirling’s formula decrease more rapidly than those of 

NOTE
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the Bessel’s formula and the coefficients of Bessel’s formula decrease more 
rapidly than those of Newton’s formula. As such, whenever possible, central 
difference formulae should be used in preference to Newton’s formulae.

The right choice of an interpolation formula however, depends on the 
position of the interpolated value in the given data.

The following rules will be found useful:

1. To find a tabulated value near the beginning of the table, use Newton’s 
forward formula.

2. To find a value near the end of the table, use Newton’s backward for-
mula.

3. To find an interpolated value near the center of the table, use either 
Stirling’s or Bessel’s or Everett’s formula.

If interpolation is required for p lying between 
1 1

 and ,
4 4

  prefer Stirling’s 
formula

If  interpolation is desired for p lying between 
1 3

 and ,
4 4

 use Bessel’s 
or Everett’s formula.

EXAMPLE 7.7

Find f(22) from the Gauss forward formula:

x: 20 25 30 35 40 45

f (x): 354 332 291 260 231 204

Solution:

Taking x0  25, h  5, we have to find the value of f(x) for x  22.

i.e., for 0 22 2
– 0.6

5
5

x x
p

h
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The difference table is as follows:

x p yp  yp 2yp 3yp 4yp 5yp

20 – 1 354 ( y1) – 22

25 0 332 ( y0) – 41 – 19 29

30 1 291 ( y1) – 31 10 – 8 – 37 45

35 2 260 ( y2) – 29 2 0 8

40 3 231 ( y3) – 27 2

45 4 204 ( y4)

Gauss forward formula is

       
2 3

1

4

0 1

2

5
2

0
( 1) ( 1) ( 1)

2! 3!
( 1) ( 1)( 2)

4!
( 1)( 1) ( 2)( 2)

.....
5!

 p
p p p p p

y y

p p p p
y

y y p y

p p p p p
y

 





  
   

  
 

   




 

 


0.6 0.6 1

332 (0.6) –41  19

0.6 1 0.6 0.6 1
 8

0.6

( )( )
(22) ( ) ( )

2!
( )( )( )

( )
3!

( )( )(1 0.6 0.6 1 0.6 2
 3

)( )
(

( )( )( )( )( )
(

7)
4!

0.6 1 0.6 0.6 1 0.6 2 0
)

.
5

2
45

!
6

f
  

  

    


      
 

        






 332  24.6 – 9.12 – 0.512  1.5392 – 0.5241

Hence f (22)  347.983.

EXAMPLE 7.8

Use  Gauss’s  forward formula to evaluate y30, given that y21  18.4708, 
y25 17.8144, y29  17.1070, y33  16.3432 and y37  15.5154.

Solution

Taking x0  29, h  4, we require the value of y for x  30

i.e., for 0 30 29
0.25

4
x x

p
h
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The difference table is given below:

x p yp yp 2yp 3yp 4yp

21 – 2 18.4708

– 0.6564

25 – 1 17.8144 – 0.0510

– 0.7074 – 0.7074

29 0 17.1070 – 0.0564 – 0.0022

– 0.7638 – 0.0076

33 1 16.3432 – 0.0640

– 0.8278

37 2 15.5154

Gauss’s forward formula is

  

2 3
1 1

4
2

0 0
( 1) ( 1) ( 1)
1.2 1.2.3

( 1) ( 1)( 2)
1.2

 

.3.

 

4
  

p
p p p p p

y y

p p

y y p

p p
y

y  



  
  

   

  
  

 30
0.25 0.75

17.1070 0.25 –0.7638 –0.0564

1.25 0.25 0.75 (1.25

( )( )
( ) ( )

2
( )( )( ) ) 0.25( )( 0.75 1.75

–0.0076

–0.00

)( )
( )

6 24
( )22

y


 

 







 

 

 

 17.1070 – 0.19095  0.00529  0.0003 – 0.00004  16.9216 approx.

EXAMPLE 7.9

Using Gauss backward difference formula, find y (8) from the following 
table.

x 0 5 10 15 20 25

y 7 11 14 18 24 32

Solution:

Taking  x0  10, h  5, we have to find y for x  8, i.e., for 

0 –0.4
8 1

.
0

5
x x

p
h
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The difference table is as follows:

x p yp yp 2yp 3yp 4yp 5yp

0 2 7
4

5 1 11 – 1
3 2

10 0 14 1 – 1
4 1 0

15 1 18 2 – 1
6 0

20 2 24 2
8

25 3 32

Gauss backward formula is

    

2 3
2

4

0 1 1

2

( 1) ( 1) ( 1
 

)
2! 3!

( 2) ( 1) ( 1)
4!

py y p y
p p p p p

y y

p p p p p
y

  



  
   

  


 







    
( )( ) ( )( )( )

( ) ( )

( )( )( )( )
                         ( )

14 1.2 0.12 0.112 0.034

0.4 1 0.4 0.4 1 0.4 0.4 1
8 14 –0.4 3 1 2

2! 3!
0.4 2 0.4 1 0.4 0.4 1

1
4!

y
       

   

 


    

    


Hence y(8)  12.826

EXAMPLE 7.10

Interpolate by means of Gauss’s  backward formula, the population of a 
town for the year 1974, given that:

Year: 1939 1949 1959 1969 1979 1989
Population:
(in thousands)

12 15 20 27 39 52

Solution:

Taking x0  1969, h  10, the population of the town is to be found for

 
1974 – 1969

0.5
10

p 
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The Central difference table is

x p yp yp 2yp 3yp 4yp 5yp

1939 – 3 12 3 2 0 3 −10

1949 – 2 15

5

1959 – 1 20 2

7 3

1969 0 27 5 −7

12 – 4

1979 1 39 1

13

1989 2 52

Gauss’s backward formula is

 
0 1

2 3
1

4
2

5

2

3

( 1) ( 1) ( 1)
2! 3!

( 2) ( 1) ( 1)
4!

( 2)( 1) ( 1)( )
5!

 

2

p
p p p p p

y y

p p p p p
y

y y

p p p p
y

y

p

p  



 
  

   

  
 

   




 

        
  

 
   

   
 

     
 

0.5
1.5 0.5 1.5 0.5 0.5

27 0.5 7 5
2 6

2.5 1.5 0.5 2.5 1.5 0.5 0.5 1.5
7

( )(

10
24 12

)

0

y


   

 
   

             27  3.5  1.875 – 0.1875  0.2743 – 0.1172
             32.532 thousands approx.

EXAMPLE 7.11

Employ Stirling’s formula to compute y12.2 from the following table 
(yx  1  log10sinx):

x°: 10 11 12 13 14
105 yx: 23,967 28,060 31,788 35,209 38,368
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Solution:

Taking the origin at x0  12°, h  1 and p  x – 12, we have the following 
central difference table:

p yx yx 2yx 3yx 4yx

– 2  x2 0.23967  y2

0.04093  y2

– 1  x1 0.28060  y1 – 0.00365  2y2

0.03728  y1 0.00058  3y2

0  x0 0.31788  y0 – 0.00307  2y1 – 0.00013  4y2

0.03421  y0 – 0.00045  2y1

1  x1 0.35209  y1 – 0.00062  2y0

0.03159  y1

2  x2 0.38368  y2

At x  12.2, p  0.2. (As p lies between 
1 1

 and ,
4 4

  the use of String’s 
formula will be Quite suitable.)

Stirling’s formula is

  

2 2 3 3
2 12

1

2 2
4

1

2

0
0

( 1)
.

2! 3! 2
( 1)

4!

 
1 2

 

p
p y y

y y
p p p y y

y

p p
y

  




   
  


 


 







When p  0.2, we have

 

 
 

2

0.2
0.03728 0.03421 0.2

0.3178 0.2 0.00307
2 2

y
 

    
 

       
 

2 2 2 20.2 0.2 1 0.2 0.2 10.00058 0.00054
0.00013

6 2 24

        
   

 

 0.31788  0.00715 – 0.00006 – 0.000002  0.0000002

 0.32497.

EXAMPLE 7.12

Given
: 0 5 10 15 20 25 30

tan : 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774
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Using Stirling’s formula, estimate the value of tan16°.

Solution:

Taking the origin at   15°, h  5 and 15
,

5
p


  we have the follow-

ing central difference table:

p y  tan y 2y 3y 4y 5y

– 3 0.0000
0.0875

– 2 0.0875 0.0013
0.0888 0.0015

– 1 0.1763 0.0028 0.0002
0.0916 0.0017 – 0.0002

0 0.2679 0.0045 0.0000
0.0961 0.0017 0.0009

1 0.3640 0.0062 0.0009
0.1023 0.0026

2 0.4663 0.0088
0.1111

3 0.5774

At   16, 
16 15

0.2
5

p


   

Stirling’s formula is

       

2 2 2 2 3
1 0 2 12

1

2 2
4

2

( 1)
1 2 2! 3! 2

( 1)
4

 
!

p o
p y y p p p y y

y y y

p p
y

  




    
      


  


 

 
2

0.2
0.0916 0.0916 0.2

0.2679 0.2 0.0045
2 2

y
 

    
 



 0.2679  0.01877  0.00009    0.28676

Hence, tan 16  0.28676.

EXAMPLE 7.13

Apply Bessel’s formula to obtain y25, given y20  2854, y24  3162, 
y28  3544, y32  3992.
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Solution:

Taking the origin at x0  24, h  4, we have p  (x – 24).

 The central difference table is

p y y 2y 3y
– 1 2854

308
0 3162 74

382 – 8
1 3544 66

448
2 3992

At 
 25 – 24

25,
4

1
.

4
x p   . (As p lies between

1 3
  and  ,

4 4
the use of 

Bessel’s formula will yield accurate results) 

Bessel’s formula is

 
2 2

0
3

0
1 0

1

1
( 1)( 1) 2

2
 

! 2 2!p

p p pp p y y
y p yy y 



 
      

        (1)

When p  0.25, we have

 0.25( 0.75) 74 66 0.25 0.25( 0.75)
8

2! 2 2
3162 0

!
.25 382 py

  



   

 


 3162  95.5 – 6.5625 – 0.0625

 3250.875 approx.

EXAMPLE 7.14

Apply Bessel’s formula to find the value of f (27.5) from the table:

x: 25 26 27 28 29 30
f(x): 4.000 3.846 3.704 3.571 3.448 3.333

Solution:

Taking the origin at x0  27, h  1, we have p  x – 27 
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The central difference table is

x p y y 2y 3y 4y

25 –2 4.000
–0.154

26 –1 3.846 0.012
– 0.142 – 0.003

27 0 3.704 0.009 0.004
– 0.133 – 0.001

28 1 3.571 0.010 – 0.001
– 0.123 – 0.002

29 2 3.448 0.008
– 0.115

30 3 3.333

At x  27.5, p  0.5 (As p lies between 1/4 and 3/4, the use of Bessel’s 
formula will yield an accurate result),

Bessel’s formula is

             
2 2

1 0 3
1

4
1

0 0

4
2

1
( 1)( 1) 2

2! 2 3!
( 1) ( 1)( 2)

4! 2

 p

p p pp p y y
y

p p p y y

y y p y

p




 

 
      

  

     
  



 









When p  0.5, we have

 

 

0.5 0.5 1 0.009 0.010
3.704 0

2 2
0.5 1 0.5 0.5

( )( )

1 0.5 2 0.001 0.0( )( )( )( )
2

04
2

py
  

   
 

    


                   3.704 – 0.11875 – 0.00006  3.585
Hence f (27.5)  3.585.

EXAMPLE 7.15

Using Everett’s formula, evaluate f(30) if f(20)  2854, f(28)  3162, 
f(36)  7088, f(44)  7984

Solution:

Taking the origin at x0  28, h  8, we have 28
.

8
x

p


 The central table 
is
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x p y y 2y 3y

20 – 1 2854

308

28 0 3162 3618

3926 – 6648

36 1 7088 – 3030

896

44 2 7984

At 
30 28

30, 0.25 and 1 0.75
8

x p q p


     

Everett’s formula is

 

2 2 2 2 2 2
2 4

1 2

2 2 2 2 2 2
2 4

0

1 0 2

( 1 ) ( 1 )( 2 )
3! 5!

( 1 ) ( 1 )( 2 )
3! 5!

p
q q q q q

y y

p p p p p
y

y qy

py y

 



  
   

  
    

  



                     
     

 
 

 

2

2

0.75(0.75 1)
0.75 3162 3618

6
0.25 0.25 1

0.25 7080 3030
6


   


    





                  2371.5 – 351.75  1770  94.69  3884.4

Hence   f (30)  3884.4

EXAMPLE 7.16

Given the table
x: 310 320 330 340 350 360

log x: 2.49136 2.50515 2.51851 2.53148 2.54407 2.55630

find the value of log 337.5 by Everett’s formula.

Solution:

Taking the origin at x0  330 and h  10, we have 330
10

x
p
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 The central difference table is

p y y 2y 3y 4y 5y

–2 2.49136

0.01379

–1 2.50515 – 0.00043

0.01336 0.00004

0 2.51881 – 0.00039 – 0.00003

0.01297 0.00001 0.00004

1 2.53148 – 0.00038 0.00001

0.01259 0.00002

2 2.54407 – 0.00036

0.01223

3 2.55630

To evaluate log 337.5, i.e., for x  337.5, 
337.5 330

0.75
10

p


 

(As p > 0.5 and 0.75, Everett’s formula will be quite suitable)

Everett’s formula is

 
 

  
 

 

2 2 2 2 2 2
2 4

1 2

2 2 2 2 2 2
2 4

0

0

1 1

2.51

( 1 ) ( 1 )( 2 )
3! 5!

( 1 ) ( 1 )( 2 )
3! 5!

0.25 0.0625-1
0.25 0.00039

6
0.25 0.0625-1 0.0625-4

0.00003
1

851

0.75 0
20

( )
0.0003

.5625 1
0.75 2. 853148

6
0

p
q q q q q

y y

p p p p p

y q

py y

y

y

 



  
   

  
   

 

 

 

 

  





  






 
.75 0.5625 1 0.5625 4

6
( )( )

0.00001
 



 0.62963  0.00002 – 0.0000002  1.89861  0.00002  0.0000001

 2.52828 nearly.
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Exercises 7.2

1. Find they (25), given that y20  24, y24  32, y28  35, y32  40, using Gauss 
for ward difference formula.

2. Using Gauss’s forward formula, fin d a polynomial of degree four which 
takes the following values of the function f (x):

x: 1 2 3 4 5

f (x): 1 – 1 1 – 1 1

3. Using Gauss’s forward formula, evaluate f(3.75) from the table:

x: 2.5 3.0 3.5 4.0 4.5 5.0

Y: 24.145 22.043 20.225 18.644 17.262 16.047

4. From the following table:

x: 1.00 1.05 1.10 1.15 1.20 1.25 1.30

ex: 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693
Find e1.17, using Gauss forward formula.

5. Using Gauss’s backward formula, estimate the number of persons 
earning wages between Rs. 60 and Rs. 70 from the following data:

Wages (Rs.): Below 40 40—60 60—80 80—100 100—120

No. of persons:
(in thousands)

250 120 100 70 50

6. Apply Gauss’s backward formula to find sin 45° from the following table:

°: 20 30 40 50 60 70 80

sin : 0.34202 0.502 0.64279 0.76604 0.86603 0.93969 0.98481

7. Using Stirling’s formula find y35, given y20   512, y30  439, y40   346, 
y50   243, where yx represents the number of persons at age x years in a 
life table.

8. The pressure p of wind corresponding to velocity v is given by the fol-
lowing data. Estimate p when v  25.

v: v: 10 20 30 40

p: 1.1 2 4.4 7.9



INTERPOLATION • 305

9. Use Stirling’s formula to evaluate f(1.22), given

x: 1.0 1.1 1.2 1.3 1.4
f(x): 0.841 0.891 0.932 0.963 0.985

10. Calculate the value of f (1.5) using Bessels’ interpolation formula, from 
the table 

x: 0 1 2 3
f(x): 3 6 12 15

11. Use Bessel’s formula to obtain y25, given y20  24, y24  32, y28  35, 
y32  40.

12. Employ Bessel’s formula to find the value of F at x  1.95, given that

x: 1.7 1.8 1.9 2.0 2.1 2.2 2.3

F: 2.979 3.144 3.283 3.391 3.463 3.997 4.491

Which other interpolation formula can be used here? Which is more ap-
propriate? Give reasons.

13. From the following table:

x: 20 25 30 35 40

f(x): 11.4699 12.7834 13.7648 14.4982 15.0463

Find f(34) using Everett’s formula.

14. Apply Everett’s formula to obtain u25, given u20  2854, u24  3162, 
u28  3544, u32  3992.

15. Given the table:

x: 310 320 330 340 350 360

log x: 2.4914 2.5052 2.5185 2.5315 2.5441 2.5563

16. Find the value of log 337.5 by Gauss, Stirling, Bessel, and Everett’s 
formulae.
If y0, y1, y2, y3, y4, y5 (y5 being constant) are given, prove that 

   
5/2

3 2.5
256 2

a c c b c
y

  
 

 where 0 5 1 4 2 3, , .a y y b y y c y y     

[HINT: Use Bessel’s formula taking p  1/2.]



306 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

7.11 Interpolation with Unequal Intervals

The various interpolation formulae derived so far possess the disadvan-
tage of being applicable only to equally spaced values of the argument. It is, 
therefore, desirable to develop interpolation formulae for unequally spaced 
values of x. Now we shall study two such formulae:

 (i) Lagrange’s interpolation formula

(ii) Newton’s general interpolation formula with divided differences.

7.12 Lagrange’s Interpolation Formula

If y  f(x) takes the value y0, y1,......, yn corresponding to x  x0,x1,, xn, 
then 

0 1
1 2 0 2

0 1 0 2 0 1 0 1 2 1

0 1 1

0 1 1

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )

n n

n n

n

n n n
n

n

x x x x x x x x x x x x
x x x x x x x x x x x x

x x x x x x
x

f x y y

y
x x x x x





     

   
 



 

  

  


 
 






 (1)

This is known as Lagrange’s interpolation formula for unequal inter-
vals.

Proof: Let y  f(x) be a function which takes the values (x0, y0), (x1, y1),, 
(xn, yn). Since there are n  1 pairs of values of x and y, we can represent f(x) 
by a polynomial in x of degree n. Let this polynomial be of the form

0 1 2 1 0 2– – – – – –( ) ( )( ) ( ) ( )( ) ( )n ny f x a x x x x x x a x x x x x x   

32 0 1 0 1 –1( )( )( ) ( )– – – – – – –( )( ) ( )n n na x x x x x x x x a x x x x x x     (2)

Putting x  x0, y  y0, in (2), we get

0 0 0 1 2

0 0 1 2

( )( ) ( )
[( )( )

– – –
/ – – ]–( )

n

n

y a x x x x x x

a y x x x x x x








Similarly putting x  x1, y  y1 in (2), we have 

 1 1 1 0 1 2 1[( )(/ – – ) ( )]– na y x x x x x x 
Proceeding the same way, we find a2, a3...... an.

Substituting the values of a0, a1,, an  in (2), we get (1)



INTERPOLATION • 307

Obs. Lagrange’s interpolation formula (1) for n points is a 
polynomial of degree (n – 1) which is known as the Lagrangian 
polynomial and is very simple to implement on a computer.

This formula can also be used to split the given function into 
partial fractions. 

For on dividing both sides of (1) by 0 1( )( ) (– – ),– nx x x x x x we 
get

0

0 1 0 1 0 2 0 0

1 0 1 2 1 1

0 1 1

1

( ) 1
( )( ) ( ) ( )( ) ( ) ( )

1
.

( )( ) ( ( )

1
.

( )( ) ( (

)

) )

n n

n

n n n n

n

n

x x x x x x x x x x x x x x

x x x

yf x

x x x x x

x x

y

x x x x x x
y



      


   





  







 






EXAMPLE 7.17

Given the values

x: 5 7 11 13 17
f(x): 150 392 1452 2366 5202

evaluate f(9), using Lagrange’s formula

Solution:

(i) Here x0  5, x1  7, x2  11, x3 13, x4  17

and y0  150, y1  392, y2  1452, y3  2366, y4  5202.

Putting x  9 and substituting the above values in Lagrange’s formula, 
we get 

9 7 9 11 9 13 9 17 9 5 9 11 9 13 9 17
150 392

5 7 5 11 5 13 5 17 7 5 7 11 7 13 7 17
( )( )( )( ) ( )( )( )( )

(9)
( )( )( )( ) ( )( )( )( )

( )( )(9 5 9 7 9 13 9 17
1452

11 5 11 7 11 13 1
)( )

( )( )( )( 1 17
9 5 9 7 9 11 9 17

13 5 13 7 1

)
( )( )( )( )

( )( 3 1)(

f
       

  
       

   
 

   
   


  



2366
1 13 17

9 5 9 7 9 11 9 13
5202

17 5 17 7 17 1

)(

1 17 13
50 3136 3872 2366 578

     810
3

)
( )( )( )( )

( )( )( )(

315 3 5

)




   
 

   

     

NOTE
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EXAMPLE 7.18

Find the polynomial f (x) by using Lagrange’s formula and hence find 
f(3) for

x: 0 1 2 5
f (x): 2 3 12 147

Solution:

Here x0  0, x1  1, x2  2, x35

and y0  2, y1  3, y2  12, y3147.

Lagrange’s formula is

1 2 3 0 2 3
0

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
2

2 0 2 1 2 3 3 0 3 1
3

3 2

1
( )( )( ) ( )( )( )

( )( )( ( )( )(
( )( )( ) ( )( )( )

( )( )( ( )( )(
( )

 – ) –  – )

–   –   ) –   –  )
2(

 
(1 )

x x x x x x x x x x x x
y

x x x x x x x x x x x x
x x x x x x x x x x x x

y
x x x x x x x x x x

y y

x
y

x
x x x

     

  

     

 






 

 



 

5 0 2 5
0 1 0 2 0 5 1 0 1 2 1 5

0 1 5 0 1 2
147

2 0 2 1 2 5 5 0 5 1

) ( )( )( )
(2) (3)

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

12 ( )
( )( )( ) ( )( )( )5 2

x x x

x x x x x x

  

     
     

    



 


Hence 3 2 – 2( )f x x x x  

 3 27 9 – 3 35( ) 2f    

EXAMPLE 7.19

A curve passes through the points (0, 18), (1, 10), (3, –18) and (6, 90). 
Find the slope of the curve at x  2.

Solution:

Here 0 1 2 30, 1, 3, 6x x x x    and 0 1 2 318, 10, –18, 90.y y y y   

Since the values of x are unequally spaced, we use the Lagrange’s for-
mula:

1 2 3 0 2 3

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
2

2 0 2 1 2 3 3 0

0 1

3
3

3 1 2

)( )( ) ( )( )((
 

)
( )( )( ) ( )( )( )  

–   –   ) – 
( )( )( ) ( )( )( )

( )( )( ( )( )(  –   )

x x x x x x x x x x x x
x x x x x x x x x x x x

x x

y

x x x x x x x x x x
y

x x x x x x x x x x x

y

y
x

y
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3 2 3 2

3 2 3 2

1 3 6 0 3 6
0 1 0 3 0 6 1 0 1 3 1 6

0 1 6 0 1 3
3 0 3 1 3 6 6 0 6 1 6 3

– 10 –  27 18  –  9 18  

–

( )( )( ) ( )( )( )
18 10

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

18 (90)
( )( )( ) ( )( )( )

( ) ( )

( 7 6  – 4 3) ( )

x x x x x x

x x x x x x

x x x x x x

x x x x x x

 

 

     

     
     

     

    

   



i.e., 3 22 – 10 18y x x 

Thus the slope of the curve at
2

2
x

dy
x

dx 

 
  

 
   2

2(6 20 ) 16xx x   

EXAMPLE 7.20

Using Lagrange’s formula, express the function 
   

23 1
1 2 3

x x
x x x

 

  
as 

a sum of partial fractions.

Solution:

Let us evaluate y  3x2  x  1 for x  1, x  2 and x  3

These values are

x: x0  1 x1  2 x2  3
y: y0  5 y1  15 y2  31

Lagrange’s formula is

 
0 2 0 11 2

2
0 1 0 2 1 0 1 2 2 0 2 1

0 1
( )( ) ( )( ))( )

( )( ) (
(

  –   –  )( (  ) )( )
x x x x x x x xx x x x

y
x x x

y y
x x x x x x x

y
x x

    

  



 

Substituting the above values, we get

                
( )( ) ( )( ) ( )( )

5 15 31
(1 )(1 ) (2 )(2

2 3 1 3 1 2
2 3 1 3) ( )3 3( )1 2

x x x x x
y

x
  

     

     

2.5 (x – 2) (x – 3) – 15 (x – 1) (x – 3)  15.5 (x – 1) (x – 2)

Thus 
2

2.5 2  3 15( ) ( ) ( ) ( )
( ) ( )

( )

1  3
15.5 1  23 1

1 ( )( ( )(2 3) 1 2 3)
25 15 15.5

1 2

)

3

(

x x x x

x xx x
x x x x x x

x x x
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EXAMPLE 7.21

Find the missing term in the following table using interpolation:

x: 0 1 2 3 4

y: 1 3 9 ... 81
Solution:

Since the given data is unevenly spaced, therefore we use Lagrange’s 
interpolation formula:

1 2 3 0 2 3

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
2

2 0 2 1 2 3 3 0

0 1

3
3

3 1 2

)( )( ) ( )( )((
 

)
( )( )( ) ( )( )( )  

–   –   ) – 
( )( )( ) ( )( )( )

( )( )( ( )( )(  –   )

x x x x x x x x x x x x
x x x x x x x x x x x x

x x

y

x x x x x x x x x x
y

x x x x x x x x x x x

y

y
x

y
     

     

     

 

 

 

Here we have 0 1 2 3

0 1 2 3

0     1      2     4
1      3      9     81

x x x x

y y y y

   

   

        
( )( )( ) ( )( )( )

1
1 2 4 0 2 4

0 1 0 2 0 4 1 0 1 2
3

1 4( )( )( ) ( )( )( )
x x x x

y
x x     

     
 

            
( )( )( ) ( )0 1 4 0 1 2
2 0 2 1 2 4 4 0 4 1 4 2

( )( )
9 (81)

( )( )( ) ( )( )( )
x x x x x x


     

     


When x  3, then

     
 ( )( )( ) ( )( )3 1 3 2 3 4 3 3 1 3 4

3 3 2
9

( (3) 4)
48

y
    

 
 

 

( )( ) 1 27 81
(81)

3 3 1
3 31

24 4 2 24
3 2




    

Hence the missing term for x  3 is y  31.

EXAMPLE 7.22

Find the distance moved by a particle and its acceleration at the end of 
4 seconds, if the time verses velocity data is as follows:

t: 0 1 3 4
v: 21 15 12 10
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Solution:

Since the values of t are not equispaced, we use Lagrange’s formula:

 

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 3
2 3

1 0 1 2 1 3 1 0 1 2 1 3

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

)( )( ) )( )( )

 
 

  
( (

t t t t t t t t t t t t
v v v

t t t t t t t t t t t t
t t t t t t t t t t t t

v v
t t t t t t t t t t t t

     
 

     

     
 

     

i.e.  , ( )( )( ) ( )( )
( ) ( )

( )( )( ( )( )( )
( )( ) ( )( )

( ) ( )
( )( )( ) ( )(

1 3 4 3 4
21  15

1 2 4) 1 2 3
1 4 1 3

12  10
3 (4 1)2 )1 3

t t t t t t

t t t

v

t t t

    


    


   
 



i.e., 3 21
 –5 38 – 105 252
12

( )tv t t  

 Distance moved 
4 4 3 2

0 0
–5 38 – 105( )252ts vdt t t      

ds
v

dt
 

  


                                      

44 3 2

0

1 5 38 105
 – – 252
12 4 3 2

1 2432
 –320 – 840 1008 54.9
12 3

t t t
t

 
   
 

 
    

 

Also acceleration        
1

15 2 76 105 0
2

dv
t t

dt
     

Hence acceleration at   1
( 4) 15 76 4 105 3.4

2
t     

Exercises 7.3

1. Use Lagrange’s interpolation formula to find the value of y when x  10, 
if the following values of x and y are given:

x: 5 6 9 11
y: 12 13 14 16

2. The following table gives the viscosity of oil as a function of tempera-
ture. Use Lagrange’s formula to find the viscosity of oil at a temperature 
of 140°.

Temp°: 110 130 160 190

Viscosity: 10.8 8.1 5.5 4.8



3. Given log10654  2.8156, log10 658  2.8182, log10 659  2.8189, 
log10661  2.8202, find by using Lagrange’s formula, the value of 
log10  656.

4. The following are the measurements T made on a curve recorded by 
oscilograph representing a change of current I due to a change in the 
conditions of an electric current.

T: 1.2 2.0 2.5 3.0
I: 1.36 0.58 0.34 0.20

Using Lagrange’s formula, find I and T  1.6.

5. Using Lagrange’s interpolation, calculate the profit in the year 2000 
from the following data:

Year: 1997 1999 2001 2002
Profit in Lakhs of Rs: 43 65 159 248

6. Use Lagrange’s formula to find thee form of f(x), given

x: 0 2 3 6

f(x): 648 704 729 792

7. If y(1)  – 3, y(3)  9, y(4)  30, y(6)  132, fin d the Lagrange’s interpola-
tion polynomial that takes the same values as y at the given point s.

8. Given f(0)  – 18, f(1)  0, f(3)  0, f(5)  – 248, f(6)  0, f(9)  13104, 
find f(x).

9. Find the missing term in the following table using interpolation

x: 1 2 4 5 6
y: 14 15 5 … 9

10. Using Lagrange’s formula, express the function 
2

3 2

3
2 2

x x
x x x

 

  
as a sum 

of partial fractions.

11. Using Lagrange’s formula, express the function 
   

2

2

6 1

1 4 6

x x

x x x

 

  
as 

a sum of partial fractions.
[Hint. Tabulate the values of f(x)  x2  6x – 1 for x  – 1, 1, 4, 6 and apply 
Lagrange’s formula.]

12. Using Lagrange’s formula, prove that 

      1 1 3 1 1 3
1 1 1 1

.
2 8 2 2oy y y y y y y       

[Hint: Here x0  – 3, x1  – 1, x2  1, x3  3.]
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7.13 Divided Differences

The Lagrange’s formula has the drawback that if another interpola-
tion value were inserted, then the interpolation coefficients are required 
to be recalculated. This labor of recomputing the interpolation coefficients 
is saved by using Newton’s general interpolation formula which employs 
what are called “divided differences.” Before deriving this formula, we 
shall first define these differences.

If 0 0 1 1 2 2( ) ( ), , , , ,( ),x y x y x y be given points, then the first divided dif-
ference for the arguments x0, x1 is defined by the relation [x0, x1] or 

1

1 0
0

1 0x

y y
y

x x


 


Similarly [x1, x2] or 
2

2 1
0

2 1x

y y
y

x x


 


 and [x2, x3] or
3

3 2
0

3 2x

y y
y

x x


 


 

The second divided difference for x0, x1, x2 is defined as

[x0, x1, x2] or 
1 2

2

, 2

2

0

1 0 1[ ] [, ],
x x

x x x x
x x


 


The third divided difference for x0, x1, x2, x3 is defined as

[x0, x1, x2, x3] or 
1 2 3

1 2,3
0

3 0 1 2

, , 2 0

[ ] [, , , ]
x x x

x x x x x x
y

x x


 



Properties of Divided Differences
I. The divided differences are symmetrical in their arguments, i.e,. inde-
pendent of the order of the arguments. For it is easy to write 

  0 1
0 1 1 0 0 1 2

0 1 1 0

 
, , ,[ , ,[ ] ]] [

y y
x x x x x x x

x x x x


 
 

0 1 2

0 1 0 2 1 0 1 2 2 0 2 1( )( ) ( )( )
  

( )( )
 

  
y y y

x x x x x x x x x x x x     
  

 [x1, x2, x0] or [x2, x0, x1] and so on 

II. The nth divided differences of a polynomial of the nth degree are con-
stant.

Let the arguments be equally spaced so that 

 x1 – x0  x2 – x1  xn – xn1 h. Then
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 1 0 0

1 0
0 1,

y
x h

x x
y y

x
 

   


 
 1 2 0 1

1
1

2
2

0

0
0

,
, ,

1
2

y y
x x h

x x x x
x

h h
x x

    
     















2

1
2!h

 2y0 and in general, 0 1 2 0
1

, , ,......
!

[ , ] n
n nx x x x y

n h
 

If the tabulated function is a nth degree polynomial, then ny0 will be 
constant. Hence the nth divided differences will also be constant

III. The divided difference operator � is linear 

i.e.,                   x x x xau bv a u b v  � � �

We have  
   

1 1 0 0

0 0
1 1 0

x x x x
x x

x

au bv au bv
au bv

x x

  
 


�

                                               1 0 1 0

1 0 1 0

x x x xu u v v
a b

x x x x

    
    

    

                                               0 0
1 0

x x
x x

a u b v � �

In general  x x x xau bv a u b v  � � �  This property is also true for 
higher order differences.

7.14 Newton’s Divided Difference Formula

Let y0, y1,,yn  be the values of y  f(x) corresponding to the arguments 
x0, x1,, xn. Then from the definition of divided differences, we have

 0
0

0
,

y y
x x

x x


  


So that                  00 0,x x xy y x     

Again      0 0

1

1
0 1

, ,
, ,

x x x x
x

x x
x x

      
  



which gives  0 0 1 1 0 1[ [ (, ] , ] – , ,)[ ]x x x x x x x x x 
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Substituting this value of [x, x0] in (1), we get

                                    0 0 0 1 0 1 0 1( )[ , ] ( )( )[ , , ]y y x x x x x x x x x x x        (2)

Also         
0, 1 0, 2

0 1 2
2

[ . ] [ . ]
[ , , , ]

x x x x x x
x x x x

x x






which gives 0 1 0 1 2 2 0 1 2[ ] [ ] ( )[, , , , – , , , ]x x x x x x x x x x x x 

Substituting this value of [x, x0, x1] in (2), we obtain

                                   0 0 0 1 0 1 0 1 2

0 1 2 0 1 2

( )[ ] ( )( )[ ]
( )(

– , – – , ,
– – )( – , , ,)[ ]

y y x x x x x x x x x x x

x x x x x x x x x x

  


Proceeding in this manner, we get

                                   0 0 0 1 0 1 0 1 2– ,  – – , ,( )[ ] ( )( )[ ]y y x x x x x x x x x x x  

 0 1 0 1– – –( )( ) ( )[ , , ],n nx x x x x x x x x x 

 0 1 2 0 1 2( )( )– – –( , , ],)[x x x x x x x x x x   (3)
which is called Newton’s general interpolation formula with divided 
differences.

7.15 Relation Between Divided and Forward Differences

If 0 0 1 1 2 2( ) ( ), , , , ,( ),x y x y x y be the given points, then

                         1 0
0 1

1 0
[ ],

y y
x x

x x





Also             y0  y1 – y0

If x0, x1, x2, are equispaced, then x1 – x0  h, so that

                         0
0 1[ ],

y
x x

h




Similarly      1
1 2[ , ]

y
x x

h




Now       1 2 0 1
0 1 2

2 0

[ , [
]

]] ,
[ , ,

x x x x
x x x

x x





                              1 0

2
y h y h

h
 

  2 0 2x x h   

                              1 0
22

y y

h

 


Thus       
2

0
0 1 2 2[ , , ]

2!
y

x x x
h
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Similarly 
2

1
0 1 2 2[ , , ]

2!
y

x x x
h






2 22 2 2 2
1 0 1 0

0 1 2 3 2
3 0

2 2
, , ,

2 (3
[ ]

)
y h y h y y

x x x x
x x h

   
 

  3 0 3x x h   

Thus 
3

0
0 1 2 3 3[ ], , ,

3!
y

x x x x
h




In general, 0
0 1[ ], ,

!

n

n n

y
x x x

n h




This is the relation between divided and forward differences.

EXAMPLE 7.23

Given the values
x: 5 7 11 13 17

f(x): 150 392 1452 2366 5202

evaluate f(9), using Newton’s divided difference formula

Solution:

The divided differences table is

x y �y �2y �3y

5 150 392 150 
121

7 5





7 392 265 121
24

11 5





1452 392
 265

11 7





32 24
1

13 5





11 1452 457 265
32

13 7





2366 1452
457

13 11





42 32
1

17 7





13 2366 709 457
42

17 11





5202 2366
 709

17 13





17 5202
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Taking x  9 in the Newton’s divided difference formula, we obtain

f(9)  150  (9 – 5) × 121  (9 – 5)(9 – 7) × 24  (9 – 5)(9 – 7)(9 – 11) × 1

 150  484  192 – 16  810.

EXAMPLE 7.24

Using Newton’s divided differences formula, evaluate f(8) and f(15) 
given:

x: 4 5 7 10 11 13

y  f(x): 48 100 294 900 1210 2028

Solution:

The divided differences table is

x f(x) �y �2y �3y �4y 
4 48 0

52
5 100 15

97 1
7 294 21 0

202 1
10 900 27 0

310 1
11 1210 33

409
13 2028

Taking x  8 in the Newton’s divided difference formula, we obtain

f(8)  48  (8 – 4) 52  (8 – 4) (8 – 5) 15  (8 – 4) (8 – 5) (8 – 7) 1

 448.

Similarly f(15)  3150.

EXAMPLE 7.25

Determine f(x) as a polynomial in x for the following data:

x: – 4 – 1 0 2 5

y  f(x): 1245 33 5 9 1335
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Solution:

The divided differences table is

x f(x) �y �2y �3y �4y
– 4 1245

– 404
– 1 33 94

– 28 – 14
0 5 10 3

2 13
2 9 88

442
5 1335

Applying Newton’s divided difference formula

 0 0 0 1 0 1 0 1 2( ) ( ) ( )[ ] ( )( – ,  – – , ,  )[ ]f x f x x x x x x x x x x x x   
 1245  (x  4) (– 404)  (x  4) (x  1) (94)

  (x  4)(x  1)(x – 0)(– 14)  (x  4)(x  1)x(x – 2)(3)

 3x4  5x2 + 6x2  14x + 5

EXAMPLE 7.26

Using Newton’s divided difference formula, find the missing value 
from the table:

x: 1 2 4 5 6

y: 14 15 5 ... 9
Solution:

The divided difference table is

x y �y �2y �3y
1 14

15 14
1

2 1





2 15 5 1
2

4 1
 




5 15
5

4 2





7 / 4 2 3
6 1 4
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x y �y �2y �3y
4 5 2 5 7

6 2 4





9 6
2

6 4





6 9

Newton’s divided difference formula is

             0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

– , – – , ,( )[ ] ( )( )[ ]
( )(– )– – , , ,( )[ ]

y y x x x x x x x x x x x

x x x x x x x x x x

  

 
  14  (x – 1) (1)  (x – 1) (x – 2) (– 2)  (x – 1) (x – 2) (x – 4)

3
4

Putting x  5, we get

 y(5)  14  4  (4) (3) (– 2)  (4) (3) (1)
3
4

  3.
Hence missing value is 3

Exercises 7.4

1. Find the third divided difference with arguments 2, 4, 9, 10 of the func-
tion f (x)  x3– 2x.

2. Obtain the Newton ’s divided difference interpolating polynomial and 
hence find f(6):

x: 3 7 9 10
f (x): 160 120 72 63

3. Using Newton’s divided differences interpolation, find u(3), given that 
u(1)  – 26, u(2)  12, u(4)  256, u(6)  844.

4. A thermocouple gives the following output for rise in temperature

Tem p (°C) 0 10 20 30 40 50

Output (m V) 0.0 0.4 0.8 1.2 1.6 2.0

Find the output of thermocouple for 37°C temperature using Newton’s 
divided difference formula.

5. Using Newton ’s divided difference interpolation, find the polynomial of 
the given data:

x: – 1 0 1 3
f (x): 2 1 0 – 1
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6. For the following table, find f(x) a s a polynomial in x using Newton’s 
divided difference formula:

x: 5 6 9 11

f (x): 12 13 14 16

7. Using the following data, find f(x) a s a polynomial in x:

x: – 1 0 3 6 7

f(x): 3 – 6 39 822 1611

8. The observed values of a function are respectively 168, 120, 72, and 63 
at the four positions 3, 7, 9, and 10 of the independent variable. What is 
the best estimate value of the function at the position 6?

9. Find the equation of the cubic curve which passes through the point s 
(4, – 43), (7, 83), (9, 327), and (12, 1053).

10. Find the missing term in the following table using Newton’s divided dif-
ference formula.

x: 0 1 2 3 4

y: 1 3 9 ... 81

7.16 Hermite’s Interpolation Formula

This formula is similar to the Lagrange’s interpolation formula. In La-
grange’s method, the interpolating polynomial P(x) agrees with y(x) at the 
points x0, x1,......, xn, whereas in

Hermite’s method P(x) and y(x) as well as P(x) and y(x) coincide at the 
(n  1) points, i.e.,

 P(xi)  y(xi) and P(xi)  y(xi); i  0, 1,......, n (1)
As there are 2(n  1) conditions in (1), (2n  2) coefficients are to be 

determined.

Therefore P(x) is a polynomial of degree (2n  1).

We assume that P(x) is expressible in the form

        
0 0

( ) '
n n

i i i i
i i

p x U x y x V x y x
 

    (2)

where Ui (x) and Vi (x) are polynomials in x of degree (2n  1). These are to 
be determined. Using the conditions (1), we get
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0 when ;  0 for all 
1 when 

0 when ;
0 for all ;V

1 wh

( )

en

( )

( ) (
 

)

i j
i j

i j i j

x
U x

U x

i j

x

V i

i j

i j
i

i j

 




 


 






 



 (3)

We now write

 
           2 2

;i i i i i iU x A x L x V x B x L x       

where 
       
       

0 1 1 1

0 1 1 1
( ) i i n

i
i i i i i i i n

x x x x x x x x x x
L x

x x x x x x x x x x
 

 

    


    

 
 

Since [Li(x)]2 is of degree 2n and Ui(x), Vi(x) are of degree (2n  1), 
therefore Ai(x) and Bi(x) are both linear functions

 We can write Ui(x)  (ai  bix) [Li(x)]2

and Vi(x)  (ci  dix)[Li (x)]2

Using conditions (3) in (4), we get ai  bix  1, ci   dix  0

and bi  2Li(xi)  0, di  1

Solving these equations, we obtain

                                            ( ) ( )– 2 , 1 2i i i i i i ib L x a x L x     
                                            di  1 and ci  – xi

Now putting the above values in (4), we get

 
2

2

[1 2 ( ) – 2 ( )][ ]

[1 – 2( –

( ) ( )

) ( ) ( )]][
i i i i i i i

i i i i

U x L x xL xx x

x

L

x x L x L

  



and Vi (x)  (x – xi) [Li(x)]2

Finally substituting Ui(x) and Vi(x) in (2), we obtain

       2 2

0 0

( ) 1 2 ( ) ( ) ( ) ( ) '( )
n n

i i i i i
i i

p x x x Li x Li x y x x x Li x y x
 

         (7)

This is the required Hermite’s interpolation formula which is some-
times known as osculating interpolation formula.

Obs. In comparison to Lagrange’s interpolation formula, the 
Hermite interpolation formula is computationally uneconomical

} (4)

} (5)

} (6)

NOTE
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EXAMPLE 7.27

For the following data:

x: f(x) f(x)
0.5 4 – 16
1 1 – 2

Find the Hermite interpolating polynomial. 

Solution:

We have x0  0.5, x1  1, y(x0)  4, y(x1)  1; y(x0)  – 16, y(x1)  – 2

Also 
 
 

 0
0 0

0

1
( ) 2 1 ; ( ) 2

0.5i i
i

x x x
L x x L x

x x
 

    
 

 
 
 

0
1 1

0

0.5
( ) 2 1; ( ) 2

1 0.5i i
i

x x x
L x x L x

x x
 

    
 

Hermite’s interpolation formula in this case, is
  2 2

0 0 0 0 0 0 0[ ( ) ( )]1 – 2 – [ ( )] ( ) ( )[ ( )] ( )–P x x x L x L x y x x x L x y x   

  2 2
1 1 1 1 1 1 1[ ( ) ( )][ )] ( ( )[ ( )] ( )1 – 2 – –x x L x L x y x x x L x y x   

       22[ ( )][ )]1 – 2 – 0.5 –2 –2 – 1 4( [– 0.5 –2 – 1 –1( )6)x x x x 

    2 2[ ( ) ]( ) ( ) ( ) (1 – 2 – 1 2 2 – 1 1 – 1 )2 – 1 –2x x x x 

   2 216 1 4 – 0.5 – 2 1  – 164[ ( ] ( )– 0.5 – 2 1x x x x x x   

  2 21 – 4 – 1 4 –[ ( )]( )4 1  – 2 – 1 ( )4 –  4 1x x x x x x  

Hence 3 2–24 32( 4 – 13 2) 0 3P x x x x  

EXAMPLE 7.28

Apply Hermite’s formula to interpolate for sin (1.05) from the following 
data:

x sin x cos x
1.00 0.84147 0.54030
1.10 0.89121 0.45360
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Solution:

Here y(x)  sin x and y(x)  cos x

so that y(x0)  0.84147, y(x0)  0.54030, y(x1)  0.89121, 

y(x1)  0.45360

Also 
 
 

0
0 0

0
( ) 11 10 , ( ) 10i i

i

x x
L x x L x

x x


   


 
 
 

0
1 1

0
( ) 10 10 , ( ) 10i i

i

x x
L x x L x

x x


   


Hence the Hermite’s interpolation formula in this case is

 
 

2 2
0 0 0 0 0 0 0

2 2
1 1 1 1 1 1 1

( ) [ ( ) ( )][ ( )] ( ) ( )1 – 2 – –

1

[ ( )] ( )

[ (– 2 – ) ( )][ )] ( ( )[ ( )]– ( )

P x x L x L x y x x x L x y x

x x L x L x y x x x L x y x

x    

   

 

   

 

2 2

2

2

1 – 2 – 1 –10 11 – 10 0.84147 – 1 –11 10 0.54030

1 – 2 – 1.1 10 –10 10 0.89121

– 1.1 –10 10 0.4536

[ ( )( )]( ) ( ) ( )( )

[ ( ) ]( )

( )( )

x x x x

x x

x x

  

 

 

Putting x  1.05 in P(x), we get

  

        

2

22

2

sin 1.05 1 – 2 0.05 –10 –10 1.05  11 0.84147

0.05 –0.5 0.54030 1 – 2 0.05 10 0.5 0.89121

–0.0

( ) ( )[ ( ) ] ( )

( ) [ ] ( )

( )5 0.5 0.4536( ) ( ) 0.86742

 

  

 

EXAMPLE 7.29

Determine the Hermite polynomial of degree 4 which fits the following 
data:

x: 0 1 2

y(x): 0 1 0

y(x): 0 0 0

Solution:

Here x0  0, x1  1, x2  2, y(x0)  0, y(x1)  1, y(x2)  0 and y(x0)  0, 
y(x1)  0, y(x2)  0.
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Hermite’s formula in this case is
2 2

0 0 0 0 0 0 0 0

2 2
1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2

( ) [ ( )( )][ ( )] ( ) ( )[ ( )] ( )

[ ( )( )][ ( )] ( ) ( )[ ( )] ( )

[

1 – 2 –

( )( )] [ ( )] ( )[ (

–

1 – 2 – 1 – 1

1 )] ( )– 2 – ( ) –

P x L x x x L x y x x x L x y x

L x x x L x y x x x L x y x

L x x x L x y x x x L x y x

  

   

   

Substituting the above values in P(x), we get

              
2

1 1 1[ ( )( )][ ( )]1 – 2 – 1P x L x x L x

Where 
  
  

0 2 2
1

1 2 1 2
( ) 2

x x x x
L x x x

x x x x
 

  
 

 and    1 1 1' 2 2 0xL x x   

Hence  2 2 2
1( ) [ ( ) 2 –] ( )x L x x xp   .

EXAMPLE 7.30

Using Hermite’s intropolation, find the value of f(– 0.5) from the fol-
lowing

x: – 1 0 1

f(x): 1 1 3

f (x): – 5 1 7

Solution:

Here x0  – 1, x1  0, x2  1; f(x0)  1, f(x1)  1, f(x2)  3 and f (x0)  – 5, 
f (x1)  1, f(x2)  7.

Hermite’s formula in this case is

0 0 0 0 1 1 1 1 2 2 2 2( ( )) ( ) ( ) ( ) ( ) ( )P x U f x V f x U f x V f x U f x V f x          (i)

where 2 2
0 0 0 0 0 0 0 0

2 2
1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2 2

[ ( )( )][ ( )] ( )[ ( )]

[ ( )( )][ ( )] ( )[ ( )]

[ ( )]

1 – 2 – , –

1 – 2 – ,  –

1 – 2 ( ) – [ ] ( )[ ( )]( ) , –

U L x x x L x V x x L x

U L x x x L x V x x L x

U L x x x L x V x x L x

 

 

 

and  1 2
0 0

0 1 0 2

( )( ) ( 1) 1
( ) , ( )

( )( ) 2 2
x x x x x x

L x L x x
x x x x
  

   
 

  20 2
1 1

1 0 1 2

( )( )( ) 1 ( ) 2
( )( )

x x x xL x x L x x
x x x x

− − ′= = − = = −
− −

    0 1
2 2

2 0 2 1

( )( ) ( 1) 1
( ) ( )

( )( ) 2 2
x x x x x x

L x L x x
x x x x
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Substituting the values of 0 0 1 1 2 2, ; , and  , ,L L L L L L    we get

    

   

2 2
5 4 3 2

0

2 2
5 4 3 2

0

( 1) 1
1 3 1       3 2 5 4  

4 4
( 1) 1

1       
4 4

x x
U x x x x x

x x
V x x x x x


      


     

 U1  x4 – 2x2  1,V 1  x5 – 2x3  x

   5 4 3 2 5 4 3 2
2 2

1 1
  3 2 5 4  ,   

4 4
U x x x x V x x x x       

Substituting the values of U0,, V0, U1, V1; U2, V2 in (i), we get

    5 4 3 2 5 4 3 2

4 2 5 3

5 4 3 2 5 4 3 2

4 2

( )( ) ( )( )
1 1

( )( ) ( )

1 1
( )   3 2 5 4 1   

4 4
– 2 1 1 – 2

( )
4

1

3 2 5 4 7
4

3

2 – 1

P x x x x x x x x x

x x x x x

x x x x x x x x

x x x

       

   

     

 







Hence 4 2–0.5 2 –0.5 – –0.5 –0.5( ) ( ) ( 1 0.37) ( ) 5f    

Exercises 7.5

1. Find the Hermite’s polynomial which fits the following data:

x: 0 1 2

f(x): 1 3 21

f (x): 0 3 36

2. A switching path between parallel rail road tracks is to be a cubic poly-
nomial joining positions (0, 0) and (4, 2) and tangents to the lines y  0 
and y  2. Using Hermite’s method, find the polynomial, given:

x y y
0 0 0
4 2 0

3. Apply Herm it e’s formula estimate the values of log 3.2 from the follow-
ing data:

x y  log x y  1/ x

3.0 1.0986 0.3333
3.5 1.2528 0.2857
4.0 1.3863 0.2500



326 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

7.17 Spline Interpolation

In the interpolation methods so far explained, a single polynomial has 
been fitted to the tabulated points. If the given set of points belong to the 
polynomial, then this method works well, otherwise the results are rough 
approximations only. If we draw lines through every two closest points, the 
resulting graph will not be smooth. Similarly we may draw a quadratic curve 
through points Ai, Ai+1 and another quadratic curve through Ai+1, A i+2, such 
that the slopes of the two quadratic curves match at A i+1 (Fig. 7.1). The 
resulting curve looks better but is not quite smooth. We can ensure this 
by drawing a cubic curve through A i, Ai+1 and another cubic through A i+1, 
A i+2su ch that the slopes and curvatures of the two curves match at A i+1. 
Such a curve is called a cubic spline. We may use polynomials of higher 
order but the resulting graph is not better. As such, cubic splines are com-
monly used. This technique of “spline-fitting” is of recent origin and has 
important applications.

0 x0 xi xi+1 xi+2

y0 y1 y2 yi
yi+1 yi+2

yn–1 yn

xn–1 xn
x

A0 Ai Ai+1

Ai+2 An

f1(x)

fi(x)

fi+1(x) fn–1(x)
An–1

A1

y

f0(x)

x1 x2

A2

FIGURE 7.1 

Cubic spline
Consider the problem of interpolating between the data points (x0, y0), 

(x1, y1),(xn, yn) by means of spline fitting.

Then the cubic spline f(x) is such that

  (i) f(x) is a linear polynomial outside the interval (x0, xn),

 (ii) f(x) is a cubic polynomial in each of the subintervals,

(iii) f(x) and f(x) are continuous at each point.

Since f(x) is cubic in each of the subintervals f(x) shall be linear.
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 Taking equally-spaced values of x so that xi+1 – xi  h, we can write

  1 1( )
1

( ) – ( ) (– ) i i i if x x x f x x x f x
h  
      

Integrating twice, we have

 
 1

1 1
( )

( ) ( ) ( )
3

– –1
( ) –  –

3 !!
i i

i i i i i i

x x x x
f x f x f x a x x b x x

h


 

 
     
 

  (1)

The constants of integration ai, bi are determined by substituting the 
values of y  f(x) at xi and xi+1. Thus,

 
2

( )
1

3!i i i
h

a y f x
h

 
   
 

 and 
2

1 1
1

3!
( )i i i

h
b y f x

h  

 
   
 

Substituting the values of ai, bi and writing f(xi)  Mi, (1) takes the form

( ) ( )3 3
1

1
– –

( )
6 6

i i
i i

x x x x
f x M M

h h
+

+= +

                                     
2 2

1
1 1

– –
6 6

i i
i i i i

x x x xh h
y M y M

h h


 

   
      
   

 (2)

        
2 2

1
1 1 1

– – 1
( )

2 6 6
i i

i i i i i i

x x x x h
f x M M M M y y

h h h


        

To impose the condition of continuity of f (x), we get
( ) ( )– as 0f x f xε ε ε′ = ′ + →

 –1 –1 1 1
1 1

 2 –   ( ) ( ) ( )– 2 –
6 6

( )i i i i i i i i
h h

M M y y M M y y
h h     

     –1 1 –1 12 ( – 2 ,)
6

4 1i i i i i iM M M y y y i
h       to n  1 (3)

Now since the graph is linear for x < x0 and x > xn, we have

 M0  0, Mn  0 (4)

(3) and (4) give (n  1) equations in (n  1) unknowns Mi (i  0, 1, n) 
which can be solved. Substituting the value of Mi in (2) gives the concerned 
cubic spline.
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EXAMPLE 7.31

Obtain the cubic spline for the following data

x: 0 1 2 3

y: 2 – 6 – 8 2
Solution:

Since the points are equispaced with h  1 and n  3, the cubic spline 
can be determined from Mi–1  4Mi  Mi+1  6 (yi–1 – 2yi  yi+1), i  1, 2.

 M0  4M1  M2  6 (y0 – 2y1  y2)

             M1  4M2  M3  6 (y1 – 2y2  y3)

i.e., 4M1  M2  36; M1  4M2  72 [ M0  0, M3  0]

Solving these, we get M1  4.8, M2  16.8.

Now the cubic spline in (xi  x  xi  1) is

( ) ( ) ( )3 3
1 1 1

1 1 1( )
6 6 6i i i i i i if x x x M x x M x x y M+ + +

⎛ ⎞= − + − + − −⎜ ⎟⎝ ⎠

   1 1
1
6i i ix x y M 

 
   

 

Taking i  0 in (A) the cubic spline in (0  x  1) is

   3 31 – 0 – 0 4
1 1 1

( ) ( ) ( ) ( ) (.8 1 – )( – 0 –6 – 4
6

.[
6

8)
6

f x x x x xx   

 0.8x3 – 8.8x  2  (0  x  1)

Taking i  1 in (A), the cubic spline in (1  x  2) is

( )

( )

3 31 1( ) ( ) ( ) ( ) ( ) ( )[ 12 – 4.8 –1 16.8 2 – – ]6 – 4.8
6

–1 – 8 –1 16.( ]8
6 6

)[

f

x

x x x x= + +

+
 2x3 – 5.84x2 – 1.68x  0.8

Taking i  2 in (A), the cubic spline in (2  x  3) is

                  

 

 

3 31
( ) ( ) ( ) ( ) ( )[

1
( ) 3 – 4.8 – 2 0 3 – – 8 – 1 16. ]8

6
– 2 2 – 1 2

6
( )[ ]

f x x x x

x

 





 – 0.8x3  2.64x2  9.68x – 14.8
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EXAMPLE 7.32

The following values of x and y are given:

x: 1 2 3 4
y: 1 2 5 11

Find the cubic splines and evaluate y(1.5) and y(3).

Solution:

Since the points are equispaced with h  1 and n  3, the cubic splines 
can be obtained from

 Mi–1  4Mi  Mi+1  6(yi–1 – 2yi  yi+1), i  1, 2.

    M0  4M1  M2  6(y0 – 2y1  y2)

                M1  4M2  M3  6(y1 – 2y2  y3)

i.e.,             4M1  M2  12, M1  4M2  18  [ M0  0, M3  0]

which give,                 M1  2, M2  4.

Now the cubic spline in (xi  x  xi+1) is 

( ) ( ) ( )3 3
1 1 1

1 1 1( )
6 6 6i i i i i i if x x x M x x M x x y M+ + +

⎛ ⎞= − + − + − −⎜ ⎟⎝ ⎠

        1 1
1
6i i ix x y M 

 
   

 
 (A)

Thus, taking i  0, i  1, i  2 in (A), the cubic splines are

 

 

 

 

3 2

3 2

3 2

 3  5 1 2

 3  5 2 3

2  24  76

1
3
1

( )

3
8 3

3
1

1 4

x x x x

x x x

x x

x xf

x x

   

  





 

 



   





  y(1.5)  f(1.5)  11/8

EXAMPLE 7.33

Find the cubic spline interpolation for the data:

x: 1 2 3 4 5

f (x): 1 0 1 0 1
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Solution:

Since the points are equispaced with h  1, n  4, the cubic spline can 
be found by means of

 –1 1 –1 14 6 – 2 , 1,2,( 3)i i i i i iM M M y y y i     

  0 1 2 0 1 24 6 – 2 12M M M y y y    

 1 2 3 1 2 34 6 – 2 1( –) 2M M M y y y    

 2 3 4 2 3 44 6 – ) 1( 2 2M M M y y y    

Since 0 0 4 40 and 0M y M y     

 1 2 1 2 3 1 34 12; 4 –12; 4 12M M M M M M M      

Solving these equations, we get M1  30/7, M2  – 36/7, M3  30/7

Now the cubic spline in (xi  x  xi1) is 

     3 3
1 1 1

1 1
( )

6 6i i i i if x x x M x x M x x       

                                              ( ) 1 1
1 1
6 6i i i i iy M x x y M+ +

⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (A)

Taking i  0, in (A), the cubic spline in (1  x  2) is

     
     

 

3 3
1 0 0 1 1 0 0

0 1 1

1 1
6 6

1
6

y x x M x x M x x y M

x x y M

            

 
   

 

 

         

 

3 3
0

1 1
2 0 30 / 7 2 1 0

6 6

1 30
1 0

6 7

( )x x x x

x

 
       

 

  
      

 





i.e., y  0.71x3 – 2.14x2  0.42x  2 (1 < x  2)

Taking i  1 in (A), the cubic spline in (2  x  3) is

     
( ) ( ) ( )

( )

3 31 30 36 1 303 2 3 0
6 7 7 6 7

1 362 1
6 7

y x x x

x

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
⎛ ⎞⎛ ⎞+ − − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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i.e., y  – 1.57 x3  11.57x2 – 27x  20.28. (2  x  3)

Taking i  2 in (A), the cubic spline in (3  x  4) is

       3 31 36 1 30 1 36 5
4 3 4 1 3 0

6 7 6 7 6 7 7
y x x x x

      
                       

i.e., y  1.57 x3 – 16.71 x2  57.86x – 64.57 (3  x 4)

Taking i  3 in (A), the cubic spline in (4  x  5) is

       3 31 30 5
1 5 4 1

6 7 7
y x x x

   
         

   

i.e., y  – 0.71x3  2.14x2  – 0.43x – 6.86. (4  x  5)

Exercises 7.6

1. Find the cubic splines for the following table of values:

x: 1 2 3

y: – 6 – 1 16
Hence evaluate y(1.5) and y(2).

2. The following values of x and y are given:

x: 1 2 3 4

y: 1 5 11 8
Usin g cubic spline, show that 
(i) y(1.5)  2.575  (ii) y(3)  2.067.

3. Find the cubic spline corresponding to the interval [2,3] from the 
following table:

x: 1 2 3 4 5

y: 30 15 32 18 25

Hence compute (i) y(2.5) and (ii) y(3).

7.18 Double Interpolation

So far, we have derived interpolation formulae to approximate a func-
tion of a single variable. In the case of functions, of two variables, we inter-
polate with respect to the first variable keeping the other variable constant. 
Then interpolate with respect to the second variable.
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Similarly, we can extend the said procedure for functions of three vari-
ables.

7.19 Inverse Interpolation

So far, given a set of values of x and y, we have been finding the value 
of y corresponding to a certain value of x. On the other hand, the process 
of estimating the value of x for a value of y (which is not in the table) is 
called inverse interpolation. When the values of x are unequally spaced La-
grange’s method is used and when the values of x are equally spaced, the 
Iterative method should be employed.

7.20 Lagrange’s Method

This procedure is similar to Lagrange’s interpolation formula (p. 207), 
the only difference being that x is assumed to be expressible as a polynomial 
in y.

Lagrange’s formula is merely a relation between two variables either of 
which may be taken as the independent variable. Therefore, on interchang-
ing x and y in the Lagrange’s formula, we obtain 

1 2 0 2
0 1

1 2 1 0 1 2

0 1 1

0 1 1

( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )

( )( ) ( )
( )

1

) ( )
 

 
(

 
 




n n

n n

n

n n n n

x y y y y y y y y y y y yx x
y y y y y y y y y y y y

y y y y y y
y y y y y y

−

−

− − − − − −
+

− − − − − −
− − −

+
− −

=

−

 (1)

EXAMPLE 7.34

The following table gives the values of x and y:

x: 1.2 2.1 2.8 4.1 4.9 6.2

y: 4.2 6.8 9.8 13.4 15.5 19.6

Find the value of x corresponding to y  12, using Lagrange’s tech-
nique.

Solution:

Here x0  1.2, x1  2.1, x2  2.8, x3  4.1, x4  4.9, x5  6.2 and y0  4.2, 
y1  6.8, y2  9.8, y3  13.4, y4  15.5, y5  19.6.
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Taking y  12, the above formula (1) gives

12 6.8 12 9.8 12 13.4 12 15.5 12 19.6 1.2
4.2 6.8 4.2 9.8 4.2 13.4 4.2 15.5 4.2 19.6

12 4.2 12 9.8 12 13.4 12 15.5 12 19.6 2.1
6.8 4.2

( )( )( )( )( )
( )( )( )( )( )

( )( )( )( )( )
( )(6.8 9.8 6.8 13.4 6.8 15.5 6.8 1) 9.6

12 4.
( )( )( )

(

x − − − − − ×
− − − − −

− − − − −+ ×
− − − − −
−+

=

2 12 6.8 12 13.4 12 15.5 12 19.6 2.8
9.8 4.2 9.8 6.8 9.8 13.4 9.8 15.5 9.8 19.6

12 4.2 12 6.8 12 9.8 12 15.5 12 19.6 4.1
13.4 4.2 13.4 6.8

)( )( )( )( )
( )( )( )( )( )

( )( )( )( )( )
( )( )(13.4 9.8 13.4 15.5 13.4)( )( 19.6)

( )12 4.2 12(

− − − − ×
− − − − −

− − − − −+ ×
− − − − −

−+ 6.8 12 9.8 12 13.4 12 19.6 4.9
15.5 4.2 15.5 6.8 15.5 9.8 15.5 13.4 15.5 19.6

12 4.2 12 6.8 12 9.8 12 13.4 12 15.5 6.2
19.6 4.2

)( )( )( )
( )( )( )( )( )

( )( )( )( )( )
( ) 19.6 6.8 19.6 9.8( )( )(19.6 13.4 19.6 15.)( )5

− − − − ×
− − − − −

− − − − −+ ×
− − − − −

 0.022 – 0.234  1.252  3.419 – 0.964  0.055  3.55

EXAMPLE 7.35

Apply Lagrange’s formula inversely to obtain a root of the equation 
f(x)  0, given that f(30)  – 30, f(34)  – 13, f(38)  3, and f (42)  18. 

Solution:

Herex0  30, x1  34, x2  38, x3  42

and y0  – 30, y1  – 13, y2  3, y3  18

It is required to find x corresponding to y  f(x)  0.
Taking y  0, Lagrange’s formula gives 

  
   

 

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 3

0 1 3 0 1 2
2 3

2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( )( )( ) ( )( ) ( )

( )( ) (
. 1

.  
  

13 3 18 30 3

) ( )( )( )
( )( )( ) ( )( )( )

30
17 33 48

y y y y y y y y y y y y
x x

y y y y y y y y y y y y

y y y y y y y y y y y y
x x

y y y y y y y y y y y

x

y

     


     

     
 

     

   
  
  



 
  

  
  

  
  

18
34

17 16 31
30 13 18 30 13 3

38 42
33 16 15 48 31 15


 

 
   



 – 0.782  6.532  33.682 – 2.202  37.23.

Hence the desired root of f(x)  0 is 37.23.
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7.21 Iterative Method

Newton’s forward interpolation formula (p. 274) is

 2 3
0 0 0 0

( 1) ( 1)( 2)
...

2! 3!p
p p p p p

y y p y y y
  

       

From this, we get

2 3
0 0 0

0

1 ( 1) ( 1)( 2)
2! 3!

p
p p p p pp y y y y

y
− − −⎡ ⎤= − + Δ + Δ +⎢ ⎥Δ ⎣ ⎦

 (1)

Neglecting the second and higher differences, we obtain the first ap-
proximation to p as

 1 0 0( )pp y y y    (2)
To find the second approximation, retaining the term with second dif-

ferences in (1) and replacing p by p1, we get

 
 1 1 2

2 0 0
0

11
2!p

p p
p y y y

y

 
    

   
 (3)

To find the third approximation, retaining the term with third differ-
ences in (1) and replacing every p by p2, we have

    2 2 2 2 22 3
3 0 0 0

0

1 1 21
2! 3!p

p p p p p
p y y y y

y

   
      

   

and so on. This process is continued till two successive approximations of p 
agree with each other 

Obs. This technique can be equally well be  applied by starting 
with any other interpolation formula.

This method is a powerful iterative procedure for finding the 
roots of an equation to a good degree of accuracy.

EXAMPLE 7.36 

The following values of y  f(x) are given

x: 10 15 20

y: 1754 2648 3564

NOTE
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Find the value of x for y  3000 by iterative method.

Solution:

Taking x0  10 and h  5, the difference table is

x y y 2y

10 1754

894

15 2648 22

916

20 3564

Here yp  3000, y0  1754, y0  894 and 2y0  22.

 The successive approximations to p are

          1
1

  3000 – 1754( ) 1.39
894

p  

         2
(1 1.39 1.39 1

   3000 1754  22
)

2
1.387

894
p

 
    


  

 3
1 1.387 1.387 1( )

2
3000 1754 22 1.3871

894
p

 
      

We, therefore, take p  1.387 correct to three decimal places. Hence 
the value of x (corresponding to y  3000)  x0  ph  10  1.387 × 5  
16.935.

EXAMPLE 7.37

Using inverse interpolation, find the real root of the equation x3  x – 
3 0, which is close to 1.2.

Solution:

The difference table is

x y Y x3  x  3  y 2y 3y 4y

1 – 0.2 – 1 0.431

0.066

1.1 – 0.1 – 0.569 0.497 0.006

0.072 0

1.2 0 – 0.072 0.006
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x y Y x3  x  3  y 2y 3y 4y

0.569

1.3 0.1 0.497 0.078

0.647

1.4 0.2 1.144

Clearly the root of the given equation lies between 1.2 and 1.3. Assum-
ing the origin at x  1.2 and using Stirling’s formula 

3 32 2
1 22

1
0 1

0   ,
2

( 1)
2 6 2

y yx x xy y
y y x y  



  
 


     we get

 
2 20.569 0.467 1 0.006 0.006

0 –0.072 .  0.072
( )

2
 

2 6 2
x x x

x
   

     
 

  0y

or 2 30 –0.072 0.532 0.036 0.001x x x= + + +  (i)

This equation can be written a s

 2 30.072 0.036 0.001
–

0.532 0.532 0.532
x x x 

  First approximation (1) 0.072 0.1353
0.532

x = =

Putting x  x(1) on R.H.S. of (i), we get

Second approximation 

 x(2)  0.1353 – 0.067(0.1353)2 – 1.8797(0.1353)3  0.134

Hence the desired root  1.2  0.1 × 0.134  1.2134.

Exercises 7.7

1. Apply Lagrange’s method to find the value of x when f(x)5 from the 
given data:

x: 5 6 9 11

f(x): 12 13 14 16
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2. Obtain the value of t when A  85 from the following table, using La-
grange’s method:

t: 2 5 8 14

A: 94.8 87.9 81.3 68.7

3. Apply Lagrange’s formula inversely to obtain the root of the equation 
f(x)  0, given that  f(30)  – 30, f(34)  – 13, f(38)  3 and f(42)  18.

4. From the following data:

x: 1.8 2.0 2.2 2.4 2.6

y: 2.9 3.6 4.4 5.5 6.7,
find x when y  5 u sin g the iterative method.

5. The equation x3 – 15x  4  0 ha s a root close to 0.3. Obtain this root 
upto four decimal places using inverse interpolation.

6. Solve the equation x  10 log x, by iterative method given that 

x: 1.35 1.36 1.37 1.38

log x: 0.1303 0.1355 0.1367 0.1392

7.22 Objective Type of Questions

Exercises 7.8

1. Select the correct answer or fill up the blanks in the following question:
Newton’s back war d interpolation formula is.........

2. Bessel’s formula is most appropriate when p lies between
 (a) – 0. 25 an d 0.25 (b) 0.25 an d 0.75 (c) 0.75 an d 1.00

3. Form the divided difference table for the following data:

x: 5 15 22

y: 7 36 160

4. Interpolation is the technique of estimating the value of a function for 
any......

5. Bessel’s formula for interpolation is......

6. The four divided differences for x0, x1, x2, x3, x4 .......
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7. Stirling’s formula is best suited for p lying between......

8. Newton’s divided differences formula is.......

9. Given (x0, y0), (x1, y1), (x2, y2), Lagrange’s interpolation formula is.......

10. If f(0)  1, f(2)  5, f(3)  10 and f(x)  14, then x ......

11. The difference between Lagrange’s interpolating polynomial and 
Hermite’s interpolating polynomial is.......

12. If y(1)  4, y(3)  12, y(4)  19 and y(x)  7, find x using Lagrange’s 
formula.

13. Extrapolation is defined as.......

14. The second divided difference of f (x)  1/x, with arguments a, b, c is......

15. The Gauss-forward interpolation formula is used to interpolate values of 
y for
(a) 0 < p < 1  (b) – 1 < 1 < 0
(c) 0 < p < –   (d) –  < p < 0

16. Given

x: 0 1 3 4

y: 12 0 6 12

Using Lagrange’s formula, a polynomial that can be fitted to the data 
is......

17. The nth divided difference of a polynomial of degree n is
(a) zero  (b) a constant
(c) a variable (d) none of these.

18. The Gauss forward interpolation formula involves
(a)  differences above the central line and odd differences on the cen-

tral line
(b)  even differences below the central line and odd differences on the 

central line
(c)  odd differences below the central line and even differences on the 

central line
(d)  odd differences above the central line and even differences on the 

central line.

19. Differentiate between interpolation polynomial and least square polyno-
mial obtained for a set of data.



C H A P T E R8
NUMERICAL DIFFERENTIATION 
AND INTEGRATION

Chapter Objectives

 Numerical differentiation 
 Formulae for derivatives
 Maxima and minima of a tabulated function 
 Numerical integration
 Quadrature formulae 
 Errors in quadrature formulae
 Romberg’s method 
 Euler-Maclaurin formula
 Method of undetermined coefficients 
 Gaussian integration
 Numerical double integration 
 Objective type of questions

8.1 Numerical Differentiation

It is the process of calculating the value of the derivative of a 
function at some assigned value of x from the given set of values 
(xi, yi). To compute dy/dx, we first replace the exact relation y  f(x) 
by the best interpolating polynomial y  (x) and then differentiate 
the latter as many times as we desire. The choice of the interpola-
tion formula to be used, will depend on the assigned value of x at 
which dy/dx is desired.
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If the values of x are equispaced and dy/dx is required near the begin-
ning of the table, we employ Newton’s forward formula. If it is required 
near the end of the table, we use Newton’s backward formula. For values 
near the middle of the table, dy/dx is calculated by means of Stirling’s or 
Bessel’s formula. If the values of x are not equispaced, we use Lagrange’s 
formula or Newton’s divided difference formula to represent the function. 

Hence corresponding to each of the interpolation formulae, we can de-
rive a formula for finding the derivative.

Obs. While using these formulae, it must be observed that the 
table of values defines the function at these points only and 
does not completely define the function and the function may 
not be differentiable at all. As such, the process of numerical 
differentiation should be used only if the tabulated values 
are such that the differences of some order are constants. 
Otherwise, errors are bound to creep in which go on increasing 
as derivatives of higher order are found. This is due to the 
fact that the difference between f(x) and the approximating 
polynomial (x) may be small at the data points but f (x) – (x) 
may be large.

8.2 Formulae for Derivatives

Consider the function y  f(x) which is tabulated for the values xi( x0  
ih), i  0, 1, 2, ... n.

Derivatives using Newton’s forward difference formula

Newton’s forward interpolation formula (p. 274) is

 2 3
0 0 0 0

( 1) ( 1)( 2)
2! 3!

p p p p p
y y p y y y

  
       

Differentiating both sides w.r.t. p, we have

 
2

2 3
0 0 0

2 1 3 6 2
2! 3!

dy p p p
y y y

dp
  

     

Since  0( )x x
p

h




Therefore 1dp
dx h


NOTE
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Now 
2

2 3
0 0 0

3 2
4

0

2 1 3 6 21
2! 3!

4 18 22 6
4!

dy dy dp p p p
y y y

ds dp dx h

p p p
y

   
       

  
   

 (1)

At x  x0, p  0. Hence putting p  0,

0

2 3 4 5 6
0 0 0 0 0 0

1 1 1 1 1 1
2 3 4 5 6x

dy
y y y y y y

dx h

   
                 

  (2)

Again differentiating (1) w.r.t. x, we get

   
2

2

d y dy dpd
dp dp dxdx

 
 
 

 
2 2

2 3 4
0 0 0

6 6 12 36 36 221 2 1
2! 3! 4!

p p p p
y y y

h h

    
       
 



Putting p  0, we obtain

 
2

2 3 4 5 6
0 0 0 0 02 2

1 11 5 137
12 6 180

d y
y y y y y

dx h

   
               

  (3)

Similarly 
3

3 4
0 03 3

1 3
2

d y
y y

dx h

   
          



Otherwise: We know that 1    E  ehD

 2 3 41 1 1
log(1 )

2 3 4
hD        

or         2 3 41 1 1 1
2 3 4

D
h
 

         


and 
2

2 2 3 4 2 3 4
2 2

1 1 1 1 1 11
2 3 4 12

D
h h
   

                   
 

and       3 3 4
2

1 3
2

D
h
 

      


Now applying the above identities to y0, we get

Dy0 i.e., 
0

2 3 4 5 6
0 0 0 0 0 0

1 1 1 1 1 1
2 3 4 5 6x

dy
y y y y y y

dx h
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2
2 3 4 5 6

0 0 0 0 02 2

1 11 5 137
12 6 180

d y
y y y y y

dx h

   
               



and              
3

2 4
0 03 3

1 3
2

d y
y y

dx h

   
          



which are the same as (2), (3), and (4), respectively.

Derivatives using Newton’s backward difference formula

Newton’s backward interpolation formula (p. 274) is

 2 3( 1) ( 1)( 2)
2! 3!n n n n

p p p p p
y y p y y y

  
       

Differentiating both sides w.r.t. p, we get

 
2

2 32 1 3 6 2
2! 3!n n n

dy p p p
y y y

dp
  

     

Since ,nx x
p

h


  therefore. 1dp
dx h


Now 
3

2 32 1 3 6 21
2! 3!n n n

dy dy dp p p p
y y y

dx dp dx h

   
         

 
  (5)

At x  xn, p  0. Hence putting p  0, we get

2 3 4 5 61 1 1 1 1 1
2 3 4 5 6

n

n n n n n n
x

dy
y y y y y y

dx h

   
                 

  (6)

Again differentiating (5) w.r.t. x, we have

 

2

2

2
2 3 4

2

3

6 6 6 18 111
3! 12n n n

d y dy dpd
dp dx dxdx

p p p
y y y

h

 
  

 

   
       

 


Putting p  0, we obtain
2

2 3 4 5 6
2 2

1 11 5 137
12 6 180n n n n n

d y
y y y y y

dx h

   
               

  (7)

Similarly, 
3

3 4
3 3

1 3
2

n

n n

x

d y
y y

dx h

   
           

  (8)
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Otherwise: We know that 1 –   E–1  e–hD

 2 3 41 1 1
log(1 ) [ ]

2 3 3
hD         

or                    2 3 41 1 1 1
2 3 4

D
h
 

         


    
2

2 2 3 2 3 4
2 2

1 1 1 1 11
2 2 12

D
h h
   

                 
 

Similarly, 3 3 4
3

1 3
2

D
h
 

      


Applying these identities to yn, we get

Dyn i.e., 2 3 4 5 6

2
2 3 4 5 6

2 2

1 1 1 1 1 1
2 2 4 5 6

1 11 5 137
12 6 180

n

n

n n n n n n
x

n n n n n

x

dy
y y y y y y

dx h

d y
y y y y y

dx h

   
                

   
                





and  
3

3 4
3 3

1 3
2

n

n n

x

d y
y y

dx h

   
           



which are the same as (6), (7), and (8).

Derivatives using Stirling’s central difference formula

Stirling’s formula (p. 289) is
2

0 1 2
0 11! 2 2!p

p y y p
y y y



  
    

 

2 2 3 3 2 2 2
1 2 4

2
( 1 ) ( 1 )

3! 2 4!
p p y y p p

y 


    
     
 



Differentiating both sides w.r.t. p, we get
2 3 3

0 1 1 22
1

3
4

2

2 3 1
2 2! 3! 2

4 2
4!

dy y y p p y y
y

dp

p p
y

  




      
          


  

Since 0 ,
x x

p
h



1dp

dx h
  .
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Now 
2 3 3

0 1 1 22
1

3
4

2

3 11
26 6 2

2
12

dy dy dp y y p y y
p y

dx dp dx h

p p
y

  




       
            


   

At x  x0, p  0. Hence putting p  0, we get

0

3 3 5 5
0 1 1 2 2 31 1 1

2 6 2 30 2x

dy y y y y y y
dx h

    
        

     
   

  (9)

Similarly 
2

2 4 6
1 2 32 2

1 1 1
12 90

d y
y y y

dx h   

   
            

  (10)

Derivatives using Bessel’s central difference formula

Bessel’s formula (p. 290) is
2 2

1 0 3
0 0 1

( 1) ( 1)1
2! 2 2 3!p

p p y y p p
y y p y p y



    
       

 

  
3 2 4 4

2 14 6 2 2
4! 2

p p p y y     
 

Since 0 ,
x x

p
h



1dp

dx h
 

Now 
2 2

1 0
0

2
3 2 4 4

2 13
1

2 11
2! 2

1
3 2 4 6 2 22

3! 4! 2

dy dy dp p y y
y

dx dp dx h

p p p p p y y
y



 


   
    


      

    

At x  x0, p  0. Hence putting p  0, we get

0

2 2
1 0 3

0 1

4 4
2 1

1 1 1
2 2 12

1
12 2

x

dy y y
y y

dx h

y y




 

     
            

  
       



 (11)

Similarly 

     
0

2 2 2 4 4
1 0 2 13

12 2

1 1 1
2 2 12 2

x

d y y y y y
y

dx h
  



         
                      

  (12)
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Derivatives using unequally spaced values of argument

(i) Lagranges’s interpolation formula is

 1 2
0

0 1 0 2 0

0 2
1

1 0 1 2 1

( )( ) ( )
( ) ( )

( )( ) ( )
( )( ) ( )

( )
( )( ) ( )

n

n

n

n

x x x x x x
f x f x

x x x x x x
x x x x x x

f x
x x x x x x

  


  

  
 

  








Differentiating both sides w.r.t. x, we get f (x).

(ii) Newton’s divided difference formula is

   2
0 0 0 0 1 0

3
0 1 2 0

( ) ( ) ( ) ( )( ) ( )

( )

– – –

– –( (– )( ) )

f x f x x x f x x x x x f x

x x x x x x f x

    

  
Differentiating both sides w.r.t. x, we obtain
  2 2

0 1 0 0 1 2

3
0 1 1 2 2 3 0

( ) [ ( )] ( ) [ ( )

(

0 2 –  3 – 2

 )] ( )

f x f x x x x f x x x x x x

x x x x x x f x

       

    

EXAMPLE 8.1

Given that

x:  1.0 1.1 1.2 1.3 1.4 1.5 1.6

y: 7.989  8.403 8.781 9.129  9.451  9.750 10.031

find dy
dx

and 
2

2

d y

dx
at (a) x  1.1 (b) x  1.6.

Solution:

(a) The difference table is:

x y  2 3 4  5 6

1.0 7.989
0.414

1.1 8.403  – 0.036
0.378 0.006

1.2 8.781 – 0.030  – 0.002
0.348 0.004 0.001

1.3 9.129 – 0.026  – 0.001 0.002
 0.322 0.003 0.003

1.4 9.451 – 0.023 0.002
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x y  2 3 4  5 6

0.299 0.005
1.5 9.750 – 0.018

0.281
1.6 10.031

We have

2 3 4 5 6
0 0 0 0 0 0

0

1 1 1 1 1 1
2 3 4 5 6x

dy
y y y y y y

dx h

   
                 

  (i)

and 
2

2 3 4 5 6
0 0 0 0 02 2

0

1 11 5 137
12 6 180

x

d y
y y y y y

dx h

   
                

  (ii)

Here h  0.1, x0  1.1, y0  0.378, 2y0  – 0.03 etc.

Substituting these values in (i) and (ii), we get

2

2 2

1 1 1 1 1
0.378 ( 0.03) (0.004) ( 0.001) (0.003) 3.952

0.1 2 3 4 5

1 11 5
0.03 (0.004) ( 0.001) (0.003) 3.74

12 6(0.1)

dy
dx

d y

dx

   
            

   
            

(b) We use the above difference table and the backward difference op-
erator  instead of .

   2 3 5 61 1 1 1 1
2 3 5 6

n

n n n n n
x

dy
y y y y y

dx h

   
               

  (i)

and 
2

2 3 4 5 6
2 2

1 11 5 137
12 6 180n n n n n

xn

d y
y y y y y

dx h

   
                

  (ii)

Here h  0.1, xn  1.6, yn  0.281, 2yn  – 0.018 etc.

Putting these values in (i) and (ii), we get

1.6

1 1 1 1
0.281 ( 0.018) (0.05) (0.002)

0.1 2 3 4

1 1
(0.003) (0.002) 2.75

5 6

dy
dx
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2

2 2
1.6

1 11 5
0.018 0.005 (0.002) (0.003)

12 6(0.1)

137
(0.002) 0.715.

180

d y

dx

  
         


 

EXAMPLE 8.2

The following data gives the velocity of a particle for twenty seconds 
at an interval of five seconds. Find the initial acceleration using the entire 
data:

Time t (sec):  0 5 10 15 20

Velocity v(m/sec): 0 3 14 69  228

Solution:

The difference table is:

t v   v 2 v  3 v  4 v

0 0

3

5 3  8

11 36

10 14 44 24

55  60

15 69 104

159

20 228

An initial acceleration . .,
dv

i e
dt
 
 
 

at t  0 is required, we use Newton’s 
forward formula:



2 3 4
0 0 0 0

0

0

1 1 1 1
2 3 4

1 1 1 1
3 (8) (36) (24)

5 1 3 4
1

(3 4 12 6) 1
5

t

t

dv
v v v v

dt h

dv
dt





   
           

   

   
        

    



Hence the initial acceleration is 1 m/sec2.
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EXAMPLE 8.3

Find the value of cos (1.74) from the following table:

x: 1.7 1.74 1.78 1.82 1.86
sin x: 0.9916 0.9857 0.9781 0.9691 0.9584

Solution:

Let y  f (x)  sin x. so that f (x)  cos x.

The difference table is

x y y 2y 3y  4y

1.7 0.9916

– 0.0059

1.74 0.9857 – 0.0017

– 0.0076 0.0003

1.78 0.9781 – 0.0014 – 0.0006

– 0.0090 – 0.0003

1.82 0.9691 – 0.0017

– 0.0107

1.84 0.9584

Since we require f (1.74), we use Newton’s forward formula

 
2 3 4

0 0 0 0
1 1 1 1

2 3 4
dy

y y y y
dx h

 
          

  (i)

Here h  0.04, x0  1.7, y0  – 0.0059, 2y0  – 0.0017 etc.

Substituting these values in (i), we get

1.74

1 1 1 1
0.0059 ( 0.0017) (0.003) ( 0.0006)

0.04 2 3 4

1
(0.007) 0.175

0.04

dy
dx

   
          

 

Hence cos (1.74)  0.175

EXAMPLE 8.4

A slider in a machine moves along a fixed straight rod. Its distance x cm. 
along the rod is given below for various values of the time t seconds. Find 
the velocity of the slider and its acceleration when t  0.3 second.
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t  0 0.1 0.2  0.3  0.4  0.5 0.6

x  30.13  31.62 32.87  33.64 33.95  33.81 33.24

Solution:

The difference table is:

T  x   2 3  4  5  6

0  30.13
1.49

0.1 31.62 – 0.24
1.25 – 0.24

0.2 32.87 – 0.48 0.26
0.77 0.02 – 0.27

0.3 33.64 – 0.46 – 0.01 0.29
0.31 0.01 0.02

0.4 33.95 – 0.45 0.01
– 0.14 0.02

0.5 33.81 – 0.43
– 0.57

0.6 33.24

As the derivatives are required near the middle of the table, we use 
Stirling’s formulae:

0

5 53 3
0 1 2 31 21 1 1

2 6 2 30 2
x

t

x x xx xdx
dt h

   
         
        

       
 (i)

  
2

2 4 6
1 2 32 2

1 1 1
12 90

d x
x x x

dt h   

   
         

  (ii)

Here h  0.1, t0  0.3, x0  0.31, x–1  0.77, 2x–1  – 0.46 etc.

Putting these values in (i) and (ii), we get

0.3

1 0.31 0.77 1 0.01 0.02 1 0.02 0.27
5.33

0.1 2 6 2 30 2
dt
dx

        
                



2

2 2
0.3

1 1 1
0.46 ( 0.01) (0.29) 45.6

12 90(0.1)
d x
dt

   
           



Hence the required velocity is 5.33 cm/sec and acceleration is

– 45.6 cm/sec2.
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EXAMPLE 8.5

The elevation above a datum line of seven points of a road are given 
below:

x: 0  300  600  900  1200 1500  1800
y: 135 149 157 183 201  205  193

Find the gradient of the road at the middle point.

Solution:

Here h  300, x0  0, y0  135, we require the gradient dy/dx at x  900.

The difference table is

x y  y 2y  3y 4y  5y

0 135

14

300 149  – 6

8 24

600 157 18 – 50

 26 – 26 70

900 183  – 8 20

18 – 6 – 16

1200  201  – 14 4

 4 – 2

1500 205 – 16

– 12

1800 193

Using Stirling’s formula for the first derivative [(9) p. 000], we get

3 3 5 5
0 1 1 2 2 3

0
1 1 1

( )
26 6 2 30 2

1 1 1 1
(18 26) ( 6 26) ( 16 70)

300 2 12 60
1

(22 2.666 0.9) 0.085
300

y y y y y y
y x

h
    

          
                  

 
         

   

Hence the gradient of the road at the middle point is 0.085.
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EXAMPLE 8.6

Using Bessel’s formula, find f(7.5) from the following table:

x: 7.47 7.48 7.49 7.50 7.51 7.52 7.53

f(x): 0.193 0.195 0.198 0.201 0.203 0.206 0.208

Solution:

Taking x0  7.50, h  0.1, we have 0 7.50
0.01

x x x
p

h
 

 

The difference table is

x p  yp   2 3 4 5 6

7.47 – 3 0.193
0.002
7.48 – 2  0.195 0.001
0.003  – 0.001
7.49 – 1  0.198  0.000 0.000
0.003  – 0.001  0.003
7.50 0 0.201 – 0.001 0.003 – 0.01
0.002 0.002 – 0.007
7.51 1 0.203 0.001 – 0.004
0.003 – 0.002
7.52 2 0.206 – 0.001
0.002
7.53 3 0.208

Using Bessel’s formula for the first derivative [(11) p. 000], we get

0

2 2 3 4 4
0 1 0 1 2 1

5 6 6
2 3 2

1 1 1 1
( ) ( )

4 12 24

1 1
(

120 240

x

dy
y y y y y y

dx h

y y y

   

  

  
            


     

7.5

1 1 1 1
0.002 ( 0.001 0.001) (0.002) ( 0.004 0.003)

0.01 4 12 24

1 1
( 0.007) ( 0.010 0)

120 240

dy
dx

  
          


     

[ 6 y–2  0]
 0.2  0  0.01666 – 0.0416  0.00583  0.00416  0.223.
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EXAMPLE 8.7

Find f (10) from the following data:

x: 3 5 11 27 34

f(x): – 13  23 899 17315 35606

Solution:

As the values of x are not equispaced, we shall use Newton’s divided 
difference formula. The divided difference table is

x f(x) 1st div
diff.

2nd div. 
diff.

3rd div. 
diff.

4th div.
diff.

3 – 13

18

5 23 16

146 0.998

11 899 39.96 0.0002

1025 1.003

27 17315 69.04

2613

34 35606

Fifth differences being zero, Newton’s divided difference formula for 
the first derivative (p. 274), we get

f(x)  f(x0, x1)  (2x – x0 – x1)f(x0, x1, x2)

  [3x2
 – 2x(x0  x1  x2)  x0x1  x1x2  x2x0)] × f(x0, x1, x2, x3)

  [4x3
 – 3x2(x0  x1  x2  x3)  2x(x0x1  x1x2  x2x3  x3x0  x1x3  x0x2)

 – (x0x1x2  x1x2x3  x2x3x0  x0x1x3)] f(x0, x1, x2, x3, x4)

Putting x0  3, x1  5, x2  11, x3  27 and x  10, we obtain

f (0)  18  12 × 16  23 × 0.998 – 426 × 0.0002  232.869.

8.3 Maxima and Minima of a Tabulated Function

Newton’s forward interpolation formula is

2 3
0 0 0 0

( 1) ( 1)( 2)
2! 3!

p p p p p
y y p y y y
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Differentiating it w.r.t. p, we get

 
2

2 3
0 0 0

2 1 3 6 2
2 6

dy p p p
y y y

dp
  

       (1)

For maxima or minima, dy/dp  0. Hence equating the right-hand side 
of (1) to zero and retaining only up to third differences, we obtain

 
2

2 3
0 0 0

2 1 3 6 2
0

2 6
p p p

y y y
  

     

i.e.,   3 2 2 3 2 3
0 0 0 0 0 0

1 1 1
( ) 0.

2 2 3
y p y y p y y y

 
          

 

Substituting the values of y0, 
2y0, 

3y0 from the difference table, we 
solve this quadratic for p. Then the corresponding values of x are given by 
x  x0  ph at which y is maximum or minimum.

EXAMPLE 8.8

From the table below, for what value of x, y is minimum? Also find this 
value of y.

x: 3 4 5 6 7 8

y: 0.205 0.240 0.259 0.262 0.250  0.224

Solution:

The difference table is

x y  2 3

3 0.205
0.035

4 0.240  – 0.016
0.019 0.000

5  0.259 – 0.016
0.003 0.001

6 0.262  – 0.015
 – 0.012 0.001

7 0.250  – 0.014
– 0.026

8 0.224
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Taking x0  3, we have y0  0.205, y0  0.035, 2y0  – 0.016 and 
3y0  0.

 Newton’s forward difference formula gives

 
( 1)

0.205 (0.035) ( 0.016)
2

p p
y p


     (i)

Differentiating it w.r.t. p, we have

 
29 1

0.035 ( 0.016)
2

dy
dp


  

For y to be minimum, dy/dp  0

 0.035 – 0.008(2p – 1)  0

which gives p  2.6875

 x  x0  ph  3  2.6875 × 1  5.6875.

Hence y is minimum when x  5.6875.

Putting p  2.6875 in (i), the minimum value of y

  
1

 0.205  2.6875  0.035 2.6875  1.6875 – 0.016   0.2628.
2

     

EXAMPLE 8.9

Find the maximum and minimum value of y from the following data:

x:  – 2  – 1 0 1 2 3 4

y: 2  – 0.25  0  – 0.25  2 15.75  56

Solution:

The difference table is

x y y 2y 3y  4y 5y
– 2 2

– 2.25
– 1 – 0.25 2.5

0.25 – 3
0 0 – 0.5  6

– 0.25 3 0
1 – 0.25 2.5  6
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x y y 2y 3y  4y 5y
2.25 9 0

2  2 11.5 6
13.75 15

3  15.75 26.5
40.25

4 56

Taking x0  0, we have y0  0, y0  – 0.25, 2y0  2.5, 3y0  9, 4y0  6.

Newton’s forward difference formula for the first derivative gives
2 3 2

2 3 4
0 0 0 0

2 3 2

2 3 2 3

(2 1) 3 6 2 4 18 22 61
2! 3! 4!

1 2 1 1 1
0.25 (2.5) (3 6 2)(9) (4 18 22 6)(6)

1 2 6 24
1

[ 0.25 2.5 1.25 4.5 9 3 4.5 5.5 1.5
2

dy p p p p p p
y y y y

dx h

x
x x x x x

x x x x x x x x

      
         
 


         

            



For y to be maximum or minimum, 30 i.e., 0 
dy

x x
dx
  

i.e.,                    x  0, 1, – 1

Now               
2

2
2 3 1 vefor 0

ve for 1
vefor 1.

d y
x x

dx
x

x

   

 

 

Since 2
0 0 0

( 1)
, (0) 0

2!
x x

y y x y y y


      

Thus y is maximum for x  0, and maximum value  y(0)  0.

Also y is minimum for x  1 and minimum value  y(0)  – 0.25

Exercises 8.1

1. Find y (0) and y  (0) from the following table:

x: 0 1  2  3  4  5

y: 4 8 15 7 6 2
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2. Find the first, second and third derivatives of f(x) at x  1.5 if

x: 1.5 2.0 2.5 3.0 3.5 4.0

f(x): 3.375 7.000 13.625 24.000 38.875 59.000

3. Find the first and second derivatives of the function tabulated below, at 
the point x  1.1:

x: 1.0 1.2 1.4 1.6  1.8  2.0

f(x): 0 0.128 0.544 1.296 2.432 4.00

4. Given the following table of values of x and y

x:  1.00 1.05 1.10 1.15 1.20 1.25 1.30

y:  1.000 1.025 1.049 1.072 1.095 1.118 1.140

find
dy
dx

and
2

2

d y

dx
at (a) x  1.05.  (b) x  1.25  (c) x  1.15.

5. For the following values of x and y, find the first derivative at x  4.

x: 1 2 4 8  10

y:  0 1 5  21  27

6. Find the derivative of f(x) at x  0.4 from the following table:

x: 0.1 0.2 0.3 0.4

f(x): 1.10517 1.22140 1.34986 1.49182

7. From the following table, find the values of dy/dx and d2y/dx2 at x  2.03.

x: 1.96 1.98 2.00 2.02 2.04

y: 0.7825 0.7739 0.7651 0. 7563 0.7473

8. Given sin 0°  0.000, sin 10°  0.1736, sin 20°  0.3420, sin 30°  0.5000, 
sin 40°  0.6428,

(a) find the value of sin 23°,

(b) find the numerical value of cos x at x  10°

(c) find the numerical value of d2y/dx2 at x  20° for y  sin x.

9. The population of a certain town is given below. Find the rate of growth 
of the population in 1961 from the following table

Year: 1931 1941 1951 1961 1971

Population: 
(in thousands)

40.62 60.80 71.95 103.56 132.68
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Estimate the population in the years 1976 and 2003. Also find the rate of 
growth of population in 1991.

10. The following data gives corresponding values of pressure and specific 
volume of a superheated steam.

v: 2 4 6 8 10

p: 105 42.7 25.3 16. 7 13
Find the rate of change of

(i) pressure with respect to volume when v  2,

(ii) volume with respect to pressure when p  105.

11. The table below reveals the velocity v of a body during the specified 
time t find its acceleration at t  1.1?

t: 1.0 1.1 1.2 1.3 1.4

v: 43.1 47.7 52.1  56.4 60.8

12. The following table gives the velocity v of a particle at time t. Find its 
acceleration at t  2.

t: 0 2 4 6 8 10 12

v: 4 6 16 34 60 94 131

13. A rod is rotating in a plane. The following table gives the angle  (radi-
ans) through which the rod has turned for various values of the time t 
second.

t: 0 0.2 0.4 0.6 0.8 1.0 1.2

: 0 0.12 0.49 1.12 2.02 3.20 4.67

Calculate the angular velocity and the angular acceleration of the rod, 
when t  0.6 second.

14. Find dy/dx at x  1 from the following table by constructing a central 
difference table:

x: 0.7 0.8 0.9 1.0 1.1 1.2 1.3

y: 0.644218 0.717356 0 0.783327 0.841471 0.891207 0.932039 0.963558

15. Find the value of f (x) at x  0.04 from the following table using Bessel’s 
formula.

x: 0.01 0.02 0.03 0.04 0.05 0.06

f(x): 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148
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16. If y  f(x) and yn denotes f(x0  nh), prove that, if powers of h above h6 
are neglected.

0

1 1 2 2 3 3
3 1 1

( ) ( ) ( ) .
4 5 45x

dy
y y y y y y

dx h   

   
          

[HINT: Differentiate Stiling’s formula w.r.t. x, and put x  0]

17. Find the value of f (8) from the table given below:

x: 6 7 9 12

f (x): 1.556 1.690 1.908 2.158

18. Given the following pairs of values of x and y:

x: 1 2 4 8 10

y: 0 1 5 21 27
Determine numerically dy/dx at x  4.

19. Find f  (6) from the following data:

x: 0 2 3 4 7 8

f (x): 4 26 58 112 466 922

20. Find the maximum and minimum value of y from the following table:

x: 0 1 2 3 4 5

y: 0 0.25 0 2.25 16 56.25

21. Using the following data, find x for which y is minimum and find this 
value of y.

x: 0.60 0.65 0.70 0.75

y: 0.6221 0.6155 0.6138 0.6170

22. Find the value of x for which f (x) is maximum, using the table

x: 9 10 11 12 13 14

f (x): 1330 1340 1320 1250 1120 930
Also find the maximum value of f (x).

8.4 Numerical Integration

The process of evaluating a definite integral from a set of tabulated val-
ues of the integrand f(x) is called numerical integration. This process when 
applied to a function of a single variable, is known as quadrature.
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The problem of numerical integration, like that of numerical differen-
tiation, is solved by representing f(x) by an interpolation formula and then 
integrating it between the given limits. In this way, we can derive quadra-
ture formulae for approximate integration of a function defined by a set of 
numerical values only.

8.5 Newton-Cotes Quadrature Formula

Let ( )
b

a
I f x dx

where f(x) takes the values y0, y1, y2,  yn for x  x0, x1, x2,  xn.

Let us divide the interval (a, b) into n sub-intervals of width h so that 
x0  a, x1  x0  h, x2  x0  2h,  .xn  x0  nh  b. Then

Y

0 x0 x0 x0h+ +nh X

y = f(x)

y0 y1 y2 yn

x0 +2h

FIGURE 8.1

0

0
00

( ) ( ) ,
nhx n

x
I f x dx h f x rh dr


     Putting x  x0  rh, dx  hdr

   2 3
0 0 0 00

( 1) ( 1)( 2)
[

2! 3!

n r r r r r
h y r y y y

  
      

 4 5
0 0

( 1)( 2)( 3) ( 1)( 20( 3)( 4)
4! 5!

r r r r r r r r r
y y

      
   

 6
0

( 1)( 2)( 3)( 4)( 5)
6!

r r r r r r
y dr

     
   



[by Newton’s forward interpolation formula]

Integrating term by term, we obtain

0

0

2
2 3

0 0 0 0
(2 3) ( 2)

( )
2 12 24

x nh

x

n n n n n
f x dx nh y y y y

   
      






360 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

 

44 3 2
0

55 3 2
04

66 5 3 2
04

3 11
3

5 2 3 4!

34 50
2 12

6 4 3 5!

15 225 274
17 60

7 6 4 3 6!

yn n n
n

yn n n
n n

yn n n n
n n

 
    
 

 
     
 

 
        
  



 (1)

This is known as Newton-Cotes quadrature formula. From this gen-
eral formula, we deduce the following important quadrature rules by taking 
n  1, 2, 3, 

I. Trapezoidal rule. Putting n  1 in (1) and taking the curve through 
(x0, y0) and (x1, y1) as a straight line (Figure 8.2) i.e., a polynomial of first 
order so that differences of order higher than first become zero, we get

y

0 x0 x1 x2 x3 xn x

y1y0

FIGURE 8.2

                0

0
0 0 0 1

1
( ) ( )

2 2

x h

x

h
f x dx h y y y y

  
     
 

Similarly         
0

0

2

1 1 1 2
1

( ) ( )
2 2

x h

x h

h
f x dx h y y y y





 
     
 

                    .....................................................................

                     0

0
1( 1)

( ) ( )
2

x nh

nx n

h
f x dx y yn



 
 

Adding these n integrals, we obtain

                       
0

0
0 1 2 -1( ) [( ) 2( )]

2

x nh

n nx

h
f x dx y y y y y


        (2)

This is known as the trapezoidal rule.

Obs. The area of each strip (trapezium) is found separately. 
Then the area under the curve and the ordinates at x0 and xn is 
approximately equal to the sum of the areas of the n trapeziums.

NOTE
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II. Simpson’s one-third rule. Putting n  2 in (1) above and taking the 
curve through (x0, y0), (x1, y1), and (x2, y2) as a parabola (Figure 8.3), i.e., a 
polynomial of the second order so that differences of order higher than the 
second vanish, we get

y

y1 y2

0 x0 x1 x2 x3 xn x

y0

FIGURE 8.3

0

0

2 2
0 0 0 0 1 2

1
( ) 2 ( ) ( 4 )

6 3

x h

x

h
f x dx h y y y y y y


      

Similarly 
0

0

4

2 3 42
( ) ( 4 )

3

x h

x h

h
f x dx y y y




  

...............................................................
0

0
2 1( 2)

( ) ( 4 ),
3

x nh

n n nx n h

h
f x dx y y y



  
    n being even.

Adding all these integrals, we have when n is even

 0

0

x +nh

0 n 1 3 n-1 2 4 n-2x

h
f(x)dx= [(y +y )+4(y +y +…+y )+2(y +y +…y )]

3  (3)

This is known as the Simpson’s one-third rule or simply Simpson’s rule 
and is most commonly used.

Obs. While applying (3), the given interval must be divided 
into an  even number of equal subintervals, since we find the 
area of two strips at a time.

III. Simpson’s three-eighth rule. Putting n  3 in (1) above and taking 
the curve through (xi, yi): i  0, 1, 2, 3 as a polynomial of the third order 
(Figure 8.4) so that differences above the third order vanish, we get

y

y1 y2

0 x0 x1 x2 x3 xn x

y0
y3

FIGURE 8.4

 0

0

3 2 3
0 0 0 0

3 3 1
( ) 3

2 4 8

x h

x
f x dx h y y y y

  
       

 

NOTE
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0 1 2 3

3
( 3 3 )

8
h

y y y y   

Similarly,

0

0

5

3 4 5 63

3
( ) ( 3 3 )

8

x h

x h

h
f x dx y y y y




    and so on.

Adding all such expressions from x0 to x0  nh, where n is a multiple of 
3, we obtain

   0

0
0 1 2 4 5 1

3 6 3

3
( ) [( ) 3( )

8
2( )]

x nh

n nx

n

h
f x dx y y y y y y y

y y y







       

   

 



 (4)

Obs. While applying (4), the number of sub-intervals should be 
taken as a multiple of 3.

IV. Boole’s rule. Putting n  4 in (1) above and taking the curve (xi, yi), 
i  0, 1, 2, 3, 4 as a polynomial of the fourth order (Figure 8.5) and neglect-
ing all differences above the fourth, we obtain

y

y1 y2

0 x0 x1 x2 x3 x4 x

y0
y3 y4

FIGURE 8.5

 
0

0

4 2 3 4
0 0 0 0 0

5 2 7
( ) 4 2

3 3 90

x h

x
f x dx h y y y y y

  
         

 

 0 1 2 33 4
2

(7 32 12 32 7 )
45
h

y y y y y    

Similarly 
0

0

8

4 5 6 7 84

2
( ) (7 32 12 32 7 )

45

x h

x h

h
f x dx y y y y y




     and so on.

Adding all these integrals from x0 to x0  nh, where n is a multiple of 4, 
we get

0

0

0 1 2 3 4 5

6 7 8

2
( ) (7 32 12 32 14 32

45
12 32 14

x nh

x

h
f x dx y y y y y y

y y y

      

   




 (5)

This is known as Boole’s rule.

Obs. While applying (5), the number of sub-intervals should be 
taken as a multiple of 4.

NOTE

NOTE
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V. Weddle’s rule. Putting n  6 in (1) above and neglecting all differ-
ences above the sixth, we obtain

0

0

6 2 3 4
0 0 0 0 0

5 6
0 0

9 123
( ) 6 3 4

2 60
11 1 41
20 6 140

x h

x
f x dx h y y y y y

x y

 
        



    




If we replace 6
0

41
140

y by 6
0

3
,

10
y the error made will be negligible.

 0

0

6

0 1 2 3 4 5 6
3

( ) ( 5 6 5 )
10

x h

x

h
f x dx y y y y y y y


      

Similarly
0

0

12

6 7 8 9 10 11 126

3
( ) ( 5 6 5 )

10

x h

x h

h
f x dx y y y y y y y




       and so on.

Adding all these integrals from x0 to x0  nh, where n is a multiple of 6, 
we get

0

0
0 1 2 3 4 5 6 7 8

3
( ) ( 5 6 5 2 5 )

10

x nh

x

h
f x dx y y y y y y y y y


            (6)

This is known as Weddle’s rule.

Obs. While applying (6), the number of sub-intervals should 
be taken as a multiple of 6. Weddle’s rule is generally more 
accurate than any of the others. Of the two Simpson rules, the 
1/3 rule is better.

EXAMPLE 8.10

Evaluate 
6

20 1
dx

x
 by using 

(i) Trapezoidal rule,

(ii) Simpson’s 1/3 rule, 

(iii) Simpson’s 3/8 rule, 

(iv) Weddle’s rule and compare the results with its actual value.

Solution:

Divide the interval (0, 6) into six parts each of width h  1. The values 

of 2

1
( )

1
f x

x



are given below:

NOTE
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x 0 1 2 3 4 5 6

f(x) 1 0.5 0.2 0.1 0.0588  0.0385 0.027

 y  y0  y1  y2  y3  y4  y5  y6

(i) By Trapezoidal rule,

0 6 1 2 3 4 526

0

[( ) 2( )]
21

1
[(1 0.027) 2(0.5 0.2 0.1 0.0588 0.0385)] 1.4108.

2

dx h
y y y y y y y

x
      



       


(ii) By Simpson’s 1/3 rule,
6

0 6 1 3 5 2 420
[( ) 4( ) 2(

31
1

[(1 0.027) 4(0.5 0.1 0.0385) 2(0.2 0.0588)] 1.3662.
3

dx h
y y y y y y y

x
      



       



(iii) By Simpson’s 3/8 rule,

6

0 6 1 2 4 5 320

3
[( ) 3( ) 2 ]

81
3

[(1 0.027) 3(0.5 0.2 0.0588 0.0385) 2(0.1)] 1.3571
8

dx h
y y y y y y y

x
      



       



(iv) By Weddle’s rule,
6

0 1 2 3 4 5 620

3
[ 5 6 5 ]

101
0.3[1 5(0.5) 0.2 6(0.1) 0.0588 5(0.0385) 0.027] 1.3735

dx h
y y y y y y y

x
      


       



Also 
6 1 6 1

020
tan tan 6 1.4056

1
dx

x
x

   



This shows that the value of the integral found by Weddle’s rule is the 

nearest to the actual value followed by its value given by Simpson’s 1/3 rule.

EXAMPLE 8.11

Evaluate the integral 
21

30 1
x

dx
x

 using Simpson’s 1/3 rule. Compare 
the error with the exact value.

Solution:

Let us divide the interval (0, 1) into 4 equal parts so that h  0.25. 

Taking 
2

3 ,
(1 )

x
y

x



 we have
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x:  0 0.25  0.50 0.75 1.00

y: 0 0.06153 0.22222 0.39560 0.5

y0  y1  y2  y3  y4

By Simpson’s 1/3 rule, we have

              

21

0 4 2 1 330
[( ) 2( ) 4( )]

31
0.25

[(0 0.5) 2(0.22222) 4(0.06153 0.3956)]
3

0.25
[0.5 0.44444 1.82852] 0.23108

3

x h
dx y y y y y

x
    



    

   



Also 
121 3

30 0

1 1
log(1 ) log 2 0.23108

3 31
x

dx x e
x

   



Thus the error  0.23108 – 0.23105  – 0.00003.

EXAMPLE 8.12

Use the Trapezoidal rule to estimate the integral 
2 2

0
ex dx taking the 

number 10 intervals.

Solution:

Let y  ex2 , h  0.2 and n  10.

The values of x and y are as follows:

x: 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

y: 1 1.0408 1.1735 1.4333 1.8964 2.1782 4.2206 7.0993 12.9358 25.5337 54.5981

y0 y1  y2 y3 y4 y5 y6 y7 y8 y9 y10

By the Trapezoidal rule, we have
1 2

0 10 1 2 3 4 5 6 7 8 90
[( ) 2( )]

2
0.2

[(1 54.5981) 2(1.0408 1.1735 1.8964 2.1782
2

4.2206 7.0993 12.9358 25.5337)]

x h
e dx y y y y y y y y y y y          

     

   



Hence 
22

0
17.0621.xe dx
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EXAMPLE 8.13

Use Simpson’s 1/3rd rule to find 
0.6 2

0

xe dx  by taking seven ordinates.

Solution:

Divide the interval (0, 0.6) into six parts each of width h  0.1. The val-

ues of  
2– xy f x e  are given below:

x 0 0.1 0.2 0.3 0.4 0.5 0.6

x2 0 0.01 0.04 0.09 0.16 0.25 0.36

y 1 0.9900 0.9608 0.9139 0.8521 0.7788 0.6977

y0  y1 y2  y3  y4 y5  y6

By Simpson’s 1/3rd rule, we have
2

0 6 1 3 5 2 4

0.6

0

[( ) 4( ) 2( )]
3

0.1
[(1 0.6977) 4(0.99 0.9139 0.7788) 2(0.9608 0.8521)]

3
0.1 0.1

[1.6977 10.7308 3.6258] (16.0543) 0.5351.
3 3

x h
e dx y y y y y y y       

      

    



EXAMPLE 8.14

Compute the value of 
1.4

0.2
(sin log )xx x e dx   using Simpson’s 3/8 

rule.

Solution:

Let y  sin x – loge x  ex and h  0.2, n  6.

The values of y are as given below:

x: 0.2 0.4 0.6 0.8 1.0 1.2 1.4

y: 3.0295 2.7975 2.8976 3.1660 3.5597 4.0698 4.4042

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule, we have

 
1.4

0 6 3 1 2 4 50.2

3
[( ) 2( ) 3( )]

8
h

ydx y y y y y y y      
                       3

(0.2)[7.7336 2(3.1660) 3(13.3247)] 4.053
8
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Hence 
1.4

0.2
(sin log ) 4.053.x xx e e dx  

Obs. Applications of Simpson’s rule. If the various ordinates 
in Section 8.5 represent equispaced cross-sectional areas, then 
Simpson’s rule gives the volume of the solid. As such, Simpson’s 
rule is very useful to civil engineers for calculating the amount 
of earth that must be moved to fill a depression or make a dam. 
Similarly if the ordinates denote velocities at equal intervals 
of time, the Simpson’s rule gives the distance travelled. The 
following Examples illustrate these applications.

EXAMPLE 8.15

The velocity v(km/min) of a moped which starts from rest, is given at 
fixed intervals of time t (min) as follows:

t:  2 4 6 8 10  12  14 16 18 20

v: 10 18 25 29 32 20 11 5 2 0

Estimate approximately the distance covered in twenty minutes.

Solution:

If s (km) be the distance covered in t (min), then 
ds

v
dt


2020
0 0

[ 4.0 2. ],
3t

h
s vdt X E      by Simpson’s rule

Here h  2, v0  0, v1  10, v2  18, v3  25 etc.

  X  v0  v10  0  0  0

 O  v1  v3  v5  v7  v9  10  25  32  11  2  80

 E  v2  v4  v6  v8  18  29  20  5  72

Hence  the  required   distance 20
0

2
(0 4 80 2 72) 309.33km.

3ts       

EXAMPLE 8.16

The velocity v of a particle at distance s from a point on its linear path 
is given by the following table:

s (m): 0 2.5 5.0  7.5 10.0  12.5 15.0 17.5 20.0

v (m/sec): 16 19 21 22 20 17 13 11 9

NOTE
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Estimate the time taken by the particle to traverse the distance of 20 
meter, using Boole’s rule.

Solution:

If t sec be the time taken to traverse a distance s (m) then 
ds

v
dt


or 1
(say),

dr
y

ds v
 

then 
2020

0 0

s
st yds
 

Here  h  2.5 and n  8.

Also 0 1 2 3 4

5 6 7 8

1 1 1 1 1
, , , , ,

16 19 4 22 20
1 1 1 1

, , .
17 13 11 9

y y y y y

y y y y

    

   

 By Boole’s Rules, we have 

2020
0 1 2 3 5 6 7 80 0

2
[7 32 312 14 32 12 32 14 ]

45
2(2.5) 1 1 1 1 1 1

7 32 12 32 14 32
45 16 19 21 22 20 17

1 1 1
12 32 14

3 11 9
1

(12.11776) 1.35
9

s
s

h
t yds y y y y y y y y
         

            
                            

     
            

 



Hence the required time  1.35 sec.

EXAMPLE 8.17

A solid of revolution is formed by rotating about the x-axis, the area 
between the x-axis, the lines x  0 and x  1 and a curve through the points 
with the following co-ordinates:

x: 0.00  0.25  0.50 0.75 1.00

y: 1.0000 0.9896  0.9589  0.9089  0.8415

Estimate the volume of the solid formed using Simpson’s rule.
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Solution:

Here h  0.25, y0  1, y1  0.9896, y2  0.9589 etc.

 Required volume of the solid generated

 

1 2 2 2 2 2 2
0 4 1 3 20

2 2 2 2

[( ) 4( ) 2 ]
3

0.25
[{1 0.8415) } 4{(0.9896) (0.9089) } 2(0.9589) ]

3
0.25 3.1416

[1.7081 7.2216 1.839]
3

0.2618(10.7687) 2.8192.

h
y dx y y y y y      


    


  

 



Exercises 8.2

1. Use trapezoidal rule to evaluate 
1 3

0
x dx  considering five sub-intervals.

2. Evaluate
1

0 1
dx

x applying

  (i) Trapezoidal rule 
 (ii) Simpson’s 1/3 rule
(iii) Simpson’s 3/8 rule.

3. Evaluate 1

20 1
dx

x
  using 

(i) Trapezoidal rule taking h  1/4.
(ii) Simpson’s 1/3rd rule taking h  1/4. 
(iii) Simpson’s 3/8th rule taking h  1/6. 
(iv) Weddle’s rule taking h  1/6.
Hence compute an approximate value of  in each case.

4. Find an approximate value of loge 5 by calculating to four decimal 

places, by Simpson’s 1/3 rule, 5

0 4 5
dx
x  dividing the range into ten 

equal parts.

5. Evaluate 
4

0

xe dx  by Simpson’s rule, given that 

e  2.72, e2  7.39, e3  20.09, e4  54.6

and compare it with the actual value.

6. Find 
6

0 1

xe
dx

x  using Simpson’s 1/3 rule.
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7. Evaluate 
2 2

0
,xe dx  using Simpson’s rule. (Take h  0.25)

8. Evaluate using Simpson’s 1/3 rule,

 (i) 
0

sin ,x dx


  taking eleven ordinates.

(ii) 
/2

0
cos ,d


   taking nine ordinates.

9. Evaluate by Simpson’s 3/8 rule:

  (i) 
9

30 1
dx

x


 (ii) 
/2

0
sin x dx




(iii) 

/2 sin

0

xe dx




 (iv) 2

0
(1 3cos ) ,d


    using six ordinates

10. Given that

x: 4.0 4.2 4.4 4.6 4.8 5.0 5.2

log x: 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487

evaluate 
5.2

4
log xdx  by

(a) Trapezoidal rule

(b) Simpson’s 1/3 rule,

(c) Simpson’s 3/8 rule,

(d) Weddle’s rule.

Also find the error in each case.

11. Use Boole’s five point formula to compute 
/2

0
(sin ) /x dx



 .

12. The table below shows the temperature f (t) as a function of time:

t: 1 2 3 4 5 6 7

f (t): 81 75 80 83 78 70 60

Using Simpson’s 
1
3

 rule to estimate
7

1
( ) .f t dt
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13. A curve is drawn to pass through the points given by the following table:

x: 1 1.5 2 2.5 3 3.5 4

y: 2 2.4 2.7 2.8 3 2.6 2.1
Estimate the area bounded by the curve, x-axis and the lines x  1, x  4.

14. A river is 80 feet wide. The depth d in feet at a distance x feet. from one 
bank is given by the following table:

x: 0 10 20 30 40 50 60 70 80

y: 0 4 7 9 12 15 14 8 3

15. Find approximately the area of the cross-section.
A curve is drawn to pass through the points given by the following table:

x: 1 1.5 2 2.5 3 3.5 4

y: 2 2.4 2.7 2.8 3 2.6 2.1

Using Weddle’s rule, estimate the area bounded by the curve, the x-axis, 
and the lines x  1, x  4.

16. A curve is given by the table:

x: 0 1 2 3 4 5 6

y: 0 2 2.5 2.3 2 1. 7 1. 5

The x-coordinate of the C.G. of the area bounded by the curve, the end 
ordinates, and the x-axis is given by 

6

0
,Ax xydx  where A is the area. 

Find x  by using Simpson’s rule.

17. A body is in the form of a solid of revolution. The diameter D in cms of 
its sections at distances x cm. from one end are given below. Estimate 
the volume of the solid.

x: 0 2.5 5.0 7.5 10.0 12.5 15.0

D: 5 5.5 6.0 6.75 6.25 5.5 4.0

18. The velocity v of a particle at distance s from a point on its path is given 
by the table:

s ft: 0 10 20 30 40 50 60

v ft/sec: 47 58 64 65 61 52 38

Estimate the time taken to travel sixty feet by using Simpson’s 1/3 rule. 
Compare the result with Simpson’s 3/8 rule.
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19. The following table gives the velocity v of a particle at time t:

t (seconds): 0 2 4 6 8 10 12

v (m/sec.): 4 6 16 34 60 94 136

Find the distance moved by the particle in twelve seconds and also the 
acceleration at t  2 sec.

20. A rocket is launched from the ground. Its acceleration is registered 
during the first eighty seconds and is given in the table below. Using 
Simpson’s 1/3 rule, find the velocity of the rocket at t  80 seconds.

t (sec): 0 10 20 30 40 50 60 70 80

f (cm/sec2): 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67

21. A reservoir discharging water through sluices at a depth h below the 
water surface has a surface area A for various values of h as given below:

h (ft.): 10 11 12 13 14

A (sq. ft.):  950 1070 1200 1350 1530

If t denotes time in minutes, the rate of fall of the surface is given by 
dh/dt  – 48 h/A.
Estimate the time taken for the water level to fall from fourteen to ten 
feet above the sluices.

8.6 Errors in Quadrature Formulae

The error in the quadrature formulae is given by

 ( )
b b

a a
E ydx P x dx  

where P(x) is the polynomial representing the function y  f(x), in the in-
terval [a, b].

Error in Trapezoidal rule. Expanding y  f(x) around x  x0 by Taylor’s 
series, we get

                 

2
0

0 0 0 0
( )

( )
2!

x x
y y x x y y

     
 (1)

0 0

0 0

2
0

0 0 0 0

2 3

0 0 0

( )
[ ( ) ]

2!

2! 3!

x h x h

x x

x x
ydx y x x y y dx

h h
y h y y

        

   

  



 (2)
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Also A1  area of the first trapezium in the interval 0 1 0 1
1

[ , ] ( )
2

x x h y y   (3)

Putting x  x0  h and y  y1 in (1), we get 
2

1 0 0 02!
h

y y hy y    

Substituting this value of y1 in (3), we get

 
2

1 0 0 0 0

2 3

0 0 0

1
2 2!

2 2 2!

h
A h y y hy y

h h
hy y y

 
     

 

   






 (4)

 Error in the interval 
1

0
0 1[ , 1]

x

x
x x ydx A   [(2) – (4)]

 
3

3
0 0

1 1
3! 2.2! 12

h
h y y      

i.e., Principal part of the error in 
3

0 1 0[ , ]
12
h

x x y 

Hence the total error 
3

0 1 1[ ]
12 n
h

E y y y 
     

Assuming that ( )y X  is the largest of the n quantities 0 1 1, , ny y y 
   we 

obtain

 
3 2( )

( ) ( )
12 12
nh b a h

E y X y X


     [ nh  b – a ...(5)

Hence the error in the trapezoidal rule is of the order h2.

Error in Simpson’s 1/3 rule. Expanding y = f(x) around x  x0 by Taylor’s  
series, we get (1).

 Over the first doubt strip, we get

2 0

0 0

22 0
0 0 0 0

2 3 4 5

0 0 0 0 0

( )
( )

2!

4 8 16 32
2

2! 3! 4! 5!

x x h

x x

iv

x x
ydx y x x y y dx

h h h h
hy y y y y

        
 

       

  



 (6)

Also A1  area over the first doubt strip by Simpson’s 1/3 rule

 0 1 2
1

( 4 )
3

h y y y    (7)
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Putting x  x0  h and y  y1 in (1), we get

 
2 3

1 0 0 02! 3!
h h

y y hy y y      

Again putting x  x0  2h and y  y2 in (1), we have

 
2 3

2 0 0 0 0
4 8

2
2! 3!
h h

y y hy y y      

Substituting these values of y1 and y2 in (7), we get

 

2

1 0 0 0 0 0

2 3

0 0 0

4
3 2!

4 8
2

2! 3!

h h
A y y hy y y

h h
hy y y

  
       

 

 
       

 





            

3 2 5
2

0 0 0 0 0
4 2 5

2 2
3 3 18

ivh h h
hy h y y y y       

 (8)
 Error in the interval [x0, x2]

 2

0

5
1 0

4 5
5 18

x iv

x
ydx A h y

 
     

    [(6) – (8)]

i.e., Principal part of the error in [x0, x2]

 
5

5
0 0

4 5
15 18 90

iv ivh
h y y

 
   
 

Similarly principal part of the error in 
5

2 4 2[ , ]
90

ivh
x x y  and so on.

Hence the total error 
5

0 2[ 2( 1)]
90

iv iv ivh
E y y y n    

Assuming the yiv(X) is the largest of y0
iv, y2

iv, ..., yiv
2n–2, we get

5 4

0
( )

( ) ( )
90 180

iv ivnh b a h
E y X y X


   [ 2nh  b – a ...(9)]

i.e., the error in Simpson’s 1/3 -rule is of the order h4.

Error in Simpson’s 3/8 rule. Proceeding as above, here the principal part 
of the error in the interval [x0, x3]

 
53

80
ivh

y  (10)
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Error in Boole’s rule. In this case, the principal part of the error in the 
interval

 [x0, x4] 
78

945
ivh

y  (11)

Error in Weddle’s rule. In this case, principle part of the error in the 
interval

 [x0, x6] 
7

0140
h

y iv  (12)

8.7 Romberg’s Method

In Section 8.5, we have derived approximate quadrature formulae with 
the help of finite differences method. Romberg’s method provides a simple 
modification to these quadrature formulae for finding their better approxi-
mations. As an illustration, let us improve upon the value of the integral

 ( ) ,
b

a
I f x dx

by the Trapezoidal rule. If I1, I2 are the values of I with sub-intervals of 
width h1, h2 and E1, E2 their corresponding errors, respectively, then

 
2 2 2

1 2
1 2

( ) ( )
( ), ( )

12 12
b a h b a h

E y X E y X
 

  

Since ( )y X is also the largest value of ( ),y x we can reasonably assume that 

( )y X and ( )y X  are very nearly equal.

 
2 2

1 1 1 1
2 2 2

2 2 12 2 1

or
E h E h
E E Eh h h
 

 
 (1)

Now since  1 1 2 2 ,I I E I E   

  E2 – E1  I1 – I2 (2)

From (1) and (2), we have 

 
2

1
1 1 22 2

2 1

( )
h

E I I
h h

 


Hence  
2 2 2

1 1 2 2 1
1 1 1 1 22 2 2 2

2 1 2 1

( ) . .,
h I h I h

I I E I I I i e I
h h h h


     

 
  (3)

which is a better approximation of I.
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To evaluate I systematically, we take h1  h and 2
1
2

h h

so that (3) gives 
2 2

1 2 2 2 1
2 2

( / 2) 4
3( / 2)

I h I h I I
I

h h
 

 


i.e., 
1

( , / 2) [4 ( / 2) ( )]
3

I h h I h I h   (4)

Now we use the trapezoidal rule several times successively halving h 
and apply (4) to each pair of values as per the following scheme:

I(h)
 I(h, h/2)
I(h/2)   I(h, h/2, h/4)
 I(h/2, h/4)   I(h, h/2, h/4, h/8)
I(h/4)   I(h/2, h/4, h/8)
 I(h/4, h/8)
I(h/8)

The computation is continued until successive values are close to each oth-
er. This method is called Richardson’s deferred approach to the limit and 
its systematic refinement is called Romberg’s method.

EXAMPLE 8.18

Evaluate 
1

0 1
dx

x correct to three decimal places using Romberg’s 

method. Hence find the value of loge 2.

Solution:

Taking h  0.5, 0.25, and 0.125 successively, let us evaluate the given inte-
gral by the Trapezoidal rule.

(i) When h  0.5, the values of y  (1  x)–1 are:

x:  0  0.5  1

y:  1  0.6666  0.5
0.5

(1 0.5 2 0.6666) 0.7083.
2

I     

(ii) When h  0.25, the values of y  (1  x)–1 are:

x: 0 0.25  0.5 0.75 1

y: 1 0.8 0.6666 0.5714 0.5
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0.25
[(1 0.5) 2(0.8 0.666 0.5714)] 0.697

2
I      

(iii) When h  0.125, the values of y  (1  x)–1 are:

x: 0 0.125  0.25 0.375 0.5 0.625 0.75 0.875 1

y: 1 0.8889 0.8 0. 7272 0.6667 0.6153 0.5714 0.5333 0.5


0.125

[(1 0.5) 2(0.8889 0.8 0.7272 0.6667
2

0.6513 0.5714 0.5333)]

I     

  
             0.6941

Using Romberg’s formulae, we obtain

 

1 1
( , / 2) [4 ( / 2) ( )] [4 0.697 0.7083] 0.6932

3 3
1 1

( / 2, / 4) [4 ( / 4) ( / 2)] [4 0.6941 0.697] 0.6931
3 3

1
( , / 2, / 4) [4 ( / 2, / 4) ( , / 2)] 0.6931

3

I h h I h I h

I h h I h I h

I h h h I h h I h h

     

     

  

Hence the value of the integral 
1

0
0.693

1
dx

x


  (i)

Also 
1 1

00
log(1 ) log 2

1
dx

x
x
  

  (ii)

Hence from (i) and (ii), we have

loge 2  0.693.

EXAMPLE 8.19

Use Romberg’s method to compute 1

20 1
dx

x
 correct to four decimal 

places.

Solution:

We take h  0.5, 0.25 and 0.125 successively and evaluate the given 
integral using the Trapezoidal rule.

(i) When h  0.5, the values of y  (1  x2)–1 are

x: 0 0.5 1.0

y: 1 0.8 0.5
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 0.5
[1 2 0.8 0.5) 0.775

2
I    

(ii) When h  0.25, the values of y  (1  x2)–1 are

x: 0 0.25 0.5 0.75 1.0

y: 1 0.9412 0.8 0.64 0.5


0.25

[1 2(0.9412 0.8 0.64) 0.5] 0.7828
2

I     

(iii) When h  0.125, we find that I  0.7848

Thus we have

I(h)  0.7750, I(h/2)  0.7828, I(h/4)  0.7848

Now using (4) above, we obtain
1 1

( , / 2) [4 ( / 2) ( )] (3.1312 0.775) 0.7854
3 3

1 1
( / 2, / 4) [(4 ( / 4) ( / 2)] (3.1392 0.7828) 0.7855

3 2
1 1

( , / 2, / 4) [4 ( / 2, / 4) ( , / 2)] (3.142 0.7854) 0.7855
3 3

I h h I h I h

I h h I h I h

I h h h I h h I h h

    

    

    

 The table of these values is

0.7750
 0.7854
0.7828  0.7855
 0.7855
0.7848

Hence the value of the integral  0.7855.

EXAMPLE 8.20

Evaluate the integral 
0.5

0 sin
x

dx
x

 
 
   using Romberg’s method, correct 

to three decimal places.

Solution:

Taking h  0.25, 0.125, 0.0625 successively, let us evaluate the given 
integral by using Simpson’s 1/3 rule.
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(i) When h  0.25, the values of sin
x

y
x

  are

x: 0 0.25  0.5

y: 1 1.0105 1.0429

y0  y1 y2

 By Simpson’s rule,

 0 2 1
0.25

[( ) 4 ] [(1 1.0429) 1.0105]
3 3
0.5071

h
I y y y     



(ii) When h  0.125, the values of y are

x: 0 0.125 0.25 0.375 0.5

y: 1 1.0026 1.0105 1.1003 1.0429

y0  y1 y2 y3 y4

 By Simpson’s rule
 

0 4 1 3 2[( ) 4( ) 2 ]
3
0.125

[(1 1.0429) 4(1.0026 1.1003) 2(1.0105)]
3

0.5198

h
I y y y y y    

    



(iii) When h  0.0625, the values of y are

x: 0 0.0625 0.125 0.1875 0.25 0.3125 0.1875 0.4375 0.5

y: 1 0.0006 1.0026 1.0059 1.0157 1.0165 1.1003 1.0326 1.0429

y0 y1 y2 y3 y4 y5 y6  y7 y8

 By Simpson’s rule:

0 8 1 3 5 7 2 4 6[( ) 4( ) 2( )]
3
0.0625

[(1 1.0429) 4(1.0006 1.0059 1.0165 1.0326
3

2(1.0026 1.0105 1.1003)]
0.510253

h
I y y y y y y y y y        
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Using Romberg’s formulae, we obtain

 

1
( , ) 4 ( ) 0.5241

2 3 2

1
( , ) 4 0.5070
2 4 3 4 2

1
( . , ) 4 , , 0.5013

2 4 3 2 4 2

h h
I h I I h

h h h h
I I I

h h h h h
I h I I h

  
      

    
          

    
          

Hence 
0.5

0
0.501

sin
x

dx
x

 
 

 

8.8 Euler-Maclaurin Formula

Taking F(x)  f(x), we define the inverse operator –1 as

   F(x)  –1 f(x)  (1)

Now  F(x1) – F(x0)  F(x0)  f(x0)

Similarly,                 F(x2) – F(x1)  f(x1)
                  .....................................

              F(xn) – F(xn–1)  f(xn–1)

Adding all these, we get

    
1

0
0

( ) ( ) ( )
n

n i
i

F x F x f x




   (2)

where x0, x1, ....., xn  are the (n  1) equispaced values of x with differ-
ence h.

From (1), we have
1 1 1( ) ( ) ( 1) ( ) ( 1) ( )hDF x f x E f x e f x        [ E = ehD]

 

12 2 3 3

12 2
1

2 2 4 4
1

3

1 1 ( )
2! 3!

( ) 1 ( )
2! 3!

1
1 ( )

32 12 720

1 1
( ) ( ) ( ) ( )

2 12 720

h D h D
hD f x

hD h D
hD f x

hD h D h D
D f x

h

h h
f x dx f x f x f x

h









  
       
  

 
    

 

 
     

 

     









 (3) 
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Putting x  xn and x  x0 in (3) and then subtracting, we get

 0
0 0

3

0 0

1 1
( ) ( ) ( ) [ ( ) ( )] [ ( )

2 12

( )] [ ( ) ( )]
720

nx

n n nx

n

h
F x F x f x dx f x f x f x

h
h

f x f x f x

    

     




 (4)

 From (2) and (4), we have

         
0

1

0
0

3

0 0

1 1
( ) ( ) [ ( ) ( )] [ ( )

2 12

( )] [ ( ) ( )]
720

n
n

x

i n nx
i

n

h
f x f x dx f x f x f x

h

h
f x f x f x





   

     

 



i.e.,
0

1

0
0

3

0 0

1 1
( ) ( ) [ ( ) ( )] [ ( )

2 12

( )] [ ( ) ( )]
720

n
n

x

i n nx
i

n

h
f x dx f x f x f x f x

h

h
f x f x f x





   

     





                  
0 1 2 1

3

0 ) 0

1
[ ( ) 2 ( ) 2 ( ) 2 ( ) ( )]

2

[ ( ) ( )] [ ( ( )]
12 720

n n

n n

f x f x f x f x f x

h h
f x f x f x f x

     

       





Hence 0

0

_

0 1 2 1

2 4

0 0

[ 2 2 2 ]
2

( ) ( )
12 720

x nh

n nx

n n

h
ydx y y y y y

h h
y y y y

     

       

 



 (5)

which is called the Euler-Maclaurin formula.

Obs. The first term on the right-hand side of (5) represents the 
approximate value of the integral obtained from trapezoidal 
rule and the other terms denote the successive corrections to 
this value. This formula is often used to find the sum of a series 
of the form

y(x0)  y(x0  h)  ...  y(x0  nh).

EXAMPLE 8.21

Using the Euler-Maclaurin formula, find the value of loge 2 from 
1

0 1
dx

x

NOTE
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Solution:

Taking 0
1

, 0, 10, 0.1,
(1 )

y x n h
x

   


we have

2

1
(1 )

y
x




 and 4

6
(1 )

y
x





.

Then the Euler-Maclaurin formula gives
1

0

0.1 1 2 2 2 2
1 2 1 0 1 0.1 1 0.2 1 0.3 1 0.1

dx
x


         

2 2 2 2 2 1
1 0.5 1 0.6 1 0.7 1 0.8 1 0.9 1 1


           

 

2 4

2 2 4 4

(0.1) 1 1 (0.1) 6 6
12 720(1 1) (1 0) (1 0)1 1

0.693773 0.000625 0.000002 0.693149

     
     

     

   

Also 
1 1 2

00
log(1 ) log

1
dx

x e
x
  


Hence loge 2  0.693149 approx.

EXAMPLE 8.22

Apply the Euler-Maclaurin formula to evaluate

 2 2 2 2

1 1 1 1
51 53 55 99
   

Solution:

Taking 2

1
,y

x
 x0  51, h  2, n  24, we have 3 5

2 24
,y y

x x
 

  

Then the Euler-Maclaurin formula gives
99

2 2 2 2 2 251

2 4

3 3 5 5

2 1 2 2 2 1
2 51 53 55 97 99

(2) 2 2 (2) 24 24
12 72099 51 99 51

dx
x

 
       

      
         

 


99

2 2 2 2 251

2 2 3 3 5 5

1 1 1 1 1
251 53 55 99

1 1 1 1 1 1 8 1 1
2 3 3051 99 51 99 51 99

dx
x

    

     
           
     





99

51

1 1
0.000243 + 0.0000022 0.00499

2 x
     approx.
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8.9 Method of Undetermined Coefficients

This method is based on imposing certain conditions on a preassigned 
formula involving certain unknown coefficients and then using these condi-
tions for evaluating these unknown coefficients. Assuming the formula to 
be exact for the polynomials 1, x, ¼, xn respectively and taking yi for y(xi), we 
shall determine the unknown coefficients to derive the formulae. 

Differentiation formulae. We first derive the two-term formula by as-
suming

 y0  a0y0  a1y1 (1)
where the unknown constants a0, a1 are determined by making (1) exact for 
y(x)  1 and x respectively.

So, putting y(x)  1, x successively in (1), we get

0  a0  a1 and 1  a0x0  a1(x0  h)

where  a1  1/h and a0  – 1/h.

Hence  0 1 0
1

( )y y y
h

    (2)

The three-term formula can be derived by taking

 0 –1 –1 0 0 1 1y a y a y a y   
  (3)

where the unknowns a–1, a0, a1 are determined by making (3) exact for y(x) 
 1, x, x2, respectively.

                 0  a–1  a0  a1

                            1  a–1 (x0 – h)  a0x0  a1(x0  h)

and  2x0  a–1 (x0 – h)2  a0x0
2  a1(x0  h)2.

To solve these equations, we shift the origin to x0 i.e., x0  0. As such, 0y
being slope of the tangent to the curve y  f(x) at x  x0 remains unaltered. 
Thus the equations reduce to 

        a–1  a0  a1  0,

 – a–1  a1  1/h and a–1  a1  0,

giving           a–1  – 1/2h, a0  0, a1  1/2h

Hence            0 1 1
1

( ),
2

y y y
h     (4)
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Similarly for second order derivative, taking

 0 –1 –1 0 0 1 1y a y a y a y  
 

and making it exact for y(x)  1, x, x2 and putting x0  0, we get

 0 1 0 12

1
( 2 )y y y y

h     (5)

Integration formulae. The two-term formula is derived by assuming

 
0

0
0 0 1 1

x h

x
ydx a y a y


   (6)

where the unknowns a0, a1 are determined by making (6) exact for
 y(x)  1, x respectively.

So putting y(x)  1, x successively in (6), we get

 

0

0

0

0

0 1

2 2
0 0 1 0 0 0

1

1
( ) [( ) ]

2

x h

x

x h

x

a a dx h

a x a x h x dx x h x





   

      




To solve these, we shift the origin to x0 and take x0  0.

 The above equations reduce to

 0 1a a h   and 1
1

,
2

a h whence 1 0
1 1

,
2 2

a h a h 

Hence 
0

0
0 1( )

2

x h

x

h
ydx y y


   which is trapezoidal rule. (7)

The three-term formula is derived by assuming

 
0

0
1 1 0 0 1 1

x h

x h
ydx a y a y a y



 
    (8)

where the unknowns a–1, a0, a1 are determined by making (8) exact for y(x) 
 1, x, x2 respectively.

So putting y  1, x, x2 successively in (8), we obtain
0

0
1 0 1 1 2

x h

x h
a a a dx h



 
    

0

0

0

0

2 2
1 0 0 0 0 0 0

2 2 2 2 3 3
1 0 0 0 1 0 0 0

1
( ) ( ) [( ) ( ) ]

2
1

( ) ( ) [( ) ( ) ]
3h

x h

x h

x h

x

a x h a x a x h x dx x h x h

a x h a x a x h x dx x h x h
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To solve these equations, we shift the origin to x0 and take x0  0.

 The above equations reduce to

a–1  a0  a1  2h, – a–1  a1  0 and 1 1
2
3

a a h  

Solving these, we get 1 1 0
1 4

,
3 3

a h a a h   

Hence 
0

0
1 0 1( 4 )

3

x h

x h

h
ydx y y y




    which is Simpson’s rule. (9)

8.10 Gaussian Integration

So far the formulae derived for evaluation of ( ) ,
b

a
f x dx required the 

values of the function at equally spaced points of the interval. Gauss derived 
a formula which uses the same number of functional values but with differ-
ent spacing and yields better accuracy. 

Gauss formula is expressed as

1

1 1 2 21
1

( ) ( ) ( ) ( ) ( )
n

n n i i
i

f x dx w f x w f x w f x w f x




       (1)

where wi and xi are called the weights and abscissae, respectively. The ab-
scissae and weights are symmetrical with respect to the middle point of the 
interval. There being 2n unknowns in (1), 2n relations between them are 
necessary so that the formula is exact for all polynomials of degree not ex-
ceeding 2n – 1. Thus we consider

 2 1
0 1 2 2 1( ) n

nf x c c x c x c x 
      (2)

Then (1) gives
1 1 2 1

0 1 2 2 11 1

0 2 4

( ) ( )

2 2
2

3 5

n
nf x dx c c x c x c x dx

c c c


 

    

   

  



 (3)

Putting x  xi in (2), we get
 2 3 2 1

0 1 2 3 2 1( ) n
i i i i n if x c c x c x c x c x 
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Substituting these values on the right hand side of (1), we obtain
1 2 3 2 1

0 1 1 2 1 3 1 2 1 11
( ) 1( n

nf x dx w c c x c x c x c x 


     
  w2(c0  c1 x2  c2 x2

2
  c3 x2

3
  ....  c2n – 1 x2

2n – 1)

  w3(c0  c1 x3  c2 x3
2
  c3 x3

3
  ....  c2n – 1 x3

2n – 1)

  ...............................................................................

  wn(c0  c1 xn  c2 xn2
  c3 xn3

  ....  c2n – 1 xn2n – 1)

  c0 (w1  w2  w3    wn)  c1 (w1x1  w2 x2  w3 x3    wn xn)

  c2 (w1x1
2
  w2 x2

2
  w3 x3

2
    wn xn

2)

  ...................................................................

  c2n – 1 (w1x1
2n – 1  w2 x2

2n – 1  w3 x3
2n – 1    wn xn

2n – 1)  (4)

But the equations (3) and (4) are identical for all values of ci, hence 
comparing coefficients of ci , we obtain 2n equations in 2n unknowns wi and 
xi (i  1, 2, ......, n).

 

1 2 3

1 1 2 2 3 3

2 2 2 2
1 1 2 2 3 3

2 1 2 1 2 1 2 1
1 1 2 2 3 3

 2
0
2
3

.............................................................................

 0

n

n n

n n

n n n n
n n

w w w w

w x w x w x w x

w x w x w x w x

w x w x w x w x   

    


     


     




     








 (5)

The solution of the above equations is extremely complicated. It can 
however, be shown that xi are the zeros of the (n  1)th Legendre polyno-
mial.

Gauss formula for n = 2 is

 
1

1 1 2 21
( ) ( ) ( )f x dx w f x w f x


 

Then the equations (5) become

 

1 2

1 1 2 2

2 2
1 1 2 2

3 3
1 1 2 2

2
0

2
3
0

w w

w x w x

w x w x

w x w x

 

 

 

 
Solving these equations, we obtain

 w1  w2  1, x1  – 1/3 and x2  1/3.
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Thus Gauss formula for n  2 is

 1

1
( ) ( 1 3) (1 / 3)f x dx f f


    (6)

which gives the correct value of the integral of f(x) in the range (– 1, 1) 
for any function up to third order. Equation (6) is also known as Gauss-
Legendre formula.

Gauss formula for n = 3 is

 
1

1

8 5 3 3
( ) (0)

9 9 5 5
f x dx f f f



    
       
    

  (7)

which is exact for polynomials upto degree 5.

The abscissae xi and the weights wi in (1) are tabulated for different 
values of n. The following table lists the abscissae and weights for values of 
n from 2 to 5.

TABLE 8.1 Gauss integration: Abscissae and Weights

N xi  wi

2 – 0.57735 1.0000
0.57735 1.0000

3  – 0.7746 0 0.55555
0.00000 0.88889
0.77460 0.55555

4  – 0.86114 0.34785
– 0.33998 0.65214

0.33998  0.65214
0.86114  0.34785

5 
 
 
 
 

– 0.90618 0.23693
– 0.53847 0.47863

0.00000 0.56889
0.53847 0.47863
0.90618 0.23693

Gauss formula imposes a restriction on the limits of integration to be from 
– 1 to 1.

In general, the limits of the integral ( )
b

a
f x dx  are changed to – 1 to 1 

by means of the transformation

 1 1
( 1) ( )

2 2
x b u b a     (8)
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EXAMPLE 8.23

Evaluate 1

21 1
dx

x 


using Gauss formula for n  2 and n  3.

Solution:

(i) Gauss formula for n  2 is

1

21

1 1
1 3 3

dx
I f f

x

   
      

   
  where 2

1
( )

1
f x

x



2 2

1 1 3 3
1.5.

4 41 ( 1 3) 1 (1 / 3)
I     

  

(ii) Gauss formula for n  3 is

8 5 3 3
(0)

9 9 5 5
I f f f

    
       
    

 where 2

1
( )

1
f x

x



Thus 
8 5 5 5 8 50

(1) 1.5833
9 9 8 8 9 72

I
 

      
 

.

EXAMPLE 8.24

Using the three-point Gaussian quadrature formula, evaluate 1

0 1
dx

xSolution:

We first change the limits (0, 1) to – 1 to 1 by (8) above, so that

 
1 1 1

(1 0) (1 0) ( 1).
2 2 2

x u u    


1 1 1

0 1 1

1
2
11 31 ( 1)
2

dudx du
I

x uu
 

  
  

  

Gauss-formula for n  3 is

              
8 5 3 3

(0)
9 9 5 5

I f f f
   
      
   

 where 
2

1
( )

1
f x

x



Thus 
8 1 5 1 1
9 3 9 (3 / 5) 3 (3 / 5) 3

I
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8 25

0.29629 0.39682 0.6931
27 63

    

Otherwise (using the table):

       1 1 2 2 3 3
1

( ) ( ) ( ) where ( )
3i

i

I w f u w f u w f u f u
u

   


Using the abscissae and weights corresponding to n  3 in the above table, 
we obtain

 

1 1 1
(0.555) (0.8889) (0.555)

3 0.7746 3 0 3 0.7746
1

0.4497 0.5555 (0.8889) 0.2649 0.5555 0.6931.
3

I  
  

     

EXAMPLE 8.25

Evaluate 
22

40

2 1
1 ( 1)
x x

dx
x
 

 
  by the Gaussian three-point formula.

Solution:

Changing the limits of integration 0 to 2 to – 1 to 1 by

       
1 1 2 0 2 0

( ) ( ) 1
2 2 2 2

x b a u b a u u
 

       


2 22 1

4 40 1

2 1 ( 1) 2( 1) 1
1 ( 1) 1 ( 1 )
x x u u

I dx du
x u u

     
 

    
   [ dx  du]

          
21 1

41 1

4 4
( )

( 2) 1
u u

du f u du
u 

 
 

 
 

          
2

1 1 2 2 3 3 4

4 4
( ) ( ) ( ) where  ( )

( 2) 1
i i

i
i

u u
w f u w f u w f u f u

u

 
   

 

Now 4

4 4
(0)

172 1
f  



 

2

4

4

( (3 / 5) 2)3 15016
0.4614

3.25485 [ (3 / 5) 2] 1

(3 / 5) 23 7.6984
0.1277

5 60.2652[ (3 / 5) 2] 1

f

f
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Using the three-point Gaussian formula, we have

 
1

1

8 5 3 3
( ) (0)

9 9 5 5
I f u du f f f



    
        
    



    
8 4 5

[0.4614 0.1277] 0.5365
9 17 9
 

    
 

Solution:

Changing the limits of integration (0.2 to 1.5) to (– 1, 1) by

              
1 1 1 1

( ) ( ) (1.5 0.2) (1.5 0.2)
2 2 2 2
0.65 0.85

x b a u b a u

u

       

 

                
21.5 1 1(0.65 0.85)2

0.2 1 1
0.65 0.65 ( )x uI e dx e du f u du  

 
    

so that f(u)  e−(0.65u  0.85)2

Now   f(0)  e−[0.65(0)  0.85]2 0.4855,
2

2

[0.65( 0.7746) 0.85]

[0.65(0.7746) 0.85]

( 3 / 5) ( 0.7746) 0.8869

( 3 / 5) (0.7746) 0.1601.

f f e

f f e

  

 

    

  

Using the Gauss three-point formula, we have

   
( ) (0)[ ( 3 / 5) ( 3 / 5)]

5 5
(0.4855) [0.8869 0.1601] 0.4316 0.5187 1.0133

9 9

I f u du f f f   

     



Hence 
21.5

0.2
0.65(1.0133) 0.65865.xe dx  

Exercises 8.3

1. Obtain an estimate of the number of sub-intervals that should be cho-
sen so as to guarantee that the error committed in evaluating 

2

1
/dx x by 

trapezoidal rule is less than 0.001.

2. Evaluate 2

20 4
dx

x 
  using the Romberg’s method. Hence obtain an ap-

proximate value of .
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3. Apply Romberg’s method to evaluate 
5.2

4
log ,x dx given that

x: 4.0 4.2 4.4  4.6 4.8 5.0 5.2

loge x: 1.3863 1.4351 1.4816 1.526 1.5686 1.6094 1.6486.

4. Using the Euler-Maclaurin formula, find the value of 
/2

0
sin x dx



 cor-
rect to five decimal places.

5. Using the Euler-Maclaurin formula, prove that

(a) 2

1

( 1)(2 1)
6

n
n n n

x
 

  (b) 

2

3

1

( 1)
2

n
n n

x
 
 
 

6. Apply the Euler-Maclaurin formula, to evaluate

(a) 
1 1 1 1

400 402 404 500
   

(b) 2 2 2 2

1 1 1 1
(201) (203) (205) (299)

   

7. Assuming that 2
0 0 1 1 0 0 1 10

( ) ( ) ( )
h

y x dx h a y a y h b y b y     derive the 

quadrature formula, using the method of undetermined coefficients.

8. Using the Gaussian two-point formula compute

(a) 
2 2

2

xe dx


   (b)

2

3

1

( 1)
2

n
n n

x
 
 
 

9. Using three point Gaussian quadrature formula, evaluate:

(a) 
5

2

1
( )i dx

x    (b)
2

31

1
1

dx
x

 .

10. Evaluate the following, integrals, using the Gauss three-point formula:

(a) 
4 4

2
(1 )x dx   (b)  

5

23

4

2
dx

x


11. Using the four point Gauss formula, compute 
1

0
xdx correct to four 

decimal places.
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8.11 Numerical Double Integration

The double integral 

 ( , )
d b

c a
I f x y dxdy 

is evaluated numerically by two successive integrations in x and y directions 
considering one variable at a time. Repeated application of trapezoidal rule 
(or Simpson’s rule) yields formulae for evaluating I.

Trapezoidal rule. Dividing the interval (a, b) into n equal sub-intervals 
each of length h and the interval (c, d) into m equal sub-intervals each of 
length k, we have:

xi  x0  ih, x0  a, xn  b.

yj  y0  jk, y0  c, ym  d.

Using trapezoidal rule in both directions, we get





0 1 2 1

00 01 02 0

1 2

1

0 1 2
1

[ ( , ) ( , ) 2 ( , ) ( , ) ( , )}]
2

[( ) 2( , 1)
4

( 0 ) 2( , 1)

2 ( ) 2( , 1)}]

d

n nc

om

n nm n n

n

i im i i
i

h
I f x y f x y f x y f x y f x y dy

hk
f f f f f m

f f f f fn m

f f f f fi m







     

      

      

      













where fij  f(xi, yj).

Simpson’s rule. We divide the interval (a, b) into 2n equal sub-intervals 
each of length h and the interval (c, d) into 2m equal sub-intervals each of 
length k. Then applying Simpson’s rule in both directions, we get

1 1 1

1 1 1
1 1

1, 1 1 1 1 1 , , 1

1 1 1 1, 1

( , ) [ ( , ) 4 ( , ) ( , )]
3

[( 4 , , ) 4( , 4 )
9

( , 4 , )]

j i j

j i j

y x y

i i iy x y

i j i i j i j i j i j

i j i i j

h
f x y dxdy f x y f x y f x y dy

hk
f f j f f f f

f f j f

  

  
 

      

    

  

     

  

  

Adding all such intervals, we obtain the value of I.
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EXAMPLE 8.27

Using trapezoidal rule, evaluate  taking four sub-inter-
vals.

Solution:

Taking h  k  0.25 so that m  n  4, we obtain

 

(1,1) (1,2) (1,1.25) (1,1.75)

(2,1) (2,2) (2,1.25) (2,1.5)

(1.25,1) (1.25,2) 1.25,1.25) 1.25,1.5) (1.25,1.75)

(1.5,1) (1.5,2) (1.5,1.25) (1.5,1.5

1
[ 2( (1,1.5) )

64
2( (2,1.75)

2{ 2 ( ( )

2(

I f f f f f

f f f f f

f f f f f

f f f f

    

    

    

    ) (1.5,1.75)

(1.75,1) (1.75,2) (1.75,1.25) (1.75,1.5) (1.75,1.75)

)

2( )}]

0.3407

f

f f f f f



    



EXAMPLE 8.28

Apply Simpson’s rule to evaluate the integral

 
2.6 4.4

2 4

dxdy
I

xy
 

Solution:

Taking h  0.2 and k  0.3 so that m  n  2, we get

 

[ (4,2) 4 (4,2.3) (4,2.6)
91

4{ (4.2,2) 4 (4.2,2.3) (4.2,2.6)}
(4.4,2) 4 (4.4,2.3) (4.4,2.6)]

0.06
[0.6559 4(0.6246) 0.5962]

9
0.02

3.7505 0.025
3

hk
I f f f

f f f

f f f

  

  

  

  

  

Exercises 8.4 

1. Evaluate 
1 1

0 0

yxe dxdy  using the Trapezoidal rule (h  k  0.5).

2. Apply the Trapezoidal rule to evaluate

(a) 
5 5

2 21 1
,

)

dxdy

x y
   taking two sub-intervals.
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(b) 
1 2

2 20 1

2
,

(1 )(1 )

xydxdy

x y 
   taking h  k  0.25.

3. Evaluate 
2 2

0 0
( , )f x y dxdy  the Trapezoidal rule for the following data:

y/x  0  0.5 1  1.5 2

0  2  3  4  5  5

1  3  4  6 9  11

2  4 6  8 11  14

4. Using the Trapezoidal and Simpson’s rules, evaluate
1 1

0 0

x ye dxdy   taking two sub-intervals.

5. Using Simpson’s rule, evaluate 

(a) 
2.8 3.2

1 2

dxdy
x y   (b) 

1 1

0 0
,

1
dxdy

x y   taking h  k  0.5.

8.12 Objective Type of Questions

Exercises 8.5

Select the correct answer or fill up the blanks in the following questions:

1. The value of 1

0 1
dx

x by Simpson’s rule is

(a) 0.96315  (b) 0.63915

(c) 0.69315  (d) 0.69351.

2. Using forward differences, the formula for f (a)  ....... .

3. In application of Simpson’s 1/3rd rule, the interval h for closer approxi-
mation should be ...... .

4. f(x) is given by

x: 0 0.5 1

f(x): 1 0.8 0.5

then using Trapezoidal rule, the value of 
1

0
( )f x dx is...... .
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5. If   
 x: 0 0.5 1 1.5 2

f(x):  0 0.25 1 2.25 4,
 

then the value of 
2

0
( )f x dx by Simpson’s 1/3rd rule is .... .

6. Simpson’s 3/8 rule states that ..... .

7. For the data:

t: 3 6 9 12

y(t): – 1 1 2 3

the value of 
12

3
( )y t dt when computed by Simpson’s 1/3 rule is

(a) 15   (b) 10  (c) 0   (d) 5.

8. While evaluating a definite integral by Trapezoidal rule, the accuracy 
can be increased by taking ..... .

9. The value of 
1

20 1
dx

x
 by Simpson’s 1/3 rule (taking n  1/4) is ..... .

10. For the data:

x: 2 4 6 8

f (x): 3 5 6 7,
8

2
( )f x dx  when found by the Trapezoidal rule is

(a) 18   (b) 25  (c) 16   (d) 32.

11. Given f00, f01, f02, f10, f11, f12, f20, f21, f22; then the Trapezoidal rule for evalu-

ating 
2 2

0 0

( , )
x y

x y
I f x y dxdy   is

12. Gaussian two-point quadrature formula states that ....... .

13. The expression for 
0x x

dy
dx 

 
 
 

using backward differences is ..... .

14. The number of strips required in Weddle’s rule is ...... .

15. The error involved in Simpson’s 1/3 rule is
3

( ) ( )
12
h

a f X  
5

( ) ( )
90

ivh
b f X  

53
( ) ( )

80
ivh

c f X  
78

( ) ( )
345

vih
d f X
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16. The expression for Romberg integration is I  ......

17. The number of strips required in Simpson’s 3/8 rule is a multiple of
(a) 1  (b) 2   (c) 3    (d) 6.

18. Add two terms to the Euler–Maclaurin formula

 
0

0
0 1 2 1( 2 2 2 )

2

x nh

n nx

h
ydx y y y y y



        

19. By the Gauss three-point formula,  
1

1
( )f x dx




20. The order of error in the Trapezoidal rule and Simpson’s 1/3 rule is ..... 
and ....., respectively

21. If 0 1 2 3 4
16 4 16 1

1, , , ,
17 5 25 2

y y y y y      and 
1
4

h then using the Trap-

ezoidal rule,
4

0
ydx  .

22. The total error E in Trapezoidal rule  ...... .

23. Using Simpson’s 1/3 rule, 
1

0

dx
x
  (taking n  4)

If y0  1, y1  0.5, y2  0.2, y3  0.1, y4  0.06, y5  0.04 and y6  0.03, then 
6

0
ydx

 by Simpson’s 3/8 rule  .......

24. If f (0)  1, f (1)  2.7, f (2)  7.4, f (3)  20.1, f (4)  54.6 and h  1, then 
4

0
( )f x dx by Simpson’s 1/3 rule  ..... .

25. Simpson’s 1/3 rule and direct integration give the same result if ...... .

26. Whenever the Trapezoidal rule is applicable, Simpson’s 1/3 rule can also 
be applied. (True or False)



C H A P T E R9
DIFFERENCE EQUATIONS

Chapter Objectives

 Introduction
 Definitions
 Formation of difference equations 
 Linear difference equations
 Rules for finding the complementary function 
 Rules for finding the particular integral
 Difference equations reducible to linear form
 Simultaneous difference equations with constant coefficients
 Application to deflection of a loaded string 
 Objective type of questions

9.1 Introduction

Difference calculus also forms the basis of Difference equa-
tions. These equations arise in all situations in which sequential re-
lation exists at various discrete values of the independent variable. 
The need to work with discrete functions arises because there are 
physical phenomena which are inherently of a discrete nature. In 
control engineering, it often happens that the input is in the form of 
discrete pulses of short duration. The radar tracking devices receive 
such discrete pulses from the target which is being tracked. As such 
difference equations arise in the study of electrical networks, in the 
theory of probability, in statistical problems, and many other fields.
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Just as the subject of Differential equations grew out of Differential 
calculus to become one of the most powerful instruments in the hands of a 
practical mathematician when dealing with continuous processes in nature, 
so the subject of Difference equations is forcing its way to the forefront for 
the treatment of discrete processes. Thus the difference equations may be 
thought of as the discrete counterparts of the differential equations.

9.2 Definition

A difference equation is a relation between the differences of an un-
known function at one or more general values of the argument.

Thus                y(n1)  y(n)  2  (1)

and  y(n1)  2y(n–1)  1  (2)

are difference equations.

An alternative way of writing a difference equation is as under:

Since y(n1)  y(n2) – y(n1), therefore (1) may be written as

 y(n2) – y(n1)  y(n)  2  (3)
Also since, 2y(n–1)  y(n1) – 2y(n)  y(n–1), therefore (2) takes the form:

  y(n2) – 2y(n)  y(n–1)  1 (4)
Quite often, difference equations are met under the name of recur-

rence relations.

Order of a difference equation is the difference between the largest and 
the smallest arguments occurring in the difference equation divided by the 
unit of increment. 

Thus (3) above is of the second order, for

 
largest argument smallest argument ( 2)

2,
unit of increment 1

n n 
 

and (4) is of the third order, for 
( 2) ( 1)

3
1

n n  
 .

Obs. While finding the order of a difference equation, it must 
always be expressed in a form free of s, for the highest power 
of  does not give order of the difference equation.

NOTE
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Solution of a difference equation is an expression for y(n) which satisfies 
the given difference equation.

The general solution of a difference equation is that in which the num-
ber of arbitrary constants is equal to the order of the difference equation.

A particular solution (or particular integral) is that solution which is 
obtained from the general solution by giving particular values to the con-
stants.

9.3 Formation of Difference Equations

The following examples illustrate the way in which difference equations 
arise and are formed.

EXAMPLE 9.1

Form the difference equation corresponding to the family of curves

(1) y  ax  bx2  (2) yn  a sin n  b cos n (i)

Solution:

(i) We have y  a (x)  b(x2)  a (x  1 – x)  b[(x  1)2 – x2]

                          a  b(2x  1)  (ii)

and                   2y  2b[(x  1) – x]  2b (iii)

To eliminate a and b, we have from (iii), 21
2

b y 

and from (ii), 21
(2 1) (2 1)

2
a y b x y y x      

Substituting these values of a and b in (i), we get

 2 21 1
[ .(2 1) 2 .

2 2
y y y x x y x      

or                            2 2( ) 2 2 0x x y x y y     

This is the desired difference equation which may equally well be writ-
ten in terms of E as

 (x2  x)yx2 – (2x2  4x)yx1  (x2  3x  2)yx  0
(ii)                   yn  a sin n  b cos n

               yn  1  a sin (n  1)  b cos (n  1) 

and                          yn  2  a sin(n  2)   b cos (n  2) 
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Thus yn  2  yn  a[sin (n  2)   sin n]  b[cos (n  2)   cos n]

 2a sin (n  1)  cos   2b cos (n  1)  cos 

 2cos  [a sin (n  1)   b cos (n  1) ]

 2 cos  (yn  1)

Hence yn  2 – 2 yn  1 cos   yn  0.

EXAMPLE 9.2

From yn  A2n  B(– 3)n, derive a difference equation by eliminating 
the constants.

Solution:

We have yn  A.2n  B(– 3)n, yn1  2A.2n – 3B(– 3)n

and            yn 2  4A.2n  9B(– 3)n.

Eliminating A and B, we get

 1

2

1 1
2 3 0
4 9

n

n

n

y

y

y




   or yn2  yn1 – 6yn  0

which is the desired difference equation.

EXAMPLE 9.3

Show that n circles drawn in a plane so that each circle intersects all the 
others and no three circles meet in a point, divide the plane into n2 – n  2 
parts.

Solution:

Let yn denote the number of subregions into which the entire plane is 
divided by n circles. When (n  1)th circle is drawn to intersect each of the 
previous n circles, 2n more subregions are added to yn subregions.

i.e.,  yn  1  yn  2n
 The diffference equation satisfied by yn is

yn  1 – yn  2n  i.e.,  yn  2[n]1
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2

1 1 [ ]
2 [ ] 2. ( 1)

2n
n

y n c n n c      

Obviously when n  1, yn  2

Putting n  1 in (i), we get 2  1 (1 – 1)  c i.e., c  2.

Hence yn  n(n – 1)  2.

Exercises 9.1

1. Write the difference equation 3yx  2yx  yx  yx  0 in the subscript 
notation.

2. Assuming 
2

0 1 2
log(1 )

,
1

n
n

z
y y z y z y z

z


    


  find the difference 

equations satisfied by yn.

3. Form a difference equation by eliminating arbitrary constant from 
un  a2n  1.

4. Find the difference equation satisfied by

(i) y  a/x  b  (ii) y  ax2 – bx. (iii) ( 2) sin cos
4 4

n
n

n n
y a b

  
  

 

5. Derive the difference equations in each of the following cases:
(i) yn  A.3n  B.5n.  (ii) yx  (A  Bx)2x.

6. Form the difference equations generated by 
(i) yx  ax  b2x  (ii) yn  a2n  b(– 2)n

(iii) yx  a2x  b3x  c.

7. Show that n straight lines, no two of which are parallel and no three of 

which meet in a point, divide the plane into 21
( 2)

2
n n   parts.

9.4 Linear Difference Equations

Def. A linear difference equation is that in which yn+1, yn+2, etc. occur to 
the first degree only and are not multiplied together.

A linear difference equation with constant coefficients is of the 
form

 yn+r  a1yn+r–1  a1yn+r–2  aryn  f(n)  (1)
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where a1, a2,, ar are constants.

Now we shall deal with linear difference equations with constant coef-
ficients only. Their properties are analogous to those of linear differential 
equations with constant co-efficients. 

Elementary properties. If u1(n), u2(n),, ur(n) are r independent solu-
tions of the equation

 yn+r  a1yn+r–1
 aryn  0 (2)

then its complete solution is Un  c1u1(n)  c2u2(n)  crur(n)

where c1, c2,, cr are arbitrary constants.

If Vn is a particular solution of (1), then the complete solution of (1) is 
yn  Un  Vn.

The part Un is called the complementary function (C.F.) and the 
part Vn is called the particular integral (P.I.) of (1).

Thus the complete solution (C.S.) of (1) is yn  C.F.  P.I.

9.5 Rules for Finding the Complementary Function

(i.e., rules to solve a linear difference equation with constant coefficients 
having right hand side zero)

1. To begin with, consider the first order linear equation yn1 – yn  0, 
where  is a constant.

Rewriting it as 1
1 0,n n

n
n

y y
  


 we have 0,n

n

y 
 
 

 which gives yn/n  
c, a constant.

Thus the solution of (E – ) yn  0 is yn  c.n.

2. Now consider the second order linear equation yn2  ayn1  byn  0 
which in symbolic form is

 (E2  aE  b)yn  0 (1)
Its symbolic co-efficient equated to zero i.e., E2  aE  b  0

is called the auxiliary equation. Let its roots be 1, 2.

Case I. If these roots are real and distinct, then (1) is equivalent to

 (E – 1)(E – 2)yn  0  (2)
or                                    (E – 2)(E – 1)yn  0  (3)
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If yn satisfies the subsidiary equation (E – 2)yn  0, then it will also 
satisfy (3).

Similarly, if yn satisfies the subsidiary equation (E – 2)yn  0, then it will 
also satisfy (2).

 It follows that we can derive two independent solutions of (1), by 
solving the two subsidiary equations

 (E – 1)yn  0 and (E – 2)yn  0
Their solutions are respectively, yn  c1(1)

n and yn  c2(2)
n

where c1, c2 are arbitrary constants.

Thus the general solution of (1) is yn  c1(1)n  c2(2)n.

Case II. If the roots are real and equal (i.e., 1  2), then (2) becomes

 (E – 1)
2yn  0  (4)

Let                                        yn  (1)
nzn,

where zn is a new dependent variable. Then (4) takes the form

 (1)
n2zn2 – 21(1)

n1zn1  1
2. (1)

nzn  0

or  zn2 – 2zn1  zn  0  i.e., 2zn  0.

  zn  c1  c2n, where c1, c2 are arbitrary constants.

Thus the solution of (1) becomes yn  (c1  c2n)(1)n.

Case III. If the roots are imaginary, (i.e. 1    i, 2   – i), then 
the solution of (1)

is  yn  c1(  i)n  c2( – i)n  [Put   r cos  and   r sin ]

 rn[c1(cos n  i sin n)  c2 (cos n – i sin n)]

 rn[A1 cos n  A2 sin n]

where A1, A2 are arbitrary constants and 2 2 1( ),  tan ( / ).r       

(3) In general, to solve the equation yn+r  a1yn+r–1  a2yn+r–2    aryn  
0 where a’s are constants:

  (i)  Write the equation in the symbolic form (Er  a1Er–1  ar)yn  0.

 (ii)  Write down the auxiliary equation i.e., Er  a1Er–1 ar  0 and 
solve it for E.



404 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

(iii) Write the solution as follows:

S.No. Roots of A.E. Solution, i.e. C.F.

1. 1, 2, 3,(real and distinct roots) c1(1)
n  c2(2)

n  c3(3)
n 

2. 1, 1, 3,(2 real and equal roots) (c1  c2n)(1)
n  c3(3)

n 

3. 1, 1, 1,(3 real and equal roots) (c1  c2n  c3n2)(y1)
n 

4.   i,  – i,(a pair of imaginary 
roots) 

rn(c1 cos n  c2 sin n)
where r  (2  2)
and   tan–1 (/).

EXAMPLE 9.4

Solve the difference equation un+3 – 2un+2 – 5un+1  6un  0.

Solution:

Given equation in symbolic form is (E3 – 2E2 – 5E  6)un  0

 Its auxiliary equation is E3 – 2E2 – 5E  6  0

or                              (E – 1)(E  2)(E – 3)  0.   E  1, – 2, 3.

Thus the complete solution is un  c1(1)n  c2(– 2)n  c3(3)n.

EXAMPLE 9.5

Solve un+2 – 2un+1  un  0.

Solution:

Given difference equation in symbolic form is (E2 – 2E  1)un  0.

 Its auxiliary equation is E2 – 2E  1  0

or (E – 1)2  0.       E  1, 1

Thus the required solution is un  (c1  c2n)(1)n, i.e., un  c1  c2n.

EXAMPLE 9.6

Solve yn+1 – 2yn cos   yn–1  0.

Solution: 

This is a second order difference equation in yn–1; which in symbolic 
form is

 (E2 – 2E cos   1) yn  0.
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The auxiliary equation is E2 – 2E cos   1  0

 
22cos (4cos 4)

cos sin .
4

E i
 

   

Thus, the solution is yn–1  (1)n–1[c1 cos (n – 1)   c2 sin (n – 1)]

or  yn  c1 cos n  c2 sin n.

EXAMPLE 9.7

The integers 0, 1, 1, 2, 3, 5, 8, 13, 21,are said to form a Fibonacci 
sequence. Form the Fibonacci difference equation and solve it.

Solution:

In this sequence, each number beyond the second, is the sum of its two 
previous numbers. If yn be the nth number then yn  yn–1  yn–2 for n > 2.

or  yn2 – yn1 – yn  0 (for n > 0)

or  (E2 – E – 1)yn  0 is the difference equation.

Its A.E. is E2 – E – 1  0 which gives 
1

(1 5).
2

E 

Thus the solution is 1 2
1 5 1 5

,
2 2

n n

ny c c
    
    
   

for n > 0

When n  1, y1  0

   1 2
1 5 1 5

0
2 2

c c
    
    
   

 (i)

When n  2, y2  1

   
2

1 2
1 5 1 5

1
2 2

c c
    
    
   

 (ii)

Solving (i) and (ii), we get

 1 2
5 5 5 5

and
10 10

c c
 

 

Hence the complete solution is

 
5 5 1 5 5 5 1 5

10 2 10 2

n

ny
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Exercises 9.2

Solve the following difference equations:

1. 2 14 4 0,x x xu u U     given u0  1, u1  0.

2. 2 1 2 0.n n ny y y   

3. 2 2 0n n nu u u     .

4. 2( 3 2) 0ny   

5. 4yn – yn2  0 given that y0  0, y1  2.

6. uk3 – 3uk2  4uk  0.

7. f(x  3) – 3 f(x  1) – 2 f(x)  0.

8. un3 – 3un1  2un  0, given u1  0, u2  8 and u3  – 2.

9. (E3 – 5E2  8E – 4)yn  0, given that y0  3, y1  2, y4  22.

10. un1 – 2un  2un–1  0. 

11. ym3  16ym–1  0.
[HINT. E4  – 16  16 [cos (2n  1)  i sin (2n  1)]; use De Moivre’s 
theorem.]

12. Show that the difference equation Im1 – (2  r0/r) Im  Im–1  0 has the 
solution Im  I0 sinh (n – m)/sinh (n – 1), if I  I0 and In  0,  being  

2 sinh–1 1/2
0

1
( / )

2
r r .

13. A series of values of yn satisfy the relation yn2  ayn1  byn  0. Given 
that y0  0, y1  1, y2  y3  2. Show that yn  2n/2 sin n/4.

14. A particle is moving in a horizontal direction. In each second, it travels 
a distance which is twice the distance moved in the previous second. If 
the distance moved in the rth second is xr and x0  3, x1  4, then show 
that xr  2n  2.

15. A plant is such that each of its seeds when one year old produces eight-
fold and produces eighteen-fold when two years old or more. A seed is 
planted and as soon as a new seed is produced it is planted. Taking yn to 
be the number of seeds produced at the end of the nth year, show that 
yn1  8yn  18 (y1  y2  yn–1).
Hence show that yn2 – 9yn1 – 10yn  0 and find yn. 
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9.6 Rules for Finding the Particular Integral

Consider the equation yn+r  a1yn+r–1  aryn  f(n)

which in symbolic form is (E)yn  f(n) (1)

where (E)  Er  a1E
r–1 ...  ar

Then the particular integral is given by 
1

P.I ( )
( )

f n
E




Case I. When f(n)  an  (Power function)

 

1
P.I , put

( )
1

,provided ( ) 0.
( )

n

n

a E a
E

a a
a

 


  


If (a)  0, then for the equation

  (i) 11
( ) P.In n n

nE a y a a na
E a

   


 (ii) 2 2
2

1 ( 1)
( ) . .

2!( )
n n n

n
n n

E a y a P I a a
E a


   



(iii) 3 3
3

1 ( 1)( 2)
( ) P.I

3!( )
n n n nn n n

E a y a a a
E a

 
   


and so on.

EXAMPLE 9.8

Solve yn2 – 4yn+1  3yn  5n.

Solution: 

Given equation in symbolic form is (E2 – 4E  3)yn  5n

 The auxiliary equation is E2 – 4E  3  0

or (E – 1)(E – 3)  0        E  1, 3

 C.F.  c1(1)n  c2(3)n  c1  c2.3
n

and 2

1
P.I 5

4 3
n

E E


 
 [Put E  5]

                                 
1 1

5 5
25 4.5 3 8

n n  
 

Thus the complete solution is yn  c1  c2.3
n  5n/8.
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EXAMPLE 9.9

Solve un+2 – 4un+1  4un  2n.

Solution: 

Given equation in symbolic form is (E2 – 4E  4)un  2n.

The auxiliary equation is E2 – 4E  4  0.    E  2, 2.

       C.F.  (c1  c2n)2n

 2 3
2

1 ( 1)
P.I 2 2 ( 1)2

2!( 2)
n n nn n

n n
E

 
     


.

Hence the complete solution is un  (c1  c2n) 2n  n(n – 1) 2n–3.

Case II. (1) When f(n)  sin kn.  (trigonometric function)

 1 1 1 1 1
. sin

( ) ( ) 2 2 ( ) ( )

ikn ikn
n ne e

P I kn a b
E E i i E E

   
           

where a  eik and b  e–ik.

Now proceed as in case I.

(2) When f(n)  cos kn

 

1 1
P.I. cos

( ) ( ) 2

ikn ikne e
kn

E E

 
  
  

          
1 1 1
2 ( ) ( )

n na b
E E

 
  
   

as before.

Now proceed as in case I

EXAMPLE 9.10

Solve yn+2 – 2 cos .yn+1  yn  cos n.

Solution:

Given equation in symbolic form is (E2 – 2 cos . E  1) yn  cos n

The auxiliary equation is E2 – 2 cos . E  1  0.


22cos (4cos 4)

cos sin .
2

E i
 

   

  C.F.  (1)n [c1 cos n  c2 sin n], i.e., c1 cos n  c2 sin n.
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             2

1
P.I cos

2 cos 1
n

E E
 

 

                   2

1
2( ) 1

i n i n

i i

e e
E E e e

  

  

 
 
   

 

( 1) ( 1)

1 1 1
2 ( )( ) ( )( )

[Put ] [Put ]

1 1 1 1 1
2 ( )

1 1 1
4 sin

1
[ ]

4 sin

2si

i n i n
i i i i

i i

i n i n
i i i i i i

i n i n
i i

ia n i n

e e
E e E e E e E e

E e E e

e e
E e e e E e e e

e e
i E e E e

n e n e
i

n

  
     

  

  
        

  
  

   

 
  
    

 

 
    
    

 
     

   



( 1) ( 1) sin( 1)

n 2 2sin

i n i ne e n n
i

       
 

  

Hence the complete solution is

          
1 2

sin( 1)
cos sin

2sinn
n n

y c n c n


    


.

Case III. When f(n)  np.  (Polynomial function)

 
1 1

P.I
( ) (1 )

p pn n
E

 
  

1. Expand [(1  )]–1 in ascending powers of  by the binomial theorem 
as far as the term in p.

2. Express np in the factorial form and operate on it with each term of the 
expansion.

EXAMPLE 9.11

Solve yn+2 – 4yn  n2  n – 1.

Solution: Given equation is (E2 – 4)yn  n2  n – 1.

The auxiliary equation is E2 – 4  0,  E   ± 2.
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 1 2C.F. (2) ( 2)n nc c  

  2
2 2

1 1
. ( 1) [ ( 1) 2 1]

4 (1 ) 4
P I n n n n n

E
      

  
12

2 2
2

22 2
2

2 2

2

1 1 2
([ ] 2[ ] 1) 1 {[ ] 2[ ] 1}

3 3 32 3

1 2 2
1 {[ ] 2[ ] 1}

3 3 3 3 3

1 2 7
[1 ]{[ ] 2[ ] 1}

3 3 9
1 2 7 17

{[ ] 2[ ] 1 (2[ ] 2
3 3 9 27

n n n n

n n

n n

n n n n

  
         

     

                 
     

      

     





Hence the complete solution is 
2

1 2
7 17

2 ( 2) .
3 9 27

n n
n

n n
y c c     

Case IV. When f(n)  an F(n), F(n) being a polynomial of finite degree 
in n.

 
1 1

P.I= ( ) ( ).
( ) ( )

n na F n a F n
E aE

 
 

Now F(n) being a polynomial in n, proceed as in case III.

EXAMPLE 9.12

Solve yn+2 – 2yn1  yn  n2.2n.

Solution: 

Given equation is (E2 – 2E  1)yn  n2.2n.

Its    C.F.  c1  c2n

and  2 2 2
2 2 2

2 2 2

2

2 2

1 1 1
. 2 . 2 2

( 1) (2 1) (1 2 )

2 (1 2 ) { ( 1) } 2 (1 4 12 )([ ] [ ]

2 {[ ] [ ] 4(2[ ] 1) 12 2}

2 ([ ] 7[ ] 20) 2 ( 8 20).

n n n

n n

n

n n

P I n n n
E E

n n n n n

n n n

n n n n



  
   

          

     

     



Hence the complete solution is yn  c1  c2n  2n(n2 – 8n  20).
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Exercises 9.3

Solve the following difference equations:

1. yn2 – 5yn+1 – 6yn  4n, y0  0, y1  1. 

2. yn+2  6yn+1  9yn  2n, y0  y1  0. 

3. yp3 – 3yp2  3yp1 – yp  1. 

4. (E2 – 4E  3)y  3x. 

5. ux2 – 7ux1  10ux  12.4x.

6. yx2 – 4yx1  4yx  3.2x  5.4x. 

7. un+2 – un  cos n/2.

8. yp2 – (2 cos 1
2

)yp1  yp  sin p/2.

9. yn+2 – 2yn+1  4yn  6, given that y0  0 and y1  2.

10. (E2 – 4)yx  x2 – 1.

11. yn3  yn  n2  1, y0  y1  y2  0.

12. yn3 – 5yn+2  3yn+1  9yn  2n  3n. 

13. (4E2 – 4E  1) y  2n  2–n. 

14. yn+2  5yn+1  6yn  n  2n. 

15. ux2  6ux1  9ux  x2x  3x  7. 

16. yn3  8yn  (2n  3) 2n.

17. un+2 – 4un+1  4un  n22n.

18. (E2 – 5E  6) yk  4k(k2 – k  5).

19. 2( 2 4) 2 6cos 2 3 sin
3 3

n
n

n n
E E y

  
    
 

20. A beam of length l, supported at n points carries a uniform load w per 
unit length The bending moments M1, M2... Mn at the supports satisfy 
the Clapeyron’s equation:
   2

2 1
1

4 .
2r r rM M M wl   
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21. If a beam weighing 30 kg is supported at its ends and at two other sup-
ports dividing the beam into three equal parts of 1 meter length, show 
that the bending moment at each of the two middle supports is 1 kg 
meter.

9.7 Difference Equations Reducible to Linear Form

At times non-linear difference equations can be reduced to the linear 
form by a suitable substitution. We shall consider the following types of 
such equations:

I. Homogeneous equation of the type F{yx1/yx, x}  0.

Putting yx1/yx  ux, this equation takes the linear form F(ux, x)  0.

EXAMPLE 9.13

Solve yx1
2 – 3yx+1 yx  2yx2  0.

Solution:

Dividing throughout by yx
2, it becomes 

2
1 13 2 0x x

x x

y y
y y
 

   
     
   

Putting yx1/yx  ux, we get ux
2 – 3ux  2  0

or Case I. When ux  1 i.e., yx1 – yx  0.

Its A.E. is E – 1  0 or E  1.

 Solution is yx  c1.(1)x  c1.

Case II. When ux  2 i.e., yx1 – 2yx  0.

Its A.E. is E – 2  0 or E  2.

 Solution is yx  c2(2)x.

II. Equation of the type p(x) yxyx+1  q(x)yx+1  r(x)yx  0

Dividing throughout by yx yx1, it reduces to 
1

( ) ( )
( ) 0

x x

q x r x
p x

y y 

  

Putting 1/yx  ux, we get p(x)  q(x) ux  r(x) ux1  0

which is a linear equation.
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EXAMPLE 9.14

Solve yx+1 – yx  xyx+1 yx  0 given y1  2.

Solution:

Dividing throughout by yxyx1, the given equation becomes

 
1

1 1

x x

x
y y

 

Putting 1/yx  ux, we get ux1 – ux  x where 1 1
1

  as 2
2

u y  .

or             1 2
1 or [ ] [ ] / 2x xu x u x x c    

But                      u1  1/2.      c1  1/2.

Thus               2

1 1 1 2
( 1) . .

2 2 1x x
x

u x x i e y
u x x

    
 

III. Equation of the type yxyx+1  p(x) yx+1  q(x) yx  r(x).

We have yx1 [yx  p(x)]  q(x) yx  r(x)  (1)

Putting yx  p(x)  ux1/ux or yx  (ux1/ux) – p(x), (1) reduces to

2 1 1

1
( 1) ( ) ( ) ( )x x x

x x x

u u u
p x q x p x r x

u u u
  



   
       
   

or  ux2  [q(x) – p(x  1)]ux1 – [p(x) q(x)  r(x)]ux  0

which is a linear equation.

EXAMPLE 9.15

Solve yx+1 yx  (x  2)yx+1  xyx  x2  2x  2  0.

Solution:

We have yx1 [yx  x  2]  xyx  – x2 – 2x – 2

Putting 1 ( 2)x
x

x

u
y x

u
  ,

it reduces to 2
2 12  or 3 2 0.x

x x x
x

u
u u u

u


    

Its A.E. is E2 – 3E  2  0,     E  1, 2.

Thus the solution is ux  c1  c2 2
x.

Hence the solution of the given equation is 
1

1 2

1 2

2
2

2

x

x x

c c
y x

c c


  


.
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Exercises 9.4

Solve the following difference equations:

1. yx yx2  yx1
2.

2. yx2 yx
2  yx1

3, if y1  1, y2  2.

3. 2yx1
2  yx1 yx – yx2  0. 

4. 
1 .n ny y  yn1 .

5. yx yx1 – 3yx  2  0. 

6. yx1 yx  5yx1  yx  9  0.

9.8  Simultaneous Difference Equations
with Constant Coefficients

The method used for solving simultaneous differential equations with 
constant coefficients also applies to simultaneous difference equations with 
constant coefficients. The following example illustrates the technique.

EXAMPLE 9.16

Solve the simultaneous difference equations

 ux+1  vx – 3ux  x, 3ux  vx+1 – 5vx  4x

subject to the conditions u1  2, v1  0.

Solution:

Given equations in symbolic form, are

                          (E – 3)ux  vx  x (i)

            3ux  (E – 5)vx  4x (ii)

Operating the first equation with E – 5 and subtracting the second from 
it, we get

 [(E – 5)(E – 3) – 3]ux  (E – 5)x – 4x

or                           (E2 – 8E  12)ux  1 – 4x – 4x
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Its solution is

1 2
4 19 4

2 6
5 25 4

x
x x

xu c c x    

Substituting the value of ux from (iii) in (i), we get

                                1 2
3 34 4

2 3 6
5 25 4

x
x x

x
x

v c c    

Taking u1  2, v1  0, in (iii) and (iv), we obtain

         1 2 1 2
64 74

2 6 ,2 18
25 25

c c c c   

Where                     1 21.33, 0.0167c c   

Hence                     11.332 0.01676.6 0.8 0.76 4x x x
xu x     

                                11.33.2 0.05.6 1.36 4x x x
xv     .

Exercises 9.5

Solve the following simultaneous difference equations:

1. yx1 – zx  2(x  1), zx1 – yx  – 2(x  1).

2. yn1 – yn  2zn1  0, zn1 – zn – 2yn  2n.

3. un1  n  3un  2vn, vn1 – n  un  2vn, given u0  0, v0  3.

4. ux1  vx  wx  1, ux  vx1  wx  x, ux  vx  wx1  2x.

9.9 Application to Deflection of a Loaded String

Consider a light string of length l stretched tightly between A and B. 
Let the forces Pi be acting at its equispaced points xi (i  1, 2,..., n – 1) and 
perpendicular to AB resulting in small transverse displacements yi at these 
points (Figure 9.1). Assuming the angle i made by the portion between xi 
and xi1 with the horizontal, to be small, we have 

 sin i  tan i  i and cos i  1.
If T is the tension of the string at xi, then T cos i  T

i.e., the tension may be taken as uniform.
Taking xi1 – xi  h, we have
                  yi1 – yi  h tan i  hi.  (1)

 yi – yi–1  h tan i–1  hi–1  (2)
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Also resolving the forces in equilibrium at (xi, yi)  to AB, we get

T sin i – T sin i–1  Pi  0 i.e. T(i – i–1)  Pi  0  (3)

A
(x0)

x1 x2 xi+ 1

y2

h h

P2

Pi

Pn – 1

XB

Y
θi

y1

P1 yi

xi

yi+ 1

(xn)

xn – 1

FIGURE 9.1

Eliminating i and i–1 from (1), (2) and (3), we obtain

 1 1 12 i
t i

hp
y y y

T     (4)

which is a difference equation and its solution gives the displacements yi. 
To obtain the arbitrary constants in the solution, we take y0  yn  0 as the 
boundary conditions, since the ends A and B of the string are fixed.

EXAMPLE 9.17

A light elastic string stretched between two fixed nails is 120 cm apart, 
carries 11 loads of weight at 5 gm each at equal intervals and the resulting 
tension is 500 gm weight. Show that the sag at the mid-point is 1.8 cm.

Solution:

Taking h  10 cm, Pi  5 gm and T  500 gm weight.,

the above equation (4) becomes yi1 – 2yi  yi–1  – 1/10

i.e., 2 1 1
1

2 .
10i iy y y   

Its A.E. is (E – 1)2  0    i.e., E  1, 1.  C.F.  c1  c2i

and 
2 2

1 1 1 1 1 ( 1) 1
P.I (1)

10 10 10 2 20( 1) ( 1)
i i i

E E

  
     

  

Thus the C.S. is 2
1 2

1
( )

20iy c c i i i   
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Since y0  0,  c1  0

and y12  0,  2
11
20

c 

Hence 211 1
( )

20 20iy i i i  

At the mid-point i  6, we get y6  1.8 cm.

Exercises 9.6

A light string of length (n  1)l is stretched between two fixed points with 
a force P. It is loaded with n equal masses m at distances l. If the system 
starts rotating with angular velocity , find the displacement yi of the ith 
mass.

9.10 Objective Type of Questions

Exercises 9.7

Select the correct answer or fill up the blanks in the following questions:

1. yn  A 2n  B 3n, is the solution of the difference equation

2. The solution of (E – 1)3 un  0 is..

3. The solution of the difference equation un  3 – 2un  2 – 5un  1  6un  0 is


4. The solution of yn  1 – yn  2n isgiven that y0  2.

5. The difference equation yn  1 – 2yn  n given that y0  2 has yn as its 
solution.

6. The difference equation corresponding to the family of curves y  ax2  
bx is

7. The particular integral of the equation (E – 2) yn  1.

8. The solution of 4yn  yn  2 such that y0  0, y1  2, is.

9. The equation 2 2
1

1
0

2n nu u     is of order..

10. The difference equation satisfied by y  a  b/x is.
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11. The order of the difference equation yn  2 – 2yn  1 yn  0 is.

12. The solution of yn  2 – 4yn  1  4yn  0 is.

13. The particular integral of ux + 2 – 6ux  1  9ux  3 is.

14. The difference equation generated by un  (a  bn) 3n is

15. Solution of 6yn  2  5yn  1 – 6yn  2n is yn  A(2/3)n  B(– 3/2)n  2n/28. 
(True or False)
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10.1 Introduction

A number of problems in science and technology can be formulated 
into differential equations. The analytical methods of solving differential 
equations are applicable only to a limited class of equations. Quite often 
differential equations appearing in physical problems do not belong to any 
of these familiar types and one is obliged to resort to numerical methods. 
These methods are of even greater importance when we realize that com-
puting machines are now readily available which reduce numerical work 
considerably.

Solution of a differential equation. The solution of an ordinary differen-
tial equation means finding an explicit expression for y in terms of a finite 
number of elementary functions of x. Such a solution of a differential equa-
tion is known as the closed or finite form of solution. In the absence of such 
a solution, we have recourse to numerical methods of solution.

Let us consider the first order differential equation

 dy/dx  f(x, y), given y(x0)  y0 (1)
to study the various numerical methods of solving such equations. In most 
of these methods, we replace the differential equation by a difference equa-
tion and then solve it. These methods yield solutions either as a power se-
ries in x from which the values of y can be found by direct substitution, or 
a set of values of x and y. The methods of Picard and Taylor series belong 
to the former class of solutions. In these methods, y in (1) is approximated 
by a truncated series, each term of which is a function of x. The information 
about the curve at one point is utilized and the solution is not iterated. As 
such, these are referred to as single-step methods.

The methods of Euler, Runge-Kutta, Milne, Adams-Bashforth, etc. be-
long to the latter class of solutions. In these methods, the next point on the 
curve is evaluated in short steps ahead, by performing iterations until suf-
ficient accuracy is achieved. As such, these methods are called step-by-step 
methods.

Euler and Runga-Kutta methods are used for computing y over a lim-
ited range of x- values whereas Milne and Adams methods may be applied 
for finding y over a wider range of x-values. Therefore Milne and Adams 
methods require starting values which are found by Picard’s Taylor series 
or Runge-Kutta methods.
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Initial and boundary conditions. An ordinary differential equation 
of the nth order is of the form

 2 2, , / , / , ),( / 0n nF x y dy dx d y dx d y dx   (2)
Its general solution contains n arbitrary constants and is of the form

 1 2, , ), ,( , 0nx y c c c   (3)
To obtain its particular solution, n conditions must be given so that the 

constants c1, c2 , cn can be determined.

If these conditions are prescribed at one point only (say:x0), then the dif-
ferential equation together with the conditions constitute an initial value 
problem of the nth order.

If the conditions are prescribed at two or more points, then the problem 
is termed as boundary value problem.

In this chapter, we shall first describe methods for solving initial value 
problems and then explain the finite difference method and shooting 
method for solving boundary value problems.

10.2 Picard’s Method

Consider the first order equation ( , )
dy

f x y
dx
  (1)

It is required to find that particular solution of (1) which assumes the 
value y0 when x  x0. Integrating (1) between limits, we get 

 
˘

0( , )  or ( , )
˘

˘
dy f x y dx y y f x y dx      (2)

This is an integral equation equivalent to (1), for it contains the un-
known y under the integral sign.

As a first approximation y1 to the solution, we put y  y0 in f(x, y) and 
integrate (2), giving

 
0

1 0 0( , )
x

x
y y f x y dx 

For a second approximation y2, we put y  y1 in f(x, y) and integrate 
(2), giving

 
0

˘ ˘
x

x
y y f x y dx 
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Similarly, a third approximation is

 
0

3 0 2( , )
x

x
y y f x y dx 

Continuing this process, we obtain y4, y5,  yn where

 
0

0 1( , )
x

n nx
y y f x y dx 

Hence this method gives a sequence of approximations y1, y2, y3  
each giving a better result than the preceding one.

Obs. Picard’s method is of considerable theoretical value, but 
can be applied only to a limited class of equations in which the 
successive integrations can be performed easily. The method can 
be extended to simultaneous equations and equations of higher 
order (See Sections 10.11 and 10.12).

EXAMPLE 10.1

Using Picard’s process of successive approximations, obtain a solution 
up to the fifth approximation of the equation dy/dx  y  x, such that 
y  1 when x  0. Check your answer by finding the exact particular solution.

Solution:

(i) We have 
0

1 ( )
x

x
y x y dx  

First approximation. Put y  1 in y  x, giving

 
0

2
1 1 (1 ) 1 /2

x

x
y x dx x x     

Second approximation. Put y  1  x  x2/2 in y  x, giving

 
0

2 2 3
1 1 (1 /2) 1 /6

x

x
y x x dx x x x       

Third approximation. Put y 1  x  x2  x3/6 in y  x, giving

 
0

3 4
2 3 2

3 1 (1 /6) 1 2
3 24

x

x

x x
y x x x dx x x         

Fourth approximation. Put y  y3 in y  x, giving

 
3 4

2
4 0

3 4 5
2

1 1 2
3 24

1
3 12 120

x x x
y x x dx

x x x
x x

 
      
 

     



NOTE
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Fifth approximation, Put y y4 in y  x, giving

 
3 4 5

2
5 0

3 4 5 6
2

1 1 2
3 12 120

1
3 12 60 720

x x x x
y x x dx

x x x x
x x

 
       
 

      

  (1)

(ii) Given equation

 
dy

y x
dx
   is a Leibnitzs linear in x

Its, I.F. being ex the solution is

 
 

x x

x x x x

ye xe dx c

xe e dx c xe e c

 

   

 

      




      1xy ce x  

Since y 1, when x 0,      c 2.

Thus the desired particular solution is

                                         2 1xy e x    (2)

Or using the series: 
2 3 4

1
2! 3! 4!

x x x x
e x     

We get                                 
3 4 5 6

21
3 12 60 360
x x x x

y x x          (3)

Comparing (1) and (3), it is clear that (1), approximates to the exact 
particular solution (3) upto the term in x5.

Obs. At x  1, the fourth approximation y4  3.433 and the fifth 
approximation y5  3.434 whereas the exact value is 3.44.

EXAMPLE 10.2

Find the value of y for x  0.1 by Picard’s method, given that

 , (0) 1.
dy y x

y
dx y x


 


Solution:

We have 
0

1
x y x

y dx
y x


 


NOTE
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First approximation. Put y 1 in the integrand, giving

 
1 0 0

0

2
1 1 1

1

1 2 log(1 ) 1 2 log(1 )

x x

x

y x
y dx dx

y x x

x x x x

  
      

  

          

 

Second approximation. Put y 1  x  2 log(1 + x)  in the integrand, 
giving

 
2 0

0

1 2 log(1 )
1

1 2 log(1 )

2
1 1

1 2 log(1 )

x

x

x x x
y dx

x x x

x
dx

x

   
 

   

 
   

  




which is very difficult to integrate.

Hence we use the first approximation and taking x  0.1 in (i) we obtain

 y(0.1)  1 – (0.1)  2 log 1.1  0.9828.

10.3 Taylor’s Series Method

Consider the first order equation ( , )
dy

f x y
dx
  (1)

Differentiating (1), we have 
2

2

d y dyf f
x y dxdx

 
 
 

 i.e. x yy f f f    (2)

Differentiating this successively, we can get , ivy y  etc. Putting x  x0 
and y  0, the

Values of 0 0 0( ) ,( ) ,( )y y y   can be obtained.  Hence the Taylor’s series

 
2 3

0 0
0 0 0 0 0

( ) ( )
( )( ) ( ) ( ) ...

2! 3!
x x x x

y y x x y y y
 

         (3)

gives the values of y for every value of x for which (3) converges.

On finding the value y1 for x  xi from (3), y, y etc. can be evaluated 
at x  x1 by means of (1), (2) etc. Then y can be expanded about x  x1. In 
this way, the solution can be extended beyond the range of convergence of 
series (3).
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Obs. This is a single step method and works well so long as 
the successive derivatives can be calculated easily. If (x, y) is 
somewhat complicated and the calculation of higher order 
derivatives becomes tedious, then Taylor’s method cannot 
be used gainfully. This is the main drawback of this method 
and therefore, has little application for computer programs. 
However, it is useful for finding starting values for the 
application of powerful methods like Runga-Kutta, Milne and 
Adams- Bashforth which will be described in the subsequent 
sections.

EXAMPLE 10.3

Solve y  x  y, y(0)  1 by Taylor’s series method. Hence find the val-
ues of y at x  0.1 and x  0.2.

Solution:

Differentiating successively, we get

   y  x  y   y(0)  1 [ y(0)  1]

  y  1  y  y(0)  2 

 y  y y(0)  2 

 y  y y(0)  2, etc. 

Taylor’s series is

 
2 3

0 0
0 0 0 0 0

( ) ( )
( )( ) ( ) ( )

2! 3!
x x x x

y y x x y y y
 

       

Here x0  0, y0  1

          
2 3 4( ) ( )

1 1 (2) (2) (4)
2 3! 4!
x x x

y x     

Thus     
   3 4

2 0.1 0.1
0.1 1 0.1 0.1

3! 4!
1.1103

y     





and     
   3 4

2 0.2 0.2
0.2 1 0.2 0.2

3 6
1.2427

y      





NOTE
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EXAMPLE 10.4

Find by Taylor’s series method, the values of y at x  0.1 and x  0.2 to 
five places of decimals from dy/dx  x2y – 1, y(0)  1.

Solution:

Differentiating successively, we get
   y x2y – 1,    (y)0  – 1 [ y(0)  1]

  y 2xy  x2y,   (y)0  0 

 y 2y  4xy  x2y,  (y)0  2 

  yiv  6y  6xy  x2y,   (yiv)0  – 6, etc. 
Putting these values in the Taylor’s series, we have

 
 

2 3 4

3 4

( ) ( )
1 1 (0) (2) ( 6)

2 3! 4!

1
3 4

x x x
y x

x x
x

       

    





Hence y(0.1)  0.90033 and y(0.21)  0.80227 

EXAMPLE 10.5

Employ Taylor’s method to obtain approximate value of y at x  0.2 for 
the differential equation dy/dx  2y  3ex, y(0)  0. Compare the numerical 
solution obtained with the exact solution.

Solution:

(a) We have y  2y  3ex; y(0)  2y(0)  3e0  3.

Differentiating successively and substituting x  0, y  0 we get

  y  2y  3ex,  y(0)  2y(0)  3  9

 y  2y  3ex, y(0)  2y(0)   3  21

  yiv  2y  3ex,  yiv(0)  2y(0)  3  45 etc. 

Putting these values in the Taylor’s series, we have

 

2 3 4

2 3 4

2 3 4

( ) (0) (0) (0) (0) (0)
2! 3! 4!

9 21 45
0 3

2 6 24
9 21 15

3
2 6 8

ivx x x
y x y xy y y y

x x x x

x x x x
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Hence 2 3 4(0.2) 3(0.2) 4.5(0.2) 3.5(0.2) 1.875(0.2) 0.8110y        (i)

(b) Now 2 3 xdy
y e

dx
   is a Leibnitz’s linear in x

Its I.F. being  e–2x, the solution is

 –2 . 2  – 23 –3   or    –3x x x x x xye e e dx c e c y e ce     
Since y  0 when x  0,        c  3.

Thus the exact solution is y  3(e2x – ex)

When x  0.2, y  3(e0.4 – e0.2)  0.8112 (ii)
Comparing (i) and (ii), it is clear that (i) approximates to the exact value 

up to three decimal places

EXAMPLE 10.6

Solve by Taylor series method of third order the equation
3 2

,x

dy x xy
dx e


  

y(0)  1 for y at x  0.1, x  0.2 and x  0.3

Solution:

We have         3 2 – ; 0 0xy x xy e y  

Differentiating  successively and  substituting x  0, y  1.

                
 

3 2 2 2–

3 2 2 2 –

– 3 .2 .

– – 3 2 ; 

( )( ) ( )

( )     0 1

xx

x

y x xy e x y x y y e

x xy x y xyy e y

     

     

       

 

3 2 2 2 –

2 2

2 –  

– – 3 2 –

–3 – .2 . 6 2

( )( )

{ ( )

[ ( )]}2 0 –2

x

x

y x xy x y xyy e

x y x y y x yy

yy x y yy e y

    

    

      

Substituting these values in the Taylor’s series, we have

 

2 3

2 3

2 3

( ) (0) (0) (0) (0)
2! 3!

1 (0) (1) ( 2)
2 6

1
2 6

x x
y x y xy y y

x x
x

x x
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Hence  

 

 

2 3

2 3

2 3

1 1
0.1 1  0.1   0.1  1.005

2 3
1 1

0.2 1 0.2  0.2  1.017
2 3
1 1

0.3 1 0.3

( ) ( )

( ) ( )

( )   0.3  1.036
2 3

( )

y

y

y

   

   

   

 

 

EXAMPLE 10.7

Solve by Taylor’s series method the equation log( )
dy

xy
dx
  for y(1.1) 

and y(1.2), given y(1)  2.

Solution:

We have y  log x  log y; y(1)  log 2 

Differentiating w.r.t., x and substituting x  1, y  2, we get

 
1 1 1

1 log 2
2

y y y
x y

     

 

 

2 2

2

1 1 1
;

1 1 1
1 1 log 2 log 2

2 2 4

y y y y
yx y

y

 
        
 

 
    

 

 

Substituting these values in the Taylor’s series about s  1, we have

 

 
   

 

2 3
'

2

23

1 1
( ) (1) 1 (1) (1) (1)

2! 3!
1 1

2 ( 1)log 2 ( 1) 1 log 2
2 2

1 1 1 1
( 1) log 2 log 2

6 2 4 4

x x
y x y x y y y

x x

x

 
      

 
      

 

 
      



  
2 3

2(0.1) 1 (0.1) 1 1 1
(1.1) 2 (0.1) log 2 1 log 2 log 2 log 2

2 2 6 2 4 4
2.036

y
   

            



  
2 3

2(0.2) 1 (0.2) 1 1 1
(1.2) 2 (0.2) log 2 1 log 2 log 2 log 2

2 2 6 2 4 4
2.081

y
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Exercises 10.1

1. Using Picard’s method, solve dy/dx  – xy with x0  0, y0  1 up to the 
third approximation.

2. Employ Picard ’s  method to obtain, correct to four places of decimals 
the, solution of the differential equation dy/dx  x2  y2 for x  0.4, given 
that y  0 when x  0.

3. Obtain Picard’s second approximate solution of the initial value problem
 y x2/(y2  1), y(0)0.

4. Find an approximate value of y when x  0.1, if dy/dx x – y2 and y 1 
at x  0, using
(a) Picard’s method  (b) Taylor’s series.

5. Solve y  x  y given y(1)  0. Find y(1.1) and y(1.2) by Taylor’s meth-
od. Compare the result with its exact value.

6. Using Taylor’s series method, compute y(0.2) to three places of deci-

mals from 1 2
dy

xy
dx
   given that y(0) 0.

7. Evaluate y(0.1) correct to six places of decimals by Taylor’s series 
method if y (x) satisfies
 y  xy  1, y(0) 1.

8. Solve y  y2  x, y(0) 1 using Taylor’s series method and compute 
y(0.1) and y(0.2).

9. Evaluate y(0.1) correct to four decimal places using Taylor’s series 
methods if dy/dx  x2  y2, y(0)  1.

10. Using Taylor series method, find y(0.1) correct to three decimal places 
given that dy/dx  e x– y2, y(0)  1

10.4 Euler’s Method

Consider the equation ˘
dy

˘
dx
  (1)

given that y(x0)  y0.Its curve of solution through P(x0, y0)is shown dotted 
in Figure.10.1. Now we have to find the ordinate of any other point Q on 
this curve.



0
L L2 M

X

x0 x0+ h x0+ 2h x0+ nh

y0

R1

R2

Rn

P

P1

Q1

P2

Pn

Q
Y

True value of y

Error

Approx. value of y

L1

θ

FIGURE 10.1

Let us divide LM into n sub-intervals each of width h at L1, L2 so that 
h is quite small

In the interval LL1, we approximate the curve by the tangent at P. If the 
ordinate through L1 meets this tangent in P1(x0  h, y1), then

 y1  L1P1  LP  R1P1  y0  PR1 tan 

 0 0 0 0 ( ),
p

dy
y h y hf x y

dx

 
    

 

Let P1Q1 be the curve of solution of (1) through P1 and let its tangent at 
P1 meet the ordinate through L2 in P2(x0  2h, y2). Then

 y2  y1  hf(x0  h, y1) (1)
Repeating this process n times, we finally reach on an approximation 

MPn of MQ given by

 –1 0 –1( )1 ,n n ny y hf x n h y   

This is Euler’s method of finding an approximate solution of (1).

Obs. In Euler’s method, we approximate the curve of solution 
by the tangent in each interval, i.e., by a sequence of short lines. 
Unless h is small, the error is bound to be quite significant. This 
sequence of lines may also deviate considerably from the curve 
of solution. As such, the method is very slow and hence there is 
a modification of this method which is given in the next section.

NOTE
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EXAMPLE 10.8

Using Euler’s method, find an approximate value of y corresponding to 
x  1, given that dy/dx  x  y and y  1 when x  0.

Solution:

We take n  10 and h  0.1 which is sufficiently small. The various cal-
culations are arranged as follows:

x y x  y  dy/dx Old y  0.1 (dy/dx)  new y
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.00
1.10
1.22
1.36
1.53
1.72
1.94
2.19
2.48
2.81
3.18

1.00
1.20
1.42
1.66
1.93
2.22
2.54
2.89
3.29
3.71

1.00  0.1 (1.00)  1.10
1.10  0.1 (1.20)  1.22
1.22  0.1 (1.42)  1.36
1.36  0.1 (1.66)  1.53
1.53  0.1 (1.93)  1.72
1.72  0.1 (2.22)  1.94
1.94  0.1 (2.54)  2.19
2.19  0.1 (2.89)  2.48
2.48  0.1 (3.29)  2.81
2.81  0.1 (3.71)  3.18

Thus the required approximate value of y  3.18.

Obs. In Example 10.1(Obs.), we obtained the true values of y 
from its exact solution to be 3.44 where as by Euler’s method 
y  3.18 and by Picard’s method y  3.434. In the above 
solution, had we chosen n  20, the accuracy would have been 
considerably increased but at the expense of double the labor of 
computation. Euler’s method is no doubt very simple but cannot 
be considered as one of the best.

EXAMPLE 10.9

Given dy y x
dx y x





with initial condition y  1 at x  0; find y for x  0.1 

by Euler’s method.

Solution:

We divide the interval (0, 0.1) in to five steps, i.e., we take n  5 and 
h 0.02. The various calculations are arranged as follows:

NOTE
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x y dy/dx Oldy  0.02 (dy/dx)  new y
0.00
0.02
0.04
0.06
0.08
0.10

1.0000
1.0200
1.0392
1.0577
1.0756
1.0928

1.0000
0.9615
0.926
0.893
0.862

1.0000  0.02(1.0000)  1.0200
1.0200  0.02(0.9615)  1.0392
1.0392  0.02(0.926)  1.0577
1.0577  0.02(0.893)  1.0756
1.0756  0.02(0.862)  1.0928

Hence the required approximate value of y  1.0928.

10.5 Modified Euler’s Method

In Euler’s method, the curve of solution in the interval LL1 is approxi-
mated by the tangent at P (Figure 10.1) such that at P1, we have

 y1  y0  h f(x0, y0) (1)
Then the slope of the curve of solution through P1

 [i.e., (dy/dx)P1  f(x0  h, y1)]

is computed and the tangent at P1 to P1Q1 is drawn meeting the ordinate 
through L2 in

 P2(x0  2h, y2).

Now we find a better approximation (1)
1y  of y(x0  h) by taking the slope 

of the curve as the mean of the slopes of the tangents at P and P1, i.e.,

 (1)
1 0 0 0 0 1[ ( , ) ( , )]

2
h

y y f x y f x h y   

As the slope of the tangent at P1 is not known, we take y1 as found in (1) 
by Euler’s method and insert it on R.H.S. of (2) to obtain the first modified 
value y1(1) 

Again (2) is applied and we find a still better value y1(2) corresponding 
to L1 as

  
(2) (1)
1 0 0 0 0 1[ ( , ) ( , )]

2
h

y y f x y f x h y   

We repeat this step, until two consecutive values of y agree. This is then 
taken as the starting point for the next interval L1L2.

Once y1 is obtained to a desired degree of accuracy, y corresponding to 
L2 is found from (1).

 y2 = y1 + hf(x0 + h, y1)

and a better approximation (1)
2y is obtained from (2)

 (1)
2 1 0 1 0 2[ ( , ) ( 2 , )]

2
h

y y f x h y f x h y    
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We repeat this step until y2 becomes stationary. Then we proceed to calcu-
late y3 as above and so on.

This is the modified Euler’s method which gives great improvement in 
accuracy over the original method.

EXAMPLE 10.10

Using modified Euler’s method, find an approximate value of y when 
x  0.3, given that dy/dx  x  y and y  1 when x  0.

Solution:

The various calculations are arranged as follows taking h  0.1:

x x  y  y Mean slope Old y  0.1 (mean slope)  new y

0.0 0  1 — 1.00  0.1 (1.00)  1.10

0.1 0.1  1.1 1
2 ( )1 1.2 1.00  0.1 (1.1)  1.11

0.1 0.1  1.11 1
2 1 1( ).21 1.00  0.1 (1.105)  1.1105

0.1 0.1  1.1105 1
2 1 1.( )2105 1.00  0.1 (1.1052)  1.1105

Since the last two values are equal, we take y(0.1)  1.1105.

0.1 1.2105 — 1.1105  0.1 (1.2105)  1.2316

0.2 0.2  1.2316 1
2 1.12105 1.4( )316 1.1105  0.1 (1.3211)  1.2426

0.2 0.2  1.2426 1
2 1.2105 1.4( )426 1.1105  0.1 (1.3266)  1.2432

0.2 0.2  1.2432 1
2 1.2105 1.4( )432 1.1105  0.1 (1.3268)  1.2432

Since the last two values are equal, we take y(0.2)  1.2432.

0.2 1.4432 — 1.2432  0.1 (1.4432)  1.3875

0.3 0.3  1.3875 1
2 1.4432 1.6( )875 1.2432  0.1 (1.5654)  1.3997

0.3 0.3  1.3997 1
2 1.4432 1.6( )997 1.2432  0.1 (1.5715)  1.4003

0.3 0.3  1.4003 1
2 1.4432 1.7( )003 1.2432  0.1 (1.5718)  1.4004

0.3 0.3  1.4004 1
2 1.4432 1.7( )004 1.2432  0.1 (1.5718)  1.4004

Since the last two values are equal, we take y(0.3)  1.4004.



434 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Hence y(0.3)  1.4004 approximately.

Obs. In Example 10.8, we obtained the approximate value of y 
for x  0.3 to be 1.53 whereas by the modified Euler’s method 
the corresponding value is 1.4003 which is nearer its true 
value 1.3997, obtained from its exact solution y  2ex – x – 1 by 
putting x  0.3.

EXAMPLE 10.11

Using the modified Euler’s method, find y(0.2) and y(0.4) given

 y  y  ex, y(0)  0.
Solution:

We have y  y  ex  f (x, y); x  0, y  0 and h  0.2

The various calculations are arranged as under:

To calculate y(0.2):

x y  ex  y Mean slope Old y  h (Mean slope)
  new y

0.0 1 — 0  0.2 (1)  0.2
0.2 0.2  e0.2  1.4214 1

2 1 1.4214 1.) 07( 21  0  0.2 (1.2107)  0.2421

0.2 0.2421  e0.2  1.4635 1
2 1 1.4635 1.) 17( 23  0  0.2 (1.2317)  0.2463

0.2 0.2463  e0.2  1.4677
1 1.467

1
( )

2
7 1.2338 

0  0.2 (1.2338)  0.2468

0.2 0.2468  e0.2  1.4682 1
2 1 1.468( ) 12 .2341 0  0.2 (1.2341)  0.2468

Since the last two values of y are equal, we take y (0.2)  0.2468.

To calculate y(0.4):

x y  ex Mean slope Oldy  0.2 (mean slope) new y

0.2 0.2468  e0.2  1.4682 — 0.2468  0.2 (1.4682)  0.5404

0.4 0.5404  e0.4  2.0322 1
2 1.4682 2.0322)(

1.7502




0.2468  0.2 (1.7502)  0.5968

NOTE
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x y  ex Mean slope Oldy  0.2 (mean slope) new y

0.4 0.5968  e0.4  2.0887 1
2 1.4682 2.0( )887

1.7784




0.2468  0.2 (1.7784)  0.6025

0.4 0.6025  e0.4  2.0943 1
2 (1.4682 2.09 )

= 1.7 5
43

812
 0.2468  0.2 (1.78125)  0.6030

0.4 0.6030  e0.4  2.0949 1
2 1.4682 2.0(

= 1.
949

5
)

781
 0.2468  0.2 (1.7815)  0.6031

0.4 0.6031  e0.4  2.0949 1
2 1.4682 2.0( )

= 1.
9

6
49

781
 0.2468  0.2 (1.7815)  0.6031

Since the last two value of y are equal, we take y(0.4)  0.6031

Hence y(0.2)  0.2468 an d y(0.4)  0.6031 approximately.

EXAMPLE 10.12

Solve the following by Euler’s modified method:

 log( ) ( ), 0 2
dy

x y y
dx
  

at x  1.2 and 1.4 with h  0.2.

Solution:

The various calculations are arranged as follows:

x log (x  y)  y Mean slope Old y  0.2 (mean slope)  new y

0.0

0.2

0.2

log (0  2)

log (0.2  2.0602)

log (0.2  2.0655)

—
1
2 0.310( )0.3541
1
2 0.301( )0.3552

2  0.2(0.301)  2.0602

2  0.2 (0.3276)  2.0655

2  0.2 (0.3281)  2.0656

0.2

0.4

0.4

0.3552

log (0.4  2.1366)

log (0.4  2.1415)

—
1
2 0.3552 0.4 )( 042

1
2 0.3552 0.4( )051

2.0656  0.2 (0.3552)  2.1366

2.0656  0.2 (0.3797)  2.1415

2.0656  0.2 (0.3801)  2.1416

0.4

0.6

0.6

0.4051

log (0.6  2.2226)

log (0.6  2.2272)

—
1
2 0.4051 0.4( )506

1
2 0.4051 0.4( )514

2.1416 0.2 (0.4051)  2.2226

2.1416  0.2 (0.4279)  2.2272

2.1416  0.2 (0.4282)  2.2272
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x log (x  y)  y Mean slope Old y  0.2 (mean slope)  new y

0.6

0.8

0.8

0.4514

log (0.8  2.3175)

log (0.8  2.3217)

—
1
2 0.4514 0.4( )938
1
2 0.4514 0.4( )943

2.2272  0.2 (0.4514)  2.3175

2.2272  0.2 (0.4726)  2.3217

2.2272  0.2 (0.4727)  2.3217

0.8 0.4943 — 2.3217  0.2 (0.4943)  2.4206

1.0 log (1  2.4206) 1
2 0.4943 )0.5341 2.3217  0.2 (0.5142)  2.4245

1.0 log (1  2.4245) 1
2 0.4943 0.5( )346 2.3217  0.2 (0.5144)  2.4245

1.0 0.5346 — 2.4245  0.2 (0.5346)  2.5314

1.2 log (1.2  2.5314) 1
2 0.5346 0.5( )719 2.4245  0.2 (0.5532)  2.5351

1.2 log (1.2  2.5351) 1
2 0.5346 0.5( )723 2.4245  0.2 (0.5534)  2.5351

1.2 0.5723 — 2.5351  0.2 (0.5723)  2.6496

1.4 log (1.4  2.6496) 1
2 0.5723 0.6( )074 2.5351  0.2 (0.5898)  2.6531

1.4 log (1.4  2.6531) 1
2 0.5723 0.6( )078 2.5351  0.2 (0.5900)  2.6531

Hence y(1.2)  2.5351 an d y(1.4)  2.6531 approximately.

EXAMPLE 10.13

Using Euler’s modified method, obtain a solution of the equation

 /dy dx x y   

with initial conditions y  1 at x  0, for the range 0 £ x £ 0.6 in steps of 0.2.

Solution:

The various calculations are arranged as follows:

x x y y  Mean slope Old y  0.2
(mean slope)  new y

0.0 0  1  1 — 1  0.2 (1)  1.2
0.2  0.2 1.2

= 1.2954


1
2 1 1.2954( )

= 1.1477
 1  0.2 (1.1477)  1.2295
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x x y y  Mean slope Old y  0.2
(mean slope)  new y

0.2  0.2 1.2295

= 1.3088


1
2 1 1.3088( )

= 1.1544
 1  0.2 (1.1544)  1.2309

0.2  0.2 1.2309

= 1.3094


1
2 1 1.3094( )

= 1.1547
 1  0.2 (1.1547)  1.2309

0.2 1.3094 — 1.2309  0.2 (1.3094)  1.4927

0.4  0.4 1.4927

= 1.6218


1
2 1.3094 1.6( )

= 1.
2

4
18

465
 1.2309  0.2 (1.4654)  1.5240

0.4  0.4 1.524

= 1.6345


1
2 1.3094 1.6( )

= 1.
3

8
45

471
 1.2309  0.2 (1.4718)  1.5253

0.4  0.4 1.5253

= 1.6350


1
2 1.3094 1.6( )

= 1.
3

1
50

472
 1.2309  0.2 (1.4721)  1.5253

0.4 1.6350 — 1.5253  0.2 (1.635)  1.8523
0.6  0.6 1.8523

= 1.9610


1
2 1.635 1.961)(

1.798




1.5253  0.2 (1.798)  1.8849

0.6  0.6 1.8849

= 1.9729


1
2 1.635 1.97( )

= 1. 0
29

804
 1.5253  0.2 (1.804)  1.8861

0.6  0.6 1.8861

= 1.9734


1
2 1.635 1.97( )

= 1. 2
34

804
 1.5253  0.2 (1.8042)  1.8861

Hence y(0.6)  1.8861 approximately.

Exercises 10.2 

1. Apply Euler’s method to solve y  x  y, y(0)  0,
choosing the step length  0.2. (Carry out six steps). 

2. Using Euler’s method, find the approximate value of y when x  0.6 of 
dy/dx  1 – 2xy, given that y  0 when x  0 (take h  0.2). 

3. Using the simple Euler’s method solve for y at x  0.1 from dy/dx  x  
y  xy, y(0)  1, taking step size h  0.025.
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4. Solve y  1 – y, y(0)  0 
by the modified Euler’s method and obtain y at x  0.1, 0.2, 0.3

5. Given that dy/dx  x2  y and y(0)  1. Find an approximate value of 
y(0.1), taking h  0.05 by the modified Euler’s method.

6. Given y  x  sin y, y(0)  1. Compute y(0.2) and y(0.4) with h  0.2 
using Euler’s modified method. 

7. Given dy y x
dx y x





with boundary conditions y  1 when x  0, find 

approximately y for x  0.1, by Euler’s modified method (five steps)

8. Given that  /  2  dy dx xy  and y  1 when x  1. Find approximate 
value of y at x  2 in steps of 0.2, using Euler’s modified method. 

10.6 Runge’s Method*

Consider the differential equation, 0 0( , ), ( )
dy

f x y y x y
dx
   (1)

Clearly the slope of the curve through P(x0, y0) is f(x0, y0) (Figure 10.2).

Integrating both sides of (1) from (x0, y0) to (x0  h, y0  k), we have

 
0 0

0 0

( , )
y k x h

y x
dy f x y dx

 
   (2)

0

x 0x0 hh
L                              N                             M X

Y

y0

P
H

R
S1

S

T′

Q

T

θ
θ′

FIGURE 10.2

*Called after the German mathematician Carl Runge (1856-1927).
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To evaluate the integral on the right, we take N as the mid-point of LM 
and find the values of f(x, y) (i.e., dy/dx) at the points x0, x0  h/2, x0  h. For 
this purpose, we first determine the values of y at these points. 

Let the ordinate through N cut the curve PQ in S and the tangent PT in 
S1. The value of yS is given by the point S1

 1 1 0 . tan
S

y NS LP HS y PH     

                                                      0 00 0( )
2

)/ ( ,p
h

y h dy dx y f x y     (3)

Also         0 0 00.tan ( ).T hf x yy MT LP RT y PR y       

Now the value of yQ at x0  h is given by the point T  where the line 
through P draw with slope at T(x0  h, yT) meets MQ.

Slope at  0 0 0 0 0tan  , ,( ) )],[ (TT f x h y f x h y hf x y      

           0 0 0 0 0 0 .tan [ , ( ,  )]Qy R RT y PR y hf x h y hf x y        
 (4)

Thus the value of f(x, y) at P  f(x0, y0),

the value of f(x, y) at S  f(x0  h/2, yS)

and the value of f(x, y) at Q (x0  h, yQ)

where yS and yQ are given by (3) and (4).

Hence from (2), we obtain

 

0

0

0 0 0 0

( , ) 4
6

( ) ( /2, ) ( ,
6

x h

P S Qx

S Q

h
k f x y dx f f f

h
f x y f x h y x h y

      

       


 
by Simpson’s rule

Which gives a sufficiently accurate value of k and also y  y0  k

The repeated application of (5) gives the values of y for equi-spaced 
points.

Working rule to solve (1) by Runge’s method: 

Calculate successively

 1 0 0( ,  ),k hf x y

 2 0 0 1
1 1
2 2

k hf x hy k
 

   
 

  0 0 1,k hf x h y k  
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and                3 0 0,k hf x h y k  

Finally compute,  1 2 3
1

4
6

k k k k  

which gives the required approximate value as y1  y0  k.

(Note that k is the weighted mean of k1, k2, and k3).

EXAMPLE 10.14

Apply Runge’s method to find an approximate value of y when x  0.2, 
given that dy/dx  x  y and y  1 when x  0.

Solution:

Here we have x0  0, y0  1, h  0.2, f(x0, y0)  1

 
 1 0 0( ,  ) 0.2 1 0.200k hf x y  

            2 0 0 1
1 1

0.2400.2 0.1,1.1
2 2

k hf x hy k f
 

   





               0 0 1, 0 0..2 0.2, 282 01.k hf x h y k f    

and     3 0 0, 0.2 0.1,1.28 0.296k hf x h y k f    

    1 2 3
1 1

k 4k k 0.200 0.960 0. 0.2426
6 6

629k      

Hence the required approximate value of y is 1.2426.

10.7 Runge-Kutta Method*

The Taylor’s series method of solving differential equations numerical-
ly is restricted by the labor involved in finding the higher order derivatives. 
However, there is a class of methods known as Runge-Kutta methods which 
do not require the calculations of higher order derivatives and give greater 
accuracy. The Runge-Kutta formulae possess the advantage of requiring 
only the function values at some selected points. These methods agree with 
Taylor’s series solution up to the term in hr where r differs from method to 
method and is called the order of that method. 

First order R-K method. We have seen that Euler’s method (Section 
10.4) gives

 1 0 0 0 0 0( ,  )y y hf x y y hy     [ y  f(x, y)]
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Expanding by Taylor’s series

 
2

1 0 0 0 0( )
2
h

y y x h y hy y      

It follows that the Euler’s method agrees with the Taylor’s series solu-
tion upto the term in h. 

Hence, Euler’s method is the Runge-Kutta method of the first order. 

 Second order R-K method. The modified Euler’s method gives

 1 0 0 0 1( ,  ) ( ,  )
2
h

y y f x y f x h y      (1)

Substituting y1  y0  hf(x0, y0) on the right-hand side of (1), we obtain

 1 0 0 0 0 0( ),
2
h

y y f f x h y hf       where  f0  (x0, y0) (2)

Expanding L.H.S. by Taylor’s series, we get

  
2 3

1 0 0 0 0 02! 3!
h h

y y x h y hy y y          (3)

Expanding f(x0  h, y0  hf0) by Taylor’s series for a function of two 
variables, (2) gives

  2 **
1 0 0 0 0 0 0

0 0

( , ) ( )
2

f fh
y y f f x y h hf O h

x y

                
       

             2 3
0 0 0

0 0

1
2

f f
y hf hf h O h

x y

               
       

             
2

3
0 0 02

h
y hf f O h     

 ,df x y f f
f

dx x y

  
  

   


                
2

3
0 0 02!

h
y hy y O h      (4)

Comparing (3) and (4), it follows that the modified Euler’s method 
agrees with the Taylor’s series solution upto the term in h2.

Hence the modified Euler’s method is the Runge-Kutta method of the 
second order.

**O(h2) means “terms containing second and higher powers of h” and is read as order of h2.
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 The second order Runge-Kutta formula is

  1 0 1 2
1
2

y y k k  

Where k1  hf (x0, y0) and k2  hf(x0  h, y0  k)

(iii) Third order R-K method. Similarly, it can be seen that Runge’s meth-
od (Section 10.6) agrees with the Taylor’s series solution upto the term in h3.

As such, Runge’s method is the Runge-Kutta method of the third order.

 The third order Runge-Kutta formula is

  1 0 1 2 3
1

4
6

y y k k k   

Where, 1 0 0 2 0 0 1
1 1

( , ), ,
2 2

k hf x y k hf x h y k
 

    
 

And  3 0 0, ,k hf x h y k    where 3 0 0 1( , )k k hf x h y k    .

(iv) Fourth order R-K method. This method is most commonly used 
and is often referred to as the Runge-Kutta method only.

Working rule for finding the increment k of y corresponding to an 
increment h of x by Runge-Kutta method from

 0( , ), ( )
dy

f x y y x
dx


is as follows:

Calculate successively k1  hf(x0, y0),

               
2 0 0 1

3 0 0 2

1 1
,

2 2
1 1

,
2 2

k hf x h y k

k hf x h y k

 
   

 

 
   

 

and                         4 0 0 3,k hf x h y k  

Finally compute            1 2 3 4
1

2 2
6

k k k k k   

which gives the required approximate value as y1  y0  k.

(Note that k is the weighted mean of k1, k2, k3, and k4).

Obs. One of the advantages of these methods is that the 
operation is identical whether the differential equation is linear 
or non-linear.

NOTE



NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS • 443

EXAMPLE 10.15

Apply the Runge-Kutta fourth order method to find an approximate 
value of y when x  0.2 given that dy/dx  x  y and y  1 when x  0.

Solution:

Here      x0  0, y0  1, h  0.2, f(x0, y0)  1

 1 0 0( , ) 0.2 1= 0.2000k hf x y  

  2 0 0 1
1 1

0.2400, 0.2 0.1,1.1
2 2

k hf x h y k f
 

    
 



  3 0 0 2
1 1

, 0.2 0.1,1.12
2 2

0.2440k hf x h y k f
 

     
 



and    4 0 0 3, 0.2 0.2, 0.2881.24 84k hf x h y k f     

    

 

 

1 2 3 4
1

2 2
6
1

0.2000 0.4800 0.4880 0.2888
6
1

1.4568 0.2428
6

k k k k k   

   

  

Hence the required approximate value of y is 1.2428.

EXAMPLE 10.16

Using the Runge-Kutta method of fourth order, solve 
2 2

2 2

dy y x
dx y x




with y(0)  1 at x  0.2, 0.4.

Solution:

We have 
2 2

2 2( , )
y x

f x y
y x






To find y(0.2)

Hence x0  0, y0  1, h  0.2

  1 0 0( , ) 0.2 0,1 0.2000k hf x y f 

  2 0 0 1
1 1

, 0.2 0.1,1.1
2 2

0.19672k hf x h y k f
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  3 0 0 2 0.1967
1 1

, 0.2 0.1,1.09836
2 2

k hf x h y k f
 

     
 

    4 0 0 3, 0.2 0.2,1. 0.119 867 91k hf x h y k f    

    1 2 3 4
1

2 2
6

k k k k k   

          1
0.2 2 0.19672 2 0.1967 0.18  0.1959991

6
    

Hence y(0.2)  y0  k  1.196.

To find y(0.4):

Here x1  0.2, y1  1.196, h  0.2.

 1 1 1( , 0.1891)k hf x y 

  2 1 1 1 0.1795
1 1

, 0.2 0.3,1.2906
2 2

k hf x h y k f
 

    
 



  3 1 1 2 0.1793
1 1

, 0.2 0.3,1.2858
2 2

k hf x h y k f
 

    
 



    4 1 1 3, 0.2 0.4,1. 0.137 653 88k hf x h y k f    

  1 2 3 4
1

2 2
6

k k k k k   

         1
0.1891 2 0.1795 2 0.1793 0.1688 0 1 2

6
. 79   

Hence   y(0.4)  y1  k  1.196  0.1792  1.3752.

EXAMPLE 10.17

Apply the Runge-Kutta method to find the approximate value of y for 
x  0.2, in steps of 0.1, if dy/dx  x  y2, y  1 where x  0.

Solution:

Given f(x, y)  x  y2.

Here we take h  0.1 and carry out the calculations in two steps.

Step I. x0  0, y0  1, h  0.1

  1 0 0( , ) 0.1 0,1 0.1000k hf x y f 
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    2 0 0 1
1 1

, 0.1 0.05,1.1
2 2

0.1152k hf x h y k f
 

   
 



          3 0 0 2 0.1168
1 1

, 0.1 0.05,1.1152
2 2

k hf x h y k f
 

     
 

    4 0 0 3, 0.1 0.1,1. 0.111 368 47k hf x h y k f    

            1 2 3 4
1

2 2
6

k k k k k   

     
1

0.1000 0.2304 0.2336 0.1347 0 1
6

.1 65   

giving 0(0.1) 1.1165y y k  

Step II. x1  x0  h  0.1, y1 1.1165, h  0.1

       1 1 1( , ) 0.1 0.1,1.1165 0.1347k hf x y f  

          2 1 1 1 0.1551
1 1

, 0.1 0.15,1.1838
2 2

k hf x h y k f
 

     
 

          3 1 1 2 0.1576
1 1

, 0.1 0.15,1.194
2 2

k hf x h y k f
 

    
 



          4 1 2 3( , ) 0.1 0.2,1. 0.18231576k hf x h y k f    

        1 2 3 4 0.15
1
6

72 2 1k k k k k    

Hence 1(0.2) 1.2736y y k  

EXAMPLE 10.18

Using the Runge-Kutta method of fourth order, solve for y at x  1.2, 
1.4

From 
2

2 x

x

dy xy e
dx x xe





 given x0  1, y0  0

Solution:

We have 2

2
( , )

x

x

xy e
f x y

x xe






To find y(1.2):
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Here x01, y00, h0.2

      1 0 0
0

( , ) 0.2 0.1462
1

e
k hf x y

e


  


      
  

   

1 0.1
1

2 0 0 2 1 0.1

2 1 0.1 0 0.073
, 0.2

2 2 1 0.1 1 0.1
0.1402

kh e
k hf x y

e





     
     

      



      
  

   

1.1

3 0 0 2 2 1.1

1 1 2 1 0.1 0 0.07
, 0.2

2 2 1 0.1 1 0.1
0.1399

e
k hf x h y k

e

     
     

      



       
    

   

1.2

4 0 0 3 2 1.2

2 1.2 0.1399
, 0.2

1.2 1.2
0.1348

e
k hf x h y k

e

  
    
  



and    1 2 3 4
1 1

2 2 0.1462 0.2804 0.2798 0.1348
6 6
0.1402

k k k k k       



Hence  y(1.2)  y0  k  0  0.1402  0.1402.

To find y (1.4):

Here 1 11.2, 0.1402, 0.2x y h  

              1 1 1( , ) 0.2 1.2,0 0.1348k hf x y f  

                2 1 1 1/2, /2 0.2 1.3,0.2076 0.1303k hf x h y k f    

                3 1 1 2/2, /2 0.2 1.3,0.2053 0.1301k hf x h y k f    

              4 1 1 3( , ) 0.2 1.3,0.2703 0.1260k hf x h y k f    

    

 

1 2 3 4
1

2 2
6
1

0.1348 0.2606 0.2602 0.1260
6
0.1303

k k k k k   

   



Hence   1(1.4) 0.1402 0.1303 0.2705.y y k    
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Exercises 10.3

1. Use Runge’s method to approximate y when x  1.1, given that y  1.2 
when x  1 and dy/dx  3x  y2.

2. Using the Runge-Kutta method of order 4, find y(0.2) given that dy/dx  
3x y2, y(0)  1 taking h  0.1.

3. Using the Runge-Kutta method of order 4, compute y(0.2) and y(0.4) 

from 10 2 2dy
x y

dx
   y(0)  1, taking h  0.1. 

4. Use the Runge Kutta method to find y when x  1.2 in steps of 0.1, given 
that dy/dx  x2  y2 and y(1)  1.5. 

5. Given dy/dx  x3  y, y(0)  2. Compute y(0.2), y(0.4), and y(0.6) by the 
Runge-Kutta method of fourth order. 

6. Find y(0.1) and y(0.2) using the Runge-Kutta fourth order formula, 
given that y  x2 – y and y(0)  1.

7. Using fourth order Runge-Kutta method, solve the following equation, 
taking each step of h  0.1, given y(0)  3. dy/dx (4x/y – xy). Calculate y 
for x  0.1 and 0.2.

8. Find by the Runge-Kutta method an approximate value of y for x  0.6, 

given that y  0.41 when x  0.4 and  /dy dx x y   

9. Using the Runge-Kutta method of order 4, find y(0.2) for the equation

,
dy y x
dx y x





, y(0)  1. Take h  0.2. 

10. Using fourth order Runge-Kutta method, integrate 
3 2–2 12 – 20 8.5,y x x x    using a step size of 0.5 and initial condition 

of y  1 at x  0.

11. Using the fourth order Runge-Kutta method, find y at x  0.1 given that 
dy/dx  3ex  2y, y(0)  0 and h  0.1. 

12. Given that dy/dx  (y2 – 2x)/(y2  x) and y  1 at x  0, find y for x  0.1, 
0.2, 0.3, 0.4, and 0.5. 
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10.8 Predictor-Corrector Methods

If xi–1 and xi are two consecutive mesh points, we have xi  xi–1  h. In 
Euler’s method (Section 10.4), we have

 -1 0 -1( - 1 , ); 1,2,3i i iy y hf x i h y i      (1)

The modified Euler’s method (Section 10.5), gives

 -1 -1 -1( , ) ( , )
2i i i i i i
h

y y f x y f x y    

The value of yi is first estimated by using (1), then this value is inserted 
on the right side of (2), giving a better approximation of yi. This value of yi 
is again substituted in (2) to find a still better approximation of yi. This step 
is repeated until two consecutive values of yi agree. This technique of refin-
ing an initially crude estimate of yi by means of a more accurate formula 
is known as predictor-corrector method. The equation (1) is therefore 
called the predictor while (2) serves as a corrector of yi.

In the methods so far described to solve a differential equation over an 
interval, only the value of y at the beginning of the interval was required. In 
the predictor-corrector methods, four prior values are needed for finding 
the value of y at xi. Though slightly complex, these methods have the ad-
vantage of giving an estimate of error from successive approximations to yi.

We now describe two such methods, namely: Milne’s method and 
Adams-Bashforth method.

10.9 Milne’s Method

Given dy/dx  f(x, y) and y  y0, x  x0; to find an approximate value of 
y for x  x0  nh by Milne’s method, we proceed as follows:

The value y0  y(x0) being given, we compute

 y1  y(x0  h), y2  y(x0  2h), y3  y(x0  3h),
by Picard’s or Taylor’s series method.

Next we calculate,

          f0  f(x0, y0), f1  f(x0  h, y1), f2  f(x0  2h, y2), f3   f(x0  3h, y3)

Then to find y4  y(x0  4h), we substitute Newton’s forward interpola-
tion formula

2 3
0 0 0 0

( 1) ( 1)( 2)
( , )

2 6
n n n n n

f x y f n f f f
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In the relation

              
0

0

4

4 0 ( , )
x h

x
y y f x y dx


 

 
 0

0

4 2
4 0 0 0 0

1
...

2

x h

x

n n
y y f n f f dx

  
       

 
 [Put x  x0  nh, dx  hdn]

                  
 4 2

0 0 0 00

1
...

2
n n

y f n f f dn
 

       
 

                  2
0 0 0 0

20
4 8 ...

3
y h f f f

 
       

 

Neglecting fourth and higher order differences and expressing 
2 3

0 0 0, and f f f    and in terms of the function values, we get

  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

which is called a predictor.

Having found y4, we obtain a first approximation to

              4 0 4( 4 , )f f x h y 

Then a better value of y4 is found by Simpson’s rule as

               4 2 2 3 44
3

c h
y y f f f   

which is called a corrector.

Then an improved value of f4 is computed and again the corrector is 
applied to find a still better value of y4. We repeat this step until y4 remains 
unchanged. Once y4 and f4 are obtained to desired degree of accuracy, y5  
y(x0  5h) is found from the predictor as

             ( )
5 1 2 3 4

4
2 2

3
p h

y y f f f   

and f5  f(x0  5h, y5) is calculated. Then a better approximation to the value 
of y5 is obtained from the corrector as

             ( )
5 3 3 4 54

3
c h

y y f f f   

We repeat this step until y5 becomes stationary and, then proceed to 
calculate y6 as before. 



450 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

This is Milne’s predictor-corrector method. To insure greater accuracy, 
we must first improve the accuracy of the starting values and then sub-
divide the intervals.

EXAMPLE 10.19

Apply Milne’s method, to find a solution of the differential equation 
2–y x y in the range 0  x  1 for the boundary condition y  0 at x  0.

Solution:

Using Picard’s method, we have

 
0

0 ( , ) ,
x

y y f x y dx   where 2( , )f x y x y 

To get the first approximation, we put y  0 in f(x, y),

Giving 
2

1 0
0

2

x
y xdx

x
  

To find the second approximation, we put

Giving 
4 2 5

2 0 4 2 20

x
y x d

x x
x

x 
    
 


Similarly, the third approximation is

 
2 5 2 5 8 12

3 0

1

2 20 2 20 160 4400

x
y x d

x x x x x x
x

  
        
   
  (i)

Now let us determine the starting values of the Milne’s method from 
(i), by choosing h  0.2.

 x0  0.0, y0  0.0000, f0
  0.0000

 x1  0.2, y1  0.020, f1
  0.1996

 x2  0.4, y2  0.0795 f2
  0.3937

 x3  0.5, y3  0.1762, f3
  0.5689

Using the predictor,  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

 x  0.8   ( )
4 0.3049,py    f4  0.7070

and the corrector,  ( )
4 2 2 3 44 ,

3
c h

y y f f f     yields

 ( )
4 0.3046cy    f4  0.7072 (ii)
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Again using the corrector,

           ( )
4 0.3046,cy  , which is the same as in (ii)

Now using the predictor,

            ( )
4 1 2 3 4

4
2 2

3
p h

y y f f f   

x 0.1,     ( )
5 0.4554py    f5  0.7926

and the corrector  ( )
5 3 3 4 54

3
c h

y y f f f     gives

           ( )
5 0.4555cy    f5  0.7925

Again using the corrector,

           ( )
5 0.4555,cy  a value which is the same as before.

Hence y(1) 0.4555.

EXAMPLE 10.20

Using Milne’s method find y(4.5) given 5xy  y2  2  0 given y(4)  1, 
y(4.1)  1.0049, y(4.2)  1.0097, y(4.3)  1.0143; y(4.4)  1.0187.

Solution:

We have 2(2 – )/5 ( )y y x f x   [say]

Then the starting values of the Milne’s method are

 x0  0, y0  1, 0
2 12

0.05
5 4

f


 


 x1  4.1, y1
  1.0049, f1  0.0485

 x2  4.2, y2
  1.0097, f2  0.0467

 x3  4.3, y3
  1.0143, f3  0.0452

 x4  4.4, y4
  1.0187, f4  0.0437

Since y5 is required, we use the predictor

                  ( )
5 1 2 3 4

4
2 2

3
p h

y y f f f      (h  0.1)

x  4.5, 
 

 ( )
5

4 0.1
1.0049 2 2.0467 0.0452 2 0.0437 1.023

3
py       
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 22

5
5

5

2 2 1.023
0.0424

5 5 4.5
y

f
x
 

  


Now using the corrector  ( )
5 3 3 4 54

3
c h

y y f f f    , we get

  ( )
5

0.1
1.0143 0.0452 4 0.0437 0.0424 1.023

3
cy      

Hence  y(4.5)  1.023

EXAMPLE 10.21

Given y x(x2  y2) e–x, y(0)  1, find y at x  0.1, 0.2, and 0.3 by Taylor’s 
series method and compute y(0.4) by Milne’s method.

Solution:

Given  y(0)  1 and h  0.1

We have 2 2( ) ( ) xy x x x y e     0 0y 

 3 2 2 2( ) ( )( ) (3 (2 ) )x xy x x xy e x y x y y e        

          3 2 2 23 2xe x xy x y xyy        ;  0 1y 

 

 

3 2 2 2 2( ) 3 2 6 2 2 ' 2

0 2

xy x e x xy x y xyy x yy xy xyy

y

               

 

Substituting these values in the Taylor’s series,

          
2 3

( ) 0 0 0 0
1! 2! 3!
x x x

y x y y y y      

      2 31 1
(0.1) 1 (0.1) 0 (0.1) 1 (0.1) 2

2 6
y      

 1  0.005 – 0.0003  1.0047, i.e., 1.005
Now taking  x  0.1, y(0.1)  1.005, h  0.1

               0.1 0.092, 0.1 0.849, 0.1 1.247y y y    

Substituting these values in the Taylor’s series about x  0.1,

   
 

 
 

 
2 30.1 0.1 0.1

(0.2) 0.1 0.1 0.1 0.1
1! 2! 3!

y y y y y      

              
     

2 3(0.1) (0.1)
1.005 (0.1) 0.092 0.849 1247

2 6
=1.018
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Now taking  x  0.2, y(0.2)  1.018, h  0.1

      0.2 0.176, 0.2 0.77, 0.2 0.819y y y    

Substituting these values in the Taylor’s series

   
 

 
 

 
2 30.1 0.1 0.1

(0.2) 0.2 0.2 0.2 0.2
1! 2! 3!

y y y y y      

 1.018  0.0176  0.0039  0.0001
                       1.04
Thus the starting values of the Milne’s method with h  0.1 are

 x0  0.0, y0  1 f0  y00
 x1  0.1, y1  1.005 f1  0.092
 x2  0.2, y2  1.018 f2  0.176
 x3  0.3, y3  1.04 f3  0.26

Using the predictor,  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

      
   2 0.092 0.1

4 0.1
1 [ 76 ]6

3
2 0.2  

                              1.09.
x  0.4  

( )
4 1.09,py     4 0.4 0.362f y 

Using the corrector,  ( )
4 2 2 3 44 ,

3
c h

y y f f f     yields

 ( )
4

0.1
0.018 (0.176 + 4(0.26) + 0.362) = 1.071

3
cy  

Hence y(0.4)  1.071

EXAMPLE 10.22

Using the Runge-Kutta method of order 4, find y for x  0.1, 0.2, 0.3 
given that dy/dx  xy  y2, y(0)  1. Continue the solution at x  0.4 using 
Milne’s method.

Solution:

We have  f(x, y)  xy  y2.

To find y(0.1):

Here x0  0, y0  1, h  0.1.

    1 0 0( , ) 0.1 0, 0.101 00k hf x y f   
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    2 0 0 1 0
1 1

, 0.1 0.0 .11555,1.05
2 2

k hf x h y k f
 

     
 



    3 0 0 2 0.1172
1 1

, 0.1 0.05,1.0577
2 2

k hf x h y k f
 

      
 

      4 0 0 3, 0.1 0.1, 0.135981.1172k hf x h y k f     

    1 2 3 4
1

2 2
6

k k k k k   

       
1

0.1 0.231 0.2343 0.1359 0.1 6 78 1 8
6

   

Thus 1 0(0.1) 1.1169y y y k   

To find y(0.2):

Here x1 0.1, y1 1.1169, h0.1

                  1 1 1, 0.1 0.1,1.116 0 13 99 . 5k hf x y f   

                2 1 1 1 0.1581
1 1

, 0.1 0.15,1.1848
2 2

k hf x h y k f
 

      
 

                3 1 1 2 0.1609
1 1

, 0.1 0.15,1.1959
2 2

k hf x h y k f
 

      
 

                  4 1 1 3, 0.1 0.2 0.1888,1.2778k hf x h y k f     

                1 2 3 4 0.16
1
6

02 2 5k k k k k    

Thus  y(0.2)  y2  y1  k  1.2773.

To find y(0.3):

Here x2  0.2, y2  1.2773, h  0.1.

                1 2 2( , ) 0.1 0.2, 0.1881.27 3 77k hf x y f     

    2 2 2 1 0.2224
1 1

, 0.1 0.25,1.3716
2 2

k hf x h y k f
 

      
 

                3 2 2 2 0.2275
1 1

, 0.1 0.25,1.3885
2 2

k hf x h y k f
 

     
 

      4 2 2 3, 0.1 0.3,1. 0.250 748 16k hf x h y k f    
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   1 2 3 4 0.22
1
6

62 2 7k k k k k    

 3 2(0.3) 1.504y y y k   

Now the starting values for the Milne’s method are:

x0  0.0  y0  1.0000  f0  1.0000
x1  0.1 y1  1.1169 f1  1.3591
x2  0.2 y2  1.2773  f2  1.8869
x3  0.3 y3  1.5049 f3  2.7132

Using the predictor

  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

 
( )

4 4 40.4 1.8344 4.0988px y f  

and the corrector,

  ( )
4 2 2 3 44

3
c h

y y f f f   

   ( )
4

0.1
1.2773 1.8869 4 2.7132 4.098

3
cy    

        1.8397 f4  4.1159.
Again using the corrector,

   ( )
4

0.1
1.2773 1.8869 4 2.7132 4.1159

3
cy    

                         1.8391 f4  4.1182 (i)
Again using the corrector,

   ( )
4

0.1
1.2773 1.8869 4 2.7132 4.1182

3
cy    

        1.8392 which is same as (i)

Hence y(0.4) 1.8392.

Exercises 10.4

1. Given 3 ,
dy

x y
dx
   y(0)  2. The values of y(0.2)  2.073, y(0.4)  2.452, 

and y(0.6)  3.023 are gotten by the R.K. method of the order. Find 
y(0.8) by Milne’s predictor-corrector method taking h  0.2 
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2. Given 2 dy/dx (1  x2)y2 and y(0)  1, y(0.1)  1.06, y(0.2)  1.12, 
y(0.3)  1.21, evaluate y(0.4) by Milne’s predictor corrector method.

3. Solve that initial value problem

 21 , (0) 1
dy

xy y
dx
  

for x  0.4 by using Milne’s method, when it is given that

x: 0.1 0.2 0.3
y: 1.105 1.223 1.355

4. From the data given below, find y at x  1.4, using Milne’s predictor-
corrector formula: dy/dx  x2  y/2:

x  1 1.1  1.2  1.3

y  2 2.2156 2.4549 2.7514

5. Using Taylor’s series method, solve 2 ,
dy

xy x
dx
   y(0)  1; at x  0.1, 

0.2, 0.3. Continue the solution at x  0.4 by Milne’s predictor-corrector 
method.

6. If y  2ex – y, y(0)  2, y(0.1)  2.01, y(0.2)  2.04, and y  2.09, find 
y(0.4) using Milne’s predictor-corrector method.

7. Using the Runge-Kutta method, calculate y (0.1), y(0.2), and y(0.3) 

given that 2

2
1.

1

dy xy
dx x
 


 y(0)  0. Taking these values as starting val-

ues, find y(0.4) by Milne’s method.

10.10 Adams-Bashforth Method

Given ( , )
dy

f x y
dx
  and y0  y(x0), we compute

 1 0 2 0 3 0( ), ( 2 ), ( 3 )y y x h y y x h y y x h       

by Taylor’s series or Euler’s method or the Runge-Kutta method.
Next we calculate

             1 0 1 2 0 2 3 0 3( , ), ( 2 , ), ( 3 , )f f x h y f f x h y f f x h y          

Then to find y1, we substitute Newton’s backward interpolation formula

 2 3
0 0 0 0

( 1) ( 1)( 2
( , )

2 6
n n n n n

f x y f n f f f
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in               
0

0
1 0 ( , )

x h

x
y y f x y


   (1)

       
1

0

2
1 0 0 0 0

( 1)
2

x

x

n n
y y f n f f dx

 
       

  

[Put x  x0  nh, dx  hdn]

 
1 2

0 0 0 00

( 1)
2

n n
y h f n f f dn

 
       

  

 2 3
0 0 0 0 0

1 5 3
2 12 8

y h f f f f
 

         
 



Neglecting fourth and higher order differences and expressing  
2 3

0 0 0,  and f f f    in terms of function values, we get

  1 0 0 1 2 355 59 37 9
24
h

y y f f f f        (2)

This is called the Adams-Bashforth predictor formula.

Having found y1, we find f1  f(x0  h1, y1).

Then to find a better value of y1, we derive a corrector formula by sub-
stituting Newton’s backward formula at f1,  i.e.,

 2 3
1 1 1 1

( 1) ( 1)( 2
( , )

2 6
n n n n n

f x y f n f f f
  

       

in (1)

 
1

0

2
1 0 1 1 1

( 1)
2

x

x

n n
y y f n f f dx

 
       

  

[Put x  x1  nh, dx  h dn]

      

0 2
0 1 1 11

( 1)
2

n n
y f n f f dn



 
       

  

      2 3
0 1 1 0 1

1 1 1
2 12 24

y h f f f f
 

         
 



Neglecting fourth and higher order differences and expressing 
2 3

1 1 1,  and f f f    and in terms of function values, we obtain

  ( )
1 0 1 0 1 29 19 5 9

24
c h

y y f f f f     

which is called the Adams-Moulton corrector formula.
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Then an improved value of f1 is calculated and again the corrector (3) is 
applied to find a still better value y1. This step is repeated until y1 remains 
unchanged and then we proceed to calculate y2 as above.

Obs. To apply both Milne and Adams-Bashforth methods, we 
require four starting values of y which are calculated by means 
of Picard’s method or Taylor’s series method or Euler’s method 
or the Runge-Kutta method. In practice, the Adams formulae 
(2) and (3) above together with the fourth order Runge-Kutta 
formulae have been found to be the most useful.

EXAMPLE 10.23

Given  2 1
dy

x y
dx
   and y(1)  1, y(1.1)  1.233, y(1.2)  1.548, 

y(1.3)  1.979, evaluate y(1.4) by the Adams-Bashforth method.

Solution:

Here f(x, y)  x2(1  y)

Starting values of the Adams-Bashforth method with h  0.1 are

x  1.0,  y–3  1.000, f–3  (1.0)2(1  1.000)  2.000
x  1.1,  y–2  1.233,  f–2  2.702
x  1.2,   y–1  1.548, f–1  3.669
x  1.3,    y0  1.979,  f0  5.035
Using the predictor,

  ( )
1 0 0 1 2 355 59 37 9

24
p h

y y f f f f      

      
4 1 11.4, 2.573 7.004p

x y f  

Using the corrector

           ( )
1 0 1 0 1 29 19 5

24
c h

y y f f f f     

 ( )
1

0.1
1.979 9 7.004 19 5.035 5 3.669 2.702 2.575

24
cy         

Hence y(1.4) 2.575

NOTE
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EXAMPLE 10.24

If 2 ,xdy
e y

dx
  y(0)  2, find y(4) using the Adams predictor corrector 

formula by calculating y(1), y(2), and y(3) using Euler’s modified formula.

Solution:

We have f(x, y)2exy

x 2exy Mean slope Oldy  h (mean slop)  new y

0 4 2  0.1(4)  2.4
0.1 2e0.1(2.4) = 5.305  1

2 4 5.305 4.6524  2  0.1 (4.6524)  2.465

0.1 2e0.1(2.465) = 5.449  1
2 4 5.465 4.7244  2  0.1 (4.7244)  2.472

0.1 2e0.1(2.4724) = 5.465  1
2 4 5.465 4.7324  2  0.1 (4.7324)  2.473

0.1 2e0.1(2.478) = 5.467  1
2 4 5.467 4.7333  2  0.1 (4.7333)  2.473

0.1 5.467 — 2  0.1 (5.467)  3.0199
0.2 2e0.2(3.0199) = 7.377  1

2 5.467 7.377 6.422  2.473  0.1 (6.422)  3.1155

0.2 7.611  1
2 5.467 7.611 6.539  2.473  0.1 (6.539)  3.127

0.2 7.639  1
2 5.467 7.639 6.553  2.473  0.1 (6.553)  3.129

0.2 7.643  1
2 5.467 7.643 6.555  2.473  0.1 (6.555)  3.129

0.2 7.463 — 3.129  0.1 (7.643)  3.893
0.3 2e0.3(3.893) = 10.51  1

2 7.643 10.51 9.076  3.129  0.1 (9.076)  4.036

0.3 10.897  1
2 7.643 10.897 9.266  3.129  0.1 (9.2696)  4.056

0.3 10.949  1
2 7.643 10.949 9.296  3.129  0.1 (9.296)  4.058

0.3 10.956  1
2 7.643 10.956 9.299  3.129  0.1 (9.299)  4.0586

To find y(0.4) by Adam’s method, the starting values with h  0.1 are

x  0.0  y–3  2.4  f–3  4
x  0.1  y–2  2.473  f–2  5.467
x  0.2  y–1  3.129 f–1  7.643
x  0.3  y0  4.059  f0  10.956
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Using the predictor formula

              
 ( )

1 0 0 1 2 355 59 37 9
24

p h
y y f f f f      

                    
 

0.1
4.059 55 10.957 59 7.643 37 5.467 9 4

24
5.383

        



Now          0.4
1 10.4 5.383 2 5.383 16.061x y f e   

Using the corrector formula

  ( )
1 0 1 0 1 29 19 5

24
c h

y y f f f f     

 
 

0.1
4.0586 9 16.061 19 10.956 5 7.643 5.467

24
5.392

       



Hence y(0.4)  5.392

EXAMPLE 10.25

Solve the initial value problem dy/dx  x – y2, y(0)  1 to find y(0.4) by 
Adam’s method. Starting solutions required are to be obtained using the 
Runge-Kutta method of the fourth order using step value h  0.1

Solution:

We have f(x, y)  x – y2.

To find y(0.1):

Here x0  0, y0  1, h  0.1.

          1 0 0( , ) 0.1 0,  – 0.10001k hf x y f  

         2 0 0 1 –0.08525
1 1

, 0.1 0.05,0.95
2 2

k hf x h y k f
 

     
 

    3 0 0 2
1 1

, 0.1 0.05,0.957 –0.08674
2 2

k hf x h y k f
 

     
 

           4 0 0 3, 0 –0..1 00.1,0.91 37 7 413k hf x h y k f    

                     1 2 3 4
1

2 2  0 0.0883
6

k k k k k    
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Thus 1 0(0.1) 1 0.0883  0.9117y y y k     

To find y(0.2):

Here x1 0.1, y1 0.9117, h 0.1

      1 1 1, 0.1 0.1,0.9117 –0.0731k hf x y f  

    2 1 1 1 0.0616
1 1

, 0.1 0.15,0.8751
2 2

k hf x h y k f
 

     
 

    3 1 1 2 0.0626
1 1

, 0.1 0.15,0.8809
2 2

k hf x h y k f
 

     
 

      4 1 1 3, 0.1 0.2 0.0521,0.8491k hf x h y k f     

  1 2 3 4 0.06
1
6

22 2 3k k k k k    

Thus  y(0.2)  y2  y1  k  0.8494.

To find y(0.3):

Here x2  0.2, y2  0.8494, h  0.1.

     1 2 2( , ) 0.1 0.25,0.8494 0.0521k hf x y f   

    2 2 2 1 0.0428
1 1

, 0.1 0.25,0.8233
2 2

k hf x h y k f
 

     
 

    3 2 2 2 0.0436
1 1

, 0.1 0.25,0.828
2 2

k hf x h y k f
 

    
 



      4 2 2 3, 0.1 0.3,0 0.0349.058k hf x h y k f   

   
 1 2 3 4 0.04

1
6

32 2 8k k k k k    

Thus 3 2(0.3) 0.8061y y y k   

Now the starting values for the Milne’s method are:

x0  0.0  y0  1.0000  f0  0.0 (0.1)2 1.0000
x1  0.1 y1  0.9117 f1  0.1 (0.9117)2 0.7312
x2  0.2 y2  0.8494  f2  0.2 (0.8494)2 0.5215
x3  0.3 y3  0.8061 f3 0.3 (0.8061)2 0.3498
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Using the predictor,

  ( )
1 0 0 1 2 355 59 37 9

24
p h

y y f f f f      

x  0.4 

        ( )
1

1

0.1
0.8061 55 0.3498 59 0.5215 37 0.7312 9 1

24
0.7789 0.2.67

py

f

        

 

Using the corrector,

 ( )
1 0 1 0 1 29 19 5

24
c h

y y f f f f     

      ( )
1

0.1
0.8061 9 0.2067 19 0.3498 5 0.5215 0.7312

24
0.7785

cy         


Hence  y(0.4)  0.7785

Exercises 10.5

1. Using the Adams-Bashforth method, obtain the solution of dy/dx  x – y2 

at x  0.8, given the values

x: 0  0.2 0.4 0.6
y: 0 0.0200  0.0795 0.1762

2. Using the Adams-Bashforth formulae, determine y(0.4) given the dif-

ferential equation 1
/

2
dy dx xy and the data:

x: 0 0.1 0.2  0.3
y: 1 1.002 5 1.0101  1.0228

3. Given y  x2 – y, y(0)  1 and the starting values y(0.1)  0.90516, 
y(0.2)  0.82127, y(0.3)  0.74918, evaluate y(0.4) using the Adams-
Bashforth method. 

4. Using the Adams-Bashforth method, find y(4.4) given 5xy  y2  2, 
y(4)  1, y(4.1)  1.0049, y(4.2)  1.0097 and y(4.3)  1.0143.

5. Given the differential equation dy/dx  x2y  x2 and the data:

x: 1 1.1 1.2  1.3

y: 1 1.233 1.548488 1.978921
determine y(1.4) by any numerical method.
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6. Using the Adams-Bashforth method, evaluate y(1.4); if y satisfies dy/dx 
 y/x  1/x2 and y(1)  1, y(1.1)  0.996, y(1.2)  0.986, y(1.3)  0.972.

10.11 Simultaneous First Order Differential Equations

The simultaneous differential equations of the type

 ( , , )
dy

f x y z
dx
  (1)

and ( , , )
dz

x y z
dx
  (2)

with initial conditions y(x0)  y0 and z(x0)  z0 can be solved by the meth-
ods discussed in the preceding sections, especially Picard’s or Runge-Kutta 
methods.

Picard’s method gives

 

1 0 0 0 1 0 0 0

2 0 1 1 2 0 1 1

3 0 2 2 3 0 2 2

( , , ) , ( , , )

( , , ) , ( , , )

( , , ) , ( , , )

y y f x y z dx z z x y z dx

y y f x y z dx z z x y z dx

y y f x y z dx z z x y z dx

    

    

    

 
 
 

and so on.

(ii) Taylor’s series method is used as follows:

If h be the step-size, y1  y(x0  h) and z1  z(x0  h). Then Taylor’s al-
gorithm for (1) and (2) gives

                  
2 3

1 0 0 0 0'
2! 3!
h h

y y hy y y        (3)

                  
2 3

1 0 0 0 02! 3!
h h

z z hz z z        (4)

Differentiating (1) and (2) successively, we get y, z, etc. So the values 
0 0 0, ,y y y    and 0 0 0, ,z z z   are known. Substituting these in (3) and (4), we 

obtain y1, z1 for the next step.
Similarly, we have the algorithms

 

2 3

2 1 1 1 12! 3!
h h

y y hy y y      
 (5)
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2 3

2 1 1 1 12! 3!
h h

z z hz z z        (6)

Since y1 and z1 are known, we can calculate 1 1, ,y y   and 1 1, ,z z  . Sub-
stituting these in (5) and (6), we get y2 and z2.

Proceeding further, we can calculate the other values of y and z step 
by step.

(iii) Runge-Kutta method is applied as follows:

Starting at (x0, y0, z0) and taking the step-sizes for x, y, z to be h, k, l 
respectively, the Runge-Kutta method gives,

                  1 0 0 0( , , )k hf x y z

                   1 0 0 0( , , )l h x y z 

                  2 0 0 1 0 1
1 1 1

, ,
2 2 2

k hf x h y k z l
 

    
 

                   2 0 0 1 0 1
1 1 1

, ,
2 2 2

l h x h y k z l
 

     
 

                  3 0 0 2 0 2
1 1 1

, ,
2 2 2

k hf x h y k z l
 

    
 

                   3 0 0 2 0 2
1 1 1

, ,
2 2 2

l h x h y k z l
 

     
 

                   4 0 0 3 0 3
1 1 1

, ,
2 2 2

k hf x h y k z l
 

    
 

                   4 0 0 3 0 3
1 1 1

, ,
2 2 2

l h x h y k z l
 

     
 

Hence  1 0 1 2 3 4
1

2 2
6

y y k k k k    

and                    1 0 1 2 3 4
1

2 2
6

z y l l l l    

To compute y2 and z2, we simply replace x0, y0, z0 by x1, y1, z1 in the 
above formulae.

EXAMPLE 10.26

Using Picard’s method, find approximate values of y and z correspond-
ing to x  0.1, given that y(0)  2, z(0)  1 and dy/dx  x  z, dz/dx  x – y2.



NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS • 465

Solution:

Here x0  0, y0  2, z0  1,

and  ( , , )
dy

f x y z x z
dx
  

 2( , , )
dz

x y z x y
dx
  

   
0

0 ( , , )
x

x
y y f x y z dx   and 

0
0 ( , , )

x

x
z z x y z dx  

First approximations

 
0 0

2
1 0 0 0

1
( , , ) 2 ( 1) 2

2

x x

x x
y y f x y z dx x dx x x        

 
0 0

2
1 0 0 0

1
( , , ) 1 ( 4) 1 4

2

x x

x x
z z x y z dx x dx x x         

Second approximations

 
0

2
2 0 1 1 0

1
( , , ) 2 (1 4 )

2

x x

x
y y f x y z dx x x dx      

      
3

23
2

2 6
x

x x   

 
0 0

2
2

2 0 1 1
1

( , , ) 1 2
2

x x

x x
z z x y z dx x x x dx

  
         

  
 

      
4 5

2 33
1 4

2 4 20
x x

x x x     

Third approximations

0

2 3 4 5 6
3 0 2 2

3 1 1 1 1
( , , ) 2

2 2 4 20 120

x

x
y y f x y z dx x x x x x x        

0
3 0 2 2( , , )

x

x
z z x y z dx  

    2 3 4 5 6 73 5 7 31 1 1
1 4

2 3 12 60 12 252
x x x x x x x       

and so on.

When  x  0.1

 y1  2.105,       y2  2.08517, y3  2.08447

 z1  0.605,         z2  0.58397, z3  0.58672.
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Hence y(0.1)  2.0845,  z(0.1)  0.5867

correct to four decimal places.

EXAMPLE 10.27 

Find an approximate series solution of the simultaneous equations dx/
dt  xy  2t, dy/dt  2ty  x subject to the initial conditions x  1, y  – 1,
t  0.

Solution:

x and y both being functions of t, Taylor’s series gives

and 
2 3

0 0 0 0

2 3

0 0 0 0

( )
2! 3!

( )
2! 3!

t t
x t x tx x x

t t
y t y ty y y


       




       





 (i)

Differentiating the given equations

  2x xy t   (ii)

  2y ty x   (iii)
w.r.t. t, we get

 
 

2x xy x y

x xy x y x y x y

    

         
  2 2

2 2 2
y ty y x

y ty y y x

    


        
 (iv)

Putting x0  1, y0  – 1, t0  0 in (ii), (iii), and (iv), we obtain

 

  

    

0

0 0 0 0 0

0

– 1 2 0 –1
 2

1.1 – 1 – 1 2 4

–3 – 1 1 4 –1 – 1 –9

x

x x y x y

x

  

   

   

   

   
   

0

0 0 0

0

1
0 2

2 –1 –1 –3
 2 2 4 8 etc

y

y y x

y

 

   

  

   

Substituting these values in (i), we get

  
2 3

2 33
( ) 1 4 9 1 2

2! 3! 2
t t

x t t t t t           

             
2 3

2 33 4
( ) 1 3 8 1

2! 3! 2 3
t t

x t t t t t          
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EXAMPLE 10.28

Solve the differential equations

 1 ,
dy dz

xz xy
dx dx
   for x  0.3

using the fourth order Runge-Kuta method. Intial values are x  0, 
y  0, z  1.

Solution:

Here  ( ,  ,  ) 1  ,  ( ,  ,  )f x y z xz x y z xy   

              x0  0, y0  0, z0  1. Let us take h  0.3.

        k1  h f (x0, y0, z0)  0.3 f (0, 0, 1)  0.3 (1  0)  0.3.

                   1 0 0 0, , 0.3 –0  0 0( )l h x y z    

 
     

2 0 0 1 0 1
1 1 1

, ,
2 2 2

0.3 0.15,0.15,1 0.3 1 0.15 0.345

k hf x h y k z l

f

 
    

 

   

                  
     

2 0 0 1 0 1
1 1 1

, ,
2 2 2

0.3 0.15 0.15 0.00675

l h x h y k z l
 

     
 

  

                 
   

 

2 2
3 0 0 0

1
, ,

2 2 2
0.3 0.15,0.1725,0.996625

0.3 1 0.996625 0.15 0.34485

k l
k hf x h y z

f

 
    

 



   

                  
   

2 2
3 0 0 0

1
, ,

2 2 2

0.3 0.15 0.1725 0.007762

k l
l h x h y z

 
     

 

  

                 
 
 

4 0 0 3 0 3, ,

0.3 0.3,0.34485,0.99224 0.3893

k hf x h y k z l

f

   

 

                  
 
   

4 0 0 3 0 3, ,

0.3 0.3 0.34485 0.03104

l h x h y k z l    

  

Hence    0 0 1 2 3 4
1

2 2
6

y x h y k k k k     
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i.e.,             1
(0.3) 0 0.3 2(0.345) 2(0.34485) 0.3893 0.34483

6
y      

and           0 1 2 3 4
1

2 2
6

z x h y l l l l     

i.e.               1
(0.3) 1 0 2 0.00675 2(0.0077625) ( 0.03104)

6
0.98999

z       



10.12 Second Order Differential Equations

Consider the second order differential equation

 
2

2
, ,

d y dy
f x y

dx dx

 
  
 

By writing dy/dx  z, it can be reduced to two first order simultaneous 
differential Equations

 , f(x, y, z)
dy dz

z
dx dx


These equations can be solved as explained above.

EXAMPLE 10.29

Find the value of y(1.1) and y(1.2) from y  y2y  x3; y(1)  1, y(1)  
1, using the Taylor series method

Solution:

Let y  z so that y  z

Then the given equation becomes z  y2z  z3

             y  z
                               z x3 – y2z (i)

such that              y(1)  1, z(1)  1, h  0.1. (ii)

Now from (i)      , ,y z y z y z        (iii)

and from (ii)       

 

 
 

3 2 2 2 2

2 2 2

2 2 3

, 3 2

6 ( 2 ) 2

6 ( 2 ) 2 2

z x y z z x y z yz y z

z x y z yy z y z y zz

x y z yz z yzz

        

         

       



 (iv)
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Taylor’s series for y(1.1) is

           
2 3

(1.1) (1) (1) 1 1 ....
2! 3!
h h

y y hy y y      

Also          (1) 1, (1) 1, (1) (1) 0, (1) (1) 1y y y z y z         

       
 

 
 

 
2 30.1 0.1

(1.1) (1) 0.1(1) 0 0 1.1002.
2 6

y     

Taylor’s series for z(1.1) is

           
2 3

(1.1) (1) (1) 1 1 ....
2! 3!
h h

z z hz z z      

Here          (1) 1, (1) 0, (1) 1, (1) 3z z z z     

       
 

 
 

 
2 30.1 0.1

(1.1) (1) 0.1(0) 1 3 1.0055
2 6

z     

Hence y(1.1)  1.1002 and z(1.1)  1.0055.

EXAMPLE 10.30

Using the Runge-Kutta method, solve y  xy2 – y2 for x  0.2 correct 
to 4 decimal places. Initial conditions are x  0, y  1, y  0.

Solution:

Let dy/dx  z  f(x, y, z)

Then 2 2– ( , , )
dy

xz y x y z
dx
 

We have x0  0, y0  1, z0  0, h  0.2

 Runge-Kutta formulae become

k1  hf(x0, y0, z0)  0.2(0)  0

 
 

2 0 1 0 1
1 1 1

, ,
2 2 2

0.2 – 0.1 – 0.02

ok hf x h y k z l
 

    
 

 

 
 

3 0 2 0 2
1 1 1

, ,
2 2 2

0.2 – 0.0999 –0.02

ok hf x h y k z l

 

 
    

 

 
 
 

4 0 3 0 3

0.2 – 0.1958 – 0 92

,

0. 3

,ok hf x h y k z l 
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  1 2 3 4
1

2 2 0.0199
6

k k k k k    

l1  hf(x0, y0, z0)  0.2(– 1)  – 0.2

 2 0 0 1 0 1
1 1 1

, ,
2 2 2

0.2( 0.999) 0.1998

l h x h y k z l
 

     
 

  

 
 

3 0 0 2 0 2
1 1 1

, ,

0.2 – 
2 2 2

0.9791 –0.1958

l h x h y k z l
 

    

 


 

 
 
 

4 0 0 3 0 3, ,

0.2 0.9527 –0.1905

l h x h y k z l

 

    

  1 2 3 4
1

2 2 0.1970
6

l l l l l    

Hence at x  0.2,

                           y  y0  k  1 – 0.0199  0.9801

and               y  z  z0  l  0 – 0.1970  – 0.1970.

EXAMPLE 10.31

Given y  xy  y  0, y(0)  1, y(0)  0, obtain y for x  0(0.1) 0.3 by 
any method. Further, continue the solution by Milne’s method to calculate 
y(0.4).

Solution:

Putting y  z, the given equation reduces to the simultaneous equa-
tions

 z  xz  y  0, y  z (1)
We employ Taylor’s series method to find y.

Differentiating the given equation n times, we get

 yn2  xn+1 nyn  yn  0

At x  0, (yn2)0  – (n  1)(yn)0

  y(0)  1, gives y2(0)  – 1, y4(0)  3, y6(0)  – 5 × 3, ...... 

and y1(0)  0 yields y3(0)  y5(0)  ......  0.
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Expanding y(x) by Taylor’s series, we have

       
2 3

1 2 3( ) (0) (0) (0) (0)
2! 3!
x x

y x y xy y y    

                   
2

4 63 5 3
( ) 1

2! 4! 6!
x

y x x x


      (2)

and 3 51 1
( ) ( ) ,

2 8
z x y x x x x xy       (3)

From (2), we have

     
 

 

 
   

 
     

2
4

2 4

2 4 6

0.1 1
0.1 1 0.1 0.995

2 8
0.2 0.2

0.2 1 0.9802
2 8

0.3 0.3 0.3
0.3 1 0.956

2 8 48

y

y

y

    

    

    







From (3), we have 

    z(0.1)  – 0.0995, z(0.2)  – 0.196, z(0.3)  – 0.2863.

Also from (1), z(x)  – (xz  y)

 z(0.1)  0.985, z(0.2)  – 0.941, z(0.3)  – 0.87. 

Applying Milne’s predictor formula, first to z and then to y, we obtain

             

 

4
3

0.4
0

3

0.4 0 0.1 2 0.1 – 0.2 2 0.3

– 1.79  0.941 – 1.74 –0.3692

z z z z z



     

 


  
 

and              

 

4
3

0.4
3

0.4 0 0.1 2 0.1 – 0.2 2 0.3

0 – 0.199 0.196 – 0.5736 0.9231

y y y y y



     

   


 
 

 [ y  z]

Also z(0.4)  – {x(0.4) z(0.4)  y(0.4)}

 – {0.4(– 0.3692)  0.9231}  – 0.7754.

Now applying Milne’s corrector formula, we get

           

 

0.4 0.2 0.2 4 0.3 0.4

–0.196 –0.941 – 3.48 – 0.7754 –0.3692

3
0.1
3

z z z z z
h
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and           

 

0.4 0.2 0.2 4 0.3 0.4
3

0.9802 –0.196 – 1.1452 – 0.3692 0.923
0

2
.1
3

h
y y y y y      

  
 
 
 

Hence y(0.4)  0.9232 and z(0.4)  – 0.3692.

Exercises 10.6

1. Apply Picard’s method to find the third approximations to the values of y 
and z, given that 

dy/dx  z, dz/dx  x3(y  z), given y  1, z  1/2 when x  0.

2. Using Taylor’s series method, find the values of x and y for t  0.4, 
satisfying the differential equations
dx/dt  x  y  t, d2y/dt2  x – t with initial conditions x  0, y  1, 
dy/dt  – 1 at t  0.

3. Solve the following simultaneous differential equations, using Taylor 
series method of the fourth order, for x  0.1 and 0.2:

  1; ; 0 1.
dy dz

xz xy y
dx dy
   

4. Find y(0.1), z(0.1), y(0.2), and z(0.2) from the system of equations: y 
x  z, z  x – y2 given y(0)  0, z(0)  1 using Runge-Kutta method of the 
fourth order.

5. Using Picard’s method, obtain the second approximation to the solution 
of

  
2

3 3
2

d y dy
x x y

dxdx
   so that    

1
0 1. 0 .

2
y y 

6. Use Picard’s method to approximate y when x  0.1, given that
2

2

2
2 2 0

2
d y d y dy

x x y
dx dxdx

    and 0.5,
0.1

dy
y

dx



 when x  0.

7. Find y(0.2) from the differential equation y  3xy – 6y  0 where y(0) 
 1, y(0)  0.1, using the Taylor series method.

8. Using the Runge-Kutta method of the fourth, solve y  y  xy, y(0)  1, 
y(0)  0 to find y(0.2) and y(0.2).
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9. Consider the second order initial value problem y – 2y  2y  e2t sin t 
with y(0)  – 0.4 and y(0)  – 0.6. Using the fourth order Runga-Kutta 
method, find y(0.2).

10. The angular displacement  of a simple pendulum is given by the equa-
tion

 
2

2 sin 0
1
gd

dt

 

where l  98 cm and g  980 cm/sec2. If   0 and d/dt  4.472 at t  0, 
use the Runge-Kutta method to find  and d/dt when t  0.2 sec.

11. In a L-R-C circuit the voltage v(t) across the capacitor is given by the 
equation 

 
2

2 0
d v dv

LC RC v
dtdt

  

subject to the conditions t  0, v  v0, dv/dt  0.
Taking h  0.02 sec, use the Runge-Kutta method to calculate v and 
dv/dt when t  0.02, for the data v0  10 volts, C  0.1 farad, L  0.5 henry 
and R  10 ohms.

10.13 Error Analysis

The numerical solutions of differential equations certainly differ from 
their exact solutions. The difference between the computed value yi and the 
true value y(xi) at any stage is known as the total error. The total error at 
any stage is comprised of truncation error and round-off error.

The most important aspect of numerical methods is to minimize the 
errors and obtain the solutions with the least errors. It is usually not pos-
sible to follow error development quite closely. We can make only rough 
estimates. That is why, our treatment of error analysis at times, has to be 
somewhat intuitive.

In any method, the truncation error can be reduced by taking smaller 
sub-intervals. The round-off error cannot be controlled easily unless the 
computer used has the double precision arithmetic facility. In fact, this er-
ror has proved to be more elusive than the truncation error.

The truncation error in Euler’s method is 21
,

2
h yn  i.e., of (h2) while 

that of modified Euler’s method is 31
,

2 nh y  .i.e., of (h3)
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Similarly in the fourth order of the Runge-Kutta method, the trunca-
tion error is of O(h5).

In the Milne’s method, the truncation error

due to predictor formula 514
45

v
ny h

and due to corrector formula 51
90

v
ny h .

i.e., the truncation error in Milne’s method is also of O(h5).

Similarly the error in the Adams-Bashforth method is of the fifth order. 
Also the predictor error TP and the corrector error Tc are so related that 
19TP  – 251 Tc.

The relative error of an approximate solution is the ratio of the total 
error to the exact value. It is of greater importance than the error itself for 
if the true value becomes larger, then a larger error may be acceptable. If 
the true value diminishes, then the error must also diminish otherwise the 
computed results may be absurd.

EXAMPLE 10.32

Does applying Euler’s method to the differential equation

dy/dx  f(x, y), y(x0)  y0, estimate the total error?

When f(x, y)  – y, y(0)  1, compute this error neglecting the round-off 
error.

Solution:

We know that Euler’s solution of the given differential equation is

 yn+1  yn  hf(xn, yn) where xn  x0  nh.

i.e.,           yn+1  yn  hyn (1)
Denoting the exact solution of the given equation at x  xn by y(xn) and 

expanding y(xn1) by Taylor’s series, we obtain

  
2

1( ) ( ) ( ) , , 1
2!n n n n n n n
h

y x y x hy x y x x          (2)

 The truncation error Tn1  y(xn1) – yn1  (1/2)h2 y  (n)

Thus the truncation error is of O(h2) as h  0.
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To include the effect of round-off error Rn, we introduce a new ap-
proximation yn which is defined by the same procedure allowing for the 
round-off error.

  1 1,n n n n ny y hf x y R     (3)
 The total error is defined by

1 1 1( ) –n n nyE y x  
 [(2) – (3)]

             
   

2

1

1 1

( ) ( ) ( , )
2!

( ) ( ) ( , )

n n n n n nn

n n n n n nn

h
y x hy x y y hf x y R

y x y h h x f x y T R



 

       

          
 (4)

Assuming continuity of f/y and using Mean-Value theorem, we have

f[xn, y(xn)] – f(xn, yn)  [y(xn) – yn] fy(xn, n ), where n lies between y(xn) 
and yn.

 (4) takes the form

                     1 1 1( ) – 1 [ ,  nn n y n n n nE y x hf x T Ry       

or En1  En [1  hfy(xn, n )]  Tn1  Rn+1 (5)

This is the recurrence formula for finding the total error. The first terms 
on the right-hand side is the inherited error, i.e., the propagation of the er-
ror from the previous step yn to yn1.

(b) We have dy/dx  – y, y(0)  1.

Taking h  0.01 and applying (1) successively, we obtain

 y(0.01)  1  0.01(– 1)  0.99

 y(0.02)  0.99  0.01 (– 0.99)  0.9801

 y(0.03)  0.9703, y(0.04)  0.9606

 The truncation error

Tn1  (1/2)h2y( )  0.00005y )  5 × 10–5 y(xn) [ dy/dx is – ve]

i.e.,               T1  5 × 10–5 y(0)  5 × 10–5

 T2  5 × 10–5 y(0.01)  5 × 10–5 (0.99) < 5 × 10–5

 T3  5 × 10–5 y(0.02)  5 × 10–5 (0.9801) < 5 × 10–5

 T4  5 ×10–5 y(0.03)  5 × 10–5 (0.9703) < 5 × 10–5 etc.
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Also 1  hf0(xn, yn)  1  0.01(– 1)  0.99.

Neglecting the round-off error and using the above results, (5) gives

 E0  0, E1  E0(0.99)  T1  5 × 10–5  0.00005

 E2  E1(0.99)  T2 < 5 × 10–5  5 × 10–5  0.0001

 E3  E2(0.99)  T3 < 10–4  5 × 10–5  0.00015

 E4  E3(0.99)  T4 < 1.5 × 10–4  5 × 10–5  0.0002 etc.

Obs. The exact solution is y  e–x.
 Actual error in y(0.03)  e–0.03 – 0.9703  0.00014
and  actual error in y(0.04)  e–0.04 – 0.9606  0.00019.

 Clearly the total error E4 agrees with the actual error in y(0.04).

10.14 Convergence of a Method

Any numerical method for solving a differential equation is said to be 
convergent if the approximate solution yn approaches the exact solution 
y(xn) as h tends to zero provided the rounding errors arise from the initial 
conditions approach zero. This means that as a method is continually re-
fined by taking smaller and smaller step-sizes, the sequence of approximate 
solutions must converge to the exact solution.

Taylor’s series method is convergent provided f(x, y) possesses enough 
continuous derivatives. The Runge-Kutta methods are also convergent un-
der similar conditions. Predictor corrector methods are convergent if f(x, y) 
satisfies the Lipschitz condition, i.e.,

 ( , ) – ,  | ( ) |– , f x y f x y k y y  
k being a constant, then the sequence of approximations to the numeri-

cal solution converges to the exact solution.

10.15 Stability Analysis

There is a limit to which the step-size h can be reduced for controlling 
the truncation error, beyond which a further reduction in h will result in 
the increase of round-off error and hence increase in the total error. This 
behavior of the error bound is shown in Figure 10.3.

In such situations, we have to use stable methods so that an error intro-
duced at any stage does not get magnified.

NOTE
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A method is said to be stable if it produces a bounded solution which 
imitates the exact solution. Otherwise it is said to be unstable. If a method 
is stable for all values of the parameter, it is said to be absolutely or uncon-
ditionally stable. If it is stable for some values of the parameter, it is said to 
be conditionally stable.

The Taylor’s method and Adams-Bashforth method prove to be rela-
tively stable. Euler’s method and the Runge-Kutta method are condition-
ally stable as will be seen from Example 10.23.

The Milne’s method is however, unstable since when the parameter is 
negative, each of the errors is magnified while the exact solution decays.

Total
erro

r

Truncat
ion err

or

Round-off error

Optimum, h

E
rr

or

FIGURE 10.3

EXAMPLE 10.33

Does applying Euler’s method to the equation

dy/dx  y, given y(x0)  y0,

determine its stability zone? What would be the range of stability when 
 – 1?

Solution:

We have y  y, y(x0)  y0 (1)

By Euler’s method,

   yn  yn–1  hyn–1  yn–1  hyn–1  (1  h)yn–1 [by (1)
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 yn–1  (1  h) yn–2

             ....................................... 

               y2  (1  h) y1

               y1  (1  h) y0

Multiplying all these equations, we obtain

                   yn  (1 h)n y0 (2)
Integrating (1), we get y  cex

Using y(x0)  y0, y0  cex0    y  y0e
l(x–x0)

In particular, the exact solution through (xn, yn) is

     0
0 0

xn x nh
ny y e y e     [ xn  x0  nh]

or 
 2

0 0( ) 1
2

n

h n
n

h
y y e y h

 
     

 
  (3)

– 2

Im(λh)

Re(λh)

Unstable

Stable

– 1

FIGURE 10.4

Clearly the numerical solution (2) agrees with exact solution (3) for 
small values of h. The solution (2) increases if |1  h| > 1.

Hence |1  h|< 1 defines a stable zone.

When  is real, then the method is stable if |1  h| < 1 i.e. – 2 < h < 0

When  is complex (  a  ib), then it is stable if

|1  (a  ib) h | < 1 i.e. (1  ah)2  (bh)2 < 1

i.e., (x  1)2  y2 < 1, [where x  ah, y  bh.]
i.e., h lies within the unit circle shown in Figure 10.4.

When  is imaginary ( ib), |1  h|  1, then we have a periodic-stability.
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Hence Euler’s method is absolutely stable if and only if

(i) real : – 2 < h  0.

(ii) complex : h lies within the unit circle (Figure 10.4), i.e., Euler’s 
method is conditionally convergent.

When   – 1, the solution is stable in the range – 2 < – h < 0 
i.e. 0 < h < 2.

Exercises 10.7

1. Show that the approximate values yi, obtained from y  y with y(0)  1 
by Taylor’s series method, converge to the exact solution for h tending to 
zero.

2. Show that the modified Euler’s method is convergent.

3. Starting with the equation y  y, show that the modified Euler’s 
method is relatively stable.

4. Apply the fourth order Runge-Kutta method to the equation dy/dx  y, 
y(x0)  y0 and show that the range of absolute stability is
   – 2.78 < h < 0.

5. Find the range of absolute stability of the equation
y  10y  0, y(0)  1, using

(a) Euler’s method, (b) Runge-Kutta method.

6. Show that the local truncation errors in the Milne’s predictor and cor-
rector formulae are

514
45

uh y and 51
,

90
uh y respectively.

10.16 Boundary Value Problems

Such a problem requires the solution of a differential equation in a 
region R subject to the various conditions on the boundary of R. Practical 
applications give rise to many such problems. We shall discuss two-point 
linear boundary value problems of the following types:

 (i)       
2

2

d y dy
x x y x

dxdx
     with the conditions y(x0)  a, 
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y(xn)  b.

(ii)     
4

4

d y
x y x

dx
    with the conditions y(x0)  y(x0)  a and 

y(xn)  y(xn)  b.

There exist two numerical methods for solving such boundary value 
problems. The first one is known as the finite difference method which 
makes use of finite difference equivalents of derivatives. The second one is 
called the shooting method which makes use of the techniques for solving 
initial value problems.

10.17 Finite-Difference Method

In this method, the derivatives appearing in the differential equation 
and the boundary conditions are replaced by their finite-difference ap-
proximations and the resulting linear system of equations are solved by any 
standard procedure. These roots are the values of the required solution at 
the pivotal points.

The finite-difference approximations to the various derivatives are 
derived as under:

If y(x) and its derivatives are single-valued continuous functions of x 
then by Taylor’s expansion, we have

          
2 3

2! 3!
h h

y x h y x hy x y x y x         (1)

and          
2 3

2! 3!
h h

y x h y x hy x y x y x         (2)
Equation (1) gives

        
1

2
h

y x y x h y x y x
h
        

i.e.,                          
1

( )y x y x h y x O h
h
      

which is the forward difference approximation of y(x) with an error of the 
order h.

Similarly (2) gives

      
1

( )y x y x y x h O h
h
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which is the backward difference approximation of y(x) with an error of 
the order h.

Subtracting (2) from (1), we obtain

     21
( )

2
– – ( )y y x h yx x

h
h O h     

which is the central-difference approximation of y(x) with an error of the 
order h2. Clearly this central difference approximation to y(x) is better than 
the forward or backward difference approximations and hence should be 
preferred.

Adding (1) and (2), we get

            
2

21
( ) ( )– 2 ( – ) ( )y y x h y y x

h
h O hx x      

which is the central difference approximation of y(x). Similarly we can de-
rive central difference approximations to higher derivatives.

Hence the working expressions for the central difference approxima-
tions to the first four derivatives of yi are as under:

                            
1 –1

1
–( )

2i i ih
y y y   (3)

                              1 –12 2
1

–i i i iy y y y
h     (4)

  2 1 –13 –2 – 2 –
1

2
2i i i i ih

y y y y y      (5)

          24 1 –1 –2– 4 6 – 4
1iv

i i i i i iy y y y y y
h       (6)

Obs. The accuracy of this method depends on the size of the 
sub-interval h and also on the order of approximation. As we 
reduce h, the accuracy improves but the number of equations to 
be solved also increases.

EXAMPLE 10.34

Solve the equation y  x  y with the boundary conditions y(0)  
y(1)  0.

Solution:

We divide the interval (0, 1) into four sub-intervals so that h  1/4 and 
the pivot points are at x0  0, x1  1/4, x2  1/2, x3  3/4, and x4  1.

NOTE
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Then the differential equation is approximated as

 1 12 –– 2
1

i i i i ih
y y y x y
     

or 16yi1 – 33yi  16i–1  xi, i  1, 2, 3.

Using y0  y4  0, we get the system of equations

2 1 3 2 1 3 2
1 3

16 – 33 16 – 33 16 ;– 33 16
2 4

1
;

4
y y y y y y y    

Their solution gives

y1  – 0.03488, y2  – 0.05632, y3  – 0.05003.

Obs. The exact solution being 
sinh

( ) ,
sinh1

x
y x x   the error at 

each nodal point is given in the table below:

x Computed value y(x) Exact value y(x) Error
0.25 – 0.03488 – 0.03505 0.00017
0.5 – 0.05632 – 0.05659 0.00027
0.75 – 0.05003 – 0.05028 0.00025

EXAMPLE 10.35

Using the finite difference method, find y(0.25), y(0.5), and y(0.75) sat-

isfying the differential equation 
2

2 ,
d y

y x
dx
   subject to the boundary condi-

tions y(0)  0, y(1)  2.

Solution:

Dividing the interval (0, 1) into four sub-intervals so that h  0.25 and 
the pivot points are at x0  0, x1  0.25, x2  0.5, x3  0.75, and x4  1.

The given equation y(x)  y(x)  x, is approximated as

 1 12 –– 2
1

i i i i ih
y y y y x
   

or  16yi1 – 31yi  16yi–1  xi  (i)

Using y0  0 and y4  2, (i) gives the system of equation,

  (i  1) 16y2 – 31y1  0.25; (ii)

  (i  2) 16y3 – 31y2  16y1  0.5 (iii)

  (i  3) 32 – 31y3  16y2  0.75, i.e., – 31y3  16y2  – 31.25  (iv)

NOTE
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Solving the equations (ii), (iii), and (iv), we get
 y1  0.5443, y2  1.0701, y3  1.5604

Hence y (0.25)  0.5443, y(0.5)  1.0701, y(0.75)  1.5604

EXAMPLE 10.36

Determine values of y at the pivotal points of the interval (0, 1) if y 
satisfies the boundary value problem yiv  81y  81x2, y(0)  y(1)  y(0)  
y (1)  0. (Take n  3).

Solution:

Here h  1/3 and the pivotal points are x0  0, x1  1/3, x2  2/3, x3  1. 
The corresponding y-values are y0( 0), y1, y2, y3( 0).

Replacing yiv by its central difference approximation, the differential 
equation becomes

   2
2 1 –1 –24 – 4 6

1
– 4 81 81i i i i i i iy y y y y y x

h      

or yi2 – 4yi1  7yi – 4yi–1  yi–2  xi
2, i  1, 2

At        i  1, y3 – 4y2  7y1 – 4y0  y–1  1/9

At           i  2, y4 – 4y3  7y2 – 4y1  y0  4/9

Using y0  y3  0, we get – 4y2  7y1  y–1  1/9  (i)

                           y4  7y2 – 4y1  4/9 (ii)
Regarding the conditions y0  y3  0, we know that

                       12 –1
1

( – )2i i iyi y y y
h  

At i  0,   y0  9 (y1 – 2y0  y–1) or y–1  – y1 [ y0  y0  0] (iii)

At i  3,          y3  9(y4 – 2y3  y2) or y4  – y2 [ y3  y3  0] (iv)
Using (iii), the equation (i) becomes

          – 4y2  6y1  1/9  (v)
Using (iv), the equation (ii) reduces to

              6y2 – 4y1  4/9 (vi)
Solving (v) and (vi), we obtain
         y1  11/90 and y2  7/45.

Hence y(1/3)  0.1222 and y(2/3)  0.1556.
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EXAMPLE 10.37

The deflection of a beam is governed by the equation 
4

4 81 ( ),
d y

y x
dx
   

where f(x) is given by the table

x 1/3 2/3 1
(x) 81 162 243

and boundary condition y(0)  y(0)  y(1)  y(1)  0. Evaluate the de-
flection at the pivotal points of the beam using three sub-intervals. 

Solution:

Here h  1/3 and the pivotal points are x0  0, x1  1/3, x2  2/3, x3  1. 
The corresponding y-values are y0( 0), y1, y2, y3.

The given differential equation is approximated to

    2 1 –1 –4 2– 4 6 – 4
1

81i i i i i i iy y y y y y x
h      

At i  1, y3 – 4y2  7y1 – 4y0  y–1  1 (i)

At i  2,    y4 – 4y3  7y2 – 4y1  y0  2 (ii)

At i  3,    y5 – 4y4  7y3 – 4y2  y1  3 (iii)

We have     y0  0 (iv)

Since                                       1 –1–
1

2 i iyi
h

y y  

 for i  0,             0 1 10 – – 1 i.e., – 1
1

2
y

h
y y y y     (v)

Since              12 –1–  2
1

i i iyi y y
h

y   

 for i  3,               2 4 3 223 4 30 – 2 , i.e.,  2 –
1

y y y y y y
h

y      (vi)

Also               2 1 –13 –2 – 2 –
1

2
2i i i i ih

y y y y y     

 for i  3,  3 5 43 2 1
1

 – –
2

0 2 2y y y y y
h

    

i.e.,                          y5  2y4 – 2y2  y1 (vii)
Using (iv) and (v), the equation (i) reduces to

 y3 – 4y2  8y1  1 (viii)
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Using (iv) and (vi), the equation (ii) becomes

 – y3  3y2 – 2y1  1 (ix)
Using (vi) and (vii), the equation (iii) reduces to

 3y3 – 4y2  2y1  3 (x)
Solving (viii), (ix), and (x), we get

 y1  8/13, y2  22/13, y3  37/13.

Hence y(1/3)  0.6154, y(2/3)  1.6923, y(1)  2.8462.

10.18 Shooting Method

In this method, the given boundary value problem is first transformed 
to an initial value problem. Then this initial value problem is solved by Tay-
lor’s series method or Runge-Kutta method, etc. Finally the given bound-
ary value problem is solved. The approach in this method is quite simple.

Consider the boundary value problem

 y(x)  y(x), y(x)  A, y(b)  B (1)
One condition is y(a)  A and let us assume that y(a)  m which rep-

resents the slope. We start with two initial guesses for m, then find the cor-
responding value of y(b) using any initial value method.

Let the two guesses be m0, m1 so that the corresponding values of y(b) 
are y(m0, b) and y(m1, b). Assuming that the values of m and y(b) are lin-
early related, we obtain a better approximation m2 for m from the relation:

        
1 02 1

1 1 0, , ,
m mm m

y b y m b y m b y m b



 

This gives         
   

   2 1 1 0
1 0, ,

y m b y b
m m m m

y m b y m b
    (2)

We now solve the initial value problem

       y(x)  y(x), y(a)  A, y(a)  m2

and obtain the solution y(m2, b).

To obtain a better approximation m3 for m, we again use the linear rela-
tion (2) with [m1, y(m1, b)] and [m2, y(m2, b)]. This process is repeated until 
the value of y(mi, b) agrees with y(b) to desired accuracy.
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y(x)

0 x0 = a x1 x2 x3 xi = b 
x

(y′(a) = m0)

B1 = y(m1,b)

B2 = y(m2,b)

2B=y(b)

B0 =y(ma,b)

A

D
i re

cti
on of s hootin g

(y′(a) = m1)

FIGURE 10.5

Obs. This method resembles an artillery problem and as such 
is called the shooting method (Figure 10.5). The speed of 
convergence in this method depends on our initial choice of 
two guesses for m. However, the shooting method is quite slow 
in practice. Also this method is quite tedius to apply to higher 
order boundary value problems.

EXAMPLE 10.38

Using the shooting method, solve the boundary value problem:

 y(x)  y(x), y(0)  0 and y(1)  1.17.
Solution:

Let the initial guesses for y(0)  m be m0  0.8 and m1  0.9. 
Then y(x)  y(x), y(0)  0 gives

   y(0)  m  y(0)  y(0)  0

 y(0)  y(0)  m,  yiv(0)  y(0)  0

        yv(0)  y(0)  m, yvi(0)  yiv(0)  0

and so on.

Putting these values in the Taylor’s series, we have

 

       
2 3

3 5 7

( ) 0 0 0 0
2! 3!

6 120 5040

x x
y x y xy y y

x x x
m x

      

 
     
 





NOTE
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 y(1)  m(1  0.1667  0.0083  0.0002  )  m (1.175)

For m0  0.8, y(m0, 1)  0.8 × 1.175  0.94

For m1  0.9, y(m1, 1)  0.9 × 1.175  1.057

Hence a better approximation for m, i.e., m2 is given by

        
 

   

   
1

2 1 1 0
1 0

,1 1

,1 ,1

y m y
m m m m

y m y m


  



  
1.057 1.175

0.9 0.1 0.9 0.10085 1.00085
1.057 0.94


    



which is closer to the exact value of y(0)  0.996 

We now solve the initial value problem

 y(x)  y(x), y(0)  0, y(0)  m2.
Taylor’s series solution is given by

 y(m2, 1)  m2 (1.175)  1.1759
Hence the solution at x  1 is y  1.176 which is close to the exact value 

of y(1)  1.17.

Exercises 10.8

1. Solve the boundary value problem for x  0.5:

                       
2

2 1 0, 0 1 0.
d y

y y y
dx
      (Take n  4)

2. Find an approximate solution of the boundary value problem:

y  8(sin2 y) y  0, 0  x  1, y(0)  y(1)  1. (Take n  4)

3. Solve the boundary value problem:

xy  y  0, y(1)  1, y(2)  2. (Take n  4)

4. Solve the equation y – 4y  4y  e3x, with the conditions y(0)  0, 
y(1)  – 2, taking n  4.

5. Solve the boundary value problem y – 64y  10  0 with y(0)  y(1)  0 
by the finite difference method. Compute the value of y(0.5) and com-
pare with the true value.
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6. Solve the boundary value problem
  y  xy  y  3x2  2, y(0)  0, y(1)  1.

7. The boundary value problem governing the deflection of a beam of 
length three meters is given by

        
4

2
4

1 2
2 4, 0 0 3 3 0.

9 3
d y

y x x y y y y
dx

        

The beam is built-in at the left end (x  0) and simply supported at the 
right end (x  3).
Determine y at the pivotal points x  1 and x  2.

8. Solve the boundary value problem,

        
4

2
4 81 729 0 0 1 1 0. Use 3

d y
y x y y y y n

dx
        

9. Solve the equation yiv – y  y  x2, subject to the boundary conditions

y(0)  y(0)  0 and y(1)  2, y(1)  0. (Take n  5).

10. Apply shooting method to solve the boundary value problem 

    
2

, 0 0 and y 1 1.1752.
2

d y
y y

dx
  

11. Using shooting method, solve the boundary value problem

    
2

26 , 0 1, 0.5 0.44
2

d y
y y y

dx
  

10.19 Objective Type of Questions

Exercises 10.9

Select the correct answer or fill up the blanks in the following questions:

1. Which of the following is a step by step method:
(a) Taylor’s  (b) Adams-Bashforth
(c) Picard’s  (d) None.

2. The finite difference scheme for the equation 2y  y  5 is ...... .

3. If y  x  y, y(0)  1 and y(1)  1  x  x2/2, then by Picard’s method, the 
value of y(2)(x) is ......
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4. The iterative formula of Euler’s method for solving y  f(x, y) with 
y(x0)  y0, is ....... .

5. Taylor’s series for solution of first order ordinary differential equations 
is ......... .

6. The disadvantage of Picard’s method is ...... .

7. Given y0, y1, y2, y3, Milne’s corrector formula to find y4 for dy/dx 
 f(x, y), is ...... .

8. The second order Runge-Kutta formula is ...... .

9. Adams-Bashforth predictor formula to solve y  f(x, y), given y0  y(x0) 
is .... .

10. The Runge-Kutta method is better than Taylor’s series method because 
...... .

11. To predict Adam’s method atleast ...... values of y, prior to the desired 
value, are required.

12. Taylor’s series solution of y – xy  0, y(0)  1 upto x4 is ...... .

13. If dy/dx is a function of x alone, the fourth order Runge-Kutta method 
reduces to ....... 

14. Milne’s Predictor formula is ....... .

15. Adam’s Corrector formula is ....... .

16. Using Euler’s method, dy/dx  (y – 2x)/y, y(0)  1; gives y (0.1)  ..... .

17. 
2

2
2 0

d y dy
y y

dxdx
    is equivalent to a set of two first order differential 

equations ...... and ...... .

18. The formula for the fourth order Runge-Kutta method is ...... .

19. Taylor’s series method will be useful to give some ...... of Milne’s 
method.

20. The names of two self-starting methods to solve y  f(x, y) given 
y(x0)  y0 are ...... .

21. In the derivation of the fourth order Runge-Kutta formula, it is called 
fourth order because ..... 
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22. If y  x – y, y(0)  1 then by Picard’s method, the value of y(1) (1) is ...... .
(a) 0.915  (b) 0.905 (c) 1.091 (d) none.

23. The finite difference formulae for y(x) and y(x) are ...... . 

24. If y  – y, y(0)  1, then by Euler’s method, the value of y(1) is
(a) 0.99  (b) 0.999 (c) 0.981 (d) none.

25. Write down the difference between initial value problem and boundary 
value problem ..... . 

26. Which of the following methods is the best for solving initial value prob-
lems:
(a) Taylor’s series method 
(b) Euler’s method
(c) Runge-Kutta method of the fourth order
(d) Modified Euler’s method. 

27. The finite difference scheme of the differential equation y  2y  0 is 
.....

28. Using the modified Euler’s method, the value of y(0.1) for

 , 0 1
dy

x y y
dx
    is

(a) 0.809  (b) 0.909 (c) 0.0809 (c) none.

29. The multi-step methods available for solving ordinary differential equa-
tions are ...... .

30. Using the Runge Kutta method, the value of y(0.1) for y  x – 2y, y(0)  
1, taking h  0.1, is ...... 
(a) 0.813  (b) 0.825 (c) 0.0825 (c) none.

31. In Euler’s method, if h is small the method is too slow, if h is large, it 
gives inaccurate value. (True or False)

32. Runge-Kutta method is a self-starting method. (True or False)

33. Predictor-corrector methods are self-starting methods. (True or False) 



C H A P T E R11
NUMERICAL SOLUTION OF 
PARTIAL DIFFERENTIAL EQUATIONS

Chapter Objectives

 Introduction 
 Classification of second order equations
 Finite-difference approximations
 Elliptic equations to partial derivatives
 Solution of Laplace equation
 Solution of Poisson’s equation
 Solution of elliptic equations by relaxation
 Parabolic equations method
 Solution of one-dimensional heat equation 
 Solution of two-dimensional heat equation
 Hyperbolic equations
 Solution of wave equation

11.1 Introduction

Partial differential equations arise in the study of many branches 
of applied mathematics, e.g., in fluid dynamics, heat transfer, 
boundary layer flow, elasticity, quantum mechanics, and electro-
magnetic theory. Only a few of these equations can be solved by 
analytical methods which are also complicated by requiring use of 
advanced mathematical techniques. In most of the cases, it is easier 
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to develop approximate solutions by numerical methods. Of all the numeri-
cal methods available for the solution of partial differential equations, the 
method of finite differences is most commonly used. In this method, the 
derivatives appearing in the equation and the boundary conditions are re-
placed by their finite difference approximations. Then the given equation 
is changed to a system of linear equations which are solved by iterative pro-
cedures. This process is slow but produces good results in many boundary 
value problems. An added advantage of this method is that the computation 
can be carried by electronic computers. To accelerate the solution, some-
times the method of relaxation proves quite effective.

Besides discussing the finite difference method, we shall briefly de-
scribe the relaxation method also in this chapter.

11.2 Classification of Second Order Equations

The general linear partial differential equation of the second order in 
two independent variables is of the form

      
2 2 2

2 2

u u u u u
x,y x,y x,y x,y,u , 0

x y x yx y
A B C

d

     
    

     
 (1)

Such a partial differential equation is said to be

(i) elliptic if B2 – 4AC < 0, (ii) parabolic if B2 – 4AC = 0, and 
(iii) hyperbolic if B2 – 4AC > 0.

Obs. A partial equation is classified according to the region 
in which it is desired to be solved. For instance, the partial 
differential equation fxx  fyy  0 is elliptic if y > 0, parabolic if y 
 0, and hyperbolic if y < 0.

EXAMPLE 11.1

Classify the following equations:

(i) 
2 2 2

2 24 4 2 0
u u u u u

x y x yx y
    
    
    

(ii)  
2 2

2 2
2 21 0, , 1
u u

x y x y
x y
 
     

 

NOTE
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(iii)      
2 2 2

2 2 2
2 21 5 2 4 0.
u u u

x x x
x tx t

  
     

  
Solution:

  (i) Comparing this equation with (1) above, we find that t2

           A  1, B  4, C  4

           B2 – 4AC  (4)2 – 4 × 1 × 4  0
So the equation is parabolic.

 (ii) Here A  x2, B  0, C  1 – y2

              B2 – 4AC  0 – 4x2 (1 – y2)  4x2(y2 – 1)
For all x between –  and , x2 is positive

For all y between – 1 and 1, y2 < 1

              B2 – 4AC < 0
Hence the equation is elliptic

(iii) Here A = 1 + x2, B = 5 + 2x2, C = 4 + x2

 B2 – 4AC  (5  2x2)2 – 4(1  x2)(4  x2)  9 i.e. > 0
So the equation is hyperbolic

Exercises 11.1

1. What is the classification of the equation fxx  2fxy  fyy  0.

2. Determine whether the following equation is elliptic or hyperbolic?
(x  1)uxx – 2(x  2)uxy  (x  3)uyy  0.

3. Classify the equation
  (i) y2uxx – 2xyuxy  x2uyy + 2ux – 3u  0.

 (ii) 
2 2

2 2
2 2

u u u u
x y x y

x yx y
    

  
  

(iii) 
2 2 2

2 23 4 6 2 0
u u u u u

u
x y x yx y

    
     
    

4. In which parts of the (x, y) plane is the following equation elliptic?

    
2 2 2

2 2
2 24 2sin .
u u u

x y xy
x yx y
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11.3 Finite Difference Approximations to Partial Derivatives

Consider a rectangular region R in the x, y plane. Divide this region 
into a rectangular network of sides x  h and y  k as shown in Figure 
11.1. The points of intersection of the dividing lines are called mesh points, 
nodal points, or grid points

0
(Δx = h) X

(Δ
y 

= 
k)

Y
R

(x ,y + k)

(i, j + 1)

(x–h,y)                  (x, y)      (x + h, y)

(i, j) (i + 1 ,j)(i – 1, j)

(x ,y – k)

(i, j – 1)

FIGURE11.1

Then we have the finite difference approximations for the partial de-
rivatives in x-direction (Section 10.17):

                  
2)

( , ) ( , ) ( , ) ( , )
( ) ( )

( , ) ( , )
(

2

u x h y u x y u x y u x h yu
O h O h

x h h
u x h y u x h y

O h
h

   
   


  

 

And 
2

2
2 2

( , ) 2 ( , ) ( , )
( )

x h y u x y u x h yu
O h

x h

   
 



Writing u(x, y)  u(ih, jk) as simply ui, j, the above approximations be-
come

                    1 ,,i i ju j U
ux h

h
 

   (1)

                         , 1 ,
ii ju u j

O h
h


   (2)
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                        1 1, 2
,

( )
2

i j i ju u
O h

h
 

   (3)

                  
1, , 1, 2

2

2
( )

i j i j i j
xx

u u u
u O h

h
  

   (4)

Similarly we have the approximations for the derivatives w.r.t. y:

   
 , 1 ,i j i j

y

u u
u O k

k
 

 
 (5)

                     , , 1i j i ju u
O k

k


   (6)

                     , , 2
1 1

2
i j i ju u

O k
k

  
   (7)

and 
, 1 , , 1 2

2

2
( )

i j i j i j
yy

u u u
u O k

k
  

   (8)

Replacing the derivatives in any partial differential equation by their cor-
responding difference approximations (1) to (8), we obtain the finite-differ-
ence analogues of the given equation.

11.4 Elliptic Equations

The Laplace equation 
2 2

2
2 2 0
u u

u
x y
 

   
 

and the Poisson’s equation
2 2

2 2 ( , )
u u

f x y
x y
 
 

 
 are Example s of elliptic partial differential equations. 

The Laplace equation arises in steady-state flow and potential problems. 
Poisson’s equation arises in fluid mechanics, electricity and magnetism and 
torsion problems.

The solution of these equations is 
a function u(x, y) which is satisfied at 
every point of a region R subject to cer-
tain boundary conditions specified on 
the closed curve C (Figure 11.2).

In general, problems concerning 
steady viscous flow, equilibrium stress-
es in elastic structures etc., lead to el-
liptic type of equations.

Y

0 X

C

Boundary conditions
prescribed 

at each
point of C 

(shaded)

Closed
region

R

FIGURE 11.2
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11.5 Solution of Laplace’s Equation

 
2 2

2 2 0
u u

x y
 
 

 
 (1)

Consider a rectangular region R for which u(x, y) is known at the bound-
ary. Divide this region into a network of square mesh of side h, as shown in 
Figure 11.3 (assuming that an exact sub-division of R is possible). Replacing 
the derivatives in (1) by their difference approximations, we have

 1, , 1, , 1 , , 12 2

1 1
2 2 0i j i j i j i j ui j i ju u u u u

h h   
           

or , 1, 1, 1 , 1
1
4i j i j i j ij i ju u u u u   
      (2)

b1, 1 b2, 1 b3, 1 b4, 1 b5, 1 X

b1, 2

b1, 3

b1, 4

b1, 5

Y

u2, 2 u3, 2 u4, 2

b5, 2

b5, 3

b5, 4

u2, 3 u3, 3 u4, 3

u2, 4 u3, 4 u4, 4

b2, 5 b3, 5 b4, 5 b5, 5

FIGURE 11.3

This shows that the value of u at any interior mesh point is the aver-
age of its values at four neighboring points to the left, right, above and 
below. (2) is called the standard 5-point formula which is exhibited in 
Figure 11.4.

Sometimes a formula similar to (2) is used which is given by

 , 1, 1 1, 1 1, 1 1, 1
1

( )
4i j i j i j i j i ju u u u u            (3)

This shows that the value of ui, j is the average of its values at the four 
neighboring diagonal mesh points. (3) is called the diagonal five-point 
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formula which is represented in Figure 11.5. Although (3) is less accurate 
than (2), yet it serves as a reasonably good approximation for obtaining the 
starting values at the mesh points.

ui,j–1 

ui–1, j
ui+1, j

ui, j+1

ui,j

    

ui–1, j+1
ui+1, j+1

ui+1, j–1
ui–1, j–1

ui,j

FIGURE 11.4     FIGURE 11.5

Now to find the initial values of u at the interior mesh points, we first 
use the diagonal five-point formula (3) and compute u3, 3, u2, 4, u4, 4, u4, 2 and 
u2, 2, in this order. Thus we get,

u3, 3 
1
4

 (b1, 5  b5, 1  b5, 5  b1, 1); 

u2, 4 
1
4

 (b1, 5  u3, 3  b3, 5  b1, 3)

u4, 4 
1
4

 (b3, 5  b5, 3  b3, 5  u3, 3); u4, 2 

          1
4

 (u3, 3  b5, 1  b3, 1  b5, 3)

u2,2   1
4

(b1, 3  b3, 1  u3, 3  b1, 1)

The values at the remaining interior points, i.e., u2,3, u3,4, u4,3 and u3,2 are 
computed by the standard five-point formula (2). Thus, we obtain

u2, 3 
1
4

(b1, 3  u3, 3  u2, 4  u2, 2), u3, 4 

         1
4

(u2, 4  u4, 4  b3, 5  u3, 3)

u4, 3 
1
4

(u3, 3  b5, 3  u4, 4  u4, 2), u3, 2

        1
4

(u2, 2  u4, 2  u3, 3  u3, 1)
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Having found all the nine values of ui, j once, their accuracy is improved 
by either of the following iterative methods. In each case, the method is 
repeated until the difference between two consecutive iterates becomes 
negligible.

 (i)  Jacobi’s method. Denoting the nth iterative value of ui, j, by u(n)
i, j, 

the iterative formula to solve (2) is

 u(n1)
i, j 

1
4

[u(n
)i–1, j  u(n

)i1, j  u(n
)i, j1  u(n)

i, j–1]  (4)

 It gives improved values of ui, j at the interior mesh points and is 
called the point Jacobi’s formula.

(ii) Gauss-Seidal method. In this method, the iteration formula is

 u(n1)
i, j 

1
4

[u(n1)
i–1, j  u(n)

i1, j  u(n1)
i, j1  u(n)

i, j–1]

It utilizes the latest iterative value available and scans the mesh points sym-
metrically from left to right along successive rows.

Obs. The Gauss-Seidal method is simple and can be adapted to 
computer calculations. Its convergence being slow, the working 
is somewhat lengthy. It can however, be shown that the Gauss-
Seidal scheme converges twice as fast as Jacobi’s scheme.

The accuracy of calculations depends on the mesh-size, i.e., smaller the h, 
the better the accuracy. But if h is too small, it may increase rounding-off 
errors and also increases the labor of computation.

EXAMPLE  11.2

Solve the elliptic equation uxx + uyy = 0 for the following square mesh 
with boundary values as shown in Figure 11.6.

Solution:

Let u1, u2,, u9 be the values of u at the interior mesh-points. Since the 
boundary values of u are symmetrical about AB,

  u7  u1, u8  u2, u9  u3.

Also the values of u being symmetrical about CD. u3  u1, u6  u4, 
u9  u7.

Thus it is sufficient to find the values u1, u2, u4, and u5.

NOTE
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0
500                1000               500

0

1000

2000

1000

0 500               1000              500 0

D

u7 u8 u9

A u4 u5 u6 B

u1 u2 u3

C

1000

2000

1000

FIGURE 11.6

Now we find their initial values in the following order:

u5  1
4

(2000  2000  1000  1000)  1500 (Std. formula)

u1  1
4

(0  1500  1000  2000)  1125 (Diag.formula)

u2 
1
4

 (1125  1125  1000  1500)  1188 (Std. formula)

u4  1
4

14 (2000  1500  1125  1125) 1438 (Std. formula)

Now we carry out the iteration process using the standard formulae:

 ( ) ( 1 ( )
1 4

)
21000  500 

1
4

n n nu u u       

     1  1 ( ) ( )
2 1 1 5

1
1 0

4
0 0n n n nu u u u       

 ( 1) ( ) ( )1 ( )
4 5 1 12000  

1
4

n n n nu u u u       

 
( 1) ( 1) ( ) ( 1) ( )
5 4 4 2 2

1
4

n n n n nu u u u u        
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First iteration: (put n  0 in the above results)

  (1)
1 1000 1188 500 1438 1032

1
4

u       

  (1)
2 1032 1125 1000 1500 1164

1
4

u      

  (1) 2000 1500 1032 1125 1414     

  (1)
5 1414 1438 1164 1188 1301

1
4

u      

Second iteration: (put n  1)

 
(2)
1 1000 1164 50

1
( 0 14 )

4
14 1020u    

 

 
 (2)

2 1020 1032 1000 1301 1088
1
4

u    
 

 
 (2)

4 2000 1301 1020 1032 1338
1
4

u    
 

 
 (2)

5
1

1338 1414 1088 1164 1251
4

u     
 

Third iteration:

  (3)
1 1000 1088 500 13 8

1
2

4
3 98u       

    (3)
2 982 1020 1000 1251 1063

1
4

u      

    (3)
4 2000 1251 98

1
4

2 1020 1313u      

      (3)
5 1313 1338 1063 1088 1201

1
4

u      

Fourth iteration:

  (4)
1 1000 1063 500 13 3

1
9

4
1 96u       

  (4)
2 969 982 1000 1201 103

1
8

4
u      
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                      (4)
4  2000 1201 969 98 1 8

1
4

2 28u     

  (4)
5 1288 1313 1038 1063 1176

1
4

u      

Fifth iteration:

  (5)
1 1000 1038 500 12 8

1
7

4
8 95u       

  (5)
2 957 969 1000 1176 102

1
6

4
u      

  (5)
4 2000 1176 957 96 1

1
6

4
9 27u       

  (5)
5 1276 1288 1026 1038 1157

1
4

u      

Similarly,

 (6) (6) (6) (6)
1 2 4 5951, 1016, 1266, 1146u u u u     

 (7) (7) (7) (7)
1 2 4 5 946, 1011, 1260, 1138u u u u     

 (8) (8) (8) (8)
1 2 4 5943, 1007, 1257, 1134u u u u     

 (9) (9) (9) (9)
1 2 4 5941, 1005, 1255, 1131u u u u     

 (10 (10) (10) (10
1 2 4 5940, 1003, 1253, 1129u u u u     

 (11) (11) (11) (11)
1 2 4 5939, 1002, 1252, 1128u u u u     

        
1 2 4 5

1212 12 12939, 1001, 1251, 1126u u u u     

There is a negligible difference between the values obtained in the elev-
enth and twelfth iterations.

Hence u1  939, u2  1001, u4  1251 and u5  1126.

EXAMPLE 11.3

Given the values of u(x, y) on the boundary of the square in the Figure 
11.7, evaluate the function u(x, y) satisfying the Laplace equation 2u = 0 
at the pivotal points of this figure by

(a) Jacobi’s method (b) Gauss-Seidal method
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Solution:

To get the initial values of u1, u2, u3, u4, we assume that u4  0. Then

u1  1
4

 (1000  0  1000  2000)  1000 (Diag. formula)

u2  1
4

 (1000  500  1000  0)  625  (Std. formula)

u3  1
4

 (2000  0  1000  500)  875  (Std. formula)

u4  1
4

(875  0  625  0)  375  (Std. formula)

u1

1000 500                   0
0

0

500

100010001000
1000

2000

2000
u3 u4

u2

FIGURE 11.7

(a) We carry out the successive iterations, using Jacobi’s formulae:

 ( ) ( ) 1 ( )
1 2 32000  1000 

1
4

n n nu u u       

 
 1 ( )

1 4
( )

2  500 1000
1
4

n n nu uu


    

  1 ( ) ( )
3 4 120

1
4

00  500n n nu u u       

  1 ( ) ( )
4 3 2

1
4

0 0n n nu u u       

First iteration: (put n  0 in the above results)

  (1)
1 2000 625 1000 875

1
1

4
125u       
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  (1)
2 1000 500 1000 7 7 9

1
4

3 5 1u       

  (1)
3 2000 375 1000 500 9

4
69

1
u      

  (1)
4 875 0 625 0 375

1
4

u      

Second iteration: (put n  1)

  (2)
1 2000 719 1000 969 1172

1
4

u      

  (2)
3 1125 500 1000 375 7

4
50

1
u      

   (2)
3 2000 375 1125 500 1000

1
4

u      

  (2)
4 969 0 719 0 422

1
4

u      

Similarly,    (3) (3) (3) (3)
1 2 3 4
(4) (4) (4) (4)
1 2 3 4
(5) (5) (5) (5)
1 2 3 4
(6) (6) (6) (6)
1 2 3 4

(7) (7)
1 2

 1188,  774,  1024, 438

 1200,  782,  1032, 450

 1204,  788,  1038, 454

 1206.5,  790,  1040, 456.5

 1208,  7

u u u u

u u u u

u u u u

u u u u

u u

   

   

   

   

  (7) (7)
3 491,  1041, 458u u 

 

and             8 8 8 8
1 2 3 41208, 791.5, 1041.5, 458u u u u     .

There is no significant difference between the seventh and eighth itera-
tion values.

Hence u1  1208, u2  792, u3  1042 and u4  458.

(b) We carry out the successive iterations, using Gauss-Seidal formulae

 
(( 1 ( )
2

) )
31 2000 1000

1
4

n nn uu u       

 ( 1) ( 1) ( )
2 1 4500 100

4
0

1n n nu u u       

  1 ( ) ( 1)
3 4 1

1
2000 500

4
n n nu u u       

 ( 1) ( 1) ( 1)
4 3 24

0
1

0n n nu u u        
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First iteration:(put n  0 in the above results)

 (1)
1 2000 625 1000 87

1
( 5)

4
5 112u       

 (1)
2 1125 500 1000 375 7

1
( ) 0

4
5u    

 (1)
3 2000 375 1125 50

1
( 0)

4
0 100u    

 (1)
4 1000 0 750 0 438

1
( )

4
 u    

Second iteration: (put n  1)

     (2)
1 2000 750 100

1
4

0 1000 1188u    

  (2)
2 1188 500 1000 438 7

4
82

1
u    

     (2)
3 2000 438 1188 500 1032

1
4

u    

  (2)
4 10

1
32 0 782 0 45

4
4u    

Similarly    3 3 3 3
1 2 3 4

(4) (4) (4)

( ) ( )

(4)
1

)

4

(

2 3

( )1204, 789, 1040, 458

 1207,  791,  1041,  458

u u u u

u u u u

   

   

 

and                   (5) (5) (5) (5)
1 2 3 41208, 791.5,  1041.5,  458.25u u u u     

Thus there is no significant difference between the fourth and fifth 
iteration values.

Hence u1  1208, u2  792, u3  1042 and u4  458.
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EXAMPLE 11.4

Solve the Laplace equation uxx + uyy  0 given that

0
8.7                 12.1                12.5

9

0

0 11.1                 17               19.7 18.6

u1 u2 u3
21.9

21

17

0

0

u4 u5 u6

u7 u8 u9

FIGURE 11.8

Solution:

We first find the initial values in the following order:

u5  1
4

(0  17  21  12.1)  12.5  (Std. formula)

u1  1
4

(0  12.5  0  17)  7.4  (Diag. formula)

u3  1
4

(12.5  18.6  17  21)  17.28  (Diag. formula)

u7  1
4

(12.5  0  0  12.1)  6.15  (Diag. formula)

u9  1
4

(12.5  9  21  12.1)  13.65  (Diag. formula)

u2  1
4

(17  12.5  7.4  17.3)  13.55  (Std. formula)

u4  1
4

(7.4  6.2  0  12.5)  6.52  (Std. formula)

u6  1
4

(17.3  13.7  12.5  21)  16.12  (Std. formula)
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u8  1
4

(12.5  12.1  6.2  13.7)  11.12 (Std. formula)

Now we carry out the iteration process using the standard formula:

   ( )1
1

(
4 2

)0 11.1
1

[ ]
4

n n nu u u    

  1 1( ) ( ) ( )
2 1 5 3

1
]

4
7[ 1n n n nu u u u    

  1 ( 1) ( )
3 1 619.7 21

1
]

4
9[n n nu u u    

 
 1 ( 1) ( ) ( )
4 1 7 5[

4
0

1
]n n n nu u u u      

 
 1 ( 1) ( 1) ( ) ( )
5 4 2 8 6

1
[ ]

4
n n n n nu u u u u     

  1 ( 1) ( 1) ( )
6 5 3 9

1
[

4
1]2n n n nu u u u     

  1
7

)1 ( )(
4 80 8

1
[

4
.7 ]n n nu u u    

 
 1 1 1 ( )
8 7 5

( ) )
9

( 12.1 ]
1

[
4

n n n nu u u u     

   ( )1 1 1
9

( )
8 6 12 7

1
.8 1 ][

4
n n nu u u     

First iteration: (put n  0, in the above results)

 
(1) (0) (0)
1 4 20 11.1( )

1
4

u u u   

  0 11.1 6.52 13.55
1
4

7.79   

  (1)
2 7.79 17 12.5 17.28

1
1

4
3.64u    

  (1)
3 13.64 19.7 16.12 21.9 12.8

1
4

4u    

  (1)
4 0 7.79 6.15 12.5 6.6

1
1

4
u    

  (1)
5 6.61 13.64 11.12 16.12 11.88

1
4

u      

  (1)
6 11.88 17.84 13.65 21 1

4
6.09

1
u     



NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS • 507

  (1)
7 0 6.61 8.7 11.12 6.61

1
4

u    

  (1)
8 6.61 11.88 12.1 13.65

1
4

11.06u      

  (1)
9 11.06 16.09 12.8 17 1

1
4

2.238u    

Second iteration: (put n  1)

  (2)
1 0 11.1 6.61 13.6 7

4
4 .84

1
u     

  (2)
2 7.84 17 11.88 17.84

1
1

4
6.64u    

  (2)
3 13.64 19.7 16.09 21.9 17.8

1
4

3u    

  (2)
4 0 7.84 6.61 11.8 6

4
8 .58

1
u     

  (2)
5 6.58 13.64 11.06 16.09 11.84

1
4

u    

  (2)
6 11.84 17.83 14.24 21 1

4
6.23

1
u     

  (2)
7 0 6.58 8.7 11.06 6.58

1
4

u    

  (2)
8 6.58 11.84 12.1 14.24

1
4

11.19u      

  (2)
9 11.19 16.23 12.8 17 14.30

1
4

u      

Third iteration: (put n  2)

  (3)
1 0 11.1 6.58 13.6 7

4
4 .83

1
u     

  (3)
2 7.83 17 11.84 17.83 1 6

4
3. 37

1
u    

  (3)
3 13.63 19.7 16.23 21.9 17.8

1
4

6u    

  (3)
4 0 7.83 6.58 11.8 6

4
4 .56

1
u     

  (3)
5 6.56 13.63 11.19 16.23 11.90

1
4

u    
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  (3)
6 11.90 17.86 14.30 21 1

4
6.27

1
u     

  (3)
7 0 6.56 8.7 11.19 6.61

1
4

u    

  (3)
8 6.61 11.90 12.1 14.30

1
4

11.23u    

  (3)
9 11.23 16.27 12.8 17 14.32

1
4

u    

Similarly 

                     

(4) (4) (4) (4) (4)
1 2 3 4 5

(4) (4) (4) (4)
6 7 8 9
(5) (5) (5) (5) (5)
1 2 3 4 5

(5) (5) (5)
6 7 8 9

7.82, 13.65, 17.88, 6.58, 11.94,

16.28, 6.63, 11.25, 14.33

7.83,  13.66, 17.89, 6.50, 11.95,

16.29, 6.64, 11.25,

u u u u u

u u u u

u u u u u

u u u u

    

   

    

   (5) 14.34

There is no significant difference between the fourth and fifth iteration 
values.

Hence u1  7.83, u2  13.66, u3  17.89, u4  6.6, u5  11.95, u6  16.29, 
u7  6.64,u8  11.25, u9  14.34.

11.6 Solution of Poisson’s Equation

 
2 2

2 2 ( , )
u u

f x y
x y
 
 

 
 (1)

Its method of solution is similar to that of the Laplace equation. Here the 
standard five-point formula for (1) takes the form

 ui–1, j  ui1, j  ui, j1  ui, j–1 – 4ui, j  h2f(ih, jh) (2)

By applying (2) at each interior mesh point, we arrive at linear equations 
in the nodal values ui, j. These equations can be solved by the Gauss-Seidal 
method.

Obs. The error in replacing uxx by the finite difference 
approximation is of the order O(h2). Since k h, the error in 
replacing uyy by the difference approximation is also of the 
order O(h2). Hence the error in solving Laplace and Poisson’s 
equations by finite difference method is of the order O(h2).

NOTE
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EXAMPLE 11.5

Solve the Poisson equation uxx + uyy = – 81xy, 0 < x < 1, 0 < y < 1 given 

that u(0, y) = 0, u(x, 0)  0, u(1, y)  100, u(x, 1)  100 and h  1/3.

Solution:

Here h  1/3.

The standard five-point formula for the given equation is

ui–1, j  ui1, j  ui, j1  ui, j – 1 – 4ui, j  h2f(ih, jh)

   h2 [– 81(ih . jh)]  h4 (– 81) ij  – ij (i)
For u1 (i  1, j  2), (i) gives 0  u2  u3  100 – 4u1  – 2

i.e.,   – 4u1  u2  u3  – 102 (ii)

For u2 (i  2, j  2), (i) gives u1  100  u4  100 – 4u2  – 4

i.e.,  u1 – 4u2  u4  – 204 (iii)

For u3 (i  1, j  1), (i) gives 0  u4  0  u1 – 4u3  – 1

i.e.,  u1 – 4u3  u4  – 1 (iv)

For u4 (i  2, j  1) gives u3  100  u2 – 4u4  – 2

i.e.,   u2  u3 – 4u4  – 102 (v)

0                     0                   0                   0 X

0

0

0
Y

u = 0

100u = 100 100

100

100

0
=

u

u1 u2

u3 u4

u 
= 

10
0

FIGURE 11.9

Subtracting (v) from (ii), – 4u1  4u4  0, i.e., u1  u4

Then (iii) becomes 2u1 – 4u2  – 204 (vi)

and (iv) becomes 2u1 – 4u3  – 1  (vii)
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Now (4) × (ii)  (vi) gives – 14u1  4u3  – 612 (viii)

(vii)  (viii) gives – 12u1  – 613

Thus  u1  613/12  51.0833  u4.

From (vi),  12 102
1
2

76.5477u u  

From (vii), 13
1 1
2 2

25.7916u u
 

 
 



EXAMPLE  11.6

Solve the equation 2u –10(x2 + y2 + 10) over the square with sides x = 
0  y, x = 3 y with u = 0 on the boundary and mesh length  1.

Solution:

Here h  1.

 The standard five-point formula for the given equation is 

ui–1, j  ui1, j  ui, j1  ui, j–1 – 4ui, j  – 10(i2  j2  10) (i)

For u1 (i  1, j  2), (i) gives 0  u2  0  u3 – 4u1 – 10(1  4  10)

i.e.,  u1 
1
4

(u2  u3  150) (ii)

0                      0                  0                   0 X

0

0

0
Y

0                   0                    0

0

0

u1 u2

u3 u4

FIGURE 11.10

For u2 (i  2, j  2), (i) gives u2 
1
4

(u1  u4  180) (iii)

For u3(i  1, j  1), we have u3 
1
4

(u1  u4  120) (iv)
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For u4 (i  2, j  1), we have u4 
1
4

(u2  u3  150) (v)

Equations (ii) and (v) show that u4  u1. Thus the above equations re-
duce to

 u1 
1
4

(u2  u3  150), u2 
1
4

(u2  90), u3 
1
4

(u1  60)

Now let us solve these equations by the Gauss-Seidal iteration method.

First iteration: Starting from the approximations u2  0, u3  0, we obtain 
(1)
1 37.5u   

Then  (1)
2 37.

2
5 0 64

1
9u  

  (1)
2 37.

2
5 0 49

1
6u  

Second iteration:    (2)
1

(2)
2

1
64 49 150 66, 66 90 7

1
4

8
2

uu         

                           (2)
3 6 6

1
2

6 60 3u    

Third iteration:          

 

(3) (3)
1 2

(3)
3

1 1
78 63 150 73, 73 90 82,

4 2
73 60 67

u u

u

      

  

 

Fourth iteration:    

 

(4) (4)
1 2

(4)
3

82 67 150 75, 75 90 82.5,

75 60 67.5

u u

u

      

  

 

Fifth iteration:    

 

((5)
1

(5)

2

3

5)82.5 67.5 150 75, 75 90 82.5,

75 90 67.5

u u

u

      

  

 

Since these values are the same as those of fourth iteration, we have 
u1  75, u2  82.5,u3  67.5 and u4  75.

Exercises 11.2

1. Solve the equation uxx  uyy  0 for the square mesh with the boundary val-
ues as shown in Figure 11.11.
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12

1

2

4

5

45      

0            0             1

0

0

0

0              0            1

2

2

2

FIGURE 11.11                                                FIGURE 11.12

2. Solve uxx  uyy  0 over the square mesh of side four units satisfying the 
following boundary conditions: u (0, y)  0 for 0  y  4, u (4, y)  12  y 
for 0  y  4; u(x, 0)  3x for 0  x  4,u (x, 4)  x2 for 0  x  4.

3. Solve the elliptic equation uxx  uyy  0 for the square mesh with bound-
ary values as shown in Figure 11.12. Iterate until the maximum differ-
ence between successive values at any point is less than 0.005.

0 10                 20                30

40

50

60606060

40

20

     

1                   2                   2                  2

0

0

0                    0                   0                   1

2

2

FIGURE 11.13                                                   FIGURE 11.14

4. Using central-difference approximation solve 2u  0 at the nodal points 
of the square grid of Figure 11.13 using the boundary values indicated.

5. Solve uxx  uyy  0 for the square mesh with boundary values as shown 

in Figure 11.14. Iterate till the mesh values are correct to two decimal 
places.
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0

0

0              0

0

0

1             1

u1 u2

u4 u5

          

0 1              4             9              16

14

12

10

84.520.50

0

0

0

u1 u2 u3

u4 u5 u6

u7 u8 u9

FIGURE 11.15                                                       FIGURE 11.16

6. Solve the Laplace’s equation uxx  uyy  0 in the domain of Figure 11.15 
by (a) Jacobi’s method, (b) Gauss-Seidal method.

7. Solve the Laplace’s equation 2u  0 in the domain of the Figure 11.16.

8. Solve the Poisson’s equation 2u  8x2y2 for the square mesh of Figure 
11.17 with u(x, y)  0 on the boundary and mesh length  1.

X

Y

u1 u2 u1

u2 u3 u2

u7 u2 u1

     

u1 u2

u3 u4
0

0

0              0

0

0

0

0000

0

FIGURE 11.17                                                         FIGURE 11.18

11.7 Solution of Elliptic Equations by Relaxation Method

If the equations for all the mesh points are written using (2) of Section 
11.6, we get a system of equations which can be solved by any method. For 
this purpose, the method of relaxation is particularly well-suited. Here we 
shall describe this method in relation to elliptic equations.
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Consider the Laplace equation

 
2 2

2 2 0
u u

x y
 
 

 
 (1)

We take a square region and divide it into a square net of mesh size h. Let 
the value of u at A be u0 and its values at the four adjacent points be u1, u2, 
u3, u4 (Figure 11.19). Then

 
2 2

1 3 0 2 4 0
2 2 2 2

2 2
and

u u u u u uu u
x h y h

    
 

 

If (1) is satisfied at A, then

 1 3 0 2 4 0
2 2

_ 2 2
0

u u u u u u

h h

  
 

or                        u1  u2  u3  u4 – 4u0  0

If r0 be the residual (discrepancy) at the mesh point A,

then           r0  u1  u2  u3  u4 – 4u0 (2)

Similarly the residual at the point B, is given by

 r1  u0  u5  u6  u7 – 4u1 and so on (3)

A               B

u4 u7

u2 u6

u3 u0 u1 u5

FIGURE 11.19

The main aim of the relaxation process is to reduce all the residuals to 
zero by making them as small as possible step by step. We, therefore, try 
to adjust the value of u at an internal mesh point so as to make the residual 
thereat zero. But when the value of u is changing at a mesh point, the values 
of the residuals at the neighboring interior points will also be changed. If u0 
is given an increment 1, then

(i) (2) shows that r0 is changed by – 4.

(ii) (3) shows that r1 is changed by 1.
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i.e., if the value of the function is increased by 1 at a mesh point (shown by 
a double ring), then the residual at that point is decreased by 4 while the re-
siduals at the adjacent interior points (shown by a single ring), get increased 
each by 1. This relaxation pattern is shown in Figure 11.20.

1 1

1

1

–4

FIGURE 11.20

Working procedure to solve an equation by the relaxation method:

 I.  Write down by trial, the initial values of u at the interior mesh 
points by diagonal averaging or cross-averaging.

 II.  Calculate the residuals at each of these points by (2) above. If we 
apply this formula at a point near the boundary, one or more end 
points get chopped off since there are no residuals at the boundary.

 III.  Write the residuals at a mesh-point on the right of this point and 
the value of u on its left.

 IV.  Obtain the solution by reducing the residuals to zero, one by one, 
by giving suitable increments to u and using Figure 11.20. At each 
step, we reduce the numerically largest residual to zero and record 
the increment of u on the left (below the earlier value thereat) and 
the modified residual on the right (below the earlier residual).

 V.  When a round of relaxation is completed, the value of u and its in-
crements are added at each point. Using these values, calculate all 
the residuals afresh. If some of there calculated residuals are large, 
liquidate these again.

 VI.  Stop the relaxation process, when the current values of the residu-
als are quite small. The solution will be the current value of u at 
each of the nodes.



516 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Obs. Relaxation method combines simplicity with the speed of 
convergence. Its only drawback is its unsuitability for computer 
calculations.

EXAMPLE  11.7

Solve by relaxation method, the Laplace equation 

2 2

2 2 0
u u

x y
 
 

   inside 
the square bounded by the lines x = 0, x = 4, y = 0, y = 4, given that u = x2y2 
on the boundary.

Solution:

Taking h  1, we find u on the boundary from u  x2y2. The initial values 
of u at the nine mesh points are estimated to be 24, 56, 104; 16, 32, 56; 8, 
16, 24 as shown on the left of the points in Figure 11.21.

 Residual at A, i.e., rA  0  56  16  16 – 4 × 24  – 8

Similarly rB  0, rC  – 16, rD  0, rE  16, rF  0, rG  0, rH  0, rI  – 8.

 (i) The numerically largest residual is 16 at E. To liquidate it, we increase 
u by 4 so that the residual becomes zero and the residuals at neighbor-
ing nodes get increased by 4.

0                       0                       0                     0                       0

0

0

0

0

8  0                   16    0 
4

–2

24
–2

–8
0

16

64

144

25616                        64                     144

G                      H                        I

16 0
4
–2

32
4

16
0

56 0
4

–4
–2

D                       E                         F

24
–2

0
4
–4
–2

–8
0

104
–4

–16
0

A                       B                         C

Y

X

56

FIGURE 11.21

NOTE
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 (ii) Next, the numerically largest residual is – 16 at C. To reduce it to 
zero, we increase u by – 4 so that the residuals at the adjacent nodes 
are increased by – 4.

 (iii) Now, the numerically largest residual is – 8 at A. To liquidate it, we in-
crease u by– 2 so that the residuals at the adjacent nodes are increased 
by – 2.

 (iv)  Finally, the largest residual is – 8 at I. To liquidate it, we increase u 
by – 2 so that the residuals at the adjacent points are increased by – 2.

 (v) The numerically largest current residual being 2, we stop the relax-
ation process. Hence the final values of u are:

 uA  22, uB  56, uC  100,
 uD  16,  uE  36, uF  56,

 uG  8, uH  16, uI  22.

EXAMPLE  11.8

Solve by relaxation method Example  11.3.

Solution:

(i) The initial values of u at A, B, C, and D are estimated to be 1000, 
625, 875, and 375 [Figure 11.22 (i)].

1000
 500                 0                   0

2000

2000

1000             1000           1000            1000

500

0

A                 B

1000
125

 625
94

500
0
94
94

375
125
–1

C                 D
875

94

375
125
–1

3750
94
94

FIGURE 11.22 (I)

  rA  500, rB  375, rC  375, rD  0

To liquidate rA, increase u by 125
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To liquidate rB, increase u by 94

To liquidate rC, increase u by 94

(ii) Modified values of u are 1125, 719, 969, 375 [Figure (ii)]

  500               0                  0
1000

2000

2000

1000            1000           1000              1000

500

0

A                  B

1125
47

188
0
31
31

124
47
47
0

 719

 31
C                 D

969 124
47
47
0

 375
47

188
0
31
31

FIGURE 11.22 (II)

 rA  188, rB  124, rC  124, rD  188.

To liquidate rA, rD, rB, rC increase u by 47, 47, 31, 31 in turn.

(iii) Revised values of u are 1172, 750, 1000, 422 [Figure (iii)]

  1000         1000            1000             1000

500

0

1000

2000

2000

5000 0

A                  B

 1172
15

62
21
21
2

 750
21

84
0
15
15

C                  D

1000
21

84
0
15
15

62
21
21
20

422
15

FIGURE 11.22 (III)

 rA  62, rB  84, rC  84, rD  62

To liquidate rB, rC, rA, rD increase u by 21, 21, 15, 15, respectively.

(iv) Improved values of u are 1187, 771, 1021, 437 [Figure (iv)]

 rA  44, rB  40, rC  40, rD  44.
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To liquidate rA, rD, rB, rC increase u by 11, 11, 10, 10, respectively

1000
500                 0                  0

0

500

 1000           1000            1000            1000

2000

2000

A                  B

  1187
 11

40
11
11
0

  771

 10

44
0

10
10

C                  D

1021

10

44
0
10
10

  437
   11

40
11
11
0

FIGURE 11.22 (IV)

(v) Modified values of u are 1198, 781, 1031, 448 [Figure (v)]

 rA  20, rB = 22, rC  22, rD  20.

0

500

1000           1000            1000         1000

1000

2000

2000

500                 0

A                  B

 1198
5

20
5
5
0

  781
5

22
2
5
5

C                 D

  1031
5

22
2
5
5

  448
5

20
5
5
2

0
FIGURE 11.22 (V)

To liquidate rB, rC, rA, rD increase u by 5, 5, 5, 5, respectively.

(vi) Revised values of u are 1203, 786, 1036, 453 [Figure (vi)]

 rA  10, rB  12, rC  12, rD  10

To liquidate rB, rC, rA, rD increase u by 3, 3, 2, 2, respectively.
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1000            1000            1000            1000

2000

2000

1000
500                0                    0

0

500A                  B

 1203
2

10
3
3
2

 786
3

12
0
2
2

C                 D

 1036
3

12
0
2
2

 453
2

10
3
3
2

  

1000             1000            1000           1000

2000

2000

1000

0

500
A                 B

 1205
2

8
0
1
1

 789
1

4
2
2
0

C                D

 1039

1

4
2
2
0

8
0
1
1

455
2

  500               0
FIGURE 11.22 (VI)                                                   FIGURE 11.22 (VII)

(vii) Improved values of u are 1205, 789, 1039, 455 [Figure (vii)]

 rA  8, rB  4, rC  4, rD  8.

To liquidate rA, rD, rB, rC increase u by 2, 2, 1, 1.

(viii) Finally the current residuals being 1, 0, 0, 1, we stop the relaxation 
process. 

Hence the values of u at A, B, C, D are 1207, 790, 1040, 457.

Exercises 11.3

1. Given that u(x, y) satisfies the equation 2u  0 and the boundary condi-

tions are u(0, y) 0, u(4, y)  8  2y, u(x, 0)  
1
2

 x2, u(x, 4)  x2, find the 

values u(i, j), i  1, 2, 3; j  1, 2, 3by the relaxation method.

2. Apply the relaxation method to solve the equation 2u  – 400, when 
the region of u is the square bounded by x  0, y  0, x  4, and y  4 and 
u is zero on the boundary of the square.

3. Solve by relaxation method, the equation 2u  0 in the square region 
with square meshes(Figure 11.23) starting with the initial values u1  
u2  u3  u4  1.
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1                 4/3 5/3 2

0   1/3 2/3                 1

4/3

5/32/3

1/3

u1 u2

u3 u4

FIGURE 11.23

11.8 Parabolic Equations

The one-dimensional heat conduction equation 
2

2
2

u u
c

t x
 


 
is a well-

known Example  of parabolic partial differential equations. The solution of 
this equation is a temperature function u(x, t) which is defined for values of 
x from 0 to l and for values of time t from 0 to .The solution is not defined 
in a closed domain but advances in an open-ended region from initial val-
ues, satisfying the prescribed boundary conditions (Figure 11.24).

t∞
Sol. Advances

Boundary
conditions
prescribed
along this
line

Boundary
conditions
prescribed
along this
line

Initial conditions
prescribed along this line

x 
= 

0

t = 0

l
=

x

Open-ended
domain

R

FIGURE 11.24

In general, the study of pressure waves in a fluid, propagation of heat 
and unsteady state problems lead to parabolic type of equations.
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11.9 Solution of One Dimensional Heat Equation

 
2

2
2

u u
c

t x
 


 
 (i)

where c2  k/s is the diffusivity of the substance (cm2/sec.)

Schmidt method. Consider a rectangular mesh in the x-t plane with spac-
ing h along x direction and k along time t direction. Denoting a mesh point 
(x, t)  (ih, jk) as simply i, j, we have

 , 1 ,i j i ju uu
t k

 



 [by (5) Section 11.3.

and          
2

1, , 1,
2 2

2i j i j i ju u uu
x h

  



 [by (4) Section 11.3.

Substituting these in (1), we obtain ui, j1 – ui, j  
2

2

kc
h

[ui–1, j – 2ui, j  ui1, j]

or ui, j1  ui–1, j  (1 – 2) ui, j  ui1, j (2)

where   kc2/h2 is the mesh ratio parameter.

This formula enables us to determine the value of u at the (i, j  1)th 
mesh point in terms of the known function values at the points xi–1, xi, and 
xi1 at the instant tj. It is a relation between the function values at the two 
time levels j  1 and j and is therefore, called a two-level formula. In sche-
matic form (2) is shown in Figure 11.25.

t

k

( i–1, j )
h

( i , j )

( i ,  j+1) ( j+1 ) th level

j th level

( i+1 ,  j ) x

FIGURE 11.25

Hence (2) is called the Schmidt explicit formula which is valid only for 
0 <   12 .



NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS • 523

Obs. In particular when   1/2, (2) reduces to
 ui, j1  1/2, (ui–1, j  ui1, j) (3)

which shows that the value of u at xi at time tj+1 is the mean of 
the u-values at xi–1 and xi+1 at time tj. This relation, known as 
Bendre-Schmidt recurrence relation, gives the values of u at the 
internal mesh points with the help of boundary conditions.

Crank-Nicolson method. We have seen that the Schmidt scheme is com-
putationally simple and for convergent results   12 i.e., k  h2/2c2. To 
obtain more accurate results, h should be small i.e. k is necessarily very 
small. This makes the computations exceptionally lengthy as more time lev-
els would be required to cover the region. A method that does not restrict 
 and also reduces the volume of calculations was proposed by Crank and 
Nicolson in 1947.

According to this method, 2u/x2 is replaced by the average of its cen-
tral-difference approximations on the jth and (j  1)th time rows. Thus (1) 
is reduced to

, 1 , 1, , 1, 1, 1 , 1 1, 12
2 2

2 21
2

i j i j i j i j i j i j i j i ju u u u u u u u
c

h h h
              

    
   

or          – ui–1, j1  (2  2)ui, j1 – ui1, j1  ui–1, j  (2 – 2)ui, j  ui1, j (4)

where   kc2/h2.

Clearly the left side of (4) contains three unknown values of u at the (j  
1)th level while all the three values on the right are known values at the jth 
level. Thus (4) is a two level implicit relation and is known as Crank-Nicolson 
formula. It is convergent for all finite values of . Its computational model 
is given in Figure 11.26.

(i–1, j+1) (i, j+1) (i+1,  j+1) (j + 1)th level

t

k

h

(i–1, j)   (i, j)               (i+1, j)

jth level
x

FIGURE 11.26

NOTE
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If there are n internal mesh points on each row, then the relation (4) 
gives n simultaneous equations for the n unknown values in terms of the 
known boundary values. These equations can be solved to obtain the values 
at these mesh points. Similarly, the values at the internal mesh points on 
all rows can be found. A method such as this in which the calculation of 
an unknown mesh value necessitates the solution of a set of simultaneous 
equations, is known as an implicit scheme.

Iterative methods of solution for an implicit scheme.

From (4), we have

 (1  ) ui, j1   (ui–1, j1  ui1, j1)  ui, j  1
2

 (ui–1, j – 2ui, j  ui1, j) (5)

Here only ui, j1, ui–1, j1 and ui1, j 1 are unknown while all others are 
known since these were already computed in the jth step.

Writing   , –1, , 1,–  2
2i i j i j i j i jb u u u u  


and dropping j’s (5) becomes 
 

 –1 1 12 1i i i
b

u u u 





 

This gives the iteration formula

  

 
 ( ) ( )1

1 12 1 1
n n in

i i i
b

u u u
 


  

 
  (6)

which expresses the (n  1)th iterates in terms of the nth iterates only. 
This is known as the Jacobi’s iteration formula.

As the latest value of ui–1 i.e., ( 1)
1

n
iu 
  is already available, the convergence 

of the iteration formula (6) can be improved by replacing 1
( )n
iu by 1( )

1 .n
iu 
  

Accordingly (6) may be written as 

  

 
 ( ) (1 1

1 1
)

2 1 1
n n n i

i i iu u
b

u 
 







 


 (7)

which is known as the Gauss-Seidal iteration formula.

Obs. Gauss-Seidal iteration scheme is valid for all finite values 
of  and converges twice as fast as Jacobi’s scheme.

Du Fort and Frankel method. If we replace the derivatives in (1) by the 
central difference approximations 

                , 1 , 1

2
i j i ju uu

t k
 




 [From (7) Section 11.3]

NOTE
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and  
2

1, , 1 1,
2 2

2i j i j i ju u uu
x h

   



 [From (4) Section 11.3]

we obtain ui, j1 – ui, j–1  
2

2

2kc
h

[ui–1, j – 2ui, j  ui1, j]

i.e., ui, j1  ui, j–1  2 [ui–1, j – 2ui, j  ui1, j] (8)

where   kc2/h2. This difference equation is called the Richardson 
scheme which is a three-level method.

If we replace ui, j by the mean of the values ui, j–1 and ui, j1 

i.e.,  ui, j   (ui, j-1 
1
2

 ui, j1)in (8), then we get

ui, j1  ui, j–1  2[ui–1, j – (ui, j–1  ui, j1)  ui1, j]

On simplification, it can be written as

  , 1 , –1 –1, 1,
1 2 2
1 2 1 2i j i j i j i ju u u u 
  


   

    (9)

This difference scheme is called Du Fort-Frankel method which is a 
three level explicit method. Its computational model is given in Figure 11.27

t

(i, j+1) (i+1)th level

(i–1, j)

jth level

(i+1, j) x

(i, j–1)

(j–1)th level

FIGURE 11.27

EXAMPLE 11.9

Solve 
2

2 2

u u
u x
 


 
 in 0 < x < 5, t  0 given that u(x, 0)  20, u(0, t)  0, 

u(5, t)  100. Compute u for the time-step with h  1 by the Crank-Nicholson 
method.
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Solution:

Here c2  1 and h  1.

Taking  (i.e., c2k/h)  1, we get k  1.

Also we have

             I
 J

0 1 2 3 4 5

0 0 20 20 20 20 100
1 0 u1 u2 u3 u4 100

Then Crank-Nicholson formula becomes

 4ui, j1  ui–1, j1  ui1, j1 ui–1, j  ui1, j

                  4u1  0  20  0  u2 i.e., 4u1 – u2  20  (1)
     4u2  20  20  u1  u3 i.e., u1 – 4u2  u3  – 40 (2)

     4u3  20  20  u2  u4 i.e., u2 – 4u3  u4  – 40 (3)

     4u4  20  100  u3  100 i.e., u3 – 4u4  – 220 (4)

Now (1) – 4(2) gives 15u2 – 4u3  180 (5)

4(3)  (4) gives 4u2 – 15u3  – 380 (6)

Then 15(5) – 4(6) gives 209 u2  4220 i.e., u2  20.2

From (5), we get  4u3  15 × 20.2 – 180 i.e., u3  30.75

From (1),  4u1  20  20.2 i.e., u1  10.05

From (4),  4u4  220  30.75 i.e., u4  62.69

Thus the required values are 10.05, 20.2, 30.75 and 62.68.

EXAMPLE 11.10

Solve the boundary value problem ut = uxx under the conditions u(0, t)= 
u(1, t)  0 and u(x, 0)  sin px, 0  x  1 using the Schmidt method (Take 
h = 0.2 and  = 1/2).

Solution:

Since  h  0.2 and   ½

 
2

k
h

  gives k  0.02
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Since    1/2, we use the Bendre-Schmidt relation

 , 1 –1, 1,
1

( )
2i j i j i ju i u   (i)

We have  u(0, 0)  0, u(0.2, 0)  sin /5  0.5875

 u(0.4, 0)  sin 2/5  0.9511, u(0.6, 0)  sin 3/5  0.9511

 u(0.8, 0)  sin 4/5  0.5875, u(1, 0)  sin   0

The values of u at the mesh points can be obtained by using the recur-
rence relation (i) as shown in the table below:

x  0 0.2 0.4 0.6 0.8 1.0

t

0

i
j

0 1 2 3 4 5

0 0 0.5878 0.9511 0.9511 0.5878 0

0.02 1 0 0.4756 0.7695 0.7695 0.4756 0

0.04 2 0 0.3848 0.6225 0.6225 0.3848 0

0.06 3 0 0.3113 0.5036 0.5036 0.3113 0

0.08 4 0 0.2518 0.4074 0.4074 0.2518 0

0.1 5 0 0.2037 0.3296 0.3296 0.2037 0

EXAMPLE 11.11

Find the values of u(x, t) satisfying the parabolic equation 
2

24
u u
t x
 


 
and the boundary conditions u(0, t)  0  u(8, t) and u(x, 0) = 4x – (1/2) x2 at 
the points x = i:i = 0, 1, 2, , 7 and t  1/8  j: j = 0, 1, 2, , 5

Solution:

Here c2  4, h  1 and k  1/8. Then   c2k/h2  1/2.

 We have Bendre-Schmidt’s recurrence relation 
 ui, j1  1/2 (ui–1, j  u=) (i)

Now since      u(0, t)  0  u(8, t)

 u0, i  0 and u8, j  0 for all values of j, i.e., the entries in the first and 
last column are zero.
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Since u(x, 0)  4x – (1/2) x2

       ui, 0  4i – (1/2) i2

  0, 3.5, 6, 7.5, 8, 7.5, 6, 3.5 for i  0, 1, 2, 3, 4, 5, 6, 7 

at                    t  0

These are the entries of the first row.

Putting j  0 in (i), we have ui, 1  (1/2) (ui–1, 0  ui1, 0)

Taking i  1, 2, , 7 successively, we get

  1,1 0,0 2,0
1
 0 6

1
3

2
( )

2
u u u      

  2,1 1,0 3,0
1

3.5 7.5 5.5
2

1
( )

2
u u u    

  3,1 2,0 4,0
1 1

( ) 6 8 7
2 3

u u u      

u4, 1  7.5, u5, 1  7, u6, 1  5.5, u7, 1  3.

These are the entries in the second row.

Putting j  1 in (i), the entries of the third row are given by

  1,2 –1,1 1,1
1
2 i iu u u   

Similarly putting j  2, 3, 4 successively in (i), the entries of the fourth, 
fifth, and sixth rows are obtained.

Hence the values of ui, j are as given in the following table:

      i
j

0 1 2 3 4 5 6 7 8

0 0 3.5 6 7.5 8 7.5 6 3.5 0
1 0 3 5.5 7 7.5 7 5.5 2 0
2 0 2.75 5 6.5 7 6.5 5 2.75 0
3 0 2.5 4.625 6 6.5 6 4.625 2.5 0
4 0 2.3125 4.25 5.5625 6 5.5625 4.25 2.3125 0
5 0 2.125 3.9375 5.125 5.5625 5.125 3.9375 2.125 0
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EXAMPLE 11.12

Solve the equation
2

2

u u
y x
 


 
subject to the conditions u(x, 0) = sin x, 

0  x  1; u(0, t) = u(1, t)  0, using (a) Schmidt method, (b) Crank-Nicolson 
method, (c) Du Fort-Frankel method. Carryout computations for two 
levels, taking h = 1/3, k = 1/36.

Solution:

Here c2  1, h  1/3, k  1/36 so that  kc2/h2  1/4.

Also u1, 0  sin /3  3/2, u2, 0  sin 2/3  3/2 and all boundary values 
are zero as shown in Figure 11.28.

0
3/2 3/2 0 x

0

0 0

0

(1, 2) (2, 2)

(1, 1) (2, 1)

t

FIGURE 11.28

(a) Schmidt’s formula [(2) of Section 11.9]

ui, j1   ui–1, j  (1 – 2) ui, j   ui1, j

becomes , 1 –1, , 1,
1

[ ]
4

2i j i j i j i ju u u u    

For i  1, 2; j  0:

u1, 1  1
4

 [u0, 0  2u1, 0  u2, 0]  1
4

 (0  2 × 3/2  3/2)  0.65

u2, 1  1
2

 [u1, 0  2u2, 0  u3, 0]  1
4

 (3/2  2 × 3/2  0)  0.65

For i  1, 2; j  1:

u1, 2  1
4

 (u0, 1  2u1, 1  u2, 1)  0.49

u2, 2  1
4

 (u1, 1  2u2, 1  u3, 1)  0.49
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(b) Crank-Nicolson formula [(4) of Section 11.9] becomes

– 1
4

 ui–1, j1  5
2

 ui, j1 – 1
4

 ui1, j1  1
4

 ui–1, j  3
2

ui, j  1
4

 ui1, j

For i  1, 2; j  0:
 – u0, 1  10u1, 1 – u2, 1  u0, 0  6u1, 0  u2, 0

i.e.,                       10u1, 1 – u2, 1  73/2
 – u1, 1  10u2, 1 – u3, 1  u1, 0  6u2, 0  u3, 0

i.e.,                     – u1, 1  10u2, 1  73/2

Solving these equations, we find
 u1, 1  u2, 1  0.67

For i  1, 2; j  1:
 – u0, 2  10u1, 2 – u2, 2  u0, 1  6u1, 1  u2, 1

i.e.,         10u1, 2 – u2, 2  4.69
 – u1,2  10u2,2 – u3,2  u1, 1  6u2,1  u3,1

i.e,           – u1,2  10u2,2  4.69

Solving these equations, we get u1,2  u2,2  0.52.

(c) Du Fort-Frankel formula [(8) of Section 11.9] becomes ui, j1  1
3

(ui, 

j–1  ui–1, j  ui1, j)

To start the calculations, we need u1, 1 and u2, 1.

We may take u1, 1  u2, 1  0.65 from Schmidt method.

For i  1, 2; j  1:

 u1, 2  1
3

 (u1, 0  u0, 1  u2, 1)  1
3

 (3/2  0  0.65)  0.5

 u2, 2  1
3

 (u2, 0  u1, 1  u3, 1)  1
3

 (3/2  0.65  0)  0.5.

11.10 Solution of Two Dimensional Heat Equation

 
2 2

2
2 2

u u u
c

t x y

   
      

 (1)

The methods employed for the solution of one dimensional heat equa-
tion can be readily extended to the solution of (1).
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Consider a square region 0  x  y  a and assume that u is known at all 
points within and on the boundary of this square.

If h is the step-size then a mesh point (x, y,t)  (ih, jh, nl) may be de-
noted as simply (i, j, n).

Replacing the derivatives in (1) by their finite difference approxima-
tions, we get

 , ,  1 , , li j n i j nu

l

u 
=

2

2

c
h

{(ui–1, j, n – 2ui, j, n  ui1, j, n)  (ui, j–1, n – 2ui, j, n  ui, j1, n)}

i.e.,  ui, j, n1  ui, j, n  (ui–1, j, n  ui1, j, n  u+ ui, j–1, n – 4ui, j, n) (2)

where   lc2/h2. This equation needs the five points available on the nth 
plane (Figure 11.29).

t

(i, j, n + 1)
(i, j + 1, n)

(i – 1, j, n)

h

h
(i, j, n) (i + 1, j, n) x

y
(i, j – 1, n)

(i, j, n – 1)
FIGURE 11.29

The computation process consists of point-by-point evaluation in the 
(n  1)th plane using the points on the nth plane. It is followed by plane-
by-plane evaluation. This method is known as ADE (Alternating Direction 
Explicit) method.

EXAMPLE 11.13

Solve the equation 
2 2

2 2

u u u
u x y
  
 

  
 subject to the initial conditions 

u(x,y, 0)  sin 2 x sin 2 y, 0  x, y  1, and the conditions u(x, y, t)  0, 
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t > 0 on the boundaries, using ADE method with h  1/3 and   1/8. (Cal-
culate the results for one time level).

Solution:

The equation (2) above becomes

ui, j, n1  ui, j, n  1
8

 (ui–1, j, n  ui1, j, n  ui, j1, n  ui, j–1, n – 4ui, j, n)

i.e., ui, j, n1  1
2

 ui, j, n  1
8

 (ui–1, j, n  ui1, j, n  ui, j1, n  ui, j–1, n) (1)

The mesh points and the computational model are given in Figure 
11.30.

t

II Level

(0, 0, 1) (1, 0 ,1)      (2, 0, 1)    (3,0,1)

(0, 1, 1) (1, 1, 1) (2, 1, 1)

(0, 2, 1) (1, 2, 1) (2, 2, 1)

(3,1,1)

I Level

(3, 2, 1)

(0, 3, 1)
(1, 3, 1) (2, 3, 1)

(0, 0, 0)
(3, 3, 1)

(1, 0, 0) (2, 0, 0) (3 ,0, 0)
x

(0, 1, 0) (1, 1, 0)(2,1,0)
(3, 1, 0)

Zeroth level

(0, 2, 0) (1, 2, 0) (2, 2, 0)
(3, 2, 0)

(0, 3 ,0)
(1, 3, 0)    (2, 3, 0)     (3, 3, 0)

y
FIGURE 11.30
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At the zero level (n  0), the initial and boundary conditions are

 , ,0
2 2

sin sin
3 3i j

i i
u

 


and ui, 0, 0  u0, j, 0  u3, j, 0  ui, 3, 0  0; i, j  0, 1, 2, 3.

Now we calculate the mesh values at the first level:

For n = 0, (1) gives

 ui, j, 1   1
2

  ui, j, 0  1
8

 (ui–1, j, 0  ui1, j, 0  ui, j1, 0  ui, j–1, 0) (2)

(i) Put i  j  1 in (2):

 u1, 1, 1  1
2

 u1, 1, 0  1
8

 (u0, 1, 0  u2, 1, 0  u1, 2, 0  u1, 0, 0)

 
21 2 1 4 2 2 4

sin 0 sin sin sin sin 0
2 3 8 3 3 3 3
       

       
   

                    3 1 3 3 3 3 3
8 8 2 2 2 2 16

 
        
 

(ii) Put i  2, j  1 in (2)

 u2, 1, 1  1
2

u2, 1, 0  1
8

(u1, 1, 0  u3, 1, 0  u2, 2, 0  u2, 0, 0)

 
2 21 4 2 1 2 4

sin sin sin 0 sin 0
2 3 3 8 3 3

        
        
     

             
2 2 2

1 3 1 3 3 3
2 2 8 2 2 16

       
          
       

(iii) Put i  1, j  2 in (2):

 u1, 2, 1  1
2

 u1, 2, 0  1
8

 (u0, 2, 0  u2, 2, 0  u1, 1, 0)

 
2 21 2 4 1 4 2

sin sin 0 sin 0 sin
2 3 3 8 3 3

        
        

     

             
3 1 3 3 3
8 8 4 4 16
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(iv) Put i  2, j  2 in (2):

 u2, 2, 1  1
2

  u2, 2, 0 
1
8

 (u1, 2, 0  u3, 2, 0  u2, 3, 0  u2, 1, 0)

 
21 4 1 2 4 4 2

sin sin sin 0 0 sin sin
2 3 8 3 3 3 3
       

       
   

                    
3 1 3 3 3
8 8 4 4 16

 
     

 

Similarly the mesh values at the second and higher levels can be calculated.

Exercises 11.4

1. Find the solution of the parabolic equation uxx  2ut when u(0, t)  u(4, t) 
 0 and u(x, 0)  x(4 – x), taking h  1. Find the values up to t  5.

2. Solve the equation 
2

2

u u
tx

 



 with the conditions u(0, t)  0, u(x, 0)  

x(1 – x), and u(1, t) 0. Assume h  0.1. Tabulate u for t  k, 2k and 3k 
choosing an appropriate value of k.

3. Given 
2

2 
f f

fx

 



 0; f(0, t)  f(5, t)  0, f(x, 0)  x2(25 – x2); find the 

values of f for x  ih (i  0, 1, ..., 5) and t  jk (j  0, 1, ..., 6) with h  1 
and k  1/2, using the explicit method.

4. Given u/t  2u/t2, u(0, t)  0, u(4, t)  0 and u(x, 0) x/3(16 – x2). 
Obtain ui, j for10  1, 2, 3, 4 and j  1, 2 using Crank-Nicholson’s 
method.

5. Solve the heat equation 
2

2

u u
t x
 


 
subject to the conditions u(0, t)  

u(1, t)  0 and 

  
 

2 for 0 x 1/2
,0

2 1 for 1/2  x 1

x
u x

x

  
 

   

Take h  1/4 and k according to the Bandre-Schmidt equation.

6. Solve the two dimensional heat equation 
2 2

2 2

u u u
t x y
  
 

  
satisfying the 

initial condition: u(x, y, 0)  sin x sin y, 0  x, y  1 and the boundary 
conditions: u  0 at x  0 and x  1for t > 0. Obtain the solution up to two 
time levels with h  1/3 and   18. 
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11.11 Hyperbolic Equations

The wave equation
2 2

2
2 2

u u
c

t x
 


 
is the simplest Example  of hyperbolic 

partial differential equations. Its solution is the displacement function u(x, 
t) defined for values of x from 0 to l and for t from 0 to , satisfying the 
initial and boundary conditions. The solution, as for parabolic equations, 
advances in an open-ended region (Figure 11.24). In the case of hyperbolic 
equations however, we have two initial conditions and two boundary condi-
tions.

Such equations arise from convective type of problems in vibrations, 
wave mechanics, and gas dynamics.

11.12 Solution of Wave Equation

 
2 2

2
2 2

u u
c

t x
 


 
 (1)

subject to the initial conditions: u  f(x), u/t  g(x), 0  x  1 at t  0 (2)

and the boundary conditions: u(0, t)  (t), u(1, t)  (t) (3)

Consider a rectangular mesh in the x-t plane spacing h along x direction 
and k along time direction. Denoting a mesh point (x, t)  (ih, jk) as simply 
i, j, we have

 
2 2

1, 1, , 1 , , 1
2 2 2 2

2 2
and

i j i j i j i j i ju u u u uu u
x h t h

      
 

 
Replacing the derivatives in (1) by their above approximations, we 

obtain
        ui, j–1 – 2ui, j  ui, j1  

2 2

2

c k
h

 (ui–1, j – 2ui, j  ui, j1)

or               ui, j1  2(1 – 2c2) ui, j  2c2(ui–1, j  ui1, j) – ui, j–1 (4)
where                      k/h.

Now replacing the derivative in (2) by its central difference approxima-
tion, we get

                       
, 1 , 1

2
ui j ui j u

g x
k t

   
 


or   ui, j1  ui, j–1  2kg(x) at t  0

i.e.,                                   ui, 1  ui, –1  2kg(x) for j  0 (5)
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Also initial condition u  f(x) at t  0 becomes ui, –1  f(x) (6)

Combining (5) and (6), we have ui, 1  f(x)  2kg(x) (7)

Also (3) gives u0, j  (t) and u1, j  (t).

Hence the explicit form (4) gives the values of ui, j1 at the (j  1)th level 
when the nodal values at (j – 1)th and jth levels are known from (6) and (7) 
as shown in Figure 11.31. Thus (4)gives an implicit scheme for the solu-
tion of the wave equation.

A special case. The coefficient of ui, j in (4) will vanish if c  1 or k  
h/c. Then (4) reduces to the simple form

 ui, j1  ui–1, j  ui1, j – ui, j–1 (8)

Obs. 1. This provides an explicit scheme for the solution of 
the wave equation.
For   1/c, the solution of (4) is stable and coincides with the 
solution of (1).
For  < 1/c, the solution is stable but inaccurate.
For  > 1/c, the solution is unstable.

Obs. 2. The formula (4) converges for   1 i.e., k  h.

k

h

t

φ(t)

1st level

2nd level

x
f(x)

f(
x)

 +
 k

g(
x)

ψ(t)

FIGURE 11.31

NOTE

NOTE
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EXAMPLE 11.14

Evaluate the pivotal values of the equation utt = 16uxx, taking x  1up 
to t = 1.25. The boundary conditions are u(0, t) = u(5, t) = 0, ut(x, 0) = 0 and 
u(x, 0) = x2(5 – x).

Solution:

Here c2  16.

 The difference equation for the given equation is

ui, j1  2(1 – 162) ui, j  162 (ui–1, j  ui1, j) – ui, j–1 (i)

where   k/h.

Taking h  1 and choosing k so that the coefficient of ui, j vanishes, we 
have 162  1, i.e.,k  h/4  1/4.

 (1) reduces to ui, j1  ui–1, j  ui1, j – ui, j – 1 (ii)

which gives a convergent solution (since k/h < 1). Its solution coincides with 
the solution of the given differential equation.

Now since u(0, t)  u(5, t)  0,  u0, j  0 and u5, j  0 for all values 
of j

i.e., the entries in the first and last columns are zero.

Since            u(x, 0)  x2 (5 – x)

  ui, 0  i2(5 – i)  4, 12, 18, 16 for i  1, 2, 3, 4 at t  0.

These are the entries for the first row.

Finally since ut(x, 0)  0 becomes

 , 1 , 1

2
i j i ju u

k
  = 0, when j  0, giving ui, 1  ui, –1 (iii)

Thus the entries of the second row are the same as those of the first 
row.

Putting j  0 in (ii), 

 ui, 1  ui–1, 0  ui  1, 0 – ui, –1  ui–1, 0  ui1, 0 – ui, 1, using (iii)

or ui, 1  1/2 (ui–1, 0  ui1, 0) (iv)

Taking i  1, 2, 3, 4 successively, we obtain

              1,1 0, 0 2, 0 0 12 6u u u      
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  1,1 0,0 2,0
1 1

( ) 0 12 6
2 2

u u u    

   2,1 1,0 3,0
1

( ) 4 18 11
2

1
2

u u u     

      3,1 2,0 4,0
1 1

( ) 12 16 14
2 2

u u u      

  4,1 3,0 5,0
1 1
 ( ) 18 0 9
2 2

u u u    

These are the entries of the second row.

Putting j  1 in (ii), we get ui, 2  ui–1, 1  ui1, 1 – ui, 0

Taking i  1, 2, 3, 4 successively, we obtain

 u1, 2  u0, 1  u2, 1 – u1, 0  0  11 – 4  7
 u2, 2  u1, 1  u3, 1 – u2, 0  6  14 – 12  8
 u3, 2  u2, 1  u4, 1 – u3, 0  11  9 – 18  2
 u4, 2  u3, 1  u5, 1 – u4, 0  14  0 – 16  – 2

These are the entries of the third row.

Similarly putting j  2, 3, 4 successively in (ii), the entries of the fourth, 
fifth, and six throws are obtained.

Hence the values of ui, j are as shown in the table below:

          i
    j 

0 1 2 3 4 5

0 0 4 12 18 16 0

1 0 6 11 14 9 0

2 0 7 8 2 −2 0

3 0 2 −2 −8 −7 0

4 0 −9 −14 −11 −6 0

5 0 −16 −18 −12 −4 0

EXAMPLE 11.15

Solve ytt = yxx up to t = 0.5 with a spacing of 0.1 subject to y(0, t)  0,
y(1, t)  0, yt (x, 0)  0 and y(x, 0)  10 + x(1 – x).
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Solution:

As c2  1, h  0.1, k  (h/c)  0.1; we use the formula

    ui, j1  yi–1, j  yi1, j – yi, j–1 (i)

Since  y(0, t)  0, y(1, t)  0, 

               y0, j  0, y1, j  0 for all values of i.

i.e., all the entries in the first and last columns are zero.

Since  y(x, 0)  10  x (1 – x),  yi, 0  10  i (1 – i)

    y0.1, 0  10.09, y0.2, 0  10.16, y0.3, 0  10.21, y0.4, 0  10.24

    y0.5, 0  10.25, y0.6,0  10.24, y0.7, 0  10.21, y0.8, 0  10.16, 

                y0.9, 0  10.09

These are the entries of the first row.

Since  yt (x, 0)  0, we have 1/2(yi, j1 – yi, j–1)  0 (ii)

When            j  0, yi, 1  yi, –1

Putting            j  0 in (i), yi, 1  yi–1, 0  yi1, 0 – yi, – 1

Using (ii)    yi, 1 1/2(yi–1, 0  yi1, 0)

Taking i  1, 2, 3 , 9 successively, we obtain the entries of the second 
row.

Putting j  1 in (i), yi, 2  yi–1, 1  yi1, 1 – yi, 0

Taking i  1, 2, 3, , 9 successively, we get the entries of the third row.

Similarly putting j  2, 3, , 7 successively in (i), the entries of the 
fourth to ninth row are obtained. Hence the values of ui, j are as given in the 
table below:

       i
   j

0 1 2 3 4 5 6 7 8 9 10

0 0 10.19 10.16 10.21 10.24 10.25 10.24 10.21 10.16 10.09 0

1 0 5.08 10.15 10.20 10.23 10.24 10.23 10.20 10.15 5.08 0

2 0 0.06 5.12 10.17 10.20 10.21 10.20 10.17 10.12 0.06 0

3 0 0.04 0.08 5.12 10.15 10.16 10.15 10.12 10.08 0.04 0

4 0 0.02 0.04 0.06 5.08 10.09 10.08 10.16 10.04 0.02 0

5 0 0 0 0 0 0 0 0 0 0.02 0
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EXAMPLE 11.16

The transverse displacement u of a point at a distance x from one end 
and at any time t of a vibrating string satisfies the equation 2u/t2 = 42u/x2, 
with boundary conditions u = 0 at x = 0, t > 0 and u = 0 at x = 4, t > 0 and 
initial conditions u = x(4 – x) and u/t = 0, 0  x  4. Solve this equation 
numerically for one-half period of vibration, taking h = 1 and k = 1/2.

Solution:

Here, h/k  2  c.

 The difference equation for the given equation is
 ui, j1  ui–1, j ui1, j – ui, j–1 (i)

which gives a convergent solution (since k < h).

Now since u(0, t)  u(4, t)  0,

           u0, j  0 and u4, j  0 for all values of j.

i.e., the entries in the first and last columns are zero.

Since            u(x, 0)  x(4 – x),

           ui, 0  i(4 – i)  3, 4, 3 for i  1, 2, 3 at t  0.

These are the entries of the first row.

Also ut(x, 0)  0 becomes

 
, 1 , 1

0
2

i j i ju u

k
 

  when j  0, giving ui, 1  ui, –1  (ii)

Putting j = 0 in (i), ui, 1  ui–1, 0  ui1, 0 – ui, –1  ui–1, 0  ui1, 0 – ui, 1, using (ii)

or       ui, 1  1/2 (ui–1, 0  ui1, 0)  (iii)

Taking i  1, 2, 3 successively, we obtain

                  u1, 1  1/2 (u0, 0  u1, 0)  2; u2, 1  1/2 (u1, 0  u3, 0)
                                      3, u3, 1  1/2 (u2, 0  u4, 0)  2

These are the entries of the second row.

Putting j = 1 in (i), ui, 2  ui–1, 1  ui1, 1 – ui, 0

Taking i  1, 2, 3, successively, we get

 u1, 2  u0, 1  u2, 1 – u1, 0  0  3 – 3  0
 u2, 2  u1, 1  u3, 1 – u2, 0  2  2 – 4  0
 u3, 2  u2, 1  u4, 1 – u3, 0  3  0 – 3  0
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These are the entries of the third row and so on.

Now the equation of the vibrating string of length l is utt  c2 uxx.

 Its period of vibration 
2 2 4

4sec
2

l
c


   [ l  4 and c  2]

This shows that we have to compute u(x, t) up to t  2

i.e. Similarly we obtain the values of ui, 2 (fourth row)and ui, 3 (fifth row).

Hence the values of ui, j are as shown in the next table:

          i
   j

0 1 2 3 4

0 0 3 4 3 0

1 0 2 3 2 0

2 0 0 0 0 0

3 0 −2 −3 −2 0

4 0 −3 −4 −3 0

EXAMPLE 11.17

Find the solution of the initial boundary value problem:
2 2

2 2 ,
u u

t x
 


 
 0  x  1; subject to the initial conditions u(x, 0)  sin x, 

0  x  1, u
t

 
 
 

(x, 0)  0, 0  x  1 and the boundary conditions u (0, t)  0, 

u(1, t)  0, t > 0; by using in the (a) the explicit scheme (b) the implicit 
scheme.

Solution:

(a) Explicit scheme

Take h  0.2, k  h/c  0.2   [ c  1]

 We use the formula ui, j + 1  ui–1, j  ui1, j – ui, j–1 (i)

Since u(0, t)  0, u(1, t)  0, u0, j  0, u1, j  0 for all values of j

i.e., the entries in the first and last columns are zero.

Since u(x, 0)  sin x, ui,0  sin x

  u1,0  0, u2,0  sin (.2)  0.5878, u3,0  sin (.4)  0.9511,
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u4,0  sin (.6)  0.5878.

These are the entries of the first row.

Since ut(x, 0)  0 we have 1/2(ui, j1 − ui, j−1)  0, when j  0

i.e.,    ui,1  ui, –1 (ii)

Putting j  0 in (i), ui,1  ui–1, 0  ui1, 0 – ui, –1

Using (ii) ui,1  1/2(ui-1,0+ui+1,0)

Taking i  1, 2, 3, 4 successively, we obtain the entries of the second 
row.

Putting  j  1 in (i), ui, 2  ui–1, 1  ui1, 1 – ui,0

Now taking i  1, 2, 3, 4 successively, we get the entries of the third row.

Similarly taking j  2, j  3, j  4 successively, we obtain the entries of 
the fourth, fifth, and sixth rows, respectively.

Hence the values of ui, j are as given in the table below:

i
     j

0 1 2 3 4 5

0 0 0.5878 0.9511 0.9511 0.5878 0

1 0 0.4756 0.7695 0.9511 0.7695 0

2 0 0.1817 0.4756 0.5878 0.3633 0

3 0 0 0.0001 – 0.1122 – 0.1816 0

4 0 – 0.1816 – 0.5878 – 0.7694 0.4755 0

5 0 – 0.5878 – 0.9511 – 0.9511 – 0.5878 0

(b) Implicit scheme

We have the formula:

ui, j1  2 (1 – 2c2) ui, j  2c2 (ui–1, j  ui1, j) – ui, j–1, where   k/h. (i)

Here c2  1, Take h  0.25 and k  0.5 so that   k/h  2.

 (i) reduces to
 ui, j1  – 6ui, j  4 (ui–1, j  ui1, j) – ui, j–1 (ii)

Since        u(i,0)  sin x

 u(1, 0)  0.7071, u(2, 0)  0.5, u(3, 0)  0.7071
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There are the entries of the first row.

Since ut(x, 0)  0, we have 1/2(yi, i1 – yi, i–1)  0, where j  0

  yi, 1  yi, – 1 (ii)
Putting j  0 and using (iii), (ii) reduces to

 ui, 1  – 3 ui, 0  2 (ui–1, 0  ui1, 0)
Now taking  i  1, u1, 1  – 3 u1, 0  2 (u0, 0  u2, 0)  – 0.1213

                            i  2, u2, 1  – 3 u2, 0  2 (u1, 0  u3, 0)  – 0.1716

                            i  3, u3, 1  – 3u3, 0  2 (u2, 0  u4, 0)  – 0.1213

These are the entries of the second row.

Putting j  1, (ii) reduces to

                       ui, 2  – 6ui, 1  4 (ui–1, 1  ui1, 1)

Now taking   i  1, u1, 2  – 6u1, 1  4 (u0, 1  u2, 1)  0.414

                           i  2, u2, 2  – 6u2, 1  4 (u1, 1  u3, 1)  0.0592

                           i  3, u3, 2  – 6u3, 1  4 (u2, 1  u4, 1)  0.0414

These are the entries of the third row.

Putting j  2, (ii) reduces to

                       ui, 3  – 6ui, 2  4 (ui–1, 2  ui1, 2) – ui,

Now taking   i  1, u1, 3  – 6u1, 2  4 (u0, 2  u2, 2) – u1, 1  0.1097

               i  2, u2, 3  – 6u2, 2  4 (u1, 2  u3, 2) – u2, 1  0.1476

                           i  3, u3, 3  – 6u3, 2  4(u2, 2  u4, 2) – u3, 1  0.1097

These are the entries of the fourth row.

Hence the values of ui, j are as tabulated below:

            i
      j

0 1 2 3 4

0 0 0.7071 0.5 0.7071 0

1 0 – 0.1213 – 0.1716 – 0.1213

2 0 0.0414 0.0592 0.0414 0
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EXERCISES 11.5

1. Solve the boundary value problem utt  uxx with the conditions u(0, t)  
u(1, t)  0, u(x, 0)  1/2  x(1 – x) and ui(x, 0)  0, taking h  k  0.1 for 0  t 
 0.4. Compare your solution with the exact solution at x  0.5 and t  0.3.

2. The transverse displacement of a point at a distance x from one end and 

at any time t of a vibrating string satisfies the equation 
2 2

2 225
u u

t x
 


 
with 

the boundary conditions u(0,t)  u(5, t)  0 and the initial conditions 

u(x, 0) 
 

20 for 0 1

5 5 for1 5

x

x

 


 
 and ut(x, 0)  0. Solve this equation nu-

merically for one-half period of vibration, taking h  1, k  0.2.

3. The function u satisfies the equation 
2 2

2 2

u u
t x
 


 
and the conditions: u(x, 

0)  1/8 sin x,ut(x, 0)  0 for 0  x  1, u(0, t)  u(1, t)  0 for t  0.
Use the explicit scheme to calculate u for x  0(0.1) 1 and t  0(0.1) 0.5.

4. Solve 
2 2

2 2

u u
t x
 


 
, 0 < x < 1, t > 0, given u(x, 0)  ut (x, 0)  u(0, 1)  0 and 

u (1, t)  100sin t. Compute u for four times with h  0.25.

EXERCISES 11.6

1. Which of the following equations is parabolic:
(a) fxy – fx  0 (b) fxx  2fxy  fyy  0 (c) fxx  2fxy  4fyy  0.

2. uij 1/4(ui + 1, j – ui – 1, j  ui, j  1 – ui, j – 1) is Leibmann’s five-point formula.
 (True or False)

3. uxx  3uxy  uyy  0 is classified as  .

4. 2u  f(x, y) is known as  .

5. The simplest formula to solve utt 2 uxx is .. .

6. The finite difference form of 2u/x2 is . .

7. Schmidt’s finite difference scheme to solve ut  c2 uxx is . .

8. The five point diagonal formula gives uij  ..... .
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9. The partial differential equation (x  1) uxx – 2(x  2) uxy  (x  3) uyy  0 
is classified as. .

10. ui, j  1 1/2(ui + 1, j  ui– 1, j ) is called .. recurrence relation.

11. In terms of difference quotients 4uxx  utt is  .

12. The Bendre-Schmidt recurrence relation for one dimensional heat 
equation is ..... .

13. The diagonal five point formula to solve the Laplace equation uxx  uyy  
0 is ..... .

14. The Crank-Nicholson formula to solve uxx  aut when k  ah2, is ..... .

15. In the parabolic equation ut  2 uxx if   k2/h2, where k  t, and h  
x, then explicit method is stable if   ..... .

16. The Bendre-Schmidt recurrence scheme is useful to solve ..... equation.

17. The two methods of solving one-dimensional diffusion (heat) equation 
are ..... .

18. 
2 2 2

2 22 4 3 0
u u u

x yx y
  
  
  

 is classified as... .

19. The order of error in solving Laplace and Poisson’s equations by finite 
difference method is  .

20. The difference scheme for solving the Poisson equation 2u  f(x, y) 
is....

21. The explicit formula for one-dimensional wave equation with 1 – 22  
0 and   k/h is  .

22. The general form of Poisson’s equation in partial derivatives is  .

23. If u satisfies Laplace equation and u  100 on the boundary of a square, 
the value of u at an interior grid point is  .

24. The Laplace equation uxx  uyy  0 in difference quotients is  .

25. The equation yuxx  uyy  0 is hyperbolic in the region  .

26. To solve 
2

2

1
2

u u
u x
 


 
 by the Bendre-Schmidt method with h  1, the 

value of k is  .

27. Crank Nicholson’s scheme is called an implicit scheme because  .
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12.1 Introduction

We often face situations where decision making is a problem of plan-
ning activity. The problem generally, is of utilizing the scarce resources in 
an efficient manner so as to maximize the profit or to minimize the cost or 
to yield the maximum production. Such problems are called optimization 
problems. Linear programming in particular, deals with the optimization 
(maximization or minimization) of linear functions subject to linear con-
straints. This technique was propounded by George B. Dantzig in 1947 
while working on a project for the U.S. Air Force. He also developed a 
powerful iterative process known as the “simplex method” for solving linear 
programming problems in 1951.

Linear programming is widely used to tackle a number of industrial, 
economic, marketing, and distribution problems. This technique has found 
its applications to important areas of product mix, blending problems, and 
diet problems. Oil refineries, chemical industries, steel industries, and food 
processing industry are also using linear programming with considerable 
success. In defense, this technique is being employed in inspection, optimal 
bombing patterns, design of weapons, etc. In fact, linear programming may 
be applied to any situation where a linear function of variables has to be 
optimized subject to a set of linear equations or inequalities.

In this chapter, our purpose is to present the principles of linear pro-
gramming and the techniques of its application in a manner that will suit 
both engineers and scientists who are increasingly using this technique to 
solve their problems. Beginning with the graphical method which provides 
a great deal of insight into the basic concepts, the simplex method of solving 
linear programming problems is developed. Then the reader is introduced 
to the duality concept. Finally a special class of linear programming prob-
lems namely: transportation and assignment problems, is taken up.

12.2 Formulation of the Problem

To begin with, a problem is to be presented in a linear programming 
form which requires defining the variables involved, establishing relation-
ships between them, and formulating the objective function and the con-
straints. We illustrate this through a few examples, wherein the stress will 
be on the analysis of the problem and formulation of the linear program-
ming model.
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EXAMPLE 12.1

A manufacturer produces two types of models M1 and M2. Each M1 
model requires 4 hours of grinding and 2 hours of polishing; whereas each 
M2 model requires 2 hours of grinding and 5 hours of polishing. The manu-
facturer has 2 grinders and 3 polishers. Each grinder works for 40 hours a 
week and each polisher works for 60 hours a week. Profit on an M1 model is 
$ 3 and on an M2 model is $ 4. Whatever is produced in a week is sold in the 
market. How should the manufacturer allocate his production capacity to 
the two types of models so that he may make the maximum profit in a week

Solution:

Let x1 be the number of M1 models and x2, the number of M2 models 
produced per week. Then the weekly profit (in $) is

 Z  3x1  4x2 (i)
To produce these number of models, the total number of grinding 

hours needed per week

  4x1  2x2

and the total number of polishing hours required per week

  2x1  5x2

Since the number of grinding hours available is not more than 80 and 
the number of polishing hours is not more than 180, therefore

 4x1  2x2  80 (ii)
   2x1  5x2  180 (iii)

Also since the negative number of models are not produced, obviously 
we must have

 x1  0 and x2  0 (iv)
Hence this allocation problem is to find x1, x2 which

Maximize      Z  3x1  4x2

subject to 4x1  2x2  80, 2x1  5x2  180, x1, x2  0.

Obs. The variables that enter into the problem are called 
decision variables.

The expression (i) showing the relationship between the 
manufacturer’s goal and the decision variables, is called the 
objective function.

The inequalities (ii), (iii), and (iv) are called the constraints.

NOTE
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The objective function and the constraints being all linear, it is a linear 
programming problem(L.P.P.). This is an example of a real situation from 
industry.

EXAMPLE 12.2

Consider the following problem faced by a production planner in a 
soft-drink plant. He has two bottling machines A and B. A is designed for 
8-ounce bottles and B for 16 ounce bottles. However, each can be used on 
both types with some loss of efficiency. The following is available:

Machine 8-ounce bottles 16-ounce bottles

A 100/minute 40/minute

B 60/minute 75/minute

The machines can be run 8 hours per day, 5 days per week. Profit in a 
8-ounce bottle is 15 paise and on a 16-ounce bottle is 25 paise. Weekly pro-
duction of drink cannot exceed 300,000 ounces and the market can absorb 
25,000 8-ounce bottles and 7,000 16-ounce bottles per week. The planner 
wishes to maximize his profit subject, of course, to all the production and 
marketing restrictions. Formulate this as a linear programming problem.

Solution:

Let x1 units of 8-ounce bottle and x2 units of 16-ounce bottle be pro-
duced per week. Than the weekly profit (in $) of the production planner is

 Z  0.15x1  0.25x2 (i)
Since an 8-ounce bottle takes 1/100 minutes and a 16-ounce bottle 1/40 

minutes on machine A and the machine can run 8 hours per day, 5 days per 
week, i.e., 2400 minutes per week, therefore we have

 1 2
1 1

2400
100 40

x x   (ii)

Also since an 8-ounce bottle takes 1/60 minutes and a 16-ounce bottle 
takes 1/75 minutes on machine B which can run for 2400 minutes per week, 
therefore we have

 1 2
1 1

2400
60 75

x x   (iii)
As the total weekly production cannot exceed 300,000 ounces, there-

fore,
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 8x1  16x2  300,000 (iv)
As the market can absorb at the most 25,000, 8-ounce bottles and 7,000, 

16-ounce bottles per week, therefore,

 0  x1  25,000 and 0  x2  7,000 (v)
Hence this allocation problem of the production planner is to find x1, 

x2 which

Maximize Z  0.15x1  0.25x2

subject to 2x1  5x2  480,000, 5x1  4x2  720,000, x1  2x2  37,500

 0  x1  25,000 and 0  x2  7,000.

EXAMPLE 12.3

A firm making castings uses electric furnace to melt iron with the fol-
lowing specifications:

Minimum Maximum

Carbon 3.20% 3.40% 

Silicon 2.25% 2.35%

Specifications and costs of various raw materials used for this purpose 
are given below:

Material Carbon% Silicon% Cost ($)

Steel scrap 0.4 0.15 850/metric ton

Cast iron scrap 3.80 2.40 900/metric ton

Remelt from foundary 3.50 2.30 500/metric ton

If the total charge of iron metal required is 4 metric tons, find the 
weight in kg of each raw material that must be used in the optimal mix at 
minimum cost.  

Solution:

Let x1, x2, x3 be the amounts (in kg) of these raw materials. The objec-
tive is to minimize the cost i.e.,

Minimize 1 2 3
850 900 500

1000 1000 1000
Z x x x    (i)

For iron melt to have a minimum of 3.2% carbon,

 0.4 x1  3.8 x2  3.5 x3  3.2 × 4,000 (ii)
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For iron melt to have a maximum of 3.4% carbon,

 0.4 x1  3.8 x2  3.5 x3  3.4 × 4,000 (iii)
For iron melt to have a minimum of 2.25% silicon,

 0.15 x1  2.41 x2  2.35 x3  2.25 × 4,000 (iv)
For iron melt to have a maximum of 2.35% silicon,

 0.15 x1  2.41 x2  2.35 x3  2.35 × 4,000 (v)
Also, since the materials added up must be equal to the full charge weight 
of 4 metric tons,

 x1  x2  x3  4,000 (vi)
Finally since the amounts of raw material cannot be negative

 x1  0, x2  0, x3  0 (vii)
Thus the linear programming problem is to find x1, x2, x3 which

Minimize Z  0.85 x1  0.9 x2  0.5 x3

subject to  0.4 x1  3.8 x2  3.5 x3  12,800, 0.4 x1  3.8 x2  3.5 x3  13,600

 0.15 x1  2.41 x2  2.35 x3  9,000, 0.15 x1  2.41 x2  
 2.35 x3  9,400

 x1  x2  x3  4,000, x1, x2, x3  0.

Exercises 12.11

1. A firm manufactures two items. It purchases castings which are then ma-
chined, bored, and polished. Castings for items A and B cost $ 3 and $ 4 
each and are sold at $ 6 and $ 7 each, respectively. Running costs of these 
machines are $ 20, $ 14, and $17.50 per hour, respectively. Formulate 
the problem so that the product mix maximizes the profit. Capacities of 
the machines are

Part A Part B

Machining capacity 25 per hr. 40 per hr.

Boring capacity 28 per hr. 35 per hr.

Polishing capacity 35 per hr. 25 per hr.

2. A firm manufactures 3 products A, B, and C. The profits are $ 3, $ 2, 
and $ 4, respectively. The firm has two machines M1 and M2 and below 
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is the required capacity processing time in minutes for each machine on 
each product.

Machine

Product

A B C

M1 4 3 5

M2 2 2 4

Machines M1 and M2 have 2000 and 2500 machine-minutes respectively. 
The firm must manufacture 100 A’s, 200 B’s and 50 C’s but not more 
than 150 A’s. Set up an L.P.P. to maximize profit.

3. Three products are processed through three different operations. The 
time (in minutes) required per unit of each product, the daily capacity of 
the operations (in minutes per day), and the profit per unit sold for each 
product (in Dollars) are as follows:

Operation
Time per unit Operation 

capacityProduct I Product II Product III

1 3 4 3 42

2 5 0 3 45

3 3 6 2 41

Profit ($) 3 2 1

The zero time indicates that the product does not require the given op-
eration. The problem is to determine the optimum daily production for 
three products that maximize the profit. Formulate this production plan-
ning problem as a linear programming problem assuming that all units 
produced are sold.

4. An aeroplane can carry a maximum of 200 passengers. A profit of $ 400 
is made on each first class ticket and a profit of $ 300 is made on each 
economy class ticket. The airline reserves at least twenty seats for first 
class. However, at least four times as many passengers prefer to travel 
by economy class than by the first class. How many tickets of each class 
must be sold in order to maximize profit for the airline? Formulate the 
problem as an L.P. model.

5. A firm manufactures headache pills in two sizes A and B. Size A con-
tains 2 grains of asprin, 5 grains of bicarbonate, and 1 grain of codeine. 
Size B contains 1 grain of asprin, 8grains of bicarbonate and 6 grains of 
codeine. It is found by users that it requires at least 12 grains of asprin, 
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74 grains of bicarbonate, and 24 grains of codeine for providing immedi-
ate effect. It is required to determine the least number of pills a patient 
should take to get immediate relief. Formulate the problem as a stan-
dard L.P.P.

6. A dairy feed company may purchase and mix one or more of three types 
of grains containing different amounts of nutritional elements. The 
data is given in the table below. The production manager specifies that 
any feed mix for his live stock must meet at least minimum nutritional 
requirements and seeks the least costly among all three mixes.

Item 
One unit weight of Minimum 

requirementGrain 1 Grain 2 Grain 3

A
Nutritional B
Ingredients C

D

2 3 7 1,250

1 1 0 250

5 3 0 900

6 25 1 232.5

Cost per weight of 41 35 96

Formulate the problem as a L.P. model.

7.  A firm produces an alloy with the following specifications:
  (i) specific gravity  0.97
 (ii) chromium content  15%
(iii) melting temperature  494°C

The alloy requires three raw materials A, B, and C whose properties are 
as follows:

Property
Properties of raw material

A B C

Sp. gravity 0.94 1.00 1.05

Chromium 10% 15% 17%

Melting pt. 470°C 500°C 520°C

Find the values of A, B, C to be used to make 1 meric ton of alloy of 
desired properties, keeping the raw material costs at the minimum when 
they are $ 105/metric ton for A, $ 245/metric ton for B and $ 165/ metric 
ton for C. Formulate an L.P. model for the problem.

8. The owner of Metro sports wishes to determine how many 
advertisements to place in the selected three monthly magazines A, B, 
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and C. His objective is to advertise in such a way that total exposure to 
principal buyers of expensive sports goods is maximized. Percentages of 
readers for magazine are known. Exposure in any particular magazine 
is the number of advertisements placed multiplied by the number of 
principal buyers. The following data may be used:

Magazine

A B C

Readers 1 lakh 0.6 lakh 0.4 lakh

Principal buyers 10% 15% 7%

Cost per advertisement ($) 5000 4500 4250

The budgeted amount is at most $100,000 for advertisements. The own-
er has already decided that magazine A should have no more than six 
advertisements and that B and C each have at least two advertisements. 
Formulate an L.P. model for the problem.

12.3 Graphical Method

Linear programming problems involving only two variables can be ef-
fectively solved by a graphical technique. In actual practice, we rarely come 
across such problems. Even then, the graphical method provides a pictorial 
representation of the solution and one gets ample insight into the basic 
concepts used in solving large L.P.P.

Working procedure to solve a linear programming problem graphically:

Step 1. Formulate the given problem as a linear programming problem.

 Step 2. Plot the given constraints as equalities on x1x2-coordinate plane and 
determine the convex region* formed by them.

Step 3. Determine the vertices of the convex region and find the value of 
the objective function at each vertex. The vertex which gives the optimal 

FIGURE 12.1 FIGURE 12.2 FIGURE 12.3 FIGURE 12.4

*A region or a set of points is said to be convex if the line joining any two of its points lies completely 
in the region (or the set). Figures 12.1 and 12.2 represent convex regions while Figures 12.3 and 12.4 
do not form convex sets.
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(maximum or minimum) value of the objective function gives the desired 
optimal solution to the problem.

Otherwise. Draw the dotted line through the origin representing the ob-
jective function with Z  0. As Z is increased from zero, this line moves to 
the right remaining parallel to itself. We go on sliding this line (parallel to 
itself), till it is farthest away from the origin and passes through only one 
vertex of the convex region. This is the vertex where maximum value of Z 
is attained.

When it is required to minimize Z, the value of Z is increased until the 
dotted line passes through the nearest vertex of the convex region.

EXAMPLE 12.4

Solve the L.P.P. of Example 12.1 graphically.

Solution:

The problem is:
Maximize Z  3 x1  4x2 (i)
subject to 4 x1  2x2  80 (ii)

    2x1  5x2  180 (iii)
       x1, x2  0 (iv)

Consider the x1x2-coordinate system as shown in Figure 12.5. The non-neg-
ativity restrictions (iv) imply that the values of x1, x2 lie in the first quadrant 
only.

We plot the lines 4x1  2x2  80 and 2x1  5x2  180.

2x
1 + 5x

2 =180

x2

(40)

C B
(36) 4x

1 + 2x
2 = 80

20

A

L

M
0

90

x1

FIGURE 12.5

Then any point on or below 4 x1  2x2  80 satisfies (ii) and any point on 
or below 2 x1  5x2  180 satisfies (iii). This shows that the desired point (x1, 
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x2) must be somewhere in the shaded convex region OABC. This region is 
called the solution space or region of feasible solutions for the given prob-
lem. Its vertices are O(0,0), A(20, 0), B(2.5, 35), and C(0, 36).

The values of the objective function (i) at these points are

 Z(O)  0, Z(A)  60, Z(B)  147.5, Z(C)  144.
Thus the maximum value of Z is 147.5 and it occurs at B. Hence the 

optimal solution to the problem is

 x1  2.5, x2  35 and Zmax  147.5.
Otherwise. Our aim is to find the point in the solution space which maxi-
mizes the profit function Z. To do this, we observe that on making Z  0, (i) 
becomes 3x1  4x2  0 which is represented by the dotted line LM through 
O. As the value of Z is increased, the line LM starts moving parallel to itself 
towards the right. larger the value of Z, more will be the company’s profit. 
In this way, we go on sliding LM until it is farthest away from the origin and 
passes through one of the corners of the convex region. This is the point 
where the maximum value of Z is attained. Just possibly, such a line may be 
one of the edges of the solution space. In that case every point on that edge 
gives the same maximum value of Z.

Here Zmax is attained at B(2.5, 35). Hence the optimal solution is 
x1  2.5, x2  35 and Zmax  147.5.

EXAMPLE 12.5

Find the maximum value of Z  2x  3y

Subject to the constraints: x  y  30, y  3, 0  y  12, x – y  0, and 
0  x  20.

Solution:

Any point (x, y) satisfying the conditions x  0, y  0 lies in the first 
quadrant only. Also since,

x  y  30, y  3, y  12, x  y and x  20, the desired point (x, y) lies 
within the convex region ABCDE (shown shaded in Figure 12.6). Its verti-
ces are A(3, 3), B (20, 3), C(20, 10), D(18, 12) and E(12, 12).

The values of Z at these five vertices are Z(A)  15, Z(B)  49, 
Z(C)  70, Z(D)  72, and Z(E)  60.



Since the maximum value of Z is 72 which occurs at the vertex D, the 
solution to the L.P.P. is

x  18, y  12 and maximum Z  72.

y=12 E D

C

y

x =
y

x + y = 30y = 3

A B

0
x

x = 20

FIGURE 12.6

EXAMPLE 12.6

A company manufactures two types of cloth, using three different co-
lours of wool. One yard length of type A cloth requires 4 oz of red wool, 5 
oz of green wool and 3 oz of yellow wool. One yard length of type B cloth 
requires 5 oz of red wool, 2 oz of green wool and 8 oz of yellow wool. The 
wool available for manufacture is 1000 oz of red wool, 1000 oz of green 
wool and 1200 oz of yellow wool. The manufacturer can make a profit of $ 
5 on one yard of type A cloth and $ 3 on one yard of type B cloth. Find the 
best combination of the quantities of type A and type B cloth which gives 
him maximum profit by solving the L.P.P. graphically.

Solution:

Let the manufacturer decide to produce  x1 yards of type A cloth and x2 
yards of type B cloth. Then the total income in dollars, from these units of 
cloth is given by

 Z  5 x1  3x2 (i)
To produce these units of two types of cloth, he requires

                red wool  4x1  5x2 oz, green wool  5 x1  2x2 oz,
and yellow wool  3x1  8x2 oz.

Since the manufacturer does not have more than 1000 oz of red wool, 
1000 oz of green wool and 1200 oz of yellow wool, therefore
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 4x1  5x2  1000 (ii)
 5x1  2x2  1000 (iii)
 3x1  8x2  1200 (iv)

Also x1  0, x2  0 (v)
Thus the given problem is to maximize Z subject to the constraints (ii) 

to (v).

Any point satisfying the condition (v) lies in the first quadrant only. 
Also the desired point satisfying the constraints (ii) to (iv) lies in the convex 
region OABCD (Figure 12.7). Its vertices are O(0, 0), A(200, 0), B(3000/17, 
1000/17), C(2000/17, 1800/17), and D(0,150).

The values of Z at these vertices are given by Z(O)  0, Z(A)  1000, 
Z(B)  1057.6, Z(C)  905.8 and Z(D)  450.

O                                       A

D C

B

x1

(iv)

(ii)

(iii)

x2

FIGURE 12.7

Since the maximum value of Z is 1058.8 which occurs at the vertex B, 
the solution to the given problem is

 x1  3000/17, x2  1000/17 and max.
 Z  1058.8.

Hence the manufacturer should produce 176.5 yards of type A cloth 
58.8 yards of type B cloth, so as to get the maximum profit of $ 1058.8.
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EXAMPLE 12.7

A company making cold drinks has two bottling plants located at towns 
T1 and T2. Each plant produces three drinks A, B, and C and their produc-
tion capacity per day is shown below:

Cold drinks
Plant at

T1 T2

A 6,000 2,000

B 1,000 2,500

C 3,000 3,000

The marketing department of the company forecasts a demand of 
80,000 bottles of A, 22,000 bottles of B and 40,000 bottles of C during the 
month of June. The operating costs per day of plants at T1 and T2 are $ 6,000 
and $ 4,000 respectively. Find (graphically) the number of days for which 
each plant must be run in June so as to minimize the operating costs while 
meeting the market demand. 

Solution:

Let the plants at T1 and T2 be run for x1 and x2 days. Then the objective 
is to minimize the operation costs, i.e.,

 min. Z  6000 x1  4000x2 (i)
 Constraints on the demand for the three cold drinks are:

for A, 6,000 x1  2,000x2   80,000 or 3 x1  x2  40 (ii)
for B, 1,000 x1  2,500x2  22,000 or x1  2.5x2  22 (iii)
for C, 3,000 x1  3,000x2  40,000 or x1  x2  40/3 (iv)
Also x1, x2  0. (v)

Thus the L.P.P. is to minimize (i) subject to constraints (ii) to (v).

The solution space satisfying the constraints (ii) to (v) is shown shaded 
in Figure 12.8. As seen from the direction of the arrows, the solution space 
is unbounded. The constraint (iv) is dominated by the constraints (ii) and 
(iii) and hence does not affect the solution space. Such a constraint as (iv) 
is called the redundant constraint.

The vertices of the convex region ABC are A(22, 0), B(12, 4), and C(0, 
40).
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FIGURE 12.8

Values of the objective function (i) at these vertices are
 Z(A)  132,000, Z(B)  88,000, Z(C)  160,000.

Thus the minimum value of Z is $ 88,000 and it occurs at B. Hence the 
solution to the problem is

 x1  12 days, x2  4 days, Zmin  $ 88,000. 
Otherwise. Making Z  0, (i) becomes 3 x1  2x2  0 which is represented 
by the dotted line LM through O. As Z is increased, the line LM moves par-
allel to itself, to the right. Since we are interested in finding the minimum 
value of Z, value of Z is increased until LM passes through the vertex near-
est to the origin of the shaded region, i.e., B(12, 4).

Thus the operating cost will be minimum for x1  12 days, x2  4 days, 
and Zmin  6000 × 12  4000 × 4  $ 88,000.

Obs. The dotted line parallel to the line LM is called the iso-cost 
line since it represents all possible combinations of x1, x2 which 
produce the same total cost.

NOTE
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12.4 Some Exceptional Cases

The constraints generally, give a region of feasible solution which may 
be bounded or unbounded. In problems involving two variables and having 
a finite solution, it was observed that the optimal solution existed at a vertex 
of the feasible region. In fact, this is true for all L.P. problems for which 
solutions exist. Thus it may be stated that if there exists an optimal solution 
of an L.P.P., it will be at one of the vertices of the solution space.

In each of the above examples, the optimal solution was unique. But it 
is not always so. In fact, L.P.P. may have

       (i) a unique optimal solution,
or  (ii) an infinite number of optimal solutions,
or (iii) an unbounded solution,
or (iv) no solution.

Below are a few examples to illustrate the exceptional cases (ii) to (iv).

EXAMPLE 12.8

A firm uses milling machines, grinding machines, and lathes to produce 
two motor parts. The machining times required for each part, the machin-
ing times available on different machines and the profit on each motor part 
are given below:

Type of machine
Machining time reqd. for the motor 

part (mts)
Max. time 

available per week 
(minutes)I II

Milling machines 10 4 2,000

Grinding machines 3 2 900

Lathes 6 12 3,000

Profit/unit ($) 100 40
Determine the number of parts I and II to be manufactured per week to 

maximize the profit.

Solution:

Let x1, x2 be the number of parts I and II manufactured per week. Then 
objective being to maximize the profit, we have

 maximize Z  100x1  40x2 (i)
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Constraints being on the time available on each machine, we obtain

for milling machines, 10x1  4x2  2,000  (ii)
for grinding machines, 3x1  2x2  900 (iii)
for lathes, 6x1  12x2  3,000  (iv)
Also x1, x2  0 (v)

Thus the problem is to determine x1, x2 which maximize (i) subject to 
the constraints (ii) to (v).

The solution space satisfying (ii), (iii), (iv) and meeting the non-nega-
tivity restrictions (v) is shown shaded in Figure 12.9.
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Note that (iii) is a redundant constraint as it does not affect the solution 
space. The vertices of the convex region OABC are

 O(0, 0), A(200, 0), B(125, 187.5), C(0, 250).
Values of the objective function (i) at these vertices are

 Z(O)  0, Z(A)  20,000, Z(B)  20,000 and Z(C)  10,000
Thus the maximum value of Z occurs at two vertices A and B.

 Any point on the line joining A and B will also give the same maxi-
mum value of Z i.e., there are an infinite number of feasible solutions which 
yield the same maximum value of Z.
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Thus there is no unique optimal solution to the problem and any point 
on the line AB can be taken to give the profit of $ 20,000.

Obs. An L.P.P. having more than one optimal solution, is said 
to have alternative or multiple optimal solutions. It implies 
that the resources can be combined in more than one way to 
maximize the profit.

EXAMPLE 12.9

Using graphical method, solve the following L.P.P:

Maximize Z  2x1  3x2 (i)
subject to x1 – x2  2 (ii)
 x1  x2  4 (iii)
 x1, x2  0 (iv)
Solution:

Consider x1x2 coordinate system. Any point (x1, x2) satisfying the restric-
tions (iv) lies in the first quadrant only. The solution space satisfying the 
constraints (ii) and (iii) is the convex region shown shaded in Figure 12.10.
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NOTE
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Here the solution space is unbounded. The vertices of the feasible re-
gion (in the finite plane) are A(3, 1) and B(0, 4).

Values of the objective function (i) at these vertices are Z(A)  9 and 
Z(B)  12.

But there are points in this convex region for which Z will have much 
higher values. For instance, the point (5, 5) lies in the shaded region and 
the value of Z thereafter is 12.5. In fact, the maximum value of Z occurs at 
infinity. Thus the problem has an unbounded solution.

EXAMPLE 12.10

Solve graphically the following L.P.P:

Maximize Z  4x1  3x2 (i)
subject to x1 – x2  – 1, (ii)
– x1  x2  0, (iii)
And  x1, x2  0. (iv)
Solution:

Consider x1x2-coordinate system. Any point (x1, x2) satisfying (iv) lies in 
the first quadrant only. The two solution spaces, one satisfying (ii) and the 
other satisfying (iii) are shown in Figure 12.11.

x2

x10

(ii)

(iii)

FIGURE12.11

There being no point (x1, x2) common to both the shaded regions, the 
problem cannot be solved. Hence the solution does not exist since the 
constraints are inconsistent.
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Obs. The above problem had no solution because the 
constraints were incompatible. There may be cases in which the 
constraints are compatible but the problem may still have no 
feasible solution.

This is an example of insoluble programming problems. At times, manage-
ment sets such goals which are unattainable within the available resourc-
es for a number of reasons. Such exceptional management problems are 
solved with the help of “Goal Programming Technique” which has recently 
been developed.

Exercises 12.2

Using the graphical method, solve the following L.P. problems:

1. Max. Z  5x1  3x2

subject to 3x1  5x2  15
                 5x1  2x2  10
                       x1, x2  0

2. Max. Z  5x1  7x2

subject to x1  x2  4,
            5x1  8x2  24,
           10x1  7x2  35 and x1, x2  0.

3. Min. Z  20x1  10x2

subject to x1  2x2  40
                 3x1  x2  30
               4x1  3x2  60 and x1, x2  0

4. Max. Z  120x1  100x2

subject to 10x1  5x2  80
6x1  6x2  66
4x1  8x2  24
5x1  6x2  90 and x1, x2  0.

5. If x1, x2 are real, show that the set 
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is a convex 

set. Find the extreme points of this set. Hence solve L.P.P. (graphically): 
Maximize Z  4x1  3x2 subject to constraints given in S.

NOTE
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6. A firm manufactures two products A and B on which the profits earned 
per unit are $ 3 and $ 4, respectively. Each product is processed on two 
machines M1 and M2. Product A requires one minute of processing time 
on M1 and 2 minutes on M2 while B requires one minute on M1 and one 
minute on M2. Machine M1 is available for not more than 7 hours and 
30 minutes while M2 is available for 10 hours during any working day. 
Find the number of units of products A and B to be manufactured to get 
maximum profit.

7. Two spare parts X and Y are to be produced in a batch. Each one has to 
go through two processes A and B. The time required in hours per unit 
and total time available are given below: 

X Y Total hours available

Process A 3 4 24

Process B 9 4 36

Profit per unit of X and Y are $ 5 and $ 6 respectively. Find how many 
number of spare parts of X and Y are to be produced in this batch to 
maximize the profit. (Each batch is complete in all respects and one can-
not produce fractional units and stop the batch). 

8. A manufacturer has two products I and II both of which are made in 
steps by machines A and B. The process times per hundred for the two 
products on the two machines are:

Product M/c. A M/c. B

I 4 hrs. 5 hrs.

II 5 hrs. 2 hrs.

Set-up times are negligible. For the coming period machine A has 100 
hrs. and B has 80 hrs. The contribution for product I is $ 10 per 100 units 
and for product II is $ 5 per 100 units. The manufacturer is in a market 
which can absorb both products as much as he can produce for the im-
mediate period ahead. Determine graphically, how much of products I 
and II, he should produce to maximize his contribution. 

9. Two grades of paper M and N are produced on a paper machine. 
Because of raw material restrictions not more than 400 metric tons of 
grade M and 300 metric tons of grade N can be produced in a week. It 
requires 0.2 and 0.4 hours to produce a metric ton of products M and N 
respectively, with corresponding profits of $ 20 and $ 50 per metric ton. 
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It is given that there are 160 hours in a week. Formulate the problem as 
an L.P.P. and determine the optimum product mix.

10. A production manager wants to determine the quantity to be produced 
per month of products A and B manufactured by his firm. The data on 
resources required and availability of resources are given below:

Resources
Requirements Available per 

monthProduct A Product B

Raw material (kg) 60 120 12,000

Machine hrs/piece 8 5 600

Assembly man hrs. 3 4 500

Sale price/piece $ 30 $ 40

Formulate the problem as a standard L.P.P. Find product mix that would 
give maximum profit by graphical technique.

11. A pineapple firm produces two products: canned pineapple and canned 
juice. The specific amounts of material, labor, and equipment required 
to produce each product and the availability of each of these resources 
are shown in the table given below:

Canned Juice Pine-apple Available resources

Labor (man hrs.) 3 2.0 12.0

Equipment (m/c hrs) 1 2.3 6.9

Material (units) 1.4 4.9

Assuming one unit each of canned juice and canned pineapple has profit 
margins of $2 and $1, respectively. Formulate it as L.P. problem and 
solve it graphically.

12. The sales manager of a company has budgeted $ 120,000 for an 
advertising program for one of the firm’s products. The selected 
advertising program consists of running advertisements in two different 
magazines. The advertisement for magazine A costs $ 2,000 per run 
while the advertisement for magazine B costs $ 5,000 per run. Past 
experience has indicated that at least 20 runs in magazine A and at least 
10 runs in magazine B are necessary to penetrate the market with any 
appreciable effect. Also, experience has indicated that there is no reason 
to make more than 50 runs in either of the two magazines. How many 
runs in magazine A and how many in magazine B should be made?
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Solve the following L.P.P. graphically:

13. Maximize Z  3x  2y
subject to – 2x  3y  9, x – 5y  – 20 and x, y  0.

14. Maximize Z  x1  8x2

subject to x1  8x2  8, x1  2x2  6, 2x1  3x2  6,

 6x1  x2  8, x1  0, x2  0.

15. Minimize  Z  8x1  12x2

subject to 60x1  30x2  240, 30x1  60x2  300,

 30x1  180x2  540, and x1, x2  0.

16. G.J. Breveries Ltd. have two bottling plants one located at “G” and other 
“J”. Each plant produces three drinks: whiskey, beer, and brandy. The 
number of bottles produced per day are as follows:

Drink Plant at “G” Plant at “J”

Whiskey 1,500 1,500

Beer 3,000 1,000

Brandy 2,000 5,000

A market survey indicates that during the month of July, there will be a 
demand of 20,000 bottles of whiskey, 40,000 bottles of beer, and 44,000 
bottles of brandy. The operating cost per day for plants at G and J are 
$ 600 and $ 400. For how many days each plant be run in July so as to 
minimize the production cost, while still meeting the market demand. 
Solve graphically.

12.5 General Linear Programming Problem

Any L.P. problem involving more than two variables may be expressed 
as follows: Find the values of the variables x1, x2, , xn which maximize (or 
minimize) the objective function

 Z  c1x1  c2x2  cnxn  (i)
subject to the constraints

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   


    


    







 (ii)
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and meet the non-negative restrictions.

 x1, x2, , xn  0 (iii)
Def. 1. A set of values x1, x2, ., xn which satisfies the constraints of the 
L.P.P. is called its solution.

Def. 2. Any solution to a L.P.P. which satisfies the non-negativity restric-
tions of the problem is called its feasible solution.

Def. 3. Any feasible solution which maximizes (or minimizes) the objective 
function of the L.P.P. is called its optimal solution.

Some of the constraints in (ii) may be equalities, some others may be 
inequalities of () type and remaining ones inequalities of () type. The 
inequality constraints are changed to equalities by adding (or subtracting) 
non-negative variables to (from) the left-hand side of such constraints.

Def. 4. If the constraints of a general L.P.P. be

  
1

1,2,
n

ij i i
j

a x b i k


  

then the non-negative variables si which satisfy

  
1

1,2,
n

ij i i i
j

a x s b i k


   

are called slack variables.

Def. 5. If the constraints of a general L.P.P. be

  
1

, 1,
n

ij i i
j

a x b i k k


   

then the non-negative variables si which satisfy

  
1

, , 1,
n

ij i i i
j

a x s b i k k


     

are called surplus variables.

12.6 Canonical and Standard Forms of L.P.P.

After the formulation of L.P.P., the next step is to obtain its solution. 
But before any method is used to find its solution, the problem must be 
presented in a suitable form. As such, we explain its following two forms:
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Canonical form. The general L.P.P. can always be expressed in the fol-
lowing form:

Maximize Z  c1 x1  c2x2    cnxn

subject to the constraints

 ai1 x1  ai2x2    ain xn  bi ; i  1, 2,  m
 x1, x2,  xn  0,

by making some elementary transformations. This form of the L.P.P. is 
called its canonical form and has the following characteristics:

  (i) Objective function is of maximization type,

 (ii) All constraints are of () type,

(iii) All variables xi are non-negative.

The canonical form is a format for a L.P.P. which finds its use in the 
Duality theory.

Standard form. The general L.P.P. can also be put in the following form:

Maximize Z  c1 x1  c2x2    cnxn

subject to the constraints

ai1 x1  ai2 x2    ain xn bi ; i  1, 2,  m

x1, x2,  xn  0,

This form of the L.P.P. is called its standard form and has the follow-
ing characteristics:

  (i) Objective function is of maximization type,

 (ii) All constraints are expressed as equations,

(iii) Right hand side of each constraint is non-negative,

 (iv) All variables are non-negative.

Obs. Any L.P.P. can be expressed in the standard form.

As minimize Z  c1 x1  c2x2    cnxn
is equivalent to maximize Z ( – Z)  – c1x1 – c2x2 … – cnxn, 
the objective function can always be expressed in the 
maximization form.

The inequality constraints can always be converted to equalities 
by adding (or subtracting) the slack (or surplus) variables to the 
left hand sides of such constraints.

NOTE
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So far, the decision variables x1, x2,, xn have been assumed to 
be all non-negative. In actual practice, these variables could also 
be zero or negative. If a variable is negative, it can always be 
expressed as the difference of two non-negative variables, e.g., a 
variable xi can be written as

 xi  xi – xi
where                  xi  0, xi  0.

EXAMPLE 12.11

Convert the following L.P.P. to the standard form:

Maximize Z  3 x1  5x2  7x3 ,
subject to  6x1 – 4x2  5, 3x1  2x2  5x3  11,
  4x1  3x3  2, x1, x2  0. 

Solution:

As x3 is unrestricted, let x3  x3 – x3 where x3, x3  0. Now the given 
constraints can be expressed as

  6x1 – 4x2  5, 3x1  2x2  5x3 – 5x3  11,

  4x1  3x3 – 3x3  2,  x1, x2, x3, x3  0

Introducing the slack/surplus variables, the problem in standard form 
becomes:

Maximize Z  3 x1  5x2  7x3 – 7x3

subject to 6x1 – 4x2  s1  5,  3x1  2x2  5x3 – 5x3 – s2  11,

 4x1  3x3 – 3x3  s3  2, x1, x2, x3, x3, s1, s2, s3  0.

EXAMPLE 12.12

Express the following problem in the standard form:

Minimize Z  3 x1  4x2

subject to 2x1 – x2 – 3x3  – 4,  3x1  5x2  x4  10,

 x1 – 4x2  12,  x1, x3, x4  0

Solution:

Here x3, x4 are the slack/surplus variables and x1, x2 are the decision 
variables. As x2 is unrestricted, let x2  x2 – x2 where x2, x2  0.
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  The problem is standard form is

Maximize Z ( – Z)  – 3 x1 – 4x2  4x2

subject to – 2 x1  x2 – x2  3x3  4, 3x1  5x2 – 5x2  x4  10,

 x1 – 4x2  4x2  12, x1, x2, x2, x3, x4  0.

12.7 Simplex Method

While solving an L.P.P. graphically, the region of feasible solutions was 
found to be convex, bounded by vertices and edges joining them. The 
optimal solution occurred at some vertex. If the optimal solution was not 
unique, the optimal points were on an edge. These observations also hold 
true for the general L.P.P. Essentially the problem is that of finding the 
particular vertex of the convex region which corresponds to the optimal 
solution. The most commonly used method for locating the optimal vertex 
is the simplex method. This method consists in moving step by step from 
one vertex to the adjacent one. Of all the adjacent vertices, the one giving 
better value of the objective function over that of the preceding vertex, is 
chosen. This method of jumping from one vertex to the other is then re-
peated. Since the number of vertices is finite, the simplex method leads to 
an optimal vertex in a finite number of steps.

In simple method, an infinite number of solutions is reduced to a finite num-
ber of promising solutions by using the following facts:

(i) When there are m constraints and m  n (decision and slack) vari-
ables (m being  n), the starting solution is found by setting n variables 
equal to zero and then solving the remaining m equations, provided the 
solution exists and is unique. The n zero variables are known as non-basic 
variables while the remaining m variables are called basic variables and 
they form a basic solution. This reduces the number of alternatives (basic 
solutions) for obtaining the optimal solution to m  nCm only.

(ii) In an L.P.P., the variables must always be non-negative. Some of the 
basic solutions may contains negative variables. Such solutions are called 
basic infeasible solutions and should not be considered. To achieve this, we 
start with a basic solution which is non-negative. The next basic solution 
must always be non-negative. This is ensured by the feasibility condition. 
Such a solution is known as basic feasible solution.
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If all the variables in the basic feasible solution are non-zero, then it is 
called non-degenerate solution and if some of the variables are zero, it is 
called degenerate solution.

(iii) A new basic feasible solution may be obtained from the previous 
one by equating one of the basic variables to zero and replacing it by a new 
non-basic variables. The eliminated variable is called the leaving or outgo-
ing variable while the new variable is known as the entering or incom-
ing variable.

The incoming variable must improve the value of the objective function 
which is ensured by the optimality condition. This process is repeated until 
no further improvement is possible. This process is repeated until no further 
improvement is possible. The resulting solution is called the optimal basic 
feasible solution or simply optimal solution.

The simplex method is, therefore, based on the following two conditions:

I. Feasibility condition. It ensures that if the starting solution is basic 
feasible, the subsequent solutions will also be basic feasible.

II. Optimality condition. It ensures that only improved solutions will 
be obtained.

Now, we shall elaborate the above terms in relation to the general linear 
programming problem in standard form, i.e.,

Maximize Z  c1 x1  c2x2    cnxn  (1)

subject to  
1

, 1,2, ,
n

ij i i i
j

a x s b m


     (2)

and xj  0, si  0, j  1, 2,  n (3)

(i) Solution. x1, x2, . xn is a solution of the general L.P.P. if it satisfies 
the constraints (2).

(ii) Feasible solution. x1, x2, . xn is a feasible solution of the general 
L.P.P. if it satisfies both the constraints (2) and the non-negativity restric-
tions (3). The set S of all feasible solutions is called the feasible region. A 
linear program is said to be infeasible when the set S is empty.

(iii) Basic solution is the solution of the m basic variable when each of 
the n non-basic variables is equated to zero.

(iv) Basic feasible solution is that basic solution which also satisfies the 
non-negativity restriction (3).
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(v) Optimal solution is that basic feasible solution which also optimizes 
the objective function (1) while satisfying the conditions (2) and (3).

(iv) Non-degenerate basic feasible solution is that basic feasible solution 
which contains exactly m non-zero basic variables. If any of the basic vari-
ables becomes zero, it is called a degenerate basic feasible solution.

EXAMPLE 12.13

Find all the basic solutions of the following system of equations identi-
fying in each case the basic and non-basic variables:

 2x1  x2  4x3  11, 3x1  x2  5x3  14.
Investigate whether the basic solutions are degenerate basic solutions or 

not. Hence find the basic-feasible solution of the system.

Solution:

Since there are m  n  3 variables and there are m  2 constraints in 
this problem, a basic solution can be obtained by setting any one variable 
equal to zero and then solving the resulting equations. Also the total num-
ber of basic solutions  m  nCm  3C2  3.

The characteristics of the various basic solutions are given below:

No. of basic 
solution

Basic 
variables

Non-basic 
variables

Values of basic 
variables

Is the Solution:
feasible? 

(Are all xj > 0?)

Is the Solu-
tion:

degenerate?

1. x1, x2 x3

2x1  x2  11
3x1  x2  14
 x1  3, x2  5

Yes No

2. x2, x3 x1

x2  4x3  11
x2  5x3  14
 x2  3, x3  – 1

No Yes

3. x1, x3 x2

2 x1  4x3  11
3 x1  5x3  14
 x1  1/2, x3  5/2

Yes No

The basic feasible solutions are:

(i) x1  3, x2  5, x3  0    (ii) x1  1 2 , x2  0, x3  5/2
which are also non-degenerate basic solutions.
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EXAMPLE 12.14

Find an optimal solution to the following L.P.P. be computing all basic 
solutions and then finding one that maximizes the objective function:

2x1  3x2 – x3  4x4  8, x1 – 2x2  6x3 – 7x4  – 3
x1, x2, x3 , x4  0  Max. Z  2 x1  3x2  4x3  7x4.

Solution:

Since there are four variables and two constraints, a basic solution can 
be obtained by setting any two variables equal to zero and then solving the 
resulting equations. Also the total number of basic solutions  4C2  6.

The characteristics of the various basic solutions are given below:

No. of 
basic 

solution

Basic 
variables

Non-basic 
variables

Values of 
basic 

variables

Is the solution
feasible? 
(Are all 
xj  0?)

Value 
of Z

Is the 
solution 
optimal?

1. x1, x2 x3, x4  0 2x1  3x2  8
x1 – 2x2  – 3
 x1  1, x2  2 Yes 8 No

2. x1, x3 x2, x4  0 2x1 – x3  8
x1  6x3  – 3
 x1  – 14/13,
x3  – 67/13 No - -

3. x1, x4 x2, x3  0 2x1  4x4  8
x1 – 7x4  – 3
 x1  22/9,
x4  7/9 Yes 10.3 No

4. x2, x3 x1, x4  0 3x2 – x3  8
– 2x2  6x3  – 3
 x2  45/16,
x3  7/16 Yes 10.2 No

5. x2, x4 x1, x3  0 3x2  4x4  8
– 2x2 – 7x4  – 3
 x2  132/39
x4  – 7/13 No - -

6. x3 , x4 x1, x2  0 – x3  4x4  8
6x3 – 7x4  – 3
 x3  44/17,
x4  45/17 Yes 28.9 Yes



LINEAR PROGRAMMING • 577

Hence the optimal basic feasible solution is

x1  0, x2  0, x3  44/17, x4  45/17

and the maximum value of Z  28.9.

Exercises 12.3

1. Reduce the following problem to the standard form:
Determine x1  0, x2  0, x3  0 so as to
Maximize Z  3x1  5x2  8x3
subject to the constraints 2x1 – 5x2  6, 3x1  2x2  x3  5, 3x1  4x3  3.

2. Express the following L.P.P. in the standard form:
Minimize Z  3 x1  2x2  5x3
subject to  – 5 x1  2x2  5, 2 x1  3x2  4x3  7,
 2 x1  5x3  3, x1, x2 , x3  0.

3. Convert the following L.P.P. to standard form:
Maximize Z  3 x1 – 2x2  4x3
Subject to x1  2x2  x3  8, 2 x1 – x2  x3  2,
 4x1 – 2x2 – 3x3  – 6, x1, x2  0.

4. Obtain all the basic solutions to the following system of linear equations:
 x1  2x2  x3  4, 2 x1  x2  5x3  5.

5. Show that the following system of linear equations has two degenerate 
feasible basic solutions and the non-degenerate basic solution is not 
feasible:
 2x1  x2 – x3  2, 3x1  2x2  x3  3.

6. Find all the basic feasible solutions of the equations:
 2x1  6x2  2x3  x4  3, 6x1  4x2  4x3  6x4  2.

7. Find all the basic solutions to the following problem:
Maximize Z  x1  3x2  3x3,
subject to x1  2x2  3x3  4, 2 x1  3x2  5x3  7.
Which of the basic solutions are
(a) non-degenerate basic feasible, (b) optimal basic feasible?

8. Show that the feasible solution
x1  1, x2  0, x3  1; z  6
to the system of equations
x1  x2  x3  2; x1 – x2  x3  2
with maximum Z  2 x1  3x2  4x3 is not basic.
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12.8 Working Procedure of the Simplex Method

Assuming the existence of an initial basic feasible solution, an optimal 
solution to any L.P.P. by simplex method is found as follows:

Step 1. (i) Check whether the objective function is to be maximized or mini-
mized.

If Z  c1 x1  c2x2  c3x3    cnxn

is to be minimized, then convert it into a problem of maximization, by 
writing.

Minimize Z  Maximize (– Z)

(ii) Check whether all b’s are positive.

If any of the bi’s is negative, multiply both sides of that constraint by – 1 
so as to make its right hand side positive.

 Step 2. Express the problem in the standard form.

Convert all inequalities of constraints into equations by introducing 
slack/surplus variables in the constraints giving equations of the form.

 a11x1  a12x2  a13x3    s1  os2  os3    b1.
Step 3. Find an initial basic feasible solution.

If there are m equation involving n unknowns, then assign zero values 
to any (n – m) of the variables for finding a solution. Starting with a basic 
solution for which xj: j  1, 2, , (n – m) are each zero, find all si. If all si are 
 0, the basic solution is feasible and non-degenerate. If one or more of the 
si values are zero, then the solution is degenerate.

The above information is conveniently expressed in the following sim-
plex table:

cB

0
0
0
:

cj

Basis
s1
s2
s2
:

c1
x1
a11
a21
a31
:

c2
x2
a12
a22
a32
:

c3…..0
x3…..s1
a13…..1
a23…..0
a33…..0

    :        :

0
s2
0
1
0
:

0……
a13…..1
0…..b1
0…..b2
1….b3

    :       :

                                                           Body matrix                   Unit matrix
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[The variables s1, s2, s3 etc. are called basic variables and variables x1, x2, 
x3 etc. are called non-basic variables. Basis refers to the basic variables s1, s2, 
s3 ., cj row denotes the coefficients of the variables in the objective func-
tion, while cB–column denotes the coefficients of the basic variables only in 
the objective function. b-column denotes the values of the basic variables 
while remaining variables will always be zero. The coefficients of x’s (deci-
sion variables) in the constraint equations constitute the body matrix while 
coefficients of slack variables constitute the unit matrix].

Step 4. Apply optimality test.

Compute Cj  cj – Zj where Zj  ScB aij

[Cj -row is called net evaluation row and indicates the per unit increase 
in the objective functions if the variable heading the column is brought into 
the solution.]

If all Cj are negative, then the initial basic feasible solution is optimal. If 
even one Cj is positive, then the current feasible solution is not optimal (i.e., 
can be improved) and proceed to the next step.

Step 5. (i) Identify the incoming and outgoing variables.

If there are more than one positive Cj, then the incoming variable is the 
one that heads the column containing maximum Cj. The column containing 
it is known as the key column which is shown marked with an arrow at the 
bottom. If more than one variable has the same maximum Cj, any of these 
variables may be selected arbitrarily as the incoming variable.

Now divide the elements under b-column by the corresponding ele-
ments of key column and choose the row containing the minimum positive 
ratio . Then replace the corresponding basic variable (by making its value 
zero). It is termed as the outgoing variable. The corresponding row is called 
the key row which is shown marked with an arrow on its right end. The 
element at the intersection of the key row and key column is called the key 
element which is shown bracketed. If all these ratios are  0, the incoming 
variable can be made as large as we please without violating the feasibility 
condition. Hence the problem has an unbounded solution and no further 
iteration is required.

(ii) Iterate towards an optimal solution.

Drop the outgoing variable and introduce and incoming variable along-
with its associated value under cB column. Convert the key element to unity 
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by dividing the key row by the key element. Then make all other elements 
of the key column zero by subtracting proper multiples of key row from the 
other rows.

[This is nothing but the sweep-out process used to solve the linear equa-
tions. The operations performed are called elementary row operations.]

Step 6. Go to step 4 and repeat the computational procedure until either 
an optimal (or an unbounded) solution is obtained.

EXAMPLE 12.15

Using simplex method

Maximize Z  5x1  3x2

subject to x1  x2  2, 5x1  2x2  10,

   3x1  8x2  12, x1, x2  0.

Solution:

Consists of the following steps:

Step 1. Check whether the objective function is to be maximized and all 
b’s are positive.

The problem consists of maximization type and all b’s are  0, so this 
step is not necessary.

Step 2. Express the problem in the standard form.

By introducing the slack variables s1, s2, s3, the problem in standard 
form becomes

Maximize. Z  5 x1  3x2  os1  os2  os3

subject to x1  x2  s1  os2  os3  2 (i)

                      5x1  2x2  os1  s2  os3  10 (ii)

                    3x1  8x2  os1  os2  os3  12 (iii)

                                       x1, x2, s1, s2, s3  0

Step 3. Find an initial basic feasible solution.

There are three equations involving five unknowns and for obtaining 
a solution, we assign zero values to any two of the variables. We start with 
a basic solution for which we set x1  0 and x2  0. (This basic solution 
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corresponds to the origin in the graphical method.) Substituting x1  x2  0 
in (i), (ii), and (iii), we get the basic solution

 s1  2, s2  10, s3  12.
Since all s1, s2, s3 are positive, the basic solution is also feasible and non-

degenerate.

 The basic feasible solution is

x1  x2  0 (non-basic) and s1  2, s2  10, s3  12 (basic)

 Initial basic feasible solution is given by the following table:

cj 5 3 0 0 0

cB Basis x1 x2 s11 s2 s2 b 

0 s1 (1) 1 1 0 0 2 2/1

0 s2 5 2 0 1 0 10 10/5

0 s3 3 8 0 0 1 12 12/3

Zj  cBaij 0 0 0 0 0 0

Cj  cj – Zj 5 3 0 0 0



[For x1-column (j  1), Zj   cB ai1  0(1)  0(5)  0(3)  0

and for x2-column (j  2), Zj   cB ai2  0(1)  0(2)  0(8)  0

Similarly Zj(b)  0(2)  0(10)  0(12)  0.]

Step 4. Apply optimality test.

As Cj is positive under some columns, the initial basic feasible solution 
is not optimal (i.e., can be improved) and we proceed to the next step.

Step 5. (i) Identify the incoming and outgoing variables.

The previous table showed that x1 is the incoming variable as its incre-
mental contribution Cj ( 5) is maximum and the column in which it ap-
pears is the key column (shown marked by an arrow at the bottom).

Dividing the elements under the b-column by the corresponding ele-
ments of key-column, we find a minimum positive ratio  is 2 in two row. 
We, therefore, arbitrarily choose the row containing s1 as the key row 
(shown marked by an arrow on its right end). The element at the intersec-
tion of the key row and the key column i.e., (1), is the key element s1 there-
fore, the outgoing basic variable will now become non-basic.
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Having decided that x1 is to enter the solution, we have tried to find as 
to what maximum value x1 could have without violating the constraints. So 
removing s1, the new basis will contain x1, s2, and s3 as the basic variables.

(ii) Iterate towards the optimal solution.

To transform the initial set of equations with a basic feasible solution 
into an equivalent set of equations with a different basic feasible solution, 
we make the key element unity. Here the key element being unity, we 
retain the key row as it is. Then to make all other elements in key column 
zero, we subtract proper multiples to key row from the other rows. Here 
we subtract five times the elements of key row from the second row and 
three times the elements of key row from the third row. These become the 
second and third rows of the next table. We also change the corresponding 
value under cB column from 0 to 5, while replacing s1 by x1 under the basis. 
Thus the second basic feasible solution is given by the following table:

cj 5 3 0 0 0

cB Basis x1 x2 s1 s2 s3 b 

5 x1 1 1 1 0 0 2

0 s2 0 -3 5 1 0 0

0 s3 0 5 3 0 1 6

Zj   cB aij
5 5 5 0 0 10

Cj  cj – Zj
0 2 5 0 0

As Cj is either zero or negative under all columns, the above table gives 
the optimal basic feasible solution. This optimal solution is x1  2, x2  0 and 
maximum Z  10.

EXAMPLE 12.16

A firm produces three products which are processed on three machines. 
The relevent data is given next:

Machine
Time per unit (minutes) Machine capacity 

(minutes/day)Product A Product B Product C

M1 2 3 2 440

M2 4 — 3 470

M3 2 5 — 430
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The profit per unit for products A, B, and C is $ 4, $ 3 and $ 6, respective-
ly. Determine the daily number of units to be manufactured for each product. 
Assume that all the units produced are consumed in the market.

Solution:

Let the firm decide to produce x1, x2, x3 units of products A, B, C re-
spectively. Then the L.P. model for this problem is:

Max. Z  4 x1  3x2  6x3

subject to 2x1  3x2  2x3  440, 4x1  3x2  470

 2x1  5x2  430,  x1, x2, x3  0.

Step 1. Check whether the objective function is to be maximized and all 
b’s are non-negative.

The problem consists of maximization type and b’s are  0, so this step 
is not necessary.

Step 2. Express the problem in the standard form.

By introducing the slack variables s1, s2, s3, the problem in standard 
form becomes:

Max. Z  4x1  3x2  6x3  0s1  0s2  0s3

subject to 2x1  3x2  2x3  s10  s2  0s3  440
 4x1  0x2  3x3  0s1  s2  0s3  470
 2x1  5x2  0x3  0s1  0s2  s3  430
Step 3. Find an initial basic feasible solution.
The basic (non-degenerate) feasible solution is
 x1  x2  x3  0 (non-basic)
 s1  440, s2  470, s3  430 (basic)

 Initial basic feasible solution is given by the following table:

cj 4 3 6 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b 

0 s1 2 3 2 1 0 0 440 440/2

0 s2 4 0 (3) 0 1 0 470 470/3
0 s3 2 5 0 0 0 1 430 430/0

Zj   cB aij 0 0 0 0 0 0

Cj  cj – Zj 4 3 6 0 0 0
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Step 4. Apply optimality test.

As Cj is positive under some columns, the initial basic feasible solution 
is not optimal and we proceed to the next step.

 Step 5. (i) Identify the incoming and outgoing variables.

The above table shows that x3 is the incoming variable while s2 is the 
outgoing variable and (3) is the key element.

(ii) Iterate towards the optimal solution.

Drop s2 and introduce x3 with its associated value 6 under cB column. 
Convert the key element to unity and make all other elements of key col-
umn zero. Then the second feasible solution is given by the table below:

cj 4 3 6 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b 

0 s1 −2/3 (3) 0 1 −2/3 0 380/3 
6 x3 4/3 0 1 0 1/3 0 470/3 

0 s3 2 5 0 0 0 1 430 86

Zj 8 0 6 0 2 0 940

Cjj −4 3 0 0 −2 0



Step 6. As Cj is positive under the second column, the solution is not op-
timal and we proceed further. Now x2 is the incoming variable and s1 is the 
outgoing variable and (3) is the key element for the next iteration.

Drop s1 and introduce x2 with its associated value 3 under cB column. 
Convert the key element to unity and make all other elements of the key 
column zero. Then the third basic feasible solution is given by the following 
table:

cj 4 3 6 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b 

3 x2 −2/9 1 0 1/3 −2/9 0 380/9

6 x3 4/3 0 1 0 1/3 0 470/3

0 s3 28/9 0 0 −5/3 10/9 0 1970/9

Zj 22/3 3 6 1 4/3 0 3200/3

Cjj −10/3 0 0 −1 −4/3 0
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Now since each Cj  0, therefore it gives the optimal solution

 x1  0, x2  380/9, x3  470/3
and Zmax  3200/3 i.e., 1066.67 Dollars.

EXAMPLE 12.17

Solve the following L.P.P. the by simplex method:

Minimize Z  x1 – 3x2  3x3,

subject to 3x1 – x2  2x3  7, 2x1  4x2  – 12,

 – 4 x1  3x2  8x3  10, x1, x2, x3  0.

Solution:

Consists of the following steps:

Step 1. Check whether objective function is to be maximized and all b’s 
are non-negative.

As the problem is that of minimizing the objective function, converting 
it to the maximization type, we have

Max. Z  – x1  3x2 – 3x3 

As the right-hand side of the second constraint is negative, we write it as

 – 2x1 – 4x2  12
Step 2. Express the problem in the standard form.

By introducing the slack variables s1, s2, s3, the problem in the standard 
form becomes

Max. Z  – x1  3x2 – 3x3  0s1  0s2  0s3

subject to 3x1 – x2  2x3  s1  0s2  0s3  7
 – 2x1 – 4x2  0x3  0s1  s2  0s3  12
 – 4x1  3x2  8x3  0s1  0s2  s3  10
 x1, x2, x3, s1, s2, s3  0.
Step 3. Find initial basic feasible solution.

The basic (non-degenerate) feasible solution is
 x1  x2  x3  0 (non-basic), s1  7, s2  12, s3  10 (basic)
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 Initial basic feasible solution is given by the table below:

cj   −1 3 −3 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b 

0 s1 3 −1 2 1 0 0 7 7(−4)

0 s2 −2 −4 0 0 1 0 12 12(−4)

0 s3 −4 (3) 8 0 0 1 10 10/3
Zj   cBaij 0 0 0 0 0 0 0

Cj  cj – Zjj −1 3 −3 0 0 0


Step 4. Apply optimality test.

As Cj is positive under second column, the initial basic feasible solution 
is not optimal and we proceed further.

Step 5. (i) Identify the incoming and outgoing variables.

The above table shows that x2 is the incoming variable, s3 is the outgoing 
variable and (3) is the key element.

(ii) Iterate towards the optimal solution.

 Drop s3 and introduce x2 with its associated value 3 under cB column. 
Convert the key element to unity and make all other elements of the key 
column zero. Then the second basic feasible solution is given by the follow-
ing table:

cj   −1 3 −3 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b 

0 s1 (5/3) 0 14/3 1 0 1/3 31/3 31/5
0 s2 −22/3 0 32/3 0 1 4/3 76/3 −38/11

3 x2 −4/3 1 8/3 0 0 1/3 10/3 −5/2

Zj −4 3 8 0 0 1 10

Cj 3 0 −11 0 0 −1



Step 6. As Cj is positive under first column, the solution is not optimal 
and we proceed further. x1 is the incoming variable, s1 is the outgoing vari-
able and (5/3) is the key element.
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 Drop s1 and introduce x1 with its associated value – 1 under cB column. 
Convert the key element to unity and make all other elements of the key col-
umn zero. Then the third basic feasible solution is given by the table below:

cj   −1 3 −3 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b

−1 x1 1 0 14/5 3/5 0 1/5 31/5

0 s2 0 0 156/5 22/5 1 14/5 354/5

3 x2 0 1 32/5 4/5 0 3/5 58/5

Zj −1 3 82/5 9/5 0 8/5 143/5

Cj 0 0 −97/5 −9/5 0 −8/5

Now since each Cj  0, therefore it gives the optimal solution

x1  31/5, x2  58/5, x3  0 (non-basic) and Zmax  143/5.

Hence Zmin  – 143/5.

EXAMPLE 12.18

Maximize Z  107x1  x2  2x3,

subject to the constraints: 14x1  x2 – 6x3  3x4  7, 16x1  
1
2

x2 – 6x3  5

                                                       3x1 – x2 – x3  0,            x1, x2, x3, x4  0

Solution:

Consists of the following steps:

Step 1. Check whether objective function is to be maximized and all b’s 
are non-negative.

This step is not necessary.

Step 2. Express the problem in the standard form.

Here x4 is a slack variable. By introducing other slack variables s1 and s2 
the problem in standard form becomes

Max. Z  107x1  x2  2x3  0x4  0s1  0s2

subject to 14
3

x1  1
3

x2 – 2x3  x4  0s1  0s2  7
3

, 

                16x1  
1
2

x2 – 6x3  0x4  s1  0s2  5

3x1 – x2 – x3  0x4  0s1  s2  0, x1, x2, x3, x4, s1, s2  0.
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Step 3. Find initial basic feasible solution.

The basic feasible solution is

 x1  x2  x3  0 (non-basic) 
 x4  7/3, s1  5, s2  0 (basic)
 Initial basic feasible solution is given in the table below:

cj   107 1 2 0 0 0

cB Basis x1 x2 x3 x4 s1 s2 b 

0 x4 14/3 1/3 −2 1 0 0 7/3
7 14
3 3

0 s1 16 1/2 −6 0 1 0 5 5/16

0 s2 (3) −1 −1 0 0 1 0 0/3
Zj  cBaij 0 0 0 0 0 0 0

Cj  cj−Zj 107 1 2 0 0 0



Step 4. Apply optimality test.
As Cj is positive under some columns, the initial basic feasible solution 

is not optimal and we proceed further.

Step 5. (i) Identify the incoming and outgoing variables

The above table shows that x1 is the incoming variable, s2 is the outgoing 
variable, and (3) is the key element.

(ii) Iterate towards the optimal solution.

Drop s2 and introduce x1 with its associated value 107 under cB column. 
Convert, key element to unity and make all other elements of the key column 
zeros. Then the second basic feasible solution is given by the following table:

cj   107 1 2 0 0 0

cB Basis x1 x2 x3 x4 s1 s2 b 

0 x4 0 17/9 −4/9 1 0 −14/9 7/3 −21/4

0 s1 0 35/6 −2/3 0 1 −16/3 5 −15/2

107 x1 1 −1/3 −1/3 0 0 1/3 0 0

Zj 107 −107/3 −107/3 0 0 107/3

Cj 0 110/3 113/3 0 0 −107/3
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As Cj is positive under some columns, the solution is not optimal. Here 
113/3 is the largest positive value of Cj, and x3 is the incoming variable. But 
all the values of  being  0, x3 will not enter the basis. This indicates that 
the solution to the problem is unbounded.

[Remember that (i) the incoming variable is the non-basic variable 
corresponding to the largest positive value of Cj and (ii) the outgoing vari-
able is the basic-variable corresponding to the least positive ratio , ob-
tained by dividing the b-column elements by the corresponding key-column 
elements.] 

Exercises 12.4

Using simplex method, solve the following L.P.P. (1 – 9):

1. Maximize Z  x1  3x2

subject to x1  2x2  10, 0  x1  5, 0  x2  4.

2. Maximize Z  4x1  10x2

subject to 2x1  x2  50, 2x1  5x2  100, 2x1  3x2  90, x1, x2  0.

3. Maximize Z  4x1  5x2,
subject to x1 – 2x2  2, 2x1  x2  6, x1  2x2  5, – x1  x2  2, x1, x2  0.

4. Maximize Z  10x1  x2  2x3,
subject to x1  x2 – 2x3  10, 4x1  x2  x3  20, x1, x2, x3  0.

5. Maximize Z  x1  x2  3x3,
subject to 3x1  2x2  x3  3, 2x1  x2  2x3  2, x1, x2, x3  0.

6. Maximize Z  x1 – x2  3x3

subject to x1  x2  x3  10, 2x1 – x2  2, 2x1 – 2x2  3x3  0, x1, x2, x3  0.

7. Minimize Z  3x1  5x2  4x3

subject to 2x1  3x2  8, 2x2  5x3  10,
3x1  2x2  4x3  15, x1, x2, x3  0.

8.  Minimize Z  x1 – 3x2  2x3,
subject to 3x1 – x2  2x3  7, – 2x1  4x2  12,
– 4x1  3x2  8x3  10, x1, x2, x3  0.

9. Maximize Z  4x1  3x2  4x3  6x4

subject to x1  2x2  2x3  4x4  80, 2x1  2x3  x4  60,
3x1  3x2  x3  x4  80, x1, x2, x3, x4  0.
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10. A firm produces products A and B and sells them at a profit of $ 2 and 
$ 3 each respectively. Each product is processed on machines G and H. 
Product A requires 1 minute on G and 2 minutes on H whereas product 
B requires 1 minute on each of the machines. Machine G is not avail-
able for more than 6 hours 40 min/day whereas the time constraint for 
machine H is 10 hours. Solve this problem via the simplex method for 
maximizing the profit.

11. A company makes two types of products. Each product of the first type 
requires twice as much labor time as the second type. If all products are 
of the second type only, the company can produce a total of 500 units a 
day. The market limits daily sales of the first and the second type to 150 
and 250 units, respectively. Assuming that the profits per unit are $ 8 for 
type I and $ 5 for type II, determine the number of units of each type to 
be produced to maximize profit.

12. The owner of a dairy is trying to determine the correct blend of two 
types of feed. Both contain various percentages of four essential ingredi-
ents. With the following data determine the least cost blend?

Ingredient
% per kg of feed

Min. requirement in kg.
Feed 1 Feed 2

1 40 20 4

2 10 30 2

3 20 40 3

4 30 10 6

Cost ($/kg.) 5 3

13. A manufacturing firm has discontinued production of a certain unprofit-
able product line. This created considerable excess production capacity. 
Management is considering to devote their excess capacity to one or 
more of three products 1, 2, and 3. The available capacity on machines 
and the number of machine hours required for each unit of the respec-
tive product, is given below:

Machine 
Type

Available Time 
(hrs/week)

Productivity (hrs/unit)

Product I Product II Product III

Milling Machine 250 8 2 3

Lathe 150 4 3 0

Grinder 50 2 − 1
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The unit profit would be $ 20, $ 6 and $ 8, respectively for products 1, 2, 
and 3. Find how much of each product the firm should produce in order 
to maximize profit.

14. The following table gives the various vitamin contents of three types of 
food and daily requirements of vitamins along with cost per unit. Find 
the combination of food for minimum cost.

Vitamin (mg) Food
F

Food
G

Food Mimimum daily 
requirement (mg)

A 1 1 10 1

C 100 10 10 50

D 10 100 10 10

Cost/unit ($) 10 15 5

15. A farmer has 1,000 acres of land on which he can grow corn, wheat, 
or soyabeans. Each acre of corn costs $ 100 for preparation, requires 
s man-days of work and yie1lds a profit of $ 30. An acre of wheat costs 
$ 120 to prepare, requires ten man-days of work and yields a profit of 
$ 40. An acre of soyabeans costs $ 70 to prepare, requires eight man-
days of work and yields a profit of $ 20. If the farmer has $ 1,00,000 for 
preparation and can count on 8,000 man-days of work, how many acres 
should be allocated to each crop to maximize profits ?

12.9 Artificial Variable Techniques

So far we have seen that the introduction of slack/surplus variables 
provided the initial basic feasible solution. But there are many problems 
wherein at least one of the constraints is of () or () type and slack vari-
ables fail to give such a solution. There are two similar methods for solving 
such problems which we explain below

M-method or Method of penalties. This method is due to A. Charnes 
and consists of the following steps:

Step 1. Express the problem in standard form.

Step 2. Add non-negative variables to the left hand side of all those 
constraints which are of () or () type. Such new variables are called ar-
tificial variables and the purpose of introducing these is just to obtain an 
initial basic feasible solution. But their addition causes violation of the cor-
responding constraints. As such, we would like to get rid of these variables 
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and would not allow them to appear in the final solution. For this purpose, 
we assign a very large penality (– M) to these artificial variables in the objec-
tive function. 

Step 3. Solve the modified L.P.P. by simplex method.

At any iteration of the simplex method, one of the following three cases 
may arise:

  (i) There remains no artificial variable in the basis and the optimality 
condition is satisfied. Then the solution is an optimal basic feasible solution 
to the problem.

 (ii) There is atleast one artificial variable in the basis at zero level (with 
zero value in b-column) and the optimality condition is satisfied. Then the 
solution is a degenerate optimal basic feasible solution

(iii) There is at least one artificial variable in the basis at the non-ze-
ro level (with positive value in b-column) and the optimality condition is 
satisfied. Then the problem has no feasible solution. The final solution is 
not optimal, since the objective function contains an unknown quantity M. 
Such a solution satisfies the constraints but does not optimize the objective 
function and is therefore, called pseudo optimal solution.

Step 4. Continue the simplex method until either an optimal basic feasible 
solution is obtained or an unbounded solution is indicated.

Obs. The artificial variables are only a computational device for 
getting a starting solution. Once an artificial variable leaves the 
basis, it has served its purpose and we forget about it, i.e., the 
column for this variable is omitted from the next simplex table.

EXAMPLE 12.19

Use Charne’s penalty method to Minimize Z  2x1  x2

subject to 3x1  x2  3, 4x1  3x2  6,
 x1  2x2  3, x1, x2  0.
Solution:

Consists of the following steps:

Step 1. Express the problem in standard form.

The second and third inequalities are converted into equations by in-
troducing the surplus and slack variables s1, s2, respectively.

NOTE
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Also the first and second constraints being of () and () type, we intro-
duce two artificial variables A1, A2.

Converting the minimization problem to the maximization form for the 
L.P.P. can be rewritten as

Max. Z  – 2x1 – x2  0s1  0s2 – MA1 – MA2

subject to 3x1  x2  0s1  0s2  A1  0A2  3

 4x1  3x2 – s1  0s2  0A1  A2  6

  x1  2x2  0s1  s2  0A1  0A2  3

                    x1, x2, s1, s2, A1, A2  0.

Step 2. Obtain an initial basic feasible solution.

Surplus variable s1 is not a basic variable since its value is – 6. As nega-
tive quantities are not feasible, s1 must be prevented from appearing in the 
initial solution. This is done by taking s1  0. By setting the other non-basic 
variables x1, x2 each  0, we obtain the initial basic feasible solution as

                                          x1  x2  0, s1  0;
 A1  3, A2  6, s2  3

Thus the initial simplex table is

cj –2 –1 0 0 –M –M

cB Basis x1 x2 s1 s2 A1 A2 b 
–M A1 (3) 1 0 0 1 0 3 3/3 
–M A2 4 3 –1 0 0 1 6 6/4
0 s2 1 2 0 1 0 0 3 3/1

Zj   cBaij –7M –4M M 0 –M –M –9M

Cj  cj – Zj 7M – 2 4M – 1 –M 0 0 0


Since Cj is positive under x1 and x2 columns, this is not an optimal solution.

Step 3. Iterate towards optimal solution.

Introduce x1 and drop A1 from basis.
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 The new simplex table is

cj –2 –1 0 0 –M

cB Basis x1 x2 s1 s2 A2 b 

–2 x1 1 1/3 0 0 0 1 3

–M A2 0 (5/3) –1 0 1 2 6/5 

0 s2 0 5/3 0 1 0 2 6/5

Zj –2
2 5
3 3

M
  M 0 –M –2–2M

Cj 0
1 5
3 3

M
  –M 0 0


Since Cj is positive under x2 column, this is not an optimal solution.

 Introduce x2 and drop A2.

Then the revised simplex table is

cj –2 –1 0 0

cB Basis x1 x2 s1 s2 b
–2 x1 1 0 1/5 0 3/5

–1 x2 0 1 –3/5 0 6/5

0 s2 0 0 1 1 0

Zj –2 –1 1/5 0 –12/5

Cj 0 0 –1/5 0

Since none of Cj is positive, this is an optimal solution. Thus, an optimal 
basic feasible solution to the problem is

x1  3/5, x2  6/5, Max. Z   – 12/5. 

Hence the optimal value of the objective function is

Min. Z  – Max. Z   – (– 12/5)  12/5.

EXAMPLE 12.20

Maximize Z  3x1  2x2

subject to the constraints:  2x1  x2  2, 3x1  4x2  12, x1, x2  0.
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Solution: 

Consists of the following steps:

Step 1. Express the problem in standard form.

The inequalities are converted into equations by introducing the slack 
and surplus variables s1, s2, respectively. Also the second constraint being 
of () type, we introduce the artificial variable A. Thus the L.P.P. can be 
rewritten as

Max. Z  3x1  2x2  0s1  0s2 – MA

subject to 2x1  x2  s1  0s2  0A  2,

 3x1  4x2  0s1 – s2  A  12,

 x1, x2, s1, s2, A  0.

Step 2. Find an initial basic feasible solution.

Surplus variable s2 is not a basic variable since its value is –12. Since a 
negative quantity is not feasible, s2 must be prevented from appearing in the 
initial solution. This is done by letting s2  0. By taking the other non-basic 
variables x1 and x2 each  0, we obtain the initial basic feasible solution as

 x1  x2  s2  0, s1  2, A  12
 The initial simplex table is

cj 3 2 0 0 –M

cB Basis x1 x2 s1 s2 A b 

0 s1 2 (1) 1 0 0 2 2
–M A 3 4 0 –1 1 12 3

s2 0 5/3 0 1 0 2 6/5

Zj   cBaij –3M –4M 0 M –M –12M

Cj  cj – Zj 3 3M 2 4M 0 –M 0



Since Cj is positive under some columns, this is not an optimal solution.

Step 3. Iterate towards optimal solution.

Introduce x2 and drop s1.



596 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

 The new simplex table is

cj 3 2 0 0 –M

cB Basis x1 x2 s1 s2 A b

2 x2 2 1 1 0 0 2

–M A –5 0 – 4 –1 1 4

Zj 4 5M 2 2 4M M –M 4–4M

Cj –(1 5M) 0 –(2 4M) –M 0

Here each Cj is negative and an artificial variable appears in the basis at the 
non-zero level. Thus there exists a pseudo optimal solution to the problem.

Two-phase method. This is another method to deal with the artificial vari-
ables wherein the L.P.P. is solved in two phases.

Phase I. Step 1. Express the given problem in the standard form by intro-
ducing slack, surplus, and artificial variables.

Step 2. Formulate an artificial objective function

 Z*  – A1 – A2, . – Am

by assigning (– 1) cost to each of the artificial variables Ai and zero cost 
to all other variables.

Step 3. Maximize Z* subject to the constraints of the original problem 
using the simplex method. Then three cases arise:

(a) Max. Z* < 0 and at least one artificial variable appears in the opti-
mal basis at a positive level.

In this case, the original problem does not possess any feasible solution 
and the procedure comes to an end.

(b) Max. Z*  0 and no artificial variable appears in the optimal basis.

In this case, a basic feasible solution is obtained and we proceed to 
phase II for finding the optimal basic feasible solution to the original prob-
lem.

(c) Max. Z*  0 and at least one artificial variable appears in the optimal 
basis at zero level.

Here a feasible solution to the auxiliary L.P.P. is also a feasible solution 
to the original problem with all artificial variables set  0.
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To obtain a basic feasible solution, we prolong phase I for pushing all 
the artificial variables out of the basis (without proceeding on to phase II).

Phase II. The basic feasible solution found at the end of phase I is used 
as the starting solution for the original problem in this phase, i.e., the final 
simplex table of phase I is taken as the initial simplex table of phase II 
and the artificial objective function is replaced by the original objective 
function. Then we find the optimal solution.

EXAMPLE 12.21 

Use a two-phase method to

Minimize Z  7.5x1 – 3x2

subject to the constraints 3x1 – x2 – x3  3, x1 – x2  x3  2, x1, x2, x3  0.

Solution:

Phase I. Step 1. Express the problem in standard form.

Introducing surplus variables s1, s2 and artificial variables A1, A2. The 
phase I problem in standard form becomes

Max. Z*  0x1  0x2  0x3  0s1 0s2 – A1 – A2

subject to 3x1 – x2 – x3 – s1  0s2  A1  0A2  3

       x1 – x2  x3  0s1 – s2  0A1  A2  2

 x1, x2, x3, s1, s2, A1, A2  0

Step 2. Find an initial basic feasible solution.

Setting x1  x2  x3  s1  s2  0,

we have A1  3, A2  2 and Z*  – 5

 Initial simplex table is

cj 0 0 0 0 0 –1 –1

cB Basis x1 x2 x3 s1 s2 A1 A2 b 

–1 A1 (3) –1 –1 –1 0 1 0 3 1
–1 A2 1 –1 1 0 –1 0 1 2 2

Zj*   cBaij –4 2 0 1 1 –1 –1 –5
Cj  cj – Zj* 4  –2 0 –1 –1 0 0
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As Cj is positive under x1 column, this solution is not optimal.

Step 3. Iterate towards an optimal solution.

Making key element (3) unity and replacing A1 by x1, we have the new 
simplex table:

cj 0 0 0 0 0 –1 –1

cB Basis x1 x2 x3 s1 s2 A1 A2 b 

0 x1 1 1/3 1/3 1/3 0 1/3 0 1    –3
–1 A2 0 2/3 4/3 1/3 –1 1/3 1 1 3/4

Zj* 0 2/3 4/3 1/3 1 1/3 –1 –1
Cj 0 2/3 4/3 1/3 –1 1/3 0



Since Cj is positive under x3 and s1 columns, this solution is not optimal.

Making key element (4/3) unity and replacing A2 by x3, we obtain the 
revised simplex table:

cj 0 0 0 0 0 –1 –1

cB Basis x1 x2 x3 s1 s2 A1 A2 b

0 x1 1 1/2 0 1/4 1/4 1/4 1/4 5/4

0 x2 0 1/2 1 1/4 3/4 1/4 3/4 3/4

Zj* 0 0 0 0 0 0 0 0

Cj 0  0 0 0 0 –1 –1

Since all Cj  0, this table gives the optimal solution. Also Z*max  0 and 
no artificial variable appears in the basis. Thus an optimal basic feasible 
solution to the auxiliary problem and therefore to the original problem, has 
been attained.

Phase II. Considering the actual costs associated with the original vari-
ables, the objective function is

Max. Z  – 15/2x1  3x2  0x3  0s1  0s2 – 0A1 – 0A2

subject to 3x1 – x2 – x3 – s1  0s2  A1  0A2  3,

 x1 – x2  x3  0s1 – s2  0A1  A2  2,

 x1, x2, x3, s1, s2, A1, A2  0

The optimal initial feasible solution thus obtained, will be an optimal 
basic feasible solution to the original L.P.P.
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Using final table of phase I, the initial simplex table of phase II is as 
follows:

cj −15/2 3 0 0 0
cB Basis x1 x2 x3 s1 s2 b

−15/2 x1 1 −1/2 0 −1/4 −1/4 5/4
0 x3 0 −1/2 1 1/4 −3/4 3/4

Zj* −15/2 15/4 0 15/5 15/8 −75/8
Cj 0  −3/4 0 −15/8 −15/8

Since all Cj  0, this solution is optimal.

Hence an optimal basic feasible solution to the given problem is

 x1  5/4, x2  0, x3  3/4 and min. Z  75/8.

12.10 Exceptional Cases

Tie for the incoming variable. When more than one variable has the 
same largest positive value in Cj row (in maximization problem), a tie for the 
choice of incoming variable occurs. As there is no method to break this tie, 
we choose any one of the prospective incoming variables arbitrarily. Such 
an arbitrary choice does not in any way affect the optimal solution.

Tie for the outgoing variable. When more than one variable has the 
same least positive ratio under the -column, a tie for the choice of outgo-
ing variable occurs. If the equal values of said ratio are > 1, choose any 
one of the prospective leaving variables arbitrarily. Such an arbitrary choice 
does not affect the optimal solution.

If the equal values of ratios are zero, the simplex method fails and we 
make use of the following degeneracy technique.

Degeneracy. We know that a basic feasible solution is said to be degen-
erate if any of the basic variables vanishes. This phenomenon of getting a 
degenerate basic feasible solution is called degeneracy which may arise

 (i)  at the initial stage, when at least one basic variable is zero in the 
initial basic feasible solution or 

(ii)  at any subsequent stage, when the least positive ratios under  the-
column are equal for two or more rows.
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In this case, an arbitrary choice of one of these basic variables may re-
sult in one or more basic variables becoming zero in the next iteration. At 
times, the same sequence of simplex iterations is repeated endlessly with-
out improving the solution. These are termed as cycling type of problems. 
Cycling occurs very rarely. Intact, cycling has seldom occurred in practical 
problems.

To avoid cycling, we apply the following perturbation procedure:

  (i)  Divide each element in the tied rows by the positive coefficients of 
the key column in that row.

 (ii)  Compare the resulting ratios (from left to right) first of unit matrix 
and then of the body matrix, column by column.

(iii)  The outgoing variable lies in that row which first contains the small-
est algebraic ratio.

EXAMPLE 12.22

Maximize Z  5x1  3x2

subject to x1  x2  2, 5x1  2x2  10, 3x1  8x2  12 ; x1, x2  0.

Solution: 

Consists of the following steps:

Step 1. Express the problem in the standard form.

Introducing the slack variables s1, s2, s3, the problem in the standard 
form is

Max. Z  5x1  3x2  0s1  0s2  0s3

x1  x2  s1  0s2  0s3  2, 5x1  2x2  0s1  s2  0s3  10

3x1  8x2  0s1  0s2  s3  12, x1, x2, s1, s2, s3  0.

Step 2. Find the initial basic feasible solution.

The initial basic feasible solution is

x1  x2  0 (non-basic)

s1  2, s2  10, s3  12 (basic) and Z  0.

 Initial simplex table is
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cj 5 3 0 0 0
cB Basis x1 x2 s1 s2 s3 b 

0 s1 1 1 1 0 0 2 2/1
0 s2 (5) 2 0 1 0 10 10/5
0 s3 3 8 0 0 1 12 12/3

Zj   cBaij 0 0 0 0 0 0
Cj  cj – Zj 5  3 0 0 0



As Cj is positive under some columns, this solution is not optimal.

Step 3. Iterate towards optimal solution.

x1 is the incoming variable. But the first two rows have the same ratio 
under -column. Therefore we apply perturbation method.

First column of the unit matrix has 1 and 0 in the tied rows. Dividing 
these by the corresponding elements of the key column, we get 1/1 and 0/5. 
s2-row gives the smaller ratio and therefore s2 is the outgoing variable and 
(5) is the key element.

Thus the new simplex table is

cj 5 3 0 0 0
cB Basis x1 x2 s1 s2 s3 b 

0 s1 0 (3/5) 1 −1/5 0 0 0 
5 s2 1 2/5 0 1/5 0 2 5
0 s3 0 34/5 0 −3/5 1 6 15/17
Zj 5 2 0 1 0 10
Cj 0  1 0 −1 0


As Cj is positive under x2 column, this solution is not optimal.

Making key element (3/5) unity and replacing s1 by x2, we obtain the 
revised simplex table:

cj 5 3 0 0 0
cB Basis x1 x2 s1 s2 s3 b
3 x1 0 1 5/3 −1/3 0 0
5 x2 1 0 −2/3 1/3 0 2
0 s3 0 0 −34/3 5/3 1 6
Zj 5 3 5/3 2/3 0 10
Cj 0  0 −5/3 −2/3 0
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As Cj  0 under all columns, this table gives the optimal solution. Hence 
an optimal basic feasible solution is x1  2, x2  0 and Zmax  10.

Exercises 12.5

Solve the following L.P. problems using the M-method:

1. Maximize Z  3x1  2x2  3x3

subject to: 2x1  x2  x3  2, 3x1  4x2  2x3  8, x1, x2, x3  0.

2. Maximize Z  2x1  x2  3x3

subject to: x1  x2  2x3  5, 2x1  3x2  4x3  12, x1, x2, x3  0.

3. Maximize Z  8x2,
subject to: x1 – x2  0, 2x1  3x2  – 6, x1, x2 unrestricted.

4. Minimize Z  4x1  3x2  x3

subject to: x1  2x2  4x3  12, 3x1  2x2  x3  8, x1, x2, x3  0.

5.  Maximize Z  x1  2x2  3x3 – x4

subject to: x1  2x2  3x3  15, 2x1  x2  5x3  20,
x1  2x2  x3  x4  10, x1, x2, x3, x4  0.
Use two phase method to solve the following L.P. problems:

6. Minimize Z  x1  x2

subject to: 2x1  x2  4, x1  7x2  7, x1, x2  0.

7. Maximize Z  5x1  3x2

subject to: 2x1  x2  1, x1  4x2  6, x1, x2  0.

8. Maximize Z  5x1 – 2x2  3x3,
subject to: 2x1  2x2 – x3  2,
3x1 – 4x2  3, x2  x3  5, x1, x2, x3  0.

9. Maximize Z  5x1 – 4x2  3x3

subject to: 2x1  x2 – 6x3  20, 6x1  5x2  10x3  76,
 8x1 – 3x2  6x3  50, x1, x2, x3  0.
Solve the following degenerate L.P. problems:

10. Maximize Z  9x1  3x2

subject to: 4x1  x2  8, 2x1  x2  4, x1, x2  0.

11. Maximize Z  2x1  3x2  10x3

subject to: x1  2x3  0, x2  x3  1, x1, x2, x3  0. 
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12. Maximize Z  0.5x1  6x2  5x3

subject to: 4x1  6x2  3x3  24, x1  1.5x2  3x3  12, 3x1  x2  12,
  x1, x2, x3  0.

12.11 Duality Concept

One of the most interesting concepts in linear programming is the 
duality theory. Every linear programming problem has associated with it, 
another linear programming problem involving the same data and closely 
related optimal solutions. Such two problems are said to be duals of each 
other. While one of these is called the primal, the other the dual.

The importance of the duality concept is due to two main reasons. First, 
if the primal contains a large number of constraints and a smaller of vari-
ables, the labor of computation can be considerably reduced by converting 
it into the dual problem and then solving it. Secondly, the interpretation of 
the dual variables from the cost or economic point of view proves extremely 
useful in making future decisions in the activities being programmed.

Formulation of dual problem. Consider the following L.P.P:

Maximize Z  c1x1  c2x2    cnxn,

subject to the constraints  a11x1  a12x2    a1nxn  b1,

 a21x1  a22x2    a2nxn  b2,
 
 am1x1  am2x2    amnxn  bm,

 x1, x2, , xn  0.

To construct the dual problem, we adopt the following guide-lines:

(i) The maximization problem in the primal becomes the minimization 
problem in the dual and vice versa.

(ii) () type of constraints in the primal become () type of constraints 
in the dual and vice versa.

(iii) The coefficients c1, c2, . ,cn in the objective function of the primal 
become b1, b2, , bn in the objective function of the dual.

(iv) The constants b1, b2, , bn in the constraints of the primal become 
c1, c2, , cn in the constraints of the dual.
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(v) If the primal has n variables and m constraints, the dual will have 
m variables and n constraints, i.e., the transpose of the body matrix of the 
primal problem gives the body matrix of the dual.

(vi) The variables in  both the primal and dual are non-negative.

Then the dual problem will be

Minimize W  b1y1  b2y2  .  bm ym

subject to the constraints a11y1  a12y2  ..  am1ym  c1,

 a21y1  a22y2  ..  am2 ym  c2,
 

 a1ny1  a2ny2  ..  amnym  cn,

 y1, y2, ., ym  0.

EXAMPLE 12.23

Write the dual of the following L.P.P:

Minimize Z  3x1 – 2x2  4x3,

subject to 3x1  5x2  4x3  7, 6x1  x2  3x3  4,

 7x1 – 2x2 – x3  10, x1 – 2x2  5x3  3,

 4x1  7x2 – 2x3  2, x1 , x2, x3  0.

Solution:

Since the problem is of minimization, all constraints should be of  
type. We multiply the third constraint throughout by – 1 so that

 – 7x1  2x2  x3  – 10
Let y1, y2, y3 , y4 and y5 be the dual variables associated with the above 

five constraints. Then the dual problem is given by

Maximize W  7y1  4y2 – 10y3  3y4  2y5

subject to 3y1  6y2 – 7y3  y4  4y5  3, 5y1  y2  2y3 – 2y4  7y5  – 2

4y1  3y2  y3  5y4 – 2y5  4, y1, y2, y3, y4, y5  0.
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Formulation of dual problem when the primal has equality constraints. 
Consider the problem.

Maximize Z  c1x1  c2x2

subject to a11x1  a12x2  b1 ; a21x1  a22x2  b2 ; x1, x2  0.

The equality constraint can be written as

 a11x1  a12x2  b1 and a11x1  a12x2  b1

or a11x1  a12x2  b1 and – a11x1 – a12x2  – b1

 Then the above problem can be restated as

Maximize Z  c1x1  c2x2

subject to a11x1  a12x2  b1, – a11x1 – a12x2  – b1,
 a21x1  a22x2  b2, x1, x2  0.

Now we form the dual using y1, y1, y2 as the dual variables.

Then the dual problem is

Minimize W  b1(y1 – y1)  b2y2,

subject to a11(y1 – y1)  a21y2  c1, a12(y1 – y1)  a22y2  c2, y1, y1, 
y2  0.

The term (y1 – y1) appears in both the objective function and all the 
constraints of the dual. This will always happen whenever there is an equal-
ity constraint in the primal. Then the new variable y1 – y1 ( y1) becomes 
unrestricted in sign being the difference of two non-negative variables and 
the above dual problem takes the form.

Minimize W  b1y1  b2y2,

subject to a11b1  a21y2  c1, a12y1  a22y2  c2 ,

y1 unrestricted in sign, y2  0.

In general, if the primal problem is

Maximize Z  c1x1  c2x2    cnxn ,

subject to a11x1  a12x2    a1nxn b1

 a21x1  a22x2  ...  a2nxn b2

 
 am1x1  am2x2    amnxn  bm

 x1, x2, , xn  0;
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then the dual problem is

Minimize W  b1y1  b2y2    bmym

subject to a11y1  a21y2  ...  am1 ym  c1,

 a12y1  a22y2  ...  am2ym  c2,
 

 a1ny1  a2ny2  ...  amn ym  cn,

 y1, y2, , ym all unrestricted in sign.

Thus the dual variables corresponding to equality constraints are un-
restricted in sign. Conversely when the primal variables are unrestricted in 
sign, the corresponding dual constraints are equalities.

EXAMPLE 12.24

Construct the dual of the L.P.P:

Maximize Z  4x1  9x2  2x3,

subject to 2x1  3x2  2x3  7, 3x1 – 2x2  4x3  5, x1, x2, x3  0.

Solution:

Let y1 and y2 be the dual variables associated with the first and second 
constraints. Then the dual problem is

Minimize W  7y1  5y2,

subject to 2y1  3y2  4, 3y1 – 2y2  9, 2y1  4y2  2, y1  0, y2 is unre-
stricted in sign.

Exercises 12.6

Write the duals of the following problems:

1. Maximize Z  10x1  13x2  19x3

subject to 6x1  5x2  3x3  26, 4x1  2x2  5x3  7, x1, x2, x3  0.

2. Minimize Z  2x1  4x2  3x3

subject to  3x1  4x2  x3  11, – 2x1 – 3x2  2x3  – 7, 
   x1 – 2x2 – 3x3  – 1, 3x1  2x2  2x3  5, x1, x2, x3  0.
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3. Maximize Z  3x1  x2  4x3  x4  9x5,
 4x1 – 5x2 – 9x3  x4 – 2x5  6, 2x1  3x2  4x3 – 5x4  x5  9,
 x1  x2 – 5x3 – 7x4  11x5  10, x1, x2 , x3 , x4, x5  0.

4. Maximize Z  3x1  16x2  7x3

subject to x1 – x2  3x3  3, – 3x1  2x3  1,
 2x1  x2 – x3  4, x1, x2, x3  0.

5. Maximize Z  3x1  x2  2x3

subject to x1  x2  x3  6, 3x1 – 2x2  3x3  3,
 – 4x1  3x2 – 6x3  4, x1, x2, x3  0.

6. Minimize Z  2x1  3x2  4x3

subject to 2x1  3x2  5x3  2, 3x1  x2  7x3  3,
 x1  4x2  6x3  5, x1, x2  0 and x3 is unrestricted.

7. Obtain the dual problem of the following L.P.P:
Maximize f(x)  2x1  5x2  6x3

subject to the constraints:
 5x1  6x2 – x3  3, – 2x1  x2  4x3  4,
 x1 – 5x2  3x3  1, – 3x1 – 3x2  7x3  6, x1, x2, x3  0.

Also verify that the dual of the dual problem is the primal problem.

12.12 Duality Principle

If the primal and the dual problems have feasible solutions then both 
have optimal solutions and the optimal value of the primal objective func-
tion is equal to the optimal value of the dual objective function, i.e.,

 Max. Z  Min. W
This is the fundamental theorem of duality. It suggests that an optimal 

solution to the primal can directly be obtained from that of the dual prob-
lem and vice-versa.

Working rules for obtaining an optimal solution to the primal 
(dual) problem from that of the dual (primal):

Suppose we have already found an optimal solution to the dual (primal) 
problem by the simplex method.

Rule I. If the primal variable corresponds to a slack starting variable in 
the dual problem, then its optimal value is directly given by the coefficient 
of the slack variable with a changed sign, in the Cj row of the optimal dual 
simplex table and vice-versa.
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Rule II. If the primal variable corresponds to an artificial starting vari-
able in the dual problem, then its optimal value is directly given by the 
coefficient of the artificial variable, with a changed sign, in the Cj row of the 
optimal dual simplex table, after deleting the constant M and vice-versa.

On the other hand, if the primal has an unbounded solution, then the 
dual problem will not have a feasible solution and vice-versa.

Now we shall work out two examples to demonstrate the primal dual 
relationships.

EXAMPLE 12.25

Construct the dual of the following problem and solve the primal and 
the dual:

Maximize Z  2x1  x2,

subject to  – x1  2x2  2, x1  x2  4, x1  3, x1, x2  0.

Solution:

Using the primal problem. Since only two variables are involved, it is 
convenient to solve the problem graphically.

In the x1x2-plane, the five constraints show that the point (x1, x2) lies 
within the shaded region OABCD of Figure 12.12.

C(2,2)

B(3, 1)

A(3,0) X1
O

D
(0, 1)

X2

FIGURE 12.12

Values of the objective function Z  2x1  x2 at these corners are Z(0)  
0, Z(A)  6, Z(B)  7, Z(C)  6, and Z(D)  1.

Hence the optimal solution is x1  3, x2  1 and max. Z  7.
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Solution:

Using the dual problem. The dual problem of the given primal is:
Minimize W  2y1  4y2  3y3

subject to  – y1  y2  y3  2, 2y1  y2  1, y1, y2  0.

Step1. Express the problem in the standard form.
Introducing the slack and the artificial variables, the dual problem in 

the standard form is
Max. W   – 2y1 – 4y2 – 3y3  0s1  0s2 – MA1 – MA2

subject to  – y1  y2  y3 – s1  0s2  A1  0A2  2,
 2y1  y2  0y3  0s1 – s2  0A1  A2  1

Step 2. Find an initial basic feasible solution.

Setting the non-basic variables y1, y2, y3, s1, s2 each equal to zero, we get 
the initial basic feasible solution as

 y1  y2  y3  s1  s2  0 (non-basic), A1  2, A2  1. (basic)
  Initial simplex table is

cj –2 –4 –3 0 0 –M –M
cB Basis y1 y2 y3 s1 s2 A1 A2 b 

–M A1 –1 1 1 –1 0 1 0 2 2/1

–M A2 2 (1) 0 0 –1 0 1 1 1/1
Zj –M –2M –M M M –M –M –3M
Cj M–2 2M–4 M–3 –M –M 0 0


As Cj is positive under some columns, the initial solution is not optimal.

Step 3. Iterate toward an optimal solution.

(i) Introduce y2 and drop A2. Then the new simplex table is

cj –2 –4 –3 0 0 –M –M
cB Basis y1 y2 y3 s1 s2 A1 A2 b 

–M A1 –3 0 (1) –1 1 1 –1 1 1/1
–4 y2 2 1 0 0 –1 0 1 1 1/0

Zj 3M–8 –4 –M M 4–M –M M–4 –M–4

Cj 6–3 M 0 M–3 –M M–4 0 0
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As Cj is positive under some columns, this solution is not optimal.

(ii) Now introduce y3 and drop A1. Then the revised simplex table is

cj –2 –4 –3 0 0 –M –M
cB Basis y1 y2 y3 s1 s2 A1 A2 b
–3 Y3 –3 0 1 –1 1 1 –1 1
–4 y2 2 1 0 0 –1 0 1 1

Zj 1 –4 –3 3 1 –3 1 –7
Cj –3 0 0 –3 –1 3–M 1–M



As all Cj  0, the optimal solution is attained.

Thus an optimal solution to the dual problem is

 y1  0, y2  1, y3  1, Min. W  – Max. (W )  7.
To derive the optimal basic feasible solution to the primal problem, we 

note that the primal variables x1, x2 correspond to the artificial starting dual 
variables A1, A2, respectively. In the final simplex table of the dual problem, 
Cj corresponding to A1 and A2 are 3 and 1, respectively after ignoring M. 
Thus by rule II, we get opt. x1  3 and opt. x2  1.

Hence an optimal basic feasible solution to the given primal is

 x1  3, x2  1; max. Z  7.

Obs. The validity of the duality theorem is therefore, checked 
since max. Z  min. W  7 from both the methods.

EXAMPLE 12.26

Using duality solve the following problem:

Minimize Z  0.7 x1  0.5x2

subject to x1  4, x2  6, x1  2x2  20, 2x1  x2  18, x1, x2  0.

Solution:

The dual of the given problem is

Max. W  4y1  6y2  20y3  18y4,

subject to  y1  y3  2y4  0.7, y2  2y3  y4  0.5, y1, y2, y3, y4  0

Step 1. Express the problem in the standard form.

NOTE
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Introducing slack variables, the dual problem in the standard form be-
comes

Max. W  4y1  6y2  20y3  18y4  0s1  0s2,

subject to y1  0y2  y3  2y4  s1  0s2  0.7,

 0y1  y2  2y3  y4  0s1  s2  0.5, y1, y2, y3 , y4  0.

Step 2. Find an initial basic feasible solution.

Setting non-basic variables y1, y2, y3, y4 each equal to zero, the basic 
solution is

 y1  y2  y3  y4  0 (non-basic), s1  0.7, s2  0.5 (basic)
Since the basic variables s1, s2 > 0, the initial basic solution is feasible 

and non-degenerate.

 Initial simplex table is

cj 4 6 20 18 0 0

cB Basis y1 y2 y3 y4 s1 s2 b 

0 s1 1 0 1 2 1 0 0.7 0.7/1
0 s2 0 1 (2) 1 0 1 0.5 0.5/2

Zj 0 0 0 0 0 0 0
Cj 4 6 20 18 0 0



As Cj is positive in some columns, the initial basic solution is not opti-
mal.

Step 3. Iterate towards an optimal solution.

(i) Introduce y3 and drop s2. Then the new simplex table is

cj 4 6 20 18 0 0
cB Basis y1 y2 y3 y4 s1 s2 b 
0 s1 1  –1/2 0 (3/2) 1 –1/2 9/20 3/10 
2 y3 0 1/2 1 1/2 0 1/2 1/4 1/2

Zj 0 10 20 10 0 10 5
Cj 4 −4 0 8 0 –10


As Cj is positive under some of the columns, this solution is not optimal.
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(ii) Introduce y4 and drop s1. Then the revised simplex table is

cj 4 6 20 18 0 0
cB Basis y1 y2 y3 y4 s1 s2 b
18 y1 2/3  –1/3 0 1 2/3 –1/3 3/10
20 y3 –1/3 2/3 1 0 –1/3 2/3 1/10

 Zj 16/3 22/3 18 18 16/3 22/3 74/10
Cj –4/3 −4/3 0 0 –16/3 –22/3

As all Cj  0, the table gives the optimal solution.

Thus the optimal basic feasible solution is

 y1  0, y2  0, y3  20, y4  18 max. W  7.4
Step 4. Derive optimal solution to the primal.

We note that the primal variable x1, x2 corresponds to the slack starting 
dual variables s1, s2 respectively. In the final simplex table of the dual prob-
lem. Cj values corresponding to s1 and s2 are – 16/3 and – 22/3, respectively.

Thus, by rule I, we conclude that

opt. x1  16/3 and opt. x2  22/3.

Hence an optimal basic feasible solution to the given primal is

 x1  16/3, x2  22/3 ; min. Z  7.4.

Obs. To check the validity of the duality theorem, the student is 
advised to solve the given L.P.P. directly by simplex method and 
see that

 min. Z  max. W  7.4.

Exercises 12.7

Using duality solve the following problems (1—3):

1. Minimize Z  2x1  9x2  x3,
subject to x1  4x2  2x3  5, 3x1  x2  2x3  4, x1, x2, x3  0

2. Maximize Z  2x1  x2,
subject to x1  2x2  10, x1  x2  6, x1 – x2  2, x1 – 2x2  1, x1, x2  0.

3. Maximize Z  3x1  2x2,
subject to x1  x2  1, x1  x2  7, x1  2x2  10, x2  3, x1, x2  0.

NOTE
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4. Maximize Z  3x1  2x2  5x3

subject to x1  2x2  x3  430, 3x1  2x3  460, x1  4x2  420, x1, x2, x3  0.

5. Write the dual of the following problem and solve the dual.
Maximize Z  – 2x1 – 2x2 – 4x3,
subject to  2x1  3x2  5x3  2, 3x1  x2  7x3  3,
 x1  4x2  6x3  5, x1, x2, x3  0.

12.13 Dual Simplex Method 

In Section 12.9, we have seen that a set of basic variables giving a fea-
sible solution can be found by introducing artificial variables and using the 
M-method or Two-phase method. Using the primal-dual relationships for 
a problem, we have another method (known as Dual simplex method) for 
finding an initial feasible solution. Whereas the regular simplex method 
starts with a basic feasible (but non-optimal) solution and works towards 
optimality, the dual simplex method starts with a basic infeasible (but op-
timal) solution and works towards feasibility. The dual simplex method is 
quite similar to the regular simplex method, the only difference lies in the 
criteria used for selecting the incoming and outgoing variables, In the dual 
simplex method, we first determine the outgoing variable and then the in-
coming variable while in the case of regular simplex method the reverse is 
done.

Working procedure for dual simplex method:

Step 1. (i) Convert the problem to maximization form, if it is not so.

(ii) Convert () type constraints, if any to () type by multiplying such 
constraints by – 1.

(iii) Express the problem in standard form by introducing slack vari-
ables.

Step 2. Find the initial basic solution and express this information in the 
form of dual simplex table.

Step 3. Test the nature of Cj  cj – Zj:

(a) If all Cj  0 and all bi  0, then optimal basic feasible solution has 
been attained.

(b) If all Cj  0 and at least one bi < 0, then go to step 4.

(c) If any Cj  0, the method fails.
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Step 4. Mark the outgoing variable. Select the row that contains the 
most negative bi. This will be the key row and the corresponding basic vari-
able is the outgoing variable.

Step 5. Test the nature of key row elements:

(a) If all these elements are  0, the problem does not have a feasible 
solution.

(b) If at least one element < 0, find the ratios of the corresponding ele-
ments of Cj-row to these elements. Choose the smallest of these ratios. The 
corresponding column is the key column and the associated variable is the 
incoming variable.

Step 6. Iterate towards optimal feasible solution. Make the key element 
unity. Perform row operations as in the regular simplex method and repeat 
iterations until either an optimal feasible solution is attained or there is an 
indication of non-existence of a feasible solution.

EXAMPLE 12.27

Using dual simplex method:

maximize – 3x1 – 2x2,

subject to x1  x2  1, x1  x2  7, x1  2x2  10, x2  3, x1  0, x2  0.

Solution:

Consists of the following steps:

Step 1. (i) Convert the first and third constraints into () type.

These constraints become

 – x1 – x2  – 1, – x1 – 2x2  – 10.
(ii) Express the problem in standard form

Introducing slack variables s1, s2, s3 , s4 the given problem takes the form

Max. Z  – 3x1 – 2x2  0s1  0s2  0s3  0s4

subject to – x1 – x2  s1  – 1, x1  x2  s2  7,

 – x1 – 2x2  s3  – 10, x2  s4  3, x1, x2, s1, s2, s3 , s4  0.
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Step 2. Find the initial basic solution

Setting the decision variables x1, x2 each equal to zero, we get the basic 
solution

 x1  x2  0, s1  – 1, s2  7, s3  – 10, s4  3 and Z  0.
  Initial solution is given by the table below:

cj –3 –2 0 0 0 0
cB Basis x1 x2 s1 s2 s3 s4 b
0 s1 –1 –1 1 0 0 0 –1
0 s2 1 1 0 1 0 0 7
0 s3 –1 (–2) 0 0 1 0 –10 

s4 0 1 0 0 0 1 3
Zj   cBaij 0 0 0 0 0 0 0
Cj  cj – Zj –3  –2 0 0 0 0



Step 3. Test nature of Cj.

Since all Cj values are  0 and b1  – 1, b3  – 10, the initial solution is 
optimal but infeasible. We therefore, proceed further.

Step 4. Mark the outgoing variable.

Since b3 is negative and numerically largest, the third row is the key row 
and s3 is the outgoing variable.

Step 5. Calculate ratios of elements in Cj-row to the corresponding neg-
ative elements of the key row.

These ratios are – 3/– 1  3, – 2/– 2  1 (neglecting ratios corresponding 
to  ve or zero elements of key row). Since the smaller ratio is 1, therefore, 
x2-column is the key column and (– 2) is the key element.

Step 6. Iterate towards optimal feasible solution.

(i) Drop s3 and introduce x2 alongwith its associated value – 2 under cB 
column. Convert the key element to unity and make all other elements of 
the key column zero. Then the second solution is given by the table below:
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cj –3 –2 0 0 0 0
cB Basis x1 x2 s1 s2 s3 s4 b
0 s1 1/2 0 1 0 1/2 0 4
0 s2 1/2 0 0 1 1/2 0 2

–2 x2 1/2 1 0 0 1/2 0 5
0 s4 1/2 0 0 0 1/2 1 –2 

Zj   cBaij –1 –2 0 0 1 0 –10

Cj  cj – Zj –2 0 0 0 –1 0


Since all Cj values are  0 and b4  – 2, this solution is optimal but in-

feasible. We therefore proceed further.

(ii) Mark the outgoing variable

Since b4 is negative, the fourth row is the key row and s4 is the outgoing 
variable. (iii) Calculate ratios of elements in Cj-row to the corresponding 
negative elements of the key row.

This ratio is 
1
2

2


  4 (neglecting other ratios corresponding to  ve or 0 

elements of key row).

 x1-column is the key column and 1
2

 
 
 

 is the key element.

(iv) Drop s4 and introduce x1 with its associated value – 3 under the cB 
column. Convert the key element to unity and make all other elements of 
the key column zero. Then the third solution is given by the table below:

cj –3 –2 0 0 0 0

cB Basis x1 x2 s1 s2 s3 s4 b
0 s1 0 0 1 0 –1 –1 6
0 s2 0 0 0 1 1 1 0
–2 x2 0 1 0 0 0 1 3
–3 x1 1 0 0 0 –10 –2 4
Zj –3 –2 0 0 3 4 –18
Cj 0 0 0 0 –3 –4

Since all Cj values are  0 and all b’s are  0, therefore this solution 
is optimal and feasible. Thus the optimal solution is x1  4, x2  3 and 
Zmax  – 18.
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EXAMPLE 12.28

Using dual simplex method, solve the following problem:

Minimize Z  2x1  2x2  4x3

subject to  2x1  3x2  5x3  2, 3x1  x2  7x3  3,

  x1  4x2  6x3  5, x1, x2, x3  0

Solution:

Consists of the following steps:

Step 1. (i) Convert the given problem to maximization form by writing

Maximize Z  – 2x1 – 2x2 – 4x3.

(ii) Convert the first constraint into () type. Thus it is equivalent to

– 2x1 – 3x2 – 5x3  – 2

(iii) Express the problem in standard form.

Introducing slack variables s1, s2, s3, the given problem becomes

max. Z  – 2x1 – 2x2 – 4x3  0s1  0s2  0s3

subject to   – 2x1 – 3x2 – 5x3  s1  0s2  0s3  – 2, 3x1  x2  7x3  0s1  
s2  0s3  3, x1  4x2  6x3  0s1  0s2  s3  5, x1, x2, x3, s1, s2, 
s3  0.

Step 2. Find the initial basic solution.

Setting the decision variables x1, x2, x3 each equal to zero, we get the 
basic solution

 x1  x2  x3  0, s1  – 2, s2  3, s3  5 and Z  0.
 Initial solution is given by the table below:

cj –2 –2 –4 0 0 0
cB Basis x1 x2 x3 s1 s2 s3 b
0 s1 –2 (–3) –5 1 0 0 –2 
0 s2 3 1 7 0 1 0 3
0 S3 1 4 6 0 0 1 5

Zj 0 0 0 0 0 0 0
Cj –2 –2 4 0 0 0
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Step 3. Test nature of Cj.

Since all Cj values are  0 and b1  – 2, the initial solution is optimal but 
infeasible.

Step 4. Mark the outgoing variable.

Since b1 < 0, the first row is the key row and s1 is the outgoing variable.

Step 5. Calculate the ratio of elements of Cj-row to the corresponding 
negative elements of the key row.

These ratios are – 2/– 2  1, – 2/– 3  0.67, – 4/– 5  0.8.

Since 0.67 is the smallest ratio, x2-column is the key column and (– 3) is 
the key element. Step 6. Iterate towards optimal feasible solution.

Drop s1 and introduce x2 with its associated value – 2 under cB column. 
Then the revised dual simplex table is

cj –2 –2 –4 0 0 0

cB Basis x1 x2 x3 s1 s2 s3 b
0 x2 2/3 1 5/3 –1/3 0 0 2/3
0 s2 7/3 0 16/3 1/3 1 0 7/3
0 S3 –5/3 0 –2/3 4/3 0 1 7/3

Zj –4/3 –2 –10/3 2/3 0 0 –4/3
Cj –2/3 0 –2/3 –2/3 0 0

Since all Cj  0 and all bi are > 0, this solution is optimal and feasible. 
Thus the optimal solution is x1  0, x2  2/3, x3  0 and max. Z  – 4/3

i.e., min. Z  4/3.

Exercises 12.8 

Using dual simplex method, solve the following problems:

1. Maximize Z  – 3x1 – x2

subject to x1  x2  1, 2x1  3x2  2 ; x1, x2  0.

2. Minimize Z  2x1  x2,
subject to 3x1  x2  3, 4x1  3x2  6, x1  2x2  3, x1, x2  0.

3. Minimize Z  x1  2x2  3x3,
subject to 2x1 – x2  x3  4, x1  x2  2x3  8, x2 – x3  2 ; x1 , x2 , x3  0.
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4. Minimize Z  6x1  7x2  3x3  5x4,
subject to 5x1  6x2 – 3x3  4x4  12, x2  5x3 – 6x4 10,
2x1  5x2  x3  x4  8, x1, x2, x3 , x4  0.

5. Minimize Z  3x1  2x2  x3  4x4

subject to 2x1  4x2  5x3  x4  10, 3x1 – x2  7x3 – 2x4  2,
5x1  2x2  x3  6x4 15, x1, x2 , x3 , x4  0.

12.14 Transportation Problem 

This is a special class of linear programming problems in which the ob-
jective is to transport a single commodity from various origins to different 
destinations at a minimum cost.

Formulation of a transportation problem. There are m plant locations 
(origins) and n distribution center (destinations). The production capacity 
of the ith plant is ai and the number of units required at the jth desti1na-
tion is bj. The transportation cost of one unit from the ith plant to the jth 
destination is cjj. Our objective is to determine the number of units to be 
transported from the ith plant to jth destination so that the total transporta-
tion cost is minimum.

Let xij be the number of units shipped from ith plant to jth destination, 
then the general transportation problem is:

Minimize 
1 1

m n

jj ij
i j

Z c x
 

   

subject to the constraints

xi1  xi2    xin  ai , for ith origin (i  1, 2,  m)

x1j  x2j    xmj bj, for destination (j  1, 2,  n)

xij  0.

Def. 1. The two sets of constraints will be consistent if

 1
1 1

m n

j
i j

a b
 

 
which is the condition for a transportation problem to have a feasible solu-
tion. Problems satisfying this condition are called balanced transportation 
problems. 
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2. A feasible solution to a transportation problem is said to be a basic fea-
sible solution if it contains at the most (m  n – 1) strictly positive alloca-
tions, otherwise the solution will degenerate. If the total number of positive 
(non-zero) allocations is exactly (m  n – 1), then the basic feasible solution 
is said to be non-degenerate.

3. A feasible solution which minimizes the transportation cost is called an 
optimal solution.

This problem is explicitly represented in the following transportation 
table:

Distribution centers (Destinations)

1 2 j n

1

2

i

m

Plants
(origins)

Demand b1 b2 bj bn
ai = bj

a1

a2

ai

am

Supply

c11 c12

c21

ci1

cm1

c22

ci2

cm2

c1j

c2j

cij

cmj

c1n

c2n

cin

cmn

The mn squares are called cells. The per unit cost cjj of transporting 
from the ith origin to the jth destination is displayed in the lower right side 
of the (i, j)th cell. Any feasible solution is shown in the table by entering the 
value of xij in the small square at the upper left side of the (i, j)th cell. The 
various a’s and b’s are called rim requirements. The feasibility of a solution 
can be verified by summing the values of xij along the rows and down the 
columns.

Obs. 1. The special features of a transportation problem are 
that
(i) the coefficients of all xij in the constraints are unity, and
(ii) the total supply  ai  total demand bj.

Obs. 2. The objective function and the constraints being all 
linear, the problem can be solved be the simplex method. But 
the number of variables being large, there will be too many 

NOTE
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calculations. However, the coefficients of all xij in the constraints 
being unity, we can look for some technique which would be 
simpler than the simplex method.

12.15 Working Procedure for Transportation Problems

Step 1. Construct transportation table. Express the supply from the ori-
gins ai, demand at destinations bj and the unit shipping cost cjj in the form of 
a matrix, know as transportation table. If the supply and demand are equal, 
the problem is balanced.

Step 2. Find the initial basic feasible solution. We find an initial al-
location which satisfies the demand at each project site without violating 
the capacities of the plants (origins) and also meeting the non-negativity 
restrictions. There are several methods for initial allocations e.g., North-
West corner rule, Row minima method, Least cost method, and Vogel’s ap-
proximation method. The Vogel’s approximation method (VAM) takes into 
account not only the least cost cjj but also the costs that just exceed the least 
cost cjj and therefore yields a better initial solution than obtained from other 
methods. As such we shall confine ourselves to VAM only which consists of 
the following steps:

(i) Display the difference between the least and the next to least costs 
in each row, by enclosing them in brackets to the right of the row. Similarly 
display the differences for each column within brackets below that column. 

(ii) Identify the row or column with the largest difference among all the 
rows and columns and allocate as much as possible under the rim require-
ments, to the lowest cost cell in that row or column. In case of a tie allocate 
to the cell associated with the lower cost.

If the greatest difference corresponds to ith row and cjj is the lowest 
cost in the ith row, allocate as much as possible, i.e., min (ai,bj) in the (i, j)th 
cell and cross off the ith row or the jth column.

(iii) Recalculate the row and column differences for the reduced table 
and go to the previous step.

(iv) Repeat the procedure till all the rim requirements are satisfied. 
Note the solution in the upper left corner small squares of the basic cells.
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Step 3. Apply optimality check.

In the above solution, the number of allocations must be “m  n – 1”, 
otherwise the basic solution degenerates.

Now to test for optimality, we apply the modified distribution (MODI) 
method and examine each unoccupied cell to determine whether making 
an allocation in it reduces the total transportation cost and then repeat this 
procedure until the lowest possible transportation cost is obtained. This 
method consists of the following steps:

(i) Note the numbers ui along the left and vj along the top of the cost 
matrix such that their sums equal to the original costs of occupied cells, i.e., 
solve the equations [ui  vj cjj] starting initially with some ui  0.

(ii) Compute the net evaluations wij  ui  vj –cjj for all the empty cells 
and enter them in upper right hand corners of the corresponding cells.

(iii) Examine the sign of each wij. If all wij  0, then the current basic 
feasible solution is optimal. If even one wij > 0, this solution is not optimal 
and we proceed further.

Step 4. Iterate towards an optimal solution

(i) Choose the unoccupied cell with the largest wij and mark  in it.

(ii) Draw a closed path consisting of horizontal and vertical lines begin-
ning and ending at -cell and having its other corners at the allocated cells.

(iii) Add and subtract  alternately to and from the transition cells of 
the loop subject to rim requirements. Assign a maximum value to  so that 
one basic variable becomes zero and the other basic variables remain non-
negative. Now the basic cell whose allocation has been reduced to zero 
leaves the basis.

Step 5. Return to step 3 and repeat the process until an optimal basic 
feasible solution is obtained.

EXAMPLE 12.29 

Solve the following transportation problem:

Source

A B C D

Availability
I 21 16 25 13 11
II 17 18 14 23 13
III 32 27 18 41 19

Requirement 6 10 12 15 43
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Solution consists of the following steps:

Step 1. Transportation table. Here the total availability and the total 
requirement being the same, i.e., 43, the problem is balanced.

Step 2. Find the initial basic feasible solution. Following VAM, the dif-
ferences between the smallest and next to the smallest costs in each row 
and each column are computed and displayed within brackets against the 
respective rows and columns (table 1). The largest of these differences is 
(10) which is associated with the fourth column.

21

17

32

16

18

27

25

14

18

13

23

41

11

6
(4)

10
(2)

12
(4)

15
(10)

Table 1

17

32

18

27

14

18

23

41

4

6
(15)

10
(9)

12
(4)

4
(18)

Table 2

13 (3)11 (3)

13 (3)

19 (9)

19 (9)

Since c14 ( 13) is the minimum cost, we allocate x14  min (11, 15)  11. 
This exhausts the availability of first row and therefore we cross it.

17 18 14

32 27 18

6

6
(15)

10
(9)

12
(4)

Table 3

9 (3)

19 (9)

18 14

27 18

3

10
(9)

12
(4)

Table 4

3 (4)

19 (9)
27 18

7

7 12

Table 5

1912

The row and column differences are now computed for reduced Table 2 
and displayed within brackets. The largest of these is (18) which is against 
the fourth column. Since c14 ( 23) is the minimum cost, we allocate x14  
min(13, 4)  4.

This exhausts the availability of the fourth column which we cross off. 
Proceeding in this way, the subsequent reduced transportation tables and 
differences for the remaining rows and columns are shown in Tables 3, 4, 
and 5.

Finally the initial basic feasible solution is as shown in Table 6.
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21

17

32

16

18

27

25

14

18

13

23

41

11

Table 6

6 3 4

127
21

17

32

16

18

27

25

14

18

13

23

41

11

Table 7

6 3 4

127

(–) (–)

(–)

(–)

(–)

(–)

vj
ui

17 18 9 23

– 10

0

9

Step 3. Apply optimality check

As the number of allocations  m  n – 1 (i.e., 6), we can apply the 
MODI method.

(i) We have u2  v1  17, u2  v2  18, u3  v2  27

 u3  v3  18, u1  v4  13, u2  v4  23
Let u2  0, then v1  17, v2  18, u3  9, v3  9, v4  23, u1  – 10.

(ii) Net evaluations wij  (ui  vj) –cjj for all empty cells are

 w11  – 14, w12  – 8, w13  – 26, w23  – 5, w31  – 6, w34  – 9.
(iii) Since all the net evaluations are negative, the current solution is 

optimal. Hence the optimal allocation is given by

 x14  11, x21  6, x22  3, x24  4, x32  7 and x33  12.
 The optimal (minimum) transportation cost

  11 × 13  6 × 17  3 × 18  4 × 23  7 × 27  12 × 18  $ 796. 

EXAMPLE 12.30

A company has three cement factories located in cities 1, 2, and 3 which 
supply cement to four projects located in towns 1, 2, 3, and 4. Each plant 
can supply 6, 1, and 10 truck loads of cement daily respectively and the 
daily cement requirements of the projects are respectively 7, 5, 3, and 2 
truck loads. The transportation costs per truck load of cement (in hundreds 
of Dollars) from each plant to each project site are as follows:

Project sites

1 2 3 4

1 2 3 11 7

Factories 2 1 0 6 1

3 5 8 15 9
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Determine the optimal distribution for the company so as to minimize 
the total transportation cost.

Solution consists of the following steps:

Step 1. Construct the transportation table. Express the supply from the 
factories, demands at sites, and the unit shipping cost in the form of the 
following transportation table (Table 1). Here the supply being equal to the 
demand, the problem is balanced.

Project sites

Table 1

1 2 3 4 Supply

1 2 3 11 7 6

Factories 2 1 0 6 1 1

3 5 8 15 9 10

Demand 7 5 3 2 17

Step 2. Find the initial basic feasible solution.

Using VAM, the initial basic feasible solution is as shown in Table 2. 
The transportation cost according to this route is given by

Z  $ (1 × 2  5 × 3  1 × 1  6 × 5  3 × 15  1 × 9) × 100  $ 102,00. 

Step 3. Apply optimality check.

As the numbers of allocations  (m  n – 1), i.e., 6, we can apply the 
MODI method.

We now compute the net evaluations wij  (ui  vj) –cjj which are exhib-
ited in Table 3. Since the net evaluations in two cells are positive, a better 
solution can be found. 

2

1

5

3

0

8

11

6

15

7

1

9
7 5 3 2

Table 2
1 5

1

6 3 1 2

1

5

3

0

8

11

6

15

7

1

9

Table 3

1

3

(+)

(+)(–)

vj
ui

2 3 12 6

0

– 5

3

(–)

6 1

1 5

(–)

(–)

6

1

10
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Step 4. Iterate towards optimal solution.

First iteration:

(a) Next basic feasible solution.

(i) Choose the unoccupied cell with the maximum wij. In case of a tie, 
select the one with lower original cost. In Table 3, cells (1, 3) and (2, 3) 
each have wij  1 and out of these cell (2, 3) has the lower original cost 6, 
therefore we take this as the next basic cell and note  in it.

(ii) Draw a closed path beginning and ending at -cell. Add and sub-
tract , alternately to and from the transition cells of the loop subject the 
rim requirements. Assign a maximum value to  so that one basic variable 
becomes zero and the other basic variables remain  0. Now the basic cell 
whose allocation has been reduced to zero leaves the basis. This gives the 
second basic feasible solution (Table 5).

1

6

5

1

3

1

1

2

1

5

3

0

8

11

6

15

7

1

9

–

– θ + θ

Table 4

1

6

5

3 – 1

1 – 1

1 + 1

2

1

5

3

0

8

11

6

15

7

1

9

= 1

Table 5

θ θ θ

 Total transportation cost of this revised solution.

  $ [1 × 2  5 × 3  1 × 6  6 × 5  2 × 15  2 × 9] × 100  $ 101,00. 
(b) Optimality check. As the number of allocations in table 5  m  n – 1 

(i.e., 6), we can apply the MODI method. We compute the net evaluations 
which are shown in Table 6. Since the cell (1, 3) has a positive value, the 
second basic feasible solution is not optimal.
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1

6

5

2

1

2

2

1

5

3

0

8

11

6

15

7

1

9

Table 6

(–)

(–) )–()–(

(–)

vj
ui

2 3 12 6

0

– 6

3

(+) 1 – 1

6 + 1

= 15

2 – 1

1

2

2

1

5

3

0

8

11

6

15

7

1

9

Table 7

θ

Second iteration:

(a) Next basic feasible solution. In the second basic feasible solution 
introduce the cell (1, 3) taking   1 and drop the cell (1, 1) giving Table 7. 
Thus we obtain the third basic feasible solution (Table 8).

7

5

1

1

2

2

1

5

3

0

8

11

6

15

7

1

9

Table 8

1

7

5

1

1

2

2

1

5

3

0

8

11

6

15

7

1

9

1

v j 1 3 11 5u i

0

– 5

1

(–)

(–) (–)

(–)

(–)

(–)

Table 9

Optimality check. As the number of allocations in Table 8  m  n – 1 
(i.e., 6), we can apply the MODI method.

We compute the net evaluations which are shown in Table 9. Since all 
the net evaluations are  0, this basic feasible solution is optimal.

Thus the optimal transportation policy is as shown in Table 9 and the 
optimal transportation cost

 $ [5 × 3  1 × 11  1 × 6  7 × 5  1 × 15  2 × 9] × 100  $ 10,000

12.16 Degeneracy in Transportation Problems’

When the number of basic cells in a mn-transportation table, is less than 
“m  n – 1” the basic solution degenerates. To remove the degeneracy, we 
assign a small positive value  to as many zero-valued variables as may be 
necessary to complete “m  n – 1” basic variables. The cells containing  
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are then treated like other basic cells and the problem is solved in the usual 
way. The ’s are kept till the optimum solution is attained. Then we let each 
 0.

EXAMPLE 12.31

Solve the following transportation problem:
To

9 12 9 6 9 10 5

7 3 7 7 5 5 6
From

6 5 9 11 3 11 2

6 8 11 2 2 10 9

4 4 6 2 4 2 22

Solution:

Consists of the following steps:

Step 1. Transportation table. The total supply and total demand being 
equal, the transportation problem is balanced. 

Step 2. Find the initial basic feasible solution.

Using VAM, the initial basic feasible solution is as shown in table 1.

Step 3. Apply optimality check. Since the number of basic cells is 8 
which is less than m  n – 1  9, the basic solution degenerates. In order to 
complete the basis and thereby remove degeneracy, we require only one 
more positive basic variable. We select the variable x23 and allocate a small 
positive quantity  to the cell (2, 3).

1                                  1

4 2
9              12                9                6                9             10

7                3                7                                  5                5

6                5                9               11              3               11

Table 1

5

423

6                8               11               2                2               10

7

4                  4                                 2                 4                26 + ε = 6

5

6 + ε = 6

2

9

ε
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We now compute the net evaluations wij  (ui  vj) –cjj which are exhib-
ited in Table 2. Since all the net evaluations are  0, the current solution is 
optimal. Hence the optimal allocation is

 x13  5, x22  4, x26  2, x31  1, x33  1, x41  3, x44  2 and x45  4.

5

1 1

9 12 9 6 9 10

6 5 9 11 3 11

Table 2
vj

ui

4 3 7 0

2

0

2

(–) (–) (–) (–) (–)

423

6 8 11 2 2 10

6 2

7 3 7 7 5 5

)–()–()–(

(0) (–) (–) (–)

)–()–()–(
2

0 5

ε

 The minimum (optimal) transportation cost

 5 × 9  4 × 3   × 7  2 × 5  1 × 6  1 × 9  3 × 6  2 × 2  4 × 2

 112  7  $ 112 as   0.

Exercises 12.9

1. Obtain an initial basic feasible solution to the following transportation 
problem: 

To

From

D E F G
A 11 13 17 14 250
B 16 18 14 10 300
C 21 24 13 10 400

200 225 275 250
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2. Solve the following transportation problem: 

Consumers
Suppliers

A B C Available

I 6 8 4 14

II 4 9 8 12

III 1 2 6 5

Required 6 10 15 31

3. Consider four bases of operations Bi and three targets Tj. The tons of 
bombs per aircraft from any base that can be delivered to any target are 
given in the following table:

Tj

Bi

1 2 3

1 8 6 5

2 6 6 6

3 10 8 4

4 8 6 4

The daily sortie capability of each of the four bases is 150 sorties per day. 
The daily requirement in sorties over each target is 200. Find the alloca-
tion of sorties from each base to each target which maximizes the total 
tonnage over all the three targets.

4. Solve the following transportation problem:

Destination

Origin

D1 D2 D3 D4

O1 1 2 1 4 30

O2 3 3 2 1 50 Availability

O3 4 2 5 9 20

20 40 30 10 100

5. A company has factories F1, F2, F3 which supply ware-houses at W1, W2, 
and W3. Weekly factory capacities, weekly ware-house requirements 
and unit shipping costs (in Dollars) are as follows:
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Factories
Warehouses

Supply
W1 W2 W3

F1 16 20 12 200

F2 14 8 18 160

F3 26 24 16 90

Demand 180 120 150 450
Determine the optimal distribution for this company to minimize ship-
ping costs.

6. A company is spending $ 1,000 on transportation of its units from plants 
to four distribution centers. The supply and demand of units, with unit 
cost of transportation are given below:

Plants
Distribution centers

Availabilities
D1 D2 D3 D4

P1 19 30 50 12 7
P2 70 30 40 60 10
P3 40 10 60 20 18

Requirements 5 8 7 15

What can be the maximum saving by optimal scheduling.?

7. A departmental store wishes to stock the following quantities of a popu-
lar product in three types of containers:

Container type: 1 2 3

Quantity: 170 200 180
Tenders are submitted by four dealers who undertake to supply not more 
than the quantities shown below:
Dealer: 1 2 3 4

Quantity: 150 160 110 130
The store estimates that profit per unit will vary with the dealer as shown 
below:

Dealers  1 2 3 4

Container type


1 8 9 6 3

2 6 11 5 10

3 3 8 7 9
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Find the maximum profit of the store.

8. Obtain an optimum basic feasible solution to the following transporta-
tion problem:

From

To

Available

7 3 4 2
2 1 3 3
3 4 6 5
4 1 5 10

Demand

9. A company has three plants A, B, and C and three warehouses X, Y,and 
Z. The number of units available at the plant is 60, 70, and 80, respec-
tively. The demands at X, Y,and Z are 50, 80, 80, respectively. The unit 
costs of transportation are as follows:

X Y Z
A 8 7 3
B 3 8 9
C 11 3 5

Find the allocation so that the total transportation cost is minimum.

10. A company has three plants at locations A, B, and C which supply to 
warehouses located as D, E, F, G, and H. Monthly plant capacities are 
800, 500, and 900 units, respectively. Monthly warehouse requirements 
are 400, 400, 500, 400, and 800 units, respectively. Unit transportation 
costs in dollars are given below:

To
D E F G H

A 5 8 6 6 3
From B 4 7 7 6 6

C 8 4 6 6 3

Determine an optimum distribution for the company in order to mini-
mize the total transportation cost.

12.17 Assignment Problem

An assignment problem is a special type of transportation problem in 
which the objective is to assign a number of origins to an equal number of 
destinations at a minimum cost (or maximum profit).
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Formulation of an assignment problem. There are n new machines Mi 
(i  1, 2, n) which are to be installed in a machine shop. There are n va-
cant spaces Sj (j  1, 2,  n) available. The cost of installing the machine Mi 
at space Sj is cjj Dollars. Let us formulate the problem of assigning machines 
to spaces so as to minimize the overall cost.

Let xij be the assignment of machine Mi to space Sj, i.e., let xij be a vari-
able such that

 
1, if th machine is installed at th space

0, otherwiseijx




Since one machine can only be installed at each space, we have

xi1  xi2  ..  xin  1, for machine Mi (i  1, 2, ...n)

x1j  x2j  ..  xnj  1, for space Sj (j  1, 2, ...n)

Also the total installation cost is 
1 1

n n

ij ij
i j

c x
 


Thus the assignment problem can be stated as follows:

Determine xij  0 (i, j  1, 2, ...n) so as to

minimize 
1 1

n n

ij ij
i j

Z c x
 


subject to the constraints

 
1 1

1, 1,2, ,and 1, 1,2, .
n n

ij ij
i i

x j n x i n
 

     

This problem is explicitly represented by the following n × n cost matrix:

Spaces

Machines

S1 S2 S3 …… Sn

M1 c11 c12 c13 …… c1n

M2 c21 c22 c23 …… c2n

M3 c31 c32 c33 …… c3n

: : : :
: : : :

Mn cn1 cn2 cn3 cnn
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Obs. This assignment problem constitutes n ! possible ways of 
installing n machines at n spaces. If we enumerate all these n ! 
alternatives and evaluate the cost of each one of them and select 
the one with the minimum cost, the problem would be solved. 
But this method would be very slow and time consuming, even 
for small value of n and hence it is not at all suitable. However, 
a much more efficient method of solving such problems is 
available. This is the Hungarian method for solution of 
assignment problems which we describe below.

Working procedure to solve an assignment problem: Step 1. Reduce 
the matrix. Subtract the smallest element of each row (of the given cost 
matrix) from all elements of that row. See if each row contains at least one 
zero. If not, subtract the smallest element of each column (not containing 
zero) from all the elements of that column. This gives the reduced matrix.

Step 2. Assign the zeros

(a) Examine rows (of the reduced matrix) successively until a row with 
exactly one unmarked zero is found. Make an assignment to this single zero 
by encircling it. Cross all other zeros in the column of this encircled zero, 
as these will not be considered for any future assignment. Continue in this 
way until all the rows have been examined.

(b) Now examine columns successively until a column with exactly one 
unmarked zero is found. Encircle this zero and make an assignment there. 
Then cross any other zero in its row. Continue in this way until all the col-
umns have been examined.

In case, some rows or columns contain more than one unmarked zeros, 
encircle any unmarked zero arbitrarily and cross all other zeros in its row or 
column. Proceed in this way, until no zero is left unmarked.

Step 3. Apply optimality check.

Repeat step 2 (a) and (b) until one of the following occurs:

(i) If no row or no column is without assignment (encircled zero), then 
the current assignment is optimal.

(ii) If there is some row and/or column without an assignment, then the 
current assignment is not optimal and we go to next step.

NOTE
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Step 4. Find the minimum number of lines crossing all zeros.

(a) Tick () the rows which do not have assignments.

(b) Tick () the columns (not already marked) which have zeros in the 
ticked row.

(c) Tick () the rows (not already marked) which have assignments in 
ticked columns.

Repeat (b) and (c) until no more marking is required.

(d) Draw lines through all unticked rows and ticked columns. If the 
number of these lines is equal to the order of the matrix then it is an optimal 
solution otherwise not.

Step 5. Iterate towards an optimal solution. 

Select the smallest element and subtract it from all uncovered ele-
ments. Add this smallest element to every element lying at the intersection 
of two lines. The resulting matrix is the second basic feasible solution.

Step 6. Go to Step 2 and repeat the procedure until the optimal solution 
is attained.

EXAMPLE 12.32

Four jobs are to be done on four different machines. The cost (in dol-
lars) of producing ith job on the jth machine is given below:

Jobs

M1 M2 M3 M4

J1 15 11 13 15
J2 17 12 12 13
J3 14 15 10 14
J4 16 13 11 17

Assign the jobs to different machines so as to minimize the total cost.

Solution: 

Consists of the following steps:

Step 1. Reduce the matrix. Subtract the smallest element 11 of row 1 
from all its elements. Similarly subtract 12, 10, and 11 from rows 2, 3, and 
4, respectively. The resulting matrix is as shown in Table 1. Columns 1 and 
4 do not have any zero element. Subtract the smallest element 4 of column 
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1 from all its elements and element 1 from all elements of column 4. The 
reduced matrix is as given in Table 1.

4

5

4

5

0

0

5

2

2

0

0

0

4

1

4

6

M1 M2 M3 M4

J2

J3

J4

0

1

0

1

0

0

5

2

2

0

0

0

3

0

3

5

M1 M2 M3 M4

J2

J3

J4

J1

Table 2Table 1

J1

Step 2. Assign the zeros. Row 4 has a single unmarked zero in column 
3. Encircle it and cross all other zeros in column 3. Row 3 has a single un-
marked zero in column 1. Encircle it and cross the other zero in column 1. 
Row 1 has a single unmarked zero in column 2. Encircle it and cross the 
other zero in column 2. Finally row 2 has a single unmarked zero in column 
4. Encircle it (Table 2).

Step 3. Apply optimality check. Since we have one encircled zero in 
each row and in each column, this gives the optimal solution.

 The optimal assignment policy is

Job 1 to machine 2, Job 2 to machine 4,

Job 3 to machine 1, Job 4 to machine 3,

and the minimum assignment cost  $(11  13  14  11)  $ 49.

EXAMPLE 12.33

A marketing manager has 5 salesmen and 5 sales districts. Considering 
the capabilities of the salesmen and the nature of districts, the marketing 
manager estimates that sales per month (in hundred Dollars) for each sales-
man in each district would be as follows:
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Sales districts

Salesmen

A B C D E
1 32 38 40 28 40
2 40 24 28 21 36
3 41 27 33 30 37
4 22 38 41 36 36
5 29 33 40 35 39

Find the assignment of salesmen to districts that will result in maximum 
sales.

Solution:

Consists of the following steps:

Step 1. Reduce the matrix. Convert the given maximization problem 
into a minimization problem, by making all the profits negative, since max. 
Z  min. (– Z). Then subtract the smallest element of each row from the el-
ements of that row. Now subtract the smallest element of each column (not 
containing zero) from the elements of that column. This gives the reduced 
matrix (Table 1).

Table 1

8

0

0

11

0

14

12

1

5

0

12

8

0

0

7

14

6

0

0

0

4

4

1

19 5

Table 2

12

0

0

15

0

10

8

1

5

8

4

0

0

10

2

0

1

23

7 00

0

0

5

0

Step 2. Assign the zeros. Rows 2 and 3 have each a single unmarked 
zero in column 1. Encircle these. Columns 2 and 5 have each a single un-
marked zero in row 1. Encircle these and cross the zero in row 1. Columns 
3 and 4 have each unmarked zeros. Encircle the zeros in each of the rows 4 
and 5 as shown in Table 1 and cross other zeros.

Step 3. Apply optimality check. As column 4 is without assignment, this 
solution is not optimal. Therefore we go to next step. 
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Step 4. Find minimum number of lines crossing all zeros. Draw the least 
number of horizontal and vertical (dotted) lines which cover all the zeros. 
Since there are four dotted lines which are less than the order of the cost 
matrix ( 5), we go to Step 5.

Step 5. Iterate toward an optimal solution. Select the smallest element 
in the Table 1, not covered by the dotted lines. Such an element is 4 which 
lies at two different positions. Selecting the element that lies at position (3, 
5) arbitrarily, subtract it from all the uncovered elements of the cost matrix 
(Table 1) and add the same to the elements lying at the intersection of two 
dotted lines. Now draw more minimum number of dotted lines so as to 
cover the new zero. Here we draw such a line in column 5 (Table 2).

Now, since the number of dotted lines is equal to the order of the cost 
matrix, the optimal solution is attained.

Finally, to determine this optimal assignment, we consider only the 
zero elements (Table 3):

A         B         C         D         E

1

2

3

4

5

0

0

0

0

0

0

0

0

0

0

Table 3

(i) Examine successively the rows with exactly one zero. There is no 
such row.

(ii) Examine successively the columns with exactly one zero. Column 2 
has one zero, encircle it and cross all zeros of row 1.

(iii) Encircle arbitrarily the zero in position (2, 1) and cross all zeros in 
row 2 and column 1. Then encircle the unmarked zero in row 3. Now en-
circle arbitrarily the zero in position (4, 3) and cross all zeros in row 4 and 
column 3. Finally encircle the remaining unmarked zero in row 5.

Now each row and each column has one encircled zero, therefore the 
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optimal assignment policy is:

Salesman 1 to district B, 2 to A, 3 to E, 4 to C and 5 to D.

Hence the maximum sales

 $ (38  40  37  41  35) × 100  $ 19100.

Exercises 12.10

1. A firm plans to begin production of three new products on its three 
plants. The unit cost of producing i at plant j is as given below. Find the 
assignment that minimizes the total unit cost.

Plant

Product

1 2 3
1 10 8 12
2 18 6 14
3 6 4 2

2. Solve the following assignment problem:

1 2 3 4

A 10 12 19 11

B 5 10 7 8

C 12 14 13 11

D 8 15 11 9

3. A machine tool company decides to make four sub-assemblies through 
four contractors. Each contractor is to receive only one sub assembly. 
The cost of each sub-assembly is determined by the bids submitted by 
each contractor and is shown in the table below (in hundreds of Dol-
lars). Assign different assemblies to contractors so as to minimize the 
total cost.

Contractor

Sub-assembly

A B C D

I 15 13 14 17

II 11 12 15 13

III 18 12 10 11

IV 15 17 14 16
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4. Four professors are each capable of teaching any one of the four differ-
ent courses. Class preparations time in hours for different topics varies 
from professor to professor and is given in the table below. Each profes-
sor is assigned only one course. Find the assignment policy schedule so 
as to minimize the total course preparation time for all courses.

Prof. L.P. Queuing 
Theory

Dynamic 
Programming

Regression 
Analysis

A 2 10 9 7
B 15 4 14 8
C 13 14 16 11
D 3 15 13 8

5. Consider the problem of assigning five jobs to five persons. The assign-
ment costs are given below:

Jobs

Persons

1 2 3 4 5
A 8 4 2 6 1
B 0 9 5 5 4
C 3 8 9 2 6
D 4 3 1 0 3
E 9 5 8 9 5

Determine the assignment schedule.

6. The head of the department has five jobs A, B, C, D, E and five subor-
dinates V, W, X, Y and Z. The number of hours each man would take to 
perform each job is as follows:

V W X Y Z
A 3 5 10 15 8
B 4 7 15 18 8
C 8 12 20 20 12
D 5 5 8 10 6
E 10 10 15 25 10

How should the jobs be allocated to minimize the total time?

7. A company has six jobs to be processed by six mechanics. The following 
table gives the return in Dollars when the ith job is assigned to the jth 
mechanic. How should the jobs be assigned to the mechanics so as to 
maximize the over all return?
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Mechanic


Job
I II III IV V VI

1 9 22 58 11 19 27
2 43 78 72 50 63 48
3 41 28 91 37 45 33
4 74 42 27 49 39 32
5 36 11 57 22 25 18
6 13 56 53 31 17 28

8. A company has four machines on which to do three jobs. Each job can 
be assigned to one and only one machine. The cost of each job on each 
machine is given in the following table:

Job
Machine

A B C D
1 18 24 28 32
2   8 13 17 19
3 10 15 19 22

Determine the optimum assignment.
HINT. Whenever the cost matrix of an assignment problem is not a 
square matrix, the problem is called an unbalanced assignment prob-
lem. In such problems, we add dummy rows (or columns) so as to form 
a square matrix. Then we solve the resulting balanced problem in the 
usual way. In this problem, we add a dummy fourth row so as to get the 
following balanced assignment problem:

Job
Machine

A B C D
1 18 24 28 32
2 8 13 17 19
3 10 15 19 22
4 0 0 0 0

9. Determine an optimum assignment schedule for the following assign-
ment problem. The cost matrix is given:

Job


Machines
1 2 3 4 5 6

A 11 17 8 16 20 15
B 9 7 12 6 15 13
C 13 16 15 12 16 8
D 21 24 17 28 26 15
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E 14 10 12 11 15 6

12.18 Objective Type of Questions

Exercises 12.11

Fill up the blanks in the following questions:

1. Infeasibility in a linear programming problem means 

2. The significance of the (Zj – Cj) row in the simplex solution procedure is 
that 

3. The duality principle states that 

4. The difference between the transportation problem and the assignment 
problem is 

5. The special features of a transportation problem are .

6.  The canonical form of an L.P.P. is such that 

7. The dual problem of the L.P.P:
Max. Z  4x1  9x2  2x3,

subject to 2x1  3x2  2x3  7, 3x1 – 2x2  4x3  5, x1 , x2, x3  0, is 

8. The optimality and feasibility conditions related with Dual simplex 
method are 

9. Feasible and basic solutions related with a transportation problem are 


10. A transportation problem is

Demand

Supply

2 3 11 4 15

5 6 8 7 20

10 5 12 8

Its linear programming problem is 

11. The basic feasible solutions of 2x1  x2  4x3  11, 3x1  x2  5x3  14 are 
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12. A slack variable is defined as

13. The advantage of the dual simplex method is 

14. If the total availability is equal to the total requirements, the transporta-
tion problem is called 

15. An artificial variable is that 

16. Two conditions on which the simplex method is based are 

17. A feasible solution which minimizes the transportation cost is called an 
solution.

18. The dual problem of: Max.5x1  6x2 subject to x1  2x2  5, – x1  5x2  3, 
x1 unrestricted and x2  0, is 

19. For a balanced transportation problem with 3 rows and 3 columns, the 
number of basic variables will be 

20. Using graphical method, Max. Z  5x1  3x2 subject to 5x1  2x2  10, 3x1 
 5x2  15, x1, x2  0, is 

21. In an L.P. problem, unbounded solution is that 

22. Degeneracy in a transportation problem is resolved by 

23. A basic solution is said to be non-degenerate in L.P.P. when 

24. The dual of the problem Max. Z  2x1  x2 subject to – x1  2x2  2, x1  x2 
 4, x1  3, x1, x2  0, is 

25. The two methods used to find the initial solution of a transportation 
problem are 

26. Constraints involving “equal to sign” do not require use of or 
variables.
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13.1 Introduction

Many problems in modern science and engineering involve so 
much of computation that they would require years of labor for 
their solution even using the best of calculators. With the advent of 
high speed computers, the picture has changed completely. Such 
complicated problems can now be solved very quickly by using 
electronic computers. For instance, a system of thirty linear equa-
tions with thirty unknowns is a monstrous problem for a human be-
ing but it is just a routine job for a digital computer. In fact, modern 
numerical techniques can best be appreciated within the context of 
some basic knowledge of computers. As such, a concise introduc-
tion to the digital computer is given in this chapter.
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13.2 Structure of a Computer

A digital computer has the following interconnected units each of which 
performs a specific task:

  (i) Input unit accepts (or reads) the data and instructions which are 
typed using a keyboard of video display unit. It consists of a mag-
netic tape (or disk).

 (ii) Memory unit stores the data and procedures. It consists of mag-
netic cores or semi-conductor storage.

(iii) Central Processing Unit (C.P.U.) is the vital component that 
makes the computer work. It takes care of all arithmetic and logi-
cal operations. It comprises of the following two parts:

 (a)  Control unit interprets and carries out the instructions stored 
in the memory. It has electronic circuitry to decode instruc-
tions and activates other units.

 (b)  Arithmetic unit carries out the required calculations. It con-
sists of electronic registers, accumulators.

(iv) Output unit presents the results of the calculations. It consists of 
a video display terminal and a printer. Various discs as input as 
well as output devices.

Input
Program

anddata
Memory Output

Results

Control
unit

Arithmetic
unit

C.P.U.

FIGURE 13.1 

The memory and control units deal with numbers. So they must have 
a method of recording numbers. Such a recording is achieved by the mag-
netic cores or semi-conductor storage which require the numbers to be 
made up of zeros and ones only.
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13.3 Computer Representation of Numbers

The numbers are first converted to machine numbers consisting of 0 
and 1 with a base depending on a computer. Most of the computers have 
a base 2 which is called a binary system of numbers. The decimal system 
has the base 10. We, therefore, convert the decimal numbers into the bi-
nary system for the input and reconvert the binary numbers to the decimal 
form for the output.

Binary numbers. Any number is written in binary notation as

 bn1bn2  b1b0. b1 b2 
bm (A)

where b’s are binary bits 0 or 1 and the point is the binary point.

Rule I. To convert the binary number (A) to the decimal form, use the for-
mula:

 bn1 2
n1  bn2 2

n2    b1 2
1  b0 2

0  b1 2
1  b2 2

2    bm2m

Rule II. To convert an integer to a binary number:

  (i) divide it by 2 and write the remainder,

 (ii) continue the process until the quotient is zero,

(iii)  write the remainders from bottom to top. This will give the re-
quired binary equivalent.

Rule III. To convert a decimal number to a binary fraction:

 (i) multiply the given number by 2 and separate the integral part,

 (ii)  multiply the fractional part again by 2 and separate the integral 
part,

(iii) continue this process, until the fractional part reduces to zero,

(iv)  write the integral parts and prefix the binary point. This will be the 
desired binary fraction.

EXAMPLE 13.1

Find the decimal number corresponding to the binary number 
1101001.1110011.

Solution:

(1101001. 1110011)2  1 × 26  1 × 25  0 × 24  1 × 23  0 × 22

   0 × 21  1 × 20  1 × 21  1 × 22  1 × 23  0 × 24
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  0 × 25  1 × 26  1 × 27  [Rule I]

 64  32  8  1  0.5  0.25  0.125  0.015625  0.0078125

 (105.8984375)10.

EXAMPLE 13.2

Convert 78.59375 to the binary system.

Solution:

We first convert 78 to binary form using Rule II.

 78  1001110
Then we convert .59375 to the binary fraction using Rule III.

 0.59375  0.10011
Hence (78.59375)10  (1001110.10011)2

Verification: Using Rule I,

(1001110.10011)2

  1 × 26  0 × 25  0 × 24  1 × 23

  1 × 22  1 × 21  0 × 20

  1 × 21  0 × 22  0 × 23

  1 × 24  1 × 25

  78.59375
Some of the computers have a base 8 which is called the oc-

tal system and  uses the symbols 0, 1, 2, 3, 4, 5, 6, 7. As 8  23, 
a group of three binary bits can be represented by an equivalent 
octal digit. Equivalence between the octal and binary systems 
is given below:

Octal: 0  1 2 3 4 5 6  7
Binary: 000 001  010 011 100 101 110 111

Another base commonly used is 16 which is known as hexadecimal. 
The symbols used are 0 to 9 and A, B, C, D, E, F. As 16  24, a group of 
four binary bits can be represented by an equivalent hexadecimal symbol. 
Equivalence between hexadecimal and binary numbers is as follows:

2 78
2 39 – 0
2 19 – 1
2 9 – 1
2 4 – 1
2 2 - 0
2 1 – 0

0 – 1

0.59375
×2

1 0.18750
×2

0 0.037500
×2

 0 00.75000
×2

1 0.50000
×2

1 0.00000
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Hexa: 0 1 2 3  4 5 6 7

Binary: 
0000 

0001 0010  0011 0100 0101 0110 0111

Hexa: 8 9 A B C D E F

Binary: 
1000 

1001 1010 1011 1100 1101 1110 1111

EXAMPLE 13.3

Convert the binary number 1011101.1100101 to the octal and hexa-
decimal systems.

Solution: 

(i) Given number   (001 011 101. 110 010 100)2

  (135.624)8 i.e., octal equivalent.

(ii) Given number   (0101 1101 . 1100 1010)2

  (5D.CA)16 i.e., hexa. equivalent

  5 × 161  13 × 160  12 × 161  10 × 162

  (93.7890625)10 i.e., decimal equivalent.

13.4 Floating Point Representation of Numbers

The memory of a digital computer has separate cells called “words.” 
Each word contains the same number of binary digits called “bits.” The 
number of digits which can be stored in a computer is known as its word 
length. The numbers are stored in a computer in two forms: fixed-point and 
floating-point forms. The fixed point mode is used to represent integers 
while the floating-point mode is used to represent real numbers.

A floating-point number is of the form
 .d1d2

 dn × bm

where d1, d2,, dn are all digits in the base “b” of the number system used 
and lie between o and b. The exponent m is such that M1  m  M2 where 
M1 and M2 vary with the computer. The fractional part .d1d2

 dn is called 
the mantissa which lies between 1 and restricts the size of a number. If a 
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floating-point number has a fixed mantissa of k digits, we say that the word 
length of the computer is k.

For instance, the number 33.74 × 106 is represented as .3374E8 (E8 is 
used to represent 108). Hence the mantissa is .3374 and the exponent is 8. 
While storing numbers, the leading digit in the mantissa is always made non-
zero by suitably shifting it and adjusting the value of the exponent accord-
ingly. This process is called normalization. Therefore the number.003374 
in normalized floating point mode would be stored as .3374E-2.

Thus the shifting of the mantissa to the left until its most significant 
digit is non-zero is called normalization.

Obs. To perform arithmetic operations with numbers in 
normalized floating point modes, we assume a hypothetical 
computer with a four decimal digit mantissa.

Arithmetic operations

(i) To add two numbers represented in normalized floating point nota-
tion, we make their exponents equal by shifting the mantissa appropriately.

The operation of subtraction is nothing but addition of a negative num-
ber. After addition/subtraction of the mantissas, the resulting mantissa is 
normalized and the exponent is suitably adjusted.

EXAMPLE 13.4

Evaluate (a).6756E4 .7644E6 (b).4546E-4 – .8524E-5.

Solution: 

(a)  The exponent of the number with the smaller exponent is increased 
by 2 so that .6756E4 becomes .0067E6.

      Thus .6756E4 .7644E6 .0067E6 .7644E6  0.7711E6.

(b)  Increasing the exponent of .8524E-5 by 1, it becomes .0852E-4.

      Thus .4546E-4 – .8524E-5 .4546E-4 – .0852E-4 .3694E-4.

(ii) To multiply two numbers given in the normalized floating point 
mode, we multiply their mantissas and add their exponents.

After multiplication of the mantissas, the resulting mantissa is normal-
ized and the exponent is suitably adjusted. The mantissa is only four digits 
of the resulting mantissa which is retained by dropping the rest of the digits.

NOTE
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EXAMPLE 13.5

Evaluate (a).6543E11 × .5123E-14 (b).1234E12 ×.1111E9.

Solution

(a).6543E11 × .5123E-14 .33519789E-3 .3351E-3.

(b).1234E12 ×.1111E9 .0137097E21 .1370E20.

(iii) To divide a number by another, the mantissa of the numerator is 
divided by the mantissa of the denominator and the denominator exponent 
is subtracted from the exponent of the numerator. The quotient mantissa 
is then normalized retaining four digits and the exponent adjusted suitably.

EXAMPLE 13.6

Divide.1000E5 by.8889E3.

Solution:
 .1000E5 ÷ .8889E3 .1124E2.

Obs. While performing the arithmetic operations with numbers 
in normalized floating-point mode, the numbers have to be 
truncated to fit the four digit mantissa of our hypothetical 
computer. This leads to results with wide disparity. In fact, the 
associative and distributive laws do not yield valid results in 
floating point representation, i.e.,

 l  m – n  (l – n)  m and l(m – n)  lm – ln.
For instance, if l .6776E1, m .6667E – 1 and n .6755E1, then

          (l  m) – n  (.6776E1 .0067E1) – .6755E1

.6842E1 –.6755E1 .0087E1 .8700E-1.

But    (l – n)  m  (.6776E1 –.6755E1) .6667E-1

.0021E1 .6667E-1 .2100E-1 .6667E-1

                             .8767E-1

 We see that (l  m) – n  (l – n)  m.

In fact, the correct answer is.8767E-1 because no number has been 
truncated. Thus inaccuracies creep in floating point arithmetic due to trun-
cation of numbers. As such utmost care should be taken before accepting 
the validity of a computer solution. Moreover, we can never ensure exact 

NOTE
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equality of a number to zero because most of the numbers in floating-point 
mode are only approximations.

13.5 Computer Calculations

Algorithm. Once the method of calculation has been decided, we must 
describe clearly the computational steps to be followed in a particular se-
quence. These steps constitute the algorithm of the method.

Flow chart. A pictorial representation of a specific sequence of steps to 
be used by a computer is called a flow chart. It is essentially a convenient 
way of planning the order of operations involved in an algorithm and helps 
in writing a program. The programmer, then knows clearly where to start, 
what information to use, what operations to be carried out, and in which 
order and where to stop. As such a flow-chart is additional help for writing 
the program in any language.

A flow-chart contains certain symbols to represent the various opera-
tions. These symbols are connected by arrows to indicate the flow of infor-
mation. The commonly used symbols and their meanings are given below:

A symbol used to indicate “Start” or “Stop/End” of a program. It is also 
used to mark end of a “Subprogram.” In that case “Return” is written in it.

[In FORTRAN the subprograms are functions and subroutines while in 
“C” these are functions only.]

A parallelogram is used to indicate an “Input” or 
“Output” of data.

A rectangle is a processing symbol, e.g., addition, 
subtraction and movement of data to computer mem-
ory.

A diamond is a decision-making symbol. A particular 
path is chosen depending on the “Yes” or “No” answer. 

A small circle with any number or letter in it, is used as a connector 
symbol. It connects various parts of a flow-chart until that are far apart or 
spread over pages.

A rectangle with double vertical sides is used to denote a subprocess 
which is given else-where as indicated by the connector symbol. When this 
box is encountered the flow goes to the subroutine and it continues until a 

Start or Stop

Read A, B, C
or Print

D = A + B – C
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“Return” statement is encountered. Then it goes back 
to the main flow chart and flow resumes onward pro-
cessing.

The flow chart can be translated into any computer 
language and can be executed on the computer.

The flow-chart can be translated into any comput-
er language and can be executed on the computer.

EXAMPLE 13.7

Develop a flow chart to select the largest number of a given set of 500 
numbers.

Solution:

Start

Read n

Max = n
Count = 1

1
Is

Count = 500 ?
Yes

Print max

No

Read n
Stop

Is
n > Max ?

Yes
Max = n

Count = Count + 1

1

No

20
or G

G
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This technique of finding the largest number, i.e., assuming the 
first element in the list is the maximum and then scanning the 
rest of the list for anything greater is used in Section 14.12, and 
Section 15.12.

EXAMPLE 13.8

Draw a flow chart for computing the roots of the quadratic equation 
ax2  bx  c  0.

Solution:

We know that its roots are given by

1 2,
2 2

b d b d
x x

a a
   

    where d  b2 – 4ac.

Flow-chart:

Start

Read a, b, c

Is a = 0?

No

d = b2
  – 4ac

Is d < 0?

No

x1 =(–b + √d)/2
x2 =(–b – √d)/2

Print x1, x2

Stop

Is b = 0?
Yes

x1 = –c/bYes

Printcomplex
Roots Print x1

Stop

No

Yes

This method of finding the roots is used in Section 14.6.

NOTE

NOTE
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Exercises 13.1

1. Convert the following binary numbers to decimal form:
(a) 1101101 (b) 0.11011
(c) 0.1010101 (d) 1.0110101.

2. Convert the following decimal numbers to binary form:
(a) 22.625  (b) – 10.125.

3. Show that
(a) (176)8  (126)10   (b) (17AB)16  (6059)10.

4. If A  (111010)2 and B  (1011)2, evaluate A  B and A – B.

5. Find the product of the binary numbers
(a) 10101 and 110 (b) 11.1101 and 101.101.

6. Add the numbers 83.72 and 1.529 in a decimal computer with a fixed 
word length of four. Find the absolute and relative errors involved.

7. Draw a flow chart to evaluate
1  4  7   1003.

8. Draw a flow-chart to pick up the largest of three given distinct numbers.

9. Draw a flow-chart to arrange a given set of N numbers in an ascending 
order.

13.6 Program Writing

Based on the flow chart, we write the instructions in a code that the 
computer can understand. A series of such instructions is called a program. 
If there are any errors in the program these will be pointed out by the 
computer during compilation. After correcting the compilation errors, the 
program is executed with the input data to check for logical errors which 
may be due to misinterpretation of the algorithm or due to incorrect usage 
of computer language. The process of finding the errors and correcting 
them is termed debugging.

While writing a program, our aim should be that the same program is 
able to run on any machine with the minimum number of modifications.





C H A P T E R14
NUMERICAL METHODS USING 
C LANGUAGE

Chapter Objectives

 Introduction 
 An overview of “C” features
 3–30 Programs of standard methods in “C” language.

14.1 Introduction

C is a general purpose programming language, originally de-
signed by Dennis Ritchie in 1972 at Bell laboratories. In 1988, it 
was standardized by the American National Standards Institute 
(ANSI) and named as ANSI C.

C, a powerful language, is used for many purposes like writing 
operating systems, business and scientific applications and even the 
C compiler itself. It is not tied to any particular hardware and pro-
grams written in C are portable across any system. The programs 
written in C are efficient and fast. It is one of the most popular 
computer languages today.

An overview of C features is given below for ready reference. 
It is followed by Programs of Standard Numerical methods in C 
language alongwith input/output of numerous examples solved in 
Chapters 1 to 12.
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14.2  An Overview of “C” Features

C constants are numbers, which do not change during execution of a pro-
gram. These may be of three types:

 Type Example

 Integer 27, 10897 etc. 

 Floating point (Real) 2.723, – 0.123 etc.

 String “Enter the value”

The string constants are enclosed in double quotes (").

C variables can contain different C constants during the execution of the 
pro- gram. These are declared in a C program by first specifying the type int 
for an integer and float for the floating point and then the variable names 
separated by commas. The general format is

 type      list of variables

For e.g., to declare integer variables the statement is 

int a, b, c;

and to declare a floating point variables it is

float a, b, c;

Variables can be initialized at the same time as they are declared. For 
example,

float a = 1.5;

declares a as a float variable having a value 1.5.

Rules for naming C variables:

  (i)  A variable name may contain only alphabets, digits, and the under-
score (_).

 (ii) It must begin with a alphabet or an underscore.

(iii)  It can be as long as you wish, but on some C systems only the first 
thirty-one 31 characters are considered.

Lower-case and upper case alphabets are treated as different 
in C. For e.g. Num and num are two entirely different variable 
names. As a matter of convention, lower- case alphabets are used.

NOTE

NOTE
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Arrays. An array is an aggregate of variables of the same type. These vari-
ables are called elements of the array. The following statements declare 
arrays in C:

int b[10];

float c[2][2];

The first statement creates a one dimensional array named b having 
ten elements, each element being referred by an appropriate subscript in 
rectangle brackets, i.e., b[0], b[1],......, b[9].

The second statement creates a 2-dimensional array named c having 
four  elements c[0][0], c[0][1], c[1][0], c[1][1].

Rules for the naming of arrays are same as those for variable names.

Subscripts always start from zero in C.

User defined types. Apart from the built in types int and float C allows 
users to define an identifier that can represent an existing data type.

The syntax is

    typedef type identifier

For e.g.,

    typedef int number;

    typedef float matrix [2][2];

The first statement defines number to mean the same as int. The sec-
ond defines ma- trix to be mean the same as 2 × 2 array of float.

The above two statements enable declarations of the form number a, 
b, c;

which declares three integers a, b and c, and

    matrix x;

which declares a two-dimensional array x having four elements x[0][0], x[0]
[1], x[1][0] and x[1][1].

NOTE
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Initialization of arrays at the time of declaration

The syntax is

    type array-name [size] = {list of values}

for e.g., int a[2] = {2, 1};

initializes a[0] to 2 and a[1] to 1.

    int a[2][2] = {{0, 1}, {3, 5}};

initializes a[0][0] to 0, a[0] [1] to 1, a[1][0] to 3 and a[1][1] to 5.

Arithmetic operators. These are as follows:

 Symbol Use

 + Addition

 – Subtraction

 * Multiplication

 / Division

while using the operators, the following order of precedence is adopted

(i) , /       (ii) +, –

In this case, the order of operators is that different circular brackets are 
used.

There is no exponentiation operator in C, but there are various library 
functions avail- able for the same.

For e.g., to calculate the square root sqrt function is used. 

Further details on functions are presented later.

Mathematical expressions consist of a sequence of arithmetic operators 
and variable names. For e.g.,

(i) a + b is written as a + b. (ii)
a

c
b
  

(iii) 
a

b c
 is written as a/a + b

(iv) 2 4b ac  is written as sqrt (b*b – 4*a*c).

(v) ( + ) is written as alpha * (beta + gamma).

(vi) ab is written as exp (b*ln (a))
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 The multiplication operator * has to be written explicitly. In C, 
its presence is never assumed.

exp and ln are library functions.

Arithmetic statements are of the form

var = exp;

where var is an integer or a floating point variable.

exp is a mathematical expression written in C format.

The = sign has a special meaning. It tells C to calculate the value of exp. 
and assign it to var.

For e.g.,    n = i * i;

calculates the value of i * i and assigns the result to the variable n. If 
i = 10, then n gets the value 100.

A C statement is always terminated by a semi colon (; ). 

C also permits statements of the type k = n = i * i;

This is equivalent to the following statements n = i * i; k = n;

 To test the equality of two expressions C uses “= =”.

Shorthand assignment operators

Apart from the assignment operator =, C can also support certain short 
hand assignment operators (+ +, – –, + =, – =, * =, / =). Their use is illus-
trated by the following examples.

Statement using the 
assignment operator

Statement using the 
shorthand assignment operator

a = a + 1 

a = a – 1 

a = a + 4 

a = a – 4

a = a * 4 

a = a / 4 

a + + or + + a 

a – – or – – a 

a + = 4

a – = 4 

a * = 4

a / = 4

NOTE

NOTE
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The use of shorthand assignment operators not only results in 
concise programs but more efficient programs also.

Comments in C start with “/ *” and end with “* /”. 

For e.g. / * Euler’s Method * /.

Input statement is scanf.

syntax scanf (“control string”, & variable 1, & variable 2,......);

The control string contains the format of the data being input by the 
user. It contains

     %d for an integer, and

     %f for a floating point type.

The ampersand (&) symbol is necessary before the integer or floating- 
point type variable. Its significance is discussed under functions.

An example of the scanf statement:

Assuming the declarations 

     int c;

     float a[3][3];

the statement

     scanf (“%d %f”, & c, & a[1][2]);

takes input from the user and stores it in the corresponding variables

%d corresponds to c,

%f corresponds to a[1][2].

Output statement is printf.

Syntax printf (“control string”, argument 1, argument 2,......);

The arguments can be C constants or variables. The control string can 
consist of

  (i) The characters that will be printed as such. 

 (ii) Format specifications for variables.

(iii) Escape sequences.

NOTE
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Format specifications

     for integers % w d

where w specifies the minimum width (i.e., number of digits) for output for

     floating point % w.p f

where p is number of digits to be displayed after the decimal point, after 
rounding off if necessary. In this w includes the decimal point too.

If width of the number is less than the specified width, the number is 
right justified in that width. However if width of the number is greater than 
the specified width, it will be printed in full.

Escape sequences. These are sequence of two characters meant for 
performing special tasks. The first character is always a back slash (\).

The most commonly used escape sequence is \n. It causes the output 
to start from next line.

An example of the printf statement:

For e.g.,  Assuming the declarations 

 int i = 1;

 float a = 27.23;

the statement 

 printf (“%3d\n %8.2f \n”, i, a);

will output

 
bb1

bbb27.23

 

  
where b  is a blank space.

Relational operators available in C are:

Mathematical symbol C symbol
> >
 > =
< <
 < =
= = =
 ! =

Logical expressions are mathematical expressions connected by relation-
al operators. Their value is either true or false.
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Examples of logical expressions: Assuming i = 2, j = 3

        i < j is true

        i = = j is false

        ( i * j) > (i + j) is true.

In C the result of a logical expression is an integer. 0 is taken as false, 
any non-zero integer is taken as true.

Logical operators are used to test more than one conditions i.e., to com-
bine more than one logical expressions.

Logical operator C symbol
AND

OR

NOT

&&

||

! 

The following tables illustrates their use.

AND

Logical expression 1 Logical expression 2 Result 
True

True

False

False

True

False

True

False

True 

False 

False 

False
OR

Logical expression 1 Logical expression 2 Result 
True

True

False

False

True

False

True

False

True 

True 

True

 False
NOT

Logical expression Result
True False 
False  True
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Decision making statement—If

Syntax

 if (Lexp)

  {Tstatements}

 else

  {Fstatements}

where Lexp is a logical expression.

Tstatements are C statements executed when value of Lexp is true. 

Fstatements are C statements executed when value of Lexp is false. 

The else part is optional.

Loops

(i) While Loop

Syntax

(a) while (Lexp)

 {statements} 

(b) do

 {statements}

 while (Lexp)

Both of these forms of the while loop cause execution of statements 
while value of Lexp is true. The difference between the two forms is that 
in the latter, the statements are executed at least once irrespective of the 
value of Lexp.

(ii) For loop 

syntax

 for (initialization statement; Lexp; increment statement)

 {statements}
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The loop is best explained by the following flow chart:

Initialization statement

Lexp
False

Rest of the program

True

Statements

Increment statement

Break statement. When a break statement is encountered inside a loop, 
that loop is exited, irrespective of the value of Lexp, and the program con-
tinues with the statement immediately following the loop.

Functions. These are the basic block of a C program. Functions contain 
State- ments that specify what is to be done.

Every (program has to contain a function named main. The program 
begins executing at the first statement of main. Apart from main the C 
functions are classified into

— Library functions

— User defined functions

These functions are called from main to accomplish various tasks.

 (i)  Library functions are already available and we just have to use them. 
e.g., printf, scanf, sqrt, cos, sin, fabs (used to get the absolute value 
of a floating point variable) etc.

(ii)  User defined functions have to be written by the user in the program.

Syntax

 return-type function-name (Argument-list)

 {



NUMERICAL METHODS USING C LANGUAGE • 667

 statements

 }

Program for understanding the various terms and concepts related with 
functions:

 1. / * Sample program * /

 2. # include < stdio.h>

 3. float add (float a, float x);

 4. void half (float *x)

 5. {

 6. *x / = 2;

 7. return;

 8. }

 9. main ( )

10. {

11. float a = 2, b = 2, c;

12. c = add (a, b);

13. print (“%f % f %f\n”, a, b, c);

14. half (&a); half (&b);

15. printf (“&f &f &f\n”, a, b, c);

16. }

17. float add (float a, float x)

18. {

19. float sum;

20. sum = a + x;

21. a = 20, x = 20; /*changing the formal arguments*/

22. return sum;

23. }

[Line numbers have been added for reference purpose and are not part 
of the program.]
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NOTES: 

(a) Declaration and Definition

Line number 3 is the declaration of the function named add. It indi-
cates that there is a function add which takes two arguments a and b both 
of type float and returns a float. i.e., the Argument list is float a, float b and 
return-type is float (which can be void if function doesn’t return anything—
see line 4. It also indicates that the function is defined later in the program).

Lines 17–23 are the definition of the function add i.e., they define how 
the function will make use of the arguments it received and return the re-
quired sum.

Lines 4–8 constitute both the declaration and definition of the function 
half. 

(b) Calling a function

Line number 12 calls the function add with a and b as arguments and 
stores the value returned by it into the variable c.

(c) Actual and Formal arguments

The variables a and x in the declaration of function add are called the 
formal arguments (line 3). 

The variables a and b in the call to the function (line 12) are the actual 
arguments.

(d) Call by value/Call by reference

In C language the values of actual arguments are always copied to the 
formal arguments when a function is called. This way of passing arguments 
is called call by value. In this any change made to the formal arguments in 
the function does not affect the value of actual arguments.

But in other languages, notably FORTRAN any change made to the for-
mal arguments is reflected in the actual arguments. This is called call by refer-
ence, as the formal argument is treated as just another name for the actual ar-
gument. Both of them refer to the same location in the computer’s memory.

(e) Simulating a call by reference in C

The following thumb rule can be followed to make the formal argu-
ment refer to the actual argument (and not just receive a copy of it)

“Precede the actual argument with an ampersand & (line 14) and pre-
cede the formal argument with an asterisk * (line 4).”
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The actual working of this involves the concepts of pointers, which are 
another data type in C. The reader can refer to any standard C book for a 
complete understanding.

(f) Return statement in a function passes the control back to the call-
ing function along with the calculated value (line 22)

Syntax   return   expression;

The expression can be omitted, in this case the return statement causes 
the function to just terminate then and there and pass control back to the 
calling function (Line 7).

In case no return statement is present in a function, an implicit return 
takes place on encountering the right curly brace } (For e.g., in the function 
main, the control passes back to the caller, i.e., the operating system in this 
case after line 16).

Preprocessor directives. The lines in a C program that begin with a hash 
(#) sign are called preprocessor directives. The two most commonly used 
are # define and # include.

There is no semi colon (; ) after the directive.

(i) # define

syntax

 # define name replacement

It instructs the computer to replace all occurences of name with the 
replacement even before the program is processed, i.e., checked for syntax.

For e.g., consider the following statements

 # define N 2 

 int a[N];

Before the program is processed by the compiler, the second line i.e., 
int a[N]; is changed to int a[2]; and the first line is removed.

 The resulting statement that is processed is int a[2].

(ii) # include

 syntax

 # include < header-file-name >

NOTE



670 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

This instructs the computer to insert the contents of the mentioned 
header file at the place where the directive appeared.

The header file contains declarations of various functions and 
many preprocessor directives.

Dynamic memory allocations. In today’s world utilization of memory 
resources is needed for efficient programming. We may come across situa-
tions where we may have to deal with data, which is dynamic in nature. The 
number of data items may change during the executions of a program. The 
number of customers change during the process at any time. When the list 
grows we need to allocate more memory space to accommodate additional 
data items. Such situations can be handled more easily by using dynamic 
allocation. Dynamic data items at run times, thus optimizing file usage of 
memory space.

The process of allocating memory at run time is known as dynamic 
memory allocation. Although “C” does not inherently have this facility 
there are four library routines which allow this function.

Many languages permit a programmer to specify an array size at run 
time. Such languages have the ability to calculate and assign during execu-
tions, the memory space required by the variables in the program. But “C” 
inherently does not have this facility but supports with memory manage-
ment functions, which can be used to allocate and free memory during the 
program execution. The following functions are used in “C” for purpose of 
memory management.

Function Task
malloc Allocates memory requests size of bytes and returns a pointer of the 

allocated space
calloc Allocates space for an group of elements initializes them to zero and 

returns a pointer to the memory
free De allocates previously allocated space
realloc Modifies the size of previously allocated memory.

Memory allocations process. According to the conceptual view the 
memory is partitioned in four different parts: in first part program instruc-
tions are stored, second global variables, third is used for function calls 
return address, arguments and local variables which are stored in stacks and 
last is called heap and is used for dynamic allocation during the execution 
of the program.

NOTE
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Allocating a block of memory. A block of memory may be allocated us-
ing the function malloc. The malloc function allocates a block of memory of 
specified size and returns a pointer of type void.

 ptr= (type*) malloc (size);
ptr is a pointer of type the malloc returns a pointer (of type) to an area of 
memory with size. The general form of calloc is:

Example:

 x= (int*) malloc (2* sizeof (int) );
On successful execution of this statement a memory equivalent to two 

times the area of int bytes is reserved and the address of the first byte of 
memory allocated is assigned to the pointer x of type int.

Allocating multiple blocks of memory. Calloc is function that is nor-
mally used to allocate multiple blocks of storage each of the same size and 
then sets all bytes to zero. The general form of calloc is:

 ptr= (type*) calloc (n, elem-size);
The above statement allocates contiguous space for n blocks each size 

of elements size bytes. All bytes are initialized to zero and a pointer to the 
first byte of the allocated region is returned. If there is not enough space a 
null pointer is returned.

Freeing the used space. Compile time storage of a variable is allocated 
and released by the system in accordance with its storage class. With the 
dynamic runtime allocation, it is responsibility of programmer to free the 
allocated space when it is not re- quired. The release of storage space be-
comes important when the storage is limited. When we no longer need the 
data we stored in a block of memory and we do not intend to use that block 
for storing any other information, we may release that block of memory for 
future use, using the free function.

 free (ptr);
ptr is a pointer that has been created by using malloc or calloc.

Data structure. In computer science, a data structure is a particular way of 
storing and organizing data in a computer so that it can be used efficiently.

Different kinds of data structures are suited to different kinds of ap-
plications, and some are highly specialized to specific tasks. For example, 
B-trees are particularly well- suited for implementation of databases, while 
compiler implementations usually use hash tables to look up identifiers.
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Data structures are used in almost every program or software system. 
Specific data structures are essential ingredients of many efficient algo-
rithms, and make possible the management of huge amounts of data, such 
as large databases and Internet indexing services. Some formal design 
methods and programming languages emphasize data structures, rather 
than algorithms, as the key organizing factor in software design.

Arrays are used to store a large set of data and manipulate them but the 
disadvantage is that all the elements stored in an array are of the same data 
type. If we need to use a collection of different data type items it is not pos-
sible using an array. When we require using a collection of different data 
items of different data types we can use a structure. Structure is a method 
of packing data of different types. A structure is a convenient method of 
handling a group of related data items of different data types.

structure definition:
general format:
struct tag_name
{
data type member1;
data type member2;
...
...
} Example: struct books
{
char title [30]; char author [25]; int page;
float price;
};

The keyword struct declares a structure to hold the details of four fields 
namely title, author, pages, and price. These are members of the structures. 
Each member may belong to different or same data type. The tag name can 
be used to define objects that have the tag names structure. The structure 
we just declared is not a variable by itself but a template for the structure.

We can declare structure variables using the tag name any where in the 
program. For example the statement,

struct lib_books book1,book2,book3;
declares book1,book2,book3 as variables of type struct lib_books each dec-
laration has four elements of the structure lib_books. The complete struc-
ture declaration might look like this

struct lib_books
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{
char title [20];
 char author [15];
int pages;
float price;
};
struct lib_books book1, book2, book3;

Structures do not occupy any memory until it is associated with the struc-
ture variable such as book1; the template is terminated with a semicolon. 
While the entire declaration is considered as a statement, each member is 
declared independent for its name and type in a separate statement inside 
the template. The tag name such as lib_books can be used to declare struc-
ture variables of its data type later in the program.

We can also combine both template declaration and variables declara-
tion in one statement, the declaration

struct lib_books
{
char title [20]; char author [15]; int pages;
float price;
} book1, book2,book3;
is valid. The use of tag name is optional for example struct
{
...
...
...
}
book1, book2, book3 declares book1,book2,book3 as structure vari-

ables representing three books but does not include a tag name for use in 
the declaration.

A structure is usually defineds before the main along with macro defini-
tions. In such cases the structure assumes global status and all the functions 
can access the structure.

Union. Unions like structure contain members whose individual data types 
may differ from one another. However the members that compose a union 
all share the same storage area within the computer’s memory where as 
each member within a structure is assigned its own unique storage area. 
Thus unions are used to observe memory. They are useful for application, 
involving multiple members. Values need not be assigned to all the mem-
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bers at any one time. Like structures, union can be declared using the key-
word union as follows:

union item
{
int m; float p; char c;
}
code;
PROGRAMS OF STANDARD METHODS IN “C” LANGUAGE

14.3 Bisection Method (Section 2.7)

Flow-chart

Start

Define function f(x)

Define function bisect

Get the values of
a, b, aerr, maxitr

Initialize itr

Call function bisect
with x, a, b, itr B

10

Yes No
x=ax=b

Is
f(a)*f(x)

< 0 ?

Call function Bisect
with x1, a, b, itr B

20
Yes Is

fabs (x1 – x)
< aerr ?

No

Yes
10

Is
itr < maxitr ?

Print‘solution
does not converge’

Stop

B

x = (a + b)/2.0

itr = itr + 1

Print itr, x1

Return

20

Print itr, x1

No

x = x1
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NOTES: a, b are the limits in which the root lies
aerr is the allowed error
itr is a counter which keeps track of the number of iterations performed
maxitr is the maximum number of iterations to be performed
x is the value of root at the nth iteration
x1 is the value of root at (n + 1)th iteration.
Function Bisect:
Purpose: Performs and prints the result of one iteration
Variables: x is the result of the current iteration.

Program

/* Bisection Method */
#include <stdio.h>
#include <math.h>
float f(float x)
{
 return (x*x*x - 4*x - 9);
}
void bisect(float *x,float a,float b,int *itr)
{
 *x = (a + b)/2;
 ++(*itr);
 printf("Iteration no. %3d X = %7.5f\n",*itr,*x);
}
main()
{
 int itr = 0, maxitr;
 float x, a, b, aerr, x1;
 printf("Enter the values of a,b,"
  "allowed error, maximum iterations\n"); 
 scanf("%f %f %f %d",&a,&b,&aerr,&maxitr); 
 bisect(&x,a,b,&itr);
 do
 {
   if (f(a)*f(x) < 0)
       b = x;
   else
       a = x;
   bisect (&x1,a,b,&itr);
   if (fabs(x1-x) < aerr)
   {
       printf("After %d iterations, root <169> 
         "= %6.4f\n",itr,x1);
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       return 0;
}
x = x1;
} while (itr < maxitr);
printf("Solution does not converge,"
 "iterations not sufficient");
 return 1;
}
Computer Solution of Example 2.15 (a)

Enter the values of a, b, allowed error, maximum iterations
3 2.0001 20
Iteration No. 1 X = 2.50000
Iteration No. 2 X = 2.75000
Iteration No. 3 X = 2.62500
Iteration No. 4 X = 2.68750
Iteration No. 5 X = 2.71875
Iteration No. 6 X = 2.70313
Iteration No. 7 X = 2.71094
Iteration No. 8 X = 2.70703
Iteration No. 9 X = 2.70508
Iteration No. 10 X = 2.70605
Iteration No. 11 X = 2.70654
Iteration No. 12 X = 2.70630
Iteration No. 13 X = 2.70642
Iteration No. 14 X = 2.70648
After 14 iterations, root = 2.7065

14.4 Regula-Falsi Method (Section 2.8)

Flow-chart

NOTES: f(x) = 0 is the equation whose root is to be found
x0, x1 are units in which root lies
aerr is allowed error
maxitr is maximum number of iterations to be performed
itr is a counter which keeps track of the number of iterations performed
x2 is value of root at nth iteration
x3 is value of root at (n + 1)th iteration
Function Regula:
Purpose: Performs and prints the results of one iteration.
Variables: x is value of root at nth iteration
fx0, fx1 are values of f(x) at x0 and x1, respectively.
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Start

Define function f(x)

Define function regula

Get the values of
x0, x1, aerr, maxitr

Initialize itr

Callfunction Regula
with x2, x0, x1, f(x0), f(x1), itr

10

x1=x2
Yes

x0=x2
NoIs

f(x0)*f(x2)
<0

Call function Regula
with x3, x0 ,x1, f(x0), f((x1), itr

R

20

x=x0–((x1–x0)/
(fx1–fx0))*fx0

No

x2=x3

YesIs
fabs (x3–x2)

<aerr?

10
Yes Is

itr<maxitr?

No

Print ‘Solution does
not converge’

Stop

Print itr, x

Return

20

Print solution

Stop

R

Program

/* Regula Falsi Method */
#include <stdio.h>
#include <math.h>
float f(float x)
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{
 return cos(x)-x*exp(x);
}
void regula (float *x, float x0, float x1, 
       float fx0, float fx1, int *itr)
 {
  *x = x0-((x1-x0)/(fx1-fx0))*fx0;
  ++(*itr);
  printf("Iteration no. %3d X = %7.5f\n",
     *itr,*x);
 }
 main()
 {
  int itr=0, maxitr;
  float x0,x1,x2,x3,aerr;
  printf("Enter the values for x0,x1,"
     "allowed error,maximum iterations\n•); 
  scanf("%f %f %f %d",&x0,&x1,&aerr,&maxitr);    
  regula(&x2,x0,x1,f(x0),f(x1),&itr);
  do
  {
    if (f(x0)*f(x2) < 0)
       x1 = x2;
    else
       x0 = x2; 
    regula(&x3,x0,x1,f(x0),f(x1),&itr); 
    if (fabs(x3-x2) < aerr)
    {
      printf("After %d iterations," 
         "root = %6.4f\n", itr,x3);
      return 0;
    }
    x2=x3;
 } while(itr < maxitr);
 printf("Solution does not converge," 
   "iterations not sufficient\n");
 return 1;
}
Computer Solution of Example 2.20

Enter the values for x0, x1, allowed error, maximum iterations
0 1.0001  20
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Iteration No. 1 X = 0.31467
Iteration No. 2 X = 0.44673
Iteration No. 3 X = 0.49402
Iteration No. 4 X = 0.50995
Iteration No. 5 X = 0.51520
Iteration No. 6 X = 0.51692
Iteration No. 7 X = 0.51748
Iteration No. 8 X = 0.51767
Iteration No. 9 X = 0.51773
After 9 iterations, root = 0.5177

14.5 Newton Raphson Method (Section 2.11)

Flow-chart

Start

Define function f(x)

Define function df(x)

Get the values of
x0, aerr, maxitr

Loop for it r = 1 to maxitr

h = f(x0)/df(x0)
x1 = x0 – h

Print itr, x1

Is
fabs (h) < aerr

Yes
Print Solution

x0 = x1

No
Stop

End Loop (itr)

Print ‘Solution
does not converge’.

Stop
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NOTES: F(x) = 0 is the equation whose root is to be found
df(x) is the derivatives of f(x) w.r.t. x 
x0 is value of root of nth iteration
x1 is value of root of (n + 1)th iteration
aerr is allowed error
maxitr is maximum number of iterations to be performed
itr is a counter which keeps track of the number of iterations performed.

Program

/* Newton Raphson Method */
#include <stdio.h>
#include <math.h>
float f(float x)
{
  return x*log10(x)-1.2;
}
float df(float x)
{
  return log10(x) + 0.43429;
}
main()
{
  int itr,maxitr;
  float h,x0,x1,aerr;
  printf("Enter x0,allowed error," 
    "maximum iterations\n");
  scanf("%f %f %d",&x0,&aerr,&maxitr);
  for (itr=1;itr<=maxitr;itr++)
  {
    h = f(x0)/df(x0);
    x1 = x0-h;
    printf("Iteration no. %3d," 
       "x = %9.6f\n",itr,x1);
    if (fabs(h) < aerr)
    {
      printf("After %3d iterations," 
        "root = %8.6f\n", itr,x1);
      return 0;
       }  
      x0 = x1;
    }
    printf("Iterations not sufficient," 
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      "solution does not converge\n");
    return 1;
}
Computer Solution of Example 2.32

Enter x0, allowed error, maximum iterations
2.000001  10
Iteration No. 1 X = 2.813170
Iteration No. 2 X = 2.741109
Iteration No. 3 X = 2.740646
Iteration No. 4 X = 2.740646
After 4 iterations, root = 2.740646

14.6 Muller’s Method (Section 2.13)

Flow-chart
Start

Define function y(x)

Get initial approxi-
mations in array x

Get values of
aerr, maxitr

Loop for itr = 1 to maxitr

Calculate li, di, mu, s

Is mu < 0
Yes 1 = (2*y(x[i])*di)/(– mu + s)

No
1 = (2*y(x[I])*di)/(– mu – s)

x[1 +1] = x[I] + 1*(x[I] – x[I – 1])

Print itr, x[I + 1]

Is
fabs (x[I + 1] – x[I])

< aerr ?
20

20

Loop for i = I – 2 to 2

x[i] = x[i + 1]

End Loop (i)

End Loop (itr)

Print ‘Solution
does not converge’.

Print
Solution

Stop

Yes

No
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NOTES: y(x) = 0 is the equation whose root is to be found
x is an array which holds the three approximations to the root and the new 
improved value
I is defined as 2 in the program. This has been done because in C, array sub-
scripts always start from zero and cannot be negative. Use of I facilitates more 
readable expressions. For e.g., x[0] can be written as
x[I – 2] which looks more close to xi–2 it actually represents.
li is i
di is i
mu is i
s is [i

2 – 4yii i(yi–2 i – yi–1 i + yi)]
l is 

Program

/* Muller's Method */
#include <stdio.h>
#include <math.h>
#define I 2
float y(float x)
{
 return cos(x)-x*exp(x);
}
main()
{
 int i,itr,maxitr;
 float x[4],li,di,mu,s,l,aerr;
 printf("Enter the initial <169> 
      "approximations\n");
 for (i = I-2;i<3;i++)
   scanf("%f",&x[i]);
 printf("Enter allowed error," 
    "maximum iterations\n");
 scanf("%f %d",&aerr,&maxitr);
 for(itr = 1;itr <= maxitr;itr++)
 {
   li = (x[I]-x[I-1])/(x[I-1]-x[I-2]); 
   di = (x[I]-x[I-2])/(x[I-1]-x[I-2]); 
   mu = y(x[I-2])*li*li
        - y(x[I-1])*di*di
        + y(x[I])*(di+li);
   s = sqrt((mu*mu - 4*y(x[I])*di*li
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       *(y(x[I-2])*li-y(x[I-1])
           *di + y(x[I]))));
   if (mu < 0)
     l = (2*y(x[I])*di)/(-mu+s);
   else
     l = (2*y(x[I])*di)/(-mu-s);
     x[I+1] = x[I]+l*(x[I] - x[I-1]);
     printf("Iteration no. % 3d,"
        "x = %7.5f\n",itr,x[I+1]);
     if (fabs(x[I+1]-x[I]) < aerr)
     {
       printf("After %3d iterations," 
         "the solution is %6.4f\n", 
         itr,x[I+1]);
       return 0;
      }
      for (i=I-2;i<3;i++)
          x[i] = x[i+1];
 }
 printf("Iterations not sufficient," 
   "solution does not converge\n");
 return 1;
}
Computer Solution of Example 2.34

Enter the initial approximations
–1 0 1
Enter allowed error, maximum iterations
.0001 10
Iteration No. 1 X = 0.44152
Iteration No. 2 X = 0.51255
Iteration No. 3 X = 0.51769
Iteration No. 4 X = 0.51776
After 4 iterations, the solution is 0.5178
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14.7 Multiplication of Matrices [Section 3.2 (3)4]

Flow-chart

Start

Define function matmul

Get values of l,
m, p, q

Call function
matmul with a,
b, c, 1, m, p, q

MNo
Is m! = p

Print “The two
matrices can not
be multiplied”

Stop

Yes

M

Get elements of
first matrix
into array a

Get elements of
second matrix

into array b

Loopfo ri=0to1

Loop for j = 0 to q – 1

s=0

Loop for   k=0 to m – 1

s+=a [i][k]*b[k][j]

End Loop(k)

c[i][j]=s

End Loop(j)

End Loop(i)

Print Solution

Return
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NOTES: MAX is largest number of rows or columns any matrix can have. 
(If MAX. = 20, 11 × 20 and 20
× 13 matrices can be multiplied but 1 × 21, 22 × 1 matrices cannot be 
multiplied until MAX > = 22
A, B are arrays which contain the matrices to be multiplied
C is array which contains the result of multiplication
L, M are respectively the rows, columns of first matrix
P, Q are respectively the rows, columns of second matrix
Function getelems
Purpose: To input a m × n matrix
Function Matmul.
Purpose: It performs the multiplication of matrices after taking them 
from the user and prints the result.
Variables: i, j, k are loop control variables.

Program

/* Multiplication of matrices */
#include <stdio.h>
#define MAX 20
typedef float matrix[MAX][MAX];
void getelems(matrix x,int m,int n)
{
  int i,j;
  for(i=0;i<m;i++)
    for(j=0;j<n;j++)
      scanf("%f",&x[i][j]);
}
void printsol(matrix x,int m,int n)
{
 int i,j;
 for (i=0;i<m;i++)
 {
  for (j=0;j<n;j++)
    printf("%5.1f",x[i][j]);
  printf("\n");
 }
}
void matmul(matrix a,matrix b,matrix c, 
      int l, int m,int p, int q)
{
 float s;
 int i,j,k;
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 printf("Enter the elements of the" 
   "first matrix\n");
 getelems(a,l,m);
 printf("Enter the elements of the" 
   "second matrix\n");
getelems(b,p,q);
for (i=0;i<l;i++)
  for (j=0;j<q;j++)
  {
    s = 0;
    for (k=0;k<m;k++)
      s += a[i][k]*b[k][j];
    c[i][j] = s;
  }
 printf("The solution is \n");
 printsol(c,l,q);
}
main()
{
  matrix a,b,c;
  int l,m,p,q;
  printf("Enter the row, coloumn of the" 
    "first matrix\n");
  scanf("%d %d",&l,&m);
  printf("Enter the row, coloumn of the" 
    "second matrix\n");
  scanf("%d %d",&p,&q);
  if (m!=p)
    printf("The two matrices cannot" 
       "be multiplied\n");
  else 
    matmul(a,b,c,l,m,p,q);
}
Computer Solution of Example 3.7

Enter the row, column of the first matrix
3 3
Enter the row, column of the second matrix
3 2
Enter the elements of the first matrix
0 1 2
1 2 3
2 3 4
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Enter the elements of the second matrix
   1   -2
  -1    0
   2   -1
The solution is
3.0  -2.0
5.0  -5.0
7.0  -8.0

14.8 Gauss Elimination Method [Section 3.4(3)]

Flow-chart

Start

Get the Augmented
Matrix in Array a

Loop for j = 0 to N – 2 

Loop for i = j + 1 to N – 1

t = a[i] [j]/a[j][j]

Loop for k = 0 to N

a[i] [k] = a [j] [k]*t

End Loop (k)

End Loop (i)

End Loop (j)

Loop for i = N – 1 to 0 Step-1

s = 0

Loop for j = i + 1 to N  

s + = a[i] [j]* x[j]

End Loop (j)

x[i]=(a[i][N]–s)/a[i][i]

End Loop (i)

Print Solution

Stop

Print upper
triangular matrix
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NOTES: N is the number of unknowns
a is an array which holds the Augmented Matrix
x is an array which will contain values of unknowns
i, j, k are loop control variables.

Program

/* Gauss elimination method */
#include <stdio.h>
#define N 4 main()
{
 float a[N][N+1],x[N],t,s;
 int i,j,k;
 printf("Enter the elements of the"
   "augmented matrix rowwise\n");
 for (i=0;i<N;i++)
  for (j=0;j<N+1;j++)
    scanf("%f",&a[i][j]);
 for (j=0;j<N-1;j++)
  for (i=j+1;i<N;i++)
 {
  t = a[i][j]/a[j][j];
  for (k=0;k<N+1;k++)
   a[i][k]=a[j][k]*t;
 }
 /* now printing the
 upper triangular matrix */
 printf("The upper triangular matrix" 
        "is:-\n");
 for (i=0;i<N;i++)
{
for (j=0;j<N+1;j++)
  printf("%8.4f",a[i][j]);
printf("\n");
}
/* now performing back substitution */
for (i=N-1;i>=0;i— -)
{
 s = 0;
 for (j=i+1;j<N;j++)
   s += a[i][j]*x[j];
 x[i] = (a[i][N]-s)/a[i][i];
}
 /* now printing the results */
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 printf("The solution is:- \n"); 
 for (i=0;i<N;i++)
   printf("x[%3d] = %7.4f\n",i+1,x[i]);
}
Computer Solution of Example 3.19

Enter the elements of augmented matrix rowwise
10
-6
3
5

-7
8
1
-9

3
-1
4
-2

5
-4
11
4

6
5
2
7

10.000 -7.0000 3.0000 5.0000 6.0000
0.0000 3.8000 0.8000 -1.0000 8.6000
-0.0000 -0.0000 2.4474 10.3158 -6.8158
0.0000 -0.0000 -0.0000 9.9247 9.9247
The solution is:- 
X[ 1] = 5.0000
X[ 2] = 4.0000
X[ 3] = -7.0000
X[ 4] = 1.0000

14.9 Gauss-Jordan Method [Section 3.4(4)]

Flow-chart
Start

Get the Augmented
Matrix in Array A

Loop for j = 0 to N – 1

Loop for i = 0 to N – 1

Is i ! = j ?
No

Yes

t = a[i] [j]/a[j] [j]

Loop for k = 0 to N

a[i][k] – = a[j][k] *t

End Loop (k)

End Loop (i)

End Loop (j)

Print diagonal matrix

Stop
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Notes: a is an array which holds the Augmented Matrix
N is the numbrt of unknowns. e.g. if it is a 3 × 3 system of equations, 
N = 3, and if 5 × 5 system take N = 5.
i, j, k are loop variables.

Program

/* Gauss jordan method */
#include <stdio.h>
#define N 3 main()
{
 float a[N][N+1],t;
 int i,j,k;
 printf("Enter the elements of the " 
        "augmented matrix rowwise\n");
 for (i=0;i<N;i++)
   for (j=0;j<N+1;j++)
    scanf("%f",&a[i][j]);
 /* now calculating the values of x1,x2,....,xN */
 for (j=0;j<N;j++)
   for (i=0;i<N;i++)
     if (i!=j)
     {
       t = a[i][j]/a[j][j];
       for (k=0;k<N+1;k++)
          a[i][k] -= a[j][k]*t;
     }
 /* now printing the diagonal matrix */ 
 printf("The diagonal matrix is:-\n"); 
 for (i=0;i<N;i++)
 {
   for (j=0;j<N+1;j++)
     printf("%9.4f",a[i][j]);
   printf("\n");
 }
 /* now printing the results */ 
 printf("The solution is:- \n"); 
 for (i=0;i<N;i++)
    printf("x[%3d] = %7.4f\n",
          i+1,a[i][N]/a[i][i]);
}
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Computer Solution of Example 3.22

Enter elements of augmented matrix rowwise
 10 -7 3 5 6
 -6 8 -1 -4 5
 3 1 4 11 2
 5 -9 -2 4 7
The diagonal matrix is:-
 10.0000 -0.0000 -0.0000 -0.0000 50.0000
 0.0000 3.8000 -0.0000 0.0000 15.2000
 -0.0000 0.0000 2.4474 0.0000 -17.1316
 0.0000 -0.0000 0.0000 9.9247 9.9247
The solution is:-
X[ 1] =  5.0000
X[ 2] =  4.0000
X[ 3] = -7.0000
X[ 4] =  1.0000

14.10 Factorization Method [Section 3.4(5)]

Flow-chart

Start

Get the elements of
Augmented Matrix
into Arrays a and b

Calculate elements of l & u

Print elements of l & u

Find v by solving lv = b
by forward substitution

Find x by solving ux = v
by backward substitution

Print Array x as solution

Stop
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NOTES: 
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N is the number of unknowns
l is the lower triangular matrix u is the upper triangular matrix a is the 
coefficient matrix
b is the constant matrix (Column matrix)
v is a matrix such that lv = b
x will contain the values of unknowns 
i, j, m are loop control variables 
Function urow (I)
Purpose: Calculates elements of ith row of u
Variables: m is the number of unknowns
j, k are loop control variables
Function Lcol (J)
Purpose: Calculates elements of jth column of l
Variables: m is the number of unknowns 
i, k are loop control variables. 
Function Printmat
Purpose: To print an N × N matrix.

Program

/* Crout triangularization method */
#include <stdio.h>
#define N 4
typedef float matrix[N][N];
matrix l,u,a;
float b[N],x[N],v[N];
void urow(int i)
{
          float s;
   int j,k;
   for (j=i;j<N;j++)
   {
            s = 0;
            for (k=0;k<N-1;k++)
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               s += u[k][j]*l[i][k];
            u[i][j] = a[i][j]-s;
   }
}
void lcol(int j)
{
  float s;
  int i,k;
  for (i=j+1;i<N;i++)
  {
    s = 0;
    for (k=0;k<=j-1;k++)
      s += u[k][j]*l[i][k];
     l[i][j] = (a[i][j]-s)/u[j][j];
  }
}
void printmat(matrix x)
{
 int i,j;
 for (i=0;i<N;i++)
 {
   for (j=0;j<N;j++)
     printf("%8.4f",x[i][j]);
   printf("\n");
 }
}
 main()
 {
   int i,j,m;
   float s;
   printf("Enter the elements of augmented" 
     "matrix rowwise\n");
   for (i=0;i<N;i++)
   {
     for (j=0;j<N;j++)
       scanf("%f",&a[i][j]);
     scanf("%f",&b[i]);
   }
   /* now calculating the elements of 
   l and u */
   for (i=0;i<N;i++)
     l[i][i] = 1.0;
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   for (m=0;m<N;m++)
   {
     urow(m);
     if (m < N-1) lcol(m);
   }
    /* now printing the elements of l and u */ 
    printf("\t\tU\n"); printmat(u); 
    printf("\t\tL\n"); printmat(l);
    /* now solving LV=B
    by forward substitution */
    for (i=0;i<N;i++)
    {
       s = 0;
       for (j=0;j<=i-1;j++)
         s += l[i][j]*v[j];
       v[i] = b[i]-s;
    }
    /* now solving UX=V
    by backward substitution */
    for (i=N-1;i>=0;i— —)
    {
       s = 0;
       for (j=i+1;j<N;j++)
         s += u[i][j]*x[j];
       x[i] = (v[i]-s)/u[i][i];
    }
     /* printing the results */ 
     printf("The solution is:-\n"); 
     for (i=0;i<N;i++)
       printf("x[%3d] = %6.4f\n",i+1,x[i]);
}
Computer Solution of Example 3.23

Enter the elements of augmented matrix rowwise
3 2 7 4
2 3 1 5
3 4 1

U
7

3.0000 2.0000 7.0000
0.0000 1.6667 -3.6667
0.0000 0.0000

L
-1.6000

1.0000 0.0000 0.0000
0.6667 1.0000 0.0000
1.0000 1.2000 1.0000
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The solution is:
x[1] = 0.8750 
x[2] = 1.1250 
x[3] = -.1250
 Computer Solution of Example 3.24

Enter the elements of augmented matrix rowwise
10 -7 3 5 6
-6 8 -1 -4 5
3 1 4 11 2
5 -9 -2 4 7

U
10.0000 -7.0000 3.0000 5.0000
0.0000 3.8000 0.8000 -1.0000
0.0000 0.0000 2.4474 10.3158
0.0000 0.0000 0.0000 9.9247

L
1.0000 0.0000 0.0000 0.0000

- 0.6000 1.0000 0.0000 0.0000
0.3000 0.8158 1.0000 0.0000
0.5000 -1.4474 -0.9570 1.0000

The solution is:-
x[ 1] = 5.0000
x[ 2] = 4.0000
x[ 3] = -7.0000 
x[ 4] = 1.0000

14.11 Gauss-Seidal Iteration Method [Section 3.5(2)]

Flow-chart

Notes: N is the number of unknowns
a is an array which holds the augmented matrix
x is an array which will hold the values of unknowns
aerr is allowed error
maxitr is the maximum number of iterations to be performed
itr is the counter which keeps track of number of iterations performed
err is error in value of xi

maxerr is maximum error in any value of xi after an iteration.

Program

/* Gauss Seidal method */
#include <stdio.h>
#include <math.h>
#define N 4 main()
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Start

Initialize x to 0

Get the elements of
Augmented Matrix

in Array a

Get the values
of aerr, maxitr

Print Heading

Loop for itr = 1 to maxitr

Maxerr = 0

Loop for i = 0 to N – 1

s = 0

Loop for j = 0 to N – 1

Is j ! = i ?

End Loop (j)
No

Yes

t = (a[i][N] – s)/a[i] [i]

err = fabs (x[i] – t)

Is
err > maxerr

x[i] = t

1

1

s + = a[i][j] *x[j]

Yes
maxerr = err

End Loop (i)

Print Results
of Iteration

Is
maxerr < aerr

Yes
Print Solution

Stop
No

End Loop (itr)

Print Solution
does not converge

Stop

No
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{
 float a[N][N+1],x[N],aerr,maxerr, t,s,err;
 int i,j,itr,maxitr;
 /* first initializing the array x */ 
 for (i=0;i<N;i++) x[i]=0; 
 printf("Enter the elements of the"
       "augmented matrix rowwise\n");
 for (i=0;i<N;i++)
  for (j=0;j<N+1;j++)
    scanf("%f",&a[i][j]);
 printf("Enter the allowed error," 
    "maximum iterations\n");
 scanf("%f %d",&aerr,&maxitr);
 printf("Iteration x[1] x[2]" "x[3]\n");
 for (itr=1;itr<=maxitr;itr++)
 {
   maxerr = 0;
   for (i=0;i<N;i++)
   {
     s = 0;
     for (j=0;j<N;j++)
       if (j!=i) s += a[i][j]*x[j];
     t = (a[i][N]-s)/a[i][i];
     err = fabs(x[i]-t);
     if (err > maxerr) maxerr = err;
     x[i] = t;
   }
   printf("%5d",itr);
   for (i=0;i<N;i++)
      printf("%9.4f",x[i]);
   printf("\n");
   if (maxerr<aerr)
   {
     printf("Converges in %3d" 
        "iterations\n",itr);
     for (i=0;i<N;i++)
       printf("x[%3d] = %7.4f\n", 
            i+1,x[i]);
     return 0;
   }
 }
 printf("Solution does not converge," 



698 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

   "iterations not sufficient\n");
 return 1;
}
Computer Solution of Example 3.28

Enter the elements of augmented matrix rowwise
20 1 -2 17
3 20 -1 -18
2 - 3 20 25
Enter the allowed error, maximum iterations
.0001 10
 Iteration X(1) X(2) X(3)
 1 0.8500 - 1.0275 1.0109
 2 1.0025 - 0.9998 0.9998
 3 1.0000 - 1.0000 1.0000
 4 1.0000 - 1.0000 1.0000
Converges in 4 iterations
X[1] = 1.0000
X[2] = -1.0000
X[3] = 1.0000
Computer Solution of Example 3.30

Enter the elements of the augmented matrix rowwise
 10 -2 - 1 -1 3
 - 2 10 - 1 -1 15
 - 1 -1 10 -2 27
 - 1 -1 -2 10 -9
Enter the allowed error, maximum iterations
.0001 15

Iteration
1
2
3
4
5
6
7

x[1]
0.3000
0.8869
0.9836
0.9968
0.9994
0.9999
1.0000

x[2]
1.5600
1.9523
1.9899
1.9982
1.9997
1.9999
2.0000

x[3]
2.8860
2.9566
2.9924
2.9987
2.9998
3.0000
3.0000

x[4]
-0.1368
-0.0248
-0.0042
-0.0008
-0.0001
-0.0000
-0.0000

 Converges in 7 iterations
 x[ 1] = 1.0000
 x[ 2] = 2.0000
 x[ 3] = 3.0000
 x[ 4] = 0.0000
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14.12 Power Method (Section 4.11)

Flow-chart

Start

Get the values of
a, x, aerr, maxitr

Define Subroutine
findmax

Call function findmax
with e, x, n F

Loop for it r = 1 to maxitr

Calculater = a*x 

Call function findmax
with t, r, n F

normalizer

maxe = 0

Loop for i = 0 to N – 1

err = fabs (x[i] – r[i])

Is
err > maxe

No

x[i] = r[i]

End Loop (i)

errv = fabs (t – e)

e = t

1

Yes
maxe = err

1

Print results
of Iteration

Is
(err v < = aerr)

and
(max e < = aerr)

Yes
Print Solution

End Loop (itr)

Print Solution
does not converge

Stop

F

max = fabs (x(1))

Loop for i = 1 to N – 1

Is
fabs (x[I])
> max ?

No

Yes

max = fabs (x[i])

End Loop (i)

Stop
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Notes: N is number of rows (or columns) in square matrix
a is the square matrix
x is the eigenvector at nth iteration
r is the eigenvector at (n + 1)th iteration
e is the eigenvalue at nth iteration
t is the eigenvalue at (n + 1)th iteration
aerr is the allowed error in eigenvalue and eigenvector 
maxitr is the maximum number of iterations to be performed 
err is error in an element of the eigenvector
maxe is the maximum error in any element of the eigenvector
errv is error in the eigenvalue 
itr, i, k are loop control variables. 
Function findmax:
Purpose: Finds the maximum element in array x(a N-element array) and 
returns it in Max.

Program
/* Power method for finding largest eigenvalue */
#include <stdio.h>
#include <math.h>
typedef float array[N];
void findmax(float *max,array x)
{
 int i;
 *max = fabs(x[0]);
  for (i=1;i<N;i++)
    if (fabs(x[i]) > *max)
      *max = fabs(x[i]);
}
main()
{
 float a[N][N],x[N],r[N],maxe, 
   err,errv,aerr,e,s,t;
 int i,j,k,itr,maxitr;
 printf("Enter the matrix rowwise\n");
 for (i=0;i<N;i++)
   for (j=0;j<N;j++)
     scanf("%f",&a[i][j]);
 printf("Enter the initial approximation" 
    "to the eigen vector\n");
 for (i=0;i<N;i++)
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     scanf("%f",&x[i]);
 printf("Enter the allowed error," 
   "maximum iterations\n");
 scanf("%f %d",&aerr,&maxitr);
 printf("Itr no. Eigenvalue" 
   "EigenVector\n");
 /* now finding the largest eigenvalue in 
 the initial approx. to eigen vector */ 
 findmax(&e,x);
 /* now starting the iterations */
 for (itr=1;itr<=maxitr;itr++)
 {
   /* loop to multiply the matrices 
   a and x */
   for (i=0;i<N;i++)
   {
      s = 0;
      for (k=0;k<N;k++)
         s += a[i][k]*x[k];
      r[i]=s;
   }
   findmax(&t,r);
   for (i=0;i < N;i++) r[i] /= t;
   maxe = 0;
   for (i=0;i<N;i++)
   {
      err = fabs(x[i]-r[i]);
       if (err > maxe) maxe = err;
       x[i] = r[i];
   }
   errv = fabs(t-e);
   e = t;
   printf("%4d %12.4f",itr,e);
   for (i=0;i<N;i++)
      printf("%9.3f",x[i]);
   printf("\n");
   if ((errv <= aerr) && (maxe <= aerr))
   {
      printf("Converges in %d" 
        "iterations\n",itr);
      printf("Largest eigen value"
        "= %6.2f\n",e); 
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      printf("Eigenvector:-\n"); 
      for (i=0;i<N;i++)
        printf("x[%3d] = %6.2f\n", 
        i+1,x[i]);
      printf("\n"); return 0;
   }
}
 printf("Solution does not converge," 
   "iterations not sufficient\n");
 return 1;
}
Computer Solution of Example 4.11

Enter the matrix rowwise
 2 -1 0
-1 2 -1
 0 -1 2
Enter the initial approximation to the eigenvector
1 0 0
Enter the allowed error, maximum iterations
.01 10
 Itr No. Eigen Value Eigen Vector
 1 2.0000 1.000 - 0.500 0.000
 2 2.5000 1.000 - 0.800 0.200
 3 2.8000 1.000 -1.000 0.429
 4 3.4286 0.875 -1.000 0.542
 5 3.4167 0.805 -1.000 0.610
 6 3.4146 0.764 -1.000 0.650
 7 3.4143 0.741 -1.000 0.674
 8 3.4142 0.727 -1.000 0.688
 9 3.4142 0.719 -1.000 0.696
Converges in 9 iterations
Largest eigenvalue = 3.41
Eigenvector:- 
X[1] =  0.72
X[2] = -1.00
X[3] =  0.70
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14.13 Method of Least Squares (Section 5.5)

Flow-chart

Start

Initialize all elements
of augm to zero

Get the value of n

Read in the date points
and increment appropriate

elements of augm

Assign values to non-
unique elements of augm

Print augm

Solve for a, b, c by
Gauss Jordan Method

Print a, b,
c as solution

Stop

Notes:  augm is the augmented Matrix.

n is the number of data points.

Program

/* Parabolic fit by least squares */
#include <stdio.h>
main()
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{
 float augm[3][4]={{0,0,0,0},{0,0,0,0},{0,0,0,0}};
 float t,a,b,c,x,y,xsq;
 int i,j,k,n;
 puts("Enter the no. of pairs of" 
      "observed values:");
 scanf("%d",&n);
 augm[0][0] = n;
 for (i=0;i<n;i++)
 {
   printf("pair no. %d\n",i+1);
   scanf("%f %f",&x,&y);
   xsq = x*x; 
   augm[0][1] += x; 
   augm[0][2] += xsq; 
   augm[1][2] += x*xsq; 
   augm[2][2] += xsq*xsq; 
   augm[0][3] += y;
   augm[1][3] += x*y;
   augm[2][3] += xsq*y;
 }
 augm[1][1] = augm[0][2];
 augm[2][1] = augm[1][2];
 augm[1][0] = augm[0][1];
 augm[2][0] = augm[1][1];
 puts("The augmented matrix is:-");
 for (i=0;i<3;i++)
 {
    for (j=0;j<4;j++)
       printf("%9.4f",augm[i][j]);
    printf("\n");
 }
 /* Now solving for a,b,c 
 by Gauss Jordan Method */ 
 for (j=0;j<3;j++)
   for (i=0;i<3;i++)
     if (i!=j)
     {
        t = augm[i][j]/augm[j][j];
        for (k=0;k<4;k++)
            augm[i][k]
              -= augm[j][k]*t;
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     }
 a = augm[0][3]/augm[0][0]; 
 b = augm[1][3]/augm[1][1]; 
 c = augm[2][3]/augm[2][2];
 printf("a = %8.4f b = %8.4f " 
      "c = %8.4f\n",a,b,c);
}
Computer Solution of Example 5.7

Enter the no. of pairs of observed values:
7
Pair No. 1
1 1.1
Pair No. 2
1.5 1.3
Pair No. 3
2 1.6
Pair No. 4
2.5 2
Pair No. 5
3.0 2.7
Pair No. 6
3.5 3.4
Pair No. 7
4.0 4.1
The augmented matrix is:-
 7.0000 17.5000 50.7500 16.2000
 17.5000 50.7500 161.8750 47.6500
 50.7500 161.8750 548.1875 154.4750
 a = 1.0357 b = -0.1929 c = 0.2429
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14.14 Method of Group Averages (Section 5.9)

Flow-chart

Start

Enter different values of t and
corresponding values of r

Enter number of
observations, n

For i = 1 to n/2

ts1 = ts1 + t[i]
rs1 = rs1 + r[i]

End Loop (i)

For i = n/2 + 1 to n

ts2 = ts2 + t[i]
rs2 = rs2 + r[i]

End Loop (i)

x = ts1/(n/2) x = ts2/(n/2)
y = rs1/(n/2) y = rs2/(n/2)

1 2

1 2

b = (y2 – y1)/(x2 – x1)
a = y1 – (b*x1)

Print values of ‘a’ and ‘b’

Stop

Program

#include<conio.h>
#include<stdio.h>
void main()
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{
int t[10],n,i,ts1=0,ts2=0;
float a,b,rs1=0,rs2=0,r[10],x1,y1,x2,y2;
clrscr();
printf("enter the no. of observations\n");
scanf("%d",&n);
printf("enter the different values of t\n");
for (i=1;i<=n;i++)
{
scanf("%d",&t[i);
}
printf("\n enter the corresponding values of r\n");
for (i=1;i<=n;i++)
{
scanf("%f",&r[i]);
}
for (i=1;i<=(n/2);i++)
{ ts1+=t[i]; rs1+=r[i];
}
for (i=((n/2)+1);i<=n;i++)
{ ts2+=t[i]; rs2+=r[i];
}
x1=ts1/(n/2); 
y1=rs1/(n/2); 
x2=ts2/(n/2); 
y2=rs2/(n/2);
b=(y2-y1)/(x2-x1);
a=y1-(b*x1);
printf("the value of a&b comes out to be\n");
printf("a=%6.3f\nb=%6.3f",a,b);
getch();
}
Computer Solution of Example 5.16

Enter the no. of observations
8
enter the different values of t
40 50 60 70 80 90 100 110
enter the corresponding values of r
1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3 1030.8 
the values of a&b come out to be
a=1090.256 
b=-0.534
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14.15 Method of Moments (Section 5.11)

Flow-chart

Start

Enter different values of x
and corresponding values of y

Enter the number of
observations, n

h = x2 – x1

yt = yt + y[i]
x1yt = x1yt + x[i] * y[i]

End Loop (i)

m1 = h* yt, m2 = h * x1yt

l1 = (–(h/2) + x1)
l2 = ((h/2) + x(n))

Print values of ‘a’ and ‘b’

Stop

For i = 1 ton

c1 = (l2 – l1)
c2  = ((l2 * l2) – (l1 * l1))/2
c3 = ((l2*l2*l2) – (l1 * l1 * l1))/3

d = c2/c1, d1= d*c1
d2 = d * c2, m1 = d*m1

b = (m2 – m1)/(c3 – d2)
a = (m1 – (d2 * b))/d1
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Program

#include <stdio.h>
#include <conio.h>
void main()
{
int x[10],y[10],i,n,yt=0,x1yt=0;
float a,b,11,12,c1,c2,c3,d,d1,d2,m1,m2,h;
clrscr();
printf("enter the no. of observations\n");
scanf("%d",&n);
printf("enter the different values of x");
for (i=1;i<n;i++)
{
scanf("%d",&x[i]);
}
printf("\nenter the corresponding values of y\n");
for (i=1;i<n;i++)
{
scanf("%d",&y[i]);
}
h=x[2]-x[1];
for(i=1;i<=n;i++)
{ yt+=y[i]; x1yt+=x[i]*y[i];
} m1=h*yt; m2=h*x1yt;
11=(-(h/2)+x[1]);
12=((h/2)+x[n]);
c1=(12-11);
c2=((12*12)-(11*11))/2; 
c3=((12*12*12)-(11*11*11))/3; 
printf("The observed equations are\n");
printf("%5.2fa+%5.2fb=%5.2f\n%5.2fa+5.2fb=%5.2f",
  c1,c2,m1,c2,c3,m2);
d=c2/c1; 
d1=d*c1; 
d2=d*c2; 
m1=d*m1;
b=(m2-m1)/(c3-d2);
a=(m1-(d2*b))/d1;
printf("\nOn solving these equations 
  we get a=%5.2f&b=%5.2f\n",a,b);
printf("hence the required equation is y=%5.2f+%5.2fx",a,b);
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getch ();
}
Computer Solution of Example 5.20

Enter the no. of observations
4
enter the different values of x
1 2 3 4
enter the corresponding values of y
16 19 23 26
the observed equations are
4.00a+10.00b=84.00
10.00a+30.33b=227.00
on solving these equations we get a = 13.03&b=3.19
hence the required equation is y=13.03+3.19x
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14.16 Newton’s Forward Interpolation Formula (Section 7.2)

Start

Get the value of n

Get elements
of ax, ay

Get value of x

h = ax [1] – ax[0]

For i = 0 to n – 1

diff [i][1] = ay [i + 1] – ay[i]

End Loop (i)

Loop for j = 2 to ORDER

Loop for i = 0 to n – j

diff [i][j] = diff [i + 1]
[j – 1] – diff [i] [j – 1]

End Loop (i)

End Loop (j)

i = 0

30 30
Yes

i = i + 1

30

Is
ax[i] > x

No

40

i = i – 1

p = (x – ax[i])/h

yp = ay[i]

For k = 1 to ORDER

nr * = p – k + 1

dr * = k

yp + = (nr/dr)* diff [i][k]

End Loop (k)

Print x, y, p as solution

Stop
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NOTES:  MAXN is the maximum value of N
ORDER is the maximum order in the difference table
ax is an array containing values of x (x0, x1,......, xn) 
ay is an array containing values of y(y0, y1,....., yn) 
diff is a 2D Array containing the difference table
h is spacing between values of X
x is value of x at which value of y is wanted
yp is calculated value of Y
nr is numerator of the terms in expansion of yP
dr is denominator of the terms in expansion of yP

Program

/* Newton's forward interpolation */
#include <stdio.h>
#define MAXN 100
#define ORDER 4 main()
{
 float ax[MAXN+1],ay[MAXN+1], 
   diff[MAXN+1][ORDER+1], 
    nr=1.0,dr=1.0,x,p,h,yp;
 int n,i,j,k;
 printf("Enter the value of n\n");
 scanf ("%d",&n);
 printf("Enter the values in form x,y\n");
 for (i=0;i<=n;i++)
   scanf("%f %f",&ax[i],&ay[i]);
 printf("Enter the values of x"
   "for which value of y is wanted \n");
 scanf("%f",&x);
 h=ax[1]-ax[0];
 /* now making the diff. table */
 /* calculating the 1st order differences */
 for (i=0;i<=n-1;i++)
   diff[i][1] = ay[i+1]-ay[i];
 /* calculating the second &
 higher order differences.*/
 for (j=2;j<=ORDER;j++)
     for (i=0;i<=n-j;i++)
     diff [i][j] = diff[i+1][j-1]
          -diff[i][j-1];
 /* now finding x0 */
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 i–0;
 while (!(ax[i] > x)) i++;
 /* now ax[i] is x0 & ay[i] is y0 */
 i—;
 p = (x-ax[i])/h; yp=ay[i];
 /* Now carrying out interpolation */
 for (k=1;k<=ORDER;k++)
 {
    nr *= p-k+1; dr *=k;
    yp += (nr/dr)*diff[i][k];
 }
 printf ("when x = %6.1f, y = %6.2f\n"
      ,x,yp);
}
Computer Solution of Example 7.1

Enter the value of n
6
Enter the values in form x, y
100 10.63
150 13.03
200 15.04
250 16.81
300 18.42
350 19.90
400 21.27
Enter the values of x for which value of y is wanted
218
When x = 218.0, y = 15.70
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14.17 Lagrange’s Interpolation Formula (Section 7.12)

Flow-chart

Start

Get the value of n

Get elements
of ax,ay

Get the value of x

y = 0

Loop for i = 0 to n

nr = dr = 1

Loop for J = 0 to N

No
Isj! = i

Yes
nr*= x – ax[j]

dr*= ax[i] – ax[j]

End Loop (j)

y+=(nr/dr)*ay[i]

End Loop (i)

Print x, y
as solution

Stop
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NOTES: MAX is the maximum value of n
ax is an array containing values of x(x0, x1,....., xn) 
ay is an array containing values of y(y0, y1,......, yn) 
x is the value of x at which value of y is wanted
y is the calculated value of y
nr is numerator of the terms in expansion of y
dr is denominator of the terms in expansion of y.

Program

/*Lagrange's Interpolation*/
#include <stdio.h>
#define MAX 100
main()
{
 float ax [MAX+1],ay[MAX+1],nr,dr,x,y=0;
 int i,j,n;
 printf ("Enter the value of n\n");
 scanf("%d",&n);
 printf ("Enter the set of values\n");
 for (i=0;i<=n;i++)
   scanf ("%f%f",&ax[i],&ay[i]);
 puts("Enter the value of x for which" 
       "value of y is wanted");
 scanf("%f",&x);
 for (i=0;i<=n;i++)
 {
   nr=dr=1;
   for(j=0;j<=n;j++)
     if (j!=i)
     {
       nr *= x-ax[j];
       dr *= ax[i]-ax[j];
     }
     y += (nr/dr)*ay[i];
 }
 printf ("When x=%4.1f y=%7.1f\n",x,y);
}
Computer Solution of Example 7.17

Enter the value of n
4
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Enter the set of values
 5  150
 7  392
11 1452
13 2366
17 5202
Enter the value of x for which value of y is wanted
9
When x = 9.0 y = 810.0

14.18 Newton’s Divided Difference Formula (Section 7.14)

Flow-chart

Start

Enter number of
observations,n

Enter diff. values of x
and corresponding values of y

f = y[1]
f1 = 1

Entervalue of ‘k’ in f(k)

For i = 1 to n – 1

p[i] = ((y[i + 1] – y[i])/(x[i + j] – x[i]))
y[i] =p[i]

End Loop (i)

For i = 1 toj

f1 = f1 *(k – x[i])

End Loop (i)

f2 = f2 + y[1] * f 

f1 = 1; n = n – 1; j = j + 1

Is
n ≥ 1

f = f + f2

Print ‘f ’

Stop

Yes

No
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Program

#include<stdio.h>
#include<conio.h>
void main()
{
int x[10], y[10], p[10]; 
int k,f,n,i,j=1,f1=1,f2=0; 
clrscr();
printf("enter the no. of observations\n");
scanf("%d",&n);
printf("enter the different values of x\n");
for (i=1;i=<n;i++)
{
scanf(''%d'',&x[i]);
}
printf("enter the corresponding values of y\n");
for(i=1;i<=n;i++)
{
scanf("%d",&y[i]);
}
f=y[1];
printf("enter the value of 'k' in f(k) you want to evaluate\n");
scanf("%d",&k);
do
{
for(i=1;i<=n-1;i++)
{
p[i]=((y[i+1]-y[i])/(x[i+j]-x[i]));
y[i]=p[i];
}
f1=1;
for(i=1;i<=j;i++)
{
f1*=(k-x[i]);
} 
f2+=(y[1]*f1); 
n--;
j++;
} while(n!=1); 
f+=f2; 
printf(''f(%d)=%d",k,f); 
getch();
}
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Computer Solution of Example 7.23

Enter the no. of observations
5
enter the different values of x
5 7 11 13 17
enter the corresponding values of y
150 392 1452 2366 5202
enter the value of 'k' in f(k) you want to evaluate
9
f(9) = 810

14.19  Derivatives Using Forward Difference Formulae 
[Section 8.2 (1)]

Flow-chart 

Start

Declare float
*x, *y, max, *tmp, xval,

x ,y , yval, sum0 0

Input max

x = (float*) calloc (max, sizeof (float))
y = (float*) calloc (max, sizeof (float))

i = 0

if
i < max

Input x[i], y[i]

i = i + 1

Input xval

i = 0

if
i < max

x[i] > = xvali = i + 1
No

Pos = i
x = x [pos]
y = y [pos]

0

0

Print x , y0 0

A

Yes

No

Yes
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A

h = x[1] –x[0]
p = (xval-x

l = max-pos
tmp = (float*) calloc (max, sizeof (float))

i = 0

0)/h)

if
i < l

j = 0

Tmp [i*l + j] = 0
j = j + 1

i = i + 1

i < l

Yes

tmp[i] = y[j]
i = i + 1
j = j + 1

B

No

j < l

i = 0, j = pos

No

i = 1

No

Yes
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B

i < l

j = 0

y

n

j < l – i

tmp[i * l + j] = tmp [(i – 1)*l + (j + 1)] –tmp[(i – 1)*l j]

j = j + 1

i = i + 1

Sum = 0, k = 1, i = 0

i < l

Sum = sum + ((1.0/i) * tmp[i * l + 0]) *k
k = –k
i = i + 1

Print sum/pow(h, 2.0)

Stop

No

Yes

V[ ] = {0, 0, 1.0, 1.0, 11.0/12.0, 5.0/6.0, 137.0/180.0}
Sum = 0

k = 1

i < l

Sum = sum + (v[i])* tmp[i * l + 0] *k
k = –k

i = i + 1

No

Yes

n

y
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Program

/* Derivatives using forward difference */
#include<stdio.h>
#include<math.h>
#include<conio.h>
void main( )
{
    float *x=NULL, *y=NULL;
    float *tmp=NULL, *tmp1=NULL;
    float xval,h,p,x0,y0,yval,sum;
    int pos,i,k,max;
    int v[]={0,0,1.0,1.0,11.0/12.0,5.0/6.0,137.0/180.0}; 
    printf ("Enter the no of comparisons"); 
    scanf("%d",&max);
    x=(float*) malloc(max);
    x=(float*) malloc(max);
    tmp=(float*) malloc(max);
    printf("Enter the values in cv table for x and y");
    for (i=0;i<max;i++)
    {
    printf("\n value for %d x",i);
    scanf("%f",&x[i]);
    }
    for(i=0;i<max;i++)
    {
    printf("\n value for %d y",i);
    scanf("%f",&y[i]);
    }
    printf("Enter the value of x");
    scanf("%f",&xval);
    for(i=0;i<max;i++)
    {
        if(x[i]>=xval)
        {
            pos=i;
            break;
        }
    }
    x0=x[pos];
    y0=y[pos];
    printf("\n x0 is %f y0 is %f at %d",x0,y0,pos);
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    h=x[1]-x[0]; 
    p=(xval-x0)/h); 
    if(pos<(max))
    {
        int fact=1,i,l, j;
        // calculating no of elemets in array 
        l=max-pos;
        tmp=(float*)malloc(l*l); 
        printf("\n"); 
        for(i=0;i<l;i++)
        {
            for(j=0; j<=l; j++)
            {
                tmp[i*l+j]=0;
            }
            printf("\n");
        }
        printf("\n size of new array %d\n",l);
        // copying values of y in array 
        for(i=0, j=pos;i<l;i++, j++)
        {
            tmp[i] = y[j];
        }
        printf("\n");
        for(i=1;i<l;i++)
        {
            for(j=0; j<l-i; j++)
            {
                tmp[i*l+j]=tmp[(i-1)*l+(j+1)] –tmp[(i-1)*l+(j)];
            }
        }
        printf("\nvalues are \n");
        for(i=0;i<l;i++)
        {
            for(j=0; j<l; j++)
            {
               printf("%.3f\t|",tmp[j*l+i]);
            }
            printf("\n");
        }
        // appling newtons forward differnation using first 
        derivates sum=0;
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        k=1;
        for(i=1; i<l; i++)
        {
            sum=sum+((1.0/i)*tmp[i*l+0])*k;
            k=–k;
        }
        printf("\n\n first (dy/dx): %f ",sum/h);
        sum=0; 
        fact=1; 
        k=1;
         for(i=2;i<l;i++)
        {
            sum=sum+(v[i]*tmp[i*l+0]*k;
            k= –k;
        }
        printf("\n\n second (dy/dx): %f ",sum/pow(h,2.0));
    }
}
Computer Solution of Example 8.1

value for 0x1.0 
value for 0y7.989 
value for 1x1.1 
value for 1y8.403 
value for 2x1.2 
value for 2y8.781 
value for 3x1.3 
value for 3y9.129 
value for 4x1.4 
value for 4y9.451 
value for 5x1.5 
value for 5y9.750 
value for 6x1.6
value for 6y10.031
Enter the value of x1.1
x0 is 1.1y0 is 8.403 at 1 
size of new aray 6
values are
1.1 8.403 |0.378 |–0.03 |0.004 |–0.001 |0.003 |
1.2 8.781 |0.348 |–0.026 |0.003 |0.002 |0 |
1.3 9.129 |0.322 |–0.023 |0.005 |0 |0 |
1.4 9.451 |0.299 |–0.018 |0 |0 |0 |
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1.5 9.75 |0.281 |0 |0 |0 |0 |
1.6 10.031 |0 |0 |0 |0 |0 |
first (dy/dx): 3.952
second (dy/dx): –3.74

14.20 Trapezoidal Rule (Section 8.5—I)

Flow-chart

Start

Define function y(x)

Get values of x0, xn, n

h = (xn – x0)/n

s = y(x0) + y(xn)

Loop for i = 1 to n – 1

s + = 2*y(x0 + i*h)

End Loop (i)

Print(h/2)* s as solution

Stop

NOTES:  y(x) is the function to be integrated

x0 is x0

xN is xn.
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Program

/* Trapezoidal rule.*/
#include <stdio.h>
float y(float x)
{
 return 1/(1+x*x);
}
main()
{
 float x0,xn,h,s;
 int i,n;
 puts("Enter x0,xn,no. of subintervals");
 scanf ("%f %f %d",&x0,&xn,&n);
 h = (xn-x0)/n;
 s = y(x0)+y(xn); 
 for (i=1;i<=n-1;i++)
  s += 2*y(x0+i*h);
 printf ("Value of integral is % 6.4f\n", 
 (h/2)*s);
}
Computer Solution of Example 8.10 (I)

Enter x0, xn, no. of subintervals
0 6 6
Value of integral is 1.4108
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14.21 Simpson’s Rule (Section 8.5—II)

Flow-chart

Start

Define function y(x)

Get values of x0, xn, n

h = (xn – x0)/n

s = y0 + yn + 4*y1

Loop for i = 3 to n – 1 Step 2

s + = 4*yi + 2*yi–1

End Loop (i)

Print (h/3)*s as solution

Stop

NOTE: y(x) is the function to be integrated so that yi = y(xi) = y(x0 + 
i*h).

Program

/* Simpson's rule */
#include <stdio.h>
float y(float x)
{
 return 1/(1+x*x);
}
main()
{
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 float x0,xn,h,s;
 int i,n;
 puts("Enter x0,xn. no. of subintervals");
 scanf("%f %f %d",&x0,&xn,&n);
 h = (xn-x0)/n;
 s = y(x0)+y(xn)+4*y(x0+h);
 for (i=3;i<=n-1;i+=2)
  s += 4*y(x0+i*h)+2*y(x0+(i-1)*h);
 printf("Value of integral is %6.4f\n", (h/3)*s);
}
Computer Solution of Example 8.10 (ii)

Enter x0, xn, no. of subintervals
0 6 6
Value of integral is 1.3662

14.22 Euler’s Method (Section 10.4)

Flow-chart

Start

Define function df(x, y)

Get values of x0, y0, h, x

x1 = x0

y1 = y0

10 Is x1 > x
Yes

Stop

y1 + = h*df(x1, y1)

x1 + = h

Print x1, y1

10

No
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NOTES:  df(x, y) is dy/dx

x0 is xn+0 i.e., xn

x1 is xn+1

y0 is yn+0 i.e., yn

y1 is yn+1

Program

/*Euler's Method*/
#include <stdio.h>
float df(float x,float y)
{
 return x+y;
}
main()
{
 float x0,y0,h,x,x1,y1;
 puts("Enter the values of x0,y0,h,x"); 
 scanf("%f %f %f %f",&x0,&y0,&h,&x); 
 x1=x0;y1=y0;
 while(1)
 {
   if(x1>x) return;
   y1 += h*df(x1,y1);
   x1 += h;
   printf("When x = %3.1f " 
        "y = %4.2f\n",x1,y1);
 }
}
Computer Solution of Example 10.8

Enter the values of x0, y0, h, x
0 1.1 1
When x = 0.1 y = 1.10
When x = 0.2 y = 1.22
When x = 0.3 y = 1.36
When x = 0.4 y = 1.53
When x = 0.5 y = 1.72
When x = 0.6 y = 1.94
When x = 0.7 y = 2.20
When x = 0.8 y = 2.49
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When x = 0.9 y = 2.82
When x = 1.0 y = 3.19

14.23 Modified Euler’s Method (Section 10.5)

Flow-chart

Start

Declare float
x, y, s = 0.0, s1 = 0.0, x1 = 0.0, y1 = 0.0, h,
ms = 0.0, flag = 0, y2 = 0.0, y3 = 0.0 , t = 0.0

Input x, y, h

X1 < x

F = 1

Flag = 0

Y1 = x1 + y

Print x1, y1,ms

Y2 = y + h* ms

Print y2

X1 = x1 + h
F = 1

ms = (y1 +(x1 + y2))/2.0 ; t = y + h* ms

y2 = t

y2 = y1 + h* ms; f = 0

y2 = y + h* ms;

Print x1, y2, x1, ms, y2

Y = ms; flag = 0

Stop

N

N

N

N

y
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Program

/* Modified Euler's Method */
#include<stdio.h>
#include<math.h>
#include<conio.h>
void main( )
{
    float x,y,x1=0.0,y1=0.0,h,ms=0.0,flag=0,y2=0.0,t=0.0;
    int i,j;
    clrscr( );
    printf("\n Enter the value of x");
    scanf("%f",&x);
    printf("Enter the value of y");
    scanf("%f",&y); 
    printf("enter the height"); 
    scanf("%f",&h);
    i=7;
 printf("x");gotoxy(10,i);printf("x+y=y1");gotoxy(28,i);
 printf ("mean slope");gotoxy(45,i);
 printf("old y+.1(mean slope)=new y");
    while(x1<x)
    {
    i++;
 
        do
        {
        i++;
 
            if(flag==0)
            {
 
                y1=x1+y;
gotoxy(2,i);printf("%.1f",x1);gotoxy(10,i);printf("%.5f",y1);g
otoxy(28,i);printf("%.5f",ms);
                m5=y1; 
                y2=y+h*ms; 
                gotoxy(45,i);printf("%.5f",y2); 
                x1=x1+h;
                flag=1;
 
            }
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            else
            {
                ms=(y1+(x1+y2))/2.0;
                t=y+h*ms;
                if(y2==t)
            {
                y2=y+h*ms;
                break;
            }
gotoxy(2,i);printf("%.1f",x1);gotoxy(10,i);printf("%.1f+%.5f",
x1,y2);y2=y+h*ms;
gotoxy(28,i);printf("%.5f",ms);gotoxy(45,i);printf("%.5f",y2);
        }
    }while(1); 
    y=y2; 
    printf("\n\n");
    flag=0;
 }
}
Computer Solution of Example 10.10

enter the value of x.3 
enter the value of y1 
enter the height.1

x x + y = y1 mean slope old y +.1 (mean slope) = new y
0 1 0 1.1
0.1 0.1 + 1.1 1.1 1.11
0.1 0.1 + 1.11 1.105 1.1105
0.1 0.1 + 1.1105 1.10525 1.110525
0.1 0.1 + 1.110525 1.105263 1.110526
0.1 0.1 + 1.110526 1.105263 1.110526

0.1 1.2105261.105263 1.231579
0.2 0.2 + 1.231579 1.321053 1.242632
0.2 0.2 + 1.242632 1.326579 1.243184
0.2 0.2 + 1.243184 1.326855 1.243212
0.2 0.2 + 1.243212 1.326869 1.243213

0.2 1.443213 1.32687 1.387535
0.3 0.3 + 1.387535 1.565374 1.399751
0.3 0.3 + 1.399751 1.571482 1.400362
0.3 0.3 + 1.400362 1.571787 1.400392
0.3 0.3 + 1.400392 1.571803 1.400394
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14.24 Runge-Kutta Method (Section 10.7)

Flow-chart

Start

Define function f(x, y)

Get values of x0, y0, h, xn

20
Yes

StopIs x = xn ?

No
k1 = h*f(x, y)
k2 = h*f(x + h/2, y +k1/2)
k3 = h*f(x + h/2 , y + k2/2)
k4 = h*f(x + h , y + k3)
k = (k1 + (k2 + k3)*2 + (k4)*6
x = y + h
y = y + k

Print x, y

20

NOTES: x0 is starting value of x, i.e., x0

xn is the value of x for which y is to be determined

Program

/* Runge Kutta Method */
#include <stdio.h>
float f(float x,float y)
{
 return x+y*y;
}
main()
{
 float x0,y0,h,xn,x,y,k1,k2,k3,k4,k;
 printf("Enter the values of x0,y0," "h,xn\n");
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 scanf ("%f %f %f %f",&x0,&y0,&h,&xn);
 x = x0; y = y0;
 while (1)
 {
  if (x == xn) break;
  k1 = h*f(x,y);
  k2 = h*f(x+h/2,y+k1/2); 
  k3 = h*f(x+h/2,y+k2/2); 
  k4 = h*f(x+h,y+k3);
  k = (k1+(k2+k3)*2+k4)/6; 
  x += h; y += k; 
  printf("When x = %8.4f"
  "y = %8.4f\n",x,y);
 }
}
Computer Solution of Example 10.15

Enter the values of x0, y0, h, xn
0.0 1.0 0.2 0.2
When x = 0.1000 y = 1.1165
When x = 0.2000 y = 1.2736
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14.25 Milne’s Method (Section 10.9)

Flow-chart

Start

Define function correct

Get values of x0,
xr, h, aerr

Get starting
values of y

Calculate starting values of x

Is x(3) > = xr ?20
Yes

Stop

x[4] = x[3] + h

No

Predict y(4)

Print x(4), y(4), f(4)

Call correct C

1

1

yc = y(4)30

Call correct C

30
No

Is
fabs (yc – y[4])

< aerr ?

Prepare for next iteration

20

C

Calculate corrected Y(4)

Print y(4), f(4)

Stop

Yes

NOTES:  x is an array such that x[i] represents xn+i for e.g. x[0] represent 
xn
y is an array such that y[i] represents yn+i
xr is the last value of x at which value of y is required
h is spacing in values of x
aerr is the allowed error in value of y 
yc is the latest corrected value for y
f is the function which returns value of y
corect is a subroutine that calculates the corrected value of y and prints it.

Program

/*Milne predictor corrector*/
#include <stdio.h
#include <math.h float x[5],y[5],h; float f(int i)
{
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 return x[i]-y[i]*y[i];
}
void corect()
{
 y[4] = y[2]+(h/3)*(f(2)+4*f(3)+f(4));
 printf("%23s %8.4f %8.4f \n", "",y[4],f(4));
}
main()
{
 float xr,aerr,yc;
 int i;
 puts("Enter the values of x0,xr,h," 
       "allowed error");
 scanf("%f %f %f %f",
       &x[0],&xr,&h,&aerr);
 puts("Enter the value of y[i], i=0,3"); 
 for (i=0;i<=3;i++) scanf("%f",&y[i]); 
 for (i=1;i<=3;i++) x[i] = x[0]+i*h; 
 puts(" x Predicted"
      " Corrected");
 puts(" y f" "y f");
 while (1)
 {
   if(x[3] = xr) return;
   x[4] = x[3]+h;
   y[4] = y[0]+ 
    (4*h/3)*(2*(f(1)+f(3))-f(2));
   printf("%6.2f %8.4f %8.4f\n", 
        x[4],y[4],f(4));
   corect();
   while (1)
   {
     yc = y[4];
     corect();
     if(fabs(yc-y[4]) <= aerr) break;
   }
   for (i=0;i<=3;i++)
   {
      x[i] = x[i+1];
      y[i] = y[i+1];
   }
 }
}
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Computer Solution of Example 10.19

Enter the values of x0, xr, h, allowed error
0 1.2.0001
Enter values of y[i]; i = 0, 3
0.02.0795.1762
x Predicted Corrected
y f y f
0.80 0.3049 0.7070
  0.3046 0.7072
  0.3046 0.7072
1.00 0.4554 0.7926
  0.4556 0.7925
  0.4556 0.7925

14.26 Adams-Bashforth Method (Section 10.10)

Flow-chart

Start

Declare float *x, *y, *f, h
int i

X = (float*) calloc (4, sizeof (float))
Y = (float*) calloc (4, sizeof (float))

i = 0

i < 4

input x[i], y[i]

i = i+1

H = x[1]-x[0]

i = 0

i < 4

F[i] = (pow(x[i], 2)* (1.0 + y[i]))
i = i + 1

n
y

i = 0

A

No

Yes
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A

i < 4

Printf x[i], y[i], f[i]

i = i + 1

y[4] = y[3] + ((h/24)* ((55* f[3]) – (59* f[2]) + (37* f[1])–(9*f[0])));
x[4] = 1.4;
f[4] = pow(x[4], 2)* (1.0 + y[4]);

Print x[4] y [4] f[4]

Stop

No

Yes

Program

/*Adams-Bashforth Method*/
#include<stdio.h>
#include<malloc.h>
#include<math.h>
#include<conio.h>
void main( )
{
   float *x, *y, *f, *f1;
   float h;
   int i,size,row;
   clrscr( );
   printf("enter the size"); 
   scanf("%d",&size); 
   x=(float*)malloc(size + 1); 
   y=(float*)malloc(size+1); 
   f1=(float*)malloc(size+1); 
   f=(float*)malloc(size + 1);
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   for (i=0;i<size;i++)
   {
     printf("enter the value for x[%d]",i);
     scanf("%f",&x[i]);
    }
    for(i=0;i<size;i++)
{
  printf("enter the value for y[%d]",i);
  scanf("%f",&y[i]);
}
h=x[1]-x[0];
// calculating values (f)
for(i=0;i<size;i++)
{
  float tx,ty,tf; 
  fflush(stdin); 
  tx=x[i]; 
  ty=y[i];
  tf=(pow(tx,2)*(1.0+ty));
  f[i]=tf;
}
printf("\nvalues for (x) (y) and (f) are\n");
row = 16;
for(i=0;i<=3;i++)
{
gotoxy(2,row);printf("x="); gotoxy(6,row);printf("%.1f",x[i]);
gotoxy(13,row); printf("y%d",i-3);gotoxy(16,row);printf("=");
gotoxy(18,row);printf("%f",y[i]); gotoxy(28,row);printf("f%d"
,i-3);
gotoxy(32,row);printf("=");gotoxy(35,row);printf("%f",f[i]);
row++;
}
//using predicator 
y[size]=y[size–1]+((h/24)*((55*f[size–1])–59*f[size–
2])+37*f[size–3])
–(9*f[size–4]))); x[size] = 1.4; 
  f[size]=pow(x[size],2)*(1.0+y[size]); 
  gotoxy(2,row);printf("x=");
gotoxy(6,row);printf("%.1f",x[size]);gotoxy(13,row);printf("y1
");gotoxy(16,row);printf("="); gotoxy(18,row);printf("%f",y[s
ize]);gotoxy(28,row);printf("f1");gotoxy(32,row);printf("="); 
gotoxy(35,row);printf("%f",f[size]);
}
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Computer Solution of Example 10.23

enter the size 4
enter the value for x[0]1.0 
enter the value for y[0]1.000 
enter the value for x[1]1.1 
enter the value for y[1]1.233 
enter the value for x[2]1.2 
enter the value for y[2]1.548 
enter the value for x[3]1.3 
enter the value for y[3]1.979

values for(x) (y) and (f) are

x = 1 y–3 = 1  f–3 = 2 
x = 1.1 y–2 = 1.233 f–2 = 2.70193 
x = 1.2 y–1 = 1.548 f–1 = 3.66912 
x = 1.3 y0 = 1.979 f0 = 5.03451
x = 1.4 y1 = 2.572297f1 = 7.001702
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14.27 Solution of Laplace Equation (Section 11.5)

Flow-chart

Start

Initialize all points of
mesh to be zero

Get the Boundary
conditions

Get values of
aerr, maxitr

Loop for itr = 1 to maxitr

maxerr = 0

Loop for i = 2 to SQR-1

Loop for j = 2 to SQR-1

t = (u + u + u + u )/4i – 1, j i + 1, j i, j + 1 i, j – 1

err = fabs (u – T)i, j

Is
err > maxerr ?

Yes maxerr = err

No
u = ti, j

End Loop (j)

End Loop (i)

1

1

Print results of
the iteration

Yes Print array U
as solution

Stop

Is
maxerr > = aerr ?

No

End Loop (itr)

Print Iterations
not sufficient



NUMERICAL METHODS USING C LANGUAGE • 741

NOTES: SQR is the size of the square mesh
u is a 2D Array representing the square mesh
aerr is the allowed error
maxitr is the maximum allowed iterations
itr is a counter which keeps track of the number of iterations performed
maxerr is the maximum error in the mesh in an iteration
err is error in a particular point of the mesh
f is the execution time format
getrow is a subroutine that inputs the ith row of the mesh
getcol is a subroutine that inputs jth column of the mesh.

Program

/* Laplace's Equation */
#include <stdio.h>
#include <math.h>
#define SQR 4
typedef float array[SQR+1][SQR+1];
void getrow(int i,array u)
{
 int j;
 printf("Enter the values of u[%d,j]," 
   "j=1,%d\n",i,SQR);
 for (j=1;j<=SQR;j++)
   scanf("%f",&u[i][j]);
 }
 void getcol(int j,array u)
 {
  int i;
  printf("Enter the values of u[i,%d],"
         "i=2,%d\n",j,SQR-1);
  for (i=2;i<=SQR-1;i++)
    scanf ("%f",&u[i][j]);
 }
 void printarr(array u,int width,int precision)
 {
  int i,j;
  for (i=1;i<=SQR;i++)
  {
    for (j=1;j<=SQR;j++)
      printf("%7.2f%7.2f%7.2f",width,precision, u[i][j]);
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    printf("\n");
 }
}
main ()
{
  array u;
 float maxerr,aerr,err,t;
 int i,j,itr,maxitr;
 for (i=1;i<=SQR;i++)
   for(j=1;j<=SQR;j++)
     u[i][j]=0;
 puts ("Enter the boundary conditions");
 getrow(1,u); getrow(SQR,u); 
 getcol(1,u); getcol(SQR,u); 
 puts ("Enter allowed error,"
        "maximum iterations");
 scanf ("%f %f",&aerr,&maxitr);
   for (itr=1;itr<=maxitr;itr++)
   {
     maxerr=0;
     for (i=2;i<=SQR-1;i++)
       for(j=2;j<=SQR-1;j++)
       {
          t=(u[i-1][j]+u[i+1][j]+
             u[i][j+1]+u[i][j-1])/4;
          err=fabs(u[i][j]-t);
          if (err > maxerr)
            maxerr = err;
          u[i][j]=t;
       }
     printf("Iteration no. %d \n",itr);
     printarr(u,9,2);
     if (maxerr <= aerr)
     {
       printf ("After %d iterations \n" 
          "The solution:-\n",itr);
       printarr(u,8,1);
       return 0;
     }
  }
  puts ("Iterations not sufficient.");
  return 1;
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}
Computer Solution of Example 11.3 (A)

Enter the boundary conditions
Enter the values of u[1, j], j = 1, 4
1000 1000 1000 1000
Enter the values of u[4, j], j = 1, 4
1000 500 0 0
Enter the values of u[i, 1], i = 2, 3
2000 2000
Enter the values of u[i, 4], i = 2, 3
500 0
Enter allowed error, maximum iterations
.1 10
Iteration No.1
1000.00 1000.00 1000.00 1000.00
2000.00 750.00 562.50 500.00
2000.00 812.50 343.75 0.00
1000.00 500 0.00 0.00
Iteration No. 2
1000.00 1000.00 1000.00 1000.00
2000.00 1093.75 734.38 500.00
2000.00 984.38 429.69 0.00
1000.00 500.00 0.00 0.00
Iteration No.3
1000.00 1000.00 1000.00 1000.00
2000.00 1179.69 777.34 500.00
2000.00 1027.34 451.17 0.00
1000.00 500.00 0.00 0.00
Iteration No. 4
1000.00 1000.00 1000.00 1000.00
2000.00 1201.17 788.09 500.00
2000.00 1038.09 456.54 0.00
1000.00 500.00 0.00 0.00
Iteration No. 5
1000.00 1000.00 1000.00 1000.00
2000.00 1206.54 790.77 500.00
2000.00 1040.77 457.88 0.00
1000.00 500.00 0.00 0.00
Iteration No. 6
1000.00 1000.00 1000.00 1000.00
2000.00 1207.89 791.44 500.00
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2000.00 1041.44 458.22 0.00
1000.00 500.00 0.00 0.00
Iteration No. 7
1000.00 1000.00 1000.00 1000.00
2000.00 1208.22 791.61 500.00
2000.00 1041.61 458.30 0.00
1000.00 500.00 0.00 0.00
Iteration No. 8
1000.00 1000.00 1000.00 1000.00
2000.00 1208.31 791.65 500.00
2000.00 1041.65 458.33 0.00
1000.00 500.00 0.00 0.00
After 8 iterations
The solution:-
1000.0 1000.0 1000.0 1000.0
2000.0 1208.3 791.7 500.0
2000.0 1041.6 458.3 0.0
1000.0 500.0 0.0 0.0
The solution:-  
1000.0 1000.0 1000.0 1000.0
2000.0 1208.3 791.7 500.0
2000.0 1041.6 458.3 0.0
1000.0 500.0 0.0 0.0
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14.28 Solution of Heat Equation (Section 11.9)

Flow-chart

Start

Initialize H, K

Define Function f(x)

Get the value of csqr

alpha = (csqr*k)/(h*h)

Get value of ust, uet

Make entries in 1st Col.
equal to ust and 2nd Col.

equal to uet

Calculate entries of the
first row

Calculate entries of the
remaining rows

Print alpha

Print Array u
as solution

Stop
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NOTES: XEND is the ending value of x
TEND is the ending value of t 
h is the spacing in values of x 
k is the spacing in values of y 
f(x) is value of u(x, 0)
csqr is value of C2

alpha is 
ust is the value in the first column
uet is the value in the last column.

Program

/*Solution of parabolic equations by Bendre
Schmidt method*/
#include <stdio.h>
#define XEND 8
#define TEND 5 float f(int x)
{
 return 4*x-(x*x)/2.0;
}
main()
{
 float u[XEND+1][TEND+1],h=1.0,k=0.125, 
     csqr,alpha,ust,uet;
   int i,j;
   puts("Enter the square of 'c'");
   scanf("%f",&csqr);
   alpha = (csqr*k)/(h*h);
   puts ("Enter the value of u[0,t]");
   scanf ("%f",&ust);
   printf ("Enter the value of u[%d,t]\n", 
     XEND); scanf("%f",&uet);
   for (j=0;j<=TEND;j++)
     u[0][j]=u[XEND][j]=ust;
   for (i=1;i<=XEND-1;i++)
     u[i][0]=f(i);
   for (j=0;j<=TEND-1;j++)
     for (i=1;i<=XEND-1;i++)
       u[i][j+1]=
         alpha*u[i-1][j]
         +(1-2*alpha)*u[i][j]
         +alpha*u[i+1][j];
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 printf("The value of alpha is %4.2f\n", alpha);
 puts("The values of u[i,j] are:-");
 for (j=0;j<TEND;j++)
 {
   for (i=0;i<XEND;i++)
     printf("%7.4f",u[i][j]);
   printf("\n");
 }
}
Computer Solution of Example 11.11

Enter the square of "c"
4
Enter value of u(0, t)
0
Enter value of u(8, t)
0
The value of alpha is 0.50
The values of u(i, j) are:-

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

3.5000
3.0000
2.7500
2.5000
2.3124
2.1250

6.0000
5.5000
5.0000
4.6250
4.2500
3.9375

7.5000
7.0000
6.5000
6.0000
5.5625
5.1250

8.0000
7.5000
7.0000
6.5000
6.0000
5.5625

7.5000
7.0000
6.5000
6.0000
5.5625
5.1250

6.0000
5.5000
5.0000
4.6250
4.2500
3.9375

3.5000
3.0000
2.7500
2.5000
2.3125
2.1250

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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14.29 Solution of Wave Equation (Section 11.12)

Flow-chart

Start

Define Function f(x)

Get the value of csqr

Get the value of ust, uet

Make entries in 1st Col.
equal to ust and in last

equal to uet

Calculate entries of
1st row and copy
them to 2nd row

Calculate entries for
rest of the rows

Print Array u
as solution

Stop

Notes: XEND is the ending value of x
TEND is the ending value of t f(x) is value of u(x, 0)
csqr is value of C2

ust is the value in the first column
uet is the value in the last column

Program

/* Solution of Hyperbolic equation */
#include <stdio.h>
#define XEND 5
#define TEND 5 float f(int x)
{
 return x*x*(5-x);
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}
 main()
{
 float u[XEND+1][TEND+1],csqr,ust,uet;
 int i,j;
 puts("Enter the square of 'c'");
 scanf("%d",&csqr);
 printf("Enter the value of u[0][t]\n");
 scanf("%f",&ust);
 printf("Enter the value of u[%d][t]\n", 
   XEND); scanf("%f",&uet);
 for (j=0;j<=TEND;j++)
 {
   u[0][j] = ust; u[XEND][j] = uet;
 }
 for (i=1;i<=XEND-1;i++)
   u[i][1] = u[i][0] = f(i);
 for (j=1;j<=TEND-1;j++)
   for (i=1;i<=XEND-1;i++)
      u[i][j+1] = u[i-1][j]+u[i+1][j]
          -u[i][j-1];
 puts("The values of u[i][j] are:-");
 for (j=0;j<=TEND;j++)
 {
   for (i=0;i<=XEND;i++)
      printf("%6.1f",u[i][j]);
   printf("\n");
 }
}
Computer Solution of Example 11.14

Enter the square of "c"
16
Enter value of u(0, t)
0
Enter value of u(5, t)
0
The values of u(i, j) are:-

0.0
0.0
0.0
0.0
0.0
0.0

4.0
6.0
7.0
2.0
–9.0
–16.0

12.0
11.0
8.0
–2.0
–14.0
–18.0

18.0
14.0
2.0
–8.0
–11.0
–12.0

16.0
9.0
–2.0
–7.0
–6.0
–4.0

0.0
0.0
0.0
0.0
0.0
0.0
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14.30 Linear Programming—Simplex Method (Section 12.8)

Flow-chart

Start

Initialize all arrays to zeros

Set coefficients of slack
variables equal to

one, in a

Put slack variables
in the basis

Get the constraints and
the objective function

Calculate cj and identify
the incoming variable

10

Are
all c 0 ?

(optimality test)
j Yes

No

Calculate the
optimal solution

Calculate values
of

Print the Optimal Solution

Stop

Print ‘Unbounded
Solution’

Yes
Are

all 0 ?
(unbounded

solution)

Search for outgoing variable

Divide key row by
key element

Make all other elements
of key column zero

10

No
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NOTES: ND is number of decision variables
NS is number of slack variables
a is the array containing Body Matrix, Unit Matrix and bi’s
c is an array containing values of cj’s
cb is an array containing values of cB’s
th is an array containing values of ’s
bas is basis. For xi’s basis contains i, for si’s basis contains i + ND
ki is the key row
kj is the key column.

Program

/* Linear programming by simplex method */
#include <stdio.h>
#define ND 2
#define NS 2
#define N (ND+NS)
#define N1 (NS*(N+1))
void init(float x[],int n)
{
 int i=0;
 for (;i<n;i++) x[i] = 0;
}
main()
{
 int i,j,k,kj,ki,bas[NS];
 float a[NS][N+1],c[N],cb[NS],th[NS], 
   x[ND],cj,z,t,b,min,max;
 /* Initializing the arrays to zero */
 init(c,N); init(cb,NS);
 init(th,NS); init(x,ND);
 for (i=0;i<NS;i++) init(a[i],N+1);
 /* Now set coefficients for slack
  Variables equal to one */
  for (i=0;i<NS;i++) a[i][i+ND] = 1.0;
 /* Now put the slack variables in the basis */
 for (i=0;i<NS;i++) bas[i] = ND+i;
 /* Now get the constraints
 and the objective function */
 puts("Enter the constraints");
 for (i=0;i<NS;i++)
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 {
   for (j=0;j<ND;j++)
     scanf("%f",&a[i][j]);
   scanf("%f",&a[i][N]);
 }
 puts("Enter the objective function");
 for (j=0;j<ND;j++)
   scanf("%f",&c[j]);
 /* Now calculate cj and identify the incoming variable */
 while (1)
 {
  max = 0; kj = 0;
  for (j=0;j<N;j++)
  {
     z = 0;
     for (i=0;i<NS;i++)
        z += cb[i]*a[i][j];
     cj = c[j]-z;
     if(cj > max)
       {max = cj; kj = j;}
  }
  /* Apply the optimality test */
  if(max <= 0) break; 
  /* Now calculate thetas */
  max = 0;
  for (i=0;i<NS;i++)
    if(a[i][kj] != 0)
    {
       th[i] = a[i][N]/a[i][kj];
       if(th[i] > max) max=th[i];
    }
  /* Now check for unbounded soln. */
  if(max <= 0)
  {
    puts("Unbounded solution");
   return 2;
  }
  /* Now search for the outgoing variable */
  min = max; ki = 0;
  for (i=0;i<NS;i++)
    if ((th[i] < min)&&(th[i] != 0))
    {
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       min = th[i]; ki = i;
    }
  /*Now a[ki][kj] is the key element*/
  t = a[ki][kj];
    /*Divide the key row by key element*/
    for (j=0;j<N+1;j++) a[ki][j] /= t;
    /* Make all other elements of key coloumn zero */
    for (i=0;i<NS;i++)
      if(i != ki)
      {
         b = a[i][kj];
         for (k=0;k<N+1;k++)
            a[i][k]-=a[ki][k]*b;
      }
    cb[ki] = c[kj];
    bas[ki] = kj;
  }
  /* Now calculating the optimum value */
  for (i=0;i<NS;i++)
  if ((bas[i] >= 0) && (bas[i]<ND))
    x[bas[i]] = a[i][N];
 z = 0;
 for (i=0;i<ND;i++)
   z += c[i]*x[i];
 for (i=0;i<ND;i++)
   printf("x[%3d] = %7.2f\n",i+1,x[i]);
 printf("Optimal value = %7.2f\n",z);
}
Computer Solution of Example 12.4

Enter the constraints
4 2 80
2 5 180
Enter the objective function
3 4
x[ 1] = 2.50 
x[ 2] = 35.00
Optimal value = 147.50
Computer Solution of Example 12.16

Enter the constraints
2 3 2 440
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4 0 3 470
2 5 0 430
Enter the objective function
4 3 6
x[ 1] = 0.00 
x[ 2] = 42.22 
x[ 3] = 156.67
Optimal value = 1066.67

Exercises 14.1

1. Write a C program which prints all odd positive integers less than 100, 
omitting those integers divisible by 7.

2. Write a C program to convert a binary number to its equivalent decimal 
number.

3. Write a program to calculate N ! and use this to evaluate
!

!( )!KC
N

N
K N K




 

4. Determine the number of integers n, 1  n  2000, that are not divisible 
by 2, 3 or 5 but are divisible by 7.

5. Write a program to evaluate the roots of the equation ax2 + bx + c = 0.

6. Write a computer program in “C” for finding out a real root of the equa-
tion f (x) = 0 by bisection method.

7. Write a C program to find a real root of x3 – 4x – 9 = 0 using the method 
of false position. 

8. Write an algorithm for the Newton-Raphson method to solve the equa-
tion f(x) = 0. Apply the same to solve the cos x – xex = 0 near x = 0.5 cor-
rect to three decimal places.

9. Write a C program to solve the following equations by the Gauss-Seidal 
method: 83x + 11y – 4z = 95; 7x + 52y + 13z = 104; 3x + 8y + 29z = 71.

10. With the help of a flow chart, write a C program to solve: 
7.5x + 3.8y + 2.9z = 15; 3.2x + 6.8y + 7.4z = 37; 1.3x + 2.1y + 3.2z = 7, 
using the triangularization method.
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11. Write a complete C program to (i) add two matrices (ii) multiply two 
matrices.

12. Given the data:

x: 5 10 15 20 25 30

y: 17 25 30 33 36 38

Write a C program to fit a quadratic relation using the least squares cri-
terion.

13. Write a program in C to estimate f(0.6) by the Lagrange interpolation 
for the following values:

x: 0.4 0.5 0.7 0.8

f(x): – 0.916 – 0.693 – 0.357 – 0.223

14. Write a C program to evaluate 
10

2

2( )2x x dx  using the Simpson’s rule.

15. Write a C program for evaluation of 
10

2

( )f x dx by the Simpson’s 3/8th 
rule.

16. Write a program in C for the second order Runge-Kutta method.

17. Develop a “C” program for solving differential equations using the 
Runge-Kutta fourth order formulae.

18. Write a C program to find y(0.8) for the differential equation 
1

/ ( ),
2

dy dx x y  given the following table, using Milne’s Predictor-

Corrector method:

x: 0 0.2 0.4 0.6

y: 2 2.636 3.595 4.968

19. Write a computer program in C to maximize
z = 6x1 + 4x2

subject to 2x1 + 3x2   100, 4x1 + 2x2  120, x1, x2  0, where x1, x2 
are the number of items to be produced.

20. Develop a computer program in C for Example 12.17 and solve it.





C H A P T E R15
NUMERICAL METHODS USING 
C++ LANGUAGE

Chapter Objectives

 Introduction 
 An overview of C++ features
 Programs of standard methods in C++ language

15.1 Introduction

C++ is a general purpose programming language, originally de-
signed by Bjarne Stroustrup.

C++, a powerful language, is used for many purposes like 
writing operating systems, business, and scientific applications. It 
is not tied to any particular hardware and programs written in C++ 
are portable across any system. The programs written in C++ are 
efficient and fast. It is one of the most popular computer languages 
today.

An overview of C++ features is given below for ready refer-
ence. It is followed by Programs of Standard Numerical methods 
in C++ alongwith input/output of numerous examples solved in the 
Chapters 1 to 12.
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15.2 An Overview of C++ Features

C++ constants are numbers, which do not change during execution of 
a program. These may be of three types:

 Type Example

 Integer 27, 10897 etc. 

 Floating point (Real) 2.723, – 0.123 etc.

 String “Enter the value”

The string constants are enclosed in double quotes (“).

C++ variables can contain different C++ constants during the execution 
of the program. These are declared in a C++ program by first specifying the 
type int for an integer and float for the floating point and then the variable 
names separated by commas. The general format is

 type      list of variables

For e.g., to declare integer variables the statement is 

int a, b, c;

and to declare a floating point variables it is

float a, b, c;

Variables can be initialized at the same time as they are declared. For 
example,

float a = 1.5;

declares a as a float variable having a value 1.5.

Rules for naming C++ variables:

  (i)  A variable name may contain only alphabets, digits, and the 
underscore (_).

 (ii) It must begin with a alphabet or an underscore.

(iii)  It can be as long as you wish, but on some C++ systems only the 
first thirty-one characters are considered.

Lower-case and upper case alphabets are treated as different 
in C. For e.g., Num and num are two entirely different variable 
names. As a matter of convention, lower- case alphabets are used.

NOTE

NOTE



NUMERICAL METHODS USING C++ LANGUAGE • 759

Arrays. An array is an aggregate of variables of the same type. These vari-
ables are called elements of the array. The following statements declare 
arrays in C:

int b[10];

float c[2][2];

The first statement creates a one dimensional array named b having 
ten elements, each element being referred by an appropriate subscript in 
rectangle brackets, i.e., b[0], b[1],......, b[9].

The second statement creates a 2-dimensional array named c having 
four  elements c[0][0], c[0][1], c[1][0], c[1][1].

Rules for the naming of arrays are same as those for variable names.

Subscripts always start from zero in C++.

User defined types. Apart from the built in types int and float C++ allows 
users to define an identifier that can represent an existing data type.

The syntax is

    typedef type identifier

For e.g.,

    typedef int number;

    typedef float matrix [2][2];

The first statement defines number to mean the same as int. The sec-
ond defines matrix to be mean the same as 2 × 2 array of float.

The above two statements enable declarations of the form number a, 
b, c;

which declares three integers a, b, and c, and

    matrix x;

which declares a two-dimensional array x having four elements x[0][0], x[0]
[1], x[1][0] and x[1][1].

Initialization of arrays at the time of declaration

The syntax is

    type array-name [size] = {list of values}

for e.g., int a[2] = {2, 1};

NOTE
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initializes a[0] to 2 and a[1] to 1.

    int a[2][2] = {{0, 1}, {3, 5}};

initializes a[0][0] to 0, a[0] [1] to 1, a[1][0] to 3 and a[1][1] to 5.

Arithmetic operators. These are as follows:

 Symbol Use

 + Addition

 – Subtraction

 * Multiplication

 / Division

while using the operators, the following order of precedence is adopted

(i) , /       (ii) +, –

In this case, the order of operators is that different circular brackets are 
used.

There is no exponentiation operator in C, but there are various library 
functions avail- able for the same.

For e.g., to calculate the square root sqrt function is used. 

Further details on functions are presented later.

Mathematical expressions consist of a sequence of arithmetic operators 
and variable names, For e.g.,

(i) a + b is written as a + b.

(ii)
a

c
b
  is written as a/b + c

(iii) 
a

b c
 is written as a/(b + c)

(iv) 2 4b ac  is written as sqrt (b*b – 4*a*c).

(v) ( + ) is written as alpha * (beta + gamma).

(vi) ab is written as exp (b*ln (a))

 The multiplication operator * has to be written explicitly. In 
C++, its presence is never assumed.

exp and ln are library functions.

NOTE
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Arithmetic statements are of the form

var = exp;

where var is an integer or a floating point variable.

exp is a mathematical expression written in C++ format.

The = sign has a special meaning. It tells C++ to calculate the value of 
exp. and assign it to var.

For e.g.,    n = i * i;

calculates the value of i * i and assigns the result to the variable n. If 
i = 10, then n gets the value 100.

A C++ statement is always terminated by a semi colon (; ). 

C++ also permits statements of the type k = n = i * i;

This is equivalent to the following statements n = i * i; k = n;

 To test the equality of two expressions C++ uses “= =”.

Shorthand assignment operators

Apart from the assignment operator =, C++ can also support certain short 
hand assignment operators (+ +, – –, + =, – =, * =, / =). Their use is illus-
trated by the following examples.

Statement using the 
assignment operator

Statement using the 
shorthand assignment operator

a = a + 1 

a = a – 1 

a = a + 4 

a = a – 4

a = a * 4 

a = a / 4 

a + + or + + a 

a – – or – – a 

a + = 4

a – = 4 

a * = 4

a / = 4

The use of shorthand assignment operators not only results in 
concise programs but more efficient programs also.

Comments in C++ are of two types. One is single line and other is multi 
line. Single line comments start with “//”

NOTE

NOTE
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Multiline comments start with “/*” and end with “*/”.

Multiline comment can be used for one or more lines. This is the 
style that has been followed in this book.

e.g.,

Single line comment  //Euler’s Method

Multi line comment  /*Euler’s Method*/

Input statement is cin.

Syntax cin >> variable1 >> variable2......;

An example of the cin statement:

Assuming the declarations 

 int c;

 float a[3][3];

the statement

 cin >> c >> a [1][2];

takes input from the user and stores it in the corresponding variables.

Output statement is cout

Syntax cout << argument1 << manipulator1 << argument2 <<......;

The arguments can be C++ constants or variables.

Manipulators

These are used for formatting the output. The manipulators used in this 
book are explained below:

 setw (w)

where w specifies the minimum width (i.e., number of digits) for output. 
The width set with setw only applies to the next argument printed. So setw 
must be used prior to each argument where a specific width is desired.

e.g.,

the statement

 cout << setw (3) << 1

NOTE
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will output

bb1 

where b  is a blank space.

Setprecision (p)

where p is the precision with which numbers are output.

For fixed format, the precision is the number of digits in the fractional 
part, while for scientific format, precision is the total number of digits (both 
before and after the decimal point). The default precision in C++ is 6.

The precision set with setprecision remains in effect, until the next set-
precision.

fixed

By default scientific format is used in C++, i.e., the precision set with 
setprecision applies to the entire number. In this book, we will be using the 
fixed format. This is done by using the fixed manipulator.

e.g.,

(i) for the following statement 

 cout << 97.0/7.0;

the output will be according to C++ default precision, i.e., 6

 13.8571 (total number of digits is 6) 

(ii) for the following statements

      cout << setprecision (5);

      cout < 97.0/7.0;

the output will be

       13.857 (total number of digits is 5)

(iii)  Now to get 5 digits in the fractional part, consider the following 
statements cout << fixed;

 cout << setprecision (5);

 cout < 97.0/7.0;

the output will be

 13.85714

endl—This causes the output to start from the next line.
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To use the manipulators include the statement # include < 
iomanip.h > in the beginning of your program.

Relational operators available in C++ are:

Mathematical symbol C++ symbol
> >
 > =
< <
 < =
= = =
 ! =

Logical expressions are mathematical expressions connected by relation-
al op- erators. Their value is either true or false.

Examples of logical expressions: Assuming i = 2, j = 3

 i < j is true

 i = = j is false

 ( i * j) > (i + j) is true.

In C++ the result of a logical expression is an integer. 0 is taken as false, 
any non-zero integer is taken as true.

Logical operators are used to test more than one conditions, i.e., to com-
bine more than one logical expressions.

Logical operator C symbol
AND

OR

NOT

&&

||

! 

The following tables illustrates their use.

AND

Logical expression 1 Logical expression 2 Result 
True

True

False

False

True

False

True

False

True 

False 

False 

False
OR

NOTE
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Logical expression 1 Logical expression 2 Result 
True

True

False

False

True

False

True

False

True 

True 

True

 False
NOT

Logical expression Result
True False 
False  True

Decision making statement—If

Syntax

 if (Lexp)

  {Tstatements}

 else

  {Fstatements}

where Lexp is a logical expression.

Tstatments are C++ statements executed when value of Lexp is true.

Fstatments are C++ statements executed when value of Lexp is false. 

The else part is optional.

Loops

(i) While Loop

Syntax

(a) while (Lexp)

     {statements} 

(b) do

     {statements}

while (Lexp)

Both these forms of the while loop cause execution of statements while 
value of Lexp is true. The difference between the two forms is that in the 
latter, the statements are executed at least once irrespective of the value of 
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Lexp.

(ii) For loop

Syntax

  for (initialization statement; Lexp; increment statement)

  {statements}

The loop is best explained by the following flow chart:

Initialization statement

Lexp
False

Rest of the program

True

Statements

Increment statement

Break statement. When a break statement is encountered inside a loop, 
that loop is exited, irrespective of the value of Lexp, and the program con-
tinues with the statement immediately following the loop.

Functions. These are the basic block of a C++ program. Functions contain 
State- ments that specify what is to be done.

Every program has to contain a function named main. The program 
begins executing at the first statement of main. Apart from main the C++ 
functions are classified into

— Library functions

— User defined functions

These functions are called from main to accomplish various tasks.

  (i)  Library functions are already available and we just have to use 
them, e.g., cout, cin, sqrt, cos, sin, fabs (used to get the absolute 
value of a floating point variable), etc.
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 (ii)  User defined functions have to be written by the user in the 
program.

Syntax

 return-type function-name (Argument-list)

 {

 statements

 }

Program for understanding the various terms and concepts related 
with functions:

 1. / * Sample program * /

 2. # include <isostream.h>

 3. float add (float a, float x);

 4. void half (float *x)

 5. {

 6. *x / = 2;

 7. return;

 8. }

 9. int main ( )

10. {

11. float a = 2, b = 2, c;

12. c = add (a, b);

13. cout << a << b << c << endl;

14. half (&a); half (&b);

15. cout << a << b << c << endl;

16. return 0;

17. }

18. float add (float a, float x)

19. {

20. float sum;
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21. sum = a + x;

22. a = 20, x = 20; /*changing the formal arguments*/

23. return sum;

24. }

[Line numbers have been added for reference purpose and are not part 
of the program.]

(a) Declaration and Definition

Line number 3 is the declaration of the function named add. It indi-
cates that there is a function add which takes two arguments, a and b both 
of type float and returns a float, i.e., the Argument list is float a, float b and 
return-type is float (which can be void if function doesn’t return anything—
see line 4. It also indicates that the function is defined later in the program).

Lines 18–24 are the definition of the function add i.e., they define how 
the function will make use of the arguments it received and return the re-
quired sum.

Lines 4–8 constitute both the declaration and definition of the function 
half.

(b) Calling a function

Line no. 12 calls the function add with a and b as arguments and stores 
the value returned by it into the variable c.

(c) Actual and Formal arguments

The variables a and x in the declaration of function add are called the 
formal arguments (line 3). 

The variables a and b in the call to the function (line 12) are the actual 
arguments.

(d) Call by value/Call by reference

In C++ language the values of actual arguments are always copied to 
the formal arguments when a function is called. This way of passing argu-
ments is called call by value. In this any change made to the formal argu-
ments in the function does not affect the value of actual arguments.

But in other languages, notably FORTRAN any change made to the 
formal arguments is re- flected in the actual arguments. This is called call 
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by reference, as the formal argument is treated just another name for the 
actual argument. Both of them refer to the same location in the computer’s 
memory.

(e) Simulating a call by reference in C++

The following thumb rule can be followed to make the formal argu-
ment refer to the actual argument (and not just receive a copy of it)

“Precede the actual argument with an ampersand & (line 14) and pre-
cede the formal argument with an asterisk * (line 4).”

The actual working of this involves the concepts of pointers, which are 
another data type in

C++. The reader can refer to any standard C++ book for a complete 
understanding.

(f) Return statement in a function passes the control back to the calling 
function along with the calculated value (line 23)

Syntax  return  expression;

The expression can be omitted, in this case the return statement causes 
the function to just terminate then and there and pass control back to the 
calling function (line 7).

In case no return statement is present in a function, an implicit return 
takes place on encoun- tering the right curly brace }.

Preprocessor directives. The lines in a C++ program that begin with a 
hash (#) sign are called preprocessor directives. The two most commonly 
used are # define and # include.

There is no semi colon (; ) after the directive.

(i) # define

syntax

# define name replacement

It instructs the computer to replace all occurences of name with the 
replacement even before the program is processed, i.e., checked for syntax.

e.g., consider the following statements

# define N 2 int a[N];

NOTE
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Before the program is processed by the compiler, the second line, i.e., 
int a[N]; is changed to int a[2]; and the first line is removed.

 The resulting statement that is processed is int a[2].

(ii) # include

syntax

# include < header-file-name >

This instructs the computer to insert the contents of the mentioned 
header file at the place where the directive appeared.

 The header file contains declarations of various functions and 
many preprocessor directives.

Object-oriented Programming (OOP) is a programming paradigm that 
uses “objects and classes”—data structures consisting of datafields and 
methods together with their interactions to design applications and com-
puter programs. Programming techniques may include features such as, 
data abstraction, encapsulation, modularity, polymorphism, and inheri-
tance. It was not commonly used in mainstream software application devel-
opment until the early 1990s. Many modern programming languages now 
support OOP.

An object is actually a identifiable identity with some characteristics 
and behavior, all relating to a particular real-world concept such as a bank 
account holder or player in a computer game. Other pieces of software can 
access the object only by calling its functions and procedures that have been 
allowed to be called by outsiders.

For example, the player’s functions might include one to reveal the 
player’s configuration on the field. The account holder’s functions include 
one to reveal the current balance or to withdraw out or to deposit a sum.

Procedural vs. OPP Programming. In procedural programming the em-
phasis is on the programming where each statement tells the computer to 
do something. The focus is on processing the algorithm needed to perform 
the desire computation.

Also procedural programming is not according to the real world, i.e., it 
is not close to the real world, “The world in which we live the activities we 
perform.”

NOTE
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Limitation of procedural programming

  (i) Emphasis on algorithm rather than data

 (ii) No reusability of code

(iii) No overloading

 (iv) No real world model.

OOPs Programming: Object-oriented programming has roots that can be 
traced to the 1960s. As hardware and software became increasingly com-
plex, quality was often compromised. Researchers studied ways to maintain 
software quality and developed object- oriented programming in part to 
address common problems by strongly discrete, reusable block of program-
ming logic. It focuses on data rather than processes, with programs com-
posed of self-sufficient modules (objects) each containing all the informa-
tion needed to manipulate its own data structure. This is in contrast to the 
existing modular programming which had been dominant for many years 
that focused on the function of a module, rather than specifically the data, 
but equally provided for code reuse, and self-sufficient reusable units of 
programming logic, enabling collaboration through the use of linked mod-
ules (subroutines). This more conventional approach, which still persists, 
tends to consider data and behavior separately.

OPP Terminology and Features: The OOP approach (based on certain 
concepts)

helps to overcome the drawbacks of procedural programming.

1.  Data abstraction—refers to the act of representing essential features 
without including the background detail of explanations. For example, 
a class Car would be made up of an Engine, Gearbox, Steering objects, 
and many more components. To build the Car class, one does not need 
to know how the different components works internally, but only how to 
interface with them.

2.  Encapsulation—refers to wrapping up of data and function (that 
operate on the data) into a single unit called class.

3. Modularity—is the property of a system that has been decomposed 
into a set of cohesive and loosely coupled modules.

4. Inheritance—is the capability of one class of thing to inherit capabili-
ties of properties from another class. Members are often specified as 
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public, protected or private, determining whether they are available 
to all classes, sub-classes or only the defining class.

5. Polymorphism—is the ability for a message or data to be processsed 
in more than one form. Polymorphism is a property by which the same 
message can be sent to objects of several different classes.

Data Types

Fundamental data types: When programming, we store the variables in our 
computer’s memory, but the computer has to know what kind of data we 
want to store in them, since it is not going to occupy the same amount of 
memory to store a simple number than to store a single letter or a large 
number, and they are not going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the mini-
mum amount of memory that we can manage in C++. A byte can store a 
relatively small amount of data: one single character or a small integer (gen-
erally an integer between 0 and 255). In addition, the computer can ma-
nipulate more complex data types that come from grouping several bytes, 
such as long numbers or non-integer numbers.

Next you have a summary of the basic fundamental data types in C++, 
as well as the range of values that can be represented with each one:

Name Description Size* Range*
char Character or small integer 1 byte signed: – 128 to 127

unsigned: 0 to 255
short int
(short)

Short Integer 2 bytes signed: – 32768 to 32767
unsigned: 0 to 65535

int Integer 4 bytes signed: – 2147483648 to
2147483647
unsigned: 0 to 4294967265

long int
(long)

Long integer 4 bytes signed: 2147483648 to
2147483647
unsigned: 0 to 4294967295

bool Boolean value. It can take 
one of two values: true or 
false

1 byte true or false

float Floating point number 4 bytes +/– 3.4e + /– 38 (~ 7 digits)
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Name Description Size* Range*
double Double precision floating

point number
8 bytes +/– 1.7e + /– 308 (~ 15 

digits)
long dou-
ble

Long double precision 
floating point number

8 bytes +/– 1.7e + /– 308 (~ 15 
digits)

wchar_t Wide character 2 or 4 
bytes

1 wide character

Integer Type: Integers are whole numbers with a machine dependent range 
of values. A good programming language as to support the programmer by 
giving a control on a range of numbers and storage space. C++ has three 
classes of integer storage namely short int, int and long int. All of these data 
types have signed and unsigned forms. A short int requires half the space 
than normal integer values. Unsigned numbers are always positive and con-
sume all the bits for the magnitude of the number. The long and unsigned 
integers are used to declare a longer range of values.

Floating Point Types: Floating point number represents a real number with 
six digits precision. Floating point numbers are denoted by the keywords 
float. When the accuracy of the floating point number is insufficient, we can 
use the double to define the number. The double is same as float but with 
longer precision. To extend the precision further we can use long double 
which consumes 80 bits of memory space.

Void Type: Using void data type, we can specify the type of a function. It 
is a good practice to avoid functions that does not return any values to the 
calling function.

Character Type: A single character can be defined as a defined character 
type of data. Characters are usually stored in 8 bits of internal storage. The 
qualifier signed or unsigned can be explicitly applied to char. While un-
signed characters have values between 0 and 255, signed characters have 
values from – 128 to 127.

User defined type declaration: In C++ language a user can define an identi-
fier that represents an existing data type. The user defined datatype identi-
fier can later be used to declare variables. The general syntax is

 typedef type identifier;
here type represents existing data type and “identifier” refers to the “raw” 
name given to the data type.
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Example

typedef int salary;
typedef float average;
Here salary symbolizes int and average symbolizes float. They can be later 
used to declare variables as follows:

Salary dept1, dept2;
Average section1, section2;
Therefore dept1 and dept2 are indirectly declared as integer datatype and 
section 1 and section 2 are indirectly float data type.

Declaration of Storage Class: Variables in C++ have not only the data 
type but also storage classes that provides information about their location 
and visibility. The storage class divides the portion of the program within 
which the variables are recognized.

auto: It is local variable known only to the function in which it is declared. 
Auto is the default storage class.

static: Local variable which exists and retains its value even after the con-
trol is transferred to the called function.

extern: Global variable known to all functions in the file

register: Social variables which are stored in the register.

Defining Symbolic Constants: A symbolic constant value can be defined 
as a preprocessor statement and used in the program as any other constant 
value. The general form of a symbolic constant is

# define symbolic_name value of constant
Valid examples of constant definitions are:

# define marks 100
# define total 50
# define pi 3.14159

These values may appear anywhere in the program, but must come 
before it is referenced in the program.

It is a standard practice to place them at the beginning of the program.

Declaring Variable as Constant

The values of some variable may be required to remain constant through-
out the program. We can do this by using the qualifier const at the time of 
initialization.
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Example:

Const int class_size = 40;
The const data type qualifier tells the compiler that the value of the int 

variable class_size may not be modified in the program.

Derived Data Types: The C++ programming language allows program-
mers to separate program-specific datatypes through the use of classes. 
Instances of these datatypes are known as objects and can contain member 
variables, constants, member functions, and overloaded operators defined 
by the programmer. Syntactically, classes are extensions of the C struct, 
which cannot contain functions or overloaded operators.

Differences between struct in C and classes in C++: In C++, a struc-
ture is a class defined with the struct keyword. Its members are by de-
fault public. A class defined with the class keyword has by default private 
members.

C++ classes have their own members. These members include variables 
(including other structures and classes), functions (specific identifiers or 
overloaded operators) known as method, construtors and destructors. 
Members are declared to be either publicly or privately accessible using 
the public: and private: access specifiers respectively. Any member 
encountered after a specifier will have the associated access until another 
specifier is encountered. There is also inheritance between classes which 
can make use of the protected: specifier.

#include<iostream.h>
#include<stdio.h>
class play
{
     int playcode;
     char playtitle [25];
     float duration;
     int noofscenes;
public:
play()
{
     duration=45;
     noofscenes=5;
}
void newplay()
{
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     cout<<"\n enter the play code";
     cin>>playcode;
     cout<<"\n enter the play title";
     gets(playtitle);
}
void moreinfo(float a,int b)
{
     duration=a;
     noofscenes=b;
}
void showplay()
{
     cout<<playcode<<playtitle<<duration<<noofscenes;
}
};
PROGRAMS OF STANDARD METHODS IN C++ LANGUAGE

15.3 Bisection Method (Section 2.7)

Flow-chart 

Refer to Section 14.3, page 674

Program

/* Bisection Method */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
float f(float x)
{
 return (x*x*x - 4*x - 9);
}
void bisect(float *x,float a,float b,int *itr)
{
 *x = (a + b)/2;
 ++(*itr);
 cout << "Iteration no." <<setw(3) << *itr
  << "X = " << setw(7) << setprecision(5)
  << *x << endl;
}
int main()
{
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 int itr = 0, maxitr;
 float x, a, b, aerr, x1;
 cout << "Enter the values of a,b,"
   << "allowed error, maximum iterations" << endl;
 cin >> a >> b >> aerr >> maxitr; 
 cout << fixed; 
 bisect(&x,a,b,&itr);
 do
 {
   if (f(a)*f(x) < 0)
       b = x;
   else
       a = x;
   bisect (&x1,a,b,&itr);
   if (fabs(x1-x) < aerr)
   {
 cout << "After" << itr << "iterations, root"
   << "=" << setw(6) << setprecision(4)
   << x1 << endl;
   return 0;
   }
   x = x1;
 } while (itr < maxitr);
 cout << "Solution does not converge,"
   << "iterations not sufficient" << endl;
 return 1;
}
NOTES: a, b are the limits in which the root lies
aerr is the allowed error
itr is a counter which keeps track of the number  of iterations performed
maxitr is the maximum number of iterations to be performed
x is the value of root at nth iteration
x1 is the value of root at (n + 1)th iteration.
Function Bisect:
Purpose: Performs and prints the result of one iteration
Variables: x is the result of the current iteration.

Computer Solution of Example  2.15 (a)

Enter the values of a, b, allowed error, maximum iterations
3 2.0001 20
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Iteration No. 1 X = 2.50000
Iteration No. 2 X = 2.75000
Iteration No. 3 X = 2.62500
Iteration No. 4 X = 2.68750
Iteration No. 5 X = 2.71875
Iteration No. 6 X = 2.70313
Iteration No. 7 X = 2.71094
Iteration No. 8 X = 2.70703
Iteration No. 9 X = 2.70508
Iteration No.10 X = 2.70605
Iteration No.11 X = 2.70654
Iteration No.12 X = 2.70630
Iteration No.13 X = 2.70642
Iteration No.14 X = 2.70648
After 14 iterations, root = 2.7065

15.4 Regula-Falsi Method (Section 2.8)

Flow-chart

Refer to Section 14.4, page 676

Program

/* Regula Falsi Method */
#include <isostream.h>
#include <iomanip.h>
#include <math.h>
 float f(float x)
 {
  return cos(x)-x*exp(x);
 }
 void regula (float *x, float x0, float x1, 
     float fx0, float fx1, int *itr)
 {
  *x = x0-((x1-x0)/(fx1-fx0))*fx0;
  ++(*itr);
 cout << "Iteration no." << setw(3) << *itr
      << "X = " << setw(7) << setprecision(5)
      << *X << endl;
 }
 int main()
 {
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  int itr=0, maxitr;
  float x0,x1,x2,x3,aerr;
  cout << "Enter the values for x0,x1,"
        << "allowed error,maximum iterations" << endl; 
  cin >> x0 >> x1 >> aerr >> maxitr; 
  regula(&x2,x0,x1,f(x0),f(x1),&itr);
  cout << fixed;
  do
  {
    if (f(x0)*f(x2) < 0)
       x1 = x2;
    else

    x0 = x2; 
    regula(&x3,x0,x1,f(x0),f(x1),&itr); 
    if (fabs(x3-x2) < aerr)
    {
      cout << "After" << itr << "iterations,"
           << "root = " << setw(6) << setprecision(4)
           << x3 << endl;
      return 0;
    }
    x2=x3;
 } while(itr < maxitr);
 cout << "Solution does not converge,"
      << "iterations not sufficient" << endl;
 return 1;
}
Notes: f(x) = 0 is the equation whose root is to be found
x0, x1 are units in which root lies
aerr is allowed error
maxitr is maximum number of iterations to be performed
itr is a counter which keeps track of the number of iterations performed
x2 is value of root at nth iteration
x3 is value of root at (n + 1)th iteration
Function Regula:
Purpose: Performs and prints the results of one iteration.
Variables: x is value of root at nth iteration
fx0, fx1 are values of f(x) at x0 and x, 1 respectively.
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Computer Solution of Example  2.20

Enter the values for x0, x1, allowed error, maximum iterations
0 1.0001 20
Iteration No. 1 X = 0.31467
Iteration No. 2 X = 0.44673
Iteration No. 3 X = 0.49402
Iteration No. 4 X = 0.50995
Iteration No. 5 X = 0.51520
Iteration No. 6 X = 0.51692
Iteration No. 7 X = 0.51748
Iteration No. 8 X = 0.51767
Iteration No. 9 X = 0.51773

After 9 iterations, root = 0.5177

15.5 Newton Raphson Method (Section 2.11)

Flow-chart

Refer to Section 14.5, page 679

Program

/* Newton Raphson Method */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
float f(float x)
{
 return x*log10(x)-1.2;
}
 float df(float x)
{
 return log10(x) + 0.43429;
}
int main()
{
 int itr,maxitr;
 float h,x0,x1,aerr;
 cout << "Enter x0,allowed error,"
      << "maximum iterations" << endl;
 cin >> x0 >> aerr >> maxitr;
 cout << fixed;
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 for (itr=1;itr<=maxitr;itr++)
 {
   h = f(x0)/df(x0);
   x1 = x0-h;
   cout << "Iteration no." << setw(3) << itr
        << "X = " << setw(9) << setprecision(6)
        << x1 << endl;
   if (fabs(h) < aerr)
   {
     cout << "After" << setw(3) << itr
          << "iterations, root = "
          << setw(8) << setprecision(6) << x1;
     return 0;
}
   x0 = x1;
}
cout << "Iterations not sufficient,"
     << "solution does not converge" << endl;
return 1;
}
Notes: F(x) = 0 is the equation whose root is to be found
df(x) is the derivatives of f(x) w.r.t. x x0 is value of root of nth iteration
x1 is value of root of (n + 1)th iteration
aerr is allowed error
maxitr is maximum no. of iterations to be performed
itr is a counter which keeps track of the number of iterations performed.

Computer Solution of Example 2.32

Enter x0, allowed error, maximum iterations
2.000001 10
Iteration No. 1 X = 2.813170
Iteration No. 2 X = 2.741109
Iteration No. 3 X = 2.740646
Iteration No. 4 X = 2.740646
After 4 iterations, root = 2.740646

15.6 Muller’s Method (Section 2.13)

Flow-chart

Refer to Section 14.6, page 681
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Program

/* Muller's Method */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#define I 2
float y(float x)
{
 return cos(x)-x*exp(x);
}
int main()
{
 int i,itr,maxitr;
 float x[4],li,di,mu,s,l,aerr;
 cout << "Enter the initial" 
      "approximations" << endl;
 for (i = I-2;i<3;i++)
   cin >> x[i];
 cout << "Enter allowed error,"
      "maximum iterations" << endl;
 cin >> aerr >> maxitr;
 cout << fixed;
 for(itr = 1;itr <= maxitr;itr++)
 {
   li = (x[I]-x[I-1])/(x[I-1]-x[I-2]); 
   di = (x[I]-x[I-2])/(x[I-1]-x[I-2]); 
   mu = y(x[I-2])*li*li
        - y(x[I-1])*di*di
          + y(x[I])*(di+li);
   s = sqrt((mu*mu - 4*y(x[I])*di*li
          *(y(x[I-2])*li-y(x[I-1])
             *di + y(x[I]))));
   if (mu < 0)
    l = (2*y(x[I])*di)/(-mu+s);
   else
    l = (2*y(x[I])*di)/(-mu-s);
   x[I+1] = x[I]+l*(x[I] - x[I-1]);
   cout << "Iteration no. " << setw(3) << itr
        << "X = " << setw(7) << setprecision(5)
        << x[I+1] << endl;
   if (fabs(x[I+1]-x[I]) < aerr)
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   {
     cout << "After" << setw(3) << itr
          << "iterations, the solution is"
          << setw(6) << setprecision(4)
          << x[I+1] << endl;
     return 0;
   }
     for (i=I-2;i<3;i++)
       x[i] = x[i+1];
   }
cout << "Iterations not sufficient,"
     << "solution does not converge" << endl;
  return 1;
   }
NOTES: y(x) = 0 is the equation whose root is to be found
x is an array which holds the three approximations to the root and the new 
improved value
I is defined as 2 in the program. This has been done because in C, array 
subscripts always start from zero and cannot be negative. Use of I facili-
tates more readable expressions. For e.g., x[0] can be written as x[I – 2] 
which looks more close to xi–2 it actually represents.
li is i
di is i
mu is i
s is [µ1

2 – 4yi i i(yi–2 i – i–1i + yi)]
l is 

Computer Solution of Example 2.34

Enter the initial approximations
-1 0 1
Enter allowed error, maximum iterations
.0001 10
Iteration No. 1 X = 0.44152
Iteration No. 2 X = 0.51255
Iteration No. 3 X = 0.51769
Iteration No. 4 X = 0.51776
After 4 iterations, the solution is 0.5178
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15.7 Multiplication of Matrices [Section 3.2 (3)4]

Flow-chart

Refer to Section 14.7, page 684

Program

/* Multiplication of matrices */
#include <iostream.h>
#include < iomanip.h>
#include <math.h>
#define MAX 20
typedef float matrix[MAX][MAX];
void getelems(matrix x,int m,int n)
{
 int i,j;
 for(i=0;i<m;i++)
   for(j=0;i<m;i++)
    cin >> x[i][j];
}
void printsol(matrix x,int m,int n)
{
 int i,j;
 for (i=0;i<m;i++)
{
    for (j=0;j<n;j++)
      cout << setw(5) << setprecision(1)
           << x[i][j];
    cout << endl;
}
}
void matmul(matrix a,matrix b,matrix c, 
         int l, int m,int p, int q)
{
 float s;
 int i,j,k;
 cout << "Enter the elements of the"
      << "first matrix" << endl;
 getelems(a,l,m);
 cout << "Enter the elements of the"
      << "second matrix" << endl;
 getelems(b,p,q);
 for (i=0;i<l;i++)
   for (j=0;j<q;j++)
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   {
     s = 0;
     for (k=0;k<m;k++)
       s += a[i][k]*b[k][j];
     c[i][j] = s;
   }
 cout << "The solution is" << endl;
 printsol(c,l,q);
}
int main()
{
 matrix a,b,c;
 int l,m,p,q;
 cout << "Enter the row, column of the"
      << "first matrix" << endl;
 cin >> 1 >> m;
 cout << "Enter the row, column of the" 
              "second matrix" << endl;
 cin >> p >> q; 
 cout << fixed; 
 if (m!=p)
{
   cout << "The two matrices cannot"
        << "be multiplied" << endl;
   return 1;
 }
 else
 {
    matmul(a,b,c,l,m,p,q);
    return 0;
 }
}
Notes: MAX is largest number of rows or columns any matrix can have. 
(If MAX. = 20, 11 × 20, and 20 × 13 matrices can be multiplied but 1 × 
21, 22 × 1 matrices cannot be multiplied till MAX > = 22
A, B are arrays which contain the matrices to be multiplied
C is array which contains the result of multiplication
L, M are respectively the rows, columns of first matrix
P, Q are respectively the rows, columns of second matrix
Function getelems
Purpose: To input a m × n matrix
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Function Matmul.
Purpose: It performs the multiplication of matrices after taking them 
from the user and prints the result.
Variables: i, j, k are loop control variables.

Computer Solution of Example  3.7

Enter the row, column of the first matrix
3 3
Enter the row, column of the second matrix
3 2
Enter the elements of the first matrix
0 1 2
1 2 3
2 3 4
Enter the elements of the second matrix
 1 -2
-1  0
 2 -1
The solution is
3.0 -2.0
5.0 -5.0
7.0 -8.0

15.8 Gauss Elimination Method [Section 3.4 (3)]

Flow-chart

Refer to Section 14.8, page 687

 Program

/* Gauss elimination method */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#define N 4 
int main()
{
 float a[N][N+1],x[N],t,s;
 int i,j,k;
 cout << "Enter the elements of the" 
         "augmented matrix rowwise" << endl;
 cout << fixed;
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 for (i=0;i<N;i++)
   for (j=0;j<N+1;j++)
      cin >> a[i][j]);
 for (j=0;j<N-1;j++)
   for (i=j+1;i<N;i++)
   {
      t  = a[i][j]/a[j][j];
      for (k=0;k<N+1;k++)
        a[i][k] -= a[j][k]*t;
   }
/* now printing the
upper triangular matrix */
cout << "The upper triangular matrix" 
                       "is:-" << endl;
for (i=0;i<N;i++)
{
  for (j=0;j<N+1;j++)
     cout << setw(8) << setprecision(4) << a[i][j];
  cout << endl;
}
/* now performing back substitution */
for (i=N-1;i>=0;i--)
{
  s = 0;
  for (j=i+1;j<N;j++)
    s += a[i][j]*x[j];
  x[i] = (a[i][N]-s)/a[i][i];
}
/* now printing the results */
cout << "The solution is:- " << endl;
for (i=0;i<N;i++)
   cout << "x[" << setw(3) << i+1 << "] = "
   << setw(7) << setprecision(4) << x[i] << endl;
return 0;
}

NOTES: N is the number of unknowns
a is an array which holds the Augmented Matrix
x is an array which will contain values of unknowns
i, j, k are loop control variables.
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Computer Solution of Example  3.19

Enter the elements of augmented matrix rowwise
10 -7 3 5 6
-6 8 -1 -4 5
 3 1 4 11 2
 5 -9 -2 4 7
The upper triangular matrix is:-
10.000 -7.0000 3.0000 5.0000 6.0000
 0.0000 3.8000 0.8000 -1.0000 8.6000
-0.0000 -0.0000 2.4474 10.3158 -6.8158
 0.0000 -0.0000 -0.0000 9.9247 9.9247
The solution is:- 
X[ 1] = 5.0000
X[ 2] = 4.0000
X[ 3] = -7.0000
X[ 4] = 1.0000

15.9 Gauss-Jordan Method [Section 3.4 (4)]

Flow-chart

Refer to Section 14.9, page 689

Program

/* Gauss jordan method */
#include <iostream.h>
#include <iomanip.h>
#define N 4
int main()
{
 float a[N][N+1],t;
 int i,j,k;
 cout << "Enter the elements of the"
      << "augmented matrix rowwise" << endl;
 for (i=0;i<N;i++)
    for (j=0;j<N+1;j++)
      cin >> a[i][j];
 /* now calculating the values
     of x1,x2,....,xN */
 cout << fixed;
     for (j=0;j<N;j++) 
        for (i=0;i<N;i++) 
        if (i!=j)
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        {
          t = a[i][j]/a[j][j];
          for (k=0;k<N+1;k++)
             a[i][k] -= a[j][k]*t;
        }
 /* now printing the diagonal matrix */
 cout << "The diagonal matrix is:-" << endl;
 for (i=0;i<N;i++)
 {
   for (j=0;j<N+1;j++)
     cout << setw(9) << setprecision(4) << a[i][j];
   cout << endl;
 }
 /* now printing the results */
 cout << "The solution is:- " << endl;
 for (i=0;i<N;i++)
   cout << "x[" << setw(3) << i+1 << "] ="
        << setw(7) << setprecision(4)
        << a[i][N]/a[i][i] << endl;
return 0;
}
NOTES: a is an array which holds the augmented matrix
N is the number of unknowns. e.g., if it is a 3 × 3 system of equations, 
N = 3, and if 5 × 5 system take N = 5.
i, j, k are loop variables.

Computer Solution of Example  3.22

Enter elements of augmented matrix rowwise
10 -7 3 5 6
-6 8 -1 -4 5
 3 1 4 11 2
 5 -9 -2 4 7
The diagonal matrix is:-
10.0000 -0.0000 -0.0000 -0.0000 50.0000
 0.0000 3.8000 -0.0000 0.0000 15.2000
-0.0000 0.0000 2.4474 0.0000 -17.1316
 0.0000 -0.0000 0.0000 9.9247 9.9247
The solution is:-
X[ 1] = 5.0000
X[ 2] = 4.0000
X[ 3] = -7.0000
X[ 4] = 1.0000
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15.10 Factorization Method [Section 3.4 (5)]

Flow-chart

Refer to Section 14.10, page 691

Program

/* Factorization method */
#include <iostream.h>
#include <iomanip.h>
#define N 3
typedef float matrix[N][N];
matrix l,u,a;
float b[N],x[N],v[N];
void urow(int i)
{
 float s;
 int j,k;
 for (j=i;j<N;j++)
 {
   s = 0;
   for (k=0;k<N-1;k++)
     s += u[k][j]*l[i][k];
   u[i][j] = a[i][j]-s;
 }
}
void lcol(int j)
{
 float s;
 int i,k;
 for (i=j+1;i<N;i++)
 {
    s = 0;
    for (k=0;k<=j-1;k++)
      s += u[k][j]*l[i][k];
    l[i][j] = (a[i][j]-s)/u[j][j];
 }
}
void printmat(matrix x)
{
 int i,j;
 for (i=0;i<N;i++)
 {
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   for (j=0;j<N;j++)
     cout << setw(8) << setprecision(4) << x[i][j];
   cout << endl;
 }
}
int main()
{
 int i,j,m;
 float s;
 cout << "Enter the elements of augmented"
      << " matrix rowwise" << endl;
 for (i=0;i<N;i++)
 {
   for (j=0;j<N;j++)
     cin >> a[i][j];
   cin >> b[i];
 }
cout << fixed;
 /* now calculating the elements of l and u */
 for (i=0;i<N;i++)
   l[i][i] = 1.0;
 for (m=0;m<N;m++)
 {
   urow(m);
   if (m < N-1) lcol(m);
 }
 /* now printing the elements of l and u */ 
 cout << setw(14) << "U" << endl; printmat(u); 
 cout << setw(14) << "L" << endl; printmat(l);
 /* now solving LV=B
    by forward substitution */
 for (i=0;i<N;i++)
 {
   s = 0;
   for (j=0;j<=i-1;j++)
      s += l[i][j]*v[j];
   v[i] = b[i]-s;
 }
/* now solving UX=V
   by backward substitution */
for (i=N-1;i>=0;i--)
{
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  s = 0;
  for (j=i+1;j<N;j++)
    s += u[i][j]*x[j];
  x[i] = (v[i]-s)/u[i][i];
}
/* printing the results */
cout << "The solution is:-" << endl;
for (i=0;i<N;i++)
   cout << "x[" << setw(3) << i+1 << "] = "
        << setw(6) << setprecision(4)
        << x[i] << endl;
return 0;
}
Notes: 
N is the no. of unknowns
l is the lower triangular matrix 
u is the upper triangular matrix 
a is the coefficient matrix
b is the constant matrix (Column matrix)
v is a matrix such that lv = b
x will contain the values of unknowns 
i, j, m are loop control variables 
Function urow (I)
Purpose: Calculates elements of ith row of u
Variables: m is the no. of unknowns 
j, k are loop control variables 
Function Lcol (J)
Purpose: Calculates elements of jth column of l
Variables: m is the no. of unknowns 
i, k are loop control variables. 
Function Printmat
Purpose: To print an N × N matrix.

Computer Solution of Example  3.23

Enter the elements of augmented matrix rowwise
3 2 7 4
2 3 1 5
3 4 1 7
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U
3.0000
0.0000
0.0000

2.0000
1.6667
0.0000

7.0000
-3.6667
-1.6000

L
1.0000
0.6667
1.0000

0.0000
1.0000
1.2000

0.0000
0.0000
1.0000

The solution is:
x[1] = 0.8750 
x[2] = 1.1250 
x[3] = - 0.1250
Computer Solution of Example  3.24

Enter the elements of augmented matrix rowwise
10 -7 3 5 6
-6 8 -1 -4 5
3 1 4 11 2
5 -9 -2 4 7
 U
10.0000 -7.0000 3.0000 5.0000
0.0000 3.8000 0.8000 -1.0000
0.0000 0.0000 2.4474 10.3158
0.0000 0.0000 0.0000 9.9247
 L
1.0000 0.0000 0.0000 0.0000
-0.6000 1.0000 0.0000 0.0000
0.3000 0.8158 1.0000 0.0000
0.5000 -1.4474 -0.9570 1.0000
The solution is:- 
x[ 1] = 5.0000
x[ 2] = 4.0000 
x[ 3] = -7.0000 
x[ 4] = 1.0000

15.11 Gauss-Seidal Iteration Method [Section 3.5 (2)]

Flow-chart

Refer to Section 14.11, page 695
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Program

/* Gauss Seidal method */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#define N 3 int main()
{
 float a[N][N+1],x[N],aerr,maxerr, t,s,err;
 int i,j,itr,maxitr;
 /* first initializing the array x */
 for (i=0;i<N;i++) x[i]=0;
 cout << "Enter the elements of the"
      << "augmented matrix rowwise" << endl;
 for (i=0;i<N;i++)
    for (j=0;j<N+1;j++)
      cin >> a[i][j];
  cout << "Enter the allowed error,"
       << "maximum iterations" << endl;
   cin >> aerr >> maxitr;
  cout << fixed;
  cout << "Iteration" << setw(6) << "x[1]"
       << setw(11) << "x[2]"
       << setw(11) << "x[3]" << endl;
  for (itr=1;itr<=maxitr;itr++)
  {
    maxerr = 0;
    for (i=0;i<N;i++)
    {
      s = 0;
      for (j=0;j<N;j++)
         if (j!=i) s += a[i][j]*x[j];
      t = (a[i][N]-s)/a[i][i];
      err = fabs(x[i]-t);
      if (err >> maxerr) maxerr = err;
      x[i] = t;
    }
    cout << setw(5) << itr;
    for (i=0;i<N;i++)
      cout << setw(11) << setprecision(4) << x[i];
    cout << endl;
    if (maxerr << aerr)
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    {
      cout << "Converges in" << setw(3) << itr
           << "iterations" << endl;
      for (i=0;i<N;i++)
        cout << "x[" << setw(3) << i+1 << "] = "
             << setw(7) << setprecision(4) << x[i]
             << endl;
       return 0;
    }
}
cout << "Solution does not converge,"
    << "iterations not sufficient" << endl;
 return 1;
}
NOTES: N is the number of unknowns
a is an array which holds the augmented matrix
x is an array which will hold the values of unknowns
aerr is allowed error
maxitr is the maximum no. of iterations to be performed
 itr is the counter which keeps track of no. of iterations performed
err is error in value of xi
maxerr is maximum error in any value of xi after an iteration.

Computer Solution of Example  3.28

Enter the elements of augmented matrix rowwise
20 1 -2 17
 3 20 -1 -18
 2 - 3 20 25
Enter the allowed error, maximum iterations
.0001 10
 Iteration X(1) X(2) X(3)
 1 0.8500 - 1.0275 1.0109
 2 1.0025 - 0.9998 0.9998
 3 1.0000 - 1.0000 1.0000
 4 1.0000 - 1.0000 1.0000
Converges in 4 iterations
X[1] =  1.0000
X[2] = -1.0000
X[3] =  1.0000
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Computer Solution of Example  3.30

Enter the elements of the augmented matrix rowwise
10 -2 -1 -1 3
-2 10 -1 -1 15
-1 -1 10 -2 27
-1 -1 -2 10 -9
Enter the allowed error, maximum iterations
.0001 15

Iteration
1
2
3
4
5
6
7

x[1]
0.3000
0.8869
0.9836
0.9968
0.9994
0.9999
1.0000

x[2]
1.5600
1.9523
1.9899
1.9982
1.9997
1.9999
2.0000

x[3]
2.8860
2.9566
2.9924
2.9987
2.9998
3.0000
3.0000

x[4]
-0.1368
-0.0248
-0.0042
-0.0008
-0.0001
-0.0000
-0.0000

Converges in 7 iterations 
x[ 1] = 1.0000 
x[ 2] = 2.0000 
x[ 3] = 3.0000
x[ 4] = 0.0000

15.12 Power Method (Section 4.11)

Flow-chart

Refer to Section 4.12, page 699

Program

/* Power method for finding largest eigen value */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#define N 3
typedef float array[N];
void findmax(float *max,array x)
{
 int i;
 *max = fabs(x[0]);
 for (i=1;i<N;i++)
    if (fabs(x[i]) > *max)
       *max = fabs(x[i]);
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}
int main()
{
 float a[N][N],x[N],r[N],maxe, 
   err,errv,aerr,e,s,t;
 int i,j,k,itr,maxitr;
 cout << "Enter the matrix rowwise" << endl;
 for (i=0;i<N;i++)
    for (j=0;j<N;j++)
      cin << a[i][j];
 cout << "Enter the initial approximation"
      << "to the eigen vector" << endl;
 for (i=0;i<N;i++)
   cin >> x[i];
 cout << "Enter the allowed error,"
      << "maximum iterations" << endl;
 cin >> aerr >> maxitr;
 cout << fixed;
 cout << "Itr no." << setw(11) << "Eigenvalue"
      << setw(19) << "EigenVector" << endl;
 /*now finding the largest eigenvalue in 
   the initial approx. to eigen vector */
findmax(&e,x);
/* now starting the iterations */
for (itr=1;itr<=maxitr;itr++)
{
 /* loop to multiply the matrices a and x */
 for (i=0;i<N;i++)
 {
  s = 0;
   for (k=0;k<N;k++)
     s += a[i][k]*x[k];
   r[i]=s;
}
findmax(&t,r);
for (i=0;i<N;i++) r[i] /= t;
maxe = 0;
for (i=0;i<N;i++)
{
  err = fabs(x[i]-r[i]);
  if (err > maxe) maxe = err;
  x[i] = r[i];
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}
errv = fabs(t-e);
e = t;
cout << setw(4) << itr
     << setw(12) << setprecision(4)
     << e;
for (i=0;i<N;i++)
  cout << setw(9) << setprecision(3)
       << x[i];
 cout << endl;
 if ((errv <= aerr) && (maxe <= aerr))
{
  cout << "Converges in" << itr
       << "iterations" << endl;
  cout << "Largest eigen value ="
       << setw(6) << setprecision(2)
       << e << endl;
  cout << "Eigen Vector:-" << endl;
  for (i=0;i<N;i++)
    cout << "x[" << setw(3) << i+1 << "] = "
         << setw(6) << setprecision(2)
         << x[i] << endl;
    cout << endl;
    return;
 }
}
   cout << "Solution does not converge,"
        << "iterations not sufficient" << endl;
   return 1;
}
NOTES: N is number of rows (or columns) in square matrix
a is the square matrix
x is the eigenvector at nth iteration
r is the eigenvector at (n + 1)th iteration
e is the eigenvalue at nth iteration
 t is the eigenvalue at (n + 1)th iteration
aerr is the allowed error in eigenvalue and eigenvector 
maxitr is the maximum number of iterations to be performed 
err is error in an element of the eigenvector
maxe is the maximum error in any element of the eigenvector
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errv is error in the eigenvalue
itr, i, k are loop control variables.
Function findmax:
Purpose: Finds the maximum element in array x(a N-element array) and 
returns it in Max.

Computer Solution of Example 4.11

Enter the matrix rowwise
 2 -1 0
-1 2 -1
 0 -1 2
Enter the initial approximation to the eigen vector
1 0 0
Enter the allowed error, maximum iterations
.01 10
 Itr No. Eigen Value Eigen Vector
 1 2.0000 1.000 -0.500 0.000
 2 2.5000 1.000 -0.800 0.200
 3 2.8000 1.000 -1.000 0.429
 4 3.4286 0.875 -1.000 0.542
 5 3.4167 0.805 -1.000 0.610
 6 3.4146 0.764 -1.000 0.650
 7 3.4143 0.741 -1.000 0.674
 8 3.4142 0.727 -1.000 0.688
 9 3.4142 0.719 -1.000 0.696
Converges in 9 iterations
Largest eigen value = 3.41
Eigen Vector:-
X[1] = 0.72
X[2] = -1.00
X[3] = 0.70

15.13 Method of Least Squares (Section 5.5)

Flow-chart

Refer to Section 4.13, page 703

Program

/* Parabolic fit by least squares */
#include <iostream.h>
#include <iomanip.h>
int main()
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{
 float augm[3][4]={{0,0,0,0},{0,0,0,0},{0,0,0,0}};
 float t,a,b,c,x,y,xsq;
 int i,j,k,n;
 cout << "Enter the no. of pairs of"
      <<"observed values:" << endl;
 cin >> n;
 cout << fixed; 
 augm [0] [0] = n; 
 for (i=0;i<n;i++)
 {
   cout << "Pair no. " << i+1 << endl;
   cin >> x >> y; 
   xsq = x*x; 
   augm[0][1] += x; 
   augm[0][2] += xsq;
   augm[1][2] += x*xsq; 
   augm[2][2] += xsq*xsq; 
   augm[0][3] += y; 
   augm[1][3] += x*y; 
   augm[2][3] += xsq*y;
 }
 augm[1][1] = augm[0][2]; 
 augm[2][1] = augm[1][2];
 augm[1][0] = augm[0][1];
 augm[2][0] = augm[1][1];
 cout << "The augmented matrix is:-" << endl;
 for (i=0;i<3;i++)
 {
    for (j=0;j<4;j++)
       cout << setw(9) << setprecision (4) << augm[i][j];
     cout << endl;
 }
 /* Now solving for a,b,c
    by Gauss Jordan Method */
 for (j=0;j<3;j++)
   for (i=0;i<3;i++)
      if (i!=j)
      {
         t = augm[i][j]/augm[j][j];
         for (k=0;k<4;k++)
            augm[i][k] -= augm[j][k]*t;
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      }
 a = augm[0][3]/augm[0][0]; 
 b = augm[1][3]/augm[1][1]; 
 c =  augm[2][3]/augm[2][2]; 
 cout << setprecision(4)
      << "a = " << setw(8) << a
      << "b = " << setw(8) << b
      << "c = " << setw(8) << c
      << endl;
 return 0;
}
Notes: augm is the augmented matrix.
n is the number of data points.

Computer Solution of Example  5.7

Enter the no. of pairs of observed values:
7
Pair No. 1
1 1.1
Pair No. 2
1.5 1.3
Pair No. 3
2 1.6
Pair No. 4
2.5 2
Pair No. 5
3.0 2.7
Pair No. 6
3.5 3.4
Pair No. 7
4.0 4.1
The augmented matrix is:-
 7.0000 17.5000 50.7500 16.2000
 17.5000 50.7500 161.8750 47.6500
 50.7500 161.8750 548.1875 154.4750 
a = 1.0357 b = -0.1929 c = 0.2429

15.14 Method of Group Averages (Section 5.9)

Flow-chart

Refer to Section 14.14, page 706
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Program

#include<iostream.h>
#include<conio.h>
#include<iomanp.h>
void main()
{
int t[10],n,i,ts1=0,ts2=0;
float a,b,rs1=0,rs2=0,r[10],x1,y1,x2,y2;
clrscr();
cout<<"enter the no. of observations"<<endl;
cin>>n;
cout<<"enter the different values of t"<<endl;
 for(i=1;i<=n;i++)
{
cin>>t[i];
}
cout<<"\nenter the corresponding values of r"<<endl;
for(i=1;i<=n;i++)
{
cin>>r[i];
}
for(i=1;i<=(n/2);i++)
{ 
ts1+=t[i]; 
rs1+=r[i];
}
for(i=((n/2)+1);i<=n;i++)
{ 
ts2+=t[i]; 
rs2+=r[i];
} 
x1=ts1/(n/2); 
y1=rs1/(n/2); 
x2=ts2/(n/2); 
y2=rs2/(n/2);
b=(y2-y1)/(x2-x1);
a=y1-(b*x1);
cout<<"the value of a&b comes out to be
"<<endl<<"a="<<setw(5)<<setprecision(3)<<a<<"\n"<<"b="<< 
setw(5)<<setprecision(3)<<b;
getch();
}
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Computer Solution of Example  5.16

Enter the no. of observations
8
enter the different values of t
40 50 60 70 80 90 100 110
enter the corresponding values of r
1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3 1030.8 
the value of a&b comes out to be
a=1090.256 
b=-0.534

15.15 Method of Moments (Section 5.11)

Flow-chart

Refer to Section 14.15, page 708

Program

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{
int x[10],y[10],i,n,yt=0,x1yt=0;
float a,b,l1,l2,c1,c2,c3,d,d1,d2,m1,m2,h;
clrscr();
cout<<"enter the no. of observations"<<endl;
cin>>n;
cout<<"enter the different values of x"<<endl;
for(i=1;i<=n;i++)
{
cin>>x[i];
}
cout<<"\nenter the corresponding values of y"<<endl;
for(i=1;i<=n;i++)
{
cin>>y[i];
}
h=x[2]-x[1];
for(i=1;i<=n;i++)
{
yt+=y[i];
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x1yt+=x[i]*y[i];
}
m1=h*yt;
m2=h*x1yt;
11=(-(h/2)+x[1]);
12=((h/2)+x[n]);
c1=(l2-l1);
c2=((l2*l2)-(l1*l1)/2);
c3=((l2*l2*l2)-(l1*l1*l1*)/3);
cout<<"The observed equations
are"<<endl<<cl<<"a+"<<c2<<"b"<<endl<<"&"<<c2<<"a+"<<c3<<"b";
d=c2/c1; 
d1=d*c1;
d2=d*c2; 
m1=d*m1;
b=(m2-m1)/(c3-d2);
a=(m1-(d2*b))/d1;
cout<<"\nOn solving these equations we get 
 a="<<setw(5)<<setprecision(2)<<a<<"
&b="<<setw(5)<<setprecision(2)<<b<<endl;
cout<<"hence the required equation is 
 y="<<setw(5)<<setprecision(2)<<a<<"+"<<
setw(5)<<setprecision(2)<<b<<"x";
getch();
}
Solution of Example 5.20

Enter the no. of observations
4
enter the different values of x
1 2 3 4
enter the corresponding values of y
16 19 23 26
the observed equations are
4.00a+10.00b=84.00
&10.00a+30.33b=227.00
on solving these equations we get a=13.03&b=3.19 
hence the required equation is y=13.03+3.19x
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15.16 Newton’s Forward Interpolation Formula (Section 7.2)

Flow-chart

Refer to Section 4.16, page 711

Program

/* Newton's forward interpolation */
#include <iostream.h>
#include <iomanip.h>
#define MAXN 100
#define ORDER 4 int main()
{
 float ax[MAXN+1],ay[MAXN+1],
   diff[MAXN+1][ORDER+1], 
   nr=1.0,dr=1.0,x,p,h,yp;
 int n,i,j,k;
 cout << "Enter the value of n" << endl;
 cin >> n;
 cout << "Enter the values in form x,y" << endl;
 for (i=0;i<=n;i++)
  cin >> ax[i] >> ay[i];
 cout << "Enter the values of x"
      << "for which value of y is wanted" << endl;
 cin >> x;
 cout << fixed;
 h=ax[1]–ax[0];
 /* now making the diff. table */
 /* calculating the 1st order differences */
for (i=0;i<=n-1;i++)
  diff[i][1] = ay[i+1]-ay[i];
/* calculating the second & higher order differences.*/
  for (j=2;j<=ORDER;j++)
    for (i=0;i<=n-j;i++)     
      diff [i][j] = diff[i+1][j-1]
                   -diff[i][j-1];
 /* now finding x0 */
 i=0;
 while (!(ax[i] > x)) i++;
 /* now ax[i] is x0 & ay[i] is y0 */
 i--;
 p = (x-ax[i])/h; yp=ay[i];
 /* Now carrying out interpolation */
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 for (k=1;k<=ORDER;k++)
 {
  nr *= p-k+1; dr *=k;
  yp += (nr/dr)*diff[i][k];
 }
 cout << "When x = "
      << setw(6) << setprecision(1)
      << x
      << " y = "
      << setw(6) << setprecision(2)
      << yp << endl;
 return 0;
}

NOTES: MAXN is the maximum value of N
ORDER is the maximum order in the difference table 
ax is an array containing values of x (x0, x1,......, xn) 
ay is an array containing values of y(y0, y1,....., yn) 
diff is a 2D Array containing the difference table
h is spacing between values of X
x is value of x at which value of y is wanted
yp is calculated value of Y
nr is numerator of the terms in expansion of yP
dr is denominator of the terms in expansion of yP.

Computer Solution of Example 7.1

Enter the value of n
6
Enter the values in form x, y
100  10.63
150  13.03
200  15.04
250  16.81
300  18.42
350  19.90
400  21.27
Enter the values of x for which value of y is wanted
218
When x = 218.0, y = 15.70
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15.17 Lagrange’s Interpolation Formula (Section 7.12)

Flow-chart

Refer to Section 4.17, page 714

Program

/*Lagrange's Interpolation*/
#include <iostream.h>
#include <<iomanip.h>
#define MAX 100 int main()
{
 float ax [MAX+1],ay[MAX+1],nr,dr,x,y=0;
 int i,j,n;
 cout << "Enter the value of n" << endl;
 cin >> n;
 cout << "Enter the set of values" << endl;
 for (i=0;i<=n;i++)
   cin >> ax[i] >> ay[i];
 cout << "Enter the value of x for which"
      << "value of y is wanted" << endl;
 cin >> x;
 cout << fixed;
 for (i=0;i<=n;i++)
 {
    nr=dr=1;
    for(j=0;j<=n;j++)
      if (j!=i)
       {
          nr *= x-ax[j];
          dr *= ax[i]-ax[j];
       }
       y += (nr/dr)*ay[i];
 }
 cout << "When x="
      << setw(4) << setprecision(1)
      << x << "y="
      << setw(7) << setprecision(1)
      << y << endl;
 return 0;
}
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NOTES: MAX is the maximum value of n
ax is an array containing values of x(x0, x1,....., xn) 
ay is an array containing values of y(y0, y1,......, yn) 
x is the value of x at which value of y is wanted
y is the calculated value of y
nr is numerator of the terms in expansion of y
dr is denominator of the terms in expansion of y.

Computer Solution of Example 7.17

Enter the value of n
4
Enter the set of values
5  150
7  392
11  1452
13  2366
17  5202
Enter the value of x for which value of y is wanted
9
When x = 9.0 y = 810.0

15.18 Newton’s Divided Difference Formula (Section 7.14)

Flow-chart

Refer to Section 14.18, page 716

Program

#include<iostream.h>
#include<conio.h>
void main()
{
int x[10],y[10],p[10];
int k,f,n,i,j=1,f1=1,f2=0;
clrscr();
cout<<"enter the no. of observations\n";
cin>>n;
cout<<"enter the different values of x\n";
for(i=1;i<=n;i++)
{
cin>>x[i];
}
cout<<"enter the corresponding values of y\n";
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for(i=1;i<=n;i++)
{
cin>>y[i];
}
f=y[1];
 cout<<"enter the value of 'k' in f(k) you want to evaluate\n";
cin>>k;
do
{
for(i=1;i<=n-1;i++)
{
p[i]=((y(i+1)-y[i])/(x[i+j]-x[i]));
y[i]=p[i];
}
for(i=1;i<=j;i++)
{
f1*=(k-x[i]);
} f2+=(y[1]*f1); f1=1;
n--;
j++;
} while(n!=1); f+=f2; cout<<"f("<<k<<")="<<f; getch();
}
Computer Solution of Example  7.23

Enter the no. of observations
5
Enter the different values of x
5 7 11 13 17
enter the corresponding values of y
150 392 1452 2366 5202
enter the value of 'k' in f(k) you want to evaluate
9 f(9)=810

15.19  Derivatives Using Forward Difference Formulae 
(Section 8.2)

Flow-chart

Refer to Section 14.19, page 718

Program

/* derivatives using forward difference*/
#include<iostream.h>
#include<math.h>
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#include<iomanip.h>
#include<conio.h>
void main( )
{
    float *x=NULL, *y=NULL,max;
    float *tmp = NULL;
    float xval,h,p,x0,y0,yval,sum;
    int pos,i;
    clrscr( );
    cout<<"enter the no of comparisons";
    cin>>max;
    x=new float[max];
    y=new float[max];
    cout<<"enter the values in cv table for x and y";
    for (i=0;i<max;i++)
    {
        cout<<"\n value for "<<i<<"x";
        cin>>x[i];
        cout<<"\n value for "<<i<<"y";
        cin>>y[i];
    }
    cout<<"enter the value of x";
    cin>>xval;
    for(i=0;i<max;i++)
    {
        if(x[i]>=xval)
        {
            pos=i;
            break;
        }
    }
    x0=x[pos];
    y0=y[pos];
    cout<<"\nx0 is "<<x0<<"y0 is "<<y0<<"at"<<pos;
    h=x[1]-x[0]; 
    p=(xval-x0)/h; 
    if(pos<(max))
    {
    int i,l,j;
    // calculating no of elements in array 
    l=max-pos;
    tmp= new float [l* l]; 
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    cout<<"\n"; 
    for(i=0;i<l;i++)
    {
        for(j=0;j<=l;j++)
        {
            tmp[i*l+j]=0;
        }
        cout<<"\n";
    }
    cout<<"\n size of new array" <<l<<"\n";
    //copying values of y in array 
    for(i=0, j=pos;i<l;i++, j++)
    {
        tmp[i]=y[j];
    }
    cout<<"\n";
    for(i=1;i<l;i++)
    {
        for(j=0; j<l-i; j++)
        {
            tmp[i*l+j]=tmp[(i-1)*l+(j+1)]-tmp[(i-1)*l+(j)];
        }
    }
    cout<<"\nvalues are \n";
    for(i=0;i<l;i++)
    {    cout<<x[i+pos]<<"\t";
         for(j=0; j<l; j++)
         {
                cout<<setprecision(3)<<tmp[j*l+i]<<"\t|";
         }
         cout<<"\n;
    }
    //appling newtons forward diffenation using first derivates 
    sum=0;
    int k=1;
    for(i=1;i<l;i++)
    {
        sum=sum+((1.0/i)*tmp[i*tmp[i*l+0]*k);
        k=-k;
    }
    cout<<"\n\n first (dy/dx): "<<sum/h;
    int v[]={0,0,1.0, 1.0, 11.0/12.0,5.0/6.0,137.0/180.0};
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    sum=0; 
    k=1; 
    for(i=2;i<l;i++)
     {
        sum=sum+(v[i]*tmp[i*l+0]*k);
        k=–k;
     }
     cout<<"\n\n second (dy/dx): "<<sum/pow(h,2.0);
}
Computer Solution of Example  8.1

value for 0x1.0 
value for 0y7.989 
value for 1x1.1 
value for 1y8.403 
value for 2x1.2 
value for 2y8.781 
value for 3x1.3 
value for 3y9.129 
value for 4x1.4 
value for 4y9.451 
value for 5x1.5 
value for 5y9.750 
value for 6x1.6 
value for 6y10.031
Enter the value of x1.1 
x0 is 1.1y0 is 8.403at1

size of new array 6

values are
1.1 8.403 |0.378 |-0.03 |0.004 |-0.001 |0.003 |
1.2 8.781 |0.348 |-0.026 |0.003 |0.002 |0 |
1.3 9.129 |0.322 |-0.023 |0.005 |0 |0 |
1.4 9.451 |0.299 |-0.018 |0 |0 |0 |
1.5 9.75 |0.281 |0 |0 |0 |0 |
1.6 10.031 |0 |0 |0 |0 |0 |
First (dy/dx): 3.952

second (dy/dx): -3.74
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15.20 Trapezoidal Rule (Section 8.5—I)

Flow-chart

Refer to Section 14.20, page 724

Program

/* Trapezoidal rule.*/
#include <iostream.h>
#include <iomanip.h>
float y(float x)
{
 return 1/(1+x*x);
}
int main()
{
 float x0,xn,h,s;
 int i,n;
 cout << "Enter x0,xn,no. of subintervals" << endl;
 cin >> x0 >> xn >> n;
 cout << fixed;
 h = (xn-x0)/n;
 s = y(x0)+y(xn);
 for (i=1;i<=n-1;i++)
   s += 2*y(x0+i*h);
 cout << "Value of integral is"
      << setw(6) << setprecision(4)
      << (h/2)*s << endl;
 return 0;
}

NOTES:  y(x) is the function to be integrated
x0 is x0

xN is xn.

Computer Solution of Example  8.10 (i)

Enter x0, xn, no. of subintervals
0 6 6
Value of integral is 1.4108
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15.21 Simpson’s Rule (Section 8.5—II)

Flow-chart

Refer to Section 14.21, page 726

Program

/* Simpson's rule */
#include <iostream.h>
#include <iomanip.h>
float y(float x)
{
 return 1/(1+x*x);
}
int main()
{
 float x0,xn,h,s;
 int i,n;
 cout << "Enter x0,xn, no.of subintervals"
      << endl;
cin >> x0 >> xn >> n;
 cout << fixed;
 h = (xn-x0)/n;
 s = y(x0)+y(xn)+4*y(x0+h);
 for (i=3;i<=n-1;i+=2)
   s += 4*y(x0+i*h)+2*y(x0+(i-1)*h);
 cout << "Value of integral is"
      << setw(6) << setprecision(4)
      << (h/3)*s << endl;
 return 0;
}

NOTE: y(x) is the function to be integrated so that yi = y(xi) = y(x0 + i*h)

Computer Solution of Example  8.10 (ii)

Enter x0, xn, no. of subintervals
0 6 6
Value of integral is 1.3662



NUMERICAL METHODS USING C++ LANGUAGE • 815

15.22 Euler’s Method (Section 10.4)

Flow-chart

(Refer to Section 14.22, page 727

Program

/*Euler's Method*/
#include <iostream.h>
#include <iomanip.h>
float df(float x,float y)
{
return x+y;
}
int main()
{
 float x0,y0,h,x,x1,y1;
 cout << "Enter the values of x0,y0,h,x" << endl;
 cin >> x0 >> y0 >> h >> x;
 cout << fixed; 
 x1=x0;y1=y0;
 while(1)
 {
    if(x1>x) return 0; 
    y1 += h*df(x1,y1); 
    x1 += h;
    cout << "When x = "
         << setw(3) << setprecision(1)
         << x1 << " y = "
         << setw(4) << setprecision(2)
         << y1 << endl;
 }
}
NOTES: df(x, y) is dy/dx
x0 is xn+0 i.e., xn
x1 is xn+1
y0 is yn+0 i.e., yn
y1 is yn+1

Computer Solution of Example 10.8

Enter the values of x0, y0, h, x
0 1.1 1
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When x = 0.1 y = 1.10
When x = 0.2 y = 1.22
When x = 0.3 y = 1.36
When x = 0.4 y = 1.53
When x = 0.5 y = 1.72
When x = 0.6 y = 1.94
When x = 0.7 y = 2.20
When x = 0.8 y = 2.49
When x = 0.9 y = 2.82
When x = 1.0 y = 3.19

15.23 Modified Euler’s Method (Section 10.5)

Flow-chart

Refer to Section 14.23, page 729

Program

/* Modified Euler's Method*/
#include<iostream.h>
#include<math.h>
#include<iomanip.h>
#include<conio.h>
void main( )
{
    clrscr ( );
    int i,j;
    float x,y,x1=0.0,y1=0.0,h,ms=0.0,flag=0,y2=0.0,t=0.0;
    cout<<"\nenter the value of x";
    cin>>x;
    cout<<"enter the value of y";
    cin>>y;
    cout<<"enter the height";
    cin>>h; 
    i=7; 
    j=2;
    gotoxy(2,i);
    cout<<"x";gotoxy(10,i);cout<<"x+y=y1";gotoxy(28,i); 
      cout<<"mean slope";gotoxy(45,i);cout<<"old y+.1(mean 
      slope)new y"; while(x1<x)
    {
    i++;
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           do
           {
            i++;
                    if(flag==0)
                    {
                        y1=x1+y;
                        gotoxy(2,i);cout<<x1;gotoxy(10,i);
                          cout<<y1;gotoxy(28,i);cout<<ms;
                        ms=y1; 
                        y2=y+h*ms;             
                        gotoxy(45,i);cout<<y2;
                        x1=x1+h;
                        flag=1;
                    }
                    else
                    {
                        ms=(y1+(x1+y2))/2.0;
                        t=y+h*ms;
                        if(y2==t)
                    {
                        y2=y+h*ms;
                        break;
                    }
gotoxy(2,i);cout<<x1;gotoxy(10,i);cout<<x1<<"+"<<x2;y2=y+h*ms;
gotoxy(28,i);cout<<ms;gotoxy(45,i);cout<<y2;
           }
    }while(1); 
    y=y2; 
    cout<<"\n";
    flag=0;
 }
 getch( );
}
Computer Solution of Example  10.10

enter the value of x.3 
enter the value of y1 
enter the height.1
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x x+y=y1 mean slope old y+.1(mean slope)new y
0 1 0 1.1
0.1 0.1 + 1.1 1.1 1.11
0.1 0.1 + 1.11 1.105 1.1105
0.1 0.1 + 1.1105 1.10525 1.110525
0.1 0.1 + 1.110525 1.105263 1.110526
0.1 0.1 + 1.110526 1.105263 1.110526

0.1 1.210526 1.105263 1.231579
0.2 0.2 + 1.231579 1.321053 1.242632
0.2 0.2 + 1.242632 1.326579 1.243184
0.2 0.2 + 1.243184 1.326855 1.243212
0.2 0.2 + 1.243212 1.326869 1.243213
0.2 1.443213 1.32687 1.387535

0.3 0.3 + 1.387535 1.565374 1.399751
0.3 0.3 + 1.399751 1.571482 1.400362
0.3 0.3 + 1.400362 1.571787 1.400392
0.3 0.3 + 1.400392 1.571803 1.400394

15.24 Runge-Kutta Method (Section 10.7)

Flow-chart

Refer to Section 14.24, page 732

Program

/* Runge Kutta Method */
#include <iostream.h>
#include <iomanip.h>
float f(float x,float y)
{
 return x+y*y;
}
int main()
{
 float x0,y0,h,xn,x,y,k1,k2,k3,k4,k;
 cout << "Enter the values of x0,y0,"
      << "h,xn" << endl;
 cin >> x0 >> y0 >> h >> xn;
 x = x0; y = y0; 
 cout << fixed; 
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 while (1)
 {
    if (x == xn) break;
    k1 = h*f(x,y);
    k2 = h*f(x+h/2,y+k1/2); 
    k3 = h*f(x+h/2,y+k2/2); 
    k4 = h*f(x+h,y+k3);
    k = (k1+(k2+k3)*2+k4)/6;
    x += h; y += k;
    cout << "When x = " << setprecision(4)"
         << setw(8) << x
         << " y = " << setw(8) << y << endl;
 }
 return 0;
}
Notes: x0 is starting value of x i.e., x0
xn is the value of x for which y is to be determined.

Computer Solution of Example  10.15

Enter the values of x0, y0, h, xn
0.0 1.0 0.2 0.2
When x = 0.1000 y = 1.1165
When x = 0.2000 y = 1.2736

15.25 Milne’s Method (Section 10.9)

Flow-chart

Refer to Section 14.25, page 734

Program

/*Milne predictor corrector*/
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
float x[5],y[5],h;
float f(int i)
{
 return x[i]-y[i]*y[i];
}
void corect()
{
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 y[4] = y[2]+(h/3)*(f(2)+4*f(3)+f(4));
 cout << setw(23) << ""
      << setprecision(4)
      << setw(8) << y[4]
      << setw(8) << f(4) << endl;
      << "",y[4],f(4)
}
int main()
{
 float xr,aerr,yc;
 int i;
 cout << "Enter the values of x0,xr,h,"
      << "allowed error" << endl;
 cin >> x[0] >> xr >> h >> aerr;
 cout << "Enter the value of y[i], i=0, 3" << endl;
 for (i=0;i<=3;i++) cin >> y[i];
 cout << fixed;
 for (i=1;i<=3;i++) x[i] = x[0]+i*h;
 cout << setw(5) << "x" << setw(15) << "Predicted"
      << setw(17) << "Corrected" << endl;
 cout << setw(11) << "y" << setw(10) << "f"
      << setw(7) << "y" << setw(10) << "f" << endl;
  while (1)
  {
    if(x[3] = xr) return 0;
    x[4] = x[3]+h;
    y[4] = y[0]+
               (4*h/3)*(2*(f(1)+f(3))-f(2));

    cout << setw(6) << setprecision(2) << x[4]
         << setprecision(4)
         << setw(8) << y[4]
         << setw(8) << f(4) << endl;
    corect(1);
    while (1)
    {
      yc = y[4];
      corect();
      if(fabs(yc-y[4]) <= aerr) break;
    }
    for (i=0;i<=3;i++)
    {
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      x[i] = x[i+1];
      y[i] = y[i+1];
    }
 }
}

NOTE: x is an array such that x[i] represents xn+i for e.g., x[0] represent 
xn
y is an array such that y[i] represents yn+i
xr is the last value of x at which value of y is required
h is spacing in values of x
aerr is the allowed error in value of y yc is the latest corrected value for y
f is the function which returns value of y
corect is a subroutine that calculates the corrected value of y and prints it.

Computer Solution of Example  10.19

Enter the values of x0, xr, h, allowed error
0 1.2.0001
Enter values of y[i]; i = 0, 3
0.02.0795.1762
 Predicted Corrected
 X y f y f
 0.80 0.3049 0.7070
    0.3046 0.7072
    0.3046 0.7072
 1.00 0.4554 0.7926
    0.4556 0.7925
    0.4556 0.7925

15.26 Adams-Bashforth Method

Flow-chart

Refer to Section 14.26, page 736

/*Adams-Bashforth Method*/
#include<iostream.h>
#include<stdio.h>
#include<malloc.h>
#include<math.h>
#include<conio.h>
void main( )
{
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    float *x, *y, *f;
    float h;
    int i,size,row;
    clrscr( );
    cout <<"enter the size";
    cin>>size;
    x=new float[size+1]; 
    y=new float[size+1]; 
    f=new float[size+1]; 
    for (i=0;i<size;i++)
    {
        cout<<"enter the value for x["<<i<<"]";
        cin>>x[i];
        cout<<"enter the value for y["<<i<<"]";
        cin>>y[i];
    }
        h=x[1]-x[0];
    // calculating values [f]
    for(i=0;i<4;i++)
    {
        f[i]=pow(x[i],2)*(1.0+y[i]);
    }
    cout<<"\nvalues for (x) (y) and (f) are\n";
    row=16;
    for(i=0;i<4;i++)
    {
gotoxy(2,row);cout<<"x=";gotoxy(6,row);cout<<x[i];gotoxy(13,ro
w);cout<<"y"<<i-3;gotoxy(16,row);cout<<"=";gotoxy(18,row);cout
<<y[i];gotoxy(28,row);cout<<"f"<<i-3;gotoxy(32,row);cout<<"=";
gotoxy(35,row);cout<<f[i];
        row++;
    }
    //using predicator
    y[size]=y[size-1]+((h/24)*((55*f[size-1])–(59*f[size-
2])+(37*f[size-
3])-(9*f[size-4]))); 
        x[size]=1.4; 
        f[size]=pow(x[size],2)*(1.0+y[size]); 
        gotoxy(2,row);cout<<"x=";
gotoxy(6,row);cout<<x[size];gotoxy(13,row);cout<<"y1";
gotoxy(16,row);cout<<"="; gotoxy(18,row);cout<<y[size
];gotoxy(28,row);cout<<"f1";gotoxy(32,row);cout<<"="; 
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gotoxy(35,row);cout<<f[size];
}
Computer Solution of Example  10.23

enter the size 4
enter the value for x[0]1.0 
enter the value for y[0]1.000 
enter the value for x[1]1.1 
enter the value for y[1]1.233 
enter the value for x[2]1.2 
enter the value for y[2]1.548 
enter the value for x[3]1.3 
enter the value for y[3]1.979

values for (x) (y) and (f) are

x = 1 y-3 = 1 f-3 = 2
x = 1.1 y-2 = 1.233 f-2 = 2.70193
x = 1.2 y-1 = 1.548 f-1 = 3.66912
x = 1.3 y0 = 1.979 f0 = 5.03451
x = 1.4 y1 = 2.572297 f1 = 7.001702

15.27 Solution of Laplace’s Equation (Section 11.5)

Flow-chart

Refer to Section 14.27, page 740

/* Laplace's Equation */
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#define SQR 4
typedef float array[SQR+1][SQR+1];
void getrow(int i,array u)
{
 int j;
 cout << "Enter the values of u["
      << i << ",j], j=1, " << SQR << endl;
 for (j=1;j<=SQR;j++)
    cin >> u[i][j];
}
void getcol(int j,array u)
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{
 int i;
 cout << "Enter the values of u[i," << j
      << "], i=2," << SQR-1 << endl;
 for (i=2;i<=SQR-1;i++)
    cin >> u[i][j];
}
void printarr(array u,int width,int precision)
{
 int i,j;
 for (i=1;i<=SQR;i++)
 {
   for (j=1;j<=SQR;j++)
     cout << setw(width) << setprecision(precision)
          << u[i][j];
     cout << endl;
 }
}
int main ()
{
 array u;
 float maxerr,aerr,err,t;
 int i,j,itr,maxitr;
 for (i=1;i<=SQR;i++)
  for(j=1;j<=SQR;j++)
    u[i][j]=0;
 cout << "Enter the boundary conditions" << endl;
 getrow(1,u); getrow(SQR,u); 
 getcol(1,u); getcol(SQR,u); 
 cout << "Enter allowed error,"
      << "maximum iterations" << endl;
 cin >> aerr >> maxitr;
 cout << fixed;
 for (itr=1;itr<=maxitr;itr++)
 {
    maxerr=0;
    for (i=2;i<=SQR-1;i++)
       for(j=2;j<=SQR-1;j++)
       {
         t=(u[i-1][j]+u[i+1][j]+
           u[i][j+1]+u[i][j-1])/4;
         err=fabs(u[i][j]-t);
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         if (err > maxerr)
            maxerr = err;
         u[i][j]=t;
       }
       cout << "Iteration no. " << itr << endl;
       printarr(u,9,2);
       if (maxerr <= aerr)
    {
       cout << "After " << itr << " iterations"
            << endl
            << "The solution:-" << endl;
      printarr(u,8,1);
      return 0;
    }
 }
 cout << "Iterations not sufficient." << endl;
 return 1;
}
NOTES: SQR is the size of the square mesh
u is a 2D Array representing the square mesh
aerr is the allowed error
maxitr is the maximum allowed iterations
itr is a counter which keeps track of number of iterations performed
maxerr is the maximum error in the mesh in an iteration
err is error in a particular point of the mesh
f is the execution time format
getrow is a subroutine that inputs the ith row of the mesh
getcol is a subroutine that inputs jth column of the mesh.

Computer Solution of Exmaple 11.3 (a)

Enter the boundary conditions
Enter the value of u[1, j], j = 1, 4
1000   1000   1000   1000
Enter the values of u[4, j], j = 1, 4
1000   500   0  0
Enter the values of u[i, 1], i = 2, 3
2000  2000
Enter the values of u[i, 4], i = 2, 3
500  0
Enter allowed error, maximum iterations
.1  10
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Iteration No. 1
1000.00 1000.00 1000.00 1000.00
2000.00 750.00 562.50 500.00
2000.00 812.50 343.75 0.00
1000.00 500.00 0.00 0.00
Iteration No. 2
1000.00 1000.00 1000.00 1000.00
2000.00 1093.75 734.38 500.00
2000.00 984.38 429.69 0.00
1000.00 500.00 0.00 0.00
Iteration No. 3
1000.00 1000.00 1000.00 1000.00
2000.00 1179.69 777.34 500.00
2000.00 1027.34 451.17 0.00
1000.00 500.00 0.00 0.00
Iteration No. 4
1000.00 1000.00 1000.00 1000.00
2000.00 1201.17 788.09 500.00
2000.00 1038.09 456.54 0.00
1000.00 500.00 0.00 0.00
Iteration No. 5
1000.00 1000.00 1000.00 1000.00
2000.00 1206.54 790.77 500.00
2000.00 1040.77 457.88 0.00
1000.00 500.00 0.00 0.00
Iteration No. 6
1000.00 1000.00 1000.00 1000.00
2000.00 1207.89 791.44 500.00
2000.00 1041.44 458.22 0.00
1000.00 500.00 0.00 0.00
Iteration No. 7
1000.00 1000.00 1000.00 1000.00
2000.00 1208.22 791.61 500.00
2000.00 1041.61 458.30 0.00
1000.00 500.00 0.00 0.00
Iteration No. 8
1000.00 1000.00 1000.00 1000.00
2000.00 1208.31 791.65 500.00
2000.00 1041.65 458.33 0.00
1000.00 500.00 0.00 0.00
After 8 iterations    
The solution:-
1000.0 1000.0 1000.0 1000.0
2000.0 1208.3 791.7 500.0
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2000.0 1041.6 458.3 0.0
1000.0 500.0 0.0 0.0

15.28 Solution of Heat Equation (Section 11.9)

Flow-chart

Refer to Section 14.28, page 745

Program

/*Solution of parabolic equations by
Bendre Schmidt method*/
#include <iostream.h>
#include <iomanip.h>
#define XEND 8
#define TEND 5 float f(int x)
{
return 4*x-(x*x)/2.0;
}
int main()
{
 float u[XEND+1][TEND+1],h=1.0,k=0.125, 
     csqr,alpha,ust,uet;
 int i,j;
 cout << "Enter the square of 'c'" << endl;
 cin >> csqr;
 alpha = (csqr*k)/(h*h);
 cout << "Enter the value of u[0,t]" << endl;
 cin >> ust;
 cout <<"Enter the value of u[" << XEND
      << ",t]" << endl;
 cin >> uet;
 cout << fixed;
 for (j=0;j<=TEND;j++)
   u[0][j]=u[XEND][j]=ust;
 for (i=1;i<=XEND-1;i++)
    u[i][0]=f(i);
 for (j=0;j<=TEND-1;j++)
   for (i=1;i<=XEND-1;i++)
       u[i][j+1]=
       alpha*u[i-1][j]
       +(1-2*alpha)*u[i][j]
       +alpha*u[i+1][j];
 cout << "The value of alpha is"
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      << setw(4) << setprecision(2)
      << alpha << endl;
 cout << "The values of u[i,j] are:-"
      << endl;
 for (j=0;j<TEND;j++)
 {
    for (i=0;i<=XEND;i++)
      cout << setw(7) << setprecision(4)
           << u[i][j];
      cout << endl;
 }
 return 0;
}
Notes: XEND is the ending value of x
TEND is the ending value of t 
h is the spacing in values of x 
k is the spacing in values of y 
f(x) is value of u(x, 0)
csqr is value of C2

alpha is 
ust is the value in the first column
uet is the value in the last column.

Computer Solution of Example 11.11

Enter the square of "c"
4
Enter value of u(0, t)
0
Enter value of u(8, t)
0
The value of alpha is 0.50
The values of u(i, j) are:-
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

3.5000
3.0000
2.7500
2.5000
2.3124
2.1250

6.0000
5.5000
5.0000
4.6250
4.2500
3.9375

7.5000
7.0000
6.5000
6.0000
5.5625
5.1250

8.0000
7.5000
7.0000
6.5000
6.0000
5.5625

7.5000
7.0000
6.5000
6.0000
5.5625
5.1250

6.0000
5.5000
5.0000
4.6250
4.2500
3.9375

3.5000
3.0000
2.7500
2.5000
2.3125
2.1250

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000



NUMERICAL METHODS USING C++ LANGUAGE • 829

15.29 Solution of Wave Equation (Section 11.12)

Flow-chart

Refer to Section 14.29, page 748

Program

/* Solution of Hyperbolic equation */
#include <iostream.h>
#include <iomanip.h>
#define XEND 5
#define TEND 5 float f(int x)
{
 return x*x*(5-x);
}
int main()
{
 float u[XEND+1][TEND+1],csqr,ust,uet;
 int i,j;
 cout << "Enter the square of 'c'" << endl;
 cin >> csqr;
 cout << "Enter the value of u(0, t)" << endl;
 cin >> ust;
 cout << "Enter the value of u("
      << XEND << ", t)" << endl;
 cin >> uet;
 cout << fixed;
 for (j=0;j<=TEND;j++)
 {
   u[0][j] = ust; u[XEND][j] = uet;
 }
 for (i=1;i<=XEND-1;i++)
    u[i][1] = u[i][0] = f(i);
 for (j=1;j<=TEND-1;j++)
    for (i=1;i<=XEND-1;i++)
      u[i][j+1] = u[i-1][j]+u[i+1][j]
                 -u[i][j-1];
 cout << "The values of u(i, j) are:-" << endl;
 for (j=0;j<=TEND;j++)
 {
  for (i=0;i<=XEND;i++)
    cout << setw(6) << setprecision(1)
         << u[i][j];
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    cout << end1,
 }
 return 0;
}
NOTES: XEND is the ending value of x
TEND is the ending value of t f(x) is value of u(x, 0)
csqr is value of C2

ust is the value in the first column
uet is the value in the last column.

Computer Solution of Example  11.14

Enter the square of "c"
16
Enter value of u(0, t)
0
Enter value of u(5, t)
0
The values of u(i, j) are:-
 0.0 4.0 12.0 18.0 16.0 0.0
 0.0 4.0 12.0 18.0 16.0 0.0
 0.0 8.0 10.0 10.0 2.0 0.0
 0.0 6.0 6.0 -6.0 -6.0 0.0
 0.0 -2.0 -10.0 -10.0 -8.0 0.0
 0.0 -16.0 -18.0 -12.0 -4.0 0.0

15.30 Linear Programming—Simplex Method (Section 12.8)

Flow-chart

Refer to Section 14.30, page 750

Program

/* Linear programming by simplex method */
#include <iostream.h>
#include <iomanip.h>
#define ND 2
#define NS 2
#define N (ND+NS)
#define N1 (NS*(N+1))
void init(float x[],int n)
{
 int i=0;
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 for (;i<n;i++) x[i] = 0;
}
int main()
{
 int i,j,k,kj,ki,bas[NS];
 float a[NS][N+1],c[N],cb[NS],th[NS], 
  x[ND],cj,z,t,b,min,max;
 /* Initializing the arrays to zero */
 init(c,N); init(cb,NS);
 init(th,NS); init(x,ND);
 for (i=0;i<NS;i++) init(a[i],N+1);
 /* Now set coefficients for slack 
    variables equal to one */
 for (i=0;i<NS;i++) a[i][i+ND] = 1.0;
 /* Now put the slack variables in the basis */
 for (i=0;i<NS;i++) bas[i] = ND+i;
 /*Now get the constraints
   and the objective function */
 cout << "Enter the constraints" << endl;
 for (i=0;i<NS;i++)
 {
   for (j=0;j<ND;j++) 
   cin >> a[i][j]; 
   cin >> a[i][N];
 }
 cout << "Enter the objective function"
      << endl;
 for (j=0;j<ND;j++)
   cin >> c[j];
 cout << fixed;
 /*Now calculate cj and identify the incoming variable */
 while (1)
 {
   max = 0; kj = 0;
   for (j=0;j<N;j++)
   {
     z = 0;
     for (i=0;i<NS;i++)
        z += cb[i]*a[i][j];
     cj = c[j]-z;
     if(cj > max)
         {max = cj; kj = j;}
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   }
   /* Apply the optimality test */
   if(max <= 0) break;
   /* Now calculate thetas */
   max = 0;
   for (i=0;i<NS;i++)
      if(a[i][kj]!= 0)
      {
        th[i] = a[i][N]/a[i][kj];
        if(th[i] > max) max=th[i];
      }
 /* Now check for unbounded soln. */
 if(max <= 0)
 {
    cout << "Unbounded solution";
    return 1;
 }
 /*Now search for the outgoing variable */
 min = max; ki = 0;
 for (i=0;i<NS;i++)
   if ((th[i] < min)&&(th[i]!= 0))
   {
      min = th[i]; ki = i;
   }
 /*Now a[ki][kj] is the key element*/
 t = a[ki][kj];
 /*Divide the key row by key element*/
 for (j=0;j<N+1;j++) a[ki][j] /= t;
 /*Make all other elements of key column zero */
 for (i=0;i<NS;i++)
  if(i!= ki)
  {
    b = a[i][kj];
    for (k=0;k<N+1;k++)
      a[i][k]-=a[ki][k]*b;
  }
  cb[ki] = c[kj];
   bas[ki] = kj;
}
/* Now calculating the optimum value */
for (i=0;i<NS;i++)
   if ((bas[i] >= 0) && (bas[i]<ND))
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      x[bas[i]] = a[i][N];
z = 0;
for (i=0;i<ND;i++)
   z += c[i]*x[i];
for (i=0;i<ND;i++)
   cout << "x[" << setw(3) << i+1 << "] = "
        << setw(7) << setprecision(2)
        << x[i] << endl;
   cout << "Optimal value = "
        << setw(7) << setprecision(2)
        << z << endl;
 return 0;
}
NOTES: ND is no. of decision variables.
NS is no. of slack variables.
a is the array containing Body Matrix, Unit Matrix and bi’s
c is an array containing values of cj’s
cb is an array containing values of cB’s
th is an array containing values of ’s
bas is basis. For xi’s basis contains i, for si’s basis contains i + ND
ki is the key row.
kj is the key column.

Computer Solution of Example 12.4

Enter the constraints
4 2 80
2 5 180
Enter the objective function
3 4
x[ 1] = 2.50 
x[ 2] = 35.00
Optimal value = 147.50
Computer Solution of Example  12.16

Enter the constraints
2 3 2 440
4 0 3 470
2 5 0 430
Enter the objective function
4 3 6
x[ 1] = 0.00 
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x[ 2] = 42.22 
x[ 3] = 156.67
Optimal value = 1066.67

Exercises 15.1

1. Write a C++ program which prints all odd positive integers less than 100, 
omitting those integers divisible by 7.

2. Write a C++ program to convert a binary number to its equivalent deci-
mal number.

3. Write a C++ program to calculate N! and use this to evaluate 

!
!( )!KC

N
N

K N K



 

4. Determine the number of integers n, 1  n  2000, that are not divisible 
by 2, 3 or 5 but are divisible by 7.

5. Write a C++ program to evaluate the roots of the equation ax2 + bx + c 
= 0.

6. Write a computer program in “C++” for finding a real root of the equa-
tion f(x) = 0 by the bisection method.

7. Write a C++ program to find a real root of x3 – 4x – 9 = 0 using the 
method of false position.

8. Write an algorithm for the Newton-Raphson method to solve the equa-
tion f(x) = 0. Apply the same to solve cos x – xex = 0 near x = 0.5 correct 
to three decimal places.

9. Write a C++ program to solve the following equations by the Gauss-
Seidal method:
83x + 11y – 4z = 95; 7x + 52y + 13z = 104; 3x + 8y + 29z = 71.

10. With the help of a flow chart, write a C++ program to solve:
7.5x + 3.8y + 2.9z = 15; 3.2x + 6.8y + 7.4z = 37; 1.3x + 2.1y + 3.2z = 7, 
using the factorization method.

11. Write a complete C++ program to (i) Add two matrices (ii) Multiply two 
matrices.
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12. Given the data:

x: 5 10 15 20 25 30
y: 17 25 30 33 36 38

Write a C++ program to fit a quadratic relation using least square crite-
rion.

13. Write a program in C++ to estimate f(0.6) by the Lagrange interpolation 
for the following values:

x : 0.4 0.5 0.7 0.8

f(x): – 0.916 – 0.693 – 0.357 – 0.223

14. Write a C++ program to evaluate 
10 2

2
( 2)x x dx   using Simpson’s rule.

15. Write “C++” program for evaluation of 
4

0
( )f x Simpson’s 3/8th rule.

16. Write a program in “C++” for second order Runge-Kutta method.

17. Develop a “C++” program for solving differential equations using the 
Runge-Kutta fourth order formulae.

18. Write a C++ program to find y(0.8) for the differential equation 

1
/ ( ),

2
dy dx x y   given the following table using Milne’s Predictor-

Corrector method:

x: 0 0.2 0.4 0.6
y: 2 2.636 3.595 4.968

19. Write a computer program in C++ to maximize
z = 6x1 + 4x2

subject to 2x1+ 3x2  100, 4x1 + 2x2  120, x1, x2  0, where x1, x2 are the 
number of items to be produced.

20. Develop a computer program in C++ for Example 12.17 and hence 
solve it.





C H A P T E R16
NUMERICAL METHODS 
USING MATLAB

Chapter Objectives

 Introduction 
 An overview of MATLAB features
 3 to 30 Programs of standard methods in MATLAB

16.1 Introduction

MATLAB is a numerical computing, fourth generation pro-
gramming language built around an interactive programming envi-
ronment. There is no need to compile, link, and execute after each 
correction, thus MATLAB programs can be developed in much 
shorter time than equivalent C or C++ programs. It has many built-
in functions that make the learning of numerical methods much 
easier and interesting. Developed by Math Works, MATLAB al-
lows matrix manipulation, plotting of functions and data, imple-
mentation of algorithms, creation of user interfaces, and interfacing 
with programs of other languages. Although it is numeric only, an 
optional toolbox uses the MuPAD symbolic engine, allowing access 
to other algebraic capabilities. An additional Package, Simulink, 
adds graphical multidomain simulation and model based design 
for dynamic and embedded systems. MATLAB (meaning “matrix 
laboratory’’) was created in the late 1970s, by Cleve Moler, then 
chairman of the computer science department at the University of 
New Mexico.
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16.2 An Overview of MATLAB Features

Variables. Variables are defined with the assignment operator, “=”. 
MATLAB is a weakly dynamically typed programming language. It is a 
weakly typed language because types are implicitly converted. It is a dy-
namically typed language because variables can be assigned without declar-
ing their type, except if they are to be treated as symbolic objects and that 
their type can change. Values can come from constants, from computation 
involving values of other variables, or from the output of a function. For 
example:

>>x=17 x=
17
>>x='hat'
x=
hat
>>x=[3*4, pi/2]
x=
12.0000 1.5708
>>y=3*sin(x)
y=
–1.6097 3.0000
Variable names, which must start with a letter, are case sensitive. Hence sun 
and Sun represent two different variables. Variables that are defined within 
a MATLAB function are local in their scope. They are not available to other 
parts of the program and do not remain in memory after exiting the func-
tion (this applies to most programming languages). However, varables can 
be shared between a function and the calling program if they are declared 
global.

Vectors/Matrices. MATLAB is a “Matrix Laboratory” and as such it offers 
many ways to create vectors, matrices, and multidimensional arrays in a 
convenient way. In the MATLAB vernacular, a vector refers to a one-di-
mensional (1 × N or N × 1) matrix, commonly referred to as an array in oth-
er programming languages. A matrix generally refers to a two dimensional 
i.e. m × n array where m and n are greater than or equal to one. Arrays with 
more than two dimensions are referred to as multidimensional arrays.

MATLAB provides a simple way to define simple arrays using the syn-
tax: init: increment: terminator. For example:

>>a=[1:2:10]
a=
 1 3 5 7 9
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defines a variable named “a” (or assigns a new value to an existing variable 
“a”) which is an array consisting of elements 1, 3, 5, 7, and 9. That is, the ar-
ray starts at l (init value), increments uniformly by 2 (increment value) until 
it reaches its final value (terminator value). The increment value can actu-
ally be left out of this syntax (along with one of the colons), to use a default 
value of one. For example:

>>a=[l:5]
a=
 1 2 3 4 5
Indexing is one based, which is usually the convention in mathematics, but 
not in some programming languages.

Matrices can be defined by separating elements of a row by blank 
space or comma and terminating a row by a semicolon. The list of elements 
should be surrounded by square brackets: [ ]. Parenthesis: ( ) are used to 
access elements and subarrays. They are also used to denote a function 
argument list.

>>A=[1 2 3 4; 2 3 4 5; 5 6 7 8; 3 5 2 6] 
A =
 1 2 3 4
  2 3 4 5
 5 6 7 8
 3 5 2 6
>>A(3, 3)
  ans=

  7

Sets of indices can be specified by expressions such as “2:4”, which evalu-
ates to (2, 3, 4). For example, a submatrix taken from rows 2 to 4 and col-
umns 3 to 4 can be written as:

  >>A(2:4, 3:4)
 
  ans=

  4 5

  7 8

  2 6
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A square identity matrix of size n can be generated using the function eye 
and matrices of any size containing all zeros or ones can be generated by 
using functions zeros and ones respectively. For example:

  >>A=eye(3) A=
  1 0 0

  0 1 0

  0 0 1

  >>B=zeros(2, 3) B=
  0 0 0

  0 0 0

  >>C=ones(3, 4) 
  C=
  1 1 1 1

  1 1 1 1

  1 1 1 1

To know, the size of an already defined array, commands length and size are 
used. Most MATLAB functions can accept matrices and will apply them-
selves to each element. For example, mod (2*J, n) will multiply each ele-
ment in J by 2 and then reduce each element modulo “n.” MATLAB does 
include standard “for” and “while” loops, but using MATLAB’s vectorized 
notation often produces code that is easier to read and faster to execute. 
This code excerpted from the function magic.m, creates a magic square M 
for odd values of n (MATLAB function meshgrid is used here to generate 
square matrices I and J containing 1: n).

  [J,I]=meshgrid (1:n); 
  A=mod(I+J–(n+3)/2,n);
  B=mod(I+2*J–2,n); M=n*A+B+1;

The apostrophe (prime) operator () takes the complex conjugate trans-
pose and has the same function as a transpose operator for real-valued ma-
trices. For example:
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>>A=[1 2 3; 3 4 5] A=
 1 2 3

 3 4 5
>>B=A′

B=

 1 3

 2 4

 3 5

The compatibility of dimensions must be observed while working with 
matrices, for example, while multiplication and extension of an existing ma-
trix or defining another one based on it. For instance, if it is tried to annex 
a 4 × l matrix into the 3 × 1 matrix, MATLAB will reject it squarely, giving 
an error message.

Also, a dot (.) must be put in front of the operator for termwise (ele-
ment-by-element) operations. For example:

>>A=[2 5 3; 3 4 6];

>>B=[3 4 8; 3 5 6];

>>C=A.*B 
C=
   6 20 24

   9 20 36

Semicolon. Unlike many other languages, where the semicolon is used to 
terminate commands, in MATLAB the semicolon serves the purpose of 
suppressing the output of the line that it concludes.

Arithmetic Operators. All usual arithmetic operators such as (+) Addi-
tion, (–) Subtraction, (*) Multiplication and (^) Exponentiation are sup-
ported by MATLAB. Their matrix operation is as illustrated below.

>>A=[2 4 6; 1 2 5] 
A=
 2 4 6
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>>B=[1 7 8; 3 2 7] B=
 1 7 8

 3 2 7

>>C=A+B 
C=
 3 11 14

 4 4 12
>>D=A*B′

D=

 78 56
 
 55 42

There are two division operators in MATLAB: / Right division and\Left 
division. The right division x/y results in x divided by y, where x and y are 
scalars whereas the left division is equivalent to y/x. In the case where A 
and B are matrices, A/B returns the solution of X * A = B and A\B yields the 
solution of A * X = B.

Logical Operators. The various logical operators in MATLAB are (&) 
AND, (|) OR and () NOT. The related examples are shown below.

>>A=[2 3 8;3 2 5];

>>B=[2 4 6; 2 4 7];

>>(A>B)|(B>6)

ans=

 0 0 1

 1 0 1
Relational Operators. The relational operators supported by MATLAB 
are < Less than, > Greater than, < = Less than or equal to, > = Greater 
than or equal to, = Equal to,  = Not equal to. These operators always 
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act element-wise on matrices; hence they result in a matrix of logical type. 
These operators return 1 for true and 0 for false. For example,

>>A=[2 6 4; 3 7 5];

>>B=[8 4 3; 2 9 7|;

>>A>B

ans=
1 0 0

Graphics. Function plot can be used to produce a graph from two vectors 
x and y. The code is as shown below produces the following figure of sine 
function.

>>x=0:pi/100:2*pi;
 
>>y=sin(x);

>>plot(x,y)

Three dimensional graphics can be produced using the functions surf, 
plot 3, or mesh.
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Structures. MATLAB supports structure data types. Since all variables 
in MATLAB are arrays, a more adequate name is “structure array,” where 
each element of the array has the same field names. In addition, MAT-
LAB supports dynamic field names (field look-ups by name, “field manip-
ulations, etc.) Unfortunately, MATLAB JIT does not support MATLAB 
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structure, therefore just a simple bundling of various variables in to a struc-
ture will come at a cost.

Function handles. MATLAB supports elements of lambda-calculus by 
introducing function handles, a references to functions, which are imple-
mented either in files or anonymous/nested functions.

Classes. MATLAB supports classes, however the syntax and calling con-
ventions are _ significantly different than in other languages, because MAT-
LAB does not have reference data types. For example, a call to a method

object.method ();
cannot normally alter any variables of object variable. To create an impres-
sion that the method alters the state of variable, MATLAB toolboxes use 
the evalin ( ) command, which has its own restrictions.

Object-Oriented Programming. MATLAB’s support for object-oriented 
programming includes classes, inheritance, virtual dispatch, packages, pass-
by-value semantics, and pass-by-reference semantics.

classdef byee 
      methods
             function outputl (this)
                       disp ('byee')
             end
      end
end
When put in a file named m, this can be executed with the following com-
mands:

>>x=byee;
>>x.outputl; 
Byee

Programs of Standard Methods In Matlab

16.3 Bisection Method (Section 2.7)

Flow-chart

Refer to Section 14.3, page 674

Program

function[]=Bisection_Method()
clc 
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itr=0;
a=input('Enter the value of a:');
b=input('Enter the value of b:');
aerr= input('Enter the allowed error:');
maxitr=input {'Enter the maximum Iterations:'); 
  [x itr]=bisect(a,b,itr);
while(itr<maxitr)
  if(f(a)*f(x)<0)
          b=x;
   else
          a=x;
   end
[xl itr]=bisect(a,b,itr);
if(abs(xl-x)<aerr)
       fprintf{'After %d iteration ,root = %f \n',itr,xl)
       return
end 
x=xl; 
end
fprintf('Iterations not sufficient,solution does not 
         converge \n);
function[x itr_r]=bisect(a,b,itr) 
       if nargin <2, b=2; end 
       x=(a+b)/2;
       itr_r=itr+l;
       fprintf('Iteration no. %d X = %f \n',itr,x)
end

       function[y]=f(x)
               y=(x*x*x-4*x-9);
       end
end
NOTES: a, b are the limits in which the root lies 
aerr is the allowed error
itr is the counter which keeps track of the number of iterations performed 
maxitr is the maximum number of iterations to be performed
x is the value of root at nth iteration.
xl is the value of the root at (n + 1)th iteration
Function Bisect:
Purpose: Performs and prints the result of one iteration
Variables: x is the result of the current iteration.
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Computer Solution of Example 2.15 (a)

Enter the value of a:3
Enter the value of b:2
Enter the allowed error:0.0001
Enter the maximum Iterations:20
Iteration no. 0 X=2.500000
Iteration no. 1 X=2.750000
Iteration no. 2 X=2.625000
Iteration no. 3 X=2.687500
Iteration no. 4 X=2.718750
Iteration no. 5 X=2.703125
Iteration no. 6 X=2.710938
Iteration no. 7 X=2.707031
Iteration no. 8 X=2.705078
Iteration no. 9 X=2.706055
Iteration no. 10 X=2.706543
Iteration no. 11 X=2.706299
Iteration no. 12 X=2.706421
Iteration no. 13 X=2.706482
After 14 iteration, root=2.706482

16.4 Regula-Falsi Method (Section 2.8)

Flow-chart

Refer to Section 14.4, page 676

Program

function[]=Regula_Falsi()
clc
clear all itr=0;
x0=input('Enter the value of x0:');
xl=input('Enter the value of xl:');
aerr=input('Enter the allowed error:');
maxitr=input ('enter the maximum no. of iterations:');
 [x2 itr]=regula(x0,xl,f(x0),f(xl),itr); 
while(itr<maxitr)
 if(f(x0)*f(x2)<0)
      xl=x2;
else 
      x0=x2;
  end
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  [x3 itr]=regula(x0,xl,f(x0),f(xl),itr);
  if(abs(x3-x2)<aerr)
      fprintf('After %d iteration, roots %f\n',itr,x3)
      return
  end 
x2=x3; 
end
fprintf('Iterations not sufficient, solution does not 
         converge \n');
function [x itr_r]=regula(x0,x1,fx0,fx1,itr) 
      x=x0-((x1-x0)/(fx1-fx0)) *fx0; 
      itr_r=itr+1;
         fprintf ('iteration no. %d X=%f/n',itr,x)
end
  function [y]=f (x)
        y=(cos (x)-x*exp(x));
      end
NOTES: f(x) = 0 is the equation whose root is to be found
x0, x1 are units in which root lies
aerr is allowed error
maxitr is maximum number of iterations to be performed
itr is the counter which keeps track of the number of iterations performed
x2 is value of root at nth iteration
x3 is the value of root at (n + 1) th iteration
Function Regula:
Purpose: Performs and prints the result of one iteration
Variables: x is value of root at nth iteration
fx0, fx1 are value of f(x) at x0 and x1, respectively.

Computer Solution of Example 2.20

Enter the value of x0:0
Enter the value of xl:1
Enter the allowed error:0.0001
enter the maximum no. of iterations:20 
iteration no. 0 X=0.314665
iteration no. 1 X=0.446728 
iteration no. 2 X=0.494015 
iteration no. 3 X=0.509946 
iteration no. 4 X=0.515201 
iteration no. 5 X=0.516922
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iteration no. 6 X=0.517485 
iteration no. 7 X=0.517668 
iteration no. 8 X=0.517728
After 9 iteration, roots 0.517728

16.5 Newton Raphson Method (Section 2.11)

Flow-chart

Refer to Section 14.5, page 679 

Program 

function[]=Newton_Raphson () 
clc
clear all
f=inline('x*logl0(x)-1.2');
  df=inline('logl0(x)+.43429'); 
x0=input('Enter the value of x0:'); 
aerr=input('Enter the allowed error:');
maxitr=input ('enter the maximum no. of iterations:');
for itr=l:1:maxitr 
h=f(x0)/df (x0); 
xl=x0-h;
  fprintf('iteration no. %d X=%f \n',itr,xl)
if(abs(h)<aerr)
    fprintf('After %d iteration, roots %f\n',itr,xl)
  return 
  end
x0=xl;
end
fprintf('Iterations not sufficient,solution does not 
         converge \n')
end
NOTES: F(x) = 0 is the equation whose root is to be found
df(x) is the derivative of f(x) w.r.t. x aerr is allowed error
maxitr is maximum number of iterations to be performed
itr is the counter which keeps track of the number of iterations performed
x0 is value of root at nth iteration
xl is the value of root at (n + 1)th iteration

Computer Solution of Example 2.32

Enter the value of x0:2
Enter the allowed error:0.000001
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enter the maximum no. of iterations:10 
iteration no. 1 X=2.813170
iteration no. 2 X=2.741109
iteration no. 3 X=2.740646 
iteration no. 4 X=2.740646
After 4 iteration, roots 2.740646

16.6 Muller’s Method (Section 2.13)

Flow-chart

Refer to Section 14.6, page 681

Program

function[]=Mullers_method ()
clc
clear all
I = 3;
y=inline{'cos(x)-x*exp(x) ' ); 
disp('Enter the initial approximations'); 
for i=I-2:l:3
 x(i)=input('');
end
aerr= input{'Enter the allowed error:');
maxitr=input ('enter the maximum no. of iterations:');
  for itr=l:1:maxitr
    li=(x(I)-x(1-1) )/(x (1-1)-x{I-2));
  di=(x(I)-x(I-2))/{x(1-1)-x{I-2));
  mu=y(x(I-2))*li*li-y(x(1-1))*di*di+y(x(I))*(li+di);
s=sqrt((mu*mu-4*y{x(I))*di*li*(y(x(1-2))*
        li-y(x(1-1))*di+y(x(I)))));
if(mu<0)
      l=(2*y(x(I)>*di)/(-mu+s);
else
      l=(2*y(x(I)}*di)/(-mu-s);
end
      x(I+l)=x(I)+l*(x(I)-x(I-l));
  fprintf{'iteration no. %d X = %f \n',itr,x(1+1))
if(abs(x(1+1)-x(I))<aerr)
    fprintf('After %d iterations, the solution is %f\n',itr,x(1+1))
    return 
  end
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for i=I-2:l:3 
   x(i)=x(i+l);
  end 
end
fprintf{'Iterations not sufficient,solution does not 
         converge \n');
NOTES: y(x) = 0 is the equation whose root is to be found
x is na array which holds the three approximations to the root and the new 
improved value
I is defined as 3 in the program. This has been done because in 
MATLAB, array subscripts always start from 1 and cannot be negative. 
Use of 1 facilitates more readable expressions. For e.g., x[0] can be
written as x[I-3] which looks more like Xi-3, which it actually represents.
li is i
di is i
mu is i
s is [i

2 – 4yi i i (yi-2 i – yi-1 i + yi]
l is 

Computer Solution of Example 2.34

Enter the initial approximations
-1
0
1
Enter the allowed error:0.0001
enter the maximum no. of iterations:10 
iteration no. 1 X=0.441517
iteration no. 2 X=0.512546 
iteration no. 3 X=0.517693 
iteration no. 4 X=0.517757
After 4 iterations, the solution is 0.517757

16.7 Multiplication of Matrices [Section 3.2 (3)4]

Flow-chart

Refer to Section 14.7, page 684

Program

clc
  Ml=input('Enter the element of first matrix'); 
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  M2=input{'Enter the element of second matrix'); 
  mul=Ml*M2-M2;
disp('Result after multiplication is:')
disp(mul)
Computer Solution of Example 3.7

Enter the element of first matrix [0 1 2; 1 2 3; 2 3 4] 
Enter the element of second matrix [1 -2; -1 0; 2 -1] 
Result after multiplication is:
3 -2
5 -5
7 -8

16.8 Gauss Elimination Method [Section 3.4 (3)]

Flow-chart

Refer to Section 14.8, page 687

Program

function[]=gauss_elimination_method()
clc
 N=4;
 a=input('Enter the element of matrix:-')
 for j=l:N-l
 for i=j+l:N
      t=a(i,j)/a (j,j);
      for k=l:N+l 
      a(i,k)=a(i,k)-a(j,k)*t;
      end
 end 
 end
for i=l:N
    for j=l:N+l 
        fprintf('%8.4f',a(i,j));
   end 
 fprintf('\n'); 
 end
   for i=N:-l:l
       s=0;
       for j=i+l:N
           s=s+a(i,j+1).*x(j);
   end
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    x(i)=(a(i,N)-s)/a (i,i);
 end 
end
Notes: N is the number of unknowns
a is an array which holds the augmented matrix
x is an array which will contain values of unknowns
i, j, k are loop control variables.

Computer Solution of Example 3.19

Enter the element of matrix:-[10 -7 3 5 6; -6 8 -1 -4 5; 3 1 4 
11 2; 5 -9 -2 4 7]
10.0000 -7.0000 3.0000 5.0000 6.0000
0.0000 3.8000 0.8000 -1.0000 8.6000
0.0000 0.0000 2.4474 10.3158 -6.8158
0.0000 0.0000 0.0000 9.9247 9.9247 
x=
-3.3947 -0.6842 7.0000 1.0000

16.9 Gauss-Jordan Method [Section 3.4 (4)]

Flow-chart

Refer to Section 14.9, page 689

Program

function[]=gauss_jordan_method() 
N=4;
a=input('Enter the element of matrix:-\n');
for j=l:N
  for i=l:N
         if(i~=j)
                t=a(i,j)/a(j,j);
                for k=l:N+l
                           a(i,k)=a(i,k>-a(j,k).*t;
                       end
                end
         end
end
fprintf('\nThe diagonal matrix is:-\n')
disp(a)
fprintf('\nThe solution is:-\n')
for i=l:N
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     fprintf('x[%d]=%f\n',i,a(i,N + l)./a(i,i));
end
Notes: a is an array which holds the Augmented Matrix
N is the number of unknowns e.g. if it is a 3 × 3 system of equations,
N = 3 and if 5 × 5 system take N = 5
i, j, k are loop variables.

Computer Solution of Example 3.22

Enter the element of matrix:-
[10 -7 3 5 6; -6 8 -1 -4 5; 3 1 4 1 1 2; 5 -9 -2 4 7] 
The diagonal matrix is:
 10.0000 0 0 0 50.00.00
 0 3.8000 0 0 15.2000
 0 0 2.4474 0 -17.1316
 0 0 0 9.9247 9.9247
The solution is:- 
x[l]=5.000000 
x[2]=4.000000 
x[3]=-7.000000
x[4]=l.000000

16.10 Factorization Method [Section 3.4 (5)]

Flow-chart

Refer to Section 14.10, page 691

Program

function[]=Factorization_method()
clc
clear all 
N=3; 
u=zeros(N,N); 
v=zeros(N,1); 
x=ones(N,1);
a=input('Enter the element of matrix');
b=a(:,N); 
l=zeros(N); 
for m=l:N
    urow(m)
    lcol(m)
end 
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disp(u); 
disp(1); 
for i=l:N
    s=0;
    for j=l:i-l 
        s=s+[l(i,j)*v(j)];
     end
      v(i)=b(i)-s;
end
for i=N:-l:l 
    s=0;
  for j=i+l:N
         s=s+[u(i,j)*x(j)];
  end
  x(i)=(v(i)-s)/u(i,i);
  end 
disp(x) 
function[]=urow(i)
   for j=i:N
   s=0;
   for k=l:N 
      s=s+[u(k,j).*l(i,k)]; 
      u(i, j)=a (i, j) -s;
end 
end 
end
function[]=lcol(j)
for i=j:N
    s=0;
     for k=l:j
      s=s+[u(k,j).*l(i,k)];
     if i==j
          1(i,j)=l;
     else
     1(i,j)=(a(i,j)-s)/u(j,j);
  end 
  end 
end
end 
end
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NOTES: 
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N is the number of unknowns
l is the lower triangular matrix 
u is the upper triangular matrix 
a is the coefficient matrix
b is the constant matrix (column matrix)
v is a matrix such that lv = b
x will contain the values of unknowns
i, j, m are loop control variables

Computer Solution of Example 3.23

Enter the element of matrix [3 2 7 4; 2 3 1 5; 3 4 1 7]
3.0000

0
0

1.0000
0.6667
1.0000
0.8750
1.1250
-0.1250

2.0000
1.6667

0
0

1.0000
1.2000

7.0000
-3.6667
-1.6000

0
0

1.0000

Computer Solution of Example 3.24

Enter the element of matrix [10 -7 3 5 6; -6 8 -1 -4 5; 3 1 4 
11 2; 5 -9 -2 4 7]
 10.0000 -7.0000 3.0000 5.0000
 0 3.8000 0.8000 -1.0000
 0 0 2.4474 10.3158
 0 0 0 9.9247
 1.0000 0 0 0
 -0.6000 1.0000 0 0
 0.3000 0.8158 1.0000 0
 0.5000 -1.4474 -0.9570 1.0000
 5.000
 4.000
 -7.000
 1.000
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16.11 Gauss Siedel Iteration Method [Section 3.5 (2)]

Flow-chart

Refer to Section 14.11, page 695

Program

function[]=Gauss_Seidal_Method()
clear all clc
a=input('Enter the element of matrix:\n');
aerr=input ('Enter the allowed error:');
maxitr=input ('enter the maximum no. of iterations:'); 
N=4;
x=zeros(1,N);
fprintf('iterations x[l] x[2] x[3] x[4]\n'
for itr=l:maxitr 
      maxerr=0;
      for i=l:N
          s=0;
          for j=l:N
             if (j~=i)
                   s=s+a(i,j)*x(j);
             end
       end
             t=(a(i,N+l)-s)/a(i,i);
             err=abs(x(i)-t); 
             if(err>maxerr)
                    maxerr=err;
             end
             x(i)=t;
       end 
       fprintf ('%d',itr) 
          for i=l:N 
          fprintf('%f',x(i)) 
          end
          fprintf ('\n')
          if(maxerr<aerr)
                fprintf('Converges in %d, iteration \n',itr)
                      for i=l:.N
                                  fprintf('x(%d)=%2.4f \n',i,x(i))
                          end
                      return
                end
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     end
  fprintf('Solution does not converge, iteration not sufficient 
\n')
  return 
end
NOTES: N is the number of unknowns
a is an array which holds the augmented matrix 
x is an array which hold the values of unknowns 
aerr is allowed error
maxitr is the maximum no. of iterations to be performed
itr is the counter which keeps track of number of iterations performed 
err is the error in value of xi
maxerr is maximum error in any value of xi after an iteration

Computer Solution of Example 3.28

Enter the element of matrix:
[20 1 -2 17; 3 20 -1 -18; 2 -3 20 25] 
Enter the allowed error:0.0001
enter the maximum no. of iterations:10
 iterations x[l] x[2]  x[3] x[4]
 1 0.850000 -1.027500 1.010875
 2 1.002463 -0.999826 0.999780
 3 0.999969 -1.000006 1.000002
 4 1.000001 -1.000000 1.000000
Converges in 4, iteration 
x(1)=1.0000
x(2)=-1.0000 
x(3)=1.0000
Computer Solution of Example 3.30

Enter the element of matrix:
[10 -2 -1 -1 3;-2 0 -1 -1 15;-1 -1 10 -2 27;- 1 -1 -2 10 -9] 
Enter the allowed error:0.0001
enter the maximum no. of iterations:15
 iterations x[l] x[2] x[3] x[4]
 1 0.300000 1.560000 2.886000 -0.136800
 2 0.886920 1.952304 2.956562 -0.024765
 3 0.983641 1.989908 2.992402 -0.004165
 4 0.996805 1.998185 2.998666 -0.000768
 5 0.999427 1.999675 2.999757 -0.000138
 6 0.999897 1.999941 2.999956 -0.000025
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 7 0.999981 1.999989 2.999992 -0.000005
Converges in 7, iteration 
x(1)=1.0000
x(2)=2.0000
x(3)=3.OO00 
x(4)=-0.0000

16.12 Power Method (Section 4.11)

Flow-chart

Refer to Section 14.12, page 699 

Program 

function[]=Power_Method() 
clear all
clc
a=input('Enter the element of matrix:\n');
x=input('Enter the initial approximation to the eigenvector:\n') 
[N M]=size(a);
aerr= input('Enter the allowed error:'); 
maxitr=input('enter the maximum no. of iterations:'); 
dispt'itr No. Eigen Value Eigen vector')
e=max(x);
for itr=l:maxitr 
    r=a*x; 
    t=max(abs(r));
    t=t(1);
    r=r/t;
    maxe=0;
        for i=l:N
        err=abs(x(i)-r(i));
            if(err>maxe) 
            maxe=err;
            end 
        x(i)=r(i); 
        end
  errv=abs(t-e); 
  e=t; 
  fprintf('%d%f',itr,e)
        for i=l:N 
        fprintf('%f',x(i)) 
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        end
  fprintf('\n*) 
        if((errv<=aerr)&&(maxe<=aerr))
        fprintf{'Converges in %d iterations \n',itr); 
        fprintf('Largest eigenvalue=%1.2f \n',e); 
        fprintf('Eigen Vector:-\n');
        fprintf('%1.2f \n',x);
        return end
        end
end
NOTES: N is the number of rows (or columns) in square matrix
a is the square matrix
x is the eigenvector at nth iteration
r is the eigenvector at (n + 1 )th iteration
e is the eigenvalue at nth iteration
t is the eigenvalue at (n + 1)th iteration
aerr is allowed error in eigenvalue and eigenvector 
maxitr is the maximum number of iterations to be performed 
errv is the error in eigenvalue
itr, i are loop control variables

Computer Solution of Example 4.11

Enter the element of matrix: 
[2-1 0;-l 2-1;0-1 2]
Enter the initial approximation to the eigenvector: 
[10 0]
Enter the allowed error:0.01
enter the maximum no. of iterations:10
 itr No. Eigenvalue Eigenvector
 1 2.000000 1.000000 -0.500000 0.000000
 2 2.500000 1.000000 -0.800000 0.200000
 3 2.800000 1.000000 -1.000000 0.428571
 4 3.428571 0.875000 -1.000000 0.541667
 5 3.416667 0.804878 -1.000000 0.609756
 6 3.414634 0.764286 -1.000000 0.650000
 7 3.414286 0.740586 -1.000000 0.673640
 8 3.414226 0.726716 -1.000000 0.687500
 9 3.414216 0.718593 -1.000000 0.695621
Converges in 9 iterations
Largest eigenvalue=3.41
Eigenvector:-
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0.72
-1.00
0.70

16.13 Method of Least Squares (Section 5.5)

Flow-chart

Refer to Section 14.13, page 703

Program

function[]=Least_square_Method()
clear all 
clc 
augm=zeros(3,4);
n=input('Enter the number of pair of observation value:-\n');
augm(1,1)=n;
for i=l:n
      fprintf('Pair no. %d \n',i)
       x=input(' '); 
       xsq=x(1)*x(1); 
       augm(1,2)=augm(1,2)+x(1);
          augm(1,3)=augm(1,3)+xsq;
            augm(2,3)=augm(2,3)+x(l)*xsq;
               augm(3,3)=augm(3,3)+xsq*xsq;
                  augm(1,4)=augm(1,4)+x(2);
       augm(2,4)=augm(2,4)+x(1)*x(2);
augm(3,4)=augm{3,4)+xsq*x(2);
  end 
     augm(2,2)=augm(1,3);
augm(3,2)=augm(2,3); 
augm(2,1)=augm(1,2); 
augm(3,1)=augm(2,2);
disp('The augmentd matrix is:-')
disp(augm)
for j=l:3
    for i=l:3 
        if(i~=j)
             t=augm(i,j)/augm(j,j);
             for k=l:4
                 augm(i,k)=augm(i,k)-augm(j,k)*t;
             end
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        end
    end
 end
       a=augm(1,4)/augm(1,1); 
       b=augm(2,4)/augm(2,2); 
       c=augm(3,4)/augm(3,3);
       fprintf('a=%f b=%f c=%f \n',a,b,c)
Notes: augm is the augmented matrix
n is the number of data points

Computer Solution of Example 5.7

Enter the number of pair of observation value:-
7
Pair no.1 
[1 1.1] 
Pair no.2 
[1.5 1.3] 
Pair no.3 
[2 1.6] 
Pair no.4 
[2.5 2] 
Pair no.5 
[3 2.7] 
Pair no.6 
[3.5 3.4] 
Pair no.7 
[4 4.1]
The augmentd matrix is:-
7.0000 17.5000 50.7500 16.2000
17.5000 50.7500 161.8750 47.6500
50.7500 161.8750 548.1875 154.4750
a=1.035714 b=-0.192857 c=0.242857

16.14 Method of Group Averages (Section 5.9)

Flow-chart

Refer to Section 14.14 , page 706

Program

function []=Method_Of_Averages()
clc
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format compact 
format short g
n=input('Enter the No of Observations:-');
 t=input('Enter the different values of t:-')
disp(The Values of t are:')
disp(t);
r=input('Enter the Corresponding values of r')
disp('The Values of r are:')
disp(r); 
  tsl=0;rsl=0;ts2=0;rs2=0; 
  for i=l:(n/2)
    tsl=tsl+t(i);
    rsl = rsl+r(i);
end
  for i=(n/2)+l:n 
    ts2=ts2+t(i);
    rs2=rs2+r(i);
end 
  xl=tsl/(n/2);
yl=rsl/(n/2); 
x2=ts2/(n/2); 
y2=rs2/(n/2);
b=(y2-yl)/(x2-xl);
a=yl-(b*xl);
disp('The values of a&b comes out to be:')
a 
b 
end
Computer Solution of Example 5.16

Enter the No of Observations:-8
Enter the different values of t:-[40 50 60 70 80 90 100 110]
t=
40 50 60 70 80 90 100 110
The Values of t are:
40 50 60 70 80 90 100 110
Enterthe Corresponding values of r[1069.1 1063.6 1058.2 1052.7
1049.3 1041.8 1036.3 1030.8]
r=
Columns 1 through 7
1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3
Column 8
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1030.8
The Values of r are: 
Columns 1 through 7
1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3
Column 8
1030.8
The values of a&b comes out to be:
a=1090.3
b=-0.53375

16.15 Method of Moments (Section 5.11)

Flow-chart

Refer to Section 14.15, page 708

Program

function [ ]=Method_Of_Moments()
clc
format compact
n=input('Enter the No of Observations:-'); 
x=input('Enter the different values of x:-'); 
y=input('Enter the Corresponding values of y')
h=x(2)-x(l);
xlyt=0;yt=0;
for i=l:n 
  yt=yt+y(i); 
  xlyt=xlyt+x(i).*y(i);
end 
ml=h.*yt; 
m2=h.*xlyt;
11=(-(h/2)+x(l));
12=((h/2)+x(n));
cl=12-ll;
c2=((12.*12)-{11.*11))/2; 
c3=((12.*12.*12)-(ll.*ll.*l1))/3; 
fprintf('The Observed Equations are:\n')
fprintf('%5.2fa+%5.2fb=%5.2f\n *%5.2fa+%5.2fb=%5.2f\
         n',cl,c2,ml,c2,c3,m2)
d=c2/cl; 
dl=d*cl; 
d2=d*c2; 
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ml=d*ml;
b=(m2-ml)/(c3-d2);
a=(ml-(d2*b))/dl;
fprintf('\non solving these equations we get a=%5.2f & b=%5.2f\
n',a,b)
fprintf('hence the required equation is: y = %5.2f +%5.2fx\
n',a,b)
end
Computer Solution of Example 5.20

Enter the No of Observations:-4
Enter the different values of x:-[l 2 3 4]
Enter the Corresponding values of y [16 19 23 26]
 y=16 19 23 26
The Observed Equations are:
4.00a+10.00b=84.00
*10.00a+30.33b=227.00
On solving these equations we get a= 13.03 & b= 3.19 
hence the required equation is: y = 13.03 + 3.19x

16.16 Newton’s Forward Interpolation Formula (Section 7.2)

Flow-chart

Refer to Section 14.16, page 714

Program

function []=Newtons_Forward_Interpolation_Formula()
clc
format compact 
MAXN=100; 
ORDER=4; 
nr=l;,dr=l;
n=input('Enter the value of n:-'); 
  ax=input('Enter the values in form of x:-'); 
  ay=input('Enter the values in form of y:-'); 
  disp ([ax' ay1])
x=input('Enter the value of x for which value of y is wanted:-')
h=ax(2)-ax(1);
for i=l:n
    diff(i,2)=ay(i)-ay(i);
end
for j=3:ORDER+l 
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   for i=l:n-j
   diff(i, j)-diff(i+l,j-l)-diff(i,j-l);
     end
end 
i=1; 
while(~(ax(i)>x)) 
i=i+l;
end
i=i-1;
p=(x-ax(i))/h;
yp=ay(i);
for k=2:ORDER+l 
    nr=nr*(p-k+1); 
    dr=dr-*'k;
    yp=yp+((nr/dr)*diff(i,k));
end
fprintf('%4.%f \n',yp)
end
Notes: MAXN is the maximum value of N
ORDER is the maximum order in the difference table
ax is an array containing values of x (x0, x1,...,xn)
ay is an array containing values of y (y0, y1,...,yn)
diff is a 2D array containing the difference table
h is spacing between values of X
x is value of x at which value of y is wanted
yp is calculated value of Y
nr is numerator of the terms in expansion of yp
dr is denominator of the terms in expansion of yp

Computer Solution of Example 7

Enter the value of n:-6
Enter the values in form of x:-[100 150 200 250 300 350 400]
Enter the values in form of y:-[ 10.63 13.03 15.04 16.81 18.42 
19.90 21.27]
 100 10.63
 150 13.03
 200 15.04
 250 16.81
 300 18.42
 350 19.9
 400 21.27
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Enter the value of x for which value of y is wanted:-218
x=218 15.0

16.17 Lagrange’s Interpolation Formula (Section 7.12)

Flow-chart

Refer to Section 14.17, page 714

Program

function[] = Lagranges_Interpolation_Formula()
clc
MAX=100;
n=input('Enter value of n:-'); 
ax=input{'Enter values of x:-'); 
ay=input{'Enter values of y:-');
x=input{'Enter value of which y is wanted:-');
y=0;
for i=l:n+l 
    dr=l; 
    nr=l;
    for j=l:n+l 
        if(j~=i)
             nr=nr*(x-ax(j));
             dr=dr*(ax(i)-ax(j));
        end
    end
    y=y+((nr/dr)*ay(i));
end
fprintf('When x=%4.1f ,y=%4.1f \n',x,y);
end
Notes: MAX is the maximum value of n
ax is an array containing values of x (x0, x1,....xn) 
ay is an array containing values of y (y0, y1,...,yn) 
x is value of x at which value of y is wanted
y is calculated value of y
nr is numerator of the terms in expansion of y
dr is denominator of the terms in expansion of y
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Computer Solution of Example 7.17

Enter value of n:-4
Enter values of x:-[5 7 1113 17]
Enter values of y:-[150 392 1452 2366 5202] 
Enter value of which y is wanted:-9
When x=9.0,y=810.0

16.18 Newton’s Divided Difference Formula (Section 7.14)

Flow-chart

Refer to Section 14.18, page 716

Program

function [] = Newtons_ Divided- Difference Formula()
clc
n=input('Enter value of observation n:-'}; 
x=input('Enter values of x:-'); 
y=input('Enter values of y:-');
k=input('Enter value of which y is wanted:-');
j=i; 
f=y(1); 
f2=0; 
while(n~=l)
    for i=l:n-l
       p(i)=(y(i+l)-y(i))/(x(i+j)-x(i));
       y(i)=p(i);
    end 
    fl=l;
    for i=l:j
      fl=fl*(k-x (i));
    end
    f2-f2+(y(l)*fl);
    n=n-l;
    (j=j+1);
end 
  f=f+f2; 
  fprintf('f(%d)=%d\n',k,f)
end
Computer Solution of Example 7.23

Enter value of observation n:-5
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Enter values ofx:-[5 7 11 13 17]
Enter values of y:-[150 392 1452 2366 5202] 
Enter value of which y is wanted:-9
f(9)=810

16.19  Derivatives Using Forward Difference Formula 
[Section 8.2]

Flow-chart

Refer to Section 14.19, page 718

Program

function[]=Forward_Difference_Formula()
clc
v=[0 0 l 1 11/12 5/6 137/180];
max=8;
x=[l 1.1 1.2 1.3 1.4 1.5 1.6];
y=[7.989 8.403 8.781 9.129 9.451 9.750 10.031];
xval=l.1;
disp(['The values of x are: ', num2str(x)]);
disp(['The values of y are: ', num2str(y)]);
disp(['The value of x for evaluation is: ', num2str{xval)]);
for i=0<max 
if(x(i+1)>=xval)
    pos=i+l;
    break;
end 
end 
x0=x(pos); 
y0=y(pos);
fprintf(' \n x0 is %f y0 is %f at %d' , x0, y0, pos)
h=x(2)-x{l); 
p=((xval-x0)/h); 
if(pos<max)
    fact=l; 
    l=max-pos;
    fprintf('\n' ); 
    for i=0<l
        for j=0:i
            tmp((i+1)*l+(j+l))=0;
        end 
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    fprintf('\n') 
    end
    fprintf('\n size of new array %d \n',l);
    i=0;
j=pos; 
    while(i<l) 
    tmp(i+l)=y(j); 
    i=i+l;
    j=j+1; 
    end 
    fprintf('\n'); 
    for i=1<1
        for j=0<1
             tmp((i+1)*l+(j+l))=tmp((i)*l+(j+2))-tmp((i)*l+(j+1));
         end
    end
    fprintf('\n values are \n');
    for i=0<l
        for j=0<l 
            fprintf{'%f\t|',tmp((j+1)*1+(i+1)));
        end
            fprintf('\n')
    end
    sum=0;
    k=l;
    for i=l<l 
        sum=sum+((1.0/(i+1))*tmp((i+1)*l+0))*k;
        k=-k;
    end
    fprintf('\n\n first (dy/dx):%f',sum/h);
    sum=0; 
    fact=l; 
    k=l;
    for i=2<l
        sum=sum+(v((i+1))*tmp((i+l)*l+0)*k);
        k=-k;
    end 
    fprintf('\n\n second (dy/dx): %f',sum/(h^2))
end
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end 
Computer Solution of Example 8.1

The values of x are:  1  1.1  1.2  1.3  1.4  1.5  1.6
The values of y are:  7.989  8.403  8.781  9.129  9.451  9.75  10.031
The value of x for evaluation is: 1.1 
x0 is 1.100000 y0 is 8.403000 at 1 
size of new array 6
first (dy/dx): 3.952600 
second (dy/dx): –3.741200

16.20 Trapezoidal Rule (Section 8.5-1)

Flow-chart

Refer to Section 14.20, page 724 

Program 

function[]=Trapezoidal_Rule() 
format compact
clc
y=inline('1/(1+x.*x)'); 
x0=input('Enter x0:'); 
xn=input('Enter xn:');
n=input('Enter no of subintervals:');
h=(xn-x0)/n;
s=y(xO)+y(xn);
for i=l:n-1 
    s=s+2.*y(x0+i.*h);
end
fprintf('The value of integral is: %f\n',h/2.*s)
end
NOTES: y(x) is the function to be integrated
x0 is x0
xn is xn

Computer Solution of Example 8.10 (i)

Enter x0:0
Enter xn:6
Enter no of subintervals:6
The value of integral is:1.410799
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16.21 Simpson’s Rule (Section 8.5-II)

Flow-chart

Refer to Section 14.21, page 736

Program

function[]=Simpsons_Rule()
clc 
y=inline('1/(1+x.*x)'); 
x0=input('Enter x0:'); 
xn=input('Enter xn:');
n=input('Enter no of subintervals:');
h=(xn-x0)/n; 
s=y(x0)+y(xn)+4.*y(x0+h); 
for i=3:2:n-l
    s=s+4.*y(x0+i.*h)+2.*y(x0+(i-1).*h);
end
fprintf('The value of integral is: %f\n',h/3.*s)
NOTE: y(x) is the function to be integrated so that yi = y(yi) = y(x0 + i*h)

Computer Solution of Example 8.10 (ii)

Enter x0:0
Enter xn:6
Enter no of subintervals:6
The value of integral is: 1.366173

16.22 Euler’s Method (Section 10.4)

Flow-chart

Refer to Section 14.22, page 727

Program

function[]=Eulers_Method()
format compact
format 
clc df=inline{'x+y');
x0=input(' Enter value of x0:-'); 
y0=input('Enter value of y0:-'); 
h=input('Enter value of h:-'); 
x=input('Enter value of x:-'); xl=x0;
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yl=y0;
while(x>xl) 
    yl=yl+h.*df(xl,yl); 
    xl=xl+h;
    fprintf('When x=%2.2f y=%2.2f\n',xl,yl)
end 
end
NOTE:  df(x, y) is dy/dx 
x0 is xn+0, i.e., xn
xl is xn+1
y0 is yn+0, i.e., yn
yl is yn+1

Computer Solution of Example 10.8

Enter value of x0:-0
Enter value of y0:-l
Enter value of h:-0.1
Enter value of x:-l
When x=0.10 y=1.10
When x=0.20 y=1.22
When x=0.30 y=1.36
When x=0.40 y=1.53
When x=0.50 y=1.72
When x=0.60 y=1.94
When x=0.70 y=2.20
When x=0.80 y=2.49
When x=0.90 y=2.82
When x=1.00 y=3.19
When x=1.10 y=3.61

16.23 Modified Euler’s Method (Section 10.5)

Flow-chart

Refer to Section 14.23, page 729

Program

function[]=Eulers_Method()
format compact 
format short g 
clc
df=inline('x+y');
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x0=input('Enter x0:'); 
y0=input{'Enter y0:'); 
h=input{'Enter h:'); 
x=input('Enter x:'); 
xl=x0;
yl=y0;
while (1)
    if(x<xl)
       return; 
    end 
    yl=yl+h.*df(xl,yl); 
    xl=xl+h;
    fprintf ('When x=%3.1f y=%a4.2f\n',xl,yl)
end 
end
Computer Solution of Example 10.10

Enter x0:0
Enter y0:l
Enter h:0.1
Enter x:0.3
Whenx=0.1 y=1.10
Whenx=0.2 y=1.22
Whenx=0.3 y=l.36

16.24 Runge-Kutta Method (Section 10.7)

Flow-chart

Refer to Section 14.24, page 732

Program

function[]=Runga_Kutta_Method()
clc
format compact 
format short g 
f=inline{'x+y*y');
x0=input('Enter the value x0:'); 
y0=input('Enter the value y0:'); 
h=input('Enter the value h:'); 
xn=input('Enter the value xn:'); x=x0;
y=y0;
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while (1)
    if(x==xn)
       break 
    end
    kl=h*f(x,y); 
    k2=h*f(x+h/2,y+kl/2);
    k3=h*f(x+h/2,y+k2/2);
    k4=h*f(x+h,y+k3);
    k=(kl+(k2+k3)*2+k4)/6;
    x=x+h;
    y=y+k;
    fprintf('When x=%f y=%f \n',x,y)
  end
end
NOTES: x0 is starting value of x, i.e., x0
xn is the value of x for which y is to be determined

Computer Solution of Example   10.15

Enter the value x0:0
Enter the value y0:l
Enter the value h:0.2
Enter the value xn:0.2
When x=0.200000 y=l.273536

16.25 Milne’s Method (Section 10.9)

Flow-chart

Refer to Section 14.25, page 734

Program

function,[]=Milne_Method()
clc
format compact 
format short g 
global x y;
global h
x=[0 0 0 0 0 ];
y=[0 0 0 0 0];
x(1)=input('Enter the value x0:');
xr=input('Enter the last value of x:'); 
h=input{'Enter the spacing value:'); 
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aerr=input('Enter the allowed error:'); 
y=input('Enter the value of y(i),i=0,3:-'); 
for i=l:3
    x(i+1)=x(1)+i*h;
    x(2:3,:)=x(2:3,:)+x(1,1)*6
end
disp('x Predicted Corrected');
disp('y f y f');
while (1)
  if(x(4)==xr)
       return
  end 
  x(5)=x(4)+h; y(5)=y{l)+(4*h/3)*(2*(f(2)+f(4))-f(3));
  fprintf('%f   %f   %f   \n', x(5), y(5), f(5) );
  correct();
  while(1) 
      yc=y(5); 
      corect();
      if(abs(yc-y(5)<=aerr))
           break;
      end
  end
  for i=l:4 
      x(i)=x(i+l);
      y(i)=y(i+1);
  end 
end
  function [z]=f(i)
         z=x(i)-y(i)*y(i);
  end 
function[]=correct()
  y(5)=y(3)+(h/3)*(f(3)+4*f(4)+f(5));
  fprintf('%f %f\n', y(5),f(5))
  end
end
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NOTES: x is an array such that x[i] represents xn + i for e.g., x[0] represent 
xn
y is an array such that y[i] represents yn + i
xr is the last value of x at which value of y is required
h is spacing in values of x
aerr is the allowed error in value of y yc is the latest corrected value for y
f is the function which returns value of y
correct calculates the corrected value of y and prints it

Computer Solution of Example 10.19

Enter the value x0:0
Enter the last value of x:1
Enter the spacing value:0.2
Enter the allowed error:0.0001
Enter the value of y(i),i=0,3:-[0 0.2 0.0795 0.1762]
 x Predicted Corrected
  y f y f
 0.800000 0.283794 0.719461 0.305430 0.706712
    0.304580 0.707231
    0.304615 0.707210
1.000000 0.635420 0.596241
    0.442469 0.804221
    0.456334 0.791759

16.26 Adams-Bashforth Method (Section 10.10)

Flow-chart

Refer to Section 14.26, page 736

Program

function[]=Adams_Bashforth_Method()
clc
format compact 
format short g
x=input{'Enter Values of x\n'); 
y=input('Enter Values of y\n'); 
sz=size(x);
sz=sz(2);
h=x(2)-x(l);
for i=l:sz 
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    tx=x(i); 
    ty=y(i);
    tf=(tx^2*{1.0+ty));
    f(i)=tf;
end
for i=l:sz 
x(i);
y(i); 
f(i); 
end
x(sz+1)=1.4;
y(sz+1)=y(sz)+(h/24)*((55*f(sz))-(59*f(sz-1))+(37*f(sz-2))-
(9*f<sz-3));
f(sz+1)=(x(sz+1)^2)*(1.0+y(sz+1));
for i=l:sz+l
fprintf('x=%4.If y%d=%4.3f f%d=%4.5f\n',x(i), i-sz,y(i),i-
sz,f(i))
end 
end
Computer Solution of Example 10.23

Enter Values of x 
[1 1.1 1.2 1.3] 
Enter Values of y
[1 1.233 1.548 1.979]
x=1.0 y-3=1.000 f-3=2.00000 
x=1.1 y-2=l.233 f-2=2.70193 
x=1.2 y-1=1.548 f-1=3.66912 
x=1.3 y0=1.979 f0=5.03451 
x=1.4 y1=2.572 fl=7.00170

16.27 Solution of Laplace’s Equation (Section 11.5)

Flow-chart

Refer to Section 14.27, page 740

Program 

function[]=Laplace_Equation() 
global SQR u
clc
SQR=4;
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u=zeros(SQR);
disp('Enter the boundry conditions')
getrow(1,u); 
getrow(SQR,u); 
getcol(1,u); 
getcol(SQR,u); 
aerr=.1; 
maxitr=10;
for itr=l:maxitr
     maxerr=0;
     for i=2:SQR-l
         for j=2:SQR-l
             t=(u(i-l,j)+u(i+l,j)+u(i,j+l)+u(i,j-1))/4;
             err=abs(u(i,j)-t);
             if(err>maxerr)
                 maxerr=err;
             end
             u(i,j)=t;
         end
      end 
fprintf('iteration No.%d \n',itr);
disp(u)
if(maxerr<=aerr)
   fprintf('After %d iterations \ n  t h e  s o l u t i o n  i s  
\n',itr)
disp(u) 
return 
end
end
    function[]=getrow(i,u)
       global u
        fprintf('Enter the values of u[%d,j],j-1,%d \n',i,SQR);
        for j=l:SQR
            u(i, j)=input ('');
        end
    end
    function []=getcol(j,u)
       global u
          fprintf{'Enter the values of u[i,%d],i=2,%d \n',j,SQR-1);
          for i=2:SQR-1 
              u(i,j)=input{'');
          end



NUMERICAL METHODS USING MATLAB • 879

    end
end
NOTES: SQR is the size of the square mesh
u is a 2D array representing the square mesh
aerr is allowed error
maxitr is the maximum number of iterations to be performed
itr is the counter which keeps track of number of iterations performed 
err is the error in a particular point of the mesh
maxerr is maximum error in the mesh in an iteration
f is the execution time format
getrow inputs the ith row of the mesh 
getcol inputs the jth column of the mesh

Computer Solution of Example 11.3 (a)

Enter the boundry conditions

Enter the values of u[l,j],j=l,4
The elements of the matrix 1000
The elements of the matrix 1000
The elements of the matrix 1000
The elements of the matrix 1000

Enter the values of u[4,j],j=l,4
The elements of the matrix 1000
The elements of the matrix 500
The elements of the matrix 0
The elements of the matrix 0

Enter the values of u[i,l],i=2,3
The elements of the matrix 2000
The elements of the matrix 2000

Enter the values of u[i,4], i=2,3
The elements of the matrix 500
The elements of the matrix 0 
iteration No. 1
1.0e+003 *
 1.0000 1.0000 1.0000 1.0000
 2.0000 0.7500 0.5625 0.5000
 2.0000 0.8125 0.3438 0
 1.0000 0.5000 0 0 
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iteration No.2
1.0e+003*
 1.0000 1.00 00 1.0000 1.0000
 2.0000 1.09 38 0.7344 0.5000
 2.0000 0.98 44 0.4297 0
 1.0000 0.50 00 0 0
iteration No.3 
1.0e+003*  
 1.0000 1.00 00 1.0000 1.0000
 2.0000 1.17 97 0.7773 0.5000
 2.0000 1.02 73 0.4512 0
 1.0000 0.50 00 0 0
iteration No.4  
1.0e+003 *  
 1.0000 1.00 00 1.0000 1.0000
 2.0000 1.20 12 0.7881 0.5000
 2.0000 1.03 81 0.4565 0
 1.0000 0.50 00 0 0
iteration No.5
1.0e+003 *
 1.0000 1.0000 1.0000 1.0000
 2.0000 1.2065 0.7908 0.5000
 2.0000 1.0408 0.4579 0
 1.0000 0.5000 0 0 
iteration No.6
1.0e+003 *
 1.0000 1.0000 1.0000 1.0000
 2.0000 1.2079 0.7914 0.5000
 2.0000 1.0414 0.4582 0
 1.0000 0.5000 0 0 
iteration No.7
1.0e+003 *
 1.0000 1.0000 1.0000 1.0000
 2.0000 1.2082 0.7916 0.5000
 2.0000 1.0416 0.4583 0
 1.0000 0.5000 0 0
iteration No.8  
1.0e+003 *  
 1.0000 1.0000 1.0000 1.0000
 2.0000 1.2083 0.7917 0.5000
 2.0000 1.0417 0.4583 0
 1.0000 0.5000 0 0
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After 8 iterations the solution is
1.0e+003*
 1.0000 1.0000 1.0000 1.0000
 2.0000 1.2083 0.7917 0.5000
 2.0000 1.0417 0.4583 0
 1.0000 0.5000 0 0

16.28 Solution of Heat Equation (Section 11.9)

Flow-chart

Refer to Section 14.28, page 745

Program

function[]=Heat_Equation()
clc
format compact 
format short g
XEND=8; 
TEND=5; 
u=zeros(XEND+1,TEND+1); 
h=1.0;k=0.125;
f=inline('4.*x-(x.*x)/2. 0);
csqr=input('Enter the square' of c:\n');
alpha=(csqr.*k)/(h.*h);
ust=input('Enter the value of u[0,t]:'); 
fprintf('Enter the value of u[%d,t]\n',XEND); 
uet=input('');
for j=l:TEND+l
    u(XEND,j)=ust;
    u(l,j)=u(XEND,j);
end
for i=l:XEND-l 
u(i+l,l)=f(i); 
end
for j=l:TEND
    for i=2:XEND
        u(i,j+1)=alpha*u(i-1,j) + (l-2*alpha)*u(i,j)+alpha*u(i+1,j);
    end
end
fprintf('The value of alpha is %4.2f\n1,alpha)
disp('The value of u(i,j) are:-')
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disp(u');
end
NOTES: XEND is the ending value of x
TEND is the ending value of t 
h is the spacing in values of x 
k is the spacing in values of y 
f(x) is value of u(x, 0)
csqr is value of C2

alpha is a
ust is the value in first column
uet is the value in the last column

Computer Solution of Example 11.11

Enter the square of c:4
Enter the value of u[0,t]:0
Enter the value of u[8,t] 0
The value of alpha is 0.50
The value of u(i,j) are:- 
Columns 1 through 7
 0 3.5 6 7.5 8 7.5 6
 0 3 5.5 7 7.5 7 5.5
 0 2.75 5 6.5 7 6.5 5
 0 2.5 4.625 6 6.5 6 4.625
 0 2.3125 4.25 5.5625 6 5.5625 4.25
 0 2.125 3.9375 5.125 5.5625 5.125 3.9375
Columns 8 through 9
 3.5 0
 3 0
 2.75 0
 2.5 0
 2.3125 0
 2.125 0

16.29 Solution of Wave Equation (Section 11.12)

Flow-chart

Refer to Section 14.29, page 748

Program

function[]=Wave_Equation()
clc 



NUMERICAL METHODS USING MATLAB • 883

XEND=5; 
TEND=5;
f=inline('x*x*(5-x)1);
csqr=input('Enter the square of c\n'); 
ust=input('Enter the value of u[0][t]\n'); 
fprintf('Enter the value of u[%d][t]\n',XEND) 
uet=input('');
for j=l:TEND+l 
    u(1,j)=ust;
    u(XEND+1,j)=uet;
end
for i=l:XEND-l 
    u(i+l,l)=f(i); 
    u(i+l,2)=f(i);
end
for j=2:TEND
    for i=2:XEND
      u(i, j+1)=u(i-1,j)+u(i+l,j)-u(i,j-1);
    end
end 
u' 
end
NOTES: XEND is the ending value of x
TEND is the ending value of t 
f(x) is value of u(x, 0)
csqr is value of C2

ust is the value in first column
uet is the value in the last column

Computer Solution of Example 11.14

Enter the square of c 16
Enter the value of u[0][t] 0
Enter the value of u[5j[t] 0 
ans =
 0 4 12 18 16 0
 0 4 12 18 16 0
 0 8 10 10 2 0
 0 6 6 -6 -6 0
 0 -2 -10 -10 -8 0
 0 -16 -18 -12 -4 0
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16.30 Linear Programming-Simplex Method (Section 12.8)

Flow-chart

Refer to Section 14.30, page 750

Program

function [ ]=Linear_Programming_Simplex_Method()
clc 
ND=2; 
NS=2; 
N=ND+NS;
N1=NS*(N+l);
c=zeros(1,N); 
cb=zeros(1,NS); 
th=zeros(1,NS); 
x=zeros(1,ND); 
a=zeros(NS,N+l); 
bas=zeros{1,NS); 
for i=l:NS
     a(i,i+ND)=1.0;
end
for i=l:NS
    bas(i)=i+ND;
end
disp('Enter the constraints')
for i=l:NS
    for j=l:ND
        a(i, j)=input ('');
    end
    a(i,N+l)=input ('');
end
disp('Enter the objective function')
for i=l:ND 
c(i)=input(1'); 
end
while(1)
  max=0;
  kj = 0;
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    for j=l:N
        z=0;
        for i=l:NS
            z=z+cb (i) *a(i, j);
        end
            cj=c(j)-z;
            if(cj>max) 
                max=cj; 
                kj=j;
            end
end
        if(max<=0)
             break;
        end 
        max=0;
        for i=l:NS
            if(a(i,kj)~=0) 
               th(i)=a(i,N)/a{i,kj); 
               if(th(i)>max)
                   max=th (i);
               end
            end 
        end
        if(max<=0)
            disp('Unbounded solution');
            return;
        end 
        min=max; 
        ki=l;
        for i=l:NS
          if((th(i)<min)& & <th(i)~=0))
               min=th(i);
               ki=i;
          end 
        end
        t=a(ki, kj );
        for j=l:N+l 
            a(ki,j)=a(ki,j)/t;
        end
           for i=l:NS
               if(i~=ki)
                    b=a(i,kj);



886 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

                      for k=l:N+l
                        a(i,k)=a (i,k)-a(ki,k)*b;
                      end
               end
           end
           cb(ki)=c(kj);
           bas(ki)=kj;
end
for i=l:NS
      if((bas(i)>=0)&&(bas(i)<ND))
          x(bas(i))=a(i,N);
      end
end
          z=0;
          for i=l:ND
              z=z+c(i)*x(i);
       end
       for i=l:ND
            fprintf('X(%d)=%7.2f \n',i+1,x(i))
       end
       fprintf('Optimal value =%7.2f \n',z)
end
NOTES: ND is the number of decision variables
NS is the number of slack variables
a is the array containing body matrix, unit matrix and bi’s 
c is an array containing values of cj’s
cb is an array containing values of CB ’S
th is an array containing values of e’s
bas is the basis. For xi’s basis contains i, for si’s basis contains i+ND
ki is the key row
kj is the key column

Computer Solution of Example12.4

Enter the constraints
4
2
80
2
5
180
Enter the objective function
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3
4
X(l)= 2.50
X(2)= 35.00
Optimal value = 147.50
Computer Solution of Example 12.16

Enter the constraints
2
3
2
440
4
0
3
430
Enter the objective function
4
3
6
X(l)= 0.00
X(2)= 42.22
X(3)= 156.67
Optimal value= 1066.67

Exercises 16.1

1. Let x = [1 2 3 4].
(a) Add five to each element
(b) Add three to just the even-index elements
(c) Compute the square root and square of each element

2. Create the vector x = randperm (50) and then evaluate the following 
function using only logical indexing:

                                 y(x) = 2 if x < 8

= x – 9 if 9 < = x < 35

3. Create a vector x with the elements,
                                     xn = (– l)n+1 (2n – l)
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4. Given the arrays x = [1 2 3], y = [2 4 5] and A = [3 8 6; 5 4 3], find
(a) x + y  (b) [x; y’]  (c) [x; y] (d) A – 3

5. Write a MATLAB code to plot the function
y = x3 – x2 + 6x sin (5x) – 9x

6. Write a MATLAB program to evaluate the roots of the equation ax2 + 
bx + c = 0.

7. Write a program in MATLAB for finding a real root of the equation 
f(x) = 0 by the bisection method.

8. Write a MATLAB program to find a real root of x3 – 4x – 9 = 0 using the 
method of false position.

9. Write an algorithm for the Newton-Raphson method to solve the equa-
tion f(x) = 0. Apply the same to solve cos x  xex = 0 near x = 0.5 correct 
to three decimal places.

10. Write a MATLAB program to solve the following equations by the 
Gauss-Seidal method: 83x + 11y – 4z = 95; 7x + 12y + 13z = 104; 
3x + 8y + 29z = 71.

11. With the help of a flow chart, write a MATLAB program to solve: 
7.5x + 3.8y + 2.9z = 15; 3.2x + 6.8y + 7.4z = 37; 1.3x + 2.1y + 3.2z = 7, 
using the factorization method.

12. Given the data:

x 5 10 15 20 25 30

y 17 25 30 33 36 38
Write a MATLAB program to fit a quadratic relation using least square 
criterion.

13. Write a program in MATLAB to estimate f(0.6) by the Lagrange inter-
polation for the following values:

x 0.4 0.5 0.7 0.8

f(x) –0.916 –0.693 –0.357 –0.223

14. Write a MATLAB program to evaluate 
10

2

2

( )x x x dx  using Simpson’s 
rule.

15. Write a MATLAB program to evaluate 
4

( )
a

f x using the Simpson’s 3/8  
rule.
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16. Write a MATLAB for the second order Runge-Kutta method.

17. Write a MATLAB for solving differential equations using the Runge-
Kutta fourth order formulae.

18. Write a MATLAB program to find y(0.8) for the differential equation 
dy/dx = ½(x + y) Given the following table using Milne’s Predictor-
Corrector method:

x 0 0.2 0.4 0.6
y 2 2.636 3.595 4.968

19. Write a MATLAB program to maximize z = 6x1 + 4x2 subject to 2x1 + 3x2 
 100, 4x1 + 2x2  120, x1, x2  0 where x1, x2 are number of items to be 
produced.

20. Write a MATLAB program to solve Example 12.17.





A P P E N D I X

USEFUL INFORMATION

A

I Basic Information and Errors

1. Useful Data

e = 2.7183 1/e = 0.3679 loge 2 = 0.6931 loge 3 = 1.0986
 = 3.1416 1/ = 0.3183 loge 10 = 2.3026 log10 e = 0.4343

2 1.4142 3 1.732  1 rad. = 57° 17 45 1° = 0.0174 rad.

2. Conversion Factors

1 ft. = 30.48 cm = 0.3048 m 1 m = 100 cm = 3.2804 ft.

1 ft2 = 0.0929 m2 1 acre = 4840 yd2 = 4046.77 m2

1 ft3 = 0.0283 m3 1 m3 = 35.32 ft3

1 m/sec = 3.2804 ft/sec. 1 mile/h = 1.609 km/h.

3. Some Notations

 belongs to  union

 doesnot belong to  intersection

 implies / such that

 implies and implied by

Factorial n, i.e., n ! = n(n – 1) (n – 2) 3. 2. 1.

Double factorials: (2n)!! = 2n(2n – 2) (2n – 4)  6. 4. 2. 
 (2n – 1) !! = (2n – 1) (2n – 3) (2n – 5) 5. 3. 1.

Stirling’s approximation. When n is large ! 2 n nn n n e  .
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4. If X is the true value of a quantity and X is its approximate value, then
 (i)  Absolute error = X X

  (ii)  Relative error = X X
X


 (iii)  Percentage error = 100
X X

X


5. If y is the error in the function y = f(x1, x2,, xn) corresponding to the 
errors x1, x2 xn, then

 1 2
1 2

.n
n

y y y
y x x x

x x x
  

       
  



6. Relative error of a product of n numbers
= Algebraic sum of their relative errors approximately

II  Solution of Algebraic and Trancendental Equations

1. Intermediate value property: If f(x) is continuous in the interval [a, b] 
and f(a), f(b) have different signs, then the equation f(x) = 0 has at least 
one root between x = a and x = b.

2. Descartes rule of signs: The equation f(x) = 0 cannot have more posi-
tive roots than the change of signs in f(x) and cannot have more negative 
roots than the change of signs in f(– x).

3. If 1, 2, 3, be the roots of the equation a0xn + a1xn–1 + a2xn–2 + a3xn–3 
+ = 0, then

 31 2
1 1 2 1 2 3

0 0 0
; ; ;

aa a
a a a

            etc.

4. Bisection method: Iteration formula is  3 1 2
1
2

x x x 

This process is continued till the difference between two consecutive 
values is negligible.

5. Method of false-position or Regula falsi method: Iteration formula 
is

 
   

 1 0
2 0 0

1 0

x x
x x f x

f x f x


 


This process is repeated till the difference between two consecutive val-
ues is negligible.
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6. Secant method:

Iteration formula is    
 1 0

2 1 1
1 0

x x
x x f x

f x f x


 


Obs. If secant method once converges, its rate of 
convergence is 1.6 which is faster than that of method of 
false position.

7. Iteration method: Writing f(x) = 0 as x = (x) and taking x0 as the initial 
root of the given equation, the approximations to the root are xi = (xi) 
such that (x) < 1.

8. Newton-Raphson method algorithm is

 
 
 1

n
n n

n

f x
x x

f x  


 (n = 0, 1, 2,......)

Obs. Condition for its convergence is | f(x) f (x) | < | f (x) 
|2. Newton’s method has a second order of convergence. 
If this method once converges, it converges faster than the 
Regula-falsi method and is preferred.

9.  Iterative formula to find 1/N is xn+1 = xn (2 – Nxn)

10. Iterative formula to find N  is  1
1

/
2n n nx x N x    

11. Method of Least squares: (i) Curve of best fit y = a + bx
Normal equations: y = na + bx, xy = ax + bx2

To fi nd a, b, solve these equations.
(ii) Curve of best fi t y = a + bx + cx2

Normal equations: y = na + bx + cx2

xy = ax + bx2 + cx3, x2y = ax2 + bx3 + cx4.
To fi nd a, b, c, solve these equations.

III Solution of Simultaneous Algebraic Equations

1. Numerical solution of linear simultaneous equations are
(i) Direct methods  (ii) Indirect (or Iterative) methods 
Method of Determinants, Matrix Inversion method, Gauss-elimination 
method, Gauss-Jordan method and Factorization method are direct 

NOTE

NOTE
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methods; Gauss-Jacobi method, Gauss-Seidal method, and Relaxation 
methods are indirect methods.

2. Method of determinants–Cramer’s rule. For the equations
a1 x + b1 y + c1 z = d1, a2 x + b2 y + c2 z = d2, a3 x + b3 y + c3 z = d3,

       
1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

1 1 1
, ,

d b c a d c a b d

x d b c y a d c z a b d

d b c a d c a b d

     
     

                   
 

where 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 

 
  

3. Matrix Inversion method. For the equations:
a1 x + b1 y + c1 z = d1, a2 x + b2 y + c2 z = d2, a3 x + b3 y + c3 z = d3,

 if  
1 1 1 1

2 2 2 2

3 3 3 3

A ,X and D
a b c x d

a b c y d

a b c z d

     
     
       
          

 then  
1 2 3 1

1 2 3 2

1 2 3 3

1
X

A

x A A A d

y B B B d

z C C C d

     
     
       
          

where A1, B1, etc. are the cofactors of a1, b1 etc. in the determinant | A |.

4. Gauss-elimination method. In the Gauss elimination method, the 
coefficient matrix is transformed to upper triangular matrix.

5. Gauss-Jordan method. In Gauss-Jordan method, the coefficient ma-
trix is transformed to diagonal matrix.

6. Gauss-Jordan method of finding the inverse of a matrix A. The matri-
ces A and I are written side by side and the same row transformations are 
performed on both. As soon as A is reduced to I, the other matrix repre-
sents A–1.

7. The convergence in Gauss-Seidal method is thrice as fast as in 
Jacobi’s method.

8. The condition for Gauss-Jacobi’s method to converge is that the 
coefficient matrix should be diagonally dominant.
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IV Finite Differences and Interpolation

1. Forward differences: yr = yr+1 – yr.
Backward differences: yr = yr – yr–1
Central differences: yx–1/2 = yx – yx–1

2. Relations between operators:
 (i)   = E – 1  (ii)  = 1 – E–1

 (iii)   = E1/2 – E–1/2  (iv)  1/2 1/21
2

E E   

 (v)   = E = E = E1/2 (vi) E = ehD

3. Factorial notation. The product x(x – 1) (x – 2)  (x – r + 1) is denoted 
by [x]r and is called a factorial.
Factorial polynomial is defi ned as [x]n = x(x – h) (x – 2h) [x – 
(n – 1)h]. The result of differencing [x]n is analogous that of differ-
entiating xr. 
Important Result

 [x]n = n[x]n–1

 [ax + b]n = na [ax + b]n–1

4. Reciprocal Factorial notation. The function {(x + h)(x + 2h)... (x + 
nh)}–1 is denoted by [x]– n and is called a reciprocal factorial function.
Important Result

 [x]–n = – n[x]–(n+1)

[ax + b]–n = – na [ax + b]–(n+1)

5. Inverse Operator of . If yx = vx , then yx = –1 ux, –1 or 1/ is called 
the inverse operator of  and is analogous to 1/D or integration in calcu-
lus.
Important Result

 –1 [x]n = [x]n+1/(n + 1)
 –1[x]–n = [x]–n+1/(– n + 1)

V Interpolation

1. Newton’s forward interpolation formula:

 
    2 3

0 0 0 0

1 1 2

2! 3!p

p p p p p
y y p y y y

  
         

  where p = (x – x0)/h.
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2. Newton’s backward interpolation formula:

     2 31 1 2

2! 3!p n n n n

p p p p p
y y p y y y

  
         

 where p = (x – xn)/h

3. Gauss forward interpolation formula:

 

2 3
0 0 1 1

4
2

( 1) ( 1)( 1)
2! 3!

( 1)( 1)( 2)
4!

p
p p p p p

y y p y y y

p p p
y

 



  
      

  
  

4. Gauss’s backward interpolation formula:

 

2 3
0 1 1 2

4
2

( 1) ( 1)( 1)
2! 3!

( 2)( 1)( 1)
4!

p
p p p p

y y p y y y

p p p
y

  



  
      

  
  

5. Stirling’s formula:

  

 

22 3 3
0 1 1 22

0 1

2 2
4

2

1

2 2! 3! 2

1

4!

p

p py y p y y
y y p y

p p
y

  




     
           


  

6. Bessel’s formula:

 

     

    

12 2
21 0 3

0 0 1

4 4
2 1

1 1

2! 2 3!
1 1 2

4! 2

p

p p p p py y
y y p y y

p p p p y y




 

   
     

    
 

7. Laplace-Everett’s formula:

 

    

    

2 2 2 2 2 2
2 4

0 1 2

2 2 2 2 2 2
2 4

1 0 1

1 1 2

3! 5!
1 1 2

1
3! 5!

p

q q q q q
y qy y y

p p p p p
py y y q p
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8. Lagrange’s interpolation formula:

 

    
    

    
    

    
    

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

0 1 1

0 1 1

.

n n

n n

n
n

n n n n

x x x x x x x x x x x x
y y y

x x x x x x x x x x x x

x x x x x x
y

x x x x x x




     
 

     

  
 

  

 
 





9. Lagrange’s inverse interpolation formula:

 

    
    

    
    

    
    

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

0 1 1

0 1 1

.

n n

n n

n
n

n n n n

y y y y y y y y y y y y
x x x

y y y y y y y y y y y y

y y y y y y
x

y y y y y y




     
 

     

  
 

  

 
 






10.  Newton’s divided difference formula:
y = f(x) = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2] 
 + (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3] +

11. Hermite interpolation formula:
P(x) = [1 – 2(x – x0) L0 (x0)] [L0 (x)]2 y(x0) + (x – x0) [L0 (x)]2 y(x0)
           + [1 – 2(x – x1) L1 (x1)] [L1 (x)]2 y(x1) + (x – x1) [L1(x)]2 y(x1)
           + [1 – 2(x – x2)L2 (x2)] [L2(x)]2 y(x2) + (x – x2) [L2(x)]2 y(x2) +......

12. Cubic Spline interpolation formula:

   

   

3 3
1 1

2 2

1 1 1

1
( )

6

1
6 6

i i i i

i i i i i i

f x x x M x x M
h

h h
x x y M x x y M

h

 

  

     

    
         
    

 

where     1 1 1 12

6
4 2 , 1,2,3, , 1i i i i i iM M M y y y i n

h         
and  M0 = 0, Mn = 0.

 VI Numerical Differentiation

1. Forward difference formulae:

 
0

2 3 4
0 0 0 0

1 1 1 1
2 3 4x

dy
y y y y

dx h

   
             



 
0

2
2 3 4

0 0 02 2

1 11
12

x

d y
y y y

dx h

   
            

  and so on.
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2.  Backward difference formulae:

 
2 3 41 1 1 1

2 3 4
n

n n n n
x

dy
y y y y

dx h

   
             

  

2
2 3 4

2 2

1 11
12

n

n n n

x

d y
y y y

dx h

   
            

  and so on.

3.  Central difference formulae:
(i) Stirling’s formula gives

0

3 3 5 5
0 1 1 2 2 31 1 1

2 6 2 30 2x

dy y y y y y y
dx h

    
        

     
   

  

    
0

2
2 4 6

1 2 32 2

1 1 1
12 90

x

d y
y y y

dx h   

   
             



(ii) Bessel’s formula gives

 

0

2 2
1 0 3

0 1

2 4
2 1 5

2

1 1 1
2 2 12

1 1
12 2 12

x

dy y y
y y

dx h

y y
y




 

     
            

  
         

  

           
0

2 2 2 4 4
1 0 2 13

12 2

5
2

1 1 1
2 2 12 2

1
24

x

d y y y y y
y

dx h

y

  




        
                  


   

VII Numerical Integration

1. Trapezoidal rule:

    0

0
0 1 2 1( ) 2

2

x nh

n nx

h
f x dx y y y y y




        

2. Simpson’s 1/3rd rule:

 

   

 

0

0
0 1 3 1

2 4 2

( ) 4
3

2

x nh

n nx

n

h
f x dx y y y y y

y y y







     

    

 



(Number of sub-intervals should be taken as even)
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3. Simpson’s 3/8th rule:

 
   

 

0

0
0 1 2 4 5 1

3 6 3

3
( ) 3

8

2

x nh

n nx

n

h
f x dx y y y y y y y

y y y







       

    

 



(Number of sub-intervals should be taken as a multiple of 3)

4. Boole’s rule:

 




0

0
0 1 2 3 4

5 6 7 8

2
( ) 7 32 12 32 14

45
32 12 32 14

x nh

x

h
f x dx y y y y y

y y y y


    

    




(Number of sub-intervals should be taken as multiple of 4)

5. Weddle’s rule:

 
0

0
0 1 2 3 4 5 6 7

3
( ) 5 6 5 2 5

10

x nh

x

h
f x dx y y y y y y y y


           

(Number of sub-intervals should be taken as a multiple of 6)

6. Errors:

Rule No. of intervals 
(multiples of)

Error Order of error

Trapezoidal Any 2

12
h

y
h2

Simpson’s 1/3 2 4

˘
ivh

y
h4

Simpson’s 3/8 3 53
80

ivh
y

h5

Weddle’s 6 7

0140
vih

y
h7

7. Romberg’s method:

       1
, / 2 4 / 2

3
I h h I h I h 

The computation is continued till two successive values are equal.
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8. Gaussian integration:

      (i) Two point formula: 
1 1

( )
3 3

f x dx f f
   

    
   

     (ii) Three point formula: 
1

1

8 5 3 3
( ) (0)

9 9 5 5
f x dx f f f



    
       
    



(iii)  To apply Gaussian integration, the limits of integration a, b are 

changed to – 1, 1 by the transformation    
1 1

.
2 2

x b a u b a   

9. Double integration:
(i) Trapezoidal rule:

   

   

    

0 01 02 0, 1

0 1 2 , 1

1

0 1 2 , 1
1

2
4

2

2 2

m m

n nm n n n m

n

i im i i i m
i

hk
I f f f f f

f f f f f

f f f f f

 









     

      

       







  where fij = f(xi, yj)

(ii) Simpson’s rule:

 

   

1 1

1 1
1, 1 1, 1, 1

, 1 , , 1 1, 1 1, 1, 1

( , ) 4
9

4 4 4 4

j i

j i

y x

i j i j i jy x

i j i j i j i j i j i j

hk
f x y dxdy f f f

f f f f f f

 

 
    

      

  

      

 

Adding all such intervals, we get I.

VIII Number Solution of Ordinary Differential Equations

1. Picard’s method:  
0

˘ ,
x

x
y y f x y dx   

  
0

2 0 1,
x

x
y y f x y dx   etc.

2. Taylor’s method:

  
   2 2

0 0
0 0 0 0 0( ) ( ) ( )

2! 2!

x x x x
y y x x y y y

 
       

3. Euler’s method: y2 = y1 + hf(x0 + h, y1)
Repeat this process till y2 is stationary. Then calculate y3 and so on.
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4. Modified Euler’s method:    2 1 0 1 0 2, 2 ,
2
h

y y f x h y f x h y      

Repeat this step, until y2 becomes stationary. Then calculate y3 and so on.

5. Runge Kutta method: y1 = y0 + k, where  1 2 3 4
1

2 2
6

k k k k k   

such that     k1 = hf(x0, y0), k2 = hf(x0 + h/2, y0 + k1/2)

k3 = hf(x0, h/2, y0 + k2/2), k4 = hf(x0 + h, y0 + k3)

6. Milne’s method:

 (i) Predictor formula:  4 0 1 2 3
4

2 2
3
h

y y f f f     

(ii) Corrector formula:  4 2 2 3 44
3
h

y y f f f   

7. Adams-Bashforth method:

 (i) Predictor formula:  1 0 0 1 2 355 59 37 9
24
h

y y f f f f    

(ii) Corrector formula:  1 0 1 0 1 29 19 5
24
h

y y f f f f     

(Four prior values are required to find the next values by Milne’s or Ad-
ams-Bashforth method)

8. Central-difference approximations:

  1 1 1
1

2 i iy y y
h  

 

  1 1 12

1
2i i iy y y y

h  
  

  1 2 1 1 23

1
2 2

2 i i i iy y y y y
h    

   

  1 2 1 1 24

1
4 6 4iv

i i i i iy y y y y y
h        

IX Number Solution of Partial Differential Equations

1. Classification of second order equation:

 
2 2 2

2 2( , ) ( , ) ( , ) , , , , 0
u u u u u

A x y B x y C x y F x y u
x y x yx y
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is said to be
  (i) elliptic if B2 – 4AC < 0
 (ii) parabolic if B2 – 4AC = 0 
(iii) hyperbolic if B2 – 4AC > 0.

2. Laplace equation:
(i) Standard five point formula:

 , 1, 1, , 1 , 1
1
4i j i j i j i j i ju u u u u   
      

(ii) Diagonal five point formula:

 , 1, 1 1, 1 1, 1 1, 1
1
4i j i j i j i j i ju u u u u       
     

(Four conditions are required to solve Laplace equation.)

3. Poisson’s equation:  
2 2

2 2 ,
u u

f x y
x y
 
 

 

Standard five point formula:
 ui–1, j + ui+1, j + ui, j+1 + ui, j–1 – 4ui, j = h2f(ih, jh)

4. One-dimensional Heat equation:

 
2

2
2

u u
c

t x
 


 
 (i) Schmidt formula: ui, j + 1 = ui− 1, j + (1 − 2) ui, j + ui+1, j, 
 where  = kc2/h2

(ii) Bendre-Schmidt relation:  1
, 1 1, 1,2i j i j i ju u u     

 [when  = 1/2 (i) reduces to (ii)]
(iii) Crank-Nicolson formula:

(ui+1, j +1 + ui−1, j +1) – 2( + 1) ui, j+1 = 2( – 1) ui, j – (ui+1, j + ui–1, j)

5. Wave equation: 
2 2

2
2 2

u u
c

t x
 


 

 (i) Explicit formula for solution is
ui, j+1 = 2(1 – 2c2) ui, j + 2c2 (ui–1, j + ui+1, j) – ui, j–1 where  = k/h

(ii) If  is so choosen that coeffi cient of ui, j is zero, then
(= k/h) = 1/c i.e. k = h/c, then (i) takes the simplifi ed form

        ui, j+1 = ui–1, j + ui+1, j – ui, j–1

which provides as explicit scheme for the solution of the wave equation.



A P P E N D I X

ANSWERS TO EXERCISES

B
Exercises 1.1
  1. 3.264, 35.45, 4986000, 0.7004, 0.0003222, 18.26.
  2. 0.7546; – 0.0002 × 105; 0.00265.    3. 0.0003, 0.001.
  4. 0.077.    5. – 0.0004    6. 4.44%.
  7. 0.01%; 10%   8. 1.65.    9. 1.149 × 10–4; 4.836 × 10–4. 
10. 600.0002. 11. 165.55.  12. 0.17312; 0.0003178.  
13. 0.5.  14. 0.0005.

Exercises 1.2
  1. 0.0025.   2. 76.   3. 75.6; 0.7. 5. 0.23; 0.14.
  6. 0.7721.   7. 0.423   8. 10.
  9. loge (1.2) = 0.1823215; n = 9.

10. 
3 3

4 4cos( ) 2 ( ); cos( ) 1 ( ).
3! 3

h hh h
e h h O h e h h O h          

11. 
2 3 4 5

6sin( ) cos( ) 1 ( )
2 6 24 120
t t t t

t t t O t         

 
3 5 62 2

sin( )cos( ) ( ).
3 15

t t t t t O t     

Exercises 1.3
  1. (b)   2. 0.000005.    3. (b).    4. 0.00049.
  5. 0.007.   6. 43.38; 0.63264; 0.2538.   7. 0.004.   8. 0.0058
  9. (c). 10. 0.0015. 11. 0.0496. 12. 0.33.
13. 0.0005. 14. < 1 (p × 10n–1).
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Exercises 2.1
1. x4 – 6x3 + 3x2 + 42x – 70 = 0  2. (i) – 2, 1 ± 3i. (ii) 2 3,  3, – 5.
4. a = 2, b = 1.  5. 1, 

1
2 ,  5.  6. – 7, 2, 6.  7. 1, 4, 7.

9. 4/3.

Exercises 2.2
  1. x3 + 6x2 – 36x + 27 = 0.  2. x7 + 3x5 + x3 + x2 + 7x – 1 = 0.
  3. 10x4 + 9x3 + 8x2 – 7x + 1 = 0.  4. 2/9, 2/3, – 2/3.

  5. (i) 2, 1
2

, – 3, 1
3

 ; (ii) 2, 2, 1
2

, 1
2

. 6. x4 + 13x3 + 60x2 + 116x + 80 = 0.

  7.    1 1
5 21 ; 3 5

2 2
     8. y2 – 30y2 + 225y – 68 = 0. 

  9. 3x3 – 11x2 + 9x – 2 = 0.
10. Quotient = 15x5 – x4 + 14x3 + 12x2 – 7x – 21, Remainder = – 9x + 29.

Exercises 2.3
  1. 1.32.  2. 0.45.    3. 0.71 rad. 4. 1.81 rad.

Exercises 2.4
  1. (i) 1.321 (ii) 1.46 (iii) 2.875 (iv) 1.855.
  2. (i) 0.0625. (ii) 0.567. (iii) 0.367.
  3. (i) 2.128. (ii) 2.7065. (iii) 1.4036.
 4. (i) 0.853. (ii) 0.6071. (iii) – 0.134 (iv) 2.798.
      (v) 3.789. (vi) 0.3604.  
  5. (i) 1.861.  6. (i) 0.99976.  (ii) 0.99931.
  7. (i) – 2.0625 (ii) 0.567 (iii) 3.496.
  8. (i) 0.6071. (ii) 2.9428. (iii) 1.4973. (iv) 4.4346.

      (v) 0.2591. (vi) 2.8625. 

  9. (i) and (ii) 5.4772. 10. (i) & (ii) 1.524. 11. 0.477.

Exercises 2.5
  1. (i) 1.532.  (ii) 2.095.  (iii) 1.834.  (iv) 1.226.
  2. (i) 1.856.  (ii) 2.198.    3. – 16.56.
  4. (i) – 1.9338.   (ii) 2.798.  (iii) 4.545.  (iv) 0.052.
     (v) 0.518.  (vi) 0.695.
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  5. Root in interval (– 0.8, 0.5) = 0.77009, Root in interval (0, 1) = 0.76839.

  6. 6.889.  7. 0.5886.  8. 0.033 sec.
  9. 21 1

1 12 3( / ), (2 / )n n n n n nx x N x x x N x     ;(a) 3.162.  (b) 2.5713

10. 1 3

1
3

4n n
n

N
x x

x

 
  
 

 , 2.3784

11. (i) 0.0555.  (ii) 0.2582.  (iii) 0.4347.  12. 0.51776.

Exercises 2.6
1. 2.26  2. 1.839  3. 1.3688  4. 3.14.

Exercises 2.7
  1. (i) 1.532  (ii) 0.684  (iii) 1.168.  2. 1.674.
  3. 2.231.  4. – 1.328.  5. 2.924.

Exercises 2.8
  1. 2.  2. m = 2, 3.973. 3. – 0.573 ± 0.89i
  4. x2 + 2.9026x – 4.9176. 5. – 0.759, – 1.42, – 3.411 ± 2.903i. 
  6. (x2 – 2x + 2)(x2 – 6x + 25). 7. 5, 2.001, 0.9995.
  8. 3, 2, 1.  9. 7.018, – 2.974, 0.958. 10. 2, 1, 1.
11. 6.3, 2.3, 0.4.

Exercises 2.9
  1. (a).  2.  2

1
1

2 /
3n n nx x N x   .

  3.  1 1
1

2 .
2n n nx x x    4. 1 0

2 0 0
1 0

( ).
( ) ( )

x x
x x f x

f x f x


 


 

  5. (c).  6. Chord AB.  7. 1
1

( / )
2n n nx x N x   .

  8. 1.79.  
  9. Initial approximation is chosen sufficiently close to the root. 10. (c)
11. Newton-Raphson method. 12. 0.657. 

13. (c).  14. | (x) | < 1.

15. If we start with a smaller interval for the root.

16. True  17. 2.1.  18. (2, 3)
19. xn (2 – Nxn) 20. If we start with a smaller interval for the root.
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Exercises 3.1

5. 0, 1
2

 .  6. 5.

Exercises 3.2

  1. x = 2, y = 4, z = 1, w = 3.  4.
0 3 0.5 0 2 3.5
3 1 3 2 0 2

0.5 3 9 3.5 2 0

   
   

     
      

 

  4. 
3 1 7 3/4 1/4 7/4
1 1 5 ; 1/4 1/4 5/4

5 1 13 5/4 1/4 13/4

   
  
      
     

  5. 
7 3 3
1 1 0
1 0 1

  
 
 
  

 

  6. 

1 0 0 5 2 1
7/5 1 0 ; 0 19/5 32/5
3/5 41/19 1 0 0 327/19

  
  

  
    

  7. (i) 2; (ii) 3.

  8. (i) Inconsistent  (ii) Inconsistent  (iii) Consistent, x = – 1, y = 1, z = 2.

  9. (i)  = 3, µ  10; (ii)   3; (iii)  = 3, µ = 10.

10.  = 1, – 9. For  = 1, sol. is x = k, y = – k, z = 2k.

     For  = – 9, sol. is x = 3k, y = 9k, z = – 2k.

Exercises 3.3
  1. x = 2, y = – 1, z = 1/2.    2. x = 1.2, y = 2.2, z = 3.2.  3. x = y = z = e2.
  4. u = 1, v = 1/2, w = 1/3.    5. x = 19/50, y = – 29/50, z = – 51/50, t = 0.
  6. x = 2, y = 1, z = 0.    7. x = 1, y = – 5, z = 5.
  8. x = y = z = 2.    9. i1 = 1.5, i3 = 2.5.
10. i1 = 1.5; i3 = 2.5.  11. x = 1, y = 3, z = 5.
12. x = – 12.75, y = 14.375, z = 8.75  13. x = 1, y = 2, z = 3.
14. x1 = 2, x2 = – 1, x3 = 3.  15. x1 = 1, x2 = 2, x3 = – 1, x4 = – 2.
16. x = 1, y = 3, z = 5.  17. x = 8.7, y = 5.7, z = – 1.3.
18. x = 1, y = 3, z = 5.  19. x = 1, y = 2, z = 3.
20. x1 = 2, x2 = 1/5, x3 = 0, x4 = 4/5.  21. x = 35/18, y = 29/18, z = 5/18.
22. x = y = z = 1.  23. x = 1, y = 3, z = 5.
24. x1 = – 1, x2 = 0, x3 = 1, x4 = 2.
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Exercises 3.4
  1. x = 2.556, y = 1.722, z = – 1.055.    2. x = 1, y = 2, z = 3, u = 4.
  3. x = 2.426, y = 3.573, z = 1.926.    4. x = 1, y = 1, z = 1.
  5. x = 0.998, y = 1.723, z = 2.024.    6. x = y = z = 1.
  7. x1 = 1.058, x2 = 1.367, x3 = 1.962.    8. x1 = 3, x2 = – 2.5, x3 = 7.
  9. x = 1.35, y = 2.103, z = 2.845.  10. x = y = z = 1. 
11. x = 52.5, y = 44.5, z = 59.7. 12. x = 1.93, y = 2.57, z = 2.43.

Exercises 3.5
1. Ill-conditioned.  2. x = 2, y = – 1, z = 1.

Exercises 3.6
1. x = 2, y = 1; x = – 1.683, y = 2.164.  2. x = – 1.853, y = – 1.927.
3. x = 3, y = 4.  4. x = 0.7974, y = 0.4006.  5. x = 3.162, y = 6.45.

Exercises 3.7
1. (b)  2. Section 3.5
3. Diagonal  
4.  The absolute value of the largest coefficient is greater than the sum of the 

absolute values of all the remaining coefficients.
5. diagonal matrix.  6. (b)  7. Upper triangular matrix.
8.  False. In fact, the rate of convergence of Gauss-Seidal method is twice as fast 

as that of Gauss-Jacobi method.
9. Section 3.4(3).  10. (a)  11. x = 1, y = 1.

Exercises 4.1

1. 
8 1 3
5 1 2

10 1 4

  
 
 
   

  2. 
1/2 1/2 1/2
1/2 3 1

5/2 3/2 1/2

 
 
  
  

  3. 
1 10 7

1
1 11 14

21
3 12 0

 
 

 
  

 

4. 
2 2 1

1
2 5 4

3
1 4 5

 
 
  
  

  5. 
0.5 0.2 1.6
0 0.2 0.4

0.5 0 1

  
 
 
  

   6. 
1/8 1/8 3/8
1/8 1/8 5/8

3/8 5/8 23/8

 
 
 
  

7. 
206 17 24

1
16 102 22

2078
46 34 196

  
 
 
  

 8. 
1.4 0.2 0.4
1.5 0 0.5

1.1 0.2 0.1
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9. 

15 14 12 13
3 7 6 21
9 3 0 39
6 1 3 1

  
   
  
 
  

 10. 0.091 0.182
0.273 0.454
 
  

11. 
0.429 2.429 1.429
0.143 0.143 0.143
0.857 3.857 2.857

 
 

 
   

Exercises 4.2
1. (a) 1, 6; (1, – 1), (4, 1)  (b) – 1, 6; (1, 1), (2, – 5).
2. (a) 1, 2, 3; (1, 0, – 1), (0, 1, 0), (1, 0, 1)
(b) 5, – 3, – 3; (1, 2, – 1), (2, – 1, 0), (3, 0, 1) 
(c) 8, 2, 2; (2, – 1, 1), (1, 0, – 2), (1, 2, 0).

3. (i) 
1 1/2 2/3
0 1/2 0
0 0 1/3

 
 

 
  

  (ii) 
2 1 1

1
0 3 0 ;

3
1 1 2

  
 
 
   

  (iii) 

3 1 1
1

1 3 1 .
4

1 1 3

 
 
 
  

4. 0    57 5. (a) 5.38, 
0.46

;
1

 
 
 

  (b) 4.618, 
1

0.618
 
 
 

6. (a) 11.66, [0.025, 0.422, 1]; (b) 7; [2.099/7, 0.467/7, 1]
     (c) 25.182, [1, 0.045, 0.068].

Exercises 4.3
1. (a) 4, – 2, 6; 1/ 2,0, 1/ 2 ,    [0, 1, 0], 1/ 2,0,1/ 2 ,  

    (b) 0.3856, – 1.3126, 5.9269; [0.5654, – 0.2949, – 0.8243], 
                                      [0.5457, – 0.736, 0.4006], [– 0.6185, – 0.6763, – 0.4001].

2. 
1 1.12 0
1.12 1.4 0.55
0 0.55 1.6

 
 
  
  

   3. 0, 3, 3. 4. 

1 2 2 0 1
2 2 3 0 ; 5 1

0 0 1 1

   
   
   
      

 5. 3, 1, 3.

Exercises 4.4
1. Zero or unity.  2. 

2 3
.

3 5
 
 
 

  3. 
1
1
 
 
 

  4. 1, 1, 1/5.
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 5. 5, – 2.  6. A–1  7. 2. 8. largest.
9. 1 ± 2. 10. eigenvalue.  11. 5.38.

12. either zero or unity. 13. – 4  14. 
0.8 0.4 0.2
0.2 0.6 0.2
0.2 0.4 0.8

  
 
  
   

15. the largest  16. 11
.X A X


 

Exercises 5.1
1. a = 2.28, b = 6.19, p = 30.46.

2. (i) Y = a + bX, where X = x, Y = y/x.  (ii) Y = a + bX where X = 1/xy , Y = x

3. a = 1120, b = 55.1. 4. a = 0.2, b = 0.0044. 5. n = 1.3, c = 200.

6. a = 0.5012, n = 0.5. 7. a = 4.1, b = 0.43. 8. a = 0.05, b = – 0.02.

Exercises 5.2
  1. y = 13.6x.  2. v = 1.758 – 0.053.
  3. Y = 0.004 P + 0.048.  4. R = 70.052 + 0.29 t.  5. y = 48.9 + 0.5067x.
  6. y = 1.243 – 0.004x + 0.22x2.  7. y = – 0.703 – 0.858x + 0.992 x2.
  8. y = – 0.98x2 + 3.55x – 27x2.  9. V = 2.593 – 0.326 T + 0.023T2.
10. R = 3.48 – 0.002 V + 0.003V2.

Exercises 5.3
  1. a = 6.32, b = 0.0095.    2. a = 1.52, b = 0.49. 
  3. a = 3, b = 2.   4. y = 7.187 – 5.16/x; 4.894.
  5. a = 0.5012, b = 1.9977.    6. y = 2.978x0.5143, 5.8769
  7. k = 7.17, m = 1.95.    8. a = 9.484, b = 0.315 
  9. y = 0.1839 e0.0221x. 10. a = 32.15, b = 1.43, N = 387.
11. a = 146.3, k = – 0.412.  12. f(t) = 0.678e–3t + 0.312e–2t 
13. x = 0.999, y = 2.004. 14. x = 1.17, y = – 0.75, z = 2.08.

Exercises 5.4
1. a = 11.1, b = 0.71.    2. a = 2.1, b = 0.19, p = 30.6. 
3. y = 46.05 + 6.1 x.   4. a = 6.73, b = 0.0092.  
5. c = 2.6, n = 2.5.    6. a = 0.0028, b = 0.01, c = 4.18.
7. a = 15.8, b = 2.1, c = – 0.5.    8. a = 1.459, b = 0.062
9. a = 23.4, b = 97.7, k = – 0.45.  10. a = 10, b = 3.1, n = – 0.1.
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Exercises 5.5
1. y = 0.12 + 0.47x. 2. y = 1.184 + 0.523 x

3. y = 1.53 + 0.063x + 0.074x2. 4. y = 0.485 + 0.397x + 0.124x2.

Exercises 5.6
  1. zero.  2. y = aX + c, where X = xb.  3. (ii)
  4. y = nA + Bx, xy = Ax + Bx2 where y = log10 y, A = log10 a, B = log10 b.
  5. Section 5.9.  6. Section 5.6.  7. Y = aX + b where X = x2/log10 x, Y = 
y/log10 x.
  8. a = 0.0167, b = 1.05.
  9.  The moments of the observed values of y are respectively equal to the mo-

ments of the calculated values of y.
10. a = 1.7, b = 1.26. 

11. y = a + bx  where  x = log10 p, y = log10 v, 
1 1

log ,a k a 
 

 

12. Y = a + bX, where X = 1/x, Y = 1/y.
13. (C)  14. (C)  15. (B).  16. (A).

Exercises 6.1
  2. 0.4.  3. – 7459.  5. 241.  6. 239.

  7. 4.68, 2.68; 55.8, 99.88.

  9.  (i) 1 – 2 sin (x + 1/2) sin 1/2,(ii) 1
2

1
tan ,

2n
  
 
 

 (iii) e3x {e3 log (1 + 1/x) + (e3 – 1) 

log 2x} (iv) 2x (1 – x)(1 + x) (v) 192/[x(x + 4) (x + 8) (x + 12) (x + 16)] 
(vi) – 2/[(x + 2)(x + 3)(x + 4)].

10. (i) (e2 – 1)n e2x+3; (ii) (– 1)n n!/[x(x + 1)(x + 2) (x + n)]

       (iii) 2sin sin
2 2

n na n
ax b

     
    

   
  (iv) (enh – 1)n e2x + 3

        (v) (– 1)n n! {x(x + 1)(x + 2)... (x + n)}–1.

14. (i) 576; (ii) 24 × 210 × 10 !.

Exercises 6.2
1. [x]3 + [x]2 – 1. 2. y = 3[x]4 + 14[x]3 + 15[x]2 + 7[x] + 1, 4y = 72.

3. 4x3 – 12x2 + 8x + 1; 12x(x – 1).
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4. (i)      4 31
3 4 .

2
x x x c     (ii)  5 4 3 21

12 105 170 15 148
60

x x x x   

6. 80640(2x + 9)(2x + 11)... (2x + 19).

7. 192{(4x + 1)(4x + 5)... (4x + 17)}–1;     11
4 1 4 5

8
x x


   

8. 2.0086.  9. 15.  10. x3 + 2x2 + 3x.

Exercises 6.3
   2. (i) 2(cos h – 1) sin x; (ii) 8.

      (iii) 6h2(x + h)–2; (iv) 2(cos h – 1)[sin (x + h) + 1].

10. 31.  11. f(1.5) = 0.222, f(5) = 22.022

12. y(4) = 74, y(6) = 261.  13. y(2004) = 306, y(2006) = 390.

14. – 99.  15. y4 = 1 approx.

Exercises 6.4
1. n(3n2 + 6n + 1).  2. ( 1)( 2)( 3)

.
n n n n

n
     3. 1 2

1
4 ( 1)( 2)n n

 
 

  
 

4. 1 1 1
2 4.5 ( 4)( 5)x x

 
 

  
 5. ( 1)(2 1)

.
6

n n n 

6. (i) ex(1 + 7x + 6x2 + x3); (ii)  2 33 1
2 61 3 .xe x x x  

7. (i) (3 + 6x – x2)(1 – x)–3; (ii) (1 + x)(1 – x)–3.  8. 4 3 2(6 15 10 1).
30
n

n n n  

9. 2[(x – 2)n – (x – 3)n].

Exercises 6.5
  1. (a).    2. (b).    3. 18.    4. E = ehD.
  5. zero.    6. 3x(x – 1)    7. [x]3 + [x]2 – 1.    8. 6h2(x + h).
  9. 1 – E–1.  10. a polynomial of the 6th degree.  11. zero.
12. 4x3 – 3x2 – 5x.  13. 1, 3, 7.  14. – 90

15. 1
2tan .

1
h

hx x
  
 
  

 16. 2.

17.  = E – 1.  18. Constant.  19. r yk + r  20. e–h 2 ex.
21. 2 = (1 – E–1)2. 22. (e – 1)n ex. 23.  = E. 24. 5.
25.  – 2. 26. (x – 2)3. 27. 16.5. 28. (d). 29. (c).
30. (c). 31. (d). 32. True 33. False.
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34. False. 35. True. 36. True. 37. True.

Exercises 7.1
  1. 5.54.    2. 6.36; 11.02

  3.  = 0.01 x2 + 1.01x + 130.1; (x = 43) = 192.02.    4. 0.788.

  5. 4.43.   6. 8666.    7. 0.9623, 0.2903.

  8. (i) Ic = 0.5878 (ii) fb = 0.363.   9. 352. 10. 24.

11. 14706 approx. 12. 1.625. 13. 33. 14. 0.1955.

15. 
4 3 22 100

8 56 31.
3 3

y x x x x       16. 2530. 17. 0.1; 100.

18. 369 metric tons.  19. u2 = 42, u4 = 49.  20. 10, 22. 21. 755.

Exercises 7.2
  1. 32.95.    2. 4 3 22 100

( ) 8 56 31.
3 3

f x x x x x      3. 19.4.

  4. 3.2219    5. 54000.    6. 0.70711.  7. 395.

  8. 3.0375    9. 0.934.  10. 9.  11. 32.945.

12. 3.347.  13. 14.368  14. 3250.875.

15. 2.5283 by all formulae.

Exercises 7.3
  1. 14.63 2. 7.03. 3. 2.8168. 4. 0.89.

  5. 100. 6. 648 + 30x – x2. 7. x3 – 3x2 + 5x – 6.

  8. x5 – 9x4 + 18x3 – x2 + 9x – 18. 9. 3.

10. 

0.5 0.5 1
1 1 2x x x
 

     11. 
1 1 3 1 13 1 71 1

.
5 1 35 1 10 4 70 6x x x x

  
   

Exercises 7.4
   1. 1  2. 133.19.  3. 100.  4. 1.48 mV.

   5. 31
( ) ( 25 24).

24
f x x x    6. 3 21 7 557

( ) 25.
20 6 60

f x x x x   

   7. f(x) = x4 – 3x3 + 5x2 – 6. 8. 147  9. 3 21
( 4 6).

6
y x x x   

 10. 31.
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Exercises 7.5
1. P(x) = x4 + x2 + 1.  2. 21

( ) (6 ) .
16

P x x x   3. 1.1631.

Exercises 7.6

1. 
3 2

3 2

3 9 11 11, 1 2
( ) , (1.5) 4.625; (2) 11.

3 27 61 37, 2 3

x x x x
y x y y

x x x x

     
   
     

 

3. 3 21
6( ) 142.9 1058.4 2475.2 1950y x x x x      

  (i) y(2.5) = -24.03, (ii) y(3) = 2.817.

Exercises 7.7
1. 11.5 2. 6.304 3. 37.23. 4. 2.3.
5. 0.2679 6. 1.3714.

Exercises 7.8
1. Section 7.3.  2. (b)

3. x f(x) I.D.D. II.D.D.

5 7

2.9

15 36 0.87

17.7

22 160

4. Intermediate value of the variable.  5. Section 7.8.

6. 1 2 3 4 0 1 2 3

4 0

, , , , , ,x x x x x x x x

x x

      


  7. 1 1

 and .
4 4
  

8. Section 7.14  

9. 
  
  

  
  

  
  

0 2 0 11 2

0 1 0 2 1 0 1 2 2 0 2 1

( )
x x x x x x x xx x x x

f x
x x x x x x x x x x x x

    
  

     

10.
13

.
5

 

11.  Lagrange’s interpolating polynomial P(x) agrees with y(x) at the points x0, 
x1,....., xn whereas Hermite’s interpolating polynomial P(x) and y(x) as well as 
P (x) and y (x) agree at the said (n + 1) points.

12. 1.857
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13.  Extrapolation is the process of estimating the value of a function outside the 
given range of values.  14. 1/(abc).  15. (a).

16. x3 – 7x2 + 18x – 12.  17. (b).  18. (c).

Exercises 8.1
1. – 27.9, 117.67.  2. 4.75, 9.  3. 0.63, 6.6.
4. (a) 0.493, – 1.165  (b) 0.4473, – 0.1583; (c) 0.4662, – 0.2043.
5. 2.8326.  6. 1.4913.  7. – 0.06; 0.5.
8. (a) 0.3907; (b) 0.9848; (c) 0.342.
9. 7.956
10. (i) – 52.4,  (ii) – 0.0191.  11. 44.92.
12. 3.  13. 3.82 rad./sec., 6.75 rad./sec.2.  14. 0.5403.
15. 0.2561.  17. 0.1086.  18. y(4) = 2.883.
19. 135.  20. ymax(1) = 0.25, ymin(0) = 0.
21. 0.692, 0.6137.  22. Max f(10.04) = 1340.03.

Exercises 8.2
 1. 0.26.   2. (i) 0.695 (ii) 0.693

    (iii) 0.693.   3. (i) 0.7854, (ii) 0.7854,

     (iii) 0.78535.      (iv) 0.7854.

  4. 1.61.   5. 53.87, 53.6. 6. 70.16.

  7. 0.635.   8. (i) 2.0009 (ii) 1.1873.

 9. (i) 1.1249 (ii) 0.9744 (iii) 0.0911 (iv) 14.51086.
10. (a) 1.8276551,.0001924; (b) 1.8278472,.0000003;
        (c) 1.8278470,.0000005; (d) 1.8278474,.0000001. 
11. 1.3028. 12. 403.67. 13. 7.78. 14. 710 sq. ft.
15. 3.032. 16. 3.032. 17. 408.8 cub. cm.
18. 1.063 sec; 1.064 sec. 19. 552 m.; 3 m./sec.2. 20. 30.87 m/sec.
21. 29 min. nearly.

Exercises 8.3
1. n = 8 2. 0.3927-;  = 3.1416 3. 1.8278
4. 1.000003. 6. (a) 0.01138;  (b) 0.00083.

7.    
2

0 1 0 10
.

2 2

h h h
ydx y y y y       8. (i) 4.685  (ii) 1.00002
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9. (i) 1.6027 (ii) 0.2376.  10. (i) 200.4014 (ii) 0.2666.  11. 0.4999.

Exercises 8.4
1. 0.876. 2. (i) 3.076 (ii) 0.31913.
3. 25.375. 4. 4.134.
5. (i) 0.49. (ii) 0.3844.

Exercises 8.5
1. (c) 2. 2 31 1 1

( ) ( ) ( )
2 3

f a f a f a
h
 
       



3. h should be small.  4. 0.775.  5. 
2

2
3

   6. Section 8.4 (III).

7. (b) Section 8.4 (I).  8. larger number of sub-intervals.  9. 0.7854.

10. Section 8.4 (II). 

11.      00 02 01 10 12 11 20 22 212 2 2 .
2
hk

I f f f f f f f f f          

12.    1

1
( ) 1/ 3 1/ 3 .f x dx f f


     13. 

14. a multiple of 6.  15. (b).  16. 
2 2

1 2 2 1
2 2
2 1

.
I h I h

I
h h





  

17. (c). 18.    
2 4

0 012 720n n
h h

y y y y        

19. 
8 5 3 3

(0) .
9 9 5 5

f f f
    
      
    

  20. second and fourth. 

21. 0.783 (b − a) 22.  where nh = b – a.
23. 0.69.  24. 1.36.
25. If the entire curve is itself a parabola.  26. False.

Exercises 9.1
1. yx+3 – 2yx+2 + 2yx+1 = 0.  2. yn = (– 1)n+1/(n + 1). 3. un+1 – 2un = 0

4. (i) (x + 2)yx+2 – 2(x + 1)yx+1 + xyx = 0;

    (ii) (x2 + x)yx+2 – (2x2 + 4x)yx+1 + (x2 + 3x + 2)yx = 0.

5. (i) yn+2 – 8yn+1 + 15yn = 0; (ii) yn+2 – 6yn+1 + 4yn = 0.

6. (i) (x – 1)yx+2 – (3x – 2)yx+1 + 2xyx = 0;

     (ii) yx+2 – 4yx = 0; (iii) yx+3 – 6yx+2 + 11yx+1 – 6yx = 0.
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Exercises 9.2
  1. un = (1 – n)2n.    2. 1 2

2 2
cos sin .

3 3n
n n

y c c
 

   

  3. un = c1 cos n/2 + c2 sin n/2.   4. yn = c1. 2n + c2. 3n.

  5. yn = (2)n–1 + (– 2)n–1.    6. uk = c1(– 1)k + (c2 + c3k)2k.

  7. f(x) = (c1 + c2x)(– 1)x + c3. 2x.    8. un = 2n + (– 2)n.

  9. yn = 6 + (n – 3)2n.  10. un = 2n/2 {c1 cos n/4 + c2 sin n/4}.

11. 1 2 3 4
3 3

2 cos sin cos sin
4 4 4 4

m
m

m m m m
y c c c c

    
    
 

15.  yn = c1(– 1)n + c2(10)n.

Exercises 9.3

  1. yn = c1(– 1)n + c2(6)n – 2n/12.  2. 
1 2

( 3)
15 25 25

n
n

n
n

y
 
    
 

 

   3. 
2 1

1 2 3 6 ( 1)( 2).py c c p c p p p p      4. 11
1 2 23 3 .x xy c c x     

  5. ux = c1. 2x + c2. 5x – 6. 4x.  6. yx = (c1 + c2x)2x + 3x(x – 1)2x–3 + 5. 4x–1.

  7. 1 2

cos 1 cos
1 2 2( 1) .
2 1 cos1

n
n

n n

u c c

 
  

 
   


 

  8. 
 1

2
1 2 1

2

cos
cos sin .

2 2 2sinp

p pp p
y c c


  

  9. 
2

2 sin 2cos 2.
3 33

n
n

n n
y

  
   

   

10.  2
1 2

1
2 ( 2) 9 12 11 .

27
x x

xy c c x x      

11. 1 2 3
1

( 1) cos sin ( 3).
3 3 2

n
n

n n
y c c c n n

 
     

12.  1 2 3
1 3

(3) ( 1) (2) .
3 4

n n n
n

n
y c c n c     

13.  
1

1 2
2 1

2 ( 1) .
9 2

nn
n

ny c c n n n


  
      

 
 

14. 1 2
7

( 2) ( 3) .
12 144

n n
n

n
y c c     
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15.   2
1 2

2 2 7
( 3) (5 2) .

25 4 16

x
x x

xu c c x x x       

16.   4
1 2 3

3
( 2) 2 cos /3 sin /3 (2) 2 (2 3).

16
n n n n

ny c c n c n n          

17. 2
1 2

1
( 1) ( 2) 2 .

48
n

nu c c n n n n
 
     
 

 

18. 1 22 3 ( 13 61).k ky c c k k      

19.  1 22 cos sin .
3 3

n
n

n n
y c n c

  
   
 

Exercises 9.4
1. yx+1 = ayx, Sol. is yx = cax.  2. yx = 2e2x–1.

3. 
1
2

x

xy c
 

  
   or yx = c(– 1)x.  4. (2) nc

ny e


  

5. 
1

1 2

1 2

/ 2
.

/ 2

x

x x

c c
y

c c





.  6. 

1
1 2

1 2

( 1)2
5.

( )2

x

x x

c c x
y

c c x

 
 



Exercises 9.5
1. yx = a + b(– 1)x + x, zx = a + b(– 1)x+1 – (x + 1).

2.  2 1
2

1 2
( )( 1) 2 , ( 1) .

9 9

x
x x x

x xy a bx z a b x              

3. 1 1
2 22 4 2 ( 1), 4 2 ( 1).n n

n nu n n v n n        

4. 1
2

1
2

2 ( 2) (3 ), ( 2) ,

( 2) ( _1).

x x
x x

x
x

u a b c x x v a c b

w a b x x

         

   

Exercises 9.6

1. 1 12 m
i i i i

l
y y y y

P    . Solve it for yi.

Exercises 9.7

1. yn + 2 – 5yn + 1 + 6yn = 0.  2. un = c1 + c2n + c3 n2.  3. un = c1 + c2 (– 2)n + c3(3)n.
4. yn = 1 + 2n.  5. yn = c(2)n – (n + 1).
6. (x2 + x)yx + 2 – (2x2 + 4x)yx + 1 + (x2 + 3x + 2)yx = 0.  7. yn = c(2)k + 1.
8. yn = (2)n – 1 + (– 2)n – 1.  9. Third. 
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10. (x + 2)yn+2 – 2(n + 1) yn+1 + nyn = 0

11. Second.  12. (C1 + C2n) 2n.  13. 
21

( 1)(3) .
2

xx x   

14. yn+2 – 6yn+1 + 9yn = 0  15. True.

Exercises 10.1

1. 
2 4 6

1 .
2 8 48
x x x

y     2. 0.0214.  3. 
3 91 1

3 81
y x x  

4. (a) and (b) 0.9138.
5. y(1.1) = 0.1103, y(0.2) = 0.2428, Exact values y(1.1) = 0.1103, y(1.2) = 0.2428.

6. 2.02061.    7. 1.1053425.  8. 1.1164; 1.2725. 

9. 1.00035. 10. 1.005.

Exercises 10.2
1. 1.1831808.  2. 0.4748.  3. 1.1448.
4. y(0.1) = 0.095, y(0.2) = 0.181, y(0.3) = 0.259.  5. 2.2352
6. y(0.2) = 1.2046, y(0.4) = 1.4644  7. 1.0928.  8. 5.051.

Exercises 10.3
  1. 1.7278.  2. 2.5005.    3. 1.0207, 1.038.

  4. 2.5005  5. y(0.2) = 2.44, y(0.4) = 2.99, y(0.6) = 3.68.

  6. y(0.1) = 0.9052, y(0.2) = 0.8213.    7. y(0.1) = 2.9917, y(0.2) = 2.9627.

  8. 1.1678.  9. 1.1749.  10. y(0.5) = 3.219, y(1) = 3.

11. 0.3487.  12. 1.0911, 1.1677, 1.2352, 1.2902, 1.338

Exercises 10.4
1. 3.795. 2. 1.2797 3. 1.5 approx.
4. y(1.4) = 3.0794, 5. 1.837 6. y(0.4) = 2.162
7. 0.441.

Exercises 10.5
1. 0.2416. 2. 1.0408 3. 0.6897.

4. y(4.4) = 1.019. 5. 2.5751. 6. y(1.4) = 0.949.
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Exercises 10.6

   1. 5 6 9
3

3 1 1
1 .

2 40 40 192
x

y x x x    

     4 5 8 9 12
3

1 3 1 3 7 1
.

2 8 10 34 340 256
z x x x x x     

   2. x(0.4) = 0.5024, y(0.4) = 0.6012.

   3. y(0.1) = 0.105, y(0.2) = 0.22, z(0.1) = 0.999, z(0.2) = 0.997.

  4. y(0.1) = 2.084, z(0.1) = 0.587.

   5. 
5

2
1 3

1 .
2 40

y x x     6. 0.5075.  7. 1.1404.

  8. y(0.2) = 0.9802, y(0.2) = – 0.196  9. – 0.5159.

10. (0.2) = 0.8367, (d/dt)0.2 = 3.6545.  

11. v(0.02) = 0.9965 v0, (dv/dt)0.02 = – 0.3292 v0.

Exercises 10.7
5. (a) 0 < h < 0.2; (b) 0 < h < 0.278.

Exercises 10.8
  1. 0.14031.  2. y(.25) = y(.75) = 2.4, y(.5) = 3.2.

  3. y(1.25) = 1.3513, y(1.5) = 1.635, y(1.75) = 1.8505.

  4. y(.25) = – 0.3473, y(.5) = – 0.9508, y(.75) = – 1.7257.

  5. n = 2, y(0.5) = 0.1389, true value = 0.1505; n = 4, y(0.5) = 0.147.

  6. y(.25) = 0.062, y(.5) = 0.25, y(.75) = 0.562.  7. y(1) = 1.0171, y(2) = 1.094.

  8. y(1) = 7.4615.  9. 0.189, 0.642, 1.217, 1.740.

10. Taking m0 = 0.8, m1 = 0.9, we get m2 = 0.9998 and y(1) = 1.174.

11. Taking m0 = – 1.8, m1 = – 1.9, we get m2 = – 2 and y(0.5) = 0.4441.

Exercises 10.9
1. (b).  2. yi+1 – 2yi + yi–1 + h2yi = 5h2.

3. 1 + x + x2 + x3/6.  4. Section 10.4.  5. Section 10.3.

6.  That it can be applied to those equations only in which succesive integrations 
can be performed easily. 

7.  4 2 2 3 44 .
3
h

y y f f f     
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  8. Modified Euler’s method.  9.  1 0 0 1 2 355 59 37 9 .
24
h

y y f f f f      

10.  It does not require prior calculations of higher derivatives, as the Taylor’s 
method does.

11. four.  12. 
2 4

1
2 8
x x

y    13. Runge’s method

14.  4 0 1 2 3
4

2 2
3
h

y y f f f     

15.  1 0 1 0 1 29 19 5
24
h

y y f f f f       16. 1.1818

17. dy/dx = z, dz/dx + y(1 + yz) = 0 18. Section 10.7(iv). 

19. starting values. 20. Picard’s and Runge-Kutta methods.
21. It agrees with Taylor’s series solution upto the terms in h4.
22. 1.2.  23. Section 10.17 (3) and (4)
24. (a).  25. Section 10.1 (3).  26. (c).
27. yi+1 + 2 (h2 – 1) yi + yi – 1 = 0.  28. (b).
29. Milne’s method & Adam-Bashforth method.  30. (b).
31. True.  32. False.  33. False.

Exercises 11.1
1. Parabolic  2. Hyperbolic.
3. (i) Parabolic.  (ii) Elliptic.  (iii) Elliptic.
4. Outside the ellipse (x/0.5)2 + (y/0.25)2 = 1.

Exercises 11.2
1.  u1 = 7.9, u2 = 13.7, u3 = 17.9, u4 = 6.6, u5 = 11.9, u6 = 16.3, u7 = 6.6, u8 = 11.2, 

u9 = 14.3.
2.  u1 = 2.38, u2 = 5.6, u3 = 9.87, u4 = 2.89, u5 = 6.14, u6 = 9.89, u7 = 3.02, u8 = 6.17, 

u9 = 9.51.
3. u1 = 26.66, u2 = 33.33, u3 = 43.33, u4 = 46.66. 4. u1 = 0.99, u2 = 1.49, u3 = 0.49.
5. u1 = 1.999, u2 = 2.999, u3 = 3.999, u4 = 2.999.
6. (a) u1 = 0.126, u2 = 0.126, u3 = 0.376, u4 = 0.376.
     (b) u1 = 0.126, u2 = 0.126, u3 = 0.376, u4 = 0.376.
7.  u1 = 1.57, u2 = 3.71, u3 = 6.57, u4 = 2.06, u5 = 4.69, u6 = 8.06, u7 = 2, u8 = 4.92, 

u9 = 9.
8. u1 = – 3, u2 = – 2, u3 = – 2.  9. u1 = u4 = – 4.5, u2 = – 6.25, u3 = – 2.75.
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Exercises 11.3
1.  u1 = 1.9, u2 = 4.9, u3 = 9.1; u4 = 2.1, u5 = 4.7, u6 = 8.4; u7 = 1.6, u8 = 3.9, 

u9 = 6.7.
2.  u1 = 275, u2 = 350, u3 = 275; u4 = 350, u5 = 450, u6 = 350; u7 = 275, u8 = 350, 

u9 = 275.
3. u1 = 1, u2 = 1.3, u3 = 0.7, u4 = 1.

Exercises 11.4
1. j 

i 0 1 2 3 4

0 0 3 4 3 0

1 0 2 3 2 0

2 0 1.5 2 1.5 0

3 0 1 1.5 1 0

4 0 0.75 1 0.75 0

5 0 0.5 0.75 0.5 0

2.

 i
j 0 1 2 3 4 5 6 7 8 9 10

0 0 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09 0

1 0 0.08 0.15 0.20 0.23 0.24 0.23 0.20 0.15 0.08 0

2 0 0.075 0.14 0.19 0.22 0.23 0.22 0.19 0.14 0.075 0

3 0 0.07 0.13 0.18 0.21 0.22 0.21 0.18 0.13 0.07 0

3. j
 i

0 1 2 3 4 5

0 0 24 84 144 144 0
1 0 42 84 114 144 0
2 0 42 78 78 72 0
3 0 39 60 67.5 57 0
4 0 30 53.25 49.5 39 0
5 0 26.6 39.75 43.5 33.75 0
6 0 19.88 35.06 32.25 24.75 0
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4. i
j

0 1 2 3 4

0 0 5 8 7 0

1 0 3.14 4.57 3.14 0

2 0 1.75 2.45 1.75 0

5. i
j

0 1 2 3 4

0 0 0.5 1 0.5 0

1 0 0.5 0.5 0.5 0

2 0 0.25 0.5 0.25 0

3 0 0.25 0.25 0.25 0

6. u1,1,1 = u2,1,1 = u1,2,1 = u2,2,1 = 9/16, u1,1,2 = u2,1,2 = u1,2,2 = u2,2,2 = 27/64.

Exercises 11.5
1. t = 0.3, x = 0.1 0.2 0.3 0.4 0.5

Num. sol. u = 0.02 0.04 0.06 0.075 0.08

Exact sol. u = 0.02 0.04 0.06 0.075 0.08

2. i
j

0 1 2 3 4 5

0 0 20 15 10 5 0

1 0 7.5 15 10 5 0

2 0 – 5 2.5 10 5 0

3 0 – 5 – 10 – 2.5 5 0

4 0 – 5 – 10 – 15 – 7.5 0

5 0 – 5 – 10 – 15 – 20 0

3. 
x

t
0 0.1 0.2 0.3 0.4 0.5

0.1 0 0.037 0.07 0.096 0.113 0.119

0.2 0 0.031 0.059 0.082 0.096 0.101

0.3 0 0.023 0.043 0.059 0.07 0.074

0.4 0 0.012 0.023 0.031 0.037 0.039

0.5 0 0 0 0 0 0
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4. i
j

0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 70.7

2 0 0 0 70.7 100

3 0 0 70.7 100 70.7

4 0 70.7 100 70.7 0

Exercises 11.6
  1. (b).    2. False.     3. a hyperbolic equation.

  4. Poisson’s equation.    5. ui, j + 1 = ui – 1, j + ui + 1, j – ui, j – 1.

  6. (ui – 1, j – 2ui, j + ui + 1, j)/h2     7. Section 11.9 (1).

  8.  1, 1 1, 1 1, 1 1, 1
1
4 i j i j i j i ju u u u           

  9. hyperbolic  10. Bendre-Schmidt.

11. ui, j + 1 = 2 (1 – 42) ui, j + 42(ui – 1, j + ui + 1, j – ui, j – 1).

12.  , 1 1, 1,
1
2i j i j i ju u u     13. Section 11.5 (2).

14. Section 11.9 (2). 15. 
1
2

  16. one dimensional heat

17. Schmidt method and Crank-Nicolson method 18. Elliptic. 19. O(h)2.

20. Section 11.6 (2)

21. ui, j+1 = ui+1, j – ui–1, j – u1, j–1.  22.
2 2

2 2 ( , ).
u u

f x y
x y
 
 

 

23. 100.  24. 1, , 1, 1, 1 , , 1
2 2

2 2
0.

i j i j i j j i j i ju u u u u u

h h
      

 

25. y < 0.  26. 1
4

k

27.  The solution value at any point on the (j + 1)th level is dependent on the solu-
tion values at the neighboring points on the same level and on three values on 
the jth level.

Exercises 12.1
1. Max. Z = 1.2x1 + 1.4x2; subject to 40x1 + 25x2  1000,
     35x1 + 28x2  980, 25x1 + 35x2  875 and x1, x2  0.
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2. Max. Z = 3x1 + 2x2 + 4x3; subject to 4x1 + 3x2 + 5x3  2000,

     2x1 + 2x2 + 4x3  2500, 100  x1  150, 200  x2 and 50  x3.

3. Max. Z = 3x1 + 2x2 + x3; subject to 3x1 + 4x2 + 3x3  42,

     5x1 + 3x3  45, 3x1 + 6x2 + 2x3  41 and x1, x2, x3  0.

4. Max Z = 400 x + 300 y; subject to x + y  200, x  20, y  4x, x  0, y  0.

5. Min. Z = x1 + x2; subject to 2x1 + x2  12, 5x1 + 8x2  74,

     x1 + 6x2  24 and x1, x2, x3  0.

6. Min. Z = 41x1 + 35x2 + 96x3; subject to 2x1 + 3x2 + 7x3  1250, x1 + x2  250,

     5x1 + 3x2  900, 6x1 + 25x2 + x3  232.5 and x1, x2, x3  0.

7. Min. Z = 100x1 + 250x2 + 160x3; subject to 0.94x1 + x2 + 1.04x3  0.98,

      10x1 + 15x2 + 17x3  14, 470x1 + 500x2 + 520x3  495, x1 + x2 + x3 = 1 and x1, x2, 
x3  0.

8.  Max. Z = 10,000x1 + 9,000x2 + 2,800x3; subject to 5,000x1 + 4,500x2 + 4,250x3  
100,000, x1  6, x2  2, x3  2 and x1, x2, x3  0.

Exercises 12.2
  1. x1 = 20/19, x2 = 45/19; max. Z = 5/19.  2. x1 = 8/15, x2 = 12/5; max. Z = 24.8.
  3. x1 = 6, x2 = 12; min. Z = 240.  4. x1 = 500, x2 = 600; max. Z = 1200.
  5. x1 = 50, x2 = 0; max. Z = 200.
  6. 450 units of product B only; max. profit = US$1800.
  7. X = 2, Y = 4.5; max. profit = US$37.
  8. A = 1.18 units, B = 0.53 units; max. profit = US$14.50 approx.
9. M = 200 metric tons, N = 300 metric tons; max. profit = US$19,000.
10. 2000/11 units of product A and 1000/11 units of B; max. profit = US$10,000.
11. x1 = 4, x2 = 0; max. Z = 8.
12. 20 to 35 runs in magazine A and 10 to 16 runs in magazine B.
13. Unbounded solution.  14. Infinite number of optimal solutions; max. Z = 8.
15. x1 = 2, x2 = 4; min. Z = 64.
16. Production cost will be min. if G and  J run for 12 and 4 days respectively.

Exercises 12.3
1. Max. Z = 3x1 + 5x2 + 8x3; subject to 2x1 – 5x2 + s1 = 6,
     3x1 + 2x2 + x3 – s2 = 5, 3x1 + 4x3 + s3 = 3; x1, x2, x3, s1, s2, s3  0.
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2. Min. Z = 3x1 + 2x2 + 5x3, subject to – 5x1 + 2x2 + s1 = 5,
     2x1 + 3x2 + 4x3 – s2 = 7, 2x1 + 5x3 + s3 = 3, x1, x2, x3, s1, s2, s3  0.
3. Max. Z = 3x1 – 2x2 + 4x4 – 4x5; subject to x1 + 2x2 + x4 – x5 + s1 = 8,
     2x1 – x2 + x4 – x5 – s2 = 2, – 4x1 + 2x2 + 3x4 – 3x5 = 6; x1, x2, x4, x5, s1, s2  0.
4. (i) x1 = 2, x3 = 1 (Basic); x3 = 0 (Non-basic) (ii) x1 = 5, x3 = – 1 (Basic); x2 = 0
     (Non-basic) (iii) x2 = 5/3, x3 = 2/3 (Basic); x1 = 0 (Non-basic)
     All the three basic solutions are non-degenerate.
6. x1 = x3 = x4 = 0 and x2 = 1/2.
7. Basic solutions are (i) x1 = 2, x2 = 1 (Basic) and x3 = 0; (ii) x1 = x3 = 1 (Basic) and
      x2 = 0; (iii) x2 = – 1, x3 = 2 (Basic) & x1 = 0.
     (a) First two solutions are non-degenerate basic feasible solutions.
     (b) First solution is optimal & Zmax = 5.

Exercises 12.4
  1. x1 = 2, x2 = 4; max. Z = 14.  2. x1 = 0, x2 = 20; max. Z = 200.

  3. x1 = 7/3, x2 = 4/3; max. Z = 16.  4. x1 = 5, x2 = x3 = 0; max. Z = 50.

  5. x1 = 0 = x2, x3 = 1; max. Z = 3.  6. x1 = 0, x2 = 6, x3 = 4; max. Z = 6.

  7. x1 = 89/41, x2 = 50/41, x3 = 62/41; max. Z = US$765/41.

  8. x1 = 4, x2 = 5, x3 = 0; min. Z = – 11.

  9. x1 = 280/13, x2 = 0, x3 = 20/13, x4 = 180/13; max. Z = 2280/13.

10. x1 = 0, x2 = 400 units; max. profit = US$1200.

11. x1 = 125, x2 = 250 units; max. profit = US$2250.

12. x1 = 400 gms, x2 = 0; min. cost = US$2. 

13. x1 = 0, x2 = x3 = 50; max. profit = US$700.

14. x1 = 0.5, x2 = x3 = 0.04 units; min. cost = US$5.80.

15.  Acrages for corn, wheat, soybeans are 250, 625, zero respectively to achieve a 
max. profit of US$32,500.

Exercises 12.5
1. x1 = 0, x2 = 2, x3 = 0; max. Z = 4.  2. x1 = 3, x2 = 2, x3 = 0; max. Z = 8.
3. x1 = – 6/5, x2 = – 6/5; max. Z = – 48/5. 
4. x1 = 0, x2 = 10/3, x3 = 4/3; min. Z = 34/3.
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  5. x1 = x2 = x3 = 5/2, x4 = 0; max. Z = 15.
  6. x1 = 21/13, x2 = 10/13; max. Z = 31/13.
   7. Infeasible.  8. x1 = 23/3, x2 = 5, x3 = 0; max. Z = 85/3.
  9. x1 = 55/7, x2 = 30/7, x3 = 0; max. Z = 155/7. 10. x1 = 2, x2 = 0; max. Z = 18.
11. Degenerate solution: x1 = 0 (non-basic); x2 = 1, x3 = 0 (basic); max. Z = 3.
12. x1 = x3 = 0, x2 = 4; max. Z = 24.

Exercises 12.6
1. Min. W = 26y1 + 7y2; subject to 6y1 + 4y2  10,
     5y1 + 2y2  13, 3y1 + 5y2  19; y1, y2, y3  0.
2. Max. W = 11y1 + 7y2 + y3 + 5y4; subject to 3y1 + 2y2 – y3 + 3y2  2,
     4y1 + 3y2 + 2y3 + 2y4  4, y1 – 2y2 + 3y3 + 2y4  3; y1, y2, y3, y4  0.
3. Min. W = 6y1 + 9y2 + 10y3; subject to 4y1 + 2y2 + y3  3, – 5y1 + 3y2 + y3  1,
     9y1 – 4y2 + 5y3  – 4, y1 – 5y2 – 7y3  1, – 2y1 + y2 + 11 y3  9; y1, y2, y3  0.
4. Min. W = – 3y1 + y2 + 4y3; subject to y1 + 3y2 – 2y3  – 3,
     y1 + y3  16, y1 – 2y2 + y3  – 7; y1, y2  0, y3 unrestricted in sign.
5. Min. W = – 6y1 + 3y2 + 4y3; subject to – y1 + 3y2 – 4y3  3,
     – y1 – 2y2 + 3y3  1, – y1 + 3y2 – 6y3  2; y1  0, y2, y3 unrestricted in sign.
6. Max. W = 2y1 + 3y2 – 5y3; subject to 2y1 + 3y2 – y3  2,
     3y1 + y2 – 4y3  3, 5y1 + 7y2 – 6y3 = 4; y1, y2  0, y3 unrestricted.

Exercises 12.7
1. x1 = x2 = 0, x3 = 5/2; min. Z = 2.5.  2. x1 = 4, x2 = 2; max. Z = 10.
3. x1 = 7, x2 = 0; max. Z = 21. 4. x1 = 0, x2 = 100, x3 = 230; max. Z = 1350.
5. y1 = 2/3, y2 = y3 = 0, min. W = – 4/3.

Exercises 12.8
1. x1 = 0, x = 1; max. Z = – 1.  2. x1 = 3/5, x2 = 6/5; min. Z = 12/5.
3. x1 = 6, x2 = 2, x3 = 0; min. Z = 10.
4. x1 = 0, x2 = 30/11, x3 = 16/11, x4 = 0; min. Z = 258/11.
5. x1 = 65/23, x2 = 0, x3 = 20/23, min. Z = 215/23.

Exercises 12.9
1.  x11 = 200, x12 = 50, x22 = 175, x24 = 125, x33 = 275, x34 = 125; 

min. cost = US$ 12075.
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  2. x13 = 14, x21 = 6, x22 = 5, x23 = 1, x32 = 5; min cost = US$143.
  3.  x11 = 50, x12 = 100, x21 = 150, x33 = 150, x42 = 100, x43 = 50; 

max. tonnage =US$ 3300.
  4. x11 = 20, x13 = 10, x22 = 20, x23 = 20, x24 = 10, x32 = 20; min. cost = US$180.
  5. x11 = 140, x13 = 60, x21 = 40, x22 = 120, x33 = 90; min. cost = US$5920.
  6. x11 = 5, x14 = 2, x22 = 2, x23 = 7, x32 = 6, x34 = 12; min. cost = US$743.
  7. x11 = 150, x13 = 20, x22 = 160, x24 = 40, x33 = 90, x34 = 90; max. profit = 
US$4920.
  8. x13 = 2, x22 = 1, x23 = 2, x31 = 4, x33 = 1; min. cost = US$33.
  9. x13 = 60, x21 = 50, x23 = 20, x32 = 80; min. cost = US$750.
10.  x15 = 800, x21 = 400, x24 = 100, x32 = 400, x33 = 200, x34 = 300, x43 = 300;

min. cost = 9200.

Exercises 12.10
1. x11 = x22 = x33 = 1; min. cost = US$18.
2. A  2, B  3, C  4, D  1; min. Z = 38.
3. I  B, II  A, III  D, IV  C; min. cost = US$49.
4.  A  Dyn. Prog., B  Queuing Th., C  Reg. Analysis, D  L.P.; 

min. time = 28 hrs.
5. A  5, B  1, C  4, D  3, E  2; min. cost = US$9.
6. A  X, B  W, C  V, D  Y, E  Z, min. time = 45 hrs.
7. 1  IV, 2  II, 3  VI, 4  I, 5  III, 6  V; min. profit = US$270.
8. 1  A, 2  B, 3  C, or 1  A, 2  C, 3  B; min. cost = US$41.
9.  A  1, B  4, C  6, D  3, E  2 or A  3, B  4, C  1, D  6, E  2; 

min. cost = US$52.

Exercises 12.11
  1. Section 12.5 Def. 2. 2. it provides an optimality test.  3. Section 12.11

  4. Section 12.17 (1).  5. Section 12.14.  6. Section 12.6 (1).

  7.  Min. W = 7y1 + 5y2, subject to 2y1 + 3y2  4, 3y1 – 2y2  9, 2y1 + 4y2  2, 
y1  0, y2 is unrestricted in sign. 

  8. Section 12.12 (2).  9. Section 12.14.

10.  Minimize Z = (2x11 + 3x12 + 11x13 + 4x14) + (5x21 + 6x22 + 8x23 + 7x24), 
subject to x11 + x12 + x13 + x14 = a1 (= 15), x21 + x22 + x23 + x24 = a2 (= 20), 
x11 + x21 = b1 (= – 10), x12 + x22 = b2 (= 5); x13 + x23 = b3 (= 12), 
x14 + x24 = b4 (= 8) and xij  0. [ ai = bj = 35
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11. (i) x1 = 3, x2 = 5, x3 = 0; (ii) x1 = 0.5, x2 = 0, x3 = 2.5. 
12. Section 12.5 (Def. 4)
13. Section 12.13.  14. balanced.  15. Section 12.9.
16. Section 12.7 (3).  17. optimal.
18.  Minimize y = 5y4 – 3y3, subject to y4 + y3 = 5, 2y4 – 5y3  6, y3  0 

and y4 unrestricted.
19. 5.  20. Max. Z = 5/19.  21. Section 12.7.
22. Section 12.16.  23. Section 12.7 (2-ii)
24. Min. W = 2y1 + 4y2 + 3y3, subject to – y1 + y2 + y3  2, 2y1 + y2  1, y1, y2  0.
25. North-West corner rule and Vogel’s approximation method.
26. Slack or surplus variables.

Exercises 13.1
1. (a) 21 (b) 0.84375 (c) 0.6640625 (d) 1.4140625.

2. (a) 10110.101 (b) – 1010.001. 4. 1000101; 101111.

5. (a) 0.009 (b) 0.106 × 10–4. 6. 0.001; 0.0000111.

Exercises 14.1
  7. 2.7065     8. 0.5177

10. x = 1.052, y = 1.369, z = 1.962.  13. 2591.87.

Exercises 15.1
  7. 2.7065    8. 0.5177

10. x = 1.052, y = 1.369, z = 1.962.  13. 2591.87.

Exercises 16.1
  8. 2.7065    9. 0.5177

11. x = 1.052, y = 1.369, z = 1.962.  13. 2591.87.
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Backward differences, 235
Backward interpolation formula, 

Newton’s, 276 
using derivatives, 342

Bairstow’s method, 78
Bessel’s formula, 290
Binary number, 647
Bisection method, 38 

program in C, 6 7 4 
program in C++, 776 
program in MATLAB, 844

Boole’s rule, 362 errors in, 375
Boundary value problems, 421, 479 

finite-difference method, 480

C

Canonical form, 570–571
Cayley-Hamilton theorem, 168
Central differences, 236
Central difference interpolation 

formulae, 286
C language features, 658 

programs, 674
C++ language features, 758 

programs, 776
Complete pivoting, 119
Complex roots, 77
Computers, 645 

calculations, 652 
program writing, 655 
structure of, 646

Consistency of equations, 108
Constraints, 549
Convergence of iterations, 50
Convergence of method, 476
Convex region, 555
Cramer’s rule, 115
Crank-Nicolson formula, 523
Cubic splines, 326
Curve fitting, 193 

graphical method, 194
method of group averages, 219
method of least squares, 200–201
method of moments, 228
of the type, 209–210
of other curves, 212

Cycling type of problems, 600

D

Degeneracy, 599
in transportation problems, 627–628

Determinants, 93
basic properties, 95 
definition, 93 
expansion of, 94
rule for multiplication, 96

Derivatives, formula, 340
Descarte’s rule of signs, 22
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Difference equations, 397 
formation of, 399 linear, 401
order of, 398
reducible to linear form, 412 
solution of, 399 
simultaneous, 414

Differences, 
backward, 235 
central, 236 
divided, 313
finite, 234 
forward, 234
of a polynomial, 240

Differential equations, 
second order, 468 
simultaneous first order, 463 
solution of, 420

Difference operators, 252
Divided differences, 313
Divided difference formula, 

Newton’s, 314
Double interpolation, 331
Double root, 85
Dual Simplex method, 613 

working procedure, 613
Duality concept, 603
Duality principle, 607

E

Eigenvalue problem, 155
Eigenvalues/Eigenvectors, 168 

bounds for, 172 
properties, 171

Elliptic equations, 492
solution by relaxation method, 513
working procedure, 515

Emperical law, 193
Error analysis, 473
Error propagation, 8
Errors, 3 

absolute, 4 
difference table, 248 
growth of, 15
in approx. of a function, 11
in a series approximation, 13

inherent, 3
in quadrature formulae, 372
in trapezoidal rule, 372 
percentage, 4
relative, 4, 474 
rounding off, 3
rules for estimating, 3 
total, 473
truncation, 4, 473

Equations, 
properties, 20 
transformation of, 26 
ill conditioned, 146

Escalator method, 163
Euler-Maclaurin formula, 380
Euler’s method, 429

Modified, 432 
program in C, 729 
program in C++, 815
program in MATLAB, 871– 872

Everett’s formula, 291
Extrapolation, 274

F

Factorial notation, 242
Factorization method, 126, 159 

program in C, 691
program in C++, 790 
program in MATLAB, 853

False position, method of, 43– 44
Finite differences, 234

approximations to partial 
derivatives, 494

Finite-difference method, 480
Floating point numbers, 645
Flow chart, 652
Forward differences, 234
Forward differences interpolation 

formula, Newton’s, 274
using derivatives, 340

G

Gauss’s backward interpolation 
formula, 288
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Gauss elimination method, 118, 156 
program in C, 687
program in C++, 786 
program in MATLAB, 851

Gauss Forward interpolation 
formula, 288

Gauss formula, 385
Gauss-Jordan method, 122, 157 

program in C, 689
program in C++, 788 
program in MATLAB, 852

Gauss-Legendre formula, 387
Gauss-Seidal iteration 

method, 137, 498 
program in C, 695
program in C++, 793 
program in MATLAB, 856

Gaussian integration, 385, 387
Generalised Newton’s method, 75
Gerschgorin bounds, 173
Gerschgorin circles, 173
Given’s method, 183
Graeffe’s root squaring method, 84
Graphical solution of equations, 33
Group averages, 219 

program in C, 706 
program in C++, 801–802 
program in MATLAB, 861

H

Heat equation, 
solution of 2 Dim, 530 
program in C, 745
program in C++, 827 
program in MATLAB, 881

Hermite’s interpolation formula, 320
Horner’s method, 70–71
Householder method, 186–187
Hungarian method, 634
Hyperbolic equations, 535

I

Ill-conditioned equations, 146
Inherent errors, 3

Initial approximation, 33
Initial value problems, 421
Iterative method, 334
Interpolation, 274 

formula, 274, 292 
unequal intervals, 306

Inverse interpolation, 332
Inverse of a matrix, 104, 156
Inverse operator of Δ, 247
Iteration method, 50, 229
Iterative methods, 131, 165, 334 

comparison of, 89
in ill-conditioned system, 147

J

Jacobi’s method, 179, 498
Jacobi’s iteration method, 132

L

Lagrange’s interpolation 
formula, 306 
program in C, 714
program in C++, 8 0 7 
program in MATLAB, 866

Lagrange’s method, 332
Lagrangian polynomial, 306
Laplace’s equation, 

solution of, 496 
diagonal 5-point formula, 496
standard 5-point formula, 496
program in C, 740 
program in C++, 823 
program in MATLAB, 877

Laplace-Everett’s formula, 291
Laws reducible to linear law, 195
Least squares, 200–201 

program in C, 703 
program in C++, 799 
program in MATLAB, 860 
working procedure, 203

Lin-Bairstow method, 78
Linear difference equations, 401
Linear programming problems, 548

Graphical method, 555
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Simplex method, 573
Linear systems, solution of, 114

Consistency, 108
Lipschitz condition, 476

M

MATLAB, 
features, 838 
programs, 844

M-method, 591
of penalties, 591

Matrices, 100 
equivalent, 106 
inverse of, 104 
operations on, 101 
rank of, 105
related matrices, 104 
special matrices, 100

Matrix inversion, 116, 156
Maxima/Minima of tabulated 

function, 352
Milne’s method, 448 

program in C, 734 
program in C++, 819 
program in MATLAB, 874

Modified Euler’s method, 432
Moments Method, 228 

program in C, 708 
program in C++, 803 
program in MATLAB, 863

Muller’s method, 68 
program in C, 681 
program in C++, 781 
program in MATLAB, 849

Multiple roots, 75
by Newton’s method, 7 5

N

Newton’s backward interpolation 
formula, 276

Newton’s divided difference formula, 
314 
program in C, 716
program in C++, 808 
program in MATLAB, 644

Newton-Cote’s formula, 867
Newton’s forward interpolation 

formula, 274 
program in C, 711
program in C++, 805 
program in MATLAB, 864

Newton’s general interpolation formula, 
315

Newton-Raphson method, 57, 149 
deductions from, 63
program in C, 679 
program in C++, 780 
program in MATLAB, 848

Numerical differentiation, 339
Numerical double integration, 392
Numerical integration, 358

Boole’s rule, 362
Euler-Maclaurin formula, 380
Romberg, 375
Simpson’s rules, 361, 392
Trapezoidal rule, 360, 392
Weddle’s rule, 363

Numerical solution of ordinary 
differential equations, 419–490
Adams-Bashforth method, 456
Euler’s method, 429
Modified Euler’s method, 432
Milne’s method, 448
Picard’s method, 421
Runge’s method, 438
Runge-Kutta method, 440
Taylor series method, 424

Numerical solution of partial 
differential equations, 491–545
Heat equation, 522, 530
Laplace equation, 496
Poisson’s equation, 508
Second order, 492
Wave equation, 535

O

Objective function, 549
Operators, 252

relations between, 252
Order of approximation, 14
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P

Parabolic equations, 521
Crank-Nicolson method, 523
DuFort and Frankel method, 524
Iterative method, 524
Schmidt method, 522

Partial Pivoting, 119
Partition method, 162
Percentage error, 4
Perturbation procedure, 600
Picard’s method, 421
Polynomial interpolation, 274
Polynomials equations, 70 

roots of, 70
solution of, 70

Poisson’s equation, solution of, 508
Power method, 174 

program in C, 699 
program in C++, 796 
program in MATLAB, 858

Predictor-Corrector methods, 449
Propagation of error, 8
Pseudo optimal solution, 592

Q

Quadratic convergence, 59, 76
Quadrature formulae 

(Newton-Cotes), 359 
errors in, 3 7 2

R

Rank of a matrix, 105
Rate of convergence, 38
Reciprocal equation, 28
Reciprocal factorial function, 246
Redundant constraint, 560
Regula falsi method, 43 

program in C, 676 
program in C++, 778 
program in MATLAB, 846

Relative error, 4, 474
Relaxation method, 142, 513
Richardson scheme, 525
Romberg method, 375

Rounding-off error, 2, 473
Runge’s method, 438
Runge-Kutta method, 440 

program in C, 732 
program in C++, 818 
program in MATLAB, 873

S

Scatter Diagram, 194
Schmidt method, 522
Secant method, 47
Significant figures, 2
Shift operator, 252
Shooting method, 485
Simplex method, 573, 578
Simpson’s rules, 361 

application of, 367 
errors in, 373, 3 7 4 
program in C, 726 
program in C++, 814
program in MATLAB, 871

Simultaneous difference equations, 414
Solution of differential equation, 420
Solution of elliptic equations, 495
Solution Heat equation, 522 

program in C, 745 
program in C++, 827 
program in MATLAB, 881

Solution of one dimentional heat 
equation, 522

Solution of Laplace equation, 496 
program in C, 740
program in C++, 823 
program in MATLAB, 877

Solution of L.P.P., 570 
basic, 573, 574 
degenerate, 573, 575 
feasible, 570, 574 
optimal, 570, 574
two phase method, 596

Solution of non-linear equations, 149
Solution of wave equation, 535 

program in C, 748
program in C++, 829 
program in MATLAB, 882
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Spline interpolations, 326
Stability analysis, 476
Standard forms of L.P.P, 571 

canonical form, 571
Stirling’s Formula, 289
Strum sequence, 185
Summation of series, 265
Symbolic relations, 252
Synthetic division, 31

T

Taylor’s series method, 424
Three level method, 525
Transcendental equation, 20 

solution of, 20
Transpose of matrix, 104
Transportation problems, 619 

balanced, 619
degeneracy in, 627 
formulation of, 619
working procedure for, 621

Trapezoidal rule, 360, 392 
errors in, 372

program in C, 724 
program in C++, 813 
program in MATLAB, 870

Triangulisation method, 126
Tridiagonal matrix, 183
Truncation error, 4, 473

U

Undetermined coefficients, 
method of, 383

V

Values of unknown, 216
Vogel’s approximation method, 621

W

Wave equation, solution of, 535
Weddle’s rule, 363 

errors in, 375
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