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PREFACE

This book guides the reader through the subject of heat transfer, cov-
ering the analytical, coding, finite element, and hybrid methods of 
thermal modeling. Cylindrical pipes are the focus of this work for 

their widespread use and multitude of engineering applications. This book 
also gives the reader background information about pipes and their use 
in various fields as well as differential equations [1]. Examples are given 
throughout where different pipe geometry configurations are created, and 
models are built and analyzed.

This book can stand on its own, but it can also be treated as a 
companion to the previous publications by the author. Using COMSOL® 
in Heat Transfer Modeling from Slab to Radial Fin [2] will be of interest 
to those looking for the detailed exploration of the heat transfer modeling 
of extended surfaces (fins). COMSOL Multiphysics® Geometry Creation 
and Import [3] provides in-depth review of the geometry creation 
techniques in COMSOL Multiphysics. COMSOL Heat Transfer Models 
(Multiphysics Modeling) [4] is appropriate for readers who have the basic 
knowledge about modeling and would like to develop their skills further; 
comprehensive case studies covering a variety of subject matter, such as 
heat transfer in car seats, water boiling in a kettle, and a complex rotini fin, 
are included. Mechanical Engineering Exam Prep: Problems and Solutions 
[5] provides an opportunity to test the reader’s knowledge in the field of 
heat transfer as well as other mechanical engineering curriculum areas, 
including over 1,500 innovative problems in these subject areas. The rest 
of this section provides a framework for this work, a roadmap to enhance 
the learning experiences along this journey. The purpose is to become 
familiar with the field of heat transfer modeling through the focused 
examples with significant applications such as transferring energy in the 
form of heat (and matter) in the pipes; the information can be expanded to 
transfer this knowledge to the constricted bodies (pipes with noncylinder 
cross sectional areas). 

The book’s primary focus is on the MATLAB® (R2021) and COMSOL 
Multiphysics (5.6) software packages; however, the learning gained here 
can be transferred to other FEA tools. Both software packages consist of 
a core module and numerous, specialized add-on toolboxes (MATLAB) or 
modules (COMSOL). For MATLAB, the reader needs to have access to the 
MathWorks® Partial Differential Equation (PDE) Module. For COMSOL, 
the reader needs to have access to the Heat Transfer and CAD Import 
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Modules (the CAD Import Module functionality can be also obtained via 
any of the LiveLink™ Modules that connect COMSOL Multiphysics with 
a specific CAD tool). 

Chapter 1 examines the numerous applications of pipes, such as those 
found in nature like blood vessels, as well as man-made ones that address 
the transfer of water (e.g., irrigation and portable water), waste (e.g., sewer 
waste), chemicals (e.g., ammonia), and beverages (e.g., milk). Pipe use 
in thermal management and performance monitoring as it relates to the 
pipes is covered. Finally, the science of heat transfer is briefly introduced 
from a historical perspective. 

Chapter 2 provides insight into heat transfer modeling. Basic concepts 
such as the laws of thermodynamics are discussed. The thermal sciences 
are reviewed, introducing the effects on the molecular scale and their 
role in identifying the heat transfer regime; the concept of the Knudsen 
Number (Kn) is introduced. Energy and heat are discussed and the related 
processes, such as isenthalpic and isochoric, are presented. As the next 
step, the thermal analyses of systems at the component and subcomponent 
levels are reviewed. This journey starts by introducing the thermophysical 
properties of materials—density, thermal conductivity, and heat capacity—
that are key parameters of these models. The concepts of homogeneous 
versus nonhomogeneous materials and static versus dynamic systems are 
also discussed. 

Thermal flow and test management are the essential elements of 
managing heat sources—both hot and cold. This subject is touched upon 
in this book, because heat transfer modeling is often done with the purpose 
of better understanding and improving the thermal management of a 
process. Defining the physics for the modeling tool, including the methods 
of deriving thermophysical relations by balancing energy, is the first step 
when modeling thermal systems. The modes of heat transfer, including the 
conduction, convection, and radiation, are examined along with some of 
the dimensionless numbers such as the Biot Number. Balances of energy 
to obtain temperature and temperature gradient profiles are presented, 
with accounting for major heat transfer regimes. The concept of thermal 
resistance is discussed; it considers the heat flow as an analog to the 
electric current and rewrites the heat transfer equations for the three heat 
transfer modes in terms of thermal resistance. The chapter ends with a 
comprehensive derivation of the energy balance equations expressed in 
Cartesian, cylindrical, and spherical coordinate systems.

Chapter 3 provides an overview of finite element modeling (FEM) 
as applied to heat transfer problems. Starting with the basic concepts of 
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FEM, the chapter proceeds to describe the stages of the process: geometry 
creation, definition of material properties, selection of appropriate analysis 
type, definition of boundary, initial, and domain conditions, meshing, and 
the solution.

Chapter 4 is an introduction to the MATLAB environment that should 
help readers quickly acquire familiarity with it. The chapter starts by 
reviewing the MATLAB interface components, such as the Workspace, 
Command Window, and EDITOR. The definitions and manipulation of 
different variable types (numeric, logical, and character) are described. 
Understanding how to use logical variables is needed to extract the 
sought-after information from data arrays. This is an important skill, as 
it will be needed in later chapters where heat transfer modeling with the 
MATLAB PDE Toolbox is covered. Matrices, the foundation of MATLAB, 
are covered next. Their efficient use is key to unlocking the full power 
of this software. This chapter presents commonly used built-in functions, 
the writing of scripts, and creation of user-defined functions. Finally, data 
plotting methods are covered.

Chapter 5 discusses how heat transfer models can be created and 
solved in the MATLAB environment. The discussion encompasses 
Ordinary Differential Equations (ODE) and progresses toward the Partial 
Differential Equations (PDE). The focus is on the latter approach (PDE) 
because it is more versatile and applicable to heat transfer problems. Use 
of the MATLAB PDE Modeler application, which is part of the PDE 
Toolbox, is covered in detail. The chapter presents an overview of the 
MATLAB PDE Modeler interface, its components, and how to set up a 
two-dimensional model. 

Next, the chapter looks at how the MATLAB PDE Toolbox can be 
used to solve partial differential equations, with the focus on heat transfer 
modeling. A connection is shown between this tool and commercial FEA 
tools (such as COMSOL Multiphysics) that is discussed in later chapters. 
The MATLAB PDE Toolbox provides much flexibility to those interested in 
the low-level control offered by custom code development. Later chapters 
show how the benefits of low-level control of coding can be combined with 
the convenience of the graphical user interface and other functionalities of 
a dedicated FEA tool.

Attempting heat transfer models using the MATLAB script is an 
important part of this work, extensively employed alone or in combination 
with the MATLAB PDE Modeler. All the steps required to set up a 
model in the MATLAB environment by creating scripts are discussed. 
Setting up a model in MATLAB is like setting up models in any modeling 
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environment. Therefore, concepts such as geometry import or creation, 
material properties, analysis type, boundary and initial conditions (e.g., 
heat generation), mesh, solver options, and solution postprocessing are 
reviewed. 

Chapter 6 shows how the material from the previous chapters can be 
applied to five case studies completed in the MATLAB environment. They 
include axisymmetric single and multiple domains set in both steady-state 
and transient settings and relate to pipe applications. The case studies 
are presented in multiple steps that include model setup, results, and 
validation by analytical or other tools. Heat loss calculations are conducted 
and are later employed to investigate the sensitivity of the analyses to the 
materials or geometry configurations (e.g., use of insulation and extended 
surfaces). Pipe models with variable temporal and spatial boundary 
conditions are introduced, with one case showing how to implement a 
moving heat source.

The chapter ends with description of a hybrid thermal model that 
incorporates the MATLAB PDE Modeler and Toolbox functions. It is shown 
that the variables of a model, created in the MATLAB PDE Modeler, can 
be exported to the PDE Toolbox script. 

Chapter 7 briefly reviews modeling with COMSOL Multiphysics. 
More comprehensive coverage of this subject can be found in the author’s 
previous works [2,3,4]. The steps required to set up and solve models within 
this FEA tool, such as creating or importing geometry, adding materials 
and physics, defining boundary conditions, meshing, and running the 
solutions, are discussed herein. Also, the LiveLink for MATLAB Module, 
an add-on module provided by COMSOL which links the two tools, is 
reviewed.

Chapter 8 presents five case studies where the heat transfer in solids 
and non-isothermal flow inside the pipe are combined and analyzed 
using COMSOL Multiphysics. The studies have a common theme: the 
heat dissipation from pipes with extended surfaces of varying geometry. 
Internally finned, externally finned, and internally-externally finned 
pipes are investigated, as well as the special fin shaped like a rotini pasta 
introduced in the author’s earlier publication [4]. The solution time and 
computational requirements are given, as well as the results in the form of 
contour plots and spatial and transient temperature profiles. A comparison 
is made between the case studies to show their relative effectiveness in 
heat dissipation. 

Chapter 9 presents several exercises that the reader can use to practice 
the heat transfer concepts introduced earlier in this work. The exercises 
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are presented in order of increasing complexity, starting from a base 
condition and gradually adding features, such as spatial and temporal 
variations in the thermophysical properties and boundary conditions. 
Most exercises provide a sample solution result so the reader can confirm 
the correctness of their own work. In another set of suggested follow up 
work, it is proposed to apply alternative solution techniques to the case 
studies presented earlier; for example, the reader can attempt to solve the 
problems in the MATLAB case studies using the COMSOL FEA tool.

Chapter 10 provides examples of how one can apply the Lean Six Sigma 
concepts to the subjects related to this work. The first step is to be able to 
decide upon some critical-to-quality variables that help assess the system’s 
progress or success. The term system can apply to a range of subject areas 
connected with the modeling, preprocessing, solution, and postprocessing 
of heat transfer problems. Depending on the situation, the reader may 
focus on the hardware, human resources, computing facilities, analysis 
techniques, and tools. Any of the said items are part of the 5M principles 
that relate to the Lean Six Sigma implementation, aiming to make any 
process both effective and efficient. Some may choose to improve the 
solution time, for instance, and to achieve that, they may either opt in or 
out of using certain modeling techniques, given the available resources or 
restrictions. Eventually, the attempt is made to balance the cost, quality, 
and time when performing certain tasks as individual pieces, but also when 
assembled with the rest of the tasks. The choice of the FEA tool and good 
practices involved are also examined in this chapter, with the objective of 
improving the solution time and performance.

Chapter 11 concludes this work. It redefines the known-and-tested-
method concept in industrial or engineering applications and elaborates on 
if adhering to the status quos is something to be proud of, especially when 
dealing with critical or ethical situations concerning time, product quality, 
and human resources. It is a reminder that practice makes perfect. Even 
though the process may be grounded in historically-practiced concepts, 
it should be reviewed occasionally to sustain the systems and revised 
often based on a control-loop approach to improve the system. Ethical 
design and responsible approaches are the main emphases of this chapter, 
especially when decisions are to be made under direct peer pressure or 
apparent status quos. Examples of responsible designs in the form of the 
Leadership in Energy and Environmental Design (LEED) projects are 
presented herein. 

The publication ends with the appendices, summarizing the analytical 
approaches and applicable governing equations. Appendix A provides 
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analytical approaches and mathematical methods to solve heat and wave 
equations. Simplifying the problem is the first step to consider when 
attempting to solve complex physics analytically. In many scenarios, 
symmetry can be taken advantage of to reduce model dimensions. Even 
after the problem is simplified or reduced to lower dimensions, the scholar 
will not be able to address them the same way; therefore, mathematical 
techniques are required to address these scenarios efficiently. Some 
analytical approaches are more versatile and effective tools than the rest, 
including the separation of variables, variation of parameters, Duhamel’s 
theorem, complex combinations, superposition, Laplace transform, 
and the integral and perturbation methods, which are presented along 
with examples to facilitate their understanding. Appendix B provides a 
summary of the governing equations related to dimensionless analysis and 
application of analytical relations to extended surfaces with general curves.

Before the advent of the electronic computation tools, partial 
differential equations were attempted using the analytical methods 
developed by the physicists and mathematicians who introduced 
techniques such as the separation of variables and the Fourier transform. 
As technological capabilities increased, prompted in large measure by 
NASA’s work on the space program, the computational needs grew. Before 
the electronic computers, human “calculators” were employed by NASA 
in the 1950s to perform the necessary computations, such as those for 
launch trajectories. Even when  the earliest electronic computers were 
introduced, these “calculators” continued making contributions to the 
successful implementation of this new technology, mainly in service of the 
space program. These first electronic computers themselves owed their 
existence in large part to the work of Alan Turing—a British mathematician, 
computer scientist, and cryptologist in the twentieth century. From the 
start of World War II, he developed electromechanical devices to help 
decode Nazi communications and, after the war, he worked on the theory 
and design of the electronic computing devices [6,7]. Appendices C and D 
provide the reader with the list of figures and tables in the book.

Note that whatever endeavor you undertake, never cease asking 
questions, learning, and trying to understand things. Having an inquisitive 
mind is the essence of the humanity. The main lesson the author would 
like the reader to take from this publication is to never stop being curious, 
learning, and striving against any obstacles.
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C H A P T E R1
PiPes, Their APPLiCATiOns, And 
heAT TrAnsfer

Pipelines have been used to transport a wide variety of substances (liq-
uids, gases, and solids) over short and long distances. Most common-
ly, the substances are carried from their place of origin to wherever 

they need to be processed further or as end-products to be used for their 
intended purpose. For water or any fluid to flow inside a conduit, the pres-
sure difference is the driving force. This can be created by a pump, gravity, 
or due to a temperature difference. If the walls of the pipe are exposed to 
heat at different rates, this temperature variation results in the fluid flow, 
with its direction moving from areas with a higher temperature to those 
with a lower temperature. The non-isothermal flow inside the ducts can 
be characterized by different flow regimes. In a laminar regime, the fluid 
moves smoothly along its flow lines. In a turbulent regime, however, cur-
rent eddies are formed, and the fluid undergoes considerable mixing, with 
variations of the flow direction and speed. A flow within a conduit tran-
sitions from laminar to turbulent above a certain flow velocity; this limit 
depends on the fluid properties and the conduit’s cross-sectional area. Any 
sudden disruption in the fluid flow due to the barriers or sharp corners 
causes the formation of local turbulent flows, with the potential to produce 
excessive noise in some applications. 

The gravity-driven pressure difference is a very common way to move 
liquid through pipes. That is how water is transported in most homes. The 
water comes from elevated water tower tanks. Until the nineteenth century, 
fountains, such as the famous ones in Versailles, France, used to work only 
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with gravity. A source of water higher than the fountain was required to 
convert the potential energy of the height into the kinetic energy of the 
water exiting the fountain’s nozzle. Many such fountains are still part of 
the English countryside, perhaps placed there by the famous eighteenth-
century British landscape architect Capability Brown. 

1.1 Artificial Systems

The main application of pipelines is to transport matter over a certain 
distance. Possibly the oldest industrial pipeline can be found in the village 
of Hallstatt in Austria, which has a rich history of salt mining. The 40-km 
pipeline, originally built in 1595, transports the brine from Hallstatt to 
Ebensee. The pipes are made of 13,000 hollowed out tree trunks. Until 
1994, 30,000 liters of milk from Ameland Island were transported daily to 
the Netherlands mainland by means of an 8-km pipeline laid at the bottom 
of the Wadden Sea. Another pipeline in Brazil is used to transport coal, 
liquified into a slurry, from a Minas-Rio mine to a port in Açu. In Germany, 
the pubs located throughout the Veltines-Arena stadium are connected by 
the 5-km pipelines to several large underground distribution tanks, where 
the beer is kept cool. 

Pipes do not just serve utilitarian purposes. They have been used in 
some modern art creations, showing the infinite creativity of the human 
mind. Pipes are used in fountains, which can be said to embody the human 
spirit and its love for purity (water) and life (movement). Water, the 
source of life, is the most responsive being to forces and energies, seen 
during its crystallization process, forming ice, melting to bring life to the 
Earth, and flowing to clear the mundane. The soothing sound of the water 
flowing inside the underground pipes and finding its way to the exterior 
environment is affected by the pipes’ characteristics—from the material 
to the length and shape. French designers must have conducted research 
during the development and construction of the 50 working fountains in 
the Gardens of Versailles.

If you have witnessed water moving harmoniously to music during a 
water show, you see that water exits the pipe outlets at different heights 
with patterns that are affected by the size of the outlet nozzles. In these 
light shows, water is moved by means of pumps that power the super and 
mini shooters, delivering water in mist or liquid forms. Modern fountain 
installations can use large quantities of water and electrical power. The 
iconic Bellagio Hotel fountains in Las Vegas, NV, reportedly contain about 
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20 million gallons of water, which are delivered via 12,000 nozzles. Thus, 
resource management, such as water quantity, pressure, and temperature, 
is an important element of running such shows [8,9,10]. 

One interesting application of pipes where their purpose as a conduit 
of liquid was combined with a structural function was for the construction 
of the Beesat Bridge on the Southern section of the River Arvand by the 
Iranian engineers in 1986 during the first Gulf war (Dawn 8 Operation). 
This river starts at the confluence of the Tigris and Euphrates rivers and 
empties into the Persian Gulf about 160 km downstream. The southern 
section of this river forms the border between Iraq and Iran. In 1986, a 
bridge crossing needed to be quickly constructed across the River Arvand. 
The river at this point was flowing at 11 km/h; it was 1-km wide, 12-m 
deep, with a 3- to 5-m tidal depth variation. To address this challenge, the 
engineers assigned to the task had an innovative idea. They developed the 
Beesat Bridge structure, made of pipes that were 1.42-m in diameter and  
12-m in length, and had a 16-mm wall thickness (Figure 1.1). Approximately 
5,000 7-ton steel pipes (ST67, 35,000 tons), which were manufactured 
by an Iranian piping company (Ahvaz Pipe Mills) were employed in the 
construction of this bridge. It took about six months to complete the 
bridge.

To make the Beesat Bridge, these pipes were placed into the river and 
oriented along the direction of the water flow. This allowed the water to 

FIGURE 1.1. The Beesat Bridge structure on the southern section of the River Arvand (built in 1986, Iran).
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pass by unhindered while creating the bridge structure. Pipes were stacked, 
starting at the bottom, until sufficient height was reached above the water 
level. The rows of pipes were then linked by means of earing hooks and 
then welded. After placing smaller diameter pipes between the large ones 
to make a flatter upper surface, asphalt was laid on top to cover the crevices, 
creating a 12-m wide drivable road surface [11,12,13]. 

1.2 Oil and Gas Industries

Pipes are used as means of transporting oil and natural gas between 
the processing and distribution centers. Examples include the pipelines 
crossing Africa, Asia, Europe, North America (e.g., Canada, Mexico, Puerto 
Rico, and the United States), South America, and Oceania. To deliver 
propane gas to customers in large volumes, it is more efficient for it to be 
converted to fluid using very high pressures. 

Natural gas is transported by pipelines after it is extracted from wells: 
(a) gas at low pressure is transferred by pipelines with small diameters from 
the wells to the manufacturing facilities, where they are processed into other 
products; (b) gas at high pressure is transported from the manufacturing 
facilities to the interstate, intrastate, and international destinations (the 
high pressure is maintained by the pumping stations through which the gas 
passes); and (c) gas delivered to the main processing or distribution facilities 
is carried by small-diameter pipelines. The main difference between 
the pipes and tubing is their sizing. Pipelines are also used to transport 
irrigation and portable water, waste (e.g., sewer waste), slurries (e.g., coal), 
and chemicals (e.g., ammonia). 

Natural gas transmission pipelines require high pressure for 
transmission. The pressure is maintained by the compressor stations 
located (about every 65 km to 160 km) along the way. These compressors 
are very powerful, outputting about 36,000 hp, a rate comparable to a 
large jet engine. Natural gas moves inside the pipeline at about 40 km/h  
(11.1 m/s). Pipelines have diameters that vary from 0.5 to 48 inches. The 
larger ones transfer the fluids from the processing center to the major 
distribution stations, while the smaller ones connect the distribution and 
processing centers. Transmission pipelines are usually made of steel, coated 
with corrosion-protection materials (e.g., coal tar enamel or light blue 
fusion bond epoxy) [14,15,16]. Natural gas, which comprises gases such as 
butane, propane, and ethane, is discretized at the processing facility, with 
the excess contents and contaminants such as hydrogen sulfide removed. 
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Usually, ethanethiol is added to the natural gas to make it smell like rotten 
eggs, in case it leaks, since natural gas is odorless. Storage is usually done 
inside waterproof underground storage facilities. 

Underground pipelines are normally placed about 1.8 m (6 ft) deep be-
low the surface. Interestingly, gas pipelines are intentionally not laid out in 
an exactly straight fashion; instead, gentle S-curves are added. The reason 
is to avoid pipe damage due to thermal expansion. While the seasonal tem-
perature variation below the ground surface declines with depth, there is 
still significant variation at the typical pipe-laying depth. For example, soil 
temperature observations were made for oil pipeline projects in 2004–2005 
in the Mackenzie River Valley in the Fort Simpson area of the Northwest 
Territories. These measurements recorded seasonal variations from a mini-
mum of 2.0 °C to a maximum of 6.3 °C. While a temperature change of 4.3 
°C does not appear to be large, when the thermal expansion is calculated for 
the tens of kilometers of the pipeline, the effect becomes significant. Using 
this temperature difference with the steel thermal expansion coefficient of 
11.7 × 10-6 m/mK for the 10-km pipeline results in a length change of 0.5 m. 
If the pipes were laid in a straight line, this expansion would cause signifi-
cant sideways movement, likely leading to pipe damage [17,18,19,20,21].

1.3 Organic Systems

There is a vital piping system that all humans make use of and without 
which they cannot survive—the human circulatory system. The human 
body incorporates perhaps the most complex flow system of them all, 
operating reliably for decades in a nearly unfailing fashion. Hemodynamics, 
the dynamics of the blood flow within the veins and arteries, is responsible 
for this operation, ensuring the transportation of the nutrients and 
hormones, gases such as oxygen and carbon dioxide, as well as metabolic 
wastes. Of course, heat transfer plays a critical role here as well. The 
blood flow regulates the body temperature, directing heat to the parts of 
the body where it is needed most, which may sometimes leave the fingers 
freezing as the body decides that maintaining the core temperature is more 
critical to the person’s survival. Blood is a non-Newtonian fluid, meaning 
that its viscosity can change depending on the environmental conditions. 
The vessels are also flexible to accommodate flow variation and facilitate 
fluid movement. This makes the flow model in the arteries and veins both 
interesting and challenging. 
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Another example is the umbilical cord. This cord is a tube that connects 
mother to her baby. It has three blood vessels: (a) one vein, carrying the 
food and oxygen from the placenta to the baby, and (b) two arteries, 
carrying the waste from the baby back to the placenta. These blood vessels 
are cushioned and protracted by Wharton’s jelly. If the cord is too long, too 
short, does not connect well to the placenta, or gets knotted or squeezed, 
these conditions cause problems. The urethra is another example, and it 
connects the urinary bladder to the uterus meatus. Its function is to let 
urine discharge from the body. Its structure is fibrous and muscular, 
with its length varying between 4–20 cm. The ureter tube that is about  
20–30-cm long and about 3.5 cm in diameter, is made of small muscles 
connecting the kidney to the urinary bladder [22,23,24].

1.4 Pipe Materials

Pipes that are used to convey the fluids are made of materials such as 
wood, fiberglass, glass, plastics, metal (e.g., steel, copper, and aluminum), 
and occasionally concrete. Surface roughness is one of the factors that 
affects the flow regime inside the pipes. Depending on the fluid types, there 
are different challenges faced when designing the pipelines. For example, 
some of these materials (e.g., ammonia) are highly toxic. Therefore, not 
only the piping routes need to meet the right-of-way constraints, but also 
the pipe’s physical, thermal, and mechanical characteristics need to comply 
with regulations. In addition, all the fittings such as valves, intersections, 
and seaming materials—with which the pipes are joined together—should 
be carefully selected according to the performance requirements. In 
Canada, interprovincial pipelines are under the supervision of the National 
Energy Board; the equivalent United States agency is the Federal Energy 
Regulatory Commission (FERC).

One may not think of wood as a suitably durable pipe material, but 
wooden pipelines exhibit characteristics such as a resistance to corrosion, 
electrolysis, and decay (rot). They are also easy to transport, especially in 
hard-to-reach areas, such as mountainous regions, making them a relatively 
easy-maintenance option for piping systems. The thick walls of wooden pipes 
provide good insulation for the transported substance, greatly diminishing 
the possibility of pipes freezing. Wood does not expand or contract easily 
with temperature changes, and that minimizes the need for the installation 
of expansion joints. Wooden pipes are made with staves and hoops, like 
barrels. It is believed that the redwoods found in the western United 
States can resist acids, insects, fungus, and weathering. In the sixteenth 
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and seventeenth-century London, the pipes were tapered at the end and 
sealed by means of hot animal fat. It is reported that about 100,000 ft of 
the wooden pipes were installed during World War II in army camps and 
airfields [25,26].

Pipes running on the exterior of the structures may be exposed to the 
harsh environmental conditions due to the extreme temperatures, wind, 
and the sun’s radiation, such as those found in arid climates. In these 
applications, the choice of the material is as vital as the design’s geometry. 
In some aerospace applications, aluminum sheets are used for the heat 
pipe envelope [27]. They are used to maintain space nuclear systems within 
the recommended temperature range of 130–280 °C. Although aluminum 
is easily machinable, manufacturing the interior longitudinal grooves to 
increase the convective surface areas of the heat pipe envelope does not 
produce a strong structure for the given weight requirements. Therefore, 
titanium, which has a high strength-to-weight ratio, has been suggested as an 
aluminum substitute. These characteristics, in addition to its anticorrosive 
properties, make titanium a desirable material in aerospace applications. 
The main challenge in using this material is its machinability.

There are also other materials used for constructing pipes such as 
steel alloys, Inconel, and chrome-moly. Copper pipelines were used 
extensively through the twentieth century in residential plumbing and are 
still found in many older homes; however, due to copper’s higher material 
and installation costs, it has been generally replaced by plastics such as 
PEX (cross-linked polyethylene). In addition to a higher installation cost, 
copper, being an excellent heat conductor, also can waste a notable fraction 
of heat when used to deliver domestic hot water, especially if a hot-water 
recirculation system is being used. Such energy waste may be reduced by 
adding insulation around the pipes; for example, in the form of closed-cell 
polyethylene foam semi-slit tube sleeves. 

1.5 Thermal Management and Pipes

In industrial installations, it is often necessary to monitor the operating 
conditions of the pipelines. Instruments, such as temperature and pressure 
gauges, may be employed for this purpose. They can communicate by wire 
or wirelessly, using satellites or cellular networks, with central controllers 
using Supervisory Control and Data Acquisition (SCADA) systems. This 
information can be processed; for example, to detect leaks. Comparing the 
flow rate data between two different locations along the pipe can provide 
this information by calculating the difference between the two values.
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Temperature extremes and mechanical loads must be carefully 
considered in pipe design to avoid failure due to accumulation of residual 
thermal stresses, fatigue due to thermal cycling, or exceeding the material 
strength. The type of load varies depending on the environment in which 
the pipes are operated. Conditions that may need to be addressed in 
pipe design are installations in earthquake-prone regions, high winds, 
vibrations, and fluid hammer due to the bends in the pipes. Sharp corners 
can cause high-stress regions within the pipe, and so pipe bend radii must 
be appropriately sized. Cryogenic pipes, which transport extremely cold 
fluids, must be carefully designed to avoid the steel structures becoming 
brittle when exposed to such low temperatures.

A heated or cooled fluid moving through a pipe is an important means 
of transporting heat to or from the system of interest; such an arrangement 
is used in various thermal management systems (e.g., heat exchangers). 
Internal or external fins are often connected to pipes to increase the heat 
transfer rate. An example of an effective thermal management system that 
can operate without using any powered fluid pumping mechanism is a heat 
pipe. Its reliability and effectiveness led to its use in aerospace cooling 
applications. A heat pipe has an array of narrow channels within it that 
perform a wick function. The vaporized liquid molecules travel via these 
channels upstream to the cool end (condenser) where they are drawn in 
by the capillary forces, lose the absorbed excess heat, and form a liquid, 
which then flows back to the warm end (evaporator) of the pipe to repeat 
the cooling cycle. 

Teleheating, also known as district heating, is a method of heat 
distribution by means of hot water or steam. Although the pipes are 
insulated, the heat wastage is significant. Such piping systems are typically 
laid underground; stations along the pipeline routes may be added that can 
store heat and release it when the demand is high. This generated heat 
is then transferred to the users’ central heating system by means of heat 
exchangers, isolating the heating fluid in the local system. 

For some private homes and industrial spaces, heating can be done using 
a non-isothermal heated water flow inside the network of pipes built into 
the floor. These systems deliver heat by warming up the large convective 
surface areas of the floor slab, delivering heat by the radiation and free 
convection modes. Humans are quite sensitive to the radiant heat—it adds 
to a sense of comfort, just like standing in front of a lit fireplace does. Poorly 
insulated cold walls will make one feel chilled.
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An HVAC duct is another example where the fluid (air in this case) 
flows through a channel that can be straight, bent, or split into many smaller 
branches. If the HVAC system is used for heating or cooling, not just 
ventilation, in addition to the flow rate, one also needs to be concerned that 
the air at appropriate temperature reaches the diffusers where it enters the 
intended service spaces. It must provide comfort to people or meet cooling 
or heating requirements of the equipment. Thus, heat transfer modeling is 
an important element of the HVAC system design.

Another use of thermal management is use of the @Source-Energy 
pipe system, which is essentially the same as a concrete pipe; however, it 
also extracts energy in the form of heat from the waste in the pipes and 
adjacent ground, it integrates a geothermal pipe in its concrete. In these 
pipes, in addition to the exterior concrete pipe, a high-density polyethylene 
(HDPE) conduit (the same size as that of a gas line) is also wound inside the 
pipe core along with the reinforcements, which is filled with a heat transfer 
fluid (i.e., 30% ethanol-water mixture). The exchanged energy is controlled 
using a heat pump [28].

1.6 Heat Transfer

The word heat has Germanic origins, being equivalent to contemporary 
Dutch hitte or German heize. In French, it is chaleur, which comes from 
the Latin calor, from which calorie, the term for energy or heat unit, was 
derived [29]. We can speak of the heat of the sun and the heat of fire; the 
heat is conducted, convected, or radiated; it may be generated, stored, or 
released. There is the heat of combustion or the latent heat of fusion. It 
can be the quantity of energy required for a certain process to occur, or 
it is released as a result of a process. Concepts of heat transfer and heat 
flow, as parts of the engineering syllabus, are taught at many educational 
establishments and are shared among several engineering fields. 

As students acquire knowledge about the heat transfer, they may be 
surprised that things that appear common sense knowledge today have taken 
many centuries of human thought to discover. Among the ancient scientists 
who have contributed to these discoveries is Avicenna (Ibn Sīnā)—an 
Iranian (Persian) polymath in the eleventh century. Among his well-known 
works is The Book of Healing (Kitāb al-Shifā’), which is a comprehensive 
philosophical and scientific encyclopedia, divided into four parts of logic, 
natural sciences, mathematics (a quadrivium of arithmetic, geometry, 
astronomy, and music), and metaphysics. In his book of Heaven and Earth, 
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he states that heat is generated from the motion in external things. This 
is to say that the thermal energy has a dynamic nature, similar to what is 
known as the Dynamical Theory of Heat. His theory on heat was reported 
in 1253 in the Latin text entitled Speculum Tripartitum. For example, when 
water is heated, the heat present in the water is generated with aversion on 
behalf of the water and then energy is received by the matter. Avicenna was 
also reportedly the first who employed an air thermometer to measure air 
temperature in his scientific experiments [30]. 

Avicenna’s famous classic authoritative reference work, the Canon of 
Medicine (al-Qānūn fī al-Ṭibb) completed in 1025, consists of five books, 
which have been used at many western medical schools (e.g., Montpellier, 
France until the seventeenth century) and is still used in the East. In Book 
1—essays on the basic medical and physiological principles, anatomy, 
regimen, and general therapeutic procedures—he states that the body parts 
have their own temperaments, degree of heat, and moisture. He further 
provides two methodically ordered lists, identifying: (a) ten body members 
versus their degree of heat, starting from the breath and ending to the skin 
and (b) thirteen body members from the coldest to the hottest, starting 
from the serious humor and ending with the skin. He also introduces the 
temperature equilibrium concept in the body parts, suggesting that its 
deficiency causes ailments in the body. 

In Book 2—where he lists medical substances, arranged alphabetically, 
following an essay on their general properties—he states that drugs must 
not be exposed to extreme heat or cold or stored near other substances. 
He uses the term innate heat as the attrition of the blood parts, that occurs 
due to its circularly motion in the arteries. His theories on heat are like 
the thermodynamics laws, relating the temperature of multiple bodies in 
equilibrium; the conservation of energy for believing that the general energy 
is to be constant and is transformable from one form to another; and that 
heat transfer has a direction, flowing from a matter with the higher level to 
that of the lower one. Avicenna eventually founded the entropy concept, 
where a ground state (no energy) is defined at extremely low temperatures. 
Note that the Dynamical Theory of Heat, which was the foundation of the 
thermodynamics as a branch of physics, only originated in the nineteenth 
century.

In the West, until the invention of the thermoscope by Galileo Galilei—
an Italian astronomer, physicist, and engineer in the seventeenth century—
there was no numerical measure of the degree of heat. As far as heat itself, 
until the discoveries of the nineteenth century, scientists thought that it was 
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a physical substance. Therefore, they associated it with the characteristics 
of a weightless liquid, also known as caloric fluid or frigorific particles 
(particles of cold). This term (frigorific) is attributed to Robert Boyle, a 
seventeenth-century British natural philosopher, who hypothesized that 
particles of cold are transferred between objects [31]. 

Today, we know that heat is the measure of the kinetic energy stored in 
the random motion of atomic particles in matter, and temperature describes 
the intensity of this motion. Historically, extensive work has been conducted 
on the equivalency of heat, energy, and work. Heating processes, such as 
quicker conduction heat transfer by aluminum compared to ceramic or 
plastic or convection heat transfer when boiling water, are known facts. 
Even young children know about temperature. They may be running 
a temperature when they are sick, where a thermometer is employed to 
measure their body temperature. This knowledge provides the ability 
to describe physical systems mathematically to model the reality. This 
modeling is either done analytically or numerically. The analytical models 
include mathematical relations that express the physical relations between 
independent variables identifying the system behavior. Numerical models 
are the same as the analytical models in terms of the system’s behavioral 
representations, except that they define numerical algorithms that are 
applied to the analytical models. For example, they are discretized for a 
domain filled with elements. 

Thermodynamics, fluid mechanics, and heat transfer are known 
collectively as thermo-fluid sciences. They find applications in just about all 
of nature’s phenomena as well as in most of humanity’s technological fields. 
In nature, the sun’s heating of the earth’s surface, atmospheric phenomena, 
and the movement of oceanic currents are all connected to these sciences. 
Human technological endeavors, such as the internal combustion engine of 
a car, the turbofan engine of an airliner, the floating of a ship on an ocean, 
the buoyancy forces that keep the airplane in the air, the frying of your 
morning eggs, and the heating of your house, are all connected to thermo-
fluid sciences. 
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C H A P T E R2
heAT TrAnsfer MOdeLing

Heat transfer modeling is founded on the principles of thermody-
namics. This science focuses on the motion of particles making up 
the matter stimulated by heat, resulting in changes of the internal 

energy and heat generation (HG). In thermodynamics, the four laws are as 
follows:

 (1) Zeroth law—two objects, each in equilibrium with a third object, are in 
equilibrium with one another.

 (2) First law—the internal energy of objects remains constant.

 (3) Second law—the entropy of the universe increases over time, meaning 
the changes are positive for any given system.

 (4) Third law—the entropy of an object approaches zero when its tem-
perature approaches absolute zero.

The term object used in this context is interchangeable with system, since 
both define a cluster of molecules with the equation of states ruling over 
them [32].

Interacting forces within fluids (e.g., gases, liquids, and plasmas) 
are governed by fluid mechanics. This is also known as the third law of 
Newtonian mechanics, sometimes called the action-reaction law—for every 
action, there is a reaction, equal in magnitude and in the opposite direction. 
Fluid mechanics is further categorized into fluid statics and dynamics, 
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based on the temporal status of the fluid molecules. The former relates 
to the stationary systems, also known as the steady-state systems, and the 
latter to the transient systems. The variation of the atmospheric pressure 
with altitude is an example where statics applies. Hydrostatics is the reason 
for the self-leveling of tea within a cup, making liquid’s surface flat. Shock 
absorbers, such as those used in some aircraft landing gear suspension 
systems, are an example of a fluid dynamics application. Depending on 
the type of fluids (i.e., liquids or gases), more specialized disciplines (e.g., 
hydrodynamics and aerodynamics) have evolved. Aerodynamics investigates 
the flow patterns and forces over any object moving through air.

2.1 Basic Concepts

Heat transfer is a thermo-fluid science that focuses on the transportation 
of heat in a continuous medium. The continuum consists of molecules and is 
identified by boundaries. Depending on the spacing between the particles, 
these entities agglomerate and form matter. The ratio of their mean free 
path to the characteristic length—also known as the Knudsen number (Kn)—
decides if the matter is a fluid or solid. A larger space allows molecules to 
freely move in their environment without interacting significantly with their 
neighbors. If the Kn is larger than 1, free molecular flow is observed, where 
molecules can freely move to occupy the space available to them within their 
container (as in gases). Molecules with a smaller Kn (about 1) have their 
movement constrained to greater extent (as in fluids). Therefore, fluids (i.e., 
gases and liquids) are identified by the spacing between their molecules, 
adopting the shape of their container. In solids, the Kn is considerably 
smaller than 1 and the molecules are tightly packed. 

Energy (as heat) can be transferred by mechanical interaction, requiring a 
medium (gas, liquid, or solid). It can also be transferred between the matter’s 
elemental particles or by the transmission and absorption of electromagnetic 
waves, requiring no medium. Heating a skillet on an induction oven raises 
the skillet temperature due to the electromagnetic waves agitating the 
skillet’s iron atoms; the next step is conducting this heat through the skillet 
particles. Holding your hand close to the skillet and feeling the heat is heating 
by electromagnetic interaction (radiation heat transfer) while touching the 
skillet directly is heating by mechanical interaction (conduction heat transfer). 
Taking the skillet off the heat and leaving it exposed to surrounding air makes 
it cool down by convection heat transfer.

Depending on the boundary definition, well-defined or not, a control 
volume or system is defined. The former can be either an open or closed 
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system. In a closed system, energy in the form of heat crosses the boundaries. 
In an open system, both energy and mass can do the border crossing. This 
energy is either in the form of heat or work. Phase change for a specific 
matter is an example of a system, the boundaries of the matter change from 
the more defined shape (e.g., liquid or solid) to a less specific one (e.g., gas). 
Steam flow in a turbine is an example of a control volume, where mass with 
a given energy level, which is a function of its pressure and temperature, 
enters the turbine and leaves it at a higher level, generating work.

When a matter is exposed to heat, the matter may undergo phase 
changes; its state changing from solid to liquid (melting), liquid to gas 
(vaporization), liquid to solid (freezing), gas to liquid (condensing), solid to 
gas (sublimating), and gas to solid (depositing). During the phase change 
process, temperature remains constant; therefore, the process is isothermal. 
Temperature variation is directly associated with the average kinetic velocity 
of the matter’s molecules while heat determines the flow of the created 
spatial or temporal energy. Heat transfer problems can be categorized in 
the following processes: (a) isothermal—temperature remains constant; 
(b) isobaric—pressure remains constant; (c) isovolumetric (or isochoric)—
volume remains constant; (d) adiabatic—no energy is transferred;  
(e) isentropic—entropy remains constant; and (f) isenthalpic—enthalpy 
remains constant. 

All thermal sciences are governed by natural physics and employ: 
(a) analytical, inseparable relations—derived from mathematical rela-
tions, (b) empirical relations—obtained from experimental observations, 
and (c) hybrid relations—predicted from correlating the two-said physi-
cal modeling approaches. These studies focus on calculating spatial fluid 
properties such as temperature, pressure, density, and velocity within a 
time domain and therefore defining temporal properties. When process-
ing thermal science data, either interpreting or presenting them, it is pos-
sible to take advantage of certain special cases. If the system properties 
do not vary over time, a steady-state condition is achieved; otherwise, the 
system is transient.

When post-processing the results of any system study, if multiple 
variables are plotted against each other, by keeping one property constant, 
the iso-property (e.g., isochoric) contour lines or surfaces can be produced. 
Isotherms (lines of equal temperature) and isobars (lines of equal pressure) 
plotted on the weather charts are among more typical cases. Examples of less 
known plots are isogeotherms (lines of constant mean annual temperature) 
and isodrosotherms (lines of constant dew point) plotted on the weather 
charts. 
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2.2  Thermal Analysis of Systems (Components and 
Subcomponents)

Thermo-Fluid analysis describes behavior of systems involving heat and 
flow, with system properties that may depend on temperature. It may be 
also referred to as heat transfer or flow modeling. Thermal analysis describes 
the thermal response of a system as a function of predictors (inputs). These 
predictors may be material characteristics—such as thermophysical and 
optical properties—or process parameters—such as laser scanning speed 
or operating temperature.

2.2.1 Thermal Properties of Materials
The three thermophysical properties of density (r), thermal conductivity 

(k), and specific heat capacity (c) form the foundation of all heat transfer 
problems. A fourth, dependent property, thermal diffusivity (a), may also 
be used to characterize the material. Thermal diffusivity is the ratio of 
thermal conductivity to the product of density and specific heat capacity. 
Any type of mass, momentum, or energy conservation employs one or more 
of the first three properties.

Material properties are vital ingredients of any modeling and, depending 
on the modes of heat transfer or analysis type, some are more dominant than 
others. These properties may vary in space (spatial), time (temporal), or 
under environmental conditions (environmental). Nonconstant properties 
introduce nonlinearities and non-homogeneities to the physics that make 
the problem more challenging to tackle. An example is modeling material 
exposure to intense heat sources such as fire in which heat-material 
interaction over time is needed. For such models, thermal capacity and 
thermal conductivity are required. Density is another needed property 
that is available in most cases for being the basic material specification. 
Inaccuracies in material properties can sometimes lead to significant 
variations in thermal analysis results. 

Thermal properties of materials usually involve a combination of 
energy (J), temperature (K), mass (kg), length (m), or time (s). Adding (or 
taking away) energy from a material increases (or decreases) the degree of 
agitation in the form of translational, rotational, and vibratory motion of 
the material’s elementary particles; the level of this agitation is expressed 
by the material’s temperature. 

Specific heat capacity is the amount of energy needed to increase the 
temperature of material by one degree centigrade (J/kgK). The larger it is, 
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the more capacity the matter has to hold its thermal energy; for example, 
for water it is 4,200 J/kgK, while for cast iron it is 460 J/kgK. 

Thermal conductivity describes how much energy (J) can travel 
per unit time (s) per unit length (m) for a temperature gradient of one  
degree (°C). The larger it is, the more conductive the material is; for 
example, for alumina (a ceramic material) it is 27 W/mK, while for copper 
it is 401 W/mK, which is almost fifteen times greater than that of the 
ceramic material. Thermal diffusivity represents the combination of 
these thermophysical properties and is defined as the ratio of thermal 
conductivity to the product of density and heat capacity (a = k/rc). This 
property describes the temporal variation of temperature within matter, 
the changes that occur with respect to time, when constituting the energy 
conservation equations.

If a material is a mixture of two or more distinct elements or com-
pounds, it can be classified as homogeneous, inhomogeneous, or heteroge-
neous. In a homogeneous material, the components are mixed at such a 
fine level that any small macroscopic sample of the material has the same 
proportion of the constituents as any other. In an inhomogeneous material, 
taking similar samples results in sample-to-sample variation of the constitu-
ent proportions. In other words, homogeneous materials are consistent in 
composition and character (e.g., some metals), while inhomogeneous ma-
terials are inconsistent in composition or character due to the substantial 
material variations (e.g., rice pudding). Heterogeneous materials are incon-
sistent in composition or character for similar materials (e.g., chocolate chip 
cookies). If the mixture’s thermal properties are not available, one way to 
approximate them is to use the rule of mixtures. It provides an estimate of 
the equivalent property, which is the sum of the products of the individual 
property value and its corresponding mass fraction. 

Spatial properties can change within a geometry or specific domains 
within a geometry. This introduces thermal non-homogeneities in 
properties. The change can be: (a) spatial (e.g., varying thermal conductivity 
as a function of the location or direction), (b) thermal (e.g., change of 
specific heat capacity with temperature), or (c) temporal (e.g., changes in 
metabolism in a living organism).

Properties that are expressed per unit length (e.g., thermal conductivity) 
or length squared (e.g., elastic modulus—Pa = N/m2) can also vary with 
the material direction. If such variation exists, the material is anisotropic. 
Furthermore, anisotropic materials may be transversely isotropic or 
orthotropic. The former has invariant properties within a plane but 
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different properties in the direction orthogonal to this plane. Think of a thin 
membrane—properties within its plane are the same in all directions, but 
they are different in the transverse direction. Orthotropic materials have 
properties which differ along three orthogonal directions. For example, 
a sheet of rolled steel has different properties in the direction of rolling, 
perpendicular to the rolling direction, and transverse to the sheet plane.

When selecting materials for engineering applications, careful 
consideration must be given to their thermal and mechanical properties. 
Aluminum, for example, has a good strength-to-weight ratio (33.3 kN m/kg) 
and, due to the oxidized layer that is formed on its surface when exposed 
to air, it is almost corrosion-free. However, it does not perform that well in 
the high-temperature applications due to its relatively low melting point 
(660.2 °C) when compared to other metals. Aluminum has a high thermal 
conductivity (238.5 W/mK), which makes it suitable for heat transfer 
applications, such as heat sinks or sources. Also, it has large linear thermal 
expansion coefficient. Aluminum, however, has a small strength-to-weight 
ratio. 

Titanium can be used in very high-temperature applications due to its 
high melting point (1,650–1,670 °C); it is harder and stronger than aluminum, 
but more costly. Its strength-to-weight ratio (48.9 kN m/kg) is higher than 
that of aluminum. This can be a benefit in structural application, but it 
also makes the material difficult to machine or process. Another benefit 
is that it has lower thermal expansion coefficient (8.9 m/mK) compared to 
aluminum’s (23.6 m/m K). However, due to its low thermal conductivity 
(17 W/mK), titanium is a poor candidate for heat transfer applications. 
These examples show that there are many things to consider when selecting 
appropriate materials in engineering applications (Table 2.1).

TABLE 2.1. Comparison of thermomechanical properties of aluminum and titanium.

Material

Melting 
Point 
(°C)

Density 
(kg/m3)

Tensile 
Strength 

(MPA)

Tensile 
Strength-
to-Density 

(m2/s2)

Linear 
Thermal 

Expansion  
(µm/mK)

Thermal 
Conduc-

tivity  
(W/mK)

Aluminum 660.2 2,700 90 33 23.6 238.5

Titanium 1,650-1,670 4,500 220 49 8.9 17

2.2.2 Static versus Dynamic
There are two types of thermo-fluid analysis: (a) transient and (b) station-

ary. The former case involves temporal system characteristics (properties  
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change with time), while the latter involves no temporal dependence. Oc-
casionally, the system’s instantaneous behavior depends on the past per-
formance; such a system is referred to as a dynamic system. However, 
that is not necessarily the case for all transient systems. In other words, a 
system can be time-dependent static but not necessarily dynamic. A static 
system is memoryless while a dynamic system has an “elephant” memory. 
In a memoryless system, the output is the function of the input. For ex-
ample, f(t) = teat is a static system, which requires a certain time variable 
(t) to identify the value of the function f(t) at that instance (t). No previ-
ous data is required to define this function; this is a memoryless system 

0.5
( (5 60 9) . 1),

a
f

=
=  even though the result depends on time (transient). 

However, ( ) ( )atf t te f t a = -  is a system that has a memory, since it re-
quires a certain time variable to not only identify the value of the function 

( )f t  at that particular instance (t), but also the value of the function ( )f t  at 
a s prior to that instance—

0.5
103.61.(5)

a
f

=
=  Functions f(t) and ( )f t  are 

presented in Figure 2.1. 

As the next step, curves were fitted to the same functions (f(t) and ( )f t ), 
with the results presented in Figure 2.2. The two fitted functions (y(x) and 
y(x)) are third-degree polynomials and do not identify if the functions are 
static or dynamic. Therefore, functions alone do not determine the dynamic 
nature of a system; other characteristics are needed to determine that.

FIGURE 2.1. Function f(t) versus the t representing static (dotted line) and  
dynamic (solid line) systems (a = 0.5).



20 • PraCtiCal Heat transfer

FIGURE 2.2. Fitted function f(t) versus the t representing static and dynamic systems (a = 0.5).

Let us consider adjusting the temperature of a room using a thermostat. 
Inputting the desired temperature to the thermostat control panel is 
inherently not time-dependent; you may set whatever temperature level 
you wish at any time. However, reaching the desired room temperature 
after adjusting the thermostat is a transient process in which temperature 
increases (or decreases) with time. Given the real-time ambient conditions, 
the input temperature is translated to an electrical signal, which is 
then communicated to the boiler to generate more warm air, or the air 
conditioner to generate more cool air. The heated flow is then transferred 
through the in-floor pipes, radiators, or ducts by means of conduction, 
radiation, or convection heat transfer modes to the thermally controlled 
zones. The temperature of the environment changes on a continuous basis 
until it reaches the set value. 

A thermometer is an intervening device, ensuring the desired 
temperature is achieved by measuring the temperature at each heating or 
cooling step. Eventually, the thermal transient process becomes steady at 
the set value. At this point, the behavior of the system does not change with 
time anymore. In most cases, it is assumed that the system has completed 
several temporal processes before reaching the steady-state condition; the 
process events depend upon the previous events and therefore heating 
process is a dynamic system while inputting temperature is a static process.

For a transient analysis, where the temporal variation is desired, the 
time predictor is considered either as an additional coordinate to the three 
spatial ones or as a separate variable where it influences the thermophysical 
properties—expressed in terms of the temporal variation of the boundary 
conditions. An example is the definition of the volumetric heat generation 
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term for the case of a laser contour welding process, where the profile 
of the heat source changes along the x-, y-, and z-coordinates and varies 
with time (since the beam is scanning the part). The heat source can be 
applied cyclically—turning on and off—to study the effect of the heating 
and cooling (after the heat source is no longer active). The time-varying 
heat source, either in the form of heat generation inside the geometry or 
boundary conditions applied to the internal or external borders, follows 
similar rules [33]. 

2.2.3 Energy Balance
In thermo-fluid systems, the conservation of energy principle states that 

the energy should be conserved in all subcomponents. Their total energy 
should be zero, demonstrating that the balance of energy has been reached. 
Conservation of energy requires that the total energy inputted into and 
generated within the system is the same as the total outputted from and 
stored by the system. Figure 2.3 shows schematically the general form of 
the energy balance for a continuum, Equation (1).

 in generated out storage E E E E =      (1)

FIGURE 2.3. Energy balance diagram for a continuum (e.g., a parcel of air). 

The conservation of energy requirement means that the energy balance 
is to be complied with for any small and identifiable portion (element) of 
the material that satisfies the continuity of mass, energy, and momentum. 
Energy can enter and leave the continuum; however, the boundaries remain 
constant. The continuum is identified by its size, mass, and thermophysical 
properties. Thermophysical properties may be temporal (transient—change 
with time), spatial (non-homogeneous—change with direction and location 
within the geometry), temperature-dependent, or constant. 

Energy is defined in different forms inside this environment. It is 
either in the form of heat entering or leaving the continuum by conduction, 
convection, or radiation modes of heat transfer, changes of internal energy 
(or energy storage), or heat generation generated( )E  inside the continuum. The 
heat leaving the continuum by conduction is the same as the heat entering 
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the continuum by conduction plus the spatial variations over the length of 
travel, and it is time-independent (steady-state), Equation (2). 

 out in in( , , ) ( , , ) ( ( , , ))q x dx y dy z dz q x y z q x y z   = 
    (2)

The internal energy is time-dependent (transient); it represents the 
variation of rate of energy storage ( storageE in W) expressed in the following 
form that includes specific heat capacity of the continuum (cp in J/kgK), 
mass (m in kg), volume (dV in m3), temperature (T in K), and time (t in s), 
Equation (3).

 storage( )
( , , )

, , p

dT x y z
E x y z mc dt=  (3)

The heat generation can be time- and location-dependent (transient and 
temporal, respectively). It represents the heat generated inside the heat-
conducting medium. It can be expressed in units of energy rate per unit 
volume—Equation (4)—where generatedE  is heat generation (W) and q  is 
rate of energy generated per unit volume (W/m3). Internal energy internal)(E  is 
the energy storage and energy generation terms, Equation (5). Substituting 
Equations (2) to (5) into Equation (1) results in Equation (6).

 generated( , , )x y zE qdV qdxdydz= =

   (4)

 internal
( ), ,

  p

dT x y z
E m c qdVdt=- 

  (5)

 in
( , , )

( ( , , ))   p

dT x y z
qdV q x y z m c dt =



  (6)

The energy balance for the case studies presented in this work is set for 
a system where mass does not enter or leave the system boundary—only 
energy in the form of heat and work does. There are some cases in which 
mass crosses the boundary or there is no net mass transfer (i.e., the inlet 
mass is the same as that of the outlet); therefore, there is no mass transfer—
this is a control volume (versus the system) problem. The boundary of a 
system may expand or contract. For a control volume, however, both 
energy and mass may enter and leave the boundaries, which do not expand 
or contract. Your body as a source of the sensible heat you experience 
transported by sweat, or rush of blood and tears, is a control volume, with 
the possibility for organic fluids entering and leaving the body parts. Each 
body part has a set boundary that essentially does not change, though it may 
expand or contract. Examples of the processes including mass transport are 
evaporation, precipitation, and distillation.
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Geometry in which heat transfer takes place can be defined by 
the Cartesian coordinate system in one (1D), two (2D), or three (3D) 
dimensions. For some 3D shapes, the cylindrical or spherical coordinate 
system can facilitate the modeling task. There are cases where the model 
can be simplified by reducing the number of dimensions. One case is 
where the length of the plane transverse to heat transfer direction is large 
compared to the other dimensions, including the dimension along which 
heat is transferred. In this case, the heat transfer along the transverse 
direction can be ignored. This is where a 3D model can be simplified to a 
2D model. Another case is an axisymmetric model, meaning that the model 
(i.e., properties, boundary and initial conditions, and state variables) are the 
same about a symmetry axis. In this case, a 3D model can be simplified to a 
2D axisymmetric model. A pipe exposed to a uniform transient heat flux on 
its exterior surface is an example of such model.

2.3 Modes of Heat Transfer

Dependent variables are the driving forces for defined physics. When 
modeling heat transfer in solids and fluids, temperature is the dependent 
variable. This is analogous to pressure being the dependent variable when 
modeling fluid flow. Heat is transferred from the point with the higher 
temperature to that with the lower one. Fluid moves from the point 
with higher pressure to that with the lower one. Heat or fluid movement 
continues until all points reach an equilibrium state, meaning that their 
temperature or pressure equalizes.

The dependent variable is to be measurable so that the derivative may 
be calculated. For heat flow to be determined, temperature is the state 
variable. The variation of temperature throughout matter—either in the 
form of solid or fluid—is either time-dependent (temporal) or space-
dependent (spatial). The gradient of temperature (i.e., spatial variation) 
results in heat conduction—from a region with a higher temperature to that 
with a lower temperature. The rate at which this equalization takes place is 
proportional to the thermal diffusivity and spatial derivative of temperature. 
As you may recall, thermal diffusivity is the ratio of heat conductivity to 
the product of density and specific heat capacity. This property is the 
characteristic of the material, affecting temperature change over time (i.e., 
the transient temperature).

The mechanism of heat transfer depends on the medium in which 
the heat is being transferred. Heat transfer is achieved primarily by the 
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mechanisms of conduction and radiation. For conduction to happen, either 
in its pure or subsidiary forms (such as convection), molecules need to be 
present. While in the radiation form, electromagnetic waves are the energy-
transmitting agents, and no intervening molecules are needed. This is how 
the sun’s radiant energy reaches the earth’s atmosphere and passes through 
the atmospheric layers to be absorbed by the planet’s surface. 

For solids, in which molecules are near each other, the conduction 
mode of heat transfer is dominant. For molecules flowing in the form of a 
fluid (i.e., liquid or gas), heat transfer takes place by means of advection, 
which is the combination of the convection and conduction due to the fluid 
flow and the solid surface they may come in contact with. When a gas comes 
in contact with a solid, a hybrid heat transfer mechanism takes place—a 
combination of the conduction and convection heat transfer modes, both in 
the solid and liquid as well as their interface. Additionally, the momentum 
of the fluid bulk transfers some of the energy in the form of heat. 

Flow profile and velocity affect the heat transfer mechanism. This 
is particularly the case for conjugate heat transfer models, where the 
combination of fluid flow and solid heat transfer are included in a hybrid 
thermal heat transfer model. When a continuum nonslip flow passes over a 
wall (i.e., any solid boundary), the magnitude of the flow velocity adjacent 
to the wall will be zero, while for a slip flow this value is not zero, since the 
fluid can slide relative to the wall. The parabolic velocity profile associated 
with the continuum flow passing over the wall changes to a linear profile in 
a free molecular flow, meaning that the flow velocity, starting at a nonzero 
magnitude at the wall, changes (increases) linearly with increasing distance 
from the wall.

2.3.1 Conduction Heat Transfer
For solids, where molecules are in close contact with each other, 
conduction is the main mode of heat transfer. For molecules within fluids 
(i.e., liquid or gas), heat transfer takes place by means of advection, which 
is a combination of convection and conduction. Since heat is transferred 
though the internal energy of randomly colliding molecules, this mode of 
heat transfer is available for all three phases of material (i.e., solid, liquid, 
and gas). Obviously, the more the molecules interact, the more efficient 
heat transfer mechanism becomes. 

Consider, as an example, the case of in-floor heating, where electric 
heating wires are embedded into the floor in a raster pattern. When walking 
barefoot on the heated floor, its heat is transferred to your feet, assuming 
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that the floor’s temperature is higher than that of your body. Another 
mechanism of heat transfer is the convection by spontaneous change of 
density for the air at the proximity of the horizontal warm surface. With no 
in-floor heating, your bare feet will normally feel the cold of the floor surface. 
This is because the heat from your sole is transferred to the floor. High 
thermal conductivity of the 0.05-m-thick ceramic floor tile (1.84 W/mK)  
compared to your skin (0.37 W/mk) are the responsible factors; however, 
thermal diffusivity of the ceramic is larger than that of the skin (Silicon 
carbide thermal diffusivity is about 1.1 ´ 10-6 m2/s compared to that 
of the human skin that is about 9.8 ´ 10-8 m2/s) [34, 35, 36, 37, 38]. 
This means that the heat diffusion for the ceramic floor tile is about  
11 times that of the human skin, causing the cool sensation—Table 2.2.

TABLE 2.2. Comparison of thermophysical properties of some materials.

Material

Thermal 
Conduc-

tivity  
(W/mK)

Heat  
Capacity 
(J/kgK)

Density 
(kg/m3)

Thermal 
Diffusivity 

(m2/s)
Thickness 

(m)

Thermal 
Resistivity 
(m2K/W)

Ceramic 
Floor Tile 1.84 840 2,000 1.10E-6 0.05 0.03

Human 
Skin 0.37 3,391 1,109 9.84E-8 0.002 0.005

For a derivative (e.g., heat) of a property (e.g., temperature) to be 
transported, a state variable must be defined that is responsible for the 
transportation of the derivative; it can be either measured or calculated. 
For the heat flow (response) to be determined, temperature (predictor) as 
the state variable is to be employed. Variation of temperature throughout 
the matter, either in the form of the solid or fluid, is either time- or space-
dependent. Recall that gradient of temperature causes heat transfer to 
occur from the region with higher temperature to that with the lower one. 
Material thermal characteristics, such as thermal conductivity and heat 
capacity, as well as physical properties, such as density, affect this energy 
transfer, over the defined domain (space) and time, introducing temporal-
spatial thermal characteristics. 

In addition to the analytical relations and numerical approaches to 
solve conduction heat transfer modes, there are also diagrams suitable for 
specific scenarios that correlate thermal variables. An example is a Heisler-
Gröber chart, consisting of three sets of charts presenting the temperature 
distributions inside a sphere with known radius, a semi-infinite slab with 
known thickness, and a cylinder with a known radius. There are limitations 
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to be considered when using these diagrams. These limitations are due to the 
assumptions used to create the diagrams: (a) the initial temperature should 
be constant; (b) the environmental conditions (namely temperature) should 
remain unchanged; (c) the convection heat transfer coefficient should not 
vary as a function of temperature; and (d) the rate of heat generation inside 
the part is zero. 

To obtain these diagrams, the exact solutions from the Fourier 
transformation (infinite slab and sphere) and the Bessel functions (infinite 
cylinder) are simplified, including only the first terms. There are sets of 
diagrams identified for each geometry that show the following: (a) the 
dimensionless temperature at the center of the geometry assuming an 
imposed temperature on the boundary of the surface as a function of the 
Fourier number 2

0( / )Fo t r=  ; (b) dimensionless temperature distribution 
inside the geometry as a function of the inverse Biot number (Bi = hr0/k), 
given the dimensionless radius or the thickness of the geometry; and  
(c) dimensionless thermal energy (heat), which is a function of the product 
of the Biot number squared by the Fourier number (Bi2Fo), assuming that 
constant temperature boundary conditions were applied [39].

As mentioned earlier, temperature difference is the driving force for 
the movement of heat energy. This heat flow rate (Q in W = J/s) depends 
on the heat conduction coefficient (k in W/mK), which is the proportionality 
factor, area of the body normal to the heat flow (A in m2), and temperature 
change (dT in K) with respect to the distance (dx in m). This is described by 
the Fourier equation: Q = -(kAT).

Fourier law is applicable to the heat conduction mode and it states 
that energy transfer is proportional to the gradient of the temperature 
with respect to the direction (coordinate system) along which it flows

, ,
dT dT dT
dx dy dy

 
 
 

 as well as the areas of the body perpendicular to the 

directions of heat transfer (Ax, Ay, Az), and thermal conductivity (kx, ky, kz) 
along the heat transfer direction. Thermal conductivity depends on the 
material and demonstrates how fast the molecules get agitated, showing 
signs of increased activity as the temperature increases. Metals in general 
have higher thermal conductivities compared to nonmetals. The closer 
the molecules are to one another, the easier it is for them to transfer their 
motion, which corresponds to the thermal energy. 

The heat transfer flow follows the temperature gradient; , ,i j
 

 and k


 
represent unit vectors along the (x, y, z) in the Cartesian coordinate system. 
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Temperature gradient is a vector, having magnitude and direction. For 
three-dimensional space, each of the vector’s three components is obtained 
by calculating the derivatives of temperature with respect to the dimension 

component (coordinate). Thus, the vector , ,
dT dT dT
dx dy dy

 
 
 

 is obtained in the 

Cartesian coordinate system. These derivatives take on different forms for 
the cylindrical and spherical coordinate systems, which will be discussed 
later in this section.

The area that is normal to the heat transfer gradient vector becomes 
important when calculating the total power passing through a plane. For 
example, determining the heat transfer along the x-coordinate involves 
the y-z plane: the y-z plane is perpendicular to the heat transfer direction 
and is therefore the surface to which the heat flux is applied. Equation (7)  
presents the general form of changes of energy due to the conduction heat 
transfer in the Cartesian coordinate system in a steady-state case. Note 
that heat generation and change of internal energies are not included in 
Equation (7) and that Ax = dydz, Ay = dxdz, and Az = dxdy.

 
   

cond( , , ) ( ( , , ))x y z

x x y y z z

Q AkT x y z

dT dT dT
A k i A k j A k kdx dy dz

=-

 
=- - - 

 



 

 (7)

Similar to electric current (I) that flows inside a resistor from the areas 
of higher voltage (V) to those of lower ones inside a circuit (V = RI)—
with the voltage being the driving force—heat flows from the regions of 
higher temperature (Ts) to those of the lower ones ( sT ), with temperature 
difference acting as the driving force. Therefore, it is possible to simulate 
the heat flow as electric current and assign the denominator term presented 
in equation (8) the thermal resistance. 

 
 

cond
s sT T

Q L
kA

-
=  (8)

Conductive thermal resistance is then presented by Equation (9), where L is 
the length of the thermal layer (m), k is homogeneous thermal conductivity 
(W/mK), and A is area normal to heat transfer direction (m2). The dimension 
of conductive thermal resistance (R) is K/W.

 thcond-cartesian
L

R kA=  (9)

Depending on the geometry to be modeled, the Cartesian, cylindrical, or 
spherical coordinate system may be employed. For instance, a cylindrical 
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shape, such as a pipe, is better represented by the cylindrical coordinate 
system. A ball is more accurately modeled using the spherical coordinate 
system. This assists with capturing the geometry irregularities such as 
bends, curves, and corners. 

Changes of energy due to the conduction heat transfer in the cylindrical 
coordinate system are presented by Equation (10). Heat generation and the 

change of the internal energies are not incorporated; , ,i j
 

 and k


 represent 

unit vectors along (r, q, z); x = r cosq, y = r sinq, z = z, 2 2 ,r x y=   and 
tanq = y/x.

 
 

     
cond( , , ) ( , , )r z

r r z z

Q AkT r z

dT dT dT
A k i A k j A k kdr rd dz

q

q q

=- q

=- - -q



 
 (10)

Changes of energy due to the conduction heat transfer in the spherical 
coordinate system are presented by Equation (11). Heat generation and the 

change of the internal energies are not incorporated; , ,i j
 

 and k


 represent 
unit vectors along (r, q, j); x = rsinjcosq, y = rsinjsinq , z = rcosj, and  

tanq = y/x, 2 2 2 ,r x y z=   and arccos( / ).z rj=

  

   
cond( , , ) ( , , )

sin

r

r r

Q AkT r

dT dT dT
A k i A k j A k kdr rd r d

q j

q q j j

=- q j

 
 =- - -q q j 



 

 (11)

The thermal resistance analogy is also applicable to the cylindrical and 
spherical coordinate systems; therefore, Equations (10) and (11) are 
transformed into Equations (12) and (13), respectively, where r1 and r2 are 
the internal and external radii of the geometries, and L is cylindrical length.

 
 

cond
2

1
ln 2

s sT T
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-
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cond
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Conductive thermal resistances are then presented by Equations (14) 
and (15), where k is the homogeneous thermal conductivity, and A is area 
normal to the heat transfer direction.
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One may derive Equations (10) and (11) from their equivalents in the Car-
tesian coordinate system, Equation (7). To achieve this, the following trans-
formations are applied. The equivalent of the Cartesian coordinate system 
(x, y, z) in the cylindrical coordinate system (r, q, z) is (r cosq, r sinq, z) which 
implies that tanq = y/x. The equivalent of the Cartesian coordinate system 
(x, y, z) in the spherical coordinate system (r, q, j) is (r cosqsinj, r sinqsinj, 
r cosj), which implies that tanq = y/x and arccosj = z/r. Furthermore, 

, , , , , , , , .dx dy dz dr dx dy dz d dx dy d
ddT dT dr dT d d

z d dx dy dz
T jq

=  q j  Note that the de-

nominator expression dx, dy, and dz determines along which dimension 
component (x, y, z) the gradient is applied.

2.3.2 Convection Heat Transfer
The convection heat transfer mode occurs between a solid and fluid. 

It is related to the temperature difference between the solid surface in 
contact with the fluid and the bulk temperature of the fluid surrounding 
it. Occasionally, the bulk temperature is assumed equal to the average 
temperature between the wall surface temperature and the flow temperature 
at a distant location, if this temperature difference is considerable. The 
factors that make this proportionality an equality are the area of the 
surface, and a proportionality coefficient called the convection heat transfer 
coefficient. This coefficient depends on the bulk flow characteristics, 
such as its velocity. Surface characteristics, such as roughness or surface 
orientation, also affect this coefficient, which is expected to be greater for a 
vertical surface (due to the gravity effects and more pronounced at higher 
temperatures) versus the horizontal surface under similar conditions.

For a motionless fluid, this coefficient may be obtained from 
experimental observations. For example, for a horizontal wall adjacent 
to an air volume, this coefficient is about 5 W/m2K, while for a vertical 
wall, this value is about 10 W/m2K. The larger the convection heat transfer 
coefficient is, the larger the heat transfer magnitude from the solid surface 
to the fluid environment is. The reason is that heat transfer is facilitated 
by the flow in the proximity of the vertical surface, where the fluid can 
move freely due to its buoyancy. Since the cold fluid is denser, it moves 
downward, while the warm fluid moves upward, creating flow in the vicinity 
of the wall, which promotes heat transfer and would be represented by the 
higher heat transfer convection coefficient value. The horizontal surface 
generally exhibits a lower heat transfer rate.
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The mechanism of convection heat transfer that occurs only due to the 
natural buoyancy of the fluid is called free convection. In this case, when 
the solid surface comes in contact with the fluid, no additional mechanism 
exists to facilitate heat transfer. In other words, heat transfer in this case is 
done spontaneously and that is why it is also known as natural convection. 
An example is warming a room by hot-water radiators. The fluid takes 
advantage of the generated buoyancy forces due to the variation of the 
density due to the temperature variations inside its bulk (e.g., flow in the 
vicinity of a vertical radiator). In these cases, the Grashof Number (Gr), 
showing the ratio of the buoyant to viscous forces becomes important.

If there are external sources, such as a fan (e.g., air conditioning), or 
a fluid pump, where the fluid is moved around artificially in the desired 
direction, the forced convection mechanism is applicable. An example is 
heating a room by means of an electric heater with a built-in fan. Forced 
convection may increase the convection heat transfer coefficient by a factor 
of ten to about 100 W/m2K or more. 

Newton’s law of cooling describes the convection heat transfer; this law 
states that energy transfer is proportional to the temperature difference 
between the surface temperature (Ts), surrounding fluid temperature (Tb), 
area of the exposed surface (A), and proportionality constant (hc), which 
is also known as the convection heat transfer coefficient. Newton’s law of 
cooling can be expressed by Equation (16), where Qconv is heat transfer by 
convection. 

  conv c s bQ Ah T T= -  (16)

The surrounding fluid temperature (Ts), which is often considered the 
bulk fluid temperature, can be obtained experimentally by averaging and 
logarithmic mean relations. Convection heat transfer coefficient (hc) can 
be predicted using the Nusselt number (hcL/k), where k is the thermal 
conductivity and L is characteristic length. Therefore, the Nusselt number 
shows the ratio of the convective to conductive forces.

The heat flow may be simulated as an electric current, with temperature 
difference playing the driving force. The temperature difference causes 
heat to transfer from the regions with higher temperatures to the ones with 
lower temperatures. Convective heat flow can be simulated in a similar 
fashion to the electric current. Equation (17) is another form of Equation 
(16), which shows the relation between the heat flow and temperature 
difference as a function of the convective surface areas and the convection 
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heat transfer coefficient. By assigning the denominator term presented in 

Equation (17) as the thermal resistance th conv
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 Equation (17) is 

obtained.
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For example, hot-water baseboard heaters rely, to a large extent, on the 
convective heat transfer mode to effectively deliver heat to the room. These 
heater types are also known as radiators. The term was introduced in a 
patent filed in 1834 by Mr. Olmsted, an inventor from Connecticut, who 
proposed adding a heat exchanger to a stove to improve room heating. 
Perhaps a convector would be a more appropriate name, since most of the 
heat transfer occurs by convection mode.

Today’s typical hot-water baseboard heaters have copper pipes with 
closely spaced transversely mounted thin aluminum fins attached to them. 
Heat from the hot water circulating through the pipes, typically at about 
70–80 °C, is conducted through the pipe and the fins where it warms the 
surrounding air. The warmer, less dense air rises due to the buoyancy 
forces, setting up convective air circulation. That is why blocking the air 
path from below or above will reduce such a heater’s efficiency.

2.3.3 Radiation Heat Transfer
Thermal radiation was observed and reported throughout the history 

by scientists, including horticulturists. The caldarium is the hottest area of 
the greenhouse, and its existence was known in the 1700s. It was reported 
in a letter written in 1745 by Linnaeus to his student Samuel Nauclér, 
emphasizing that the temperatures inside the orangery at the University 
of Uppsala Botanical Garden had reached 30 °C, which was well above the 
desired temperatures of 20 °C in summer and 15 °C in winter. Linnaeus 
hypothesized that this temperature increase was due to the thermal 
radiation received by the windows angled so that they were exposed to the 
Sun’s maximum radiation.

Radiation is the mode of heat transfer that does not require a physical 
medium for heat to propagate. In this mode, the energy is transferred by 
electromagnetic waves radiated by one body and absorbed by another. All 
objects at a temperature higher than absolute zero emit thermal radiation. 
One example of this phenomenon is the radiation emitted from the sun 
and received by the earth. This radiation is emitted in a broad range of 
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wavelengths but, because some of that is absorbed by the atmosphere, only 
part of that broad spectrum reaches the earth’s surface and the intensity 
is reduced (to about 1,000 W/m2 on average), making the sun’s radiation 
tolerable for the earth’s residents. With radiation heating, non-colliding 
photons transfer the electromagnetic radiation versus the colliding 
molecules in the conduction heat transfer mode.

Being an electromagnetic wave, solar energy travels through space at the 
speed of light (3 ´ 108 m/s). To understand the concept of electromagnetic 
energy waves, imagine throwing a stone into a still lake—the wave ripples, 
radiating in all directions along the water surface from the point where the 
stone hits. If you imagine being stationary over any point by which the wave 
passes, you can measure how many waves pass that point per second—
this gives you the frequency. If you freeze the motion for an instant and 
measure the distance between the wave crests, you will get the wavelength. 
Measuring the speed at which the wave crests move gives the propagation 
speed, which is equal to the product of the frequency and wavelength. 

Emissivity is the percent of the incoming radiative energy that leaves a 
surface. A highly polished surface, such as a mirror, is highly reflective, not 
absorbing any of the incoming energy. A perfect mirror is fully reflective; it 
has zero absorptivity and emissivity. For example, to improve the efficiency 
of in-floor radiant heat systems, it is recommended to have unpolished floor 
surfaces due to their higher emissivity and lower reflectivity [40].

Depending on the size of a surface and how it is situated with respect 
to other surfaces, its radiant energy is distributed to the external entities 
(surfaces). An object that emits whatever energy it receives is known as a 
black body and has an emissivity of one. For this body, the emission and 
absorption of light are equivalent through Kirchhoff’s law, which describes 
how the radiative energy is emitted as a function of the wavelength.

A black body radiates energy in all directions in equal fashion, so 
the radiation intensity is both independent of the direction (diffuse) and 
wavelength (gray). When modeling the radiation mode of heat transfer, 
one can think in terms of the surfaces and the media. Radiative energy can 
be emitted by a surface or medium. It can also be absorbed by these. In a 
model, any component can be designated as opaque (and thus not able to 
transmit radiation).

Surfaces can absorb or emit. The absorption is a function of the 
wavelength of the radiation and the incident angle. Emission can be 
diffuse (multidirectional) or specular (when the incoming radiation is 
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reflected without scattering). The medium between the surfaces can be: 
(a) completely transmitting to radiation (like air or a vacuum), (b) partially 
absorbing and retransmitting to radiation, (c) absorbing and scattering to 
radiation, and (d) opaque. To model the radiation, one needs to calculate 
the radiative energy reaching the surface as well as leaving the surface. The 
simplest case is that of a surface facing the ambient (surroundings). If the 
ambient is cooler than the surface, the surface will lose heat, and vice versa.

Things get more complicated when there are surfaces that can see one 
another. Consider, for example, a hollow brick-shaped block. Figure 2.4 
illustrates such a block by a 2D rectangle. A block will have six surfaces. 
Each surface can either face the interior or exterior surfaces. Four surfaces, 
marked by letters from “a” to “d,” are identified in the figure. An external 
point heat source (like the Sun) is also shown.

FIGURE 2.4. An illustration showing the concept of the view factor in radiation heat transfer. 

Some surfaces will be visible to this radiation source (“b” and “c” exterior), 
and some will not (both sides of “a” and “d,” the interior of “b” and “c”). 
Also, each point on a surface can see some surfaces but not others. The 
exterior “a,” “b,” “c,” and “d” surfaces in this example cannot see each other. 
They are on a convex surface where this is always the case, like the exterior 
of a sphere. The interiors of these four surfaces can all see each other, 
which is the case for concave surfaces (like the interior of an ellipse). For 
more complex shapes and a greater number of objects, there will also be 
shadowing to account for. 

If a surface is visible from any point on another surface (such as Point 1 
on the interior of “a” in the figure), the radiation it receives from the surfaces 
that it sees will also depend on the angle between the line from this point to 
the point on that surface. This is accounted for in a view factor calculation. 
The view factor is the percent of the energy radiated (sent out), which is 
received by the other object. Thus, Point 1 sees less of the infinitesimal 
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surface patch at Point 3 than at Point 2, since the incident angle is smaller 
for Point 3. It is for the same reason that there are seasons on the earth: the 
tilted earth axis means each hemisphere will see larger or smaller incidence 
angles between the earth’s surface and the sun during the year.

For the molecules with large mean free paths, like what is seen in space 
as the sun’s electromagnetic radiation reaches the earth’s atmosphere, 
passes through its layers, and is absorbed at its surface, radiation is the 
main mode of heat transfer. In this method, the electromagnetic waves 
do not require a medium to be transferred; all they need is matter with a 
temperature greater than the absolute zero. The charged particles of this 
matter (i.e., protons and electrons), moving in random motions (both speed 
and direction), interact with each other, generate electric and magnetic 
fields due to the charge acceleration and dipole oscillation, respectively, 
which are coupled with one other, creating electromagnetic fields, and 
photons are emitted as the result. This generated electromagnetic energy 
is released to the photon’s environment and does not require a medium 
to propagate; therefore, it is the dominant heat transfer mechanism in the 
vacuum. 

The unobstructed electromagnetic waves can travel far and when they 
do, they may be absorbed given the spectral-directional characteristics of 
the obstructing medium. If this hindrance is independent of the radiation 
wavelength, the medium is gray and if it is independent of the radiation 
direction, it is a diffusive medium. To calculate how much heat is lost or 
gained by the surface, one needs to integrate over all the other visible 
surfaces. This means the larger the surface area of a receiving body is, the 
higher percentage it receives of the total energy sent from the emitting body.

Reflectivity, absorptivity, and transmissivity of matter, also known 
as optical properties, are among the spectral-directional characteristics, 
defining the percent of the electromagnetic energy reflected, absorbed, or 
transmitted through the medium. The summation of these optical properties 
is one hundred percent of the total energy that reaches the object, Equation 
(18). If these properties are integrated over the wavelength or direction, 
the spectral-directional property changes to directional (superscript, e.g., 
‘a’) or spectral (subscript l, e.g., a

l
) properties, associated with the diffuse 

or gray bodies, respectively. Note that a diffuse body emits the energy 
isotropically, independent of the direction, while a black body emits the 
energy isotropically for all wavelengths. 

 1      r  =  (18)
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Emissivity is the energy that is emitted from the surface; based on 
Kirchhoff’s reciprocity law, it is the same as the absorptivity of the matter 
( ).  =  This law states that if object 1 sees object 2, then object 2 sees 
object 1 (Figure 2.5). The portion of the energy that is emitted by object 1 
and received by object 2 is called the view factor (also known as the shape 
factor or configuration factor, Equation (19). Note that q1 and q2 are the 
angles that the surface normal unit vectors (n1, n2) make with the line (S) 
connecting the two surfaces (dA1, dA2)—Figure 2.5.

Given that the total energy emitted from object 1 is received by the 
surrounding matter, which is visible to object 1 (e.g., objects 2 and 3), the 
total ratio of these energies is one—Equation (20). If object 1 is not able 
to see itself, its view factor is zero—Equation (21), where i is the surface 
identifier.
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FIGURE 2.5. View factor between the two surfaces seeing one another. 
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The thermal radiation reciprocity concept again shows that the ratio of the 
portions of the energy emitted from object 1 to 2, and vice versa, are related 
to their surface areas—Equations (22) and (19).

 1 1 2 2 2 1A F A F =  (22)

Highly reflective surfaces, such as mirrors, have a very low emissivity 
or absorptivity; they are not capable of either absorbing or emitting the 
radiative energy. Matter can only emit what it can absorb and that is why 
these values cannot exceed one hundred percent.

Human skin is an almost perfect emitter. Assuming a total body surface 
area of 2 m2, and a temperature of about 37 °C, it can be estimated to 
emit radiated energy at a rate of about 212 W. Additional heat loss is due 
to convection to the environment, and can be estimated as 116 W. This is 
obtained by assuming the natural heat transfer convection coefficient of  
3.4 W/m2K, with the environment at 20 °C. This adds up to a total heat 
loss from human skin of about 327 W. This number will be affected by 
the clothing characteristics (e.g., surface, color, and material). If the body 
continues transferring energy to its environment, its temperature will keep 
decreasing exponentially until it equalizes with that of its environment. 
Therefore, the human sensible and latent heats (metabolic heat) are 
responsible for compensating for the heat loss. Average metabolic energy 
(E) depends on factors such as gender, age (Age), weight (W), level of 
activity, time spent in order to complete the activity (t), and heart rate (HR), 
which can vary from 120 W (28.66 cal/s, e.g., working at the computer) to 
about 430 W (102.7 cal/s, e.g., athletic exercises) [41,42,43,44,45,46,47]. 

Daily basal metabolic rates (BMR in J) for females (BMRFemale) and 
males (BMRMale) based on their age (Age in years), height (H in cm), and 
weight (W in kg) based on the Harris–Benedict BMR formula are given 
by Equations (23) and (24) [17]. These relations are basal metabolic rates 
at rest. The metabolic rate, which is the amount of energy required for 
the body to function and perform activities such as sitting, breathing, and 
sleeping, decreases with age, while it increases with weight (Figure 2.6). 
Female and male metabolic energy (BMR) burns based on their level of 
activity and time spent on the activity are given by Equations (25) and (26). 
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The level of activity is accounted for in these equations via the heart rate 
(HR in beats per minute). Increasing the heart rate raises the energy use 
per unit time, with greater increase for males. In these relations, t is the 
time in minutes and E is the energy burned in Joules. To obtain the results 
in calories, the energy values are divided by 4.18. The energy burn rate 
increases with increasing body weight for males and decreases for females 
(Figure 2.7) [49].

 Female 4.676 Age 9.563 1.850 655BMR W H-   =  (23)

 Male 6.755 Age 13.75 5.00 3 66.5BMR W H=-     (24)

 Female (0.074 Age 0.1263 0.4472 20.4022) E W HR t= -  -  (25)

 Male (0.2017 Age 0.1988 0.6309 55.0969) E W HR t=   -  (26)

 
(a)

(b)

FIGURE 2.6. BMR for a human adult (H = 160 cm) as a function of: (a) Weight, (b) Age. 



38 • PraCtiCal Heat transfer

 
(a)

(b)

FIGURE 2.7. Hourly energy burned for a human adult as a function of weight  
(Age = 40 years, H = 160 cm): (a) 100 BPM, (b) 150 BPM.

The refractive index is a material optical property that is defined as the 
ratio of the speed of light in vacuum to that in the material. In general, the 
denser the environment is, the higher this index is. This index determines 
the degree to which the light rays bend (i.e., refract) as they pass from one 
medium to another. Snell’s law uses the indices of refraction for the two 
media to describe the relationship between the angles of incidence and 
refraction. The refractive index also depends on the light wavelength and 
changes by a few percent over the visible spectrum, becoming smaller with 
increasing wavelength. This dependence leads to display of a multicolored 
light spectrum when a white light passes through a transparent prism and 
the same mechanism also creates rainbows when sunlight refracts through 
water droplets. 

The whole spectrum of electromagnetic radiation ranges from the 
shortest wavelengths of ionizing radiation, and continues to visible, 
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microwaves, and radio waves. The near ultraviolet and near, medium, and 
far infrared waves form visible light. Gamma rays, hard and soft X-rays, and 
extreme ultraviolet waves form the ionizing radiation with energy levels as 
high as one million electro-volts compared to the waves in the visible range 
(one electro-volt). Longer wave radiation has much lower energy levels—as 
low as 10-15 electro-volts.

Due to its dual wave-particle nature, electromagnetic radiation can 
be characterized both in terms of wavelength/frequency and in terms 
of the photon energy. Frequency (f in 1/s or Hz) is inversely related to 
wavelength by f = c/l, where c is the speed of light (2.99,792,458 m/s), and 
l is wavelength (m). Photon energy is proportional to the frequency and is 
expressed by Planck’s law (f = E/h), where E is the photon energy in J, and 
h is Planck’s constant (6.626,068,960 × 10-34 Js = 4.135,667,330×10-15 eVs).

Since an object’s optical properties may vary as a function of the 
radiation wavelength, one cannot determine if the material is absorptive 
or emitting simply by its visual appearance. Detailed data on the materials’ 
spectral-directional properties are required. For example, although a 
white surface has a low emissivity and absorptivity in the visible range, the 
opposite is true in the infrared range. A black surface is highly absorptive and 
emitting in both ranges. Glass windows pass the light in the visible and near 
infrared ranges but do not transmit well in the mid and far-infrared ranges. 
Therefore, we are able to see through the glass by letting in the visible 
light; however, glass does not let the light emitted from objects at room 
temperature escape, maintaining the temperature inside the greenhouse 
and gradually increasing it (the greenhouse effect).

The effect of thermal radiation is not limited to increasing matter’s 
temperature; it can also apply a very small force to an object and therefore 
create momentum that may change trajectory of a spacecraft. This effect 
caused a problem for the Pioneer 10 and 11 spacecraft. They were launched 
in 1972 and 1973, respectively, to investigate Jupiter and Saturn’s solar wind, 
passing through the asteroid belt. The two spacecraft were among the first 
five human made objects to reach the escape velocity (the velocity required 
for an object to escape the gravity of the Earth). For both spacecraft, the 
asymmetric thermal radiation due to the exposure of one side to the sun 
generated minute forces on the surfaces exposed and momentum as a 
result, affecting the spacecraft’s trajectory. It is believed that if the distance 
between the satellite and the planet (in case of Pioneer 10) was increased 
to three times radius of the planet, this drift would not have occurred. This 
deviation from the trajectory due to the thermal radiation is now also known 
as the Pioneer anomaly.
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In addition to the color and surface roughness, the material properties 
such as degree of crystallinity and the molecular bonding method also 
affect the way the materials interact with light. An example is adding 
pigmentations, fillers (glass fibers), and other additives (e.g., carbon black) 
to thermoplastic materials that are to be welded using laser transmission 
welding (LTW) process. In this process, a laser light passes through the first 
part to be joined and is absorbed by the second part, thus generating heat at 
the interface that melts the polymer and forms a joint. Thermoplastics have 
very low absorption in the near-infrared part of the spectrum used by the 
typical joining lasers. Therefore, for joining to occur, the natural polymer 
needs to be modified using an absorbing additive, such as the most used 
carbon black. 

If the matter is perfectly absorbing at all wavelengths and directions 
of light incidence, it is called a black body 1).(    = =  For matter to 
act as a black body, it must be at thermal equilibrium, meaning that there 
is no variation in temperature through the matter and therefore no heat 
transfer or thermal energy flow exists. This condition follows the zeroth 
law of thermodynamics, meaning that the temperature within the matter 
does not change spatially or temporally. It is to be noted that in a system 
that is thermodynamically in equilibrium, mass transfer is also negligible 
in addition to the energy transfer in the form of heat and work. However, 
there are states of equilibrium in the matter, where permeable or non-
permeable portions of it undergo equilibrium processes and as a result, 
the system’s total entropy increases. This is explained by the second law of 
thermodynamics and emphasizes the irreversibility of the system.

The spectral-thermal radiance of the body, B(l, T), is the total energy 
that leaves the surface of the body in the form of radiation per unit frequency, 
angle, and area. It follows Planck’s relation, Equation (27), where T is the 
absolute temperature. For a body at any particular temperature above 
absolute zero, the spectral radiance has a distribution curve that is similar to 
a bell (Gaussian) curve, though it is not symmetrical. The peak value of this 
curve decreases as the absolute temperature decreases and the peak position 
of this curve shifts toward the longer wavelength or lower frequency. 
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Planck’s law describes the spectral density of the blackbody radiation 
as a function of temperature. The assumption is that the total radiation 
emitted from a black body equals the one that it receives, and it does not 
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vary with the direction of the beam. To find the wavelength associated 
with the maximum temperature reached, the derivative of this relation 
with respect to wavelength is taken. This results in a relation that shows 
that temperature (T) and maximum wavelength (lmax) are inversely related; 
this relation is also known as Wien’s Displacement Law, Equation (28), 
where b is a proportionality constant, also known as Wien’s displacement 
constant (2.897,772,917 × 10-3 mK). Since the frequency is the inverse of 
the wavelength, the peak frequency is the inverse of the peak wavelength 
(f = c/l) and therefore, Equation (28) may be rewritten in the form of 
Equation (29) and so the absolute temperature of a radiating body is linearly 
dependent on the frequency at which it emits the thermal radiation. In other 
words, from Wien’s displacement law, using the wavelength at the peak, 
the temperature can be inferred. Note that for relatively low temperatures, 
the radiation is emitted at long (infrared) wavelengths and is therefore not 
visible to the human eye.

 lmax = b/T (28)

 fmax = (c/b)T (29)

A plot of the temperature versus the distance from the Sun is presented in 
Figure 2.8 for different planets. For example, Venus has a mean surface 
temperature of about 464 °C, while Mercury’s mean surface temperature is 
about 167 °C. For comparison, the mean surface temperature of the Earth 

FIGURE 2.8. Mean surface temperature versus the distance from the Sun.
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is about 15 °C. One interesting observation is that while Mercury is closer 
to the Sun than Venus, its mean surface temperature is much lower. This 
is due to the presence of a thick atmosphere on Venus; Mercury has almost 
no atmosphere. It also has the greatest daily variation of temperature in the 
solar system: between -180 °C at night and 430 °C during the day [50,51].

A cavity can behave as a black body (Figure 2.9). A pinhole cavity 
functions as a light trap; as the light passes through its opening, it hits the 
opposite surface, and then it continues bouncing back within this cavity 
until its energy is fully absorbed. The walls of the cavity are assumed to be 
opaque to the incoming radiation beam, meaning that it will not allow any 
light to escape.

FIGURE 2.9. Spectral radiance inside a cavity.

Stephan-Boltzmann’s law for thermal radiation is expressed by Equation 
(30), which shows that the energy transfer is proportional to the difference 
between the surface temperature of the emitting object (Ts in K) raised to 
the fourth power and that of the environment or receiving body ( sT   in K) 
also raised to the fourth power. The radiation is also proportional to the 
area of the emitting body (A in m2), emissivity (e, dimensionless) of the 
emitting body, and Stephan-Boltzmann’s constant (s = 5.670,374,419 ×  
10−8  W/m2K4). The emissivity property is a proportionality constant that 
describes how good a body is at emitting thermal radiation as determined 
by its optical and surface properties, and can vary from 0 to 1. Equation (30) 
presents the radiative heat (Qrad in W) that flows from the emitting body 
(s) to the receiving body (s). Note that this energy also can be expressed 
in terms of heat flux (q in W/m2). The view factor ( s sF  ) is to be taken into 
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consideration if the radiation from the emitting body partially reaches the 
receiving body. Note that the reciprocity relation that was presented earlier 
is applicable in this scenario. s sF   is the percent of the energy that leaves 
the surface of the emitting body (s) and reaches the surface of the receiving 
object (s). The total spectrum (all wavelengths and directions) of emitted 
energy, integrated over the entire spectrum, expressed by Equation (30) 
represents the black body radiation, where 1.= =

  rad
4 4

s s s s s sQ F A T T  =  -  (30)

Note that it is also possible to discretize the difference of the temperatures 
of the emitting and receiving bodies raised to the fourth power to the 
binomial form of difference of the temperatures squared and continue this 
process until the temperature difference expression is obtained as a single 
term versus the rest of the parameters—Equation (31). The multiplier 
of the temperature difference in this scenario is the equivalent of the 
convection heat transfer coefficient and is known as the radiative convection 
heat transfer coefficient (hr)—Equation (32). Equation (31) then can be 
simplified to (33).

    2 2
rad s s s s s s s s s sQ F A T T T T T T      =    -  (31)

   2 2
r s s s s s sh F A T T T T  =     (32)

 rad ( )s s r s sQ h T T = -  (33)

The heat flow may be simulated as an electric current, with thermal 
resistance defined by Equation (34) and difference of the fourth powers of 
temperature playing the driving force—Equation (35).
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2.3.4 Thermal Management
Electro-mechanical and biological systems almost always generate heat 

during their operation. The heat may be generated through mechanical 
means such as friction between the subcomponents, electrical currents, 
electromagnetic fields, biological functions such as sensible heat, and 
localized heat sources. In most cases, the heat generated needs to be 
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dissipated as effectively and efficiently as possible. The discipline concerned 
with dissipating heat from working systems is called thermal management. 
Thermal management may be accomplished using any of the following 
methods: (a) adding extended surfaces, also known as fins; (b) introducing 
cooling channels; (c) implementing additional mechanical systems such as 
fans and heat pipes; (d) interfacing the parts so that the contact areas are 
increased for efficient heat transfer by using thermal patty, oil, or thermal 
tape at the adjacent surfaces; (e) changing the object’s geometry, such as its 
thickness; and (f) varying material properties.

Other thermal management approaches take advantage of the 
combination of the above methods. These may include, for example, 
using a cold plate at the interface of the heated objects, cooling flow, 
electrostatic fluid acceleration that creates flow without use of moving 
parts, and synthetic jet air cooling that involves ejection and suction of the 
flow across an opening resulting in zero flow mass balance. Some highly 
advanced techniques involve using phase change materials, capable of 
storing and releasing large amounts of heat when phase change occurs, and 
synthetic diamond cooling sinks for their high thermal and low electrical 
conductivities in applications such as high-power laser diodes, transistors, 
and semi-conductor technologies, where the use of thermally conductive 
materials such as copper can result in substantial variations in the electrical 
or magnetic fields and as the result reduction of system efficiency (e.g., linear 
induction motors—LIM).

Convection cooling by means of an oil pump in an aircraft engine is 
an example of thermal management. The oil dissipates the generated heat 
away from the heated parts such as cylinder head, in addition to acting as 
cleaner, lubricant, and sealant. In this application, there are two factors to 
consider carefully to achieve efficient heat transfer. One is the design of the 
system (e.g., pump location inside the cooling circuit) and the type of the 
cooling agent (i.e., oil). Oil has higher vaporization temperature with respect 
to water (above 100 °C) at atmospheric pressure and therefore is a better 
heat sink in absorbing the heat and as a result a more efficient coolant. This 
means that oil can be used for thermal management applications where the 
maximum temperature exceeds that of the boiling water. 

Thermal management techniques are employed to ensure the ice does 
not form or is separated from the aircraft wing’s leading edge and therefore 
does not let it progress by agglomerating the ice crystals to the wing mid-
sections. One of these methods is to incorporate resistive heating elements 
into the leading edge of the horizontal stabilizers or other control surfaces. 
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To ensure the temperature is maintained at the desired level, a temperature 
sensor that measures the temperature along with an overheat sensor, which 
gets activated for temperatures about 154 °C (310 °F), are designed into 
the temperature control system [52]. This method is also known as resistive 
de-icing method. Another thermal management method to prevent ice 
from forming is taking a small fraction of the hot air generated within the 
compressor of turbofan or turboprop aircraft engines (known as the bleed 
air) and directing it toward the control surfaces. 

Fire management is achieved by variety of methods that focus on dif-
ferent corners of the combustion triangle by: (a) removing the fuel source; 
(b) suppressing the flame so that the airflow is eliminated; (c) cooling the 
fire so that the combination of the fuel-oxygen cannot reach the flash point 
required for its perpetuation; or (d) adding a fire retardant to the mixture 
so that the chemical reaction is delayed. Use of materials such as intumes-
cent paint or tape in hard-to-reach areas or where space is limited is among 
the fire management methods that delay spreading the fire to the adjoining 
areas. 

Another method of thermal management is in radiative applications. 
This is mainly achieved by selecting materials with suitable emissivities. 
The higher the emissivity is, the more broadband energy is absorbed by the 
object. There are cases in which the emissivity of the surface is large while 
the absorptivity is small. An example is white paint, with large emissivity 
of about 0.93 and a low absorptivity of about 0.16. Therefore, the roofs 
of some houses in warm-arid regions are painted white—this provides 
effective thermal management. In the same way, the interior of a white 
car should be cooler than a black one if both are left parked outdoors on a 
sunny summer day. 

2.4 Governing Equations

Experimental correlations have been the basis for many thermo-fluid 
formulae. In this approach, tests are carried out to investigate the influence 
of change of a single parameter or number of them on a control volume 
or system. The parameters can either be thermophysical properties of the 
materials such as heat capacity and thermal conductivity or temperature-
induced ones such as stress, creep and oxidation life, magnetic fields, 
and phase change. In a complex system such as a heat exchanger, water 
temperature, pressure, and velocity are the determining factors for heat 
transfer mechanisms, and its efficiency as well as flow regimes. 
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Theoretical relations derived from experiments show an approximate 
relationship between two or more parameters; for example, they identify 
that these parameters are directly or inversely related. The correlating 
factors can be (a) material-dependent, such as the conductivity in Fourier’s 
law, or (b) process-dependent, such as the convection heat transfer 
coefficient in Newton’s law of cooling. The correlated value obtained from 
the former case defines a thermophysical property of the material while the 
experimental setup or processes influence that of the latter.

In some cases, the correlation value is a constant parameter, which may 
be of general significance in physics. An example of such a parameter is 
Stefan-Boltzmann constant that relates radiated electromagnetic energy to 
the object’s temperature in Stefan-Boltzmann’s law of thermal radiation. 
There are cases in which no exact mathematical relations can be achieved 
by fitting an experimental relationship into a theory; this is the definition for 
an empirical relationship. Examples include the release of magnetic energy 
during a solar flare, heat transfer in external flows, and shear stress in non-
Newtonian fluids. In these cases, different equations may be applicable to 
different conditions. For example, the Reynolds number is employed as a 
criterium when setting up laminar and turbulent flow models, the latter 
flow type being capable of addressing flow disruptions and eddies.

Figure 2.10 shows schematically the general form of energy conservation 
diagram for the Cartesian coordinate system. The figure shows an infinitesimal 
cube with dimensions dx, dy, and dz. Heat flux q is shown entering or leaving 
the cube’s faces. For example, along the x-coordinate, the spatial variation 
of heat flux is represented by the gradient dq/dx. It includes all modes of 
heat transfer. The radiation and convection terms shown are applied in the 
form of boundary conditions. As in other disciplines, such as the balance 
of forces in solid mechanics, the energy conservation law can be expressed 
separately along each x- y- and z-coordinates—Equation (36). A matrix can 
then be created that is a linear combination of the energy conservation in 
three dimensions in addition to the time component. T, q, k, dx, dy, and 
dz, and t are the temperature, (K), heat flux (W/m2), thermal conductivity  
(W/mK), infinitesimal distances along the x-, y-, and z-coordinates, and time 
(s), respectively. The heat flux defined by Equation (36) is proportional 
to the temperature gradient (dT/dx in K/m), where the conductivity (k in 
W/mK) is the proportionality constant. Equation (5), presented in section 
2.2.3, shows that the rate of energy storage is a function of the variation of 
the internal energy ( internalE in W) over time and energy generated inside 
the material due to any heat source or sink ( generatedE  in W)—m is mass (kg), 
and cp is specific heat capacity (J/kgK).
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FIGURE 2.10. General form of energy conservation diagram in the Cartesian coordinate system.

The outgoing energy is the incoming energy plus the variations of the energy 
along the length, where the energy is transported, expressed in the form of 
the derivative of the energy in the direction of the energy transportation. 
This energy balance applies along each of the three coordinates (x, y, and 
z). This spatial variation is shown by the wave equation applicable to the 
conduction heat transfer mode, Equation (36). Note the terms dx, dy, and 
dz are the block dimensions along the three said coordinates.

 (
( , , )

( , , ) ( , , ) ( , , ), , )
dq x y z

q x dx y dy z dz q x y z dx dy dzdx dy dz   =   (36)

For a one-dimensional coordinate system, assuming the thermal variations 
occur along the x-coordinate, the wave equation, representing the heat 
flux rate can be simplified to Equation (37). Similarly, along the y-and 
z-coordinate systems, the heat flux rate can be expressed in terms of 
Equations (38) and (39), respectively. Equations (40), (41), and (42) are 
the equivalents of the said equations at the coordinate (dx,dy,dz) from the 
original coordinate (0,0,0).
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    ( )
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Substituting aforementioned relations into the energy balance (Figure 2.10) 
in Equations (6) and (7) results in Equation (43), which after simplification 
results in the heat diffusion equation presented by Equation (44), 
demonstrating that spatial and temporal temperature profiles are related 
to the change of internal energy and heat generation within the material 
in the Cartesian coordinate system. q  is the volumetric heat generation  
(W/m3). Note that (Ax, Ay, Az) are areas perpendicular to the heat flow 
direction along the x-, y-, and z-coordinates (dydz, dxdz, dxdy). dV is the 
volume of the block whose mass is m = rdV = rdxdydz.
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x y z
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   = 

 
  (43)

     px y z
d dT d dT d dT dT

k k k q cdx dx dy dy dz dz dt
    

      = r     
  (44)

To balance the energy in the cylindrical coordinate system (Figure 2.11), 
Equations (6) and (10) are combined, resulting in the heat diffusion—
Equation (45). Similarly, for the spherical coordinate system (Figure 2.12), 
after balancing the energy and combining Equations (6) and (11), the heat 
diffusion equation is obtained—Equation (46).
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FIGURE 2.11. General form of energy conservation diagram in the cylindrical coordinate system. 
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FIGURE 2.12. General form of energy conservation diagram in the spherical coordinate system. 
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The upcoming chapters present both analytical, numerical, and finite 
element analysis approaches to solve the thermal partial differential 
equations (heat and wave problems) presented above.
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C H A P T E R3
finiTe eLeMenT AnALysis

The Finite Element Method (FEM) is a numerical technique in which 
the geometry is divided into a finite number of small pieces called 
elements. One advantage of defining such elements is that it enables 

the division of regions into smaller regions that more accurately represent 
the associated physics. Element size and shape may vary by region, depend-
ing on the physics they represent. Each element can have its own distinct 
properties. Elements are in contact with the adjacent elements.

Solving the FEM problems consists of solving m conservation equations 
(m is the number of nodes) when there is only one field variable. For each 
node, an equation is written for each field variable (e.g., temperature in 
heat transfer models), as a function of the data of the surrounding nodes, to 
find the value of the variable at the given node. The field can be defined in 
1D, 2D, or 3D spaces. For example, if there are eight nodes with a single 
field variable (e.g., x displacement), eight equations are required; if there 
are eight nodes with two field variables (e.g., x and y displacements), sixteen 
equations are required (Figure 3.1).

Each node requires its own boundary and initial conditions. From 
algebra, you may recall that if you attempt to solve an equation with two 
independent variables, to obtain a unique solution, you need to solve it in 
combination with a second linearly independent equation that includes at 
least one of these two independent variables. Expanding the equation from 
2 to m state variables requires m linearly independent equations. The same 
concept applies to solving the FEM equations.
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(a)

(b)

FIGURE 3.1. Element and nodes: (a) 1D, (b) 2D, and (c) 3D.

When analyzing thermo-fluid numerical models, either using the Finite 
Difference Method (FDM) or FEM, the conservation of energy principle 
must be applied to all elements or nodes. For nodes, the total energy of 
zero confirms that the balance of the energy at each node has been met, 
meaning that the total nodal incoming energy equals the total outgoing 
energy. Since an element occupies a line, area, or volume, as determined 
by its spatial dimension, the balance of energy should still be satisfied; 
however, in this case, the total elemental incoming energy should be equal 
to the total outgoing energy.

3.1 Geometry

The number of dimensions to be used in setting up the physics geometry 
depends on the model shape, boundary conditions, and computational 
resources (e.g., time and machine). The dimensions can start at zero for the 
simplest cases and progress to one (1D), two (2D), and three dimensions 
(3D) as complexity increases. The zero-dimension approach, also known as 
the lumped capacity technique, assumes that the temperature is spatially 
uniform throughout the model. In a 1D numerical analysis, one coordinate 
is required to identify the position of a point and heat is transferred in only 
one direction (e.g., the x-coordinate), meaning that heat transfer along the 
remaining coordinates, which form a plane, is ignored or heat is integrated 
over the remaining plane. One advantage of 1D numerical analyses is 
that they allow comparison with the simplified analytical solutions, thus 
enabling validation of the numerical analysis. In a 2D numerical analysis, 
two coordinates are needed to identify the position of a point and heat 
is transferred in two directions (e.g., the x- and y-coordinates). In other 
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words, heat transfer transverse to the active Work Plane is ignored or 
the heat is integrated over the third dimension of the geometry. In a 3D 
numerical analysis, the most comprehensive approach, three coordinates 
are needed to represent the position of a point within the geometry (x-, y-, 
and z-coordinates) and heat is transferred in all three directions. 

In cases where the geometry, material properties, and boundary 
conditions have axial symmetry, one can reduce the model by one dimension. 
Thus, for example, a cylinder has axial symmetry, and so this 3D shape can 
be represented by a 2D axisymmetric model without any loss of fidelity. A 
2D shape, like a flat ring, can be replaced by an equivalent 1D axisymmetric 
model.

Symmetry about a plane can be also used to reduce the model size. 
For a geometrical shape, such reflectional symmetry can exist in 3D space 
about one, two, or three planes. Again, if the boundary conditions are also 
symmetrical, the model can be reduced to one-half, one-quarter, or one-
eighth of the original size, respectively. A similar concept applies to 2D 
space, where reflectional symmetry can exist about one or two lines.

Another type of symmetry that can be taken advantage of is rotational 
symmetry. Here, the model can be represented by rotating a particular 
shape m time about an axis, giving an m-fold symmetry. Thus, a three-petal 
shamrock flower can be considered to have a threefold symmetry, while a 
four-leaf clover has a fourfold symmetry. Such models can then be reduced 
by modeling only the repeating element.

Some shapes will have multiple symmetries. You can decide which one 
will be most advantageous to use. For example, a hexagonal nut (ignoring 
threads) has reflectional symmetry about the three principal planes in 
addition to a sixfold rotational symmetry (Figure 3.2). Here you can reduce 

FIGURE 3.2. Hexagonal nut shape with symmetry planes. 
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the model to one-twelfth the size by utilizing the sixfold symmetry together 
with the reflectional symmetry about the horizontal plane, as shown 
in the figure. The extra up-front time spent to identify these geometry 
characteristics is effort well spent, since it forms the foundation of all 
subsequent steps, saving time and computational resources.

3.2 Material Properties

Material properties are important for the development of good quality 
models. One should try to obtain the most accurate material properties 
possible to assure accurate model predictions. However, obtaining accurate 
property values is sometimes challenging. Thus, an analyst should be aware 
of which properties have greater impact on the solution. The relative 
importance of different material properties may be determined by the 
thermo-fluid regime, mode of heat transfer, or analysis type. One can use 
sensitivity analysis methods to determine the effect of uncertainty in any 
property on the desired model output.

Material properties may vary in space (spatial), time (temporal), or 
environmental conditions (environmental). Nonconstant properties may 
introduce nonlinearities and non-homogeneities to the physics, making the 
problem more challenging. To describe temperature-dependent material 
properties, an FEA tool may employ analytical or piecewise functions. 
A property definition table contains a list of combinations of known 
temperature-property value pairs. For temperature values between those 
listed, interpolation functions are used; this can be a linear or a higher order 
function. If the temperatures in the solution exceed the limits of the range 
of temperatures for which the property values are given, one can choose to 
either extrapolate linearly or to keep the values constant, equal to the value 
of the nearest extreme point. 

Let us review next the material property settings which may be required 
as inputs for a physics model set up in a typical FEM software tool. Usually, 
such tools have a built-in library of materials, which may be expandable 
with optional add-ons. Thus, if the material you need for your model is 
available within one of these sources, simply selecting it defines common 
inputs such as density, specific heat capacity, and thermal conductivity. If 
needed, any predefined properties may be changed, missing properties can 
be added, or a completely new material may be defined from scratch. For 
example, thermal conductivity may be defined as an isotropic, diagonal, 
symmetric, and anisotropic property. 
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When setting up a radiation problem, wavelength-dependent surface 
properties can be selected, which are either constant, depending on the 
solar and ambient conditions, or have multiple spectral bands and hence are 
wavelength-dependent. In most cases for transparent media, the refractive 
index needs to be defined. The refractive index of a medium is the ratio of 
the speed of light in a vacuum to that of the medium and is therefore always 
more than one. For water, this value is 1.33, meaning that light travels 33 
percent faster in a vacuum than in water. For air, the refractive index is close 
to one. A transparent medium needs to be defined for a domain enclosed 
by diffuse surfaces that face each other.

The surface-to-surface radiation method is used to model cases where 
heat transfer by conduction, convection, and radiation are present in 
combination with radiation from internal or external surfaces. To model 
this phenomenon, one needs to define several settings. First, the method 
is selected as direct area integration, hemicube, or ray shooting. In the 
direct area integration method, the radiation between surfaces is calculated 
directly, not considering the obstructing (shadowing) surfaces, eliminating 
the surfaces that do not face each other. In the hemicube method, shadowing 
effects are included. The ray shooting method calculates the view factors 
given the wavelength and direction. To complete these settings, the radiation 
integration order, radiation resolution, tolerance, and maximum number 
of adaptations are set. Solution techniques include setting up the surface 
radiosity that can be linear, quadratic, cubic, quartic, or quantic. Surface 
radiosity or radiant intensity is the amount of radiation flux emitted from 
the surface as a function of the radiation wavelength.

3.3 Analysis Types

Any set of solution settings for a model may be referred to as a study. 
Analysis type selection specifies whether the study will be time-independent 
(i.e., stationary) or time-dependent (i.e., transient). A stationary study does 
not mean that the actual modeled physical system never changes over time, 
but that the analyst is interested in finding out what happens after the 
system has reached a steady-state condition. This is the state of the system 
at some theoretically infinite time. In a time-dependent study, the analyst 
is interested in the state of a system as time passes. If the study is run over 
a sufficiently long period of time, a steady-state condition may be reached, 
as well. For example, temperature may not change any further for a given 
fixed rate of heat input in a thermal problem. A steady-state condition may 
be reached only if the model boundary conditions are constant. Thus, if the 



58 • PraCtiCal Heat transfer

model is exposed to a heat input that increases linearly over time, a steady-
state temperature distribution cannot be reached.

Selecting the analysis type may also depend on the objective of the 
analysis. If an analyst is interested in studying the thermal response of a 
train underframe to fire to make sure it complies with the fire test code for 
rail transportation vehicles (ASTM E2061 or NFPA 130), she should study 
the time response for the first 15 min of the exposure time by performing a 
transient analysis to obtain the temperature history over that time. 

For a heat exchanger, the analyst is interested in evaluating the spatial 
thermal performance, which can be done by plotting the temperature 
profile along a specific path (e.g., the liquid cooling channel), after the 
heat exchanger has been operating for some time and temperatures have 
stabilized. Therefore, a steady-state analysis is appropriate in this case.

3.4 Boundary and Initial Conditions

Just as material properties are important to accurately represent the 
modeled system, the boundary and initial conditions are important to 
correctly describe the conditions to which the modeled system is exposed. 
For heat transfer problems, setting the initial conditions means defining the 
temperature from which the solution starts (e.g., the room temperature of 
20 °C can be a default starting point). Boundary conditions may be defined 
as insulated (a default condition that is automatically applied), temperature, 
heat flux, convective, or radiative. These boundary conditions are defined 
for the nodes (1D models); edges or points (2D models); and domains, 
surfaces, edges, or points (3D models).

3.5 Mesh Size and Time Step

FEM involves dividing the geometry into small elements and solving 
the energy and mass governing equations for each element and for the 
number of time steps or iterations required to reach the specified analysis 
time (for transient problems) or steady-state (for stationary problems). 
The number of iterations required for a solution to converge depends on 
the initial conditions to start the solution, and it may increase or decrease 
depending on the residuals. Residuals are the estimates of the difference 
between the calculated and desired values. The temporal and spatial steps 
can be controlled when setting up the analysis. Spatial step is related to the 
mesh size, which may vary within the geometry. The temporal (time) step 
is varied by the solver as the solution progresses.



finite eleMent analysis • 59

The choice of the element size for meshing in FEM is similar to the 
choice for image resolution. If the image pixels are large relative to the 
detail in the picture that the analyst would like to see, they are not going 
to get a clear image of these details. Thus, a smaller pixel size is needed. 
However, if the analyst just wants to get an overall impression of an image, 
the analyst may increase the pixel size, reducing the total number of pixels 
(or elements in FEM). When meshing, unlike in images, you can vary 
your pixel (element) size throughout the model. For example, intense 
heating processes, such as laser welding, require fine detail resolution 
around the exposed regions, where temperature is changing rapidly in 
space and time, which can be achieved by local reduction of the element 
size and time step.

Assume that one decides on a mesh size. The next step is to make sure 
the element size produces converging results that are reasonable. One way 
to achieve this is to change the element size from larger to smaller values 
and review the variation of the numerical results (i.e., sensitivity analysis). 
When this variation is reduced below some appropriate lower limit, no 
further reduction in element size is required.

When a meshed model is solved, there are two types of errors:  
(a) round-off and (b) truncation. The former occurs when one decides 
to round the number to the closest value, using only the desired number 
of decimals. The latter case is when one decides to keep only a specific 
number of decimals. A simple example is to represent 14.557123 as 14.56, 
14.55, or 14.557. The first two examples show the same number when 
it is either rounded off or truncated with two figures after the decimal; 
the third example could be either rounded off or truncated to the same 
number when three figures after the decimal are employed. There is a 
balance between the two errors, especially where they are accumulated due 
to the increased number of numerical equations, which is the case if the 
number of elements is increased. They usually show an opposite trend—
decreasing versus the increasing for the roundoff and truncation errors. 
Time step and mesh sensitivity analyses provide good compromises. Due to 
the accumulation of the computational errors with the decreasing element 
size, after converging to the most accurate solution, the solution may begin 
diverging (i.e., deviating from the exact solution).

3.6 Solution Control and Convergence

Conservation laws should be satisfied when solving equations for heat 
transfer of any type. Dependent variables (e.g., temperature) are calculated 
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using independent variables (e.g., thermal conductivity) as well as initial 
values. Note that the independent variables are the inputs to the models while 
dependent variables are the results given the independent variables. The 
equations are solved, and the residuals are obtained. The residuals are the 
actual sum difference from the zero-sum case. For example, for the energy 
conservation law to be valid, the total energy entering an element should 
equal the total energy leaving an element, including the energy storage and 
energy generated within the element. The vector summation of all the terms 
should be zero (error) and therefore any nonzero value is the residual error.

Zero residuals are not normally possible, and so a small nonzero 
tolerance value needs to be used so that the program uses that as the 
acceptable criteria and stops further iterations. For instance, if a user 
sets a 10‑5 tolerance value for a solid heat transfer analysis problem, most 
probably they will be happy with the results if the solution is reached within 
reasonable time. However, if the user were to employ the same tolerance 
for a flow problem, there is a good chance that the analysis may require 
an excessive number of iterations, leading to very long solution time 
(convergence) or in some cases to not converging at all.

Figure 3.3 is an example of a convergence plot for a single-parameter 
time-dependent analysis. It shows the reciprocal of step size versus the time 
for a transient analysis using a logarithmic vertical scale. Thus, larger time 

FIGURE 3.3. Example of a convergence plot for a 3D analysis for a heat transfer model.
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steps are made as the solution progresses. At each solution step, the solver 
estimates the next time step required to obtain accurate solution. Although 
Figure 3.3 is generated in COMSOL Multiphysics, similar convergence 
plot data can be also obtained from Partial Differential Equation (PDE) 
solvers such as those implemented in the MATLAB environment. 





C H A P T E R4
An inTrOdUCTiOn TO MATLAB

MathWorks offers two product families that can be employed for 
mathematical modeling: MATLAB and Simulink®. With Simu-
link, one can model a system consisting of multiple sub-systems 

and investigate the effect of the individual sub-systems on the overall per-
formance. A system’s behavior, such as the thermal response to the indi-
vidual components after varying key variables, can be investigated in these 
models. To interact with the models, flow diagrams are created that are 
visual representations of the modeled system. Like other modeling tools, 
this approach leads to creation of smart prototypes, resulting in cost sav-
ings during the design process as well as during the rest of the product’s 
lifecycle.

MATLAB can be employed to investigate a system or its sub-systems in 
detail. This is accomplished by introducing mathematical models, developing 
algorithms, providing numerical solutions to the models, analyzing the data 
using visual tools, and generating outputs such as diagrams and tables. The 
last step of output generation can be either carried out within MATLAB or 
by exporting data to a third-party tool such as tecplot or Microsoft Excel.

The MATLAB software package comprises the core application and a set 
of the optional toolboxes dedicated to a variety of specialized applications. 
The toolboxes most relevant to thermal modeling can be found within the 
Math and Optimization product family. Within this family, there are six 
toolboxes available: Curve Fitting, Optimization, Global Optimization, 
Symbolic Math, Mapping, and Partial Differential Equation Toolboxes [1,2]. 
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The rest of this chapter will introduce the basic MATLAB environment; this 
should be of value to those who want to learn how to use the MATLAB tool 
in general. The chapter closes with several code examples that highlight 
best programming practices within the MATLAB environment. Techniques 
for using MATLAB specifically for thermal modeling will be introduced in 
Chapter 5.

4.1 Desktop

The MATLAB application desktop consists of several panels. By default, 
the Current Folder and Details panels are on the left, the Editor and the 
Command Window panels are in the center, and the Workspace is on the 
right side. A command toolstrip with several tabs is found on top. There 
are also two toolbars: Quick Access and Current Folder. Arrangement of 
panels can be customized and saved using the Layout tool found in the 
Environment group of the HOME toolstrip tab. The two toolbars and many 
other features can be customized via the Preferences found in the same 
group. 

Looking at the MATLAB desktop by starting on the left side, the Current 
Folder panel is found that shows the list of files in the folder indicated by 
and selected via the Current Folder toolbar located just below the toolstrip 
(Figure 4.1). The Details panel below the Current Folder panel shows the 
relevant information for the selected file—variables for the *.mat file and 
functions for the *.m file. 

The MATLAB Command Window (lower center) is where the user 
enters command lines, sees the text output of the running script, and 
responds to the text prompts. It has a powerful Command History feature 
that all the MATLAB users should learn to utilize for improved efficiency. 
It is accessed by pressing the Up arrow on the keyboard and that can be 
then navigated with Up/Down arrows. For example, a typical workflow may 
be to go back to one of the previously executed commands, bring it back 
to the cursor (>>), revise, and execute it again, without having to retype 
everything. The Command Window can be cleared of the commands 
printed on the screen by a clc command, returning the cursor to the top 
line within the window, but without clearing the command history. 

Any commands executed via the command line can also be entered into 
the MATLAB script (*.m) file. One can also select (with a shift key) any 
number of the commands from history and save them to a script file. The 
script files may be called later as the input to the MATLAB program, edited 
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or run, generating data and diagrams. The *.m script files are normally 
edited using the built-in editor that opens the Editor panel automatically 
when a script file is opened (located in the top-middle in Figure 4.1). The 
script files are stored as plain ASCII text, and thus can be edited with any 
text editor (such as the Windows Notepad).

Finally, on the right, the Workspace panel shows contents of the current 
Workspace. The variables that have been imported into or created within 
MATLAB are stored in the Workspace memory. To view or edit these 
variables, one may either employ the Workspace panel or the Command 
Window (Figure 4.1). All the Workspace variables can be saved into a 
compressed *.m at file using the save command, and then restored by using 
the load command. The Workspace data files can also be loaded as input to 
the *.m files. 

The Workspace variables can be deleted in bulk by the clear command, 
with command options allowing for selective deletion as well. The clear 

FIGURE 4.1. The MATLAB HOME toolstrip with the Workspace and Command Window panels.
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variable_name command deletes the variable_name from the Workspace. 
The wildcard (*) character can be used to clear all variables containing the 
specified sequence of characters. For example, clear abc* will delete from 
the Workspace all the variables with names starting with abc.

Different toolstrips can be selected by choosing among several 
tabs. For example, under the HOME tab, available tools are New 
Script, Find Files, Set Path, and Help (Figure 4.2). Other tab menus are  
(a) PLOTS, where plots can be generated with selected styles; (b) APPS, 
where the MATLAB-compatible applications can be imported and used; 
(c) EDITOR, where *.m file-related commands can be carried out;  
(d) PUBLISH, where work can be published and formatted in a custom 
style; and (e) VIEW, where the number of the Editor window panels 
and their method of display are selected. If the selected components are 
not available (e.g., variables as input to create plots) the command tools 
on the related menu are grayed out (i.e., PLOTS in Figure 4.3 is grayed 
out because no compatible variable has been selected in the Workspace 
panel).

FIGURE 4.2. The MATLAB HOME toolstrip.

FIGURE 4.3. Grayed out PLOTS toolstrip.

4.2 Variables

In MATLAB, variables are not declared at the start of the program; 
they are created automatically upon assignment of a value. If this variable is 
assigned a set of numbers (a vector or a matrix) of a particular size, then an 
array of the corresponding dimensions is created in the program memory. 
Expanding this array by adding more elements requires redefining its 
size internally. Thus, it may be more computationally efficient to create 
a variable with an array of zeroes of appropriate size using a built-in zeros 
function discussed in Section 4.3.4, for example, before entering the loop, 
where the array size is repeatedly expanded.
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Variable data types include numbers, characters, and strings, and 
logical and structural arrays. There are also several built-in constants (e.g., 
pi for p = 3.1415). To display in the Command Window, a simple list of 
variables available in the Workspace, the who command is used. To obtain 
more detailed information, such as name, size, bytes, and class, the whos 
command is used (Figure 4.4).

FIGURE 4.4. The MATLAB who and whos commands.

4.2.1 Numeric Variables
By default, all numeric variables in MATLAB are stored as double-

precision (8 byte/64 bit) floating-point values and are identified by the data 
type (class) of double. To convert a number to a single-precision (4 byte/32 
bit) value, the single function is used (Figure 4.5). Also, one can convert the 
floating-point values into integer variables, signed and unsigned, of length 
from 1 to 8 bytes. If the data can be represented by integers, large volumes 
of data can be handled at faster speeds by storing them and operating on 
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them as integers. Operations combining integers and double variables 
return integers. Conversion is done by a group of functions such as; for 
example, the int16 command is used to convert to a signed 16-bit integer or 
unit 16 to convert to an unsigned 16-bit integer.

Numerical values, built-in numbers, or mathematical constants such as 
p can be displayed in the Command Window with more or fewer digits by 
entering, respectively, the commands format long (15 decimal places) and 
format short (4 decimal places)—Figure 4.5.

FIGURE 4.5. Single versus the double precision.

4.2.2 Character Vectors and Strings
Text can be stored in MATLAB either as a character vector or a string. 

A character vector is created by enclosing text in single quotes, such as ‘Heat 
Transfer’. Prior to MATLAB R2016b, this was the only way that sequences 
of text characters were stored. After that release, a new variable type of 
string was introduced to facilitate handling of longer text segments. Strings 
are created by enclosing text in double quotes, such as ‘Heat Transfer’. One 
can think of a character vector as a sequence of character codes stored in a 
linear array. For a string, a single text segment enclosed in double quotes is 
treated as an element of an array; this array can then contain any number 
sof string elements. 

Character vectors can be concatenated using square brackets; this 
method does not work for strings and a + sign must be used instead. In the 



an introduCtion to MatlaB • 69

example (Figure 4.6), note that the myCharVector size is 1  13 whereas 
the myString size is 1  1. To create a character vector that includes a 
numerical value, a mum2str function needs to be used (Figure 4.6).

FIGURE 4.6. Character vectors versus the strings.

In MATLAB, characters are stored using Unicode format with UTF-16 
encoding that can represent over 1 million distinct codes. The first 128 
symbols of this code use the same encoding as the ASCII character set, 
where each character is stored as an unsigned 7-bit integer. Character 
vectors are then just arrays of these integers that are identified internally 
as character sets and thus displayed as such; they can be converted to 
their corresponding ASCII code values. Thus, double(‘test’) will return a 
numeric array of [116 101 115 116]. One can also use uint32 to convert 
the characters to unsigned 32-bit integers instead of double-precision 
numbers. If a numerical operation is carried out on the character vector 
elements (such as addition or subtraction), the array is automatically 
converted to numerical values. Since the encoding is in alphabetical order, 
one can manipulate characters by addition or subtraction if so desired. For 
example, upper-case characters are encoded by integers that are 32 bits 
smaller than the lower-case ones. Thus, if one assigns a = ‘test’, the function  
char(a – 32) will return “TEST.” Here the char function converts numbers 
to the corresponding characters.

There are numerous other character vector and string manipulating 
functions in MATLAB. For example, the blanks(j) function is used to create 
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a string with j blank spaces. The deblank(string_name) function is used 
to remove the trailing blank spaces of strings. The strtrim(string_name) 
function is used to remove both leading and trailing white space. The 
upper(string_name) and lower(string_name) functions are used to convert 
characters, respectively, to uppercase or lowercase (Figure 4.7).

 

 (a) (b)

FIGURE 4.7. The deblank, strtrim, upper, and lower text manipulation: (a) Commands, (b) Outputs.

4.2.3 Logical Variables
A variable of logical data type is created because of evaluation of a 

logical expression involving relational operators (e.g., <,>, = =), a logical 
test function (e.g., isnumeric), or type conversion from a numeric variable 
using logical function. For example, logical test functions isnumeric, isfloat 
and isinteger are useful for identifying the numeric value type and return 
a logical true or false. In the example below, 10 random integers from 1 to 
100 are generated and placed in the array myNumbers (Figure 4.8). Each 
element of this array is then evaluated with a logical expression to test if 
it is greater than 50 and a logical array over 50 is created as an output of 
this evaluation. This logical array can then be used as an index to extract 
from myNumbers only those values that are greater than 50. Use of matrix 
indexing is further discussed in Section 4.4.1.
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FIGURE 4.8. Use of a logical array as an index of a numeric array.

4.2.4 Variable Names
When working with variables in MATLAB, the following five points 

should be remembered:

 (1) Variable names must start with a letter, not a digit (e.g., 2test is not a 
valid variable name; however, test 2 is correct). 

 (2) No spaces can exist between the variable characters (e.g., test 2 is an 
incorrect variable name).

 (3) Variable names are case sensitive (e.g., test 2 is different from Test 2). 

 (4) Function names should not be used when assigning variable names 
(e.g., pde, which is a partial differential equation demo function, 
should not be used as a variable name); the which command can be 
used to test if a name is associated with any function.

 (5) If a mathematical operation result is not assigned to a variable name by 
an equal sign (=), the operation result is stored in the built-in variable 
ans, which is the short form for answer; the current value of the ans 
variable can be used in the subsequent expressions by entering ans at 
the command line.
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4.3 Creating Matrices

Matrices are fundamental to MATLAB. The name of the software itself 
is derived from MATrix LABoratory. It is important to be able to create 
and manipulate matrices and vectors. The latter are essentially a special 
case of a matrix, with only one dimension greater than one. Vectors can be 
combined to form matrices. 

4.3.1 Manual Matrix Creation
To create a row vector, a sequence of numbers is separated by spaces and 

enclosed within square brackets; to create a column vector, the row vector 
may be transposed by using a single quotation mark appended to the right of 
the closing bracket or placed after the vector variable name (Figure 4.9). A 
second quotation mark appended performs another transpose, thus returning 
the vector to its original orientation. Another way to create a column vector 
is by adding a semicolon (;) after each number to create a new row. When 
defining matrices in general, rows are separated by a semicolon (;). Within 
each row, elements are separated by a blank space or a comma (,).

FIGURE 4.9. Defining row and column vectors and using the transpose operator.

4.3.2 Generation of Vectors with Equally-Spaced Values
In many applications, a vector comprising a sequence of equally spaced 

numbers is needed. There are several ways to obtain such a vector:

 (1) The most common approach is to specify the start and end points as 
well as the fixed increment with the use of the colon (:) operator. For 
example, if vector A is defined as A = 1:2:10, the resultant vector is  
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A = [1, 3, 5, 7, 9]. The increment between the start (1) and end (10) 
points is 2. This increment can be negative as well. For example, if  
B = 10:-2:1, the resultant vector is B = [10, 8, 6, 4, 2].

 (2) Another method is by using the linspace function. Its advantage rela-
tive to the colon (:) operator is that one directly specifies the number of 
values to be generated for the array. With the colon operator, the num-
bers are generated by incrementing until the end value is exceeded. 
For example, to generate 5 equally spaced numbers between 5 and 90, 
one can execute C = linpace(5, 90, 5). It results in C = [5, 26.25, 47.5, 
68.75, 90]. 

 (3) A related function called logspace distributes logarithmically the speci-
fied number of values between the two end-points 10^a and 10^b, 
where a and b are the exponents given as input; for example, for  
D = logpace(0, 2, 5), the resultant vector ranges from 1E0 and 1E2:  
D = [1, 3.162, 10, 31.62, 100].

 (4) Matrices and vectors can be concatenated. For example, the above C 
and D vectors can be concatenated and create vector E = [C, D] =  
[5, 26.25, 47.5, 68.75, 90, 1, 3.162, 10, 31.62, 100].

4.3.3 Random Number Matrices
In some applications, sets of random numbers, either real or integer, 

need to be generated. Random real numbers in the interval [0, 1] are 
generated by the rand function (e.g., rand = 0.1216, rand*100 = 82.5853). 
Random integer numbers are generated in the interval starting at 1 and 
ending at the value given in the randi function argument (e.g., randi(5) =3, 
randi(10) = 8). One can also specify lower and upper bounds for the random 
integers as in, for example, randi([50, 100]) = 70. Matrices of random 
numbers can be generated as well (Figure 4.10). randi(10,5) generates a  
5  5 matrix with random integers from 1 to 10; randi([10 50], 5) generates 
a 5  5 matrix with random integers ranging from 10 to 50. 

FIGURE 4.10. Random integer generating function.
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To obtain a non-square matrix made of random double-precision values, 
the number of rows (i) and columns (j) are specified: rand(i, j) = Ai×j. 
Example below shows generation of 3 × 4 matrix of integers between 5 
and 20 (left) and a 2 × 3 matrix of double-precision values between 0 and 1 
(right) (Figure 4.11).

FIGURE 4.11. Random integer and real variables.

To create normally distributed values, the randn command may be used 
(e.g., randn = 0.2884). The distribution of these random numbers should 
tend to the average value of zero and standard deviation of one. About 
68.7% of the generated values are expected to be within one standard 
deviation (-s < x < s).

4.3.4 Special Matrices
There are several special matrices that can be generated, which are 

often needed in matrix operations. These include matrices of zeros or ones, 
identity, and diagonal matrices (Figure 4.12). These matrices can be made 
by specifying the number of rows (i) and columns (j), as shown in Equation 
(47). 

 ( , ), ( , ) and ( )i j i j i iA zeros i j A ones i j A eye i= = =× × ×  (47)

FIGURE 4.12. The zeroes, ones, and identity matrices.

A diagonal matrix (i.e., one with non-zero elements along the diagonal only) 
can be generated by specifying a vector as input to the diag function. If a 
matrix is specified as input to the same function, a vector is produced equal 
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to the specified diagonal. Thus, if A is a matrix, the diag(A, X) function 
outputs a column vector obtained from the elements of the X-th diagonal of 
A, and diag(A) = diag(A, 0) is the main diagonal.

For example, Figure 4.13 shows first a 4  6 matrix A created from 
random integers varying from -20 to 20. Its four-element main diagonal 
vector is extracted with the diag(A) function. Using this extracted vector as 
input to the same diag function produces a 4  4 diagonal matrix with the 
specified vector values along its diagonal and zeroes elsewhere.

FIGURE 4.13. Extracting the diagonal values from a matrix and creating a diagonal matrix.

4.4 Operating on Matrices

4.4.1 Matrix Indexing
In MATLAB, it is very useful to be able to access any element of a 

matrix, either to obtain its value, to test its value, or to assign a value to it. 
An element’s location within a matrix is known as its index, and thus this 
process is referred to as indexing. The most used technique is indexing by 
element positions; the second way is by using a single index; and the third 
approach is indexing with logical values.
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Each element of a two-dimensional matrix is identified by its row and 
column numbers, as shown in Equation (48). The first index (i) identifies 
the row and second index (j) the column. When indexing by position, one 
can then use these indices to reference any matrix element.

 A(i, j) = aij (48)

One can reference individual elements, ranges of rows and columns—A(3:4, 
1:2), selected rows/columns by listing them in square brackets, or entire 
rows/columns by using a colon (:) (Figure 4.14). Using a keyword end one 
can reference the last row/column as shown in the last example in Figure 
4.14 that selects the last two elements of the third row.

FIGURE 4.14. Matrix indexing by position.

If only a single index is used in a two-dimensional array, it references the 
array values as if they were all listed in a one-dimensional vector going 
down each column, from left to right. For example, A(7) in matrix A shown 
in Figure 4.14 is equal to -15. In the same matrix, A(3:5) evaluates to [-8 
8 7]. 

Indexing with logical values allows one to select elements based on 
logical tests. Applying a logical test to a matrix results in a logical array of 
the same dimensions with 1/0 values indicating, where the test evaluation 
was true or false. This array can then be used to reference the elements, 
where the test evaluated to true. For example, to find all the elements 
in A that are greater than 12 or smaller than -12, the logical expression  



an introduCtion to MatlaB • 77

(A < -12 | A > 12) is evaluated, a matrix indA of logical values is obtained 
and is then used as index into A (Figure 4.15, left). One can also assign 
value to the index-selected elements as shown in Figure 4.15 (right), where 
value of 12 is assigned to all elements that were greater than 12. Finally, 
if one needs a list of index locations for all elements, where the condition 
evaluates to true, the find function can be employed. For example, find  
(A < -12) returns [6 7 20 21]. These are single indices into A, with element 
at index 7, for example, equal -15.

FIGURE 4.15. Matrix indexing with logical values.

4.4.2 Arithmetic Operators
MATLAB arithmetic operators include the standard ones such as +, -, 

*, /, ̂  for addition, subtraction, multiplication, division, and exponentiation. 
When these are employed between scalars, regular mathematical rules are 
followed that the reader will be familiar with. With MATLAB, however, 
one can also operate either between combinations of scalars and matrices or 
between matrices only. Regarding the former case, to facilitate dealing with 
matrices, MATLAB in some cases carries out operations that would not be 
allowed if strict mathematical rules were applied. For example, it would 
not be correct to write a mathematical expression, where scalar a is added 
to two-dimensional matrix B since they do not have matching dimensions. 
However, MATLAB assumes that you mean to add a to every element of B 
and thus will compute the expression a + b without an error message. Any 
valid mathematical expression will, of course, also work in MATLAB. a*B, 
B*a, B/a all produce the expected results. a/B gives an error message that 
matrix dimensions must agree. With a square matrix D, one can write a*D-1,  
which multiplies scalar a and a matrix inverse of D (Figure 4.16).
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FIGURE 4.16. Use of arithmetic operators for scalars and matrices.

When carrying out operations between matrices, two different operation 
types exist. First are the regular arithmetic operations, such as those 
mentioned above. In MATLAB, they are called matrix operations. They 
are carried out following the linear algebra rules regarding the matching 
dimensions. To add or subtract matrices, they must have the same number 
of rows and columns, as shown in Equation (49).

 Cij = Aij + Bij

\ C(i, j) = A(i, j) + B(i, j) (49)
\ cij = aij + bij

To multiply two matrices (Figure 4.16, right), the number of columns in the 
first matrix should be the same as the number of rows in the second matrix, 
as given in Equation (50).

 Cik = Aij  Bjk

\ C(i, k) = A(i, j)  B(j, k)

\ 
1

n

ik ij jk

j

c a b=

=

  (50)

The second operation type is special to MATLAB. These operations are done 
with the element-by-element operators and are called array operations. They 
are coded to allow fast computation and thus speed up (by 5 to 10 times) 
and simplify certain operations that would otherwise require execution 
of computationally expensive loops. Element-by-element operators are 
indicated by adding a period before a regular arithmetic operator. As addition/
subtraction are by definition element-by-element, the addition of a period in 
front of them does not make sense and is not permitted. Period can be placed 
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in front of other operators to produce their element-by-element equivalents: 
(.*, ./, .^). These must be applied between matrices of the same dimensions 
or between matrix and a scalar (Figure 4.17).

FIGURE 4.17. Use of element-by-element operators for scalars and matrices.

4.4.3 Relational Operators
The relational operators are used to identify if the two expressions are 

equal (= =), not equal (~=), or to compare their values (<, <=, >, >=). 
Logical operators are used in logical expressions and include or (|), and (&), 
and not (~). The functional forms of these can be used instead (e.g., or, and, or 
not functions such as or(A,B)). There are also short-circuiting versions of and 
(&&) and or (||). In the former case, if the first operand evaluates to false, the 
false result is returned without evaluation of the second operand; in the latter 
case, if the first operand is true, a true result is returned without evaluation of 
the second operand. This should speed up the code execution for very large 
data sets. Several examples of relational operator use are given in Figure 4.18.

FIGURE 4.18. Use of relational operators for scalars and matrices.
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4.4.4 Matrix Reshaping and Rearrangement
Matrices are collections of entities (such as numbers) organized into 

arrays of one or two or more dimensions. MATLAB provides several 
tools for rearranging the entities within the arrays and for changing the 
number and length of the dimensions. An example of a commonly used 
rearrangement is the transpose (‘) operator introduced in earlier sections. 
Another example is the use of the reshape function to change how a set 
of numbers is organized. In the example given here, the objective is to 
create a 3  4 matrix, containing integers from 1 to 12 and that are to be 
incremented row-wise, starting with 1 in the (1, 1) element. This is done 
in a single line using the reshape function (Figure 4.19). First, a row vector 
is created containing 12 integers from 1 to 12; it is then reshaped into a  
4  3 matrix, where the numbers are incremented column-wise; the matrix 
is then transposed to create the desired 3  4 matrix, where the numbers 
are incremented row-wise.

FIGURE 4.19. Use of the reshape function.

One can rearrange array elements with the sort function. In its simplest 
form, the function will sort a one-dimensional numerical vector a in 
ascending order with sort(a); for a 2D numerical array, sort(A) will sort 
each column of A in the ascending order. Entering sort(A, 2) will sort 
rows in the ascending order; entering sort(A, ‘descend’) will sort columns 
in the descending order. From the release R2017a, string arrays can be 
sorted, as well. In the example in Figure 4.20, the first column of matrix 
A is sorted in the ascending order and then matrix C is created with rows 
rearranged to follow the same sorted order. Array indices in vector iB 
obtained by the sorting action are used in A(iB,:) to create the new sorted 
C matrix.
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FIGURE 4.20. Use of the sort function.

Another rearrangement type is to reverse the element order and it is carried 
out using the flip function. It has similar input options to the sort function. 
Figure 4.21 shows how the matrix A used above is flipped by having all 
its columns reverse their order; in the next example, row 4 of matrix A is 
reversed; finally, the order of a character vector MATLAB is reversed to 
produce text written backwards.

FIGURE 4.21. Use of the flip function.

4.4.5 Extracting Information about Matrices
The most basic information about the matrix is its dimensions. These 

are obtained by using the size command. The number of matrix rows and 
columns thus obtained can be employed within the code (Figure 4.22). A 
related length function would typically be applied to a row or column vector 
to find the number of elements it contains. For matrices, the command 
returns the greater of the number of rows or columns (i.e., the longest 
matrix dimension).
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FIGURE 4.22. Use of the size and length commands for vectors and matrices.

The maximum value for each column of matrix A is obtained by using the 
max(A) function. Similarly, minimum for each column is obtained by the 
min(A) function. If the same functions are applied to a vector, its maximum 
or minimum is obtained. Thus, the max(max(A)) function shows the overall 
maximum value of the matrix, see Equation (51).

 1 1 ( ( )) ( (( ))i j ijB max max A max max a= =× ×

and  1 1 ( ( )) ( ( ))i j ijB min min A min min a= =× ×  (51)

Starting from the R2018b release, one can also use the max(A, [], ‘all’) 
function to obtain the maximum of all values. With this function, the 
dimension can be specified along which the results are produced. If the 
maximum value for each column is needed, the max(A, [], 1) function can 
be used; to get the maximum for each row, max(A, [], 2) function can be 
used (Figure 4.23). Providing two matrices of equal dimensions as the input 
to the max or min function returns a matrix of the same size containing the 
larger or smaller element value in an element-by-element comparison.

Product and sum of various subsets of matrix elements can be obtained 
with the functions structured like the max or min. For matrix A, executing 
the prod(A) or sum(A) function returns a row vector containing, respectively, 
products or sums of elements along each column. Equation (52) shows the 
product and sum over j.

 
1 1

( ) ( ) and ( ) ( )
m m

j i j ij j i j ij

i i

B prod A a B sum A a
=

=

=

  × ×  (52)
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If products or sums along the rows are required, the prod(A, 2) and sum(A, 2)  
functions can be employed, which result in vectors with m rows. Note that, 
unlike for the max or min functions, the empty matrix ([]) is not required as 
input for these functions.

The overall product or sum, as for the max or min functions, can be 
obtained by applying them twice, as shown in Equation (53). Alternatively, 
from R2018b, one can also use expressions such as the sum(A, ‘all’) 
function.

 

1 1

1 1

1 1

1 1

( ( )) ( ) and

( ( )) ( )

n

i j ij

m n

i j ij

i j

m

i j

B prod prod A a

B sum sum A a

= =

= =

= =

= =





× ×

× ×

 (53)

4.4.6 Matrix Inverse
The calculation of a matrix inverse is an important concept in linear 

algebra, and it is closely related to the task of solving a system of linear 
equations. Using MATLAB, one can directly calculate an inverse of a 
square matrix by either raising it to -1 power or using the inv function 
(Figure 4.24). However, knowing the mathematics behind the inverse 
calculation helps to understand and troubleshoot the results if issues arise. 
For example, commanding MATLAB to determine the inverse of matrix 

FIGURE 4.23. Use of the max function for vectors and matrices.
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C44 in Figure 4.25 results in Inf (infinite) matrix components. Further 
investigation shows that the determinant of matrix C44 is zero. You 
can ensure the matrix is not ill-conditioned by calculating its condition 
number using the cond(C) function. If the condition number of a matrix 
is significantly greater than 1, the matrix inverse will be very sensitive to 
very small errors in the input matrix element values; an infinite condition 
number corresponds to a non-invertible matrix. Another method to 
calculate the matrix X in AX = B, is to directly obtain it by dividing matrix B 
by matrix A (X = B\A ). Note the use of the backslash (\) in this expression.

FIGURE 4.24. Calculating the inverse function.

FIGURE 4.25. Indeterminate inverse matrix.

The analytical method to obtain an inverse of a square matrix A is to divide 
the adjugate of A, adj(A) by the determinant of A. The adjugate in turn 
is a transpose of a cofactor matrix of A. For example, for a 2  2 matrix, 
Equation (54) is applicable.
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This equation shows that if the determinant is zero, the matrix is not 
invertible.

Transposing a matrix is when the elements at certain rows and column 
(i, j) are switched with the elements at the columns and rows (j, i). See 
Equation (55).

\
 

( , )
' '( , ) ( , )

i j

i j

A a i j

A a i j a j i

=

= =

×

×
 (55)

The calculation of the inverse is one method to find a solution of a system 
of linear equations. Assume there is an equation AX = B, where Aij, Bik 
are matrices consisting of known elements and X is the variable matrix 
(unknown). To find matrix Xjk, one method is to use the inverse, as shown 
in Equation (56).

 AX = B
 A-1AX = A-1B (56)
\	       IX = A-1B
\	        X = A-1B

Note that for AX = B to be valid: (a) the number of columns of matrix A 
should be the same as the number of rows of matrix X; (b) the number of 
rows of matrix A should be the same as the number of rows of matrix B; and 
(c) the number of columns of matrix X should be the same as the number 
of columns of matrix B; Aij Xjk = Bik. Furthermore, the determinant of 
matrix Aij should not be zero. To find the determinant of a 2  2 matrix, 
the following relation is used, Equation (57).

 2 2
a b

A
c d

 
= 

 
×

\ 2 2( )
a

c

b
det A ad bc

d
= = -×  (57)

To find the determinant of a 3  3 matrix, Equation (58) is used.
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= = - - -  - 
  

× ×∴  (59)

4.4.7 Systems of Linear Equations
In the MATLAB environment, it is possible to use built-in tools to solve 

systems of linear equations in which the number of variables is the same 
as the number of linearly independent equations. In general, programing 
languages (like C or Fortran) would need to have dedicated code written 
employing multiple loops (e.g., for, while) to implement elimination 
techniques, such as the Gauss-Seidel method, iteratively. However, in the 
MATLAB environment, this can be achieved by a built-in linear solver 
function (linsolv). It solves the equation AX = B, where X is the state 
variable vector and is unknown. Note that, as mentioned earlier, for the 
systems of linear equations to have a definite solution, the determinant for 
the unknown variables multiplier matrix A should not be zero—|A|~ = 0 to 
satisfy Equation (56)—X = A-1B. If the system of equations has a definite 
solution (Figure 4.26), the output will appear in the Command Window; 
otherwise, a warning message will be shown: Matrix is singular to working 
precision (Figure 4.27). Note that it is possible to solve a single system of 
equations, Equation (60) and Figure 4.26, or multiple systems of equations, 
Equation (61) and Figure 4.28— m n n mA X B=× × κ × κ.
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 (a) (b)

FIGURE 4.26. Solving a single system of linearly independent equations: (a) Script, (b) Solution.

FIGURE 4.27. Solving a system of linearly dependent equations.
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 (61)

   

 (a) (b)

FIGURE 4.28. Solving multiple systems of linearly independent equations: (a) Script, (b) Solution.

4.5 Built-in Functions

There is a very large set of built-in functions available in the MATLAB 
base installation, plus many more via the add-on toolboxes. The best way 
to learn about them is by using the MATLAB help facility, available as a 
separate window via the Quick Access toolbar (top-right of the Desktop 
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window) or via the Home toolstrip. One can also enter the help command 
followed by the function name within the Command Window. Many 
functions have multiple pages of help text. Typing the more on command at 
the command line displays this text one page at a time. Press the enter key 
to advance by one line, press space bar to advance by one page, or type q to 
exit to command line. Typing the more off command disables this feature.

Some functions can be called in two different ways: either using the 
command syntax or the function syntax. If no output from the function 
needs to be obtained, a simpler command syntax can be used. In this case, 
the function input argument is added after the function name and is always 
treated as a character vector, e.g., load myWorkspace.mat. With the function 
syntax, the function name is followed by parentheses within which arguments 
are listed. These can be variable names or values, e.g., load(‘myWorkspace.
mat’). Thus, if you need to pass input to a function via a variable, then a 
function syntax needs to be used. In the example (Figure 4.29), variable 
myWSFileName is defined to be equal to character vector ‘myWorkspace’. 
This variable can then be used as input to the load command in its function 
form but not in its command form, as the error message shows.

 
FIGURE 4.29. Executing built-in functions using the command or function syntax.

Here are several functions that carry out operations that will be useful in 
subsequent chapters:

 (1) Floating-point numbers may be rounded up, down, or rounded to the 
nearest decimal, using the ceil, floor, and round functions. For in-
stance, ceil(11.4) = 12, floor(11.4) = 11, round(11.499) = 11, and  
round(11.5) = 12. Note the difference between the first two functions 
and the last one. 

 (2) Module operation results in the remainder of a division operation; for 
example, mod(50, 3) = 2. 

 (3) One can convert radians to degrees and vice versa using functions in 
following examples: radtodeg(3.14) = 179.9087 and degtorad(180) = 
3.1416.
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 (4) Trigonometric operations such as sine and cosine can be implemented 
using the functions in the form of sin(a) or sin(b), where a and b are 
in radian and degrees, respectively. Trigonometric functions like these 
are used extensively when defining cyclic boundary conditions.

 (5) isa(obj, ClassName) identifies if the object belongs to the specified 
class category; ClassName can be, for example, double, single, logical, 
and char. isa(obj, ClassCategory) identifies if the object belongs to 
the specified class category; ClassCategory can be numeric, float, or 
integer. The result of the is a function isa logical true or false. 

 (6) isnan(a) is another logical function that tests the input for a particular 
property. There are over seventy is* functions that test their input 
for things like whether it is an empty matrix, an integer, or a string. 
The isnan(a) function tests whether each element of the input array is 
not-a-number (NaN) and returns an array of the same size containing 
corresponding elements that have logical true values if they are, and 
false if they are not. A NaN means that this element is neither a real 
nor a complex number. For example, if one attempts to calculate a 0/0, 
a NaN results. However, attempting to calculate 1/0 results in infinity 
(inf), and not in a NaN (Figure 4.30).

FIGURE 4.30. Identifying the NaN variables within an array.
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4.6 Scripts

Any sequence of the MATLAB commands can be saved to a script 
file (*.m). Scripts are just text files and so it is possible to create and edit 
them with any text editor outside the MATLAB environment. However, 
the MATLAB editor offers many additional features that aid in creation, 
editing, and debugging of scripts. One way to create a new script within the 
MATLAB environment is via HOME > New Script (Figure 4.31); another 
way is via EDITOR > New > Script. 

Figure 4.31 shows a sample script that calculates the face perimeter, 
area, and volume of a cube. When a script is opened, the EDITOR tab 
in the toolstrip is activated (Figure 4.32). The script is saved under the 
name Cube.m in the current folder. The output for the script shown in 
Figure 4.32 is presented in Figure 4.33. Note that the script is essentially 
the same as the one shown in Figure 4.31; however, the semicolon (;) after 
the last line (the formula to calculate the face_perimeter) is omitted. As it is 
seen, the only visible output variable in the Command Window is the face_
perimeter. The rest of the variables (volume and face_area) are not shown 
in the Command Window. Normally, a semicolon (;) is added to the end of 
each command line to suppress the output to the Command Window when 
running a script. 

A script can be executed either by clicking on the Run command in the 
EDITOR menu or by simply typing the script’s name (without the extension) 
on the command line. If any script or function name are entered on the 
command line or if a function external to the script is called from within it, 
MATLAB needs to know where this script or function are located. First, it 
looks in the current folder identified by the Current Folder toolbar. If the 

FIGURE 4.31. Creating a script file.
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script/function is not found there, then the MATLAB path is searched. The 
path contains a sequential list of folder locations, where the program searches 
for any script/function name it is trying to execute. The search is carried out 
from the top of the list until the match is found. One can use the Set Path tool 
in the HOME menu tab to add new locations or change the list sequence.

When trying to execute a script or function, it is often helpful to find out 
where this script or function is located to make sure that the right one is being 
used. To obtain this information, use the which command followed by the 
script/function name that you are looking for. A folder location is returned, 
allowing you to confirm that the correct script/function will be executed.

Note that all script and function names are case-sensitive. For example, 
if one entered the script name starting with a lower-case letter, cube, 
MATLAB sends an error message:

Cannot find the exact (case – sensitive) match for ‘cube’.

Then, it suggests the following: The closest match is: Cube in D:\MATLAB\
Cube.m and Did you mean: >> Cube. If the user agrees by pressing the 
Enter key, the suggested function will be run (Figure 4.33). 

FIGURE 4.32. Saving a script file and running the script.
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All variables assigned values within the executed script (whether they are 
displayed or not within the Command Window) remain in the Workspace 
(Figure 4.32 and Figure 4.33). It is possible to include comments within the 
script, which is a good practice that will pay off whether you are looking at 
this script in the future or someone else is trying to understand what you 
have done. Comment text can be added anywhere on the line; any text on 
the line after the comment (%) operator will be treated as a comment and 
thus not executed (Figure 4.32). In the MATLAB editor, the information 
after the comment operator will be highlighted with green color.

 

FIGURE 4.33. The Command Window showing the script name entry and its output.

4.7 Input-Output Techniques

In the example provided in Figure 4.32, the input variable cube_side 
is defined within the script, and so no user input is needed. Instead of 
pre assigning a variable value in a script, one can also ask for the user 
input. This is accomplished using the input function (Figure 4.34), which 
includes as its own input argument a character array that prompts the 
user to enter the requested numerical value or text. In the latter case, 
an s parameter is included after the prompt text. In the example code 
Cube_dim (Figure 4.34), the user is prompted with “Enter the cube side 
length:” Note that single quotes must be used, as the prompt text is a 
character vector. In the example shown in Figure 4.35, the user is to input 
the cylinder’s radius and height; the volume and total_area are calculated 
based on the input value.
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FIGURE 4.34. Asking for a single input in a cube parameter calculation script.

FIGURE 4.35. Asking for multiple inputs in a cylinder parameter calculation script.

The simplest way to view the value of a variable is to type its name while 
omitting the semicolon (;) at the end of the line. This produces an output, 
showing the variable name and value. For double-precision arrays or 
scalars, only the name and value are displayed. For other types, such 
as logical, for example, the array dimensions and the variable type are 
displayed as well. Equivalently, one can also use the display command with 
the variable or value one would like to print to the Command Window 
given as input. For a variable/matrix, it will show the same information as 
leaving out the semicolon (;) would. However, it may be better programing 
practice to explicitly state the intent of displaying the variable value as 
opposed to just leaving out the semicolon (;). For example, in Figure 4.36, 
display(blanks(2)) is used to add a blank line to the display. Another option 
is to use the disp(variable) function; it shows the value associated with the 
variable, but omits display of the variable name and any other information.

In some cases, it is needed to control more precisely the formatting 
of the displayed numbers and text. This can be accomplished by using the 
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fprintf and sprintf functions. The former outputs formatted text to a file or 
to the Command Window; the latter outputs to a text string. Both use the 
same formatting specifications to control how the numbers are displayed.

If text and numbers need to be output to the Command Window, the 
input arguments would start with text in single quotes that includes format 
operators identified by the % sign. This text is followed by the same number 
of numerical items to display as there are format operators within the text. 
Common formatting operators are %d for integer, %f for fixed-point, and 
%e for exponential notation display (Figure 4.37). Display of numbers can 
be further controlled by specifying the field width within which the number 

FIGURE 4.36. Displaying the results, including spaces.

FIGURE 4.37. Specifying output format for printed numbers.
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is to be printed and the precision (number of figures after the decimal), 
e.g., %10.2f will fit a number within a field of 10 spaces and will display 
2 figures after the decimal. If 10 is omitted (i.e., %.2f or %f), a space is 
inserted by default between any preceding text and the number (Figure 
4.38). The text line is often terminated by a special character \n, indicating 
a new line from which subsequent text display will continue. Other special 
characters are \t for a horizontal tab or \r for carriage return. The latter 
needs to be placed before \n if one is outputting to a file that must then be 
opened using a Windows text editor, such as Notepad.

FIGURE 4.38. Defining format for the value embedded in the fprintf function.

It is possible to write the data from the Workspace variables into an 
external file by using the save command (Figure 4.39). The save command, 
followed by a filename only (with no extension specified) will save all the 
Workspace variables in a binary format (*.mat) file. One can also output 
the specified variable data into a plain text file that can be then edited with 
a text editor or imported into MS Excel, for example. This is accomplished 
by appending the filename, variable name, and a qualifier (–ascii) to the 
save command. Adding the –append qualifier will add the variable data 
to the specified existing file. You can view the contents of any text file by 
using the type command; it will display them in the Command Window 
(Figure 4.39). 

One can also import external data previously saved in a text file (such as, 
for example, a test output data set of numbers arranged in columns such as 
a comma separated value file (*.csv) into the MATLAB Workspace by using 
the load command. In this example, such data file is created in MATLAB 
and saved as a text file testf.dat containing values from a matrix test (Figure 
4.40). The data is imported into MATLAB by the load command followed 
by the full file name (testf.dat). A matrix variable testf is then created in 
the Workspace; the variable name is that of the file without the extension 
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FIGURE 4.39. Saving variable data to a new file and appending data to an existing external file.

FIGURE 4.40. Saving data into an external file.

FIGURE 4.41. Calling data from an external file.
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(Figure 4.41). The variable data can also be viewed and edited by double-
clicking the variable name in the Workspace. This opens the Variables Editor, 
displaying the data in a tabular view, like a spreadsheet (Figure 4.42).

FIGURE 4.42. Viewing and editing variable data in the Variables Editor.

It is possible to call in an image using the imread(‘image_name’) function, 
where image_name includes the file extension (e.g., *.png or *.jpg). This is 
a useful feature, making it possible to place an image over or behind a plot. 
In general, a wide variety of file image and data formats can be opened 
within MATLAB (Figure 4.43); images and figures generated within the 
MATLAB environment can also be saved to a broad range of the standard 
image types in addition to the native *.jpg file format (Figure 4.44). Saving 
to the *.fig format allows subsequent reopening and adjustment of the 
plots and axes parameters within the figure using the interactive tools of 
the Figure window menu. 

The user may also import vectors and raster data from the Web 
map servers, and the files may be exported in formats such as Shapefile 

FIGURE 4.43. File formats importable into the MATLAB environment.
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binary files (shapewrite), Keyhole Markup Language (KML) text files—
kmlwrite—and GeoTIFF, which writes the geodata as vector coordinates 
and map attributes to the desired file and eventually the Web. *.geotiff files 
are like *.tiff files with additional attributes associated with parameters for 
geo referencing and projected coordinate systems. *.kml files are a form 
of *.xml files that store the hyperlink information and map components’ 
relations. *.shp files work with vector geodata and tabular attributes. The 
format of the files importable into MATLAB is shown in Figure 4.43. 

FIGURE 4.44. Image formats that may be created in the MATLAB environment.

4.8 User-Defined Functions

A good programing practice is to create functions for execution of any 
code that is likely to be used more than once within one program or several 
different programs. This improves code’s reliability, as one only needs to 
make sure once that the function performs correctly. It also makes it easier 
to implement any changes as that change would only need to be done in one 
place (within the function). A function contains a sequence of commands, 
just like a script, but one can also pass input arguments to it and receive 
output values.

A function file starts with the function definition command: The 
keyword function followed by an optional list of output arguments, 
equal sign, function name, and an optional list of input arguments. The 
function name follows the same naming conventions as the MATLAB 
variables. The end command closes the function definition. The code 
block of the function–end includes the mathematical operations used to 
obtain the output or data input/output variables. In the example shown in  
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Figure 4.45a, the cylinder volume calculation that was presented earlier 
in Figure 4.37 is defined as the function vol_cyl. The function is saved 
as an *.m file (i.e., with the same extension as that for the MATLAB 
scripts); the file name should be the same as the name of the function. 
Using its name, the function can then be called either from a script or 
from the command line, as shown in Figure 4.46. If there is a mismatch 
between the file name and the function name, the function will be known 
to MATLAB by its file name, and a warning message would be given to 
the user about the mismatch.

In the earlier MATLAB versions, only one function definition was 
allowed within each *.m file. Starting from the release R2016b, the ability 
to have local functions was implemented. These functions are intended for 
use within the *.m file, where they are defined, and they cannot be called 
from the command line or from another script or function. Within the *.m 
file defining a function, a local function can be added at the end; it can then 
be called from within the main function (first one defined within the file). 
Within the *.m file containing a script, local function definitions are to be 
placed at the end of the file. An example of a local function used to calculate 
the cylinder volume, vol_cyl2, is shown in Figure 4.45b.

While it is recommended to use comments in functions, just like when 
writing scripts, an additional consideration for functions is that any comment 
lines added before the function definition within the *.m file are displayed 
in the Command Window if the user enters the help command followed 
by the function name; see Figure 4.46b. Thus, placing a brief explanation 

 

 (a) (b)

FIGURE 4.45. The vol_cyl function: (a) Calculating the cylinder volume,  
(b) Including the local function use.
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about what function does and perhaps explaining, if needed, what inputs 
are expected and outputs are produced, will help the user seeking help for 
the function.

Another good programing practice when writing function code is 
to validate the function input argument values before continuing with 
calculations. In the example in Figure 4.45a, the input arrays of radius and 
height are checked to make sure that they contain no negative numbers and 
that both input arrays have the same dimensions. If a check fails, an error 
function is used to terminate the code execution and issue an error message 
explaining why the error occurred. Examples of errors due to mismatch of 
input array elements and negative radius values are shown in Figure 4.46c. 
Such error trapping is very helpful when debugging code. After the input 
validation checks, the output volume array is calculated using the element-
by-element operations carried out with the .^ and .* operators.

   

 (a) (b)

 (c)

FIGURE 4.46. (a) Calling the vol_cyl function from the command line,  
(b) Using the help command with functions, (c) Invalid input examples.

Normally, each time a function is called, it creates its own local Workspace; 
any variables created locally within the function remain there and are not 
available in the Workspace of the code that called the function. Variable 
values are passed to the function via the input arguments and retrieved from 
the function via the output arguments. In some cases, however, it may be 
convenient to have a set of variables that are available to several functions. 
For example, one may have a large set of parameters that need to be used in 
multiple functions. In such cases, one may declare the variables using global 
command by appending their name after the command is issued. The same 
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global statement is also made within each function that needs to access 
these variables. Figure 4.47 shows a script example for cylinder volume and 
area calculation that now uses global variables to pass the height and radius 
values to the functions called from within it (Figure 4.48).

 

  (a)

 

 (b)

FIGURE 4.47. Script Cyl_dim3.m: (a) Using global variables, (b) Output.

  (a)
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  (b)

FIGURE 4.48. Functions called by Cyl_dim3 script with global variable: (a) vol_cyl4, (b) area_cyl4.

4.9 Plots

Plotting data is a very useful tool for data analysis. It allows visualization 
of the outputs to compare them with the expected values or to obtain data 
trends. Data trends may be expressed in time, sample numbers, or indices 
in the case of frequency analysis. The data can have either an internal or 
external source. 

Data from either source will end up stored as an array/matrix in the 
MATLAB Workspace.

To plot these data, they should represent equal numbers of columns 
(if they are presented by their rows headings) or equal numbers of rows (if 
they are presented by their column headings). For example, if Y is to be 
plotted against X, their lengths should be equal, assuming that X and Y are 
arrays of 1  n, or if X and Y are arrays of vectors of n  1. They can also 
have the dimension m  n, that will generate multiple curves.

The figure command opens a window within which the generated plot(s) 
or subplot(s) are displayed. By default, each plot appears in one figure, and 
the next plot replaces the previous one unless a different figure window 
has been created by issuing another figure command. A good practice is 
to define a figure with a specific ID for each plot for standardization and 
to have individual access to plot definitions. This is done by the figure 
(j) function, where j is the figure ID (number). To clear the MATLAB 
environment from all the figures, the clf command is used. 



104 • PraCtiCal Heat transfer

2D plots can be created by defining the horizontal (x-coordinate) and 
vertical (y-coordinate) variables (abscissa and ordinate). The plot function 
is then employed to plot the x versus the y data and represents them in 
the formats identified by the programmer (e.g., solid or dashed lines and 
circled or crossed markers) and in the selected colors. To obtain the ID of 
the current figure (the one to which the plot function output will be sent), 
use the gcf (get current figure) command.

In MATLAB, labels are the identifying features of the geometrical 
shapes. Descriptions of the individual curves are added via the legend 
command. Figure attributes, such as chart title and horizontal and vertical 
axes labels, are defined for the figures using the title, xlabel, and ylabel 
functions. The x- and y-coordinates upper and lower limits may be set by 
the axis function; the x limits are followed by the y limits. The variables to 
be plotted can be defined either in the form of arrays of vectors or formulae 
(Figure 4.49). The x and y upper and lower limits can be set independently, 
using the xlim and ylim functions.

FIGURE 4.49. Script to create plots, bar charts, and histograms.

Different types of charts may be plotted in the MATLAB environment. The 
scatter chart (the plot points are connected by line of the desired styles; 
e.g., dotted and solid) or separated chart, and different markers with size 
and shape are available. It is possible to show single or multiple plots in one 
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figure (Figure 4.50). Data can also be presented by means of the vertical 
and horizontal bar charts using the bar and barh functions (Figure 4.51) 
and histograms (Figure 4.52). 

FIGURE 4.50. Multiple plots of the y-values versus the x-values in a  
single diagram with variables, defined in Figure 4.49.

(a)
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 (b)

FIGURE 4.51. (a) y1-values versus the x-values in a horizontal bar chart,  
(b) y2-values versus the x-values in a vertical bar chart, defined in Figure 4.49.

FIGURE 4.52. Histogram of the counts versus the y2-values, defined in Figure 4.49.

In order to show multiple plots in a single figure, the subplot(i, j, k) function 
is used, where i and j are the grid size and k is the position of the referenced 
figure within the grid identified by sequential row-wise numbering starting 
from the top-left corner (Figure 4.53). If there are multiple curves to be 
displayed on the same figure, the hold on command may be used; this adds 
the output of any newly generated plot to the current figure. To release the 
figure, the hold off command is used; this means that the next figure will 
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open on its own window. The grid on command adds vertical and horizontal 
grid lines to the current axes.

FIGURE 4.53. Four plots displayed in a single figure.

It is possible to customize the bar chart border and fill colors by accessing 
the Edit > Figure Properties, which is accessible through the Figure 
menu bar. Figure options, such as windows’ appearance, position of the 
diagrams, units, colormap, rendering, printing, and exporting options, can 
be revised within each figure window (Figure 4.54). Clicking on the chart 
directly results in the same menu bar as that of the figure in addition to the 
Debug option that becomes accessible. All features such as plot type, line 
style, data source, and other chart information are available through the 
Figure Properties window. Figures can be saved or embedded later in the 
presentations and reports. To achieve this, on the Figure menu, File > Save 
as the command is activated and the figure is saved under the *.fig format.

3D surface plots can be drawn using the surf(X, Y, Z) function. The 
function plots a surface grid with vertices above each (X, Y) point located 
at the height Z and with surface color determined by the value of Z. The X 
and Y inputs are matrices that are best generated using the meshgrid (X, Y)  
function. It takes vectors X and Y and replicates them to create matrix X, 
where all rows are copies of vector X, and a matrix Y, where all columns 
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are copies of vector Y. These two matrices are then in the correct format 
as inputs for the surf function. Figure 4.55 shows an example 3D surface 
generated by the steps shown above the plot. It plots sum of squares of the 
x- and y-coordinate values.

 

FIGURE 4.55. 3D surface plot created with the surf function.

FIGURE 4.54. Figure properties options.
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4.10 Code Examples

This section includes three examples of the MATLAB code. The first 
example shows how code execution speed can be tested using the tic and 
toc commands. The second example shows the implementation of the 
material property entry that takes advantage of user-defined functions and 
shows use of the while loop and switch function. The third example shows 
implementation of random walk display, highlighting the use of the while 
loops and plotting.

4.10.1 Testing Code Execution Speed
The tic and toc commands are used to, respectively, start and stop a 

timer when executing code. The output of the toc command can then be 
assigned to a variable which would record the time in seconds elapsed from 
when the tic command was executed. Such time information is a good 
way to evaluate the efficiency of the code. One can try different ways to 
accomplish a programing task and compare the relative speed of execution 
between them. For example, it is known that it is more efficient to first 
create an array containing zeroes and then assign values to it compared to 
repeatedly expanding the array by adding new values to it.

In the example code in Figure 4.56, in the first for loop, the array m 
is expanded repeatedly over 1,000,000 loop iterations. In the alternative 
version, a vector array of zeroes with 1,000,000 elements is defined first 
using the zeros function and then values are assigned to this array. The 

FIGURE 4.56. Code execution speed comparison using the tic and toc  
commands that shows benefit of predefining zeros array.
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second code segment is completed in 0.016 seconds, which is about 4.8 
times faster than the first segment.

The next code example shows efficiency improvement due to the use of 
element-by-element multiplication using the .* operator versus using the 
for loop. The tic and toc commands are used again to measure the elapsed 
time for each code segment. The execution time decreased by 6.7 times.

 

FIGURE 4.57. Code execution speed comparison using the tic and toc  
commands: element-by-element operation benefit.
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4.10.2 Entering Material Properties
The code in this example tells the user to enter three thermophysical 

properties of a material: density, thermal conductivity, and heat capacity. 
For each property, there is a recommended range of values that the program 
suggests. The thermal diffusivity is then calculated from the input properties 
and displayed. Additionally, the input values are summarized, and a note is 
made whether each is below, within, or above the recommended range.

This is accomplished by a script matPropEntry.m (Figure 4.58). It 
begins by creating a string array containing three pairs of property names 
and units. Note that this is an array of strings, and not character vectors. 
Only the former can contain text of varying length within each of its 
elements. Next a 3  2 array of lower and upper recommended property 
value limits is defined.

FIGURE 4.58. Script matPropEntry.m that asks user to enter thermophysical properties.
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Since all property-related information is stored in arrays, one can 
efficiently use the for loop to cycle through the three properties asking 
the user for input. For each property, one first needs to convert the strings 
to character vectors for property name and units. Then, the user-defined 
function testPropLimits() is called. It returns two values: the property value 
and an index from 1 to 3 that shows whether the returned value is below 
the recommended range (1), within the range (2), or above the range (3).

Next the for loop is used to display the entered values, with each value 
followed by a note saying if it is below, within, or above the recommended 
range. The note text is determined using the switch command that makes 
selection based on the values in the rangeInd array containing index values 
returned by the testPropLimits function. 

The text is output to the Command Window using the fprintf command 
(Figure 4.59). %s formatting code is used to output character vectors and 
%g is used to output numbers. The latter code picks the more compact 
output between %e (exponential) and %f fixed-point notations. Note how 
the first fprintf function within the second for loop does not include the 
new line (\n) character at the end of the line. This allows one of the three 
fprintf functions within the switch command to append its text on the same 
line. After displaying the inputs, thermal diffusivity is calculated from the 
three properties entered and its value is displayed.

FIGURE 4.59. The result of running the script matPropEntry.m.

The matPropEntry.m script calls the function testPropLimits (Figure 
4.60). It is instructive to examine in some detail its code to highlight the 
good programing practices employed. Before the function is defined, 
comment lines are added that explain the purpose of the function and 
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describe all inputs and outputs. These comment lines will be printed if help 
testPropLimits is entered at the command line. 

FIGURE 4.60. Function testPropLimits that evaluates entered values to test if they fall within specified range.

After the function is declared with the function statement, the inputs are 
tested to make sure that they are numerical values or character strings as 
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appropriate. It is also verified that the upper limit is greater than the lower 
limit. If any of the inputs are found to be of incorrect type, an error function 
is used to terminate the program execution and to display a meaningful 
error message. 

A logical variable done is used to control when the while loop is exited. 
It is helpful for the ease of code interpretation to use meaningful variable 
names: a function like while not(done) is then easy to understand. Within 
the while loop, the first if–then–else statement is used to determine whether 
the entered value is below, within, or above the specified value range, and 
appropriate outIndx value is assigned. Also, warnings are given to the user 
if the entered value is outside the range. Note also how three constants 
(lowIndx, okIndx, and highIndx) have been defined before the while loop 
entry. One could have used numbers 1, 2, and 3 instead but giving these 
value names makes it easier to understand the code within the first if–then–
else statement inside the while loop.

If the entered value was within the recommended range, the variable 
done is assigned true. If the entered value was not within the range, the user 
is given an option to enter a different value or to keep the entered value. 
Depending on the answer, the variable done is assigned true and the loop 
terminates, or false and the loop continues.

The implementation of the testPropLimits function highlights the 
benefits of creating functions that are as general in their application as 
possible; this enhances the value of the created code. The function is 
applied to material properties in this case but can be applied to any other 
situations as well. Implementing such functions also reduces the overall 
complexity of the code since most of the code is now hidden within the 
function while the script matPropEntry.m that calls the function remains 
compact and easy to follow.

4.10.3 Random Walk Plot
This code example plots the steps of a random walk that starts at the 

origin and is carried out within a square enclosing box with sides of 100 units 
(Figure 4.61). The user enters the maximum allowed step size component 
in the X and Y directions and, using this value, a random integer is generated 
with the randi function at each step. This random value determines the 
next step location, and the new point is displayed on a plot.

The while loop is used to repeat the steps of the walk. The loop is 
repeated until either the next step goes beyond the enclosing box walls or a 
specified maximum number of steps is exceeded.
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FIGURE 4.61. Random_Walk_Plot.m script.

The user input of the maximum step size value is obtained by employing the 
same testPropLimits function that was used in the code example described 
in Section 4.10.2. Recommended range limits for this input are specified to 
be between 5% and 100% of the box size. Employing the same function for 
two different applications again demonstrates the value of writing a code 
that is as general as possible.
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A figure window is created next, and plot’s X and Y axes limits are 
defined. A square is drawn with a thick red line to represent the enclosing 
box. To draw the lines joining the steps points of the walk, a function 
animatedline is used. It allows incremental addition of new points, with 
a line drawn to connect each new point to the previous one. The process 
is initialized by calling the animatedline function and specifying the line 
parameters—in this case a dotted gray line, with line width of 1, markers of 
small black circles filled with gray color. 

The while loop is executed if the walk has not gone beyond the box 
walls and the iteration limit has not been reached. The status of these two 
conditions is indicated with logical variables hitWall and iterLim. These 
again demonstrate the benefit of using meaningful names in such cases. 
One can then write the while loop statement as repeat the code in the loop 
while not(hitWall) && not(iterLim) && not(iterLIm).

A new point is added to the line with the addpoints function, which is 
provided with the input of the line ID and the new point coordinates; this 
is followed by the drawnow command to add the line and point to the plot.

Next, a random step is generated and evaluated with the if–elseif–
else–end statement. It tests first if the new point is located beyond the box 
boundaries, setting hitWall to true if this is the case. A red x is then added 
to the plot at the location, where this step would have gone to.

Then, the else–if statement tests if the maximum number of steps has 
been reached, setting iterLim to true in that case. If neither of the above 
logical tests is true, the loop counter i is incremented and the next point is 
copied into the walk_point array that contains the coordinates of all the step 
points. An information summary is presented at the end of the script; the 
printout uses the two logical variables that controlled the loop execution to 
indicate the cause of the loop exit (Figure 4.62) and the plot is displayed 
(Figure 4.63). 

The sample run results are shown for the maximum step size of 25. The 
results show that in this run four valid steps were made and at fifth step to 
(60, 4) the wall would have been hit. The last valid (within the box) point 
was at (39, –15).

FIGURE 4.62. Text input/output of the Random_Walk_Plot.m script.
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FIGURE 4.63. Random walk plot for maximum step size of 25; box boundaries indicated by red square.

End Notes

 [53]  https://www.mathworks.com/products/matlab.htm
 [54]  https://www.mathworks.com/products.html





C H A P T E R5
heAT TrAnsfer PrOBLeMs in 
MATLAB

Partial Differential Equations (PDEs) can be used to describe system 
behavior for problems in heat transfer, structural mechanics, and 
numerous other fields. A general form of the heat transfer model 

PDE is shown in Equation (62), where T is the temperature and t is time. 
Parameters m, d, c, a, and f can be functions of time (t) and location within 
the domain, space (e.g., x, y, and z), as well as the state variable (T) or its 
gradients (e.g., dT/dx and dT/dt); they may also be constants. When m and 
d are both zero, the PDE models a stationary (steady-state) system. When 
either of m or d are nonzero, the problem represents a transient system. 
For a system of PDEs consisting of n state variables, n linearly indepen-
dent equations are needed. Equation (62) can be restated as Equation (63), 
where its parameters are expressed as thermophysical properties.
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The Dirichlet and Neumann boundary conditions can be applied to the 
edges (2D geometry) and surfaces (3D geometry). The Dirichlet boundary 
condition associates the state variable, such as temperature (T), to time 
(t), location within the domain (x, y, and z) and other parameters (e.g., h 
and r). These parameters can be functions of time (t) and location within 
the domain (x, y, and z) as well as the state variable (T) or its gradients; 
they may also be constants. Dirichlet boundary condition is presented by 
Equation (64).
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 hT = r  (64)
Neumann boundary condition associates the state variable such as 
temperature (T) to time (t), location within the domain (x, y, and z) and 
other parameters. It is described by Equation (65), where n is the unit 
vector, pointing outward from the edge or surface. A dot (inner) product of 
n with the gradient vector (T) returns a scalar quantity. The parameters 
c, q, and g can be functions of time (t) and location within the domain 
(x, y, and z) as well as the state variable (T) or its gradients. If any of the 
coefficients depend on the state variable (solution, T) or its gradient, the 
problem is nonlinear. 

 ( )n c T qT g   =   (65)

5.1 Introduction to PDEs in MATLAB

By creating with scripts and functions in the base MATLAB 
installation, it is possible to solve a PDE model using the Finite Difference 
Method (FDM), an analysis technique that is carried out by discretizing 
the derivatives (the first or the second order) to linear relations and then 
employing elimination methods (e.g., Gauss-Sidle) to solve the problems. 
However, complex geometries and boundary conditions cannot be 
accurately addressed by this method. Instead, the FEM technique, which 
divides the geometry into small subdomains (elements), needs to be 
employed to obtain accurate solutions. Nevertheless, if the programmer is 
able to achieve an accurate solution using the simpler method, the benefits 
of faster solution times can be obtained. 

There exists a specialized function within the base MATLAB installation 
for solving PDEs. However, this pdepe function only solves one-dimensional 
problems with one spatial variable (x) and the optional time variable (t) 
for transient analyses (parabolic relations). The pdepe solver transforms 
the partial differential equations into the Ordinary Differential Equations 
(ODE) using specific user-defined nodes, as shown in Equation (66), where 
m is the equation parameter. f and s are flux and source functions. c is a 
diagonal matrix with elements that are identically zero (elliptic functions) 
or positive (parabolic functions). f, s, and c are independent functions of 
the space (x) and time (t), dependent variable (u) and its special (du/dx) 
and temporal (du/dt) derivatives. The outputs c, f, and s correspond to the 
coefficients in the standard ODE equation, Equation (66), expected by the 
pdepe solver. These coefficients are coded using specific commands and 
functions in terms of the input variables mentioned above.
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Time integration is then performed using the ode15s solver. It is therefore 
possible to handle Jacobians (first-order partial derivatives) of vector 
functions. 

To facilitate dealing with PDEs, MathWorks offers MATLAB, the add-
on called the PDE Toolbox, which is part of the Math and Optimization 
product family. It provides several dedicated functions that simplify the 
creation of models, definition of geometry, solution, and plotting of the 
results. These functions can be used to solve PDEs using the finite element 
method (FEM). They facilitate specification of the initial and boundary 
conditions, as well as additional terms such as internal heat generation. The 
results of analyses can be displayed as temperature distributions, heat flux, 
and heat flow rates at the specified boundaries or domains, and other forms 
of temperature derivatives. Unlike the pdepe function of the base install, 
models with 2D and 3D geometry can be handled, as well.

The remaining sections in this chapter will look at how the PDE Toolbox 
facilities can be used to solve the heat transfer problems using the FEM 
method. First, a simpler approach using the PDE Modeler interface will be 
discussed; afterwards, a comprehensive guide will be given to using the PDE 
Toolbox function to solve these problems. As with any other FEM analysis 
tool, common steps need to be followed and decisions made. Following is 
a summary of these steps as they pertain to setting up a heat transfer FEA 
model with the PDE Toolbox:

 (1) Geometry

(a)  Decide whether 2D or 3D geometry is appropriate. Consider 
whether the axisymmetric model can be employed that can repre-
sent a 3D geometry by a 2D model, greatly simplifying and speed-
ing up the solution. 

(b)  Decide if the geometry can be created internally within MATLAB 
or is to be imported from an external tool (e.g., CAD software 
or another FEA tool). This will depend on the model’s complex-
ity and the capabilities of the MATLAB’s internal tools. Internal 
model creation simplifies model modifications.

 (2) Boundary conditions
Decide on appropriate conditions for each boundary. Is it insulated? Is 
there a fixed temperature or a heat flux to be applied?
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 (3) Material properties

(a)  Does the model consist of one material or are there multiple re-
gions with different material properties?

(b)  Find material property specifications that accurately describe 
the materials modeled. Are these properties constant or do they 
depend on location, time, or temperature? If they are not constant, 
then how their mathematical variations are described?

 (4) Mesh

(a)  What is the appropriate size of the mesh elements? For large 
models, small element size will lead to long solution times. One 
can compare solution results for progressively smaller mesh sizes 
to determine the appropriate level of mesh refinement. If further 
element size reduction does not change the results, then an appro-
priate element size has been found.

(b)  Make sure the mesh elements are of good quality, i.e., not exces-
sively stretched along one direction. 

 (5) Solution
Define initial conditions and specify solution parameters, such as the 
error tolerance level, which will determine when the solution is complete. 
Excessively small tolerance will lead to longer solution times.

 (6) Post-processing of results

(a)  Decide which information about the solution will need to be dis-
played. 

(b)  Generate plots, tables, or calculations to obtain the desired infor-
mation.

(c)  Consider extracting the solution results and processing with the 
third-party tools if available (e.g., Microsoft Excel).

5.2  Thermal Modeling Using the MATLAB  
PDE Modeler Application

The PDE Modeler application is a tool available within the PDE 
Toolbox. It presents a graphical interface that provides user with a simpler 
way to access the PDE Toolbox capabilities to solve 2D models using the 
FEM technique (Figure 5.1). 
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FIGURE 5.1. The PDE Modeler application in the Math, Statistics, and Optimization grouping.

5.2.1 The PDE Modeler Overview
When started, the PDE Modeler application presents a window with 

menus and a row of icons along the top edge that allow for entry of the 
necessary information to set up and solve a 2D FEM model (Figure 
5.4). The model geometry is displayed on the plot in the middle, and the 
prompts are shown along the bottom strip. This application includes built-
in formulae (models), with their physics already predefined for solution of 
thermal, structural, electromagnetic, and generic PDE problems. 

A typical workflow would be to go in sequence through the menus, 
left to right, starting at Options. For the Draw, Boundary, PDE, and Mesh 
menus, one first needs to activate the corresponding Mode by clicking on 
the menu and selecting the first item (e.g., Draw Mode). Under the Solve 
and Plot menus, one simply executes the corresponding action. If any of the 
steps are skipped, the application runs with default settings (that include 
everything, even the geometry). One can thus start application, select Solve 
> Solve PDE and a solution will be presented. It is thus important to take 
care to define all the settings as required. 

To create 2D geometries, basic 2D shapes, such as ellipses, rectangles, 
and polygons, can be added, transformed, and combined with Boolean 
operations. Note that the application can only solve 2D problems. After 
geometry is defined, boundary conditions are set. Neumann (or the 
default Dirichlet) boundary conditions can be defined for the selected 
boundaries, with customizable coefficients (e.g., q = 0 and g = -5). The 
PDE coefficients are then set using PDE > PDE Specifications. Mesh is 
then created by activating Mesh > Mesh Mode. The element size can be 
decreased by refining the mesh and various labels, and the mesh quality 
can be displayed. 
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The PDE is then solved by selecting Solve > Solve PDE. This command 
assembles the defined features (geometry shapes, equation coefficients, 
boundary conditions, and mesh), and solves the PDE model. The results 
are then plotted in the default diagram. 3D surface plots can be generated 
showing the variation of a dependent variable (e.g., temperature) or its 
derivatives (e.g., temperature gradient and heat flux) versus the position 
within the 2D geometry. 3D surface plots can be selected by going to Plot 
> Parameters and checking the Height (3-D plot) box.

One can save to a file the state of the PDE Modeler and restore it by 
opening the file later. The file is stored as the *.m function, but it is not 
recommended to edit it directly. If any additional customization is required, 
it is suggested to either export the variables and use a script to work on 
them or set up and solve the problem from the beginning as a script, as 
described in Section 5.3.

5.2.2 Creating 2D Geometry
2D geometry is created by first activating Draw > Draw Mode. Shape 

choices are rectangle/square, ellipse/circle, or polygon. For the first two 
geometries, one can either create them by defining centers first or by 
clicking at one of the two diagonal vertices and dragging to define the shape’s 
size. Square/circles are drawn by either using the right mouse button or by 
holding control key while dragging with the left mouse button. After the 
shape’s creation, its dimensions and origin can be edited via the Object 
Dialog window that can be accessed by double-clicking on the specific 
shape (e.g., circle 1, C1) (Figure 5.2).

 

FIGURE 5.2. The PDE Modeler, Object Dialog settings for a Circle C1, Draw Mode.

A good practice is to define appropriate grid size so that when shapes are 
located or sized, the points will snap to these grid values, and accurate round 
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numbers will result. To display and assign the grid size, select Options > 
Grid Spacing. The default is Auto; this can be unchecked, and the desired 
values entered (Figure 5.3). Then, select Options > Snap.

FIGURE 5.3. The PDE Modeler, Grid Spacing settings, Options Mode.

When each geometrical entity is created, it is automatically assigned a unique 
ID (Name); for example, the first rectangle that is generated is identified 
as R1 and the second circle is identified as C2. Shape IDs can be changed 
via the shape properties dialog box, under the Name field (Figure 5.2).  
The advantage of having shape IDs is that the geometry may be constructed 
by referencing these unique IDs within the Boolean operations (i.e., ad-
dition and subtraction). For example, to create the cross section of a hol-
low cylinder, given a certain thickness, the internal (C1) and external (C2), 
where RC1 > RC2, concentric circles are defined first; the smaller circle is 
then subtracted from the larger one in a Boolean operation (C1 – C2); this 
operation is entered in the Set Formula field (Figure 5.4).

FIGURE 5.4. The PDE Modeler, defining Set formula by addition/subtraction.
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5.2.3 The PDE Modeler: A Step-by-Step Guide
The process of setting up, solving, and analyzing a 2D PDE problem 

within the PDE Modeler application is described in the following para-
graphs. The example model describes a transient heat transfer system, 
where a circular core made of aluminum is surrounded by a ring made of 
copper. The system is at the initial temperature of 30 °C and the environ-
ment is at 30 °C. There is also internal heat generation in the core region 
(100,000 W/m3). The system is modeled over an interval of 1,000 seconds 
and the temperature distribution at that time is displayed. 

 (1) Run the PDE Modeler application by selecting the APPS tab on the 
menu bar and clicking on its icon (Figure 5.1 ); alternatively, enter 
pdeModeler at the command line. 

 (2) Under the Options menu (Figure 5.5), set the grid, its spacing, and axis 
upper and lower limits. Next, set the model application type (e.g., Heat 
Transfer for a thermal model) through Options > Application > Heat 
Transfer (Figure 5.6).

FIGURE 5.5. The PDE Modeler, Options menu items.

FIGURE 5.6. The PDE Modeler, Options, Application menu items.
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 (3) To create the example’s 2D geometry, define two concentric circles 
with radii of 0.4- and 0.5-units using Draw > Ellipse/circle (centered). 
Click at the center’s location and drag with the right mouse button to 
create each circle. Two circle entities are thus created and given names 
C1 and C2 (Figure 5.7). Note that dragging with the left mouse button 
will allow creation of an ellipse or a circle. If you happened to have 
created an elliptical shape (named E1), it can be changed into a circle 
by assigning equal values to both semiaxes in the shape’s properties. 
If you want to return to this step, Draw > Draw Mode can be selected 
again to modify the shapes or to add new ones.

 Set formula is used to define how the overlapping shapes will be 
treated—subtracted or added. The Set formula field, visible in Figure 5.8,  
shows C1 + C2 to indicate that the two shapes are to be combined to 
create two regions in the model.

.

FIGURE 5.7. The PDE Modeler, Draw menu items.
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 (4) Boundary conditions on the geometrical segments are set as the next 
step after selecting Boundary > Boundary Mode (Figure 5.8). All 
boundaries have preassigned default insulated boundary conditions: 
the Dirichlet condition—hT = r in Equation (64), where h = 1 and  
r = 0. If there are unneeded subdomain borders, delete them by 
selecting the Remove Subdomain Border or Remove All Subdomain 
Borders. By holding the shift key and clicking on the individual bound-
aries, multiple selections can be made. Finally, select the exterior 
circle boundaries (boundaries 1-5 as shown in Figure 5.8) and apply 
the conditions h = 1 and r = 30 as shown in Figure 5.9. 

FIGURE 5.8. The PDE Modeler, Boundary menu items.

FIGURE 5.9. The PDE Modeler, Boundary Condition settings for Dirichlet boundary conditions.
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 (5) Activate PDE > PDE Mode. For each region, define specific PDE 
coefficients as needed. PDE Specification is selected from the PDE 
menu (Figure 5.10) to select the Type of PDE and to enter the PDE 
coefficients into the fields of the dialogue box (Figure 5.11). The coef-
ficients must be assigned before the solution step. The coefficients 
do not depend on the geometry or boundary conditions, but on the 
physics. These coefficients can be assigned for individual regions by 
double-clicking each and entering the values. If regions are not select-
ed individually, the default (initial PDE specifications) will propagate 
to all the domain PDEs. For a steady-state thermal model, an elliptic 
PDE should be assigned (Figure 5.11). In case of a transient condition, 
as is the case in this example, a paraboilic PDE should be selected as 
shown in Figure 5.12 and Figure 5.13. The coefficient values shown 
represent an interior region made of aluminum and an exterior region 
made of copper. The external temperature is assumed at 30 °C with a 
convection coefficient of 10 W/m2K. The internal core generates heat 
at 10,000 W/m3.

FIGURE 5.10. The PDE Modeler, PDE menu items.

FIGURE 5.11. The PDE Modeler, PDE Specification settings for the Elliptic model.
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FIGURE 5.12. The PDE Modeler, PDE Specification settings for the Parabolic model (interior region, aluminum).

FIGURE 5.13. The PDE Modeler, PDE Specification settings for the Parabolic model (exterior region, copper).

 (6) Mesh the model by selecting the Mesh Mode under the Mesh menu; 
this meshes the geometry to the default size with the triangular mesh 
elements. The mesh size can also be refined to the desired level 
(Figure 5.14). Refinement subdivides each existing mesh triangle into 
four to improve model accuracy. Selecting Initialize Mesh resets it to 
unrefined state. 
 The mesh data can be exported in the form of three matrices [p, e, 
t]. p is the matrix of nodes (2 ´ Np), where Np is the number of nodes. 
The first and second elements in each node (matrix column) are the 
node coordinates (x, y). e is the matrix of edges (7 ́  Ne), where Ne is the 
number of edges in the mesh. Finally, t is the matrix of triangles. For 
each mesh triangle, it lists indices from the p array to identify the nodes 
that belong to this triangle. The PDE Modeler uses linear elements 
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that have one node for each triangle vertex, and which result in the t 
matrix with dimensions (4 ´ Nt). When defining the mesh parameters 
outside of the PDE Modeler, one can specify either linear or quadratic 
elements. The latter results in the t matrix with dimensions (7 ´ Nt).

 Node and triangle (mesh) labels as well as mesh quality can be 
displayed using the GUI interface. The solution accuracy level depends 
on the mesh selection criteria such as density and aspect ratio (quality), 
which can be controlled through Mesh > Parameters (Figure 5.15). 
Mesh parameters (Maximum Edge Size and Mesh Growth Rate) can 
be repeatedly adjusted while working on the model. The Mesh Growth 
Rate controls the rate at which the element size is allowed to increase 
from the narrow regions to more open areas. The higher the rate, the 
fewer elements will be created. After changing any of the settings, click 
on Initialize Mesh to rebuild the mesh with the new parameter values. 
To obtain the example mesh shown in Figure 5.14, set the maximum 
edge size to 0.05 and perform one mesh refinement step.

 

FIGURE 5.14. The PDE Modeler, Mesh menu items.
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FIGURE 5.15. The PDE Modeler, Mesh Parameters settings.

Jiggle Mesh parameters controls the mesh optimization process carried 
out either automatically, if the Jiggle Mesh checkbox is selected, or 
manually by selecting the Jiggle Mesh item from the menu. In this 
process, the interior element nodes (those that are not on the region 
boundaries) are iteratively moved to improve the element quality (i.e., 
make its average value closer to one). You can observe the effect by 
unchecking the Jiggle Mesh checkbox, initializing the mesh, and then 
performing the Jiggle Mesh manually by selecting it from the menu. 
Select Display Triangle Quality from the menu after each action to 
observe the effect.

 Choosing the appropriate mesh size requires balancing between 
the solution accuracy and time. Two types of the error (i.e., cutoff 
and roundoff) are responsible for the solution inaccuracies. These 
are generated either by rounding to the closest decimal or cutting 
off certain number of decimals. Either way, the inaccuracies that are 
introduced into the problem are cumulative with each iteration. This 
leads to the error-solution curves to take on a concave shape, with the 
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bottom of the valley representing the optimum solution and raised 
sides being deviations from the optimum solution. Other considerations 
when setting up the mesh size in addition to the solution time and 
accuracy concerns are the available resources. For example, memory 
and hardware requirements may vary depending on the PDE type and 
complexity of the model. 

 (7) Solve the problem either by selecting the Solve PDE under the Solve 
menu or clicking the ‘=’ button on the top ribbon (Figure 5.16). Under 
Solve > Parameters, one can specify time step, state variable initial guess 
value, and relative and absolute tolerances (Figure 5.17). The transient 
solution results are plotted automatically with the default plot settings.

FIGURE 5.16. The PDE Modeler, Solve menu items.

FIGURE 5.17. The PDE Modeler, Solve Parameters settings.

 (8) Plot the solution results using the default plot settings by selecting the 
Plot Solution in the Plot menu (Figure 5.18). Selecting Parameters 
(Figure 5.19) allows customization of the plot display. Figure 5.17 
shows the solution plot at time of 1,000 s and for initial temperature of 
30 °C. The plot displays temperature contour plots with five levels and 
arrows showing the direction and magnitude of the temperature  
gradient field.
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FIGURE 5.18. The PDE Modeler, Plot menu items.

FIGURE 5.19 The PDE Modeler, Plot Selection settings.

After completing all the above steps, one can go back to any of them, 
make changes, and repeat the solution. For example, to change the 
geometry, select the Draw Mode under the Draw menu and make the 
desired changes. Output from any of the abovementioned steps (such 
as geometry descriptions, set formula, labels, decomposed geometry, 
boundary conditions, PDE coefficients, mesh, solution, and animated 
results) can be exported individually to the MATLAB Workspace or used 
in the MATLAB script. 

When using the PDE Modeler application, one must remember 
that if the user does not define the parameters in any of the steps 
mentioned above, the application will complete the solution with the 
default settings. For example, failing to specify the geometry results 
in a default L-shape being used. If meshing is chosen as the first step 
after the L-shape geometry is created, the default boundary conditions 
are applied to the decomposed boundaries (the Dirichlet boundary 
conditions). If the solution is being called as the next step, the application 
first initializes the mesh and then runs the solution. If the user chooses 
to plot the results before any solution is attempted, the solution is first 
run using the default conditions and then the plot is generated. 
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This also applies when setting up the PDE coefficients. If no PDE 
coefficients are set, the PDE parabolic relation is used (provided Heat 
Transfer Mode has been selected) with the default values (Figure 5.11). 
The equation displayed at the top of the PDE Specification window shown 
in Figure 5.11 can be derived by simplifying Equation (62). This is done by 
assuming the default density (r = 1), heat capacity (c = 1 J/kgK), thermal 
conductivity (k = 1 W/mK), heat generation (Q = 1 W/m3), convection 
heat transfer coefficient (h = 1 W/m2K), and surrounding temperature  
(T
¥
 = 0 K). One thus obtains Equation (67), which is what is shown in the 

figure. Note that in Equation (67), T¢ is simply a different way of writing 
the temperature time derivative (T¢ = dT/dt) compared to that in Equation 
(63). The solution to Equation (67) presenting the temperature profiles and 
contour plots is presented in Figure 5.20. 

  · ( ) ( )pC T Tk Q h T Tr -  =  -  (67)

If the problem models steady-state conditions, the results are independent 
of the heat capacity and density; therefore, Equation (67) can be simplified 
to Equation (68) shown in Figure 5.13.

 ( )· ( )k Q h T TT = - -   (68)

FIGURE 5.20. The PDE Modeler, default geometry and solution (temperature and its gradient).
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5.3 Thermal Modeling Using the MATLAB Script

To solve any heat transfer model, the conservation of energy must be 
complied with. As discussed in Section 2.2, this law states that the total 
energy inputted into the system plus the energy generated within the 
system must be equal to the total energy outputted from the system plus the 
energy change within the system, Figure 2.3 and Equation (1). The result 
of such energy balance is one or more partial differential equations (PDE). 
To solve such equation in MATLAB, the equation may be discretized and 
solved using the finite difference approach that employs the MATLAB’s 
base installation capabilities. The PDE Toolbox add-on package simplifies 
this task by providing functions dedicated to setting up and solving of the 
PDEs. While Section 5.2 described how to create a relatively simple 2D 
model using the GUI of the PDE Modeler, an application which comes with 
the PDE Toolbox, the current section outlines a more general procedure 
that can be employed to set up and solve a thermal model on the MATLAB 
platform using the PDE Toolbox.

5.3.1 Model Creation
Using the PDE Toolbox functions, to create a general PDE scalar 

(single variable-single equation) or system (multiple, N, variables-multiple 
equations) model, the createpde(N) function is called as shown in Equation 
(69). For single-equation models, N = 1, and brackets with N can be 
omitted; for multiple equations, N is equal to the number of equations.

The output of this function is a PDE model object. For example, the 
PDE model object has properties such as Geometry and Mesh. An object 
is a class or category. The object is created and behaves based on its class 
when the program is executed. This helps the author to write their code 
so that they can group the data and functions and facilitates finding the 
objects of the same class. In general, there are two types of programming—
procedural and object-oriented. Procedural programs pass data to functions, 
capable of performing the intended operations on the data. Object-oriented 
programming condenses data and their operations in objects; these objects 
then interface with one another. With MATLAB, the analyst can employ 
both programming methods, using objects and regular functions. 

To create models specifically formulated for thermal and structural 
applications, function calls as shown in Equation (70) are used. Two 
function inputs are required: problem type and analysis type. The problem 
type is either “thermal” or “structural.” The analysis type describes how the 
system changes with time (e.g., “transient” or “steadystate”) and whether 
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the geometry is axisymmetric. A complete listing of available keyword 
strings is given in the function’s help document. After creating a model of 
appropriate type, the model’s geometry, mesh, and boundary conditions 
must be defined as detailed in the subsequent sections.

 model = createpde(N)  (69)

thermalModel = createpde(‘thermal’, ThermalAnalysisType) 
structuralModel = createpde(‘structural’, StructuralAnalysisType)  (70)

5.3.2 Geometry
Creating geometry that represents the model with sufficient fidelity 

while avoiding unneeded complexity is an important step when performing 
heat transfer modeling. This section explains how the geometry that can 
be used within the PDE Toolbox models can be created. The MATLAB 
geometry creation tools have been discussed in detail in the author’s earlier 
publication [3]. The geometry can be created using a third-party CAD tool 
or generated within MATLAB. The appropriate geometry creation method 
depends on the model complexity. The following sections describe different 
approaches grouped by the number of geometry dimensions—2D or 3D.

5.3.2.1 2D Geometries

Three methods of adding 2D geometry into the model are described 
below.

Method 1—Build 2D geometry using the MATLAB PDE TOOLBOX 
commands

This approach uses the Constructive Solid Geometry (CSG) principles 
to define 2D geometry from a set of basic shapes. The geometry of each 
basic shape is defined by a matrix with several rows. Each row defines 
specific parameters for that geometry (e.g., geometry shape and related 
parameters such as central x- and y-coordinates and radius for a circle or 
number of sides and vertex coordinates for a rectangle). Table 5.1 lists 
shapes and settings required to define them. 

To create properly formatted geometry for the PDE Toolbox functions, 
the model needs to consist of disjointed minimal regions bounded by 
boundary segments and border segments. This set is known as the 
decomposed geometry. In multiple domains, the geometry components are 
assembled from the individual basic shapes (e.g., circles and rectangles for 
2D cases). This is a two-step approach, consisting of the geometry function 
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and the decsg function. The decsg function is used to transform the data 
describing the 2D geometry (as defined in Table 5.1) into a format that can 
be interpreted by other functions within the PDE Toolbox. This is described 
as decomposing constructive solid 2D geometry into the minimal regions. 
This method can control all the characteristics associated with the defined 
basic shapes; however, the user interface is not as friendly as when using the 
PDE Modeler application and the model is not viewable as it is being created. 
Table 5.2 provides examples for the creation of four basic 2D shapes. 

TABLE 5.2.  Examples of basic 2D shape creation with the decsg function.

Item Solid Shape
Geometry  

Configuration (g) Configuration Shape

1 Circle decsg([1 0 0 1]’)

2 Polygon decsg([2 6 0 1 2 3 2 
1 1 2 2 1 0 0]’)

3 Rectangle decsg([3 4 0 0 1 1 0 
1 1 0]’)
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Item Solid Shape
Geometry  

Configuration (g) Configuration Shape

4 Ellipse decsg([4 0 0 1 0.5 
pi/4]’)

The example in Figure 5.21 shows how the basic shapes can be assembled into 
a multi-region geometry. Each basic shape is defined by a column vector the 
length of which varies with the shape type. To combine these shapes, a set of 
three matrices needs to be created, (gd, sf, ns), and then provided as input to 
the decsg command. These matrices are gd (the geometry description matrix 
containing the CSG description of the model); sf (the set formula); and ns 
(the name-space matrices). The sf character vector describes the Boolean 
relationships between the geometrical entities; ns is a character array that 
identifies the columns in gd and thus allows evaluation of the formula in 
sf. The decsg function then receives these three matrices as the inputs and 
produces the required output matrix—dl = decsg(gd, sf, ns).

model = createpde; 
C1 = [1,0,0,0.5]¢;
T1 = [3,3,-1,1,0,0,0,2]¢;
R1 = [3,4,-0.25,0.25,0.25,-0.25,... 0.75,0.75,1.25,1.25]¢;
C1 = [C1;zeros(length(R1)-... length(C1),1)];
T1 = [T1;zeros(length(R1)-... length(T1),1)];
gd = [T1,C1,R1];
sf = ¢R1-T1-C1¢;
ns = char(¢R1¢,¢T1¢,¢C1¢);
ns = ns¢;
dl = decsg(gd,sf,ns); 
geometryFromEdges(model,dl); pdegplot(model);
ax = gca; grid on; grid minor;... 
ax.FontSize = 20; xlabel(¢x¢); ylabel(¢y¢);
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FIGURE 5.21. Basic shapes assembled into a multi-region geometry.

As one can see from Table 5.2, different geometrical shapes have definition 
vectors of different lengths. However, if they are to be combined into the 
gd matrix, their lengths need to be equalized. This is done by padding the 
shorter definition vectors with zeroes. For example, the vector length of the 
rectangle (R1) is 10 (m = length(R1) = 10); and that of the triangle (T1) is 
8 (n = length(T1) = 8). Thus, vector zeros(length(R1) – length(T1)) with 
length m – n = 2 is appended to the triangle’s vector. The padded triangle’s 
vector becomes: T1 = [T1; zeros(length(R1) – length(T1), 1)]. One can 
visualize the PDE model geometry by executing the pdegplot function 
that takes as its input the output of the decsg function—e.g., pdegplot(dl). 
The geometry can be then incorporated into the model container (model) 
by executing geometryFromEdges(model,dl). Another complete example 
is presented in Figure 5.22 that shows the script consisting of geometry 
commands and their assembly and in Figure 5.23 displaying the resultant 
geometry. 

FIGURE 5.22. Geometry creation commands (circle and rectangle operations).
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FIGURE 5.23. Geometry created using circle and rectangle operations.

Method 2—Build 2D geometry employing the PDE Modeler 
application 

The PDE Modeler application introduced in Section 5.2 can provide a 
more user-friendly approach to geometry creation. Within this application, 
one may click and drag to generate the geometrical shapes, to view the 
creation progress, and to make revisions. It is also possible to confirm if 
the relationships between the geometry features are defined properly; 
for example, if the parts are connected at the desired points and lines; if 
the features are to be added or subtracted. Only the same basic shapes 
introduced in Table 5.2 can be created.

After creating the geometry in the PDE Modeler, as described in 
Section 5.2.2, one can export this geometry via the Draw > Export 
Geometry Descriptions, Set Formula, Labels menu command. This adds 
three matrices to the MATLAB Workspace, identified by default as (gd, 
sf, ns), which can then be used as input to the decsg function, as described 
under Method 1 above.

Method 3—Import geometry from a third-party CAD or FEA tool 

A 2D geometry generated externally and stored in the *.stl format 
can be imported and incorporated into the PDE model using the 
importGeometry(model, geometryfile) command, where model is the name 
of the container to which the geometry is to be added and geometryfile is 
the path to the *.stl file containing the geometry.

5.3.2.2 3D Geometries

Three methods of adding 3D geometry into the model are described 
below.

Method 1—Build 3D geometry using the MATLAB PDE Toolbox 
commands

There are three functions in the PDE Toolbox that allow you to create 
three types of 3D geometric primitives: cuboid, cylinder, and sphere. 
Execution of each function can create multiple objects of the same type 
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or a single object. One can also specify for any of the shapes that they are 
to be void. This allows creation of hollow objects by nesting the void shape 
within a solid one. 

For example, to create multiple cuboids, the function gm = multicuboid 
(W, D, H, NameN, ValueN) is employed. In this relation, W, D, and H 
are the width, depth, and height, respectively, which can be scalars or 
vectors. Name–Value can belong to multiple relations employed to identify 
if the part is offset from the default coordinate [0 0 0] by identifying the 
ZOffset value of the Nth cell and Nth cell of the cell N. The lengths of these 
vectors are the same as the width (W), depth (D), and height (H) vectors. 
Therefore, to create four cuboids with the same side dimensions, and the 
second hollow cuboid, which are offset from the default coordinate [0 0 0] 
by [0 1 3 6], the command is gm = multicuboid(3, 1, [1 2 3 5], ‘ZOffset’,  
[0 1 3 6], ‘Void’, [false, true, false, false]).

To create four cylindrical cells (volumes) with the unit radii, heights 
identified by array [1 2 3 4], the third cylinder hollow, and being offset by 
array [0 1 3 6], the command is gm = multicylinder(1, [1 2 3 4], ‘ZOffset’, 
[0 1 3 6], ‘Void’, [false, false, true, false]). To create one filled spherical cell 
with radius 5, the command is gm = multisphere(5, ‘Void’, false).

There are, however, several limitations when using these functions. 
First, only objects of the same type can be combined within one geometry 
structure. This means, for example, that one can have multiple cuboids 
or multiple cylinders but not the combination of cuboids and cylinders. 
Second, there are some restrictions on how the geometrical entities can 
be combined; for example, one cannot have overlapping entities. For 3D 
geometries of higher complexity, it is thus recommended to use other 
creation methods.

Method 2—Create 3D geometry from mesh

Geometry can be created from a mesh using the geometryFromMesh 
function, as shown in Equation (71). An example using the mesh grid points 
generated for x-, y-, and z-coordinates is presented in Figure 5.24.

 geometryFromMesh(model, nodes, elements (71)

In the example, a cube with sides equal to 1 is meshed with the grid spacing 
of 0.1. Node coordinates (nodes) are created as the result. The convex hull 
function creates elements. Geometry (domain) is then generated based on 
this information (Figure 5.24b).
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 (a) (b)

FIGURE 5.24. Use of geometryFromMesh function to create a convex hull element:  
(a) Script, (b) Element boundaries.

Method 3—Import 3D geometry from a third-party CAD or FEA tool

To create 2D and 3D geometries, the *.stl format files can be imported 
using the importGeometry(model,geometryfile) command. For example, 
the sequence of commands shown in Figure 5.25a imports a CAD geometry 
created in SOLIDWORKS (Figure 5.25b) that was saved in the *.stl format 
to a file Test_STL_Export.stl. Figure 5.25c, shows the triangles that are 
used to define surfaces in the *.stl format. Figure 5.25d, shows how the 
imported geometry looks within the PDE Toolbox model. 

Note that the imported geometry consists of uninterrupted faces, with 
the triangular facets removed. This is done by MATLAB automatically on 
the *.stl file import. It assumes that any triangles within the same plane and 
having nearly identical face normal orientation belong to the same face. This 
can cause issues if the model contains surfaces with very small differences 
in orientation as they may be assumed to belong to the same face. However, 
in general, the *.stl file format import is the most appropriate method for 
adding complex 3D geometries into the PDE Toolbox model.

 (a) 

 
 (b)
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 (c) (d)

FIGURE 5.25. Importing 3D geometry from a *.stl file: (a) Script, (b) CAD geometry,  
(c) *.stl geometry, (d) Imported model.

5.3.3 Material Properties
In the most general case, material properties can vary over the model 

space, change over time, and be dependent on state variables. Material 
properties can be defined for the whole model or specifically for each region 
by using the PDE Toolbox function thermalProperties(). For a region-by-
region definition, one needs to specify the RegionType, which is Face for 
2D models and Cell for 3D models, followed by the RegionID, an integer or 
a vector of integers. Properties are defined by listing property name-value 
pairs.

The example in Equation (72) defines three material properties for 
a 3D region with ID number i within a model called thermalModel. The 
function output may be assigned to a variable that will be defined as a 
material properties object (tp_i in the example). Inputs k, rho, and c_p 
define, respectively, thermal conductivity, density, and heat capacity at 
constant pressure.

 tp_i = thermalProperties(thermalModel, ‘ThermalConductivity’,… 
k, ‘MassDensity’, rho, ‘SpecificHeat”, c_p, ‘Cell’, i) (72)

If the material properties are space- or time-dependent, they need to 
be defined using the function handles. For example, for metals at low 
temperatures, thermal conductivity may be represented by Item 1, in 
the Property Relation column, in Table 5.3, where k0 is a constant. The 
larger the temperature is, the larger the thermal conductivity is. In metals, 
as temperature increases, since the atomic mean free path is limited, 
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thermal conductivity decreases. In metal alloys (e.g., stainless steel), since 
the density of impurities is large, the thermal conductivity is lower than 
in pure metals. The thermal conductivity (k) can be a quadratic function 
of the state (dependent) variable temperature (T), as shown under Item 
2, in the Property Relation column, in Table 5.3, where a, b, and c are 
constants. When setting this property in the MATLAB script, the thermal 
conductivity is defined as shown under Item 2, the MATLAB Definition 
column, in Table 5.3, where u represents the state (dependent) variable 
(i.e., temperature for a heat transfer PDE model). 

In another example, assume the specific heat (cp) is a function of the 
location (x-, y-, and z- coordinates). Item 3 in Table 5.3, where a, b, and c are 
constants, shows how this relation can be described in the MATLAB PDE 
script. If the internal heat source is a function of the location, temperature, 
and time, a relationship can be used such as that in Item 4 in Table 5.3, 
where a and b are constants, t is time, and T is temperature. 

TABLE 5.3. The property relations and their MATLAB representations.

Item Property Relation MATLAB Definition

1 k = k0T k = @(~, state)k_0*state.u

2 k = aT2 + bT + c k = @(~, state)a*state.u^2 + b*state, u + c

3 cp = ax + by + cz c_p = @(location, state)(a*location.x + 
b*location.y + c*location.z)

4 q = t(ax + b)T0.5 q = @(location, state)state.t*(a*location.x + b) * 
(state.u)^0.5

It is also possible to create a function in which any of the material properties 
vary with the location, state variable (e.g., temperature), and time. This 
customized function (cust_fun) then can be employed when defining the 
property—cust_fun = function(location, state), which can be defined as  
pt = @cust_fun in the MATLAB script, where pt can be either property 
(e.g., thermal conductivity) or process parameters (e.g., internal heat source 
and heat flux). @cust_fun can replace any of the input variables used to 
define the associated boundary and initial conditions.

The terms location.x, location.y, and location.z are the x-, y-, and z-co-
ordinates of the query point(s). For boundary conditions, they are replaced 
with location.nx, location.ny, location.nz, and location.nr, representing the 
normal vectors (x, y, z, and r-components) at the query points. For tran-
sient and non-linear problems, the terms state.u, state.ux, state.uy, state.
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uz, and state.ur represent the resultant x-, y-, z-, and r-components of the 
state variable (e.g., temperature) at the query points. state.time represents 
time at the query points. In these cases, the thermal properties (except for 
thermal conductivity) form a row vector in which the number of elements 
is equal to the number of the query points, length(location.x). For thermal 
conductivity, a matrix is formed in which the number of columns is the 
same as the number of query points, length(location.x), and the number 
of rows, assuming that Ndim is the number of model dimensions (e.g., 1D, 
2D, and 3D), is 1, Ndim, Ndim*(Ndim + 1)/2, or Ndim *Ndim.

5.3.4 Analysis Type
When defining the analysis, one must define its type, such as steady-

state or transient, by calling the createpde function. The thermal analysis 
type can be (a) steadystate, (b) transient, (c) steadystate-axisymmetric, and  
(d) transient-axisymmetric. The steadystate is the default when the createpde 
function is used, and the analysis type is not specified—thermalModel = 
createpde(‘thermal’). Types listed under options (c) and (d) above create 
2D thermal models that take advantage of the axial symmetry of the 3D 
models. 

For example, the statement in Equation (73) creates a transient heat 
transfer model thermalModelT. To solve an axisymmetric transient problem 
instead, replace keyword transient with transient-axisymmetric. 

 thermalModelT = createpde(‘thermal’, ‘transient’)  (73)

The thermalModelT is a thermal PDE model object that contains all the 
information about the model, such as the geometry, mesh, thermophysical 
properties, boundary conditions, initial conditions, and number of equations. 

5.3.5 Heat Generation
This section describes how to incorporate spatial and temporal heat 

generation into the heat transfer PDE model. Internal heat generation can 
be defined by using the PDE Toolbox function shown in Equation (74) in 
which q_int is the internal heat generation (W/m3) applied to the region 
(Face for the 2D and Cell for the 3D models) identified by i.

q_internal = internalHeatSource(thermalModelT, q_int, ‘Face’, i)  (74)

When solving PDEs in MATLAB, it is a good practice to make sure that 
temperature- or time-dependent outputs do not return valid numbers if 
any of the state.time or state.u variables are not-a-number (NaN). This 
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means that for any NaN state variable, a NaN value should be returned. 
The concept of a NaN was introduced earlier in Section 4.5.

An example for a custom-made heat source including the testing for 
a not-a-number (NaN) input is presented in Figure 5.26. The purpose of 
including such capability is to both ensure that the heat generation value 
does exist on the selected nodes but also, that they can be defined; for 
example, they do not produce floating point overflow.

This function, myHeatSource, is used in the function internalHeatSource 
through a function handle—@myHeatSource. The function Q is a local 
function that can be appended at the end of a script as shown in Figure 
5.26; this function then can be called by executing internalHeatSource(the
rmalModelT, @myHeatSource). Note that, to work correctly with transient 
problems, this function must include a test for a NaN input and, if the result 
is true, return a NaN output. 

function Q = myHeatSource(location,state) 
  Q = zeros(1,numel(location.x));
if (isnan(state.time)) 
  Q(1,:) = NaN; 
  return
end
if state.time < 300
  Q(1,:) = 100*state.time;
end 
end

FIGURE 5.26. Example of function that defines heat source and correctly handles a NaN input.

5.3.6 Boundary and Initial Conditions
This section shows how to integrate spatial and temporal boundary and 

initial conditions into the model. To identify the boundary conditions (e.g., 
heat flux and temperature), ambient temperature (T_a) and convection heat 
transfer coefficient (h_c) are to be either directly or separately inputted in 
the associated equation (i.e., defined as a fixed value or spatial/temporal 
function) using the PDE Toolbox function thermalBC. The boundary 
condition can be identified in the form of temperature (T)—Equation 
(75), heat flux (q_f)—Equation (76), radiation (q_r)—Equation (77), or 
convection (q_c)—Equation (78), where T_i, q_i, e_i, T_ai, h_ci are the 
temperature, heat flux, emissivity, ambient temperature, and heat transfer 
convection coefficient at the region type (Edge for the 2D and Face for 
the 3D models) referenced by the identifier i. These parameters can be 
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expressed as functions of space or time (e.g., heat flux (q_i_y) in Equation (79)  
and convection heat transfer coefficient (h_ci_y) in Equation (80).

 T = thermalBC(thermalModelT ,’Edge’,i ,’Temperature’,T_i)  (75)

 q_f = thermalBC(thermalModelT ,’Edge’,i,’HeatFlux’,q_i_y) 
 

(76)

 q _ r = thermalBC( thermalModelT ,’ Edge’,i,... (77)
 ‘Emissivity’,e_i,’ AmbientTemperature’,T_ai )

 q _ c = thermalBC( thermalModelT ,’ Edge’,i,... (78)
 ‘ConvectionCoefficient ‘,h_ci,’ AmbientTemperature’,T_ai )
 q_i_y = @(region, ~) q_i*region.y  (79)
 h_ci_y = @(region, ~) h_ci*region.y  (80)

Setting up appropriate initial conditions or initial guess for a thermal 
model is an important consideration in transient analyses. There are 
number of ways in which these conditions may be defined. One approach 
is to apply the initial condition or initial guess for the PDE problem to the 
entire geometry—T_0 in Equation (81). It is also possible to set the initial 
conditions for certain regions (e.g., Vertex, Edge, and Face for the 2D and 
3D model and Cell for a 3-D model)— T_0_i in Equation (82). One can 
also have the output of one solution to be the input (or initial guess) to 
another problem—T_0_res in Equation (83). It is also possible to set the 
results of the first problem as the initial condition or initial guess for the 
ts_0 time index of the second problem—T_0_res0 in Equation (84), where 
ts_0 is a positive integer.

 T_ 0 _1 = thermalIC(thermalModelT,T_ 0) (81)

 T_ 0 _ 2 = thermalIC(thermalModelT,T_ 0 _i,’Edge’,i )  (82)

 T_ 0 _res = thermalIC(thermalModelT,results) (83)

 T_ 0 _res 0 = thermalIC (thermalModelT,results,ts_ 0)  (84)

5.3.7 Mesh
The model geometry is meshed using the generateMesh function, 

represented by Equation (85). When the mesh is generated, it is stored in 
the model object (e.g., thermalModelT). GeometricOrder identifies if the 
elements are of linear or quadratic order. The quadratic order elements 
are the default element type choice for the MATLAB PDE problems; 
they produce more accurate results; however, they require more computer 
resources (RAM and solution time). Hgrad identifies the mesh growth rate 
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(gs_gr). It is a number within the range 1 £ Hgrad < 2 with the default 
value of 1.5. It controls the rate at which the mesh element size is allowed to 
increase between narrow and open regions. Hmax identifies the maximum 
mesh edge length (gs_max). The smaller the Hmax is, the finer the mesh is. 
Hmin identifies the minimum mesh edge length (gs_min). Hmax and Hmin 
are the upper and lower limits, respectively, of the mesh size. If they are 
not specified explicitly, Hmax’s and Hmin’s default values are estimated by 
the generateMesh function. Mesh can be displayed with the pdeplot(mesh) 
command.

 

  ( ,' ',
' / ',...' ', _ ,' ', _ ,
' min', _ )

mesh generateMesh thermalModelT GeometricOrder

quadratic linear Hgrad gs gr Hmax gs max

H gs min

=

  (85)

5.3.8 Solver Options
Several settings can be adjusted from their default values before the 

solution is run. The defaults determined by the MATLAB PDE Toolbox 
applications in general provide suitable values, but there may be special 
circumstances for some problems, where changes from the defaults will 
need to be made. PDE solver options that can be adjusted are the absolute 
tolerance, relative tolerance, residual tolerance, maximum iterations, 
minimum step, residual norm, and report statistics. Equation (86) shows 
the general format for setting these property values. This section provides 
a summary of these options, with the focus on tolerances, due to their 
importance in thermal modeling applications and particularly internal 
ODE solvers.

 thermalModelT.SolverOptions.PDE SolverOptions Properties =  
                                                            Property Value  (86)

Absolute tolerance identifies how accurate the final solution is expected to 
be when the solver terminates the iterations. It specifies the solution error 
estimate, which is the acceptable threshold below which the value of the 
solution error is considered insignificant—y = f(x) = 0. The default value 
for the absolute tolerance is 1e–6—Equation (87), where a is the absolute 
tolerance (e.g., 2e–6).

 thermalModelT.SolverOptions.AbsoluteTolerance = a (87)

Relative tolerance identifies how accurate the solution is relative to the 
exact solution; in other words, it specifies the number of correct digits for 
the solution components. For the components, which are smaller than the 
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threshold, it is overridden by the absolute tolerance. The default value for 
the relative tolerance is 1e–3 with an acceptable accuracy of about 0.1% —
Equation (88), where b is the relative tolerance (e.g., 2e–3).

 thermalModelT.SolverOptions.RelativeTolerance = b (88)

Residual tolerance identifies the accuracy of the iterative solutions. 
Residues are the solution deviation (zero-sum problems) from zero. The 
solution iterations continue until the set tolerance is met when performing 
the analyses. The default value for the residual tolerance is 1e – 4, as shown 
in Equation (89), where c is the residual tolerance (e.g., 2e–4).

 thermalModelT.SolverOptions.ResidualTolerance = c (89)

Maximal number of Gauss-Newton iterations identifies the highest number 
of solutions that the nonlinear solver is allowed to iterate. If when this 
limit is reached the solution still has not reached the relative (or absolute) 
tolerance, the solution has not converged. In such cases, either the tolerance 
is too tight and should be relaxed or the maximal number of iterations 
should be increased; it is also possible that something is not right with the 
model setup or the geometry. The default value for this property is 25. See 
Equation (90), where d is the maximal number of Gauss-Newton iterations 
for internal non-linear solver (e.g., 20).

 thermalModelT.SolverOptions.MaxIterations = d  (90)

Minimum step identifies the damping factor when searching for solutions. 
It determines the smallest distance that the solution will jump to on the next 
iteration. The default value for the minimum damping step is 1.5259e – 07.  
See Equation (91), where e is the minimum step size (e.g., 1.7e–7 ).

 thermalModelT.SolverOptions.MinStep = e (91)

Solution statistics, such as the number of successful steps (excluding the 
comment lines), failed attempts, function evaluations, partial derivatives, 
Lower Upper (LU) decompositions, and solutions of linear systems can be 
displayed by activating the ReportStatistics feature within the SolverOptions 
by setting it equal to on; the default value is off—Equation (92).

 thermalModelT.SolverOptions.ReportStatistics = ‘on’  (92)

5.3.9 Solution and Postprocessing
This section describes how to obtain the spatial and temporal solutions 

and their derivatives (e.g., spatial gradients and heat fluxes) for the heat 
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transfer problems at any given coordinate and time. Transient and steady-
state thermal results are obtained by calling the solve function—Equation 
(93). A transient thermal result object (results) contains the temperature 
and gradient values in a form convenient for plotting and post-processing.

 results = solve(thermalModelT, tlist) (93)

Transient thermal results can be expressed in a variety of forms. They 
include the temperature (T) in Equation (94); temperature gradients 
along the x-, y- and z-coordinates, given as Tx, Ty, and Tz, respectively, in 
Equations (95) to (97); and the solution times, Tst in Equation (98).

 T = results.Temperature  (94)

 Tx = results.XGradients (95)

 Ty = results.YGradients (96)

 Tz = results.ZGradients (97)

 Tst = results.SolutionTimes (98)

Data derived from the solution output, such as the heat flux, heat rate, 
temperature gradient and temperature interpolation, can be evaluated using 
the evaluateHeatFlux, evaluateHeatRate, eavaluateTemperatureGradient, 
and interpolateTemperature functions at points that are not necessarily the 
same as the grid points. Heat flux can be evaluated for the selected nodes, 
at specific coordinates, and time. It is possible to add arrows to show a 
derivative of the dependent variable gradients (e.g., direction of the heat 
flow). 

The interpolateTemperature function can be applied to results to 
obtain the temperature values at the selected coordinates. It evaluates 
the temperature for the nodal grid points, queried points, or any desired 
spatial locations. For the nodal locations, the points are specified by the 
coordinates, or query points; see Equation (99), where t is time. 

The minimum requirement to define the heat flux function is to 
identify the output variable name (results). The query points are converted 
to column vectors (e.g., x(:), y(:)) before the evaluation can take place. n 
determines the time interval at which the data is stored. The smaller the 
n, the more frequently the data is stored. For example, for the following 
case study, given the total time of 5.7 h, there are 204 data points, given the 
time step (100 s). If n = 1, there are 204 evaluations made at every time 
interval, resulting in 204 evaluations and the selected query points (x, y, z).  
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If n = 10, there will be 21 evaluations made at every time interval and the 
selected query points (x, y, z), Equation (99), where t is time.

  interpolateTemperature([ _ , _ , _ ] = , , , ,1 : ): ( )T x T y T z results x y z n length t  (99)

The evaluateHeatFlux function can be applied to results for the heat 
flux values to be found at the selected nodes. It evaluates heat fluxes for the 
nodal grid points, queried points, or any desired spatial locations. Heat flux 
(T_x, y, z) is measured in energy per unit time (W). For the nodal locations, 
the points are specified by the coordinates, or query points, as shown in 
Equation (100), where t is time.

 [ _ , _ , _ ] = ( , , , ,1 : : ( ))q x q y q z evaluateHeatFlux results x y z n length t  (100)

The evaluateHeatRate function evaluates the integrated heat flow rates 
normal to specified region type or boundaries identified by i, j, and k 
variables in Equation (101). It can be applied to Edge for the 2D or Face 
for the 3D models. Heat rate (Qn) is measured in energy per unit time (W) 
and flows in the direction normal to the boundary (region). Positive values 
represent the heat flowing out of the domain, and negative values represent 
the heat flowing into the domain.

 ( = ,' ',[ , ), ]Qn evaluateHeatRate results Edge i j k  (101)

The evaluateTemperatureGradient function can be applied to results for 
the temperature gradient values, Equation (102), to be found at the selected 
nodes. It evaluates temperature gradients for the nodal grid points, queried 
points, or any desired spatial locations. For the nodal locations, the points 
are specified by the coordinates, or query points, as given in Equation 
(103), where t is time. To present the vector field plot of the temperature 
gradient calculations, the FlowData command can be employed as shown 
in Equation (104).

 / , / , /[ ] [ ], ,dT dx dT dy dT dz Tx Ty Tz=  (102)

[ , , ] = ( , , , , ( )1 : : )Tx Ty Tz evaluateTemperatureGradient results x y z n ngth tle  (103)

   , ,[ )'( ' ]pdeplot thermalModel FlowData Tx TyfP ot Tzl =  (104)

It is possible to create a mesh grid and identify the points at which the 
thermal data is to be displayed. The spacing between the grid points along 
the x- and y-coordinates does not need to be the same and can be defined 
independently. Thermal data (e.g., temperature) then can be evaluated at 
the newly defined points even if it may differ from the grid-size data, as 
shown in Figure 5.27. Note that sets of x1, x2, y1, y2, z1, z2, and t1, t2, 
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dt, and n are the initial (subscript 1) and final (subscript 2), x-, y-, and 
z-coordinates, time, time step, and number of divisions, respectively.

t = t1:dt:t2;
w = linspace(x1,x2,n);
h = linspace(y1,y2,n); 
l = linspace(z1,z2,n); 
[Xw,Yh,Zl] = meshgrid(w,h,l);
T_xyz = interpolateTemperature(results,Xw,Yh,Zl ,1:n:length(t));
[Tx,Ty,Tz] = evaluateTemperatureGradient(results,Xw,Yh,Zl,1:n:length(t)); 
[qx,qy,qz] = evaluateHeatFlux(results,Xw,Yh,Zl,1:n:length(t));
Qn = evaluateHeatRate(results,’Edge’,[i,j]);

FIGURE 5.27. Use of the object functions to analyze the thermal model results.

After the solution is run, the results and mesh can be further processed 
in the MATLAB environment by exporting the data to the MATLAB 
Workspace. The following steps may be taken to further investigate the 
solution process: (a) the PDE may be modified, and the solution rerun to 
study the data sensitivity to the PDE coefficients; (b) the specific material 
or nodal properties can be displayed; and (c) the mesh parameters can be 
reset, and the solution rerun to study the solution sensitivity to the mesh 
criteria.

5.3.10 Verifying the Model Inputs
This section describes how the model’s input conditions (e.g., heat 

fluxes and boundary conditions) can be verified. It also shows how to check 
the values of the boundary (e.g., edge, face, or cell) settings that have 
been applied. After the solution is performed, to confirm what types of 
boundary conditions have been applied to the geometry boundaries, the 
function given in Equation (105) is used. In this equation, the boundary 
condition (bc) is a vector whose length equals the number of boundary 
condition queries made. The Edge and Face options are applied to 2D and 
3D models, respectively. i, j, and k are the Face or Edge IDs. 

To confirm the initial conditions and their settings for specified geometry 
elements (Edge for the 2D and Face for the 3D models), the function given 
in Equation (106) is used. In this equation, the initial condition (ic) is a 
vector whose length equals the numbers of initial condition queries made. 
Vertex, Edge, and Face are employed for the 2D and 3D models, and Cell is 
used for the 3D models. i, j, and k are the Face or Edge IDs.
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( . ,' ',[ , , ]);findThermalBC thermalModelT BoundaryConditions Edge i j kbc=
 (105)

 ( . ,' ',[ , ])ic findThermalIC thermalModelT InitialConditions Face i j=  (106)

5.4  Summary of the Steps to Create a Thermal Model in 
MATLAB

 (1) Create a PDE model object.

 (2) Specify if the problem is transient or steady-state.

 (3) Create or import the model’s geometry.

 (4) Define mesh parameters and mesh the model. 

 (5) Specify the material thermophysical properties for each domain. This 
includes thermal conductivity, heat capacity, and density. These prop-
erties can be space- or temperature-dependent.

 (6) Define the internal heat generation terms for each domain, as appli-
cable.

 (7) Define the boundary conditions for edges or faces, as applicable:
 (a)  For the convection boundary conditions, the ambient temperature 

and convection heat transfer coefficient are specified.
 (b)  For the radiation boundary conditions, the ambient temperature, 

emissivity, and Stefan-Boltzmann constant are specified.

 (8) Define the initial conditions (for transient problems).

 (9) Solve the problem.

 (10) Postprocess the solution results by presenting them (or derived quanti-
ties) using plots, such as scatter diagrams, histograms, bar charts, and 
contour plots.

 (11) Save the results as plots (figures), the Workspace data for further post-
processing, or images that can be embedded into a report.





C H A P T E R6
The MATLAB heAT TrAnsfer 
PrOBLeM CAse sTUdies

6.1  Case Study 1—Axisymmetric Pipe: Single-Domain,  
Steady-State Thermal Model

6.1.1 Setup
This case study applies the PDE modeling approach presented in 

Section 5.3 to predict the steady-state temperature distribution for a copper 
pipe (Figure 6.1). The geometry dimensions represent a pipe with one-inch 
nominal diameter—a type of pipe used in plumbing applications. The case 
considered is that of hot water at a constant temperature of 80 °C flowing 
through the pipe. The environment surrounding the pipe is at 25 °C. The 
parameter of primary interest in this study is the rate of heat loss from this 
pipe to the environment, expressed in terms of power per unit length of 
the pipe. This would allow one to estimate the cumulative heat loss for any 
length of hot water piping.

FIGURE 6.1. Axisymmetric copper pipe geometry (dimensions in mm).



158 • PraCtiCal Heat transfer

Since the model’s geometry has axial symmetry (a cylinder) and the 
model’s boundary conditions are similarly symmetrical, it can be accurately 
represented by a 2D axisymmetric model (Figure 6.2). This model geometry 
forms a rectangle. In the figure, the pipe’s axis of symmetry is aligned with 
the z-coordinate and is located at r = 0. The upper (E2) and lower (E4) 
edges correspond to the pipe’s ends; these edges are insulated (q = 0). 
The left edge (E1) is the pipe’s interior surface. A constant temperature  
(80  °C) boundary condition is applied to this edge; it represents a case 
of fast-flowing hot water. The right edge (E3) is the exterior surface; a 
convective heat flux (hc = 10W/m2K) is applied to this edge. The thermal 
model data are presented in Table 6.1. Copper (Cu), medium- or high-
density cross-linked polyethylene (PEX), and fiberglass (FG) are used in 
subsequent studies, as well as the temperature settings.

TABLE 6.1. Thermal model parameters for axisymmetric pipe models [55,56].

Thermal Model Type Grid Size (mm) Thickness (mm)

Cu
Axisymmetric-
Steady-State

0.17 1.65

PEX 0.32 3.18

FG 1.44 14.35

Pipe 
(25.4 mm Nominal 

Diameter)

Internal  
Diameter (mm)

External  
Diameter (mm) Length (mm)

Cu 25.27 28.57 10

PEX 22.22 28.57 10

FG 28.57 53.97 10

Thermophysical  
Properties

Thermal  
Conductivity  

(W/mK)

Density  
(kg/m3)

Heat Capacity  
(J/kgK)

Cu 400 8,960 385

PEX 0.41 935 2,100

FG 0.04 150 700

Initial  
Temperature (°C)

Ambient  
Temperature  

(°C)

Water  
Temperature  

(°C)

Heat  
Generation  

(W/m3)

25 25 80 0
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FIGURE 6.2. Axisymmetric pipe geometry showing the edge and face IDs.

The pipe’s steady-state thermal model, named thermalModelS, is created by 
the function in Equation (107). This name will be referenced by subsequent 
functions that define the model’s parameters.

 thermalModelS = createpde(‘thermal’, steadystate – axisymmetric’)  (107)

When specifying the boundary conditions, it is a good practice to activate 
the display of the geometry labels (Edge, Face, Node, Element, and Cell) on 
the plot produced with the pdegplot function (as was done in Figure 6.2). 
This facilitates assigning the boundary conditions. The Vertex (2D and 3D), 
Edge (2D and 3D), Face (2D and 3D), and Cell (3D) IDs are particularly 
important to assign the heat generation, as well as the initial and boundary 
conditions (physics), to the applicable regions. Edge IDs are usually created 
in the order by which the points are introduced into the model; for example, 
in the geometry presented in Figure 6.2, the bottom-left node (intersection of 
Edges E1 and E4) is first created followed by the top-left node, in a clockwise 
order. The edge numbers can be seen to also follow the same order, increasing 
clockwise starting from the interior edge (E1). 

Material properties are defined for each region by the function in 
Equation (108) and Figure 6.3. Variables identified by k1, rho1, and cp1 are 
the thermal conductivity, density, and heat capacity at constant pressure, 
respectively; the last two properties are only applicable to transient 
models. For the steady-state analysis presented here, the heat capacity and 
density are not needed. For the region (F1) presented in Figure 6.2, the 
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function shown in Equation (109) defines the material properties (Figure 
6.4). Material property assignments can be confirmed by entering on the 
command line the name of the container (tp1) to which the above function 
output was assigned.

1 ,' ',
1,'... ', 1,' ', 1,' ',1

(
);

tp thermalProperties thermalModelS ThermalConductivity

k SpecificHeatMassDensity rho cp Face

=
 (108)

FIGURE 6.3. Material properties assignment for a transient model.

 1 ,' ',
1,' ',1

(
);

tp thermalProperties thermalModelS ThermalConductivity

k Face

=  (109)

FIGURE 6.4. Material properties assignment for a steady-state model.

While there is no internal heat generation in this model, if present, it 
could be applied to the interior Face 1 (F1) using the function in Equation 
(110). In this function input, q1 represents the internal heat generation 
value, which is set to zero here (q1 = 0). Heat source assignments can be 
confirmed by entering thermalModelS.HeatSources on the command line; 
alternatively, one can enter the name of container (q_internal) to which the 
output of the above function was assigned (Figure 6.5).
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 ( )_ , 1,' ',1q internal internalHeatSource thermalModelS q Face=  (110)

FIGURE 6.5. Heat source assignments.

To generate the mesh, the function in Equation (111) is executed; it uses 
the simplified form of the generateMesh function shown in Equation (85). 
The main additional specifications given by the extra parameters in the 
function shown in Equation (85) are the element edge size limits. The 
GeometricOrder remains at the default setting (quadratic) and Hgrad 
(growth rate) at the default value of 1.5. The mesh properties can be 
retrieved by entering thermalModelS.Mesh on the command line (Figure 
6.8). Triangular elements are employed for this 2D model (Figure 6.6). 
One can zoom in on the mesh to identify the associated elements and nodes 
(Figure 6.7). 

 1  ( ,' max', _ )mesh generateMesh thermalModelS H grid size=   (111)

FIGURE 6.6. Triangular mesh for axisymmetric pipe mesh.
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 (a) (b)

FIGURE 6.7. Triangular elements for the 2D pipe: (a) Node IDs on, (b) Element IDs on.

FIGURE 6.8. Mesh statistics.

The functions listed in the following equations define the model’s boundary 
conditions and initiate the solution. A constant temperature T_water = 80 °C  
is applied to the interior edge (E1) in Equation (112). The pipe ends (Edges 
E2 and E4) are insulated. However, to set up the problem in the most 
general way and show the capability of non-constant and non-zero heat flux 
setting, the heat flux here is defined as a function top_BC_HF, which can 
be, if required, defined to be dependent on time and position, as shown 
in Equation (113). However, in this case, a zero heat flux is set by qs = 0.  
Heat flux on the top and bottom boundaries is set by the function in 
Equation (114). 



tHe MatlaB Heat transfer ProBleM Case studies • 163

The external pipe surface (Edge 3, E3) is exposed to convection heat 
transfer. As was the case for the heat flux on the pipe ends, it is defined here 
in the most general way using the function outerCC_V, Equation (115), 
that would allow it to be defined dependent on position and time. Again, 
in this case, it is set to a constant value hc = 10 W/m2K. The convective 
boundary condition is then applied by the function in Equation (116), 
where T_ambient = 25 °C. Steady-state thermal results are obtained by 
calling the solve function (results), as shown in Equation (117).

 ( ,' ',1,' ', _ )Tw thermalBC thermalModelS Edge Temperature T water=  (112)
 _ _ @( ,~)top BC HF region qs=  (113)

 _ ( ,' ',[2 4],
' ', _ _ )

heat flux thermalBC thermalModelS Edge

HeatFlux top BC HF

=  (114)

 _ @( ,~)outerCC V region hc=  (115)

 
_ ( ,' ',3,...

' ', _ ,' ',
_ )

conv heat thermalBC thermalModelS Edge

ConvectionCoefficient outerCC V AmbientTemperature

T ambient

=

  (116)

  resultS solve thermalModelS=  (117)

6.1.2 Results for Copper Pipe
Temperature distribution obtained by the solution is displayed as a 

function of the r- and z-coordinates using contour plots in Figure 6.9. It 
shows an extremely small temperature difference between the interior 

FIGURE 6.9. Axisymmetric pipe temperature contours.
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surface at 80 °C and the exterior at 79.998 °C. This is due to the very high 
conductivity of copper. A plot of the temperature gradient in Figure 6.10  
shows that the gradient is negative and decreases in magnitude from 
1.55 °C/m at the interior surface to 1.38 °C/m at the exterior surface. As 
expected, there is no variation in the gradient along the z-coordinate. A 
negative gradient means that the heat is flowing from the interior to the 
exterior of the pipe.

FIGURE 6.10. Axisymmetric pipe temperature gradient contours.

The following plots extract the temperature, gradient, and heat flux data for 
specific nodes of the model. These nodes are selected within the script by 
specifying the desired range of coordinates and the required data is plotted. 
The plots are shown, first, of the spatial location of the selected nodes, and 
second for the values of interest at these nodes.

Figure 6.11a shows the location of nodes selected along the midplane 
of the pipe, along the radial direction. The temperature profile for the same 
midplane nodes is presented in Figure 6.11b. It confirms that there is only a 
very small decrease in temperature along the radial direction. The midplane 
radial temperature gradient and radial heat flux profiles are presented in 
Figure 6.12. 

From the pipe’s geometry, we can calculate that the pipe’s external 
surface area is 898 mm2. The heat flux at the pipe’s exterior surface is  
550 W/m2 (Figure 6.12). Therefore, the heat flux per unit length of the pipe 

is equal to 49.36 W/m 
 

 49.36 . 
Pipe area

Heat flux Pipe length
 

= 
 

×
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 (a)  (b)

FIGURE 6.11. Axisymmetric copper pipe (midplane): (a) Nodes, (b) Radial temperature profile.

 

 (a) (b)

FIGURE 6.12. Axisymmetric copper pipe midplane radial profiles: (a) Temperature gradient, (b) Heat flux.

The solution statistics (e.g., the number of iterations, residual error, step 
size, and solver method, Jacobian option) are displayed by activating the 
ReportStatistics feature within the SolverOptions (Figure 6.13). The 
steady-state model configuration can be displayed for reference at any time 
by entering the model object name (e.g., thermalModelS) on the command 
line. The output includes data inputted into the model such as the analysis 
type, geometry, material properties, boundary and initial conditions, 
internal heat sources, mesh, and solver options (Figure 6.14).

FIGURE 6.13. Solution statistics.
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FIGURE 6.14. Thermal model configurations.

6.1.3 Results Comparison for Copper and PEX Pipes
The analysis performed for the pipe made of copper, which is a highly 

conductive material, is repeated for a less thermally conductive material 
(PEX). The geometry of the PEX pipe is based on a nominally one-inch 
nominal diameter pipe used in plumbing applications. Its wall thickness is 
greater than that of the copper pipe (3.175 mm versus the 1.651 mm).

The following figures show comparisons between the solution results for 
the copper and PEX pipes. First, the temperature variation along the radial 
direction at the midplane is much greater for the PEX pipe, as expected, 
due to its much lower conductivity. For the PEX pipe, the temperature 
varies from 80 °C at the inside surface to 76 °C at the exterior (Figure 6.15a) 
compared with the nearly constant 80 °C for copper.

The greater variation in the radial temperature profile for the PEX pipe 
also results in a much higher temperature gradient; this value ranges from 
–1,426 to –1,109 °C/m for PEX, which is nearly 1,000 times higher than 
that for copper (Figure 6.15b). The gradient magnitude decreases along 
the radial direction. The heat flux decreases from 655 W/m2 at the interior 
surface to 510 W/m2 at the exterior for the PEX pipe (Figure 6.16). Note 
that while the quantity of the heat escaping from the pipe is the same, the 
heat flux, which is the heat per unit surface area, decreases as the surface 
area of the cylindrical pipe increases with radius. The heat flux at the PEX 
pipe’s exterior surface is 510 W/m2 compared to 550 W/m2 for the copper 
pipe. The heat loss per unit length of the PEX pipe can be thus calculated 
to equal about 45.8 W/m compared to 49.4 W/m for copper (note that the 
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PEX pipe’s surface area is about 898 mm2). The result is interesting, as it 
points out that though the PEX is much less conductive than copper, the 
effect on the heat loss is a reduction of only about 7%. This can be explained 
by considering that the heat loss is due to convection at the exterior surface, 
and that is a function of the difference between the surface temperature 
and the environment. This difference is 55  °C for copper and 51  °C for 
PEX, and consequently, the heat loss difference is of a similar magnitude.

  

 (a) (b)

FIGURE 6.15. Axisymmetric pipe midplane results radial profiles comparisons:  
(a) Temperature, (b) Temperature gradient.

 

FIGURE 6.16. Axisymmetric pipe midplane rdaial heat flux comparison.
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6.2  Case Study 2—Axisymmetric Pipe: Multi-Domain,  
Steady-State Thermal Model

6.2.1 Setup
This case study models a nominally one-inch nominal diameter copper 

pipe covered by half-inch (12.7 mm) layer of the fiber glass (FG) insulation. 
The objective is to investigate the effect of the insulating material on the 
exterior temperature and on the heat loss per unit length of the pipe. As in 
the previous case study, water at 80 °C is flowing through the pipe and the 
environment is at 25 °C. The pipe is transferring heat to the environment by 
convection. Since the insulated pipe geometry and the boundary conditions 
are axisymmetric, the pipe can be modeled using a 2D axisymmetric model. 
However, in this case study, there are two different materials (copper and 
fiberglass), and therefore it requires a multi-domain model. The length of 
the modeled pipe is 10 mm (Figure 6.17). The external diameter of the 
pipe, including the insulating layer, is 54 mm. The geometry dimensions 
and the material thermophysical properties are listed in Table 6.1.

FIGURE 6.17. Axisymmetric insulated pipe geometry with quarter section  
removed to show the interior structure.

As in the previous, single-domain case study, the model object is first 
created and then the material properties, as well as the boundary and 
initial conditions, are applied. The main difference between multi-domain 
modeling and single-domain modeling is the need to define distinct 
material properties for each domain. For a 2D model, thermophysical 
properties are associated with surfaces, each one representing a specific 
domain. Each surface is identified by the Face feature and its identity (ID). 
For comparison, for a 3D model, thermophysical properties are assigned 
to volumes associated with the corresponding domains. Each volume is 
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identified by the Cell feature and its ID. The initial and boundary conditions 
are applied to the Vertex, Edge, and Face for the 2D and 3D models and 
Cell for the 3D models. The heat generation terms are applied to the Face 
for the 2D geometries and Cell for the 3D cases. 

Edge and Face IDs along with the boundary conditions are presented 
in Figure 6.18. The edge and face ID’s display is activated in this figure 
by turning on the FaceLabels and EdgeLabels options in the pdegplot 
function. Edge 3 (E3) is at the interface of the two domains (Face 1 and 
Face 2); no boundary conditions are assigned to this interface. The upper 
and lower boundaries, corresponding to the two ends of the pipe/insulation, 
are insulated (q4 = q5 = q6 = q7 = 0). The internal edge (Edge 1, E1) 
is exposed to hot water at 80  °C, and therefore, a constant temperature 
boundary condition is applied. The external edge (Edge 2, E2) is exposed to 
the ambient at constant temperature (25 °C) and convection heat transfer 
is applied, with the convection heat transfer coefficient set to 10 W/m2K.

FIGURE 6.18. Axisymmetric 2D geometry of the insulated pipe, including the edge and face IDs.

As the model used in this study is the same axisymmetric steady-state 
thermal model type as the one in the Case Study 1, the same function is 
used to create it as the one shown in Equation (107). Similarly, for the 
material properties, the function shown in Equation (109) can be used to 
define the copper domain properties for Face 1; the same function, but with 
the insulating material (FG) properties, needs to be applied for Face 2. The 
mesh is generated, as for Case Study 1, with the function in Equation (111). 

Geometry meshed using 2D triangular elements is presented in  
Figure 6.19. There were 636 quadratic elements and 1,341 nodes generated 
(Figure 6.20). Note that when performing a multidomain analysis using the 
MATLAB PDE Toolbox, the domains cannot have different grid sizes. 
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FIGURE 6.19. Triangular mesh for the 2D axisymmetric model of the insulated pipe.

FIGURE 6.20. Mesh statistics for the 2D axisymmetric model of the insulated pipe.

6.2.2 Results
The solution results are presented in Figure 6.21 as temperature contour 

plots. They are obtained by plotting the temperature data T(:, end) versus 
the x- and y-coordinates (XYData). In addition, the heat flow data [qx, qy], 
where [qx, qy] = evaluateHeatFlux(results), is displayed on the same plot by 
arrows along the left boundary. It shows that the heat is flowing left-to-right 
in the radial direction. The temperature gradient contours are presented in 
Figure 6.22. To generate this plot, the data Tx(:,end) are plotted versus the 
xy-plane.

Figure 6.23a shows the selected nodes at the pipe’s midplane for which 
the temperature profile versus the radial distance is plotted in Figure 6.23b. 
The temperature is seen to be a nearly constant 80 °C through the copper 
pipe wall. The temperature decreases steeply through the insulation, going 
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down to about 35 °C at the exterior. These results show the effect of the very 
large difference in the thermal conductivity between copper and fiberglass: 
copper is about 10,000 times more conductive.

FIGURE 6.21. Axisymmetric insulated copper pipe: temperature contours.

FIGURE 6.22. Axisymmetric insulated copper pipe: temperature gradient contours.

 

 (a) (b)
FIGURE 6.23. Axisymmetric pipe with insulation (midplane): (a) Nodes, (b) Radial temperature profile.
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For the same midplane nodes, Figure 6.24a displays the temperature 
gradient and Figure 6.24b shows the heat flux along the radial direction. 
The temperature gradient is nearly zero within copper, corresponding 
to a nearly constant temperature distribution within the pipe’s wall. The 
gradient drops quickly to a negative value, indicating a steep decline in 
the temperature within the insulation. The gradient gradually decreases in 
magnitude, corresponding to a less steep temperature profile slope towards 
the outer boundary. 

Correspondingly, the heat flux within the insulation starts at about 
193 W/m2 and decreases to about 104 W/m2 at the exterior surface. This 
decrease relates to the increasing cylindrical surface area as the radial 
distance increases. Using the heat flux at the exterior surface reported 
above, the pipe exterior surface area (1,695 mm2), and length (10 mm), one 
can calculate the heat loss per unit length of the pipe is equal to 17.64 W/m.

 
  (a) (b)

FIGURE 6.24. Axisymmetric pipe with the insulation midplane radial profiles:  
(a) Temperature gradient, (b) Heat flux.

6.2.3 Validation by an Analytical Model
To validate the results presented in Figure 6.23, the heat diffusion 

Equation (45), presented in Section 2.4, can be employed. This equation 
can be simplified to Equation (118), if there are no angular or axial 
temperature variations. There is also no heat generated inside the cylinder 
and the process is steady-state. In this relation, k is the thermal conductivity 
of the insulation and only the radial temperature variation is present. The 
analytical solution to such a problem is presented by Equation (119). To 
obtain the C1 and C2 constants, the pipe interior and exterior surface 
temperatures can be employed. In this case, the water temperature  
(80 °C) is assumed to be applicable for the pipe insulation interior surface 
temperature since the copper thermal conductivity is very large. 
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The pipe insulation exterior surface temperature should be calculated. This 
can be achieved by assuming a constant heat flow from the interior to the 
exterior surface of the FG insulation. The FG insulation exterior surface is 
transferring heat to the ambient by means of convection (hc = 10 W/m2K).  
The thermal resistor analogy, where the heat flow is considered the 
equivalent to the electric current, can be adopted in this case. The total 
thermal resistance of a hollow cylinder (Rtotal) is given by Equation (120). The 
internal and external radii of the hollow cylinder are r1 and r2, respectively. 
Since the radial heat flow remains constant—Equation (121)—it is possible 
to present the heat flow relation by Equation (122). By rearranging this 
equation, T2, which is the temperature at the pipe insulation’s exterior, is 
obtained. Note that k is the thermal conductivity of the FG, L is pipe length, 
T

¥
 is ambient temperature (25 °C), and T1 is pipe insulation’s interior 

surface temperature (80 °C). After carrying out the derivation, Equation 
(124) gives the radial temperature profile (T).
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Figure 6.25 compares the plot of the radial temperature variation derived 
via the analytical solution with the numerical results obtained via the PDE 
solution. The analytical solution plot exactly overlaps the numerical (PDE) 
results, thus validating the PDE solution. 
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FIGURE 6.25. Radial temperature profiles for analytical and PDE  
solutions for the axisymmetric pipe with insulation.

6.2.4 Heat Loss Comparison
In this section, the results of Case Studies 1 and 2 are compared. These 

results show how the temperatures and heat loss depend on the pipe’s 
material (Cu versus PEX) and on the addition of insulation. Figure 6.26a 
shows the radial temperature profiles. The temperatures in the copper 
pipe wall are nearly identical (overlaid) for the bare and insulated cases; 
the temperature at the exterior of the PEX pipe is only about 4 °C lower 
that of the interior. As expected, insulation is shown to produce much 
more significant effect, decreasing the exterior temperature to about 35 °C. 
The heat flux along the radial direction for the three cases is compared in  
Figure 6.26b. The exterior surface heat flux decreases from 550 W/m2 for 
copper, to 510 W/m2 for PEX, and down to 104 W/m2 for the FG-insulated 
copper pipe.

The heat flux at the exterior surface can be used to calculate the total heat 
loss for the modeled surface area; this is then divided by the modeled pipe 
length (10 mm) to obtain the heat loss per unit pipe length. It is instructive, 
then, to see how this specific heat loss translates into an approximation of 
a real-world case, where a pipe of; for example, 25-m is used to transport 
the hot water. Multiplying the specific heat loss by the pipe length gives 
the total heat loss rate in Watts for the 25-m pipe segment. Figure 6.27a 
shows the heat rate per unit length of the pipe calculated for the three 
cases. The results vary from a maximum of 49.4 W for uninsulated copper 
pipe to minimum of 16.6 W for the insulated one, giving about a three-fold 
reduction in heat loss. 
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The above information can be further used to estimate the annual 
cost of the lost heat, assuming the water is heated by a gas water heater 
(efficiency 100%). The following additional information is used: 37 MJ/m3 
is obtained by burning of the natural gas; natural gas cost is 13.3 ¢/m3 (the 
Canadian dollar value was taken from a gas bill in Ontario, Canada, on July 1,  
2021). The calculation results show the annual heat loss cost (in Canadian 
dollars) decreasing from about $140 to $47, for savings of about $93 per 
year. These results indicate why it may be worthwhile to add hot water pipe 
insulation.

 

  (a) (b)

FIGURE 6.26. Axisymmetric pipe model comparison radial profiles  
comparisons (midplane): (a) Temperature, (b) Heat flux.

  

  (a) (b)

FIGURE 6.27. Axisymmetric pipe model savings comparison:  
(a) Heat loss per unit length of the pipe, (b) Annual cost.
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6.3  Case Study 3—Axisymmetric Pipe: Multi-Domain, 
Transient Thermal Model

6.3.1 Setup
In this case study, a transient model is investigated. The model consists 

of a copper pipe with aluminum radial fins. Figure 6.28 shows the 3-D 
model of the finned pipe to clarify the model’s structure. Each radial fin 
is 1-mm thick and 19-mm deep, with a 66.5-mm external diameter. The 
thermal model data are presented in Table 6.2. Similar to the previous case 
studies, water at a constant temperature of 80 °C flows through the pipe. 
The exposed surfaces of the pipe and fins transfer heat to the environment 
by means of convection. The ambient temperature is 25 °C and convection 
heat transfer coefficient is 10 W/m2K. The two surfaces at the pipe’s 
ends are insulated (q = 0). Figure 6.29 presents the boundary conditions 
applied to the geometry of the axisymmetrical pipe (Figure 6.29a) and the 
geometry, including the face and edge labels (Figure 6.29b). A triangular 
mesh is shown in Figure 6.30.

TABLE 6.2. Thermal model setup [57,58].

Thermal Model Type Grid Size (mm) Thickness (mm)

Cu Axisymmetric- 
Transient

0.25 1.65

Al 0.25 19.0

Pipe 
(25.4 mm Nominal 

Diameter)

Internal  
Diameter

(mm)

External  
Diameter

(mm)

Length
(mm)

Cu 25.3 28.6 25

Al 28.6 66.5 25

Thermophysical
Properties

Thermal Conduc-
tivity (W/mK)

Density
(kg/m3)

Heat Capacity
(J/kgK)

Cu 400 8,960 385

Al 238 2,700 900

Initial  
Temperature

(°C)

Ambient  
Temperature

(°C)

Water  
Temperature

(°C)

Heat Generation
(W/m3)

25 25 80 0
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FIGURE 6.28. Axisymmetric pipe with radial fins, with a quarter  
section removed to show the interior structure.

  (a)

 (b)

FIGURE 6.29. Axisymmetric pipe with radial fins: (a) Geometry, (b) Edge and face identities.



178 • PraCtiCal Heat transfer

FIGURE 6.30. Triangular mesh for an axisymmetric pipe with radial fins.

The transient thermal model named thermalModelT is created by the 
function in Equation (125). Thermal properties are defined separately 
for copper (Face 1, F1) and aluminum (Face 2, F2) domains—Equations 
(126) and (127). There is no internal heat generation in this model. As a 
placeholder, a heat generation of q2 = 0 W/m3 is set by the function in 
Equation (128).

 ( ,' ')'thermalModelT createpde thermal transient=   (125)

 
1 ,' ',...

1,' ', 1,' ', 1,' '
(

),1 ;
tp thermalProperties thermalModelT ThermalConductivity

k MassDensity rho SpecificHeat cp Face

=
  (126)

 
2 ,' ',...

2,' ', 2,' ', 2,' ',[2 :12]
(

;)
tp thermalProperties thermalModelT ThermalConductivity

k MassDensity rho SpecificHeat cp Face

=
 (127)

 int _ int ( , 2,' ',2);ernal heat ernalHeatSource thermalModelT q Face=  (128)

The exterior of the copper pipe and all the exterior fin surfaces are assigned 
boundary conditions of convection heat transfer with hc = 10 W/m2k and  
T_ambient = 25 °C. This is done in the most general way by creating a 
function outerCC_V by using Equation (129) and making it return a 
constant value of hc independent of position and time. The BC assignment 
is made with the function in Equation (130).

  _ @ ,~outerCC V region hc=  (129)

_ ( ,' ',[1 : 57],...
' ', _ ,' ', _ )

conv heat thermalBC thermalModelT Edge

ConvectionCoefficient outerCC V AmbientTemperature T ambient

=
 (130)
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The two edges corresponding to the ends of the pipe (E45 and E22) 
are insulated; they are exposed to zero heat flux. Also insulated are the 
adjacent fin edges on both ends (E46 and E23) to represent the modeled 
pipe segment being stacked indefinitely. This is implemented in a general 
way by defining a function top_BC_HF in Equation (131) and making it 
return a constant value of qs = 0 W/m2. These BCs are assigned by the 
function in Equation (132). 

The interior edge (E1) is assigned a BC of constant temperature of 
T_water = 80 °C to represent the hot water flowing in the pipe interior, as 
defined by the function in Equation (133). An initial temperature (T_01) 
of 25  °C is assigned to the entire domain. The first assignment is made by 
the function in Equation (134) and the second assignment by the function 
in Equation (135).

For a transient thermal analysis, it is necessary to select the solution 
time step, which determines the solution output time interval. The model 
thermal response is monitored for the period of 6 min. Given the selected 
time step (time_step) of 0.25 s, this results in 1,440 saved solution steps  
(tlist = tinitial : time_step: tfinal). The solution is executed by the function 
in Equation (136). tinitial and tfinal are the initial (0.1 s) and final times 
(360 s), respectively.

 _ _ @( ,~)top BC HF region qs=   (131)

 
_ ( ,' ',[22 23 45 46],'

                                            ', _ _ )
heat flux thermalBC thermalModelT Edge

HeatFlux top BC HF

=
 (132)

 ( ,' ',1,' ', _ )Tw thermalBC thermalModelT Edge Temperature T water=  (133)

 _ 1 ( , _ 01,' ',1)T i thermalIC thermalModelT T Face=   (134)

 _ 2 ( , _ 01,' ',2)T i thermalIC thermalModelT T Face=  (135)

  ,resultT solve thermalModelT tlist=  (136)

Solution statistics (e.g., number of successful steps, failed attempts, and 
function evaluations) are displayed when the ReportStatistics option is 
turned on under the SolverOptions, as shown in Figure 6.31.
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FIGURE 6.31. Thermal model solution statistics.

6.3.2 Results
The temperature contours for the domains are presented along the z- 

and r-coordinates using the contour plots (Figure 6.32) and Equation (137). 
The temperature variation is represented by the hot colormap setting. 
Since T is the transient temperature data, it is a function of the z- and 
r-coordinates (XYData) and time (t). The number of levels of contour plots 
can be specified by the above function (e.g., 10 in this case). Also note that 
the thermal data for the last time step (6 min) are selected for display.

 ( ,' ', (:, ),
' ',' ',' ',' ',' ',10);
pdeplot thermalModelT XYData T end

colormap hot Contour on Levels
 (137)

For the total time (6 min) and time step (0.25 s), 1,440 steps are required 
for the solution to be completed. This is confirmed when the length of the 
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time vector is called (length(t) = 1440). Note that the total time is formed 
into grids (vector) based on the selected time step, and therefore the data 
at the selected time grids become available when being enquired. The rest 
of the data are interpolated when the node evaluation queries are made.

 (a)

 (b)

FIGURE 6.32. Axisymmetric pipe with radial fins: (a) Temperature contours and heat flux vector fields,  
(b) Temperature gradient contours.

The author recommends treating the steps of the PDE solutions as vector 
variables and assigning variable names to them. This approach can be even 
applied to the plots, facilitating calling the results, making it possible to 
define their properties (e.g., line style) in groups and treat them as variables.
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To confirm the type of the boundary conditions applied to the Edges 1 
(E1), and 2 (E2), the function in Equation (138) can be used. This function 
returns a vector bc of length 2, which is equal to the number of boundary 
condition queries made: ‘Edge’[1, 2]. The Edge feature is used since the 
problem is a 2D model (Figure 6.33). If there are more than one boundary 
following the same condition (e.g., Edge 4, 5, and 7 in addition to Edge 6 in 
Figure 6.33), all the related edges are shown at the time of enquiry. Note 
that the ambient temperature 25 °C is returned for Edge 2.

( . ,' ',[1,2])findThermalBC thermalModelT BoundaryConditions Edgebc=  (138)

FIGURE 6.33. Query to determine the boundary conditions on Edges 1 and 2 (E1 and E2).
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To confirm the initial conditions applied to Face 1 (F1), and Face 2 (F2), 
the function in Equation (139) is employed. This function returns vector 
ic of length 2, which is equal to the number of the initial condition queries 
made:‘Face’[1, 2]. The Face feature is used since the problem is a 2D model 
(Figure 6.34). For a 3D model, to enquire about the initial conditions, a 
Cell feature would be referenced instead.

   ( . ,' ',[1,2])ic findThermalIC thermalModelT InitialConditions Face=  (139)

FIGURE 6.34. Query to determine the initial conditions on Faces 1 and 2 (F1 and F2).

Being able to query the nodes at specific coordinates when analyzing the 
PDE results is very useful. To demonstrate the approach required, some 
examples are presented here. To find the point indices associated with the 
coordinates, the function sequence in Equation (140) is employed. In these 
functions, the thermal model mesh node coordinates are first identified 
(point), which creates a (2 ´ n) data array. The array has two columns 
identifying the 2D coordinate data, the first column being the r-coordinate 
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and the second column being the z-coordinate (r00, z00). Therefore, to 
obtain the r- and z-coordinates, the data for each column can be called 
and set into a separate data vector—(r00, z00). The r00 array is sorted and 
assigned to radius_sorted array. This facilitates the creation of connected 
data points on plots. If the points are not sorted, the connecting lines will 
interconnect with the points scattered through the plot area. 

The function sequence in Equation (141) first selects the radial nodes 
at the top surface (among all nodes) (nodesTop_1_h), as shown in Figure 
6.35a. Note that the insulated boundary conditions were applied to these 
nodes, where z = length_P and length_P is the pipe length (z-coordinate). 
The array has two columns, identifying the r- and z-coordinate data (x1, y1). 

The function sequence in Equation (142) is used to query the midplane 
data (z = 0.5*length_P). Note that the data have a margin length (eps is a 
very small value approaching zero, eps = 2.2204e–16), which accounts for 
the small variations from the exact coordinate values; 0.5*length_P-eps < = 
z00 < = 0.5*length_P + eps, as shown in Figure 6.35a. 

Similar to the previous cases in which the y-data were queried for a 
given x-value (the horizontal query points in Figure 6.35a), it is possible for 
the x-data to be queried for certain y-values (the vertical query points in 
Figure 6.35b) and Equations (143). In these sets of relations, the (x3, y3) 
coordinate represent the midplane nodes at the interior, pipe-fin interface, 
and exterior surfaces. Note that radius_O, radius_P, and radius_E are the 
pipe interior, pipe-fin interface, and fin exterior radii, respectively. grid_
size is the grid size that is uniformly selected for this analysis (0.25-mm). 

 

int   . .
  ( int)

00 int;  00  00(1,:);  00  00(2,:)
_   ( 00);  

_   ( _ );
_   00( _ );
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nodesIndex find po

xy po r xy z xy
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=

=

= = =

=

=

=

 (140)

 _ _   ( ( _  -  0.5 _   00,...
00  _   0.5 _ ))

1 int(:, _ _ );  1 1(1,:);  1 1(2,:)

nodesTop l h find and length P grid size z

z length P grid size

xy po nodesTop l h x xy y xy

= * =

=  *

= = =
 (141)
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 _   ( (0.5 _  -  0.5 _   00,...
00  0.5 _   0.5 _ ))

2 int(:, _ );  2 2(1,:);  2 2(2,:)

nodesCenter h find and length P grid size z

z length P grid size

xy po nodesCenter h x xy y xy

= * * =

= *  *

= = =

 (142)
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=
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Horizontal and vertical query points along the x- and y-coordinates are 
presented in Figure 6.35a. Note that the radial (horizontal) query nodes 
(x1, y1) are located at the top (y1 = 25 mm) and midplane (y1 = 12.5 
mm), as shown in Figure 6.35a. The axial (vertical) query nodes (x3, y3) are 
located at the interior (x3_O = 12.6 mm) interface (x3_P = 14.3 mm), and 
exterior (x3_E = 33.2 m) surfaces of the pipe, pipe-fin, and fin domains. 
Equation (144) presents the function that plots the queried data shown in 
Figure 6.35b. In this relation, the x3_P array is plotted against the y3_P. 
Since there are large number of data points at the interface of the two 
parts, it is possible to plot every other point, which is implemented by the 
MarkerIndices feature.

  
( 3_ , 3_ ,' ',' ker ',3,' ker ',...

[1 1 1],' ker ',1 : 2 : ( 3_ ))

plot x P y P d Mar Size Mar FaceColor

Mar Indices length x P
 (144)
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 (a) (b)

FIGURE 6.35. Query points to determine the nodes: (a) Radial ndoes, (b) Axial nodes.

Figure 6.36 presents the temperature profiles versus the radius (Figure 
6.36a) and length (Figure 6.36b), starting from the pipe’s axisymmetric 
axis (x1 = 0, y1 = 0) to the end of the fin (x1 = 33.2 mm, y1 = 25 mm). 
Note that in these diagrams, x1 represents the r-coordinate. Two plots 
are shown in this diagram, belonging to the upper edge, representing the 
insulated top surface (y1 = 25 mm), and the midplane (y1 = 12.5 mm). 
As expected, the temperature of the top surface is higher than the middle 
because it is insulated. Figure 6.44 presents the temperature gradient  
(Tx1 = dT/dr) and heat flux (–k*Tx1 = –k*dT/dr) for the data points 
presented in Figure 6.35a. It is paramount to identify the regions correctly. 
This is done by enquiring about the associated nodes at given distances 
from the center, as shown in Equation (145). The conductivity for each 
region is then multiplied by the corresponding temperature gradient to 
obtain the heat flux of that region.

 

_ 1_   ( 1  _   0.5 )
_ 1_   ( ( _  -  0.5   1, 1 

                                              _   0.5 ))

copper x P find x radius P eps

aluminum x E find and radius P eps x x

radius E eps

= = 

= =

= 

∗
∗

∗
 (145)

Figure 6.37 represents the temperature gradient (dT/dr in Figure 6.37a) 
and heat flux (-k*A*dT/dr in Figure 6.37b) along the radial direction. At 
the pipe-fluid interface (the pipe’s interior boundary), the temperature 
gradient has the largest value, and it is reduced to zero as it approaches the 
fin’s exterior surface. The temperature gradient on the top surface has a 
smaller magnitude than that at the midplane. The top surface is insulated 
and the midplane transfers heat by convection to the surrounding surfaces. 
Equation (145) is used to identify the pipe and fin regions. This information 
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is then employed to determine which thermal conductivity to use when 
calculating the heat flux. 

 

 (a) (b)

FIGURE 6.37. Radial profiles at the top surface and midplane: (a) Temperature gradient, (b) Heat flux.

The heat rate (-k*A*dT/dr) is presented in Figure 6.38a in Watts at the 
time of 6 min and per the edge length in W/m versus the time in Figure 
6.38b for the selected edges. These edges are either in direct contact with 
the surrounding environment (Edges 11, 12, 52, and 35) or at the pipe-
fin interface (Edge 34). Edge 35 (on the copper pipe exterior surface) 
shows the largest heat loss rate by convection and that is because of the 
high temperature difference between this edge and the surrounding 
environment (Figure 6.39). To calculate the temperature, temperature 
gradient, and heat rate for the selected coordinates as well as the heat rate 
(per unit length of the edge), the functions in Equation (146) are employed. 
The nodes created at the mesh grids, given their spacing (dx = 0.5051 mm, 

 

 (a) (b)

FIGURE 6.36. Temperature profiles at selected planes: (a) Radial temperature, (b) Axial temperature.
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dy = 0.3030 mm), are obtained by calling the consecutive nodes along the 
x- and y-coordinates, (Xw, Yh) [Xw(1, 2), Yh(2, 1)] = [0.2525, 0.1443] mm.

 (a)

 (b)

FIGURE 6.38.  Heat rate: (a) Radial, top surface and midplane,  
(b) Transient, selected edges, per unit length of the edge.

FIGURE 6.39. Edges whose heat rates are calculated.
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  (0, _ ,100);
  (0, _ ,100);

[ , ]  ( , );
_   ( , , ,1 : ( )

[ , ]  ( , , ,1 : ( )

w linspace length P

h linspace radius P

Xw Yh meshgrid w h

T xy interpolateTemperature resultT Xw Yh length t

Tx Ty evaluateTemperatureGradient resultT Xw Yh length t

=

=

=

=

= )
[ , ]  ( , , ,1 : ( ))

  ( ,' ',[11 12])
qx qy evaluateHeatFlux resultT Xw Yh length t

Qn evaluateHeatRate resultT Edge

=

=

 (146)

Further data points can be extracted from any of the horizontal or vertical 
sets of data explained above. For example, to find the midplane points at 
the interior, pipe-fin interface, and exterior surfaces—(x4, y4), Equation 
(147) can be employed, which is a subset of Equations (143) (Figure 6.38a). 
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=  

= =

=

= =

=

= = ;  
4 _ 4 _ (2,:)y E xy E=

 (147)

Midplane query points at the interior (x4_O, y4_O) = (12.6, 12.5) mm 
interface (x4_P, y4_P) = (14.3, 12.5) mm, and exterior surfaces (x4_E, 
y4_E) = (33.2, 12.5) mm are the combination of the two said query points, 
as shown in Figure 6.40a. Temperatures at these query points are plotted 
along the radial direction in Figure 6.40b. Transient temperature profiles 
at the midplane pipe-fin interface and exterior surfaces are presented in 
Figure 6.41.
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 (a) (b)

FIGURE 6.40. Data at the midplane-interior, interface, and exterior surfaces:  
(a) Query points (b) Temperature at the last time step.

FIGURE 6.41. Transient temperature profiles at the midplane pipe-fin interface and exterior surfaces.

The heat flux field vectors at the pipe’s interface and exterior surfaces at the 
last time step are presented in Figure 6.42. Note that, as mentioned earlier, 
the heat flow rate returns a real number or, for time-dependent results, a 
vector of real numbers. This number (or vector) represents the integrated 
heat flow rate and is normal to the boundary. It is positive if the heat flows 
out of the domain and is negative if the heat flows into the domain. Note 
that the arrow direction and length at each data point (x- and y-coordinates) 
represent the associated values for the temperature gradient (Tx = dT/dr 
and Ty = dT/dz) or temperature (T).
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FIGURE 6.42. Heat flux field vectors at the pipe’s interface and exterior surfaces at the last time step.

The model configuration data are shown in Figure 6.43 using the 
ReportStatistics function for the thermalModelT model. Entering this 
model object name (thermalModelT) in the Command Window returns 
the model object type (thermal), analysis type (transient), and information 
about the solver options, heat source, and mesh (Figure 6.44). Appending 
any of the properties presented in Figure 6.44 after the model object name 
(thermalModelT) returns the properties’ related information. For example, 
inputting thermalModelT.Geometry returns the information in Figure 
6.45, which represents the number of faces, edges, and vertices. Inputting 
thermalModelT.SolverOptions returns the information in Figure 6.46, 
which includes the absolute, relative, and residual tolerances, maximum 
iterations, and minimum time steps. Inputting thermalModelT.Mesh 
returns the mesh data, such as the number of nodes, elements maximum and 
minimum element size, gradation, and geometric order (e.g., quadratic), as 
given in Figure 6.47. 

To obtain the node coordinates, execute the size function with 
thermalModelT.Mesh.Nodes as its input. This will return [2 1 1 8 5 3], with 
the latter number equal to the number of nodes. The two indices of the first 
component (1,:) and (2,:) are related to the r- and z-coordinates, respectively. 
To identify the extent of the r- and z-coordinates (the domain boundaries), 
the max and min functions are employed, as shown in Equations (148) and 
(149).
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FIGURE 6.43. Thermal model query to determine model configurations.

FIGURE 6.44. Thermal model properties records.

FIGURE 6.45. Thermal model geometry records.
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FIGURE 6.46. Thermal model solver records.

FIGURE 6.47. Thermal model mesh records.

 
  
  

. . 1,: 0.0126

. . 1,: 0.0332

min thermalModelT Mesh Nodes

max thermalModelT Mesh Nodes

=

=
 (148)

 
  
  

. . 2,: 0

. . 2,: 0.025
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=

=
 (149)
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6.4  Case Study 4—Non-Axisymmetric Pipe: Transient Thermal 
Model with Spatial and Temporal Boundary Conditions

6.4.1 Setup
This case study investigates transient heat transfer in a non-axisymmetric 

pipe. The pipe is made of PEX plastic exposed to a moving heat source, 
such as may be encountered in laser welding. 

This model takes advantage of the MATLAB’s import geometry 
feature. While it is possible to create simple 3D and 2D geometries in the 
MATLAB environment, it is more practical to create complex geometries 
in a dedicated CAD tool and import them into the MATLAB environment.

First, the PDE thermal model (thermalModelT) was created using the 
model-creation function for transient analysis in Equation (125). The 3D 
geometry (geom) was created in SOLIDWORKS CAD software and ex-
ported in *.stl format (Pipe_hollow_shortened.stl). It was then imported 
into MATLAB using the importGeometry function, shown in Equation 
(150). One could also add the path information to the file specification 
when importing (e.g., ../geometrics/Pipe_hollow_shortened.stl). The func-
tion in Equation (151) displays the model geometry after the import. The 
function makes the model semi-transparent (‘FaceAlpha’ = 0.5) and acti-
vates Edge, Face, and Cell labels, EdgeLabels/FaceLabels/CellLabels. Fig-
ure 6.48 shows the resulting model with the Cell ID (labelled C1) and Face 
IDs (labelled 1-26) shown.

( ,' _ _ . ')geom importGeometry thermalModelT Pipe hollow shortened stl=   (150)

( ,' _ _ . ')geom importGeometry thermalModelT Pipe hollow shortened stl=   (151)

Examining the imported geometry displayed in Figure 6.48, one can 
observe that the dimensions shown are in m. However, the modeled pipe 
should have the equivalent dimensions in mm. One could return to the CAD 
tool and try to fix this issue, but there is another approach available within 
MATLAB. It makes it possible for the geometry to be scaled as required. 
The scaling may be carried out independently with respect to each of x-, 
y-, and z-coordinates by employing the function scale(geometry,[x y z]), 
where geometry is the geometry name (geom in this case) and [x y z] is the 
scale vector that defines scaling for each coordinate. For this example, the 
scale factors [x y z] = [1 1 1]/1000 have been selected, decreasing the size 
of the entire geometry along all coordinates by a factor of 1,000, as shown 
in Figure 6.49.
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FIGURE 6.48. 3D pipe geometry after *.stl file import.

FIGURE 6.49. 3D pipe geometry after scaling by [1 1 1]/1,000.
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The pdeplot3D(mesh) function displays the meshed view of the geometry. 
For this analysis, the mesh grid size is set to 1 mm. It may be useful to 
display the 3D geometry from different points of view. To achieve this, 
the view function is used—view(az, el). The inputs to this function are two 
rotation angles in degrees for the line of sight: azimuth (az) and elevation 
(el). The azimuth corresponds to the rotation about the z-axis, with value 
measured from the negative y-axis, and with increasing values leading 
to counterclockwise rotation of the line of sight relative to the axes. The 
second input angle is measured between the horizontal xy-plane and the 
line of sight and ranges from -90 to 90 degrees.

One can also obtain the 2D view of the xy-plane by the view(2) function, 
equivalent to the view(0, 90) function. The default 3D view is obtained by 
the view(3) function, equivalent to the view(-37.5, 30) function. Figure 6.50  
presents the result of the view(0, 0) function, which shows the front view 
of the pipe (2D view of the xz-plane). Figure 6.51 shows the result of the 
view(2) and view(0, 90) functions and the result of the view(3) function.

FIGURE 6.50. 3D mesh, front view (0,0).
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 (a) (b)
FIGURE 6.51. 3D mesh: (a) Top view (0,90), (b) Isometric view (-37.5,30).

The functions that define model configuration, including material properties, 
are listed in Figure 6.52. The material properties are defined using the 
same methodology presented in the previous case studies—Equation (125) 
for the transient models. Equation (128) is employed to assign internal heat 
generation term. The boundary conditions are presented in Figure 6.53.  
The thermal model conditions are set by employing Equations (129) to 
Equation (133) for the boundary conditions and Equation (134) for the 
initial condition. 

For this 3D model, the Face geometry region type is used to assign 
boundary conditions. Heat source (internal heat generation), if present, 
would be applied to Cell for the 3D model. There are a total of 26 faces 
identified in this geometry, with Face 13 and Face 14 being the upper and 

3

% ( )
1 0.41;% ( / )

1 935;% ( / )
1 2100;% ( / )
1 ( , , 1,...

' , 1,

Pipe material properties PEX

k thermalconductivity W mK

rho density kg m

cp heatcapacity J kgK

tp thermalProperties thermalModelT ThermalConductivity k

MassDensity rho S

=

=

=

 =

  , 1, ,1);pecificHeat cp Cell  

FIGURE 6.52. Material properties in the MATLAB script for the non-axisymmetric transient pipe model.
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lower end surfaces of the cylinder, respectively. The exterior surfaces (Face 1  
to Face 12) are exposed to the ambient air (25 °C), and transferring heat 
by convection, having a convection heat transfer coefficient of 10 W/m2K.
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( , ,1 : ,..

 . . ;
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malBC thermalModelT Face Emissivity emis

AmbientTemperature T ambient Vectorized on

Boundary condition heatflux

thermalBC thermalModelT Face HeatFlux q func

  

    

   

  , );

% : (
                                                                )

% ( , ,[12],

Vectorized on

Boundary condition temperature optional not included

in this analysis

thermalBC thermalModelT Face Temperatur

  

-

   ,@ _ );

%
( . , ,[1 : 26]);

e Twater func

Identify boundary conditions

bca findThermalBC thermalModelT BoundaryConditions Face =

FIGURE 6.53 Boundary conditions MATLAB script for the non-axisymmetric transient pipe model.
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The upper and lower end surfaces (Face 13 and Face 14) are exposed to 
zero heat flux. Face 1 to Face 6 are exposed to radiation heat transfer with 
the ambient. Face 1 is additionally exposed to a spatial and temporal heat 
flux (q_func) that models the moving heat source on the exterior surface. 
This term is defined in the form of a function, appended to the end of the 
complete script (Figure 6.54). The function represents a heat source with 
1 W power and dimensions of 4 × 4 mm2 scanning the pipe at 0.5 mm/s. 

 _   _ ( , )
  _   _  _  _  _ max  _

  . ;
_   ;
  . ;
  . ;
  . ;
_   ( _  -  .

function q out q func region state

global Velocity q heat hc T ambient x c spot w y grid size

t state time

z c Velocity t
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=
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=

=

=

=

=

∗

∗ );
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if isnan t
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end
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q

e

w

=

=  



= = =

=

∗ ∗
∗

o

end
FIGURE 6.54. Moving heat source boundary condition  

MATLAB script for the non-axisymmetric transient pipe model.

To work correctly, the function needs to have two inputs: the first is the 
point locations (region) and the second is the times (state). These are PDE 
model objects passed internally to the function. Their names within the 
function are arbitrary. Input time values are extracted by appending time 
to the object name (e.g., state.time); location coordinates are extracted 
by appending the coordinate name (e.g., region.x). All other parameters 
are passed to the function using the global variable definitions. These are 
defined by listing the variable names after the keyword global both at the 
start of the script and the function (Figure 6.55).



200 • PraCtiCal Heat transfer

The time step is 0.02 s and the entire heating process is 100 s. Analysis 
settings are presented in Figure 6.56. Note the use of the tic and toc 
functions to monitor the solution time, which was 5.83 hr for this case study.

%  
 _   _   _    _    _     _   ...

_   _   _ max   _  

Global data

global T low T high t low t high Velocity q heat hc T ambient

x c spot w y grid size

FIGURE 6.55. Global variables in the MATLAB script for the non-axisymmetric transient pipe model.
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=

=

=
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FIGURE 6.56. Solution settings in the MATLAB script for the non-axisymmetric transient pipe model.
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Node distribution is displayed in Figure 6.57 to help with locating of the 
heat source coordinates. Nodes where the moving heat source applies its 
energy are shown in Figure 6.58 at the end of the heating process (100 s).

 

FIGURE 6.57. Projected node density on the z-coordinate.

FIGURE 6.58. Heat source nodes at the end of the heating process (t = 100 s).

6.4.2 Results
Figure 6.59 presents the solution statistics. Figure 6.60 shows tempera-

ture contours at 50 s and 100 s. The contours show a hot spot followed by 
a trail of progressively cooling material, as is typically expected when mod-
eling a moving heat source. Figure 6.61 shows the temperature gradient 
contours with respect to the x- and y-coordinates at the end of the process. 
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Following the x-coordinate gradient as the x value increases shows variation 
from a very high positive value, where the temperature rapidly rises as the 
location approaches the heat source path to the equivalent in magnitude 
negative values as the temperature falls on the other side of the heat source 
path.

FIGURE 6.59. 3D thermal transient model solution statistics for the non-axisymmetric pipe.

 

 (a) (b)
FIGURE 6.60. 3D thermal transient model temperature contours for the  

non-axisymmetric pipe: (a) t = 50 s, (b) t = 100 s.
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 (a) (b)
FIGURE 6.61. 3D thermal transient model temperature gradient contours for the  

non-axisymmetric pipe: (a) dT/dx, (b) dT/dy.

Figure 6.62 shows the transient temperatures within the pipe wall 
(exterior, middle, and interior). The location for which the temperatures 
are plotted is where the beam center is located after scanning 0.02 m  
(z = 0.02 m) of the pipe, which is 40 s after the movement start. The 
transverse (x) coordinate value is x = 0.03. This temperature information is 
useful in determining the appropriate process parameters. The maximum 
temperature of 202 °C on the exterior surface occurs just after the beam 
passes the location for which the temperature is plotted, at the coordinate 
(0.03, 0.06, 0.02) m. The maximum is reached at progressively later times 
at the middle, 71 °C, and the interior of the pipe wall, 52 °C. The delay is 
due to the time it takes for the heat to conduct from the exterior to these 
points. 

FIGURE 6.62. Transient temperature profiles at the exterior, middle,  
and interior surfaces (x = 0.03 m, z = 0.02 m).
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An optional setting has been added to the program, which implements 
an additional transient boundary condition applied to the pipe’s interior 
surface (Face 12). This BC represents fast-flowing water, the temperature 
of which rises over 3 s from 35–80 °C (Figure 6.60).
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    _ ( _ ) _ ;      
   _ ( _ )& ( _ );   
    ( ( _ ))
         ( _ - _ ) / ( _ - _ );
         _  -  _ ;

ut zeros size t

T out t t low T low

T out t t high T high

t indx t t low t t high

if any t indx

aa T high T low t high t low

bb T low aa t low

=

= =

= =

=  

=

= ∗
       _ ( _ )  ( _ )  ;
   

T out t indx aa t t indx bb

end

end

end

= ∗

FIGURE 6.63. Changing temperature boundary condition  
in the MATLAB script for the non-axisymmetric transient pipe model.

6.5  Case Study 5—Combining the MATLAB Script and the 
PDE Modeler Application

There are two approaches to the development of custom scripts for 
FE modeling with the help of the PDE Modeler application: (a) Exporting 
the model created using the PDE Modeler application to the MATLAB 
script (*.m) file and then revising it, and (b) Creating the geometry in the 
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PDE Modeler application, exporting its data, and then incorporating that 
geometry into a script developed using the PDE Toolbox commands or 
functions.

If the former approach is selected, the structure and functions 
employed in the stored code need to be understood and decoded so that 
correct revisions can be made. The first section below helps with this task. 
The section describes creation of the model and then the exporting of its 
PDE data at the end of each operation (e.g., geometry and mesh creation or 
assigning the boundary conditions and solution settings). The subsequent 
section begins with export of the geometry parameters from the PDE 
Modeler and continues with the definition of the model and solution.

The presented model was primarily intended as a demonstration of the 
alternative approaches described above. It consists of multiple overlapping 
simple 2D shapes. Physically, the model represents a pump. The heated 
fluid enters the geometry through Edge 1 and exits at Face 12 (outside the 
xy-plane). The thermal model is transient (parabolic) and requires complete 
set of the thermophysical properties. This case study presents an advanced 
usage of the MATLAB coding to generate and revise 2D thermal models. 
There are three types of boundary conditions applicable to this geometry: 
(a) Temperature, where it is assumed constant—Dirichlet; (b) Convection, 
where heat is transferred to the ambient at a constant temperature  
(35 °C) and convection coefficient (10 W/m2K)—Neumann; and (c) Heat 
flux, which is constant and applied to the fluid at the inlet—Neumann.

6.5.1 The PDE Modeler Script
This section addresses creation of a 2D model in a script which is based 

on the model specifications (e.g., PDE settings, thermophysical properties, 
and geometry data) exported from the PDE Modeler application. When 
creating geometry elements in the PDE Modeler, each element has its 
own identifier (e.g., C for circle and P for polygon). By default, as new 
elements of each type are created, a sequence number is appended to the 
corresponding identifier character (e.g., the first circle would be identified 
by C1 and the second one by C2), etc., as shown in Figure 6.64.

The application model is an *.m file and can be viewed and modified 
within the MATLAB EDITOR. To view this script, the *.m file is opened in the 
MATLAB EDITOR. Figure 6.65 shows a section of this script that is related 
to the geometry description. The presentation method of the created script 
by the PDE Modeler application is different from what is presented herein 
and consists of multiple coded lines for each function; however, it can be 
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organized to be presented by the script seen in Figure 6.65. This shows that 
there are six domains (Circle 1, Ellipses 1-2, and Rectangles 1-3), as given in 
Figure 6.64. These geometry components (domains) are to be assembled to 
create the model geometry. In this example, they are all added C1 + E1 +  
E2 + R1 + R2 + R3—Equation (152). 

(0,0,0.5,0.5,0,' 1');
(0,0,0.075,0.175,0,' 1');
(-0.175,0.03,0.180,0.034,0,' 2');
([-0.5 - 0.25 0.75 0],' 1');
([-0.49 - 0.26 0.735 0.015],' 2');
([0.1 0.3 0.6 0.

pdeellip C

pdeellip E

pdeellip E

pderect R

pderect R

pderect 3],' 3');R

FIGURE 6.65. Geometry description script to plot the 2D geometry in the  
MATLAB PDE Modeler application.

 ( ( ( _ ,' '),' ',' '),
' ',' 1 1 2 1 2 3')
set findobj get pde fig Children Tag PDEEval

String C E E R R R    
  (152)

FIGURE 6.64. The 2D geometry created in the MATLAB PDE Modeler.
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Note that the 2D PDE model physics is introduced to the PDE Modeler 
before the solution can be achieved for the selected physics. Depending 
on the physics selected, the related PDE specification and coefficients are 
introduced into the model. For a Generic System application, the input 
parameters are to be fed into -.(cu) + au = f, which is another form 
for -div(c*grad(u)) + a*u = f, as shown in Figure 6.66. If the Structural 
Mechanics (Plane Stress or Strain) application is chosen, the input 
parameters, such as the Young’s modulus (E), Poisson ratio (u), density 
(r), and volumetric force along the x- and y-coordinates (kx, ky), are to be 
defined (Figure 6.67). For a Heat Transfer application, the input parameters 
are employed in .( ) ( ),CT k T Q h Text Tr -  =  -  which is another form 
for - ( ( )) ( - )rho C T div k grad T Q h Text T= ∗ ∗ ∗ ∗  (Figure 6.68). Note that 
r is the density (kg/m3), C is specific heat capacity (J/kgK), k is thermal 

FIGURE 6.66. The PDE Modeler, PDE Specification for a Generic System model.

FIGURE 6.67. The PDE Modeler, PDE Specification for a Structural Mechanics, Plane Stress model.
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conductivity (W/mK), Q is internal heat source (W/m3), h is convection 
heat transfer coefficient (W/m2K), and Text is external temperature (°C). 
As seen in Figure 6.67, Parabolic Type of PDE is selected (Figure 6.68). 
This means the analysis is transient, and therefore all the specified thermal 
properties above are employed in the equation. If the Elliptic Type of 
PDE were selected, the density and specific heat capacity would not have 
been needed, and therefore grayed out from the PDE Specification menu, 
creating a steady-state analysis (Figure 6.69).

FIGURE 6.68. The PDE Modeler, PDE Specification for a Heat Transfer model, Parabolic settings.

FIGURE 6.69. The PDE Modeler, PDE Specification for a Heat Transfer model, Elliptic settings.

Note that the gradient of the function f—f(x, y, z)—is a vector, defined 
by Equation (153). The divergence of the function f—.f(x, y, z)—is the 
internal product of the gradient operator by a vector and is therefore a scalar, 
as shown in Equation (154). When performing an internal (dot) product, 
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the x-, y-, and z-components are multiplied and then added, resulting in a 
scalar value. The divergence of gradient of a function f—.f(x, y, z)—is 
also known as Laplacian of that function f—f(x, y, z)—which is also a 
scalar value and is presented by Equation (155).

 , ,, ,( ) ( )
f f f

grad
f f f

i j kf f x y z x y z x y z
      

=      
=  =

  



 

  (153)
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1 2 3
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( ) . (

)
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f x y z f x y z f

div f f

x y z
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=
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The physics (PDE Specification) should be set for individual subdomains. 
It is possible to: (a) Select the PDE Specification within the PDE Modeler 
application menu; (b) Access the entire domain, consisting of subdomains; 
(c) Set the model properties (i.e., Type of PDE and Coefficient), which then 
will be propagated for the entire domain; (d) Select individual subdomains 
within the PDE Mode available under the PDE menu; and (e) Make the 
required revisions to the PDE data. These data then can be exported from 
the PDE Modeler application to be later used or revised in the MATLAB 
script. The PDE data variables that can be exported are c, a, f, and d (Figure 
6.80), in that order. Inputting any of the aforementioned variables, either in 
this section or the prior ones, results in viewing the data in the Command 
Window (Figure 6.70 and Figure 6.71).

As mentioned earlier, the application model, which is an *.m file can 
be viewed and modified within the MATLAB EDITOR. To view this 
script, the *.m file is opened in the MATLAB EDITOR. Figure 6.71 shows 
a section of this script that is related to the PDE specifications. Like the 
previous case studies, the presentation method of the created script by 
the PDE Modeler application is different from what is presented herein 
and consists of several coded lines for each function; however, it can be 
organized to be presented by the script seen in Figure 6.71. This shows that 
there are two sets of functions (pdeseteq, which sets the equation data and 
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setappdata that sets the application data, as shown in Figure 6.70). Solution 
time (5,000 s) and initial temperature (25 °C) are inputs to this function as 
well—pdeseteq(type, c, a, f, d, tlist, u(t0), ut(t0), range), with identifying 
the PDE type—types 1 (Elliptical), 2 (Parabolic), 3 (Hyperbolic), and 
4 (Eigenmodes). tlist is the time range, range (e.g., 0 : 5000), u(t0) is the 
initial temperature, ut(t0) is the time-derivative of the initial temperature, 
and range is a search string range for the eigenvalue algorithm (on the real 
axis).

Exported variables (c, a, f, and d), are the inputs to the former relation 
(application-defined dataset for the object with handle h); while the custom-
made variables (aa, bb, cc, dd, ee and ff) are the inputs to the latter one, 
setappdata(h, name, value) in Figure 6.71. Note that the length of these 
vectors should be the same. This can be achieved by ensuring the spaces 
between the single quotation marks (¢) that are the same for these variables. 
Blank spaces can be appended to make the lengths the same, as shown in 
Figure 6.71.

 '10!0!10!0!0!0!0!0!0!10!0!0!0'
 '210!0.6305!210!210!210!0.6305!210!0.6305!0.6305!210!0.6305!0.6305!0.6305'
 '(2689.9). (900)!(988). (4181)!(2689.9). (900)!(2689.9). (900)!

(2689.9). (900)!(988). (

a

c

d

=

=

= * * * *

* * 4181)!(2689.9). (900)!(988). (4181)!(988). (4181)!
(2689.9). (900)!(988). (4181)!(988). (4181)!(988). (4181)'

 '(0) (10). (30)!(0) (0). (30)!(2000) (10). (30)!(4000) (0). (30)!(0) ...
(0). (30)!(0) (0)
f

* * *

* * * *

=  *  *  *  * 

*  . (30)!(0) (0). (30)!(0) (0). (30)!(0) (0). (30)!(10000) ...
(10). (30)!(0) (0). (30)!(-6000) (0). (30)!(-6000) (0). (30)'

(2, , , , ,'0 : 5000','25','0.0','[0 100]')pdeseteq c a f d

*  *  *  * 

*  *  *  *

FIGURE 6.70. The PDE model equation dataset script for the  
2D geometry in the MATLAB PDE Modeler application.

'2689.9!988!2689.9!2689.9!2689.9!988!2689.9!988!988!2689.9!988!988!988  '  
'900!4181!900!900!900!4181!900!4181!4181!900!4181!4181!4181                   '  
'210!0.6305!210!210!210!0.6305!210!0.

aa

bb

cc

=

=

= 6305!0.6305!210!0.6305!0.6305!0.6305'  
'0!0!2000!4000!0!0!0!0!0!10000!0!- 6000!- 6000                                                   '  

'10!0!10!0!0!0!0!0!0!10!0!0!0                              
dd

ee

=

=                                                   '  
'30!30!30!30!30!30!30!30!30!30!30!30!30                                                          '  

( _ ,' ',[ ; ; ; ;
ff

setappdata pde fig currparam aa bb cc dd ee

=

; ])ff

FIGURE 6.71. The PDE model application dataset script for the  
2D geometry in the MATLAB PDE Modeler application.
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Table 6.3 summarizes the formatting of model parameters withing the 
PDE Modeler script.

TABLE 6.3. Formatting of parameters in the PDE Modeler application.

Variable 
Name Description Expression

a and ee
Convection heat transfer coef-
ficients 1 2! ! nh h h

c and cc Thermal conductivities 1 2! ! nk k k

d Densities by heat capacities      1 1 2. 1. ! ! .n nC C Cr * r *  r *

f

Sum of heat generation and 
product of convection heat 
transfer coefficients by exter-
nal temperatures

1 1 1 2 2

2

) ( ). ( )! ))(( ).
( ))! ( ) ( )
((

(
(
. )( )n n n

Q h Text Q h

Text Q h Text

 * *

  *

aa Densities 2! !i nr r  r

bb Heat capacities 1 2! ! nC C C

dd Heat generations 1 2! ! nQ Q Q

ff External temperatures Text1!Text2!...Textn

In the boundary mode, the display of Edge Labels and Subdomain Labels 
can be activated (Figure 6.72). After the boundary conditions are set, the 
results consist of the Neumann and Dirichlet boundary conditions, presented 
by blue and red colors, respectively. When setting the Neumann boundary 
condition (n*k*grad(T) + q*T = g), the heat flux (g) and heat transfer 
coefficient (q) are set (Figure 6.73). Note that heat flux is perpendicular 
to the boundary. When setting the Dirichlet boundary condition (h* 
T = r), the weight (h) and temperature (r) are set (Figure 6.74). In other 
words, the former condition is related to identifying heat convection and 
heat flux at the boundaries while the latter one is about setting up constant 
temperatures at the boundaries. Variables g and b for the decomposed 
geometry and boundary conditions are exported from the Boundary menu 
in the PDE Modeler.

The temperature boundary condition (Dirichlet, dir) is applied to the 
Edges 2 (45 °C), 6 (35 °C), 18, and 21 (15 °C), and 22 to 24 and 26 (15 °C). 
Temperature is assumed constant on the selected edges. Heat flux boundary 
condition (Neumann, neu) is applied to the Edge 1 at a constant value of 
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500 W/m2. The rest of the edges transfer heat by convection (Neumann) to 
the ambient at 35 °C with the convection coefficient of 10 W/m2K (Figure 
6.72).

FIGURE 6.72. Boundary conditions applied to the 2D geometry created in the MATLAB PDE Modeler.

FIGURE 6.73. The PDE Modeler, Boundary Condition for a Heat Transfer model, Neumann settings.
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FIGURE 6.74. The PDE Modeler, Boundary Condition for a Heat Transfer model, Dirichlet settings.

Opening the script (*.m file) in the MATLAB EDITOR, the boundary 
conditions can be viewed and modified if required. Figure 6.75 shows 
the related part of this script. Like the previous case, when describing 
the geometry script, the presentation method for this section by the PDE 
Modeler application is different from what is presented herein and consists 
of multiple coded lines for each function; however, it can be organized as 
displayed in Figure 6.75. This shows that there are two types of the boundary 
condition types, four Dirichlet (dir) and six Neumann (neu) conditions, 
applied to ten boundaries (edges).

det (' mod ',0)
(1,' ',1,'10','500')
([4,22 : 24,26],' ',1,'10','0')
(18,' ',1,'1','15')
(21,' ',1,'1','15')
(2,' ',1,'1','45')
(6,' ',1,'1'

p ool change e

pdesetbd neu

pdesetbd neu

pdesetbd dir

pdesetbd dir

pdesetbd dir

pdesetbd dir ,'35')

FIGURE 6.75. Boundary conditions script to plot the 2D geometry  
in the MATLAB PDE Modeler application.

Mesh properties (triangular), point (p), edges (e), and triangles (t) can be 
exported from the Mesh menu in the PDE Modeler within the application 
editor. The related script is presented in Figure 6.76. The Maximum Edge 
Size (trisize) and Mesh Growth Rate (Hgrad) can be defined for the PDE 
Modeler. If the Minimum Edge Size (Hmin) is of interest, it can be defined 
within the script by replacing Hmax. The generated mesh is shown in 
Figure 6.77. The mesh can also be refined (regular and longest methods) 
and the internal points of the mesh can be jiggled (optimize minimum and 
mean methods) with the Number of jiggle iterations identified (<=14).
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( _ ,' ',0.5);
( _ ,' ',1.5);
( _ ,' ',' ');
( _ ,' ', (' ',' ','14'));
( _ ,' ','

setappdata pde fig trisize

setappdata pde fig Hgrad

setappdata pde fig refinemethod regular

setappdata pde fig jiggle char on mean

setappdata pde fig MesherVersion p 2013 ');
det (' ')

(' ')
(' ')

reR a

p ool initmesh

pdetool refine

pdetool jiggle
FIGURE 6.76. Mesh generation script to plot the  

2D geometry in the MATLAB PDE Modeler application.

FIGURE 6.77. 2D triangular mesh generated in the MATLAB PDE Modeler application.
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After all the parameters have been specified using the pdeseteq and 
setappdata functions, the solution is executed by the pdetool(‘solve’) 
function. After the solution is obtained, the plot parameters can be set. 
Properties such as temperature, temperature gradient, and heat flux can be 
selected as the output parameters. There is also a user entry option available 
for the property in which the user identifies their own output variable. The 
arrows (flow variable) can be temperature gradient, heat flux, or user entry 
presented in the proportional or normalized forms. 

A third dimension (height) can be identified and therefore a 3D plot 
may be presented. The height can be either temperature, temperature 
gradient, heat flux, or user entry property. The output may be animated 
by identifying Animation rate in fps and the Number of repeats. Contour 
plot levels can be set, and the mesh may be shown along with the contour 
plots. Furthermore, color map (e.g., hot, cool, and prism) may be selected. 
Time for plot can be selected from the drop-down menu, selecting any 
value within the defined range in 1-s time intervals. After the solution 
is run, the solution statistics are presented in the Command Window, 
as shown in Figure 6.78. The solution results are presented in Figure 
6.79, in which contour plots identify the temperature profiles and arrows 
represent the heat flux vectors. The Plot style is proportional, meaning 
that the magnitude of the heat flux vector determines the size of the 
arrows.

FIGURE 6.78. The MATLAB PDE Modeler application  
transient thermal model solution statistics.
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FIGURE 6.79. 2D contour plots generated in the MATLAB PDE Modeler application.

6.5.2 PDE Tool Script
With this approach, one can take advantage of the interactive creation 

of the model geometry using the PDE Modeler application and then export 
the geometry data created to use it within a custom model script. However, 
one limitation is that 3D geometry creation and export is not supported 
by the PDE Modeler. Within the PDE Modeler, the geometry export is 
achieved by selecting Export Geometry Description (gd), Set Formula (sf), 
and Labels from the Draw menu. During the export, the default geometry 
variable names presented are gd, sf, and ns (Figure 6.80). At this point, 
these can be changed to the user’s preferred names. 

The PDE Tool script in Figure 6.81 shows how the geometry data saved 
from the PDE Modeler export can be used to create the geometry structure 
within the PDE Tool model object thermalModelTA. Before executing this 
script, the PDE Modeler needs to be run and the geometric data exported. 
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The example assumes the default geometry data variable names are used 
(as shown in Figure 6.81). The constructive solid geometry then can be 
decomposed using the geometry data (gd, sf, ns) and the geometry from 
the edges can be created with the results presented as a figure (Figure 
6.81). The pdegplot function is employed to plot the geometry to verify 
its correctness and to identify the edges and faces to which the boundary 
conditions (and heat sources) are to be applied. Figure 6.82 displays the 
geometry with edge labels and Figure 6.83, with face labels. 

 ;  ;  ;
(' ',' ');

( , , );
( , );

(1);
deg ( ,' ',' ','

close all clf clc

thermalModelTA createpde thermal transient

geometryA decsg gd sf ns

geometryFromEdges thermalModelTA geometryA

figure

p plot thermalModelTA EdgeLabels on FaceLabel

=

=

',' ');
({'       ';''},' ',' ');
 ;   min ;  ('  ( )');  ('  ( )');

lim([-0.7 0.7]);  lim([-0.6 0.8]);
;  . 1

s on

title Geometry with edge and face labels displayed FontWeight normal

grid on grid or xlabel x m ylabel y m

x y

ax gca ax FontSize= = 0;
FIGURE 6.81. Script to plot the exported 2D geometry from the PDE Modeler.

FIGURE 6.80. Variable names for exporting the 2D geometry from the MATLAB PDE Modeler.
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FIGURE 6.82. The 2D geometry plotted using the PDE Toolbox script with the edge labels on.

FIGURE 6.83. The 2D geometry plotted using the PDE Toolbox script with the face labels on.

The axes limits (x- and y-coordinates) are also to be set in this step using 
the xlim(xmin, xmax) and ylim(ymin, ymax) functions. Equal spacing between the 
axes lower and upper limits may be set using the axis equal command. 
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Note that the edge and face labels are the same for the geometry 
created in the PDE Modeler and Toolbox. It is possible to set the physics 
(Application Options) or PDE type independently from the physics 
selected when setting the model using the PDE Modeler (e.g., Structural 
Mechanics in the former case and Elliptic in the latter case). In this case 
study, however, two identical models are created for comparison purposes.

The next step is to specify the thermophysical properties (i.e., thermal 
conductivity for both steady-state and transient problems and thermal 
conductivity, density, and heat capacity for transient problems), as shown 
in Figure 6.84. All faces should be assigned the appropriate properties. 

%
15  0.6305;  %   ( / )

15  988;  %  ( / 3)
15  4181;  %   ( / )
15  Pr ( ,' ', 15,...

    '

Water

k thermal conductivity W mK

rho density kg m

cp heat capacity J kgK

tp thermal operties thermalModelTA ThermalConductivity k

MassDensity

=

=

=

=

', 15,' ', 15,' ',[2,8,9,11,12,13]);
%

25  210;  %   ( / )
25  2698.9;  %  ( / 3)

25  900;  %   ( / )
25  (

rho SpecificHeat cp Face

Aluminum

k thermal conductivity W mK

rho density kg m

cp heat capacity J kgK

tp thermalProperties therm

=

=

=

= ,' ', 25,...
    ' ', 25,' ', 25,' ',[1,3 : 7,10]);

alModelTA ThermalConductivity k

MassDensity rho SpecificHeat cp Face

FIGURE 6.84. Thermophysical properties for the 2D geometry plotted in Figure 6.82.

The next step is to assign boundary conditions (e.g., convection, temperature, 
and heat flux), as shown in Figure 6.85. If the boundary conditions are not 
assigned to an Edge, the edge is assumed to be insulated.
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51  ( ,' ',6,' ',35);
52  ( ,' ',2,' ',45);
53  ( ,' ',[21,18],' ',15);
54  (

BC thermalBC thermalModelTA Edge Temperature

BC thermalBC thermalModelTA Edge Temperature

BC thermalBC thermalModelTA Edge Temperature

BC thermalBC

=

=

=

= ,' ',[1,4,22 : 24,26],...
                       ' ',10,...
                       ' ',30);

55  ( ,' ',1,' ',500);

thermalModelTA Edge

ConvectionCoefficient

AmbientTemperature

BC thermalBC thermalModelTA Edge HeatFlux=
FIGURE 6.85. Boundary conditions assigned to the 2D geometry plotted in Figure 6.82.

The heat source (internal heat generation) can be assigned to any region 
(Face). The regions can be either listed as an array, if they all have the same 
setting, or assigned values individually (Figure 6.86). 

51 ( ,2000,' ',3);
52 ( ,4000,' ',4);
53 ( ,10000,' ',10);
54 (

ih internalHeatSource thermalModelTA Face

ih internalHeatSource thermalModelTA Face

ih internalHeatSource thermalModelTA Face

ih internalHeatSource thermalModel

=

=

=

= ,-6000,' ',[12,13]);TA Face
FIGURE 6.86. Heat sources (internal heat generation) assigned to the 2D geometry plotted in Figure 6.82.

Assigning the initial conditions is the next phase, as shown in Equation (156). 
This can be set individually for each region (Face). Note that it is possible 
to set the initial temperature for each region; in this case, the RegionID 
and RegionType should be identified, as shown in Equation (157). The 
RegionType can be Vertex, Edge, and Face for the 2D and 3D models and 
Cell for the 3D models

 56  ( ,25);IC thermalIC thermalModelTA=   (156)

_ ( , 0,' ', );IC Regions thermalIC thermalModelTA T RegionType RegionID=  (157)

The next phase is the meshing of the geometry using the specified 
parameters, as shown in Figure 6.87. In this case study, the grid size (grid_
size5) and growth rate (Hgrad) are defined. It is also possible to specify 
the relative (1E - 5) and absolute (1E - 9) tolerances. The solution total 
time (tfinal5) is set in this step, as well as the frequency (tlist5) of the data 
output. Note that quadratic elements are selected for this analysis, which are 
more accurate. To save memory space, linear elements may be employed. 
Mesh properties may be confirmed by entering mesh5 on the command 
line, as presented in Figure 6.88. The plot of node locations is presented in  
Figure 6.89.
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_ 5  0.05;
5 ( ,' max', _ 5,' ',1.2,...

' ',' ');
5 5000;

5 0 :100 : 5;

grid size

mesh generateMesh thermalModelTA H grid size Hgrad

GeometricOrder quadratic

tfinal

tlist tfinal

=

=

=

=
FIGURE 6.87. Mesh parameters and thermal model solver options  

assigned to the 2D geometry plotted in Figure 6.82.

FIGURE 6.88. Mesh properties.

FIGURE 6.89. Node locations.

The model is to be solved next, given the solution parameters. Any changes 
made to the boundary or initial conditions as well as the solution parameters 
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result in new sets of solutions. Note that if the solution is to be rerun, the 
solution of the problem remaining in the MATLAB Workspace will be 
used as the initial condition unless the initial condition and the iteration 
solution first guess is to be set first. This is an educated guess when using 
coding languages such as Fortran or C++ and when numerical methods 
such as Gauss-Sidle elimination methods are employed. Note that this is 
not to be taken as a built-in step when setting PDE models in the MATLAB 
environment. Therefore, clearing the MATLAB Workspace beforehand 
ensures unknown initial iteration values and residual errors are eliminated. 

It is always possible to create “pretty” images; however, how accurate 
or precise they are of interest to a modeling scholar. Note, however, that 
as mentioned earlier, in case the inputs of another program (e.g., geometry 
data imported from the MATLAB PDE Modeler application are needed 
as the inputs to the PDE model, the MATLAB PDE Modeler application 
should be run first for the data to be created. The data then should be 
exported from the MATLAB PDE Modeler application to the MATLAB 
Workspace, and then inputted to the MATLAB script. 

The temperature (T51), temperature gradient (Tx51), heat flux (qx51) 
magnitudes for the model nodes (xy51), or any other combination of these 
variables can be valuated as the next step, as shown in Figure 6.90. Note that 
T_st51 is the solution times and is a vector; it is the same as the tlist5 (Figure 
6.87). The results’ properties can be displayed by entering on the command 
line the name of the results object (results5), which contains the solution. 
The results object is created on the first line in Figure 6.90. The transient 
temperature results object’s properties are presented in Figure 6.91. The 
information includes sizes of the arrays within the results object (e.g., the 
temperature array and solution times array).

5 ( , 5);
. . ;  

( int);  
51 ;  51 51(1,:);  51 51(2,:);

51 5. ;
51 5. ;  
51

results solve thermalModelTA tlist

point thermalModelTA Mesh Nodes

nodesIndex find po

xy point x xy y xy

T results Temperature

Tx results XGradients

Ty result

=

=

=

= = =

=

=

= 5. ;  
_ 51 5. ;  

[ 51, 51] ( 5, 51, 51,1 : ( 5));

s YGradients

T st results SolutionTimes

qx qy evaluateHeatFlux results x y length tlist

=

=

FIGURE 6.90. Initial conditions assigned to the 2D geometry plotted in Figure 6.82.
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FIGURE 6.91. Solution properties for the 2D geometry plotted in Figure 6.82.

The solution’s statistics can be displayed by activating the ReportStatistics 
feature within the SolverOptions (Figure 6.92 and Figure 6.93).

thermalModelTA.SolverOptions.ReportStatistics = 'on';
modelD.SolverOptions.RelativeTolerance = 1E-5;
modelD.SolverOptions.AbsoluteTolerance = 1E-9;

FIGURE 6.92. Solution statistical data.

FIGURE 6.93. The MATLAB script transient thermal model solution properties and statistics.

Note that it is also possible to create the result animation by exporting j 
number of image frames and playing them n times. To achieve this, the 
getframe function is employed (Figure 6.94). This function may be used 
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either right after any plot functions or specifically as a function, calling 
frames for a specific figure getframe(figure(n)), where n is the figure ID 
(number). 

 

   1 : 5 : ( 5)    
    ( ,' ', 51(:, ),' ',' ',...
    ' ',' ',' ',24);
     ;   ;   min ;  ('  ( )');  ('  ( )');  

  

for j length tlist

pdeplot thermalModelTA XYData T j colormap hot

Contour on Levels

axis equal grid on grid or xlabel x m ylabel y m

=

  lim([-0.7 0.7]);  lim([-0.6 0.8]);    ;  .   20;
     ;
    ( 51(:), 51(:), 51(:, ), 51(:, ),'- ',' ',0.5,...
   ' ',' ', ',' ',' ','

x y ax gca ax FontSize

hold all

quiver x y qx j qy j LineWidth

Color black AutoScale on ShowArrowHead on

= =

');%,' ',3
     ;   ;   min ;  ('  ( )');  ('  ( )');  

    lim([-0.7 0.7]);  lim([-0.6 0.8]);    ;  .   20;        
    ({['  

AutoScaleFactor

axis equal grid on grid or xlabel x m ylabel y m

x y ax gca ax FontSize

title Temperature contou

= =

'];['     (   ',...
    2 ( ( 5( ),2)),'  )'];''},' ',' ')
   5( )  ;

rs and heat flux arrows t

num str round tlist j s FontWeight normal

M j getframe

end

=

=

FIGURE 6.94. Animated data setting for the 2D geometry plotted in Figure 6.82.

The collected data frames then can be called back and presented in the 
form of a movie using the movie function (Figure 6.95). The script provided 
herein plays the time-array presented by the vector 1:5:length(tlist5) ten 
times, which displays the thermal data contours (image frames) for every 
fifth frame; 14 frames per second, played once, are played seven times in 
this animated data. The for loop is used for retrieving the data frames and 
animating them. The movie(gca, M5, [n, k], fps) function, where gea is the 
graphic object handle of the current axis, M5 is the movie frames array, 
[n k] in this scenario represents the number of times each frame plays 
(n) and selected time-frames (k), and fps is the number of frames per 
second that the animation plays. One of the challenges of these diagrams 
is how to include titles so that they represent the selection parameters 
used as the time step progresses. The method of the presentation of title 
for Figure 6.94 and Figure 6.95, with loop variables (j and k) is included 
in the script.
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   1 : 5 : ( 5)    
    ({['  '];['     (   ',...
    2 ( ( 5( ),2)),'  )'];''},' ',' ')
     ;   ;   min ;

for k length tlist

title Temperature contours and heat flux arrows t

num str round tlist k s FontWeight normal

axis equal grid on grid or

=

=

 ('  ( )');  ('  ( )');     

    lim([-0.7 0.7]);  lim([-0.6 0.8]);    ;  .   20;
    ( , 5,[7 ],14);

xlabel x m ylabel y m

x y ax gca ax FontSize

movie gca M k

end

= =

FIGURE 6.95. Animated data setting for the 2D geometry plotted in Figure 6.82.

In this case study, the solution results are presented in the form of 
temperature contour plots, including the heat flux arrows (Figure 6.96), as 
well as the temperature gradient contour plots with respect to the x- and 
y-coordinates, including the temperature gradient arrows (Figure 6.97). 

FIGURE 6.96. Temperature contour plots and heat flux vectors  
for the script presented in Figure 6.94.

The color map can be set using the cmap = colormap(target, map). map 
identifies the color map (e.g., gray, turbo, and spring) and target is the 
figure, axes or graphics object (e.g., gca or figure(n)), where n is the figure 
ID (number). In Figure 6.96, the gray color map is selected, while for 
Figure 6.97, the turbo color map is selected.
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(a)

(b)
FIGURE 6.97. Temperature gradient contour plots and vectors with respect to:  

(a) x (dT/dx), (b) y (dT/dy).

It is possible to enquire about a node at the selected coordinate. However, 
data may not be available at the exact location; therefore, the closest 
location is queried. If the desired coordinate is located at the point  
A(x, y) the closest data is then defined as A_data = @(p, x, y)min(x51 – x).2 +  
(y51 – y).2). This is the minimum distance between the desired point and 
available mesh points, where the x51 = point(1,:) and y51 = point(:,1) are 
x- and y-coordinates of the solution nodes calculated from the point = 
thermalModelTA.Mesh.Nodes. 
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For example, assume the temperature data at the center of the left 
edge is of interest—A(-0.5, 0). This coordinate is to be replaced in the 
function, which can be called to get the specific node near the center 
of the left edge [~, nid1] = data(mesh5.Nodes, -0.5, 0), where nid is the 
node ID. The node ID (nid1) for this point is 15. In another example, 
the temperature data at a point located at B(0.2, -0.4)is of interest. The 
node ID (nid2) for this point is 1,754. The third example, the node ID 
(nid3) for the point located at C(-0.1, 0.2) is 2,098. The related script is 
presented in Figure 6.98. The transient temperatures for these selected 
nodes are plotted in Figure 6.99.

2 2

( 5);

@( , , ) (( 51 ). ( 51 ). );
[ , 1] ( 5. , 0.5,0)

( 5(1 : )

;
[ , 2] ( 5. ,0.2, 0.4);
[ , 3] ( 5. , .1,0.2);

1; 2
5

3
,

; ;

n length tlist

data p x y min x x y y

nid data mesh Nodes

nid data mesh Nodes

nid data mesh Nodes

A nid B

plot

n

tlist n T
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=

= -  -

= -

= -
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= = =

1( ,[1 : ]),'- ',' ',5,' ',...
    1 : 5 : ( 5(1 : )),' ',[1 1 1]);

( 5(1 : ), 51( ,[1 : ]),'- ',' ',5,' ',...
    1 : 5 : ( 5(1 : )

A n MarkerSize MarkerIndices

length tlist n MarkerFaceColor

plot tlist n T B n d MarkerSize MarkerIndices

length tlist n
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FIGURE 6.98. Script to generate the 2D geometry and plot in Figure 6.99.

(a)
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(b)
FIGURE 6.99. Getting data at the query points:  

(a) Point locations, (b) Transient temperature at the selected points.

End Notes

 [55] http://www.matweb.com/search/datasheet_print.aspx?matguid=9a0c88f81df945
218033319fa4dd1cb6

 [56] COMSOL Material database
 [57] http://www.matweb.com/search/datasheet_print.aspx?matguid=9a0c88f81df945

218033319fa4dd1cb6
 [58] COMSOL Material database



C H A P T E R7
The COMsOL MULTiPhysiCs 
MOdeLs

The COMSOL Multiphysics modeling has been discussed in detail in 
the author’s previous works [2,3,4]. However, for the purpose of this 
publication, a summary of some of the main concepts is presented 

herein. The reader is encouraged to learn more about heat transfer and 
thermal modeling by studying the previous works on the extended surfaces 
using analytical methods and numerical analysis, with the focus on COM-
SOL Multiphysics as the FEM analysis tool in combination with CAD tools 
to generategeometry [2], geometry import and creation using COMSOL 
Multiphysics [4], and a complete review of heat transfer science, thermal 
analysis modeling methods, and multidisciplinary case studies involving 
heat and flow [3].

The process of heat transfer analysis using FEM is carried out in 
three stages: (a) model setup or pre-processing, (b) solution, and (c) post-
processing. FEA tools share these same steps, and their organization 
methods (model tree) are very similar among the variety of the tools with 
the most used ones, such as ANSYS, ABAQUS FEA, and COMSOL 
Multiphysics. The modeling setup steps are generally as follows:

 (1) Evaluate the available resources (machine, tool, and human).

 (2) Identify the number of spatial dimensions (zero to three) defining the 
physical phenomena. 

 (2) Consider the possibility of representing the model using fewer dimen-
sions (e.g., 1D or 2D), fewer geometrical features, or by a simplified 
version that takes advantage of any symmetry.
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 (4) Generate the model geometry by: (a) Importing the model from a 
dedicated CAD tool, (b) Creating it using the FEM built-in tools,  
(c) Creating from a mesh, or (d) Importing from another FEA tool.

 (5) Identify the dominant physics, the domains to which they apply, and 
whether single or multiple physics apply (e.g., heat transfer and struc-
tural mechanics).

 (6) Identify the boundary conditions at which the boundaries interact with 
their environment(s). For heat transfer modeling, these conditions can 
be expressed by the temperature, heat flux, heat rate, and heat genera-
tion, which are derivatives of the dependent variable (temperature). 
They can be either constant or functions of space and time (e.g., zero 
gradient and constant value).

 (7) Decide whether the physical system will be modeled as time-de-
pendent or stationary by considering the given physics and available 
resources. This step is one of the most challenging ones, for the time-
dependency should be correctly selected to represent the system’s 
behavior given the operational conditions. Time and space increments 
work closely together and, on many occasions, the combination of 
them is the determining factor in generating accurate solutions; there-
fore, care should be taken to ensure the proper selection.

 (8) Identify the initial conditions if a transient analysis (time-dependent) is 
selected. These are either applied to certain regions within the model-
ing domain or portions of it, meaning that there would be either single 
or multiple subdomains within the model. If a steady-state analysis is 
preferred, the initial guess at which the solution starts (especially for 
the iterative-elimination methods) should be set.

 (9) Mesh the model geometry by means of 1D, 2D, or 3D entities, de-
pending on the models’ dimension. The order of the mesh (quadratic 
versus linear) determines the level of accuracy achieved, which is 
mainly determined by the available resources (e.g., time and machine).

 (10) Select the numerical technique(s) to produce solutions that converge, 
given the acceptable relative and absolute tolerances. On occasions, 
the solution may need to be divided into multiple steps, each step 
adopting the numerical method that better suits the conditions. The 
inputs (or initial guesses) to the solutions in such cases are usually the 
outputs of the previous solution steps.
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 (11) Specify the solution parameters such as the duration of the interval 
simulated and the time intervals at which the solution data are saved.

 (12) Carry out solution post-processing as the last step. This may involve 
solution data in the wide variety of forms (e.g., diagrams and anima-
tions) required in the internal or external reports. This may include 
steps such as: (a) Extracting the solution using output commands; 
(b) Evaluating the solution by taking integrals or averages over regions; 
(c) Customizing the report templates to follow certain formats or add 
the input commands to make interactive and user-friendly Web-based 
applications; and (d) Processing and visualizing the solution output 
by means of tables, diagrams (1D, 2D, and 3D), contour and surface 
plots, and spatial and temporal probes.

This chapter discusses briefly how to work with models in COMSOL 
Multiphysics Version 5.6; the software can be updated by checking under File 
> Help. The first section below presents considerations pertinent to setting 
up a heat transfer model. The next section focuses on the geometry creation 
process, importing the geometry as an independent part or assembly from 
a dedicated CAD tool such as Solid Edge or SOLIDWORKS, and creating 
it using the built-in geometry creation tools. This is followed by a summary 
of all the steps involved in carrying out an analysis. Finally, a section is 
dedicated to introduction of the COMSOL Multiphysics LiveLink for 
MATLAB Module; it shows how one can use this module to take advantage 
of the MATLAB’s computational and data processing capabilities while also 
benefiting from the COMSOL Multiphysics’ capabilities as a dedicated 
FEM tool.

7.1 Heat Transfer Modeling Considerations

To model a heat transfer problem using any tool, including COMSOL 
Multiphysics, the modes of heat transfer that should be included in the 
model need to be selected. In most cases, heat transfer phenomena include 
all three main heat transfer modes of conduction, convection, and radiation. 
However, it is often the case that one or more of these can be ignored to 
simplify the model. For example, the radiation mode may have a negligible 
effect at relatively low temperatures.

Methods of setting up models are different for the solid and fluid 
domains. Conjugate Heat Transfer physics is a thermal-flow modeling 
system that combines heat transfer in both solids and fluids, while 
considering their interaction. Gravity effects may play a more important 
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role where the flow in the vicinity of a vertical surface is examined, for 
instance, in the free convection case, where the ratio of the buoyancy to 
viscosity forces is dominant. Radiation heat transfer also can be combined 
with the previous scenario and make the model more complex. Radiation 
sources can include solar radiation or another intense heat source such as 
fire. The former one introduces the radiation heat flux for it hits the domain 
surface (W/m2), while the latter can either hit the domain surface (W/m2) 
or be generated within the domain (W/m3). Both heat intensities can have 
spatial and temporal dependency. 

Among the important factors to be considered when setting up the 
FEM models are: (a) methods used to accurately capture the temporal and 
spatial variations of the thermophysical properties; (b) physics to be used; 
(c) accurate estimation of the convection heat transfer coefficient; and 
(d) how different physics, if present, interact with one another. The choice 
of the transient versus the stationary solutions should also be carefully 
considered. For some models, a stationary study may result in a solution, 
while a transient one will not produce a solution due to the convergence 
issues; the opposite may be valid in some cases.

7.2 Creating a Model in COMSOL Multiphysics

To create a new FEM model, File > New is selected; a window opens as 
the result, which offers the choice to create a Blank Model or Model Wizard 
(Figure 7.1). If the analyst selects the Blank Model, a new empty model is 
created. However, in most cases, it is much simpler to set up the model 
from the start based on the applicable physics. For this purpose, Model 
Wizard should be activated (Figure 7.1a) which will take you through a few 
basic steps for model setup. 

First, a new window opens where you can select the appropriate space 
dimension (e.g., 1D or 2D Axisymmetric) (Figure 7.1b). Now you need to 
decide which physics to include in the model (e.g., heat transfer, fluid flow, 
or a combination of multiple physics). Figure 7.2 shows the physics selection 
when a specialized add-on module is available (e.g., Heat Transfer). In this 
case, there are twelve different physics available. Heat Transfer in Solids 
is highlighted in the image. Without the add-on module, only a few of 
the most basic physics would normally be available. After the physics is 
added, its dependent variable (e.g., temperature, T) is set. The dependent 
variable name can be changed and may include subscripts (e.g., T1). After 
completing this step, the Study type is selected (Figure 7.3). 
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 (a) (b)

FIGURE 7.1. (a) Setting up a new model, (b) Selecting the space dimension.

FIGURE 7.2. Selecting physics—Heat Transfer, Heat Transfer in Solids (ht).
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Clicking on the Done button after the previous steps are completed takes 
the analyst to the modeling window, a home for the brand-new model 
(Figure 7.4). Here, the analyst has multiple regions or windows (four in the 
provided example). Most of the model operations are done in the Model 

FIGURE 7.3.  Selecting study—General Studies, Time Dependent.

FIGURE 7.4. The COMSOL Multiphysics model tree window.
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Builder window. It is a tree structure starting with the Root named after 
the model, with the main branches of Global Definitions, Component(s), 
Study, and Results. Model Builder’s neighbor to the right shows Settings 
pertaining to the selection made in the Model Builder window.

7.3 Creating Geometry

This section presents a brief overview of the geometry creation in 
COMSOL Multiphysics. More detail is available in the author’s publication 
COMSOL Multiphysics Geometry Creation and Import [3]. In the 
COMSOL Multiphysics model file, the geometry is created within the 
Geometry node found under each Component. The parameters used for 
the geometry may be defined either on the local or global level. The two 
most common ways to create a geometry are: (a) creating and manipulating 
the elementary geometric entities and (b) importing the geometry from a 
third-party CAD tool.

To import from the external CAD tools (e.g., SOLIDWORKS or 
Solid Edge), the analyst needs to have either a CAD Import Module or 
LiveLink Module, the latter being associated with a specific CAD tool. Any 
of the software-specific LiveLink Modules include the CAD Import Module 
functionality. Using the LiveLink Module allows one to update the model 
geometry in COMSOL Multiphysics as soon as the changes are made in the 
CAD software. 

In the example shown in Figure 7.5, Geometry is highlighted. In this 
case, the Settings window presents the related geometrical characteristics 
such as the Length unit (e.g., m, nm, and GM), Angular unit (Figure 7.6), 
Geometry representation kernel (Figure 7.7), and Default repair tolerance 
method (Figure 7.8). A kernel is the fundamental geometrical language 
used to describe the model geometry. In this example, two geometrical 
kernels are available—CAD and COMSOL Multiphysics; the former is 
only available with the optional CAD Import Module while the latter is part 
of the base package. 

Default repair tolerance is applied when the geometry is imported 
or when Boolean operations are performed. It defines a threshold below 
which the geometry entities may be considered coincident and appropriate 
repairs are made to avoid, for example, in the cases of vertices which are 
very close to one another. Selection of the Relative setting expresses the 
tolerance as a ratio between the error dimension and the maximum model 
coordinate. Absolute tolerance is expressed in the length units of the model. 
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Automatic tolerance (the default choice) sets it at a relative value of 1e-6 
and takes adjustment steps if needed. The following sections provide an 
overview of ways to generate geometry.

FIGURE 7.5.  Geometry—Length unit options.

FIGURE 7.6.  Geometry—Angular unit options.

FIGURE 7.7.  Geometry—Geometry representation kernels options.
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FIGURE 7.8. Geometry—Default repair tolerance options.

7.3.1 Using Elementary Geometric Entities
In this method, the geometry is created by defining the basic geometrical 

entities, such as: (a) the intervals and points (1D); (b) lines, curves, rectangles, 
and circles (2D); and (c) blocks, cylinders, and spheres (3D). Various 
transformations can then be applied to these entities; these include the 
Booleans and Partitions operations (e.g., union and difference), Transforms 
operations (e.g., copy, mirror, rotate, and scale), and uncategorized ones 
such as the extrude, revolve, sweep, fillets, and chamfers. Geometries are 
created in steps; each step can be disabled (or enabled) when needed without 
affecting the following unrelated sequential steps. This makes it possible to 
temporarily exclude geometry-creation steps without affecting the future 
steps. Furthermore, the steps can be duplicated, and copies revised to 
facilitate adding new steps. For example, to create the 3D ring shown in 
Figure 7.9, the following sequence may be used: (a) cylinder of radius 0.03 m  
and height of 0.015 m (cyl1); (b) cylinder of radius 0.024 m and height of 
0.015 m (cyl2); and (c) Difference, cyl2 – cyl1(dif1).

 (a) (b)

FIGURE 7.9.  (a) An example of a 3D ring geometry, (b) The geometry sequence shown.
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Use of the Work Planes can be a powerful tool when processing 3D 
geometries. They can be employed to: (a) process 2D sketches such as 
Extrude and Revolve to create 3D objects and (b) partition or split 3D 
domains. The split volumes can then be used for subsequent modeling 
steps, allowing for setting different material and mesh properties, and 
deletion of the unneeded volume. Figure 7.10 shows the method to create 
the revolved profile, using the circle (c1) and rectangle (r1) 2D shapes (left) 
and performing a Boolean difference (dif1), where the circle is subtracted 
from the rectangle (right). The Revolve operation is then performed, which 
uses this profile and defines a revolution axis to create the 3D shape shown.

 (a) (b)

FIGURE 7.10.  (a) A 3D ring with a groove created by revolving the 2D shapes;  
(b) The geometry sequence shown.

 (a)
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 (b)

FIGURE 7.11.  Geometry components used in Figure 7.10: (a) Work Plane used to define input to the 2D 
shapes, (b) Finished profile for a 3D ring with a groove.

7.3.2 Importing Geometry
The geometry import is performed by right-clicking on Geometry and 

selecting Import. Sources available for bringing the geometric entities into 
the file are the: (a) geometry sequence, (b) mesh, (c) *.stl; (3D geometries 
only), (d) COMSOL Multiphysics file, and (e) 3D CAD files (3D geometries 
only).

The Geometry sequence option allows one to bring a set of geometry 
creation steps from another component of compatible dimensions (1D, 2D, 
or 3D) within the same model file into the current component. This option 
allows one to reuse the geometry created in one component within another 
component.

Mesh import takes a mesh from another component within the same 
model file and brings it as a geometry (shape) into the current component. 
The two components must have the same number of spatial dimensions 
(e.g., there is a 2D component, and so only a mesh from another 2D 
component can be used).

Stereolithography (*.stl) file import only applies to 3D components. It 
allows the analyst to introduce a geometry defined using an *.stl file, which 
is a common way to store information used for 3D printing of objects. 
The *.stl geometries describe the surfaces of 3D objects by flat triangular 
surface patches, with the coordinates of all triangle vertices stored in the 
*.stl file. Thus, curved surfaces will be approximated by these flat patches. 
For curved surfaces with small radii, small triangles are needed to have an 
accurate surface representation, possibly leading to very large file sizes for 
highly complex objects.
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The COMSOL Multiphysics file option allows the analyst to import into 
the definition of the current component a geometry extracted from another 
COMSOL Multiphysics file. Such a source geometry file can be created in 
the first place by right-clicking on the Geometry and selecting Export. A 
file in a *.mphbin format is then created, which can be selected for import 
via this option.

The 3D CAD File option is only available for 3D components and will 
only be visible if the analyst has one of several optional add-ons, such as 
the CAD Import Module or one of the LiveLink Modules. CAD files of 
several different formats can be imported. These include non-proprietary 
geometry exchange formats, such as *.step, *.sat, and*.iges, and proprietary 
ones, such as the SOLIDWORKS part (*.sldprt) and assembly (*.sldasm).

7.4 Adding Materials

After the model geometry is created or imported, the next step is to add 
one or more materials to the entire domain (consisting of subdomains). A 
material needs to be assigned to each domain of the model. Materials can 
be added from: (a) the list of the built-in basic ones that are included with 
the core COMSOL Multiphysics package, (b) the optional Material Library 
add-on Module, or (c) by introducing a blank material and providing the 
input data by filling the related fields (e.g., mechanical and thermophysical 
properties). 

Items such as variables, parameters, and materials may be added either 
at the: (a) local (directly under the subcomponent, such as tree leaf, local) 
level or (b) global (under the upper-level component, such as tree trunk, 
global) level. In the latter case, a link is to be created, connecting the local 
property or entity (child) to the global property or entity (parent). Any of 
the preset parameters (or variables), including the material properties and 
solution control options, may be revised at any time.

7.5 Adding or Revising Physics

Even after the physics and study selections have been made during the 
model setup, it is possible to add a new physics under the current Component 
or a new study under the Root (top-level tree). It is also possible to add a 
new Component (of any dimension) under the Root. The user may add the 
Study Steps as well as a variety of sweeps (e.g., Parametric, Function, and 
Material Sweep). Study Extensions may also be activated under each of the 
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Study Steps. The latter two features make it possible to perform sensitivity 
analysis for the selected parameter (or variable).

The sub-physics and conditions (e.g., boundary conditions such as 
inflow, symmetry, heat flux, and loads) are added under the main physics. 
The user should ensure that these sets of input data are provided so that 
the problem solution can be attempted. In case a boundary condition is 
missing, the program may employ the default conditions for the missing 
regions (e.g., lines, areas, volumes) if the user has not excluded them from 
the physics. For example, when defining the material for the first time, its 
properties are propagated to the entire geometry to be analyzed. However, 
this is not the case if the user decides to exclude parts of the geometry from 
the physics or material definition. Leaving the properties of the materials 
the same as the default values is advantageous in the sense that errors due 
to the missing information (e.g., options, properties, and their values) are 
avoided. The disadvantage of this method is when the user inadvertently 
neglects setting up the options that are not shared among all the features 
such as radiation properties. 

7.6 Solution 

If a model consists of multiple components and physics, they are 
solved in the order in which they were defined. The user can choose which 
component-physics to solve by placing a checkmark in the corresponding 
box (under Study Step > Physics and Variable Selections). Additionally, 
the component mesh for the selected physics can be confirmed so that 
the user can ensure that the correct physics and component are selected. 
This means the user can exclude an analysis if they are not interested in 
solving it by not placing the checkmark in its box. This may be done either 
to perform the analysis in multiple steps, where the output of one analysis 
is the input to the next analysis (in whatever order desired) or when there 
is no interest in performing the analysis steps simultaneously; for example, 
when the effect of including or excluding certain features (e.g., heat flux 
versus the convection boundary condition) is to be studied individually 
using the Parameter Sweep.

Another application of a sweep feature is when it is required to run 
multiple solutions for different combinations of model materials. For 
example, if there are several different fluids (n) to be modeled with one 
region and several solids (m) with another region, one can explore the effect 
of having them in the model in all possible combinations. Then, choosing 
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the All combinations setting in the Parametric (or Material) Sweep setup, 
results in m  n scenarios in total that are solved for.

7.7 The COMSOL LiveLink for MATLAB

A connection between COMSOL Multiphysics and the MATLAB 
scripting environment is possible by means of LiveLink for MATLAB, 
a COMSOL add-on module. This module makes it possible to create 
a COMSOL model using the MATLAB script that includes the use 
of the COMSOL API. The API (Application Programming Interface) 
provides access to the internal COMSOL commands from the MATLAB 
environment. These are the same commands that are executed in the 
background when working with the COMSOL Multiphysics graphical user 
interface. 

All actions taken when creating the COMSOL Multiphysics model are 
recorded in the model history as a Java code. When the model is saved as 
the Model File for Java (*.java), this code is exported and can be reviewed 
later. In other words, this code gives access to the building blocks of the 
FEM model. This is similar to the way macros can be created when working 
in Excel, with all the steps taken, such as selections, executing mathematical 
operations, and adding text, recorded to be later retrieved and modified, if 
needed, using the built-in Visual Basic editor. 

This means that any operation performed in COMSOL Multiphysics 
creates a command (simplified Java script-based) which is added to the 
MATLAB script. Therefore, using this feature, one can define material 
properties or boundary conditions as the MATLAB script, which is then 
evaluated when the script is run. Incorporating the COMSOL Multiphysics 
commands within a script makes it possible to implement, for example, 
nested loops (e.g., for or while) and conditional model settings using the if –  
switch statements. This link is bidirectional, meaning that if changes are 
made to the MATLAB script or within the MATLAB environment, they 
become simultaneously available in COMSOL Multiphysics; the opposite 
is true as well. 

Figure 7.12 shows a Java script created in the COMSOL Multiphysics 
environment. A 3D model of a 150-mm long pipe with exterior diameter 
of 65 mm and interior diameter of 55 mm is generated by creating two 
concentric cylinders with center of one end positioned at (0, 0, 0). Reviewing 
the code, the analyst can see that the file name is HollowCylin_3D_Conj 
located on the G drive. One component (comp1) is created and added to the 
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FIGURE 7.12.  Java script created in COMSOL Multiphysics to set up the model geometry.

model. Within this component there is a single geometry (geom1), consisting 
of two cylindrical features (cyl1 and cyl2). Cylinder 1—geom(“geom1”).
feature(“cyl1”, “Cylinder”)—has its dimensions of radius and height defined 
by feature(“cyl1”).set(“r”, 0.065), feature(“cyl1”).set(“h”, 0.15).

Cylinder 2 is created by copying the Cylinder 1 and then changing 
its radius: feature().duplicate(“cyl2”, “cyl1”). COMSOL Multiphysics has 
a command called Compact History, which can be found under the File 
menu. Applying this command before saving the file into a *.java deletes 
unnecessary steps that were carried out at the time of model creation. 
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Figure 7.13 is the Java script presented earlier but after the Compact 
History command has been applied. Comparing the two versions, one can 
see that most of the code is the same, except for the duplication step to 
create the second cylinder—geom(“geome1”).feature(“cyl2”, “Cylinder”). 
The redundant model creation steps are deleted in the compacted script; 
however, the disadvantage is that some of the steps that were employed to 
create the model by the user may be lost and thus one may not be able to 
learn about the techniques employed. 

FIGURE 7.13.  Java script created in COMSOL Multiphysics to set up the model  
geometry, after applying the Compact History.
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Adding material to the model is the next step. Water is assigned to the 
interior cylinder (Domain 2) in this case and its properties are chosen from 
the built-in library. Figure 7.14 shows the Java script for the material block. 
Note that there are eight properties defined for water in the built-in library 
(e.g., heat capacity, density, and bulk viscosity). These properties are defined 
within the library using different functions (e.g., piecewise, interpolation, 
and analytic). Among these properties, only the thermal conductivity (k) 
is selected for this exercise. Thermal conductivity—k in W/(mK)—for 
water is a Piecewise function with the temperature—T in K—used as the 
argument (arg), meaning that the property is temperature-dependent. This 
method makes it possible to use the MATLAB functions to set the model 
properties, and then feed them into COMSOL Multiphysics. This approach 
provides the freedom to define any property relationship using the very 
versatile the MATLAB tools.

FIGURE 7.14.  Java script created in COMSOL Multiphysics to define materials.

Physics physics().create(“ht”, “HeatTransferInSolidsAndFluids”, “geom1”) 
is added as the next step, followed by the boundary conditions (bound-
ary heat source, convective boundary, temperature, inflow, and outflow) 
applied to the selected boundaries and domains (Figure 7.15). The con-
vective heat flux boundary condition, feature(“hf1”).set(“HeatFluxType”, 
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FIGURE 7.15. Java script created in COMSOL Multiphysics to define boundary conditions.

“ConvectiveHeatFlux”), is applied to the surfaces (1, 2, 9, 12) of Domain 2,  
with heat transfer coefficient and external temperature, defined by (“h”, 
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“10[W/(m^2*K)]”) and (“Text”, “300[K]”), respectively. The boundary heat 
source, (“bhs1”, “BoundaryHeatSource”, 2), is applied to the Surfaces (3, 4) 
in Domain 2, (“Qb”, “100[W/m^2]”). The temperature boundary condition 
of 500 K is applied to Surface 8 in Domain 1, (“temp1”, “Temperature-
Boundary”, 2), by (“T0”, “500[K]”). The temperature boundary condition 
is overwritten by the Inflow condition, which is applied to the Surface 8 in 
Domain 1, (“ifl1”, “Inflow”, 2). The upstream temperature is 300 K, (“Tu-
str”, “300[K]”). The outflow condition is applied to Surface 7 in Domain 1, 
(“ofl1”, “ConvectiveOutflow”, 2), which is where the flow leaves under the 
atmospheric conditions.

Mesh (mesh1) and study blocks (std1) are presented in Figure 7.16. The 
model is set as transient, model.study(“std1”).create(“time”, “Transient”). 
The results are stored in solution 1 (sol1). The fully coupled direct iterative 
technique is used to solve the model, (“fc1”, “FullyCoupled”), (“d1”, 
“Direct”), and (“i1”, “Iterative”), with the iteration as multigrid, (“mg1”, 
“Multigrid”). The solution parameters of the initial time, time step, and 
solution time are defined under the related node (“tlist”, “range(0, 1.5, 
30)”).

FIGURE 7.16.  Java script created in COMSOL Multiphysics to define mesh and solution.

Using the same methodology, the model results and the data related to 
selected nodes can be extracted in the Java format and analyzed in MATLAB. 
The MATLAB functions such as evaluateHeatFlux, evaluateHeatRate, 
evaluateTemperatureGradient, and interpolateTemperature then can 
be used to process the extracted data to obtain the results at arbitrary 
coordinates. Mesh data can be extracted and manipulated. To sum up, the 
extracted data are available as the MATLAB variables ready to be used with 
any MATLAB functions.
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Postprocessing the COMSOL Multiphysics data is also possible, using 
the same technique. Figure 7.17 presents the Java script developed related 
to a point graph. The Cut Point coordinates are defined by cpt1(0, 0, 0.075), 
represented by (“pointx”, 0), (“pointy”, 0), and (“pointz”, 0.075) functions. 
The 1D point diagram is associated with the cpt1 and (“cpt1”,“CutPoint3D”) 
functions, and shows the transient temperature versus the time at that 
point. The axis titles are also defined in this script—(“xlabel”, “Time(s)”).

FIGURE 7.17. Java script created in COMSOL Multiphysics to display transient temperature at a point.

Figure 7.18 presents the Java script that creates a line graph. The Cut Line 
3D is defined by cln1(0, 0, 0; 0, 0, 0.075), represented by (“genpoints”, new 
double[][]{{0, 0, 0}, {0, 0, 0.15}}). The 1D line diagram is associated with 
the Cut Line 3D cln1, (“cln1”, “CutLine3D”). The plot shows the variation 
of temperature along this line at the given time in the case of transient 
analysis.

FIGURE 7.18.  Java script created in COMSOL Multiphysics to display temperature variation along a line.



C H A P T E R8
The COMsOL heAT TrAnsfer  
PrOBLeM CAse sTUdies

This chapter presents several case studies related to heat transfer in 
pipes. These studies employ thermal-fluid models created using the 
COMSOL Multiphysics FEM commercial package with two add-

ons: the Heat Transfer Module and the CAD Import Module. These stud-
ies should be helpful in learning about the software; they range from less 
complex cases (a cylindrical pipe) to more complex ones (a cylindrical pipe 
with internal-external extended surfaces). All models are represented in 
3D; however, in one case, a validation is conducted to compare the results 
of the base condition (a 3D cylindrical pipe) with a 2D axisymmetric model 
of the same geometry. 

The physical system modeled is the same as that of the metal (copper) 
pipe through which hot water is flowing. The pipe’s exterior is exposed to 
atmospheric conditions with natural convection. The model considers both 
the flow of water and the heat transfer between water and the pipe solid. 
This interaction between a non-isothermal flow and a solid requires addition 
of a Conjugate Heat Transfer physics into the model. A stationary model is 
solved representing the state of the system after it reaches equilibrium. 
These cases are comparable to the case investigated within MATLAB with 
nominally one-inch diameter copper pipe (Section 6.1). However, the 
MATLAB model involved a greater degree of approximation.

The COMSOL Multiphysics model files are made available for most 
of the case studies presented in the following sections. The reader is 
encouraged to think about heat transfer concepts in these case studies, 
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review the model files, and make new scenarios by changing the variables, 
which they can then solve and post-process using the guidelines provided in 
this book. True learning happens only by patience and practice.

The next section introduces the overall process of modeling for these 
case studies; following that, the five case studies that investigate the effect of 
the extended surfaces are presented. The last section presents a comparison 
of the results. 

8.1  Modeling Heat Transfer in a Pipe—Overview of the  
Case Studies

The purpose of these studies is to compare the heat loss to the 
environment for the selected pipes. It is expected that pipes with greater 
area of extended surfaces will show a lower average temperature on the 
pipe wall. Effort was made to use pipe geometries with similar dimensions 
to make the comparisons possible. The base case scenario is a simple pipe 
(a hollow cylinder). The first enhancement is to make an internally finned 
pipe; next, an externally finned pipe, and then an internally-externally-
finned pipe. The final geometry is an externally-twisted-finned, rotini-
shaped pipe. 

For each geometry, the exterior surface area and other geometrical 
parameters are calculated to investigate the effect of adding the extended 
surfaces in the form of internal, external, and internal-external extended 
fins. 

8.1.1 Model Geometry
All pipe geometries were created in a dedicated CAD software 

(SOLIDWORKS) and exported as the *.stp files. These files were then 
imported into COMSOL Multiphysics, with import applied to both solids 
and surfaces. The absolute import tolerance was 1e-5, unless otherwise 
stated. The imported objects were checked and repaired for errors based 
on the above tolerance. A CAD Import Module or a specific CAD tool 
LiveLink Module are required to enable CAD model import.

Care is to be taken when importing the geometry data, ensuring the 
units are correctly set. The analyst will also have an option to scale the 
geometry dimensions when changing units or to keep the size unchanged. 
The Angular unit of degrees and Length unit of m were employed when 
importing the geometries. The analyst can always confirm any of the model’s 
dimensions using the Measure feature under the Geometry node.
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If required, it is possible to modify the imported geometry, taking 
advantage of the built-in features available in the COMSOL Multiphysics 
base module. For example, the geometry may be cut by a plane to remove 
one of the resulting volumes. To carry out more complex geometry 
operations, such as creation of fillets or advanced defeaturing, the Design 
Module is required. 

The imported part is a hollow pipe, with no material defined within 
its interior. However, to create the flow model within the pipe’s interior, 
a domain needs to exist there. This interior domain is created by carrying 
out a capping operation on the two ends of the pipe. To do this, the edges 
around the pipe opening are selected within the Geometry, Cap Faces node. 

The pipe geometry is oriented so that the pipe axis is aligned with the 
z-coordinate, with flow along the positive z-coordinate. Gravity is assumed 
to act along the negative y-coordinate. The x- and z-coordinates form the 
horizontal plane.

In each study, the domain volume and convective surface area are 
measured using the COMSOL built in geometry measuring tool. The pipe 
volume can be obtained by selecting the Measure feature by right-clicking 
on the Geometry node. Within the tool, the Geometric entity level is set to 
Domain, and the pipe (solid) domain is selected. The pipe volume refers to 
the volume of the pipe itself and not its interior space. 

The convective surfaces include all exterior surface excluding the 
end surfaces, since these surfaces are assumed insulated. The convective 
surfaces can be measured by selecting the Measure as above. Within the 
tool, the Geometric entity level is set to Boundary, and the pipe exterior 
surfaces are selected. 

8.1.2 Material Properties
The model includes two materials: the copper of the pipe and the water 

that flows through it. These materials are available in the built-in material 
database of COMSOL, and thus were added to the model from there. Their 
properties include, for example, temperature-dependent density for water. 
Materials can be added to the model at the global level or at the component 
level. In the former case, the material would then be referenced by each of 
the components. Thus, if any customization is done to it, the effect would 
propagate to all components. In this case, materials were added on the 
component level. Here, the component means the 3D model of the pipe 
geometry. Water is linked to the material properties of the fluid domain 
inside the pipe and copper is linked to the pipe (shell) domain.
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8.1.3 Model Physics
Conjugate Heat Transfer physics in the COMSOL Multiphysics Heat 

Transfer Module is selected to define and solve these problems, which is 
a hybrid model consisting of Heat Transfer in Solids and Fluids (ht) and 
Laminar/Turbulent Flow (spf) physics. The former physics are employed 
to model heat transfer within the solid domain (i.e., pipe with fins and the 
conductive shell containing the fluid), while the latter physics are selected 
to model the flow inside the channel. The two physics are interfacing under 
the Multiphysics node and create the Nonisothermal Flow model. 

8.1.4 Boundary and Initial Conditions
All pipe models are set up to represent the following conditions. The 

exterior surfaces are exposed to a constant ambient temperature (25 °C); the 
pipe initial temperature is 80 °C. Water flows within the pipe at a constant 
average speed of 50 mm/s and at initial temperature of 80 °C at the inlet. 
All the external (exposed) surfaces transfer heat by convection mechanism 
with the convection heat transfer coefficient of 10 W/m2K. The external 
end surfaces at the inlet and outlet areas are insulated (heating flux of  
0 W/m2). There is no internal heat source within the (pipe) solid domain 
(heat rate of 0 W/m3). All internal interfaces (the interface between the 
solids and fluids) are treated as walls in the flow models. 

The Reynolds number was considered when setting up the problem 
by selecting a flow velocity sufficiently low that a laminar flow will result. 
These studies focus on the heat exchange between the fins and the exterior, 
and thus complex turbulent fluid flow in the pipe interior is not considered 
here. The inlet velocity of 50 mm/s results in a Reynolds number of 1,420 
(< 2,300), which is associated with a laminar regime. The input parameters 
variable names and values are listed in Table 8.1. 

TABLE 8.1. Thermal model input parameters.

Parameters

Name Expression Value Description

density 1000[kg/m^3] 1000 kg/m3 fluid density

diam 0.995[in] 0.025273 m pipe diameter

dyn_vis (8.90/10000)[Pa*s] 8.9E-4 Pa.s fluid dynmaic viscosity

hc 10[W/(m^2*k] 10[W/m2K] heat convection coefficient

qf 0[W/m^2] 0 W/m2 heat flux

qfunc 0[W/m^3] 0 W/m3 heat generation
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Parameters

Name Expression Value Description

Reynolds density*velocity*
diam/dyn_vis

1,419.8 fluid Reynolds number

T_ambient 25[degC] 298.15 K ambient temperature

T0_aluminum 25[degC] 298.15 K aluminium initial tempeature

T0_water 80[degC] 353.15 K water initial temperature

time 120[s] 120 s solution time

toler 0.05 0.05 solution toleance

velocity 50[mm/s] 0.05 m/s flow velocity

The conditions described above are implemented within each physics node 
described below. 

Heat Transfer in the Solids and Fluids (ht) Node

(1)  Node root—Applied to the solid and fluid domains, and the reference 
temperature is set to T_ambient.

(2)  Solid—Applied to the solid (pipe and fins) domain. Relevant thermal 
material properties are taken from the materials added to the compo-
nent as described above.

(3)  Fluid—Applied to the fluid domain (water) inside the pipe. Relevant 
thermal properties are taken from the materials added to the compo-
nents. See Note 1.

(4)  Initial values—The initial temperature is set to T0_water for both solid 
and fluid domains.

(5)  Thermal insulation—Applied to both end surfaces of the pipe solid 
domain.

(6)  Heat flux—Convective heat flux of hc is applied to all exterior surfaces, 
with the ambient temperature set to T_ambient.

(7)  Inflow—The end surface of the fluid domain when the lower z-coordi-
nate value is selected and T0_water upstream temperature is applied 
to it.

(8)  Outflow—The end surface of the fluid domain when the z = 0 value is 
selected.
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Laminar/Turbulent Flow (spf) Node

(1)  Node root—Applied to the fluid domain (water). Compressibility is set 
to Weakly compressible flow (see Note 2). Include gravity is selected. 
Discretization of fluids is selected as P1 + P2 (see Note 3).

(2)  Fluid properties—Applied to the fluid domain and the applicable ma-
terial properties are taken from the materials added to the component 
as described above.

(3)  Initial values—Applied to the fluid domain uses a velocity field with a  
z-component equal to the velocity variable and pressure is set to that of 
the ambient (zero value).

(4) Wall—Applied to all interior pipe walls with a No slip wall condition.

(5)  Gravity—This volumetric force is introduced as the Acceleration of 
gravity that can have x-, y-, and z-components. The gravity is assumed 
to act perpendicular to the pipe’s longitudinal axis (z-coordinate), 
along the negative y-coordinate and thus a –g_const variable value is 
entered under the y-component. 

(6)  Inlet—Applied to the fluid domain end where the z-coordinate value 
is lower. The inlet boundary condition can be defined as one of Veloc-
ity, Pressure, Mass flow, and Fully developed flow. For the problems 
herein, the Velocity option is selected, and the Normal inflow velocity 
is set to the velocity variable value.

(7)  Outlet—Applied to the fluid domain end where the z-coordinate value 
is zero. The outlet boundary condition can be defined as one of Pres-
sure, Velocity, and Fully developed flow. For the problems herein, the 
Fully developed flow option is selected, and the Average pressure is set 
to that of the ambient (zero value). Also, the Compensate for hydro-
static pressure approximation option is selected since gravity is acting 
transverse to the flow direction.
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Notes (1)  A Fluid node is also included in the solid physics model in 
the Conjugate Heat Transfer cases. This means that both 
domains (solids and fluids) are included in the main phys-
ics (Heat Transfer in Solids and Fluids). Thus, the fluid 
domains are selected within the Fluid node above and in the 
Laminar Flow physics. In heat transfer models, temperature 
can be discretized using linear, Lagrange or Serendipity 
(quadratic, cubic, quantic, and quintic) elements for qua-
dratic or higher order discretization. The Isothermal Do-
main Interface in Heat Transfer in Solids and Fluids node 
are included; furthermore, the interface type can be selected 
as Continuity, Ventilation, Convective heat flux, Thermal 
insulation, and Thermal contact. However, in this case, 
the applicable boundaries become visible, and the rest are 
grayed out (not selectable) and since all of them are greyed 
out, the isothermal domain is not applicable.

(2)  When setting up the Laminar Flow model, the Compress-
ibility condition can be selected as either Incompressible, 
Weakly compressible, or Compressible with Ma < 0.3 
flows. Choosing an appropriate option may be able to 
improve the solution convergence in case difficulties are 
encountered. In this study, the Weakly compressible flow 
is assumed.

(3)  Fluid domains can be discretized using the first to the 
third order elements for the velocity and pressure fields. 
This can be controlled by selection of any combination of 
the Pi + Pj, where 1 £ i, j £ 3; i and j are the order of the 
elements for the velocity components and pressure fields, 
respectively. For example, P1 + P3 presents the linear 
elements for the velocity components and the third order 
elements for the pressure fields.

8.1.5 Meshing
Physics-Controlled mesh is selected for the problems presented herein 

with the element size setting that varies from Coarse to Finer, depending 
on the model. The choice of the mesh element size determines the number 
of nodes and elements in the model. Creating the mesh by selecting the 
Finer element size may result in about one-million elements (for the models 
presented herein), while selecting Coarse element size may result in two-
hundred thousand elements. 
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Choosing the Physics-Controlled mesh setting means that all the mesh 
parameters will be set automatically based on the physics used in the model, 
region type, model geometry (narrow regions, walls), and the element size 
selection from one of nine levels, ranging from Extremely Fine to Extremely 
Coarse.

To examine the mesh settings chosen by COMSOL, select the Sequence 
type setting and choose the User-controlled mesh instead. This will reveal 
a set of nodes under the Mesh node that define all the mesh parameters in 
detail. Any one of them can then be adjusted by the user. For each case 
study below, the maximum and minimum overall mesh size limits are 
reported; special mesh limits imposed on the fluid domain are reported, 
as well.

The purpose of these case studies is to familiarize the reader with the 
FEM techniques and establish a reference to compare heat transfer rates 
between different geometries. Thus, there is no need to create models with 
an excessively high number of nodes that may lead to very long solution 
times. To choose an appropriate setting, element size sensitivity analysis 
may be carried out with gradually decreasing size, starting from a coarse 
setting. As the element size is progressively decreased, selected solution 
output value can be compared between iterations; once no change is 
detected, the appropriate element size has been reached. 

8.1.6 Solution Settings
Heat Transfer in Solids and Fluids (ht) and Laminar Flow (spf) physics 

are connected through the Multiphysics node, which assembles them. The 
Nonisothermal node created under the Multiphysics node couples the 
solid-fluid interfaces by identifying the Flow (spf) and Heat transfer (ht) 
models. In these case studies, the Stationary Solver is employed. If Show 
Default Solver under the Stationary solution node is activated, the analyst 
can review the solution settings and implement any desired changes.

For these analyses, Direct Nonisothermal flow (merged) has been 
selected from the Linear Solver menu, AMG Nonisothermal flow, or 
iterative option, is also available. The disadvantage of the direct method 
is that all the matrices are solved simultaneously, and therefore it requires 
large computational memory resources compared to the iterative method. 
However, the latter approach is more likely to result in convergency issues; 
the Direct Solver approach is generally better in that regard. For the 
presented analyses, the former approach is helpful in obtaining solution 
convergence.
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If the Transient Solver is chosen, time-dependent solver settings such 
as Output times and Relative tolerance should be specified. The Output 
times can be defined by range(initial time, time step, solution time). The 
initial values of variables solved for may be chosen either as the Physics 
controlled, User controlled settings with the Initial expression, Solution of 
Zero solution, or the previously-run Study. As part of the settings for the 
Study node, the Information tab identifies the last computation time. The 
default Relative tolerance in the convergence setting is 0.005; however, this 
can be revised after reviewing the convergence plot. This plot shows the 
reciprocal of step size versus the time step for the time-dependent solver. 
The larger the step size is, the more the solution can advance, resulting in 
a smaller reciprocal step size. This means the smaller values are associated 
with better solution convergence. If the reciprocal step size remains large, 
it means that the solution is not converging. This can also be due to the 
accumulation of errors (residual errors) at each iteration step to the point of 
solution divergence. When a flow model is combined with the heat transfer 
model, convergence tolerance values may be affected.

8.2 Case Study 1—Pipe

8.2.1 3D Model Setup and Results
Case study 1 is the base study, where a pipe does not include any 

extended surfaces. The model parameters are presented in Table 8.1. 
The geometry used in this study is presented in Figure 8.1. It represents 
a copper pipe of 0.2-m length with nominal one-inch diameter. The inlet, 
where water enters the pipe, is located at z = -0.2-m and the outlet is 
at the opposite end at z = 0. The gravity vector points along the negative 
y-coordinate, which is perpendicular to the flow direction (Figure 8.2). 

 

FIGURE 8.1. Geometry of the not-finned pipe (dimensions in mm). 
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 (a) (b)

FIGURE 8.2. (a) Inlet, (b) Outlet.

Figure 8.3 presents the meshed geometry. The generated mesh had the 
overall maximum and minimum element sizes of 0.016 m and 0.002 m, 
respectively. The fluid domain and boundary maximum element sizes were 
0.00195 m and 5.81E-4 m, respectively, with the maximum element growth 
rate of 1.45. 

FIGURE 8.3. Mesh distribution for the not-finned pipe.

Figure 8.4 presents the mesh statistics for this problem. The Fine mesh size 
option is selected to mesh the entire geometry using the Physics-Controlled 
setting. The total number of elements is 637,366; the average element 
quality is about 0.7. On a 32 GB RAM, Intel® Core™ i7-10,700K 3.8 GHz 
Windows 10 computer, it required about 89 min to solve this stationary 
model, using COMSOL Multiphysics 5.6. The maximum physical memory 
required by the solution was 3.1 GB, which can be found under the Log tab.
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FIGURE 8.4. Mesh statistical data for the not-finned pipe.

Figure 8.5 presents the volume temperature contours. As a reminder, water 
enters the pipe at the inlet centered at (0,0,-0.2,)m and exits at the outlet 
at (0,0,0). Thus, the hottest area on the plot (80 °C) is on the lower left, 
where the inlet is located. The pipe exterior can be seen to progressively 
cool to about 79.2 °C, from the inlet to outlet, due to the convective heat 
transfer to the environment. 
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FIGURE 8.5. Volume temperature contours.

The next plots investigate the distribution of the temperature in the pipe’s 
interior. This can be done by looking at the surface contours or at the 
variation along any line in space. First, the plane of interest is created by 
the Cut Plane command under the Results / Datasets node. Then, a 2D Plot 
Group is created under the Results node, the previously defined surface is 
selected as the plot’s dataset, and a Surface plot type is added. The figures 
shown also display the fluid velocity streamlines. A line dataset selection 
is created similarly under the Results, Datasets node by the Cut Line 3D 
command. A 1D Plot Group is created and a Line Graph is added to it 
showing the variation of the temperature along this line.

Figure 8.6 shows the temperature contours and flow lines over the 
horizontal zx-midplane. The plot shows pipe walls being cooler than the 
fluid; the walls cool from left to right; a cooler region develops near the 
interior wall surface as the fluid flows from left to right. Details of the 
temperature variation over the transverse pipe section can be seen in 
the surface plots for the vertical transverse xy-plane located at the pipe’s 
midpoint (Figure 8.7). Observing the fluid flow streamlines, one can see 
circulatory flow, with the fluid descending along the left and right walls as 
it is cooled there and ascending through the pipe’s middle, forming two 
eddies. This shows the effect of adding to the model the gravity force along 
the negative y-coordinate.

Figure 8.8 shows the temperature contours and flow lines over the 
vertical yz-plane. The plot is zoomed to the outlet side of the pipe. Of 
interest is the observation that the flow streamlines are curving upwards 
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towards the exit. One can relate this behavior to the circulatory flow 
observed in the transverse section. As the cooled water flows along the side 
walls, it collects towards the bottom of the pipe, forcing upward the flow 
through the middle. Thus, the warmer central fluid passing through the 
midplane is effectively rising, as indicated by the flow lines. 

(a)

(b)
FIGURE 8.6. The zx-plane: (a) Selected cross-section for thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.



262 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.7. The xy-plane: (a) Selected cross-section for thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.
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(a)

(b)
FIGURE 8.8. The yz-plane: (a) Selected cross-section for thermal data, (b) Temperature contours at the 

selected cross section, including the streamline velocity field (outlet at z = 0).

More precise numerical data about the temperature variation can be 
obtained from the line plots. Figure 8.9 shows temperatures along three 
vertical (y-coordinate) lines placed along the diameter at the inlet, middle, 
and outlet of the pipe. The inlet profile shows a rectangular shape with 
the horizontal middle segment at 80 °C, specified by the inlet temperature 
boundary conditions. The middle and outlet profiles show a progressive 
reduction in the temperature near the walls, with a parabolic profile being 
developed. Near the exit, the temperature in the lower pipe wall is 79.05 °C. 
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Similar effects can be seen for the temperature profiles along the horizontal 
(y-coordinate) lines in Figure 8.10.

(a)

(b)
FIGURE 8.9. The y-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.
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(a)

(b)
FIGURE 8.10. The x-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.

To calculate the heat loss from the pipe to the environment, the heat flux 
across the exterior surfaces of the pipe needs to be integrated. To accomplish 
this, the Surface Integration node is added under the Results/Derived 
Values. Within the Surface Integration node, one selects the surfaces of 
interest and the variable to be integrated over these surfaces. In this case, 
there are two exterior surfaces, one facing downwards (surface 1) and the 
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other one upwards (surface 2), as shown in Figure 8.11. The variable to be 
integrated is the normal total heat flux (W), ht.ntflux. To select it, place 
cursor in the cell of the table found in the Expressions window, under the 
Expression column (Figure 8.11, inset) and click on the Insert Expression 
icon circled in the inset figure. Search for the variable name within the 
dialog box that appears. Then, click on the Evaluate button (indicated by 
the red arrow) in Figure 8.11. The result appears in the table below the 
Graphics window (indicated by the red square).

FIGURE 8.11. Normal total heat flux over surface 1 and surface 2.

The result of the above heat flux integration over the exterior surfaces is 
9.75 W. The heat rate per unit length of the pipe is obtained by dividing 
this value by the pipe length of 0.2 m to obtain 48.76 W/m. Comparing this 
value with that obtained in the MATLAB Case Study 1 in Section 8.1 above 
(49.4 W/m) for the same conditions, the COMSOL result is 1.3% smaller 
than that of the MATLAB model. One possible explanation for this small 
difference is that the MATLAB model assumed a fixed temperature BC 
on the interior pipe surface while in this COMSOL model water cools as it 
moves along the pipe length. This slightly reduces temperature difference 
between environment and the pipe and surface and should lead to a lower 
heat loss rate.
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8.2.2 Validation—Comparison with 2D Pipe Model
In this section, the 3D pipe model used in this case study is replaced 

with an equivalent 2D axisymmetric geometry. Solving the same problem 
with two different geometries and comparing the results provides validation 
for both approaches. As a reminder, the model input parameters are listed 
in Table 8.1. The solution takes about 1 min, which is considerably faster 
than that of the 3D model.

The 2D axisymmetric model is shown in Figure 8.12a. The inlet is 
located at z = 0 and the outlet at z = 0.2. The gravity force is not accounted 
for in this model because it assumed axisymmetric setup. The 2D free 
triangular mesh is generated with the Physics Controlled method. The 
Finer mesh size is used for the solid domain, which results in the maximum 
and minimum element sizes of 0.0074 m and 2.5E-5 m, respectively), and 
the Fine mesh size is used for the fluid domain (maximum and minimum 
element sizes of 5.0E-4 m and 1.43E-5 m, respectively). The boundaries 
between the fluid and solid domains (fluid-solid interface) are meshed using 
the Extra Fine elements (giving the maximum and minimum element sizes 
of 1.86E-4 m and 2.14E-6 m, respectively). The corners are refined using 
the element size scaling factor of 0.25. There are two boundary layers and 
maximum element growth rate is 1.25 (Figure 8.12b). The mesh consists of 
the total number of 57,217 elements, with the average element quality of 
about 0.9 (a high number).

 

 (a) (b)
FIGURE 8.12. The 2D axisymmetric geometry for the pipe presented in Figure 8.1:  

(a) Geometry, (b) Mesh.
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The model is solved in the stationary mode. The 2D revolved surface 
tempeature profiles are presented in Figure 8.13. The results of this 2D 
geometry are plotted using the revolution feature that rotates the solution 
through 360 degrees about the axis of symmetry (z-coordinate) to create 
a 3D representation that helps with visualization. These results show that 
the temperature variation for the entire pipe is between 78.7 °C and 80 °C. 

A comparison can be now made between the 2D and 3D model results. 
Figure 8.14 shows the temperature profiles along the pipe diameter at 
its middle (along the y-coordinate for the 3D model). The temperature 
distributions are similar but the 2D model predicts slightly lower pipe wall 
temperature of 79 °C versus the 79.3 °C for the 3D model. The heat rate 
per unit length of the pipe in this case is 48.52 W/m, which is only 0.5% less 
than that of predicted by the 3D pipe model.

 
(a)

 
 (b)

FIGURE 8.13. 2D temperature contours: (a) Included the arrow line and  
streamline velocity field, (b) Revolved.
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FIGURE 8.14. Comparison between the temperature profiles along the pipe diameter  
at the midplane for the 2D and 3D models.

8.3 Case Study 2—Internally-Finned Pipe

The geometry used in this study is presented in Figure 8.15. This case 
study investigates the effect of the heat dissipation by the pipe due to the 
addition of the extended surfaces to the pipe’s interior surface. This pipe 
geometry adds sixteen rectangular fins, about 2-mm wide and 2.5-mm high, 
protruding towards the interior.

FIGURE 8.15. Geometry of the internally finned pipe (dimenions in mm).

Figure 8.16 presents the mesh for the finalized geometry. For this mesh, 
the maximum and minimum element sizes are 0.03 m and 0.0056 m, 
respectively. The fluid domain maximum and minimum element sizes 
are 0.00378 m and 0.00116 m, respectively, with the maximum element 
growth rate of 1.6. The Coarse mesh size option is selected to mesh the 
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entire geometry based on the Physics-Controlled approach. There are a 
total of 1,385,085 elements, with the average element quality of 0.6. Note 
the increased number of elements compared to the previous simple pipe 
case; this effect can be attributed to the many narrow regions created by 
the interior fins, where finer mesh is required. On a 64 GB RAM, Intel 
Core i7-5,820 K 3.9 GHz Windows 10 computer, it required about 122 min 
to solve this stationary Conjugate Heat Transfer model using COMSOL 
Multiphysics 5.6, with a maximum of about 37 GB physical memory used.

Figure 8.17 presents the volume temperature contours. As in the 
previous case study, the exterior wall temperature decreases due to the 
convection heat transfer, from the inlet in the lower left to the outlet in the 
upper right. 

FIGURE 8.16. Mesh distribution for the internally finned pipe.

FIGURE 8.17. Volume temperature contours.



tHe CoMsol Heat transfer ProBleM Case studies • 271

Interior variation of the temperature on the horizontal midsection 
zx-plane in Figure 8.18a is shown by the temperature contour plot in 
Figure 8.18b. The appearance is like that of the simple pipe, except the 
walls at the midplane are thicker due to the fins protruding towards the 
interior. Figure 8.19b shows the temperature contours and flowlines on 
the transverse xy-plane in the pipe’s middle (Figure 8.19a). Here the fins 
protruding into the interior create cooler pockets; the flowlines indicate 
upward flow over most of the cross section, converging at a point near the 
upper end of the pipe.

(a)

(b)
FIGURE 8.18. The zx-plane: (a) Selected cross-section for thermal data,  

(b) Temperature contours at the selected cross section including the streamline velocity field.
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(a)

 (b)
FIGURE 8.19. The xy-plane: (a) Selected cross-section for thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.

Figure 8.20b zooms in on part of the vertical yz-plane near the pipe outlet. 
As in the simple pipe case, the flowlines for most of the fluid’s volume are 
rising upwards; the warmer water around the flow channel center appears 
to be pushed upwards by the cooler water collecting near the bottom.

Figure 8.21b shows the temperature profiles along the three vertical 
diameter lines at the inlet, middle, and outlet locations. The inlet and 
middle curves are symmetrical about their vertical center line, but the 
outlet curve shows a lower temperature on the left side, corresponding with 
the bottom of the flow channel, where the cooler water is concentrated. 
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The exterior wall temperatures in general are higher for this case that of 
the simple pipe. Near the outlet, the wall exterior is at 79.35 °C near the 
bottom (versus the 79.05 °C for the simple pipe) and 79.47 °C near the top. 
Three horizontal line temperature profiles are displayed in Figure 8.22b. 
The curves are symmetrical about the vertical center line and show exterior 
wall temperature at the outlet equal to 79.4 °C.

 

(a)

(b)
FIGURE 8.20. The yz-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.
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(a)

 (b)
FIGURE 8.21. The y-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.

(a)
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 (b)
FIGURE 8.22. The x-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.

Heat flux integration across the exterior surface gives the total heat loss to 
the environment equal to 9.79 W. This is equivalent to 48.95 W/m heat rate 
per unit length of the pipe. The result is very close to the simple not-finned 
pipe case (48.76 W/m), being only 0.4% higher.

8.4 Case Study 3—Externally-Finned Pipe

The geometry used in this study is presented in Figure 8.23. This case 
study investigates the effect of the heat dissipation due to addition of the 

FIGURE 8.23. Geometry for the externally finned pipe (dimenions in mm).
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extended surfaces to the pipe’s exterior. Sixteen fins of 2-mm wide and  
7.5-mm high are added. The pipe, to which the fins are joined, has the same 
dimensions as in Case Study 1. 

Figure 8.24 presents the meshed geometry. The maximum and 
minimum element sizes are 0.016 m and 0.002 m, respectively. The 
fluid domain maximum and minimum element sizes are 0.00292 m and 
8.72E-4 m, respectively, with the maximum element growth rate of 1.45. 
The Normal mesh size option was selected to mesh the entire geometry 
based on the Physics-Controlled approach. The total number of elements 
is 267,363, with the average element quality of 0.7. Note the much smaller 
number of elements in this mesh compared to the previous cases (637,366 
for Case 1 and 1,385,085 for Case 2). The Fine mesh size was chosen for 
Case 1 versus the Normal chosen here, and there are no corners and narrow 
regions within the fluid domain as in Case 2. On a 32 GB RAM, Intel Core 
i7-10,700K 3.8 GHz Windows 10 computer, it required about 8 min to solve 
this stationary Conjugate Heat Transfer model in COMSOL Multiphysics 
5.6, with a maximum of 8.4 GB physical memory used.

Figure 8.25 presents the volume temperature contours. The pipe and 
fins exterior are again cooling progressively from the inlet (bottom-left) to 
the outlet (top-right). However, there is a greater temperature difference 
between the water entering at the inlet (visible in red, at 80 °C) and the 
surrounding pipe/fins structure.

FIGURE 8.24. Mesh distribution for the externally finned pipe.
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FIGURE 8.25. Volume temperature contours.

The horizontal zx-plane displays much wider cool regions within the solid 
domain along its length (Figure 8.26b). The horizontal plane cuts through 
the fins and thus their full extent is visible. The transverse xy-plane at the 
pipe’s middle shows much stronger circulatory fluid motion within the left 
and right halves of the pipe (Figure 8.27b). This can be attributed to the 
greater temperature difference between the walls and the fluid in this case 
compared with the simple pipe case (at the pipe middle being 2.6  °C versus 
0.7 °C). The cooler water along the walls creates a stronger convective flow. 
Vertical yz-plane shows upward trending flow lines and the collection of the 
cooler water near the bottom of the outlet (Figure 8.28b).

The temperature profiles along the vertical lines (yz-plane) in Figure 
8.29b show developing asymmetry towards the outlet; at the end of the 
lowest fin near the outlet, the temperature is 76.85 °C; it is 77.15 °C at the 
end of the opposite fin, at the topmost point. Profiles along the horizontal 
lines (Figure 8.30b) show symmetry about vertical center line, with the fin 
end’s temperature of 77 °C at the outlet line.
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(a)

(b)
FIGURE 8.26. The zx-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.
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(a)

(b)
FIGURE 8.27. The xy-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.
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(a)

(b)
FIGURE 8.28. The yz-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.
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(a)

(b)
FIGURE 8.29. The y-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.
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(a)

(b)
FIGURE 8.30. The x-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.

Integration of the heat flux across all the exterior surfaces (pipe and fins) 
gives 34.75 W. Normalizing this value to the specific heat loss per pipe’s 
unit length (dividing by 0.2 m) gives 173.74 W/m. The value is significantly 
higher (by 3.56 times) than that of the simple pipe (48.76 W/m). This 
difference highlights the effectiveness of the extended surfaces in increasing 
the heat dissipation.
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8.5 Case Study 4—Internally-Externally-Finned Pipe

The geometry used in this study is presented in Figure 8.31. This 
geometry investigates whether having both internal and external fins 
increase the heat dissipation from the pipe. Sixteen interior and exterior 
fins structures employed in Case Studies 2 and 3 are combined here.

FIGURE 8.31. Geometry of the internal-external finned pipe (dimenions in mm).

Figure 8.24 presents the mesh for this geometry. It has the maximum and 
minimum element sizes of 0.03 m and 0.0056 m, respectively. The fluid 
domain and boundary maximum element sizes are 0.00566 m and 0.00174 m, 
respectively, with the element maximum growth rate of 1.6. The Coarse 
mesh size option is selected to mesh the entire geometry based on the 
Physics-Controlled approach, resulting in a total of 536,137 elements; 
the average element quality is about 0.6. Unexpectedly, the number of 
elements is much smaller than the 1,385,085 elements obtained for the 
mesh of geometry with the same interior fins (Case Study 2), which also 
used the Coarse setting. A possible explanation is that, for the current 
geometry, there is a greater area available for meshing within the solid 
part due to the addition of the external fins. This means larger elements 
can be used. Narrower regions require smaller element sizes. On a 32 GB 
RAM, Intel Core i7-10,700K 3.8 GHz Windows 10 computer, it required 
about 11 min to solve this stationary Conjugate Heat Transfer model in 
COMSOL Multiphysics 5.6, with a maximum of about 13.4 GB physical 
memory used.

Figure 8.33 presents the volume temperature contours that appear like 
the previous (external fins only) case. The horizontal zx-plane temperature 
contours follow the general trend of the previous solution; however, the fin 



284 • PraCtiCal Heat transfer

temperature near the inlet appears to be higher than that of the external fins 
only case (Figure 8.34b). The transverse xy-plane displays flow circulation 
pattern with an upward flow around the middle and a more chaotic flow 
around the walls, likely caused by the internal fin structures (Figure 8.35b). 
The vertical yz-plane shows the rising flowlines and a cooler pocket near 
the bottom of the outlet (Figure 8.36b). The temperature profiles along 
the pipe diameter (x- and y-coordinates) are presented in Figure 8.37 and 
Figure 8.38, respectively. From the horizontal profile at the pipe’s middle, 
one can observe the temperature at the end of the fins to be equal to  
78.9 °C. This is about 1.5 °C higher than 77.4 °C for the same location in the 
previous study (with the external fins only).

FIGURE 8.32. Mesh distribution for the internally-externally-finned pipe.

FIGURE 8.33. Volume temperature contours.
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(a)

(b)
FIGURE 8.34. The zx-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section.



286 • PraCtiCal Heat transfer

 

(a)

(b)
FIGURE 8.35. The xy-plane: (a) Selected cross section for the thermal data, 

(b) Temperature contours at the selected cross section.
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(a)

(b)
FIGURE 8.36. The yz-plane: (a) Selected cross section for the thermal data, 

 (b) Temperature contours at the selected cross section.
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(a)

(b)
FIGURE 8.37. The y-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.
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(a)

(b)
FIGURE 8.38. The x-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.

Heat flux integration over the exterior surfaces (pipe and fins) gives 35.73 W.  
Dividing this by the pipe length of 0.2 m, gives the normalized heat loss rate 
of 178.6 W/m. This is 2.8% higher than that of the heat loss calculated for 
the pipe with only external fins (173.7 W/m). Thus, while there is an increase 
in the heat dissipation due to the addition of interior fins, the difference is 
very small and may not justify the additional material and manufacturing 
expense. 
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8.6  Case Study 5—Externally-Twisted-Finned (Rotini) 
Channelled Pipe

The geometry used in this study is presented in Figure 8.39. The fin is 
0.2-m long, and its cross section can be inscribed in a 70.3 mm-diameter 
circle. The diameter of the internal channel is 25.3 mm. The case study 
presented herein is a variation of the rotini fin geometry that the author 
presented in her earlier work [4]. Rotini pastas are short and are corkscrew 
shaped. Rotini is an Italian term meaning small wheels. It is not only a shape 
that is geometrically interesting with its twists and turns, but it also works 
well as a pasta, with its large convective surface areas taking up all that 
sauce. If an observant reader ever made rotini , they would soon learn that 
these pasta shapes cool faster than other types, such as spaghetti (the long 
stranded thin ones) [59]. The rotini pasta piece can be considered a type of 
fin structure. One can conjecture that the fast cooling must be due to the 
very good heat dissipation properties of the rotini’s large convective surface 
area. This study aims to determine how this fin shape compares with the 
straight fins explored in the previous studies.

FIGURE 8.39. Geometry for the externally-twisted-finned, rotini pipe (dimensions in mm).

Figure 8.40 presents the meshed geometry. The maximum and minimum 
element sizes are 0.0172 m and 0.00214 m, respectively. The fluid domain 
maximum and minimum element sizes are 0.0048 m and 0.00143 m, 
respectively, with the maximum element growth rate of 1.45. The Fine mesh 
size option was selected to mesh the entire geometry based on the Physics-
Controlled approach. The mesh contains a total of 78,504 elements, with 
the average element quality of about 0.7. Surprisingly, the element count 
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here is much lower than that of the simple pipe case (637,366), which was 
also meshed with the same Fine setting. On a 32 GB RAM, Intel Core 
10,700 K 3.8 GHz Windows 10 computer, it took only 1 min to solve this 
stationary Conjugate Heat Transfer model in COMSOL Multiphysics 5.6, 
with a maximum of 3.4 GB physical memory used. The short solution time 
is due to the filleted smooth surfaces on the exterior, which are much easier 
to mesh than the sharp corners within the geometry, and due to a smooth 
interior surface, which improves the flow model solution convergence by 
reducing the flow disturbances.

Figure 8.41 presents the volume temperature contours, with fins 
appearing to have similar cool temperature through large part of the pipe’s 
length. The horizontal zx-plane temperature contours display cool exterior 
solid surfaces and parallel flow lines extending through the length of the 

FIGURE 8.40. Mesh distribution for the channeled externally-twisted-finned, rotini pipe.

FIGURE 8.41. Volume temperature contours.



292 • PraCtiCal Heat transfer

channel (Figure 8.42b). Transverse xy-plane plot in Figure 8.43b shows 
the low fin temperature and the well-developed circulation pattern, like 
the case with the external fins only. The vertical yz-plane in Figure 8.44b 
displays trends like those for Case Study 3 with the external fins only.

(a)

(b)
FIGURE 8.42. The zx-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.
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(a)

(b)
FIGURE 8.43. The xy-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section including the streamline velocity field.
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(a)

(b)
FIGURE 8.44. The yz-plane: (a) Selected cross section for the thermal data,  

(b) Temperature contours at the selected cross section, including the streamline velocity field.

Due to the curvature of the rotini fin, the vertical and horizontal lines used to 
sample the temperature distribution at the inlet, middle, and outlet locations 
do not pass through the full extent of the fins. However, the temperature 
contour plots shown indicate that there is very little temperature gradient 
within the highly conductive fins. The vertical temperature profile at the 
outlet shows the asymmetry seen in the earlier cases due to the cooler 
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fluid accumulation near the pipe’s bottom (Figure 8.45b). The horizontal 
profiles are symmetrical (Figure 8.46b) and show the temperature in the 
exterior fins at pipe’s middle to be 77.1—0.3 °C lower than that of the case 
with only exterior fins.

(a)

(b)
FIGURE 8.45. The y-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.
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(a)

(b)
FIGURE 8.46. The x-coordinate: (a) Selected lines along the pipe diameter,  

(b) Temperature profiles along the pipe diameter at the selected lines.

Heat flux integration over the exterior surfaces gives 32.3 W. Divided by the  
0.2-m length, the normalized heat loss per pipe’s unit length is 161.4 W/m. 
This heat rate is only 7.1% less than of the pipe with straight exterior fins 
(173.7 W/m). Thus, both fin types offer similar heat dissipation ability. 
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8.7 Comparison between Case Studies 1 to 5

The heat loss in the various pipe geometries examined is due to the 
convective heat transfer to the air surrounding the pipe. This heat transfer 
rate is proportional to the area over which it occurs and the difference 
in temperature between the surface and the environment. In all cases 
considered here, the surface temperature is very close to the 80 °C of the 
incoming water flow (80 °C). Thus, it is logical to conclude that the rate of 
this heat loss should be primarily influenced by the exterior surface area (for 
the same pipe length). The external area measurements were done for all 
the pipe geometries examined using the COMSOL geometry measurement 
feature, as explained in Section 8.1.1, and the results are listed in Table 8.2. 

TABLE 8.2. Pipe area and volume for the presented case studies.

Fin Type
Volume 

(m3)

Exterior 
Surface 

(m2)

Interior 
Surface 

(m2)

Total  
Surface  

(m2)

Exterior 
Surface/
Volume 
(1/m)

Interior 
Surface/
Volume 
(1/m)

Not-finned 2.79E-05 0.0179 0.0159 0.0341 643.09 568.73

Internal Fin 4.37E-05 0.0179 0.0316 0.0500 410.93 723.97

External 
Fin 7.61E-05 0.0662 0.0159 0.0828 869.32 208.51

Internal-
External 
Fin

9.19E-05 0.0662 0.0316 0.0987 720.15 344.10

Rotini 9.67E-05 0.0620 0.0159 0.0788 641.03 164.17

Another quantity that can be of interest to calculate, and is included in the 
table, is the ratio of the exterior surface area to the volume of the pipe. This 
can give an indication of how efficiently the finned structure achieves the 
heat dissipation relative to the total volume of the structure. The higher the 
ratio, the more efficient the structure is in terms of its use of materials and 
consequently cost and weight. The same table also lists other geometrical 
characteristics extracted from the geometries. 

Figure 8.49 compares the exterior surface areas of all the pipes. The 
not-finned and internal fin pipes both have the same areas. The external 
only and external-internal fin pipes have the same, but much larger, external 
areas. The rotini fin pipe has a slightly smaller area (by 6.3%) than that 
of the pipes with straight external fins. The heat rates per unit length are 
summarized in Table 8.3 and plotted for comparison in Figure 8.48. Similar 
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variation in the heat rates as that in the external area can be observed. The 
chart shows that the heat rate per unit length is the highest for the internal-
external fin pipe (178.6 W/m), followed by that of the external fin pipe 
(173.7 W/m). The rotini fin pipe takes the third place, with 161.4 W/m.

FIGURE 8.47. Comparison between the exterior surface areas for the case studies.

 

FIGURE 8.48. Comparison between the heat rates per unit length of the pipe for the case studies.
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FIGURE 8.49. Heat rate per unit length of the pipe versus the exterior surface area for the case studies.

TABLE 8.3. Heat rate comparisons between the case studies.

COMSOL
Heat Rate  

(W)

Heat Rate  
perUnit 

Length (W/m)

Change in  
Heat Rate 

(W/m)

Exterior  
Surface 

(m2)

Not-finned 9.75 48.76 0.0% 0.0179

Internal Fin 9.79 48.95 0.4% 0.0179

External Fin 34.75 173.74 71.9% 0.0662

Internal- 
External Fin 35.73 178.64 72.7% 0.0662

Rotini 32.28 161.40 69.8% 0.0620

MATLAB 9.88 49.40 1.3% 0.0179

The relationship between the normalized heat rate and the exterior surface 
area can be better visualized by plotting one against the other (Figure 8.49). 
For the not-finned and the internal fin pipes, the heat rates are very similar, 
with the identical exterior surface areas, and so the points overlap. 

While the points on this chart are clustered in two separate groups (not-
finned and internal fin on the left and the rest on the right), a linear fit 
shows a very good correlation, confirming the hypothesis proposed above.

Furthermore, one can numerically verify the above relationship by 
using the equation for convective heat transfer, Equation (158), to relate 
the two parameters plotted in Figure 8.49—the heat rate per unit length 
and the exterior surface area. Let the former be Qsp and the latter be Aext. 



300 • PraCtiCal Heat transfer

Then, using Equation (158), one can relate these two quantities as follows:

 Qsp = [hc(Text - Tamb)][Aext/L] (158)

Evaluating the multiplier of the Aext/L in the above linear relationship, 
one obtains 525 W/m, by assuming a 77.5 °C average external pipe surface 
temperature. This number is very close (within 0.5%) of the fitted line slope 
of 522.7 in Figure 8.49, confirming the accuracy of the hypothesis. 

Figure 8.50 graphically compares the surface areas-to-volume ratios. 
The highest value is for the external fins only pipe. Most values are in the 
same range, except for the internal fin pipe, which shows a lower value due 
to the extra volume added by the internal fins that do not contribute to the 
exterior surface area.

FIGURE 8.50. Comparison between the convective surface area-to-volume ratios for the case studies.

End Note

 [59] https://pastafits.org/pasta-shapes/ 



C H A P T E R9
exerCises

Three sets of exercises are presented in this section. The first set 
contains problems related to water flow within a pipe, like the case 
studies presented earlier. The second set includes problems with a 

variety of geometries and boundary conditions, as well as problems related 
to the radiative energy transmission and absorption. The third set involves 
solving the problems introduced in the case studies using a different model-
ing tool than the one used earlier, and then comparing the results obtained 
to those that of the prior case studies.

9.1 Heat Transfer in a Pipe Exposed to the Solar Radiation

Like the case studies presented in this book, this section’s exercises 
model water flowing through a pipe. To model the thermal response of this 
model accurately, a conjugate heat transfer model was developed.

Models are presented with increasing levels of complexity. Since the 
pipe is axisymmetric, if all the boundary conditions are also axisymmetric, 
a 2D axisymmetric model can be employed. However, a 3D model should 
be selected if non-axisymmetric boundary conditions exist. For example, if 
a pipe is exposed unequally to the solar radiation, a 2D axisymmetric model 
would not be suitable. If the flow within the pipe is modeled, the interface 
between the interior wall surface and fluid must be identified as a Wall in 
the flow model setup.

The cylindrical pipe is made of aluminum; it is 100-mm-long, with 
an inside diameter of 55 mm and outside diameter of 65 mm. The pipe 
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exterior is exposed to the solar radiative energy specified in each exercise. 
The ambient (atmospheric) conditions are 25 °C and 1 atm. The pipe’s 
initial temperature is 25 °C. The inlet water velocity is 15 mm/s, and its 
temperature is 35 °C. Water leaves the pipe at a fully developed regime and 
atmospheric pressure.

A transient solution is required for all problems. The 2D axisymmetric 
geometry is presented in Figure 9.1a. Figure 9.1b shows the line profile 
and Figure 9.1c shows the points for which the sample solutions are given 
in the exercises.

  

 (a) (b)

 (c)
FIGURE 9.1. (a) 2D axisymmetric geometry, (b) Sample line profile, (c) Sample points.
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9.1.1 Exercise 1—Constant Heat Flux and Single Surface
Obtain a transient temperature solution for the cylindrical pipe 

described in the introduction above. Use the 2D axisymmetric model shown 
in Figure 9.1a. All external cylindrical surfaces are exposed to the scattered 
radiation from the sun and to the ambient conditions. The exterior surfaces 
transfer heat by convection mechanism with the convection heat transfer 
coefficient of 10 W/m2K. 

The pipe exterior surface emissivity is 0.8. The solar radiation intensity 
reaching the atmosphere at this latitude and time is equal to 1,200 W/m2. 
Assume that this is a cloudy day, with the solar light scattered and with 
35% of the incoming solar radiated energy absorbed by the moist air before 
reaching the modeled object.

Sample Solution Result: Presented in Figure 9.2 is a sample solution 
output that shows the radial variation of the temperature along the 
transverse midplane (Figure 9.1b) of the pipe at 1 min and 10 min.

FIGURE 9.2. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.2 Exercise 2—Constant Heat Flux and Multiple Surfaces
For the problem described in Exercise 9.1.1, present a transient solution 

in which top, bottom, and end surfaces are exposed to the radiated energy 
from the sun (1,120 W/m2) absorptivity of these surfaces is 0.9. Compare 
the total heat absorption by the pipe in this case study with that of the 
Exercise 1. 
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Sample Solution Result: Figure 9.3 shows the sample solution output 
for the radial temperature variation along the transverse midplane (Figure 
9.1b) of the pipe at 1 min and 10 min.

FIGURE 9.3. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.3 Exercise 3—Spatially Variable Radiative Heat Flux
For the problem described in Exercise 1, if the top, bottom, and end 

surfaces are exposed to the radiated energy from the sun (1,120 W/m2), 
present a transient solution, and predict the temperature profiles along the 
pipe radius and length after 120 s. Assume that 25% of the sun’s radiated 
energy is absorbed equally by all surfaces. Choose an appropriate model 
type for this case. Can one use the 2D axisymmetric model or is the full 3D 
model required? Is it possible to take advantage of any symmetry to reduce 
the model size or dimension?

Sample Solution Result: Figure 9.4 shows the sample solution output 
for the radial temperature along the transverse midplane (Figure 9.1b) of 
the pipe at 1 min and 10 min.
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FIGURE 9.4. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.4 Exercise 4—Variable Ambient Temperature
For the problem described in Exercise 1, assume that the top, bottom, and 

end surfaces are exposed to the radiated energy from the sun (1,120 W/m2),  
and 25% of the radiated energy is absorbed equally by all surfaces. Assume 
that the ambient temperature increases linearly from 25 to 35 °C during 
10 min, beginning from the start of the modeled time. Present a transient 
solution that predicts the transient temperature over an extended time 
interval during which the system has nearly reached the steady-state. 
Predict the heat flux from the upward and downward interior surfaces. Plot 
the radial temperature at the time the steady condition is reached.

Sample Solution Result: Presented in Figure 9.5 is a sample result 
showing how the temperature varies over time at two points located at 
the fluid and pipe wall centers located in the middle of the pipe’s length 
(Figure 9.1c). As a reminder, note that the pipe thickness is 5 mm, and the 
external diameter is 65 mm.
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FIGURE 9.5. Transient temperature profiles in the middle of the  
fluid and pipe at the fluid and pipe centers.

9.1.5  Exercise 5—Variable Heat Convection Coefficient and Ambient 
Temperature
For the problem described in Exercise 1, assume that the top, bottom, and 

end surfaces are exposed to the radiated energy from the sun (1,120 W/m2),  
and 25% of the radiated energy is absorbed by all surfaces, except one of the 
pipe’s ends is partially shaded and thus only receives 10% of the radiated 
energy. The top and bottom surfaces as well as the other end of the pipe 
receive equal amount of energy. 

Assume that the ambient temperature increases linearly from 25 to  
35 °C in 10 min. The heat transfer convection coefficient varies linearly 
during the same time as well, increasing from 5 to 15 W/m2K. Present a 
transient solution, after reaching the steady conditions to predict the heat 
flux from the upward and downward facing surfaces. Identify the time at 
which the temperature stabilizes, within 2% of the steady value. Calculate 
the heat flux at the bottom of the pipe when the solution becomes steady.

Sample Solution Result: The sample solution output is presented in 
Figure 9.6 along the transverse midplane (Figure 9.1b) of the pipe at 1 min 
and 10 min. 
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FIGURE 9.6. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.6  Exercise 6—Temperature-Dependent Thermophysical and Ambient 
Properties 
For the problem described in Exercise 1, the ends of the pipe are 

partially shaded and only receive 10% of the radiated energy. The top 
and bottom surface emissivities are 0.75 and receive only 75% of the 
sun’s radiated energy of 1,120 W/m2. The thermal conductivity of the 
pipe increases linearly 0.5% for every degree Celsius above the ambient 
temperature of 25 °C, from 5 to 15 W/m2K and then remains constant. At 
the ambient temperature, the conductivity is equal to 201 W/mK. 

The heat capacity of the pipe increases linearly 1% with every degree 
Celsius temperature increase, from 25 to 225 °C and then remains constant. 
The heat capacity at the ambient temperature (25 °C) is 922.5 J/kgK.  
Assume that the ambient temperature increases linearly from 25 to 35 °C 
over the first 10 min and then remains constant. The heat transfer convection 
coefficient varies linearly during the same time as well, increasing from  
5 to 15 W/m2K. 

Present a transient solution, after reaching the steady conditions 
to predict the heat flux from the upward and downward facing surfaces. 
Identify the time at which the temperature stabilizes. Calculate the heat 
flux at the upward and downward surfaces of the pipe when the solution 
becomes steady.

Sample Solution Result: The sample solution output is presented in Figure 
9.7 along the transverse midplane (Figure 9.1b) of the pipe at 1 min and 
10 min.
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FIGURE 9.7. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.7 Exercise 7—Non-Axisymmetric Model
For the problem described in Exercise 6, the water temperature 

increases linearly from 35 to 55 °C over the first 10 min.

Sample Solution Result: A sample solution is presented in Figure 9.8 along 
the transverse midplane (Figure 9.1b) of the pipe at 1 min and 10 min.

FIGURE 9.8. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.
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9.2 Heat Transfer in Various Geometries

9.2.1  Exercise 8—Heat Transfer from a Pipe with  
Extended Surfaces
In this exercise, the effect of extended surfaces on the heat transfer 

is investigated. The intention is to validate the hypothesis that the heat 
transfer rate from the pipe’s exterior surface is linearly related to the 
extended surface area. 

Create a pipe with four 1.5-mm-thick straight fins, equally distributed 
around the pipe exterior, each fin of geometry like that in Case Study 3 in 
Section 8.4. The pipe material, dimensions, and the boundary conditions 
are the same as those of Case Study 1 in Section 8.1 (Figure 8.1). Adjust 
the fin length so that the exterior surface area is twice that of the pipe in 
Case Study 1. Represent the water flowing through the pipe by a fixed 
interior pipe temperature of 80 °C. Compare the result obtained with that 
of predicted by the linear fit in Figure 8.49.

9.2.2 Exercise 9—Heat Transfer from a Pipe in a Heat Exchanger
A 150-mm long aluminum pipe with an external diameter of 30 mm 

and internal diameter of 25 mm is located inside a heat exchanger. The 
pipe’s exterior surface is exposed to a constant temperature of 95 °C. Water 
at 10  °C enters the pipe at one end with a flow velocity of 5 mm/s. Water 
leaves the pipe at the atmospheric conditions. The initial temperature for 
water and pipe is 10  °C. Perform a transient analysis and predict the water 
temperature versus the time at three points located at the distance ratios 
of 0.5, 0.75, and 0.95 of the pipe’s length from the inlet, along the pipe’s 
center axis. Calculate the average water temperature at the outlet.

Sample Solution Result: A sample solution is presented in Figure 9.9b along 
the transverse midplane (Figure 9.9a) of the pipe at 5 min. The average 
water temperature at the transverse midplane is 45.2 °C.
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 (a) (b)

FIGURE 9.9. (a) Line profile, (b) Radial temperature profiles in the middle of the pipe after 5 min.

9.2.3 Exercise 10—Heat Transfer from a Solid Cylinder
A glass (silicate) cylinder with a diameter of 55 mm and length of 100 

mm is taken out of a furnace and is at the initial temp of 700 °C. The cylinder 
is exposed to the ambient conditions. Model how the cylinder is cooling. 
(a) How long will it take for the maximum temperature in the cylinder to 
reach 100 °C? Incorporate the radiative heat transfer; assume the emissivity 
of 0.9 from all the emitting surfaces. (b) How are the results affected if 
the radiation is neglected? (c) Investigate the effect of introducing forced 
convection, through a parametric study, with the convection coefficient 
values of 10, 20, and 30 W/m2K.

Sample Solution Result: A sample solution is presented in Figure 9.10 along 
the z-coordinate at the midplane (Figure 9.9a) of the cylinder at 2 min and 
10 min.
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 (a) (b)
FIGURE 9.10. (a) Line profile, (b) Axial temperature profiles in the middle of the  

cylinder after 2 min and 10 min.

9.2.4 Exercise 11—Energy Absorbed in a Cavity
The absorption coefficient of the interior surface of a black-body 

cavity located in an environment at the standard conditions is 0.25. 
Only 3% of the energy hitting the interior surface is transmitted to the 
environment (Figure 2.9). Assume that radiant energy beam is directed 
through a 1-mm diameter hole into the sphere, remaining inside it, until 
its energy is fully dissipated. Calculate: (a) The number of times the beam 
hits the interior surfaces until 99% of the initial energy is absorbed by the 
cavity; (b) The number of times the beam hits the interior surface until its 
energy is at 5% of the initial value; and (c) The total energy leaked to the 
environment outside the sphere.

Sample Solution Result: A sample solution is presented in Figure 9.11.
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FIGURE 9.11. Solution sample for the radiated energy versus the number of number of reflections.

9.3 Modeling Approach Comparisons

9.3.1  Exercise 12—The MATLAB Heat Transfer Problems Solved with 
COMSOL 
For the MATLAB case studies presented in Chapter 6, create models in 

COMSOL that represent the transverse cross-sections of the pipes. Assume 
the same materials and exterior boundary conditions as were used in the 
studies. Assume a constant temperature of 80 °C for the pipe’s interior 
surfaces. List the simplifying assumptions if any were required to complete 
the analyses. Estimate the heat loss per unit length of the pipe for these 
models and compare them to that of the MATLAB.

9.3.2  Exercise 13—The COMSOL Heat Transfer Problems Solved with 
MATLAB 
For the COMSOL case studies presented in Chapter 8, create models in 

MATLAB that represent the transverse cross-sections of the pipes. Assume 
the same materials and exterior boundary conditions as were used in the 
studies. Assume a constant temperature of 80 °C for the pipe’s interior 
surfaces. List the simplifying assumptions if any were made to complete 
the analyses. (a) Estimate the heat loss per unit length of the pipe for these 
models and compare to that of the COMSOL. (b) Vary the interior pipe 
temperature from 75 to 85  °C and plot the heat loss rate versus the interior 
temperature. Is there a point where the predicted heat loss rate matches 
that of the COMSOL?
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9.3.3  Exercise 14—The MATLAB and COMSOL Heat Transfer Problems 
Solved Analytically
Using an approach like that employed in Section 6.2.3, develop 

solutions to the MATLAB and COMSOL Multiphysics models presented 
in the Section 9.1 exercises above. You can also try to apply any of the 
analytical approaches including the ones described in Appendix A. State 
the simplifying assumptions when attempting the problems analytically. 
Compare the analytical results to those of the MATLAB and COMSOL 
solutions.





C H A P T E R10
LeAn six sigMA iMPLeMenTATiOn

Projects or product lifecycles start with the idea conception and end 
when they are fully operational, with the last stage encompassing 
product disposal. The main objective for such a cycle should be add-

ing value to the company’s bottom line, creator, consumer, and environment 
(i.e., all involved). For the products or processes to improve, the baseline 
characteristics should be identified, or measured; otherwise, the deviations 
from the initial state will not be revealed. If these historical data are collect-
ed and organized in a meaningful fashion, past, current, and future trends 
can be identified. This way, the producer can evaluate the tipping points of 
the trends and make educated decisions regarding product management. 
You may have noticed that some products face a quicker decline than oth-
ers after they become mature. The maturity has different levels for differ-
ent products—even products within the same category do not follow the 
same trends. Developing effective methodologies to make this assessment 
possible are important steps as part of product improvement cycle.

10.1 Introduction to the Concepts

The Lean Six Sigma concepts provide tools to achieve such optimization 
by making it possible to measure process progress, quantify the deviations 
from the baseline, and predict its effects on the process trend. In these 
studies, the three characteristics to consider are quality, time, and cost. 
Internal and external surveys are conducted to determine how a service or 
product has performed, how it has progressed in terms of usefulness, and 
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how successful it has been to attract and to maintain the market support. 
Having said that, the majority of the products that are both wanted and 
needed may not make it in the long run for the lack of support from their 
environment. Supply and demand are inversely related; therefore, in a 
healthy organization, meritocracy should be the priority when introducing 
a product. This is directly related to the culture of the place. If the culture 
is not conducive to such vision, neither good products nor good people can 
thrive or survive. 

Empirical statistical techniques are used to analyze the collected 
qualitative and quantitative data. These data are then to be analyzed to 
identify the critical-to-quality characteristics or the variables that serve 
as input to the process model. This approach also helps to isolate those 
variables that are trivial and should be eliminated or emphasized less in 
the decision-making process. There are occasionally qualifying factors that 
affect the decision, such as ethical considerations, which will be discussed 
later in the concluding remarks.

The concept of a quantifiable study based on critical variables can 
be explored further by the example relevant to the topic that currently 
occupies most of the world: COVID. Most of the world is dreaming of 
returning to their normal lives, and vaccination is perhaps the way to get 
there. Consider then the vaccination process. Vaccination sites are set up, 
information about them is posted on-line, and so people can register for an 
appointment to have the vaccine product administered to them. Suppose 
that the authorities in charge of a particular region plan to have 1,000,000 
people vaccinated within 90 days of the product’s release. Assuming a 
constant vaccination rate, each day, an equal number of doses would be 
administered by the health professionals. 

Administrators record the people who received the vaccine, keeping 
track of the daily delivered dose numbers. For the first couple of weeks, the 
vaccination process is going as planned. Imagine then that after two weeks, 
something goes wrong: The infection rate that was under control seems to 
experience a reverse trend, with the rate of infections increasing. This change 
can only be observed because this process is being monitored. Further 
investigation shows that new virus variants, with increased transmission 
rates, have been discovered circulating within the population. The officials 
now understand what has happened, including the human factor of some 
people losing their trust in the vaccine product’s effectiveness—they 
believe it does not work as expected. To address the issue, either the current 
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vaccine is to be modified, a new one is to be introduced to the market, or 
one must accept the associated risks and carry on with the current vaccine.

From the consumer point of view, they can choose to follow or not to 
follow the suggested hygiene regimens, stay away from the populated places, 
and comply with the posted public health protocols. Assume the infection 
rates continue rising, and people know about it because of the accurate 
recordkeeping system. If the initial reasoning has not changed, the officials 
may start looking into how people are dealing with the situation. If people 
keep organizing large parties, which are known to spread the virus, then they 
are the main source of the problem. In other words, for whatever reason, 
the disease control trend has deviated from the set path, and the variation 
is significant. It is then concluded that something is not working with the 
current approach and a correction should be made as soon as possible to be 
able to experience the normalcy again soon. One can then propose measures, 
such as only allowing remote interactions that use on-line technologies.

The same approach can be brought to engineering applications. 
Engineers decide upon a target value and strive to achieve it by: (a) 
Knowing that the improvement is necessary and feasible; (b) Identifying 
the areas in which the improvements are needed; (c) Deciding if the 
improvements can be made; (d) Determining if the enhancements should 
be made; (e) Measuring or predicting the maximum rate of return in the 
identified improvement areas; (f) Analyzing how the changes affect the 
overall bottom line; (g) Refining the methodologies to introduce revisions 
by making educated decisions; (h) Controlling the output by monitoring 
the process; (i) Standardizing the processes and establishing new best 
practices; and (j) Integrating the methodologies throughout the process(es) 
or operation(s) by allocating appropriate resources, such as expertise, time, 
and funding. 

The successful product of this effort is an improved relationship between 
the cost, quality, and time achieved by eliminating the unnecessary steps 
(wastage or redundancy)—the visible or hidden steps that add no value to 
the experience [60]. The main potential sources of waste are Transportation, 
Inventory, Material, Waiting, Overproduction, Overprocessing, Defects, 
and Skills (TIMWOODS). Being responsible citizens, engineers strive to 
reduce waste to the extent possible to respect the (a) nature, (b) people, 
(c) surrounding world, including the resources they indirectly interact with, 
and (d) the immediate environment. The value entitlement defines this 
interaction in the form of services, products, or experiences, processes, and 
the responsibilities of individuals to respect the said steps.
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Lean Six Sigma defines quality as the state of the realization of the full 
value of the entitlement in all aspects of the relationships. Entitlement is 
the right value of the expectation, which takes the form of utility (form, fit, 
and function), access (volume, time, and location), and worth (economical, 
emotional, and intellectual). Entitlement is what one should obtain given 
the available resources. It is the rightful level of expectation of every aspect 
of a relationship.

One way to implement Lean Six Sigma is to design smart experiments. 
Saying smart here not only means a synonym for clever, but it is also a 
memory aid, standing for Specific, Measurable, Attainable, Relevant, and 
Timely (SMART): 

 (1) Specific: One knows exactly what they will be doing—the scope is de-
fined clearly.

 (2) Measurable: One would be able to collect good quality data.

 (3) Attainable: Everything one plans to do is within their capabilities and 
they are aware that there are things out of their control that may  
interfere with the process.

 (4) Relevant: The project addresses some of the needed deficiencies and 
its usefulness is confirmed.

 (5) Timely: It can be completed within an acceptable or set timeframe.

For example, one can try to apply these considerations to the modeling 
work reported in this book, where thermal models were developed using 
three methodologies.

 (1) S: The model geometry, boundary conditions, and desired results are 
clearly defined: temperature at specific locations and times needs to be 
predicted.

 (2) M: The MATLAB PDE, COMSOL Multiphysics FEA, or analytical 
tools can be employed to calculate spatial-temporal data within a rea-
sonable accuracy. 

 (3) A: The infrastructure for the three possible tools is in place (i.e., the 
required software is available, the user has the needed skills, after 
reading this book, and the computer has adequate memory); however, 
not all the infrastructure is available, neither is the expertise to use it 
professionally.
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 (4) R: It is known why the temperature information is needed and how it 
will benefit the project.

 (5) T: Some of the tools are available on-site, but there are uncertainties 
(e.g., the solution may take too long, there is not enough computer 
memory available, the processor is not sufficiently powerful, or if they 
do not have the skills to solve the problem in time). The reservations 
are related to the tool’s costs, human resources, and equipment. This 
step should be carefully investigated, and the pros and cons identified.

Let us assume that the company decides to use one of the three analysis 
tools; they find that the results cannot be interpreted due to the lack of 
expertise. The root cause analysis should be performed so that the source 
of the error can be identified. Brainstorming may be used to start this 
process. The ideas generated by brainstorming that examine the process 
and methodology can be organized by means of the 5S methodology (Sort, 
Set in order, Shine, Standardize, and Sustain). 

Imagine you organized your graduation party. You brought all the 
supplies: the teacups, plates, cutlery, napkins, bowl, cake, drinks, and party 
hats. After the party, you were left with cleaning up the premises. It looked 
like an intimidating proposition, but you remembered the 5S methodology 
you learned during your Lean Six Sigma training and decided to apply the 
knowledge to this scenario as follows:

 (1) Sort: You sort items into appropriate categories and identify which 
ones you need to deal with immediately and which ones you can take 
care of at a future time.

 (2) Set in order: You take those items that require immediate attention 
and separate them into categories, such as to donate, recycle, throw 
away, and stored away.

 (3) Shine: You clear the premises to create an area where you can move 
and work safely.

 (4) Standardize: You make a note of your procedure so that you can repeat 
it later when similar circumstances arise.

 (5) Sustain (safety): You verify that the developed procedures follow the 
regulations (premises, organization, city, and country), can be easily 
followed, and are therefore sustainable. Furthermore, the new stan-
dards are safe to adhere to and respect the well-being of the parties in-
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volved. For this reason, design standards were developed that include 
systems of measurements and acceptable tolerances. 

10.2 Good Practices

The term best practices is a well-known expression in a variety of 
engineering disciplines in which the product CDIO (Conceive, Design, 
Implement, and Operate) lifecycle concept is used. When working on 
a model, analysis, or process of any kind, a variety of techniques may be 
employed, revised, and expanded upon. Implementing good practices is a 
systematic approach for planning, executing, and reporting design-related 
tasks to comply with certification requirements. The term best practices 
is the one most used. However, the author believes there are never best 
practices. There are only good practices that may be obsolete tomorrow and 
these will be replaced by more effective ones at a forward-thinking company 
or be still held (knowing that they are not effective, for a backward thinking 
company).

After recognizing the parameters affecting the process or product 
outcome, tests may be conducted and their results may be selected for 
further review. Good practices are more likely to lead to a useful outcome. 
In general, sensitivity analyses characterize the rate at which the dependent 
variables (outputs) change as the function of the significant critical variables 
(inputs). Select the most important contributing items, the ones that make 
the most impact—the few critical-to-quality variables—and eliminate the 
rest that are trivial. Improving processes and designs is an ongoing challenge. 
This process ensures performance improvements and the elimination of 
waste, while focusing on critical-to-quality characteristics. The concept of 
waste was introduced as part of the Toyota Production System that created 
management strategies where every employee was empowered to reduce 
waste or muda, a Japanese term for futility, uselessness, and wastefulness. 
The concept is also part of the Lean Manufacturing concepts.

When designing experiments, create a table encompassing the critical 
variables and decide on the tests and the number of repeats. The rows (m) 
of the table are associated with the experiments and the columns (n) with 
the critical process parameters. You may decide to run experiments for 
the complete sets of variables along with their combinations (m  n); for 
example, for two and three sets of process parameters you can set up six 
sets of experiments. The effect of each critical variable on the dependent 
variable can then be analyzed using a regression analysis—a mathematical 
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relationship that identifies the goodness of fit to the data by statistical tools. 
The next step is to report the key performance indices.

There is no preferred approach to design geometries; the process 
usually fits into three categories: (a) approach, (b) order, and (c) interface. 
The approach tells the story of the origin of the assembly or part, where 
and how it is created, and the environment in which it is grown to its full 
maturation. The order informs the successive steps that have been taken for 
the geometry to be generated—if it is ordered (each step is the steppingstone 
for the next steps) or unordered (steps are independent of one another). The 
interface tells the interconnectivity between the assembled parts and their 
relation to the new environment. The host environment in these scenarios 
may be the FEM specialized tools, while the originator can be either the 
CAD tool, FEA tool, or a combination of both.

As science progresses, the approach, order, and interface improve 
through the introduction of new commercial software packages in the 
analysis and geometry-generation fields. With this knowledge progression, 
the concept of standardization becomes even more important, since the cost 
associated with converting the geometries generated in the prior revisions 
of the specialized tools (FEM or CAD) becomes prohibitive. Projects are 
delayed when the geometries created with an older-version CAD tool 
cannot be easily translated to the ones compatible with the new CAD tool—
the only acceptable version to a newly developed FEA tool. This concept 
may be extended to other types of models, where physics of any kind are 
investigated (e.g., Computational Fluid Dynamics, CFD). Although the 
community of the fields’ specialists may propose workarounds—and the 
vendors attempt to introduce compatible products and added modules—
costly challenges remain both in terms of human effort and project delivery 
timelines.

There are multiple steps to be taken on the way to an accurate heat 
transfer model. The geometry creation is among the first steps, and so it 
will affect all the subsequent ones. Thus, one must devote appropriate care 
to this stage of the model development. The geometry must be carefully 
reviewed before and after import into the analysis tool. One should be 
particularly careful if there is any change in the units used, such as a change 
from meters to millimeters. 

Confusion with units has been known to cause trouble in the past. This 
has been the case in one well-known airplane accident in 1983. An Air 
Canada jet ran out of fuel at 41,000 feet but the plane’s pilots managed 
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to make a safe landing by gliding into an airport in Gimli, Manitoba. This 
became known as the Gimli Glider case [61]. The investigation found the 
cause was due to an error with fuel quantity calculations, which confused 
pounds and kilograms; this led to the accident because the plane’s fuel 
gauges also malfunctioned. While this example is not related to the thermal 
analysis, it still shows how one small error can have enormous consequences.

Employing dimensionless analysis or variables (or parameters) when 
setting up the models is always a good practice. This approach facilitates the 
interface between multiple platforms, allowing for synchronization between 
the tools. Following this practice facilitates carrying out sensitivity analysis 
studies. When selecting parameter names, take care to choose meaningful 
ones that will allow you to correctly recognize each variable. 

Another good practice to follow is to watch out for devoting excessive 
resources in the pursuit of negligeable issues. One needs to keep in mind 
the overall sense of the model uncertainty and avoid working on the areas, 
which are likely to have minute effects on the model predictions. Thus, if 
one can only estimate heat transfer coefficient to within 10 percent of the 
actual value, there is little benefit to measuring density to eight decimal 
places. Resources devoted to pursuit of the issues with little impact on the 
outcome could be better spent in other areas, producing the greater Return 
on Investment (ROI).

The last note is that the designers should always try to think ahead while 
they are in the middle of the creation process. They need to remember to 
occasionally step away from the day-to-day details they are focusing on and 
take a broader outlook. They should be asking themselves the following 
questions: 

 (1) What is happening next? 

 (2) What kind of accessibility features do I need to include in my design? 

 (3) Will I need to define additional boundary conditions or reinforce the 
structure? 

 (4) Do I need to incorporate redundancy systems for safety purposes, such 
as the ones seen in the Boeing 747 design? 

 (5) Do I need to check the historical data for lessons learned and compat-
ibility of my design with the environment, such as the incident that 
occurred with the Challenger space shuttle’s O-ring? 
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 (6) What are the steps to be taken to ensure a socially responsible, envi-
ronmentally friendly, and a personally fulfilling project? 

 (7) How the product will eventually be used? 

 (8) What are the possible outcomes if the product is not employed as 
intended? 

Thinking ahead is critical for anyone working on a project that will be 
used by others. It can help avoid the following scenario: in the middle of 
a busy day, as you are working on a seemingly minor task, you decide to 
take a seemingly inconsequential shortcut that may not be entirely ethical. 
A month, a year, or a decade later, it may come back to you with some 
unpleasant consequences. Be on the lookout for the small decisions that 
can have large impacts [2,4]. Try to make wise decisions based on reliable 
calculations made with the tools you know how to use.

End Notes

 [60] The Lean Six Sigma approach focuses on enhancing the bottom line by 
improving performance and eliminating waste (i.e., muda; a Japanese word 
for futility, uselessness, and wastefulness), focusing on critical to quality 
characteristics. The training for Lean Six Sigma is provided through a belt-based 
training system. The belt personnel are designated as white, yellow, green, 
black, and master black belts, similar to judo.

 [61]  https://en.wikipedia.org/wiki/Gimli_Glider





C H A P T E R11
COnCLUsiOn

One common question that arises when a specialist decides to ana-
lyze systems for their thermal or mechanical responses is which 
FEA tool to select. As noted earlier, the more complex the geom-

etries are, the more accurate analysis methods are needed. Finite element 
is an approach that can handle most of the shapes with challenging geom-
etries. There are tools that take advantage of this technique. These tools can 
take on either an independent or hybrid approach. Most commercial tools 
(e.g., ANSYS and COMSOL Multiphysics) follow this strategy. There are 
other tools, such as programing languages, that can be employed to solve 
the problems by working directly with the physics relations (e.g., C++). 
Other tools are designed to integrate special capabilities by assisting with 
analyzing the problems incorporating the coding approach with special-
ized built-in functions. Thus, they take a semi-hybrid approach (e.g., the 
MATLAB PDE Toolbox). There are circumstances in which these tools can 
be combined with the commercial tools and further improve the modeling 
capabilities (e.g., COMSOL Multiphysics in combination with MATLAB).

11.1 Choice of FEA Tools

The question is determining which tool is a better one: it simply depends 
on the available resources and on the problem and its applications. For 
example, for educational purposes, it is important for students to become 
familiar with the fundamental physics before using any tools as a black box. 
If the analysts already gained a deep understanding within the field, such as 
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senior or graduate students, they are to be guided differently and will likely 
approach the problems differently. In these cases, the first consideration is 
almost always the tool availability, which is often determined by the budget. 
Some tools, such as MATLAB, are relatively more education-friendly than 
the commercial FEA tools. Given the widespread usage of such tools, 
universities often have special agreements and perpetual licenses for 
them. This means that professors or students do not pay for them from 
their research grants, and if they had to, the prices would be affordable. In 
addition to the lower price, they do include discounts or trial versions for 
the students and for educational purposes. 

Even though commercial FEA tools do have educational pricing, they 
are usually purchased as specialized tools as part of a research grant. On 
occasion, several academics can share the license and associated costs given 
that the floating license cost, which makes it accessible from multiple sites, 
is relatively more expensive than one tied to a single machine. In many 
cases, there are only a few seats available, meaning that a very limited 
number of students can simultaneously run the programs. When solving 
large models, High Performance Computer Virtual Laboratories (HPCVL) 
may be required. The problem files are sent in batches to these computers 
and are placed in a queue so that the solution may be attempted, and 
possibly achieved within hours or even days for more complex cases. 

Using these virtual labs requires special memberships even within 
the university community and fees are to be paid per seat to maintain the 
special administration costs. An annual fee is normally paid to maintain the 
licensing rights and/or support for a commercial FEA tool; this is either in 
addition to the original perpetual fee (e.g., COMSOL Multiphysics, which 
requires annual fees for support and upgrades) or as an ongoing cost, where 
an annually updated license is required to operate the software. 

Performing any consulting work requires special permission from the 
service provider (FEA company); this means that the license must be a 
commercial type versus the educational type. Some of these commercial 
tools let the user have multiple installations, with the possibility to 
simultaneously run several FEA models (e.g., four installations and two 
simultaneous runs for the commercial COMSOL Multiphysics users). 
Typically, FEA tools include free trials of up to 30 days.

The next consideration, and perhaps the first one in educational 
settings, is the technical support. Professors and students require support 
both in installation and use of the tools. Universities or academics provide 
the support the students need in most of the cases; however, the educational 
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institutions and often professors need technical support from the software 
provider or the company that owns the product. In most of the cases, the 
technical support provided by the education-friendly tools is better than 
their commercial counterparts. It is also possible that the technical support 
provided by the FEA software providers is available through sharing the 
inhouse expertise, technical publications, and conferences, where users 
share their expertise. Ease of administration and flexibility to work remotely 
may also affect the decision as to which tool to use.

It is possible to suggest an improvement to the tool by submitting an 
enhancement ticket to the tool’s technical support. These enhancements 
can be related to the documentation, presentation method, usage, formula, 
or analysis method and presentation. Almost all these tools are regularly 
updated, considering the submitted enhancement requests and based on 
the product roadmap. Commercial tools may follow a faster pace, depending 
on their product vision. 

Some of the tools are equipped with geometry-creation facilities (e.g., 
COMSOL Multiphysics), making it possible to import, manipulate, and 
create the geometry within the tool. Geometry revision is a very important 
feature, especially when dealing with complex models. Occasionally, 
specialized CAD tools (e.g., SOLIDWORKS) are employed as separate 
tools in parallel with the commercial FEA tools to facilitate the geometry 
creation process. Dedicated connectivity can be provided between these 
two tools (e.g., Livelink for SOLIDWORKS or one of the specialized 
COMSOL Multiphysics Modules), establishing a real-time linkage between 
the CAD and FEA environments. Editing and rendering capabilities are 
other considerations when selecting the FEA tool. The possibility to write 
scripts or input files for the FEA tool to avoid repetitive tasks to minimize 
error and to easily modify the models as required, are also to be considered. 
Examples include the APDL input files that can be written and fed as 
inputs to the FEA models created in the ANSYS classic environment. 
Many novice users may not find this method user-friendly; therefore, the 
graphical user interface (GUI) becomes a user distinct feature (e.g., the 
ANSYS Workbench). 

The user can (to some extent) modify the problems’ physics by revising 
the underlying basic relationships. MATLAB is such a tool, where the user 
can interact through a GUI (e.g., the PDE Modeler application) and also can 
revise the underlying formulae as needed in the form of scripts. Programs 
such as MATLAB excel at carrying out any computations, particularly 
matrix manipulations.
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Plotting options and quality of the plots that can be embedded in reports 
or be exported as images or PDFs, are to be considered when selecting 
the FEA tool. These diagrams can be either part of a script, such as the 
ones written for MATLAB, where the diagram type, labels (e.g., title, axis 
information and limits) are identified or the results can be exported from 
the FEA tool and imported to other tools to be processed (e.g., Tecplot, 
MATLAB, and statistical tools such as Minitab). The processing steps 
may include plotting data in different forms, curve-fitting, and performing 
regression and statistical analyses. 

Both MATLAB and COMSOL provide facilities for setting up 
applications that provide a graphical user interface to simplify user 
interaction with the software functionalities. The MATLAB PDE Modeler 
application, which is supplied as part of the MATLAB PDE Toolbox, is an 
example of this; however, users can create their own applications that have 
buttons, dialog boxes, and mouse interactivity. Normally, these applications 
would be executed from the MATLAB command line; with the MATLAB 
Compiler Module, one can create stand-alone applications that do not 
require MATLAB to be installed.

COMSOL introduced its own application building capability with 
version 5.0 release in 2015. As with MATLAB, this capability is part of the 
base software package. Tools are provided to simplify the creation of these 
apps. The apps allow users who are not skilled in use of FEA software to 
carry out pre-defined analyses after varying inputs via the app interface. 
Thus, engineering designers may explore a variety of scenarios on their 
own, without having to interact with an analyst. For example, the pipe wall 
thickness can be defined as a parameter and the designer may experiment 
with different values to see what effect they may have on the pipe wall 
temperature. 

As with MATLAB, these apps can run on any machine where COMSOL 
is installed; however, the intended audience for them are users who are likely 
not to have a full software installation. Thus, two options are provided (as 
extra modules): the COMSOL Compiler to create stand-alone applications 
or the COMSOL Server to allow running the apps remotely by connecting 
with the server via internal or external network.

In terms of carrying out FEA approach, one can summarize the 
comparison between MATLAB and COMSOL as follows. There is no 
doubt that a dedicated FEA tool, such as COMSOL, is better at its task 
than a more general tool, such as MATLAB. If both are available, the 
choice is clear. However, it is much more likely that a user with an FEA 
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problem to solve has access to MATLAB and is wondering if they need to 
obtain a dedicated FEA tool (like COMSOL) to solve it, at some additional, 
substantial cost.

The answer depends on the complexity of the model. This includes the 
complexity of the geometry, boundary conditions, and physics interactions. 
For example, as was demonstrated in this book, even complex 3D geometries 
can be exported from a CAD tool in format and then imported easily into 
MATLAB. However, this is not the end of the task. One now must identify 
all the faces and cells (3D regions) of the model to assign the applicable 
boundary conditions and material properties. If one is importing something 
shaped like a simple pipe, that is not a problem, but if it is a component with 
several dozen faces, the challenge quickly multiplies, making errors much 
more likely.

Other aspects of carrying out FEA in MATLAB, such as the meshing 
process control and types of elements as well as the solution control, also 
present substantially fewer options, as expected. Finally, one must not forget 
that post-processing is also significantly facilitated in COMSOL. Identifying 
points or lines for which plots are to be generated is easy, with interactive 
graphical interface provided. In MATLAB, one must manually identify the 
exact coordinates of interest and then execute commands to extract data 
points and plot them, requiring knowledge of the right commands to use.

However, the good news is that if your problem is not exceedingly 
complex and you already have access to MATLAB, you can use this excellent 
general-purpose software to carry out FEA and obtain plenty of valuable 
results, without incurring any additional costs. Presumably, having read this 
book, you are also well-equipped with the knowledge of the techniques 
required to carry out this task.

11.2 Sustainable Designs

When creating thermal designs, creativity is as important as adhering to 
known and tested methods. If designers, engineers, doctors, and educators 
were to just follow old-fashioned knowledge and manufacturing techniques, 
humans would still live in caves. Although contemporary cave homes offer 
modern amenities within a primeval setting [62,63,64]. Thinking divergently 
is the reason for the exceptional creations.

Independent thinking in an unrestricted environment is an indispensable 
part of this process. The fuel of resources and experiences available 
to a creative mind ignited by its imagination drives the development of 



330 • PraCtiCal Heat transfer

new ideas. Interconnections among diverse fields of study, such as art, 
engineering, design, and health, have brought us the innovative products 
to enrich our lives. Think about the lifestyle changes brought about by the 
introduction of smart phones and tablet computers such as the iPad.

Creative and independent thinking require valor, as there are often 
pressures to conform to the accepted practices. Historically, the brave 
and curious scientists and innovators made sacrifices to bring new ideas 
and a better life to humanity. In the seventeenth century, Galileo Galilei 
realized that the old concepts of planetary motion did not make sense. 
He considered the ideas proposed by Copernicus, as well as what he saw 
himself with the telescope he built. However, Galileo lived in a time when 
the Church wanted to protect the status quo, and so he was punished for his 
ideas. However, the ideas could not be suppressed and flourished despite 
all the reactionary efforts, for the light of wisdom cannot be turned off.

Innovative and responsible designs are not only rewarding for the 
designers who create them, but also beneficial to humanity and the 
environment. Looking around us, we observe numerous examples in which 
this brilliance of the human mind is seen. These projects show how our 
natural resources can be used responsibly. Here are some examples of 
ethical leadership in the thermal management field:

 (1) Leadership in Energy and Environmental Design (LEED) certified 
designs that improve efficiency and health to achieve a sustainable 
environment—These initiatives have transformed a tornado-hit Ameri-
can city, Greensburg, Kansas, into a model of a green village [65,66]. 
They have transformed a fading clay pit in Cornwall, England, into a 
thriving green community through the construction of an eco-friendly 
park, museum, and indoor rainforest that educate people about the re-
sponsible use of the natural resources, such as composting waste, water 
treatment, and the use of geothermal and wind energy [67].

 (2) Harvesting the energy of the Sun in the most remote and under-
privileged villages, in places that are exposed to sunshine most of the 
year—Sichanloo is a remote location in arid rural Iran, with simple clay 
houses that have been decorated with high-tech rooftops made from 
photovoltaic cells provided by a government-subsidized project. These 
are part of the growing efforts to provide steady power for a fossil-fuel 
country that relies on oil and natural gas sources for 40% and 37%, re-
spectively, of its energy usage. Sichanloo and similar communities are 
recovering from the noise and pollution that gas-fueled power genera-
tors have imposed on their lives for decades [68].
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 (3) Vertical gardens as a platform for planting, working, and shading envi-
ronments—An example is Supertrees Grove at Gardens in central Sin-
gapore, which improves the quality of life by introducing greenery into 
this densely populated city. These trees not only provide homes with 
exotic plants and birds, but also exist in harmony with their surround-
ings, imitating a living tree by harvesting the solar energy with the 
photovoltaic cells and collecting rainwater for irrigation and fountain 
displays [69].

 (4) Harvesting the energy from the waves using PowerBuoy, which can 
be connected to an electrical grid using power transmission cables in 
a deep-water environment—The PowerBuoys installed in Cromarty 
Firth, Scotland, can generate 3 MW of power. They convert the rising 
and falling of the waves into electricity. The PowerBuoys are aestheti-
cally pleasing due to their low surface profile and small horizontal 
footprint, and can operate in severe conditions [70,71].

 (5) Efficient residential apartments that people wish to live in, even 
though they lack basic amenities (such as a parking space or air condi-
tioning, or they are located next to a train track)—An apartment build-
ing in Melbourne, Australia, was designed to keep warm in the winter 
and cool in the summer with the ultra-thick exterior walls shielding it 
from train noise. The building has a rooftop garden to provide addi-
tional insulation and a green environment [72].

 (6) Passive house designs being incorporated into new building architec-
ture or as a retrofit for the existing ones—These designs heat and cool 
the structure so as to minimize its ecological footprint. Examples are 
the Vauban residences in Freiburg, Germany, and Cornell’s green 
26-story high-rise campus on Roosevelt Island in New York City 
[73,74,75].

 (7) Sustainable cities that are both aesthetically pleasing and functional—
An example is the Dubai Smart Sustainable City project. It looks like a 
flower in the middle of a desert, with shiny roofs covered by the solar 
panels that generate about 200 MW of electricity [76]. 

11.3 Ethical Designs

As the concluding remarks of this work were being written, Virgin 
Galactic and Blue Origin had their first flights. Soon anyone (with sufficient 
funds) can become an astronaut [77,78]. While at this time, it appears that a 
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lot of precious non-renewable resources are expended on just a few minutes 
of fun, one can expect that in the long term, the technology developed will 
help the humanity with space exploration for more practical purposes. For 
those among us who have always dreamed of exploring outer space, one can 
hope that the price of these adventures will someday become reasonable 
enough so that people without millions of dollars can go into space.

Over the past couple of years, it feels like we have transitioned into a 
new era, which we perhaps can designate as AC (After COVID-19). It is 
humbling to think that a microscopic, technically non-living entity wields 
such transformative power. As with any major crisis, it has speeded up 
technological development to a degree that did not seem possible before. 
Communication companies developed new ways for us to work and interact 
remotely. Delivery companies ramped up their capacity and created new 
approaches to shipping (for example, putting perishable items in insulated 
containers that are affordable and recyclable). Human ingenuity has 
been harnessed to its full capacity to fight this crisis, with unprecedented 
resources poured into vaccine development, bringing about positive results 
within record time. As the fraction of fully vaccinated is hovering around 
60% to 70%, we are all waiting to see what happens next. What will the new 
AC era be like? Will we ever be able to stop wearing masks?

While the professionals may be rushed and pressured to deliver new 
designs and processes, they must remember their responsibilities to the 
public. Consider, for example, the case of asbestos. It is a naturally formed 
silicate material and was widely used in the thermal industry. This material 
is a very good electrical insulator and can resist extreme heat. Therefore, it 
had been used extensively in the construction of buildings until 1970s, even 
though its use had been under scrutiny as early as 1924, when English textile 
workers’ poor health conditions were reported in the medical literature.

Due to its proven adverse health effects on those who handled it, 
leading to a condition known as asbestosis, it has been prohibited in many 
countries, even though its use goes back to the Stone Age, when it was 
employed to strengthen ceramic pots. It was reported that every year, 
100,000 people lose their lives globally due to exposure to this material. It 
is the number one cause of work-related fatalities in the world; however, 
the grievous effects take years to develop, making it difficult sometimes to 
link them to the original cause [79]. 

The production of asbestos in the United States stopped in 2002. In 
Quebec, Canada, there is a small mining town which until 2020 was named 
Asbestos in honor of its primary product. It is now known as Val-des-
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Sources. Its asbestos mines reportedly closed in 2012, with Canada banning 
the mineral’s use in 2018. It appears that the city rebranded their new 
product, which is a specific type of the mineral, to chrysotile, also known 
as white asbestos (used in brake pads, asbestos cement roof sheets, and 
industrial tanks) to disassociate it from the carcinogenic mineral, insisting 
that it is less dangerous than the original asbestos. Nevertheless, there are 
still concerns about safety of this product [80,81]. 

Based on the World Health Organization (WHO) report, this material 
was widely used in cement building materials (90%) and friction materials 
(7%), mainly in the developing countries by the end of 2014 [82]. Some 
developing countries, such as India, still encourage the use of this material 
in the construction of their buildings and other countries, such as Russia, 
continue to mine it.

The asbestos example shows the challenging decisions faced by 
professionals. When making these decisions, the efficiency of the process 
should not have the veto power over all other considerations. As everything 
else in history, humanity’s ethics have been evolving. While people may have 
felt that some practices were not ethical, they may have been permitted to 
carry on as part of the majority-based ethics, despite their detrimental effect 
on some minority groups (think of slavery and cotton, of women and voting 
rights, of indigenous peoples and colonization, of intimidation practices 
and employment). With the evolution of ethics, there is some hope, for it 
appears that new virtue-based ethics have been taking hold in recent years.

Professionals who are to deliver the work ethically ought to acquire all 
the information needed to develop safe processes that use safe materials. 
Those who produce materials must make accurate information about them 
available to all. Those involved must be given the necessary training for safe 
handling of these materials, for their own good and that of the product. 
Based on the virtue-based approach, professionals must resist peer-pressure 
and, within regulations, do their best to avoid use of unsafe materials.

Any of the ethical-based decisions in the thermal management field, 
which is a part of heat transfer science, requires an in-depth understanding 
of the thermal process (heat-material interaction) for there will be occasions 
in which the material or the process must be redesigned to safeguard the 
environment and those who depend on it. In this work, they can rely on the 
rock-solid foundation of the thermal sciences.

The complexity of the world around us is unimaginable. Even a vacuum, 
which is empty space, may not be as empty as we thought. Physicists are 



334 • PraCtiCal Heat transfer

now hypothesizing it is full of energy. They are discovering patterns that can 
connect the microscopic world of quanta with the large-scale phenomena 
that we can experience with our senses. The most radical ideas are often 
brought to light by misfits, those who are blessed with the power of curiosity, 
who can think critically about their surroundings and are not preoccupied 
with fitting in. They fight the darkness with their perseverance, patience, and 
prudence, with their inner light; for, the inner light cannot be distinguished.
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A P P E N D I X a
MATheMATiCAL MeThOds TO 
sOLve heAT And WAve PrOBLeMs

There are several analytical techniques that a skilled analyst can 
employ to solve physics equations instead of applying numerical 
methods. Some 2D and 3D problem types may be solved by means 

of specialized analytical practices that simplify the problem and represent 
the physics with acceptable accuracy. This section summarizes some of the 
more commonly employed methods. 

A.1 Analytical Approaches to Solve Heat Equations

The first step when starting to work on a solution using the analytical 
and numerical approaches is to simplify the problem to the extent possible 
without compromising its integrity. For example, this simplification may 
comprise ignoring the second and third dimensions. Most of the examples 
presented in this chapter assume that heat is transferred along the length of 
the geometry (e.g., x-coordinate), and therefore the problem is a 1D case. 
An additional step is to perform a dimensionless analysis. This helps with 
the problem dimensions, redefining the problem in terms of the variable 
ratios and meaningful and occasionally dimensionless parameters such as 
the Fourier Number. Parametrizing the model by means of dimensionless 
analysis allows for the effect of the important process parameters, such as 
dimensions or material thermophysical properties, to be studied. 

The above steps are related to sensitivity analysis like the ones that may 
be carried out when modeling partial differential equations using the FEM 
commercial tools such as COMSOL Multiphysics. For example, when 
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modeling heat transfer in a pipe, to which fins may be attached, it is possible 
to define its thermal performance including a dimensionless number (m2), 
which is the ratio of the convective to conductive forces weighed by the 
ratio of the perimeter to the area of the fin ( / ).hp kA  Additionally, there 
are several assumptions that can be made to further simplify the analytical 
approach. For example, if the width of a conduit with a rectangular cross 
section is considerably larger than its thickness, the latter (thickness) can be 
ignored when calculating its perimeter. As a result, the area to perimeter 
ratio discussed earlier wt/2(w + t) is simplified to t/2, where t and w are 
the conduit’s thickness (m) and width (m). An interpretation for a conduit 
with an insulated tip is to include its corrected length in calculating the 
surface areas. Corrected length is the initial length plus a characteristic 
length, which is the ratio of the area of the fin to its perimeter. Using this 
analogy, the characteristic length can be as simple as 50 percent of the 
conduit’s thickness (t/2), while for a fin with circular cross section, this 
value is 25 percent of its diameter (D/4). These assumptions facilitate heat 
transfer calculations based on the convective surface areas. If the fin width 
is small compared to its length, the area of the fin tip may be ignored when 
calculating its surface area. These assumptions are particularly useful when 
modeling semi-infinite conduits with arbitrary cross sections.

A.2 General Analytical Approaches

This section presents analytical techniques that can be employed to 
solve heat transfer equations. The most general form is a wave equation, 
which includes second-order linear partial differential equations, 
describing the heat waves with respect to time and space (temporal and 
spatial). The application of wave equations extends from heat waves to 
sound waves, light waves, and water waves, and it is important in fields such 
as acoustics, electromagnetics, and fluid dynamics. 

A.2.1 Separation of Variables
This method involves separating the variables. By doing so, two or more 

state variables (e.g., time and distance) used to define a dependent variable 
(e.g., temperature in heat transfer problems) are separated, so that they 
can independently represent the dependent variable. In other words, their 
combined effect has been discretized to show their individual impact. For 
3D equations, this involves defining an energy equation, Equation (159), 
where each dependent variable is a function of a single space (x, y, z) or 
time (t) variable, Equation (160). 
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      gen  x y z p i
d dT d dT d dT dT dT

k k k q C vdx dx dy dy dz dz dt dx
 

   = r  
 

 (159)

 T(x, y, z, t) = X(x)Y(y)Z(z)t(t) (160)

There are m number of linearly independent boundary conditions matching 
the number of the highest number of derivatives times the number of 
independent variables in a differential equation. For instance, for the 
second order three-dimensional steady-state heat transfer problem, six 
boundary conditions are required, representing the conditions for each side 
of the brick. To facilitate solving these problems, a change of the variables 
resulting in homogeneous differential equations or boundary conditions is 
recommended. In most cases, this results in dimensionless equations. 

For example, assuming that a boundary is kept at the surrounding 
temperature (e.g., Tx=L = T), the difference between the main dependent 
variable (T) and ambient temperature (T) may be defined as a new variable 
(q = T - T), which can be substituted for its counterpart in the heat 
transfer equation. Note that in this case, the derivatives are to be revised 

for the new variable to implement this change e.g.,   .
dT dT d d
dx d dx dx

q q
= =

q
 

A number of these mathematical relations can be solved using the Fourier 

Transform, which represents a complex function for the real dependent 
variable. If the newly-defined variable (q), is then divided by its equivalent 
at the initial condition (temperature, q0 = T0 - T, where T0 is the initial 
temperature), a dimensionless temperature is obtained (q/q0). 

As an exercise, you can attempt the following 2D problem—Equation 
(161)—that simulates the conditions presented by the boundary conditions 
given by Equation set (162). The solution is provided by Equation (163). 
The first step is to define a new dependent variable for the temperature (q), 
where q = T - T. You may apply the dimensionless approach presented 
above by using q/q0.

 uxx + uyy = 0 (161)
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A.2.2 Variation of Parameters
The concept for partial solutions and variation of parameters is like 

the separation of variables method. These are the steps to be taken to 
solve such problems: (a) A problem that represents the homogeneous case 
for (x, q) is set up, where x and q are dimension and time, respectively;  
(b) The eigenfunctions are determined; (c) A solution using the function 

( , ) ( ) ( )m m
m

u x A xq = q j  is constructed; (d) Am(q) is evaluated by the 

orthogonality of jm(x); (e) An ordinary differential equation is set up; 
(f) Am(q) is solved; and (g) The solution is completed. This method is 
particularly useful for transient analysis. 

Attempt Equation (164), given the boundary conditions presented by 
Equation set (165). Note that the second-order equation with respect to the 
space variable (x) and the first order with respect to time (q) require three 
boundary conditions. The solution is provided by Equation (166).

 xxu uq=  (164)
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A.2.3 Duhamel’s Theorem
The problems in this category are essentially similar to the previous 

scenarios except that u(x, q) is the response to a boundary condition that is 
initially zero and then progresses to a constant value, or the problem is non-
homogeneous in general terms, as shown in Equation (167). 

Attempt the problem presented by Equation (168) with the boundary 
conditions presented by Equation set (169). The solution is given by 
Equation (170).

 
0 1

( , ) ( , ) ( ) ( , )
N

i i
i

u x u x F d u x F
q

= =

q = q-    q-   (167)

 xxu u= θ  (168)
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A.2.4 Complex Combinations
The following steps may be adopted when solving differential equations: 

(a) A new variable that is 90° out of phase with that of the main dependent 
variable is defined (v)—this variable is the imaginary component of the 
ultimate solution; (b) A new variable is presented, which is the conjugate 
of the real and imaginary parts w = (u + iv)—this variable is the ultimate 
solution; (c) The ultimate solution is defined as   i ww X x e= θ using the 
Euler’s formulae, where  cos sini xe x i x=  ; (d) The problem is solved 
X(x); and (e) The final complex variable (w) is obtained. 

Attempt Equation (171), along with the boundary conditions given 
by Equation set (172), is a relatively complex problem that may be solved 
using this technique. Equation 173) is the solution expressed as a function 
of the complex variable w

 cos( )xxu w uq q =  (171)

 0(0, ) 0
( , ) 0

x

x

u

u
=

=

 q =


 q =
 (172)

 2 21
( , ) sin cos 1 cos sin( )2 2

w w
x xw w

u x e x w e x ww

   
   - -   

      
      q = q  - q         

 (173)

A.2.5 Superposition
There are scenarios where you may superimpose multiple solutions you 

have attempted using different techniques. The boundary conditions may 
be either homogeneous, constant, or periodic. 

Attempt Equation (174) given the boundary conditions presented by 
Equation set (175). Note that you may convert Equation (174) to four 
components, consisting of cases where a single non-homogeneity is taken 
into consideration at a time —Equation (176) and Table A.1.
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 ( , ) ( , ) ( , ) ( , ) ( , )u x v x w x p x q xq = q  q  q  q  (176)

TABLE A.1. Equation sets to be solved independently and then superimposed.

Partial  
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A.2.6 Laplace Transform
This transformation is very similar to the Fourier Transform; however, 

it is more comprehensive in the sense that both function and variable (i.e., 
frequency) are complex. The inverse transformation is also possible, where 
a complex variable (such as the frequency) is transformed to a real variable 
(i.e., time). 

Attempt Equation (177) with the boundary conditions presented by 
Equation set (178). The result is the solution given by Equation (179).

 ( ) 0
dT hA

T Td CV  - =
q r

 (177)
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A.2.7 Integral Method
This method is an approximate solution to relatively complicated 

problems and may be attempted by taking the following steps: (a) A 
temperature profile as a function of the dependent variables is estimated, 
where one variable is incorporated as a multiplier and the other one as the 
variable in a polynomial relationship— 2 3( , ) ( ) ( ) ( )  ;( )T x t a t b t x c t x d t x=     
(b) A penetration depth is defined as a function of the non-polynomial 
dependent variable, which satisfies the initial condition x = r(t); (c)  
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The multipliers are calculated using the variable defined in step (b), 
considering the boundary and initial conditions; and (d) The final solution 
is obtained by integrating from the main equation, considering the variable 

in step (b) as the boundary limits—  
 

0

( , ) .
t

t T x t dx
r

q = 
Attempt Equation (180) with the boundary conditions presented by 

Equation set (181). The solution is presented by Equation (182).
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A.2.8 Perturbation Method
This technique assumes an approximate solution that is perturbed by 

introducing an infinitesimal variation to the main dependent variable to 
the exact solution of a simplified solution, which is similar to the original 
problem, as given in Equation (183). The solution is then solved for the 
solvable component as well as the perturbed component. The final solution 
is achieved when the perturbed term approaches zero. 

Attempt Equation (184), which is the dimensionless form of the 
derived one for the heat capacitance method, where the initial temperature 
is given—Equation (185)—to obtain the solution presented by Equation 
(186).

 2 3
0 1 2 3 ...q= q q  q  q   (183)
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