

Practical

Heat transfer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the
right of ownership to any of the textual content in the book or ownership to
any of the information or products contained in it. This license does not permit
uploading of the Work onto the Internet or on a network (of any kind) without
the written consent of the Publisher. Duplication or dissemination of any text,
code, simulations, images, etc. contained herein is limited to and subject to
licensing terms for the respective products, and permission must be obtained
from the Publisher or the owner of the content, etc., in order to reproduce or
network any portion of the textual material (in any media) that is contained in
the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, production, accompanying algorithms, code,
or computer programs (“the software”), and any accompanying Web site or
software of the Work, cannot and do not warrant the performance or results that
might be obtained by using the contents of the Work. The author, developers,
and the Publisher have used their best efforts to insure the accuracy and
functionality of the textual material and/or programs contained in this package;
we, however, make no warranty of any kind, express or implied, regarding the
performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due
to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

Companion files are available for downloading by writing to the publisher at
info@merclearning.com.

Mercury learning and inforMation

Dulles, Virginia
Boston, Massachusetts

New Delhi

Practical

Heat transfer
Using MATLAB® And COMsOL®

Layla S. Mayboudi, Ph.D.

Copyright ©2022 by Mercury Learning and inforMation LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and inforMation
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

L. S. Mayboudi. Practical Heat Transfer Using MATLAB® and COMSOL®.
ISBN: 978-1-68392-633-7

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as
a means to distinguish their products. All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service
marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021951258

222324321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
Companion files are also available for downloading by writing to info@merclearning.com. The sole
obligation of Mercury Learning and inforMation to the purchaser is to replace the book or disc, based on
defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To the scientist, mathematician, engineer, physician, linguist, aviator,

healer of the broken wings... To whomever wishes to improve meth-

ods, mend fences, be a guiding light, brighten lives, listen, write, set

the record straight, and free lamenting souls... To the one who does

not submit meekly to power... To the still-to-be-known warrior with-

out borders, the one who honors professional oaths, preserves dignity,

defends the rights to human empowerment, knowledge, and freedom;

who is demeaned and shunned for being the maverick, works ethically

and diligently, perseveres, endures, and lives happily forever and ever

after... To the trailblazer, the unknown traveler...

CONTENTS

Preface xiii
Acknowledgments xix

Chapter 1 Pipes, Their Applications, and Heat Transfer 1
 1.1 Artificial Systems 2
 1.2 Oil and Gas Industries 4
 1.3 Organic Systems 5
 1.4 Pipe Materials 6
 1.5 Thermal Management and Pipes 7
 1.6 Heat Transfer 9
 End Notes 12

 Chapter 2 Heat Transfer Modeling 13
 2.1 Basic Concepts 14
 2.2 Thermal Analysis of Systems (Components and Subcomponents) 16
 2.2.1 Thermal Properties of Materials 16
 2.2.2 Static versus Dynamic 18
 2.2.3 Energy Balance 21
 2.3 Modes of Heat Transfer 23
 2.3.1 Conduction Heat Transfer 24
 2.3.2 Convection Heat Transfer 29
 2.3.3 Radiation Heat Transfer 31
 2.3.4 Thermal Management 43
 2.4 Governing Equations 45
 End Notes 50

 Chapter 3 Finite Element Analysis 53
 3.1 Geometry 54
 3.2 Material Properties 56
 3.3 Analysis Types 57
 3.4 Boundary and Initial Conditions 58
 3.5 Mesh Size and Time Step 58
 3.6 Solution Control and Convergence 59

 Chapter 4 An Introduction to MATLAB 63
 4.1 Desktop 64
 4.2 Variables 66
 4.2.1 Numeric Variables 67
 4.2.2 Character Vectors and Strings 68
 4.2.3 Logical Variables 70
 4.2.4 Variable Names 71

viii • Contents

 4.3 Creating Matrices 72
 4.3.1 Manual Matrix Creation 72
 4.3.2 Generation of Vectors with Equally-Spaced Values 72
 4.3.3 Random Number Matrices 73
 4.3.4 Special Matrices 74
 4.4 Operating on Matrices 75
 4.4.1 Matrix Indexing 75
 4.4.2 Arithmetic Operators 77
 4.4.3 Relational Operators 79
 4.4.4 Matrix Reshaping and Rearrangement 80
 4.4.5 Extracting Information about Matrices 81
 4.4.6 Matrix Inverse 83
 4.4.7 Systems of Linear Equations 86
 4.5 Built-in Functions 88
 4.6 Scripts 91
 4.7 Input-Output Techniques 93
 4.8 User-Defined Functions 99
 4.9 Plots 103
 4.10 Code Examples 109
 4.10.1 Testing Code Execution Speed 109
 4.10.2 Entering Material Properties 111
 4.10.3 Random Walk Plot 114
 End Notes 117

 Chapter 5 Heat Transfer Problems in MATLAB 119
 5.1 Introduction to PDEs in MATLAB 120
 5.2 Thermal Modeling Using the MATLAB

PDE Modeler Application 122
 5.2.1 The PDE Modeler Overview 123
 5.2.2 Creating 2D Geometry 124
 5.2.3 The PDE Modeler: A Step-by-Step Guide 126
 5.3 Thermal Modeling Using the MATLAB Script 136
 5.3.1 Model Creation 136
 5.3.2 Geometry 137
 5.3.2.1 2D Geometries 137
 5.3.2.2 3D Geometries 142
 5.3.3 Material Properties 145
 5.3.4 Analysis Type 147
 5.3.5 Heat Generation 147
 5.3.6 Boundary and Initial Conditions 148
 5.3.7 Mesh 149
 5.3.8 Solver Options 150
 5.3.9 Solution and Postprocessing 151

Contents • ix

 5.3.10 Verifying the Model Inputs 154
 5.4 Summary of the Steps to Create a Thermal Model in MATLAB 155

Chapter 6 The MATLAB Heat Transfer Problem
Case Studies 157

 6.1 Case Study 1—Axisymmetric Pipe: Single-Domain,
Steady-State Thermal Model 157

 6.1.1 Setup 157
 6.1.2 Results for Copper Pipe 163
 6.1.3 Results Comparison for Copper and PEX Pipes 166
 6.2 Case Study 2—Axisymmetric Pipe: Multi-Domain,

Steady-State Thermal Model 168
 6.2.1 Setup 168
 6.2.2 Results 170
 6.2.3 Validation by an Analytical Model 172
 6.2.4 Heat Loss Comparison 174
 6.3 Case Study 3—Axisymmetric Pipe: Multi-Domain,

Transient Thermal Model 176
 6.3.1 Setup 176
 6.3.2 Results 180
 6.4 Case Study 4—Non-Axisymmetric Pipe: Transient

Thermal Model with Spatial and Temporal Boundary Conditions 194
 6.4.1 Setup 194
 6.4.2 Results 201
 6.5 Case Study 5—Combining the MATLAB Script and the

PDE Modeler Application 204
 6.5.1 The PDE Modeler Script 205
 6.5.2 PDE Tool Script 216
 End Notes 228

 Chapter 7 The COMSOL Multiphysics Models 229
 7.1 Heat Transfer Modeling Considerations 231
 7.2 Creating a Model in COMSOL Multiphysics 232
 7.3 Creating Geometry 235
 7.3.1 Using Elementary Geometric Entities 237
 7.3.2 Importing Geometry 239
 7.4 Adding Materials 240
 7.5 Adding or Revising Physics 240
 7.6 Solution 241
 7.7 The COMSOL LiveLink for MATLAB 242

Chapter 8 The COMSOL Heat Transfer Problem Case Studies 249
 8.1 Modeling Heat Transfer in a Pipe—Overview of the

Case Studies 250

x • Contents

 8.1.1 Model Geometry 250
 8.1.2 Material Properties 251
 8.1.3 Model Physics 252
 8.1.4 Boundary and Initial Conditions 252
 8.1.5 Meshing 255
 8.1.6 Solution Settings 256
 8.2 Case Study 1—Pipe 257
 8.2.1 3D Model Setup and Results 257
 8.2.2 Validation—Comparison with 2D Pipe Model 267
 8.3 Case Study 2—Internally-Finned Pipe 269
 8.4 Case Study 3—Externally-Finned Pipe 275
 8.5 Case Study 4—Internally-Externally-Finned Pipe 283
 8.6 Case Study 5—Externally-Twisted-Finned (Rotini)

Channelled Pipe 290
 8.7 Comparison between Case Studies 1 to 5 297
 End Note 300

Chapter 9 Exercises 301
 9.1 Heat Transfer in a Pipe Exposed to the Solar Radiation 301
 9.1.1 Exercise 1—Constant Heat Flux and Single Surface 303
 9.1.2 Exercise 2—Constant Heat Flux and Multiple Surfaces 303
 9.1.3 Exercise 3—Spatially Variable Radiative Heat Flux 304
 9.1.4 Exercise 4—Variable Ambient Temperature 305
 9.1.5 Exercise 5—Variable Heat Convection

Coefficient and Ambient Temperature 306
 9.1.6 Exercise 6—Temperature-Dependent

Thermophysical and Ambient Properties 307
 9.1.7 Exercise 7—Non-Axisymmetric Model 308
 9.2 Heat Transfer in Various Geometries 309
 9.2.1 Exercise 8—Heat Transfer from a Pipe with

Extended Surfaces 309
 9.2.2 Exercise 9—Heat Transfer from a Pipe in a Heat Exchanger 309
 9.2.3 Exercise 10—Heat Transfer from a Solid Cylinder 310
 9.2.4 Exercise 11—Energy Absorbed in a Cavity 311
 9.3 Modeling Approach Comparisons 312
 9.3.1 Exercise 12—The MATLAB Heat Transfer

Problems Solved with COMSOL 312
 9.3.2 Exercise 13—The COMSOL Heat Transfer

Problems Solved with MATLAB 312
 9.3.3 Exercise 14—The MATLAB and COMSOL

Heat Transfer Problems Solved Analytically 313

Contents • xi

Chapter 10 Lean Six Sigma Implementation 315
 10.1 Introduction to the Concepts 315
 10.2 Good Practices 320
 End Notes 323

 Chapter 11 Conclusion 325
 11.1 Choice of FEA Tools 325
 11.2 Sustainable Designs 329
 11.3 Ethical Designs 331
 End Notes 334

 Bibliography 335

 Appendix A Mathematical Methods to Solve Heat and
Wave Problems 339

 A.1 Analytical Approaches to Solve Heat Equations 339
 A.2 General Analytical Approaches 340
 A.2.1 Separation of Variables 340
 A.2.2 Variation of Parameters 342
 A.2.3 Duhamel’s Theorem 342
 A.2.4 Complex Combinations 343
 A.2.5 Superposition 343
 A.2.6 Laplace Transform 344
 A.2.7 Integral Method 344
 A.2.8 Perturbation Method 345

 Appendix B Governing Equations Summary 347

 Appendix C List of Figures 353

 Appendix D List of Tables 369

 Index 371

PREFACE

This book guides the reader through the subject of heat transfer, cov-
ering the analytical, coding, finite element, and hybrid methods of
thermal modeling. Cylindrical pipes are the focus of this work for

their widespread use and multitude of engineering applications. This book
also gives the reader background information about pipes and their use
in various fields as well as differential equations [1]. Examples are given
throughout where different pipe geometry configurations are created, and
models are built and analyzed.

This book can stand on its own, but it can also be treated as a
companion to the previous publications by the author. Using COMSOL®
in Heat Transfer Modeling from Slab to Radial Fin [2] will be of interest
to those looking for the detailed exploration of the heat transfer modeling
of extended surfaces (fins). COMSOL Multiphysics® Geometry Creation
and Import [3] provides in-depth review of the geometry creation
techniques in COMSOL Multiphysics. COMSOL Heat Transfer Models
(Multiphysics Modeling) [4] is appropriate for readers who have the basic
knowledge about modeling and would like to develop their skills further;
comprehensive case studies covering a variety of subject matter, such as
heat transfer in car seats, water boiling in a kettle, and a complex rotini fin,
are included. Mechanical Engineering Exam Prep: Problems and Solutions
[5] provides an opportunity to test the reader’s knowledge in the field of
heat transfer as well as other mechanical engineering curriculum areas,
including over 1,500 innovative problems in these subject areas. The rest
of this section provides a framework for this work, a roadmap to enhance
the learning experiences along this journey. The purpose is to become
familiar with the field of heat transfer modeling through the focused
examples with significant applications such as transferring energy in the
form of heat (and matter) in the pipes; the information can be expanded to
transfer this knowledge to the constricted bodies (pipes with noncylinder
cross sectional areas).

The book’s primary focus is on the MATLAB® (R2021) and COMSOL
Multiphysics (5.6) software packages; however, the learning gained here
can be transferred to other FEA tools. Both software packages consist of
a core module and numerous, specialized add-on toolboxes (MATLAB) or
modules (COMSOL). For MATLAB, the reader needs to have access to the
MathWorks® Partial Differential Equation (PDE) Module. For COMSOL,
the reader needs to have access to the Heat Transfer and CAD Import

xiv • PrefaCe

Modules (the CAD Import Module functionality can be also obtained via
any of the LiveLink™ Modules that connect COMSOL Multiphysics with
a specific CAD tool).

Chapter 1 examines the numerous applications of pipes, such as those
found in nature like blood vessels, as well as man-made ones that address
the transfer of water (e.g., irrigation and portable water), waste (e.g., sewer
waste), chemicals (e.g., ammonia), and beverages (e.g., milk). Pipe use
in thermal management and performance monitoring as it relates to the
pipes is covered. Finally, the science of heat transfer is briefly introduced
from a historical perspective.

Chapter 2 provides insight into heat transfer modeling. Basic concepts
such as the laws of thermodynamics are discussed. The thermal sciences
are reviewed, introducing the effects on the molecular scale and their
role in identifying the heat transfer regime; the concept of the Knudsen
Number (Kn) is introduced. Energy and heat are discussed and the related
processes, such as isenthalpic and isochoric, are presented. As the next
step, the thermal analyses of systems at the component and subcomponent
levels are reviewed. This journey starts by introducing the thermophysical
properties of materials—density, thermal conductivity, and heat capacity—
that are key parameters of these models. The concepts of homogeneous
versus nonhomogeneous materials and static versus dynamic systems are
also discussed.

Thermal flow and test management are the essential elements of
managing heat sources—both hot and cold. This subject is touched upon
in this book, because heat transfer modeling is often done with the purpose
of better understanding and improving the thermal management of a
process. Defining the physics for the modeling tool, including the methods
of deriving thermophysical relations by balancing energy, is the first step
when modeling thermal systems. The modes of heat transfer, including the
conduction, convection, and radiation, are examined along with some of
the dimensionless numbers such as the Biot Number. Balances of energy
to obtain temperature and temperature gradient profiles are presented,
with accounting for major heat transfer regimes. The concept of thermal
resistance is discussed; it considers the heat flow as an analog to the
electric current and rewrites the heat transfer equations for the three heat
transfer modes in terms of thermal resistance. The chapter ends with a
comprehensive derivation of the energy balance equations expressed in
Cartesian, cylindrical, and spherical coordinate systems.

Chapter 3 provides an overview of finite element modeling (FEM)
as applied to heat transfer problems. Starting with the basic concepts of

PrefaCe • xv

FEM, the chapter proceeds to describe the stages of the process: geometry
creation, definition of material properties, selection of appropriate analysis
type, definition of boundary, initial, and domain conditions, meshing, and
the solution.

Chapter 4 is an introduction to the MATLAB environment that should
help readers quickly acquire familiarity with it. The chapter starts by
reviewing the MATLAB interface components, such as the Workspace,
Command Window, and EDITOR. The definitions and manipulation of
different variable types (numeric, logical, and character) are described.
Understanding how to use logical variables is needed to extract the
sought-after information from data arrays. This is an important skill, as
it will be needed in later chapters where heat transfer modeling with the
MATLAB PDE Toolbox is covered. Matrices, the foundation of MATLAB,
are covered next. Their efficient use is key to unlocking the full power
of this software. This chapter presents commonly used built-in functions,
the writing of scripts, and creation of user-defined functions. Finally, data
plotting methods are covered.

Chapter 5 discusses how heat transfer models can be created and
solved in the MATLAB environment. The discussion encompasses
Ordinary Differential Equations (ODE) and progresses toward the Partial
Differential Equations (PDE). The focus is on the latter approach (PDE)
because it is more versatile and applicable to heat transfer problems. Use
of the MATLAB PDE Modeler application, which is part of the PDE
Toolbox, is covered in detail. The chapter presents an overview of the
MATLAB PDE Modeler interface, its components, and how to set up a
two-dimensional model.

Next, the chapter looks at how the MATLAB PDE Toolbox can be
used to solve partial differential equations, with the focus on heat transfer
modeling. A connection is shown between this tool and commercial FEA
tools (such as COMSOL Multiphysics) that is discussed in later chapters.
The MATLAB PDE Toolbox provides much flexibility to those interested in
the low-level control offered by custom code development. Later chapters
show how the benefits of low-level control of coding can be combined with
the convenience of the graphical user interface and other functionalities of
a dedicated FEA tool.

Attempting heat transfer models using the MATLAB script is an
important part of this work, extensively employed alone or in combination
with the MATLAB PDE Modeler. All the steps required to set up a
model in the MATLAB environment by creating scripts are discussed.
Setting up a model in MATLAB is like setting up models in any modeling

xvi • PrefaCe

environment. Therefore, concepts such as geometry import or creation,
material properties, analysis type, boundary and initial conditions (e.g.,
heat generation), mesh, solver options, and solution postprocessing are
reviewed.

Chapter 6 shows how the material from the previous chapters can be
applied to five case studies completed in the MATLAB environment. They
include axisymmetric single and multiple domains set in both steady-state
and transient settings and relate to pipe applications. The case studies
are presented in multiple steps that include model setup, results, and
validation by analytical or other tools. Heat loss calculations are conducted
and are later employed to investigate the sensitivity of the analyses to the
materials or geometry configurations (e.g., use of insulation and extended
surfaces). Pipe models with variable temporal and spatial boundary
conditions are introduced, with one case showing how to implement a
moving heat source.

The chapter ends with description of a hybrid thermal model that
incorporates the MATLAB PDE Modeler and Toolbox functions. It is shown
that the variables of a model, created in the MATLAB PDE Modeler, can
be exported to the PDE Toolbox script.

Chapter 7 briefly reviews modeling with COMSOL Multiphysics.
More comprehensive coverage of this subject can be found in the author’s
previous works [2,3,4]. The steps required to set up and solve models within
this FEA tool, such as creating or importing geometry, adding materials
and physics, defining boundary conditions, meshing, and running the
solutions, are discussed herein. Also, the LiveLink for MATLAB Module,
an add-on module provided by COMSOL which links the two tools, is
reviewed.

Chapter 8 presents five case studies where the heat transfer in solids
and non-isothermal flow inside the pipe are combined and analyzed
using COMSOL Multiphysics. The studies have a common theme: the
heat dissipation from pipes with extended surfaces of varying geometry.
Internally finned, externally finned, and internally-externally finned
pipes are investigated, as well as the special fin shaped like a rotini pasta
introduced in the author’s earlier publication [4]. The solution time and
computational requirements are given, as well as the results in the form of
contour plots and spatial and transient temperature profiles. A comparison
is made between the case studies to show their relative effectiveness in
heat dissipation.

Chapter 9 presents several exercises that the reader can use to practice
the heat transfer concepts introduced earlier in this work. The exercises

PrefaCe • xvii

are presented in order of increasing complexity, starting from a base
condition and gradually adding features, such as spatial and temporal
variations in the thermophysical properties and boundary conditions.
Most exercises provide a sample solution result so the reader can confirm
the correctness of their own work. In another set of suggested follow up
work, it is proposed to apply alternative solution techniques to the case
studies presented earlier; for example, the reader can attempt to solve the
problems in the MATLAB case studies using the COMSOL FEA tool.

Chapter 10 provides examples of how one can apply the Lean Six Sigma
concepts to the subjects related to this work. The first step is to be able to
decide upon some critical-to-quality variables that help assess the system’s
progress or success. The term system can apply to a range of subject areas
connected with the modeling, preprocessing, solution, and postprocessing
of heat transfer problems. Depending on the situation, the reader may
focus on the hardware, human resources, computing facilities, analysis
techniques, and tools. Any of the said items are part of the 5M principles
that relate to the Lean Six Sigma implementation, aiming to make any
process both effective and efficient. Some may choose to improve the
solution time, for instance, and to achieve that, they may either opt in or
out of using certain modeling techniques, given the available resources or
restrictions. Eventually, the attempt is made to balance the cost, quality,
and time when performing certain tasks as individual pieces, but also when
assembled with the rest of the tasks. The choice of the FEA tool and good
practices involved are also examined in this chapter, with the objective of
improving the solution time and performance.

Chapter 11 concludes this work. It redefines the known-and-tested-
method concept in industrial or engineering applications and elaborates on
if adhering to the status quos is something to be proud of, especially when
dealing with critical or ethical situations concerning time, product quality,
and human resources. It is a reminder that practice makes perfect. Even
though the process may be grounded in historically-practiced concepts,
it should be reviewed occasionally to sustain the systems and revised
often based on a control-loop approach to improve the system. Ethical
design and responsible approaches are the main emphases of this chapter,
especially when decisions are to be made under direct peer pressure or
apparent status quos. Examples of responsible designs in the form of the
Leadership in Energy and Environmental Design (LEED) projects are
presented herein.

The publication ends with the appendices, summarizing the analytical
approaches and applicable governing equations. Appendix A provides

xviii • PrefaCe

analytical approaches and mathematical methods to solve heat and wave
equations. Simplifying the problem is the first step to consider when
attempting to solve complex physics analytically. In many scenarios,
symmetry can be taken advantage of to reduce model dimensions. Even
after the problem is simplified or reduced to lower dimensions, the scholar
will not be able to address them the same way; therefore, mathematical
techniques are required to address these scenarios efficiently. Some
analytical approaches are more versatile and effective tools than the rest,
including the separation of variables, variation of parameters, Duhamel’s
theorem, complex combinations, superposition, Laplace transform,
and the integral and perturbation methods, which are presented along
with examples to facilitate their understanding. Appendix B provides a
summary of the governing equations related to dimensionless analysis and
application of analytical relations to extended surfaces with general curves.

Before the advent of the electronic computation tools, partial
differential equations were attempted using the analytical methods
developed by the physicists and mathematicians who introduced
techniques such as the separation of variables and the Fourier transform.
As technological capabilities increased, prompted in large measure by
NASA’s work on the space program, the computational needs grew. Before
the electronic computers, human “calculators” were employed by NASA
in the 1950s to perform the necessary computations, such as those for
launch trajectories. Even when the earliest electronic computers were
introduced, these “calculators” continued making contributions to the
successful implementation of this new technology, mainly in service of the
space program. These first electronic computers themselves owed their
existence in large part to the work of Alan Turing—a British mathematician,
computer scientist, and cryptologist in the twentieth century. From the
start of World War II, he developed electromechanical devices to help
decode Nazi communications and, after the war, he worked on the theory
and design of the electronic computing devices [6,7]. Appendices C and D
provide the reader with the list of figures and tables in the book.

Note that whatever endeavor you undertake, never cease asking
questions, learning, and trying to understand things. Having an inquisitive
mind is the essence of the humanity. The main lesson the author would
like the reader to take from this publication is to never stop being curious,
learning, and striving against any obstacles.

PrefaCe • xix

Acknowledgments

My teachers, mentors, family, spouse, and publisher; I am infinitely
grateful to you for your generous support and the positive influence on
my life.

Layla S. Mayboudi
January 2022

End Notes

 [1] “Differential Equation, Partial,” Encyclopedia of Mathematics, EMS Press,
2020; http://encyclopediaofmath.org/index.php?title=Differential_equation,_
partial&oldid=46668

 [2] Layla S. Mayboudi, Heat Transfer Modelling Using COMSOL: Slab to Radial
Fin, p. 250, Mercury Learning and Information, 2018.

 [3] Layla S. Mayboudi, Geometry Creation and Import with COMSOL
Multiphysics®, p. 250, Mercury Learning and Information, 2019.

 [4] Layla S. Mayboudi, COMSOL Heat Transfer Models (Multiphysics Modeling),
p. 400, Mercury Learning and Information, 2020.

 [5] Layla S. Mayboudi, Mechanical Engineering Exam Prep: Problems and
Solutions, p. 300, Mercury Learning and Information, 2021.

 [6] https://www.britannica.com/biography/Katherine-Johnson-mathematician
 [7] https://www.britannica.com/biography/Alan-Turing

C H A P T E R1
PiPes, Their APPLiCATiOns, And
heAT TrAnsfer

Pipelines have been used to transport a wide variety of substances (liq-
uids, gases, and solids) over short and long distances. Most common-
ly, the substances are carried from their place of origin to wherever

they need to be processed further or as end-products to be used for their
intended purpose. For water or any fluid to flow inside a conduit, the pres-
sure difference is the driving force. This can be created by a pump, gravity,
or due to a temperature difference. If the walls of the pipe are exposed to
heat at different rates, this temperature variation results in the fluid flow,
with its direction moving from areas with a higher temperature to those
with a lower temperature. The non-isothermal flow inside the ducts can
be characterized by different flow regimes. In a laminar regime, the fluid
moves smoothly along its flow lines. In a turbulent regime, however, cur-
rent eddies are formed, and the fluid undergoes considerable mixing, with
variations of the flow direction and speed. A flow within a conduit tran-
sitions from laminar to turbulent above a certain flow velocity; this limit
depends on the fluid properties and the conduit’s cross-sectional area. Any
sudden disruption in the fluid flow due to the barriers or sharp corners
causes the formation of local turbulent flows, with the potential to produce
excessive noise in some applications.

The gravity-driven pressure difference is a very common way to move
liquid through pipes. That is how water is transported in most homes. The
water comes from elevated water tower tanks. Until the nineteenth century,
fountains, such as the famous ones in Versailles, France, used to work only

2 • PraCtiCal Heat transfer

with gravity. A source of water higher than the fountain was required to
convert the potential energy of the height into the kinetic energy of the
water exiting the fountain’s nozzle. Many such fountains are still part of
the English countryside, perhaps placed there by the famous eighteenth-
century British landscape architect Capability Brown.

1.1 Artificial Systems

The main application of pipelines is to transport matter over a certain
distance. Possibly the oldest industrial pipeline can be found in the village
of Hallstatt in Austria, which has a rich history of salt mining. The 40-km
pipeline, originally built in 1595, transports the brine from Hallstatt to
Ebensee. The pipes are made of 13,000 hollowed out tree trunks. Until
1994, 30,000 liters of milk from Ameland Island were transported daily to
the Netherlands mainland by means of an 8-km pipeline laid at the bottom
of the Wadden Sea. Another pipeline in Brazil is used to transport coal,
liquified into a slurry, from a Minas-Rio mine to a port in Açu. In Germany,
the pubs located throughout the Veltines-Arena stadium are connected by
the 5-km pipelines to several large underground distribution tanks, where
the beer is kept cool.

Pipes do not just serve utilitarian purposes. They have been used in
some modern art creations, showing the infinite creativity of the human
mind. Pipes are used in fountains, which can be said to embody the human
spirit and its love for purity (water) and life (movement). Water, the
source of life, is the most responsive being to forces and energies, seen
during its crystallization process, forming ice, melting to bring life to the
Earth, and flowing to clear the mundane. The soothing sound of the water
flowing inside the underground pipes and finding its way to the exterior
environment is affected by the pipes’ characteristics—from the material
to the length and shape. French designers must have conducted research
during the development and construction of the 50 working fountains in
the Gardens of Versailles.

If you have witnessed water moving harmoniously to music during a
water show, you see that water exits the pipe outlets at different heights
with patterns that are affected by the size of the outlet nozzles. In these
light shows, water is moved by means of pumps that power the super and
mini shooters, delivering water in mist or liquid forms. Modern fountain
installations can use large quantities of water and electrical power. The
iconic Bellagio Hotel fountains in Las Vegas, NV, reportedly contain about

PiPes, tHeir aPPliCations, and Heat transfer • 3

20 million gallons of water, which are delivered via 12,000 nozzles. Thus,
resource management, such as water quantity, pressure, and temperature,
is an important element of running such shows [8,9,10].

One interesting application of pipes where their purpose as a conduit
of liquid was combined with a structural function was for the construction
of the Beesat Bridge on the Southern section of the River Arvand by the
Iranian engineers in 1986 during the first Gulf war (Dawn 8 Operation).
This river starts at the confluence of the Tigris and Euphrates rivers and
empties into the Persian Gulf about 160 km downstream. The southern
section of this river forms the border between Iraq and Iran. In 1986, a
bridge crossing needed to be quickly constructed across the River Arvand.
The river at this point was flowing at 11 km/h; it was 1-km wide, 12-m
deep, with a 3- to 5-m tidal depth variation. To address this challenge, the
engineers assigned to the task had an innovative idea. They developed the
Beesat Bridge structure, made of pipes that were 1.42-m in diameter and
12-m in length, and had a 16-mm wall thickness (Figure 1.1). Approximately
5,000 7-ton steel pipes (ST67, 35,000 tons), which were manufactured
by an Iranian piping company (Ahvaz Pipe Mills) were employed in the
construction of this bridge. It took about six months to complete the
bridge.

To make the Beesat Bridge, these pipes were placed into the river and
oriented along the direction of the water flow. This allowed the water to

FIGURE 1.1. The Beesat Bridge structure on the southern section of the River Arvand (built in 1986, Iran).

4 • PraCtiCal Heat transfer

pass by unhindered while creating the bridge structure. Pipes were stacked,
starting at the bottom, until sufficient height was reached above the water
level. The rows of pipes were then linked by means of earing hooks and
then welded. After placing smaller diameter pipes between the large ones
to make a flatter upper surface, asphalt was laid on top to cover the crevices,
creating a 12-m wide drivable road surface [11,12,13].

1.2 Oil and Gas Industries

Pipes are used as means of transporting oil and natural gas between
the processing and distribution centers. Examples include the pipelines
crossing Africa, Asia, Europe, North America (e.g., Canada, Mexico, Puerto
Rico, and the United States), South America, and Oceania. To deliver
propane gas to customers in large volumes, it is more efficient for it to be
converted to fluid using very high pressures.

Natural gas is transported by pipelines after it is extracted from wells:
(a) gas at low pressure is transferred by pipelines with small diameters from
the wells to the manufacturing facilities, where they are processed into other
products; (b) gas at high pressure is transported from the manufacturing
facilities to the interstate, intrastate, and international destinations (the
high pressure is maintained by the pumping stations through which the gas
passes); and (c) gas delivered to the main processing or distribution facilities
is carried by small-diameter pipelines. The main difference between
the pipes and tubing is their sizing. Pipelines are also used to transport
irrigation and portable water, waste (e.g., sewer waste), slurries (e.g., coal),
and chemicals (e.g., ammonia).

Natural gas transmission pipelines require high pressure for
transmission. The pressure is maintained by the compressor stations
located (about every 65 km to 160 km) along the way. These compressors
are very powerful, outputting about 36,000 hp, a rate comparable to a
large jet engine. Natural gas moves inside the pipeline at about 40 km/h
(11.1 m/s). Pipelines have diameters that vary from 0.5 to 48 inches. The
larger ones transfer the fluids from the processing center to the major
distribution stations, while the smaller ones connect the distribution and
processing centers. Transmission pipelines are usually made of steel, coated
with corrosion-protection materials (e.g., coal tar enamel or light blue
fusion bond epoxy) [14,15,16]. Natural gas, which comprises gases such as
butane, propane, and ethane, is discretized at the processing facility, with
the excess contents and contaminants such as hydrogen sulfide removed.

PiPes, tHeir aPPliCations, and Heat transfer • 5

Usually, ethanethiol is added to the natural gas to make it smell like rotten
eggs, in case it leaks, since natural gas is odorless. Storage is usually done
inside waterproof underground storage facilities.

Underground pipelines are normally placed about 1.8 m (6 ft) deep be-
low the surface. Interestingly, gas pipelines are intentionally not laid out in
an exactly straight fashion; instead, gentle S-curves are added. The reason
is to avoid pipe damage due to thermal expansion. While the seasonal tem-
perature variation below the ground surface declines with depth, there is
still significant variation at the typical pipe-laying depth. For example, soil
temperature observations were made for oil pipeline projects in 2004–2005
in the Mackenzie River Valley in the Fort Simpson area of the Northwest
Territories. These measurements recorded seasonal variations from a mini-
mum of 2.0 °C to a maximum of 6.3 °C. While a temperature change of 4.3
°C does not appear to be large, when the thermal expansion is calculated for
the tens of kilometers of the pipeline, the effect becomes significant. Using
this temperature difference with the steel thermal expansion coefficient of
11.7 × 10-6 m/mK for the 10-km pipeline results in a length change of 0.5 m.
If the pipes were laid in a straight line, this expansion would cause signifi-
cant sideways movement, likely leading to pipe damage [17,18,19,20,21].

1.3 Organic Systems

There is a vital piping system that all humans make use of and without
which they cannot survive—the human circulatory system. The human
body incorporates perhaps the most complex flow system of them all,
operating reliably for decades in a nearly unfailing fashion. Hemodynamics,
the dynamics of the blood flow within the veins and arteries, is responsible
for this operation, ensuring the transportation of the nutrients and
hormones, gases such as oxygen and carbon dioxide, as well as metabolic
wastes. Of course, heat transfer plays a critical role here as well. The
blood flow regulates the body temperature, directing heat to the parts of
the body where it is needed most, which may sometimes leave the fingers
freezing as the body decides that maintaining the core temperature is more
critical to the person’s survival. Blood is a non-Newtonian fluid, meaning
that its viscosity can change depending on the environmental conditions.
The vessels are also flexible to accommodate flow variation and facilitate
fluid movement. This makes the flow model in the arteries and veins both
interesting and challenging.

6 • PraCtiCal Heat transfer

Another example is the umbilical cord. This cord is a tube that connects
mother to her baby. It has three blood vessels: (a) one vein, carrying the
food and oxygen from the placenta to the baby, and (b) two arteries,
carrying the waste from the baby back to the placenta. These blood vessels
are cushioned and protracted by Wharton’s jelly. If the cord is too long, too
short, does not connect well to the placenta, or gets knotted or squeezed,
these conditions cause problems. The urethra is another example, and it
connects the urinary bladder to the uterus meatus. Its function is to let
urine discharge from the body. Its structure is fibrous and muscular,
with its length varying between 4–20 cm. The ureter tube that is about
20–30-cm long and about 3.5 cm in diameter, is made of small muscles
connecting the kidney to the urinary bladder [22,23,24].

1.4 Pipe Materials

Pipes that are used to convey the fluids are made of materials such as
wood, fiberglass, glass, plastics, metal (e.g., steel, copper, and aluminum),
and occasionally concrete. Surface roughness is one of the factors that
affects the flow regime inside the pipes. Depending on the fluid types, there
are different challenges faced when designing the pipelines. For example,
some of these materials (e.g., ammonia) are highly toxic. Therefore, not
only the piping routes need to meet the right-of-way constraints, but also
the pipe’s physical, thermal, and mechanical characteristics need to comply
with regulations. In addition, all the fittings such as valves, intersections,
and seaming materials—with which the pipes are joined together—should
be carefully selected according to the performance requirements. In
Canada, interprovincial pipelines are under the supervision of the National
Energy Board; the equivalent United States agency is the Federal Energy
Regulatory Commission (FERC).

One may not think of wood as a suitably durable pipe material, but
wooden pipelines exhibit characteristics such as a resistance to corrosion,
electrolysis, and decay (rot). They are also easy to transport, especially in
hard-to-reach areas, such as mountainous regions, making them a relatively
easy-maintenance option for piping systems. The thick walls of wooden pipes
provide good insulation for the transported substance, greatly diminishing
the possibility of pipes freezing. Wood does not expand or contract easily
with temperature changes, and that minimizes the need for the installation
of expansion joints. Wooden pipes are made with staves and hoops, like
barrels. It is believed that the redwoods found in the western United
States can resist acids, insects, fungus, and weathering. In the sixteenth

PiPes, tHeir aPPliCations, and Heat transfer • 7

and seventeenth-century London, the pipes were tapered at the end and
sealed by means of hot animal fat. It is reported that about 100,000 ft of
the wooden pipes were installed during World War II in army camps and
airfields [25,26].

Pipes running on the exterior of the structures may be exposed to the
harsh environmental conditions due to the extreme temperatures, wind,
and the sun’s radiation, such as those found in arid climates. In these
applications, the choice of the material is as vital as the design’s geometry.
In some aerospace applications, aluminum sheets are used for the heat
pipe envelope [27]. They are used to maintain space nuclear systems within
the recommended temperature range of 130–280 °C. Although aluminum
is easily machinable, manufacturing the interior longitudinal grooves to
increase the convective surface areas of the heat pipe envelope does not
produce a strong structure for the given weight requirements. Therefore,
titanium, which has a high strength-to-weight ratio, has been suggested as an
aluminum substitute. These characteristics, in addition to its anticorrosive
properties, make titanium a desirable material in aerospace applications.
The main challenge in using this material is its machinability.

There are also other materials used for constructing pipes such as
steel alloys, Inconel, and chrome-moly. Copper pipelines were used
extensively through the twentieth century in residential plumbing and are
still found in many older homes; however, due to copper’s higher material
and installation costs, it has been generally replaced by plastics such as
PEX (cross-linked polyethylene). In addition to a higher installation cost,
copper, being an excellent heat conductor, also can waste a notable fraction
of heat when used to deliver domestic hot water, especially if a hot-water
recirculation system is being used. Such energy waste may be reduced by
adding insulation around the pipes; for example, in the form of closed-cell
polyethylene foam semi-slit tube sleeves.

1.5 Thermal Management and Pipes

In industrial installations, it is often necessary to monitor the operating
conditions of the pipelines. Instruments, such as temperature and pressure
gauges, may be employed for this purpose. They can communicate by wire
or wirelessly, using satellites or cellular networks, with central controllers
using Supervisory Control and Data Acquisition (SCADA) systems. This
information can be processed; for example, to detect leaks. Comparing the
flow rate data between two different locations along the pipe can provide
this information by calculating the difference between the two values.

8 • PraCtiCal Heat transfer

Temperature extremes and mechanical loads must be carefully
considered in pipe design to avoid failure due to accumulation of residual
thermal stresses, fatigue due to thermal cycling, or exceeding the material
strength. The type of load varies depending on the environment in which
the pipes are operated. Conditions that may need to be addressed in
pipe design are installations in earthquake-prone regions, high winds,
vibrations, and fluid hammer due to the bends in the pipes. Sharp corners
can cause high-stress regions within the pipe, and so pipe bend radii must
be appropriately sized. Cryogenic pipes, which transport extremely cold
fluids, must be carefully designed to avoid the steel structures becoming
brittle when exposed to such low temperatures.

A heated or cooled fluid moving through a pipe is an important means
of transporting heat to or from the system of interest; such an arrangement
is used in various thermal management systems (e.g., heat exchangers).
Internal or external fins are often connected to pipes to increase the heat
transfer rate. An example of an effective thermal management system that
can operate without using any powered fluid pumping mechanism is a heat
pipe. Its reliability and effectiveness led to its use in aerospace cooling
applications. A heat pipe has an array of narrow channels within it that
perform a wick function. The vaporized liquid molecules travel via these
channels upstream to the cool end (condenser) where they are drawn in
by the capillary forces, lose the absorbed excess heat, and form a liquid,
which then flows back to the warm end (evaporator) of the pipe to repeat
the cooling cycle.

Teleheating, also known as district heating, is a method of heat
distribution by means of hot water or steam. Although the pipes are
insulated, the heat wastage is significant. Such piping systems are typically
laid underground; stations along the pipeline routes may be added that can
store heat and release it when the demand is high. This generated heat
is then transferred to the users’ central heating system by means of heat
exchangers, isolating the heating fluid in the local system.

For some private homes and industrial spaces, heating can be done using
a non-isothermal heated water flow inside the network of pipes built into
the floor. These systems deliver heat by warming up the large convective
surface areas of the floor slab, delivering heat by the radiation and free
convection modes. Humans are quite sensitive to the radiant heat—it adds
to a sense of comfort, just like standing in front of a lit fireplace does. Poorly
insulated cold walls will make one feel chilled.

PiPes, tHeir aPPliCations, and Heat transfer • 9

An HVAC duct is another example where the fluid (air in this case)
flows through a channel that can be straight, bent, or split into many smaller
branches. If the HVAC system is used for heating or cooling, not just
ventilation, in addition to the flow rate, one also needs to be concerned that
the air at appropriate temperature reaches the diffusers where it enters the
intended service spaces. It must provide comfort to people or meet cooling
or heating requirements of the equipment. Thus, heat transfer modeling is
an important element of the HVAC system design.

Another use of thermal management is use of the @Source-Energy
pipe system, which is essentially the same as a concrete pipe; however, it
also extracts energy in the form of heat from the waste in the pipes and
adjacent ground, it integrates a geothermal pipe in its concrete. In these
pipes, in addition to the exterior concrete pipe, a high-density polyethylene
(HDPE) conduit (the same size as that of a gas line) is also wound inside the
pipe core along with the reinforcements, which is filled with a heat transfer
fluid (i.e., 30% ethanol-water mixture). The exchanged energy is controlled
using a heat pump [28].

1.6 Heat Transfer

The word heat has Germanic origins, being equivalent to contemporary
Dutch hitte or German heize. In French, it is chaleur, which comes from
the Latin calor, from which calorie, the term for energy or heat unit, was
derived [29]. We can speak of the heat of the sun and the heat of fire; the
heat is conducted, convected, or radiated; it may be generated, stored, or
released. There is the heat of combustion or the latent heat of fusion. It
can be the quantity of energy required for a certain process to occur, or
it is released as a result of a process. Concepts of heat transfer and heat
flow, as parts of the engineering syllabus, are taught at many educational
establishments and are shared among several engineering fields.

As students acquire knowledge about the heat transfer, they may be
surprised that things that appear common sense knowledge today have taken
many centuries of human thought to discover. Among the ancient scientists
who have contributed to these discoveries is Avicenna (Ibn Sīnā)—an
Iranian (Persian) polymath in the eleventh century. Among his well-known
works is The Book of Healing (Kitāb al-Shifā’), which is a comprehensive
philosophical and scientific encyclopedia, divided into four parts of logic,
natural sciences, mathematics (a quadrivium of arithmetic, geometry,
astronomy, and music), and metaphysics. In his book of Heaven and Earth,

10 • PraCtiCal Heat transfer

he states that heat is generated from the motion in external things. This
is to say that the thermal energy has a dynamic nature, similar to what is
known as the Dynamical Theory of Heat. His theory on heat was reported
in 1253 in the Latin text entitled Speculum Tripartitum. For example, when
water is heated, the heat present in the water is generated with aversion on
behalf of the water and then energy is received by the matter. Avicenna was
also reportedly the first who employed an air thermometer to measure air
temperature in his scientific experiments [30].

Avicenna’s famous classic authoritative reference work, the Canon of
Medicine (al-Qānūn fī al-Ṭibb) completed in 1025, consists of five books,
which have been used at many western medical schools (e.g., Montpellier,
France until the seventeenth century) and is still used in the East. In Book
1—essays on the basic medical and physiological principles, anatomy,
regimen, and general therapeutic procedures—he states that the body parts
have their own temperaments, degree of heat, and moisture. He further
provides two methodically ordered lists, identifying: (a) ten body members
versus their degree of heat, starting from the breath and ending to the skin
and (b) thirteen body members from the coldest to the hottest, starting
from the serious humor and ending with the skin. He also introduces the
temperature equilibrium concept in the body parts, suggesting that its
deficiency causes ailments in the body.

In Book 2—where he lists medical substances, arranged alphabetically,
following an essay on their general properties—he states that drugs must
not be exposed to extreme heat or cold or stored near other substances.
He uses the term innate heat as the attrition of the blood parts, that occurs
due to its circularly motion in the arteries. His theories on heat are like
the thermodynamics laws, relating the temperature of multiple bodies in
equilibrium; the conservation of energy for believing that the general energy
is to be constant and is transformable from one form to another; and that
heat transfer has a direction, flowing from a matter with the higher level to
that of the lower one. Avicenna eventually founded the entropy concept,
where a ground state (no energy) is defined at extremely low temperatures.
Note that the Dynamical Theory of Heat, which was the foundation of the
thermodynamics as a branch of physics, only originated in the nineteenth
century.

In the West, until the invention of the thermoscope by Galileo Galilei—
an Italian astronomer, physicist, and engineer in the seventeenth century—
there was no numerical measure of the degree of heat. As far as heat itself,
until the discoveries of the nineteenth century, scientists thought that it was

PiPes, tHeir aPPliCations, and Heat transfer • 11

a physical substance. Therefore, they associated it with the characteristics
of a weightless liquid, also known as caloric fluid or frigorific particles
(particles of cold). This term (frigorific) is attributed to Robert Boyle, a
seventeenth-century British natural philosopher, who hypothesized that
particles of cold are transferred between objects [31].

Today, we know that heat is the measure of the kinetic energy stored in
the random motion of atomic particles in matter, and temperature describes
the intensity of this motion. Historically, extensive work has been conducted
on the equivalency of heat, energy, and work. Heating processes, such as
quicker conduction heat transfer by aluminum compared to ceramic or
plastic or convection heat transfer when boiling water, are known facts.
Even young children know about temperature. They may be running
a temperature when they are sick, where a thermometer is employed to
measure their body temperature. This knowledge provides the ability
to describe physical systems mathematically to model the reality. This
modeling is either done analytically or numerically. The analytical models
include mathematical relations that express the physical relations between
independent variables identifying the system behavior. Numerical models
are the same as the analytical models in terms of the system’s behavioral
representations, except that they define numerical algorithms that are
applied to the analytical models. For example, they are discretized for a
domain filled with elements.

Thermodynamics, fluid mechanics, and heat transfer are known
collectively as thermo-fluid sciences. They find applications in just about all
of nature’s phenomena as well as in most of humanity’s technological fields.
In nature, the sun’s heating of the earth’s surface, atmospheric phenomena,
and the movement of oceanic currents are all connected to these sciences.
Human technological endeavors, such as the internal combustion engine of
a car, the turbofan engine of an airliner, the floating of a ship on an ocean,
the buoyancy forces that keep the airplane in the air, the frying of your
morning eggs, and the heating of your house, are all connected to thermo-
fluid sciences.

12 • PraCtiCal Heat transfer

End Notes

 [8] K. Peszynski,, D. Perczynski, Lidia Piwecka, “Mathematical Model of a
Fountain with a Water Picture in the Shape of an Hourglass,” EPJ Web
of Conferences, 213, 02064, EFM 2018, 2019; https://doi.org/10.1051/
epjconf/201921302064

 [9] https://www.reviewjournal.com/local/the-strip/heres-a-behind-the-scenes-look-
at-how-the-bellagio-fountains-are-maintained/

 [10] https://youtu.be/kvOJ37pPKaM
 [11] https://en.wikipedia.org/wiki/First_Battle_of_al-Faw#Iranian_attack
 [12] https://www.aparat.com/v/c1JM4/ ResaneSabz.ir
 I am negotiating with the green flag of content; seeking the untold stories of the

Beesat Bridge; having become acquainted with the memories of devoted souls;
I am the interpreter of the Dawn 8 passage; the land of pain, is the meeting
place of the divine people; it is the turning point of all the epics. When is
it possible for the traveller to return and find the lost ones of Fave? I am
mesmerised by the sunset at the shores of the River Arvand and the sparrows of
the South Reeds.

 [13] https://www.isna.ir/news/91122114203/
 [14] https://www.aboutpipelines.com/en/pipeline-101/whats-in-the-pipelines/natural-

gas-lines/
 [15] https://www.shell.com/about-us/major-projects/perdido.html
 [16] https://en.wikipedia.org/wiki/List_of_natural_gas_pipelines
 [17] https://chemicalengineeringresearchandr.weebly.com/pipeline-transport.html
 [18] http://naturalgas.org/naturalgas/transport/
 [19] https://www.engineeringtoolbox.com/pipes-temperature-expansion-]

coefficients-d_48.html
 [20] http://pstrust.org/wp-content/uploads/2015/09/2015-PST-Briefing-Paper-02-

NatGasBasics.pdf
 [21] https://www.builditsolar.com/Projects/Cooling/EarthTemperatures.htm
 [22] https://www.britannica.com/science/umbilical-cord
 [23] https://www.britannica.com/science/urethra
 [24] https://www.britannica.com/science/human-renal-system/The-ureters
 [25] https://www.britannica.com/technology/coal-slurry
 [26] https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2510005601
 [27] K.N. Shukla, “Heat Pipe for Aerospace Applications—An Overview,” Journal of

Electronics Cooling and Thermal Control, 5, pp. 1–14, 2015.
 [28] LAFARGE, Northern Alberta Region Drainage Systems, Concrete Pipe, 2018,

Precast Stormwater & Wastewater Solution, shttps://www.lafarge.ca/sites/
canada/files/atoms/files/2018_edmonton_pipe_catalogue.pdf

 [29] https://en.oxforddictionaries.com/definition/heat
 [30] Robert Briffault, The Making of Humanity, pp. 380, 2015.
 [31] https://www.britannica.com/biography/Robert-Boyle

C H A P T E R2
heAT TrAnsfer MOdeLing

Heat transfer modeling is founded on the principles of thermody-
namics. This science focuses on the motion of particles making up
the matter stimulated by heat, resulting in changes of the internal

energy and heat generation (HG). In thermodynamics, the four laws are as
follows:

 (1) Zeroth law—two objects, each in equilibrium with a third object, are in
equilibrium with one another.

 (2) First law—the internal energy of objects remains constant.

 (3) Second law—the entropy of the universe increases over time, meaning
the changes are positive for any given system.

 (4) Third law—the entropy of an object approaches zero when its tem-
perature approaches absolute zero.

The term object used in this context is interchangeable with system, since
both define a cluster of molecules with the equation of states ruling over
them [32].

Interacting forces within fluids (e.g., gases, liquids, and plasmas)
are governed by fluid mechanics. This is also known as the third law of
Newtonian mechanics, sometimes called the action-reaction law—for every
action, there is a reaction, equal in magnitude and in the opposite direction.
Fluid mechanics is further categorized into fluid statics and dynamics,

14 • PraCtiCal Heat transfer

based on the temporal status of the fluid molecules. The former relates
to the stationary systems, also known as the steady-state systems, and the
latter to the transient systems. The variation of the atmospheric pressure
with altitude is an example where statics applies. Hydrostatics is the reason
for the self-leveling of tea within a cup, making liquid’s surface flat. Shock
absorbers, such as those used in some aircraft landing gear suspension
systems, are an example of a fluid dynamics application. Depending on
the type of fluids (i.e., liquids or gases), more specialized disciplines (e.g.,
hydrodynamics and aerodynamics) have evolved. Aerodynamics investigates
the flow patterns and forces over any object moving through air.

2.1 Basic Concepts

Heat transfer is a thermo-fluid science that focuses on the transportation
of heat in a continuous medium. The continuum consists of molecules and is
identified by boundaries. Depending on the spacing between the particles,
these entities agglomerate and form matter. The ratio of their mean free
path to the characteristic length—also known as the Knudsen number (Kn)—
decides if the matter is a fluid or solid. A larger space allows molecules to
freely move in their environment without interacting significantly with their
neighbors. If the Kn is larger than 1, free molecular flow is observed, where
molecules can freely move to occupy the space available to them within their
container (as in gases). Molecules with a smaller Kn (about 1) have their
movement constrained to greater extent (as in fluids). Therefore, fluids (i.e.,
gases and liquids) are identified by the spacing between their molecules,
adopting the shape of their container. In solids, the Kn is considerably
smaller than 1 and the molecules are tightly packed.

Energy (as heat) can be transferred by mechanical interaction, requiring a
medium (gas, liquid, or solid). It can also be transferred between the matter’s
elemental particles or by the transmission and absorption of electromagnetic
waves, requiring no medium. Heating a skillet on an induction oven raises
the skillet temperature due to the electromagnetic waves agitating the
skillet’s iron atoms; the next step is conducting this heat through the skillet
particles. Holding your hand close to the skillet and feeling the heat is heating
by electromagnetic interaction (radiation heat transfer) while touching the
skillet directly is heating by mechanical interaction (conduction heat transfer).
Taking the skillet off the heat and leaving it exposed to surrounding air makes
it cool down by convection heat transfer.

Depending on the boundary definition, well-defined or not, a control
volume or system is defined. The former can be either an open or closed

Heat transfer Modeling • 15

system. In a closed system, energy in the form of heat crosses the boundaries.
In an open system, both energy and mass can do the border crossing. This
energy is either in the form of heat or work. Phase change for a specific
matter is an example of a system, the boundaries of the matter change from
the more defined shape (e.g., liquid or solid) to a less specific one (e.g., gas).
Steam flow in a turbine is an example of a control volume, where mass with
a given energy level, which is a function of its pressure and temperature,
enters the turbine and leaves it at a higher level, generating work.

When a matter is exposed to heat, the matter may undergo phase
changes; its state changing from solid to liquid (melting), liquid to gas
(vaporization), liquid to solid (freezing), gas to liquid (condensing), solid to
gas (sublimating), and gas to solid (depositing). During the phase change
process, temperature remains constant; therefore, the process is isothermal.
Temperature variation is directly associated with the average kinetic velocity
of the matter’s molecules while heat determines the flow of the created
spatial or temporal energy. Heat transfer problems can be categorized in
the following processes: (a) isothermal—temperature remains constant;
(b) isobaric—pressure remains constant; (c) isovolumetric (or isochoric)—
volume remains constant; (d) adiabatic—no energy is transferred;
(e) isentropic—entropy remains constant; and (f) isenthalpic—enthalpy
remains constant.

All thermal sciences are governed by natural physics and employ:
(a) analytical, inseparable relations—derived from mathematical rela-
tions, (b) empirical relations—obtained from experimental observations,
and (c) hybrid relations—predicted from correlating the two-said physi-
cal modeling approaches. These studies focus on calculating spatial fluid
properties such as temperature, pressure, density, and velocity within a
time domain and therefore defining temporal properties. When process-
ing thermal science data, either interpreting or presenting them, it is pos-
sible to take advantage of certain special cases. If the system properties
do not vary over time, a steady-state condition is achieved; otherwise, the
system is transient.

When post-processing the results of any system study, if multiple
variables are plotted against each other, by keeping one property constant,
the iso-property (e.g., isochoric) contour lines or surfaces can be produced.
Isotherms (lines of equal temperature) and isobars (lines of equal pressure)
plotted on the weather charts are among more typical cases. Examples of less
known plots are isogeotherms (lines of constant mean annual temperature)
and isodrosotherms (lines of constant dew point) plotted on the weather
charts.

16 • PraCtiCal Heat transfer

2.2 Thermal Analysis of Systems (Components and
Subcomponents)

Thermo-Fluid analysis describes behavior of systems involving heat and
flow, with system properties that may depend on temperature. It may be
also referred to as heat transfer or flow modeling. Thermal analysis describes
the thermal response of a system as a function of predictors (inputs). These
predictors may be material characteristics—such as thermophysical and
optical properties—or process parameters—such as laser scanning speed
or operating temperature.

2.2.1 Thermal Properties of Materials
The three thermophysical properties of density (r), thermal conductivity

(k), and specific heat capacity (c) form the foundation of all heat transfer
problems. A fourth, dependent property, thermal diffusivity (a), may also
be used to characterize the material. Thermal diffusivity is the ratio of
thermal conductivity to the product of density and specific heat capacity.
Any type of mass, momentum, or energy conservation employs one or more
of the first three properties.

Material properties are vital ingredients of any modeling and, depending
on the modes of heat transfer or analysis type, some are more dominant than
others. These properties may vary in space (spatial), time (temporal), or
under environmental conditions (environmental). Nonconstant properties
introduce nonlinearities and non-homogeneities to the physics that make
the problem more challenging to tackle. An example is modeling material
exposure to intense heat sources such as fire in which heat-material
interaction over time is needed. For such models, thermal capacity and
thermal conductivity are required. Density is another needed property
that is available in most cases for being the basic material specification.
Inaccuracies in material properties can sometimes lead to significant
variations in thermal analysis results.

Thermal properties of materials usually involve a combination of
energy (J), temperature (K), mass (kg), length (m), or time (s). Adding (or
taking away) energy from a material increases (or decreases) the degree of
agitation in the form of translational, rotational, and vibratory motion of
the material’s elementary particles; the level of this agitation is expressed
by the material’s temperature.

Specific heat capacity is the amount of energy needed to increase the
temperature of material by one degree centigrade (J/kgK). The larger it is,

Heat transfer Modeling • 17

the more capacity the matter has to hold its thermal energy; for example,
for water it is 4,200 J/kgK, while for cast iron it is 460 J/kgK.

Thermal conductivity describes how much energy (J) can travel
per unit time (s) per unit length (m) for a temperature gradient of one
degree (°C). The larger it is, the more conductive the material is; for
example, for alumina (a ceramic material) it is 27 W/mK, while for copper
it is 401 W/mK, which is almost fifteen times greater than that of the
ceramic material. Thermal diffusivity represents the combination of
these thermophysical properties and is defined as the ratio of thermal
conductivity to the product of density and heat capacity (a = k/rc). This
property describes the temporal variation of temperature within matter,
the changes that occur with respect to time, when constituting the energy
conservation equations.

If a material is a mixture of two or more distinct elements or com-
pounds, it can be classified as homogeneous, inhomogeneous, or heteroge-
neous. In a homogeneous material, the components are mixed at such a
fine level that any small macroscopic sample of the material has the same
proportion of the constituents as any other. In an inhomogeneous material,
taking similar samples results in sample-to-sample variation of the constitu-
ent proportions. In other words, homogeneous materials are consistent in
composition and character (e.g., some metals), while inhomogeneous ma-
terials are inconsistent in composition or character due to the substantial
material variations (e.g., rice pudding). Heterogeneous materials are incon-
sistent in composition or character for similar materials (e.g., chocolate chip
cookies). If the mixture’s thermal properties are not available, one way to
approximate them is to use the rule of mixtures. It provides an estimate of
the equivalent property, which is the sum of the products of the individual
property value and its corresponding mass fraction.

Spatial properties can change within a geometry or specific domains
within a geometry. This introduces thermal non-homogeneities in
properties. The change can be: (a) spatial (e.g., varying thermal conductivity
as a function of the location or direction), (b) thermal (e.g., change of
specific heat capacity with temperature), or (c) temporal (e.g., changes in
metabolism in a living organism).

Properties that are expressed per unit length (e.g., thermal conductivity)
or length squared (e.g., elastic modulus—Pa = N/m2) can also vary with
the material direction. If such variation exists, the material is anisotropic.
Furthermore, anisotropic materials may be transversely isotropic or
orthotropic. The former has invariant properties within a plane but

18 • PraCtiCal Heat transfer

different properties in the direction orthogonal to this plane. Think of a thin
membrane—properties within its plane are the same in all directions, but
they are different in the transverse direction. Orthotropic materials have
properties which differ along three orthogonal directions. For example,
a sheet of rolled steel has different properties in the direction of rolling,
perpendicular to the rolling direction, and transverse to the sheet plane.

When selecting materials for engineering applications, careful
consideration must be given to their thermal and mechanical properties.
Aluminum, for example, has a good strength-to-weight ratio (33.3 kN m/kg)
and, due to the oxidized layer that is formed on its surface when exposed
to air, it is almost corrosion-free. However, it does not perform that well in
the high-temperature applications due to its relatively low melting point
(660.2 °C) when compared to other metals. Aluminum has a high thermal
conductivity (238.5 W/mK), which makes it suitable for heat transfer
applications, such as heat sinks or sources. Also, it has large linear thermal
expansion coefficient. Aluminum, however, has a small strength-to-weight
ratio.

Titanium can be used in very high-temperature applications due to its
high melting point (1,650–1,670 °C); it is harder and stronger than aluminum,
but more costly. Its strength-to-weight ratio (48.9 kN m/kg) is higher than
that of aluminum. This can be a benefit in structural application, but it
also makes the material difficult to machine or process. Another benefit
is that it has lower thermal expansion coefficient (8.9 m/mK) compared to
aluminum’s (23.6 m/m K). However, due to its low thermal conductivity
(17 W/mK), titanium is a poor candidate for heat transfer applications.
These examples show that there are many things to consider when selecting
appropriate materials in engineering applications (Table 2.1).

TABLE 2.1. Comparison of thermomechanical properties of aluminum and titanium.

Material

Melting
Point
(°C)

Density
(kg/m3)

Tensile
Strength

(MPA)

Tensile
Strength-
to-Density

(m2/s2)

Linear
Thermal

Expansion
(µm/mK)

Thermal
Conduc-

tivity
(W/mK)

Aluminum 660.2 2,700 90 33 23.6 238.5

Titanium 1,650-1,670 4,500 220 49 8.9 17

2.2.2 Static versus Dynamic
There are two types of thermo-fluid analysis: (a) transient and (b) station-

ary. The former case involves temporal system characteristics (properties

Heat transfer Modeling • 19

change with time), while the latter involves no temporal dependence. Oc-
casionally, the system’s instantaneous behavior depends on the past per-
formance; such a system is referred to as a dynamic system. However,
that is not necessarily the case for all transient systems. In other words, a
system can be time-dependent static but not necessarily dynamic. A static
system is memoryless while a dynamic system has an “elephant” memory.
In a memoryless system, the output is the function of the input. For ex-
ample, f(t) = teat is a static system, which requires a certain time variable
(t) to identify the value of the function f(t) at that instance (t). No previ-
ous data is required to define this function; this is a memoryless system

0.5
((5 60 9) . 1),

a
f

=
= even though the result depends on time (transient).

However, () ()atf t te f t a = - is a system that has a memory, since it re-
quires a certain time variable to not only identify the value of the function

()f t at that particular instance (t), but also the value of the function ()f t at
a s prior to that instance—

0.5
103.61.(5)

a
f

=
= Functions f(t) and ()f t are

presented in Figure 2.1.

As the next step, curves were fitted to the same functions (f(t) and ()f t),
with the results presented in Figure 2.2. The two fitted functions (y(x) and
y(x)) are third-degree polynomials and do not identify if the functions are
static or dynamic. Therefore, functions alone do not determine the dynamic
nature of a system; other characteristics are needed to determine that.

FIGURE 2.1. Function f(t) versus the t representing static (dotted line) and
dynamic (solid line) systems (a = 0.5).

20 • PraCtiCal Heat transfer

FIGURE 2.2. Fitted function f(t) versus the t representing static and dynamic systems (a = 0.5).

Let us consider adjusting the temperature of a room using a thermostat.
Inputting the desired temperature to the thermostat control panel is
inherently not time-dependent; you may set whatever temperature level
you wish at any time. However, reaching the desired room temperature
after adjusting the thermostat is a transient process in which temperature
increases (or decreases) with time. Given the real-time ambient conditions,
the input temperature is translated to an electrical signal, which is
then communicated to the boiler to generate more warm air, or the air
conditioner to generate more cool air. The heated flow is then transferred
through the in-floor pipes, radiators, or ducts by means of conduction,
radiation, or convection heat transfer modes to the thermally controlled
zones. The temperature of the environment changes on a continuous basis
until it reaches the set value.

A thermometer is an intervening device, ensuring the desired
temperature is achieved by measuring the temperature at each heating or
cooling step. Eventually, the thermal transient process becomes steady at
the set value. At this point, the behavior of the system does not change with
time anymore. In most cases, it is assumed that the system has completed
several temporal processes before reaching the steady-state condition; the
process events depend upon the previous events and therefore heating
process is a dynamic system while inputting temperature is a static process.

For a transient analysis, where the temporal variation is desired, the
time predictor is considered either as an additional coordinate to the three
spatial ones or as a separate variable where it influences the thermophysical
properties—expressed in terms of the temporal variation of the boundary
conditions. An example is the definition of the volumetric heat generation

Heat transfer Modeling • 21

term for the case of a laser contour welding process, where the profile
of the heat source changes along the x-, y-, and z-coordinates and varies
with time (since the beam is scanning the part). The heat source can be
applied cyclically—turning on and off—to study the effect of the heating
and cooling (after the heat source is no longer active). The time-varying
heat source, either in the form of heat generation inside the geometry or
boundary conditions applied to the internal or external borders, follows
similar rules [33].

2.2.3 Energy Balance
In thermo-fluid systems, the conservation of energy principle states that

the energy should be conserved in all subcomponents. Their total energy
should be zero, demonstrating that the balance of energy has been reached.
Conservation of energy requires that the total energy inputted into and
generated within the system is the same as the total outputted from and
stored by the system. Figure 2.3 shows schematically the general form of
the energy balance for a continuum, Equation (1).

 in generated out storage E E E E = (1)

FIGURE 2.3. Energy balance diagram for a continuum (e.g., a parcel of air).

The conservation of energy requirement means that the energy balance
is to be complied with for any small and identifiable portion (element) of
the material that satisfies the continuity of mass, energy, and momentum.
Energy can enter and leave the continuum; however, the boundaries remain
constant. The continuum is identified by its size, mass, and thermophysical
properties. Thermophysical properties may be temporal (transient—change
with time), spatial (non-homogeneous—change with direction and location
within the geometry), temperature-dependent, or constant.

Energy is defined in different forms inside this environment. It is
either in the form of heat entering or leaving the continuum by conduction,
convection, or radiation modes of heat transfer, changes of internal energy
(or energy storage), or heat generation generated()E inside the continuum. The
heat leaving the continuum by conduction is the same as the heat entering

22 • PraCtiCal Heat transfer

the continuum by conduction plus the spatial variations over the length of
travel, and it is time-independent (steady-state), Equation (2).

 out in in(, ,) (, ,) ((, ,))q x dx y dy z dz q x y z q x y z =
 (2)

The internal energy is time-dependent (transient); it represents the
variation of rate of energy storage (storageE in W) expressed in the following
form that includes specific heat capacity of the continuum (cp in J/kgK),
mass (m in kg), volume (dV in m3), temperature (T in K), and time (t in s),
Equation (3).

 storage()
(, ,)

, , p

dT x y z
E x y z mc dt= (3)

The heat generation can be time- and location-dependent (transient and
temporal, respectively). It represents the heat generated inside the heat-
conducting medium. It can be expressed in units of energy rate per unit
volume—Equation (4)—where generatedE is heat generation (W) and q is
rate of energy generated per unit volume (W/m3). Internal energy internal)(E is
the energy storage and energy generation terms, Equation (5). Substituting
Equations (2) to (5) into Equation (1) results in Equation (6).

 generated(, ,)x y zE qdV qdxdydz= =

 (4)

 internal
(), ,

 p

dT x y z
E m c qdVdt=-

 (5)

 in
(, ,)

((, ,)) p

dT x y z
qdV q x y z m c dt =

 (6)

The energy balance for the case studies presented in this work is set for
a system where mass does not enter or leave the system boundary—only
energy in the form of heat and work does. There are some cases in which
mass crosses the boundary or there is no net mass transfer (i.e., the inlet
mass is the same as that of the outlet); therefore, there is no mass transfer—
this is a control volume (versus the system) problem. The boundary of a
system may expand or contract. For a control volume, however, both
energy and mass may enter and leave the boundaries, which do not expand
or contract. Your body as a source of the sensible heat you experience
transported by sweat, or rush of blood and tears, is a control volume, with
the possibility for organic fluids entering and leaving the body parts. Each
body part has a set boundary that essentially does not change, though it may
expand or contract. Examples of the processes including mass transport are
evaporation, precipitation, and distillation.

Heat transfer Modeling • 23

Geometry in which heat transfer takes place can be defined by
the Cartesian coordinate system in one (1D), two (2D), or three (3D)
dimensions. For some 3D shapes, the cylindrical or spherical coordinate
system can facilitate the modeling task. There are cases where the model
can be simplified by reducing the number of dimensions. One case is
where the length of the plane transverse to heat transfer direction is large
compared to the other dimensions, including the dimension along which
heat is transferred. In this case, the heat transfer along the transverse
direction can be ignored. This is where a 3D model can be simplified to a
2D model. Another case is an axisymmetric model, meaning that the model
(i.e., properties, boundary and initial conditions, and state variables) are the
same about a symmetry axis. In this case, a 3D model can be simplified to a
2D axisymmetric model. A pipe exposed to a uniform transient heat flux on
its exterior surface is an example of such model.

2.3 Modes of Heat Transfer

Dependent variables are the driving forces for defined physics. When
modeling heat transfer in solids and fluids, temperature is the dependent
variable. This is analogous to pressure being the dependent variable when
modeling fluid flow. Heat is transferred from the point with the higher
temperature to that with the lower one. Fluid moves from the point
with higher pressure to that with the lower one. Heat or fluid movement
continues until all points reach an equilibrium state, meaning that their
temperature or pressure equalizes.

The dependent variable is to be measurable so that the derivative may
be calculated. For heat flow to be determined, temperature is the state
variable. The variation of temperature throughout matter—either in the
form of solid or fluid—is either time-dependent (temporal) or space-
dependent (spatial). The gradient of temperature (i.e., spatial variation)
results in heat conduction—from a region with a higher temperature to that
with a lower temperature. The rate at which this equalization takes place is
proportional to the thermal diffusivity and spatial derivative of temperature.
As you may recall, thermal diffusivity is the ratio of heat conductivity to
the product of density and specific heat capacity. This property is the
characteristic of the material, affecting temperature change over time (i.e.,
the transient temperature).

The mechanism of heat transfer depends on the medium in which
the heat is being transferred. Heat transfer is achieved primarily by the

24 • PraCtiCal Heat transfer

mechanisms of conduction and radiation. For conduction to happen, either
in its pure or subsidiary forms (such as convection), molecules need to be
present. While in the radiation form, electromagnetic waves are the energy-
transmitting agents, and no intervening molecules are needed. This is how
the sun’s radiant energy reaches the earth’s atmosphere and passes through
the atmospheric layers to be absorbed by the planet’s surface.

For solids, in which molecules are near each other, the conduction
mode of heat transfer is dominant. For molecules flowing in the form of a
fluid (i.e., liquid or gas), heat transfer takes place by means of advection,
which is the combination of the convection and conduction due to the fluid
flow and the solid surface they may come in contact with. When a gas comes
in contact with a solid, a hybrid heat transfer mechanism takes place—a
combination of the conduction and convection heat transfer modes, both in
the solid and liquid as well as their interface. Additionally, the momentum
of the fluid bulk transfers some of the energy in the form of heat.

Flow profile and velocity affect the heat transfer mechanism. This
is particularly the case for conjugate heat transfer models, where the
combination of fluid flow and solid heat transfer are included in a hybrid
thermal heat transfer model. When a continuum nonslip flow passes over a
wall (i.e., any solid boundary), the magnitude of the flow velocity adjacent
to the wall will be zero, while for a slip flow this value is not zero, since the
fluid can slide relative to the wall. The parabolic velocity profile associated
with the continuum flow passing over the wall changes to a linear profile in
a free molecular flow, meaning that the flow velocity, starting at a nonzero
magnitude at the wall, changes (increases) linearly with increasing distance
from the wall.

2.3.1 Conduction Heat Transfer
For solids, where molecules are in close contact with each other,
conduction is the main mode of heat transfer. For molecules within fluids
(i.e., liquid or gas), heat transfer takes place by means of advection, which
is a combination of convection and conduction. Since heat is transferred
though the internal energy of randomly colliding molecules, this mode of
heat transfer is available for all three phases of material (i.e., solid, liquid,
and gas). Obviously, the more the molecules interact, the more efficient
heat transfer mechanism becomes.

Consider, as an example, the case of in-floor heating, where electric
heating wires are embedded into the floor in a raster pattern. When walking
barefoot on the heated floor, its heat is transferred to your feet, assuming

Heat transfer Modeling • 25

that the floor’s temperature is higher than that of your body. Another
mechanism of heat transfer is the convection by spontaneous change of
density for the air at the proximity of the horizontal warm surface. With no
in-floor heating, your bare feet will normally feel the cold of the floor surface.
This is because the heat from your sole is transferred to the floor. High
thermal conductivity of the 0.05-m-thick ceramic floor tile (1.84 W/mK)
compared to your skin (0.37 W/mk) are the responsible factors; however,
thermal diffusivity of the ceramic is larger than that of the skin (Silicon
carbide thermal diffusivity is about 1.1 ´ 10-6 m2/s compared to that
of the human skin that is about 9.8 ´ 10-8 m2/s) [34, 35, 36, 37, 38].
This means that the heat diffusion for the ceramic floor tile is about
11 times that of the human skin, causing the cool sensation—Table 2.2.

TABLE 2.2. Comparison of thermophysical properties of some materials.

Material

Thermal
Conduc-

tivity
(W/mK)

Heat
Capacity
(J/kgK)

Density
(kg/m3)

Thermal
Diffusivity

(m2/s)
Thickness

(m)

Thermal
Resistivity
(m2K/W)

Ceramic
Floor Tile 1.84 840 2,000 1.10E-6 0.05 0.03

Human
Skin 0.37 3,391 1,109 9.84E-8 0.002 0.005

For a derivative (e.g., heat) of a property (e.g., temperature) to be
transported, a state variable must be defined that is responsible for the
transportation of the derivative; it can be either measured or calculated.
For the heat flow (response) to be determined, temperature (predictor) as
the state variable is to be employed. Variation of temperature throughout
the matter, either in the form of the solid or fluid, is either time- or space-
dependent. Recall that gradient of temperature causes heat transfer to
occur from the region with higher temperature to that with the lower one.
Material thermal characteristics, such as thermal conductivity and heat
capacity, as well as physical properties, such as density, affect this energy
transfer, over the defined domain (space) and time, introducing temporal-
spatial thermal characteristics.

In addition to the analytical relations and numerical approaches to
solve conduction heat transfer modes, there are also diagrams suitable for
specific scenarios that correlate thermal variables. An example is a Heisler-
Gröber chart, consisting of three sets of charts presenting the temperature
distributions inside a sphere with known radius, a semi-infinite slab with
known thickness, and a cylinder with a known radius. There are limitations

26 • PraCtiCal Heat transfer

to be considered when using these diagrams. These limitations are due to the
assumptions used to create the diagrams: (a) the initial temperature should
be constant; (b) the environmental conditions (namely temperature) should
remain unchanged; (c) the convection heat transfer coefficient should not
vary as a function of temperature; and (d) the rate of heat generation inside
the part is zero.

To obtain these diagrams, the exact solutions from the Fourier
transformation (infinite slab and sphere) and the Bessel functions (infinite
cylinder) are simplified, including only the first terms. There are sets of
diagrams identified for each geometry that show the following: (a) the
dimensionless temperature at the center of the geometry assuming an
imposed temperature on the boundary of the surface as a function of the
Fourier number 2

0(/)Fo t r= ; (b) dimensionless temperature distribution
inside the geometry as a function of the inverse Biot number (Bi = hr0/k),
given the dimensionless radius or the thickness of the geometry; and
(c) dimensionless thermal energy (heat), which is a function of the product
of the Biot number squared by the Fourier number (Bi2Fo), assuming that
constant temperature boundary conditions were applied [39].

As mentioned earlier, temperature difference is the driving force for
the movement of heat energy. This heat flow rate (Q in W = J/s) depends
on the heat conduction coefficient (k in W/mK), which is the proportionality
factor, area of the body normal to the heat flow (A in m2), and temperature
change (dT in K) with respect to the distance (dx in m). This is described by
the Fourier equation: Q = -(kAT).

Fourier law is applicable to the heat conduction mode and it states
that energy transfer is proportional to the gradient of the temperature
with respect to the direction (coordinate system) along which it flows

, ,
dT dT dT
dx dy dy

 as well as the areas of the body perpendicular to the

directions of heat transfer (Ax, Ay, Az), and thermal conductivity (kx, ky, kz)
along the heat transfer direction. Thermal conductivity depends on the
material and demonstrates how fast the molecules get agitated, showing
signs of increased activity as the temperature increases. Metals in general
have higher thermal conductivities compared to nonmetals. The closer
the molecules are to one another, the easier it is for them to transfer their
motion, which corresponds to the thermal energy.

The heat transfer flow follows the temperature gradient; , ,i j

 and k

represent unit vectors along the (x, y, z) in the Cartesian coordinate system.

Heat transfer Modeling • 27

Temperature gradient is a vector, having magnitude and direction. For
three-dimensional space, each of the vector’s three components is obtained
by calculating the derivatives of temperature with respect to the dimension

component (coordinate). Thus, the vector , ,
dT dT dT
dx dy dy

 is obtained in the

Cartesian coordinate system. These derivatives take on different forms for
the cylindrical and spherical coordinate systems, which will be discussed
later in this section.

The area that is normal to the heat transfer gradient vector becomes
important when calculating the total power passing through a plane. For
example, determining the heat transfer along the x-coordinate involves
the y-z plane: the y-z plane is perpendicular to the heat transfer direction
and is therefore the surface to which the heat flux is applied. Equation (7)
presents the general form of changes of energy due to the conduction heat
transfer in the Cartesian coordinate system in a steady-state case. Note
that heat generation and change of internal energies are not included in
Equation (7) and that Ax = dydz, Ay = dxdz, and Az = dxdy.

cond(, ,) ((, ,))x y z

x x y y z z

Q AkT x y z

dT dT dT
A k i A k j A k kdx dy dz

=-

=- - -

 (7)

Similar to electric current (I) that flows inside a resistor from the areas
of higher voltage (V) to those of lower ones inside a circuit (V = RI)—
with the voltage being the driving force—heat flows from the regions of
higher temperature (Ts) to those of the lower ones (sT), with temperature
difference acting as the driving force. Therefore, it is possible to simulate
the heat flow as electric current and assign the denominator term presented
in equation (8) the thermal resistance.

cond
s sT T

Q L
kA

-
= (8)

Conductive thermal resistance is then presented by Equation (9), where L is
the length of the thermal layer (m), k is homogeneous thermal conductivity
(W/mK), and A is area normal to heat transfer direction (m2). The dimension
of conductive thermal resistance (R) is K/W.

 thcond-cartesian
L

R kA= (9)

Depending on the geometry to be modeled, the Cartesian, cylindrical, or
spherical coordinate system may be employed. For instance, a cylindrical

28 • PraCtiCal Heat transfer

shape, such as a pipe, is better represented by the cylindrical coordinate
system. A ball is more accurately modeled using the spherical coordinate
system. This assists with capturing the geometry irregularities such as
bends, curves, and corners.

Changes of energy due to the conduction heat transfer in the cylindrical
coordinate system are presented by Equation (10). Heat generation and the

change of the internal energies are not incorporated; , ,i j

 and k

 represent

unit vectors along (r, q, z); x = r cosq, y = r sinq, z = z, 2 2 ,r x y= and
tanq = y/x.

cond(, ,) (, ,)r z

r r z z

Q AkT r z

dT dT dT
A k i A k j A k kdr rd dz

q

q q

=- q

=- - -q

 (10)

Changes of energy due to the conduction heat transfer in the spherical
coordinate system are presented by Equation (11). Heat generation and the

change of the internal energies are not incorporated; , ,i j

 and k

 represent
unit vectors along (r, q, j); x = rsinjcosq, y = rsinjsinq , z = rcosj, and

tanq = y/x, 2 2 2 ,r x y z= and arccos(/).z rj=

cond(, ,) (, ,)

sin

r

r r

Q AkT r

dT dT dT
A k i A k j A k kdr rd r d

q j

q q j j

=- q j

 =- - -q q j

 (11)

The thermal resistance analogy is also applicable to the cylindrical and
spherical coordinate systems; therefore, Equations (10) and (11) are
transformed into Equations (12) and (13), respectively, where r1 and r2 are
the internal and external radii of the geometries, and L is cylindrical length.

cond
2

1
ln 2

s sT T
Q

r
kLr

-
=

 (12)

cond
2 1 1 2(/ 4)

s sT T
Q r r kr r

-
= - (13)

Conductive thermal resistances are then presented by Equations (14)
and (15), where k is the homogeneous thermal conductivity, and A is area
normal to the heat transfer direction.

 2 1
thcond-cylindrical

/ln()
2

r r
R kL= (14)

Heat transfer Modeling • 29

 2 1
thcond-spherical

1 2

(
4

)r r
R kr r

-
=

 (15)

One may derive Equations (10) and (11) from their equivalents in the Car-
tesian coordinate system, Equation (7). To achieve this, the following trans-
formations are applied. The equivalent of the Cartesian coordinate system
(x, y, z) in the cylindrical coordinate system (r, q, z) is (r cosq, r sinq, z) which
implies that tanq = y/x. The equivalent of the Cartesian coordinate system
(x, y, z) in the spherical coordinate system (r, q, j) is (r cosqsinj, r sinqsinj,
r cosj), which implies that tanq = y/x and arccosj = z/r. Furthermore,

, , , , , , , , .dx dy dz dr dx dy dz d dx dy d
ddT dT dr dT d d

z d dx dy dz
T jq

= q j Note that the de-

nominator expression dx, dy, and dz determines along which dimension
component (x, y, z) the gradient is applied.

2.3.2 Convection Heat Transfer
The convection heat transfer mode occurs between a solid and fluid.

It is related to the temperature difference between the solid surface in
contact with the fluid and the bulk temperature of the fluid surrounding
it. Occasionally, the bulk temperature is assumed equal to the average
temperature between the wall surface temperature and the flow temperature
at a distant location, if this temperature difference is considerable. The
factors that make this proportionality an equality are the area of the
surface, and a proportionality coefficient called the convection heat transfer
coefficient. This coefficient depends on the bulk flow characteristics,
such as its velocity. Surface characteristics, such as roughness or surface
orientation, also affect this coefficient, which is expected to be greater for a
vertical surface (due to the gravity effects and more pronounced at higher
temperatures) versus the horizontal surface under similar conditions.

For a motionless fluid, this coefficient may be obtained from
experimental observations. For example, for a horizontal wall adjacent
to an air volume, this coefficient is about 5 W/m2K, while for a vertical
wall, this value is about 10 W/m2K. The larger the convection heat transfer
coefficient is, the larger the heat transfer magnitude from the solid surface
to the fluid environment is. The reason is that heat transfer is facilitated
by the flow in the proximity of the vertical surface, where the fluid can
move freely due to its buoyancy. Since the cold fluid is denser, it moves
downward, while the warm fluid moves upward, creating flow in the vicinity
of the wall, which promotes heat transfer and would be represented by the
higher heat transfer convection coefficient value. The horizontal surface
generally exhibits a lower heat transfer rate.

30 • PraCtiCal Heat transfer

The mechanism of convection heat transfer that occurs only due to the
natural buoyancy of the fluid is called free convection. In this case, when
the solid surface comes in contact with the fluid, no additional mechanism
exists to facilitate heat transfer. In other words, heat transfer in this case is
done spontaneously and that is why it is also known as natural convection.
An example is warming a room by hot-water radiators. The fluid takes
advantage of the generated buoyancy forces due to the variation of the
density due to the temperature variations inside its bulk (e.g., flow in the
vicinity of a vertical radiator). In these cases, the Grashof Number (Gr),
showing the ratio of the buoyant to viscous forces becomes important.

If there are external sources, such as a fan (e.g., air conditioning), or
a fluid pump, where the fluid is moved around artificially in the desired
direction, the forced convection mechanism is applicable. An example is
heating a room by means of an electric heater with a built-in fan. Forced
convection may increase the convection heat transfer coefficient by a factor
of ten to about 100 W/m2K or more.

Newton’s law of cooling describes the convection heat transfer; this law
states that energy transfer is proportional to the temperature difference
between the surface temperature (Ts), surrounding fluid temperature (Tb),
area of the exposed surface (A), and proportionality constant (hc), which
is also known as the convection heat transfer coefficient. Newton’s law of
cooling can be expressed by Equation (16), where Qconv is heat transfer by
convection.

 conv c s bQ Ah T T= - (16)

The surrounding fluid temperature (Ts), which is often considered the
bulk fluid temperature, can be obtained experimentally by averaging and
logarithmic mean relations. Convection heat transfer coefficient (hc) can
be predicted using the Nusselt number (hcL/k), where k is the thermal
conductivity and L is characteristic length. Therefore, the Nusselt number
shows the ratio of the convective to conductive forces.

The heat flow may be simulated as an electric current, with temperature
difference playing the driving force. The temperature difference causes
heat to transfer from the regions with higher temperatures to the ones with
lower temperatures. Convective heat flow can be simulated in a similar
fashion to the electric current. Equation (17) is another form of Equation
(16), which shows the relation between the heat flow and temperature
difference as a function of the convective surface areas and the convection

Heat transfer Modeling • 31

heat transfer coefficient. By assigning the denominator term presented in

Equation (17) as the thermal resistance th conv
1

,
c

R Ah

=

 Equation (17) is

obtained.

conv 1
s b

c

T T
Q

Ah

-
= (17)

For example, hot-water baseboard heaters rely, to a large extent, on the
convective heat transfer mode to effectively deliver heat to the room. These
heater types are also known as radiators. The term was introduced in a
patent filed in 1834 by Mr. Olmsted, an inventor from Connecticut, who
proposed adding a heat exchanger to a stove to improve room heating.
Perhaps a convector would be a more appropriate name, since most of the
heat transfer occurs by convection mode.

Today’s typical hot-water baseboard heaters have copper pipes with
closely spaced transversely mounted thin aluminum fins attached to them.
Heat from the hot water circulating through the pipes, typically at about
70–80 °C, is conducted through the pipe and the fins where it warms the
surrounding air. The warmer, less dense air rises due to the buoyancy
forces, setting up convective air circulation. That is why blocking the air
path from below or above will reduce such a heater’s efficiency.

2.3.3 Radiation Heat Transfer
Thermal radiation was observed and reported throughout the history

by scientists, including horticulturists. The caldarium is the hottest area of
the greenhouse, and its existence was known in the 1700s. It was reported
in a letter written in 1745 by Linnaeus to his student Samuel Nauclér,
emphasizing that the temperatures inside the orangery at the University
of Uppsala Botanical Garden had reached 30 °C, which was well above the
desired temperatures of 20 °C in summer and 15 °C in winter. Linnaeus
hypothesized that this temperature increase was due to the thermal
radiation received by the windows angled so that they were exposed to the
Sun’s maximum radiation.

Radiation is the mode of heat transfer that does not require a physical
medium for heat to propagate. In this mode, the energy is transferred by
electromagnetic waves radiated by one body and absorbed by another. All
objects at a temperature higher than absolute zero emit thermal radiation.
One example of this phenomenon is the radiation emitted from the sun
and received by the earth. This radiation is emitted in a broad range of

32 • PraCtiCal Heat transfer

wavelengths but, because some of that is absorbed by the atmosphere, only
part of that broad spectrum reaches the earth’s surface and the intensity
is reduced (to about 1,000 W/m2 on average), making the sun’s radiation
tolerable for the earth’s residents. With radiation heating, non-colliding
photons transfer the electromagnetic radiation versus the colliding
molecules in the conduction heat transfer mode.

Being an electromagnetic wave, solar energy travels through space at the
speed of light (3 ´ 108 m/s). To understand the concept of electromagnetic
energy waves, imagine throwing a stone into a still lake—the wave ripples,
radiating in all directions along the water surface from the point where the
stone hits. If you imagine being stationary over any point by which the wave
passes, you can measure how many waves pass that point per second—
this gives you the frequency. If you freeze the motion for an instant and
measure the distance between the wave crests, you will get the wavelength.
Measuring the speed at which the wave crests move gives the propagation
speed, which is equal to the product of the frequency and wavelength.

Emissivity is the percent of the incoming radiative energy that leaves a
surface. A highly polished surface, such as a mirror, is highly reflective, not
absorbing any of the incoming energy. A perfect mirror is fully reflective; it
has zero absorptivity and emissivity. For example, to improve the efficiency
of in-floor radiant heat systems, it is recommended to have unpolished floor
surfaces due to their higher emissivity and lower reflectivity [40].

Depending on the size of a surface and how it is situated with respect
to other surfaces, its radiant energy is distributed to the external entities
(surfaces). An object that emits whatever energy it receives is known as a
black body and has an emissivity of one. For this body, the emission and
absorption of light are equivalent through Kirchhoff’s law, which describes
how the radiative energy is emitted as a function of the wavelength.

A black body radiates energy in all directions in equal fashion, so
the radiation intensity is both independent of the direction (diffuse) and
wavelength (gray). When modeling the radiation mode of heat transfer,
one can think in terms of the surfaces and the media. Radiative energy can
be emitted by a surface or medium. It can also be absorbed by these. In a
model, any component can be designated as opaque (and thus not able to
transmit radiation).

Surfaces can absorb or emit. The absorption is a function of the
wavelength of the radiation and the incident angle. Emission can be
diffuse (multidirectional) or specular (when the incoming radiation is

Heat transfer Modeling • 33

reflected without scattering). The medium between the surfaces can be:
(a) completely transmitting to radiation (like air or a vacuum), (b) partially
absorbing and retransmitting to radiation, (c) absorbing and scattering to
radiation, and (d) opaque. To model the radiation, one needs to calculate
the radiative energy reaching the surface as well as leaving the surface. The
simplest case is that of a surface facing the ambient (surroundings). If the
ambient is cooler than the surface, the surface will lose heat, and vice versa.

Things get more complicated when there are surfaces that can see one
another. Consider, for example, a hollow brick-shaped block. Figure 2.4
illustrates such a block by a 2D rectangle. A block will have six surfaces.
Each surface can either face the interior or exterior surfaces. Four surfaces,
marked by letters from “a” to “d,” are identified in the figure. An external
point heat source (like the Sun) is also shown.

FIGURE 2.4. An illustration showing the concept of the view factor in radiation heat transfer.

Some surfaces will be visible to this radiation source (“b” and “c” exterior),
and some will not (both sides of “a” and “d,” the interior of “b” and “c”).
Also, each point on a surface can see some surfaces but not others. The
exterior “a,” “b,” “c,” and “d” surfaces in this example cannot see each other.
They are on a convex surface where this is always the case, like the exterior
of a sphere. The interiors of these four surfaces can all see each other,
which is the case for concave surfaces (like the interior of an ellipse). For
more complex shapes and a greater number of objects, there will also be
shadowing to account for.

If a surface is visible from any point on another surface (such as Point 1
on the interior of “a” in the figure), the radiation it receives from the surfaces
that it sees will also depend on the angle between the line from this point to
the point on that surface. This is accounted for in a view factor calculation.
The view factor is the percent of the energy radiated (sent out), which is
received by the other object. Thus, Point 1 sees less of the infinitesimal

34 • PraCtiCal Heat transfer

surface patch at Point 3 than at Point 2, since the incident angle is smaller
for Point 3. It is for the same reason that there are seasons on the earth: the
tilted earth axis means each hemisphere will see larger or smaller incidence
angles between the earth’s surface and the sun during the year.

For the molecules with large mean free paths, like what is seen in space
as the sun’s electromagnetic radiation reaches the earth’s atmosphere,
passes through its layers, and is absorbed at its surface, radiation is the
main mode of heat transfer. In this method, the electromagnetic waves
do not require a medium to be transferred; all they need is matter with a
temperature greater than the absolute zero. The charged particles of this
matter (i.e., protons and electrons), moving in random motions (both speed
and direction), interact with each other, generate electric and magnetic
fields due to the charge acceleration and dipole oscillation, respectively,
which are coupled with one other, creating electromagnetic fields, and
photons are emitted as the result. This generated electromagnetic energy
is released to the photon’s environment and does not require a medium
to propagate; therefore, it is the dominant heat transfer mechanism in the
vacuum.

The unobstructed electromagnetic waves can travel far and when they
do, they may be absorbed given the spectral-directional characteristics of
the obstructing medium. If this hindrance is independent of the radiation
wavelength, the medium is gray and if it is independent of the radiation
direction, it is a diffusive medium. To calculate how much heat is lost or
gained by the surface, one needs to integrate over all the other visible
surfaces. This means the larger the surface area of a receiving body is, the
higher percentage it receives of the total energy sent from the emitting body.

Reflectivity, absorptivity, and transmissivity of matter, also known
as optical properties, are among the spectral-directional characteristics,
defining the percent of the electromagnetic energy reflected, absorbed, or
transmitted through the medium. The summation of these optical properties
is one hundred percent of the total energy that reaches the object, Equation
(18). If these properties are integrated over the wavelength or direction,
the spectral-directional property changes to directional (superscript, e.g.,
‘a’) or spectral (subscript l, e.g., a

l
) properties, associated with the diffuse

or gray bodies, respectively. Note that a diffuse body emits the energy
isotropically, independent of the direction, while a black body emits the
energy isotropically for all wavelengths.

 1 r = (18)

Heat transfer Modeling • 35

Emissivity is the energy that is emitted from the surface; based on
Kirchhoff’s reciprocity law, it is the same as the absorptivity of the matter
(). = This law states that if object 1 sees object 2, then object 2 sees
object 1 (Figure 2.5). The portion of the energy that is emitted by object 1
and received by object 2 is called the view factor (also known as the shape
factor or configuration factor, Equation (19). Note that q1 and q2 are the
angles that the surface normal unit vectors (n1, n2) make with the line (S)
connecting the two surfaces (dA1, dA2)—Figure 2.5.

Given that the total energy emitted from object 1 is received by the
surrounding matter, which is visible to object 1 (e.g., objects 2 and 3), the
total ratio of these energies is one—Equation (20). If object 1 is not able
to see itself, its view factor is zero—Equation (21), where i is the surface
identifier.

21

1 2
1 2 1 22

1

cos cos1

A A

F dA AA d
S

q q
=

 (19)

\ e.g.,

1

1 1 2 31 1 1

1
i j

n

S S
j

F

F F F

=

=

=

 (20)

FIGURE 2.5. View factor between the two surfaces seeing one another.

36 • PraCtiCal Heat transfer

\ e.g.,

1

1 1 0

0
i i

n

S S
i

F

F

=

=

=

 (21)

The thermal radiation reciprocity concept again shows that the ratio of the
portions of the energy emitted from object 1 to 2, and vice versa, are related
to their surface areas—Equations (22) and (19).

 1 1 2 2 2 1A F A F = (22)

Highly reflective surfaces, such as mirrors, have a very low emissivity
or absorptivity; they are not capable of either absorbing or emitting the
radiative energy. Matter can only emit what it can absorb and that is why
these values cannot exceed one hundred percent.

Human skin is an almost perfect emitter. Assuming a total body surface
area of 2 m2, and a temperature of about 37 °C, it can be estimated to
emit radiated energy at a rate of about 212 W. Additional heat loss is due
to convection to the environment, and can be estimated as 116 W. This is
obtained by assuming the natural heat transfer convection coefficient of
3.4 W/m2K, with the environment at 20 °C. This adds up to a total heat
loss from human skin of about 327 W. This number will be affected by
the clothing characteristics (e.g., surface, color, and material). If the body
continues transferring energy to its environment, its temperature will keep
decreasing exponentially until it equalizes with that of its environment.
Therefore, the human sensible and latent heats (metabolic heat) are
responsible for compensating for the heat loss. Average metabolic energy
(E) depends on factors such as gender, age (Age), weight (W), level of
activity, time spent in order to complete the activity (t), and heart rate (HR),
which can vary from 120 W (28.66 cal/s, e.g., working at the computer) to
about 430 W (102.7 cal/s, e.g., athletic exercises) [41,42,43,44,45,46,47].

Daily basal metabolic rates (BMR in J) for females (BMRFemale) and
males (BMRMale) based on their age (Age in years), height (H in cm), and
weight (W in kg) based on the Harris–Benedict BMR formula are given
by Equations (23) and (24) [17]. These relations are basal metabolic rates
at rest. The metabolic rate, which is the amount of energy required for
the body to function and perform activities such as sitting, breathing, and
sleeping, decreases with age, while it increases with weight (Figure 2.6).
Female and male metabolic energy (BMR) burns based on their level of
activity and time spent on the activity are given by Equations (25) and (26).

Heat transfer Modeling • 37

The level of activity is accounted for in these equations via the heart rate
(HR in beats per minute). Increasing the heart rate raises the energy use
per unit time, with greater increase for males. In these relations, t is the
time in minutes and E is the energy burned in Joules. To obtain the results
in calories, the energy values are divided by 4.18. The energy burn rate
increases with increasing body weight for males and decreases for females
(Figure 2.7) [49].

 Female 4.676 Age 9.563 1.850 655BMR W H- = (23)

 Male 6.755 Age 13.75 5.00 3 66.5BMR W H=- (24)

 Female (0.074 Age 0.1263 0.4472 20.4022) E W HR t= - - (25)

 Male (0.2017 Age 0.1988 0.6309 55.0969) E W HR t= - (26)

(a)

(b)

FIGURE 2.6. BMR for a human adult (H = 160 cm) as a function of: (a) Weight, (b) Age.

38 • PraCtiCal Heat transfer

(a)

(b)

FIGURE 2.7. Hourly energy burned for a human adult as a function of weight
(Age = 40 years, H = 160 cm): (a) 100 BPM, (b) 150 BPM.

The refractive index is a material optical property that is defined as the
ratio of the speed of light in vacuum to that in the material. In general, the
denser the environment is, the higher this index is. This index determines
the degree to which the light rays bend (i.e., refract) as they pass from one
medium to another. Snell’s law uses the indices of refraction for the two
media to describe the relationship between the angles of incidence and
refraction. The refractive index also depends on the light wavelength and
changes by a few percent over the visible spectrum, becoming smaller with
increasing wavelength. This dependence leads to display of a multicolored
light spectrum when a white light passes through a transparent prism and
the same mechanism also creates rainbows when sunlight refracts through
water droplets.

The whole spectrum of electromagnetic radiation ranges from the
shortest wavelengths of ionizing radiation, and continues to visible,

Heat transfer Modeling • 39

microwaves, and radio waves. The near ultraviolet and near, medium, and
far infrared waves form visible light. Gamma rays, hard and soft X-rays, and
extreme ultraviolet waves form the ionizing radiation with energy levels as
high as one million electro-volts compared to the waves in the visible range
(one electro-volt). Longer wave radiation has much lower energy levels—as
low as 10-15 electro-volts.

Due to its dual wave-particle nature, electromagnetic radiation can
be characterized both in terms of wavelength/frequency and in terms
of the photon energy. Frequency (f in 1/s or Hz) is inversely related to
wavelength by f = c/l, where c is the speed of light (2.99,792,458 m/s), and
l is wavelength (m). Photon energy is proportional to the frequency and is
expressed by Planck’s law (f = E/h), where E is the photon energy in J, and
h is Planck’s constant (6.626,068,960 × 10-34 Js = 4.135,667,330×10-15 eVs).

Since an object’s optical properties may vary as a function of the
radiation wavelength, one cannot determine if the material is absorptive
or emitting simply by its visual appearance. Detailed data on the materials’
spectral-directional properties are required. For example, although a
white surface has a low emissivity and absorptivity in the visible range, the
opposite is true in the infrared range. A black surface is highly absorptive and
emitting in both ranges. Glass windows pass the light in the visible and near
infrared ranges but do not transmit well in the mid and far-infrared ranges.
Therefore, we are able to see through the glass by letting in the visible
light; however, glass does not let the light emitted from objects at room
temperature escape, maintaining the temperature inside the greenhouse
and gradually increasing it (the greenhouse effect).

The effect of thermal radiation is not limited to increasing matter’s
temperature; it can also apply a very small force to an object and therefore
create momentum that may change trajectory of a spacecraft. This effect
caused a problem for the Pioneer 10 and 11 spacecraft. They were launched
in 1972 and 1973, respectively, to investigate Jupiter and Saturn’s solar wind,
passing through the asteroid belt. The two spacecraft were among the first
five human made objects to reach the escape velocity (the velocity required
for an object to escape the gravity of the Earth). For both spacecraft, the
asymmetric thermal radiation due to the exposure of one side to the sun
generated minute forces on the surfaces exposed and momentum as a
result, affecting the spacecraft’s trajectory. It is believed that if the distance
between the satellite and the planet (in case of Pioneer 10) was increased
to three times radius of the planet, this drift would not have occurred. This
deviation from the trajectory due to the thermal radiation is now also known
as the Pioneer anomaly.

40 • PraCtiCal Heat transfer

In addition to the color and surface roughness, the material properties
such as degree of crystallinity and the molecular bonding method also
affect the way the materials interact with light. An example is adding
pigmentations, fillers (glass fibers), and other additives (e.g., carbon black)
to thermoplastic materials that are to be welded using laser transmission
welding (LTW) process. In this process, a laser light passes through the first
part to be joined and is absorbed by the second part, thus generating heat at
the interface that melts the polymer and forms a joint. Thermoplastics have
very low absorption in the near-infrared part of the spectrum used by the
typical joining lasers. Therefore, for joining to occur, the natural polymer
needs to be modified using an absorbing additive, such as the most used
carbon black.

If the matter is perfectly absorbing at all wavelengths and directions
of light incidence, it is called a black body 1).(= = For matter to
act as a black body, it must be at thermal equilibrium, meaning that there
is no variation in temperature through the matter and therefore no heat
transfer or thermal energy flow exists. This condition follows the zeroth
law of thermodynamics, meaning that the temperature within the matter
does not change spatially or temporally. It is to be noted that in a system
that is thermodynamically in equilibrium, mass transfer is also negligible
in addition to the energy transfer in the form of heat and work. However,
there are states of equilibrium in the matter, where permeable or non-
permeable portions of it undergo equilibrium processes and as a result,
the system’s total entropy increases. This is explained by the second law of
thermodynamics and emphasizes the irreversibility of the system.

The spectral-thermal radiance of the body, B(l, T), is the total energy
that leaves the surface of the body in the form of radiation per unit frequency,
angle, and area. It follows Planck’s relation, Equation (27), where T is the
absolute temperature. For a body at any particular temperature above
absolute zero, the spectral radiance has a distribution curve that is similar to
a bell (Gaussian) curve, though it is not symmetrical. The peak value of this
curve decreases as the absolute temperature decreases and the peak position
of this curve shifts toward the longer wavelength or lower frequency.

2

5
2 1

(,)
1B

hc
K T

hc
B T

e

 =

-
 (27)

Planck’s law describes the spectral density of the blackbody radiation
as a function of temperature. The assumption is that the total radiation
emitted from a black body equals the one that it receives, and it does not

Heat transfer Modeling • 41

vary with the direction of the beam. To find the wavelength associated
with the maximum temperature reached, the derivative of this relation
with respect to wavelength is taken. This results in a relation that shows
that temperature (T) and maximum wavelength (lmax) are inversely related;
this relation is also known as Wien’s Displacement Law, Equation (28),
where b is a proportionality constant, also known as Wien’s displacement
constant (2.897,772,917 × 10-3 mK). Since the frequency is the inverse of
the wavelength, the peak frequency is the inverse of the peak wavelength
(f = c/l) and therefore, Equation (28) may be rewritten in the form of
Equation (29) and so the absolute temperature of a radiating body is linearly
dependent on the frequency at which it emits the thermal radiation. In other
words, from Wien’s displacement law, using the wavelength at the peak,
the temperature can be inferred. Note that for relatively low temperatures,
the radiation is emitted at long (infrared) wavelengths and is therefore not
visible to the human eye.

 lmax = b/T (28)

 fmax = (c/b)T (29)

A plot of the temperature versus the distance from the Sun is presented in
Figure 2.8 for different planets. For example, Venus has a mean surface
temperature of about 464 °C, while Mercury’s mean surface temperature is
about 167 °C. For comparison, the mean surface temperature of the Earth

FIGURE 2.8. Mean surface temperature versus the distance from the Sun.

42 • PraCtiCal Heat transfer

is about 15 °C. One interesting observation is that while Mercury is closer
to the Sun than Venus, its mean surface temperature is much lower. This
is due to the presence of a thick atmosphere on Venus; Mercury has almost
no atmosphere. It also has the greatest daily variation of temperature in the
solar system: between -180 °C at night and 430 °C during the day [50,51].

A cavity can behave as a black body (Figure 2.9). A pinhole cavity
functions as a light trap; as the light passes through its opening, it hits the
opposite surface, and then it continues bouncing back within this cavity
until its energy is fully absorbed. The walls of the cavity are assumed to be
opaque to the incoming radiation beam, meaning that it will not allow any
light to escape.

FIGURE 2.9. Spectral radiance inside a cavity.

Stephan-Boltzmann’s law for thermal radiation is expressed by Equation
(30), which shows that the energy transfer is proportional to the difference
between the surface temperature of the emitting object (Ts in K) raised to
the fourth power and that of the environment or receiving body (sT in K)
also raised to the fourth power. The radiation is also proportional to the
area of the emitting body (A in m2), emissivity (e, dimensionless) of the
emitting body, and Stephan-Boltzmann’s constant (s = 5.670,374,419 ×
10−8 W/m2K4). The emissivity property is a proportionality constant that
describes how good a body is at emitting thermal radiation as determined
by its optical and surface properties, and can vary from 0 to 1. Equation (30)
presents the radiative heat (Qrad in W) that flows from the emitting body
(s) to the receiving body (s). Note that this energy also can be expressed
in terms of heat flux (q in W/m2). The view factor (s sF) is to be taken into

Heat transfer Modeling • 43

consideration if the radiation from the emitting body partially reaches the
receiving body. Note that the reciprocity relation that was presented earlier
is applicable in this scenario. s sF is the percent of the energy that leaves
the surface of the emitting body (s) and reaches the surface of the receiving
object (s). The total spectrum (all wavelengths and directions) of emitted
energy, integrated over the entire spectrum, expressed by Equation (30)
represents the black body radiation, where 1.= =

 rad
4 4

s s s s s sQ F A T T = - (30)

Note that it is also possible to discretize the difference of the temperatures
of the emitting and receiving bodies raised to the fourth power to the
binomial form of difference of the temperatures squared and continue this
process until the temperature difference expression is obtained as a single
term versus the rest of the parameters—Equation (31). The multiplier
of the temperature difference in this scenario is the equivalent of the
convection heat transfer coefficient and is known as the radiative convection
heat transfer coefficient (hr)—Equation (32). Equation (31) then can be
simplified to (33).

 2 2
rad s s s s s s s s s sQ F A T T T T T T = - (31)

 2 2
r s s s s s sh F A T T T T = (32)

 rad ()s s r s sQ h T T = - (33)

The heat flow may be simulated as an electric current, with thermal
resistance defined by Equation (34) and difference of the fourth powers of
temperature playing the driving force—Equation (35).

 1 2
thrad

1 1 2 2

1 11
s s

R A F A A

- -
=

 (34)

 4 4

rad
1 2

1 1 2 2

1 11
s s

s s

s s

T T
Q

A F A A

-
= - -

 (35)

2.3.4 Thermal Management
Electro-mechanical and biological systems almost always generate heat

during their operation. The heat may be generated through mechanical
means such as friction between the subcomponents, electrical currents,
electromagnetic fields, biological functions such as sensible heat, and
localized heat sources. In most cases, the heat generated needs to be

44 • PraCtiCal Heat transfer

dissipated as effectively and efficiently as possible. The discipline concerned
with dissipating heat from working systems is called thermal management.
Thermal management may be accomplished using any of the following
methods: (a) adding extended surfaces, also known as fins; (b) introducing
cooling channels; (c) implementing additional mechanical systems such as
fans and heat pipes; (d) interfacing the parts so that the contact areas are
increased for efficient heat transfer by using thermal patty, oil, or thermal
tape at the adjacent surfaces; (e) changing the object’s geometry, such as its
thickness; and (f) varying material properties.

Other thermal management approaches take advantage of the
combination of the above methods. These may include, for example,
using a cold plate at the interface of the heated objects, cooling flow,
electrostatic fluid acceleration that creates flow without use of moving
parts, and synthetic jet air cooling that involves ejection and suction of the
flow across an opening resulting in zero flow mass balance. Some highly
advanced techniques involve using phase change materials, capable of
storing and releasing large amounts of heat when phase change occurs, and
synthetic diamond cooling sinks for their high thermal and low electrical
conductivities in applications such as high-power laser diodes, transistors,
and semi-conductor technologies, where the use of thermally conductive
materials such as copper can result in substantial variations in the electrical
or magnetic fields and as the result reduction of system efficiency (e.g., linear
induction motors—LIM).

Convection cooling by means of an oil pump in an aircraft engine is
an example of thermal management. The oil dissipates the generated heat
away from the heated parts such as cylinder head, in addition to acting as
cleaner, lubricant, and sealant. In this application, there are two factors to
consider carefully to achieve efficient heat transfer. One is the design of the
system (e.g., pump location inside the cooling circuit) and the type of the
cooling agent (i.e., oil). Oil has higher vaporization temperature with respect
to water (above 100 °C) at atmospheric pressure and therefore is a better
heat sink in absorbing the heat and as a result a more efficient coolant. This
means that oil can be used for thermal management applications where the
maximum temperature exceeds that of the boiling water.

Thermal management techniques are employed to ensure the ice does
not form or is separated from the aircraft wing’s leading edge and therefore
does not let it progress by agglomerating the ice crystals to the wing mid-
sections. One of these methods is to incorporate resistive heating elements
into the leading edge of the horizontal stabilizers or other control surfaces.

Heat transfer Modeling • 45

To ensure the temperature is maintained at the desired level, a temperature
sensor that measures the temperature along with an overheat sensor, which
gets activated for temperatures about 154 °C (310 °F), are designed into
the temperature control system [52]. This method is also known as resistive
de-icing method. Another thermal management method to prevent ice
from forming is taking a small fraction of the hot air generated within the
compressor of turbofan or turboprop aircraft engines (known as the bleed
air) and directing it toward the control surfaces.

Fire management is achieved by variety of methods that focus on dif-
ferent corners of the combustion triangle by: (a) removing the fuel source;
(b) suppressing the flame so that the airflow is eliminated; (c) cooling the
fire so that the combination of the fuel-oxygen cannot reach the flash point
required for its perpetuation; or (d) adding a fire retardant to the mixture
so that the chemical reaction is delayed. Use of materials such as intumes-
cent paint or tape in hard-to-reach areas or where space is limited is among
the fire management methods that delay spreading the fire to the adjoining
areas.

Another method of thermal management is in radiative applications.
This is mainly achieved by selecting materials with suitable emissivities.
The higher the emissivity is, the more broadband energy is absorbed by the
object. There are cases in which the emissivity of the surface is large while
the absorptivity is small. An example is white paint, with large emissivity
of about 0.93 and a low absorptivity of about 0.16. Therefore, the roofs
of some houses in warm-arid regions are painted white—this provides
effective thermal management. In the same way, the interior of a white
car should be cooler than a black one if both are left parked outdoors on a
sunny summer day.

2.4 Governing Equations

Experimental correlations have been the basis for many thermo-fluid
formulae. In this approach, tests are carried out to investigate the influence
of change of a single parameter or number of them on a control volume
or system. The parameters can either be thermophysical properties of the
materials such as heat capacity and thermal conductivity or temperature-
induced ones such as stress, creep and oxidation life, magnetic fields,
and phase change. In a complex system such as a heat exchanger, water
temperature, pressure, and velocity are the determining factors for heat
transfer mechanisms, and its efficiency as well as flow regimes.

46 • PraCtiCal Heat transfer

Theoretical relations derived from experiments show an approximate
relationship between two or more parameters; for example, they identify
that these parameters are directly or inversely related. The correlating
factors can be (a) material-dependent, such as the conductivity in Fourier’s
law, or (b) process-dependent, such as the convection heat transfer
coefficient in Newton’s law of cooling. The correlated value obtained from
the former case defines a thermophysical property of the material while the
experimental setup or processes influence that of the latter.

In some cases, the correlation value is a constant parameter, which may
be of general significance in physics. An example of such a parameter is
Stefan-Boltzmann constant that relates radiated electromagnetic energy to
the object’s temperature in Stefan-Boltzmann’s law of thermal radiation.
There are cases in which no exact mathematical relations can be achieved
by fitting an experimental relationship into a theory; this is the definition for
an empirical relationship. Examples include the release of magnetic energy
during a solar flare, heat transfer in external flows, and shear stress in non-
Newtonian fluids. In these cases, different equations may be applicable to
different conditions. For example, the Reynolds number is employed as a
criterium when setting up laminar and turbulent flow models, the latter
flow type being capable of addressing flow disruptions and eddies.

Figure 2.10 shows schematically the general form of energy conservation
diagram for the Cartesian coordinate system. The figure shows an infinitesimal
cube with dimensions dx, dy, and dz. Heat flux q is shown entering or leaving
the cube’s faces. For example, along the x-coordinate, the spatial variation
of heat flux is represented by the gradient dq/dx. It includes all modes of
heat transfer. The radiation and convection terms shown are applied in the
form of boundary conditions. As in other disciplines, such as the balance
of forces in solid mechanics, the energy conservation law can be expressed
separately along each x- y- and z-coordinates—Equation (36). A matrix can
then be created that is a linear combination of the energy conservation in
three dimensions in addition to the time component. T, q, k, dx, dy, and
dz, and t are the temperature, (K), heat flux (W/m2), thermal conductivity
(W/mK), infinitesimal distances along the x-, y-, and z-coordinates, and time
(s), respectively. The heat flux defined by Equation (36) is proportional
to the temperature gradient (dT/dx in K/m), where the conductivity (k in
W/mK) is the proportionality constant. Equation (5), presented in section
2.2.3, shows that the rate of energy storage is a function of the variation of
the internal energy (internalE in W) over time and energy generated inside
the material due to any heat source or sink (generatedE in W)—m is mass (kg),
and cp is specific heat capacity (J/kgK).

Heat transfer Modeling • 47

FIGURE 2.10. General form of energy conservation diagram in the Cartesian coordinate system.

The outgoing energy is the incoming energy plus the variations of the energy
along the length, where the energy is transported, expressed in the form of
the derivative of the energy in the direction of the energy transportation.
This energy balance applies along each of the three coordinates (x, y, and
z). This spatial variation is shown by the wave equation applicable to the
conduction heat transfer mode, Equation (36). Note the terms dx, dy, and
dz are the block dimensions along the three said coordinates.

 (
(, ,)

(, ,) (, ,) (, ,), ,)
dq x y z

q x dx y dy z dz q x y z dx dy dzdx dy dz = (36)

For a one-dimensional coordinate system, assuming the thermal variations
occur along the x-coordinate, the wave equation, representing the heat
flux rate can be simplified to Equation (37). Similarly, along the y-and
z-coordinate systems, the heat flux rate can be expressed in terms of
Equations (38) and (39), respectively. Equations (40), (41), and (42) are
the equivalents of the said equations at the coordinate (dx,dy,dz) from the
original coordinate (0,0,0).

 xy
dT

q k dx=- (37)

 y y
dT

q k dy

=-

 (38)

48 • PraCtiCal Heat transfer

 z z
dT

q k dz=- (39)

 ()
() () x x

dq x dT d dT
q x dx q x dx k k dxdx dxd dxx = =- - (40)

()

() () y y

dq y dT d dT
q y dy q y dy k k dydy dy dydy

 = =- -

 (41)

 ()
() () z z

dq z dT d dT
q z dz q z dz k k dzdz dzd dzz = =- - (42)

Substituting aforementioned relations into the energy balance (Figure 2.10)
in Equations (6) and (7) results in Equation (43), which after simplification
results in the heat diffusion equation presented by Equation (44),
demonstrating that spatial and temporal temperature profiles are related
to the change of internal energy and heat generation within the material
in the Cartesian coordinate system. q is the volumetric heat generation
(W/m3). Note that (Ax, Ay, Az) are areas perpendicular to the heat flow
direction along the x-, y-, and z-coordinates (dydz, dxdz, dxdy). dV is the
volume of the block whose mass is m = rdV = rdxdydz.

 (, ,)
 yx

x y z
z

p

dqdq dq dT x y z
A dx A dy A dz qdV m cdx dy dz dt

 =

 (43)

 px y z
d dT d dT d dT dT

k k k q cdx dx dy dy dz dz dt

 = r
 (44)

To balance the energy in the cylindrical coordinate system (Figure 2.11),
Equations (6) and (10) are combined, resulting in the heat diffusion—
Equation (45). Similarly, for the spherical coordinate system (Figure 2.12),
after balancing the energy and combining Equations (6) and (11), the heat
diffusion equation is obtained—Equation (46).

Heat transfer Modeling • 49

FIGURE 2.11. General form of energy conservation diagram in the cylindrical coordinate system.

 gen2
1 1

 r z p
T T T dT

k k k q Cr r r z dtr
r zq

 = r q q

 (45)

FIGURE 2.12. General form of energy conservation diagram in the spherical coordinate system.

50 • PraCtiCal Heat transfer

 2

2 2 2

gen2 2

1 1
sin

1
sin

sin

r

p

T T
k r kr rr r

T dT
k q C dtr

q

j

 q qj

 j = rj j j

 (46)

The upcoming chapters present both analytical, numerical, and finite
element analysis approaches to solve the thermal partial differential
equations (heat and wave problems) presented above.

End Notes

 [32] https://web.stanford.edu/~cantwell/AA283_Course_Material/AA283_Course_
Notes/AA283_Air craft_and_Rocket_Propulsion_Ch_09_BJ_Cantwell.pdf

 [33] Layla S. Mayboudi, Heat Transfer and Thermal Modelling of Laser Transmission
Welding of Thermoplastics, PhD dissertation, Queen’s University, 2009.

 [34] https://www.ijser.org/researchpaper/THE-EFFECTS-OF-FLOORING-
MATERIAL-ON-THERMAL-COMFORT-IN-A-COMPARATIVE-
MANNER-Ceramic-tile-and-wood-flooring.pdf

 [35] Myron L. Cohen, “Measurement of the Thermal Properties of Human Skin, A
Review,” The Journal of Investigative Dermatology, 69(3), pp. 333-338, 1977,
https://www.jidonline.org/article/S0022-202X(15)45119-X/pdf

 [36] https://itis.swiss/virtual-population/tissue-properties/database/thermal-
conductivity/

 [37] https://itis.swiss/virtual-population/tissue-properties/database/heat-capacity/
 [38] https://itis.swiss/virtual-population/tissue-properties/database/density/
 [39] https://en.wikipedia.org/wiki/Heisler_chart
 [40] REF https://en.wikipedia.org/wiki/Underfloor_heating
 [41] https://www.verywellfit.com/walking-calories-burned-by-miles-38871544
 [42] http://fitnowtraining.com/2012/01/formula-for-calories-burned/
 [43] https://en.wikipedia.org/wiki/Talk%3AHeart_rate
 [44] http://taggedwiki.zubiaga.org/new_content/5044ca257bc71037f69dd996514f

9b35
 [45] https://www3.nd.edu/~nsl/Lectures/mphysics/Medical%20Physics/Part%20

I.%20Physics%20of%20the%20Body/Chapter%202.%20Energy%20
Household%20of%20the%20Body/2.3%20Heat%20losses%20of%20the%20
body/Heat%20losses%20of%20the%20body.pdf

 [46] http://www.calories-calculator.net/Calculator_Formulars.html
 [47] https://www.engineeringtoolbox.com/metabolic-heat-persons-d_706.html
 [48] J. Arthur Harris and Francis G. Benedict, “A Biometric Study of Human Basal

Metabolism,” Proc Natl Acad Sci U S A, Dec; 4(12), pp. 370–373, 1918.
 [49] http://www.shapesense.com/fitness-exercise/calculators/heart-rate-based-calorie-

burn-calculator.shtml
 [50] https://solarsystem.nasa.gov/resources/681/solar-system-temperatures/

Heat transfer Modeling • 51

 [51] https://coolcosmos.ipac.caltech.edu/ask/168-What-is-the-temperature-on-the-
Moon-

 [52] http://navyflightmanuals.tpub.com/P-861/Wing-Leading-Edge-Anti-Ice-
System-78.htm

C H A P T E R3
finiTe eLeMenT AnALysis

The Finite Element Method (FEM) is a numerical technique in which
the geometry is divided into a finite number of small pieces called
elements. One advantage of defining such elements is that it enables

the division of regions into smaller regions that more accurately represent
the associated physics. Element size and shape may vary by region, depend-
ing on the physics they represent. Each element can have its own distinct
properties. Elements are in contact with the adjacent elements.

Solving the FEM problems consists of solving m conservation equations
(m is the number of nodes) when there is only one field variable. For each
node, an equation is written for each field variable (e.g., temperature in
heat transfer models), as a function of the data of the surrounding nodes, to
find the value of the variable at the given node. The field can be defined in
1D, 2D, or 3D spaces. For example, if there are eight nodes with a single
field variable (e.g., x displacement), eight equations are required; if there
are eight nodes with two field variables (e.g., x and y displacements), sixteen
equations are required (Figure 3.1).

Each node requires its own boundary and initial conditions. From
algebra, you may recall that if you attempt to solve an equation with two
independent variables, to obtain a unique solution, you need to solve it in
combination with a second linearly independent equation that includes at
least one of these two independent variables. Expanding the equation from
2 to m state variables requires m linearly independent equations. The same
concept applies to solving the FEM equations.

54 • PraCtiCal Heat transfer

(a)

(b)

FIGURE 3.1. Element and nodes: (a) 1D, (b) 2D, and (c) 3D.

When analyzing thermo-fluid numerical models, either using the Finite
Difference Method (FDM) or FEM, the conservation of energy principle
must be applied to all elements or nodes. For nodes, the total energy of
zero confirms that the balance of the energy at each node has been met,
meaning that the total nodal incoming energy equals the total outgoing
energy. Since an element occupies a line, area, or volume, as determined
by its spatial dimension, the balance of energy should still be satisfied;
however, in this case, the total elemental incoming energy should be equal
to the total outgoing energy.

3.1 Geometry

The number of dimensions to be used in setting up the physics geometry
depends on the model shape, boundary conditions, and computational
resources (e.g., time and machine). The dimensions can start at zero for the
simplest cases and progress to one (1D), two (2D), and three dimensions
(3D) as complexity increases. The zero-dimension approach, also known as
the lumped capacity technique, assumes that the temperature is spatially
uniform throughout the model. In a 1D numerical analysis, one coordinate
is required to identify the position of a point and heat is transferred in only
one direction (e.g., the x-coordinate), meaning that heat transfer along the
remaining coordinates, which form a plane, is ignored or heat is integrated
over the remaining plane. One advantage of 1D numerical analyses is
that they allow comparison with the simplified analytical solutions, thus
enabling validation of the numerical analysis. In a 2D numerical analysis,
two coordinates are needed to identify the position of a point and heat
is transferred in two directions (e.g., the x- and y-coordinates). In other

finite eleMent analysis • 55

words, heat transfer transverse to the active Work Plane is ignored or
the heat is integrated over the third dimension of the geometry. In a 3D
numerical analysis, the most comprehensive approach, three coordinates
are needed to represent the position of a point within the geometry (x-, y-,
and z-coordinates) and heat is transferred in all three directions.

In cases where the geometry, material properties, and boundary
conditions have axial symmetry, one can reduce the model by one dimension.
Thus, for example, a cylinder has axial symmetry, and so this 3D shape can
be represented by a 2D axisymmetric model without any loss of fidelity. A
2D shape, like a flat ring, can be replaced by an equivalent 1D axisymmetric
model.

Symmetry about a plane can be also used to reduce the model size.
For a geometrical shape, such reflectional symmetry can exist in 3D space
about one, two, or three planes. Again, if the boundary conditions are also
symmetrical, the model can be reduced to one-half, one-quarter, or one-
eighth of the original size, respectively. A similar concept applies to 2D
space, where reflectional symmetry can exist about one or two lines.

Another type of symmetry that can be taken advantage of is rotational
symmetry. Here, the model can be represented by rotating a particular
shape m time about an axis, giving an m-fold symmetry. Thus, a three-petal
shamrock flower can be considered to have a threefold symmetry, while a
four-leaf clover has a fourfold symmetry. Such models can then be reduced
by modeling only the repeating element.

Some shapes will have multiple symmetries. You can decide which one
will be most advantageous to use. For example, a hexagonal nut (ignoring
threads) has reflectional symmetry about the three principal planes in
addition to a sixfold rotational symmetry (Figure 3.2). Here you can reduce

FIGURE 3.2. Hexagonal nut shape with symmetry planes.

56 • PraCtiCal Heat transfer

the model to one-twelfth the size by utilizing the sixfold symmetry together
with the reflectional symmetry about the horizontal plane, as shown
in the figure. The extra up-front time spent to identify these geometry
characteristics is effort well spent, since it forms the foundation of all
subsequent steps, saving time and computational resources.

3.2 Material Properties

Material properties are important for the development of good quality
models. One should try to obtain the most accurate material properties
possible to assure accurate model predictions. However, obtaining accurate
property values is sometimes challenging. Thus, an analyst should be aware
of which properties have greater impact on the solution. The relative
importance of different material properties may be determined by the
thermo-fluid regime, mode of heat transfer, or analysis type. One can use
sensitivity analysis methods to determine the effect of uncertainty in any
property on the desired model output.

Material properties may vary in space (spatial), time (temporal), or
environmental conditions (environmental). Nonconstant properties may
introduce nonlinearities and non-homogeneities to the physics, making the
problem more challenging. To describe temperature-dependent material
properties, an FEA tool may employ analytical or piecewise functions.
A property definition table contains a list of combinations of known
temperature-property value pairs. For temperature values between those
listed, interpolation functions are used; this can be a linear or a higher order
function. If the temperatures in the solution exceed the limits of the range
of temperatures for which the property values are given, one can choose to
either extrapolate linearly or to keep the values constant, equal to the value
of the nearest extreme point.

Let us review next the material property settings which may be required
as inputs for a physics model set up in a typical FEM software tool. Usually,
such tools have a built-in library of materials, which may be expandable
with optional add-ons. Thus, if the material you need for your model is
available within one of these sources, simply selecting it defines common
inputs such as density, specific heat capacity, and thermal conductivity. If
needed, any predefined properties may be changed, missing properties can
be added, or a completely new material may be defined from scratch. For
example, thermal conductivity may be defined as an isotropic, diagonal,
symmetric, and anisotropic property.

finite eleMent analysis • 57

When setting up a radiation problem, wavelength-dependent surface
properties can be selected, which are either constant, depending on the
solar and ambient conditions, or have multiple spectral bands and hence are
wavelength-dependent. In most cases for transparent media, the refractive
index needs to be defined. The refractive index of a medium is the ratio of
the speed of light in a vacuum to that of the medium and is therefore always
more than one. For water, this value is 1.33, meaning that light travels 33
percent faster in a vacuum than in water. For air, the refractive index is close
to one. A transparent medium needs to be defined for a domain enclosed
by diffuse surfaces that face each other.

The surface-to-surface radiation method is used to model cases where
heat transfer by conduction, convection, and radiation are present in
combination with radiation from internal or external surfaces. To model
this phenomenon, one needs to define several settings. First, the method
is selected as direct area integration, hemicube, or ray shooting. In the
direct area integration method, the radiation between surfaces is calculated
directly, not considering the obstructing (shadowing) surfaces, eliminating
the surfaces that do not face each other. In the hemicube method, shadowing
effects are included. The ray shooting method calculates the view factors
given the wavelength and direction. To complete these settings, the radiation
integration order, radiation resolution, tolerance, and maximum number
of adaptations are set. Solution techniques include setting up the surface
radiosity that can be linear, quadratic, cubic, quartic, or quantic. Surface
radiosity or radiant intensity is the amount of radiation flux emitted from
the surface as a function of the radiation wavelength.

3.3 Analysis Types

Any set of solution settings for a model may be referred to as a study.
Analysis type selection specifies whether the study will be time-independent
(i.e., stationary) or time-dependent (i.e., transient). A stationary study does
not mean that the actual modeled physical system never changes over time,
but that the analyst is interested in finding out what happens after the
system has reached a steady-state condition. This is the state of the system
at some theoretically infinite time. In a time-dependent study, the analyst
is interested in the state of a system as time passes. If the study is run over
a sufficiently long period of time, a steady-state condition may be reached,
as well. For example, temperature may not change any further for a given
fixed rate of heat input in a thermal problem. A steady-state condition may
be reached only if the model boundary conditions are constant. Thus, if the

58 • PraCtiCal Heat transfer

model is exposed to a heat input that increases linearly over time, a steady-
state temperature distribution cannot be reached.

Selecting the analysis type may also depend on the objective of the
analysis. If an analyst is interested in studying the thermal response of a
train underframe to fire to make sure it complies with the fire test code for
rail transportation vehicles (ASTM E2061 or NFPA 130), she should study
the time response for the first 15 min of the exposure time by performing a
transient analysis to obtain the temperature history over that time.

For a heat exchanger, the analyst is interested in evaluating the spatial
thermal performance, which can be done by plotting the temperature
profile along a specific path (e.g., the liquid cooling channel), after the
heat exchanger has been operating for some time and temperatures have
stabilized. Therefore, a steady-state analysis is appropriate in this case.

3.4 Boundary and Initial Conditions

Just as material properties are important to accurately represent the
modeled system, the boundary and initial conditions are important to
correctly describe the conditions to which the modeled system is exposed.
For heat transfer problems, setting the initial conditions means defining the
temperature from which the solution starts (e.g., the room temperature of
20 °C can be a default starting point). Boundary conditions may be defined
as insulated (a default condition that is automatically applied), temperature,
heat flux, convective, or radiative. These boundary conditions are defined
for the nodes (1D models); edges or points (2D models); and domains,
surfaces, edges, or points (3D models).

3.5 Mesh Size and Time Step

FEM involves dividing the geometry into small elements and solving
the energy and mass governing equations for each element and for the
number of time steps or iterations required to reach the specified analysis
time (for transient problems) or steady-state (for stationary problems).
The number of iterations required for a solution to converge depends on
the initial conditions to start the solution, and it may increase or decrease
depending on the residuals. Residuals are the estimates of the difference
between the calculated and desired values. The temporal and spatial steps
can be controlled when setting up the analysis. Spatial step is related to the
mesh size, which may vary within the geometry. The temporal (time) step
is varied by the solver as the solution progresses.

finite eleMent analysis • 59

The choice of the element size for meshing in FEM is similar to the
choice for image resolution. If the image pixels are large relative to the
detail in the picture that the analyst would like to see, they are not going
to get a clear image of these details. Thus, a smaller pixel size is needed.
However, if the analyst just wants to get an overall impression of an image,
the analyst may increase the pixel size, reducing the total number of pixels
(or elements in FEM). When meshing, unlike in images, you can vary
your pixel (element) size throughout the model. For example, intense
heating processes, such as laser welding, require fine detail resolution
around the exposed regions, where temperature is changing rapidly in
space and time, which can be achieved by local reduction of the element
size and time step.

Assume that one decides on a mesh size. The next step is to make sure
the element size produces converging results that are reasonable. One way
to achieve this is to change the element size from larger to smaller values
and review the variation of the numerical results (i.e., sensitivity analysis).
When this variation is reduced below some appropriate lower limit, no
further reduction in element size is required.

When a meshed model is solved, there are two types of errors:
(a) round-off and (b) truncation. The former occurs when one decides
to round the number to the closest value, using only the desired number
of decimals. The latter case is when one decides to keep only a specific
number of decimals. A simple example is to represent 14.557123 as 14.56,
14.55, or 14.557. The first two examples show the same number when
it is either rounded off or truncated with two figures after the decimal;
the third example could be either rounded off or truncated to the same
number when three figures after the decimal are employed. There is a
balance between the two errors, especially where they are accumulated due
to the increased number of numerical equations, which is the case if the
number of elements is increased. They usually show an opposite trend—
decreasing versus the increasing for the roundoff and truncation errors.
Time step and mesh sensitivity analyses provide good compromises. Due to
the accumulation of the computational errors with the decreasing element
size, after converging to the most accurate solution, the solution may begin
diverging (i.e., deviating from the exact solution).

3.6 Solution Control and Convergence

Conservation laws should be satisfied when solving equations for heat
transfer of any type. Dependent variables (e.g., temperature) are calculated

60 • PraCtiCal Heat transfer

using independent variables (e.g., thermal conductivity) as well as initial
values. Note that the independent variables are the inputs to the models while
dependent variables are the results given the independent variables. The
equations are solved, and the residuals are obtained. The residuals are the
actual sum difference from the zero-sum case. For example, for the energy
conservation law to be valid, the total energy entering an element should
equal the total energy leaving an element, including the energy storage and
energy generated within the element. The vector summation of all the terms
should be zero (error) and therefore any nonzero value is the residual error.

Zero residuals are not normally possible, and so a small nonzero
tolerance value needs to be used so that the program uses that as the
acceptable criteria and stops further iterations. For instance, if a user
sets a 10‑5 tolerance value for a solid heat transfer analysis problem, most
probably they will be happy with the results if the solution is reached within
reasonable time. However, if the user were to employ the same tolerance
for a flow problem, there is a good chance that the analysis may require
an excessive number of iterations, leading to very long solution time
(convergence) or in some cases to not converging at all.

Figure 3.3 is an example of a convergence plot for a single-parameter
time-dependent analysis. It shows the reciprocal of step size versus the time
for a transient analysis using a logarithmic vertical scale. Thus, larger time

FIGURE 3.3. Example of a convergence plot for a 3D analysis for a heat transfer model.

finite eleMent analysis • 61

steps are made as the solution progresses. At each solution step, the solver
estimates the next time step required to obtain accurate solution. Although
Figure 3.3 is generated in COMSOL Multiphysics, similar convergence
plot data can be also obtained from Partial Differential Equation (PDE)
solvers such as those implemented in the MATLAB environment.

C H A P T E R4
An inTrOdUCTiOn TO MATLAB

MathWorks offers two product families that can be employed for
mathematical modeling: MATLAB and Simulink®. With Simu-
link, one can model a system consisting of multiple sub-systems

and investigate the effect of the individual sub-systems on the overall per-
formance. A system’s behavior, such as the thermal response to the indi-
vidual components after varying key variables, can be investigated in these
models. To interact with the models, flow diagrams are created that are
visual representations of the modeled system. Like other modeling tools,
this approach leads to creation of smart prototypes, resulting in cost sav-
ings during the design process as well as during the rest of the product’s
lifecycle.

MATLAB can be employed to investigate a system or its sub-systems in
detail. This is accomplished by introducing mathematical models, developing
algorithms, providing numerical solutions to the models, analyzing the data
using visual tools, and generating outputs such as diagrams and tables. The
last step of output generation can be either carried out within MATLAB or
by exporting data to a third-party tool such as tecplot or Microsoft Excel.

The MATLAB software package comprises the core application and a set
of the optional toolboxes dedicated to a variety of specialized applications.
The toolboxes most relevant to thermal modeling can be found within the
Math and Optimization product family. Within this family, there are six
toolboxes available: Curve Fitting, Optimization, Global Optimization,
Symbolic Math, Mapping, and Partial Differential Equation Toolboxes [1,2].

64 • PraCtiCal Heat transfer

The rest of this chapter will introduce the basic MATLAB environment; this
should be of value to those who want to learn how to use the MATLAB tool
in general. The chapter closes with several code examples that highlight
best programming practices within the MATLAB environment. Techniques
for using MATLAB specifically for thermal modeling will be introduced in
Chapter 5.

4.1 Desktop

The MATLAB application desktop consists of several panels. By default,
the Current Folder and Details panels are on the left, the Editor and the
Command Window panels are in the center, and the Workspace is on the
right side. A command toolstrip with several tabs is found on top. There
are also two toolbars: Quick Access and Current Folder. Arrangement of
panels can be customized and saved using the Layout tool found in the
Environment group of the HOME toolstrip tab. The two toolbars and many
other features can be customized via the Preferences found in the same
group.

Looking at the MATLAB desktop by starting on the left side, the Current
Folder panel is found that shows the list of files in the folder indicated by
and selected via the Current Folder toolbar located just below the toolstrip
(Figure 4.1). The Details panel below the Current Folder panel shows the
relevant information for the selected file—variables for the *.mat file and
functions for the *.m file.

The MATLAB Command Window (lower center) is where the user
enters command lines, sees the text output of the running script, and
responds to the text prompts. It has a powerful Command History feature
that all the MATLAB users should learn to utilize for improved efficiency.
It is accessed by pressing the Up arrow on the keyboard and that can be
then navigated with Up/Down arrows. For example, a typical workflow may
be to go back to one of the previously executed commands, bring it back
to the cursor (>>), revise, and execute it again, without having to retype
everything. The Command Window can be cleared of the commands
printed on the screen by a clc command, returning the cursor to the top
line within the window, but without clearing the command history.

Any commands executed via the command line can also be entered into
the MATLAB script (*.m) file. One can also select (with a shift key) any
number of the commands from history and save them to a script file. The
script files may be called later as the input to the MATLAB program, edited

an introduCtion to MatlaB • 65

or run, generating data and diagrams. The *.m script files are normally
edited using the built-in editor that opens the Editor panel automatically
when a script file is opened (located in the top-middle in Figure 4.1). The
script files are stored as plain ASCII text, and thus can be edited with any
text editor (such as the Windows Notepad).

Finally, on the right, the Workspace panel shows contents of the current
Workspace. The variables that have been imported into or created within
MATLAB are stored in the Workspace memory. To view or edit these
variables, one may either employ the Workspace panel or the Command
Window (Figure 4.1). All the Workspace variables can be saved into a
compressed *.m at file using the save command, and then restored by using
the load command. The Workspace data files can also be loaded as input to
the *.m files.

The Workspace variables can be deleted in bulk by the clear command,
with command options allowing for selective deletion as well. The clear

FIGURE 4.1. The MATLAB HOME toolstrip with the Workspace and Command Window panels.

66 • PraCtiCal Heat transfer

variable_name command deletes the variable_name from the Workspace.
The wildcard (*) character can be used to clear all variables containing the
specified sequence of characters. For example, clear abc* will delete from
the Workspace all the variables with names starting with abc.

Different toolstrips can be selected by choosing among several
tabs. For example, under the HOME tab, available tools are New
Script, Find Files, Set Path, and Help (Figure 4.2). Other tab menus are
(a) PLOTS, where plots can be generated with selected styles; (b) APPS,
where the MATLAB-compatible applications can be imported and used;
(c) EDITOR, where *.m file-related commands can be carried out;
(d) PUBLISH, where work can be published and formatted in a custom
style; and (e) VIEW, where the number of the Editor window panels
and their method of display are selected. If the selected components are
not available (e.g., variables as input to create plots) the command tools
on the related menu are grayed out (i.e., PLOTS in Figure 4.3 is grayed
out because no compatible variable has been selected in the Workspace
panel).

FIGURE 4.2. The MATLAB HOME toolstrip.

FIGURE 4.3. Grayed out PLOTS toolstrip.

4.2 Variables

In MATLAB, variables are not declared at the start of the program;
they are created automatically upon assignment of a value. If this variable is
assigned a set of numbers (a vector or a matrix) of a particular size, then an
array of the corresponding dimensions is created in the program memory.
Expanding this array by adding more elements requires redefining its
size internally. Thus, it may be more computationally efficient to create
a variable with an array of zeroes of appropriate size using a built-in zeros
function discussed in Section 4.3.4, for example, before entering the loop,
where the array size is repeatedly expanded.

an introduCtion to MatlaB • 67

Variable data types include numbers, characters, and strings, and
logical and structural arrays. There are also several built-in constants (e.g.,
pi for p = 3.1415). To display in the Command Window, a simple list of
variables available in the Workspace, the who command is used. To obtain
more detailed information, such as name, size, bytes, and class, the whos
command is used (Figure 4.4).

FIGURE 4.4. The MATLAB who and whos commands.

4.2.1 Numeric Variables
By default, all numeric variables in MATLAB are stored as double-

precision (8 byte/64 bit) floating-point values and are identified by the data
type (class) of double. To convert a number to a single-precision (4 byte/32
bit) value, the single function is used (Figure 4.5). Also, one can convert the
floating-point values into integer variables, signed and unsigned, of length
from 1 to 8 bytes. If the data can be represented by integers, large volumes
of data can be handled at faster speeds by storing them and operating on

68 • PraCtiCal Heat transfer

them as integers. Operations combining integers and double variables
return integers. Conversion is done by a group of functions such as; for
example, the int16 command is used to convert to a signed 16-bit integer or
unit 16 to convert to an unsigned 16-bit integer.

Numerical values, built-in numbers, or mathematical constants such as
p can be displayed in the Command Window with more or fewer digits by
entering, respectively, the commands format long (15 decimal places) and
format short (4 decimal places)—Figure 4.5.

FIGURE 4.5. Single versus the double precision.

4.2.2 Character Vectors and Strings
Text can be stored in MATLAB either as a character vector or a string.

A character vector is created by enclosing text in single quotes, such as ‘Heat
Transfer’. Prior to MATLAB R2016b, this was the only way that sequences
of text characters were stored. After that release, a new variable type of
string was introduced to facilitate handling of longer text segments. Strings
are created by enclosing text in double quotes, such as ‘Heat Transfer’. One
can think of a character vector as a sequence of character codes stored in a
linear array. For a string, a single text segment enclosed in double quotes is
treated as an element of an array; this array can then contain any number
sof string elements.

Character vectors can be concatenated using square brackets; this
method does not work for strings and a + sign must be used instead. In the

an introduCtion to MatlaB • 69

example (Figure 4.6), note that the myCharVector size is 1 13 whereas
the myString size is 1 1. To create a character vector that includes a
numerical value, a mum2str function needs to be used (Figure 4.6).

FIGURE 4.6. Character vectors versus the strings.

In MATLAB, characters are stored using Unicode format with UTF-16
encoding that can represent over 1 million distinct codes. The first 128
symbols of this code use the same encoding as the ASCII character set,
where each character is stored as an unsigned 7-bit integer. Character
vectors are then just arrays of these integers that are identified internally
as character sets and thus displayed as such; they can be converted to
their corresponding ASCII code values. Thus, double(‘test’) will return a
numeric array of [116 101 115 116]. One can also use uint32 to convert
the characters to unsigned 32-bit integers instead of double-precision
numbers. If a numerical operation is carried out on the character vector
elements (such as addition or subtraction), the array is automatically
converted to numerical values. Since the encoding is in alphabetical order,
one can manipulate characters by addition or subtraction if so desired. For
example, upper-case characters are encoded by integers that are 32 bits
smaller than the lower-case ones. Thus, if one assigns a = ‘test’, the function
char(a – 32) will return “TEST.” Here the char function converts numbers
to the corresponding characters.

There are numerous other character vector and string manipulating
functions in MATLAB. For example, the blanks(j) function is used to create

70 • PraCtiCal Heat transfer

a string with j blank spaces. The deblank(string_name) function is used
to remove the trailing blank spaces of strings. The strtrim(string_name)
function is used to remove both leading and trailing white space. The
upper(string_name) and lower(string_name) functions are used to convert
characters, respectively, to uppercase or lowercase (Figure 4.7).

 (a) (b)

FIGURE 4.7. The deblank, strtrim, upper, and lower text manipulation: (a) Commands, (b) Outputs.

4.2.3 Logical Variables
A variable of logical data type is created because of evaluation of a

logical expression involving relational operators (e.g., <,>, = =), a logical
test function (e.g., isnumeric), or type conversion from a numeric variable
using logical function. For example, logical test functions isnumeric, isfloat
and isinteger are useful for identifying the numeric value type and return
a logical true or false. In the example below, 10 random integers from 1 to
100 are generated and placed in the array myNumbers (Figure 4.8). Each
element of this array is then evaluated with a logical expression to test if
it is greater than 50 and a logical array over 50 is created as an output of
this evaluation. This logical array can then be used as an index to extract
from myNumbers only those values that are greater than 50. Use of matrix
indexing is further discussed in Section 4.4.1.

an introduCtion to MatlaB • 71

FIGURE 4.8. Use of a logical array as an index of a numeric array.

4.2.4 Variable Names
When working with variables in MATLAB, the following five points

should be remembered:

 (1) Variable names must start with a letter, not a digit (e.g., 2test is not a
valid variable name; however, test 2 is correct).

 (2) No spaces can exist between the variable characters (e.g., test 2 is an
incorrect variable name).

 (3) Variable names are case sensitive (e.g., test 2 is different from Test 2).

 (4) Function names should not be used when assigning variable names
(e.g., pde, which is a partial differential equation demo function,
should not be used as a variable name); the which command can be
used to test if a name is associated with any function.

 (5) If a mathematical operation result is not assigned to a variable name by
an equal sign (=), the operation result is stored in the built-in variable
ans, which is the short form for answer; the current value of the ans
variable can be used in the subsequent expressions by entering ans at
the command line.

72 • PraCtiCal Heat transfer

4.3 Creating Matrices

Matrices are fundamental to MATLAB. The name of the software itself
is derived from MATrix LABoratory. It is important to be able to create
and manipulate matrices and vectors. The latter are essentially a special
case of a matrix, with only one dimension greater than one. Vectors can be
combined to form matrices.

4.3.1 Manual Matrix Creation
To create a row vector, a sequence of numbers is separated by spaces and

enclosed within square brackets; to create a column vector, the row vector
may be transposed by using a single quotation mark appended to the right of
the closing bracket or placed after the vector variable name (Figure 4.9). A
second quotation mark appended performs another transpose, thus returning
the vector to its original orientation. Another way to create a column vector
is by adding a semicolon (;) after each number to create a new row. When
defining matrices in general, rows are separated by a semicolon (;). Within
each row, elements are separated by a blank space or a comma (,).

FIGURE 4.9. Defining row and column vectors and using the transpose operator.

4.3.2 Generation of Vectors with Equally-Spaced Values
In many applications, a vector comprising a sequence of equally spaced

numbers is needed. There are several ways to obtain such a vector:

 (1) The most common approach is to specify the start and end points as
well as the fixed increment with the use of the colon (:) operator. For
example, if vector A is defined as A = 1:2:10, the resultant vector is

an introduCtion to MatlaB • 73

A = [1, 3, 5, 7, 9]. The increment between the start (1) and end (10)
points is 2. This increment can be negative as well. For example, if
B = 10:-2:1, the resultant vector is B = [10, 8, 6, 4, 2].

 (2) Another method is by using the linspace function. Its advantage rela-
tive to the colon (:) operator is that one directly specifies the number of
values to be generated for the array. With the colon operator, the num-
bers are generated by incrementing until the end value is exceeded.
For example, to generate 5 equally spaced numbers between 5 and 90,
one can execute C = linpace(5, 90, 5). It results in C = [5, 26.25, 47.5,
68.75, 90].

 (3) A related function called logspace distributes logarithmically the speci-
fied number of values between the two end-points 10^a and 10^b,
where a and b are the exponents given as input; for example, for
D = logpace(0, 2, 5), the resultant vector ranges from 1E0 and 1E2:
D = [1, 3.162, 10, 31.62, 100].

 (4) Matrices and vectors can be concatenated. For example, the above C
and D vectors can be concatenated and create vector E = [C, D] =
[5, 26.25, 47.5, 68.75, 90, 1, 3.162, 10, 31.62, 100].

4.3.3 Random Number Matrices
In some applications, sets of random numbers, either real or integer,

need to be generated. Random real numbers in the interval [0, 1] are
generated by the rand function (e.g., rand = 0.1216, rand*100 = 82.5853).
Random integer numbers are generated in the interval starting at 1 and
ending at the value given in the randi function argument (e.g., randi(5) =3,
randi(10) = 8). One can also specify lower and upper bounds for the random
integers as in, for example, randi([50, 100]) = 70. Matrices of random
numbers can be generated as well (Figure 4.10). randi(10,5) generates a
5 5 matrix with random integers from 1 to 10; randi([10 50], 5) generates
a 5 5 matrix with random integers ranging from 10 to 50.

FIGURE 4.10. Random integer generating function.

74 • PraCtiCal Heat transfer

To obtain a non-square matrix made of random double-precision values,
the number of rows (i) and columns (j) are specified: rand(i, j) = Ai×j.
Example below shows generation of 3 × 4 matrix of integers between 5
and 20 (left) and a 2 × 3 matrix of double-precision values between 0 and 1
(right) (Figure 4.11).

FIGURE 4.11. Random integer and real variables.

To create normally distributed values, the randn command may be used
(e.g., randn = 0.2884). The distribution of these random numbers should
tend to the average value of zero and standard deviation of one. About
68.7% of the generated values are expected to be within one standard
deviation (-s < x < s).

4.3.4 Special Matrices
There are several special matrices that can be generated, which are

often needed in matrix operations. These include matrices of zeros or ones,
identity, and diagonal matrices (Figure 4.12). These matrices can be made
by specifying the number of rows (i) and columns (j), as shown in Equation
(47).

 (,), (,) and ()i j i j i iA zeros i j A ones i j A eye i= = =× × × (47)

FIGURE 4.12. The zeroes, ones, and identity matrices.

A diagonal matrix (i.e., one with non-zero elements along the diagonal only)
can be generated by specifying a vector as input to the diag function. If a
matrix is specified as input to the same function, a vector is produced equal

an introduCtion to MatlaB • 75

to the specified diagonal. Thus, if A is a matrix, the diag(A, X) function
outputs a column vector obtained from the elements of the X-th diagonal of
A, and diag(A) = diag(A, 0) is the main diagonal.

For example, Figure 4.13 shows first a 4 6 matrix A created from
random integers varying from -20 to 20. Its four-element main diagonal
vector is extracted with the diag(A) function. Using this extracted vector as
input to the same diag function produces a 4 4 diagonal matrix with the
specified vector values along its diagonal and zeroes elsewhere.

FIGURE 4.13. Extracting the diagonal values from a matrix and creating a diagonal matrix.

4.4 Operating on Matrices

4.4.1 Matrix Indexing
In MATLAB, it is very useful to be able to access any element of a

matrix, either to obtain its value, to test its value, or to assign a value to it.
An element’s location within a matrix is known as its index, and thus this
process is referred to as indexing. The most used technique is indexing by
element positions; the second way is by using a single index; and the third
approach is indexing with logical values.

76 • PraCtiCal Heat transfer

Each element of a two-dimensional matrix is identified by its row and
column numbers, as shown in Equation (48). The first index (i) identifies
the row and second index (j) the column. When indexing by position, one
can then use these indices to reference any matrix element.

 A(i, j) = aij (48)

One can reference individual elements, ranges of rows and columns—A(3:4,
1:2), selected rows/columns by listing them in square brackets, or entire
rows/columns by using a colon (:) (Figure 4.14). Using a keyword end one
can reference the last row/column as shown in the last example in Figure
4.14 that selects the last two elements of the third row.

FIGURE 4.14. Matrix indexing by position.

If only a single index is used in a two-dimensional array, it references the
array values as if they were all listed in a one-dimensional vector going
down each column, from left to right. For example, A(7) in matrix A shown
in Figure 4.14 is equal to -15. In the same matrix, A(3:5) evaluates to [-8
8 7].

Indexing with logical values allows one to select elements based on
logical tests. Applying a logical test to a matrix results in a logical array of
the same dimensions with 1/0 values indicating, where the test evaluation
was true or false. This array can then be used to reference the elements,
where the test evaluated to true. For example, to find all the elements
in A that are greater than 12 or smaller than -12, the logical expression

an introduCtion to MatlaB • 77

(A < -12 | A > 12) is evaluated, a matrix indA of logical values is obtained
and is then used as index into A (Figure 4.15, left). One can also assign
value to the index-selected elements as shown in Figure 4.15 (right), where
value of 12 is assigned to all elements that were greater than 12. Finally,
if one needs a list of index locations for all elements, where the condition
evaluates to true, the find function can be employed. For example, find
(A < -12) returns [6 7 20 21]. These are single indices into A, with element
at index 7, for example, equal -15.

FIGURE 4.15. Matrix indexing with logical values.

4.4.2 Arithmetic Operators
MATLAB arithmetic operators include the standard ones such as +, -,

*, /, ̂ for addition, subtraction, multiplication, division, and exponentiation.
When these are employed between scalars, regular mathematical rules are
followed that the reader will be familiar with. With MATLAB, however,
one can also operate either between combinations of scalars and matrices or
between matrices only. Regarding the former case, to facilitate dealing with
matrices, MATLAB in some cases carries out operations that would not be
allowed if strict mathematical rules were applied. For example, it would
not be correct to write a mathematical expression, where scalar a is added
to two-dimensional matrix B since they do not have matching dimensions.
However, MATLAB assumes that you mean to add a to every element of B
and thus will compute the expression a + b without an error message. Any
valid mathematical expression will, of course, also work in MATLAB. a*B,
B*a, B/a all produce the expected results. a/B gives an error message that
matrix dimensions must agree. With a square matrix D, one can write a*D-1,
which multiplies scalar a and a matrix inverse of D (Figure 4.16).

78 • PraCtiCal Heat transfer

FIGURE 4.16. Use of arithmetic operators for scalars and matrices.

When carrying out operations between matrices, two different operation
types exist. First are the regular arithmetic operations, such as those
mentioned above. In MATLAB, they are called matrix operations. They
are carried out following the linear algebra rules regarding the matching
dimensions. To add or subtract matrices, they must have the same number
of rows and columns, as shown in Equation (49).

 Cij = Aij + Bij

\ C(i, j) = A(i, j) + B(i, j) (49)
\ cij = aij + bij

To multiply two matrices (Figure 4.16, right), the number of columns in the
first matrix should be the same as the number of rows in the second matrix,
as given in Equation (50).

 Cik = Aij Bjk

\ C(i, k) = A(i, j) B(j, k)

\
1

n

ik ij jk

j

c a b=

=

 (50)

The second operation type is special to MATLAB. These operations are done
with the element-by-element operators and are called array operations. They
are coded to allow fast computation and thus speed up (by 5 to 10 times)
and simplify certain operations that would otherwise require execution
of computationally expensive loops. Element-by-element operators are
indicated by adding a period before a regular arithmetic operator. As addition/
subtraction are by definition element-by-element, the addition of a period in
front of them does not make sense and is not permitted. Period can be placed

an introduCtion to MatlaB • 79

in front of other operators to produce their element-by-element equivalents:
(.*, ./, .^). These must be applied between matrices of the same dimensions
or between matrix and a scalar (Figure 4.17).

FIGURE 4.17. Use of element-by-element operators for scalars and matrices.

4.4.3 Relational Operators
The relational operators are used to identify if the two expressions are

equal (= =), not equal (~=), or to compare their values (<, <=, >, >=).
Logical operators are used in logical expressions and include or (|), and (&),
and not (~). The functional forms of these can be used instead (e.g., or, and, or
not functions such as or(A,B)). There are also short-circuiting versions of and
(&&) and or (||). In the former case, if the first operand evaluates to false, the
false result is returned without evaluation of the second operand; in the latter
case, if the first operand is true, a true result is returned without evaluation of
the second operand. This should speed up the code execution for very large
data sets. Several examples of relational operator use are given in Figure 4.18.

FIGURE 4.18. Use of relational operators for scalars and matrices.

80 • PraCtiCal Heat transfer

4.4.4 Matrix Reshaping and Rearrangement
Matrices are collections of entities (such as numbers) organized into

arrays of one or two or more dimensions. MATLAB provides several
tools for rearranging the entities within the arrays and for changing the
number and length of the dimensions. An example of a commonly used
rearrangement is the transpose (‘) operator introduced in earlier sections.
Another example is the use of the reshape function to change how a set
of numbers is organized. In the example given here, the objective is to
create a 3 4 matrix, containing integers from 1 to 12 and that are to be
incremented row-wise, starting with 1 in the (1, 1) element. This is done
in a single line using the reshape function (Figure 4.19). First, a row vector
is created containing 12 integers from 1 to 12; it is then reshaped into a
4 3 matrix, where the numbers are incremented column-wise; the matrix
is then transposed to create the desired 3 4 matrix, where the numbers
are incremented row-wise.

FIGURE 4.19. Use of the reshape function.

One can rearrange array elements with the sort function. In its simplest
form, the function will sort a one-dimensional numerical vector a in
ascending order with sort(a); for a 2D numerical array, sort(A) will sort
each column of A in the ascending order. Entering sort(A, 2) will sort
rows in the ascending order; entering sort(A, ‘descend’) will sort columns
in the descending order. From the release R2017a, string arrays can be
sorted, as well. In the example in Figure 4.20, the first column of matrix
A is sorted in the ascending order and then matrix C is created with rows
rearranged to follow the same sorted order. Array indices in vector iB
obtained by the sorting action are used in A(iB,:) to create the new sorted
C matrix.

an introduCtion to MatlaB • 81

FIGURE 4.20. Use of the sort function.

Another rearrangement type is to reverse the element order and it is carried
out using the flip function. It has similar input options to the sort function.
Figure 4.21 shows how the matrix A used above is flipped by having all
its columns reverse their order; in the next example, row 4 of matrix A is
reversed; finally, the order of a character vector MATLAB is reversed to
produce text written backwards.

FIGURE 4.21. Use of the flip function.

4.4.5 Extracting Information about Matrices
The most basic information about the matrix is its dimensions. These

are obtained by using the size command. The number of matrix rows and
columns thus obtained can be employed within the code (Figure 4.22). A
related length function would typically be applied to a row or column vector
to find the number of elements it contains. For matrices, the command
returns the greater of the number of rows or columns (i.e., the longest
matrix dimension).

82 • PraCtiCal Heat transfer

FIGURE 4.22. Use of the size and length commands for vectors and matrices.

The maximum value for each column of matrix A is obtained by using the
max(A) function. Similarly, minimum for each column is obtained by the
min(A) function. If the same functions are applied to a vector, its maximum
or minimum is obtained. Thus, the max(max(A)) function shows the overall
maximum value of the matrix, see Equation (51).

 1 1 (()) ((())i j ijB max max A max max a= =× ×

and 1 1 (()) (())i j ijB min min A min min a= =× × (51)

Starting from the R2018b release, one can also use the max(A, [], ‘all’)
function to obtain the maximum of all values. With this function, the
dimension can be specified along which the results are produced. If the
maximum value for each column is needed, the max(A, [], 1) function can
be used; to get the maximum for each row, max(A, [], 2) function can be
used (Figure 4.23). Providing two matrices of equal dimensions as the input
to the max or min function returns a matrix of the same size containing the
larger or smaller element value in an element-by-element comparison.

Product and sum of various subsets of matrix elements can be obtained
with the functions structured like the max or min. For matrix A, executing
the prod(A) or sum(A) function returns a row vector containing, respectively,
products or sums of elements along each column. Equation (52) shows the
product and sum over j.

1 1

() () and () ()
m m

j i j ij j i j ij

i i

B prod A a B sum A a
=

=

=

 × × (52)

an introduCtion to MatlaB • 83

If products or sums along the rows are required, the prod(A, 2) and sum(A, 2)
functions can be employed, which result in vectors with m rows. Note that,
unlike for the max or min functions, the empty matrix ([]) is not required as
input for these functions.

The overall product or sum, as for the max or min functions, can be
obtained by applying them twice, as shown in Equation (53). Alternatively,
from R2018b, one can also use expressions such as the sum(A, ‘all’)
function.

1 1

1 1

1 1

1 1

(()) () and

(()) ()

n

i j ij

m n

i j ij

i j

m

i j

B prod prod A a

B sum sum A a

= =

= =

= =

= =

× ×

× ×

 (53)

4.4.6 Matrix Inverse
The calculation of a matrix inverse is an important concept in linear

algebra, and it is closely related to the task of solving a system of linear
equations. Using MATLAB, one can directly calculate an inverse of a
square matrix by either raising it to -1 power or using the inv function
(Figure 4.24). However, knowing the mathematics behind the inverse
calculation helps to understand and troubleshoot the results if issues arise.
For example, commanding MATLAB to determine the inverse of matrix

FIGURE 4.23. Use of the max function for vectors and matrices.

84 • PraCtiCal Heat transfer

C44 in Figure 4.25 results in Inf (infinite) matrix components. Further
investigation shows that the determinant of matrix C44 is zero. You
can ensure the matrix is not ill-conditioned by calculating its condition
number using the cond(C) function. If the condition number of a matrix
is significantly greater than 1, the matrix inverse will be very sensitive to
very small errors in the input matrix element values; an infinite condition
number corresponds to a non-invertible matrix. Another method to
calculate the matrix X in AX = B, is to directly obtain it by dividing matrix B
by matrix A (X = B\A). Note the use of the backslash (\) in this expression.

FIGURE 4.24. Calculating the inverse function.

FIGURE 4.25. Indeterminate inverse matrix.

The analytical method to obtain an inverse of a square matrix A is to divide
the adjugate of A, adj(A) by the determinant of A. The adjugate in turn
is a transpose of a cofactor matrix of A. For example, for a 2 2 matrix,
Equation (54) is applicable.

an introduCtion to MatlaB • 85

\

	

2 2

1
2 2

2 2

1
()

a b
A

c d

d b
A det A ac

-

=

-
= -

 (54)

This equation shows that if the determinant is zero, the matrix is not
invertible.

Transposing a matrix is when the elements at certain rows and column
(i, j) are switched with the elements at the columns and rows (j, i). See
Equation (55).

\

(,)
' '(,) (,)

i j

i j

A a i j

A a i j a j i

=

= =

×

×
 (55)

The calculation of the inverse is one method to find a solution of a system
of linear equations. Assume there is an equation AX = B, where Aij, Bik
are matrices consisting of known elements and X is the variable matrix
(unknown). To find matrix Xjk, one method is to use the inverse, as shown
in Equation (56).

 AX = B
 A-1AX = A-1B (56)
\	 IX = A-1B
\	 X = A-1B

Note that for AX = B to be valid: (a) the number of columns of matrix A
should be the same as the number of rows of matrix X; (b) the number of
rows of matrix A should be the same as the number of rows of matrix B; and
(c) the number of columns of matrix X should be the same as the number
of columns of matrix B; Aij Xjk = Bik. Furthermore, the determinant of
matrix Aij should not be zero. To find the determinant of a 2 2 matrix,
the following relation is used, Equation (57).

 2 2
a b

A
c d

=

×

\ 2 2()
a

c

b
det A ad bc

d
= = -× (57)

To find the determinant of a 3 3 matrix, Equation (58) is used.

86 • PraCtiCal Heat transfer

 3 3

a b c

d e fA
g h i

=

×

\ 3 3()
e d d

h

f f e
det A a b c

i ig g h
= - × (58)

 3 3 3 3() () () ()

a b c

d e fA det A a ei fh b di fg c dh eg
g h i

= = - - - -

× ×∴ (59)

4.4.7 Systems of Linear Equations
In the MATLAB environment, it is possible to use built-in tools to solve

systems of linear equations in which the number of variables is the same
as the number of linearly independent equations. In general, programing
languages (like C or Fortran) would need to have dedicated code written
employing multiple loops (e.g., for, while) to implement elimination
techniques, such as the Gauss-Seidel method, iteratively. However, in the
MATLAB environment, this can be achieved by a built-in linear solver
function (linsolv). It solves the equation AX = B, where X is the state
variable vector and is unknown. Note that, as mentioned earlier, for the
systems of linear equations to have a definite solution, the determinant for
the unknown variables multiplier matrix A should not be zero—|A|~ = 0 to
satisfy Equation (56)—X = A-1B. If the system of equations has a definite
solution (Figure 4.26), the output will appear in the Command Window;
otherwise, a warning message will be shown: Matrix is singular to working
precision (Figure 4.27). Note that it is possible to solve a single system of
equations, Equation (60) and Figure 4.26, or multiple systems of equations,
Equation (61) and Figure 4.28— m n n mA X B=× × κ × κ.

3 3 3 3

1 2 3;2 3 4;3 4 1 6 4 1

2 3 6 9.75
2 3 4 4 7.50
3 4 1 0

d

2

a

. 5

nA B

A X B

x y z x

x y z y

x y z z

= =

=

 = =-

 = =

 = =

× × 1 × 1

 (60)

an introduCtion to MatlaB • 87

 (a) (b)

FIGURE 4.26. Solving a single system of linearly independent equations: (a) Script, (b) Solution.

FIGURE 4.27. Solving a system of linearly dependent equations.

88 • PraCtiCal Heat transfer

3 3 3 3

1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

2 2 2 2

3 3 3

3 3

1 2 3;2 3 4;3 4 1 6 4 1;5 3 0;4 2 -1

2 3 6 8
2 3 4 4 7
3 4 1 0

2 3 5 6
2 3 4 3 5
3 4 0 0

2 3 4

and

2 3 4

AA B

A X B

x y z x

x y z y

x y z z

x y z x

x y z y

x y z z

x y z

x y z

= =

=

 = =-

 = =

 = =

 = =-

 = =

 = =

 =

× × 3 × 3

∴

∴

3

3 3

3 3 3 3

3
2 2

3 4 1 0

x

y

x y z z

 =-

 = =

 =- =

∴

 (61)

 (a) (b)

FIGURE 4.28. Solving multiple systems of linearly independent equations: (a) Script, (b) Solution.

4.5 Built-in Functions

There is a very large set of built-in functions available in the MATLAB
base installation, plus many more via the add-on toolboxes. The best way
to learn about them is by using the MATLAB help facility, available as a
separate window via the Quick Access toolbar (top-right of the Desktop

an introduCtion to MatlaB • 89

window) or via the Home toolstrip. One can also enter the help command
followed by the function name within the Command Window. Many
functions have multiple pages of help text. Typing the more on command at
the command line displays this text one page at a time. Press the enter key
to advance by one line, press space bar to advance by one page, or type q to
exit to command line. Typing the more off command disables this feature.

Some functions can be called in two different ways: either using the
command syntax or the function syntax. If no output from the function
needs to be obtained, a simpler command syntax can be used. In this case,
the function input argument is added after the function name and is always
treated as a character vector, e.g., load myWorkspace.mat. With the function
syntax, the function name is followed by parentheses within which arguments
are listed. These can be variable names or values, e.g., load(‘myWorkspace.
mat’). Thus, if you need to pass input to a function via a variable, then a
function syntax needs to be used. In the example (Figure 4.29), variable
myWSFileName is defined to be equal to character vector ‘myWorkspace’.
This variable can then be used as input to the load command in its function
form but not in its command form, as the error message shows.

FIGURE 4.29. Executing built-in functions using the command or function syntax.

Here are several functions that carry out operations that will be useful in
subsequent chapters:

 (1) Floating-point numbers may be rounded up, down, or rounded to the
nearest decimal, using the ceil, floor, and round functions. For in-
stance, ceil(11.4) = 12, floor(11.4) = 11, round(11.499) = 11, and
round(11.5) = 12. Note the difference between the first two functions
and the last one.

 (2) Module operation results in the remainder of a division operation; for
example, mod(50, 3) = 2.

 (3) One can convert radians to degrees and vice versa using functions in
following examples: radtodeg(3.14) = 179.9087 and degtorad(180) =
3.1416.

90 • PraCtiCal Heat transfer

 (4) Trigonometric operations such as sine and cosine can be implemented
using the functions in the form of sin(a) or sin(b), where a and b are
in radian and degrees, respectively. Trigonometric functions like these
are used extensively when defining cyclic boundary conditions.

 (5) isa(obj, ClassName) identifies if the object belongs to the specified
class category; ClassName can be, for example, double, single, logical,
and char. isa(obj, ClassCategory) identifies if the object belongs to
the specified class category; ClassCategory can be numeric, float, or
integer. The result of the is a function isa logical true or false.

 (6) isnan(a) is another logical function that tests the input for a particular
property. There are over seventy is* functions that test their input
for things like whether it is an empty matrix, an integer, or a string.
The isnan(a) function tests whether each element of the input array is
not-a-number (NaN) and returns an array of the same size containing
corresponding elements that have logical true values if they are, and
false if they are not. A NaN means that this element is neither a real
nor a complex number. For example, if one attempts to calculate a 0/0,
a NaN results. However, attempting to calculate 1/0 results in infinity
(inf), and not in a NaN (Figure 4.30).

FIGURE 4.30. Identifying the NaN variables within an array.

an introduCtion to MatlaB • 91

4.6 Scripts

Any sequence of the MATLAB commands can be saved to a script
file (*.m). Scripts are just text files and so it is possible to create and edit
them with any text editor outside the MATLAB environment. However,
the MATLAB editor offers many additional features that aid in creation,
editing, and debugging of scripts. One way to create a new script within the
MATLAB environment is via HOME > New Script (Figure 4.31); another
way is via EDITOR > New > Script.

Figure 4.31 shows a sample script that calculates the face perimeter,
area, and volume of a cube. When a script is opened, the EDITOR tab
in the toolstrip is activated (Figure 4.32). The script is saved under the
name Cube.m in the current folder. The output for the script shown in
Figure 4.32 is presented in Figure 4.33. Note that the script is essentially
the same as the one shown in Figure 4.31; however, the semicolon (;) after
the last line (the formula to calculate the face_perimeter) is omitted. As it is
seen, the only visible output variable in the Command Window is the face_
perimeter. The rest of the variables (volume and face_area) are not shown
in the Command Window. Normally, a semicolon (;) is added to the end of
each command line to suppress the output to the Command Window when
running a script.

A script can be executed either by clicking on the Run command in the
EDITOR menu or by simply typing the script’s name (without the extension)
on the command line. If any script or function name are entered on the
command line or if a function external to the script is called from within it,
MATLAB needs to know where this script or function are located. First, it
looks in the current folder identified by the Current Folder toolbar. If the

FIGURE 4.31. Creating a script file.

92 • PraCtiCal Heat transfer

script/function is not found there, then the MATLAB path is searched. The
path contains a sequential list of folder locations, where the program searches
for any script/function name it is trying to execute. The search is carried out
from the top of the list until the match is found. One can use the Set Path tool
in the HOME menu tab to add new locations or change the list sequence.

When trying to execute a script or function, it is often helpful to find out
where this script or function is located to make sure that the right one is being
used. To obtain this information, use the which command followed by the
script/function name that you are looking for. A folder location is returned,
allowing you to confirm that the correct script/function will be executed.

Note that all script and function names are case-sensitive. For example,
if one entered the script name starting with a lower-case letter, cube,
MATLAB sends an error message:

Cannot find the exact (case – sensitive) match for ‘cube’.

Then, it suggests the following: The closest match is: Cube in D:\MATLAB\
Cube.m and Did you mean: >> Cube. If the user agrees by pressing the
Enter key, the suggested function will be run (Figure 4.33).

FIGURE 4.32. Saving a script file and running the script.

an introduCtion to MatlaB • 93

All variables assigned values within the executed script (whether they are
displayed or not within the Command Window) remain in the Workspace
(Figure 4.32 and Figure 4.33). It is possible to include comments within the
script, which is a good practice that will pay off whether you are looking at
this script in the future or someone else is trying to understand what you
have done. Comment text can be added anywhere on the line; any text on
the line after the comment (%) operator will be treated as a comment and
thus not executed (Figure 4.32). In the MATLAB editor, the information
after the comment operator will be highlighted with green color.

FIGURE 4.33. The Command Window showing the script name entry and its output.

4.7 Input-Output Techniques

In the example provided in Figure 4.32, the input variable cube_side
is defined within the script, and so no user input is needed. Instead of
pre assigning a variable value in a script, one can also ask for the user
input. This is accomplished using the input function (Figure 4.34), which
includes as its own input argument a character array that prompts the
user to enter the requested numerical value or text. In the latter case,
an s parameter is included after the prompt text. In the example code
Cube_dim (Figure 4.34), the user is prompted with “Enter the cube side
length:” Note that single quotes must be used, as the prompt text is a
character vector. In the example shown in Figure 4.35, the user is to input
the cylinder’s radius and height; the volume and total_area are calculated
based on the input value.

94 • PraCtiCal Heat transfer

FIGURE 4.34. Asking for a single input in a cube parameter calculation script.

FIGURE 4.35. Asking for multiple inputs in a cylinder parameter calculation script.

The simplest way to view the value of a variable is to type its name while
omitting the semicolon (;) at the end of the line. This produces an output,
showing the variable name and value. For double-precision arrays or
scalars, only the name and value are displayed. For other types, such
as logical, for example, the array dimensions and the variable type are
displayed as well. Equivalently, one can also use the display command with
the variable or value one would like to print to the Command Window
given as input. For a variable/matrix, it will show the same information as
leaving out the semicolon (;) would. However, it may be better programing
practice to explicitly state the intent of displaying the variable value as
opposed to just leaving out the semicolon (;). For example, in Figure 4.36,
display(blanks(2)) is used to add a blank line to the display. Another option
is to use the disp(variable) function; it shows the value associated with the
variable, but omits display of the variable name and any other information.

In some cases, it is needed to control more precisely the formatting
of the displayed numbers and text. This can be accomplished by using the

an introduCtion to MatlaB • 95

fprintf and sprintf functions. The former outputs formatted text to a file or
to the Command Window; the latter outputs to a text string. Both use the
same formatting specifications to control how the numbers are displayed.

If text and numbers need to be output to the Command Window, the
input arguments would start with text in single quotes that includes format
operators identified by the % sign. This text is followed by the same number
of numerical items to display as there are format operators within the text.
Common formatting operators are %d for integer, %f for fixed-point, and
%e for exponential notation display (Figure 4.37). Display of numbers can
be further controlled by specifying the field width within which the number

FIGURE 4.36. Displaying the results, including spaces.

FIGURE 4.37. Specifying output format for printed numbers.

96 • PraCtiCal Heat transfer

is to be printed and the precision (number of figures after the decimal),
e.g., %10.2f will fit a number within a field of 10 spaces and will display
2 figures after the decimal. If 10 is omitted (i.e., %.2f or %f), a space is
inserted by default between any preceding text and the number (Figure
4.38). The text line is often terminated by a special character \n, indicating
a new line from which subsequent text display will continue. Other special
characters are \t for a horizontal tab or \r for carriage return. The latter
needs to be placed before \n if one is outputting to a file that must then be
opened using a Windows text editor, such as Notepad.

FIGURE 4.38. Defining format for the value embedded in the fprintf function.

It is possible to write the data from the Workspace variables into an
external file by using the save command (Figure 4.39). The save command,
followed by a filename only (with no extension specified) will save all the
Workspace variables in a binary format (*.mat) file. One can also output
the specified variable data into a plain text file that can be then edited with
a text editor or imported into MS Excel, for example. This is accomplished
by appending the filename, variable name, and a qualifier (–ascii) to the
save command. Adding the –append qualifier will add the variable data
to the specified existing file. You can view the contents of any text file by
using the type command; it will display them in the Command Window
(Figure 4.39).

One can also import external data previously saved in a text file (such as,
for example, a test output data set of numbers arranged in columns such as
a comma separated value file (*.csv) into the MATLAB Workspace by using
the load command. In this example, such data file is created in MATLAB
and saved as a text file testf.dat containing values from a matrix test (Figure
4.40). The data is imported into MATLAB by the load command followed
by the full file name (testf.dat). A matrix variable testf is then created in
the Workspace; the variable name is that of the file without the extension

an introduCtion to MatlaB • 97

FIGURE 4.39. Saving variable data to a new file and appending data to an existing external file.

FIGURE 4.40. Saving data into an external file.

FIGURE 4.41. Calling data from an external file.

98 • PraCtiCal Heat transfer

(Figure 4.41). The variable data can also be viewed and edited by double-
clicking the variable name in the Workspace. This opens the Variables Editor,
displaying the data in a tabular view, like a spreadsheet (Figure 4.42).

FIGURE 4.42. Viewing and editing variable data in the Variables Editor.

It is possible to call in an image using the imread(‘image_name’) function,
where image_name includes the file extension (e.g., *.png or *.jpg). This is
a useful feature, making it possible to place an image over or behind a plot.
In general, a wide variety of file image and data formats can be opened
within MATLAB (Figure 4.43); images and figures generated within the
MATLAB environment can also be saved to a broad range of the standard
image types in addition to the native *.jpg file format (Figure 4.44). Saving
to the *.fig format allows subsequent reopening and adjustment of the
plots and axes parameters within the figure using the interactive tools of
the Figure window menu.

The user may also import vectors and raster data from the Web
map servers, and the files may be exported in formats such as Shapefile

FIGURE 4.43. File formats importable into the MATLAB environment.

an introduCtion to MatlaB • 99

binary files (shapewrite), Keyhole Markup Language (KML) text files—
kmlwrite—and GeoTIFF, which writes the geodata as vector coordinates
and map attributes to the desired file and eventually the Web. *.geotiff files
are like *.tiff files with additional attributes associated with parameters for
geo referencing and projected coordinate systems. *.kml files are a form
of *.xml files that store the hyperlink information and map components’
relations. *.shp files work with vector geodata and tabular attributes. The
format of the files importable into MATLAB is shown in Figure 4.43.

FIGURE 4.44. Image formats that may be created in the MATLAB environment.

4.8 User-Defined Functions

A good programing practice is to create functions for execution of any
code that is likely to be used more than once within one program or several
different programs. This improves code’s reliability, as one only needs to
make sure once that the function performs correctly. It also makes it easier
to implement any changes as that change would only need to be done in one
place (within the function). A function contains a sequence of commands,
just like a script, but one can also pass input arguments to it and receive
output values.

A function file starts with the function definition command: The
keyword function followed by an optional list of output arguments,
equal sign, function name, and an optional list of input arguments. The
function name follows the same naming conventions as the MATLAB
variables. The end command closes the function definition. The code
block of the function–end includes the mathematical operations used to
obtain the output or data input/output variables. In the example shown in

100 • PraCtiCal Heat transfer

Figure 4.45a, the cylinder volume calculation that was presented earlier
in Figure 4.37 is defined as the function vol_cyl. The function is saved
as an *.m file (i.e., with the same extension as that for the MATLAB
scripts); the file name should be the same as the name of the function.
Using its name, the function can then be called either from a script or
from the command line, as shown in Figure 4.46. If there is a mismatch
between the file name and the function name, the function will be known
to MATLAB by its file name, and a warning message would be given to
the user about the mismatch.

In the earlier MATLAB versions, only one function definition was
allowed within each *.m file. Starting from the release R2016b, the ability
to have local functions was implemented. These functions are intended for
use within the *.m file, where they are defined, and they cannot be called
from the command line or from another script or function. Within the *.m
file defining a function, a local function can be added at the end; it can then
be called from within the main function (first one defined within the file).
Within the *.m file containing a script, local function definitions are to be
placed at the end of the file. An example of a local function used to calculate
the cylinder volume, vol_cyl2, is shown in Figure 4.45b.

While it is recommended to use comments in functions, just like when
writing scripts, an additional consideration for functions is that any comment
lines added before the function definition within the *.m file are displayed
in the Command Window if the user enters the help command followed
by the function name; see Figure 4.46b. Thus, placing a brief explanation

 (a) (b)

FIGURE 4.45. The vol_cyl function: (a) Calculating the cylinder volume,
(b) Including the local function use.

an introduCtion to MatlaB • 101

about what function does and perhaps explaining, if needed, what inputs
are expected and outputs are produced, will help the user seeking help for
the function.

Another good programing practice when writing function code is
to validate the function input argument values before continuing with
calculations. In the example in Figure 4.45a, the input arrays of radius and
height are checked to make sure that they contain no negative numbers and
that both input arrays have the same dimensions. If a check fails, an error
function is used to terminate the code execution and issue an error message
explaining why the error occurred. Examples of errors due to mismatch of
input array elements and negative radius values are shown in Figure 4.46c.
Such error trapping is very helpful when debugging code. After the input
validation checks, the output volume array is calculated using the element-
by-element operations carried out with the .^ and .* operators.

 (a) (b)

 (c)

FIGURE 4.46. (a) Calling the vol_cyl function from the command line,
(b) Using the help command with functions, (c) Invalid input examples.

Normally, each time a function is called, it creates its own local Workspace;
any variables created locally within the function remain there and are not
available in the Workspace of the code that called the function. Variable
values are passed to the function via the input arguments and retrieved from
the function via the output arguments. In some cases, however, it may be
convenient to have a set of variables that are available to several functions.
For example, one may have a large set of parameters that need to be used in
multiple functions. In such cases, one may declare the variables using global
command by appending their name after the command is issued. The same

102 • PraCtiCal Heat transfer

global statement is also made within each function that needs to access
these variables. Figure 4.47 shows a script example for cylinder volume and
area calculation that now uses global variables to pass the height and radius
values to the functions called from within it (Figure 4.48).

 (a)

 (b)

FIGURE 4.47. Script Cyl_dim3.m: (a) Using global variables, (b) Output.

 (a)

an introduCtion to MatlaB • 103

 (b)

FIGURE 4.48. Functions called by Cyl_dim3 script with global variable: (a) vol_cyl4, (b) area_cyl4.

4.9 Plots

Plotting data is a very useful tool for data analysis. It allows visualization
of the outputs to compare them with the expected values or to obtain data
trends. Data trends may be expressed in time, sample numbers, or indices
in the case of frequency analysis. The data can have either an internal or
external source.

Data from either source will end up stored as an array/matrix in the
MATLAB Workspace.

To plot these data, they should represent equal numbers of columns
(if they are presented by their rows headings) or equal numbers of rows (if
they are presented by their column headings). For example, if Y is to be
plotted against X, their lengths should be equal, assuming that X and Y are
arrays of 1 n, or if X and Y are arrays of vectors of n 1. They can also
have the dimension m n, that will generate multiple curves.

The figure command opens a window within which the generated plot(s)
or subplot(s) are displayed. By default, each plot appears in one figure, and
the next plot replaces the previous one unless a different figure window
has been created by issuing another figure command. A good practice is
to define a figure with a specific ID for each plot for standardization and
to have individual access to plot definitions. This is done by the figure
(j) function, where j is the figure ID (number). To clear the MATLAB
environment from all the figures, the clf command is used.

104 • PraCtiCal Heat transfer

2D plots can be created by defining the horizontal (x-coordinate) and
vertical (y-coordinate) variables (abscissa and ordinate). The plot function
is then employed to plot the x versus the y data and represents them in
the formats identified by the programmer (e.g., solid or dashed lines and
circled or crossed markers) and in the selected colors. To obtain the ID of
the current figure (the one to which the plot function output will be sent),
use the gcf (get current figure) command.

In MATLAB, labels are the identifying features of the geometrical
shapes. Descriptions of the individual curves are added via the legend
command. Figure attributes, such as chart title and horizontal and vertical
axes labels, are defined for the figures using the title, xlabel, and ylabel
functions. The x- and y-coordinates upper and lower limits may be set by
the axis function; the x limits are followed by the y limits. The variables to
be plotted can be defined either in the form of arrays of vectors or formulae
(Figure 4.49). The x and y upper and lower limits can be set independently,
using the xlim and ylim functions.

FIGURE 4.49. Script to create plots, bar charts, and histograms.

Different types of charts may be plotted in the MATLAB environment. The
scatter chart (the plot points are connected by line of the desired styles;
e.g., dotted and solid) or separated chart, and different markers with size
and shape are available. It is possible to show single or multiple plots in one

an introduCtion to MatlaB • 105

figure (Figure 4.50). Data can also be presented by means of the vertical
and horizontal bar charts using the bar and barh functions (Figure 4.51)
and histograms (Figure 4.52).

FIGURE 4.50. Multiple plots of the y-values versus the x-values in a
single diagram with variables, defined in Figure 4.49.

(a)

106 • PraCtiCal Heat transfer

 (b)

FIGURE 4.51. (a) y1-values versus the x-values in a horizontal bar chart,
(b) y2-values versus the x-values in a vertical bar chart, defined in Figure 4.49.

FIGURE 4.52. Histogram of the counts versus the y2-values, defined in Figure 4.49.

In order to show multiple plots in a single figure, the subplot(i, j, k) function
is used, where i and j are the grid size and k is the position of the referenced
figure within the grid identified by sequential row-wise numbering starting
from the top-left corner (Figure 4.53). If there are multiple curves to be
displayed on the same figure, the hold on command may be used; this adds
the output of any newly generated plot to the current figure. To release the
figure, the hold off command is used; this means that the next figure will

an introduCtion to MatlaB • 107

open on its own window. The grid on command adds vertical and horizontal
grid lines to the current axes.

FIGURE 4.53. Four plots displayed in a single figure.

It is possible to customize the bar chart border and fill colors by accessing
the Edit > Figure Properties, which is accessible through the Figure
menu bar. Figure options, such as windows’ appearance, position of the
diagrams, units, colormap, rendering, printing, and exporting options, can
be revised within each figure window (Figure 4.54). Clicking on the chart
directly results in the same menu bar as that of the figure in addition to the
Debug option that becomes accessible. All features such as plot type, line
style, data source, and other chart information are available through the
Figure Properties window. Figures can be saved or embedded later in the
presentations and reports. To achieve this, on the Figure menu, File > Save
as the command is activated and the figure is saved under the *.fig format.

3D surface plots can be drawn using the surf(X, Y, Z) function. The
function plots a surface grid with vertices above each (X, Y) point located
at the height Z and with surface color determined by the value of Z. The X
and Y inputs are matrices that are best generated using the meshgrid (X, Y)
function. It takes vectors X and Y and replicates them to create matrix X,
where all rows are copies of vector X, and a matrix Y, where all columns

108 • PraCtiCal Heat transfer

are copies of vector Y. These two matrices are then in the correct format
as inputs for the surf function. Figure 4.55 shows an example 3D surface
generated by the steps shown above the plot. It plots sum of squares of the
x- and y-coordinate values.

FIGURE 4.55. 3D surface plot created with the surf function.

FIGURE 4.54. Figure properties options.

an introduCtion to MatlaB • 109

4.10 Code Examples

This section includes three examples of the MATLAB code. The first
example shows how code execution speed can be tested using the tic and
toc commands. The second example shows the implementation of the
material property entry that takes advantage of user-defined functions and
shows use of the while loop and switch function. The third example shows
implementation of random walk display, highlighting the use of the while
loops and plotting.

4.10.1 Testing Code Execution Speed
The tic and toc commands are used to, respectively, start and stop a

timer when executing code. The output of the toc command can then be
assigned to a variable which would record the time in seconds elapsed from
when the tic command was executed. Such time information is a good
way to evaluate the efficiency of the code. One can try different ways to
accomplish a programing task and compare the relative speed of execution
between them. For example, it is known that it is more efficient to first
create an array containing zeroes and then assign values to it compared to
repeatedly expanding the array by adding new values to it.

In the example code in Figure 4.56, in the first for loop, the array m
is expanded repeatedly over 1,000,000 loop iterations. In the alternative
version, a vector array of zeroes with 1,000,000 elements is defined first
using the zeros function and then values are assigned to this array. The

FIGURE 4.56. Code execution speed comparison using the tic and toc
commands that shows benefit of predefining zeros array.

110 • PraCtiCal Heat transfer

second code segment is completed in 0.016 seconds, which is about 4.8
times faster than the first segment.

The next code example shows efficiency improvement due to the use of
element-by-element multiplication using the .* operator versus using the
for loop. The tic and toc commands are used again to measure the elapsed
time for each code segment. The execution time decreased by 6.7 times.

FIGURE 4.57. Code execution speed comparison using the tic and toc
commands: element-by-element operation benefit.

an introduCtion to MatlaB • 111

4.10.2 Entering Material Properties
The code in this example tells the user to enter three thermophysical

properties of a material: density, thermal conductivity, and heat capacity.
For each property, there is a recommended range of values that the program
suggests. The thermal diffusivity is then calculated from the input properties
and displayed. Additionally, the input values are summarized, and a note is
made whether each is below, within, or above the recommended range.

This is accomplished by a script matPropEntry.m (Figure 4.58). It
begins by creating a string array containing three pairs of property names
and units. Note that this is an array of strings, and not character vectors.
Only the former can contain text of varying length within each of its
elements. Next a 3 2 array of lower and upper recommended property
value limits is defined.

FIGURE 4.58. Script matPropEntry.m that asks user to enter thermophysical properties.

112 • PraCtiCal Heat transfer

Since all property-related information is stored in arrays, one can
efficiently use the for loop to cycle through the three properties asking
the user for input. For each property, one first needs to convert the strings
to character vectors for property name and units. Then, the user-defined
function testPropLimits() is called. It returns two values: the property value
and an index from 1 to 3 that shows whether the returned value is below
the recommended range (1), within the range (2), or above the range (3).

Next the for loop is used to display the entered values, with each value
followed by a note saying if it is below, within, or above the recommended
range. The note text is determined using the switch command that makes
selection based on the values in the rangeInd array containing index values
returned by the testPropLimits function.

The text is output to the Command Window using the fprintf command
(Figure 4.59). %s formatting code is used to output character vectors and
%g is used to output numbers. The latter code picks the more compact
output between %e (exponential) and %f fixed-point notations. Note how
the first fprintf function within the second for loop does not include the
new line (\n) character at the end of the line. This allows one of the three
fprintf functions within the switch command to append its text on the same
line. After displaying the inputs, thermal diffusivity is calculated from the
three properties entered and its value is displayed.

FIGURE 4.59. The result of running the script matPropEntry.m.

The matPropEntry.m script calls the function testPropLimits (Figure
4.60). It is instructive to examine in some detail its code to highlight the
good programing practices employed. Before the function is defined,
comment lines are added that explain the purpose of the function and

an introduCtion to MatlaB • 113

describe all inputs and outputs. These comment lines will be printed if help
testPropLimits is entered at the command line.

FIGURE 4.60. Function testPropLimits that evaluates entered values to test if they fall within specified range.

After the function is declared with the function statement, the inputs are
tested to make sure that they are numerical values or character strings as

114 • PraCtiCal Heat transfer

appropriate. It is also verified that the upper limit is greater than the lower
limit. If any of the inputs are found to be of incorrect type, an error function
is used to terminate the program execution and to display a meaningful
error message.

A logical variable done is used to control when the while loop is exited.
It is helpful for the ease of code interpretation to use meaningful variable
names: a function like while not(done) is then easy to understand. Within
the while loop, the first if–then–else statement is used to determine whether
the entered value is below, within, or above the specified value range, and
appropriate outIndx value is assigned. Also, warnings are given to the user
if the entered value is outside the range. Note also how three constants
(lowIndx, okIndx, and highIndx) have been defined before the while loop
entry. One could have used numbers 1, 2, and 3 instead but giving these
value names makes it easier to understand the code within the first if–then–
else statement inside the while loop.

If the entered value was within the recommended range, the variable
done is assigned true. If the entered value was not within the range, the user
is given an option to enter a different value or to keep the entered value.
Depending on the answer, the variable done is assigned true and the loop
terminates, or false and the loop continues.

The implementation of the testPropLimits function highlights the
benefits of creating functions that are as general in their application as
possible; this enhances the value of the created code. The function is
applied to material properties in this case but can be applied to any other
situations as well. Implementing such functions also reduces the overall
complexity of the code since most of the code is now hidden within the
function while the script matPropEntry.m that calls the function remains
compact and easy to follow.

4.10.3 Random Walk Plot
This code example plots the steps of a random walk that starts at the

origin and is carried out within a square enclosing box with sides of 100 units
(Figure 4.61). The user enters the maximum allowed step size component
in the X and Y directions and, using this value, a random integer is generated
with the randi function at each step. This random value determines the
next step location, and the new point is displayed on a plot.

The while loop is used to repeat the steps of the walk. The loop is
repeated until either the next step goes beyond the enclosing box walls or a
specified maximum number of steps is exceeded.

an introduCtion to MatlaB • 115

FIGURE 4.61. Random_Walk_Plot.m script.

The user input of the maximum step size value is obtained by employing the
same testPropLimits function that was used in the code example described
in Section 4.10.2. Recommended range limits for this input are specified to
be between 5% and 100% of the box size. Employing the same function for
two different applications again demonstrates the value of writing a code
that is as general as possible.

116 • PraCtiCal Heat transfer

A figure window is created next, and plot’s X and Y axes limits are
defined. A square is drawn with a thick red line to represent the enclosing
box. To draw the lines joining the steps points of the walk, a function
animatedline is used. It allows incremental addition of new points, with
a line drawn to connect each new point to the previous one. The process
is initialized by calling the animatedline function and specifying the line
parameters—in this case a dotted gray line, with line width of 1, markers of
small black circles filled with gray color.

The while loop is executed if the walk has not gone beyond the box
walls and the iteration limit has not been reached. The status of these two
conditions is indicated with logical variables hitWall and iterLim. These
again demonstrate the benefit of using meaningful names in such cases.
One can then write the while loop statement as repeat the code in the loop
while not(hitWall) && not(iterLim) && not(iterLIm).

A new point is added to the line with the addpoints function, which is
provided with the input of the line ID and the new point coordinates; this
is followed by the drawnow command to add the line and point to the plot.

Next, a random step is generated and evaluated with the if–elseif–
else–end statement. It tests first if the new point is located beyond the box
boundaries, setting hitWall to true if this is the case. A red x is then added
to the plot at the location, where this step would have gone to.

Then, the else–if statement tests if the maximum number of steps has
been reached, setting iterLim to true in that case. If neither of the above
logical tests is true, the loop counter i is incremented and the next point is
copied into the walk_point array that contains the coordinates of all the step
points. An information summary is presented at the end of the script; the
printout uses the two logical variables that controlled the loop execution to
indicate the cause of the loop exit (Figure 4.62) and the plot is displayed
(Figure 4.63).

The sample run results are shown for the maximum step size of 25. The
results show that in this run four valid steps were made and at fifth step to
(60, 4) the wall would have been hit. The last valid (within the box) point
was at (39, –15).

FIGURE 4.62. Text input/output of the Random_Walk_Plot.m script.

an introduCtion to MatlaB • 117

FIGURE 4.63. Random walk plot for maximum step size of 25; box boundaries indicated by red square.

End Notes

 [53] https://www.mathworks.com/products/matlab.htm
 [54] https://www.mathworks.com/products.html

C H A P T E R5
heAT TrAnsfer PrOBLeMs in
MATLAB

Partial Differential Equations (PDEs) can be used to describe system
behavior for problems in heat transfer, structural mechanics, and
numerous other fields. A general form of the heat transfer model

PDE is shown in Equation (62), where T is the temperature and t is time.
Parameters m, d, c, a, and f can be functions of time (t) and location within
the domain, space (e.g., x, y, and z), as well as the state variable (T) or its
gradients (e.g., dT/dx and dT/dt); they may also be constants. When m and
d are both zero, the PDE models a stationary (steady-state) system. When
either of m or d are nonzero, the problem represents a transient system.
For a system of PDEs consisting of n state variables, n linearly indepen-
dent equations are needed. Equation (62) can be restated as Equation (63),
where its parameters are expressed as thermophysical properties.

2

2 · ()
T T

m d c T aT ftt

 - =

 (62)

 (·) ()p k Q h
d

C T
T

Tdt Tr - = - (63)

The Dirichlet and Neumann boundary conditions can be applied to the
edges (2D geometry) and surfaces (3D geometry). The Dirichlet boundary
condition associates the state variable, such as temperature (T), to time
(t), location within the domain (x, y, and z) and other parameters (e.g., h
and r). These parameters can be functions of time (t) and location within
the domain (x, y, and z) as well as the state variable (T) or its gradients;
they may also be constants. Dirichlet boundary condition is presented by
Equation (64).

120 • PraCtiCal Heat transfer

 hT = r (64)
Neumann boundary condition associates the state variable such as
temperature (T) to time (t), location within the domain (x, y, and z) and
other parameters. It is described by Equation (65), where n is the unit
vector, pointing outward from the edge or surface. A dot (inner) product of
n with the gradient vector (T) returns a scalar quantity. The parameters
c, q, and g can be functions of time (t) and location within the domain
(x, y, and z) as well as the state variable (T) or its gradients. If any of the
coefficients depend on the state variable (solution, T) or its gradient, the
problem is nonlinear.

 ()n c T qT g = (65)

5.1 Introduction to PDEs in MATLAB

By creating with scripts and functions in the base MATLAB
installation, it is possible to solve a PDE model using the Finite Difference
Method (FDM), an analysis technique that is carried out by discretizing
the derivatives (the first or the second order) to linear relations and then
employing elimination methods (e.g., Gauss-Sidle) to solve the problems.
However, complex geometries and boundary conditions cannot be
accurately addressed by this method. Instead, the FEM technique, which
divides the geometry into small subdomains (elements), needs to be
employed to obtain accurate solutions. Nevertheless, if the programmer is
able to achieve an accurate solution using the simpler method, the benefits
of faster solution times can be obtained.

There exists a specialized function within the base MATLAB installation
for solving PDEs. However, this pdepe function only solves one-dimensional
problems with one spatial variable (x) and the optional time variable (t)
for transient analyses (parabolic relations). The pdepe solver transforms
the partial differential equations into the Ordinary Differential Equations
(ODE) using specific user-defined nodes, as shown in Equation (66), where
m is the equation parameter. f and s are flux and source functions. c is a
diagonal matrix with elements that are identically zero (elliptic functions)
or positive (parabolic functions). f, s, and c are independent functions of
the space (x) and time (t), dependent variable (u) and its special (du/dx)
and temporal (du/dt) derivatives. The outputs c, f, and s correspond to the
coefficients in the standard ODE equation, Equation (66), expected by the
pdepe solver. These coefficients are coded using specific commands and
functions in terms of the input variables mentioned above.

Heat transfer ProBleMs in MatlaB • 121

 , , , , , , , , ,m mu u u u
c x t u x x f x t u s x t ux t x x x

-
=

 (66)

Time integration is then performed using the ode15s solver. It is therefore
possible to handle Jacobians (first-order partial derivatives) of vector
functions.

To facilitate dealing with PDEs, MathWorks offers MATLAB, the add-
on called the PDE Toolbox, which is part of the Math and Optimization
product family. It provides several dedicated functions that simplify the
creation of models, definition of geometry, solution, and plotting of the
results. These functions can be used to solve PDEs using the finite element
method (FEM). They facilitate specification of the initial and boundary
conditions, as well as additional terms such as internal heat generation. The
results of analyses can be displayed as temperature distributions, heat flux,
and heat flow rates at the specified boundaries or domains, and other forms
of temperature derivatives. Unlike the pdepe function of the base install,
models with 2D and 3D geometry can be handled, as well.

The remaining sections in this chapter will look at how the PDE Toolbox
facilities can be used to solve the heat transfer problems using the FEM
method. First, a simpler approach using the PDE Modeler interface will be
discussed; afterwards, a comprehensive guide will be given to using the PDE
Toolbox function to solve these problems. As with any other FEM analysis
tool, common steps need to be followed and decisions made. Following is
a summary of these steps as they pertain to setting up a heat transfer FEA
model with the PDE Toolbox:

 (1) Geometry

(a) Decide whether 2D or 3D geometry is appropriate. Consider
whether the axisymmetric model can be employed that can repre-
sent a 3D geometry by a 2D model, greatly simplifying and speed-
ing up the solution.

(b) Decide if the geometry can be created internally within MATLAB
or is to be imported from an external tool (e.g., CAD software
or another FEA tool). This will depend on the model’s complex-
ity and the capabilities of the MATLAB’s internal tools. Internal
model creation simplifies model modifications.

 (2) Boundary conditions
Decide on appropriate conditions for each boundary. Is it insulated? Is
there a fixed temperature or a heat flux to be applied?

122 • PraCtiCal Heat transfer

 (3) Material properties

(a) Does the model consist of one material or are there multiple re-
gions with different material properties?

(b) Find material property specifications that accurately describe
the materials modeled. Are these properties constant or do they
depend on location, time, or temperature? If they are not constant,
then how their mathematical variations are described?

 (4) Mesh

(a) What is the appropriate size of the mesh elements? For large
models, small element size will lead to long solution times. One
can compare solution results for progressively smaller mesh sizes
to determine the appropriate level of mesh refinement. If further
element size reduction does not change the results, then an appro-
priate element size has been found.

(b) Make sure the mesh elements are of good quality, i.e., not exces-
sively stretched along one direction.

 (5) Solution
Define initial conditions and specify solution parameters, such as the
error tolerance level, which will determine when the solution is complete.
Excessively small tolerance will lead to longer solution times.

 (6) Post-processing of results

(a) Decide which information about the solution will need to be dis-
played.

(b) Generate plots, tables, or calculations to obtain the desired infor-
mation.

(c) Consider extracting the solution results and processing with the
third-party tools if available (e.g., Microsoft Excel).

5.2 Thermal Modeling Using the MATLAB
PDE Modeler Application

The PDE Modeler application is a tool available within the PDE
Toolbox. It presents a graphical interface that provides user with a simpler
way to access the PDE Toolbox capabilities to solve 2D models using the
FEM technique (Figure 5.1).

Heat transfer ProBleMs in MatlaB • 123

FIGURE 5.1. The PDE Modeler application in the Math, Statistics, and Optimization grouping.

5.2.1 The PDE Modeler Overview
When started, the PDE Modeler application presents a window with

menus and a row of icons along the top edge that allow for entry of the
necessary information to set up and solve a 2D FEM model (Figure
5.4). The model geometry is displayed on the plot in the middle, and the
prompts are shown along the bottom strip. This application includes built-
in formulae (models), with their physics already predefined for solution of
thermal, structural, electromagnetic, and generic PDE problems.

A typical workflow would be to go in sequence through the menus,
left to right, starting at Options. For the Draw, Boundary, PDE, and Mesh
menus, one first needs to activate the corresponding Mode by clicking on
the menu and selecting the first item (e.g., Draw Mode). Under the Solve
and Plot menus, one simply executes the corresponding action. If any of the
steps are skipped, the application runs with default settings (that include
everything, even the geometry). One can thus start application, select Solve
> Solve PDE and a solution will be presented. It is thus important to take
care to define all the settings as required.

To create 2D geometries, basic 2D shapes, such as ellipses, rectangles,
and polygons, can be added, transformed, and combined with Boolean
operations. Note that the application can only solve 2D problems. After
geometry is defined, boundary conditions are set. Neumann (or the
default Dirichlet) boundary conditions can be defined for the selected
boundaries, with customizable coefficients (e.g., q = 0 and g = -5). The
PDE coefficients are then set using PDE > PDE Specifications. Mesh is
then created by activating Mesh > Mesh Mode. The element size can be
decreased by refining the mesh and various labels, and the mesh quality
can be displayed.

124 • PraCtiCal Heat transfer

The PDE is then solved by selecting Solve > Solve PDE. This command
assembles the defined features (geometry shapes, equation coefficients,
boundary conditions, and mesh), and solves the PDE model. The results
are then plotted in the default diagram. 3D surface plots can be generated
showing the variation of a dependent variable (e.g., temperature) or its
derivatives (e.g., temperature gradient and heat flux) versus the position
within the 2D geometry. 3D surface plots can be selected by going to Plot
> Parameters and checking the Height (3-D plot) box.

One can save to a file the state of the PDE Modeler and restore it by
opening the file later. The file is stored as the *.m function, but it is not
recommended to edit it directly. If any additional customization is required,
it is suggested to either export the variables and use a script to work on
them or set up and solve the problem from the beginning as a script, as
described in Section 5.3.

5.2.2 Creating 2D Geometry
2D geometry is created by first activating Draw > Draw Mode. Shape

choices are rectangle/square, ellipse/circle, or polygon. For the first two
geometries, one can either create them by defining centers first or by
clicking at one of the two diagonal vertices and dragging to define the shape’s
size. Square/circles are drawn by either using the right mouse button or by
holding control key while dragging with the left mouse button. After the
shape’s creation, its dimensions and origin can be edited via the Object
Dialog window that can be accessed by double-clicking on the specific
shape (e.g., circle 1, C1) (Figure 5.2).

FIGURE 5.2. The PDE Modeler, Object Dialog settings for a Circle C1, Draw Mode.

A good practice is to define appropriate grid size so that when shapes are
located or sized, the points will snap to these grid values, and accurate round

Heat transfer ProBleMs in MatlaB • 125

numbers will result. To display and assign the grid size, select Options >
Grid Spacing. The default is Auto; this can be unchecked, and the desired
values entered (Figure 5.3). Then, select Options > Snap.

FIGURE 5.3. The PDE Modeler, Grid Spacing settings, Options Mode.

When each geometrical entity is created, it is automatically assigned a unique
ID (Name); for example, the first rectangle that is generated is identified
as R1 and the second circle is identified as C2. Shape IDs can be changed
via the shape properties dialog box, under the Name field (Figure 5.2).
The advantage of having shape IDs is that the geometry may be constructed
by referencing these unique IDs within the Boolean operations (i.e., ad-
dition and subtraction). For example, to create the cross section of a hol-
low cylinder, given a certain thickness, the internal (C1) and external (C2),
where RC1 > RC2, concentric circles are defined first; the smaller circle is
then subtracted from the larger one in a Boolean operation (C1 – C2); this
operation is entered in the Set Formula field (Figure 5.4).

FIGURE 5.4. The PDE Modeler, defining Set formula by addition/subtraction.

126 • PraCtiCal Heat transfer

5.2.3 The PDE Modeler: A Step-by-Step Guide
The process of setting up, solving, and analyzing a 2D PDE problem

within the PDE Modeler application is described in the following para-
graphs. The example model describes a transient heat transfer system,
where a circular core made of aluminum is surrounded by a ring made of
copper. The system is at the initial temperature of 30 °C and the environ-
ment is at 30 °C. There is also internal heat generation in the core region
(100,000 W/m3). The system is modeled over an interval of 1,000 seconds
and the temperature distribution at that time is displayed.

 (1) Run the PDE Modeler application by selecting the APPS tab on the
menu bar and clicking on its icon (Figure 5.1); alternatively, enter
pdeModeler at the command line.

 (2) Under the Options menu (Figure 5.5), set the grid, its spacing, and axis
upper and lower limits. Next, set the model application type (e.g., Heat
Transfer for a thermal model) through Options > Application > Heat
Transfer (Figure 5.6).

FIGURE 5.5. The PDE Modeler, Options menu items.

FIGURE 5.6. The PDE Modeler, Options, Application menu items.

Heat transfer ProBleMs in MatlaB • 127

 (3) To create the example’s 2D geometry, define two concentric circles
with radii of 0.4- and 0.5-units using Draw > Ellipse/circle (centered).
Click at the center’s location and drag with the right mouse button to
create each circle. Two circle entities are thus created and given names
C1 and C2 (Figure 5.7). Note that dragging with the left mouse button
will allow creation of an ellipse or a circle. If you happened to have
created an elliptical shape (named E1), it can be changed into a circle
by assigning equal values to both semiaxes in the shape’s properties.
If you want to return to this step, Draw > Draw Mode can be selected
again to modify the shapes or to add new ones.

 Set formula is used to define how the overlapping shapes will be
treated—subtracted or added. The Set formula field, visible in Figure 5.8,
shows C1 + C2 to indicate that the two shapes are to be combined to
create two regions in the model.

.

FIGURE 5.7. The PDE Modeler, Draw menu items.

128 • PraCtiCal Heat transfer

 (4) Boundary conditions on the geometrical segments are set as the next
step after selecting Boundary > Boundary Mode (Figure 5.8). All
boundaries have preassigned default insulated boundary conditions:
the Dirichlet condition—hT = r in Equation (64), where h = 1 and
r = 0. If there are unneeded subdomain borders, delete them by
selecting the Remove Subdomain Border or Remove All Subdomain
Borders. By holding the shift key and clicking on the individual bound-
aries, multiple selections can be made. Finally, select the exterior
circle boundaries (boundaries 1-5 as shown in Figure 5.8) and apply
the conditions h = 1 and r = 30 as shown in Figure 5.9.

FIGURE 5.8. The PDE Modeler, Boundary menu items.

FIGURE 5.9. The PDE Modeler, Boundary Condition settings for Dirichlet boundary conditions.

Heat transfer ProBleMs in MatlaB • 129

 (5) Activate PDE > PDE Mode. For each region, define specific PDE
coefficients as needed. PDE Specification is selected from the PDE
menu (Figure 5.10) to select the Type of PDE and to enter the PDE
coefficients into the fields of the dialogue box (Figure 5.11). The coef-
ficients must be assigned before the solution step. The coefficients
do not depend on the geometry or boundary conditions, but on the
physics. These coefficients can be assigned for individual regions by
double-clicking each and entering the values. If regions are not select-
ed individually, the default (initial PDE specifications) will propagate
to all the domain PDEs. For a steady-state thermal model, an elliptic
PDE should be assigned (Figure 5.11). In case of a transient condition,
as is the case in this example, a paraboilic PDE should be selected as
shown in Figure 5.12 and Figure 5.13. The coefficient values shown
represent an interior region made of aluminum and an exterior region
made of copper. The external temperature is assumed at 30 °C with a
convection coefficient of 10 W/m2K. The internal core generates heat
at 10,000 W/m3.

FIGURE 5.10. The PDE Modeler, PDE menu items.

FIGURE 5.11. The PDE Modeler, PDE Specification settings for the Elliptic model.

130 • PraCtiCal Heat transfer

FIGURE 5.12. The PDE Modeler, PDE Specification settings for the Parabolic model (interior region, aluminum).

FIGURE 5.13. The PDE Modeler, PDE Specification settings for the Parabolic model (exterior region, copper).

 (6) Mesh the model by selecting the Mesh Mode under the Mesh menu;
this meshes the geometry to the default size with the triangular mesh
elements. The mesh size can also be refined to the desired level
(Figure 5.14). Refinement subdivides each existing mesh triangle into
four to improve model accuracy. Selecting Initialize Mesh resets it to
unrefined state.
 The mesh data can be exported in the form of three matrices [p, e,
t]. p is the matrix of nodes (2 ´ Np), where Np is the number of nodes.
The first and second elements in each node (matrix column) are the
node coordinates (x, y). e is the matrix of edges (7 ́ Ne), where Ne is the
number of edges in the mesh. Finally, t is the matrix of triangles. For
each mesh triangle, it lists indices from the p array to identify the nodes
that belong to this triangle. The PDE Modeler uses linear elements

Heat transfer ProBleMs in MatlaB • 131

that have one node for each triangle vertex, and which result in the t
matrix with dimensions (4 ´ Nt). When defining the mesh parameters
outside of the PDE Modeler, one can specify either linear or quadratic
elements. The latter results in the t matrix with dimensions (7 ´ Nt).

 Node and triangle (mesh) labels as well as mesh quality can be
displayed using the GUI interface. The solution accuracy level depends
on the mesh selection criteria such as density and aspect ratio (quality),
which can be controlled through Mesh > Parameters (Figure 5.15).
Mesh parameters (Maximum Edge Size and Mesh Growth Rate) can
be repeatedly adjusted while working on the model. The Mesh Growth
Rate controls the rate at which the element size is allowed to increase
from the narrow regions to more open areas. The higher the rate, the
fewer elements will be created. After changing any of the settings, click
on Initialize Mesh to rebuild the mesh with the new parameter values.
To obtain the example mesh shown in Figure 5.14, set the maximum
edge size to 0.05 and perform one mesh refinement step.

FIGURE 5.14. The PDE Modeler, Mesh menu items.

132 • PraCtiCal Heat transfer

FIGURE 5.15. The PDE Modeler, Mesh Parameters settings.

Jiggle Mesh parameters controls the mesh optimization process carried
out either automatically, if the Jiggle Mesh checkbox is selected, or
manually by selecting the Jiggle Mesh item from the menu. In this
process, the interior element nodes (those that are not on the region
boundaries) are iteratively moved to improve the element quality (i.e.,
make its average value closer to one). You can observe the effect by
unchecking the Jiggle Mesh checkbox, initializing the mesh, and then
performing the Jiggle Mesh manually by selecting it from the menu.
Select Display Triangle Quality from the menu after each action to
observe the effect.

 Choosing the appropriate mesh size requires balancing between
the solution accuracy and time. Two types of the error (i.e., cutoff
and roundoff) are responsible for the solution inaccuracies. These
are generated either by rounding to the closest decimal or cutting
off certain number of decimals. Either way, the inaccuracies that are
introduced into the problem are cumulative with each iteration. This
leads to the error-solution curves to take on a concave shape, with the

Heat transfer ProBleMs in MatlaB • 133

bottom of the valley representing the optimum solution and raised
sides being deviations from the optimum solution. Other considerations
when setting up the mesh size in addition to the solution time and
accuracy concerns are the available resources. For example, memory
and hardware requirements may vary depending on the PDE type and
complexity of the model.

 (7) Solve the problem either by selecting the Solve PDE under the Solve
menu or clicking the ‘=’ button on the top ribbon (Figure 5.16). Under
Solve > Parameters, one can specify time step, state variable initial guess
value, and relative and absolute tolerances (Figure 5.17). The transient
solution results are plotted automatically with the default plot settings.

FIGURE 5.16. The PDE Modeler, Solve menu items.

FIGURE 5.17. The PDE Modeler, Solve Parameters settings.

 (8) Plot the solution results using the default plot settings by selecting the
Plot Solution in the Plot menu (Figure 5.18). Selecting Parameters
(Figure 5.19) allows customization of the plot display. Figure 5.17
shows the solution plot at time of 1,000 s and for initial temperature of
30 °C. The plot displays temperature contour plots with five levels and
arrows showing the direction and magnitude of the temperature
gradient field.

134 • PraCtiCal Heat transfer

FIGURE 5.18. The PDE Modeler, Plot menu items.

FIGURE 5.19 The PDE Modeler, Plot Selection settings.

After completing all the above steps, one can go back to any of them,
make changes, and repeat the solution. For example, to change the
geometry, select the Draw Mode under the Draw menu and make the
desired changes. Output from any of the abovementioned steps (such
as geometry descriptions, set formula, labels, decomposed geometry,
boundary conditions, PDE coefficients, mesh, solution, and animated
results) can be exported individually to the MATLAB Workspace or used
in the MATLAB script.

When using the PDE Modeler application, one must remember
that if the user does not define the parameters in any of the steps
mentioned above, the application will complete the solution with the
default settings. For example, failing to specify the geometry results
in a default L-shape being used. If meshing is chosen as the first step
after the L-shape geometry is created, the default boundary conditions
are applied to the decomposed boundaries (the Dirichlet boundary
conditions). If the solution is being called as the next step, the application
first initializes the mesh and then runs the solution. If the user chooses
to plot the results before any solution is attempted, the solution is first
run using the default conditions and then the plot is generated.

Heat transfer ProBleMs in MatlaB • 135

This also applies when setting up the PDE coefficients. If no PDE
coefficients are set, the PDE parabolic relation is used (provided Heat
Transfer Mode has been selected) with the default values (Figure 5.11).
The equation displayed at the top of the PDE Specification window shown
in Figure 5.11 can be derived by simplifying Equation (62). This is done by
assuming the default density (r = 1), heat capacity (c = 1 J/kgK), thermal
conductivity (k = 1 W/mK), heat generation (Q = 1 W/m3), convection
heat transfer coefficient (h = 1 W/m2K), and surrounding temperature
(T
¥
 = 0 K). One thus obtains Equation (67), which is what is shown in the

figure. Note that in Equation (67), T¢ is simply a different way of writing
the temperature time derivative (T¢ = dT/dt) compared to that in Equation
(63). The solution to Equation (67) presenting the temperature profiles and
contour plots is presented in Figure 5.20.

 · () ()pC T Tk Q h T Tr - = - (67)

If the problem models steady-state conditions, the results are independent
of the heat capacity and density; therefore, Equation (67) can be simplified
to Equation (68) shown in Figure 5.13.

 ()· ()k Q h T TT = - - (68)

FIGURE 5.20. The PDE Modeler, default geometry and solution (temperature and its gradient).

136 • PraCtiCal Heat transfer

5.3 Thermal Modeling Using the MATLAB Script

To solve any heat transfer model, the conservation of energy must be
complied with. As discussed in Section 2.2, this law states that the total
energy inputted into the system plus the energy generated within the
system must be equal to the total energy outputted from the system plus the
energy change within the system, Figure 2.3 and Equation (1). The result
of such energy balance is one or more partial differential equations (PDE).
To solve such equation in MATLAB, the equation may be discretized and
solved using the finite difference approach that employs the MATLAB’s
base installation capabilities. The PDE Toolbox add-on package simplifies
this task by providing functions dedicated to setting up and solving of the
PDEs. While Section 5.2 described how to create a relatively simple 2D
model using the GUI of the PDE Modeler, an application which comes with
the PDE Toolbox, the current section outlines a more general procedure
that can be employed to set up and solve a thermal model on the MATLAB
platform using the PDE Toolbox.

5.3.1 Model Creation
Using the PDE Toolbox functions, to create a general PDE scalar

(single variable-single equation) or system (multiple, N, variables-multiple
equations) model, the createpde(N) function is called as shown in Equation
(69). For single-equation models, N = 1, and brackets with N can be
omitted; for multiple equations, N is equal to the number of equations.

The output of this function is a PDE model object. For example, the
PDE model object has properties such as Geometry and Mesh. An object
is a class or category. The object is created and behaves based on its class
when the program is executed. This helps the author to write their code
so that they can group the data and functions and facilitates finding the
objects of the same class. In general, there are two types of programming—
procedural and object-oriented. Procedural programs pass data to functions,
capable of performing the intended operations on the data. Object-oriented
programming condenses data and their operations in objects; these objects
then interface with one another. With MATLAB, the analyst can employ
both programming methods, using objects and regular functions.

To create models specifically formulated for thermal and structural
applications, function calls as shown in Equation (70) are used. Two
function inputs are required: problem type and analysis type. The problem
type is either “thermal” or “structural.” The analysis type describes how the
system changes with time (e.g., “transient” or “steadystate”) and whether

Heat transfer ProBleMs in MatlaB • 137

the geometry is axisymmetric. A complete listing of available keyword
strings is given in the function’s help document. After creating a model of
appropriate type, the model’s geometry, mesh, and boundary conditions
must be defined as detailed in the subsequent sections.

 model = createpde(N) (69)

thermalModel = createpde(‘thermal’, ThermalAnalysisType)
structuralModel = createpde(‘structural’, StructuralAnalysisType) (70)

5.3.2 Geometry
Creating geometry that represents the model with sufficient fidelity

while avoiding unneeded complexity is an important step when performing
heat transfer modeling. This section explains how the geometry that can
be used within the PDE Toolbox models can be created. The MATLAB
geometry creation tools have been discussed in detail in the author’s earlier
publication [3]. The geometry can be created using a third-party CAD tool
or generated within MATLAB. The appropriate geometry creation method
depends on the model complexity. The following sections describe different
approaches grouped by the number of geometry dimensions—2D or 3D.

5.3.2.1 2D Geometries

Three methods of adding 2D geometry into the model are described
below.

Method 1—Build 2D geometry using the MATLAB PDE TOOLBOX
commands

This approach uses the Constructive Solid Geometry (CSG) principles
to define 2D geometry from a set of basic shapes. The geometry of each
basic shape is defined by a matrix with several rows. Each row defines
specific parameters for that geometry (e.g., geometry shape and related
parameters such as central x- and y-coordinates and radius for a circle or
number of sides and vertex coordinates for a rectangle). Table 5.1 lists
shapes and settings required to define them.

To create properly formatted geometry for the PDE Toolbox functions,
the model needs to consist of disjointed minimal regions bounded by
boundary segments and border segments. This set is known as the
decomposed geometry. In multiple domains, the geometry components are
assembled from the individual basic shapes (e.g., circles and rectangles for
2D cases). This is a two-step approach, consisting of the geometry function

138 • PraCtiCal Heat transfer

TA
B

LE
 5

.1
.

Th
e

Li
st

 o
f t

he
 b

as
ic

 s
ha

pe
s

an
d

th
ei

r
co

nf
ig

ur
at

io
ns

.

It
em

R
ow

1
2

(C
en

tr
al

 D
at

a)
3

(C
en

tr
al

 D
at

a)
4

5
6

So
lid

 S
ha

pe

1
C

ir
cl

e
1

x-
co

or
di

na
te

s
y-

co
or

di
na

te
s

C
ir

cl
e

2
Po

ly
go

n
2

N
 (t

he
 n

um
be

r
of

 li
ne

 s
eg

-
m

en
ts

)

T
he

 n
ex

t N
 r

ow
s

co
nt

ai
n

th
e

x-
co

-
or

di
na

te
s

of
 th

e
st

ar
tin

g
po

in
ts

 o
f

th
e

ed
ge

s

T
he

 n
ex

t N
 r

ow
s

co
nt

ai
n

th
e

y-
co

-
or

di
na

te
s

of
 th

e
st

ar
tin

g
po

in
ts

 o
f

th
e

ed
ge

s

3
R

ec
ta

ng
le

3
N

 =
 4

 (t
he

nu

m
be

r
of

 li
ne

se

gm
en

ts
)

T
he

 n
ex

t N
 r

ow
s

co
nt

ai
n

th
e

x-
co

-
or

di
na

te
s

of
 th

e
st

ar
tin

g
po

in
ts

 o
f

th
e

ed
ge

s

T
he

 n
ex

t N
 r

ow
s

co
nt

ai
n

th
e

y-
co

-
or

di
na

te
s

of
 th

e
st

ar
tin

g
po

in
ts

 o
f

th
e

ed
ge

s

4
E

lli
ps

e
4

C
en

te
r

x-
co

or
-

di
na

te
C

en
te

r
y-

co
or

-
di

na
te

M
in

or
 a

xe
 o

f t
he

el

lip
se

M
in

or
 a

xe
 o

f t
he

el

lip
se

R
ot

at
io

na
l a

ng
le

of

 th
e

el
lip

se

Heat transfer ProBleMs in MatlaB • 139

and the decsg function. The decsg function is used to transform the data
describing the 2D geometry (as defined in Table 5.1) into a format that can
be interpreted by other functions within the PDE Toolbox. This is described
as decomposing constructive solid 2D geometry into the minimal regions.
This method can control all the characteristics associated with the defined
basic shapes; however, the user interface is not as friendly as when using the
PDE Modeler application and the model is not viewable as it is being created.
Table 5.2 provides examples for the creation of four basic 2D shapes.

TABLE 5.2. Examples of basic 2D shape creation with the decsg function.

Item Solid Shape
Geometry

Configuration (g) Configuration Shape

1 Circle decsg([1 0 0 1]’)

2 Polygon decsg([2 6 0 1 2 3 2
1 1 2 2 1 0 0]’)

3 Rectangle decsg([3 4 0 0 1 1 0
1 1 0]’)

140 • PraCtiCal Heat transfer

Item Solid Shape
Geometry

Configuration (g) Configuration Shape

4 Ellipse decsg([4 0 0 1 0.5
pi/4]’)

The example in Figure 5.21 shows how the basic shapes can be assembled into
a multi-region geometry. Each basic shape is defined by a column vector the
length of which varies with the shape type. To combine these shapes, a set of
three matrices needs to be created, (gd, sf, ns), and then provided as input to
the decsg command. These matrices are gd (the geometry description matrix
containing the CSG description of the model); sf (the set formula); and ns
(the name-space matrices). The sf character vector describes the Boolean
relationships between the geometrical entities; ns is a character array that
identifies the columns in gd and thus allows evaluation of the formula in
sf. The decsg function then receives these three matrices as the inputs and
produces the required output matrix—dl = decsg(gd, sf, ns).

model = createpde;
C1 = [1,0,0,0.5]¢;
T1 = [3,3,-1,1,0,0,0,2]¢;
R1 = [3,4,-0.25,0.25,0.25,-0.25,... 0.75,0.75,1.25,1.25]¢;
C1 = [C1;zeros(length(R1)-... length(C1),1)];
T1 = [T1;zeros(length(R1)-... length(T1),1)];
gd = [T1,C1,R1];
sf = ¢R1-T1-C1¢;
ns = char(¢R1¢,¢T1¢,¢C1¢);
ns = ns¢;
dl = decsg(gd,sf,ns);
geometryFromEdges(model,dl); pdegplot(model);
ax = gca; grid on; grid minor;...
ax.FontSize = 20; xlabel(¢x¢); ylabel(¢y¢);

Heat transfer ProBleMs in MatlaB • 141

FIGURE 5.21. Basic shapes assembled into a multi-region geometry.

As one can see from Table 5.2, different geometrical shapes have definition
vectors of different lengths. However, if they are to be combined into the
gd matrix, their lengths need to be equalized. This is done by padding the
shorter definition vectors with zeroes. For example, the vector length of the
rectangle (R1) is 10 (m = length(R1) = 10); and that of the triangle (T1) is
8 (n = length(T1) = 8). Thus, vector zeros(length(R1) – length(T1)) with
length m – n = 2 is appended to the triangle’s vector. The padded triangle’s
vector becomes: T1 = [T1; zeros(length(R1) – length(T1), 1)]. One can
visualize the PDE model geometry by executing the pdegplot function
that takes as its input the output of the decsg function—e.g., pdegplot(dl).
The geometry can be then incorporated into the model container (model)
by executing geometryFromEdges(model,dl). Another complete example
is presented in Figure 5.22 that shows the script consisting of geometry
commands and their assembly and in Figure 5.23 displaying the resultant
geometry.

FIGURE 5.22. Geometry creation commands (circle and rectangle operations).

142 • PraCtiCal Heat transfer

FIGURE 5.23. Geometry created using circle and rectangle operations.

Method 2—Build 2D geometry employing the PDE Modeler
application

The PDE Modeler application introduced in Section 5.2 can provide a
more user-friendly approach to geometry creation. Within this application,
one may click and drag to generate the geometrical shapes, to view the
creation progress, and to make revisions. It is also possible to confirm if
the relationships between the geometry features are defined properly;
for example, if the parts are connected at the desired points and lines; if
the features are to be added or subtracted. Only the same basic shapes
introduced in Table 5.2 can be created.

After creating the geometry in the PDE Modeler, as described in
Section 5.2.2, one can export this geometry via the Draw > Export
Geometry Descriptions, Set Formula, Labels menu command. This adds
three matrices to the MATLAB Workspace, identified by default as (gd,
sf, ns), which can then be used as input to the decsg function, as described
under Method 1 above.

Method 3—Import geometry from a third-party CAD or FEA tool

A 2D geometry generated externally and stored in the *.stl format
can be imported and incorporated into the PDE model using the
importGeometry(model, geometryfile) command, where model is the name
of the container to which the geometry is to be added and geometryfile is
the path to the *.stl file containing the geometry.

5.3.2.2 3D Geometries

Three methods of adding 3D geometry into the model are described
below.

Method 1—Build 3D geometry using the MATLAB PDE Toolbox
commands

There are three functions in the PDE Toolbox that allow you to create
three types of 3D geometric primitives: cuboid, cylinder, and sphere.
Execution of each function can create multiple objects of the same type

Heat transfer ProBleMs in MatlaB • 143

or a single object. One can also specify for any of the shapes that they are
to be void. This allows creation of hollow objects by nesting the void shape
within a solid one.

For example, to create multiple cuboids, the function gm = multicuboid
(W, D, H, NameN, ValueN) is employed. In this relation, W, D, and H
are the width, depth, and height, respectively, which can be scalars or
vectors. Name–Value can belong to multiple relations employed to identify
if the part is offset from the default coordinate [0 0 0] by identifying the
ZOffset value of the Nth cell and Nth cell of the cell N. The lengths of these
vectors are the same as the width (W), depth (D), and height (H) vectors.
Therefore, to create four cuboids with the same side dimensions, and the
second hollow cuboid, which are offset from the default coordinate [0 0 0]
by [0 1 3 6], the command is gm = multicuboid(3, 1, [1 2 3 5], ‘ZOffset’,
[0 1 3 6], ‘Void’, [false, true, false, false]).

To create four cylindrical cells (volumes) with the unit radii, heights
identified by array [1 2 3 4], the third cylinder hollow, and being offset by
array [0 1 3 6], the command is gm = multicylinder(1, [1 2 3 4], ‘ZOffset’,
[0 1 3 6], ‘Void’, [false, false, true, false]). To create one filled spherical cell
with radius 5, the command is gm = multisphere(5, ‘Void’, false).

There are, however, several limitations when using these functions.
First, only objects of the same type can be combined within one geometry
structure. This means, for example, that one can have multiple cuboids
or multiple cylinders but not the combination of cuboids and cylinders.
Second, there are some restrictions on how the geometrical entities can
be combined; for example, one cannot have overlapping entities. For 3D
geometries of higher complexity, it is thus recommended to use other
creation methods.

Method 2—Create 3D geometry from mesh

Geometry can be created from a mesh using the geometryFromMesh
function, as shown in Equation (71). An example using the mesh grid points
generated for x-, y-, and z-coordinates is presented in Figure 5.24.

 geometryFromMesh(model, nodes, elements (71)

In the example, a cube with sides equal to 1 is meshed with the grid spacing
of 0.1. Node coordinates (nodes) are created as the result. The convex hull
function creates elements. Geometry (domain) is then generated based on
this information (Figure 5.24b).

144 • PraCtiCal Heat transfer

 (a) (b)

FIGURE 5.24. Use of geometryFromMesh function to create a convex hull element:
(a) Script, (b) Element boundaries.

Method 3—Import 3D geometry from a third-party CAD or FEA tool

To create 2D and 3D geometries, the *.stl format files can be imported
using the importGeometry(model,geometryfile) command. For example,
the sequence of commands shown in Figure 5.25a imports a CAD geometry
created in SOLIDWORKS (Figure 5.25b) that was saved in the *.stl format
to a file Test_STL_Export.stl. Figure 5.25c, shows the triangles that are
used to define surfaces in the *.stl format. Figure 5.25d, shows how the
imported geometry looks within the PDE Toolbox model.

Note that the imported geometry consists of uninterrupted faces, with
the triangular facets removed. This is done by MATLAB automatically on
the *.stl file import. It assumes that any triangles within the same plane and
having nearly identical face normal orientation belong to the same face. This
can cause issues if the model contains surfaces with very small differences
in orientation as they may be assumed to belong to the same face. However,
in general, the *.stl file format import is the most appropriate method for
adding complex 3D geometries into the PDE Toolbox model.

 (a)

 (b)

Heat transfer ProBleMs in MatlaB • 145

 (c) (d)

FIGURE 5.25. Importing 3D geometry from a *.stl file: (a) Script, (b) CAD geometry,
(c) *.stl geometry, (d) Imported model.

5.3.3 Material Properties
In the most general case, material properties can vary over the model

space, change over time, and be dependent on state variables. Material
properties can be defined for the whole model or specifically for each region
by using the PDE Toolbox function thermalProperties(). For a region-by-
region definition, one needs to specify the RegionType, which is Face for
2D models and Cell for 3D models, followed by the RegionID, an integer or
a vector of integers. Properties are defined by listing property name-value
pairs.

The example in Equation (72) defines three material properties for
a 3D region with ID number i within a model called thermalModel. The
function output may be assigned to a variable that will be defined as a
material properties object (tp_i in the example). Inputs k, rho, and c_p
define, respectively, thermal conductivity, density, and heat capacity at
constant pressure.

 tp_i = thermalProperties(thermalModel, ‘ThermalConductivity’,…
k, ‘MassDensity’, rho, ‘SpecificHeat”, c_p, ‘Cell’, i) (72)

If the material properties are space- or time-dependent, they need to
be defined using the function handles. For example, for metals at low
temperatures, thermal conductivity may be represented by Item 1, in
the Property Relation column, in Table 5.3, where k0 is a constant. The
larger the temperature is, the larger the thermal conductivity is. In metals,
as temperature increases, since the atomic mean free path is limited,

146 • PraCtiCal Heat transfer

thermal conductivity decreases. In metal alloys (e.g., stainless steel), since
the density of impurities is large, the thermal conductivity is lower than
in pure metals. The thermal conductivity (k) can be a quadratic function
of the state (dependent) variable temperature (T), as shown under Item
2, in the Property Relation column, in Table 5.3, where a, b, and c are
constants. When setting this property in the MATLAB script, the thermal
conductivity is defined as shown under Item 2, the MATLAB Definition
column, in Table 5.3, where u represents the state (dependent) variable
(i.e., temperature for a heat transfer PDE model).

In another example, assume the specific heat (cp) is a function of the
location (x-, y-, and z- coordinates). Item 3 in Table 5.3, where a, b, and c are
constants, shows how this relation can be described in the MATLAB PDE
script. If the internal heat source is a function of the location, temperature,
and time, a relationship can be used such as that in Item 4 in Table 5.3,
where a and b are constants, t is time, and T is temperature.

TABLE 5.3. The property relations and their MATLAB representations.

Item Property Relation MATLAB Definition

1 k = k0T k = @(~, state)k_0*state.u

2 k = aT2 + bT + c k = @(~, state)a*state.u^2 + b*state, u + c

3 cp = ax + by + cz c_p = @(location, state)(a*location.x +
b*location.y + c*location.z)

4 q = t(ax + b)T0.5 q = @(location, state)state.t*(a*location.x + b) *
(state.u)^0.5

It is also possible to create a function in which any of the material properties
vary with the location, state variable (e.g., temperature), and time. This
customized function (cust_fun) then can be employed when defining the
property—cust_fun = function(location, state), which can be defined as
pt = @cust_fun in the MATLAB script, where pt can be either property
(e.g., thermal conductivity) or process parameters (e.g., internal heat source
and heat flux). @cust_fun can replace any of the input variables used to
define the associated boundary and initial conditions.

The terms location.x, location.y, and location.z are the x-, y-, and z-co-
ordinates of the query point(s). For boundary conditions, they are replaced
with location.nx, location.ny, location.nz, and location.nr, representing the
normal vectors (x, y, z, and r-components) at the query points. For tran-
sient and non-linear problems, the terms state.u, state.ux, state.uy, state.

Heat transfer ProBleMs in MatlaB • 147

uz, and state.ur represent the resultant x-, y-, z-, and r-components of the
state variable (e.g., temperature) at the query points. state.time represents
time at the query points. In these cases, the thermal properties (except for
thermal conductivity) form a row vector in which the number of elements
is equal to the number of the query points, length(location.x). For thermal
conductivity, a matrix is formed in which the number of columns is the
same as the number of query points, length(location.x), and the number
of rows, assuming that Ndim is the number of model dimensions (e.g., 1D,
2D, and 3D), is 1, Ndim, Ndim*(Ndim + 1)/2, or Ndim *Ndim.

5.3.4 Analysis Type
When defining the analysis, one must define its type, such as steady-

state or transient, by calling the createpde function. The thermal analysis
type can be (a) steadystate, (b) transient, (c) steadystate-axisymmetric, and
(d) transient-axisymmetric. The steadystate is the default when the createpde
function is used, and the analysis type is not specified—thermalModel =
createpde(‘thermal’). Types listed under options (c) and (d) above create
2D thermal models that take advantage of the axial symmetry of the 3D
models.

For example, the statement in Equation (73) creates a transient heat
transfer model thermalModelT. To solve an axisymmetric transient problem
instead, replace keyword transient with transient-axisymmetric.

 thermalModelT = createpde(‘thermal’, ‘transient’) (73)

The thermalModelT is a thermal PDE model object that contains all the
information about the model, such as the geometry, mesh, thermophysical
properties, boundary conditions, initial conditions, and number of equations.

5.3.5 Heat Generation
This section describes how to incorporate spatial and temporal heat

generation into the heat transfer PDE model. Internal heat generation can
be defined by using the PDE Toolbox function shown in Equation (74) in
which q_int is the internal heat generation (W/m3) applied to the region
(Face for the 2D and Cell for the 3D models) identified by i.

q_internal = internalHeatSource(thermalModelT, q_int, ‘Face’, i) (74)

When solving PDEs in MATLAB, it is a good practice to make sure that
temperature- or time-dependent outputs do not return valid numbers if
any of the state.time or state.u variables are not-a-number (NaN). This

148 • PraCtiCal Heat transfer

means that for any NaN state variable, a NaN value should be returned.
The concept of a NaN was introduced earlier in Section 4.5.

An example for a custom-made heat source including the testing for
a not-a-number (NaN) input is presented in Figure 5.26. The purpose of
including such capability is to both ensure that the heat generation value
does exist on the selected nodes but also, that they can be defined; for
example, they do not produce floating point overflow.

This function, myHeatSource, is used in the function internalHeatSource
through a function handle—@myHeatSource. The function Q is a local
function that can be appended at the end of a script as shown in Figure
5.26; this function then can be called by executing internalHeatSource(the
rmalModelT, @myHeatSource). Note that, to work correctly with transient
problems, this function must include a test for a NaN input and, if the result
is true, return a NaN output.

function Q = myHeatSource(location,state)
 Q = zeros(1,numel(location.x));
if (isnan(state.time))
 Q(1,:) = NaN;
 return
end
if state.time < 300
 Q(1,:) = 100*state.time;
end
end

FIGURE 5.26. Example of function that defines heat source and correctly handles a NaN input.

5.3.6 Boundary and Initial Conditions
This section shows how to integrate spatial and temporal boundary and

initial conditions into the model. To identify the boundary conditions (e.g.,
heat flux and temperature), ambient temperature (T_a) and convection heat
transfer coefficient (h_c) are to be either directly or separately inputted in
the associated equation (i.e., defined as a fixed value or spatial/temporal
function) using the PDE Toolbox function thermalBC. The boundary
condition can be identified in the form of temperature (T)—Equation
(75), heat flux (q_f)—Equation (76), radiation (q_r)—Equation (77), or
convection (q_c)—Equation (78), where T_i, q_i, e_i, T_ai, h_ci are the
temperature, heat flux, emissivity, ambient temperature, and heat transfer
convection coefficient at the region type (Edge for the 2D and Face for
the 3D models) referenced by the identifier i. These parameters can be

Heat transfer ProBleMs in MatlaB • 149

expressed as functions of space or time (e.g., heat flux (q_i_y) in Equation (79)
and convection heat transfer coefficient (h_ci_y) in Equation (80).

 T = thermalBC(thermalModelT ,’Edge’,i ,’Temperature’,T_i) (75)

 q_f = thermalBC(thermalModelT ,’Edge’,i,’HeatFlux’,q_i_y)

(76)

 q _ r = thermalBC(thermalModelT ,’ Edge’,i,... (77)
 ‘Emissivity’,e_i,’ AmbientTemperature’,T_ai)

 q _ c = thermalBC(thermalModelT ,’ Edge’,i,... (78)
 ‘ConvectionCoefficient ‘,h_ci,’ AmbientTemperature’,T_ai)
 q_i_y = @(region, ~) q_i*region.y (79)
 h_ci_y = @(region, ~) h_ci*region.y (80)

Setting up appropriate initial conditions or initial guess for a thermal
model is an important consideration in transient analyses. There are
number of ways in which these conditions may be defined. One approach
is to apply the initial condition or initial guess for the PDE problem to the
entire geometry—T_0 in Equation (81). It is also possible to set the initial
conditions for certain regions (e.g., Vertex, Edge, and Face for the 2D and
3D model and Cell for a 3-D model)— T_0_i in Equation (82). One can
also have the output of one solution to be the input (or initial guess) to
another problem—T_0_res in Equation (83). It is also possible to set the
results of the first problem as the initial condition or initial guess for the
ts_0 time index of the second problem—T_0_res0 in Equation (84), where
ts_0 is a positive integer.

 T_ 0 _1 = thermalIC(thermalModelT,T_ 0) (81)

 T_ 0 _ 2 = thermalIC(thermalModelT,T_ 0 _i,’Edge’,i) (82)

 T_ 0 _res = thermalIC(thermalModelT,results) (83)

 T_ 0 _res 0 = thermalIC (thermalModelT,results,ts_ 0) (84)

5.3.7 Mesh
The model geometry is meshed using the generateMesh function,

represented by Equation (85). When the mesh is generated, it is stored in
the model object (e.g., thermalModelT). GeometricOrder identifies if the
elements are of linear or quadratic order. The quadratic order elements
are the default element type choice for the MATLAB PDE problems;
they produce more accurate results; however, they require more computer
resources (RAM and solution time). Hgrad identifies the mesh growth rate

150 • PraCtiCal Heat transfer

(gs_gr). It is a number within the range 1 £ Hgrad < 2 with the default
value of 1.5. It controls the rate at which the mesh element size is allowed to
increase between narrow and open regions. Hmax identifies the maximum
mesh edge length (gs_max). The smaller the Hmax is, the finer the mesh is.
Hmin identifies the minimum mesh edge length (gs_min). Hmax and Hmin
are the upper and lower limits, respectively, of the mesh size. If they are
not specified explicitly, Hmax’s and Hmin’s default values are estimated by
the generateMesh function. Mesh can be displayed with the pdeplot(mesh)
command.

 (,' ',
' / ',...' ', _ ,' ', _ ,
' min', _)

mesh generateMesh thermalModelT GeometricOrder

quadratic linear Hgrad gs gr Hmax gs max

H gs min

=

 (85)

5.3.8 Solver Options
Several settings can be adjusted from their default values before the

solution is run. The defaults determined by the MATLAB PDE Toolbox
applications in general provide suitable values, but there may be special
circumstances for some problems, where changes from the defaults will
need to be made. PDE solver options that can be adjusted are the absolute
tolerance, relative tolerance, residual tolerance, maximum iterations,
minimum step, residual norm, and report statistics. Equation (86) shows
the general format for setting these property values. This section provides
a summary of these options, with the focus on tolerances, due to their
importance in thermal modeling applications and particularly internal
ODE solvers.

 thermalModelT.SolverOptions.PDE SolverOptions Properties =
 Property Value (86)

Absolute tolerance identifies how accurate the final solution is expected to
be when the solver terminates the iterations. It specifies the solution error
estimate, which is the acceptable threshold below which the value of the
solution error is considered insignificant—y = f(x) = 0. The default value
for the absolute tolerance is 1e–6—Equation (87), where a is the absolute
tolerance (e.g., 2e–6).

 thermalModelT.SolverOptions.AbsoluteTolerance = a (87)

Relative tolerance identifies how accurate the solution is relative to the
exact solution; in other words, it specifies the number of correct digits for
the solution components. For the components, which are smaller than the

Heat transfer ProBleMs in MatlaB • 151

threshold, it is overridden by the absolute tolerance. The default value for
the relative tolerance is 1e–3 with an acceptable accuracy of about 0.1% —
Equation (88), where b is the relative tolerance (e.g., 2e–3).

 thermalModelT.SolverOptions.RelativeTolerance = b (88)

Residual tolerance identifies the accuracy of the iterative solutions.
Residues are the solution deviation (zero-sum problems) from zero. The
solution iterations continue until the set tolerance is met when performing
the analyses. The default value for the residual tolerance is 1e – 4, as shown
in Equation (89), where c is the residual tolerance (e.g., 2e–4).

 thermalModelT.SolverOptions.ResidualTolerance = c (89)

Maximal number of Gauss-Newton iterations identifies the highest number
of solutions that the nonlinear solver is allowed to iterate. If when this
limit is reached the solution still has not reached the relative (or absolute)
tolerance, the solution has not converged. In such cases, either the tolerance
is too tight and should be relaxed or the maximal number of iterations
should be increased; it is also possible that something is not right with the
model setup or the geometry. The default value for this property is 25. See
Equation (90), where d is the maximal number of Gauss-Newton iterations
for internal non-linear solver (e.g., 20).

 thermalModelT.SolverOptions.MaxIterations = d (90)

Minimum step identifies the damping factor when searching for solutions.
It determines the smallest distance that the solution will jump to on the next
iteration. The default value for the minimum damping step is 1.5259e – 07.
See Equation (91), where e is the minimum step size (e.g., 1.7e–7).

 thermalModelT.SolverOptions.MinStep = e (91)

Solution statistics, such as the number of successful steps (excluding the
comment lines), failed attempts, function evaluations, partial derivatives,
Lower Upper (LU) decompositions, and solutions of linear systems can be
displayed by activating the ReportStatistics feature within the SolverOptions
by setting it equal to on; the default value is off—Equation (92).

 thermalModelT.SolverOptions.ReportStatistics = ‘on’ (92)

5.3.9 Solution and Postprocessing
This section describes how to obtain the spatial and temporal solutions

and their derivatives (e.g., spatial gradients and heat fluxes) for the heat

152 • PraCtiCal Heat transfer

transfer problems at any given coordinate and time. Transient and steady-
state thermal results are obtained by calling the solve function—Equation
(93). A transient thermal result object (results) contains the temperature
and gradient values in a form convenient for plotting and post-processing.

 results = solve(thermalModelT, tlist) (93)

Transient thermal results can be expressed in a variety of forms. They
include the temperature (T) in Equation (94); temperature gradients
along the x-, y- and z-coordinates, given as Tx, Ty, and Tz, respectively, in
Equations (95) to (97); and the solution times, Tst in Equation (98).

 T = results.Temperature (94)

 Tx = results.XGradients (95)

 Ty = results.YGradients (96)

 Tz = results.ZGradients (97)

 Tst = results.SolutionTimes (98)

Data derived from the solution output, such as the heat flux, heat rate,
temperature gradient and temperature interpolation, can be evaluated using
the evaluateHeatFlux, evaluateHeatRate, eavaluateTemperatureGradient,
and interpolateTemperature functions at points that are not necessarily the
same as the grid points. Heat flux can be evaluated for the selected nodes,
at specific coordinates, and time. It is possible to add arrows to show a
derivative of the dependent variable gradients (e.g., direction of the heat
flow).

The interpolateTemperature function can be applied to results to
obtain the temperature values at the selected coordinates. It evaluates
the temperature for the nodal grid points, queried points, or any desired
spatial locations. For the nodal locations, the points are specified by the
coordinates, or query points; see Equation (99), where t is time.

The minimum requirement to define the heat flux function is to
identify the output variable name (results). The query points are converted
to column vectors (e.g., x(:), y(:)) before the evaluation can take place. n
determines the time interval at which the data is stored. The smaller the
n, the more frequently the data is stored. For example, for the following
case study, given the total time of 5.7 h, there are 204 data points, given the
time step (100 s). If n = 1, there are 204 evaluations made at every time
interval, resulting in 204 evaluations and the selected query points (x, y, z).

Heat transfer ProBleMs in MatlaB • 153

If n = 10, there will be 21 evaluations made at every time interval and the
selected query points (x, y, z), Equation (99), where t is time.

 interpolateTemperature([_ , _ , _] = , , , ,1 :): ()T x T y T z results x y z n length t (99)

The evaluateHeatFlux function can be applied to results for the heat
flux values to be found at the selected nodes. It evaluates heat fluxes for the
nodal grid points, queried points, or any desired spatial locations. Heat flux
(T_x, y, z) is measured in energy per unit time (W). For the nodal locations,
the points are specified by the coordinates, or query points, as shown in
Equation (100), where t is time.

 [_ , _ , _] = (, , , ,1 : : ())q x q y q z evaluateHeatFlux results x y z n length t (100)

The evaluateHeatRate function evaluates the integrated heat flow rates
normal to specified region type or boundaries identified by i, j, and k
variables in Equation (101). It can be applied to Edge for the 2D or Face
for the 3D models. Heat rate (Qn) is measured in energy per unit time (W)
and flows in the direction normal to the boundary (region). Positive values
represent the heat flowing out of the domain, and negative values represent
the heat flowing into the domain.

 (= ,' ',[,),]Qn evaluateHeatRate results Edge i j k (101)

The evaluateTemperatureGradient function can be applied to results for
the temperature gradient values, Equation (102), to be found at the selected
nodes. It evaluates temperature gradients for the nodal grid points, queried
points, or any desired spatial locations. For the nodal locations, the points
are specified by the coordinates, or query points, as given in Equation
(103), where t is time. To present the vector field plot of the temperature
gradient calculations, the FlowData command can be employed as shown
in Equation (104).

 / , / , /[] [], ,dT dx dT dy dT dz Tx Ty Tz= (102)

[, ,] = (, , , , ()1 : :)Tx Ty Tz evaluateTemperatureGradient results x y z n ngth tle (103)

 , ,[)'(']pdeplot thermalModel FlowData Tx TyfP ot Tzl = (104)

It is possible to create a mesh grid and identify the points at which the
thermal data is to be displayed. The spacing between the grid points along
the x- and y-coordinates does not need to be the same and can be defined
independently. Thermal data (e.g., temperature) then can be evaluated at
the newly defined points even if it may differ from the grid-size data, as
shown in Figure 5.27. Note that sets of x1, x2, y1, y2, z1, z2, and t1, t2,

154 • PraCtiCal Heat transfer

dt, and n are the initial (subscript 1) and final (subscript 2), x-, y-, and
z-coordinates, time, time step, and number of divisions, respectively.

t = t1:dt:t2;
w = linspace(x1,x2,n);
h = linspace(y1,y2,n);
l = linspace(z1,z2,n);
[Xw,Yh,Zl] = meshgrid(w,h,l);
T_xyz = interpolateTemperature(results,Xw,Yh,Zl ,1:n:length(t));
[Tx,Ty,Tz] = evaluateTemperatureGradient(results,Xw,Yh,Zl,1:n:length(t));
[qx,qy,qz] = evaluateHeatFlux(results,Xw,Yh,Zl,1:n:length(t));
Qn = evaluateHeatRate(results,’Edge’,[i,j]);

FIGURE 5.27. Use of the object functions to analyze the thermal model results.

After the solution is run, the results and mesh can be further processed
in the MATLAB environment by exporting the data to the MATLAB
Workspace. The following steps may be taken to further investigate the
solution process: (a) the PDE may be modified, and the solution rerun to
study the data sensitivity to the PDE coefficients; (b) the specific material
or nodal properties can be displayed; and (c) the mesh parameters can be
reset, and the solution rerun to study the solution sensitivity to the mesh
criteria.

5.3.10 Verifying the Model Inputs
This section describes how the model’s input conditions (e.g., heat

fluxes and boundary conditions) can be verified. It also shows how to check
the values of the boundary (e.g., edge, face, or cell) settings that have
been applied. After the solution is performed, to confirm what types of
boundary conditions have been applied to the geometry boundaries, the
function given in Equation (105) is used. In this equation, the boundary
condition (bc) is a vector whose length equals the number of boundary
condition queries made. The Edge and Face options are applied to 2D and
3D models, respectively. i, j, and k are the Face or Edge IDs.

To confirm the initial conditions and their settings for specified geometry
elements (Edge for the 2D and Face for the 3D models), the function given
in Equation (106) is used. In this equation, the initial condition (ic) is a
vector whose length equals the numbers of initial condition queries made.
Vertex, Edge, and Face are employed for the 2D and 3D models, and Cell is
used for the 3D models. i, j, and k are the Face or Edge IDs.

Heat transfer ProBleMs in MatlaB • 155

(. ,' ',[, ,]);findThermalBC thermalModelT BoundaryConditions Edge i j kbc=
 (105)

 (. ,' ',[,])ic findThermalIC thermalModelT InitialConditions Face i j= (106)

5.4 Summary of the Steps to Create a Thermal Model in
MATLAB

 (1) Create a PDE model object.

 (2) Specify if the problem is transient or steady-state.

 (3) Create or import the model’s geometry.

 (4) Define mesh parameters and mesh the model.

 (5) Specify the material thermophysical properties for each domain. This
includes thermal conductivity, heat capacity, and density. These prop-
erties can be space- or temperature-dependent.

 (6) Define the internal heat generation terms for each domain, as appli-
cable.

 (7) Define the boundary conditions for edges or faces, as applicable:
 (a) For the convection boundary conditions, the ambient temperature

and convection heat transfer coefficient are specified.
 (b) For the radiation boundary conditions, the ambient temperature,

emissivity, and Stefan-Boltzmann constant are specified.

 (8) Define the initial conditions (for transient problems).

 (9) Solve the problem.

 (10) Postprocess the solution results by presenting them (or derived quanti-
ties) using plots, such as scatter diagrams, histograms, bar charts, and
contour plots.

 (11) Save the results as plots (figures), the Workspace data for further post-
processing, or images that can be embedded into a report.

C H A P T E R6
The MATLAB heAT TrAnsfer
PrOBLeM CAse sTUdies

6.1 Case Study 1—Axisymmetric Pipe: Single-Domain,
Steady-State Thermal Model

6.1.1 Setup
This case study applies the PDE modeling approach presented in

Section 5.3 to predict the steady-state temperature distribution for a copper
pipe (Figure 6.1). The geometry dimensions represent a pipe with one-inch
nominal diameter—a type of pipe used in plumbing applications. The case
considered is that of hot water at a constant temperature of 80 °C flowing
through the pipe. The environment surrounding the pipe is at 25 °C. The
parameter of primary interest in this study is the rate of heat loss from this
pipe to the environment, expressed in terms of power per unit length of
the pipe. This would allow one to estimate the cumulative heat loss for any
length of hot water piping.

FIGURE 6.1. Axisymmetric copper pipe geometry (dimensions in mm).

158 • PraCtiCal Heat transfer

Since the model’s geometry has axial symmetry (a cylinder) and the
model’s boundary conditions are similarly symmetrical, it can be accurately
represented by a 2D axisymmetric model (Figure 6.2). This model geometry
forms a rectangle. In the figure, the pipe’s axis of symmetry is aligned with
the z-coordinate and is located at r = 0. The upper (E2) and lower (E4)
edges correspond to the pipe’s ends; these edges are insulated (q = 0).
The left edge (E1) is the pipe’s interior surface. A constant temperature
(80 °C) boundary condition is applied to this edge; it represents a case
of fast-flowing hot water. The right edge (E3) is the exterior surface; a
convective heat flux (hc = 10W/m2K) is applied to this edge. The thermal
model data are presented in Table 6.1. Copper (Cu), medium- or high-
density cross-linked polyethylene (PEX), and fiberglass (FG) are used in
subsequent studies, as well as the temperature settings.

TABLE 6.1. Thermal model parameters for axisymmetric pipe models [55,56].

Thermal Model Type Grid Size (mm) Thickness (mm)

Cu
Axisymmetric-
Steady-State

0.17 1.65

PEX 0.32 3.18

FG 1.44 14.35

Pipe
(25.4 mm Nominal

Diameter)

Internal
Diameter (mm)

External
Diameter (mm) Length (mm)

Cu 25.27 28.57 10

PEX 22.22 28.57 10

FG 28.57 53.97 10

Thermophysical
Properties

Thermal
Conductivity

(W/mK)

Density
(kg/m3)

Heat Capacity
(J/kgK)

Cu 400 8,960 385

PEX 0.41 935 2,100

FG 0.04 150 700

Initial
Temperature (°C)

Ambient
Temperature

(°C)

Water
Temperature

(°C)

Heat
Generation

(W/m3)

25 25 80 0

tHe MatlaB Heat transfer ProBleM Case studies • 159

FIGURE 6.2. Axisymmetric pipe geometry showing the edge and face IDs.

The pipe’s steady-state thermal model, named thermalModelS, is created by
the function in Equation (107). This name will be referenced by subsequent
functions that define the model’s parameters.

 thermalModelS = createpde(‘thermal’, steadystate – axisymmetric’) (107)

When specifying the boundary conditions, it is a good practice to activate
the display of the geometry labels (Edge, Face, Node, Element, and Cell) on
the plot produced with the pdegplot function (as was done in Figure 6.2).
This facilitates assigning the boundary conditions. The Vertex (2D and 3D),
Edge (2D and 3D), Face (2D and 3D), and Cell (3D) IDs are particularly
important to assign the heat generation, as well as the initial and boundary
conditions (physics), to the applicable regions. Edge IDs are usually created
in the order by which the points are introduced into the model; for example,
in the geometry presented in Figure 6.2, the bottom-left node (intersection of
Edges E1 and E4) is first created followed by the top-left node, in a clockwise
order. The edge numbers can be seen to also follow the same order, increasing
clockwise starting from the interior edge (E1).

Material properties are defined for each region by the function in
Equation (108) and Figure 6.3. Variables identified by k1, rho1, and cp1 are
the thermal conductivity, density, and heat capacity at constant pressure,
respectively; the last two properties are only applicable to transient
models. For the steady-state analysis presented here, the heat capacity and
density are not needed. For the region (F1) presented in Figure 6.2, the

160 • PraCtiCal Heat transfer

function shown in Equation (109) defines the material properties (Figure
6.4). Material property assignments can be confirmed by entering on the
command line the name of the container (tp1) to which the above function
output was assigned.

1 ,' ',
1,'... ', 1,' ', 1,' ',1

(
);

tp thermalProperties thermalModelS ThermalConductivity

k SpecificHeatMassDensity rho cp Face

=
 (108)

FIGURE 6.3. Material properties assignment for a transient model.

 1 ,' ',
1,' ',1

(
);

tp thermalProperties thermalModelS ThermalConductivity

k Face

= (109)

FIGURE 6.4. Material properties assignment for a steady-state model.

While there is no internal heat generation in this model, if present, it
could be applied to the interior Face 1 (F1) using the function in Equation
(110). In this function input, q1 represents the internal heat generation
value, which is set to zero here (q1 = 0). Heat source assignments can be
confirmed by entering thermalModelS.HeatSources on the command line;
alternatively, one can enter the name of container (q_internal) to which the
output of the above function was assigned (Figure 6.5).

tHe MatlaB Heat transfer ProBleM Case studies • 161

 ()_ , 1,' ',1q internal internalHeatSource thermalModelS q Face= (110)

FIGURE 6.5. Heat source assignments.

To generate the mesh, the function in Equation (111) is executed; it uses
the simplified form of the generateMesh function shown in Equation (85).
The main additional specifications given by the extra parameters in the
function shown in Equation (85) are the element edge size limits. The
GeometricOrder remains at the default setting (quadratic) and Hgrad
(growth rate) at the default value of 1.5. The mesh properties can be
retrieved by entering thermalModelS.Mesh on the command line (Figure
6.8). Triangular elements are employed for this 2D model (Figure 6.6).
One can zoom in on the mesh to identify the associated elements and nodes
(Figure 6.7).

 1 (,' max', _)mesh generateMesh thermalModelS H grid size= (111)

FIGURE 6.6. Triangular mesh for axisymmetric pipe mesh.

162 • PraCtiCal Heat transfer

 (a) (b)

FIGURE 6.7. Triangular elements for the 2D pipe: (a) Node IDs on, (b) Element IDs on.

FIGURE 6.8. Mesh statistics.

The functions listed in the following equations define the model’s boundary
conditions and initiate the solution. A constant temperature T_water = 80 °C
is applied to the interior edge (E1) in Equation (112). The pipe ends (Edges
E2 and E4) are insulated. However, to set up the problem in the most
general way and show the capability of non-constant and non-zero heat flux
setting, the heat flux here is defined as a function top_BC_HF, which can
be, if required, defined to be dependent on time and position, as shown
in Equation (113). However, in this case, a zero heat flux is set by qs = 0.
Heat flux on the top and bottom boundaries is set by the function in
Equation (114).

tHe MatlaB Heat transfer ProBleM Case studies • 163

The external pipe surface (Edge 3, E3) is exposed to convection heat
transfer. As was the case for the heat flux on the pipe ends, it is defined here
in the most general way using the function outerCC_V, Equation (115),
that would allow it to be defined dependent on position and time. Again,
in this case, it is set to a constant value hc = 10 W/m2K. The convective
boundary condition is then applied by the function in Equation (116),
where T_ambient = 25 °C. Steady-state thermal results are obtained by
calling the solve function (results), as shown in Equation (117).

 (,' ',1,' ', _)Tw thermalBC thermalModelS Edge Temperature T water= (112)
 _ _ @(,~)top BC HF region qs= (113)

 _ (,' ',[2 4],
' ', _ _)

heat flux thermalBC thermalModelS Edge

HeatFlux top BC HF

= (114)

 _ @(,~)outerCC V region hc= (115)

_ (,' ',3,...

' ', _ ,' ',
_)

conv heat thermalBC thermalModelS Edge

ConvectionCoefficient outerCC V AmbientTemperature

T ambient

=

 (116)

 resultS solve thermalModelS= (117)

6.1.2 Results for Copper Pipe
Temperature distribution obtained by the solution is displayed as a

function of the r- and z-coordinates using contour plots in Figure 6.9. It
shows an extremely small temperature difference between the interior

FIGURE 6.9. Axisymmetric pipe temperature contours.

164 • PraCtiCal Heat transfer

surface at 80 °C and the exterior at 79.998 °C. This is due to the very high
conductivity of copper. A plot of the temperature gradient in Figure 6.10
shows that the gradient is negative and decreases in magnitude from
1.55 °C/m at the interior surface to 1.38 °C/m at the exterior surface. As
expected, there is no variation in the gradient along the z-coordinate. A
negative gradient means that the heat is flowing from the interior to the
exterior of the pipe.

FIGURE 6.10. Axisymmetric pipe temperature gradient contours.

The following plots extract the temperature, gradient, and heat flux data for
specific nodes of the model. These nodes are selected within the script by
specifying the desired range of coordinates and the required data is plotted.
The plots are shown, first, of the spatial location of the selected nodes, and
second for the values of interest at these nodes.

Figure 6.11a shows the location of nodes selected along the midplane
of the pipe, along the radial direction. The temperature profile for the same
midplane nodes is presented in Figure 6.11b. It confirms that there is only a
very small decrease in temperature along the radial direction. The midplane
radial temperature gradient and radial heat flux profiles are presented in
Figure 6.12.

From the pipe’s geometry, we can calculate that the pipe’s external
surface area is 898 mm2. The heat flux at the pipe’s exterior surface is
550 W/m2 (Figure 6.12). Therefore, the heat flux per unit length of the pipe

is equal to 49.36 W/m

 49.36 .
Pipe area

Heat flux Pipe length

=

×

tHe MatlaB Heat transfer ProBleM Case studies • 165

 (a) (b)

FIGURE 6.11. Axisymmetric copper pipe (midplane): (a) Nodes, (b) Radial temperature profile.

 (a) (b)

FIGURE 6.12. Axisymmetric copper pipe midplane radial profiles: (a) Temperature gradient, (b) Heat flux.

The solution statistics (e.g., the number of iterations, residual error, step
size, and solver method, Jacobian option) are displayed by activating the
ReportStatistics feature within the SolverOptions (Figure 6.13). The
steady-state model configuration can be displayed for reference at any time
by entering the model object name (e.g., thermalModelS) on the command
line. The output includes data inputted into the model such as the analysis
type, geometry, material properties, boundary and initial conditions,
internal heat sources, mesh, and solver options (Figure 6.14).

FIGURE 6.13. Solution statistics.

166 • PraCtiCal Heat transfer

FIGURE 6.14. Thermal model configurations.

6.1.3 Results Comparison for Copper and PEX Pipes
The analysis performed for the pipe made of copper, which is a highly

conductive material, is repeated for a less thermally conductive material
(PEX). The geometry of the PEX pipe is based on a nominally one-inch
nominal diameter pipe used in plumbing applications. Its wall thickness is
greater than that of the copper pipe (3.175 mm versus the 1.651 mm).

The following figures show comparisons between the solution results for
the copper and PEX pipes. First, the temperature variation along the radial
direction at the midplane is much greater for the PEX pipe, as expected,
due to its much lower conductivity. For the PEX pipe, the temperature
varies from 80 °C at the inside surface to 76 °C at the exterior (Figure 6.15a)
compared with the nearly constant 80 °C for copper.

The greater variation in the radial temperature profile for the PEX pipe
also results in a much higher temperature gradient; this value ranges from
–1,426 to –1,109 °C/m for PEX, which is nearly 1,000 times higher than
that for copper (Figure 6.15b). The gradient magnitude decreases along
the radial direction. The heat flux decreases from 655 W/m2 at the interior
surface to 510 W/m2 at the exterior for the PEX pipe (Figure 6.16). Note
that while the quantity of the heat escaping from the pipe is the same, the
heat flux, which is the heat per unit surface area, decreases as the surface
area of the cylindrical pipe increases with radius. The heat flux at the PEX
pipe’s exterior surface is 510 W/m2 compared to 550 W/m2 for the copper
pipe. The heat loss per unit length of the PEX pipe can be thus calculated
to equal about 45.8 W/m compared to 49.4 W/m for copper (note that the

tHe MatlaB Heat transfer ProBleM Case studies • 167

PEX pipe’s surface area is about 898 mm2). The result is interesting, as it
points out that though the PEX is much less conductive than copper, the
effect on the heat loss is a reduction of only about 7%. This can be explained
by considering that the heat loss is due to convection at the exterior surface,
and that is a function of the difference between the surface temperature
and the environment. This difference is 55 °C for copper and 51 °C for
PEX, and consequently, the heat loss difference is of a similar magnitude.

 (a) (b)

FIGURE 6.15. Axisymmetric pipe midplane results radial profiles comparisons:
(a) Temperature, (b) Temperature gradient.

FIGURE 6.16. Axisymmetric pipe midplane rdaial heat flux comparison.

168 • PraCtiCal Heat transfer

6.2 Case Study 2—Axisymmetric Pipe: Multi-Domain,
Steady-State Thermal Model

6.2.1 Setup
This case study models a nominally one-inch nominal diameter copper

pipe covered by half-inch (12.7 mm) layer of the fiber glass (FG) insulation.
The objective is to investigate the effect of the insulating material on the
exterior temperature and on the heat loss per unit length of the pipe. As in
the previous case study, water at 80 °C is flowing through the pipe and the
environment is at 25 °C. The pipe is transferring heat to the environment by
convection. Since the insulated pipe geometry and the boundary conditions
are axisymmetric, the pipe can be modeled using a 2D axisymmetric model.
However, in this case study, there are two different materials (copper and
fiberglass), and therefore it requires a multi-domain model. The length of
the modeled pipe is 10 mm (Figure 6.17). The external diameter of the
pipe, including the insulating layer, is 54 mm. The geometry dimensions
and the material thermophysical properties are listed in Table 6.1.

FIGURE 6.17. Axisymmetric insulated pipe geometry with quarter section
removed to show the interior structure.

As in the previous, single-domain case study, the model object is first
created and then the material properties, as well as the boundary and
initial conditions, are applied. The main difference between multi-domain
modeling and single-domain modeling is the need to define distinct
material properties for each domain. For a 2D model, thermophysical
properties are associated with surfaces, each one representing a specific
domain. Each surface is identified by the Face feature and its identity (ID).
For comparison, for a 3D model, thermophysical properties are assigned
to volumes associated with the corresponding domains. Each volume is

tHe MatlaB Heat transfer ProBleM Case studies • 169

identified by the Cell feature and its ID. The initial and boundary conditions
are applied to the Vertex, Edge, and Face for the 2D and 3D models and
Cell for the 3D models. The heat generation terms are applied to the Face
for the 2D geometries and Cell for the 3D cases.

Edge and Face IDs along with the boundary conditions are presented
in Figure 6.18. The edge and face ID’s display is activated in this figure
by turning on the FaceLabels and EdgeLabels options in the pdegplot
function. Edge 3 (E3) is at the interface of the two domains (Face 1 and
Face 2); no boundary conditions are assigned to this interface. The upper
and lower boundaries, corresponding to the two ends of the pipe/insulation,
are insulated (q4 = q5 = q6 = q7 = 0). The internal edge (Edge 1, E1)
is exposed to hot water at 80 °C, and therefore, a constant temperature
boundary condition is applied. The external edge (Edge 2, E2) is exposed to
the ambient at constant temperature (25 °C) and convection heat transfer
is applied, with the convection heat transfer coefficient set to 10 W/m2K.

FIGURE 6.18. Axisymmetric 2D geometry of the insulated pipe, including the edge and face IDs.

As the model used in this study is the same axisymmetric steady-state
thermal model type as the one in the Case Study 1, the same function is
used to create it as the one shown in Equation (107). Similarly, for the
material properties, the function shown in Equation (109) can be used to
define the copper domain properties for Face 1; the same function, but with
the insulating material (FG) properties, needs to be applied for Face 2. The
mesh is generated, as for Case Study 1, with the function in Equation (111).

Geometry meshed using 2D triangular elements is presented in
Figure 6.19. There were 636 quadratic elements and 1,341 nodes generated
(Figure 6.20). Note that when performing a multidomain analysis using the
MATLAB PDE Toolbox, the domains cannot have different grid sizes.

170 • PraCtiCal Heat transfer

FIGURE 6.19. Triangular mesh for the 2D axisymmetric model of the insulated pipe.

FIGURE 6.20. Mesh statistics for the 2D axisymmetric model of the insulated pipe.

6.2.2 Results
The solution results are presented in Figure 6.21 as temperature contour

plots. They are obtained by plotting the temperature data T(:, end) versus
the x- and y-coordinates (XYData). In addition, the heat flow data [qx, qy],
where [qx, qy] = evaluateHeatFlux(results), is displayed on the same plot by
arrows along the left boundary. It shows that the heat is flowing left-to-right
in the radial direction. The temperature gradient contours are presented in
Figure 6.22. To generate this plot, the data Tx(:,end) are plotted versus the
xy-plane.

Figure 6.23a shows the selected nodes at the pipe’s midplane for which
the temperature profile versus the radial distance is plotted in Figure 6.23b.
The temperature is seen to be a nearly constant 80 °C through the copper
pipe wall. The temperature decreases steeply through the insulation, going

tHe MatlaB Heat transfer ProBleM Case studies • 171

down to about 35 °C at the exterior. These results show the effect of the very
large difference in the thermal conductivity between copper and fiberglass:
copper is about 10,000 times more conductive.

FIGURE 6.21. Axisymmetric insulated copper pipe: temperature contours.

FIGURE 6.22. Axisymmetric insulated copper pipe: temperature gradient contours.

 (a) (b)
FIGURE 6.23. Axisymmetric pipe with insulation (midplane): (a) Nodes, (b) Radial temperature profile.

172 • PraCtiCal Heat transfer

For the same midplane nodes, Figure 6.24a displays the temperature
gradient and Figure 6.24b shows the heat flux along the radial direction.
The temperature gradient is nearly zero within copper, corresponding
to a nearly constant temperature distribution within the pipe’s wall. The
gradient drops quickly to a negative value, indicating a steep decline in
the temperature within the insulation. The gradient gradually decreases in
magnitude, corresponding to a less steep temperature profile slope towards
the outer boundary.

Correspondingly, the heat flux within the insulation starts at about
193 W/m2 and decreases to about 104 W/m2 at the exterior surface. This
decrease relates to the increasing cylindrical surface area as the radial
distance increases. Using the heat flux at the exterior surface reported
above, the pipe exterior surface area (1,695 mm2), and length (10 mm), one
can calculate the heat loss per unit length of the pipe is equal to 17.64 W/m.

 (a) (b)

FIGURE 6.24. Axisymmetric pipe with the insulation midplane radial profiles:
(a) Temperature gradient, (b) Heat flux.

6.2.3 Validation by an Analytical Model
To validate the results presented in Figure 6.23, the heat diffusion

Equation (45), presented in Section 2.4, can be employed. This equation
can be simplified to Equation (118), if there are no angular or axial
temperature variations. There is also no heat generated inside the cylinder
and the process is steady-state. In this relation, k is the thermal conductivity
of the insulation and only the radial temperature variation is present. The
analytical solution to such a problem is presented by Equation (119). To
obtain the C1 and C2 constants, the pipe interior and exterior surface
temperatures can be employed. In this case, the water temperature
(80 °C) is assumed to be applicable for the pipe insulation interior surface
temperature since the copper thermal conductivity is very large.

tHe MatlaB Heat transfer ProBleM Case studies • 173

 1
0rr

T
kr r r

=

 (118)

 ln() 1 2T r C C= (119)

The pipe insulation exterior surface temperature should be calculated. This
can be achieved by assuming a constant heat flow from the interior to the
exterior surface of the FG insulation. The FG insulation exterior surface is
transferring heat to the ambient by means of convection (hc = 10 W/m2K).
The thermal resistor analogy, where the heat flow is considered the
equivalent to the electric current, can be adopted in this case. The total
thermal resistance of a hollow cylinder (Rtotal) is given by Equation (120). The
internal and external radii of the hollow cylinder are r1 and r2, respectively.
Since the radial heat flow remains constant—Equation (121)—it is possible
to present the heat flow relation by Equation (122). By rearranging this
equation, T2, which is the temperature at the pipe insulation’s exterior, is
obtained. Note that k is the thermal conductivity of the FG, L is pipe length,
T

¥
 is ambient temperature (25 °C), and T1 is pipe insulation’s interior

surface temperature (80 °C). After carrying out the derivation, Equation
(124) gives the radial temperature profile (T).

 2 1
total

2

ln() 1
2 2

/
c

r r
R kL r Lh= (120)

 1

thcond

()T T
Q R

-
= ∞ (121)

 1 2 1

total 2 1

2

() () ()
/1 ln()

2 2c

T T T T T T
Q R r r

r Lh kL

- - -
= = =

∞ ∞ 2 (122)

 2
)
,

(
1

C
C

T T
T

=

1 ∞ where 2 2

1
lncr r

C k
h

r

=

 (123)

 1
1 2 2

2 1

()
// ln()ln()

T T
T r r Tr r

-
= 2 (124)

Figure 6.25 compares the plot of the radial temperature variation derived
via the analytical solution with the numerical results obtained via the PDE
solution. The analytical solution plot exactly overlaps the numerical (PDE)
results, thus validating the PDE solution.

174 • PraCtiCal Heat transfer

FIGURE 6.25. Radial temperature profiles for analytical and PDE
solutions for the axisymmetric pipe with insulation.

6.2.4 Heat Loss Comparison
In this section, the results of Case Studies 1 and 2 are compared. These

results show how the temperatures and heat loss depend on the pipe’s
material (Cu versus PEX) and on the addition of insulation. Figure 6.26a
shows the radial temperature profiles. The temperatures in the copper
pipe wall are nearly identical (overlaid) for the bare and insulated cases;
the temperature at the exterior of the PEX pipe is only about 4 °C lower
that of the interior. As expected, insulation is shown to produce much
more significant effect, decreasing the exterior temperature to about 35 °C.
The heat flux along the radial direction for the three cases is compared in
Figure 6.26b. The exterior surface heat flux decreases from 550 W/m2 for
copper, to 510 W/m2 for PEX, and down to 104 W/m2 for the FG-insulated
copper pipe.

The heat flux at the exterior surface can be used to calculate the total heat
loss for the modeled surface area; this is then divided by the modeled pipe
length (10 mm) to obtain the heat loss per unit pipe length. It is instructive,
then, to see how this specific heat loss translates into an approximation of
a real-world case, where a pipe of; for example, 25-m is used to transport
the hot water. Multiplying the specific heat loss by the pipe length gives
the total heat loss rate in Watts for the 25-m pipe segment. Figure 6.27a
shows the heat rate per unit length of the pipe calculated for the three
cases. The results vary from a maximum of 49.4 W for uninsulated copper
pipe to minimum of 16.6 W for the insulated one, giving about a three-fold
reduction in heat loss.

tHe MatlaB Heat transfer ProBleM Case studies • 175

The above information can be further used to estimate the annual
cost of the lost heat, assuming the water is heated by a gas water heater
(efficiency 100%). The following additional information is used: 37 MJ/m3
is obtained by burning of the natural gas; natural gas cost is 13.3 ¢/m3 (the
Canadian dollar value was taken from a gas bill in Ontario, Canada, on July 1,
2021). The calculation results show the annual heat loss cost (in Canadian
dollars) decreasing from about $140 to $47, for savings of about $93 per
year. These results indicate why it may be worthwhile to add hot water pipe
insulation.

 (a) (b)

FIGURE 6.26. Axisymmetric pipe model comparison radial profiles
comparisons (midplane): (a) Temperature, (b) Heat flux.

 (a) (b)

FIGURE 6.27. Axisymmetric pipe model savings comparison:
(a) Heat loss per unit length of the pipe, (b) Annual cost.

176 • PraCtiCal Heat transfer

6.3 Case Study 3—Axisymmetric Pipe: Multi-Domain,
Transient Thermal Model

6.3.1 Setup
In this case study, a transient model is investigated. The model consists

of a copper pipe with aluminum radial fins. Figure 6.28 shows the 3-D
model of the finned pipe to clarify the model’s structure. Each radial fin
is 1-mm thick and 19-mm deep, with a 66.5-mm external diameter. The
thermal model data are presented in Table 6.2. Similar to the previous case
studies, water at a constant temperature of 80 °C flows through the pipe.
The exposed surfaces of the pipe and fins transfer heat to the environment
by means of convection. The ambient temperature is 25 °C and convection
heat transfer coefficient is 10 W/m2K. The two surfaces at the pipe’s
ends are insulated (q = 0). Figure 6.29 presents the boundary conditions
applied to the geometry of the axisymmetrical pipe (Figure 6.29a) and the
geometry, including the face and edge labels (Figure 6.29b). A triangular
mesh is shown in Figure 6.30.

TABLE 6.2. Thermal model setup [57,58].

Thermal Model Type Grid Size (mm) Thickness (mm)

Cu Axisymmetric-
Transient

0.25 1.65

Al 0.25 19.0

Pipe
(25.4 mm Nominal

Diameter)

Internal
Diameter

(mm)

External
Diameter

(mm)

Length
(mm)

Cu 25.3 28.6 25

Al 28.6 66.5 25

Thermophysical
Properties

Thermal Conduc-
tivity (W/mK)

Density
(kg/m3)

Heat Capacity
(J/kgK)

Cu 400 8,960 385

Al 238 2,700 900

Initial
Temperature

(°C)

Ambient
Temperature

(°C)

Water
Temperature

(°C)

Heat Generation
(W/m3)

25 25 80 0

tHe MatlaB Heat transfer ProBleM Case studies • 177

FIGURE 6.28. Axisymmetric pipe with radial fins, with a quarter
section removed to show the interior structure.

 (a)

 (b)

FIGURE 6.29. Axisymmetric pipe with radial fins: (a) Geometry, (b) Edge and face identities.

178 • PraCtiCal Heat transfer

FIGURE 6.30. Triangular mesh for an axisymmetric pipe with radial fins.

The transient thermal model named thermalModelT is created by the
function in Equation (125). Thermal properties are defined separately
for copper (Face 1, F1) and aluminum (Face 2, F2) domains—Equations
(126) and (127). There is no internal heat generation in this model. As a
placeholder, a heat generation of q2 = 0 W/m3 is set by the function in
Equation (128).

 (,' ')'thermalModelT createpde thermal transient= (125)

1 ,' ',...

1,' ', 1,' ', 1,' '
(

),1 ;
tp thermalProperties thermalModelT ThermalConductivity

k MassDensity rho SpecificHeat cp Face

=
 (126)

2 ,' ',...

2,' ', 2,' ', 2,' ',[2 :12]
(

;)
tp thermalProperties thermalModelT ThermalConductivity

k MassDensity rho SpecificHeat cp Face

=
 (127)

 int _ int (, 2,' ',2);ernal heat ernalHeatSource thermalModelT q Face= (128)

The exterior of the copper pipe and all the exterior fin surfaces are assigned
boundary conditions of convection heat transfer with hc = 10 W/m2k and
T_ambient = 25 °C. This is done in the most general way by creating a
function outerCC_V by using Equation (129) and making it return a
constant value of hc independent of position and time. The BC assignment
is made with the function in Equation (130).

 _ @ ,~outerCC V region hc= (129)

_ (,' ',[1 : 57],...
' ', _ ,' ', _)

conv heat thermalBC thermalModelT Edge

ConvectionCoefficient outerCC V AmbientTemperature T ambient

=
 (130)

tHe MatlaB Heat transfer ProBleM Case studies • 179

The two edges corresponding to the ends of the pipe (E45 and E22)
are insulated; they are exposed to zero heat flux. Also insulated are the
adjacent fin edges on both ends (E46 and E23) to represent the modeled
pipe segment being stacked indefinitely. This is implemented in a general
way by defining a function top_BC_HF in Equation (131) and making it
return a constant value of qs = 0 W/m2. These BCs are assigned by the
function in Equation (132).

The interior edge (E1) is assigned a BC of constant temperature of
T_water = 80 °C to represent the hot water flowing in the pipe interior, as
defined by the function in Equation (133). An initial temperature (T_01)
of 25 °C is assigned to the entire domain. The first assignment is made by
the function in Equation (134) and the second assignment by the function
in Equation (135).

For a transient thermal analysis, it is necessary to select the solution
time step, which determines the solution output time interval. The model
thermal response is monitored for the period of 6 min. Given the selected
time step (time_step) of 0.25 s, this results in 1,440 saved solution steps
(tlist = tinitial : time_step: tfinal). The solution is executed by the function
in Equation (136). tinitial and tfinal are the initial (0.1 s) and final times
(360 s), respectively.

 _ _ @(,~)top BC HF region qs= (131)

_ (,' ',[22 23 45 46],'

 ', _ _)
heat flux thermalBC thermalModelT Edge

HeatFlux top BC HF

=
 (132)

 (,' ',1,' ', _)Tw thermalBC thermalModelT Edge Temperature T water= (133)

 _ 1 (, _ 01,' ',1)T i thermalIC thermalModelT T Face= (134)

 _ 2 (, _ 01,' ',2)T i thermalIC thermalModelT T Face= (135)

 ,resultT solve thermalModelT tlist= (136)

Solution statistics (e.g., number of successful steps, failed attempts, and
function evaluations) are displayed when the ReportStatistics option is
turned on under the SolverOptions, as shown in Figure 6.31.

180 • PraCtiCal Heat transfer

FIGURE 6.31. Thermal model solution statistics.

6.3.2 Results
The temperature contours for the domains are presented along the z-

and r-coordinates using the contour plots (Figure 6.32) and Equation (137).
The temperature variation is represented by the hot colormap setting.
Since T is the transient temperature data, it is a function of the z- and
r-coordinates (XYData) and time (t). The number of levels of contour plots
can be specified by the above function (e.g., 10 in this case). Also note that
the thermal data for the last time step (6 min) are selected for display.

 (,' ', (:,),
' ',' ',' ',' ',' ',10);
pdeplot thermalModelT XYData T end

colormap hot Contour on Levels
 (137)

For the total time (6 min) and time step (0.25 s), 1,440 steps are required
for the solution to be completed. This is confirmed when the length of the

tHe MatlaB Heat transfer ProBleM Case studies • 181

time vector is called (length(t) = 1440). Note that the total time is formed
into grids (vector) based on the selected time step, and therefore the data
at the selected time grids become available when being enquired. The rest
of the data are interpolated when the node evaluation queries are made.

 (a)

 (b)

FIGURE 6.32. Axisymmetric pipe with radial fins: (a) Temperature contours and heat flux vector fields,
(b) Temperature gradient contours.

The author recommends treating the steps of the PDE solutions as vector
variables and assigning variable names to them. This approach can be even
applied to the plots, facilitating calling the results, making it possible to
define their properties (e.g., line style) in groups and treat them as variables.

182 • PraCtiCal Heat transfer

To confirm the type of the boundary conditions applied to the Edges 1
(E1), and 2 (E2), the function in Equation (138) can be used. This function
returns a vector bc of length 2, which is equal to the number of boundary
condition queries made: ‘Edge’[1, 2]. The Edge feature is used since the
problem is a 2D model (Figure 6.33). If there are more than one boundary
following the same condition (e.g., Edge 4, 5, and 7 in addition to Edge 6 in
Figure 6.33), all the related edges are shown at the time of enquiry. Note
that the ambient temperature 25 °C is returned for Edge 2.

(. ,' ',[1,2])findThermalBC thermalModelT BoundaryConditions Edgebc= (138)

FIGURE 6.33. Query to determine the boundary conditions on Edges 1 and 2 (E1 and E2).

tHe MatlaB Heat transfer ProBleM Case studies • 183

To confirm the initial conditions applied to Face 1 (F1), and Face 2 (F2),
the function in Equation (139) is employed. This function returns vector
ic of length 2, which is equal to the number of the initial condition queries
made:‘Face’[1, 2]. The Face feature is used since the problem is a 2D model
(Figure 6.34). For a 3D model, to enquire about the initial conditions, a
Cell feature would be referenced instead.

 (. ,' ',[1,2])ic findThermalIC thermalModelT InitialConditions Face= (139)

FIGURE 6.34. Query to determine the initial conditions on Faces 1 and 2 (F1 and F2).

Being able to query the nodes at specific coordinates when analyzing the
PDE results is very useful. To demonstrate the approach required, some
examples are presented here. To find the point indices associated with the
coordinates, the function sequence in Equation (140) is employed. In these
functions, the thermal model mesh node coordinates are first identified
(point), which creates a (2 ´ n) data array. The array has two columns
identifying the 2D coordinate data, the first column being the r-coordinate

184 • PraCtiCal Heat transfer

and the second column being the z-coordinate (r00, z00). Therefore, to
obtain the r- and z-coordinates, the data for each column can be called
and set into a separate data vector—(r00, z00). The r00 array is sorted and
assigned to radius_sorted array. This facilitates the creation of connected
data points on plots. If the points are not sorted, the connecting lines will
interconnect with the points scattered through the plot area.

The function sequence in Equation (141) first selects the radial nodes
at the top surface (among all nodes) (nodesTop_1_h), as shown in Figure
6.35a. Note that the insulated boundary conditions were applied to these
nodes, where z = length_P and length_P is the pipe length (z-coordinate).
The array has two columns, identifying the r- and z-coordinate data (x1, y1).

The function sequence in Equation (142) is used to query the midplane
data (z = 0.5*length_P). Note that the data have a margin length (eps is a
very small value approaching zero, eps = 2.2204e–16), which accounts for
the small variations from the exact coordinate values; 0.5*length_P-eps < =
z00 < = 0.5*length_P + eps, as shown in Figure 6.35a.

Similar to the previous cases in which the y-data were queried for a
given x-value (the horizontal query points in Figure 6.35a), it is possible for
the x-data to be queried for certain y-values (the vertical query points in
Figure 6.35b) and Equations (143). In these sets of relations, the (x3, y3)
coordinate represent the midplane nodes at the interior, pipe-fin interface,
and exterior surfaces. Note that radius_O, radius_P, and radius_E are the
pipe interior, pipe-fin interface, and fin exterior radii, respectively. grid_
size is the grid size that is uniformly selected for this analysis (0.25-mm).

int . .
 (int)

00 int; 00 00(1,:); 00 00(2,:)
_ (00);

_ (_);
_ 00(_);

po thermalModelT Mesh Nodes

nodesIndex find po

xy po r xy z xy

radius sorted sort r

index sort find radius sorted

length sorted z index sort

=

=

= = =

=

=

=

 (140)

 _ _ ((_ - 0.5 _ 00,...
00 _ 0.5 _))

1 int(:, _ _); 1 1(1,:); 1 1(2,:)

nodesTop l h find and length P grid size z

z length P grid size

xy po nodesTop l h x xy y xy

= * =

= *

= = =
 (141)

tHe MatlaB Heat transfer ProBleM Case studies • 185

 _ ((0.5 _ - 0.5 _ 00,...
00 0.5 _ 0.5 _))

2 int(:, _); 2 2(1,:); 2 2(2,:)

nodesCenter h find and length P grid size z

z length P grid size

xy po nodesCenter h x xy y xy

= * * =

= * *

= = =

 (142)

_ _ ((- 00, 00
))

_ _ ((_ - 00, 00

nodesExterior v O find and offset eps r r

offset eps

nodesExterior v P find and radius P eps r r

= =

=

= =

 _))
_ _ ((_ - 00, 00

 _))
3_ in

radius P eps

nodesExterior v E find and radius E eps r r

radius E eps

xy O po

=

= =

=

= t(:, _ _); 3_ 3_ (1,:);
 3_ 3_ (2,:)

3_ int(:, _ _); 3_ 3_ (1,:);

nodesExterior v O x O xy O

y O xy O

xy P po nodesExterior v P x P xy P

=

=

= =

 3_ 3_ (2,:)
3_ int(:, _ _); 3_ 3_ (1,:);

 3_ 3_ (2,:)

y P xy P

xy E po nodesExterior v E x E xy E

y E xy E

=

= =

=

 (143)

Horizontal and vertical query points along the x- and y-coordinates are
presented in Figure 6.35a. Note that the radial (horizontal) query nodes
(x1, y1) are located at the top (y1 = 25 mm) and midplane (y1 = 12.5
mm), as shown in Figure 6.35a. The axial (vertical) query nodes (x3, y3) are
located at the interior (x3_O = 12.6 mm) interface (x3_P = 14.3 mm), and
exterior (x3_E = 33.2 m) surfaces of the pipe, pipe-fin, and fin domains.
Equation (144) presents the function that plots the queried data shown in
Figure 6.35b. In this relation, the x3_P array is plotted against the y3_P.
Since there are large number of data points at the interface of the two
parts, it is possible to plot every other point, which is implemented by the
MarkerIndices feature.

(3_ , 3_ ,' ',' ker ',3,' ker ',...

[1 1 1],' ker ',1 : 2 : (3_))

plot x P y P d Mar Size Mar FaceColor

Mar Indices length x P
 (144)

186 • PraCtiCal Heat transfer

 (a) (b)

FIGURE 6.35. Query points to determine the nodes: (a) Radial ndoes, (b) Axial nodes.

Figure 6.36 presents the temperature profiles versus the radius (Figure
6.36a) and length (Figure 6.36b), starting from the pipe’s axisymmetric
axis (x1 = 0, y1 = 0) to the end of the fin (x1 = 33.2 mm, y1 = 25 mm).
Note that in these diagrams, x1 represents the r-coordinate. Two plots
are shown in this diagram, belonging to the upper edge, representing the
insulated top surface (y1 = 25 mm), and the midplane (y1 = 12.5 mm).
As expected, the temperature of the top surface is higher than the middle
because it is insulated. Figure 6.44 presents the temperature gradient
(Tx1 = dT/dr) and heat flux (–k*Tx1 = –k*dT/dr) for the data points
presented in Figure 6.35a. It is paramount to identify the regions correctly.
This is done by enquiring about the associated nodes at given distances
from the center, as shown in Equation (145). The conductivity for each
region is then multiplied by the corresponding temperature gradient to
obtain the heat flux of that region.

_ 1_ (1 _ 0.5)
_ 1_ ((_ - 0.5 1, 1

 _ 0.5))

copper x P find x radius P eps

aluminum x E find and radius P eps x x

radius E eps

= =

= =

=

∗
∗

∗
 (145)

Figure 6.37 represents the temperature gradient (dT/dr in Figure 6.37a)
and heat flux (-k*A*dT/dr in Figure 6.37b) along the radial direction. At
the pipe-fluid interface (the pipe’s interior boundary), the temperature
gradient has the largest value, and it is reduced to zero as it approaches the
fin’s exterior surface. The temperature gradient on the top surface has a
smaller magnitude than that at the midplane. The top surface is insulated
and the midplane transfers heat by convection to the surrounding surfaces.
Equation (145) is used to identify the pipe and fin regions. This information

tHe MatlaB Heat transfer ProBleM Case studies • 187

is then employed to determine which thermal conductivity to use when
calculating the heat flux.

 (a) (b)

FIGURE 6.37. Radial profiles at the top surface and midplane: (a) Temperature gradient, (b) Heat flux.

The heat rate (-k*A*dT/dr) is presented in Figure 6.38a in Watts at the
time of 6 min and per the edge length in W/m versus the time in Figure
6.38b for the selected edges. These edges are either in direct contact with
the surrounding environment (Edges 11, 12, 52, and 35) or at the pipe-
fin interface (Edge 34). Edge 35 (on the copper pipe exterior surface)
shows the largest heat loss rate by convection and that is because of the
high temperature difference between this edge and the surrounding
environment (Figure 6.39). To calculate the temperature, temperature
gradient, and heat rate for the selected coordinates as well as the heat rate
(per unit length of the edge), the functions in Equation (146) are employed.
The nodes created at the mesh grids, given their spacing (dx = 0.5051 mm,

 (a) (b)

FIGURE 6.36. Temperature profiles at selected planes: (a) Radial temperature, (b) Axial temperature.

188 • PraCtiCal Heat transfer

dy = 0.3030 mm), are obtained by calling the consecutive nodes along the
x- and y-coordinates, (Xw, Yh) [Xw(1, 2), Yh(2, 1)] = [0.2525, 0.1443] mm.

 (a)

 (b)

FIGURE 6.38. Heat rate: (a) Radial, top surface and midplane,
(b) Transient, selected edges, per unit length of the edge.

FIGURE 6.39. Edges whose heat rates are calculated.

tHe MatlaB Heat transfer ProBleM Case studies • 189

 (0, _ ,100);
 (0, _ ,100);

[,] (,);
_ (, , ,1 : ()

[,] (, , ,1 : ()

w linspace length P

h linspace radius P

Xw Yh meshgrid w h

T xy interpolateTemperature resultT Xw Yh length t

Tx Ty evaluateTemperatureGradient resultT Xw Yh length t

=

=

=

=

=)
[,] (, , ,1 : ())

 (,' ',[11 12])
qx qy evaluateHeatFlux resultT Xw Yh length t

Qn evaluateHeatRate resultT Edge

=

=

 (146)

Further data points can be extracted from any of the horizontal or vertical
sets of data explained above. For example, to find the midplane points at
the interior, pipe-fin interface, and exterior surfaces—(x4, y4), Equation
(147) can be employed, which is a subset of Equations (143) (Figure 6.38a).

_ 2 _ ((- _ 2, 2
 _))

_ 2 _ ((- _ 2, 2
 _))

_ 2 _ ((- _ 2

nodesInterior O find and eps radius O x x

eps radius O

nodesInterior P find and eps radius P x x

eps radius P

nodesInterior E find and eps radius E x

= =

=

= =

=

= = , 2
 _))

4 _ 2(:, _ 2 _); 4 _ 4 _ (1,:);
4 _ 4 _ (2,:)

4 _ 2(:, _ 2 _); 4 _ 4 _ (1,:);
4 _ 4 _ (2,:)

4 _ 2(:, _ 2 _); 4 _ 4 _ (1,:)

x

eps radius E

xy O xy nodesInterior O x O xy O

y O xy O

xy P xy nodesInterior P x P xy P

y P xy P

xy E xy nodesInterior E x E xy E

=

= =

=

= =

=

= = ;
4 _ 4 _ (2,:)y E xy E=

 (147)

Midplane query points at the interior (x4_O, y4_O) = (12.6, 12.5) mm
interface (x4_P, y4_P) = (14.3, 12.5) mm, and exterior surfaces (x4_E,
y4_E) = (33.2, 12.5) mm are the combination of the two said query points,
as shown in Figure 6.40a. Temperatures at these query points are plotted
along the radial direction in Figure 6.40b. Transient temperature profiles
at the midplane pipe-fin interface and exterior surfaces are presented in
Figure 6.41.

190 • PraCtiCal Heat transfer

 (a) (b)

FIGURE 6.40. Data at the midplane-interior, interface, and exterior surfaces:
(a) Query points (b) Temperature at the last time step.

FIGURE 6.41. Transient temperature profiles at the midplane pipe-fin interface and exterior surfaces.

The heat flux field vectors at the pipe’s interface and exterior surfaces at the
last time step are presented in Figure 6.42. Note that, as mentioned earlier,
the heat flow rate returns a real number or, for time-dependent results, a
vector of real numbers. This number (or vector) represents the integrated
heat flow rate and is normal to the boundary. It is positive if the heat flows
out of the domain and is negative if the heat flows into the domain. Note
that the arrow direction and length at each data point (x- and y-coordinates)
represent the associated values for the temperature gradient (Tx = dT/dr
and Ty = dT/dz) or temperature (T).

tHe MatlaB Heat transfer ProBleM Case studies • 191

FIGURE 6.42. Heat flux field vectors at the pipe’s interface and exterior surfaces at the last time step.

The model configuration data are shown in Figure 6.43 using the
ReportStatistics function for the thermalModelT model. Entering this
model object name (thermalModelT) in the Command Window returns
the model object type (thermal), analysis type (transient), and information
about the solver options, heat source, and mesh (Figure 6.44). Appending
any of the properties presented in Figure 6.44 after the model object name
(thermalModelT) returns the properties’ related information. For example,
inputting thermalModelT.Geometry returns the information in Figure
6.45, which represents the number of faces, edges, and vertices. Inputting
thermalModelT.SolverOptions returns the information in Figure 6.46,
which includes the absolute, relative, and residual tolerances, maximum
iterations, and minimum time steps. Inputting thermalModelT.Mesh
returns the mesh data, such as the number of nodes, elements maximum and
minimum element size, gradation, and geometric order (e.g., quadratic), as
given in Figure 6.47.

To obtain the node coordinates, execute the size function with
thermalModelT.Mesh.Nodes as its input. This will return [2 1 1 8 5 3], with
the latter number equal to the number of nodes. The two indices of the first
component (1,:) and (2,:) are related to the r- and z-coordinates, respectively.
To identify the extent of the r- and z-coordinates (the domain boundaries),
the max and min functions are employed, as shown in Equations (148) and
(149).

192 • PraCtiCal Heat transfer

FIGURE 6.43. Thermal model query to determine model configurations.

FIGURE 6.44. Thermal model properties records.

FIGURE 6.45. Thermal model geometry records.

tHe MatlaB Heat transfer ProBleM Case studies • 193

FIGURE 6.46. Thermal model solver records.

FIGURE 6.47. Thermal model mesh records.

. . 1,: 0.0126

. . 1,: 0.0332

min thermalModelT Mesh Nodes

max thermalModelT Mesh Nodes

=

=
 (148)

. . 2,: 0

. . 2,: 0.025

min thermalModelT Mesh Nodes

max thermalModelT Mesh Nodes

=

=
 (149)

194 • PraCtiCal Heat transfer

6.4 Case Study 4—Non-Axisymmetric Pipe: Transient Thermal
Model with Spatial and Temporal Boundary Conditions

6.4.1 Setup
This case study investigates transient heat transfer in a non-axisymmetric

pipe. The pipe is made of PEX plastic exposed to a moving heat source,
such as may be encountered in laser welding.

This model takes advantage of the MATLAB’s import geometry
feature. While it is possible to create simple 3D and 2D geometries in the
MATLAB environment, it is more practical to create complex geometries
in a dedicated CAD tool and import them into the MATLAB environment.

First, the PDE thermal model (thermalModelT) was created using the
model-creation function for transient analysis in Equation (125). The 3D
geometry (geom) was created in SOLIDWORKS CAD software and ex-
ported in *.stl format (Pipe_hollow_shortened.stl). It was then imported
into MATLAB using the importGeometry function, shown in Equation
(150). One could also add the path information to the file specification
when importing (e.g., ../geometrics/Pipe_hollow_shortened.stl). The func-
tion in Equation (151) displays the model geometry after the import. The
function makes the model semi-transparent (‘FaceAlpha’ = 0.5) and acti-
vates Edge, Face, and Cell labels, EdgeLabels/FaceLabels/CellLabels. Fig-
ure 6.48 shows the resulting model with the Cell ID (labelled C1) and Face
IDs (labelled 1-26) shown.

(,' _ _ . ')geom importGeometry thermalModelT Pipe hollow shortened stl= (150)

(,' _ _ . ')geom importGeometry thermalModelT Pipe hollow shortened stl= (151)

Examining the imported geometry displayed in Figure 6.48, one can
observe that the dimensions shown are in m. However, the modeled pipe
should have the equivalent dimensions in mm. One could return to the CAD
tool and try to fix this issue, but there is another approach available within
MATLAB. It makes it possible for the geometry to be scaled as required.
The scaling may be carried out independently with respect to each of x-,
y-, and z-coordinates by employing the function scale(geometry,[x y z]),
where geometry is the geometry name (geom in this case) and [x y z] is the
scale vector that defines scaling for each coordinate. For this example, the
scale factors [x y z] = [1 1 1]/1000 have been selected, decreasing the size
of the entire geometry along all coordinates by a factor of 1,000, as shown
in Figure 6.49.

The MATLAB heAT TrAnsfer ProBLeM CAse sTudies • 195

FIGURE 6.48. 3D pipe geometry after *.stl file import.

FIGURE 6.49. 3D pipe geometry after scaling by [1 1 1]/1,000.

196 • PraCtiCal Heat transfer

The pdeplot3D(mesh) function displays the meshed view of the geometry.
For this analysis, the mesh grid size is set to 1 mm. It may be useful to
display the 3D geometry from different points of view. To achieve this,
the view function is used—view(az, el). The inputs to this function are two
rotation angles in degrees for the line of sight: azimuth (az) and elevation
(el). The azimuth corresponds to the rotation about the z-axis, with value
measured from the negative y-axis, and with increasing values leading
to counterclockwise rotation of the line of sight relative to the axes. The
second input angle is measured between the horizontal xy-plane and the
line of sight and ranges from -90 to 90 degrees.

One can also obtain the 2D view of the xy-plane by the view(2) function,
equivalent to the view(0, 90) function. The default 3D view is obtained by
the view(3) function, equivalent to the view(-37.5, 30) function. Figure 6.50
presents the result of the view(0, 0) function, which shows the front view
of the pipe (2D view of the xz-plane). Figure 6.51 shows the result of the
view(2) and view(0, 90) functions and the result of the view(3) function.

FIGURE 6.50. 3D mesh, front view (0,0).

tHe MatlaB Heat transfer ProBleM Case studies • 197

 (a) (b)
FIGURE 6.51. 3D mesh: (a) Top view (0,90), (b) Isometric view (-37.5,30).

The functions that define model configuration, including material properties,
are listed in Figure 6.52. The material properties are defined using the
same methodology presented in the previous case studies—Equation (125)
for the transient models. Equation (128) is employed to assign internal heat
generation term. The boundary conditions are presented in Figure 6.53.
The thermal model conditions are set by employing Equations (129) to
Equation (133) for the boundary conditions and Equation (134) for the
initial condition.

For this 3D model, the Face geometry region type is used to assign
boundary conditions. Heat source (internal heat generation), if present,
would be applied to Cell for the 3D model. There are a total of 26 faces
identified in this geometry, with Face 13 and Face 14 being the upper and

3

% ()
1 0.41;% (/)

1 935;% (/)
1 2100;% (/)
1 (, , 1,...

' , 1,

Pipe material properties PEX

k thermalconductivity W mK

rho density kg m

cp heatcapacity J kgK

tp thermalProperties thermalModelT ThermalConductivity k

MassDensity rho S

=

=

=

 =

 , 1, ,1);pecificHeat cp Cell

FIGURE 6.52. Material properties in the MATLAB script for the non-axisymmetric transient pipe model.

198 • PraCtiCal Heat transfer

lower end surfaces of the cylinder, respectively. The exterior surfaces (Face 1
to Face 12) are exposed to the ambient air (25 °C), and transferring heat
by convection, having a convection heat transfer coefficient of 10 W/m2K.

_
% :

10;
_ ;

(, ,1 : ,..

 . . ;

_ .
' ,' _ , ,

_

Boundarycondition convection

hc

outerCC V hc

thermalBC thermalModelT Face

ConvectionCoeffici

num faces thermalModelT Geometry NumFac

ent outerCC V AmbientTemperature

T am

es

nu ces

i

m fa

b

=

=

=

3

, ,);

% :

1 0;% /
1 int (, 1, ,1);

% :
. 5.670373 8;

0.91;

ent Vectorized on

Cell condition heat source

q W m

ih ernalHeatSource thermalModelT q Cell

Boundary condition radiation

thermalModelT StefanBoltzmannConstant E

emis

ther

=

 =

= -

=

(, ,[1 :12], , ,...
' , _ , ,);

% :
(, ,1, ,@ _ ,

malBC thermalModelT Face Emissivity emis

AmbientTemperature T ambient Vectorized on

Boundary condition heatflux

thermalBC thermalModelT Face HeatFlux q func

 ,);

% : (
)

% (, ,[12],

Vectorized on

Boundary condition temperature optional not included

in this analysis

thermalBC thermalModelT Face Temperatur

-

 ,@ _);

%
(. , ,[1 : 26]);

e Twater func

Identify boundary conditions

bca findThermalBC thermalModelT BoundaryConditions Face =

FIGURE 6.53 Boundary conditions MATLAB script for the non-axisymmetric transient pipe model.

tHe MatlaB Heat transfer ProBleM Case studies • 199

The upper and lower end surfaces (Face 13 and Face 14) are exposed to
zero heat flux. Face 1 to Face 6 are exposed to radiation heat transfer with
the ambient. Face 1 is additionally exposed to a spatial and temporal heat
flux (q_func) that models the moving heat source on the exterior surface.
This term is defined in the form of a function, appended to the end of the
complete script (Figure 6.54). The function represents a heat source with
1 W power and dimensions of 4 × 4 mm2 scanning the pipe at 0.5 mm/s.

 _ _ (,)
 _ _ _ _ _ max _

 . ;
_ ;
 . ;
 . ;
 . ;
_ (_ - .

function q out q func region state

global Velocity q heat hc T ambient x c spot w y grid size

t state time

z c Velocity t

x region x

y region y

z region z

q out hc T ambient state

=

=

=

=

=

=

=

∗

∗);
 ()

 _ (1, ());

 ((- _) _ 0.5) & ((- _) _ 0.5)

(); (); ();
(1,) / (_ ^

 ...
& ((_ max

2);

- 0.5 _));

o h

u

if isnan t

q out nan numel x

end

indx abs z z c spot w abs x x c spot w

y y grid siz

xxx x indx yyy y indx zzz z indx

q ut indx q eat spot

q

e

w

=

=

= = =

=

∗ ∗
∗

o

end
FIGURE 6.54. Moving heat source boundary condition

MATLAB script for the non-axisymmetric transient pipe model.

To work correctly, the function needs to have two inputs: the first is the
point locations (region) and the second is the times (state). These are PDE
model objects passed internally to the function. Their names within the
function are arbitrary. Input time values are extracted by appending time
to the object name (e.g., state.time); location coordinates are extracted
by appending the coordinate name (e.g., region.x). All other parameters
are passed to the function using the global variable definitions. These are
defined by listing the variable names after the keyword global both at the
start of the script and the function (Figure 6.55).

200 • PraCtiCal Heat transfer

The time step is 0.02 s and the entire heating process is 100 s. Analysis
settings are presented in Figure 6.56. Note the use of the tic and toc
functions to monitor the solution time, which was 5.83 hr for this case study.

%
 _ _ _ _ _ _ ...

_ _ _ max _

Global data

global T low T high t low t high Velocity q heat hc T ambient

x c spot w y grid size

FIGURE 6.55. Global variables in the MATLAB script for the non-axisymmetric transient pipe model.

%
 100;

_ 0.02;
 0 : _ : ;

 ;
_ ();

0 _1 25; % deg
1 (, 0 _1,' ',1);

2 / 60;

%

Initial parameters

tfinal

time step

tlist time step tfinal

t tlist

t length length tlist

T C

IC thermalIC thermalModelT T Cell

t tlist

Solve propert

=

=

=

=

=

=

=

=

. .Re ' ';
. . 1.0000 - 05;

1 (' ');
1 (1); 1 (1);

ies

thermalModelT SolverOptions portStatistics on

thermalModelT SolverOptions AbsoluteTolerance e

tic

timeStart datetime now

hSt hour timeStart mSt minute timeStart sS

=

=

=

= = 1 (sec (1));
 (,);

2 (' ');
2 (2); 2 (2); 2 (sec (2));

_ ;

%

t round ond timeStart

results solve thermalModelT tlist

timeStart datetime now

hSt hour timeStart mSt minute timeStart sSt round ond timeStart

sol time toc

Mode

=

=

=

= = =

=

1 . ; %

 (/ 60,1); %
1 . ; %

l results

T results Temperature identify tempeature data for the selected nodes

tt round tfinal identify final time step in min

Tx results XGradients identify tempeature gradient a

=

=

= -
1 . ; % -
1 . ; % -

_ 1 . ; %

long x coordinate

Ty results YGradients identify tempeature gradient along y coordinate

Tz results ZGradients identify tempeature gradient along z coordinate

T st results SolutionTimes

=

=

= identify solutine times

FIGURE 6.56. Solution settings in the MATLAB script for the non-axisymmetric transient pipe model.

tHe MatlaB Heat transfer ProBleM Case studies • 201

Node distribution is displayed in Figure 6.57 to help with locating of the
heat source coordinates. Nodes where the moving heat source applies its
energy are shown in Figure 6.58 at the end of the heating process (100 s).

FIGURE 6.57. Projected node density on the z-coordinate.

FIGURE 6.58. Heat source nodes at the end of the heating process (t = 100 s).

6.4.2 Results
Figure 6.59 presents the solution statistics. Figure 6.60 shows tempera-

ture contours at 50 s and 100 s. The contours show a hot spot followed by
a trail of progressively cooling material, as is typically expected when mod-
eling a moving heat source. Figure 6.61 shows the temperature gradient
contours with respect to the x- and y-coordinates at the end of the process.

202 • PraCtiCal Heat transfer

Following the x-coordinate gradient as the x value increases shows variation
from a very high positive value, where the temperature rapidly rises as the
location approaches the heat source path to the equivalent in magnitude
negative values as the temperature falls on the other side of the heat source
path.

FIGURE 6.59. 3D thermal transient model solution statistics for the non-axisymmetric pipe.

 (a) (b)
FIGURE 6.60. 3D thermal transient model temperature contours for the

non-axisymmetric pipe: (a) t = 50 s, (b) t = 100 s.

tHe MatlaB Heat transfer ProBleM Case studies • 203

 (a) (b)
FIGURE 6.61. 3D thermal transient model temperature gradient contours for the

non-axisymmetric pipe: (a) dT/dx, (b) dT/dy.

Figure 6.62 shows the transient temperatures within the pipe wall
(exterior, middle, and interior). The location for which the temperatures
are plotted is where the beam center is located after scanning 0.02 m
(z = 0.02 m) of the pipe, which is 40 s after the movement start. The
transverse (x) coordinate value is x = 0.03. This temperature information is
useful in determining the appropriate process parameters. The maximum
temperature of 202 °C on the exterior surface occurs just after the beam
passes the location for which the temperature is plotted, at the coordinate
(0.03, 0.06, 0.02) m. The maximum is reached at progressively later times
at the middle, 71 °C, and the interior of the pipe wall, 52 °C. The delay is
due to the time it takes for the heat to conduct from the exterior to these
points.

FIGURE 6.62. Transient temperature profiles at the exterior, middle,
and interior surfaces (x = 0.03 m, z = 0.02 m).

204 • PraCtiCal Heat transfer

An optional setting has been added to the program, which implements
an additional transient boundary condition applied to the pipe’s interior
surface (Face 12). This BC represents fast-flowing water, the temperature
of which rises over 3 s from 35–80 °C (Figure 6.60).

 _ _ (,)
. ;

 _ _ _ _
 _ _

 (' _ _ ')

 (())
 _ (());

 _

function T out Twater func location state

t state time

global T low T high t low t high

if t high t low

error t low must be less than t high

end

if any isnan t

T out NaN size t

else

T o

=

=

=

(());
 _ (_) _ ;
 _ (_) _ ;
 _ (_)& (_);
 ((_))
 (_ - _) / (_ - _);
 _ - _ ;

ut zeros size t

T out t t low T low

T out t t high T high

t indx t t low t t high

if any t indx

aa T high T low t high t low

bb T low aa t low

=

= =

= =

=

=

= ∗
 _ (_) (_) ;

T out t indx aa t t indx bb

end

end

end

= ∗

FIGURE 6.63. Changing temperature boundary condition
in the MATLAB script for the non-axisymmetric transient pipe model.

6.5 Case Study 5—Combining the MATLAB Script and the
PDE Modeler Application

There are two approaches to the development of custom scripts for
FE modeling with the help of the PDE Modeler application: (a) Exporting
the model created using the PDE Modeler application to the MATLAB
script (*.m) file and then revising it, and (b) Creating the geometry in the

tHe MatlaB Heat transfer ProBleM Case studies • 205

PDE Modeler application, exporting its data, and then incorporating that
geometry into a script developed using the PDE Toolbox commands or
functions.

If the former approach is selected, the structure and functions
employed in the stored code need to be understood and decoded so that
correct revisions can be made. The first section below helps with this task.
The section describes creation of the model and then the exporting of its
PDE data at the end of each operation (e.g., geometry and mesh creation or
assigning the boundary conditions and solution settings). The subsequent
section begins with export of the geometry parameters from the PDE
Modeler and continues with the definition of the model and solution.

The presented model was primarily intended as a demonstration of the
alternative approaches described above. It consists of multiple overlapping
simple 2D shapes. Physically, the model represents a pump. The heated
fluid enters the geometry through Edge 1 and exits at Face 12 (outside the
xy-plane). The thermal model is transient (parabolic) and requires complete
set of the thermophysical properties. This case study presents an advanced
usage of the MATLAB coding to generate and revise 2D thermal models.
There are three types of boundary conditions applicable to this geometry:
(a) Temperature, where it is assumed constant—Dirichlet; (b) Convection,
where heat is transferred to the ambient at a constant temperature
(35 °C) and convection coefficient (10 W/m2K)—Neumann; and (c) Heat
flux, which is constant and applied to the fluid at the inlet—Neumann.

6.5.1 The PDE Modeler Script
This section addresses creation of a 2D model in a script which is based

on the model specifications (e.g., PDE settings, thermophysical properties,
and geometry data) exported from the PDE Modeler application. When
creating geometry elements in the PDE Modeler, each element has its
own identifier (e.g., C for circle and P for polygon). By default, as new
elements of each type are created, a sequence number is appended to the
corresponding identifier character (e.g., the first circle would be identified
by C1 and the second one by C2), etc., as shown in Figure 6.64.

The application model is an *.m file and can be viewed and modified
within the MATLAB EDITOR. To view this script, the *.m file is opened in the
MATLAB EDITOR. Figure 6.65 shows a section of this script that is related
to the geometry description. The presentation method of the created script
by the PDE Modeler application is different from what is presented herein
and consists of multiple coded lines for each function; however, it can be

206 • PraCtiCal Heat transfer

organized to be presented by the script seen in Figure 6.65. This shows that
there are six domains (Circle 1, Ellipses 1-2, and Rectangles 1-3), as given in
Figure 6.64. These geometry components (domains) are to be assembled to
create the model geometry. In this example, they are all added C1 + E1 +
E2 + R1 + R2 + R3—Equation (152).

(0,0,0.5,0.5,0,' 1');
(0,0,0.075,0.175,0,' 1');
(-0.175,0.03,0.180,0.034,0,' 2');
([-0.5 - 0.25 0.75 0],' 1');
([-0.49 - 0.26 0.735 0.015],' 2');
([0.1 0.3 0.6 0.

pdeellip C

pdeellip E

pdeellip E

pderect R

pderect R

pderect 3],' 3');R

FIGURE 6.65. Geometry description script to plot the 2D geometry in the
MATLAB PDE Modeler application.

 (((_ ,' '),' ',' '),
' ',' 1 1 2 1 2 3')
set findobj get pde fig Children Tag PDEEval

String C E E R R R
 (152)

FIGURE 6.64. The 2D geometry created in the MATLAB PDE Modeler.

tHe MatlaB Heat transfer ProBleM Case studies • 207

Note that the 2D PDE model physics is introduced to the PDE Modeler
before the solution can be achieved for the selected physics. Depending
on the physics selected, the related PDE specification and coefficients are
introduced into the model. For a Generic System application, the input
parameters are to be fed into -.(cu) + au = f, which is another form
for -div(c*grad(u)) + a*u = f, as shown in Figure 6.66. If the Structural
Mechanics (Plane Stress or Strain) application is chosen, the input
parameters, such as the Young’s modulus (E), Poisson ratio (u), density
(r), and volumetric force along the x- and y-coordinates (kx, ky), are to be
defined (Figure 6.67). For a Heat Transfer application, the input parameters
are employed in .() (),CT k T Q h Text Tr - = - which is another form
for - (()) (-)rho C T div k grad T Q h Text T= ∗ ∗ ∗ ∗ (Figure 6.68). Note that
r is the density (kg/m3), C is specific heat capacity (J/kgK), k is thermal

FIGURE 6.66. The PDE Modeler, PDE Specification for a Generic System model.

FIGURE 6.67. The PDE Modeler, PDE Specification for a Structural Mechanics, Plane Stress model.

208 • PraCtiCal Heat transfer

conductivity (W/mK), Q is internal heat source (W/m3), h is convection
heat transfer coefficient (W/m2K), and Text is external temperature (°C).
As seen in Figure 6.67, Parabolic Type of PDE is selected (Figure 6.68).
This means the analysis is transient, and therefore all the specified thermal
properties above are employed in the equation. If the Elliptic Type of
PDE were selected, the density and specific heat capacity would not have
been needed, and therefore grayed out from the PDE Specification menu,
creating a steady-state analysis (Figure 6.69).

FIGURE 6.68. The PDE Modeler, PDE Specification for a Heat Transfer model, Parabolic settings.

FIGURE 6.69. The PDE Modeler, PDE Specification for a Heat Transfer model, Elliptic settings.

Note that the gradient of the function f—f(x, y, z)—is a vector, defined
by Equation (153). The divergence of the function f—.f(x, y, z)—is the
internal product of the gradient operator by a vector and is therefore a scalar,
as shown in Equation (154). When performing an internal (dot) product,

tHe MatlaB Heat transfer ProBleM Case studies • 209

the x-, y-, and z-components are multiplied and then added, resulting in a
scalar value. The divergence of gradient of a function f—.f(x, y, z)—is
also known as Laplacian of that function f—f(x, y, z)—which is also a
scalar value and is presented by Equation (155).

 , ,, ,() ()
f f f

grad
f f f

i j kf f x y z x y z x y z

=
= =

 (153)

 1 2 3

1 2 3

.((, ,) (, ,) (, ,)

() . (

)

(, ,) (, ,) (, ,)

, ,)

i j k f x y z i f x y z j f x y z kx x x
f x y z f x y z f

div f f

x y z
y

z

x

x

z

y=

=

=

 (154)

2 2 2

2 2 2

.

(, ,

(, ,) (()) . (,

) (, ,

)

) (, ,)

,
f f f

i j k i j kx x x x y

f

z

f x y

x y z div grad f f x y z

z f x y z f x y z
x y z

 = =

=

=

 (155)

The physics (PDE Specification) should be set for individual subdomains.
It is possible to: (a) Select the PDE Specification within the PDE Modeler
application menu; (b) Access the entire domain, consisting of subdomains;
(c) Set the model properties (i.e., Type of PDE and Coefficient), which then
will be propagated for the entire domain; (d) Select individual subdomains
within the PDE Mode available under the PDE menu; and (e) Make the
required revisions to the PDE data. These data then can be exported from
the PDE Modeler application to be later used or revised in the MATLAB
script. The PDE data variables that can be exported are c, a, f, and d (Figure
6.80), in that order. Inputting any of the aforementioned variables, either in
this section or the prior ones, results in viewing the data in the Command
Window (Figure 6.70 and Figure 6.71).

As mentioned earlier, the application model, which is an *.m file can
be viewed and modified within the MATLAB EDITOR. To view this
script, the *.m file is opened in the MATLAB EDITOR. Figure 6.71 shows
a section of this script that is related to the PDE specifications. Like the
previous case studies, the presentation method of the created script by
the PDE Modeler application is different from what is presented herein
and consists of several coded lines for each function; however, it can be
organized to be presented by the script seen in Figure 6.71. This shows that
there are two sets of functions (pdeseteq, which sets the equation data and

210 • PraCtiCal Heat transfer

setappdata that sets the application data, as shown in Figure 6.70). Solution
time (5,000 s) and initial temperature (25 °C) are inputs to this function as
well—pdeseteq(type, c, a, f, d, tlist, u(t0), ut(t0), range), with identifying
the PDE type—types 1 (Elliptical), 2 (Parabolic), 3 (Hyperbolic), and
4 (Eigenmodes). tlist is the time range, range (e.g., 0 : 5000), u(t0) is the
initial temperature, ut(t0) is the time-derivative of the initial temperature,
and range is a search string range for the eigenvalue algorithm (on the real
axis).

Exported variables (c, a, f, and d), are the inputs to the former relation
(application-defined dataset for the object with handle h); while the custom-
made variables (aa, bb, cc, dd, ee and ff) are the inputs to the latter one,
setappdata(h, name, value) in Figure 6.71. Note that the length of these
vectors should be the same. This can be achieved by ensuring the spaces
between the single quotation marks (¢) that are the same for these variables.
Blank spaces can be appended to make the lengths the same, as shown in
Figure 6.71.

 '10!0!10!0!0!0!0!0!0!10!0!0!0'
 '210!0.6305!210!210!210!0.6305!210!0.6305!0.6305!210!0.6305!0.6305!0.6305'
 '(2689.9). (900)!(988). (4181)!(2689.9). (900)!(2689.9). (900)!

(2689.9). (900)!(988). (

a

c

d

=

=

= * * * *

* * 4181)!(2689.9). (900)!(988). (4181)!(988). (4181)!
(2689.9). (900)!(988). (4181)!(988). (4181)!(988). (4181)'

 '(0) (10). (30)!(0) (0). (30)!(2000) (10). (30)!(4000) (0). (30)!(0) ...
(0). (30)!(0) (0)
f

* * *

* * * *

= * * * *

* . (30)!(0) (0). (30)!(0) (0). (30)!(0) (0). (30)!(10000) ...
(10). (30)!(0) (0). (30)!(-6000) (0). (30)!(-6000) (0). (30)'

(2, , , , ,'0 : 5000','25','0.0','[0 100]')pdeseteq c a f d

* * * *

* * * *

FIGURE 6.70. The PDE model equation dataset script for the
2D geometry in the MATLAB PDE Modeler application.

'2689.9!988!2689.9!2689.9!2689.9!988!2689.9!988!988!2689.9!988!988!988 '
'900!4181!900!900!900!4181!900!4181!4181!900!4181!4181!4181 '
'210!0.6305!210!210!210!0.6305!210!0.

aa

bb

cc

=

=

= 6305!0.6305!210!0.6305!0.6305!0.6305'
'0!0!2000!4000!0!0!0!0!0!10000!0!- 6000!- 6000 '

'10!0!10!0!0!0!0!0!0!10!0!0!0
dd

ee

=

= '
'30!30!30!30!30!30!30!30!30!30!30!30!30 '

(_ ,' ',[; ; ; ;
ff

setappdata pde fig currparam aa bb cc dd ee

=

;])ff

FIGURE 6.71. The PDE model application dataset script for the
2D geometry in the MATLAB PDE Modeler application.

tHe MatlaB Heat transfer ProBleM Case studies • 211

Table 6.3 summarizes the formatting of model parameters withing the
PDE Modeler script.

TABLE 6.3. Formatting of parameters in the PDE Modeler application.

Variable
Name Description Expression

a and ee
Convection heat transfer coef-
ficients 1 2! ! nh h h

c and cc Thermal conductivities 1 2! ! nk k k

d Densities by heat capacities 1 1 2. 1. ! ! .n nC C Cr * r * r *

f

Sum of heat generation and
product of convection heat
transfer coefficients by exter-
nal temperatures

1 1 1 2 2

2

) (). ()!))(().
())! () ()
((

(
(
.)()n n n

Q h Text Q h

Text Q h Text

 * *

 *

aa Densities 2! !i nr r r

bb Heat capacities 1 2! ! nC C C

dd Heat generations 1 2! ! nQ Q Q

ff External temperatures Text1!Text2!...Textn

In the boundary mode, the display of Edge Labels and Subdomain Labels
can be activated (Figure 6.72). After the boundary conditions are set, the
results consist of the Neumann and Dirichlet boundary conditions, presented
by blue and red colors, respectively. When setting the Neumann boundary
condition (n*k*grad(T) + q*T = g), the heat flux (g) and heat transfer
coefficient (q) are set (Figure 6.73). Note that heat flux is perpendicular
to the boundary. When setting the Dirichlet boundary condition (h*
T = r), the weight (h) and temperature (r) are set (Figure 6.74). In other
words, the former condition is related to identifying heat convection and
heat flux at the boundaries while the latter one is about setting up constant
temperatures at the boundaries. Variables g and b for the decomposed
geometry and boundary conditions are exported from the Boundary menu
in the PDE Modeler.

The temperature boundary condition (Dirichlet, dir) is applied to the
Edges 2 (45 °C), 6 (35 °C), 18, and 21 (15 °C), and 22 to 24 and 26 (15 °C).
Temperature is assumed constant on the selected edges. Heat flux boundary
condition (Neumann, neu) is applied to the Edge 1 at a constant value of

212 • PraCtiCal Heat transfer

500 W/m2. The rest of the edges transfer heat by convection (Neumann) to
the ambient at 35 °C with the convection coefficient of 10 W/m2K (Figure
6.72).

FIGURE 6.72. Boundary conditions applied to the 2D geometry created in the MATLAB PDE Modeler.

FIGURE 6.73. The PDE Modeler, Boundary Condition for a Heat Transfer model, Neumann settings.

tHe MatlaB Heat transfer ProBleM Case studies • 213

FIGURE 6.74. The PDE Modeler, Boundary Condition for a Heat Transfer model, Dirichlet settings.

Opening the script (*.m file) in the MATLAB EDITOR, the boundary
conditions can be viewed and modified if required. Figure 6.75 shows
the related part of this script. Like the previous case, when describing
the geometry script, the presentation method for this section by the PDE
Modeler application is different from what is presented herein and consists
of multiple coded lines for each function; however, it can be organized as
displayed in Figure 6.75. This shows that there are two types of the boundary
condition types, four Dirichlet (dir) and six Neumann (neu) conditions,
applied to ten boundaries (edges).

det (' mod ',0)
(1,' ',1,'10','500')
([4,22 : 24,26],' ',1,'10','0')
(18,' ',1,'1','15')
(21,' ',1,'1','15')
(2,' ',1,'1','45')
(6,' ',1,'1'

p ool change e

pdesetbd neu

pdesetbd neu

pdesetbd dir

pdesetbd dir

pdesetbd dir

pdesetbd dir ,'35')

FIGURE 6.75. Boundary conditions script to plot the 2D geometry
in the MATLAB PDE Modeler application.

Mesh properties (triangular), point (p), edges (e), and triangles (t) can be
exported from the Mesh menu in the PDE Modeler within the application
editor. The related script is presented in Figure 6.76. The Maximum Edge
Size (trisize) and Mesh Growth Rate (Hgrad) can be defined for the PDE
Modeler. If the Minimum Edge Size (Hmin) is of interest, it can be defined
within the script by replacing Hmax. The generated mesh is shown in
Figure 6.77. The mesh can also be refined (regular and longest methods)
and the internal points of the mesh can be jiggled (optimize minimum and
mean methods) with the Number of jiggle iterations identified (<=14).

214 • PraCtiCal Heat transfer

(_ ,' ',0.5);
(_ ,' ',1.5);
(_ ,' ',' ');
(_ ,' ', (' ',' ','14'));
(_ ,' ','

setappdata pde fig trisize

setappdata pde fig Hgrad

setappdata pde fig refinemethod regular

setappdata pde fig jiggle char on mean

setappdata pde fig MesherVersion p 2013 ');
det (' ')

(' ')
(' ')

reR a

p ool initmesh

pdetool refine

pdetool jiggle
FIGURE 6.76. Mesh generation script to plot the

2D geometry in the MATLAB PDE Modeler application.

FIGURE 6.77. 2D triangular mesh generated in the MATLAB PDE Modeler application.

tHe MatlaB Heat transfer ProBleM Case studies • 215

After all the parameters have been specified using the pdeseteq and
setappdata functions, the solution is executed by the pdetool(‘solve’)
function. After the solution is obtained, the plot parameters can be set.
Properties such as temperature, temperature gradient, and heat flux can be
selected as the output parameters. There is also a user entry option available
for the property in which the user identifies their own output variable. The
arrows (flow variable) can be temperature gradient, heat flux, or user entry
presented in the proportional or normalized forms.

A third dimension (height) can be identified and therefore a 3D plot
may be presented. The height can be either temperature, temperature
gradient, heat flux, or user entry property. The output may be animated
by identifying Animation rate in fps and the Number of repeats. Contour
plot levels can be set, and the mesh may be shown along with the contour
plots. Furthermore, color map (e.g., hot, cool, and prism) may be selected.
Time for plot can be selected from the drop-down menu, selecting any
value within the defined range in 1-s time intervals. After the solution
is run, the solution statistics are presented in the Command Window,
as shown in Figure 6.78. The solution results are presented in Figure
6.79, in which contour plots identify the temperature profiles and arrows
represent the heat flux vectors. The Plot style is proportional, meaning
that the magnitude of the heat flux vector determines the size of the
arrows.

FIGURE 6.78. The MATLAB PDE Modeler application
transient thermal model solution statistics.

216 • PraCtiCal Heat transfer

FIGURE 6.79. 2D contour plots generated in the MATLAB PDE Modeler application.

6.5.2 PDE Tool Script
With this approach, one can take advantage of the interactive creation

of the model geometry using the PDE Modeler application and then export
the geometry data created to use it within a custom model script. However,
one limitation is that 3D geometry creation and export is not supported
by the PDE Modeler. Within the PDE Modeler, the geometry export is
achieved by selecting Export Geometry Description (gd), Set Formula (sf),
and Labels from the Draw menu. During the export, the default geometry
variable names presented are gd, sf, and ns (Figure 6.80). At this point,
these can be changed to the user’s preferred names.

The PDE Tool script in Figure 6.81 shows how the geometry data saved
from the PDE Modeler export can be used to create the geometry structure
within the PDE Tool model object thermalModelTA. Before executing this
script, the PDE Modeler needs to be run and the geometric data exported.

tHe MatlaB Heat transfer ProBleM Case studies • 217

The example assumes the default geometry data variable names are used
(as shown in Figure 6.81). The constructive solid geometry then can be
decomposed using the geometry data (gd, sf, ns) and the geometry from
the edges can be created with the results presented as a figure (Figure
6.81). The pdegplot function is employed to plot the geometry to verify
its correctness and to identify the edges and faces to which the boundary
conditions (and heat sources) are to be applied. Figure 6.82 displays the
geometry with edge labels and Figure 6.83, with face labels.

 ; ; ;
(' ',' ');

(, ,);
(,);

(1);
deg (,' ',' ','

close all clf clc

thermalModelTA createpde thermal transient

geometryA decsg gd sf ns

geometryFromEdges thermalModelTA geometryA

figure

p plot thermalModelTA EdgeLabels on FaceLabel

=

=

',' ');
({' ';''},' ',' ');
 ; min ; (' ()'); (' ()');

lim([-0.7 0.7]); lim([-0.6 0.8]);
; . 1

s on

title Geometry with edge and face labels displayed FontWeight normal

grid on grid or xlabel x m ylabel y m

x y

ax gca ax FontSize= = 0;
FIGURE 6.81. Script to plot the exported 2D geometry from the PDE Modeler.

FIGURE 6.80. Variable names for exporting the 2D geometry from the MATLAB PDE Modeler.

218 • PraCtiCal Heat transfer

FIGURE 6.82. The 2D geometry plotted using the PDE Toolbox script with the edge labels on.

FIGURE 6.83. The 2D geometry plotted using the PDE Toolbox script with the face labels on.

The axes limits (x- and y-coordinates) are also to be set in this step using
the xlim(xmin, xmax) and ylim(ymin, ymax) functions. Equal spacing between the
axes lower and upper limits may be set using the axis equal command.

tHe MatlaB Heat transfer ProBleM Case studies • 219

Note that the edge and face labels are the same for the geometry
created in the PDE Modeler and Toolbox. It is possible to set the physics
(Application Options) or PDE type independently from the physics
selected when setting the model using the PDE Modeler (e.g., Structural
Mechanics in the former case and Elliptic in the latter case). In this case
study, however, two identical models are created for comparison purposes.

The next step is to specify the thermophysical properties (i.e., thermal
conductivity for both steady-state and transient problems and thermal
conductivity, density, and heat capacity for transient problems), as shown
in Figure 6.84. All faces should be assigned the appropriate properties.

%
15 0.6305; % (/)

15 988; % (/ 3)
15 4181; % (/)
15 Pr (,' ', 15,...

 '

Water

k thermal conductivity W mK

rho density kg m

cp heat capacity J kgK

tp thermal operties thermalModelTA ThermalConductivity k

MassDensity

=

=

=

=

', 15,' ', 15,' ',[2,8,9,11,12,13]);
%

25 210; % (/)
25 2698.9; % (/ 3)

25 900; % (/)
25 (

rho SpecificHeat cp Face

Aluminum

k thermal conductivity W mK

rho density kg m

cp heat capacity J kgK

tp thermalProperties therm

=

=

=

= ,' ', 25,...
 ' ', 25,' ', 25,' ',[1,3 : 7,10]);

alModelTA ThermalConductivity k

MassDensity rho SpecificHeat cp Face

FIGURE 6.84. Thermophysical properties for the 2D geometry plotted in Figure 6.82.

The next step is to assign boundary conditions (e.g., convection, temperature,
and heat flux), as shown in Figure 6.85. If the boundary conditions are not
assigned to an Edge, the edge is assumed to be insulated.

220 • PraCtiCal Heat transfer

51 (,' ',6,' ',35);
52 (,' ',2,' ',45);
53 (,' ',[21,18],' ',15);
54 (

BC thermalBC thermalModelTA Edge Temperature

BC thermalBC thermalModelTA Edge Temperature

BC thermalBC thermalModelTA Edge Temperature

BC thermalBC

=

=

=

= ,' ',[1,4,22 : 24,26],...
 ' ',10,...
 ' ',30);

55 (,' ',1,' ',500);

thermalModelTA Edge

ConvectionCoefficient

AmbientTemperature

BC thermalBC thermalModelTA Edge HeatFlux=
FIGURE 6.85. Boundary conditions assigned to the 2D geometry plotted in Figure 6.82.

The heat source (internal heat generation) can be assigned to any region
(Face). The regions can be either listed as an array, if they all have the same
setting, or assigned values individually (Figure 6.86).

51 (,2000,' ',3);
52 (,4000,' ',4);
53 (,10000,' ',10);
54 (

ih internalHeatSource thermalModelTA Face

ih internalHeatSource thermalModelTA Face

ih internalHeatSource thermalModelTA Face

ih internalHeatSource thermalModel

=

=

=

= ,-6000,' ',[12,13]);TA Face
FIGURE 6.86. Heat sources (internal heat generation) assigned to the 2D geometry plotted in Figure 6.82.

Assigning the initial conditions is the next phase, as shown in Equation (156).
This can be set individually for each region (Face). Note that it is possible
to set the initial temperature for each region; in this case, the RegionID
and RegionType should be identified, as shown in Equation (157). The
RegionType can be Vertex, Edge, and Face for the 2D and 3D models and
Cell for the 3D models

 56 (,25);IC thermalIC thermalModelTA= (156)

_ (, 0,' ',);IC Regions thermalIC thermalModelTA T RegionType RegionID= (157)

The next phase is the meshing of the geometry using the specified
parameters, as shown in Figure 6.87. In this case study, the grid size (grid_
size5) and growth rate (Hgrad) are defined. It is also possible to specify
the relative (1E - 5) and absolute (1E - 9) tolerances. The solution total
time (tfinal5) is set in this step, as well as the frequency (tlist5) of the data
output. Note that quadratic elements are selected for this analysis, which are
more accurate. To save memory space, linear elements may be employed.
Mesh properties may be confirmed by entering mesh5 on the command
line, as presented in Figure 6.88. The plot of node locations is presented in
Figure 6.89.

tHe MatlaB Heat transfer ProBleM Case studies • 221

_ 5 0.05;
5 (,' max', _ 5,' ',1.2,...

' ',' ');
5 5000;

5 0 :100 : 5;

grid size

mesh generateMesh thermalModelTA H grid size Hgrad

GeometricOrder quadratic

tfinal

tlist tfinal

=

=

=

=
FIGURE 6.87. Mesh parameters and thermal model solver options

assigned to the 2D geometry plotted in Figure 6.82.

FIGURE 6.88. Mesh properties.

FIGURE 6.89. Node locations.

The model is to be solved next, given the solution parameters. Any changes
made to the boundary or initial conditions as well as the solution parameters

222 • PraCtiCal Heat transfer

result in new sets of solutions. Note that if the solution is to be rerun, the
solution of the problem remaining in the MATLAB Workspace will be
used as the initial condition unless the initial condition and the iteration
solution first guess is to be set first. This is an educated guess when using
coding languages such as Fortran or C++ and when numerical methods
such as Gauss-Sidle elimination methods are employed. Note that this is
not to be taken as a built-in step when setting PDE models in the MATLAB
environment. Therefore, clearing the MATLAB Workspace beforehand
ensures unknown initial iteration values and residual errors are eliminated.

It is always possible to create “pretty” images; however, how accurate
or precise they are of interest to a modeling scholar. Note, however, that
as mentioned earlier, in case the inputs of another program (e.g., geometry
data imported from the MATLAB PDE Modeler application are needed
as the inputs to the PDE model, the MATLAB PDE Modeler application
should be run first for the data to be created. The data then should be
exported from the MATLAB PDE Modeler application to the MATLAB
Workspace, and then inputted to the MATLAB script.

The temperature (T51), temperature gradient (Tx51), heat flux (qx51)
magnitudes for the model nodes (xy51), or any other combination of these
variables can be valuated as the next step, as shown in Figure 6.90. Note that
T_st51 is the solution times and is a vector; it is the same as the tlist5 (Figure
6.87). The results’ properties can be displayed by entering on the command
line the name of the results object (results5), which contains the solution.
The results object is created on the first line in Figure 6.90. The transient
temperature results object’s properties are presented in Figure 6.91. The
information includes sizes of the arrays within the results object (e.g., the
temperature array and solution times array).

5 (, 5);
. . ;

(int);
51 ; 51 51(1,:); 51 51(2,:);

51 5. ;
51 5. ;
51

results solve thermalModelTA tlist

point thermalModelTA Mesh Nodes

nodesIndex find po

xy point x xy y xy

T results Temperature

Tx results XGradients

Ty result

=

=

=

= = =

=

=

= 5. ;
_ 51 5. ;

[51, 51] (5, 51, 51,1 : (5));

s YGradients

T st results SolutionTimes

qx qy evaluateHeatFlux results x y length tlist

=

=

FIGURE 6.90. Initial conditions assigned to the 2D geometry plotted in Figure 6.82.

tHe MatlaB Heat transfer ProBleM Case studies • 223

FIGURE 6.91. Solution properties for the 2D geometry plotted in Figure 6.82.

The solution’s statistics can be displayed by activating the ReportStatistics
feature within the SolverOptions (Figure 6.92 and Figure 6.93).

thermalModelTA.SolverOptions.ReportStatistics = 'on';
modelD.SolverOptions.RelativeTolerance = 1E-5;
modelD.SolverOptions.AbsoluteTolerance = 1E-9;

FIGURE 6.92. Solution statistical data.

FIGURE 6.93. The MATLAB script transient thermal model solution properties and statistics.

Note that it is also possible to create the result animation by exporting j
number of image frames and playing them n times. To achieve this, the
getframe function is employed (Figure 6.94). This function may be used

224 • PraCtiCal Heat transfer

either right after any plot functions or specifically as a function, calling
frames for a specific figure getframe(figure(n)), where n is the figure ID
(number).

 1 : 5 : (5)
 (,' ', 51(:,),' ',' ',...
 ' ',' ',' ',24);
 ; ; min ; (' ()'); (' ()');

for j length tlist

pdeplot thermalModelTA XYData T j colormap hot

Contour on Levels

axis equal grid on grid or xlabel x m ylabel y m

=

 lim([-0.7 0.7]); lim([-0.6 0.8]); ; . 20;
 ;
 (51(:), 51(:), 51(:,), 51(:,),'- ',' ',0.5,...
 ' ',' ', ',' ',' ','

x y ax gca ax FontSize

hold all

quiver x y qx j qy j LineWidth

Color black AutoScale on ShowArrowHead on

= =

');%,' ',3
 ; ; min ; (' ()'); (' ()');

 lim([-0.7 0.7]); lim([-0.6 0.8]); ; . 20;
 ({['

AutoScaleFactor

axis equal grid on grid or xlabel x m ylabel y m

x y ax gca ax FontSize

title Temperature contou

= =

'];[' (',...
 2 ((5(),2)),')'];''},' ',' ')
 5() ;

rs and heat flux arrows t

num str round tlist j s FontWeight normal

M j getframe

end

=

=

FIGURE 6.94. Animated data setting for the 2D geometry plotted in Figure 6.82.

The collected data frames then can be called back and presented in the
form of a movie using the movie function (Figure 6.95). The script provided
herein plays the time-array presented by the vector 1:5:length(tlist5) ten
times, which displays the thermal data contours (image frames) for every
fifth frame; 14 frames per second, played once, are played seven times in
this animated data. The for loop is used for retrieving the data frames and
animating them. The movie(gca, M5, [n, k], fps) function, where gea is the
graphic object handle of the current axis, M5 is the movie frames array,
[n k] in this scenario represents the number of times each frame plays
(n) and selected time-frames (k), and fps is the number of frames per
second that the animation plays. One of the challenges of these diagrams
is how to include titles so that they represent the selection parameters
used as the time step progresses. The method of the presentation of title
for Figure 6.94 and Figure 6.95, with loop variables (j and k) is included
in the script.

tHe MatlaB Heat transfer ProBleM Case studies • 225

 1 : 5 : (5)
 ({[' '];[' (',...
 2 ((5(),2)),')'];''},' ',' ')
 ; ; min ;

for k length tlist

title Temperature contours and heat flux arrows t

num str round tlist k s FontWeight normal

axis equal grid on grid or

=

=

 (' ()'); (' ()');

 lim([-0.7 0.7]); lim([-0.6 0.8]); ; . 20;
 (, 5,[7],14);

xlabel x m ylabel y m

x y ax gca ax FontSize

movie gca M k

end

= =

FIGURE 6.95. Animated data setting for the 2D geometry plotted in Figure 6.82.

In this case study, the solution results are presented in the form of
temperature contour plots, including the heat flux arrows (Figure 6.96), as
well as the temperature gradient contour plots with respect to the x- and
y-coordinates, including the temperature gradient arrows (Figure 6.97).

FIGURE 6.96. Temperature contour plots and heat flux vectors
for the script presented in Figure 6.94.

The color map can be set using the cmap = colormap(target, map). map
identifies the color map (e.g., gray, turbo, and spring) and target is the
figure, axes or graphics object (e.g., gca or figure(n)), where n is the figure
ID (number). In Figure 6.96, the gray color map is selected, while for
Figure 6.97, the turbo color map is selected.

226 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 6.97. Temperature gradient contour plots and vectors with respect to:

(a) x (dT/dx), (b) y (dT/dy).

It is possible to enquire about a node at the selected coordinate. However,
data may not be available at the exact location; therefore, the closest
location is queried. If the desired coordinate is located at the point
A(x, y) the closest data is then defined as A_data = @(p, x, y)min(x51 – x).2 +
(y51 – y).2). This is the minimum distance between the desired point and
available mesh points, where the x51 = point(1,:) and y51 = point(:,1) are
x- and y-coordinates of the solution nodes calculated from the point =
thermalModelTA.Mesh.Nodes.

tHe MatlaB Heat transfer ProBleM Case studies • 227

For example, assume the temperature data at the center of the left
edge is of interest—A(-0.5, 0). This coordinate is to be replaced in the
function, which can be called to get the specific node near the center
of the left edge [~, nid1] = data(mesh5.Nodes, -0.5, 0), where nid is the
node ID. The node ID (nid1) for this point is 15. In another example,
the temperature data at a point located at B(0.2, -0.4)is of interest. The
node ID (nid2) for this point is 1,754. The third example, the node ID
(nid3) for the point located at C(-0.1, 0.2) is 2,098. The related script is
presented in Figure 6.98. The transient temperatures for these selected
nodes are plotted in Figure 6.99.

2 2

(5);

@(, ,) ((51). (51).);
[, 1] (5. , 0.5,0)

(5(1 :)

;
[, 2] (5. ,0.2, 0.4);
[, 3] (5. , .1,0.2);

1; 2
5

3
,

; ;

n length tlist

data p x y min x x y y

nid data mesh Nodes

nid data mesh Nodes

nid data mesh Nodes

A nid B

plot

n

tlist n T

id C nid

=

= - -

= -

= -

= -

= = =

1(,[1 :]),'- ',' ',5,' ',...
 1 : 5 : (5(1 :)),' ',[1 1 1]);

(5(1 :), 51(,[1 :]),'- ',' ',5,' ',...
 1 : 5 : (5(1 :)

A n MarkerSize MarkerIndices

length tlist n MarkerFaceColor

plot tlist n T B n d MarkerSize MarkerIndices

length tlist n

),' ',[0.5 0.5 0.5]);
(5(1 :), 51(,[1 :]),'- ',' ',5,' ',...

 1 : 5 : (5(1 :)),' ',[0 0 0]);

MarkerFaceColor

plot tlist n T C n MarkerSize MarkerIndices

length tlist n MarkerFaceColor

FIGURE 6.98. Script to generate the 2D geometry and plot in Figure 6.99.

(a)

228 • PraCtiCal Heat transfer

(b)
FIGURE 6.99. Getting data at the query points:

(a) Point locations, (b) Transient temperature at the selected points.

End Notes

 [55] http://www.matweb.com/search/datasheet_print.aspx?matguid=9a0c88f81df945
218033319fa4dd1cb6

 [56] COMSOL Material database
 [57] http://www.matweb.com/search/datasheet_print.aspx?matguid=9a0c88f81df945

218033319fa4dd1cb6
 [58] COMSOL Material database

C H A P T E R7
The COMsOL MULTiPhysiCs
MOdeLs

The COMSOL Multiphysics modeling has been discussed in detail in
the author’s previous works [2,3,4]. However, for the purpose of this
publication, a summary of some of the main concepts is presented

herein. The reader is encouraged to learn more about heat transfer and
thermal modeling by studying the previous works on the extended surfaces
using analytical methods and numerical analysis, with the focus on COM-
SOL Multiphysics as the FEM analysis tool in combination with CAD tools
to generategeometry [2], geometry import and creation using COMSOL
Multiphysics [4], and a complete review of heat transfer science, thermal
analysis modeling methods, and multidisciplinary case studies involving
heat and flow [3].

The process of heat transfer analysis using FEM is carried out in
three stages: (a) model setup or pre-processing, (b) solution, and (c) post-
processing. FEA tools share these same steps, and their organization
methods (model tree) are very similar among the variety of the tools with
the most used ones, such as ANSYS, ABAQUS FEA, and COMSOL
Multiphysics. The modeling setup steps are generally as follows:

 (1) Evaluate the available resources (machine, tool, and human).

 (2) Identify the number of spatial dimensions (zero to three) defining the
physical phenomena.

 (2) Consider the possibility of representing the model using fewer dimen-
sions (e.g., 1D or 2D), fewer geometrical features, or by a simplified
version that takes advantage of any symmetry.

230 • PraCtiCal Heat transfer

 (4) Generate the model geometry by: (a) Importing the model from a
dedicated CAD tool, (b) Creating it using the FEM built-in tools,
(c) Creating from a mesh, or (d) Importing from another FEA tool.

 (5) Identify the dominant physics, the domains to which they apply, and
whether single or multiple physics apply (e.g., heat transfer and struc-
tural mechanics).

 (6) Identify the boundary conditions at which the boundaries interact with
their environment(s). For heat transfer modeling, these conditions can
be expressed by the temperature, heat flux, heat rate, and heat genera-
tion, which are derivatives of the dependent variable (temperature).
They can be either constant or functions of space and time (e.g., zero
gradient and constant value).

 (7) Decide whether the physical system will be modeled as time-de-
pendent or stationary by considering the given physics and available
resources. This step is one of the most challenging ones, for the time-
dependency should be correctly selected to represent the system’s
behavior given the operational conditions. Time and space increments
work closely together and, on many occasions, the combination of
them is the determining factor in generating accurate solutions; there-
fore, care should be taken to ensure the proper selection.

 (8) Identify the initial conditions if a transient analysis (time-dependent) is
selected. These are either applied to certain regions within the model-
ing domain or portions of it, meaning that there would be either single
or multiple subdomains within the model. If a steady-state analysis is
preferred, the initial guess at which the solution starts (especially for
the iterative-elimination methods) should be set.

 (9) Mesh the model geometry by means of 1D, 2D, or 3D entities, de-
pending on the models’ dimension. The order of the mesh (quadratic
versus linear) determines the level of accuracy achieved, which is
mainly determined by the available resources (e.g., time and machine).

 (10) Select the numerical technique(s) to produce solutions that converge,
given the acceptable relative and absolute tolerances. On occasions,
the solution may need to be divided into multiple steps, each step
adopting the numerical method that better suits the conditions. The
inputs (or initial guesses) to the solutions in such cases are usually the
outputs of the previous solution steps.

tHe CoMsol MultiPHysiCs Models • 231

 (11) Specify the solution parameters such as the duration of the interval
simulated and the time intervals at which the solution data are saved.

 (12) Carry out solution post-processing as the last step. This may involve
solution data in the wide variety of forms (e.g., diagrams and anima-
tions) required in the internal or external reports. This may include
steps such as: (a) Extracting the solution using output commands;
(b) Evaluating the solution by taking integrals or averages over regions;
(c) Customizing the report templates to follow certain formats or add
the input commands to make interactive and user-friendly Web-based
applications; and (d) Processing and visualizing the solution output
by means of tables, diagrams (1D, 2D, and 3D), contour and surface
plots, and spatial and temporal probes.

This chapter discusses briefly how to work with models in COMSOL
Multiphysics Version 5.6; the software can be updated by checking under File
> Help. The first section below presents considerations pertinent to setting
up a heat transfer model. The next section focuses on the geometry creation
process, importing the geometry as an independent part or assembly from
a dedicated CAD tool such as Solid Edge or SOLIDWORKS, and creating
it using the built-in geometry creation tools. This is followed by a summary
of all the steps involved in carrying out an analysis. Finally, a section is
dedicated to introduction of the COMSOL Multiphysics LiveLink for
MATLAB Module; it shows how one can use this module to take advantage
of the MATLAB’s computational and data processing capabilities while also
benefiting from the COMSOL Multiphysics’ capabilities as a dedicated
FEM tool.

7.1 Heat Transfer Modeling Considerations

To model a heat transfer problem using any tool, including COMSOL
Multiphysics, the modes of heat transfer that should be included in the
model need to be selected. In most cases, heat transfer phenomena include
all three main heat transfer modes of conduction, convection, and radiation.
However, it is often the case that one or more of these can be ignored to
simplify the model. For example, the radiation mode may have a negligible
effect at relatively low temperatures.

Methods of setting up models are different for the solid and fluid
domains. Conjugate Heat Transfer physics is a thermal-flow modeling
system that combines heat transfer in both solids and fluids, while
considering their interaction. Gravity effects may play a more important

232 • PraCtiCal Heat transfer

role where the flow in the vicinity of a vertical surface is examined, for
instance, in the free convection case, where the ratio of the buoyancy to
viscosity forces is dominant. Radiation heat transfer also can be combined
with the previous scenario and make the model more complex. Radiation
sources can include solar radiation or another intense heat source such as
fire. The former one introduces the radiation heat flux for it hits the domain
surface (W/m2), while the latter can either hit the domain surface (W/m2)
or be generated within the domain (W/m3). Both heat intensities can have
spatial and temporal dependency.

Among the important factors to be considered when setting up the
FEM models are: (a) methods used to accurately capture the temporal and
spatial variations of the thermophysical properties; (b) physics to be used;
(c) accurate estimation of the convection heat transfer coefficient; and
(d) how different physics, if present, interact with one another. The choice
of the transient versus the stationary solutions should also be carefully
considered. For some models, a stationary study may result in a solution,
while a transient one will not produce a solution due to the convergence
issues; the opposite may be valid in some cases.

7.2 Creating a Model in COMSOL Multiphysics

To create a new FEM model, File > New is selected; a window opens as
the result, which offers the choice to create a Blank Model or Model Wizard
(Figure 7.1). If the analyst selects the Blank Model, a new empty model is
created. However, in most cases, it is much simpler to set up the model
from the start based on the applicable physics. For this purpose, Model
Wizard should be activated (Figure 7.1a) which will take you through a few
basic steps for model setup.

First, a new window opens where you can select the appropriate space
dimension (e.g., 1D or 2D Axisymmetric) (Figure 7.1b). Now you need to
decide which physics to include in the model (e.g., heat transfer, fluid flow,
or a combination of multiple physics). Figure 7.2 shows the physics selection
when a specialized add-on module is available (e.g., Heat Transfer). In this
case, there are twelve different physics available. Heat Transfer in Solids
is highlighted in the image. Without the add-on module, only a few of
the most basic physics would normally be available. After the physics is
added, its dependent variable (e.g., temperature, T) is set. The dependent
variable name can be changed and may include subscripts (e.g., T1). After
completing this step, the Study type is selected (Figure 7.3).

tHe CoMsol MultiPHysiCs Models • 233

 (a) (b)

FIGURE 7.1. (a) Setting up a new model, (b) Selecting the space dimension.

FIGURE 7.2. Selecting physics—Heat Transfer, Heat Transfer in Solids (ht).

234 • PraCtiCal Heat transfer

Clicking on the Done button after the previous steps are completed takes
the analyst to the modeling window, a home for the brand-new model
(Figure 7.4). Here, the analyst has multiple regions or windows (four in the
provided example). Most of the model operations are done in the Model

FIGURE 7.3. Selecting study—General Studies, Time Dependent.

FIGURE 7.4. The COMSOL Multiphysics model tree window.

tHe CoMsol MultiPHysiCs Models • 235

Builder window. It is a tree structure starting with the Root named after
the model, with the main branches of Global Definitions, Component(s),
Study, and Results. Model Builder’s neighbor to the right shows Settings
pertaining to the selection made in the Model Builder window.

7.3 Creating Geometry

This section presents a brief overview of the geometry creation in
COMSOL Multiphysics. More detail is available in the author’s publication
COMSOL Multiphysics Geometry Creation and Import [3]. In the
COMSOL Multiphysics model file, the geometry is created within the
Geometry node found under each Component. The parameters used for
the geometry may be defined either on the local or global level. The two
most common ways to create a geometry are: (a) creating and manipulating
the elementary geometric entities and (b) importing the geometry from a
third-party CAD tool.

To import from the external CAD tools (e.g., SOLIDWORKS or
Solid Edge), the analyst needs to have either a CAD Import Module or
LiveLink Module, the latter being associated with a specific CAD tool. Any
of the software-specific LiveLink Modules include the CAD Import Module
functionality. Using the LiveLink Module allows one to update the model
geometry in COMSOL Multiphysics as soon as the changes are made in the
CAD software.

In the example shown in Figure 7.5, Geometry is highlighted. In this
case, the Settings window presents the related geometrical characteristics
such as the Length unit (e.g., m, nm, and GM), Angular unit (Figure 7.6),
Geometry representation kernel (Figure 7.7), and Default repair tolerance
method (Figure 7.8). A kernel is the fundamental geometrical language
used to describe the model geometry. In this example, two geometrical
kernels are available—CAD and COMSOL Multiphysics; the former is
only available with the optional CAD Import Module while the latter is part
of the base package.

Default repair tolerance is applied when the geometry is imported
or when Boolean operations are performed. It defines a threshold below
which the geometry entities may be considered coincident and appropriate
repairs are made to avoid, for example, in the cases of vertices which are
very close to one another. Selection of the Relative setting expresses the
tolerance as a ratio between the error dimension and the maximum model
coordinate. Absolute tolerance is expressed in the length units of the model.

236 • PraCtiCal Heat transfer

Automatic tolerance (the default choice) sets it at a relative value of 1e-6
and takes adjustment steps if needed. The following sections provide an
overview of ways to generate geometry.

FIGURE 7.5. Geometry—Length unit options.

FIGURE 7.6. Geometry—Angular unit options.

FIGURE 7.7. Geometry—Geometry representation kernels options.

tHe CoMsol MultiPHysiCs Models • 237

FIGURE 7.8. Geometry—Default repair tolerance options.

7.3.1 Using Elementary Geometric Entities
In this method, the geometry is created by defining the basic geometrical

entities, such as: (a) the intervals and points (1D); (b) lines, curves, rectangles,
and circles (2D); and (c) blocks, cylinders, and spheres (3D). Various
transformations can then be applied to these entities; these include the
Booleans and Partitions operations (e.g., union and difference), Transforms
operations (e.g., copy, mirror, rotate, and scale), and uncategorized ones
such as the extrude, revolve, sweep, fillets, and chamfers. Geometries are
created in steps; each step can be disabled (or enabled) when needed without
affecting the following unrelated sequential steps. This makes it possible to
temporarily exclude geometry-creation steps without affecting the future
steps. Furthermore, the steps can be duplicated, and copies revised to
facilitate adding new steps. For example, to create the 3D ring shown in
Figure 7.9, the following sequence may be used: (a) cylinder of radius 0.03 m
and height of 0.015 m (cyl1); (b) cylinder of radius 0.024 m and height of
0.015 m (cyl2); and (c) Difference, cyl2 – cyl1(dif1).

 (a) (b)

FIGURE 7.9. (a) An example of a 3D ring geometry, (b) The geometry sequence shown.

238 • PraCtiCal Heat transfer

Use of the Work Planes can be a powerful tool when processing 3D
geometries. They can be employed to: (a) process 2D sketches such as
Extrude and Revolve to create 3D objects and (b) partition or split 3D
domains. The split volumes can then be used for subsequent modeling
steps, allowing for setting different material and mesh properties, and
deletion of the unneeded volume. Figure 7.10 shows the method to create
the revolved profile, using the circle (c1) and rectangle (r1) 2D shapes (left)
and performing a Boolean difference (dif1), where the circle is subtracted
from the rectangle (right). The Revolve operation is then performed, which
uses this profile and defines a revolution axis to create the 3D shape shown.

 (a) (b)

FIGURE 7.10. (a) A 3D ring with a groove created by revolving the 2D shapes;
(b) The geometry sequence shown.

 (a)

tHe CoMsol MultiPHysiCs Models • 239

 (b)

FIGURE 7.11. Geometry components used in Figure 7.10: (a) Work Plane used to define input to the 2D
shapes, (b) Finished profile for a 3D ring with a groove.

7.3.2 Importing Geometry
The geometry import is performed by right-clicking on Geometry and

selecting Import. Sources available for bringing the geometric entities into
the file are the: (a) geometry sequence, (b) mesh, (c) *.stl; (3D geometries
only), (d) COMSOL Multiphysics file, and (e) 3D CAD files (3D geometries
only).

The Geometry sequence option allows one to bring a set of geometry
creation steps from another component of compatible dimensions (1D, 2D,
or 3D) within the same model file into the current component. This option
allows one to reuse the geometry created in one component within another
component.

Mesh import takes a mesh from another component within the same
model file and brings it as a geometry (shape) into the current component.
The two components must have the same number of spatial dimensions
(e.g., there is a 2D component, and so only a mesh from another 2D
component can be used).

Stereolithography (*.stl) file import only applies to 3D components. It
allows the analyst to introduce a geometry defined using an *.stl file, which
is a common way to store information used for 3D printing of objects.
The *.stl geometries describe the surfaces of 3D objects by flat triangular
surface patches, with the coordinates of all triangle vertices stored in the
*.stl file. Thus, curved surfaces will be approximated by these flat patches.
For curved surfaces with small radii, small triangles are needed to have an
accurate surface representation, possibly leading to very large file sizes for
highly complex objects.

240 • PraCtiCal Heat transfer

The COMSOL Multiphysics file option allows the analyst to import into
the definition of the current component a geometry extracted from another
COMSOL Multiphysics file. Such a source geometry file can be created in
the first place by right-clicking on the Geometry and selecting Export. A
file in a *.mphbin format is then created, which can be selected for import
via this option.

The 3D CAD File option is only available for 3D components and will
only be visible if the analyst has one of several optional add-ons, such as
the CAD Import Module or one of the LiveLink Modules. CAD files of
several different formats can be imported. These include non-proprietary
geometry exchange formats, such as *.step, *.sat, and*.iges, and proprietary
ones, such as the SOLIDWORKS part (*.sldprt) and assembly (*.sldasm).

7.4 Adding Materials

After the model geometry is created or imported, the next step is to add
one or more materials to the entire domain (consisting of subdomains). A
material needs to be assigned to each domain of the model. Materials can
be added from: (a) the list of the built-in basic ones that are included with
the core COMSOL Multiphysics package, (b) the optional Material Library
add-on Module, or (c) by introducing a blank material and providing the
input data by filling the related fields (e.g., mechanical and thermophysical
properties).

Items such as variables, parameters, and materials may be added either
at the: (a) local (directly under the subcomponent, such as tree leaf, local)
level or (b) global (under the upper-level component, such as tree trunk,
global) level. In the latter case, a link is to be created, connecting the local
property or entity (child) to the global property or entity (parent). Any of
the preset parameters (or variables), including the material properties and
solution control options, may be revised at any time.

7.5 Adding or Revising Physics

Even after the physics and study selections have been made during the
model setup, it is possible to add a new physics under the current Component
or a new study under the Root (top-level tree). It is also possible to add a
new Component (of any dimension) under the Root. The user may add the
Study Steps as well as a variety of sweeps (e.g., Parametric, Function, and
Material Sweep). Study Extensions may also be activated under each of the

tHe CoMsol MultiPHysiCs Models • 241

Study Steps. The latter two features make it possible to perform sensitivity
analysis for the selected parameter (or variable).

The sub-physics and conditions (e.g., boundary conditions such as
inflow, symmetry, heat flux, and loads) are added under the main physics.
The user should ensure that these sets of input data are provided so that
the problem solution can be attempted. In case a boundary condition is
missing, the program may employ the default conditions for the missing
regions (e.g., lines, areas, volumes) if the user has not excluded them from
the physics. For example, when defining the material for the first time, its
properties are propagated to the entire geometry to be analyzed. However,
this is not the case if the user decides to exclude parts of the geometry from
the physics or material definition. Leaving the properties of the materials
the same as the default values is advantageous in the sense that errors due
to the missing information (e.g., options, properties, and their values) are
avoided. The disadvantage of this method is when the user inadvertently
neglects setting up the options that are not shared among all the features
such as radiation properties.

7.6 Solution

If a model consists of multiple components and physics, they are
solved in the order in which they were defined. The user can choose which
component-physics to solve by placing a checkmark in the corresponding
box (under Study Step > Physics and Variable Selections). Additionally,
the component mesh for the selected physics can be confirmed so that
the user can ensure that the correct physics and component are selected.
This means the user can exclude an analysis if they are not interested in
solving it by not placing the checkmark in its box. This may be done either
to perform the analysis in multiple steps, where the output of one analysis
is the input to the next analysis (in whatever order desired) or when there
is no interest in performing the analysis steps simultaneously; for example,
when the effect of including or excluding certain features (e.g., heat flux
versus the convection boundary condition) is to be studied individually
using the Parameter Sweep.

Another application of a sweep feature is when it is required to run
multiple solutions for different combinations of model materials. For
example, if there are several different fluids (n) to be modeled with one
region and several solids (m) with another region, one can explore the effect
of having them in the model in all possible combinations. Then, choosing

242 • PraCtiCal Heat transfer

the All combinations setting in the Parametric (or Material) Sweep setup,
results in m n scenarios in total that are solved for.

7.7 The COMSOL LiveLink for MATLAB

A connection between COMSOL Multiphysics and the MATLAB
scripting environment is possible by means of LiveLink for MATLAB,
a COMSOL add-on module. This module makes it possible to create
a COMSOL model using the MATLAB script that includes the use
of the COMSOL API. The API (Application Programming Interface)
provides access to the internal COMSOL commands from the MATLAB
environment. These are the same commands that are executed in the
background when working with the COMSOL Multiphysics graphical user
interface.

All actions taken when creating the COMSOL Multiphysics model are
recorded in the model history as a Java code. When the model is saved as
the Model File for Java (*.java), this code is exported and can be reviewed
later. In other words, this code gives access to the building blocks of the
FEM model. This is similar to the way macros can be created when working
in Excel, with all the steps taken, such as selections, executing mathematical
operations, and adding text, recorded to be later retrieved and modified, if
needed, using the built-in Visual Basic editor.

This means that any operation performed in COMSOL Multiphysics
creates a command (simplified Java script-based) which is added to the
MATLAB script. Therefore, using this feature, one can define material
properties or boundary conditions as the MATLAB script, which is then
evaluated when the script is run. Incorporating the COMSOL Multiphysics
commands within a script makes it possible to implement, for example,
nested loops (e.g., for or while) and conditional model settings using the if –
switch statements. This link is bidirectional, meaning that if changes are
made to the MATLAB script or within the MATLAB environment, they
become simultaneously available in COMSOL Multiphysics; the opposite
is true as well.

Figure 7.12 shows a Java script created in the COMSOL Multiphysics
environment. A 3D model of a 150-mm long pipe with exterior diameter
of 65 mm and interior diameter of 55 mm is generated by creating two
concentric cylinders with center of one end positioned at (0, 0, 0). Reviewing
the code, the analyst can see that the file name is HollowCylin_3D_Conj
located on the G drive. One component (comp1) is created and added to the

tHe CoMsol MultiPHysiCs Models • 243

FIGURE 7.12. Java script created in COMSOL Multiphysics to set up the model geometry.

model. Within this component there is a single geometry (geom1), consisting
of two cylindrical features (cyl1 and cyl2). Cylinder 1—geom(“geom1”).
feature(“cyl1”, “Cylinder”)—has its dimensions of radius and height defined
by feature(“cyl1”).set(“r”, 0.065), feature(“cyl1”).set(“h”, 0.15).

Cylinder 2 is created by copying the Cylinder 1 and then changing
its radius: feature().duplicate(“cyl2”, “cyl1”). COMSOL Multiphysics has
a command called Compact History, which can be found under the File
menu. Applying this command before saving the file into a *.java deletes
unnecessary steps that were carried out at the time of model creation.

244 • PraCtiCal Heat transfer

Figure 7.13 is the Java script presented earlier but after the Compact
History command has been applied. Comparing the two versions, one can
see that most of the code is the same, except for the duplication step to
create the second cylinder—geom(“geome1”).feature(“cyl2”, “Cylinder”).
The redundant model creation steps are deleted in the compacted script;
however, the disadvantage is that some of the steps that were employed to
create the model by the user may be lost and thus one may not be able to
learn about the techniques employed.

FIGURE 7.13. Java script created in COMSOL Multiphysics to set up the model
geometry, after applying the Compact History.

tHe CoMsol MultiPHysiCs Models • 245

Adding material to the model is the next step. Water is assigned to the
interior cylinder (Domain 2) in this case and its properties are chosen from
the built-in library. Figure 7.14 shows the Java script for the material block.
Note that there are eight properties defined for water in the built-in library
(e.g., heat capacity, density, and bulk viscosity). These properties are defined
within the library using different functions (e.g., piecewise, interpolation,
and analytic). Among these properties, only the thermal conductivity (k)
is selected for this exercise. Thermal conductivity—k in W/(mK)—for
water is a Piecewise function with the temperature—T in K—used as the
argument (arg), meaning that the property is temperature-dependent. This
method makes it possible to use the MATLAB functions to set the model
properties, and then feed them into COMSOL Multiphysics. This approach
provides the freedom to define any property relationship using the very
versatile the MATLAB tools.

FIGURE 7.14. Java script created in COMSOL Multiphysics to define materials.

Physics physics().create(“ht”, “HeatTransferInSolidsAndFluids”, “geom1”)
is added as the next step, followed by the boundary conditions (bound-
ary heat source, convective boundary, temperature, inflow, and outflow)
applied to the selected boundaries and domains (Figure 7.15). The con-
vective heat flux boundary condition, feature(“hf1”).set(“HeatFluxType”,

246 • PraCtiCal Heat transfer

FIGURE 7.15. Java script created in COMSOL Multiphysics to define boundary conditions.

“ConvectiveHeatFlux”), is applied to the surfaces (1, 2, 9, 12) of Domain 2,
with heat transfer coefficient and external temperature, defined by (“h”,

tHe CoMsol MultiPHysiCs Models • 247

“10[W/(m^2*K)]”) and (“Text”, “300[K]”), respectively. The boundary heat
source, (“bhs1”, “BoundaryHeatSource”, 2), is applied to the Surfaces (3, 4)
in Domain 2, (“Qb”, “100[W/m^2]”). The temperature boundary condition
of 500 K is applied to Surface 8 in Domain 1, (“temp1”, “Temperature-
Boundary”, 2), by (“T0”, “500[K]”). The temperature boundary condition
is overwritten by the Inflow condition, which is applied to the Surface 8 in
Domain 1, (“ifl1”, “Inflow”, 2). The upstream temperature is 300 K, (“Tu-
str”, “300[K]”). The outflow condition is applied to Surface 7 in Domain 1,
(“ofl1”, “ConvectiveOutflow”, 2), which is where the flow leaves under the
atmospheric conditions.

Mesh (mesh1) and study blocks (std1) are presented in Figure 7.16. The
model is set as transient, model.study(“std1”).create(“time”, “Transient”).
The results are stored in solution 1 (sol1). The fully coupled direct iterative
technique is used to solve the model, (“fc1”, “FullyCoupled”), (“d1”,
“Direct”), and (“i1”, “Iterative”), with the iteration as multigrid, (“mg1”,
“Multigrid”). The solution parameters of the initial time, time step, and
solution time are defined under the related node (“tlist”, “range(0, 1.5,
30)”).

FIGURE 7.16. Java script created in COMSOL Multiphysics to define mesh and solution.

Using the same methodology, the model results and the data related to
selected nodes can be extracted in the Java format and analyzed in MATLAB.
The MATLAB functions such as evaluateHeatFlux, evaluateHeatRate,
evaluateTemperatureGradient, and interpolateTemperature then can
be used to process the extracted data to obtain the results at arbitrary
coordinates. Mesh data can be extracted and manipulated. To sum up, the
extracted data are available as the MATLAB variables ready to be used with
any MATLAB functions.

248 • PraCtiCal Heat transfer

Postprocessing the COMSOL Multiphysics data is also possible, using
the same technique. Figure 7.17 presents the Java script developed related
to a point graph. The Cut Point coordinates are defined by cpt1(0, 0, 0.075),
represented by (“pointx”, 0), (“pointy”, 0), and (“pointz”, 0.075) functions.
The 1D point diagram is associated with the cpt1 and (“cpt1”,“CutPoint3D”)
functions, and shows the transient temperature versus the time at that
point. The axis titles are also defined in this script—(“xlabel”, “Time(s)”).

FIGURE 7.17. Java script created in COMSOL Multiphysics to display transient temperature at a point.

Figure 7.18 presents the Java script that creates a line graph. The Cut Line
3D is defined by cln1(0, 0, 0; 0, 0, 0.075), represented by (“genpoints”, new
double[][]{{0, 0, 0}, {0, 0, 0.15}}). The 1D line diagram is associated with
the Cut Line 3D cln1, (“cln1”, “CutLine3D”). The plot shows the variation
of temperature along this line at the given time in the case of transient
analysis.

FIGURE 7.18. Java script created in COMSOL Multiphysics to display temperature variation along a line.

C H A P T E R8
The COMsOL heAT TrAnsfer
PrOBLeM CAse sTUdies

This chapter presents several case studies related to heat transfer in
pipes. These studies employ thermal-fluid models created using the
COMSOL Multiphysics FEM commercial package with two add-

ons: the Heat Transfer Module and the CAD Import Module. These stud-
ies should be helpful in learning about the software; they range from less
complex cases (a cylindrical pipe) to more complex ones (a cylindrical pipe
with internal-external extended surfaces). All models are represented in
3D; however, in one case, a validation is conducted to compare the results
of the base condition (a 3D cylindrical pipe) with a 2D axisymmetric model
of the same geometry.

The physical system modeled is the same as that of the metal (copper)
pipe through which hot water is flowing. The pipe’s exterior is exposed to
atmospheric conditions with natural convection. The model considers both
the flow of water and the heat transfer between water and the pipe solid.
This interaction between a non-isothermal flow and a solid requires addition
of a Conjugate Heat Transfer physics into the model. A stationary model is
solved representing the state of the system after it reaches equilibrium.
These cases are comparable to the case investigated within MATLAB with
nominally one-inch diameter copper pipe (Section 6.1). However, the
MATLAB model involved a greater degree of approximation.

The COMSOL Multiphysics model files are made available for most
of the case studies presented in the following sections. The reader is
encouraged to think about heat transfer concepts in these case studies,

250 • PraCtiCal Heat transfer

review the model files, and make new scenarios by changing the variables,
which they can then solve and post-process using the guidelines provided in
this book. True learning happens only by patience and practice.

The next section introduces the overall process of modeling for these
case studies; following that, the five case studies that investigate the effect of
the extended surfaces are presented. The last section presents a comparison
of the results.

8.1 Modeling Heat Transfer in a Pipe—Overview of the
Case Studies

The purpose of these studies is to compare the heat loss to the
environment for the selected pipes. It is expected that pipes with greater
area of extended surfaces will show a lower average temperature on the
pipe wall. Effort was made to use pipe geometries with similar dimensions
to make the comparisons possible. The base case scenario is a simple pipe
(a hollow cylinder). The first enhancement is to make an internally finned
pipe; next, an externally finned pipe, and then an internally-externally-
finned pipe. The final geometry is an externally-twisted-finned, rotini-
shaped pipe.

For each geometry, the exterior surface area and other geometrical
parameters are calculated to investigate the effect of adding the extended
surfaces in the form of internal, external, and internal-external extended
fins.

8.1.1 Model Geometry
All pipe geometries were created in a dedicated CAD software

(SOLIDWORKS) and exported as the *.stp files. These files were then
imported into COMSOL Multiphysics, with import applied to both solids
and surfaces. The absolute import tolerance was 1e-5, unless otherwise
stated. The imported objects were checked and repaired for errors based
on the above tolerance. A CAD Import Module or a specific CAD tool
LiveLink Module are required to enable CAD model import.

Care is to be taken when importing the geometry data, ensuring the
units are correctly set. The analyst will also have an option to scale the
geometry dimensions when changing units or to keep the size unchanged.
The Angular unit of degrees and Length unit of m were employed when
importing the geometries. The analyst can always confirm any of the model’s
dimensions using the Measure feature under the Geometry node.

tHe CoMsol Heat transfer ProBleM Case studies • 251

If required, it is possible to modify the imported geometry, taking
advantage of the built-in features available in the COMSOL Multiphysics
base module. For example, the geometry may be cut by a plane to remove
one of the resulting volumes. To carry out more complex geometry
operations, such as creation of fillets or advanced defeaturing, the Design
Module is required.

The imported part is a hollow pipe, with no material defined within
its interior. However, to create the flow model within the pipe’s interior,
a domain needs to exist there. This interior domain is created by carrying
out a capping operation on the two ends of the pipe. To do this, the edges
around the pipe opening are selected within the Geometry, Cap Faces node.

The pipe geometry is oriented so that the pipe axis is aligned with the
z-coordinate, with flow along the positive z-coordinate. Gravity is assumed
to act along the negative y-coordinate. The x- and z-coordinates form the
horizontal plane.

In each study, the domain volume and convective surface area are
measured using the COMSOL built in geometry measuring tool. The pipe
volume can be obtained by selecting the Measure feature by right-clicking
on the Geometry node. Within the tool, the Geometric entity level is set to
Domain, and the pipe (solid) domain is selected. The pipe volume refers to
the volume of the pipe itself and not its interior space.

The convective surfaces include all exterior surface excluding the
end surfaces, since these surfaces are assumed insulated. The convective
surfaces can be measured by selecting the Measure as above. Within the
tool, the Geometric entity level is set to Boundary, and the pipe exterior
surfaces are selected.

8.1.2 Material Properties
The model includes two materials: the copper of the pipe and the water

that flows through it. These materials are available in the built-in material
database of COMSOL, and thus were added to the model from there. Their
properties include, for example, temperature-dependent density for water.
Materials can be added to the model at the global level or at the component
level. In the former case, the material would then be referenced by each of
the components. Thus, if any customization is done to it, the effect would
propagate to all components. In this case, materials were added on the
component level. Here, the component means the 3D model of the pipe
geometry. Water is linked to the material properties of the fluid domain
inside the pipe and copper is linked to the pipe (shell) domain.

252 • PraCtiCal Heat transfer

8.1.3 Model Physics
Conjugate Heat Transfer physics in the COMSOL Multiphysics Heat

Transfer Module is selected to define and solve these problems, which is
a hybrid model consisting of Heat Transfer in Solids and Fluids (ht) and
Laminar/Turbulent Flow (spf) physics. The former physics are employed
to model heat transfer within the solid domain (i.e., pipe with fins and the
conductive shell containing the fluid), while the latter physics are selected
to model the flow inside the channel. The two physics are interfacing under
the Multiphysics node and create the Nonisothermal Flow model.

8.1.4 Boundary and Initial Conditions
All pipe models are set up to represent the following conditions. The

exterior surfaces are exposed to a constant ambient temperature (25 °C); the
pipe initial temperature is 80 °C. Water flows within the pipe at a constant
average speed of 50 mm/s and at initial temperature of 80 °C at the inlet.
All the external (exposed) surfaces transfer heat by convection mechanism
with the convection heat transfer coefficient of 10 W/m2K. The external
end surfaces at the inlet and outlet areas are insulated (heating flux of
0 W/m2). There is no internal heat source within the (pipe) solid domain
(heat rate of 0 W/m3). All internal interfaces (the interface between the
solids and fluids) are treated as walls in the flow models.

The Reynolds number was considered when setting up the problem
by selecting a flow velocity sufficiently low that a laminar flow will result.
These studies focus on the heat exchange between the fins and the exterior,
and thus complex turbulent fluid flow in the pipe interior is not considered
here. The inlet velocity of 50 mm/s results in a Reynolds number of 1,420
(< 2,300), which is associated with a laminar regime. The input parameters
variable names and values are listed in Table 8.1.

TABLE 8.1. Thermal model input parameters.

Parameters

Name Expression Value Description

density 1000[kg/m^3] 1000 kg/m3 fluid density

diam 0.995[in] 0.025273 m pipe diameter

dyn_vis (8.90/10000)[Pa*s] 8.9E-4 Pa.s fluid dynmaic viscosity

hc 10[W/(m^2*k] 10[W/m2K] heat convection coefficient

qf 0[W/m^2] 0 W/m2 heat flux

qfunc 0[W/m^3] 0 W/m3 heat generation

tHe CoMsol Heat transfer ProBleM Case studies • 253

Parameters

Name Expression Value Description

Reynolds density*velocity*
diam/dyn_vis

1,419.8 fluid Reynolds number

T_ambient 25[degC] 298.15 K ambient temperature

T0_aluminum 25[degC] 298.15 K aluminium initial tempeature

T0_water 80[degC] 353.15 K water initial temperature

time 120[s] 120 s solution time

toler 0.05 0.05 solution toleance

velocity 50[mm/s] 0.05 m/s flow velocity

The conditions described above are implemented within each physics node
described below.

Heat Transfer in the Solids and Fluids (ht) Node

(1) Node root—Applied to the solid and fluid domains, and the reference
temperature is set to T_ambient.

(2) Solid—Applied to the solid (pipe and fins) domain. Relevant thermal
material properties are taken from the materials added to the compo-
nent as described above.

(3) Fluid—Applied to the fluid domain (water) inside the pipe. Relevant
thermal properties are taken from the materials added to the compo-
nents. See Note 1.

(4) Initial values—The initial temperature is set to T0_water for both solid
and fluid domains.

(5) Thermal insulation—Applied to both end surfaces of the pipe solid
domain.

(6) Heat flux—Convective heat flux of hc is applied to all exterior surfaces,
with the ambient temperature set to T_ambient.

(7) Inflow—The end surface of the fluid domain when the lower z-coordi-
nate value is selected and T0_water upstream temperature is applied
to it.

(8) Outflow—The end surface of the fluid domain when the z = 0 value is
selected.

254 • PraCtiCal Heat transfer

Laminar/Turbulent Flow (spf) Node

(1) Node root—Applied to the fluid domain (water). Compressibility is set
to Weakly compressible flow (see Note 2). Include gravity is selected.
Discretization of fluids is selected as P1 + P2 (see Note 3).

(2) Fluid properties—Applied to the fluid domain and the applicable ma-
terial properties are taken from the materials added to the component
as described above.

(3) Initial values—Applied to the fluid domain uses a velocity field with a
z-component equal to the velocity variable and pressure is set to that of
the ambient (zero value).

(4) Wall—Applied to all interior pipe walls with a No slip wall condition.

(5) Gravity—This volumetric force is introduced as the Acceleration of
gravity that can have x-, y-, and z-components. The gravity is assumed
to act perpendicular to the pipe’s longitudinal axis (z-coordinate),
along the negative y-coordinate and thus a –g_const variable value is
entered under the y-component.

(6) Inlet—Applied to the fluid domain end where the z-coordinate value
is lower. The inlet boundary condition can be defined as one of Veloc-
ity, Pressure, Mass flow, and Fully developed flow. For the problems
herein, the Velocity option is selected, and the Normal inflow velocity
is set to the velocity variable value.

(7) Outlet—Applied to the fluid domain end where the z-coordinate value
is zero. The outlet boundary condition can be defined as one of Pres-
sure, Velocity, and Fully developed flow. For the problems herein, the
Fully developed flow option is selected, and the Average pressure is set
to that of the ambient (zero value). Also, the Compensate for hydro-
static pressure approximation option is selected since gravity is acting
transverse to the flow direction.

tHe CoMsol Heat transfer ProBleM Case studies • 255

Notes (1) A Fluid node is also included in the solid physics model in
the Conjugate Heat Transfer cases. This means that both
domains (solids and fluids) are included in the main phys-
ics (Heat Transfer in Solids and Fluids). Thus, the fluid
domains are selected within the Fluid node above and in the
Laminar Flow physics. In heat transfer models, temperature
can be discretized using linear, Lagrange or Serendipity
(quadratic, cubic, quantic, and quintic) elements for qua-
dratic or higher order discretization. The Isothermal Do-
main Interface in Heat Transfer in Solids and Fluids node
are included; furthermore, the interface type can be selected
as Continuity, Ventilation, Convective heat flux, Thermal
insulation, and Thermal contact. However, in this case,
the applicable boundaries become visible, and the rest are
grayed out (not selectable) and since all of them are greyed
out, the isothermal domain is not applicable.

(2) When setting up the Laminar Flow model, the Compress-
ibility condition can be selected as either Incompressible,
Weakly compressible, or Compressible with Ma < 0.3
flows. Choosing an appropriate option may be able to
improve the solution convergence in case difficulties are
encountered. In this study, the Weakly compressible flow
is assumed.

(3) Fluid domains can be discretized using the first to the
third order elements for the velocity and pressure fields.
This can be controlled by selection of any combination of
the Pi + Pj, where 1 £ i, j £ 3; i and j are the order of the
elements for the velocity components and pressure fields,
respectively. For example, P1 + P3 presents the linear
elements for the velocity components and the third order
elements for the pressure fields.

8.1.5 Meshing
Physics-Controlled mesh is selected for the problems presented herein

with the element size setting that varies from Coarse to Finer, depending
on the model. The choice of the mesh element size determines the number
of nodes and elements in the model. Creating the mesh by selecting the
Finer element size may result in about one-million elements (for the models
presented herein), while selecting Coarse element size may result in two-
hundred thousand elements.

256 • PraCtiCal Heat transfer

Choosing the Physics-Controlled mesh setting means that all the mesh
parameters will be set automatically based on the physics used in the model,
region type, model geometry (narrow regions, walls), and the element size
selection from one of nine levels, ranging from Extremely Fine to Extremely
Coarse.

To examine the mesh settings chosen by COMSOL, select the Sequence
type setting and choose the User-controlled mesh instead. This will reveal
a set of nodes under the Mesh node that define all the mesh parameters in
detail. Any one of them can then be adjusted by the user. For each case
study below, the maximum and minimum overall mesh size limits are
reported; special mesh limits imposed on the fluid domain are reported,
as well.

The purpose of these case studies is to familiarize the reader with the
FEM techniques and establish a reference to compare heat transfer rates
between different geometries. Thus, there is no need to create models with
an excessively high number of nodes that may lead to very long solution
times. To choose an appropriate setting, element size sensitivity analysis
may be carried out with gradually decreasing size, starting from a coarse
setting. As the element size is progressively decreased, selected solution
output value can be compared between iterations; once no change is
detected, the appropriate element size has been reached.

8.1.6 Solution Settings
Heat Transfer in Solids and Fluids (ht) and Laminar Flow (spf) physics

are connected through the Multiphysics node, which assembles them. The
Nonisothermal node created under the Multiphysics node couples the
solid-fluid interfaces by identifying the Flow (spf) and Heat transfer (ht)
models. In these case studies, the Stationary Solver is employed. If Show
Default Solver under the Stationary solution node is activated, the analyst
can review the solution settings and implement any desired changes.

For these analyses, Direct Nonisothermal flow (merged) has been
selected from the Linear Solver menu, AMG Nonisothermal flow, or
iterative option, is also available. The disadvantage of the direct method
is that all the matrices are solved simultaneously, and therefore it requires
large computational memory resources compared to the iterative method.
However, the latter approach is more likely to result in convergency issues;
the Direct Solver approach is generally better in that regard. For the
presented analyses, the former approach is helpful in obtaining solution
convergence.

tHe CoMsol Heat transfer ProBleM Case studies • 257

If the Transient Solver is chosen, time-dependent solver settings such
as Output times and Relative tolerance should be specified. The Output
times can be defined by range(initial time, time step, solution time). The
initial values of variables solved for may be chosen either as the Physics
controlled, User controlled settings with the Initial expression, Solution of
Zero solution, or the previously-run Study. As part of the settings for the
Study node, the Information tab identifies the last computation time. The
default Relative tolerance in the convergence setting is 0.005; however, this
can be revised after reviewing the convergence plot. This plot shows the
reciprocal of step size versus the time step for the time-dependent solver.
The larger the step size is, the more the solution can advance, resulting in
a smaller reciprocal step size. This means the smaller values are associated
with better solution convergence. If the reciprocal step size remains large,
it means that the solution is not converging. This can also be due to the
accumulation of errors (residual errors) at each iteration step to the point of
solution divergence. When a flow model is combined with the heat transfer
model, convergence tolerance values may be affected.

8.2 Case Study 1—Pipe

8.2.1 3D Model Setup and Results
Case study 1 is the base study, where a pipe does not include any

extended surfaces. The model parameters are presented in Table 8.1.
The geometry used in this study is presented in Figure 8.1. It represents
a copper pipe of 0.2-m length with nominal one-inch diameter. The inlet,
where water enters the pipe, is located at z = -0.2-m and the outlet is
at the opposite end at z = 0. The gravity vector points along the negative
y-coordinate, which is perpendicular to the flow direction (Figure 8.2).

FIGURE 8.1. Geometry of the not-finned pipe (dimensions in mm).

258 • PraCtiCal Heat transfer

 (a) (b)

FIGURE 8.2. (a) Inlet, (b) Outlet.

Figure 8.3 presents the meshed geometry. The generated mesh had the
overall maximum and minimum element sizes of 0.016 m and 0.002 m,
respectively. The fluid domain and boundary maximum element sizes were
0.00195 m and 5.81E-4 m, respectively, with the maximum element growth
rate of 1.45.

FIGURE 8.3. Mesh distribution for the not-finned pipe.

Figure 8.4 presents the mesh statistics for this problem. The Fine mesh size
option is selected to mesh the entire geometry using the Physics-Controlled
setting. The total number of elements is 637,366; the average element
quality is about 0.7. On a 32 GB RAM, Intel® Core™ i7-10,700K 3.8 GHz
Windows 10 computer, it required about 89 min to solve this stationary
model, using COMSOL Multiphysics 5.6. The maximum physical memory
required by the solution was 3.1 GB, which can be found under the Log tab.

tHe CoMsol Heat transfer ProBleM Case studies • 259

FIGURE 8.4. Mesh statistical data for the not-finned pipe.

Figure 8.5 presents the volume temperature contours. As a reminder, water
enters the pipe at the inlet centered at (0,0,-0.2,)m and exits at the outlet
at (0,0,0). Thus, the hottest area on the plot (80 °C) is on the lower left,
where the inlet is located. The pipe exterior can be seen to progressively
cool to about 79.2 °C, from the inlet to outlet, due to the convective heat
transfer to the environment.

260 • PraCtiCal Heat transfer

FIGURE 8.5. Volume temperature contours.

The next plots investigate the distribution of the temperature in the pipe’s
interior. This can be done by looking at the surface contours or at the
variation along any line in space. First, the plane of interest is created by
the Cut Plane command under the Results / Datasets node. Then, a 2D Plot
Group is created under the Results node, the previously defined surface is
selected as the plot’s dataset, and a Surface plot type is added. The figures
shown also display the fluid velocity streamlines. A line dataset selection
is created similarly under the Results, Datasets node by the Cut Line 3D
command. A 1D Plot Group is created and a Line Graph is added to it
showing the variation of the temperature along this line.

Figure 8.6 shows the temperature contours and flow lines over the
horizontal zx-midplane. The plot shows pipe walls being cooler than the
fluid; the walls cool from left to right; a cooler region develops near the
interior wall surface as the fluid flows from left to right. Details of the
temperature variation over the transverse pipe section can be seen in
the surface plots for the vertical transverse xy-plane located at the pipe’s
midpoint (Figure 8.7). Observing the fluid flow streamlines, one can see
circulatory flow, with the fluid descending along the left and right walls as
it is cooled there and ascending through the pipe’s middle, forming two
eddies. This shows the effect of adding to the model the gravity force along
the negative y-coordinate.

Figure 8.8 shows the temperature contours and flow lines over the
vertical yz-plane. The plot is zoomed to the outlet side of the pipe. Of
interest is the observation that the flow streamlines are curving upwards

tHe CoMsol Heat transfer ProBleM Case studies • 261

towards the exit. One can relate this behavior to the circulatory flow
observed in the transverse section. As the cooled water flows along the side
walls, it collects towards the bottom of the pipe, forcing upward the flow
through the middle. Thus, the warmer central fluid passing through the
midplane is effectively rising, as indicated by the flow lines.

(a)

(b)
FIGURE 8.6. The zx-plane: (a) Selected cross-section for thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

262 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.7. The xy-plane: (a) Selected cross-section for thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

tHe CoMsol Heat transfer ProBleM Case studies • 263

(a)

(b)
FIGURE 8.8. The yz-plane: (a) Selected cross-section for thermal data, (b) Temperature contours at the

selected cross section, including the streamline velocity field (outlet at z = 0).

More precise numerical data about the temperature variation can be
obtained from the line plots. Figure 8.9 shows temperatures along three
vertical (y-coordinate) lines placed along the diameter at the inlet, middle,
and outlet of the pipe. The inlet profile shows a rectangular shape with
the horizontal middle segment at 80 °C, specified by the inlet temperature
boundary conditions. The middle and outlet profiles show a progressive
reduction in the temperature near the walls, with a parabolic profile being
developed. Near the exit, the temperature in the lower pipe wall is 79.05 °C.

264 • PraCtiCal Heat transfer

Similar effects can be seen for the temperature profiles along the horizontal
(y-coordinate) lines in Figure 8.10.

(a)

(b)
FIGURE 8.9. The y-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

tHe CoMsol Heat transfer ProBleM Case studies • 265

(a)

(b)
FIGURE 8.10. The x-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

To calculate the heat loss from the pipe to the environment, the heat flux
across the exterior surfaces of the pipe needs to be integrated. To accomplish
this, the Surface Integration node is added under the Results/Derived
Values. Within the Surface Integration node, one selects the surfaces of
interest and the variable to be integrated over these surfaces. In this case,
there are two exterior surfaces, one facing downwards (surface 1) and the

266 • PraCtiCal Heat transfer

other one upwards (surface 2), as shown in Figure 8.11. The variable to be
integrated is the normal total heat flux (W), ht.ntflux. To select it, place
cursor in the cell of the table found in the Expressions window, under the
Expression column (Figure 8.11, inset) and click on the Insert Expression
icon circled in the inset figure. Search for the variable name within the
dialog box that appears. Then, click on the Evaluate button (indicated by
the red arrow) in Figure 8.11. The result appears in the table below the
Graphics window (indicated by the red square).

FIGURE 8.11. Normal total heat flux over surface 1 and surface 2.

The result of the above heat flux integration over the exterior surfaces is
9.75 W. The heat rate per unit length of the pipe is obtained by dividing
this value by the pipe length of 0.2 m to obtain 48.76 W/m. Comparing this
value with that obtained in the MATLAB Case Study 1 in Section 8.1 above
(49.4 W/m) for the same conditions, the COMSOL result is 1.3% smaller
than that of the MATLAB model. One possible explanation for this small
difference is that the MATLAB model assumed a fixed temperature BC
on the interior pipe surface while in this COMSOL model water cools as it
moves along the pipe length. This slightly reduces temperature difference
between environment and the pipe and surface and should lead to a lower
heat loss rate.

tHe CoMsol Heat transfer ProBleM Case studies • 267

8.2.2 Validation—Comparison with 2D Pipe Model
In this section, the 3D pipe model used in this case study is replaced

with an equivalent 2D axisymmetric geometry. Solving the same problem
with two different geometries and comparing the results provides validation
for both approaches. As a reminder, the model input parameters are listed
in Table 8.1. The solution takes about 1 min, which is considerably faster
than that of the 3D model.

The 2D axisymmetric model is shown in Figure 8.12a. The inlet is
located at z = 0 and the outlet at z = 0.2. The gravity force is not accounted
for in this model because it assumed axisymmetric setup. The 2D free
triangular mesh is generated with the Physics Controlled method. The
Finer mesh size is used for the solid domain, which results in the maximum
and minimum element sizes of 0.0074 m and 2.5E-5 m, respectively), and
the Fine mesh size is used for the fluid domain (maximum and minimum
element sizes of 5.0E-4 m and 1.43E-5 m, respectively). The boundaries
between the fluid and solid domains (fluid-solid interface) are meshed using
the Extra Fine elements (giving the maximum and minimum element sizes
of 1.86E-4 m and 2.14E-6 m, respectively). The corners are refined using
the element size scaling factor of 0.25. There are two boundary layers and
maximum element growth rate is 1.25 (Figure 8.12b). The mesh consists of
the total number of 57,217 elements, with the average element quality of
about 0.9 (a high number).

 (a) (b)
FIGURE 8.12. The 2D axisymmetric geometry for the pipe presented in Figure 8.1:

(a) Geometry, (b) Mesh.

268 • PraCtiCal Heat transfer

The model is solved in the stationary mode. The 2D revolved surface
tempeature profiles are presented in Figure 8.13. The results of this 2D
geometry are plotted using the revolution feature that rotates the solution
through 360 degrees about the axis of symmetry (z-coordinate) to create
a 3D representation that helps with visualization. These results show that
the temperature variation for the entire pipe is between 78.7 °C and 80 °C.

A comparison can be now made between the 2D and 3D model results.
Figure 8.14 shows the temperature profiles along the pipe diameter at
its middle (along the y-coordinate for the 3D model). The temperature
distributions are similar but the 2D model predicts slightly lower pipe wall
temperature of 79 °C versus the 79.3 °C for the 3D model. The heat rate
per unit length of the pipe in this case is 48.52 W/m, which is only 0.5% less
than that of predicted by the 3D pipe model.

(a)

 (b)

FIGURE 8.13. 2D temperature contours: (a) Included the arrow line and
streamline velocity field, (b) Revolved.

tHe CoMsol Heat transfer ProBleM Case studies • 269

FIGURE 8.14. Comparison between the temperature profiles along the pipe diameter
at the midplane for the 2D and 3D models.

8.3 Case Study 2—Internally-Finned Pipe

The geometry used in this study is presented in Figure 8.15. This case
study investigates the effect of the heat dissipation by the pipe due to the
addition of the extended surfaces to the pipe’s interior surface. This pipe
geometry adds sixteen rectangular fins, about 2-mm wide and 2.5-mm high,
protruding towards the interior.

FIGURE 8.15. Geometry of the internally finned pipe (dimenions in mm).

Figure 8.16 presents the mesh for the finalized geometry. For this mesh,
the maximum and minimum element sizes are 0.03 m and 0.0056 m,
respectively. The fluid domain maximum and minimum element sizes
are 0.00378 m and 0.00116 m, respectively, with the maximum element
growth rate of 1.6. The Coarse mesh size option is selected to mesh the

270 • PraCtiCal Heat transfer

entire geometry based on the Physics-Controlled approach. There are a
total of 1,385,085 elements, with the average element quality of 0.6. Note
the increased number of elements compared to the previous simple pipe
case; this effect can be attributed to the many narrow regions created by
the interior fins, where finer mesh is required. On a 64 GB RAM, Intel
Core i7-5,820 K 3.9 GHz Windows 10 computer, it required about 122 min
to solve this stationary Conjugate Heat Transfer model using COMSOL
Multiphysics 5.6, with a maximum of about 37 GB physical memory used.

Figure 8.17 presents the volume temperature contours. As in the
previous case study, the exterior wall temperature decreases due to the
convection heat transfer, from the inlet in the lower left to the outlet in the
upper right.

FIGURE 8.16. Mesh distribution for the internally finned pipe.

FIGURE 8.17. Volume temperature contours.

tHe CoMsol Heat transfer ProBleM Case studies • 271

Interior variation of the temperature on the horizontal midsection
zx-plane in Figure 8.18a is shown by the temperature contour plot in
Figure 8.18b. The appearance is like that of the simple pipe, except the
walls at the midplane are thicker due to the fins protruding towards the
interior. Figure 8.19b shows the temperature contours and flowlines on
the transverse xy-plane in the pipe’s middle (Figure 8.19a). Here the fins
protruding into the interior create cooler pockets; the flowlines indicate
upward flow over most of the cross section, converging at a point near the
upper end of the pipe.

(a)

(b)
FIGURE 8.18. The zx-plane: (a) Selected cross-section for thermal data,

(b) Temperature contours at the selected cross section including the streamline velocity field.

272 • PraCtiCal Heat transfer

(a)

 (b)
FIGURE 8.19. The xy-plane: (a) Selected cross-section for thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

Figure 8.20b zooms in on part of the vertical yz-plane near the pipe outlet.
As in the simple pipe case, the flowlines for most of the fluid’s volume are
rising upwards; the warmer water around the flow channel center appears
to be pushed upwards by the cooler water collecting near the bottom.

Figure 8.21b shows the temperature profiles along the three vertical
diameter lines at the inlet, middle, and outlet locations. The inlet and
middle curves are symmetrical about their vertical center line, but the
outlet curve shows a lower temperature on the left side, corresponding with
the bottom of the flow channel, where the cooler water is concentrated.

tHe CoMsol Heat transfer ProBleM Case studies • 273

The exterior wall temperatures in general are higher for this case that of
the simple pipe. Near the outlet, the wall exterior is at 79.35 °C near the
bottom (versus the 79.05 °C for the simple pipe) and 79.47 °C near the top.
Three horizontal line temperature profiles are displayed in Figure 8.22b.
The curves are symmetrical about the vertical center line and show exterior
wall temperature at the outlet equal to 79.4 °C.

(a)

(b)
FIGURE 8.20. The yz-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

274 • PraCtiCal Heat transfer

(a)

 (b)
FIGURE 8.21. The y-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

(a)

tHe CoMsol Heat transfer ProBleM Case studies • 275

 (b)
FIGURE 8.22. The x-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

Heat flux integration across the exterior surface gives the total heat loss to
the environment equal to 9.79 W. This is equivalent to 48.95 W/m heat rate
per unit length of the pipe. The result is very close to the simple not-finned
pipe case (48.76 W/m), being only 0.4% higher.

8.4 Case Study 3—Externally-Finned Pipe

The geometry used in this study is presented in Figure 8.23. This case
study investigates the effect of the heat dissipation due to addition of the

FIGURE 8.23. Geometry for the externally finned pipe (dimenions in mm).

276 • PraCtiCal Heat transfer

extended surfaces to the pipe’s exterior. Sixteen fins of 2-mm wide and
7.5-mm high are added. The pipe, to which the fins are joined, has the same
dimensions as in Case Study 1.

Figure 8.24 presents the meshed geometry. The maximum and
minimum element sizes are 0.016 m and 0.002 m, respectively. The
fluid domain maximum and minimum element sizes are 0.00292 m and
8.72E-4 m, respectively, with the maximum element growth rate of 1.45.
The Normal mesh size option was selected to mesh the entire geometry
based on the Physics-Controlled approach. The total number of elements
is 267,363, with the average element quality of 0.7. Note the much smaller
number of elements in this mesh compared to the previous cases (637,366
for Case 1 and 1,385,085 for Case 2). The Fine mesh size was chosen for
Case 1 versus the Normal chosen here, and there are no corners and narrow
regions within the fluid domain as in Case 2. On a 32 GB RAM, Intel Core
i7-10,700K 3.8 GHz Windows 10 computer, it required about 8 min to solve
this stationary Conjugate Heat Transfer model in COMSOL Multiphysics
5.6, with a maximum of 8.4 GB physical memory used.

Figure 8.25 presents the volume temperature contours. The pipe and
fins exterior are again cooling progressively from the inlet (bottom-left) to
the outlet (top-right). However, there is a greater temperature difference
between the water entering at the inlet (visible in red, at 80 °C) and the
surrounding pipe/fins structure.

FIGURE 8.24. Mesh distribution for the externally finned pipe.

tHe CoMsol Heat transfer ProBleM Case studies • 277

FIGURE 8.25. Volume temperature contours.

The horizontal zx-plane displays much wider cool regions within the solid
domain along its length (Figure 8.26b). The horizontal plane cuts through
the fins and thus their full extent is visible. The transverse xy-plane at the
pipe’s middle shows much stronger circulatory fluid motion within the left
and right halves of the pipe (Figure 8.27b). This can be attributed to the
greater temperature difference between the walls and the fluid in this case
compared with the simple pipe case (at the pipe middle being 2.6 °C versus
0.7 °C). The cooler water along the walls creates a stronger convective flow.
Vertical yz-plane shows upward trending flow lines and the collection of the
cooler water near the bottom of the outlet (Figure 8.28b).

The temperature profiles along the vertical lines (yz-plane) in Figure
8.29b show developing asymmetry towards the outlet; at the end of the
lowest fin near the outlet, the temperature is 76.85 °C; it is 77.15 °C at the
end of the opposite fin, at the topmost point. Profiles along the horizontal
lines (Figure 8.30b) show symmetry about vertical center line, with the fin
end’s temperature of 77 °C at the outlet line.

278 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.26. The zx-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

tHe CoMsol Heat transfer ProBleM Case studies • 279

(a)

(b)
FIGURE 8.27. The xy-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

280 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.28. The yz-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

tHe CoMsol Heat transfer ProBleM Case studies • 281

(a)

(b)
FIGURE 8.29. The y-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

282 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.30. The x-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

Integration of the heat flux across all the exterior surfaces (pipe and fins)
gives 34.75 W. Normalizing this value to the specific heat loss per pipe’s
unit length (dividing by 0.2 m) gives 173.74 W/m. The value is significantly
higher (by 3.56 times) than that of the simple pipe (48.76 W/m). This
difference highlights the effectiveness of the extended surfaces in increasing
the heat dissipation.

tHe CoMsol Heat transfer ProBleM Case studies • 283

8.5 Case Study 4—Internally-Externally-Finned Pipe

The geometry used in this study is presented in Figure 8.31. This
geometry investigates whether having both internal and external fins
increase the heat dissipation from the pipe. Sixteen interior and exterior
fins structures employed in Case Studies 2 and 3 are combined here.

FIGURE 8.31. Geometry of the internal-external finned pipe (dimenions in mm).

Figure 8.24 presents the mesh for this geometry. It has the maximum and
minimum element sizes of 0.03 m and 0.0056 m, respectively. The fluid
domain and boundary maximum element sizes are 0.00566 m and 0.00174 m,
respectively, with the element maximum growth rate of 1.6. The Coarse
mesh size option is selected to mesh the entire geometry based on the
Physics-Controlled approach, resulting in a total of 536,137 elements;
the average element quality is about 0.6. Unexpectedly, the number of
elements is much smaller than the 1,385,085 elements obtained for the
mesh of geometry with the same interior fins (Case Study 2), which also
used the Coarse setting. A possible explanation is that, for the current
geometry, there is a greater area available for meshing within the solid
part due to the addition of the external fins. This means larger elements
can be used. Narrower regions require smaller element sizes. On a 32 GB
RAM, Intel Core i7-10,700K 3.8 GHz Windows 10 computer, it required
about 11 min to solve this stationary Conjugate Heat Transfer model in
COMSOL Multiphysics 5.6, with a maximum of about 13.4 GB physical
memory used.

Figure 8.33 presents the volume temperature contours that appear like
the previous (external fins only) case. The horizontal zx-plane temperature
contours follow the general trend of the previous solution; however, the fin

284 • PraCtiCal Heat transfer

temperature near the inlet appears to be higher than that of the external fins
only case (Figure 8.34b). The transverse xy-plane displays flow circulation
pattern with an upward flow around the middle and a more chaotic flow
around the walls, likely caused by the internal fin structures (Figure 8.35b).
The vertical yz-plane shows the rising flowlines and a cooler pocket near
the bottom of the outlet (Figure 8.36b). The temperature profiles along
the pipe diameter (x- and y-coordinates) are presented in Figure 8.37 and
Figure 8.38, respectively. From the horizontal profile at the pipe’s middle,
one can observe the temperature at the end of the fins to be equal to
78.9 °C. This is about 1.5 °C higher than 77.4 °C for the same location in the
previous study (with the external fins only).

FIGURE 8.32. Mesh distribution for the internally-externally-finned pipe.

FIGURE 8.33. Volume temperature contours.

tHe CoMsol Heat transfer ProBleM Case studies • 285

(a)

(b)
FIGURE 8.34. The zx-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section.

286 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.35. The xy-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section.

tHe CoMsol Heat transfer ProBleM Case studies • 287

(a)

(b)
FIGURE 8.36. The yz-plane: (a) Selected cross section for the thermal data,

 (b) Temperature contours at the selected cross section.

288 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.37. The y-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

tHe CoMsol Heat transfer ProBleM Case studies • 289

(a)

(b)
FIGURE 8.38. The x-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

Heat flux integration over the exterior surfaces (pipe and fins) gives 35.73 W.
Dividing this by the pipe length of 0.2 m, gives the normalized heat loss rate
of 178.6 W/m. This is 2.8% higher than that of the heat loss calculated for
the pipe with only external fins (173.7 W/m). Thus, while there is an increase
in the heat dissipation due to the addition of interior fins, the difference is
very small and may not justify the additional material and manufacturing
expense.

290 • PraCtiCal Heat transfer

8.6 Case Study 5—Externally-Twisted-Finned (Rotini)
Channelled Pipe

The geometry used in this study is presented in Figure 8.39. The fin is
0.2-m long, and its cross section can be inscribed in a 70.3 mm-diameter
circle. The diameter of the internal channel is 25.3 mm. The case study
presented herein is a variation of the rotini fin geometry that the author
presented in her earlier work [4]. Rotini pastas are short and are corkscrew
shaped. Rotini is an Italian term meaning small wheels. It is not only a shape
that is geometrically interesting with its twists and turns, but it also works
well as a pasta, with its large convective surface areas taking up all that
sauce. If an observant reader ever made rotini , they would soon learn that
these pasta shapes cool faster than other types, such as spaghetti (the long
stranded thin ones) [59]. The rotini pasta piece can be considered a type of
fin structure. One can conjecture that the fast cooling must be due to the
very good heat dissipation properties of the rotini’s large convective surface
area. This study aims to determine how this fin shape compares with the
straight fins explored in the previous studies.

FIGURE 8.39. Geometry for the externally-twisted-finned, rotini pipe (dimensions in mm).

Figure 8.40 presents the meshed geometry. The maximum and minimum
element sizes are 0.0172 m and 0.00214 m, respectively. The fluid domain
maximum and minimum element sizes are 0.0048 m and 0.00143 m,
respectively, with the maximum element growth rate of 1.45. The Fine mesh
size option was selected to mesh the entire geometry based on the Physics-
Controlled approach. The mesh contains a total of 78,504 elements, with
the average element quality of about 0.7. Surprisingly, the element count

tHe CoMsol Heat transfer ProBleM Case studies • 291

here is much lower than that of the simple pipe case (637,366), which was
also meshed with the same Fine setting. On a 32 GB RAM, Intel Core
10,700 K 3.8 GHz Windows 10 computer, it took only 1 min to solve this
stationary Conjugate Heat Transfer model in COMSOL Multiphysics 5.6,
with a maximum of 3.4 GB physical memory used. The short solution time
is due to the filleted smooth surfaces on the exterior, which are much easier
to mesh than the sharp corners within the geometry, and due to a smooth
interior surface, which improves the flow model solution convergence by
reducing the flow disturbances.

Figure 8.41 presents the volume temperature contours, with fins
appearing to have similar cool temperature through large part of the pipe’s
length. The horizontal zx-plane temperature contours display cool exterior
solid surfaces and parallel flow lines extending through the length of the

FIGURE 8.40. Mesh distribution for the channeled externally-twisted-finned, rotini pipe.

FIGURE 8.41. Volume temperature contours.

292 • PraCtiCal Heat transfer

channel (Figure 8.42b). Transverse xy-plane plot in Figure 8.43b shows
the low fin temperature and the well-developed circulation pattern, like
the case with the external fins only. The vertical yz-plane in Figure 8.44b
displays trends like those for Case Study 3 with the external fins only.

(a)

(b)
FIGURE 8.42. The zx-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

tHe CoMsol Heat transfer ProBleM Case studies • 293

(a)

(b)
FIGURE 8.43. The xy-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section including the streamline velocity field.

294 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.44. The yz-plane: (a) Selected cross section for the thermal data,

(b) Temperature contours at the selected cross section, including the streamline velocity field.

Due to the curvature of the rotini fin, the vertical and horizontal lines used to
sample the temperature distribution at the inlet, middle, and outlet locations
do not pass through the full extent of the fins. However, the temperature
contour plots shown indicate that there is very little temperature gradient
within the highly conductive fins. The vertical temperature profile at the
outlet shows the asymmetry seen in the earlier cases due to the cooler

tHe CoMsol Heat transfer ProBleM Case studies • 295

fluid accumulation near the pipe’s bottom (Figure 8.45b). The horizontal
profiles are symmetrical (Figure 8.46b) and show the temperature in the
exterior fins at pipe’s middle to be 77.1—0.3 °C lower than that of the case
with only exterior fins.

(a)

(b)
FIGURE 8.45. The y-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

296 • PraCtiCal Heat transfer

(a)

(b)
FIGURE 8.46. The x-coordinate: (a) Selected lines along the pipe diameter,

(b) Temperature profiles along the pipe diameter at the selected lines.

Heat flux integration over the exterior surfaces gives 32.3 W. Divided by the
0.2-m length, the normalized heat loss per pipe’s unit length is 161.4 W/m.
This heat rate is only 7.1% less than of the pipe with straight exterior fins
(173.7 W/m). Thus, both fin types offer similar heat dissipation ability.

tHe CoMsol Heat transfer ProBleM Case studies • 297

8.7 Comparison between Case Studies 1 to 5

The heat loss in the various pipe geometries examined is due to the
convective heat transfer to the air surrounding the pipe. This heat transfer
rate is proportional to the area over which it occurs and the difference
in temperature between the surface and the environment. In all cases
considered here, the surface temperature is very close to the 80 °C of the
incoming water flow (80 °C). Thus, it is logical to conclude that the rate of
this heat loss should be primarily influenced by the exterior surface area (for
the same pipe length). The external area measurements were done for all
the pipe geometries examined using the COMSOL geometry measurement
feature, as explained in Section 8.1.1, and the results are listed in Table 8.2.

TABLE 8.2. Pipe area and volume for the presented case studies.

Fin Type
Volume

(m3)

Exterior
Surface

(m2)

Interior
Surface

(m2)

Total
Surface

(m2)

Exterior
Surface/
Volume
(1/m)

Interior
Surface/
Volume
(1/m)

Not-finned 2.79E-05 0.0179 0.0159 0.0341 643.09 568.73

Internal Fin 4.37E-05 0.0179 0.0316 0.0500 410.93 723.97

External
Fin 7.61E-05 0.0662 0.0159 0.0828 869.32 208.51

Internal-
External
Fin

9.19E-05 0.0662 0.0316 0.0987 720.15 344.10

Rotini 9.67E-05 0.0620 0.0159 0.0788 641.03 164.17

Another quantity that can be of interest to calculate, and is included in the
table, is the ratio of the exterior surface area to the volume of the pipe. This
can give an indication of how efficiently the finned structure achieves the
heat dissipation relative to the total volume of the structure. The higher the
ratio, the more efficient the structure is in terms of its use of materials and
consequently cost and weight. The same table also lists other geometrical
characteristics extracted from the geometries.

Figure 8.49 compares the exterior surface areas of all the pipes. The
not-finned and internal fin pipes both have the same areas. The external
only and external-internal fin pipes have the same, but much larger, external
areas. The rotini fin pipe has a slightly smaller area (by 6.3%) than that
of the pipes with straight external fins. The heat rates per unit length are
summarized in Table 8.3 and plotted for comparison in Figure 8.48. Similar

298 • PraCtiCal Heat transfer

variation in the heat rates as that in the external area can be observed. The
chart shows that the heat rate per unit length is the highest for the internal-
external fin pipe (178.6 W/m), followed by that of the external fin pipe
(173.7 W/m). The rotini fin pipe takes the third place, with 161.4 W/m.

FIGURE 8.47. Comparison between the exterior surface areas for the case studies.

FIGURE 8.48. Comparison between the heat rates per unit length of the pipe for the case studies.

tHe CoMsol Heat transfer ProBleM Case studies • 299

FIGURE 8.49. Heat rate per unit length of the pipe versus the exterior surface area for the case studies.

TABLE 8.3. Heat rate comparisons between the case studies.

COMSOL
Heat Rate

(W)

Heat Rate
perUnit

Length (W/m)

Change in
Heat Rate

(W/m)

Exterior
Surface

(m2)

Not-finned 9.75 48.76 0.0% 0.0179

Internal Fin 9.79 48.95 0.4% 0.0179

External Fin 34.75 173.74 71.9% 0.0662

Internal-
External Fin 35.73 178.64 72.7% 0.0662

Rotini 32.28 161.40 69.8% 0.0620

MATLAB 9.88 49.40 1.3% 0.0179

The relationship between the normalized heat rate and the exterior surface
area can be better visualized by plotting one against the other (Figure 8.49).
For the not-finned and the internal fin pipes, the heat rates are very similar,
with the identical exterior surface areas, and so the points overlap.

While the points on this chart are clustered in two separate groups (not-
finned and internal fin on the left and the rest on the right), a linear fit
shows a very good correlation, confirming the hypothesis proposed above.

Furthermore, one can numerically verify the above relationship by
using the equation for convective heat transfer, Equation (158), to relate
the two parameters plotted in Figure 8.49—the heat rate per unit length
and the exterior surface area. Let the former be Qsp and the latter be Aext.

300 • PraCtiCal Heat transfer

Then, using Equation (158), one can relate these two quantities as follows:

 Qsp = [hc(Text - Tamb)][Aext/L] (158)

Evaluating the multiplier of the Aext/L in the above linear relationship,
one obtains 525 W/m, by assuming a 77.5 °C average external pipe surface
temperature. This number is very close (within 0.5%) of the fitted line slope
of 522.7 in Figure 8.49, confirming the accuracy of the hypothesis.

Figure 8.50 graphically compares the surface areas-to-volume ratios.
The highest value is for the external fins only pipe. Most values are in the
same range, except for the internal fin pipe, which shows a lower value due
to the extra volume added by the internal fins that do not contribute to the
exterior surface area.

FIGURE 8.50. Comparison between the convective surface area-to-volume ratios for the case studies.

End Note

 [59] https://pastafits.org/pasta-shapes/

C H A P T E R9
exerCises

Three sets of exercises are presented in this section. The first set
contains problems related to water flow within a pipe, like the case
studies presented earlier. The second set includes problems with a

variety of geometries and boundary conditions, as well as problems related
to the radiative energy transmission and absorption. The third set involves
solving the problems introduced in the case studies using a different model-
ing tool than the one used earlier, and then comparing the results obtained
to those that of the prior case studies.

9.1 Heat Transfer in a Pipe Exposed to the Solar Radiation

Like the case studies presented in this book, this section’s exercises
model water flowing through a pipe. To model the thermal response of this
model accurately, a conjugate heat transfer model was developed.

Models are presented with increasing levels of complexity. Since the
pipe is axisymmetric, if all the boundary conditions are also axisymmetric,
a 2D axisymmetric model can be employed. However, a 3D model should
be selected if non-axisymmetric boundary conditions exist. For example, if
a pipe is exposed unequally to the solar radiation, a 2D axisymmetric model
would not be suitable. If the flow within the pipe is modeled, the interface
between the interior wall surface and fluid must be identified as a Wall in
the flow model setup.

The cylindrical pipe is made of aluminum; it is 100-mm-long, with
an inside diameter of 55 mm and outside diameter of 65 mm. The pipe

302 • PraCtiCal Heat transfer

exterior is exposed to the solar radiative energy specified in each exercise.
The ambient (atmospheric) conditions are 25 °C and 1 atm. The pipe’s
initial temperature is 25 °C. The inlet water velocity is 15 mm/s, and its
temperature is 35 °C. Water leaves the pipe at a fully developed regime and
atmospheric pressure.

A transient solution is required for all problems. The 2D axisymmetric
geometry is presented in Figure 9.1a. Figure 9.1b shows the line profile
and Figure 9.1c shows the points for which the sample solutions are given
in the exercises.

 (a) (b)

 (c)
FIGURE 9.1. (a) 2D axisymmetric geometry, (b) Sample line profile, (c) Sample points.

exerCises • 303

9.1.1 Exercise 1—Constant Heat Flux and Single Surface
Obtain a transient temperature solution for the cylindrical pipe

described in the introduction above. Use the 2D axisymmetric model shown
in Figure 9.1a. All external cylindrical surfaces are exposed to the scattered
radiation from the sun and to the ambient conditions. The exterior surfaces
transfer heat by convection mechanism with the convection heat transfer
coefficient of 10 W/m2K.

The pipe exterior surface emissivity is 0.8. The solar radiation intensity
reaching the atmosphere at this latitude and time is equal to 1,200 W/m2.
Assume that this is a cloudy day, with the solar light scattered and with
35% of the incoming solar radiated energy absorbed by the moist air before
reaching the modeled object.

Sample Solution Result: Presented in Figure 9.2 is a sample solution
output that shows the radial variation of the temperature along the
transverse midplane (Figure 9.1b) of the pipe at 1 min and 10 min.

FIGURE 9.2. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.2 Exercise 2—Constant Heat Flux and Multiple Surfaces
For the problem described in Exercise 9.1.1, present a transient solution

in which top, bottom, and end surfaces are exposed to the radiated energy
from the sun (1,120 W/m2) absorptivity of these surfaces is 0.9. Compare
the total heat absorption by the pipe in this case study with that of the
Exercise 1.

304 • PraCtiCal Heat transfer

Sample Solution Result: Figure 9.3 shows the sample solution output
for the radial temperature variation along the transverse midplane (Figure
9.1b) of the pipe at 1 min and 10 min.

FIGURE 9.3. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.3 Exercise 3—Spatially Variable Radiative Heat Flux
For the problem described in Exercise 1, if the top, bottom, and end

surfaces are exposed to the radiated energy from the sun (1,120 W/m2),
present a transient solution, and predict the temperature profiles along the
pipe radius and length after 120 s. Assume that 25% of the sun’s radiated
energy is absorbed equally by all surfaces. Choose an appropriate model
type for this case. Can one use the 2D axisymmetric model or is the full 3D
model required? Is it possible to take advantage of any symmetry to reduce
the model size or dimension?

Sample Solution Result: Figure 9.4 shows the sample solution output
for the radial temperature along the transverse midplane (Figure 9.1b) of
the pipe at 1 min and 10 min.

exerCises • 305

FIGURE 9.4. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.4 Exercise 4—Variable Ambient Temperature
For the problem described in Exercise 1, assume that the top, bottom, and

end surfaces are exposed to the radiated energy from the sun (1,120 W/m2),
and 25% of the radiated energy is absorbed equally by all surfaces. Assume
that the ambient temperature increases linearly from 25 to 35 °C during
10 min, beginning from the start of the modeled time. Present a transient
solution that predicts the transient temperature over an extended time
interval during which the system has nearly reached the steady-state.
Predict the heat flux from the upward and downward interior surfaces. Plot
the radial temperature at the time the steady condition is reached.

Sample Solution Result: Presented in Figure 9.5 is a sample result
showing how the temperature varies over time at two points located at
the fluid and pipe wall centers located in the middle of the pipe’s length
(Figure 9.1c). As a reminder, note that the pipe thickness is 5 mm, and the
external diameter is 65 mm.

306 • PraCtiCal Heat transfer

FIGURE 9.5. Transient temperature profiles in the middle of the
fluid and pipe at the fluid and pipe centers.

9.1.5 Exercise 5—Variable Heat Convection Coefficient and Ambient
Temperature
For the problem described in Exercise 1, assume that the top, bottom, and

end surfaces are exposed to the radiated energy from the sun (1,120 W/m2),
and 25% of the radiated energy is absorbed by all surfaces, except one of the
pipe’s ends is partially shaded and thus only receives 10% of the radiated
energy. The top and bottom surfaces as well as the other end of the pipe
receive equal amount of energy.

Assume that the ambient temperature increases linearly from 25 to
35 °C in 10 min. The heat transfer convection coefficient varies linearly
during the same time as well, increasing from 5 to 15 W/m2K. Present a
transient solution, after reaching the steady conditions to predict the heat
flux from the upward and downward facing surfaces. Identify the time at
which the temperature stabilizes, within 2% of the steady value. Calculate
the heat flux at the bottom of the pipe when the solution becomes steady.

Sample Solution Result: The sample solution output is presented in
Figure 9.6 along the transverse midplane (Figure 9.1b) of the pipe at 1 min
and 10 min.

exerCises • 307

FIGURE 9.6. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.6 Exercise 6—Temperature-Dependent Thermophysical and Ambient
Properties
For the problem described in Exercise 1, the ends of the pipe are

partially shaded and only receive 10% of the radiated energy. The top
and bottom surface emissivities are 0.75 and receive only 75% of the
sun’s radiated energy of 1,120 W/m2. The thermal conductivity of the
pipe increases linearly 0.5% for every degree Celsius above the ambient
temperature of 25 °C, from 5 to 15 W/m2K and then remains constant. At
the ambient temperature, the conductivity is equal to 201 W/mK.

The heat capacity of the pipe increases linearly 1% with every degree
Celsius temperature increase, from 25 to 225 °C and then remains constant.
The heat capacity at the ambient temperature (25 °C) is 922.5 J/kgK.
Assume that the ambient temperature increases linearly from 25 to 35 °C
over the first 10 min and then remains constant. The heat transfer convection
coefficient varies linearly during the same time as well, increasing from
5 to 15 W/m2K.

Present a transient solution, after reaching the steady conditions
to predict the heat flux from the upward and downward facing surfaces.
Identify the time at which the temperature stabilizes. Calculate the heat
flux at the upward and downward surfaces of the pipe when the solution
becomes steady.

Sample Solution Result: The sample solution output is presented in Figure
9.7 along the transverse midplane (Figure 9.1b) of the pipe at 1 min and
10 min.

308 • PraCtiCal Heat transfer

FIGURE 9.7. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

9.1.7 Exercise 7—Non-Axisymmetric Model
For the problem described in Exercise 6, the water temperature

increases linearly from 35 to 55 °C over the first 10 min.

Sample Solution Result: A sample solution is presented in Figure 9.8 along
the transverse midplane (Figure 9.1b) of the pipe at 1 min and 10 min.

FIGURE 9.8. Radial temperature profiles in the middle of the pipe after 1 min and 10 min.

exerCises • 309

9.2 Heat Transfer in Various Geometries

9.2.1 Exercise 8—Heat Transfer from a Pipe with
Extended Surfaces
In this exercise, the effect of extended surfaces on the heat transfer

is investigated. The intention is to validate the hypothesis that the heat
transfer rate from the pipe’s exterior surface is linearly related to the
extended surface area.

Create a pipe with four 1.5-mm-thick straight fins, equally distributed
around the pipe exterior, each fin of geometry like that in Case Study 3 in
Section 8.4. The pipe material, dimensions, and the boundary conditions
are the same as those of Case Study 1 in Section 8.1 (Figure 8.1). Adjust
the fin length so that the exterior surface area is twice that of the pipe in
Case Study 1. Represent the water flowing through the pipe by a fixed
interior pipe temperature of 80 °C. Compare the result obtained with that
of predicted by the linear fit in Figure 8.49.

9.2.2 Exercise 9—Heat Transfer from a Pipe in a Heat Exchanger
A 150-mm long aluminum pipe with an external diameter of 30 mm

and internal diameter of 25 mm is located inside a heat exchanger. The
pipe’s exterior surface is exposed to a constant temperature of 95 °C. Water
at 10 °C enters the pipe at one end with a flow velocity of 5 mm/s. Water
leaves the pipe at the atmospheric conditions. The initial temperature for
water and pipe is 10 °C. Perform a transient analysis and predict the water
temperature versus the time at three points located at the distance ratios
of 0.5, 0.75, and 0.95 of the pipe’s length from the inlet, along the pipe’s
center axis. Calculate the average water temperature at the outlet.

Sample Solution Result: A sample solution is presented in Figure 9.9b along
the transverse midplane (Figure 9.9a) of the pipe at 5 min. The average
water temperature at the transverse midplane is 45.2 °C.

310 • PraCtiCal Heat transfer

 (a) (b)

FIGURE 9.9. (a) Line profile, (b) Radial temperature profiles in the middle of the pipe after 5 min.

9.2.3 Exercise 10—Heat Transfer from a Solid Cylinder
A glass (silicate) cylinder with a diameter of 55 mm and length of 100

mm is taken out of a furnace and is at the initial temp of 700 °C. The cylinder
is exposed to the ambient conditions. Model how the cylinder is cooling.
(a) How long will it take for the maximum temperature in the cylinder to
reach 100 °C? Incorporate the radiative heat transfer; assume the emissivity
of 0.9 from all the emitting surfaces. (b) How are the results affected if
the radiation is neglected? (c) Investigate the effect of introducing forced
convection, through a parametric study, with the convection coefficient
values of 10, 20, and 30 W/m2K.

Sample Solution Result: A sample solution is presented in Figure 9.10 along
the z-coordinate at the midplane (Figure 9.9a) of the cylinder at 2 min and
10 min.

exerCises • 311

 (a) (b)
FIGURE 9.10. (a) Line profile, (b) Axial temperature profiles in the middle of the

cylinder after 2 min and 10 min.

9.2.4 Exercise 11—Energy Absorbed in a Cavity
The absorption coefficient of the interior surface of a black-body

cavity located in an environment at the standard conditions is 0.25.
Only 3% of the energy hitting the interior surface is transmitted to the
environment (Figure 2.9). Assume that radiant energy beam is directed
through a 1-mm diameter hole into the sphere, remaining inside it, until
its energy is fully dissipated. Calculate: (a) The number of times the beam
hits the interior surfaces until 99% of the initial energy is absorbed by the
cavity; (b) The number of times the beam hits the interior surface until its
energy is at 5% of the initial value; and (c) The total energy leaked to the
environment outside the sphere.

Sample Solution Result: A sample solution is presented in Figure 9.11.

312 • PraCtiCal Heat transfer

FIGURE 9.11. Solution sample for the radiated energy versus the number of number of reflections.

9.3 Modeling Approach Comparisons

9.3.1 Exercise 12—The MATLAB Heat Transfer Problems Solved with
COMSOL
For the MATLAB case studies presented in Chapter 6, create models in

COMSOL that represent the transverse cross-sections of the pipes. Assume
the same materials and exterior boundary conditions as were used in the
studies. Assume a constant temperature of 80 °C for the pipe’s interior
surfaces. List the simplifying assumptions if any were required to complete
the analyses. Estimate the heat loss per unit length of the pipe for these
models and compare them to that of the MATLAB.

9.3.2 Exercise 13—The COMSOL Heat Transfer Problems Solved with
MATLAB
For the COMSOL case studies presented in Chapter 8, create models in

MATLAB that represent the transverse cross-sections of the pipes. Assume
the same materials and exterior boundary conditions as were used in the
studies. Assume a constant temperature of 80 °C for the pipe’s interior
surfaces. List the simplifying assumptions if any were made to complete
the analyses. (a) Estimate the heat loss per unit length of the pipe for these
models and compare to that of the COMSOL. (b) Vary the interior pipe
temperature from 75 to 85 °C and plot the heat loss rate versus the interior
temperature. Is there a point where the predicted heat loss rate matches
that of the COMSOL?

exerCises • 313

9.3.3 Exercise 14—The MATLAB and COMSOL Heat Transfer Problems
Solved Analytically
Using an approach like that employed in Section 6.2.3, develop

solutions to the MATLAB and COMSOL Multiphysics models presented
in the Section 9.1 exercises above. You can also try to apply any of the
analytical approaches including the ones described in Appendix A. State
the simplifying assumptions when attempting the problems analytically.
Compare the analytical results to those of the MATLAB and COMSOL
solutions.

C H A P T E R10
LeAn six sigMA iMPLeMenTATiOn

Projects or product lifecycles start with the idea conception and end
when they are fully operational, with the last stage encompassing
product disposal. The main objective for such a cycle should be add-

ing value to the company’s bottom line, creator, consumer, and environment
(i.e., all involved). For the products or processes to improve, the baseline
characteristics should be identified, or measured; otherwise, the deviations
from the initial state will not be revealed. If these historical data are collect-
ed and organized in a meaningful fashion, past, current, and future trends
can be identified. This way, the producer can evaluate the tipping points of
the trends and make educated decisions regarding product management.
You may have noticed that some products face a quicker decline than oth-
ers after they become mature. The maturity has different levels for differ-
ent products—even products within the same category do not follow the
same trends. Developing effective methodologies to make this assessment
possible are important steps as part of product improvement cycle.

10.1 Introduction to the Concepts

The Lean Six Sigma concepts provide tools to achieve such optimization
by making it possible to measure process progress, quantify the deviations
from the baseline, and predict its effects on the process trend. In these
studies, the three characteristics to consider are quality, time, and cost.
Internal and external surveys are conducted to determine how a service or
product has performed, how it has progressed in terms of usefulness, and

316 • PraCtiCal Heat transfer

how successful it has been to attract and to maintain the market support.
Having said that, the majority of the products that are both wanted and
needed may not make it in the long run for the lack of support from their
environment. Supply and demand are inversely related; therefore, in a
healthy organization, meritocracy should be the priority when introducing
a product. This is directly related to the culture of the place. If the culture
is not conducive to such vision, neither good products nor good people can
thrive or survive.

Empirical statistical techniques are used to analyze the collected
qualitative and quantitative data. These data are then to be analyzed to
identify the critical-to-quality characteristics or the variables that serve
as input to the process model. This approach also helps to isolate those
variables that are trivial and should be eliminated or emphasized less in
the decision-making process. There are occasionally qualifying factors that
affect the decision, such as ethical considerations, which will be discussed
later in the concluding remarks.

The concept of a quantifiable study based on critical variables can
be explored further by the example relevant to the topic that currently
occupies most of the world: COVID. Most of the world is dreaming of
returning to their normal lives, and vaccination is perhaps the way to get
there. Consider then the vaccination process. Vaccination sites are set up,
information about them is posted on-line, and so people can register for an
appointment to have the vaccine product administered to them. Suppose
that the authorities in charge of a particular region plan to have 1,000,000
people vaccinated within 90 days of the product’s release. Assuming a
constant vaccination rate, each day, an equal number of doses would be
administered by the health professionals.

Administrators record the people who received the vaccine, keeping
track of the daily delivered dose numbers. For the first couple of weeks, the
vaccination process is going as planned. Imagine then that after two weeks,
something goes wrong: The infection rate that was under control seems to
experience a reverse trend, with the rate of infections increasing. This change
can only be observed because this process is being monitored. Further
investigation shows that new virus variants, with increased transmission
rates, have been discovered circulating within the population. The officials
now understand what has happened, including the human factor of some
people losing their trust in the vaccine product’s effectiveness—they
believe it does not work as expected. To address the issue, either the current

lean six sigMa iMPleMentation • 317

vaccine is to be modified, a new one is to be introduced to the market, or
one must accept the associated risks and carry on with the current vaccine.

From the consumer point of view, they can choose to follow or not to
follow the suggested hygiene regimens, stay away from the populated places,
and comply with the posted public health protocols. Assume the infection
rates continue rising, and people know about it because of the accurate
recordkeeping system. If the initial reasoning has not changed, the officials
may start looking into how people are dealing with the situation. If people
keep organizing large parties, which are known to spread the virus, then they
are the main source of the problem. In other words, for whatever reason,
the disease control trend has deviated from the set path, and the variation
is significant. It is then concluded that something is not working with the
current approach and a correction should be made as soon as possible to be
able to experience the normalcy again soon. One can then propose measures,
such as only allowing remote interactions that use on-line technologies.

The same approach can be brought to engineering applications.
Engineers decide upon a target value and strive to achieve it by: (a)
Knowing that the improvement is necessary and feasible; (b) Identifying
the areas in which the improvements are needed; (c) Deciding if the
improvements can be made; (d) Determining if the enhancements should
be made; (e) Measuring or predicting the maximum rate of return in the
identified improvement areas; (f) Analyzing how the changes affect the
overall bottom line; (g) Refining the methodologies to introduce revisions
by making educated decisions; (h) Controlling the output by monitoring
the process; (i) Standardizing the processes and establishing new best
practices; and (j) Integrating the methodologies throughout the process(es)
or operation(s) by allocating appropriate resources, such as expertise, time,
and funding.

The successful product of this effort is an improved relationship between
the cost, quality, and time achieved by eliminating the unnecessary steps
(wastage or redundancy)—the visible or hidden steps that add no value to
the experience [60]. The main potential sources of waste are Transportation,
Inventory, Material, Waiting, Overproduction, Overprocessing, Defects,
and Skills (TIMWOODS). Being responsible citizens, engineers strive to
reduce waste to the extent possible to respect the (a) nature, (b) people,
(c) surrounding world, including the resources they indirectly interact with,
and (d) the immediate environment. The value entitlement defines this
interaction in the form of services, products, or experiences, processes, and
the responsibilities of individuals to respect the said steps.

318 • PraCtiCal Heat transfer

Lean Six Sigma defines quality as the state of the realization of the full
value of the entitlement in all aspects of the relationships. Entitlement is
the right value of the expectation, which takes the form of utility (form, fit,
and function), access (volume, time, and location), and worth (economical,
emotional, and intellectual). Entitlement is what one should obtain given
the available resources. It is the rightful level of expectation of every aspect
of a relationship.

One way to implement Lean Six Sigma is to design smart experiments.
Saying smart here not only means a synonym for clever, but it is also a
memory aid, standing for Specific, Measurable, Attainable, Relevant, and
Timely (SMART):

 (1) Specific: One knows exactly what they will be doing—the scope is de-
fined clearly.

 (2) Measurable: One would be able to collect good quality data.

 (3) Attainable: Everything one plans to do is within their capabilities and
they are aware that there are things out of their control that may
interfere with the process.

 (4) Relevant: The project addresses some of the needed deficiencies and
its usefulness is confirmed.

 (5) Timely: It can be completed within an acceptable or set timeframe.

For example, one can try to apply these considerations to the modeling
work reported in this book, where thermal models were developed using
three methodologies.

 (1) S: The model geometry, boundary conditions, and desired results are
clearly defined: temperature at specific locations and times needs to be
predicted.

 (2) M: The MATLAB PDE, COMSOL Multiphysics FEA, or analytical
tools can be employed to calculate spatial-temporal data within a rea-
sonable accuracy.

 (3) A: The infrastructure for the three possible tools is in place (i.e., the
required software is available, the user has the needed skills, after
reading this book, and the computer has adequate memory); however,
not all the infrastructure is available, neither is the expertise to use it
professionally.

lean six sigMa iMPleMentation • 319

 (4) R: It is known why the temperature information is needed and how it
will benefit the project.

 (5) T: Some of the tools are available on-site, but there are uncertainties
(e.g., the solution may take too long, there is not enough computer
memory available, the processor is not sufficiently powerful, or if they
do not have the skills to solve the problem in time). The reservations
are related to the tool’s costs, human resources, and equipment. This
step should be carefully investigated, and the pros and cons identified.

Let us assume that the company decides to use one of the three analysis
tools; they find that the results cannot be interpreted due to the lack of
expertise. The root cause analysis should be performed so that the source
of the error can be identified. Brainstorming may be used to start this
process. The ideas generated by brainstorming that examine the process
and methodology can be organized by means of the 5S methodology (Sort,
Set in order, Shine, Standardize, and Sustain).

Imagine you organized your graduation party. You brought all the
supplies: the teacups, plates, cutlery, napkins, bowl, cake, drinks, and party
hats. After the party, you were left with cleaning up the premises. It looked
like an intimidating proposition, but you remembered the 5S methodology
you learned during your Lean Six Sigma training and decided to apply the
knowledge to this scenario as follows:

 (1) Sort: You sort items into appropriate categories and identify which
ones you need to deal with immediately and which ones you can take
care of at a future time.

 (2) Set in order: You take those items that require immediate attention
and separate them into categories, such as to donate, recycle, throw
away, and stored away.

 (3) Shine: You clear the premises to create an area where you can move
and work safely.

 (4) Standardize: You make a note of your procedure so that you can repeat
it later when similar circumstances arise.

 (5) Sustain (safety): You verify that the developed procedures follow the
regulations (premises, organization, city, and country), can be easily
followed, and are therefore sustainable. Furthermore, the new stan-
dards are safe to adhere to and respect the well-being of the parties in-

320 • PraCtiCal Heat transfer

volved. For this reason, design standards were developed that include
systems of measurements and acceptable tolerances.

10.2 Good Practices

The term best practices is a well-known expression in a variety of
engineering disciplines in which the product CDIO (Conceive, Design,
Implement, and Operate) lifecycle concept is used. When working on
a model, analysis, or process of any kind, a variety of techniques may be
employed, revised, and expanded upon. Implementing good practices is a
systematic approach for planning, executing, and reporting design-related
tasks to comply with certification requirements. The term best practices
is the one most used. However, the author believes there are never best
practices. There are only good practices that may be obsolete tomorrow and
these will be replaced by more effective ones at a forward-thinking company
or be still held (knowing that they are not effective, for a backward thinking
company).

After recognizing the parameters affecting the process or product
outcome, tests may be conducted and their results may be selected for
further review. Good practices are more likely to lead to a useful outcome.
In general, sensitivity analyses characterize the rate at which the dependent
variables (outputs) change as the function of the significant critical variables
(inputs). Select the most important contributing items, the ones that make
the most impact—the few critical-to-quality variables—and eliminate the
rest that are trivial. Improving processes and designs is an ongoing challenge.
This process ensures performance improvements and the elimination of
waste, while focusing on critical-to-quality characteristics. The concept of
waste was introduced as part of the Toyota Production System that created
management strategies where every employee was empowered to reduce
waste or muda, a Japanese term for futility, uselessness, and wastefulness.
The concept is also part of the Lean Manufacturing concepts.

When designing experiments, create a table encompassing the critical
variables and decide on the tests and the number of repeats. The rows (m)
of the table are associated with the experiments and the columns (n) with
the critical process parameters. You may decide to run experiments for
the complete sets of variables along with their combinations (m n); for
example, for two and three sets of process parameters you can set up six
sets of experiments. The effect of each critical variable on the dependent
variable can then be analyzed using a regression analysis—a mathematical

lean six sigMa iMPleMentation • 321

relationship that identifies the goodness of fit to the data by statistical tools.
The next step is to report the key performance indices.

There is no preferred approach to design geometries; the process
usually fits into three categories: (a) approach, (b) order, and (c) interface.
The approach tells the story of the origin of the assembly or part, where
and how it is created, and the environment in which it is grown to its full
maturation. The order informs the successive steps that have been taken for
the geometry to be generated—if it is ordered (each step is the steppingstone
for the next steps) or unordered (steps are independent of one another). The
interface tells the interconnectivity between the assembled parts and their
relation to the new environment. The host environment in these scenarios
may be the FEM specialized tools, while the originator can be either the
CAD tool, FEA tool, or a combination of both.

As science progresses, the approach, order, and interface improve
through the introduction of new commercial software packages in the
analysis and geometry-generation fields. With this knowledge progression,
the concept of standardization becomes even more important, since the cost
associated with converting the geometries generated in the prior revisions
of the specialized tools (FEM or CAD) becomes prohibitive. Projects are
delayed when the geometries created with an older-version CAD tool
cannot be easily translated to the ones compatible with the new CAD tool—
the only acceptable version to a newly developed FEA tool. This concept
may be extended to other types of models, where physics of any kind are
investigated (e.g., Computational Fluid Dynamics, CFD). Although the
community of the fields’ specialists may propose workarounds—and the
vendors attempt to introduce compatible products and added modules—
costly challenges remain both in terms of human effort and project delivery
timelines.

There are multiple steps to be taken on the way to an accurate heat
transfer model. The geometry creation is among the first steps, and so it
will affect all the subsequent ones. Thus, one must devote appropriate care
to this stage of the model development. The geometry must be carefully
reviewed before and after import into the analysis tool. One should be
particularly careful if there is any change in the units used, such as a change
from meters to millimeters.

Confusion with units has been known to cause trouble in the past. This
has been the case in one well-known airplane accident in 1983. An Air
Canada jet ran out of fuel at 41,000 feet but the plane’s pilots managed

322 • PraCtiCal Heat transfer

to make a safe landing by gliding into an airport in Gimli, Manitoba. This
became known as the Gimli Glider case [61]. The investigation found the
cause was due to an error with fuel quantity calculations, which confused
pounds and kilograms; this led to the accident because the plane’s fuel
gauges also malfunctioned. While this example is not related to the thermal
analysis, it still shows how one small error can have enormous consequences.

Employing dimensionless analysis or variables (or parameters) when
setting up the models is always a good practice. This approach facilitates the
interface between multiple platforms, allowing for synchronization between
the tools. Following this practice facilitates carrying out sensitivity analysis
studies. When selecting parameter names, take care to choose meaningful
ones that will allow you to correctly recognize each variable.

Another good practice to follow is to watch out for devoting excessive
resources in the pursuit of negligeable issues. One needs to keep in mind
the overall sense of the model uncertainty and avoid working on the areas,
which are likely to have minute effects on the model predictions. Thus, if
one can only estimate heat transfer coefficient to within 10 percent of the
actual value, there is little benefit to measuring density to eight decimal
places. Resources devoted to pursuit of the issues with little impact on the
outcome could be better spent in other areas, producing the greater Return
on Investment (ROI).

The last note is that the designers should always try to think ahead while
they are in the middle of the creation process. They need to remember to
occasionally step away from the day-to-day details they are focusing on and
take a broader outlook. They should be asking themselves the following
questions:

 (1) What is happening next?

 (2) What kind of accessibility features do I need to include in my design?

 (3) Will I need to define additional boundary conditions or reinforce the
structure?

 (4) Do I need to incorporate redundancy systems for safety purposes, such
as the ones seen in the Boeing 747 design?

 (5) Do I need to check the historical data for lessons learned and compat-
ibility of my design with the environment, such as the incident that
occurred with the Challenger space shuttle’s O-ring?

lean six sigMa iMPleMentation • 323

 (6) What are the steps to be taken to ensure a socially responsible, envi-
ronmentally friendly, and a personally fulfilling project?

 (7) How the product will eventually be used?

 (8) What are the possible outcomes if the product is not employed as
intended?

Thinking ahead is critical for anyone working on a project that will be
used by others. It can help avoid the following scenario: in the middle of
a busy day, as you are working on a seemingly minor task, you decide to
take a seemingly inconsequential shortcut that may not be entirely ethical.
A month, a year, or a decade later, it may come back to you with some
unpleasant consequences. Be on the lookout for the small decisions that
can have large impacts [2,4]. Try to make wise decisions based on reliable
calculations made with the tools you know how to use.

End Notes

 [60] The Lean Six Sigma approach focuses on enhancing the bottom line by
improving performance and eliminating waste (i.e., muda; a Japanese word
for futility, uselessness, and wastefulness), focusing on critical to quality
characteristics. The training for Lean Six Sigma is provided through a belt-based
training system. The belt personnel are designated as white, yellow, green,
black, and master black belts, similar to judo.

 [61] https://en.wikipedia.org/wiki/Gimli_Glider

C H A P T E R11
COnCLUsiOn

One common question that arises when a specialist decides to ana-
lyze systems for their thermal or mechanical responses is which
FEA tool to select. As noted earlier, the more complex the geom-

etries are, the more accurate analysis methods are needed. Finite element
is an approach that can handle most of the shapes with challenging geom-
etries. There are tools that take advantage of this technique. These tools can
take on either an independent or hybrid approach. Most commercial tools
(e.g., ANSYS and COMSOL Multiphysics) follow this strategy. There are
other tools, such as programing languages, that can be employed to solve
the problems by working directly with the physics relations (e.g., C++).
Other tools are designed to integrate special capabilities by assisting with
analyzing the problems incorporating the coding approach with special-
ized built-in functions. Thus, they take a semi-hybrid approach (e.g., the
MATLAB PDE Toolbox). There are circumstances in which these tools can
be combined with the commercial tools and further improve the modeling
capabilities (e.g., COMSOL Multiphysics in combination with MATLAB).

11.1 Choice of FEA Tools

The question is determining which tool is a better one: it simply depends
on the available resources and on the problem and its applications. For
example, for educational purposes, it is important for students to become
familiar with the fundamental physics before using any tools as a black box.
If the analysts already gained a deep understanding within the field, such as

326 • PraCtiCal Heat transfer

senior or graduate students, they are to be guided differently and will likely
approach the problems differently. In these cases, the first consideration is
almost always the tool availability, which is often determined by the budget.
Some tools, such as MATLAB, are relatively more education-friendly than
the commercial FEA tools. Given the widespread usage of such tools,
universities often have special agreements and perpetual licenses for
them. This means that professors or students do not pay for them from
their research grants, and if they had to, the prices would be affordable. In
addition to the lower price, they do include discounts or trial versions for
the students and for educational purposes.

Even though commercial FEA tools do have educational pricing, they
are usually purchased as specialized tools as part of a research grant. On
occasion, several academics can share the license and associated costs given
that the floating license cost, which makes it accessible from multiple sites,
is relatively more expensive than one tied to a single machine. In many
cases, there are only a few seats available, meaning that a very limited
number of students can simultaneously run the programs. When solving
large models, High Performance Computer Virtual Laboratories (HPCVL)
may be required. The problem files are sent in batches to these computers
and are placed in a queue so that the solution may be attempted, and
possibly achieved within hours or even days for more complex cases.

Using these virtual labs requires special memberships even within
the university community and fees are to be paid per seat to maintain the
special administration costs. An annual fee is normally paid to maintain the
licensing rights and/or support for a commercial FEA tool; this is either in
addition to the original perpetual fee (e.g., COMSOL Multiphysics, which
requires annual fees for support and upgrades) or as an ongoing cost, where
an annually updated license is required to operate the software.

Performing any consulting work requires special permission from the
service provider (FEA company); this means that the license must be a
commercial type versus the educational type. Some of these commercial
tools let the user have multiple installations, with the possibility to
simultaneously run several FEA models (e.g., four installations and two
simultaneous runs for the commercial COMSOL Multiphysics users).
Typically, FEA tools include free trials of up to 30 days.

The next consideration, and perhaps the first one in educational
settings, is the technical support. Professors and students require support
both in installation and use of the tools. Universities or academics provide
the support the students need in most of the cases; however, the educational

ConClusion • 327

institutions and often professors need technical support from the software
provider or the company that owns the product. In most of the cases, the
technical support provided by the education-friendly tools is better than
their commercial counterparts. It is also possible that the technical support
provided by the FEA software providers is available through sharing the
inhouse expertise, technical publications, and conferences, where users
share their expertise. Ease of administration and flexibility to work remotely
may also affect the decision as to which tool to use.

It is possible to suggest an improvement to the tool by submitting an
enhancement ticket to the tool’s technical support. These enhancements
can be related to the documentation, presentation method, usage, formula,
or analysis method and presentation. Almost all these tools are regularly
updated, considering the submitted enhancement requests and based on
the product roadmap. Commercial tools may follow a faster pace, depending
on their product vision.

Some of the tools are equipped with geometry-creation facilities (e.g.,
COMSOL Multiphysics), making it possible to import, manipulate, and
create the geometry within the tool. Geometry revision is a very important
feature, especially when dealing with complex models. Occasionally,
specialized CAD tools (e.g., SOLIDWORKS) are employed as separate
tools in parallel with the commercial FEA tools to facilitate the geometry
creation process. Dedicated connectivity can be provided between these
two tools (e.g., Livelink for SOLIDWORKS or one of the specialized
COMSOL Multiphysics Modules), establishing a real-time linkage between
the CAD and FEA environments. Editing and rendering capabilities are
other considerations when selecting the FEA tool. The possibility to write
scripts or input files for the FEA tool to avoid repetitive tasks to minimize
error and to easily modify the models as required, are also to be considered.
Examples include the APDL input files that can be written and fed as
inputs to the FEA models created in the ANSYS classic environment.
Many novice users may not find this method user-friendly; therefore, the
graphical user interface (GUI) becomes a user distinct feature (e.g., the
ANSYS Workbench).

The user can (to some extent) modify the problems’ physics by revising
the underlying basic relationships. MATLAB is such a tool, where the user
can interact through a GUI (e.g., the PDE Modeler application) and also can
revise the underlying formulae as needed in the form of scripts. Programs
such as MATLAB excel at carrying out any computations, particularly
matrix manipulations.

328 • PraCtiCal Heat transfer

Plotting options and quality of the plots that can be embedded in reports
or be exported as images or PDFs, are to be considered when selecting
the FEA tool. These diagrams can be either part of a script, such as the
ones written for MATLAB, where the diagram type, labels (e.g., title, axis
information and limits) are identified or the results can be exported from
the FEA tool and imported to other tools to be processed (e.g., Tecplot,
MATLAB, and statistical tools such as Minitab). The processing steps
may include plotting data in different forms, curve-fitting, and performing
regression and statistical analyses.

Both MATLAB and COMSOL provide facilities for setting up
applications that provide a graphical user interface to simplify user
interaction with the software functionalities. The MATLAB PDE Modeler
application, which is supplied as part of the MATLAB PDE Toolbox, is an
example of this; however, users can create their own applications that have
buttons, dialog boxes, and mouse interactivity. Normally, these applications
would be executed from the MATLAB command line; with the MATLAB
Compiler Module, one can create stand-alone applications that do not
require MATLAB to be installed.

COMSOL introduced its own application building capability with
version 5.0 release in 2015. As with MATLAB, this capability is part of the
base software package. Tools are provided to simplify the creation of these
apps. The apps allow users who are not skilled in use of FEA software to
carry out pre-defined analyses after varying inputs via the app interface.
Thus, engineering designers may explore a variety of scenarios on their
own, without having to interact with an analyst. For example, the pipe wall
thickness can be defined as a parameter and the designer may experiment
with different values to see what effect they may have on the pipe wall
temperature.

As with MATLAB, these apps can run on any machine where COMSOL
is installed; however, the intended audience for them are users who are likely
not to have a full software installation. Thus, two options are provided (as
extra modules): the COMSOL Compiler to create stand-alone applications
or the COMSOL Server to allow running the apps remotely by connecting
with the server via internal or external network.

In terms of carrying out FEA approach, one can summarize the
comparison between MATLAB and COMSOL as follows. There is no
doubt that a dedicated FEA tool, such as COMSOL, is better at its task
than a more general tool, such as MATLAB. If both are available, the
choice is clear. However, it is much more likely that a user with an FEA

ConClusion • 329

problem to solve has access to MATLAB and is wondering if they need to
obtain a dedicated FEA tool (like COMSOL) to solve it, at some additional,
substantial cost.

The answer depends on the complexity of the model. This includes the
complexity of the geometry, boundary conditions, and physics interactions.
For example, as was demonstrated in this book, even complex 3D geometries
can be exported from a CAD tool in format and then imported easily into
MATLAB. However, this is not the end of the task. One now must identify
all the faces and cells (3D regions) of the model to assign the applicable
boundary conditions and material properties. If one is importing something
shaped like a simple pipe, that is not a problem, but if it is a component with
several dozen faces, the challenge quickly multiplies, making errors much
more likely.

Other aspects of carrying out FEA in MATLAB, such as the meshing
process control and types of elements as well as the solution control, also
present substantially fewer options, as expected. Finally, one must not forget
that post-processing is also significantly facilitated in COMSOL. Identifying
points or lines for which plots are to be generated is easy, with interactive
graphical interface provided. In MATLAB, one must manually identify the
exact coordinates of interest and then execute commands to extract data
points and plot them, requiring knowledge of the right commands to use.

However, the good news is that if your problem is not exceedingly
complex and you already have access to MATLAB, you can use this excellent
general-purpose software to carry out FEA and obtain plenty of valuable
results, without incurring any additional costs. Presumably, having read this
book, you are also well-equipped with the knowledge of the techniques
required to carry out this task.

11.2 Sustainable Designs

When creating thermal designs, creativity is as important as adhering to
known and tested methods. If designers, engineers, doctors, and educators
were to just follow old-fashioned knowledge and manufacturing techniques,
humans would still live in caves. Although contemporary cave homes offer
modern amenities within a primeval setting [62,63,64]. Thinking divergently
is the reason for the exceptional creations.

Independent thinking in an unrestricted environment is an indispensable
part of this process. The fuel of resources and experiences available
to a creative mind ignited by its imagination drives the development of

330 • PraCtiCal Heat transfer

new ideas. Interconnections among diverse fields of study, such as art,
engineering, design, and health, have brought us the innovative products
to enrich our lives. Think about the lifestyle changes brought about by the
introduction of smart phones and tablet computers such as the iPad.

Creative and independent thinking require valor, as there are often
pressures to conform to the accepted practices. Historically, the brave
and curious scientists and innovators made sacrifices to bring new ideas
and a better life to humanity. In the seventeenth century, Galileo Galilei
realized that the old concepts of planetary motion did not make sense.
He considered the ideas proposed by Copernicus, as well as what he saw
himself with the telescope he built. However, Galileo lived in a time when
the Church wanted to protect the status quo, and so he was punished for his
ideas. However, the ideas could not be suppressed and flourished despite
all the reactionary efforts, for the light of wisdom cannot be turned off.

Innovative and responsible designs are not only rewarding for the
designers who create them, but also beneficial to humanity and the
environment. Looking around us, we observe numerous examples in which
this brilliance of the human mind is seen. These projects show how our
natural resources can be used responsibly. Here are some examples of
ethical leadership in the thermal management field:

 (1) Leadership in Energy and Environmental Design (LEED) certified
designs that improve efficiency and health to achieve a sustainable
environment—These initiatives have transformed a tornado-hit Ameri-
can city, Greensburg, Kansas, into a model of a green village [65,66].
They have transformed a fading clay pit in Cornwall, England, into a
thriving green community through the construction of an eco-friendly
park, museum, and indoor rainforest that educate people about the re-
sponsible use of the natural resources, such as composting waste, water
treatment, and the use of geothermal and wind energy [67].

 (2) Harvesting the energy of the Sun in the most remote and under-
privileged villages, in places that are exposed to sunshine most of the
year—Sichanloo is a remote location in arid rural Iran, with simple clay
houses that have been decorated with high-tech rooftops made from
photovoltaic cells provided by a government-subsidized project. These
are part of the growing efforts to provide steady power for a fossil-fuel
country that relies on oil and natural gas sources for 40% and 37%, re-
spectively, of its energy usage. Sichanloo and similar communities are
recovering from the noise and pollution that gas-fueled power genera-
tors have imposed on their lives for decades [68].

ConClusion • 331

 (3) Vertical gardens as a platform for planting, working, and shading envi-
ronments—An example is Supertrees Grove at Gardens in central Sin-
gapore, which improves the quality of life by introducing greenery into
this densely populated city. These trees not only provide homes with
exotic plants and birds, but also exist in harmony with their surround-
ings, imitating a living tree by harvesting the solar energy with the
photovoltaic cells and collecting rainwater for irrigation and fountain
displays [69].

 (4) Harvesting the energy from the waves using PowerBuoy, which can
be connected to an electrical grid using power transmission cables in
a deep-water environment—The PowerBuoys installed in Cromarty
Firth, Scotland, can generate 3 MW of power. They convert the rising
and falling of the waves into electricity. The PowerBuoys are aestheti-
cally pleasing due to their low surface profile and small horizontal
footprint, and can operate in severe conditions [70,71].

 (5) Efficient residential apartments that people wish to live in, even
though they lack basic amenities (such as a parking space or air condi-
tioning, or they are located next to a train track)—An apartment build-
ing in Melbourne, Australia, was designed to keep warm in the winter
and cool in the summer with the ultra-thick exterior walls shielding it
from train noise. The building has a rooftop garden to provide addi-
tional insulation and a green environment [72].

 (6) Passive house designs being incorporated into new building architec-
ture or as a retrofit for the existing ones—These designs heat and cool
the structure so as to minimize its ecological footprint. Examples are
the Vauban residences in Freiburg, Germany, and Cornell’s green
26-story high-rise campus on Roosevelt Island in New York City
[73,74,75].

 (7) Sustainable cities that are both aesthetically pleasing and functional—
An example is the Dubai Smart Sustainable City project. It looks like a
flower in the middle of a desert, with shiny roofs covered by the solar
panels that generate about 200 MW of electricity [76].

11.3 Ethical Designs

As the concluding remarks of this work were being written, Virgin
Galactic and Blue Origin had their first flights. Soon anyone (with sufficient
funds) can become an astronaut [77,78]. While at this time, it appears that a

332 • PraCtiCal Heat transfer

lot of precious non-renewable resources are expended on just a few minutes
of fun, one can expect that in the long term, the technology developed will
help the humanity with space exploration for more practical purposes. For
those among us who have always dreamed of exploring outer space, one can
hope that the price of these adventures will someday become reasonable
enough so that people without millions of dollars can go into space.

Over the past couple of years, it feels like we have transitioned into a
new era, which we perhaps can designate as AC (After COVID-19). It is
humbling to think that a microscopic, technically non-living entity wields
such transformative power. As with any major crisis, it has speeded up
technological development to a degree that did not seem possible before.
Communication companies developed new ways for us to work and interact
remotely. Delivery companies ramped up their capacity and created new
approaches to shipping (for example, putting perishable items in insulated
containers that are affordable and recyclable). Human ingenuity has
been harnessed to its full capacity to fight this crisis, with unprecedented
resources poured into vaccine development, bringing about positive results
within record time. As the fraction of fully vaccinated is hovering around
60% to 70%, we are all waiting to see what happens next. What will the new
AC era be like? Will we ever be able to stop wearing masks?

While the professionals may be rushed and pressured to deliver new
designs and processes, they must remember their responsibilities to the
public. Consider, for example, the case of asbestos. It is a naturally formed
silicate material and was widely used in the thermal industry. This material
is a very good electrical insulator and can resist extreme heat. Therefore, it
had been used extensively in the construction of buildings until 1970s, even
though its use had been under scrutiny as early as 1924, when English textile
workers’ poor health conditions were reported in the medical literature.

Due to its proven adverse health effects on those who handled it,
leading to a condition known as asbestosis, it has been prohibited in many
countries, even though its use goes back to the Stone Age, when it was
employed to strengthen ceramic pots. It was reported that every year,
100,000 people lose their lives globally due to exposure to this material. It
is the number one cause of work-related fatalities in the world; however,
the grievous effects take years to develop, making it difficult sometimes to
link them to the original cause [79].

The production of asbestos in the United States stopped in 2002. In
Quebec, Canada, there is a small mining town which until 2020 was named
Asbestos in honor of its primary product. It is now known as Val-des-

ConClusion • 333

Sources. Its asbestos mines reportedly closed in 2012, with Canada banning
the mineral’s use in 2018. It appears that the city rebranded their new
product, which is a specific type of the mineral, to chrysotile, also known
as white asbestos (used in brake pads, asbestos cement roof sheets, and
industrial tanks) to disassociate it from the carcinogenic mineral, insisting
that it is less dangerous than the original asbestos. Nevertheless, there are
still concerns about safety of this product [80,81].

Based on the World Health Organization (WHO) report, this material
was widely used in cement building materials (90%) and friction materials
(7%), mainly in the developing countries by the end of 2014 [82]. Some
developing countries, such as India, still encourage the use of this material
in the construction of their buildings and other countries, such as Russia,
continue to mine it.

The asbestos example shows the challenging decisions faced by
professionals. When making these decisions, the efficiency of the process
should not have the veto power over all other considerations. As everything
else in history, humanity’s ethics have been evolving. While people may have
felt that some practices were not ethical, they may have been permitted to
carry on as part of the majority-based ethics, despite their detrimental effect
on some minority groups (think of slavery and cotton, of women and voting
rights, of indigenous peoples and colonization, of intimidation practices
and employment). With the evolution of ethics, there is some hope, for it
appears that new virtue-based ethics have been taking hold in recent years.

Professionals who are to deliver the work ethically ought to acquire all
the information needed to develop safe processes that use safe materials.
Those who produce materials must make accurate information about them
available to all. Those involved must be given the necessary training for safe
handling of these materials, for their own good and that of the product.
Based on the virtue-based approach, professionals must resist peer-pressure
and, within regulations, do their best to avoid use of unsafe materials.

Any of the ethical-based decisions in the thermal management field,
which is a part of heat transfer science, requires an in-depth understanding
of the thermal process (heat-material interaction) for there will be occasions
in which the material or the process must be redesigned to safeguard the
environment and those who depend on it. In this work, they can rely on the
rock-solid foundation of the thermal sciences.

The complexity of the world around us is unimaginable. Even a vacuum,
which is empty space, may not be as empty as we thought. Physicists are

334 • PraCtiCal Heat transfer

now hypothesizing it is full of energy. They are discovering patterns that can
connect the microscopic world of quanta with the large-scale phenomena
that we can experience with our senses. The most radical ideas are often
brought to light by misfits, those who are blessed with the power of curiosity,
who can think critically about their surroundings and are not preoccupied
with fitting in. They fight the darkness with their perseverance, patience, and
prudence, with their inner light; for, the inner light cannot be distinguished.

End Notes

 [62] https://www.bing.com/images/search?q=cave+homes&qpvt=cave+homes&FOR
M=IGRE

 [63] https://www.britannica.com/topic/The-Flintstones
 [64] https://inhabitat.com/amazing-transformation-of-a-decrepit-cave-into-a-

beautiful-modern-home/
 [65] https://new.usgbc.org/leed
 [66] https://www.usgbc.org/articles/rebuilding-and-resiliency-leed-greensburg-kansas
 [67] https://en.wikipedia.org/wiki/Eden_Project#Environmental_aspects
 [68] https://www.thenational.ae/world/iran-looks-to-solar-alternative-for-

energy-1.456219
 [69] https://www.gardensbythebay.com.sg/
 [70] https://www.oceanpowertechnologies.com/
 [71] https://www.waveenergyscotland.co.uk/
 [72] https://www.nbcwashington.com/news/national-international/Five-Innovative-

Green-Projects-from-Around-the-World-375893561.html
 [73] https://www.theatlantic.com/magazine/archive/2016/01/the-height-of-

efficiency/419124/
 [74] https://tech.cornell.edu/campus
 [75] https://www.greenbuildermedia.com/buildingscience/passive-house-is-it-worth-

the-upfront-cost
 [76] http://www.middleeastgreenbuildings.com/11864/top-10-green-building-

projects/
 [77] https://www.virgingalactic.com/mission/
 [78] https://www.blueorigin.com/
 [79] https://www.asbestos.com/asbestos/statistics-facts/.
 [80] https://www.nytimes.com/2020/10/21/world/americas/asbestos-quebec-canadian-

town.html.
 [81] https://www.washingtonpost.com/world/the_americas/asbestos-quebec-val-des-

sources-canada/2020/10/19/29e32e5e-1244-11eb-bc10-40b25382f1be_story.
html.

 [82] www.who.int/ipcs/assessment/public_health/chrysotile_asbestos_summary.pdf.

BiBLiOgrAPhy

 [1] Mark Ahlers, Aircraft Thermal Management: Integrated Energy Systems
Analysis, SAE International, 2016.

 [2] Mark Ahlers, Aircraft Thermal Management: Systems Architectures, SAE
International, 2016.

 [3] Vedat S. Arpaci, Conduction Heat Transfer, Addison-Wesley, 1966.
 [4] Andrew Aziz, T. Y. Na, Perturbation Methods in Heat Transfer, Springer, 1984.
 [5] Thomas Bertels, Rath and Strong’s Six Sigma Leadership Handbook, John

Wiley & Sons, 2003.
 [6] Marshall Brain, The Engineering Book: From the Catapult to the Curiosity

Rover, 250 Milestones in the History of Engineering, Sterling, 2015.
 [7] Yunus A. Cengel, M. A. Boles, Thermodynamics: An Engineering Approach,

Eighth Edition, McGraw-Hill Education, 2014.
 [8] Yunus Cengel, Afshin Ghajar, Heat and Mass Transfer: Fundamentals and

Applications, Fifth Edition, McGraw-Hill Education, 2014.
 [9] Clifford A. Pickover, The Physics Book: From the Big Bang to Quantum

Resurrection, 250 Milestones in the History of Physics, Sterling, 2011.
 [10] Iain G. Currie, Fundamental Mechanics of Fluids, Fourth Edition, CRC Press,

2012.
 [11] Mark Denny, Alan McFadzean, Engineering Animals: How Life Works, Belknap

Press of Harvard University Press, 2011.
 [12] Abraham S. Dorfman, Applications of Mathematical Heat Transfer and Fluid

Flow Models in Engineering and Medicine, First Edition, Wiley-ASME Press
Series, 2017.

 [13] Russell C. Eberhart, Avraham Shitzer, Heat Transfer in Medicine and Biology:
Analysis and Applications, Volume 2, Springer, 2008.

 [14] Federal Aviation Administration (FAA)/Aviation Supplies & Academics (ASA),
Pilot’s Handbook of Aeronautical Knowledge: FAA-H-8083-25B, Aviation
Supplies and Academics, Trotter Publishing, 2016.

336 • PraCtiCal Heat transfer

 [15] Richard Haberman, Elementary Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems, Third Edition, Prentice Hall,
1997.

 [16] William L. Haberman, James E. A. John, Introduction to Fluid Mechanics,
Third Edition, Prentice Hall, 1998.

 [17] Mikel Harry, Richard Schroeder, Six Sigma: The Breakthrough Management
Strategy Revolutionizing the World’s Top Corporations, Crown Business, 2006.

 [18] Russell C. Hibbeler, Kai Beng Yap, Mechanics for Engineers, Dynamics,
Thirteenth Edition, Pearson, 2013.

 [19] Jack P. Holman, Heat Transfer, McGraw Hill India, 2011.
 [20] John R. Howell, M. Pinar Menguc, Robert Siegel, Thermal Radiation Heat

Transfer, Sixth Edition, CRC Press, Taylor and Francis Group, 2015.
 [21] Frank P. Incropera, David P. DeWitt, Introduction to Heat Transfer, Fifth

Edition, John Wiley & Sons, 2000.
 [22] Frank P. Incropera, Fundamentals of Heat and Mass Transfer, Sixth Edition,

John Wiley & Sons, 2006.
 [23] Walter Isaacson, Leonardo da Vinci, Simon & Schuster, 2017.
 [24] Walter Isaacson, Einstein: His Life and Universe, Media Tie-In Edition, Simon

& Schuster, 2017.
 [25] Erwin Kreyszig, Advanced Engineering Mathematics, Tenth Edition, John Wiley

& Sons, 2011.
 [26] P. E. Liley, 2000 Solved Problems in Mechanical Engineering Thermodynamics,

First Edition, McGraw Hill, 1989.
 [27] Seymour Lipschutz, Murray R. Spiegel, J. Liu, Schaum’s Outline of

Mathematical Handbook of Formulas and Tables, Fifth Edition, McGraw- Hill
Education, 2017.

 [28] Norman G. McCrum, Craig P. Buckley, Principles of Polymer Engineering,
Second Edition, Oxford University Press, 1997.

 [29] Bruce R. Munson, Alric P. Rothmayer, Theodore H. Okiishi, Wade W.
Huebsch, Fundamentals of Fluid Mechanics, Seventh Edition, John Wiley &
Sons, 2012.

 [30] John Murphy, Numerical Analysis, Algorithms, and Computation, Ellis
Horwood Ltd, Publisher, 1988.

 [31] Glen E. Myers, Analytical Methods in Conduction Heat Transfer, Second
Edition, Amch, 1656.

 [32] National Aeronautics and Space Administration (NASA), Inside the
International Space Station (ISS): NASA Thermal Control System (TCS) and
Simplified Aid for EVA Rescue (SAFER) Astronaut Training Manuals, World
Spaceflight News, Progressive Management, 2011.

 [33] Necati Ozisik, Heat Transfer: A Basic Approach, ISE Edition, McGraw-Hill
Education, 1985.

 [34] Suhas Patankar, Numerical Heat Transfer and Fluid Flow, First Edition, Taylor
and Francis, 1980.

BiBliograPHy • 337

 [35] Junuthula N. Reddy, An Introduction to the Finite Element Method, Fourth
Edition, 2018.

 [36] Shames, Mechanics of Fluids, Third Edition, McGraw Hill Exclusive, 2014.
 [37] Frederick S. Sherman, Viscous Flow, ISE Edition, McGraw-Hill Education,

1990.
 [38] Tien-Mo Shih, Numerical Heat Transfer, First Edition, CRC Press, Hemisphere

Publishing Corporation, 1984.
 [39] Richard E. Sonntag, Gordon J. Van Wylen, Fundamentals of Statistical

Thermodynamics, Series in Thermal and Transport Sciences, Ninety-Ninth
Edition, John Wiley & Sons, 1966.

 [40] Richard E. Sonntag, Claus Borgnakke, Gordon J. Van Wylen, Fundamentals of
Thermodynamics, Sixth Edition, John Wiley & Sons, 2002.

 [41] George B. Thomas, Elements of Calculus and Analytical Geometry, Fourth
Edition, Addison-Wesley Educational Publishers, 1981.

 [42] Kenneth Wark, Advanced Thermodynamics for Engineers, ISE Edition,
McGraw-Hill Education, 1995.

 [43] Joel Hass, Christopher Heil, Maurice Weir, Thomas’ Calculus, Fourteenth
Edition, Pearson, 2017.

 [44] Frank M. White, Heat and Mass Transfer, First Edition, 1988.
 [45] Mark W. Zemansky, Basic Engineering Thermodynamics, Second Edition,

McGraw-Hill, 1975.

A P P E N D I X a
MATheMATiCAL MeThOds TO
sOLve heAT And WAve PrOBLeMs

There are several analytical techniques that a skilled analyst can
employ to solve physics equations instead of applying numerical
methods. Some 2D and 3D problem types may be solved by means

of specialized analytical practices that simplify the problem and represent
the physics with acceptable accuracy. This section summarizes some of the
more commonly employed methods.

A.1 Analytical Approaches to Solve Heat Equations

The first step when starting to work on a solution using the analytical
and numerical approaches is to simplify the problem to the extent possible
without compromising its integrity. For example, this simplification may
comprise ignoring the second and third dimensions. Most of the examples
presented in this chapter assume that heat is transferred along the length of
the geometry (e.g., x-coordinate), and therefore the problem is a 1D case.
An additional step is to perform a dimensionless analysis. This helps with
the problem dimensions, redefining the problem in terms of the variable
ratios and meaningful and occasionally dimensionless parameters such as
the Fourier Number. Parametrizing the model by means of dimensionless
analysis allows for the effect of the important process parameters, such as
dimensions or material thermophysical properties, to be studied.

The above steps are related to sensitivity analysis like the ones that may
be carried out when modeling partial differential equations using the FEM
commercial tools such as COMSOL Multiphysics. For example, when

340 • PraCtiCal Heat transfer

modeling heat transfer in a pipe, to which fins may be attached, it is possible
to define its thermal performance including a dimensionless number (m2),
which is the ratio of the convective to conductive forces weighed by the
ratio of the perimeter to the area of the fin (/).hp kA Additionally, there
are several assumptions that can be made to further simplify the analytical
approach. For example, if the width of a conduit with a rectangular cross
section is considerably larger than its thickness, the latter (thickness) can be
ignored when calculating its perimeter. As a result, the area to perimeter
ratio discussed earlier wt/2(w + t) is simplified to t/2, where t and w are
the conduit’s thickness (m) and width (m). An interpretation for a conduit
with an insulated tip is to include its corrected length in calculating the
surface areas. Corrected length is the initial length plus a characteristic
length, which is the ratio of the area of the fin to its perimeter. Using this
analogy, the characteristic length can be as simple as 50 percent of the
conduit’s thickness (t/2), while for a fin with circular cross section, this
value is 25 percent of its diameter (D/4). These assumptions facilitate heat
transfer calculations based on the convective surface areas. If the fin width
is small compared to its length, the area of the fin tip may be ignored when
calculating its surface area. These assumptions are particularly useful when
modeling semi-infinite conduits with arbitrary cross sections.

A.2 General Analytical Approaches

This section presents analytical techniques that can be employed to
solve heat transfer equations. The most general form is a wave equation,
which includes second-order linear partial differential equations,
describing the heat waves with respect to time and space (temporal and
spatial). The application of wave equations extends from heat waves to
sound waves, light waves, and water waves, and it is important in fields such
as acoustics, electromagnetics, and fluid dynamics.

A.2.1 Separation of Variables
This method involves separating the variables. By doing so, two or more

state variables (e.g., time and distance) used to define a dependent variable
(e.g., temperature in heat transfer problems) are separated, so that they
can independently represent the dependent variable. In other words, their
combined effect has been discretized to show their individual impact. For
3D equations, this involves defining an energy equation, Equation (159),
where each dependent variable is a function of a single space (x, y, z) or
time (t) variable, Equation (160).

MatHeMatiCal MetHods to solve Heat and Wave ProBleMs • 341

 gen x y z p i
d dT d dT d dT dT dT

k k k q C vdx dx dy dy dz dz dt dx

 = r

 (159)

 T(x, y, z, t) = X(x)Y(y)Z(z)t(t) (160)

There are m number of linearly independent boundary conditions matching
the number of the highest number of derivatives times the number of
independent variables in a differential equation. For instance, for the
second order three-dimensional steady-state heat transfer problem, six
boundary conditions are required, representing the conditions for each side
of the brick. To facilitate solving these problems, a change of the variables
resulting in homogeneous differential equations or boundary conditions is
recommended. In most cases, this results in dimensionless equations.

For example, assuming that a boundary is kept at the surrounding
temperature (e.g., Tx=L = T), the difference between the main dependent
variable (T) and ambient temperature (T) may be defined as a new variable
(q = T - T), which can be substituted for its counterpart in the heat
transfer equation. Note that in this case, the derivatives are to be revised

for the new variable to implement this change e.g., .
dT dT d d
dx d dx dx

q q
= =

q

A number of these mathematical relations can be solved using the Fourier

Transform, which represents a complex function for the real dependent
variable. If the newly-defined variable (q), is then divided by its equivalent
at the initial condition (temperature, q0 = T0 - T, where T0 is the initial
temperature), a dimensionless temperature is obtained (q/q0).

As an exercise, you can attempt the following 2D problem—Equation
(161)—that simulates the conditions presented by the boundary conditions
given by Equation set (162). The solution is provided by Equation (163).
The first step is to define a new dependent variable for the temperature (q),
where q = T - T. You may apply the dimensionless approach presented
above by using q/q0.

 uxx + uyy = 0 (161)

 00

11

(,0) 0(0,) 0
 (,1) 1(1,) 0

y yx

yx

u xu y
u xu y

==

==

 = =

==
 (162)

1

2
(,) (1 (1))sinh()sin()cosh)(

n

n

u x y n y n xn n

=

= - -
 (163)

342 • PraCtiCal Heat transfer

A.2.2 Variation of Parameters
The concept for partial solutions and variation of parameters is like

the separation of variables method. These are the steps to be taken to
solve such problems: (a) A problem that represents the homogeneous case
for (x, q) is set up, where x and q are dimension and time, respectively;
(b) The eigenfunctions are determined; (c) A solution using the function

(,) () ()m m
m

u x A xq = q j is constructed; (d) Am(q) is evaluated by the

orthogonality of jm(x); (e) An ordinary differential equation is set up;
(f) Am(q) is solved; and (g) The solution is completed. This method is
particularly useful for transient analysis.

Attempt Equation (164), given the boundary conditions presented by
Equation set (165). Note that the second-order equation with respect to the
space variable (x) and the first order with respect to time (q) require three
boundary conditions. The solution is provided by Equation (166).

 xxu uq= (164)

0

1

0

(0,) 1
(1,) 0
(,0) 0

x

x

u

u

u x

=

=

q=

 q =

 q =

=

 (165)

2()

1

2 sin() sin()
(,)

n

n

n x n x e
u x n n

 - q

=

q = -

 (166)

A.2.3 Duhamel’s Theorem
The problems in this category are essentially similar to the previous

scenarios except that u(x, q) is the response to a boundary condition that is
initially zero and then progresses to a constant value, or the problem is non-
homogeneous in general terms, as shown in Equation (167).

Attempt the problem presented by Equation (168) with the boundary
conditions presented by Equation set (169). The solution is given by
Equation (170).

0 1

(,) (,) () (,)
N

i i
i

u x u x F d u x F
q

= =

q = q- q- (167)

 xxu u= θ (168)

MatHeMatiCal MetHods to solve Heat and Wave ProBleMs • 343

0

1

0

(0,) cos()
(1,) 0
(,0) 0

x

x

u w

u

u x

=

=

q=

 q = q

q =
 =

 (169)

4 2

3 ()
4 2

sin()
(,) 2 cos() sin()

si

()
()

()
n()

n n x
u x n w w w

n w

n n x
n w

- q

 q = q q -

 (170)

A.2.4 Complex Combinations
The following steps may be adopted when solving differential equations:

(a) A new variable that is 90° out of phase with that of the main dependent
variable is defined (v)—this variable is the imaginary component of the
ultimate solution; (b) A new variable is presented, which is the conjugate
of the real and imaginary parts w = (u + iv)—this variable is the ultimate
solution; (c) The ultimate solution is defined as i ww X x e= θ using the
Euler’s formulae, where cos sini xe x i x= ; (d) The problem is solved
X(x); and (e) The final complex variable (w) is obtained.

Attempt Equation (171), along with the boundary conditions given
by Equation set (172), is a relatively complex problem that may be solved
using this technique. Equation 173) is the solution expressed as a function
of the complex variable w

 cos()xxu w uq q = (171)

 0(0,) 0
(,) 0

x

x

u

u
=

=

 q =

 q =
 (172)

 2 21
(,) sin cos 1 cos sin()2 2

w w
x xw w

u x e x w e x ww

 - -

 q = q - q

 (173)

A.2.5 Superposition
There are scenarios where you may superimpose multiple solutions you

have attempted using different techniques. The boundary conditions may
be either homogeneous, constant, or periodic.

Attempt Equation (174) given the boundary conditions presented by
Equation set (175). Note that you may convert Equation (174) to four
components, consisting of cases where a single non-homogeneity is taken
into consideration at a time —Equation (176) and Table A.1.

344 • PraCtiCal Heat transfer

 (,)xxu F x uq q = (174)

0

1

0

(0,) ()
(1,) ()
(,0) ()

x

x

u g

u h

u x f x

=

=

q=

 q = q

 q = q

=

 (175)

 (,) (,) (,) (,) (,)u x v x w x p x q xq = q q q q (176)

TABLE A.1. Equation sets to be solved independently and then superimposed.

Partial
Solution

vxx +F(x, q) = vq wxx = wq pxx = pq qxx = qq

Partial
Boundary
Conditions

0

1

0

(0,) 0
(1,) 0
(,) 0

x

x

v

v

v x

=

=

q=

 q =

q =
 q =

0

1

0

(0,) ()
(1,) 0
(,) 0

x

x

w g

w

w x

=

=

q=

 q = q

q =
 q =

0

1

0

(0,) 0
(1,) (0)
(,) 0

x

x

p

p h

p x

=

=

q=

 q =

q =
 q =

0

1

0

(0,) 0
(1,) 0
(,) ()

x

x

q

q

q x f x

=

=

q=

 q =

q =
 q =

A.2.6 Laplace Transform
This transformation is very similar to the Fourier Transform; however,

it is more comprehensive in the sense that both function and variable (i.e.,
frequency) are complex. The inverse transformation is also possible, where
a complex variable (such as the frequency) is transformed to a real variable
(i.e., time).

Attempt Equation (177) with the boundary conditions presented by
Equation set (178). The result is the solution given by Equation (179).

 () 0
dT hA

T Td CV - =
q r

 (177)

1 0 cos()
0 i

T T T w

T T

 = q

=

 (178)

 2 2
1 1

0 cos() sin()
1 1

T T e w w w
w w

-q q = - q q
 (179)

A.2.7 Integral Method
This method is an approximate solution to relatively complicated

problems and may be attempted by taking the following steps: (a) A
temperature profile as a function of the dependent variables is estimated,
where one variable is incorporated as a multiplier and the other one as the
variable in a polynomial relationship— 2 3(,) () () () ;()T x t a t b t x c t x d t x=
(b) A penetration depth is defined as a function of the non-polynomial
dependent variable, which satisfies the initial condition x = r(t); (c)

MatHeMatiCal MetHods to solve Heat and Wave ProBleMs • 345

The multipliers are calculated using the variable defined in step (b),
considering the boundary and initial conditions; and (d) The final solution
is obtained by integrating from the main equation, considering the variable

in step (b) as the boundary limits—

0

(,) .
t

t T x t dx
r

q =
Attempt Equation (180) with the boundary conditions presented by

Equation set (181). The solution is presented by Equation (182).

2

2
(,) (,)

0
dT x t d T x t

k xdt dx
= (180)

 0 0

0

(,)
0

(0,)
(,0)

0
0 0

x

x

t

dT t
dx

T t T

x

t

xT

x
=

=

=

=

 =

 £

 (181)

 0(,)
2

x
T x t T erfc

kt

=

 (182)

A.2.8 Perturbation Method
This technique assumes an approximate solution that is perturbed by

introducing an infinitesimal variation to the main dependent variable to
the exact solution of a simplified solution, which is similar to the original
problem, as given in Equation (183). The solution is then solved for the
solvable component as well as the perturbed component. The final solution
is achieved when the perturbed term approaches zero.

Attempt Equation (184), which is the dimensionless form of the
derived one for the heat capacitance method, where the initial temperature
is given—Equation (185)—to obtain the solution presented by Equation
(186).

 2 3
0 1 2 3 ...q= q q q q (183)

1 0

d
d

q
q q=

 (184)

 0 1 = q= (185)

 2 2 2 33
2 2e e e e e e e- - - - - - q= - - (186)

A P P E N D I X B
gOverning eqUATiOns sUMMAry

Content Governing Equations

D
im

en
si

on
al

 A
na

ly
si

s

in out gen storage

in

out

gen

st

.

gen

2 2 2

2 2

()

homogeneous material

x

x x

p

x y z p i

E E E E

dT
E kA dx

dT d dT
E kA kA dxdx dx dx
E q dx dy dz

dT
E c dx dy dzdt
d dT d dT d dT dT dT

k k k C v qdx dx dy dy dz dz dt dx

d T d T d T
dx dy dz

- =

=-

=- -

=

= r

- - - = r

 .

gen2

 1p
i

C dT dT
v qk dt dx k

r
=

348 • PraCtiCal Heat transfer

Content Governing Equations
D

im
en

si
on

le
ss

 A
na

ly
si

s
Case 1—Semi-infinite Solid:

 tip

ambient surroundings assumptio(n)
x LT T

T T T
=

=

= =
Case 2—Insulated Tip:

()
0x

ti x L

dT
Q k A dx =

=- =

Case 3—Convective Surfaces:

0

1 2 2
tip()

2 2

2

0 0 0

0

2
2

2

1 2

0

fin()

0

0

_ optimum

0

() ()

0

rx s s
x L

r s s

x

L L

t i i

mx mx

f

f f

b

x L

dT
Q k A hA T T A h T Tdx

h T T T T

hP
m kA

T T

T T

T T

T T

d
m

dx
C e C e

q
q

A h
A h

dq
dx

=

=

=

-

q=q

=

=- = - -

=

=

q= -

q = q = -

q = -

q = q = -

q
- q=

q=

=

q
=

q

=

governing equations suMMary • 349

Content Governing Equations

G
en

er
al

 C
ur

ve
s

0 0 0

tip

2

1

2 1

2
2

2 2

2
0

() width function

() area function: cross-sectional area
2 2 () ()

2
1 2 () 2 0

()

2

x

Lx L

b

T T

T T

L T T

y f x

A f x

A y Lf x f x

df xd d h
L f x dx dx kdx

Ap f dx x

=

=

q= -

q = q = -

q = = -

=

=

= =

q q
= - q=

=

C
yl

in
de

r

2 /4

P D

A D

=

=

One-dimensional:

2

2

0 0 0

2

1 2

() 0

4

x

Ltip x L

mx mx

d T hP
T TkAdx
T T

L T T

hP h
m kA Dk

C e C e

=

=

-

- - =

q = q = -

q = = -

= =

q=

Case 1—Semi-infinite Solid:

()

0

0

0 0

0tip x L

mx

mx

T T

e

q hPkA e

q hPkA

=

-

-

q = q = - =

q
=

q

= q

= q

350 • PraCtiCal Heat transfer

Content Governing Equations
C

yl
in

de
r

Case 2—Insulated Tip:

0 1 2

0

0

0 0

0

0

cosh[()]
cosh

[()]

()

() ()

fin

f

c c

m L x
mL

q hPkA tgh m L x

q q hPkA tgh mL

hPkA tgh mL tgh mL
hpL mL

q =

q -
=

q

= q -

= = q

q
= =

0 0
0

()

Assume :

For 0.25 0.5

2 ()

b

f

c

x

A A

A PL

tgh mL

Ah
Pk

Ph h
N kA k

h h
Nu mk k

L L

h
Nu k

d
q kA kN tgh NL Nudx =

=

=

=

= =

= =

=

 £ = £

 =-

=

Pipe’s Optimum Length:

optimum

3

1
 2

fin 0 0
0

0

0.5

2

0

1
sinh2 1.41926

p

x

A h
k

d
q q kA kh tghdx
dq
d

=

=

=

= =- =

=

 = =

λ

governing equations suMMary • 351

Content Governing Equations

1/32

opt 2

opt

2 1/3
0-opt 0

3
0

2
0

Assume 2

4

2

()4

0.5

p
c

p

p

opt

p

A
L

A h
k

A
L

q A h k

q
Ap

h k

=

 =

 =

 =

 = q

Case 3—Convective Surfaces:

0

cosh sinh[]

cosh() sin()

L
tip x L

d
q k hdx

h
m L x m L xmk

h
mL mLmk

=

q
=- = q

 - -
 q

=
q

Fin’s Optimum Length:

optimum

0 0

1

L L

dq
dL

h
Nu k

=
=

 = =

A P P E N D I X C
LisT Of figUres

Figure 1.1. The Beesat Bridge structure on the southern section of the River
Arvand (built in 1986, Iran). 3

Figure 2.1. Function f(t) versus the t representing static (dotted line) and
dynamic (solid line) systems (a = 0.5). 19

Figure 2.2. Fitted function f(t) versus the t representing static and dynamic
systems (a = 0.5). 20

Figure 2.3. Energy balance diagram for a continuum (e.g., a parcel of
air). 21

Figure 2.4. An illustration showing the concept of the view factor in radiation
heat transfer. 33

Figure 2.5. View factor between the two surfaces seeing one another. 35

Figure 2.6. BMR for a human adult (H = 160 cm) as a function of: (a) Weight,
(b) Age. 37

Figure 2.7. Hourly energy burned for a human adult as a function of weight
(Age = 40 years, H = 160 cm): (a) 100 BPM, (b) 150 BPM. 38

Figure 2.8. Mean surface temperature versus the distance from the Sun. 41

Figure 2.9. Spectral radiance inside a cavity. 42

Figure 2.10. General form of energy conservation diagram in the Cartesian
coordinate system. 47

Figure 2.11. General form of energy conservation diagram in the cylindrical
coordinate system. 49

354 • PraCtiCal Heat transfer

Figure 2.12. General form of energy conservation diagram in the spherical
coordinate system. 49

Figure 3.1. Element and nodes: (a) 1D, (b) 2D, and (c) 3D. 54

Figure 3.2. Hexagonal nut shape with symmetry planes. 55

Figure 3.3. Example of a convergence plot for a 3D analysis for a heat
transfer model. 60

Figure 4.1. The MATLAB HOME toolstrip with the Workspace and
Command Window panels. 65

Figure 4.2. The MATLAB HOME toolstrip. 66

Figure 4.3. Grayed out PLOTS toolstrip. 66

Figure 4.4. The MATLAB who and whos commands. 67

Figure 4.5. Single versus the double precision. 68

Figure 4.6. Character vectors versus the strings. 69

Figure 4.7. The deblank, strtrim, upper, and lower text manipulation:
(a) Commands, (b) Outputs. 70

Figure 4.8. Use of a logical array as an index of a numeric array. 71

Figure 4.9. Defining row and column vectors and using the transpose
operator. 72

Figure 4.10. Random integer generating function. 73

Figure 4.11. Random integer and real variables. 74

Figure 4.12. The zeroes, ones, and identity matrices. 74

Figure 4.13. Extracting the diagonal values from a matrix and creating a
diagonal matrix. 75

Figure 4.14. Matrix indexing by position. 76

Figure 4.15. Matrix indexing with logical values. 77

Figure 4.16. Use of arithmetic operators for scalars and matrices. 78

Figure 4.17. Use of element-by-element operators for scalars and
matrices. 79

Figure 4.18. Use of relational operators for scalars and matrices. 79

Figure 4.19. Use of the reshape function. 80

Figure 4.20. Use of the sort function. 81

Figure 4.21. Use of the flip function. 81

list of figures • 355

Figure 4.22. Use of the size and length commands for vectors and
matrices. 82

Figure 4.23. Use of the max function for vectors and matrices. 83

Figure 4.24. Calculating the inverse function. 84

Figure 4.25. Indeterminate inverse matrix. 84

Figure 4.26. Solving a single system of linearly independent equations:
(a) Script, (b) Solution. 87

Figure 4.27. Solving a system of linearly dependent equations. 87

Figure 4.28. Solving multiple systems of linearly independent equations:
(a) Script, (b) Solution. 88

Figure 4.29. Executing built-in functions using the command or function
syntax. 89

Figure 4.30. Identifying the NaN variables within an array. 90

Figure 4.31. Creating a script file. 91

Figure 4.32. Saving a script file and running the script. 92

Figure 4.33. The Command Window showing the script name entry and its
output. 93

Figure 4.34. Asking for a single input in a cube parameter calculation
script. 94

Figure 4.35. Asking for multiple inputs in a cylinder parameter calculation
script. 94

Figure 4.36. Displaying the results, including spaces. 95

Figure 4.37. Specifying output format for printed numbers. 95

Figure 4.38. Defining format for the value embedded in the fprintf
function. 96

Figure 4.39. Saving variable data to a new file and appending data to an
existing external file. 97

Figure 4.40. Saving data into an external file. 97

Figure 4.41. Calling data from an external file. 97

Figure 4.42. Viewing and editing variable data in the Variables Editor. 98

Figure 4.43. File formats importable into the MATLAB environment. 98

Figure 4.44. Image formats that may be created in the MATLAB
environment. 99

356 • PraCtiCal Heat transfer

Figure 4.45. The vol_cyl function: (a) Calculating the cylinder volume,
(b) Including the local function use. 100

Figure 4.46. (a) Calling the vol_cyl function from the command line,
(b) Using the help command with functions, (c) Invalid input examples. 101

Figure 4.47. Script Cyl_dim3.m: (a) Using global variables, (b) Output. 102

Figure 4.48. Functions called by Cyl_dim3 script with global variable:
(a) vol_cyl4, (b) area_cyl4. 103

Figure 4.49. Script to create plots, bar charts, and histograms. 104

Figure 4.50. Multiple plots of the y-values versus the x-values in a
single diagram with variables, defined in Figure 4.49. 105

Figure 4.51. (a) y1-values versus the x-values in a horizontal bar chart,
(b) y2-values versus the x-values in a vertical bar chart, defined in Figure
4.49. 106

Figure 4.52. Histogram of the counts versus the y2-values, defined in Figure
4.49. 106

Figure 4.53. Four plots displayed in a single figure. 107

Figure 4.54. Figure properties options. 108

Figure 4.55. 3D surface plot created with the surf function. 108

Figure 4.56. Code execution speed comparison using the tic and toc
commands that shows benefit of predefining zeros array. 109

Figure 4.57. Code execution speed comparison using the tic and toc
commands: element-by-element operation benefit. 110

Figure 4.58. Script matPropEntry.m that asks user to enter thermophysical
properties. 111

Figure 4.59. The result of running the script matPropEntry.m. 112

Figure 4.60. Function testPropLimits that evaluates entered values to test if
they fall within specified range. 113

Figure 4.61. Random_Walk_Plot.m script. 115

Figure 4.62. Text input/output of the Random_Walk_Plot.m script. 116

Figure 4.63. Random walk plot for maximum step size of 25; box boundaries
indicated by red square. 117

Figure 5.1. The PDE Modeler application in the Math, Statistics, and
Optimization grouping. 123

list of figures • 357

Figure 5.2. The PDE Modeler, Object Dialog settings for a Circle C1,
Draw Mode. 124

Figure 5.3. The PDE Modeler, Grid Spacing settings, Options Mode. 125

Figure 5.4. The PDE Modeler, defining Set formula by addition/
subtraction. 125

Figure 5.5. The PDE Modeler, Options menu items. 126

Figure 5.6. The PDE Modeler, Options, Application menu items. 126

Figure 5.7. The PDE Modeler, Draw menu items. 127

Figure 5.8. The PDE Modeler, Boundary menu items. 128

Figure 5.9. The PDE Modeler, Boundary Condition settings for Dirichlet
boundary conditions. 128

Figure 5.10. The PDE Modeler, PDE menu items. 129

Figure 5.11. The PDE Modeler, PDE Specification settings for the Elliptic
model. 129

Figure 5.12. The PDE Modeler, PDE Specification settings for the Parabolic
model (interior region, aluminum). 130

Figure 5.13. The PDE Modeler, PDE Specification settings for the Parabolic
model (exterior region, copper). 130

Figure 5.14. The PDE Modeler, Mesh menu items. 131

Figure 5.15. The PDE Modeler, Mesh Parameters settings. 132

Figure 5.16. The PDE Modeler, Solve menu items. 133

Figure 5.17. The PDE Modeler, Solve Parameters settings. 133

Figure 5.18. The PDE Modeler, Plot menu items. 134

Figure 5.19 The PDE Modeler, Plot Selection settings. 134

Figure 5.20. The PDE Modeler, default geometry and solution (temperature
and its gradient). 135

Figure 5.21. Basic shapes assembled into a multi-region geometry. 141

Figure 5.22. Geometry creation commands (circle and rectangle
operations). 141

Figure 5.23. Geometry created using circle and rectangle operations. 142

Figure 5.24. Use of geometryFromMesh function to create a convex hull
element: (a) Script, (b) Element boundaries. 144

358 • PraCtiCal Heat transfer

Figure 5.25. Importing 3D geometry from a *.stl file: (a) Script, (b) CAD
geometry, (c) *.stl geometry, (d) Imported model. 145

Figure 5.26. Example of function that defines heat source and correctly
handles a NaN input. 148

Figure 5.27. Use of the object functions to analyze the thermal model
results. 154

Figure 6.1. Axisymmetric copper pipe geometry (dimensions in mm). 157

Figure 6.2. Axisymmetric pipe geometry showing the edge and face
IDs. 159

Figure 6.3. Material properties assignment for a transient model. 160

Figure 6.4. Material properties assignment for a steady-state model. 160

Figure 6.5. Heat source assignments. 161

Figure 6.6. Triangular mesh for axisymmetric pipe mesh. 161

Figure 6.7. Triangular elements for the 2D pipe: (a) Node IDs on, (b)
Element IDs on. 162

Figure 6.8. Mesh statistics. 162

Figure 6.9. Axisymmetric pipe temperature contours. 163

Figure 6.10. Axisymmetric pipe temperature gradient contours. 164

Figure 6.11. Axisymmetric copper pipe (midplane): (a) Nodes, (b) Radial
temperature profile. 165

Figure 6.12. Axisymmetric copper pipe midplane radial profiles:
(a) Temperature gradient, (b) Heat flux. 165

Figure 6.13. Solution statistics. 165

Figure 6.14. Thermal model configurations. 166

Figure 6.15. Axisymmetric pipe midplane results radial profiles comparisons:
(a) Temperature, (b) Temperature gradient. 167

Figure 6.16. Axisymmetric pipe midplane rdaial heat flux comparison. 167

Figure 6.17. Axisymmetric insulated pipe geometry with quarter section
removed to show the interior structure. 168

Figure 6.18. Axisymmetric 2D geometry of the insulated pipe, including the
edge and face IDs. 169

Figure 6.19. Triangular mesh for the 2D axisymmetric model of the insulated
pipe. 170

list of figures • 359

Figure 6.20. Mesh statistics for the 2D axisymmetric model of the insulated
pipe. 170

Figure 6.21. Axisymmetric insulated copper pipe: temperature
contours. 171

Figure 6.22. Axisymmetric insulated copper pipe: temperature gradient
contours. 171

Figure 6.23. Axisymmetric pipe with insulation (midplane): (a) Nodes, (b)
Radial temperature profile. 171

Figure 6.24. Axisymmetric pipe with the insulation midplane radial profiles:
(a) Temperature gradient, (b) Heat flux. 172

Figure 6.25. Radial temperature profiles for analytical and PDE
solutions for the axisymmetric pipe with insulation. 174

Figure 6.26. Axisymmetric pipe model comparison radial profiles
comparisons (midplane): (a) Temperature, (b) Heat flux. 175

Figure 6.27. Axisymmetric pipe model savings comparison:
(a) Heat loss per unit length of the pipe, (b) Annual cost. 175

Figure 6.28. Axisymmetric pipe with radial fins, with a quarter
section removed to show the interior structure. 177

Figure 6.29. Axisymmetric pipe with radial fins: (a) Geometry, (b) Edge and
face identities. 177

Figure 6.30. Triangular mesh for an axisymmetric pipe with radial fins. 178

Figure 6.31. Thermal model solution statistics. 180

Figure 6.32. Axisymmetric pipe with radial fins: (a) Temperature contours
and heat flux vector fields, (b) Temperature gradient contours. 181

Figure 6.33. Query to determine the boundary conditions on Edges 1 and 2
(E1 and E2). 182

Figure 6.34. Query to determine the initial conditions on Faces 1 and 2 (F1
and F2). 183

Figure 6.35. Query points to determine the nodes: (a) Radial ndoes, (b) Axial
nodes. 186

Figure 6.36. Temperature profiles at selected planes: (a) Radial temperature,
(b) Axial temperature. 187

Figure 6.37. Radial profiles at the top surface and midplane: (a) Temperature
gradient, (b) Heat flux. 187

360 • PraCtiCal Heat transfer

Figure 6.38. Heat rate: (a) Radial, top surface and midplane,
(b) Transient, selected edges, per unit length of the edge. 188

Figure 6.39. Edges whose heat rates are calculated. 188

Figure 6.40. Data at the midplane-interior, interface, and exterior surfaces:
(a) Query points (b) Temperature at the last time step. 190

Figure 6.41. Transient temperature profiles at the midplane pipe-fin interface
and exterior surfaces. 190

Figure 6.42. Heat flux field vectors at the pipe’s interface and exterior
surfaces at the last time step. 191

Figure 6.43. Thermal model query to determine model configurations. 192

Figure 6.44. Thermal model properties records. 192

Figure 6.45. Thermal model geometry records. 192

Figure 6.46. Thermal model solver records. 193

Figure 6.47. Thermal model mesh records. 193

Figure 6.48. 3D pipe geometry after *.stl file import. 195

Figure 6.49. 3D pipe geometry after scaling by [1 1 1]/1,000. 195

Figure 6.50. 3D mesh, front view (0,0). 196

Figure 6.51. 3D mesh: (a) Top view (0,90), (b) Isometric view
(-37.5,30). 197

Figure 6.52. Material properties in the MATLAB script for the non-
axisymmetric transient pipe model. 197

Figure 6.53 Boundary conditions MATLAB script for the non-axisymmetric
transient pipe model. 198

Figure 6.54. Moving heat source boundary condition
MATLAB script for the non-axisymmetric transient pipe model. 199

Figure 6.55. Global variables in the MATLAB script for the non-axisymmetric
transient pipe model. 200

Figure 6.56. Solution settings in the MATLAB script for the non-
axisymmetric transient pipe model. 200

Figure 6.57. Projected node density on the z-coordinate. 201

Figure 6.58. Heat source nodes at the end of the heating process
(t = 100 s). 201

Figure 6.59. 3D thermal transient model solution statistics for the non-
axisymmetric pipe. 202

list of figures • 361

Figure 6.60. 3D thermal transient model temperature contours for the
non-axisymmetric pipe: (a) t = 50 s, (b) t = 100 s. 202

Figure 6.61. 3D thermal transient model temperature gradient contours for
the non-axisymmetric pipe: (a) dT/dx, (b) dT/dy. 203

Figure 6.62. Transient temperature profiles at the exterior, middle,
and interior surfaces (x = 0.03 m, z = 0.02 m). 203

Figure 6.63. Changing temperature boundary condition
in the MATLAB script for the non-axisymmetric transient pipe model. 204

Figure 6.64. The 2D geometry created in the MATLAB PDE Modeler. 206

Figure 6.65. Geometry description script to plot the 2D geometry in the
MATLAB PDE Modeler application. 206

Figure 6.66. The PDE Modeler, PDE Specification for a Generic System
model. 207

Figure 6.67. The PDE Modeler, PDE Specification for a Structural
Mechanics, Plane Stress model. 207

Figure 6.68. The PDE Modeler, PDE Specification for a Heat Transfer model,
Parabolic settings. 208

Figure 6.69. The PDE Modeler, PDE Specification for a Heat Transfer model,
Elliptic settings. 208

Figure 6.70. The PDE model equation dataset script for the
2D geometry in the MATLAB PDE Modeler application. 210

Figure 6.71. The PDE model application dataset script for the
2D geometry in the MATLAB PDE Modeler application. 210

Figure 6.72. Boundary conditions applied to the 2D geometry created in the
MATLAB PDE Modeler. 212

Figure 6.73. The PDE Modeler, Boundary Condition for a Heat Transfer
model, Neumann settings. 212

Figure 6.74. The PDE Modeler, Boundary Condition for a Heat Transfer
model, Dirichlet settings. 213

Figure 6.75. Boundary conditions script to plot the 2D geometry
in the MATLAB PDE Modeler application. 213

Figure 6.76. Mesh generation script to plot the
2D geometry in the MATLAB PDE Modeler application. 214

Figure 6.77. 2D triangular mesh generated in the MATLAB PDE Modeler
application. 214

362 • PraCtiCal Heat transfer

Figure 6.78. The MATLAB PDE Modeler application
transient thermal model solution statistics. 215

Figure 6.79. 2D contour plots generated in the MATLAB PDE Modeler
application. 216

Figure 6.80. Variable names for exporting the 2D geometry from the
MATLAB PDE Modeler. 217

Figure 6.81. Script to plot the exported 2D geometry from the PDE
Modeler. 217

Figure 6.82. The 2D geometry plotted using the PDE Toolbox script with the
edge labels on. 218

Figure 6.83. The 2D geometry plotted using the PDE Toolbox script with the
face labels on. 218

Figure 6.84. Thermophysical properties for the 2D geometry plotted in
Figure 6.82. 219

Figure 6.85. Boundary conditions assigned to the 2D geometry plotted in
Figure 6.82. 220

Figure 6.86. Heat sources (internal heat generation) assigned to the 2D
geometry plotted in Figure 6.82. 220

Figure 6.87. Mesh parameters and thermal model solver options
assigned to the 2D geometry plotted in Figure 6.82. 221

Figure 6.88. Mesh properties. 221

Figure 6.89. Node locations. 221

Figure 6.90. Initial conditions assigned to the 2D geometry plotted in Figure
6.82. 222

Figure 6.91. Solution properties for the 2D geometry plotted in Figure
6.82. 223

Figure 6.92. Solution statistical data. 223

Figure 6.93. The MATLAB script transient thermal model solution properties
and statistics. 223

Figure 6.94. Animated data setting for the 2D geometry plotted in Figure
6.82. 224

Figure 6.95. Animated data setting for the 2D geometry plotted in Figure
6.82. 225

Figure 6.96. Temperature contour plots and heat flux vectors
for the script presented in Figure 6.94. 225

list of figures • 363

Figure 6.97. Temperature gradient contour plots and vectors with respect to:
(a) x (dT/dx), (b) y (dT/dy). 226

Figure 6.98. Script to generate the 2D geometry and plot in Figure 6.99. 227

Figure 6.99. Getting data at the query points:
(a) Point locations, (b) Transient temperature at the selected points. 228

Figure 7.1. (a) Setting up a new model, (b) Selecting the space
dimension. 233

Figure 7.2. Selecting physics—Heat Transfer, Heat Transfer in Solids
(ht). 233

Figure 7.3. Selecting study—General Studies, Time Dependent. 234

Figure 7.4. The COMSOL Multiphysics model tree window. 234

Figure 7.5. Geometry—Length unit options. 236

Figure 7.6. Geometry—Angular unit options. 236

Figure 7.7. Geometry—Geometry representation kernels options. 236

Figure 7.8. Geometry—Default repair tolerance options. 237

Figure 7.9. (a) An example of a 3D ring geometry, (b) The geometry
sequence shown. 238

Figure 7.10. (a) A 3D ring with a groove created by revolving the 2D shapes;
(b) The geometry sequence shown. 238

Figure 7.11. Geometry components used in Figure 7.10: (a) Work Plane
used to define input to the 2D shapes, (b) Finished profile for a 3D ring with
a groove. 239

Figure 7.12. Java script created in COMSOL Multiphysics to set up the
model geometry. 243

Figure 7.13. Java script created in COMSOL Multiphysics to set up the
model geometry, after applying the Compact History. 244

Figure 7.14. Java script created in COMSOL Multiphysics to define
materials. 245

Figure 7.15. Java script created in COMSOL Multiphysics to define
boundary conditions. 246

Figure 7.16. Java script created in COMSOL Multiphysics to define mesh
and solution. 247

Figure 7.17. Java script created in COMSOL Multiphysics to display transient
temperature at a point. 248

364 • PraCtiCal Heat transfer

Figure 7.18. Java script created in COMSOL Multiphysics to display
temperature variation along a line. 248

Figure 8.1. Geometry of the not-finned pipe (dimensions in mm). 257

Figure 8.2. (a) Inlet, (b) Outlet. 258

Figure 8.3. Mesh distribution for the not-finned pipe. 258

Figure 8.4. Mesh statistical data for the not-finned pipe. 259

Figure 8.5. Volume temperature contours. 260

Figure 8.6. The zx-plane: (a) Selected cross-section for thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 261

Figure 8.7. The xy-plane: (a) Selected cross-section for thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 262

Figure 8.8. The yz-plane: (a) Selected cross-section for thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field (outlet at z = 0). 263

Figure 8.9. The y-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 264

Figure 8.10. The x-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 265

Figure 8.11. Normal total heat flux over surface 1 and surface 2. 266

Figure 8.12. The 2D axisymmetric geometry for the pipe presented in Figure
8.1: (a) Geometry, (b) Mesh. 267

Figure 8.13. 2D temperature contours: (a) Included the arrow line and
streamline velocity field, (b) Revolved. 268

Figure 8.14. Comparison between the temperature profiles along the pipe
diameter at the midplane for the 2D and 3D models. 269

Figure 8.15. Geometry of the internally finned pipe (dimenions in mm). 269

Figure 8.16. Mesh distribution for the internally finned pipe. 270

Figure 8.17. Volume temperature contours. 270

Figure 8.18. The zx-plane: (a) Selected cross-section for thermal data,
(b) Temperature contours at the selected cross section including the
streamline velocity field. 271

list of figures • 365

Figure 8.19. The xy-plane: (a) Selected cross-section for thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 272

Figure 8.20. The yz-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 273

Figure 8.21. The y-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 274

Figure 8.22. The x-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 275

Figure 8.23. Geometry for the externally finned pipe (dimenions in
mm). 275

Figure 8.24. Mesh distribution for the externally finned pipe. 276

Figure 8.25. Volume temperature contours. 277

Figure 8.26. The zx-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 278

Figure 8.27. The xy-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 279

Figure 8.28. The yz-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 280

Figure 8.29. The y-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 281

Figure 8.30. The x-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 282

Figure 8.31. Geometry of the internal-external finned pipe (dimenions in
mm). 283

Figure 8.32. Mesh distribution for the internally-externally-finned pipe. 284

Figure 8.33. Volume temperature contours. 284

Figure 8.34. The zx-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section. 285

Figure 8.35. The xy-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section. 286

366 • PraCtiCal Heat transfer

Figure 8.36. The yz-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section. 287

Figure 8.37. The y-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 288

Figure 8.38. The x-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 289

Figure 8.39. Geometry for the externally-twisted-finned, rotini pipe
(dimensions in mm). 290

Figure 8.40. Mesh distribution for the channeled externally-twisted-finned,
rotini pipe. 291

Figure 8.41. Volume temperature contours. 291

Figure 8.42. The zx-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 292

Figure 8.43. The xy-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section including the
streamline velocity field. 293

Figure 8.44. The yz-plane: (a) Selected cross section for the thermal data,
(b) Temperature contours at the selected cross section, including the
streamline velocity field. 294

Figure 8.45. The y-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 295

Figure 8.46. The x-coordinate: (a) Selected lines along the pipe diameter,
(b) Temperature profiles along the pipe diameter at the selected lines. 296

Figure 8.47. Comparison between the exterior surface areas for the case
studies. 298

Figure 8.48. Comparison between the heat rates per unit length of the pipe
for the case studies. 298

Figure 8.49. Heat rate per unit length of the pipe versus the exterior surface
area for the case studies. 299

Figure 8.50. Comparison between the convective surface area-to-volume
ratios for the case studies. 300

Figure 9.1. (a) 2D axisymmetric geometry, (b) Sample line profile, (c) Sample
points. 302

list of figures • 367

Figure 9.2. Radial temperature profiles in the middle of the pipe after 1 min
and 10 min. 303

Figure 9.3. Radial temperature profiles in the middle of the pipe after 1 min
and 10 min. 304

Figure 9.4. Radial temperature profiles in the middle of the pipe after 1 min
and 10 min. 305

Figure 9.5. Transient temperature profiles in the middle of the
fluid and pipe at the fluid and pipe centers. 306

Figure 9.6. Radial temperature profiles in the middle of the pipe after 1 min
and 10 min. 307

Figure 9.7. Radial temperature profiles in the middle of the pipe after 1 min
and 10 min. 308

Figure 9.8. Radial temperature profiles in the middle of the pipe after 1 min
and 10 min. 308

Figure 9.9. (a) Line profile, (b) Radial temperature profiles in the middle of
the pipe after 5 min. 310

Figure 9.10. (a) Line profile, (b) Axial temperature profiles in the middle of
the cylinder after 2 min and 10 min. 311

Figure 9.11. Solution sample for the radiated energy versus the number of
number of reflections. 312

A P P E N D I X d
LisT Of TABLes

Table 2.1. Comparison of thermomechanical properties of aluminum and
titanium. 18

Table 2.2. Comparison of thermophysical properties of some materials. 25

Table 5.1. The List of the basic shapes and their configurations. 138

Table 5.2. Examples of basic 2D shape creation with the decsg
function. 139

Table 5.3. The property relations and their MATLAB representations. 146

Table 6.1. Thermal model parameters for axisymmetric pipe models
[55,56]. 158

Table 6.2. Thermal model setup [57,58]. 176

Table 6.3. Formatting of parameters in the PDE Modeler application. 211

Table 8.1. Thermal model input parameters. 252

Table 8.2. Pipe area and volume for the presented case studies. 297

Table 8.3. Heat rate comparisons between the case studies. 299

Table A.1. Equation sets to be solved independently and then
superimposed. 344

A

Absolute tolerance, 235
Adding materials, 240
Aerodynamics, 14
Analysis types, 57–58, 147
Animation rate, 215
Anisotropic, 17
Array operations, 78
Artificial systems, 2–4
Automatic tolerance, 236

B

Basal metabolic rate (BMR), 36
Basic concepts, 14–15
Black body, 32
Black box, 325
Blank model, 232
Boundary condition (BC), 154

C

Caldarium, 31
Caloric fluid, 11
Case studies

Axisymmetric pipe: multi-domain,
steady-state thermal model,
168–175

Axisymmetric pipe: multi-domain,
transient thermal model, 176–193

Axisymmetric pipe: single-domain, steady-
state thermal model, 157–167

Combining the MATLAB script and the
PDE modeler application, 204–227

Externally-finned pipe,
275–282

Externally-twisted-finned (Rotini)
channelled pipe, 290–296

Internally-externally-finned pipe, 283–289
Internally-finned Pipe, 269–275
Modeling heat transfer in a pipe,

250–257
Non-axisymmetric pipe: transient thermal

model with spatial and temporal
boundary conditions, 194–204

Pipe, 257–269
Choice of FEA tools, 325–329
Code examples, 109–117
COMSOL compiler, 328
COMSOL multiphysics models, 229–248
Conjugate heat transfer, 231
Convection

Forced, free, natural, 30
Creating model in COMSOL multiphysics,

232–235
Cut plane, 260

index

372 • PraCtiCal Heat transfer

D

Default repair tolerance, 235
Design module, 251
Desktop

Command window, 64, 65
Current folder, 64
Workspace, 65

District heating, 8
Dirichlet, 211
Dynamic system, 19

E

Edge labels, 176, 211
Energy generation, 22
Energy storage, 22
Equations

Built-in, 88–90
Elliptic, 120
Linear, 86-88
Parabolic, 120

Ethical designs, 331–334
Exercises

COMSOL heat transfer problems solved
with MATLAB, 312

Constant heat flux and multiple surfaces,
303–304

Constant heat flux and single surface, 303
Energy absorbed in a cavity, 311–312
Heat transfer from a pipe with

extended surfaces, 309
Heat transfer from a solid cylinder,

310–311
Non-axisymmetric model, 308
Spatially variable radiative heat flux,

304–305
Temperature-dependent thermophysical

and ambient properties, 307–308
The MATLAB and COMSOL heat

transfer problems solved
analytically, 313

The MATLAB heat transfer problems
solved with COMSOL, 312

Variable ambient temperature, 305–306
Variable heat convection coefficient and

ambient temperature, 306–307

F

Factor
Configuration, shape, view, 35

Finite difference method (FDM), 54, 120
Finite element analysis method (FEM),

53–62
Fire retardant, 45
Flash point, 45
Flow

Free molecular, 24
Nonslip, 24

Fluid mechanics
Dynamics, 13
Statics, 13

Frigorific particles, 11
Function

Createpde, 147
Decsg, 140
Linspace, 73
Pdegplot, 141, 159, 217
Pdeseteq, 215
Piecewise, 245
Rand, 73
Setappdata, 215, 220

G

Generic system, 207
Geometric order, 149
Geometry

Creating, 235–240
Importing, 239–240

Geometry structure, 216
Graphical user interface (GUI), 327
Grashof number, 30
Greenhouse effect, 39

H

Heat generation (HG), 13, 147–148
Heat transfer

Conduction, 24–29
Conjugate, 270, 276, 291
Convection, 29–31
Fluid, 253
Heat flux, 253

index • 373

Inflow, 253
Initial values, 253
Modeling, 13–52
Modeling considerations, 231–232
Module, 252
Node root, 253
Outflow, 253
Pipe exposed to the solar radiation,

301–308
Problem case studies, 157–228, 249–300
Problems in MATLAB, 119–156
Radiation, 31–43
Solid, 253
Thermal insulation, 253
Various geometries, 309–311

Heat loss comparison, 174–175
Hemodynamics, 5
High-density polyethylene (HDPE), 9
High performance computer virtual

laboratories (HPCVL), 326
Hollow cylinder, 173
Hydrodynamics, 14
Hydrostatics, 14

I

Isenthalpic, 15
Isentropic, 15
Isobaric, 15
Isobars, 15
Isochoric, 15
Isothermal, 15
Isotherms, 15
Isotropic, 17
Isovolumetric, 15

J

Jiggle mesh, 132

K

Keyhole markup language (KML), 99
Knudsen number (Kn), 14

L

Laplacian, 209

Laser transmission welding (LTW), 40
Laws of thermodynamics

First, 13
Second, 13
Third, 13
Zeroth, 13

Leadership in energy and environmental
design (LEED), 330

Linear induction motors (LIM), 44
LiveLink, 231
Loop

for, 109–110, 112
while, 109, 114, 116

M

Material properties, 56–57
MATLAB

Creating Matrices, 72–75
Introduction to, 63
Variables, 66–71

MATLAB compiler module, 328
Matrix indexing, 75–77
Matrix operations, 78
Matrix reshaping, 80–81
Maximal number of Gauss-Newton

iterations, 151
Maximum edge size, 213
Mechanical interaction, 14
Mesh growth rate, 131
Meshing, 255–256
Metabolic heat, 36
Minimum step, 151
Minimum edge size, 213
Model builder, 235
Model creation, 136–137
Modeling approach

comparisons, 312–314
Model wizard, 232
Modes of heat transfer, 23–45

N

Neumann boundary condition, 211
Nusselt number, 30

374 • PraCtiCal Heat transfer

O

Object dialog, 124
Oil and gas industries, 4–5
Operating on matrices

Arithmetic operators, 77–78
Relational operators, 79

Optical properties, 34
Ordinary differential equations (ODE),

120–122
Organic systems, 5
Orthotropic, 17

P

PDE Modeler, 122–126, 136–142, 204–222
PDE parabolic, 135
PDE Toolbox, 136–137, 144–150, 169, 205
Physics controlled, 267, 276
Pioneer anomaly, 39
Pipe materials

Fiberglass, 6
Glass, 6
Metal, 6
Plastics, 6
Wood, 6

Plots, 103–108
PPEX (cross-linked polyethylene), 7

R

Radiant intensity, 57
Radiators, 31
Refractive index, 57
Region ID, 220
Region type, 220
Relative tolerance, 150, 257
Residual tolerance, 151
Results

Copper and PEX pipes, 166–167
Copper pipe, 163–166

Reynolds number, 252

S

Scripts, 91–92
Six sigma implementation

Concepts, 315–319
Good practices, 320–323

Solution settings, 256–257
Specific heat capacity, 16
Steady-state, 15
Structural mechanics, 207, 219
Subdomain labels, 211
Supervisory control and data acquisition

(SCADA), 7
Surface integration, 265
Sustainable designs, 329–331
Symmetry

Reflectional, 55
Rotational, 55

Systems
Stationary, 14
Steady-state, 14

T

Techniques
Input-output, 93–99

Teleheating, 8
Thermal analysis

Energy balance, 21–23
Properties of materials, 16–18
Static versus dynamics, 18–21

Thermal conductivity, 17
Thermal diffusivity, 16, 17
Thermal management, 7–9 , 43–45
Thermal modeling using the

MATLAB script, 136–155
Thermal resistance, 27
Transient, 149, 152

U

User-defined functions, 99–102
Using elementary geometric

entities, 237–238

V

Validation
Analytical model, 172–174
Comparison with 2D

pipe model, 267–269

W

Work planes, 238

	Cover
	Title
	Copyrightpage
	Contents
	Preface
	Acknowledgments
	Chapter 1 Pipes, Their Applications, and Heat Transfer
	1.1 Artificial Systems
	1.2 Oil and Gas Industries
	1.3 Organic Systems
	1.4 Pipe Materials
	1.5 Thermal Management and Pipes
	1.6 Heat Transfer
	End Notes

	Chapter 2 Heat Transfer Modeling13
	2.1 Basic Concepts
	2.2 Thermal Analysis of Systems (Components and Subcomponents)
	2.2.1 Thermal Properties of Materials
	2.2.2 Static versus Dynamic
	2.2.3 Energy Balance

	2.3 Modes of Heat Transfer
	2.3.1 Conduction Heat Transfer
	2.3.2 Convection Heat Transfer
	2.3.3 Radiation Heat Transfer
	2.3.4 Thermal Management

	2.4 Governing Equations
	End Notes

	Chapter 3 Finite Element Analysis
	3.1 Geometry
	3.2 Material Properties
	3.3 Analysis Types
	3.4 Boundary and Initial Conditions
	3.5 Mesh Size and Time Step
	3.6 Solution Control and Convergence

	Chapter 4 An Introduction to MATLAB
	4.1 Desktop
	4.2 Variables
	4.2.1 Numeric Variables
	4.2.2 Character Vectors and Strings
	4.2.3 Logical Variables

	4.3 Creating Matrices
	4.3.1 Manual Matrix Creation
	4.3.2 Generation of Vectors with Equally-Spaced Values
	4.3.3 Random Number Matrices
	4.3.4 Special Matrices

	4.4 Operating on Matrices
	4.4.1 Matrix Indexing
	4.4.2 Arithmetic Operators
	4.4.3 Relational Operators
	4.4.4 Matrix Reshaping and Rearrangement
	4.4.5 Extracting Information about Matrices
	4.4.6 Matrix Inverse
	4.4.7 Systems of Linear Equations

	4.5 Built-in Functions
	4.6 Scripts
	4.7 Input-Output Techniques
	4.8 User-Defined Functions
	4.9 Plots
	4.10 Code Examples
	4.10.1 Testing Code Execution Speed
	4.10.2 Entering Material Properties
	4.10.3 Random Walk Plot

	End Notes

	Chapter 5 Heat Transfer Problems in MATLAB
	5.1 Introduction to PDEs in MATLAB
	5.2 Thermal Modeling Using the MATLAB PDE Modeler Application
	5.2.1 The PDE Modeler Overview
	5.2.2 Creating 2D Geometry
	5.2.3 The PDE Modeler: A Step-by-Step Guide
	5.3 Thermal Modeling Using the MATLAB Script
	5.3.1 Model Creation
	5.3.2 Geometry
	5.3.2.1 2D Geometries
	5.3.2.2 3D Geometries

	5.3.3 Material Properties
	5.3.4 Analysis Type
	5.3.5 Heat Generation
	5.3.6 Boundary and Initial Conditions
	5.3.7 Mesh
	5.3.8 Solver Options
	5.3.9 Solution and Postprocessing
	5.3.10 Verifying the Model Inputs

	5.4 Summary of the Steps to Create a Thermal Model in MATLAB

	Chapter 6 The MATLAB Heat Transfer Problem Case Studies
	6.1 Case Study 1—Axisymmetric Pipe: Single-Domain, Steady-State Thermal Model
	6.1.1 Setup
	6.1.2 Results for Copper Pipe
	6.1.3 Results Comparison for Copper and PEX Pipes

	6.2 Case Study 2—Axisymmetric Pipe: Multi-Domain, Steady-State Thermal Model
	6.2.1 Setup
	6.2.2 Results
	6.2.3 Validation by an Analytical Model
	6.2.4 Heat Loss Comparison

	6.3 Case Study 3—Axisymmetric Pipe: Multi-Domain, Transient Thermal Model
	6.3.1 Setup
	6.3.2 Results

	6.4 Case Study 4—Non-Axisymmetric Pipe: Transient Thermal Model with Spatial and Temporal Boundary Conditions
	6.4.1 Setup
	6.4.2 Results
	6.5 Case Study 5—Combining the MATLAB Script and the PDE Modeler Application
	6.5.1 The PDE Modeler Script
	6.5.2 PDF Tool Script

	End Notes

	Chapter 7 The COMSOL Multiphysics Models
	7.1 Heat Transfer Modeling Considerations
	7.2 Creating a Model in COMSOL Multiphysics
	7.3 Creating Geometry
	7.3.1 Using Elementary Geometric Entities
	7.3.2 Importing Geometry

	7.4 Adding Materials
	7.5 Adding or Revising Physics
	7.6 Solution
	7.7 The COMSOL LiveLink for MATLAB

	Chapter 8 The COMSOL Heat Transfer Problem Case Studies
	8.1 Modeling Heat Transfer in a Pipe—Overview of the Case Studies
	8.1.1 Model Geometry
	8.1.2 Material Properties
	8.1.3 Model Physics
	8.1.4 Boundary and Initial Conditions
	8.1.5 Meaning
	8.1.6 Solution Settings

	8.2 Case Study 1—Pipe
	8.2.1 3D Model Setup and Results
	8.2.2 Validation—Comparison with 2D Pipe Model

	8.3 Case Study 2—Internally-Finned Pipe
	8.4 Case Study 3—Externally-Finned Pipe
	8.5 Case Study 4—Internally-Externally-Finned Pipe
	8.6 Case Study 5—Externally-Twisted-Finned (Rotini) Channelled Pipe
	8.7 Comparison between Case Studies 1 to 5
	End Note

	Chapter 9 Exercises
	9.1 Heat Transfer in a Pipe Exposed to the Solar Radiation
	9.1.1 Exercise 1—Constant Heat Flux and Single Surface
	9.1.2 Exercise 2—Constant Heat Flux and Multiple Surfaces
	9.1.3 Exercise 3—Spatially Variable Radiative Heat Flux
	9.1.4 Exercise 4—Variable Ambient Temperature
	9.1.5 Exercise 5—Variable Heat Convection Coefficient and Ambient Temperature
	9.1.6 Exercise 6—Temperature-Dependent Thermophysical and Ambient Properties
	9.1.7 Exercise 7—Non-Axisymmetric Model

	9.2 Heat Transfer in Various Geometries
	9.2.1 Exercise 8—Heat Transfer from a Pipe with Extended Surfaces
	9.2.2 Exercise 9—Heat Transfer from a Pipe in a Heat Exchanger
	9.2.3 Exercise 10—Heat Transfer from a Solid Cylinder
	9.2.4 Exercise 11—Energy Absorbed in a Cavity

	9.3 Modeling Approach Comparisons
	9.3.1 Exercise 12—The MATLAB Heat Transfer Problems Solved with COMSOL
	9.3.2 Exercise 13—The COMSOL Heat Transfer Problems Solved with MATLAB
	9.3.3 Exercise 14—The MATLAB and COMSOL Heat Transfer Problems Solved Analytically

	Chapter 10 Lean Six Sigma Implementation
	10.1 Introduction to the Concepts
	10.2 Good Practices
	End Notes

	Chapter 11 Conclusion
	11.1. Choice of FEA Tools
	11.2 Sustainable Designs
	11.3 Ethical Designs
	End Notes

	Bibliography
	Appendix A Mathematical Methods to Solve Heat and Wave Problems
	A.1 Analytical Approaches to Solve Heat Equations
	A.2 General Analytical Approaches
	A.2.1 Separation of Variables
	A2.2 Variation Parameters
	A.2.3 Duhamel's Theorem
	A.2.4 Complex Combinations
	A.2.5 Superposition
	A.2.6 Laplace Transform
	A.2.7 Integral Method
	A.2.8 Peturbation Method

	Appendix B Governing Equations Summary
	Appendix C List of Figures
	Appendix D List of Tables
	Index

