

[image: image]

PROGRAMMING FUNDAMENTALS USING JAVA

Second Edition

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission to use the contents contained herein, but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files are also available by writing to the publisher at info@merclearning.com.

PROGRAMMING FUNDAMENTALS USING JAVA

A Game Application Approach

Second Edition

William McAllister and S. Jane Fritz

St Joseph’s College, New York

[image:]

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2021 by MERCURY LEARNING AND INFORMATION. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

W. McAllister and S. Jane Fritz. Programming Fundamentals Using Java: A Game Application Approach, 2/E.
ISBN: 978-1-68392-669-6

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 20209528915

212223321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.

For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free). Digital versions of our titles are available at: www.academiccourseware.com and other e-vendors. All companion files are available by writing to the publisher at info@merclearning.com.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book and/or disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To the memory of my mother Alma, who cherished in me something she was not afforded – a formal education.

—Bill McAllister

To all those who taught me by example that “if you can dream it, you can do it” with gratitude.

—S. Jane Fritz

To our students, whose enthusiasm for learning has always inspired us to pursue improved teaching techniques.

—Bill McAllister
—S. Jane Fritz

Contents

Preface

Acknowledgments

Credits

Chapter 1 Introduction

1.1The Computer System

1.2A Brief History of Computing

1.2.1Early Computing Devices

1.2.2Computers Become a Reality

1.2.3Computer Generations

1.2.4More Notable Contributions

1.2.5Smaller, Faster, Cheaper Computers

1.3Specifying a Program

1.3.1Specifying a Game Program

1.4Sample Student Games

1.5Java and Platform Independence

1.5.1The Java Application Programmer Interface

1.6Object-Oriented Programming Languages

1.7Integrated Development Environments and the Program Development Process

1.7.1Mobile-Device Application Development Environments

1.8Our Game Development Environment: A First Look

1.8.1The Game Window

1.8.2The Game Board Coordinate System

1.8.3Installing and Incorporating the Game Package into a Program

1.8.4Creating and Displaying a Game Window and Its Title

1.8.5Changing the Game Board’s Size

1.9Representing Information in Memory

1.9.1Representing Character Data

1.9.2Representing Translated Instructions

1.9.3Representing Numeric Data

1.10Chapter Summary

Chapter 2 Variables, Input/Output, and Calculations

2.1The Java Application Program Template

2.2Variables

2.3Primitive Variables

2.4System Console Output

2.4.1String Output

2.4.2The Concatenation Operator and Annotated Numeric Output

2.4.3Escape Sequences

2.5String Objects and Reference Variables

2.6Calculations and the Math Class

2.6.1Arithmetic Calculations and the Rules of Precedence

2.6.2The Assignment Operator and Assignment Statements

2.6.3Promotion and Casting

2.6.4The Math Class

2.7Dialog Box Output and Input

2.7.1Message Dialog Boxes

2.7.2Input Dialog Boxes

2.7.3Parsing Strings into Numerics

2.8Graphical Text Output

2.8.1The drawString Method

2.8.2The draw Call Back Method

2.8.3The setFont Method: A First Look

2.9The Counting Algorithm

2.9.1A Counting Application: Displaying a Game’s Time

2.10Formatting Numeric Output: A First Pass

2.10.1The printf Method

2.11Chapter Summary

Chapter 3 Methods, Classes, and Objects: A First Look

3.1 Methods We Write

3.1.1 Syntax of a Method

3.2Information Passing

3.2.1 Parameters and Arguments

3.2.2Scope and Side Effects of Value Parameters

3.2.3 Returned Values

3.2.4Class Level Variables

3.3The API Graphics Class

3.3.1 Changing the Drawing Color

3.3.2 Drawing Lines, Rectangles, Ovals, and Circles

3.4Object Oriented Programming

3.4.1 What Are Classes and Objects?

3.5Defining Classes and Creating Objects

3.5.1 Specifying a Class: Unified Modeling Language Diagrams

3.5.2 The Class Code Template

3.5.3 Creating Objects

3.5.4 Displaying an Object

3.5.5 Designing a Graphical Object

3.6Adding Methods to Classes

3.6.1 The show Method

3.6.2 Constructors and the Keyword this

3.6.3 Private Access and the set/get Methods

3.6.4 The toString and input Methods

3.7Overloading Constructors

3.8Passing Objects To and From Worker Methods

3.9Chapter Summary

Chapter 4 Boolean Expressions, Making Decisions, and Disk Input and Output

4.1Alternatives to Sequential Execution

4.2 Boolean Expressions

4.2.1 Simple Boolean Expressions

4.2.2 Compound Boolean Expressions

4.2.3 Comparing String Objects

4.3 The if Statement

4.4 The if-else Statement

4.4.1Conditional Expressions

4.5 Nested if Statements

4.6The switch Statement

4.7Console Input and the Scanner Class

4.8Disk Input and Output: A First Look

4.8.1Sequential Text File Input

4.8.2 Determining the Existence of a File

4.8.3Sequential Text File Output

4.8.4 Appending Data to an Existing Text File

4.8.5 Deleting, Modifying, and Adding File Data Items

4.8.6Redirecting the System.in and System.out

4.9Exceptions: A First Pass

4.10Chapter Summary

Chapter 5 Repeating Statements: Loops

5.1 A Second Alternative to Sequential Execution

5.2The for Statement

5.2.1 Syntax of the for Statement

5.2.2 A for Loop Application

5.2.3 The Totaling and Averaging Algorithms

5.3 Formatting Numeric Output: A Second Pass

5.3.1Currency Formatting

5.3.2 The DecimalFormat Class: A Second Look

5.4 Nesting for Loops

5.5The while Statement

5.5.1Syntax of the while Statement

5.5.2 Sentinel Loops

5.5.3 Detecting an End of File

5.6 The do-while Statement

5.6.1 Syntax of the do-while Statement

5.7The break and continue Statements

5.8 Which Loop Statement to Use

5.9 The Random class

5.9.1The SecureRandom Class

5.10The Enhanced for Statement

5.11Chapter Summary

Chapter 6 Arrays

6.1The Origin of Arrays

6.2The Concept of Arrays

6.3Declaring Arrays

6.3.1Dynamic Allocation of Arrays

6.4 Arrays and Loops

6.5 Arrays of Objects

6.5.1 Processing an Array’s Objects

6.6 Passing Arrays Between Methods

6.6.1 Passing Arrays of Primitives to a Worker Method

6.6.2 Passing Arrays of Objects to a Worker Method

6.6.3Returning an Array from a Worker Method

6.7Parallel Arrays

6.8Common Array Algorithms

6.8.1 Searching

6.8.2 Minimums and Maximums

6.8.3 Sorting

6.9Application Programmer Interface Array Support

6.9.1 The arraycopy Method

6.9.2The Arrays Class

6.10 Multi-dimensional Arrays

6.10.1 Two-Dimensional Arrays

6.11 Deleting, Modifying, and Adding Disk File Items

6.12 Chapter Summary

Chapter 7 Methods, Classes, and Objects: A Second Look

7.1 Static Data Members

7.2 Methods Invoking Methods Within their Class

7.3 Comparing Objects

7.3.1 Shallow Comparisons

7.3.2 Deep Comparisons

7.4 Copying and Cloning Objects

7.4.1 Shallow Copies

7.4.2 Deep Copies and Clones

7.5 The String Class: A Second Look

7.5.1 Creating Strings from Primitive Values

7.5.2 Converting Strings to Characters

7.5.3 Processing Strings

7.6 The Wrapper Classes: A Second Look

7.6.1 Wrapper Class Objects

7.6.2 Autoboxing and Unboxing

7.6.3 Wrapper Class Constants

7.6.4 The Character Wrapper Class

7.7 Aggregation

7.8 Inner Classes

7.9 Processing Large Numbers

7.10 Enumerated Types

7.11 Chapter Summary

Chapter 8 Inheritance

8.1 The Concept of Inheritance

8.2 The UML Diagrams and Language of Inheritance

8.3 Implementing Inheritance

8.3.1 Constructors and Inherited Method Invocations

8.3.2 Overriding Methods

8.3.3 Extending Inherited Data Members

8.4 Using Inheritance in the Design Process

8.4.1 Abstract Classes

8.4.2 Designing Parent Methods to Invoke Child Methods

8.4.3 Abstract Parent Methods

8.4.4 Final Classes

8.4.5 Protected Data Members

8.4.6 Making a Class Inheritance Ready: Best Practices

8.5Polymorphism

8.5.1 Parent and Child References

8.5.2Polymorphic Invocations

8.5.3 Polymorphic Arrays

8.5.4 Polymorphism’s Role in Parameter Passing

8.5.5 The methods getClass and getName and the instanceof operator.

8.6 Interfaces

8.6.1Adapter Classes

8.6.2Interface Enhancements in Java Versions 8 and 9

8.7 Serializing Objects

8.8Java Docs

8.9Chapter Summary

Chapter 9 Recursion

9.1 What is Recursion?

9.2Understanding a Recursive Method’s Execution Path

9.3 Formulating and Implementing Recursive Algorithms

9.3.1 The Base Case, Reduced Problem, and General Solution

9.3.2 Implementing Recursive Algorithms

9.3.3 Practice Problems

9.4 A Recursion Case Study: The Towers of Hanoi

9.5 Problems with Recursion

9.5.1 When to Use Recursion

9.5.2 Dynamic Programming

9.6 Chapter Summary

Chapter 10 Exceptions: A Second Look

10.1 An Overview

10.2 Java’s Exception Classes and Exception Objects

10.3 Processing Thrown Exceptions

10.3.1 Non-error Checking Use of Exceptions

10.3.2 The finally Clause

10.4 The Throw Statement and Error Messages

10.5 Defining Exception Classes

10.6 Chapter Summary

Chapter 11 Graphical User Interfaces

11.1Overview

11.2Enhancing Swing Dialog Boxes

11.3FX Dialog Boxes

11.3.1FX Message Dialog Boxes

11.3.2The FX Program Structure

11.3.3FX Input Dialog Boxes

11.3.4A Complete FX Application

11.3.5FX Choice Dialog Boxes

11.4Creating a GUI Interface

11.4.1Designing the Interface

11.4.2Creating Controls and Setting Their Properties

11.4.3Adding the Controls to a GridPane Container

11.5Event Processing

11.5.1Implementing an Event Handler

11.5.2Registering the Event Handler

11.5.3Drawing 2-D Shapes

11.5.4Keyboard, Mouse, and Key Frame Timer Events

11.6 The Pane Container and Layout Managers: A Second Look

11.6.1Working with the Pane Container

11.6.2VBox and HBox Layout Managers

11.6.3FlowPane Layout Manager

11.6.4BorderPane Layout Manager

11.7Chapter Summary

Chapter 12 Graphical User Interfaces: A Second Look

12.1Borders, Check Boxes and Radio Buttons

12.1.1Pane Borders

12.1.2Check Boxes

12.1.3Radio Buttons

12.2Combo Boxes and List Views

12.3Menus

12.3.1Drop-Down Menus

12.3.2Pop-Up Menus

12.4File-Chooser and Color-Picker Dialog Boxes

12.4.1File-Chooser Dialog Boxes

12.4.2Color-Picker Control

12.5 Lambda Expressions and Functional Interfaces: A Second Look

12.6Scene Builder

12.7Chapter Summary

Chapter 13 Generics and the API Collection Framework

13.1 Overview

13.2 Generic Methods

13.2.1 Overloading Generic Methods

13.2.2 Arrays as Generic Parameters and Returned Values

13.2.3 Copying a Generic Array

13.2.4 Operating on Generic Objects

13.3 Generic Classes

13.3.1 Generic Data Structure Classes

13.4 The API Collections Framework

13.4.1 Framework Interfaces

13.4.2 Framework Algorithms: The Collections Class

13.4.3 The LinkedList and ArrayList Classes

13.4.4 The HashSet, TreeSet, and LinkedSet Classes

13.4.5 The ArrayDeque and PriorityQueue Classes

13.4.6 The HashMap, TreeMap, and LinkedHashMap Classes

13.5Streams and Functional Programming

13.5.1A Stream Data Source

13.5.2Stream Terminal Tasks

13.5.3Stream Intermediate Tasks

13.6 Chapter Summary

Chapter 14 Multithreading and Concurrency

14.1 Overview

14.2 Creating and Initiating Threads

14.3 Thread States

14.3.1 The New, Runnable, and Terminated States

14.3.2 The Blocked, Waiting, and Timed Waiting States

14.4 The Producer-Consumer Problem

14.5 Solutions to the Producer Consumer Problem

14.5.1 Synchronizing a Buffer Class: Synchronized Methods

14.5.2 The API ArrayBlockingQueue Class

14.6 The Synchronized Statement

14.7 Chapter Summary

Appendix A Description of the Game Environment

Appendix B Using the Game Environment Package

Appendix C ASCII Table

Appendix D Java Key Words

Appendix E Java Operators and Their Relative Precedence

Appendix F Using the Game Glossary of Programming Terms

Appendix G Using the Online API Documentation

Appendix H Solutions to Selected Odd Knowledge Exercises

Index

Preface

This is a Java textbook for beginning programmers that uses game programming as a central pedagogical tool to improve student engagement, learning outcomes, and retention. Game programming is incorporated into the text in a way that does not compromise the amount of material traditionally covered in a basic or advanced programming course and permits instructors who are not familiar with game programming and computer graphics concepts to realize the verified pedagogical advantages of game programming.

The book’s companion files include a game environment that is easily integrated into projects created with the popular Java Development Environments, including Eclipse, NetBeans, and JCreator in a student-friendly way and also includes a set of executable student games to pique their interest by giving them a glimpse into their future capabilities. The material presented in the book is in compliance with the current ACM/IEEE curriculum guidelines (https://www.acm.org/education/curricula-recommendations), and provides an in-depth discussion of graphical user interfaces (GUIs). It has been used to teach programming to students whose majors are within and outside of the computing fields.

Second Edition Changes

The second edition of the textbook adds features introduced in Java 8 and 9 to the first edition. Specifically, the book now covers streams and the functional programming paradigm, Lambda expressions and their use in streams and in registering event handlers, the expanded features of interfaces and their role in program design, and FX applications.

Chapters 11 and 12, which cover the development of GUI interfaces, are now FX based. The Swing based version of these chapters that were part of the book’s first edition, are included on the book’s companion disc and posted to the book’s companion files FTP site. In addition, pre-Version 8 Java features that were not included in the first edition have been added. These topics include the printf method, conditional expressions, redirecting System.out, and the use of the SecureRandom and StringTokenizer classes.

Features

We use an objects-early approach to learning Java in that the defining and implementation of classes is introduced in the middle of Chapter 3. In preparation for this material, the terms object and class are introduced in Chapter 1 in the context of game piece objects and reinforced in Chapter 2 by continually referring to strings as string objects and differentiating between the primitive types and the String class. In addition, the concept of a reference variable is introduced within the concept of string objects in Chapter 2, and students become familiar with the idea that classes contain data members and methods via the chapter’s discussion of the Math class, dialog boxes, and the formatting of numeric values. All of this facilitates the discussion in Chapter 3 of the definition and implementation of methods and classes and the declaration of objects.

The pedagogical tool, game programming, makes the concepts of object-oriented programming more tangible and more interesting to the student. For example, objects are output by drawing them at their current location rather than outputting their (x, y) coordinates to the system console. The functionality of set and get methods and the counting algorithm is illustrated by using them to relocate and animate game piece objects and keep a game’s score. Decision statements are used to reflect animated game pieces, detect collisions between them, and to decide when a game is over, and loops are used to draw checkerboard squares and checkers. Because of this new pedagogical approach, student smiles have replaced frowns, enthusiasm has replaced complacency, and “teach us this” has replaced “do we have to know that?” Our classrooms have been transformed from a lecture-based venue to a highly engaged interactive learning environment.

Throughout the book, after a concept is introduced and discussed, its use is illustrated in a succinctly composed working program, and the parts of the program that utilize the new concepts are fully discussed.

Use of the Book

The material in this book can be covered within two courses: a basic programming course followed by an advanced programming course. The basic programming course would normally cover the first seven chapters supplemented with selected materials from Chapters 8 and 10. The remainder of the material would be covered in the advanced course. Alternately, the advanced topics can be incorporated into several other courses such as the use of the GUI chapters in a Web-page-building course, the use of the recursion, generics, and the Application Programming Interface (API) and Collections Framework chapters in a data-structures course, and the multitasking and concurrency chapter in an operating-system course.

The book is written in a way that it and its associated resources could not only be used at the college level, but also at the high school level or used in a self-instructional mode.

Chapter Overviews

Chapter 1: Introduction

This chapter includes a brief history of computer science and topics that are fundamental to an understanding of the concepts presented in the remainder of the textbook. These topics include an overview of the computer system and the representation of data in memory, the programming process and the role of an IDE in that process, platform independence and how Java achieves it, as well as an overview of object-oriented programming and the Application Programming Interface (API). Readers are asked to execute several student-written games contained on the book’s companion files, which usually piques their interest, as does the brief description of the game environment included in this chapter.

Chapter 2: Variables, Input/Output, and Calculations

Primitive variables, dialog box input, performing calculations, and performing output to dialog boxes, the system console, and to the game-board window are discussed in this chapter. The declaration of objects and the topic of reference variables are introduced within the context of the declaration of String objects, as are the topics of classes and methods within the chapter’s discussion of the Math class, the formatting of text and numeric output, and graphical text output.

Chapter 3: Methods, Classes, and Objects: A First Look

The foundational object-oriented programming concepts used in the next three chapters are discussed in this chapter. It begins with the techniques used to write methods and pass information via value parameters and return statements, and the Graphic class’s two-dimensional shape-drawing methods are used in the discussion of parameter passing. The techniques used to specify and write classes are then discussed via a progressively developed game piece class’s UML diagram and the progressive implementation of its data members, constructors, and methods. The motivation for set and get methods, and the toString, input, and show methods are discussed and these methods are implemented. Throughout the chapter, sketches are used to illustrate the reference variable and data-member memory model, and the chapter concludes with a graphical application that utilizes the learned concepts.

Chapter 4: Boolean Expressions, Making Decisions, and Disk Input and Output

This chapter begins a two-chapter sequence on control of flow. After a discussion of Boolean expressions and relational and logic operators, the students are introduced to Java’s if, if-else, conditional expressions, and switch statements. Their use is illustrated within a graphical context to reflect animated objects, detect when they collide, and to decide which direction to move them in response to a keystroke input. Disk text file I/O is also introduced in this chapter, which is preceded by a discussion of input using the Scanner class and followed by a discussion of redirecting console output, and introduction to the concept and processing of thrown exceptions. The chapter concludes with a graphical application that utilizes the learned concepts.

Chapter 5: Repeating Statements: Loops

The for, while, do-while, and enhanced for loops are presented in this chapter, as are the concepts of counting loops, sentinel loops, and nested loops. The role that the break and continue statements play in repetition constructs is discussed, and Chapter 2’s discussion of the formatting of numeric information and the generation of random numbers is extended via a discussion of currency formatting and the API DecimalFormat, Random, and SecureRandom classes. The chapter concludes with a discussion of which loop construct to use for a particular application, and uses a graphical guessing game application and an application that draws a checker board to illustrate these learned concepts.

Chapter 6: Arrays

We placed this chapter after the loops chapter in an effort to immediately reinforce the student’s understanding of loops via a discussion of the role loops play in the processing of arrays and the implementation of that processing. The chapter begins with a discussion of the concept of an array and arrays of primitive variables, and it illustrates the primitive array memory model. It then extends these concepts to arrays of reference variables and the objects they reference, and it discusses the passing of arrays to and from methods and illustrates the memory model used to accomplish this. The concept of parallel arrays is discussed as well as the array copying, sorting, minimum, and maximum algorithms and the API implementations of these algorithms. The chapter also discusses multidimensional arrays, and the role arrays play in the addition, and deletion of information contained in disk files. The learned concepts are illustrated within graphical applications that use arrays of game piece objects to display an animated parade and to sort and locate particular game piece objects.

Chapter 7: Methods, Classes, and Objects: A Second Look

This chapter extends the object-oriented programming concepts discussed in Chapter 3 and serves as the OOP foundation on which the remaining chapters of the text are built. It begins with a discussion of static data members, shallow and deep copying and comparisons, and the cloning of objects. The concept of aggregation and its implementation is then discussed, as are inner classes and their methods and the autoboxing feature of the wrapper classes. The processing of large numeric values is also covered in this chapter, as well as enumerated types and the methods of the String and StringTokenizer classes. The learned concepts are illustrated within graphical applications that clone objects, use aggregated game piece objects, parse words from sentences, and perform calculations on large numbers.

Chapter 8: Inheritance

In this chapter, the terminology and concept of inheritance are discussed, as is the way this concept is used in the design and implementation phases of a software project to reduce the time and effort required to complete the project. The topics of extended classes, overriding methods, sub and super classes invoking each other’s methods, and the role of abstract and final classes and methods in the design process are also discussed. All of these topics lead into a discussion of polymorphism and polymorphic arrays and the role of polymorphism in the design process. These learned concepts are illustrated in an evolving series of graphical applications that begin with the inheritance of a boat’s hull and ends with a polymorphic display of all of the types of boats in a boat dealer’s inventory. The chapter concludes with a discussion of interfaces, adapter classes, serialization of objects, and the generation of Javadoc documentation.

Chapter 9 Recursion

This chapter begins by explaining the concept of recursion and recursive methods and a methodology for formulating and implementing recursive algorithms correctly. It then illustrates the use of the methodology in the discovery and implementations of several recursive algorithms, including the Towers of Hanoi. As students progress through the discovery and implementation of these algorithms, they develop the ability to think recursively and to extend the methodology to the discovery and implementation of other recursive algorithms. The chapter concludes with a discussion of the runtime problems associated with recursive algorithms, the role of dynamic programming in the implementation process, and when it is appropriate or efficient to use recursion in the programs we write. The learned concepts are illustrated in applications that compute the terms of the Fibonacci sequence, draw a Sierpinski fractal, and solve the Towers of Hanoi problem.

Chapter 10: Exceptions: A Second Pass

Chapter 4’s discussion of catching exceptions thrown from methods we invoke is expanded upon in this chapter, which discusses the throwing of exception objects from methods we write. The impact that this has on a method’s reusability is discussed and illustrated, as is the ability to create and process exception error messages. In addition, the motivation for creating new exception classes is discussed, as well as the techniques for implementing these classes and using the concept of an exception in a non-error checking mode. The learned concepts are illustrated in several applications that include the use of exceptions in a graphical application to keep a game piece on a game board.

Chapter 11: Graphical User Interfaces

This chapter presents methods used to display enhanced dialog boxes and the fundamental techniques used to incorporate a graphical user interface (GUI) into an FX application. These techniques include the building of an interface that contains two-dimensional shapes and text fields, labels and button components, and the sizing and positioning of these components within the interface with and without the use of a layout manager. The techniques used to write and register event-handler methods that respond to the program user’s interaction with these interfaces via mouse actions and keystrokes, and respond to the expiration of timer intervals are also discussed. The learned concepts are illustrated in several applications that use GUIs, and in animations composed without the use of the book’s game environment.

Chapter 12: Graphical User Interfaces: A Second Look

The GUI components discussed in Chapter 11 are expanded upon in this chapter to include radio buttons, check boxes, combo boxes, lists, and drop-down and pop-up menus. The chapter also includes a discussion of the use of API dialog boxes that facilitate the specification of a file path to be used in a file I/O operation and the selection of a color to be used in a graphical application. These learned concepts are illustrated in an evolving series of FX based GUI applications that solicit a meal choice from the program user and an application that permits the user to select the background color of the application’s window. The chapter concludes with a discussion of Lambda expressions and functional interfaces, and an overview of a GUI drag and drop environment.

Chapter 13: Generics and the API Collections Framework

This chapter begins by introducing the concept of generics and its role in extending the reusability of the methods and classes we write. It discusses the techniques used to implement a generic method that can be passed any type of object and a generic class whose data members’ types can be specified when an instance of the class is created. The API Collections Framework is also discussed, which contains a set of generically implemented data structure classes, generic methods that operate on the data stored in these classes, and a set of generic interfaces associated with these classes. These learned concepts are illustrated in a set of applications that implement generic methods and a generic data structure class, and applications that use two of the generic classes in the Collections Framework to store a data set. The chapter concludes with a discussion of streams and the functional programming paradigm.

Chapter 14: Multithreading and Concurrency

The terminology, concepts, advantages, implementation, and problems associated with multithreaded programs are discussed in this chapter. After discussing the implementation of multithreaded applications in Java and the states in which a thread can exist during its lifecycle, our attention turns to the discovery of the problems, including the Producer-Consumer problem, associated with sharing data between threads. Armed with an understanding of these problems, the student is then introduced to the synchronized statement and synchronized methods used to avoid these problems. The chapter concludes with a discussion of the API class, ArrayBlockingQueue, which is used to share data between threads in a problem-free (thread-safe) way. The learned concepts are illustrated in a set of multithreaded applications that share data in an unsafe and safe way and an application that uses an ArrayBlockingQueue instance to share data among threads.

Appendices of the Textbook

The eight appendices contain:

•A description of the game programming environment (Appendix A)

•Directions on how to incorporate the game environment into a programming project (Appendix B)

Note: The book’s companion files contain the game environment and predefined Eclipse, NetBeans, and JCreator project templates that have the game environment incorporated into them.

•An ASCII table that contains the decimal, octal, hexadecimal, and binary representation of each of the characters defined in the table (Appendix C)

•A list of Java keywords (Appendix D)

• A list of all of the Java operators and their precedence (Appendix E)

• A glossary of programming terms (Appendix F)

• A brief description of how to use the API online documentation (Appendix G)

• Answers to the odd numbered Knowledge Exercises that appear at the end of each chapter to facilitate student self-instruction outside the classroom (Appendix H).

The Book’s Companion Files

The disc in the back of the book contains a table of contents and the following materials, arranged in separate folders (also available for downloading by writing to the publisher at info@merclearning.com):

• Samples of student-written games in an executable format with instruction on how to run them

• The game environment

oEclipse, NetBeans, and JCreator template projects with the environment incorporated into them and instructions on how to use them to begin a new project without altering the system’s CLASSPATH variable

oA description of the environment and its call back methods used to draw and animate objects and respond to mouse, keyboard, and timer events

oThe environment’s classes and methods in the form of class files, a jar file, and an importable package

• The source files for all of the applications presented in the text

•All of the book’s figures

•All of the book’s appendices

• The first edition’s Swing based versions of Chapters 11 and 12

The Instructor’s Files (available upon adoption to instructors)

These files contain a table of contents and the following materials, arranged in separate folders:

•Microsoft PowerPoint lecture slides for each chapter

•Solutions to all of the programming exercises that appear at the end of each chapter

•Answers to all of the knowledge exercises that appear at the end of each chapter

• A capstone game project assignment for a basic Java course

• Samples of student-written games in an executable format with instruction on how to run them

•Sample quizzes and final examinations

•Sample Syllabi for a basic and advanced Java course

•Samples of high school programming competition problems

•The first edition’s Swing based versions of Chapters 11 and 12

Digital Versions

Digital versions of this text and its resources are available on the publisher’s electronic delivery site, academiccourseware.com, as well as other popular e-vendor sites.

W. McAllister
S. Jane Fritz
Patchogue, NY
March 2021

Acknowledgments

We would like to thank the instructors and students who have used the 1st edition of this textbook, for their feedback that has been incorporated into, and inspired, this 2nd edition. We would also like to thank our students who designed and implemented the game programs on the companion files that accompany this edition, as a semester long project in their basic Java course.

We would also like to thank the administration of St. Joseph’s College and the members of the Promotion and Awards Committee for granting Bill a sabbatical, which was dedicated to the preparation of the 1st edition’s manuscript, as well the entire St. Joseph’s College community who offered encouragement and support during the preparation of both the 1st and 2nd editions.

We also thank David Pallai, the publisher and founder of Mercury Learning and Information for establishing and managing a publishing company that produces a high-quality product at an affordable price, and his production team for guiding us through the development and production process, specifically Jennifer Blaney, Meg Salvia, and Patrick Smith.

Finally, we would like to thank our family and friends for their endless patience when we were too busy to be ourselves.

To the Students

It is our hope that our approach to the material in this book will challenge you, engage you, and inspire you to continue your study of computer science and to enjoy a rewarding career by immersing yourselves in this area of national need.

Credits

Chapter 1

Computer © Robert Lucian Crusitu/Shutterstock.com, Image ID: 156076811

Figure 1.5 Abacus, by Gisling (Own work) [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons), (http://upload.wikimedia.org/wikipedia/commons/d/d4/Positional_decimal_system_on_abacus.JPG)

Figure 1.6 Slide rule, by Ricce (Own work) [Public domain], via Wikimedia Common, (http://upload.wikimedia.org/wikipedia/commons/9/98/Regolo_calcolatore.jpg)

Figure 1.7 Blaise Pascal, by Mahlum (Own work) [Public domain], via Wikimedia Commons, (http://upload.wikimedia.org/wikipedia/commons/4/4d/Pascal_Blaise.jpeg)

Figure 1.8 Jacquard’s Loom, (http://upload.wikimedia.org/wikipedia/commons/6/65/Jacquard_loom.jpg)

Figure 1.9 Charles Babbage, (http://upload.wikimedia.org/wikipedia/commons/1/1d/Charles_Babbage_Difference_Engine_No1.jpg)

Figure 1.10 Ada, Margaret Sarah Carpenter [Public domain], via Wikimedia Commons (http://commons.wikimedia.org/wiki/Ada_Lovelace#mediaviewer/File:Carpenter_portrait_of_Ada_Lovelace_-_detail.png)

Figure 1.11 Hollerith (https://www.census.gov/history/img/HollerithMachine.jpg)

Figure 1.12 Turing Statue © Guy Erwood/Shutterstock.com

Figure 1.13a. Troubleshooting the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/jpeg/eniac3.jpg)

Figure 1.13b. Troubleshooting the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/jpeg/eniac1.jpg)

Figure 1.14a. Programming the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/jpeg/first_four.jpg)

Figure 1.14 b. Programming the ENIAC (http://ftp.arl.army.mil/ftp/historic-computers/gif/eniac4.gif)

Figure 1.15 John von Neumann, (Public domain), (http://commons.wikimedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif)

Figure 1.16 Grace Hopper (http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.htm)

Figure 1.17 Grace Hopper’s Bug (http://www.history.navy.mil/photos/pers-us/uspers-h/g-hoppr.htm)

Figure 1.18 Steve Jobs, by Kees de Vos from The Hague, The Netherlands [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons, (http://upload.wikimedia.org/wikipedia/commons/5/54/Steve_Jobs.jpg)

Figure 1.19 Bill Gates, by Matthew YoheAido2002 at en.wikipedia [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)], from Wikimedia Com, (http://upload.wikimedia.org/wikipedia/commons/7/7f/Bill_Gates_2004_cr.jpg)

Figure 1.20 Vinton Cerf and Robert Kahn (http://georgewbush-whitehouse.archives.gov/ask/20051109-2.html)

Figure 1.21 Donald Knuth (Case Alumni Association and Foundation 2010, Flicker and (http://www.casealum.org/view.image?Id=1818)

Figure 1.22 Tim Berners-Lee, Courtesy of World Wide Web Consortium, Massachusetts Institute of Technology (www.w3.org/People/Berners-Lee)

Chapter 3

Green tea cup on windowsill © GoodMood Photo/Shutterstock.com, Image ID: 158310728

Chapter 4

Two Game Figurines © Melanie Kintz, Mellimage/Shutterstock.com, Image ID: 70027117

Chapter 5

Loops of a scaring roller coaster © Marcio Jose Bastos Silva/Shutterstock.com, Image ID: 97819241

Chapter 8

Boats on phewa-lake-nepal © Worapan Kong/ShutterStock.com, Image ID: 132349601

Chapter 9

Nested Traditional Matryoschka Dolls © PiXXart/Shutterstock.com, Image ID: 112054022

Chapter 10

Construction site © Victor Correia/ShutterStock.com, Image ID: 113180041

Chapter 11

Pocket sliding fifteen puzzle game © Coprid/ShutterStock.com, Image ID: 81197962

Chapter 12

Vector Retro Menu Design © Yienkeat/ShutterStock.com, Image ID: 108289445

Chapter 13

Collection of spaceship, planets and stars © Motuwe/Shutterstock.com, Image ID: 140336917

Chapter 14

Maze Game with Solution © VOOK/ShutterStock.com, Image ID: 95912809

CHAPTER 1

INTRODUCTION

1.1The Computer System

1.2A Brief History of Computing

1.3Specifying a Program

1.4Sample Student Games

1.5Java and Platform Independence

1.6Object-Oriented Programming Languages

1.7Integrated Development Environments and the Program Development Process

1.8Our Game Development Environment: A First Look

1.9Representing Information in Memory

1.10Chapter Summary

[image:]

[image:]

In this chapter

This chapter presents topics that are fundamental to computing and the programming process and discusses tools that programmers use to write programs. Because the focus of this text is on learning to program, an understanding of these concepts and tools is essential. The topics include a brief history of computing, which will highlight some of the important contributions to the field and facilitate an understanding of the modern computer system as well as how data is stored. The tools discussed in the chapter are used to develop an unambiguous description of a program and to minimize the effort required to transform this description into a functional program that can run on any computer system or mobile device.

After successfully completing this chapter, you should:

•Understand the hardware and software components of a computer system

•Gain an appreciation for the history and evolution of computing

•Be able to specify simple programs and games

•Have used some examples of student-written game programs

•Understand why Java programs can be run on any computer system

•Be familiar with the concept of objects, classes, and the object-oriented programming paradigm

•Understand the programming process and the role of Integrated Development Environment programs in this process

•Be familiar with the features of the game-development tool on the CD that accompanies this textbook

•Understand how data is represented inside computer systems

1.1 THE COMPUTER SYSTEM

Over the last twenty years, computers and the use of the Internet have become part of our everyday lives. Daily communication that was performed using postal systems and telephone conversations are now performed more efficiently using computer-based e-mails and text messaging. Much of the information gathering we performed in libraries is now done from the comfort of our homes using a computer attached to the Internet, as is much of the shopping we do. As a result, the number of computers available in the world continues to grow (Figure 1.1).

[image:]

Figure 1.1
Growth in the number of computers per capita over a fifteen-year period.

In many of the developed countries of the world there is now one computer, or more accurately, one computer system for every citizen in the country. Although many of these people would say that they use a computer every day, they really should say that they use a computer system every day.

As shown in Figure 1.2, a computer system is comprised of two major components: software and hardware. As its name implies, hardware is the hard, or tangible, part of the computer system. It is the collection of electronic circuits, mechanical devices, and enclosures manufactured in a factory. When we purchase a computer system and look into the box it comes in, what we see is the hardware.

[image:]

Figure 1.2
The two major components of a computer system.

However, the box also contains software, but, as its name implies, it is the soft, or less-tangible portion of the computer system, and so it is not as easy to detect. Software, or programs, consists of sequences of instructions written by programmers to perform specific tasks. These instructions are executed by the computer system’s hardware, and both components are essential to a computer system. A computer system that contained only hardware would have no instructions to execute, so it would do nothing but consume electrical power. A computer system that contained only software would not be able to execute the program’s instructions.

The software of a computer system is comprised of two major subcomponents: operating system software and application software (Figure 1.3). Microsoft Windows, Apple OS, and Linux are all examples of operating system programs. This set of programs contains instructions to manage the hardware resources of the computer system and provides an interface, usually a point-and-click interface, through which the user interacts with the computer system. In addition, most application software interacts with the hardware through various groups of operating system instructions.

Although nonoperating system software can be categorized in several groupings, we will consider all nonoperating system software to be collected into one group, application software, as shown in Figure 1.3. In this textbook, we will learn how to write application software using the programming language Java.

[image:]

Figure 1.3
Computer software subcomponents.

The hardware of the computer system can be divided into three main categories, or subcomponents, based on the function they perform. Hardware that communicates with humans and other computer systems is grouped into the category input/output (I/O) devices. Hardware used to store information inside the computer system is grouped into the category storage devices. Finally, all other functions performed by the hardware are part of a category named the central processing unit (CPU).

Figure 1.4 shows the standard conceptual arrangement of the three hardware categories with the CPU at the center of the arrangement. The storage devices are shown on the right and bottom of the figure and are divided into two types of devices: backing storage, often referred to as secondary storage, and random access memory (RAM), also called main memory. With the exception of backing storage, each of the hardware components has been assigned an acronym, which is shown parenthetically below the name of the component in Figure 1.4. For brevity, the components are most often referred to using their acronyms: I/O devices, CPU, and RAM (pronounced as “ram”).

The arrows into and out of the I/O devices at the top left of Figure 1.4 indicate the flow of information entering (input) and leaving (output) the computer system. The other arrows in the figure represent the flow of information among the computer-system components. The central processing unit can receive information from (arrows labeled “input”) and send information to (arrows labeled “output”) the other system components. The flow of information is always relative to the CPU. Information sent to the CPU is considered input, and information sent from the CPU is considered output.

[image:]

Figure 1.4
Arrangement of the hardware subcomponents of a computer system.

Hardware that communicates with humans and other computer systems is grouped into the component I/O devices. These devices are the interface between the computer system and the rest of the world. Input devices send information into the system. Examples of input devices include a keyboard, a touch screen, a mouse, a microphone, a digitizer, and a modem. Output devices send information out from the system. Examples of output devices include a monitor, a printer, a speaker, and a modem. A modem is both an input and output device and is normally used to transfer information between computer systems.

Hardware devices that have the ability to store and recall information are grouped into the component storage services. All but one of these devices fall into the subcomponent backing storage, shown on the top right side of Figure 1.4. Examples of storage devices include hard drives, flash drives, subscriber identification module (SIM) cards, CD drives, and magnetic tape drives. One storage device, random access memory (RAM) is depicted separately at the bottom of Figure 1.4. One difference between this storage device and all of the other storage devices is its speed. It can access information, meaning store and recall information, faster than any other storage device. Its information-access speed approaches the speed at which the CPU can transfer information.

Programs run faster when their instructions are stored in RAM, so it is an advantage to have a high-capacity RAM in a computer system. Unfortunately, the materials and manufacturing process used to achieve RAM’s speed make it the most expensive type of storage. To make computer systems affordable, backing-storage devices are added to the system. When a program is in execution, the operating system software attempts to transfer the program’s instructions and the data the instruction processes from backing storage to RAM before this information is needed by the CPU.

Another reason for adding backing storage, or secondary storage, to a computer system is the fact that RAM is volatile, which means that it only retains its memory when it is attached to an electrical power source: no electricity, no memory. All backing-storage devices are nonvolatile, which means that the information they store is not lost when they are detached from a power source. As a result, these devices can be used to archive program instructions and data within the computer system when it is powered down (e.g., hard drives), and can be used to manually transport information between computer systems (e.g., flash drives).

The I/O and storage components of the computer system give us the ability to transfer information into and out of the computer system and the ability to store and recall that information. The CPU depicted in the center of Figure 1.4 gives us the ability to process the information, and so it is aptly named the central processing unit. If we were inclined to designate one of the computer-system components as the brain of the system, we would probably bestow that title on the CPU. However, despite the remarkable tasks that computers perform, the CPU’s electronic circuits only perform five very basic processing operations:

1.Transfer information (i.e., instructions and data) to and from the other components of the computer system and interpret instructions

2.Store a very small amount of information, e.g., one instruction and sixteen pieces of data

3.Perform arithmetic operations such as addition, subtraction, multiplication, and division

4.Perform logic operations involving relational operators (such as 10 < 6, and a > = 12) and logical operators (such as A AND B, and A OR B)

5.Execute instructions in the order in which they are written or skip some instructions based on the truth value of a logic operation

The magic here is that all of the remarkable tasks that computers do have been expressed as a sequence of these five basic processing operations. A step-by-step sequence of these operations to perform a particular task is called an algorithm. The most difficult part of a programmer’s job is to develop, or discover, algorithms. Once an algorithm is discovered, it is written into a programming language and verified via a testing process.

Definition

An algorithm is a step-by-step sequence of the five processing operations a computer system can execute to solve a problem or perform a particular task.

A computer program is an algorithm written in a programming language.

1.2 A BRIEF HISTORY OF COMPUTING

Long before our modern computers existed, people had the need to count or compute. As a matter of fact, the early meaning of the term computer referred not to a machine but to a person who performed calculations. In this section, we will see the amazing development of the revolutionary machines that have changed the way we learn, teach, shop, do research, and are entertained.

1.2.1Early Computing Devices1

If computers are really such an important part of our lives today, you might wonder and ask the question: Who invented the computer?

Although this is a simple question, it does not have a simple answer such as Thomas Edison invented the light bulb or Alexander Graham Bell invented the telephone. One reason for this complexity is that computers evolved over thousands of years, and many people from different cultures and diverse fields such as mathematics, physics, engineering, business, and even textile design were involved in laying the foundation for the modern electronic computer.

[image:]

Figure 1.5
The abacus.

[image:]

Figure 1.6
A typical modern slide rule.

The roots of computing dates from about 50,000 to 30,000 BC when people counted their sheep and other possessions using their fingers, stones, or notches on sticks. The first computing device, the abacus, was introduced in China around 2,600 BC and used pebbles or stones. A later version of the abacus (shown in Figure 1.5) used beads that could be moved on a wire frame to perform basic counting and arithmetic functions. These were widely used in Europe and Asia, and some of these devices are still in use today.2

It was not until the seventeenth century that there were other notable attempts at building computing devices. Napier’s bones and the slide rule (Figure 1.6) were two of these devices.

[image:]

Figure 1.7
Blaise Pascal: philosopher, mathematician, inventor.

Blaise Pascal (Figure 1.7), at the age of 18, built a mechanical calculator called the Pascaline to perform basic addition and multiplication.

[image:]

Figure 1.8
A Jacquard Loom.

Because manufacturing technology was not yet well developed, these devices had to be carved or forged by hand, which required tedious work. Although it would seem likely that the development of computing devices would continue at a more rapid pace, very little progress was made from the seventeenth century until the 1800s, and we might ask why. Perhaps it was because this was a time of war, colonization, and the struggle for survival in much of the world. (If you think about the United States, for example, from 1776 through the 1800s, building a calculator was not considered a priority at that time.)

In 1801, Joseph Marie Jacquard, a textile designer, discovered that he could program his weaving loom (Figure 1.8) to create intricate patterns in the fabric, by storing the instructions on punched cards or paper tape. These binary instructions directed the loom to raise or lower certain threads depending upon whether or not a hole was punched on the tape. Later on, this concept would develop into the idea of creating a stored program computer based on binary instructions; it would be implemented in the twentieth century using punched cards for computer input.

1.2.2Computers Become a Reality

Charles Babbage, a mathematician working in England around 1822, designed the prototype of a machine, known as the Difference Engine, to compile mathematical tables. It was a large hand-cranked machine built of metal wheels and gears and although he continued to add refinements to it, he never fully completed it. By 1837, Babbage took his ideas one step further and designed a more complex Analytical Engine Figure 1.9), which he envisioned to be a general purpose computational machine and which had many characteristics in common with modern computers. He designed it to be steam powered, which would not make it portable, but would automate mathematical calculations. Due to the limitations of available technology, it was not completed in his lifetime, but it has recently been completed and works as he described it. Charles Babbage has been called the father of the computer for his innovative work on the first mechanical computer.

Lady Ada Augusta Byron Lovelace (Figure 1.10), the daughter of the poet Lord Byron, became intrigued with Babbage’s work and began to write instructions, or what we now call programs, for his machine. She is known today as the first programmer, and the programming language used for U.S. government applications is named Ada in her honor. Ada was unique in being a well-educated woman, skilled in mathematics, at a time when women had little formal or advanced schooling. She was able to perform the advanced mathematical and engineering design functions required for programming a theoretical computer that was not yet completely operational.

In the 1890s, in the United States, Herman Hollerith was working on a mechanical calculator and was asked by the government to design a machine that could record and store census data. The population was growing so fast that hand calculation could not keep pace with the growing volume of data: by the time the data was tabulated it was outdated and the next census had begun. Hollerith used punched cards to input the data to his new machine (Figure 1.11), which successfully compiled and tabulated even greater amounts of data in record time. Following this success, he founded a company with Thomas Watson, which later became known for computing, the International Business Machine Corporation (IBM).

[image:]

Figure 1.9
Charles Babbage’s Analytical Engine.

[image:]

Figure 1.10
Lady Ada Augusta Byron Lovelace, the first programmer.

[image:]

Figure 1.11
Hollerith’s electric tabulating machine.

In the 1900s, the demand for recording and processing large amounts of data continued to increase, and there were numerous attempts to design more advanced computing machines. The need came from businesses as well as the military. Large universities and mathematicians throughout the world began to design and build these early computing machines. Around 1939–1942, the Atanasoff-Berry computer (ABC) was built by Dr. John V. Atanasoff and Clifford Berry at Iowa State University. It was the first electronic digital computer. At about the same time, Konrad Zuse, working in Germany, built the first fully programmable computer, the Z3.

[image:]

Figure 1.12
Alan Turing, father of theoretical computer science.

Also in the early 1940s, the Colossus was built with the assistance of the brilliant British mathematician Alan Turing (Figure 1.12). It was designed as a code-breaking machine that could decipher the German codes created with the Enigma encoding machine. Turing’s contribution to breaking the German codes helped to defeat Hitler in World War II. Turing also explored Artificial Intelligence (Google “Turing Test” for specific details), and he is highly regarded as the father of theoretical computer science, laying a foundation upon which to build advanced computing machines.

In 1944, the Harvard Mark I was designed and built through the efforts of Howard Aiken working with Grace Hopper. Built at Harvard University by IBM, the Mark I was the first electromechanical computer, and it was used to produce mathematical tables. It could be programmed using paper tape.

The first electronic general purpose digital computer, the Electronic Numerical Integrator and Computer (ENIAC) was built at the University of Pennsylvania in 1946 by John Mauchly and J. Presper Eckert. This computer weighed 30 tons and had over 18,000 vacuum tubes and thousands of electronic relays (Figure 1.13). It filled a large room that was required to be air conditioned because of the heat this machine generated. It could add or subtract 5,000 times a second, a thousand times faster than any other machine at that time. It also had modules to multiply, divide, and calculate square roots.

[image:]

Figure 1.13
Troubleshooting the ENIAC.

Most of the ENIAC’s programming was done by six women, including those shown in Figure 1.14.

[image:]

Figure 1.14
First programmers of the ENIAC.

John von Neumann (Figure 1.15) proposed modifications to the ENIAC, which included using binary instead of decimal numbers. His design for a stored program binary computer where both the program and the data could be stored in the computer’s memory became known as the von Neumann architecture, which is still in use today. In 1945, he proposed the design for the Electronic Discrete Variable Automatic Computer (EDVAC) and later worked on the Institute for Advanced Study (IAS) computer in Princeton. He is often called the father of the modern computer and game theory.

[image:]

Figure 1.15
John von Neumann, father of the modern computer and game theory.

1.2.3Computer Generations3

The computers that followed are usually grouped into generations, each characterized by a specific component or technology. The dates are approximate.

First-Generation (1937–1946): Vacuum Tubes

These very large computers used thousands of vacuum tubes, generated a lot of heat, and were fairly unreliable. Memory storage was on magnetic drums, input was performed using punched cards or paper tape, and output was displayed on paper printouts. Computers of this generation could only perform a single task, lacked an operating system, and were programmed using a sequence of ones and zeros known as machine language. First-generation machines include the ENIAC, Electronic Delay Storage Automatic Calculator (EDSAC) and EDVAC computers.

Second-Generation (1947–1963): Transistors

This generation of computers used transistors, which were much more reliable than the vacuum tubes they replaced. Transistors were also smaller, cheaper, and consumed less electrical power. Machine language was replaced with assembly language, which was a more English-like language, and higher-level languages such as Common Business Oriented Language (COBOL) and Formula Translation (FORTRAN) were developed for this generation of computers. In 1951, the universal automatic computer (UNIVAC 1) was introduced as the first commercial computer. In 1953, the IBM 650 and 700 series computers were introduced. Operating systems were designed for these machines, and over 100 computer-programming languages were developed during this generation. Storage media such as magnetic tape and disks were in use, and printers were available for output.

Third-Generation (1964–1971): Integrated Circuits (IC) or “chips”

Transistors were miniaturized and placed on chips and integrated circuits (IC), developed by Jack Kilby and Robert Noyce. This invention resulted in smaller, more powerful, more reliable, and cheaper computers. Users could now interact with computers through keyboards and monitors instead of punched cards and printouts. Operating systems monitored memory usage and controlled the scheduling of multiple applications that could share the system resources.

Fourth-Generation (1971-present): Microprocessors and Very Large Scale Integration (VLSI)

Very-large-scale integration (VLSI) resulted in thousands of computer circuits being reduced to fit on a chip, reducing the room-size computers of the first generation to something that could fit in your hand. Components of the computer, from the central processing unit and memory to input/output controls, could now be located on a single microprocessor chip. In addition to their small size, computers became affordable for individuals, and in 1977, the personal computer (PC) became available from three companies: Apple, Tandy/Radio Shack, and Commodore. In 1980, Microsoft released its disk operating system (MS-DOS), and in 1981, IBM introduced the PC for home and office use. Three years later, Apple introduced the Macintosh computer with its icon-driven interface. In 1985, Microsoft released the Windows operating system. Fourth-generation computers also used graphical user interfaces (GUI, pronounced “gooey”) and provided a mouse for ease of use. Object-oriented languages, such as Java, were developed for more efficient software development. These smaller, more reliable and powerful computers could now be linked together, resulting in the growth of networks and the Internet.

Fifth-Generation (Present and Beyond): Artificial Intelligence, Parallel Processing, Quantum Computing

Fifth-generation computing devices are characterized by artificial intelligence and the advancement of devices that will respond to natural language and be capable of learning. Although these features are still in the early stages of development, some applications such as voice recognition are currently available. The use of parallel processing, quantum computing, and nanotechnology will help to achieve these advances and will change computing in the future.

1.2.4More Notable Contributions

In addition to the achievements already mentioned, there were many others who made notable contributions to the computing field. The names and contributions of a few of these innovators follow, and you are invited to continue to add to the list.

Admiral Grace Murray Hopper (Figure 1.16) was a pioneer in the field of computing. She was one of the first programmers of the Harvard Mark I computer and is known for the development of the first compiler and assembly language. Her work in programming led to the development of the language COBOL, and she later worked on Ada.

[image:]

Figure 1.16
Admiral Grace Hopper.

She coined the term “debugging” when she removed a bug (or moth) from a computer’s circuitry that was interrupting the flow of electricity, and taped it into her notebook (Figure 1.17).

Steve Jobs (Figure 1.18) and Steve Wozniak were the cofounders of Apple Computers. The Apple I was one of the three personal computers introduced in 1977 for home use. Together they developed the point-and-click approach to computing. In 1984, they introduced the MAC OS that developed into the modern graphical user interface, which today is standard on modern computers. Steve Jobs is also a cofounder of Pixar Animation and has been described as the father of the digital revolution.

Bill Gates (Figure 1.19) and Paul Allen cofounded Microsoft, one of the largest U.S. corporations, and supplied the disk operating system (DOS) to IBM to run on its PCs. In 1985, Microsoft developed a graphical operating system known as Windows, which is the operating system used on over 80% of today’s computers.

James Gosling is credited with the development of the object-oriented programming language known as Java. He is called the father of Java programming.

Bob Metcalfe and David Boggs invented the Ethernet, the technology upon which local computer area networks are based.

Vinton Cerf (Figure 1.20a) and Robert Kahn (Figure 1.20b) are considered to be the fathers of the Internet and the Transmission Control Protocol/Internet Protocol (TCP/IP) upon which the Internet is based. Vinton Cerf created the first commercial Internet e-mail system and is now Vice President and Chief Internet Evangelist for Google.

[image:]

Figure 1.17
Grace Hopper’s first recorded computer “bug.”

[image:]

Figure 1.18
Steve Jobs, cofounder of Apple Computer.

[image:]

Figure 1.19
Bill Gates, cofounder of Microsoft Corporation.

[image:]

Figure 1.20
Vinton Cerf and Robert Kahn, inventors of the Internet.

[image:]

Figure 1.21
Donald Knuth, father of the analysis of algorithms.

[image:]

Figure 1.22
Tim Berners-Lee, inventor of the World Wide Web.

Donald Knuth (Figure 1.21), a computer scientist, mathematician, and Professor Emeritus at Stanford University, has been called the father of the analysis of algorithms. His multivolume set of books entitled The Art of Computer Programming is the classical reference for all programmers. He is also the developer of the text document (TEX) typesetting system for creating high-quality digital publications.

Tim Berners-Lee (Figure 1.22) is known as the inventor of the World Wide Web and continues to direct the Web’s development as the director of The World Wide Web Consortium (W3C). He is also a director of the World Wide Web Foundation, which furthers the potential of the Web to benefit humanity.

1.2.5Smaller, Faster, Cheaper Computers4

Computing has made more progress in 15 years than transportation has made in 2,000 years, having gotten smaller, faster, and cheaper during that time. Your cell phone today is about a million times cheaper, a thousand times more powerful, and a hundred thousand times smaller than the one computer that was used at MIT in 1965.

According to Ed Lazowska, chairman of the University of Washington’s Computer Science and Engineering Department, if Detroit car makers could have paralleled the innovations that hardware and software manufacturers have realized for computers, today’s cars would be tiny, powerful, and inexpensive. They would be as small as toasters, cost $200, travel 100,000 miles per hour, and would run 150,000 miles on a gallon of fuel. “In Roman times, people traveled along on horses or in carts at about 20 miles per day,” he said. “In the early part of this century, the automobile allowed people to travel at 20 miles per hour. Today, supersonic military aircraft travel at about 20 miles per minute. That progress is about a factor of 1,000 in about 2,000 years,” Lazowska wrote in an e-mail message.

Another analogy by Rick Decker and Stuart Hirshfield in The Analytical Engine states, “If automotive technology had progressed as fast as computer technology between 1960 and today, the car today would have an engine less than a tenth of an inch across, would get 120,000 miles per gallon, have a top speed of 240,000 miles per hour, and would cost $4.00.”5 Also, at a recent Computer Dealers Exhibition (COMDEX) meeting, Bill Gates is reported to have said that if GM had kept up with technology like the computer industry has, we would all be driving $25 cars that get 1,000 miles per gallon.

Computers and the programs that provide their instructions will continue to increase in speed, reliability, and functionality, limited only by human creativity.

1.3 SPECIFYING A PROGRAM

As discussed in Section 1.1, an increasingly large number of people own and use a computer as part of their everyday lives, yet a very low percentage of these computer users actually know how to write a computer program. In fact, if you understand the material in the first two sections of this textbook, you already know more about computer programming than most of the world’s population. As a result, most programs are not written by the program users. Rather, they are written by a group of computer processionals most people would refer to as programmers, but more accurately, they should be called software engineers. A new program that does not meet the needs of the end user is not going to be well received, so it is important that there be a way to describe the requirements of a new program in a way that is understandable to the end users.

Definition

A software engineer is a computer professional who produces programs that are on time, within budget, are fault free, and satisfy the end users’ needs.

The more formal techniques for describing the requirements of a new program are part of the discipline of systems analysis, which is a subset of software engineering. These formal techniques are all based on one specification of the arrangement of the components of the computer system shown Figure 1.4. They assume that the users’ interaction with the program is via the input and output devices, so the simplest way for end users to define what task the program is to perform is to enter into conversation with a systems analyst aimed at defining the inputs to, and the outputs from, the program.

For example, suppose your friend Annie recently purchased a computer and is having trouble managing her money. Knowing you completed a course in computer programming, she comes to you for help. You and Annie enter into the following conversation, which typically involves the probative words who, what, why, where, when, and how:

Annie: I want to know where my money goes.

You: OK Annie, what bills do you pay each month?

Annie: Well, there’s food, rent, electric, telephone, and clothing.

You: How much is each bill?

Annie: That’s part of the problem; they change each month, and so does my income because I work on commission.

You: Well, do you know roughly what percent of your income is spent on each?

Annie: No, but I sure would like to know that. I have a feeling some months I’m spending too much of my income on food and clothing, which leaves me with no mad money.

You: What is mad money?

Annie: You know, money I can spend on anything I like other than these bills. I want to know how much that is each month. I am sure someone is taking my money.

You: Gee, Annie, you sound a little paranoid.

Annie: You’d be paranoid too if everyone was out to get you!

You (whispered): Why do I bother?

Based on this conversation, you know the two things Annie would like her computer system to determine and output are the amount of “mad money” (discretionary funds) she will have at the end of a month and the percent of her monthly income she spent on each of her five monthly bills. To determine this, she will have to input the amount of each of her five monthly bills and her income for that month. You have decided to include the month and year as two additional inputs to the program, so she will be able to save and distinguish one month’s results from another. A simple description, or specification, for this program is shown below. It is a tabulation of the program inputs and outputs preceded by the name of the program and a brief statement that describes the overall task the program performs.

Program Specification

	Program Name: Annie’s Money Manager

	Task:	To determine Annie’s monthly discretionary funds and the distribution of her monthly expenses

	Inputs (8):	Month and Year
Income for the month
Amount spent during the month on each of the following five items: food, rent, electric, telephone, and clothing

	Outputs (6):	Percent of monthly income spent on each of these five items:
food, rent, electric, telephone and clothing
Amount of discretionary funds

Typically, the program specification is refined through an iterative process that involves its review by the end user and a subsequent conversation. This process could introduce more functionality into the specification of Annie’s program. For example, it could also include the ability to output an annual report showing the values of the six outputs for any given year, or perhaps for a range of months. Obviously, this would expand the specification given above.

Given the specification of the program, the programmers’ goal is to write a program that accepts the specified inputs and produces the desired outputs. The programmers may have to consult with other experts if it is unclear to them how to determine the outputs from the given inputs. For example, if the programmers assigned to write Annie’s program did not know how to compute percentages, they would have to consult a mathematician.

1.3.1Specifying a Game Program

The technique discussed to specify Annie’s program is similar to that of specifying any program: conduct a brief conversation with the user and then tabulate the program’s name, the task it performs, the inputs, and the outputs. This approach can also be used to specify a program that is used to play a game. In addition, the realization that all game programs share a common set of features can facilitate the specification process if the systems analysts include questions about these features in the conversations they have with the game’s inventor.

For example, most games involve game objects (e.g., trucks, cars, and a frog). In addition, all games have an objective or a way to win the game (e.g., moving a frog object to the other side of a road without having it run over by a truck or a car). Most games also have other features in common. A list of common features to include in a game’s specification conversation is given in Figure 1.23.

[image:]

Figure 1.23
Common game features.

Armed with this checklist of common game features, a typical conversation with your friend Ryan (an aspiring game inventor who has not taken a programming course) could be:

You: Hi Ryan, what’s up?

Ryan: I’ve got a great idea for a video game called Deep Space Delivery.

You: What is the objective of the game?

Ryan: To deliver as many supply packets as possible (picked up from a supply depot) to five different planets before time runs out.

You: How is a player’s score calculated?

Ryan: The player gets one point for each packet delivered, and if the player delivers all of the packets at the depot before the time runs out, the player receives one point for each second of time remaining.

You: What is the time limit on the game, and how many packets will be in the depot?

Ryan: One minute and 30 packets.

You: Looks like the game pieces (objects) are the planets, the supply packets, and the supply ship. Is that correct?

Ryan: Yes, but don’t forget to include the supply depot.

You: How will the player move the supply ship and pick up and drop off the packets?

Ryan: Using keys on the keyboard.

You: Will any of the other game pieces be moving?

Ryan: Yes, the planets will be moving and bouncing off the edges of the game board. Also, make one of the planets white and another red.

You: Would you want to keep track of the highest game score achieved and the name of the game player that achieved it?

Ryan: Yes, that’s a good idea.

You: Sounds good Ryan. I’ll write up a specification for the game for you to look over. Then, I’ll write the program, and we’ll split the profits. How’s that sound?

Ryan: How about a 40% share for you?

Ryan (whispered): It’s all my idea.

You: OK.

You (whispered): But I’m doing all the work.

Based on this conversation, the specification of Ryan’s game is given below.

Program Specification

	Program Name: Deep Space Delivery

	Task:	A starship is to pick up supply packets at a supply depot and deliver as many supply packets as possible to five moving planets before time runs out. The player will receive one point per packet delivered and one point per second remaining on the game time after all packets are delivered.

	Inputs (7):	The four cursor control keys (up, down, right, and left) used to control the position of the starship
The ‘A’ key, which is used to pick up a supply packet when the ship is at the supply depot
The ‘Z’ key, which is used to drop off a packet when the starship is at a planet
The game player’s name input when the game is launched

	Outputs (5):	The time remaining in the game, in seconds, beginning from 60 seconds
The player’s score
The message “Game Over” when the game time reaches zero, or when all packets are delivered
The highest score achieved and the name of the person who achieved it to be output to the game board and a disk file when the game time reaches zero

The details for more functionality could be added to the specification of Ryan’s program. For example, the delivery of a packet to a faster moving planet could be awarded multiple points, multiple levels of difficulty could be added to the game, and the highest game score achieved with the name of the game player who achieved it could be announced at the beginning of the game.

1.4 SAMPLE STUDENT GAMES

[image: image]

We will soon be able to write a program that implements the specification of the Deep Space Delivery game presented in the preceding section. The game programs on the DVD that accompanies this textbook were specified and written by students enrolled in an introductory programming course. To run these programs, simply double click the “Sample Student Games” folder on the DVD and copy the subfolders onto your hard drive. Double click one of the subfolders and then double click the file with the .jar extension. Running these programs will give you a sense of what you will be able to accomplish after gaining an understanding of the material in the first five chapters of this book.

1.5 JAVA AND PLATFORM INDEPENDENCE

A computer system’s platform is the CPU model and the operating system software it is running. For example, many PCs run on an Intel CPU/Windows platform, and Apple computers manufactured after the midpoint of 2011 run on an Intel CPU/OS X platform. As a result of the evolution of CPUs and operating system software that has taken place over the last 30 years, there are many different platforms in use today.

The variety of platforms has always been a problem for software developers because each platform has a language of its own, meaning that a platform can only execute a program that is written in its language. To produce a program that could run on two different platforms, the programmer either had to write the program twice, first in the language of one platform and then in the language of the other, or write the program in a more generic language (for example, C++) and then use two other programs to translate that program into the language of the individual platforms. In this case, the C++ program is referred to as source code, and the resulting translations of this source code are called executable modules or executables.

[image:]

Figure 1.24
The C++ multiple-platform translation process.

When we consider the number of platforms that exist and the fact that writing in the language of a particular platform is a very tedious and time-consuming process, writing programs in a generic language is the most efficient and cost-effective approach. Figure 1.24 illustrates the use of this process to produce executable modules for three different platforms. The programmer would have to translate the program using three different translators to generate the three different executable modules.

During the early 1990s, the Internet was made commercially available to private individuals, which made it possible for them to share information between their computer systems. The idea that this information could be a program resident on one computer system (perhaps a program to display a Website) presented a fundamental problem. If the two computers were not running the same platform, the executable module downloaded from one platform (the host platform) would not run on the other (the client platform), and the Website would not be displayed on the client machine. Using the process illustrated in Figure 1.24 to produce a downloadable executable module for all platforms was an impractical solution because, for one thing, a program that was written today should be able to be run on the platforms of tomorrow. Fortunately, a team of computer scientists at Sun Microsystems lead by James Gosling had already come up with a more practical solution.

The team’s idea was to change the process used to produce an executable module. Instead of the host machine producing the executable module, the client machine would produce it. The host machine would simply translate the program, written in a new programming language named Java, into a set of byte codes. Byte codes should be thought of as a pseudo-executable module for a virtual machine, named the Java Virtual Machine (JVM), which are not in the language of any platform in existence. Once generated, the byte codes could then be downloaded to any client machine, and the client machine would use a byte code translator program to translate the downloaded byte codes into the language of its platform. Figure 1.25 illustrates the Gosling team’s new process.

[image:]

Figure 1.25
The Java multiple-platform translation process.

NOTE

The grammatical rules for writing a program in the Java language were described by the Gosling team in the Java Language Specification (JLS), available online.

To make this process work, Gosling’s team assumed that the manufacturer of the client computer system would install a translator that translated Java byte codes into the language of their system’s platform. Realizing that all future customers would want to attach their new computer to the Internet, computer manufacturers complied and proudly advertised their system as “Internet ready.”

The fact that the same set of byte codes could be downloaded and used to produce an executable module on any platform that had a byte code translation program on it made Java programs platform independent. Programs written in Java (or more accurately, the program’s byte codes) could be downloaded, translated, and then executed on any platform that contained a platform-specific byte code translator.

1.5.1 The Java Application Programmer Interface

In addition to providing a translator that translates Java programs into byte codes, the creators of Java also identified a group of data (e.g., the mathematical constant pi) and tasks (e.g., computing the square root of a given number) that were likely to be used in Java programs. A description of these data and tasks was then published as the Java Application Programming Interface (API) specification. If a Java programmer wanted to create a new window for a program, which normally most programmers want to do, it could be easily done by incorporating the API task that contained all of the Java byte codes necessary to display a window into that program.

For ease of use, the data and tasks that are similar were grouped together. These grouping are called packages, and within the packages there are subgroupings called classes. There are approximately 200 packages and 4,000 classes in the Java API. Most of these classes contain both data and the Java instructions to perform common tasks. A set of instructions to perform a task is called a method. The data and methods that are in the same class are said to be members of the class.

Definition

A class is made up of a group of related data members and member methods.

A method is a set of instructions used to perform a task.

Data members are the instance variables that contain the data values for the class.

Just as Java’s creators assumed that the manufacturers of computer systems would install a translator that translated byte codes into the language of their system’s platform, they also assumed that the manufacturers would install an implementation of the data and methods defined in the API specification. Once again, to advertise that their system was Internet ready, the manufacturers complied. Technically speaking, the byte code translator and the API implementation on the client machine (along with a memory manager) are called the Java Runtime Environment (JRE), and the JRE and the client system’s operating system are considered an implementation of the Java Virtual Machine. Figure 1.26 gives the components of the Java Virtual Machine specific to a system running an Intel CPU/Windows platform.

[image:]

Figure 1.26
System-specific components of the Java Virtual Machine.

Based on Gosling’s team’s idea, any programming language can achieve platform independence if the language designers provide a translator that translates the language into Java byte codes. The resulting translation will run on any computer system or mobile device that implements the Java Virtual Machine.

1.6 OBJECT-ORIENTED PROGRAMMING LANGUAGES

Just as related methods and data are grouped into classes in the API specification, they can also be grouped into classes that are defined within programs written using object-oriented programming (OOP) languages. Java, by design, is an OOP language. Grouping related methods and data inside a class that is defined in a Java program is more than a convenient way of arranging related data and methods. The real motivation for permitting this class grouping in object-oriented programming languages is that it is a good way of modeling the objects that the program will deal with.

As an example, consider a video game program that involves starship objects. Each starship object will have a name and a (x, y) location. In addition, as the game is played a new starship can be created, starships can be drawn on the monitor, and a starship’s location can be changed. A good model for these starship objects would be to define a class named Starship (depicted as the blue rectangle in Figure 1.27). As shown in the figure, the class would have three data members (name, x, and y), and three member methods (create, draw, and move).

[image:]

Figure 1.27
The Starship class, three Starship objects, and the use of the class’s methods.

It is important to understand that a class is not itself an object, but rather it is a description of an object. From one class we can create an unlimited number of objects or instances of the class. A useful analogy is to consider classes we encounter in everyday life: a blueprint, a cookie cutter, a stencil, a pottery mold, a dress pattern, and the human genome pattern. From one blueprint we can create lots of houses, from one cookie cutter lots of cookies, from one stencil lots of pictures, from one pottery mold lots of vases, from one pattern lots of dresses, and from one human genome pattern lots of people.

Definition

In an object-oriented programming language, a class is a template for an object, and an object is a particular instance of a class.

The Starship class would be a template for a starship object. Each time a starship enters the game, a new starship would be created from this template with a given name and initial (x, y) location using the class’s create method. A starship’s name and (x, y) location would be stored in its three data members, which each object created from the class Starship would contain. In addition, the tasks of drawing and relocating a starship would be performed by the Java instructions that make up the class’s draw and move methods.

The center and bottom sections of Figure 1.27 depict the use of the Starship class’s three member methods used in the following order:

1.The create method (indicated by the number 1 in the figure) was used to create or construct the three starship objects shown in the center of the figure: the Orion at (20, 30), the Maggie at (50, 100), and the Jewel at (300, 500). Notice that after they are created, each starship contains three data members to store the ship’s name and its (x, y) location. Although these three starships have been created, they are not displayed on the game board shown at the lower left portion of the figure because the draw method has not been used.

2.The draw method (shown as number 2 in the figure) was used to display the starship Orion at its current location (20, 30), as depicted in the bottom center of the figure. The draw method has not operated on the other two starships, so, even though they exist, they do not appear on the game board. (Note: The origin is located at the upper left corner of the game board and positive y is downward.)

3.The move method (represented by the number 3 in the figure) was used to change the current location of the starship Jewel from (300, 500) to (20, 100) as depicted on the center right portion of the figure. As shown at the bottom right portion of the figure, it is not displayed because the draw method was not performed on it. After relocating the starship, if the draw task were performed on the Jewel, it would have been displayed directly below the Orion at (20, 100).

NOTE

Each object contains the data members of its class and can be operated on by the class’s methods.

1.7 INTEGRATED DEVELOPMENT ENVIRONMENTS AND THE PROGRAM DEVELOPMENT PROCESS

An Integrated Development Environment (IDE) is a program to help programmers write programs. Usually they are language specific in that a particular IDE can be used to develop programs in one, and only one, programming language. For example, NetBeans and Eclipse are two popular IDEs used to develop programs written in Java, and the IDE Microsoft Visual C++ can be used to develop programs written in the language C++. Many popular IDEs can be downloaded for free from the IDE’s Website.

What these programs have in common is that they integrate a set of program development tools into one program. Examples of these tools are a text editor used to type, edit, save, and reopen the program’s instructions, and a translator used to translate the program instructions into the language of the platform it is to run on. In the case of a Java IDE, this would be a translation from Java into Java byte codes. In addition, most IDEs have an autocomplete feature to facilitate the typing of the program and a grammar checker to help locate and correct grammatical errors in the program’s instructions.

Armed with a good specification of a program and a good IDE, we are almost ready to begin the program development process, which is illustrated in Figure 1.28. Before we begin, we must read the program’s task contained in its specification and discover a set of algorithms that perform the tasks. For example, how will we determine when a starship delivers a supply packet to a planet in Ryan’s Deep Space Delivery program? As mentioned at the end of Section 1.1, this can be the most difficult part of writing a program, and most software engineers take an advanced course in algorithm discovery. We will illustrate the discovery process via the programming examples presented throughout this textbook.

After discovering the program’s algorithms, we are ready to begin the program development process (Figure 1.28). Generally, the process begins with representing the algorithms as a set of program instructions (called code), translating the code, and then correcting the grammatical errors (called syntax errors in computer science). Once all of the syntax errors have been eliminated, the IDE’s translator will produce an executable module that it then runs. In the case of Java, the IDE generates and then executes the Java byte codes on the Java Virtual Machine installed on the programmer’s computer.

[image:]

Figure 1.28
An overview of the program development process.

The programmer then changes roles from programmer to program user to test the program for correctness. To do this, the user (or tester) supplies the inputs to the program and examines the outputs it produces. If the program produces the correct outputs for several well-chosen sets of inputs, the program is complete. If it does not, the tester changes back to the role of a programmer, locates the erroneous instruction(s), and the process is repeated beginning with rewriting those instructions.

One refinement to the process is necessary for anything other than a very, very small program because of the fact that we cannot effectively solve large problems. When we consider that we humans have visited the moon and that many of the more common operating systems consist of over a million lines of instructions, this statement leads us to a paradox: If we can’t solve large problems, how did we do these things?

The answer lies in the 4,000 BC writings on a Chinese cave wall that explain that big things can be divided into little things, little things can be divided into nothing. Today’s version of this is: divide and conquer. Just as the task of going to the moon was divided into hundreds of small problems whose solutions were integrated into the lunar mission, a large program is divided into many small parts, which can be combined to become the large program.

Object-oriented programming languages present several obvious dividing lines. Because the specification identifies the types of objects the program will deal with, the program is first divided into classes, one for each type of object. Then, within each class, the tasks to be performed on the class’s objects are defined. Simple tasks become member methods, complex tasks are divided into several simple tasks (each of which also becomes a member method). Each method within a class is written and tested separately. Basically, each method is considered to be a small program, and it is developed using the process illustrated in Figure 1.28. Once all of the methods in a class are operating correctly, the methods in another class are developed using this divide-and-conquer concept. When all the classes are complete, they are integrated into the large program. Object-oriented programming languages make it easy to integrate the classes into the large program.

As an example, consider the development of the Starship class shown in Figure 1.27, which is part of a game program. Three methods (create, draw, and move) have to be developed using the process illustrated in Figure 1.28. Because we cannot draw or move a Starship that has not yet been created, the create method would be developed first. After the method is written and the syntax errors are found and corrected, we would write a few more lines of Java to test the method. This code is often referred to as driver code because it takes the method for a “test drive.” It would use the method to construct a Starship object, perhaps Maggie in the center of Figure 1.27, and output its data members. If the name Maggie and position (50, 100) were output, we would conclude the create method was working. If not, we would examine the instructions that make up the create method, locate and correct the errors, and repeat the translation and test portion of the process.

NOTE

Driver code is disposable Java code used to test a method. It normally does not become part of the final program’s instructions.

The next logical step would be to develop the draw method because, as we will see, it can be used in the testing of the move method. After the syntax errors are found and corrected, we would write a few more lines of Java driver code to test the method. The code would use the create method to construct a Starship object, perhaps Orion shown on the left side of Figure 1.27, and then use the draw method to display it on the game board. If it were displayed in its proper location with the name Orion on the side of the ship, we would conclude the draw method was working. If not, we would examine the instructions that make up the draw method, locate and correct the errors, and then repeat the translation and test portion of the process.

Next, we would develop the move method, write its code, translate the code and correct the syntax errors, and then write a few more lines of Java driver code to test it. The code would create a Starship object, perhaps Jewel at (300, 500), as shown on the right side of Figure 1.27, then use the move method to change its position to (20, 100) and the draw method to display it on the game board (monitor). If it were displayed in its new location (20, 100) with the name Jewel on the side of the ship, we would conclude the move method was working. If not, we would examine the instructions that make up the move method, locate and correct the errors, and repeat the translation and test portion of the process.

After completing the development of our Starship class in three manageable steps, we would eliminate the driver code and replace it with the instructions to use the Starship class and its methods in our game program.

1.7.1Mobile-Device Application Development Environments

The level of miniaturization of the basic components of a computing system that has taken place in the last ten years has brought to the marketplace a variety of hand-held computing devices. These devices, often referred to as mobile devices, include smart phones, personal digital assistants (PDAs), and tablet devices.

The development of a program for a mobile device follows the same process as that used to develop a program for a non-mobile computing device discussed in this chapter. After a specification is written and the program’s algorithms are discovered, an IDE is used to develop the specification into a functional program using the process shown in Figure 1.28. However, two problems arise when applying the development process to mobile-device applications. Because these devices have limited computing power, it is impractical to conduct the development process on them, so the process is conducted on a more powerful non-mobile computing system. In addition, the concept of platform independence has not been extended to mobile devices, so an executable module must be produced for each mobile-device platform.

Because a majority of mobile applications run on smartphones, and a great majority of smartphones run an Android-based platform, this section will conclude with an overview of the tools available for developing applications for any Android-based smartphone or tablet device. Although the details presented are specific to those devices, the concepts presented are typical of the tools employed to develop applications on most mobile devices.

Android device applications can be written in Java on a personal computer. The preferred IDE is Eclipse, which is a free download. Eclipse is preferred because two sets of tools that facilitate the development of an Android-device application are easily integrated into it. Both of these tools can be freely downloaded. The first of these, the Android Software Development Kit (SDK), can be downloaded from the Android developers’ Website. The second set of tools, the Android Development Tools (ADT) Eclipse plug-in can be downloaded from the Eclipse Website. If your personal computer is running a Windows operating system, you can download the Eclipse IDE, the SDK, and the ADT as one bundle from the Android Developers Website, found at http://developer.android.com/sdk/index.html.

Some of the features the two sets of tools provide include:

•The latest version of the Android operating system

•Platform-dependent translators

•A set of emulators that run the translated code on a simulation of any Android-based mobile device including displaying its screen and emulating all of its I/O functionality

•The ability to upload developed applications to the Android Market (a Web-based store for free and purchased applications)

Using these tools and knowledge of Java, you will be able to develop and market applications for any Android device from the comfort of your own personal-computer system.

1.8 OUR GAME DEVELOPMENT ENVIRONMENT: A FIRST LOOK

[image:]

In Section 1.4, you were asked to run several of the sample game programs contained on the DVD that accompanies this textbook. The DVD also contains a folder named Package that contains a Java package named edu.sjcny.gpv1. This package can be thought of as a game development addition to the API because it contains methods that perform tasks that are common to most game programs. Appendix A contains descriptions of the methods contained in this package.

The incorporation of this package, or game development environment, into a game program facilitates its development. The students who created all the sample game programs contained on the book’s DVD incorporated it into their programs. In this section, we will describe how to easily create and display a game window using the methods in this package, how to incorporate the package into a game program, and how to change some of the game window’s properties.

1.8.1 The Game Window

When incorporated into a Java program, two of the game environment’s methods can be used to create and display the game window shown in Figure 1.29. The Pause and Start buttons on the right side of the game window can be used by the game player to pause the game and to start/restart the game. The directional buttons below them, or the keyboard keys, can be used to control the position of the game objects during the game.

The coral-colored area on left side of the game window, called the game board, is where the game objects appear. Like most windows, it can be dragged around by its title bar, minimized to the status bar, and redisplayed by clicking its icon on the status bar. It cannot be maximized, however, the programmer can change its size to accommodate the needs of a particular game. The default size of the game window is 622x535 pixels, which are closely spaced dots of color that make up the surface of a computer monitor.

[image:]

Figure 1.29
The game environment’s window.

1.8.2 The Game Board Coordinate System

Figure 1.30 shows the game board coordinate system. Game objects are positioned on the game board by specifying their x and y game board coordinates. The system is a two-dimensional Cartesian system with its origin at the upper left corner of the game window. The positive x direction is to the right, and positive y direction is down. The units of the axis system are pixels.

[image:]

Figure 1.30
The game board coordinate system.

As shown on the upper right and lower left sides of Figure 1.30, the title bar of the window is 30 pixels high, and the left boundary of the window is 5 pixels wide. The coordinates of the lower right corner of the game board for the default window size are (500, 500). If the programmer decides that a larger or smaller game board is appropriate for the game being developed, the x and y coordinates of the lower right corner of the game board can be changed, which will be described in Section 1.8.5.

1.8.3Installing and Incorporating the Game Package into a Program

[image:]

Appendix B contains detailed instructions on how to incorporate the game package, which contains the game development environment, into a Java program. The simplest approach is to use one of the projects contained in the “IDE Specific Tools” subfolder on the DVD that accompanies this book. This subfolder contains an Eclipse, a NetBeans, and a JCreator project that has the game package already incorporated into them as well as the code described in the next section, which creates and displays the game window. When the projects are run, they display the game window shown in Figure 1.29. Game program specific code and classes can be added to them.

The JCreator and NetBeans projects on the DVD can be copied from the DVD and pasted into a folder, and then the project can be opened, modified, and run from within the IDEs. The Eclipse project must be imported into an Eclipse workspace folder using the Import feature available on the Eclipse File drop-down menu. After the Eclipse project is imported from the DVD, it can be opened, modified, and run from within Eclipse. Detailed instructions on the use of the DVD’s three preexisting game projects are given in Appendix B.

As an alternative, the game package edu.sjcny.gpv1 in the “Game Environment” folder on the DVD can be added to any newly created Java project by following the procedures given in Appendix B, most of which do not include having to change the system’s CLASSPATH variable. When these alternative approaches are used, the code described in the next section, which creates and displays the game window, must be added to the project’s code.

1.8.4 Creating and Displaying a Game Window and Its Title

After you have incorporated (imported) the game package into your program, you can use the methods in the package to create and display the graphical window in which your game will run. The Java program shown in Figure 1.31 is a template, or starting point, for all of our graphical game application programs. When this program is run, the game window shown in Figure 1.29 is created and displayed.

As we will learn in Chapter 2, lines 2, 3, 7, 8, 10, and 11 are the minimum set of instructions that make up a Java application program. For that reason, many IDEs generate these instructions when a new programming application is created. The one exception is the phrase extends DrawableAdapter, which must be added to the end of line 2 if the game package is to be used in the program. Lines 1, 4, 5, and 9 complete the game program template.

[image:]

Figure 1.31
The Java instructions to create and display the game window.

The import statement on line 1 of Figure 1.31 makes the methods in the game package available to the program. Lines 4, 5, and 9 use these methods to create and display the game window shown in Figure 1.29. Each Java program is given a name, which is part of its specification. This program is named GameWindowDemo, which is typed on line 2 after the word class and typed two more times on line 4.

As previously mentioned, Figure 1.31 will be the template for all of our graphical game application programs. To adapt it to a particular game program, the new program’s name would appear on lines 2 and 4, and the game’s title and perhaps the name of its creator would appear at the end of line 5. For example, if a new game program’s name was Project1, and the game was Frogger created by Bob, the changes to lines 2, 4, and 5 would be as highlighted below:

1 import edu.sjcny.gpv1.*;

2 public class Project1 extends DrawableAdapter

3 {

4   static Project1 ga = new Project1 ();

5   static GameBoard gb = new GameBoard(ga, "Frogger, by Bob");

6

7    public static void main(String[] args)

8    {

9    showGameBoard(gb);

10    }

11 }

1.8.5 Changing the Game Board’s Size

As mentioned in Section 1.8.1, the default size of the game window is 622x535 pixels. This was chosen to make the coordinates of the game board’s lower right corner (500, 500). To change the game board’s size, and thus the window size, we add the new coordinates of the game board’s lower right corner to the end of line 5 of Figure 1.31. This is the line that constructs the window. For example, to obtain a game board whose lower right corner is located at (700, 650), we would change line 5 to:

static GameBoard gb = new GameBoard(ga, "The Game Window",700, 650);

The title bar of the window would still be 30 pixels high, and the left border of the window would still be 5 pixels wide, as shown in Figure 1.29, but the window’s height and width would be increased to accommodate the larger game board.

1.9 REPRESENTING INFORMATION IN MEMORY

As discussed in Section 1.1, the memory component of the computer system has the ability to store and recall information, and that information could be the data that the program processes or the instructions that make up the program. The scheme used to store or represent the information in memory is dependent on the type of information being stored. Data is stored using a different scheme than translated program instructions. In addition, character data, which is data typed into a word processor or IDE, is stored differently than numeric data, which is data that will be used in arithmetic expressions.

There are three memory storage schemes used to represent three different types of information: (1) character data, (2) translated instructions, and (3) numeric data. All three of these schemes were designed around the basic hardware memory unit: a bit, which stands for binary digit. Conceptually, a bit should be thought of as a single switch that can be turned on or off. All of memory uses this storage concept, and storage devices such as RAM, disks, flash drives, and tape drives may contain billions (giga) and even trillions (tera) of these bits.

For brevity, when a bit is turned on we say it is in state 1 (one), and when it is off we say it is in state 0 (zero). These should only be thought of as the numerics one and zero when the information stored is numeric data. Figure 1.32 depicts eight adjacent bits in on-off states and their briefer binary (1-0) depiction.

[image:]

Figure 1.32
The state of eight adjacent on-off bits and their 1-0 depiction.

1.9.1 Representing Character Data

The scheme used to represent character data in memory is rather straightforward. A table7 was composed in which each character to be represented was assigned a unique eight-bit pattern. For example, the character B was assigned the pattern 01000010, the lower-case version of this character, b, was assigned the pattern 01100010, and the character 1 was assigned the pattern 00110001.

The table is named the Extended American Standard Code for Information Interchange because it was an expansion of a table named the American Standard Code for Information Interchange, which represented characters using patterns of seven bits. The seven-bit table was assigned the acronym ASCII (pronounced “ask ee”), and the extended table is referred to as the Extended ASCII table. Both tables include all of the upper- and lower-case letters of the Modern Latin (English) alphabet, the digits 0 to 9, a set of special characters (e.g., !, @, #, $, %, ^, etc.), and some control characters such as horizontal tab and line feed. Because there are 128 (27) unique ways to arrange 7 bits and 256 (28) unique ways to arrange 8 bits, adding the eighth bit to the Extended ASCII table doubled the size of the ASCII table.

The first 128 characters in the Extended ASCII table are given in Appendix C. The bit patterns in this table are used to represent character information on all computer systems when the alphabetic characters the system is processing are limited to the Modern Latin (English) alphabet. When this is the case, and we want to represent the letter B in storage, eight adjacent (or contiguous) bits of storage (called a byte of storage) are set to the Extended ASCII pattern for B: 01000010. If we fetched a byte of storage from an area of memory in which we knew that characters were stored, and that byte contained the pattern 01000010, we would know that the character B was stored there. We say that a keyboard is an ASCII keyboard if it generates this bit pattern when a capital B is struck, and a printer is an ASCII printer if it prints the character B when it receives this bit pattern.

Definition

Eight adjacent or contiguous bits are called a byte of storage

To accommodate the international exchange of information over the Internet, the Extended ASCII table was expanded to include unique bit patterns for the symbols used in the other alphabets of the world. To provide a unique bit pattern for each entry in this expanded table, named the UNICODE table, the number of bits assigned to each character was increased from 8 to 16 bits (2 bytes) per character. The first 256 entries in the UNICODE table are the characters in the Extended ASCII table, with the leftmost 8 bits of their 16-bit pattern set to 0 and the rightmost 8 bits set to their Extended ASCII table patterns. For example, because the Extended ASCII representation of B is 01000010, its UNICODE representation is 00000000 01000010. Characters processed by Java programs are stored in memory using their UNICODE table representations.

NOTE

Character data is represented in memory using either the Extended ASCII or UNICODE table.

1.9.2 Representing Translated Instructions

The technique used to represent translated instructions in memory is the same technique used to represent characters in memory. A table is composed containing all of the possible translated instructions, and a unique bit pattern is assigned to each of them. For example, the bit pattern for the translated instruction to subtract two integers could be 01000000, and the bit pattern to divide two integers could be 01000010.

Unlike the Extended ASCII and UNICODE tables that are used by all computer systems to store characters, these translated instruction tables vary from one CPU to another. Not only do the bit patterns vary, but the number of bits used to represent a translated instruction also varies. The tables are platform dependent, which is the reason Java came into being. To determine the translated memory representation of a divide instruction on a particular platform, we have to look up the bit pattern for the divide instruction in the instruction table of the CPU of that platform.

For the Java Virtual Machine, each translated instruction is assigned an eight-bit pattern. Because the patterns consist of eight bits, or one byte, the patterns are called byte codes. Table 1.1 gives the Java byte codes for the translated integer arithmetic instructions: add, subtract, multiply, and divide. As indicated in this table, when the Java Virtual Machine receives a byte code of 01101100, it performs a divide operation.

Table 1.1
Java Byte Codes for Integer Arithmetic Instructions

	Instruction
	Java Byte Code

	add
	01100000

	subtract
	01100100

	multiply
	01101000

	divide
	01101100

[image:]

Translated Java instructions are represented in memory using patterns of eight bits called byte codes.

1.9.3 Representing Numeric Data

Unlike the two previously described schemes, the scheme used to represent numeric data does not use a table because, for one thing, the table would be infinitely long. Rather, the scheme is based on the theory of numbers. All number systems have a base. Our number system’s base is 10, which anthropologists speculate is due to the fact that we have ten fingers and ten toes. In number theory, the base of a number system determines the number of digits in the system. Because our number system is base 10, it has 10 digits (0 through 9). Conversely, the theory of numbers tells us that if a number system has 10 digits, its base is 10.

Armed with this knowledge of number systems, it was decided that numeric data would be represented in memory using a number system whose base is 2 because one bit can represent the system’s two digits: 0 and 1*. Anthropologists would tell us that a base-2 number system would probably be our number system if we had two fingers. Because we do not have two fingers, we need to understand how to convert from base 2 to base 10 to interpret what base-10 number a bit pattern represents and how to convert numbers from base 10 to base 2 so we can store numbers in memory.

[image:]

Numeric data (data that will be used in a mathematical expression) is represented in memory using a binary number system.

Fundamental to these conversions is the realization that digit position values in a base-2 number system are not the same as in our base-10 system. Starting from the right, the digit position values in our number system are the 1s position, the 10s position, the 100s position, etc. These represent 100, 101, 102, etc. Extrapolating this to a base-2 system, the digit position values starting from the right are 20, 21, 22, etc. Figure 1.33 gives the first eight digit position values of the base-2 number system with their decimal (base 10) equivalent below them. Knowing the digit position values of the binary number system, we can now convert from base 2 to base 10, and base 10 to base 2.

[image:]

Figure 1.33
First eight digit position values of the binary number system.

To convert a base-2 representation (e.g., 01000010) of an integer numeric value stored in memory to base 10, we simply write the bit pattern below the base-10 digit position values that are shown in Figure 1.33 and add the values that have a 1 under them. For example, for the bit pattern 01000010, the process would be:

[image:]

Therefore, 01000010 represents the base-10 number 66 (64 + 2).

This conversion process implies that the bit pattern 11111111 represents the largest integer that can be represented using 8 bits, which is the base-10 number 255 (255 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1). To represent integers larger than 255, more bytes of storage would be dedicated to each integer numeric value.

To convert a base-10 integer to its binary bit pattern to store the numeric value in memory, we begin by writing out the base-10 digit position values that are shown in Figure 1.33. Then starting on the left, we place a 1 under all of the position values that when added together give the base-10 number. The remaining position values are filled in with zeros.

To quickly determine which positions that should have a 1 placed under them, use the following algorithm until the right most position value is reached:

1.Let n (e.g., 66) be the base-10 integer value to be represented in memory

2.Start at the left most bit, b

3.Set v to b’s position value (e.g., v = 128)

4.If (n – v) is positive or equal to zero then:

a. Place a 1 under b’s position

b. Set n = (n – v)

Else place a 0 under b’s position

5.Move b to the next bit to the right

6.Go to step 3

Table 1.2 illustrates the use of this algorithm to convert 66 to its 8-bit binary representation. Each row in the table represents an execution of steps 3 and 4 of the algorithm.

Table 1.2
Conversion of the Integer 66 to its 8-Bit Binary Representation

[image:]

Before we conclude our discussion on how numeric data is stored in memory, we should comment on how negative integers and numbers with fractional parts, which are called real numbers in mathematics, are represented in memory. The short answer is that negative integers are represented using a scheme named twos complement form, and numbers with fractional parts are represented in a standardized6 form analogous to scientific notation (as when 235.2374 is expressed as 2.352374 x 102). The details of these schemes are beyond the scope of this text, however, an understanding of the representation of positive integers as binary numbers discussed in this section is fundamental to an understanding these two representation schemes.

Finally, consider a byte of storage that contained the bit pattern 01000010. When we attempt to determine what is stored in this byte, a dilemma arises. If we look into the Extended ASCII table we would conclude the character B is stored there. We have also learned that this could also be the base-10 integer 66. It is also the byte code instruction to store an integer in RAM memory. To resolve these kinds of dilemmas, the language translator keeps track of the types of information that is stored in various parts of RAM. If we knew that the bit pattern 01000010 was in the area of RAM where characters are stored, then it represents character B.

1.10 CHAPTER SUMMARY

In this chapter, you learned about the hardware and software components of a computer system, how they are arranged, and how they interact with the user. The hardware components consist of the central processing unit, memory, and input/output devices. Main or RAM memory interacts with the CPU and stores the data and instructions that are about to be processed by the CPU. The backing store or secondary memory, such as a hard drive, stores data and instructions more permanently.

The modern computer was developed over centuries through the efforts of many people. It has become smaller, faster, cheaper, and more reliable as it evolved from a room-sized device to the small hand-held mobile and wearable devices common today.

Java is an object-oriented programming language that allows a programmer to represent and process real-world objects within application programs and computer games. Classes are the templates for creating objects, which contain both data and methods to operate on the data. All information contained in a computer is represented in binary as translated instructions, numeric data, and character data. Java programs are translated into byte codes, which can be executed by the Java Virtual Machine, making them platform independent and portable.

New programs are defined in a written specification, then the program’s algorithms are discovered and an IDE is used to compose and test the program. Game programs are more easily composed by importing a game environment into the program, such as the one contained on the DVD that accompanies this textbook. Game environments supplement the Java API by providing methods that perform tasks common to most games, such creating an interactive game board on which the game objects can be drawn and moved.

The discovery of a program’s algorithms is usually the most difficult part of producing a new program. Throughout this text, we will use game programming to illustrate the use of programming concepts and use game algorithms to introduce the reader to the algorithm discovery process.

Knowledge Exercises

1.Between 1989 and 2004, the number of computers per 1,000 U.S. citizens increased by a factor of approximately:

a) 2

b) 4

c) 8

d) 12

2.What is the difference between hardware and software?

3.Explain the difference between operating systems and application programs.

4.Which of the following characteristics are associated with RAM (main) memory?

a) Nonvolatile

b) Very fast

c) Very large capacity

d) Expensive

5. Which of the following characteristics are associated with backing (secondary) storage?

a) Nonvolatile

b) Very fast

c) Very large capacity

d) Expensive

6. Give three examples of:

a) Input devices

b) Output devices

c) Backing (secondary) storage devices

7. Some computer devices have a single use while others have multiple uses.

a) Name a device that is only used for output.

b) Name a device that is only used for input.

c) What device can be used for both input and output?

8. Name and explain the function of each of the three major hardware components of a computer system.

9. How would you respond to a friend who asked you who invented the computer?

10. Examples of operating system programs include all of the following except:

a) MAC OS

b) Windows

c) Java

d) Linux

11. Volatile memory refers to memory that:

a) Permanently stores data

b) Loses its contents if power is interrupted

c) Is added to the computer externally

12. Word processing, e-mailing, and searching the Web are all examples of using:

a) Application software

b) Systems software

c) Programming

d) None of the above

13. Which of these replaced vacuum tubes in second-generation computers?

a) Paper tape

b) The mouse

c) Chips

d) Transistors

14. Who developed assembly language, the first compiler, and the language COBOL?

a) Alan Turing

b) Ada Lovelace

c) Grace Hopper

d) John von Neumann

15. Name the person referred to by each of these titles or descriptions:

a) First programmer

b) Inventor of the Java programming language

16. Give the four features of a program that are identified in its specification.

17. What is meant by platform independence?

18. True or False: To achieve platform independence, Java byte codes are translated on the end user’s computer system.

19. What is the difference between a class and an object?

20. In a video game, a paddle will be used to reflect a ball into a pile of 200 bricks.

a) How many objects will be involved in the game? What are they?

b) How many classes will be defined in the program? Name them.

21. Give the terms that are represented by the following acronyms:

a) CPU

b) RAM

c) I/O

d) IDE

e) JVM

f) API

g) GUI

22. Which of these refers to the process of breaking a problem into smaller parts in order to solve or program it?

a) Divide and conquer

b) Platform independence

c) Portability

d) Translation

23. The upper left corner of the game environment’s game board is located at the (x, y) pixel coordinates:

a) (0, 0)

b) (500,500)

c) (622,535)

d) (5, 30)

24. Which of these is not a component of a typical game program?

a) Score

b) Time limits

c) Napier’s bones

d) Game piece objects

25. Name the three types of information represented in memory.

26. Write the 8-bit binary equivalent for each of these base-10 numeric values:

a) 51

b) 77

c) 115

d) 131

e) 227

f) 254

27. Write the base-10 (decimal) equivalent number for each of these binary values:

a) 01010011

b) 00101111

c) 00000000

28. Give the 8-bit memory representation of the characters C and c.

Preprogramming Exercises

1. Think of a video game and conduct a conversation with yourself that includes the features common to most games that are tabulated in Figure 1.1.23. Based on that conversation, write a specification for the game that gives the game’s name, the task or objective of the game, and a description of the inputs and outputs. The game must include at least two different types of game objects and one of the objects has to be controlled by the user via the cursor control keys and the game board directional buttons.

2. Logan is a teacher with 25 students in his class. Write a specification for a program that will show Logan the lowest, highest, and average class grades on an examination.

3. Using the template given in Figure 1.31 and the directions given in Section 1.8.5, write the line of code necessary to change the game window’s size to 800x600 with the new title “My Great Game Window.”

Enrichment

In the same way that computers and programming languages have evolved over time, game programs also have developed from very simple games to the present multiuser, interactive games. Search the Internet to discover some of the historical developments of computer games. Some of the questions you might research are:

•When and where the first games were developed

•What companies were created for developing games

•Who are the leaders today in the field of games

•How do today’s games differ from the earliest computer games

(Be sure to record the sources of your information.)

References

Fullerton, Tracy, Game Design Workshop, 2nd ed. Burlington, MA: Morgan Kaufman Publishers, 2008.

Iverson, Jakob, and Michael Eierman. Learning Mobile App Development. Upper Saddle River, NJ: Addison-Wesley, 2013.

Lucci, Stephen, and Danny Kopec. Artificial Intelligence in the 21st Century. Dulles, VA: Mercury Learning and Information, 2013.

Swade, Doron. Charles Babbage and his Calculating Machines. London: Science Museum, 1998.

Video

“Queen of Code”, the story of Grace Hopper, https://vimeo.com/118556349.

Endnotes

1 http://en.wikipedia.org/wiki/History_of_computing

2 http://www.computersciencelab.com/ComputerHistory/History.htm

3 http://www.webopedia.com/DidYouKnow/Hardware_Software/2002/FiveGenerations.asp

4 http://community.seattletimes.nwsource.com/archive/?date=19961124&slug=2361376

5 Decker, Rick and Stuart Hirschfield. The Analytical Engine. Belmont, CA. Wadsworth Publishing Company, 1992, p.17 (Now online: http://www.course.com/downloads/computerscience/aeonline/)

6 The standard is named IEEE 754-2008

7 http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-7.html

*John von Neumann, often called the father of the modern computer, originally proposed this scheme.

CHAPTER 2

VARIABLES, INPUT/OUTPUT, AND CALCULATIONS

2.1 The Java Application Program Template

2.2 Variables

2.3 Primitive Variables

2.4 System Console Output

2.5 String Objects and Reference Variables

2.6 Calculations and the Math Class

2.7 Dialog Box Output and Input

2.8 Graphical Text Output

2.9 The Counting Algorithm

2.10 Formatting Numeric Output: a First Pass

2.11 Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, you will learn how to use the basic Java program template to develop a program that performs input, mathematical calculations, and output. Various methods to facilitate meaningful input and understandable output will be introduced, as will techniques for storing data in RAM memory and performing mathematical calculations that go beyond basic arithmetic operations. All these techniques are used in most programming applications.

After successfully completing this chapter you should:

•Understand the basic components of a Java program

•Recognize the difference between primitive and reference variables and how they store data

•Be able to declare and use variables in a program

•Perform input from a dialog box

•Perform output to a dialog box, as well as output to the system console and a graphical window

•Use arithmetic calculations and mathematical functions and constants in the Java Math class

•Perform basic formatting of numeric output

•Understand and be able to use the counting algorithm

•Apply these concepts to begin producing a computer game

2.1 THE JAVA APPLICATION PROGRAM TEMPLATE

If you were writing a letter to you friend Sally, it would probably begin with an opening salutation, for example, “Dear Sally,” and end with a closing salutation, for example, “Sincerely,” followed by your signature. Opening and closing salutations are usually considered to be a minimum template for any letter we compose. In between these salutations, we would put the text specific to the letter we are writing.

Similarly, most programming languages have templates for composing a program in that language. These templates begin and end with text specific to the language, and we write, or code, the instructions specific to the program we are composing inside the template. The minimum template for a Java program is depicted in the top half of Figure 2.1.

[image:]

Figure 2.1
Template of a Java program and a program that outputs the word “Hello.”

The phrase ProgramName on line 1 of this template is replaced with the name of the program being composed, and the instructions specific to the program are placed within the program’s code block, within the braces that appear on lines 4 and 6. For example, in the bottom half of Figure 2.1 an instruction, or executable statement, has been added to line 5 of the template to produce a program that outputs the word “Hello.”

NOTE

All Java executable statements end with a semicolon.

When a Java program is run, the first instruction to execute is always the first executable instruction coded after the open brace on line 4. In programming jargon this statement is said to be the program entry point, and all programming languages designate a location in the program template to be the program’s entry (starting) point. By default, the program statements that follow the program entry point usually execute sequentially in the order they appear in the program.

If an Integrated Development Environment (IDE) is being used to compose a program, it will normally ask for the name of the program (or project). Then the IDE generates the code template with the phrase ProgramName on line 1 replaced with the program’s name. In addition to the seven lines shown in the top of Figure 2.1, some IDEs add several other lines to the template, the most common of which is a statement on line 5 to output the phrase “Hello World.” However, for the template to be grammatically correct, all IDEs will include the seven lines shown in the top portion of Figure 2.1.

2.2 VARIABLES

Most programs process data that is input to the program. For example, a program may compute the sum of two input bank deposits. To be processed, data must be stored in the memory of the computer system. All programming languages contain statements for defining variables, which are memory cells that can store one piece of data. Before a variable can be used in a Java program, it must first be declared. When a variable is defined, or declared in a program, the programmer assigns it a name and designates the type of information to be stored in the cell. For example, a variable named deposit could be used to store the amount of a deposit, in which case its type would be a number with a fractional part.

Definition

A variable is a named memory cell that can store a specific type of data.

Variables must be declared before they can be used.

In Java, valid variable names must begin with a letter and cannot contain spaces. After the first letter, the remaining characters can be letters, digits, or an underscore. They cannot be Java key words. (See Appendix D.) Variable names that do not follow these rules are invalid and are identified by the Java translator as syntax (grammatical) errors. Good coding style dictates that variables begin with a lowercase letter, and new words in the variable name begin with an uppercase letter. In addition, the name of the variable should be representative of the data item being stored in the memory cell yet be as brief as possible. For example, a variable used to store the balance of my savings account could be named myBalance.

Good choices for variable names make our programs more readable. The variables on the left side of Figure 2.2 are well composed: they are syntactically correct, use good naming conventions, and imply what they store. The variable names on the right side of the figure are not well composed, concise, or meaningful.

[image:]

Figure 2.2
Variable names.

The information stored in a memory cell can change or vary during the execution of the program (which is why these storage cells are call variables). However, once designated, the type of the information stored in the memory cell (e.g., a number with a fractional part) cannot be changed.

In Java, there are two kinds of variables: primitive variables and reference variables. The type of data stored in primitive variables can be a single numeric data value, one character, or one Boolean truth value. Reference variables store RAM memory addresses. The grammar, or syntax, used to declare a primitive variable is the same grammar used to declare a reference variable. In the next section, we will discuss this syntax and the use of primitive variables in our programs. The use of reference variables will be discussed in Section 2.5.

Definition

Primitive variables store one numeric value, one character, or one truth value.

Reference variables store memory addresses.

2.3 PRIMITIVE VARIABLES

The Java statement used to declare a variable begins with the type of the information stored in the variable, said to be the variable’s type, followed by the name of the variable. Like all Java statements, variable declaration statements end with a semicolon. Optionally, the declaration statement can also include the value to be initially stored in the variable. If the initial value is not specified within the variable declaration statement, the variable is set to a default value. Default values are dependent on the type of information stored in the variable. For example, the statements

double deposit;
double price = 5.21;

declare the variables named deposit and price, with deposit initialized to the default value 0.0 and price initialized to the value 5.21. The word double is a keyword in Java.

In programming languages, keywords are words that have special meaning to the translator that translates program statements into the language of the computer system. The keyword double means that the memory cell being defined will store a number with a fractional part and the size of the storage cell will be 8 bytes (64 bits). Table 2.1 gives the keywords used to specify the type of a primitive variable. The size of the storage cell implied by the use of the keywords is also given. As noted in the table, the keywords used to declare integer and real numeric types are different, and the size of the storage cell limits the numeric range and precision of the stored numeric value.

When storage is not at a premium, it is best to use the type int for integer variables because most programs deal with integers within the range -2,147,483,648 to +2,147,483,647. If a data item were beyond that range, it would not be properly represented in an int variable. For larger integer values, the type long should be used. Integer data beyond the range of the type long cannot be stored in a primitive variable. The Java API class BigInteger provides a remedy for this situation and will be discussed in Chapter 7, “Methods and Objects: A Second Look.”

Table 2.1
Primitive Data Types

[image:]

When storage is not at a premium, it is best to use the type double for variables that will store real numbers (numbers with fractional or decimal parts) because the range of the real numbers processed by a program is usually within the range of the type double. As is the case for large integers, Java provides an API class (BigDouble) for storing real numbers whose range exceeds that of a double. In addition, because numeric literals, (e.g., 1.5) are represented as type double, an f (for float) must be added to the end of an initial value in a float variable declaration to inform the translator that the loss of precision is acceptable:

float change = 1.5f;

When the initial value of a character variable is specified, it is enclosed in single quotation marks, and the initial values of Boolean variables begin with a lowercase letter:

char myFirstIntial = 'W';

boolean isRaining = false;

Multiple variables of the same type can be declared in a single Java statement. The variables are separated by commas, and the statement cannot include initial values:

short n1, n2, n3;

boolean isRaining, isSnowing;

char letter1, letter2, digit1, digit2;

When initial values are not specified in a variable declaration statement, the variables are set to default values. The default value for the integer types (byte, short, int, and long) is zero, and the default value for the real types (float and double) is 0.0. For the Boolean type (boolean), the default value is false, and for the character type (char), it is ''. The values true and false are Java keywords.

2.4 SYSTEM CONSOLE OUTPUT

The system console is a window that a program can use to communicate with the user of the program. When information flows from the program to the system-console window, we say that the program is performing output. Conversely, when the information flow is from the system-console window to the program, we say the program is performing input. For brevity, these information transfers are referred to as console input and console output, respectively, or more simply console I/O. In this section, we will discuss console output, and console input will be discussed in Chapter 4 “Boolean Expressions, Making Decisions, and Disk I/O.”

The two Java statements used to perform output to the system console are:

System.out.print();

System.out.println();

Like all Java executable statements, they both end with a semicolon. The output item, which is referred to as an argument, is coded inside the statement’s open and close parentheses. The only difference between these two statements is that the first one leaves the console’s cursor at the end of the output item, and the second one positions it at the beginning of the next line.

2.4.1 String Output

Technically speaking, the item to be output must be a sequence of characters, which in programming languages is called a string (e.g., This is Console Output). In Java, strings can either be string literals or String objects. String objects will be discussed in Section 2.5.

String literals are strings enclosed in double quotes. To output “This is Console Output” we would code the string literal "This is Console Output" inside the parentheses of a console output statement. The following code fragment would display two lines of output:

System.out.println("This is Console Output");

System.out.print ("from the program");

The first line would contain This is Console Output, and the second line would contain from the program. Because the second line is a print statement, the console’s cursor would appear on the second line just after the word program.

2.4.2 The Concatenation Operator and Annotated Numeric Output

The concatenation operator, which is coded as a plus (+) sign, can be used to combine two strings into one. The statement

System.out.println("Hello " + "World");

produces the output Hello World to the system console. Before the output is performed, the first string literal, containing the word "Hello ", is combined with the second string literal "World". The resulting string, "Hello World", is then output to the console. There is no limit to the number of string literals that can be combined using concatenation operators to produce the string argument output by the print and println methods. The statement

System.out.println("Hello " + "World," + " I'm Bill.");

produces the console output Hello World, I’m Bill.

To make the output of numeric data more meaningful and user-friendly, the output should always be identified or annotated. For example, the output The price is $5.21 is much more informative than the output 5.21 The annotation The price is $ can be included in the output using the concatenation operator.

System.out.println("The price is $" + price);

The Java translator interprets the plus sign used in this context as the concatenation operator because the item to its left is a string literal. It will fetch the contents of the variable price, convert it to a string, and then concatenate that string with the previous string literal. The resulting console output is “The price is $5.21.”

Because there is no limit to the number of string literals that can be combined to produce the string argument of the println and print methods, the annotated contents of several variables can be output to the console using one console output statement. The console output The price of the 10 items is $5.21. is produced by the code fragment:

int quantity = 10;

double price = 5.21;

System.out.println("The price of the " + quantity +

 " items is $” + price + ".");

The indentation in the above System.out.println statement has been used to improve its readability. It prevents the statement from going beyond the eightieth column and is considered good programming practice.

2.4.3 Escape Sequences

It is often necessary to output strings containing characters that have special meaning to the Java translator. For example, a double quotation mark (“) is meant either to begin or end a string literal, and a single quote (‘) is meant to begin or end a character literal. Suppose we wanted to output Joe said, “Hello” followed by a period. To be grammatically correct in English, the word Hello has quotes around it because it is something Joe said. However, the output statement

System.out.println("Joe said, "Hello".");

would result in a syntax error because a double quotation mark in Java is meant to be either the beginning or end of a string literal. Therefore, the translator would assume the quotation mark preceding the word Hello was meant to terminate the string literal, which began with the quotation mark preceding the word Joe. Under this assumption, the translator expects the next character to be a close parenthesis followed by a semicolon, or a concatenation operator. Instead, it finds the character H, which produces a syntax error.

To solve this problem, Java provides escape sequences, which are a sequence of two characters coded inside a string literal. The first character in the sequence is always the backslash (\) character. When the translator encounters a backslash inside a string literal, it always considers this to be the beginning of an escape sequence and effectively looks up the meaning of the escape sequence, given in Table 2.2. In other words, the backslash tells the translator to escape from its normal way of interpreting this backslash and the next character, and instead look into the table of escape sequences for the meaning of these two characters.

For example the escape sequence \" (coded inside a string literal) means don’t interpret the quotation mark as the beginning or end of a string literal but output a quotation mark. Therefore, the syntactically correct way to output the sentence Joe said, “Hello”. is:

System.out.printlin("Joe said, \"Hello\".");

Now the quotation mark preceding the H in Hello is part of the escape sequence to output a quotation mark. It is not interpreted as the close of the string literal, which began with the quotation mark preceding the word Joe. Another escape sequence is coded after the o in Hello for the same reason. Proceeding to the right in the string literal, the translator encounters the quotation mark that follows the period, which it correctly interprets as the close of the string literal.

Because a backslash inside a string literal is interpreted as the beginning of an escape sequence, one obvious question is “how would we output a backslash?” The answer is that there is an escape sequence for outputting a backslash, which is a double backslash. The statement

System.out.println("Down \\/ Up /\\");

produces the output: Down ˅ Up ˄.

The escape sequence \' is used to output a single quotation mark, and the escape sequence \n causes the cursor to move to a new line before completing the output. The escape sequence \t tabs the cursor to the right; this is useful when you want output to appear in columns. A list of the escape sequences is shown in Table 2.2.

Table 2.2
Escape Sequences

	Escape Sequence
	Sequence Name
	Meaning

	\"
	Double quote
	Output the double quotation mark (“) character

	\\
	Backslash
	Output the backslash (\) character

	\'
	Single quote
	Output the single quotation mark (‘) character

	\b
	Backspace
	Move the cursor back one character position

	\t
	Horizontal tab
	Move the cursor to the next horizontal tab position

	\n
	New line
	Move the cursor to beginning of the next line

	\r
	Carriage return
	Move the cursor to beginning of the current line

	\f
	New page (form feed)
	Move the cursor to the top left of the next page

The application shown in Figure 2.3 illustrates the declaration and initialization of primitive variables and the use of string literals and escape sequences to output the data stored in these variables. The program’s outputs are included in the figure after the program’s code.

[image:]

Figure 2.3
The application ConsoleOutput and the output it produces.

[image:]

It is good coding style to declare all variables at the beginning of a program.

Lines 6-9 declare and initialize four different types of primitive variables. Lines 11 and 12 produce the first two lines of the program’s output. Each statement contains one string literal. The string literal on line 12 begins with two tab escape sequences, which are used to center the second line of output under the first. In addition, Hello World! coded on line 12, is surrounded by two double-quote escape sequences, which produces the quotation marks on the second output line.

Lines 13–18 output the variables declared and initialized on lines 6-9. A new-line escape sequence begins the first string literal on line 13, which produces the blank line that precedes the third line of text output. Two concatenation operators are used on line 13 to combine the two string literals and the contents of the variable age after it is converted to a string. Line 14 uses similar operations to annotate the output of John’s age and weight. The output displayed by lines 13 and 14 appear on the same line because line 13 uses a print rather than a println statement. As a result, the cursor is not advanced to the beginning of the next line after line 13 completes execution, which causes the output produced by line 14 to begin immediately after the word old. One subtlety on line 14 of the program is that its string literal begins with a space. This space becomes the space that separates the word old from the word and in the output produced by lines 13 and 14.

Lines 15-16 produce the next line of output, which contains the string version of the contents of the Boolean variable isRaining. They also produce the next blank line of output because the last string literal ends in a new-line escape sequence. The final two lines of output are produced by lines 17-18, which output the contents of the character variable letter1, and line 20, which outputs a single string literal.

Comments and Blank Lines

Line 5 of the program contains a single-line comment. A single-line comment begins with two forward slashes (//) and is terminated by a new line (Enter) keystroke. Comments are added to a program to improve the program’s readability; they are ignored by the translator.

[image:]

It is good practice to include comments in your program to describe the portions that are not obvious to the reader.

A second comment appears at the end of line 20, stating blank lines (e.g., lines 10 and 19) in a program are ignored by the translator. It is good programming practice to separate major portions of a program with a blank line. This technique, like comments, improves the readability of a program. We will see more examples of the use of blank lines in a program later in this chapter.

2.5 STRING OBJECTS AND REFERENCE VARIABLES

As previously mentioned, in Java there are two kinds of variables: primitive variables and reference variables. Primitive variables store numeric, character, or Boolean data values. Reference variables store memory addresses. These addresses are the addresses of memory resident programming constructs called objects, and the contents of a reference variable is used to locate a particular object. We say they refer to an object, which is how they get their name, reference variables.

Suppose that we were writing a program and we wanted store the string John in memory. Based on what we have learned about primitive variables, we should declare a string variable, perhaps named firstName, and then initialize it to the string "John". Unfortunately, Java does not contain string type variables, so the statement

string firstName = "John"; // error

is grammatically incorrect. However, there are String objects in Java. A String object can store a sequence of characters, and the address of the object can be stored in a reference variable. We begin by declaring a String reference variable that will store the address of our String object. Then we store the address of a newly created String object, containing the string "John" in the reference variable:

String firstName;

firstName = new String("John");

As we will learn in Chapter 3 “Methods, Classes and Objects: A First Look,” this two-line grammar can be used to create objects in any class. For example, Starship objects, Snowman objects, or Paddle objects can be created simply by replacing the word String on both lines with the class names Starship, Snowman, or Paddle, and replacing the string “John” with something more relevant to these objects. The first line creates an uninitialized reference variable that, like uninitialized primitive variables, is set to a default value. The default value for reference variables is null. When the variable is a String reference variable, we say that the reference variable stores the null string.

[image:]

“String s contains the null string,” means that s stores a null value.

Because strings are so commonly used in programs, Java provides a simplified one-line grammar for creating and initializing String objects:

String firstName = "John";

NOTE

The abbreviated grammar to declare a string String object is:
String referenceVariableName = intialStringLiteralValue;

This one-line grammar can only be used to create String objects and is modeled on the grammar used to declare and initialize primitive variables. Although the grammar is very similar, we must keep in mind that unlike the primitive variable age, initialized to store the value 21 on line 6 of Figure 2.3, the reference variable firstName is not initialized to the string "John". Rather, the reference variable firstName stores the address of and refers to the String object that is initialized to the string "John". Figure 2.4 shows the statements used to allocate memory to primitive variables and objects/reference variables. The arrow in the figure indicates that the reference variable firstName refers, or points, to the object.

[image:]

Figure 2.4
Memory allocated to primitive variables and objects/reference variables.

In addition to providing a simplified grammar for creating String objects, Java also provides a simplified grammar for outputting the strings contained inside these objects. Once again, it is modeled after the grammar used to output primitive variables. To output the string contained in a String object, we simply code the name of the variable that refers to the object. For example, the following code fragment produces the output My name is John Smith, my age is 21 on the system console:

int age = 21;

String firstName = "John";

String lastName = "Smith";

System.out.print ("My name is " + firstName + " " + lastName);

System.out.println (", my age is " + age);

The differences between the way Java stores primitive data items and string data items can be ignored when writing variable declaration statements and output statements. As we will see in Chapter 3, these differences cannot be ignored for any other kind of object.

2.6 CALCULATIONS AND THE MATH CLASS

The first operational computers were used by mathematicians to compute the values of equations, which is how they obtained their name computers, and a significant portion of the processing that modern computers perform is still calculations. Java, like most programming languages, provides the ability to perform basic arithmetic calculations and provides additional features to perform more complex calculations. This section begins with a discussion of how to incorporate basic arithmetic calculations into a Java program and then discusses how to incorporate commonly used mathematical constants and functions into these calculations.

2.6.1 Arithmetic Calculations and the Rules of Precedence

Arithmetic calculations are performed in Java using arithmetic expressions. Arithmetic expressions consist of a series of operands separated by operators. In the simplest case, the operands are numeric constants, and the operators are the four arithmetic operators: add subtract, multiply, and divide. For example, 10 + 21 – 5 is a simple arithmetic expression that evaluates to 26. Generally, simple arithmetic expressions are evaluated from left to right. The addition would therefore be performed before the subtraction.

The symbols used for the four arithmetic operators are given in Table 2.3. The third entry in the table, the modulo (or mod) operator, is used to find the remainder in division. For example, 14 % 3 evaluates to 2. All of the operators can be used with integer or real operands.

In addition to numeric constants, called numeric literals, operands can be the names of variables that store numeric values. When a memory cell name is used in an arithmetic expression, the value stored in the memory cell is fetched, substituted for the memory cell name, and the arithmetic expression is evaluated. For example, given the variable declarations:

int x = 10;

int y = 29;

int z = 5;

the arithmetic expression x + y – z evaluates to 34. A mix of numeric literals and memory cell names can be used as the operands in any arithmetic expression, so the expression x + 29 – z is a valid arithmetic expression that also evaluates to 34.

Table 2.3
The Java Symbols for the Arithmetic Operators (In Order of Precedence)

	Arithmetic Operation
	Java Symbol

	multiply
	*

	divide
	/

	Modulo or mod
	%

	add
	+

	subtract
	-

An arithmetic operation performed on two integers always results in an integer value, and an arithmetic operation performed on two real values always results in a real value. When one operand is an integer and the other is a real value, the result is always a real value, and the arithmetic is referred to as mixed mode arithmetic. Before mixed mode arithmetic is performed, the integer value is converted to a real value (e.g., 10 becomes 10.0).

Integer Division

When the two operands are integers and division is performed, the results are sometimes surprising. That is because the division of two integers always produces an integer result that is truncated and not rounded. For example, given the variable declarations

int x = 10;

int y = 29;

int z = 5;

the following arithmetic expressions would evaluate to the values on the far right side of each expression:

x / z = 10 / 5 = 2

y / x = 29 / 10 = 2 (0.9 lost, due to truncation)

z / x = 5 / 10 = 0 (the most surprising result, 0.5 is truncated to zero)

Precedence Rules

Consider the arithmetic expression 10 + 6 – 2. The expression evaluates to 14 whether we perform the addition first (16-2) or the subtraction first (10+4). Similarly, the expression 10 * 6/2 evaluates to 30 whether we perform the multiplication first (60/2) or the division first (10*3). In both cases, the value of the expressions is independent of the order in which we apply the arithmetic operators. In general, if an expression contains just addition and subtraction operators, or contains just multiplication and division operators, then the evaluation of the expression is independent of the order in which we apply the arithmetic operators. Java considers these expressions to be simple arithmetic expressions and, as previously stated, they are evaluated from left to right.

This is not the case for arithmetic expressions that mix addition and/or subtraction operators with multiplication and/or division operators. Consider the expression 10 + 6 * 2, which performs addition and multiplication. If we perform the addition first, the expression evaluates to 32 (16 * 2), but if the multiplication is done first it evaluates to 22 (10 + 12). The arithmetic expression appears to be ambiguous. Fortunately, mathematicians have stipulated a way of resolving the ambiguity called the rules of precedence. These rules state that multiplication and division are performed before, or take precedence over, addition and subtraction. Using this rule, the expression 10 + 6 * 2 evaluates to 22.

Operators that are performed first, such as multiplication and division, are said to have higher precedence. Table 2.3 lists the arithmetic operators in high-to-low precedence order, with multiplication and division being the highest precedence operators in the table, and addition and subtraction the lowest. The expression 5 * 7 % 2 would evaluate to 1 because multiplication is of higher precedence than the mod operator. Java contains other operators, for example logic operators, and each Java operator has been assigned a precedence level. A complete list of Java operators and their assigned precedence level is given in Appendix E.

NOTE

Java evaluates arithmetic expressions using this mathematical rule of precedence: multiplication and division are performed before modulo (mod) operations, which are performed before addition and subtraction operations.

If we wanted the addition or subtraction in an arithmetic expression to be performed before multiplication or division, we would use a set of parentheses to override the precedence rules. The expression (10 + 6) * 2 would evaluate to 32. To average the numbers 2, 4, and 6, we would write (2 + 4 + 6) / 3, which would evaluate to the correct average 4 = 12 / 3. (Without the parentheses, only the 6 would be divided by the 3 because the division operation would be performed first.)

NOTE

Parentheses override the rules of precedence.

In summary, the parts of an arithmetic expression inside parentheses are evaluated first using the rules of precedence to determine the order of the operations. If the operators are of equal precedence, they are evaluated from left to right. The following example, which contains a set of nested parentheses and evaluates to 36, illustrates this process.

[image:]

2.6.2 The Assignment Operator and Assignment Statements

In Section 2.3, we learned that a variable named price could be declared and initialized to the value 5.21 by coding:

double price = 5.21;

The equals (=) symbol used in this declaration is called the assignment operator because it assigns values to memory cells. In this case, the memory cell named price is assigned the value 5.21. Although the statement should be read as “double price is assigned 5.21,” most programmers would read it as “double price equals 5.21,” which is unfortunate because (as we will see) the operator does not represent the mathematical concept of equality. Rather, it represents the flow of the data value on its right side (in the above statement, 5.21) into the memory cell named on its left side, (in the above statement, price).

Assignment Statements

In addition to being used to initialize variables in a declaration statement, the assignment operator is also used in statements that reassign (actually overwrite) the contents of memory cells previously declared in a program. These statements are called assignment statements. For example, after the following two statements execute, the variable price stores the value 6.25.

double price = 5.21;

price = 6.25;

In addition to being a numeric literal, the entity on the right side of the assignment operator can be an arithmetic expression. For example:

answer = x + 21 – z;

When this is the case, we should realize that the execution of the statement is performed in three steps:

1.Fetch the contents of the variables coded on the right side of the assignment operator from memory and substitute these values into the arithmetic expression

2.Evaluate the arithmetic expression considering parentheses and the rules of precedence

3.Store the value of the arithmetic expression in the memory cell coded on the left side of the assignment operator

In an assignment statement, the item on the left side of the assignment operator must be the name of a variable. The statement cannot be reversed by placing the name of the variable on the right side of the assignment operator. That is,

answer = x + 21 – z;

is not the same as

x + 21 – z = answer;

The second expression will produce a syntax error. Armed with this understanding, the assignment statement (which is probably executed on a person’s birthday)

age = age + 1;

will increase the value stored in the memory cell age by one. In addition, a mathematician would now understand that the assignment operator does not represent equality and would not run from this statement in horror proclaiming that nothing (in this case age) could be equal to itself plus one. Surveys of programs conducted in the 1970s indicate that 47% of the statements contained in programs are assignment statements, so this is an important concept to understand.

2.6.3 Promotion and Casting

Generally speaking, the type of the value being assigned to a variable should match the type of the variable. When this is not the case, the Java translator checks this to make sure that there is no chance that part of the value being assigned to the variable could be lost when the value is stored in the variable. For example, if a real number (e.g., 2.7) was assigned to an integer-type variable, the fractional part of the value (0.7) would be lost. As a result, the statement below produces the translation error “possible loss of precision,” because it assigns a double value (2.7) to an integer memory cell.

int newValue = 2.7;

[image:]

Avoid assigning a numeric with a fractional part (e.g., types float and double) to an integer type variable because it will generate a translation error.

This statement does not produce a syntax error because performing an arithmetic operation on two integers (21 / 10) always results in an integer (in this case, 21 / 10 = 2).

int newValue = 21/10;

The Java translator also checks assignment statements to determine if the value being assigned to the variable, coded on the left side of the assignment operator, is within the variable’s range. As shown in the right column of Table 2.1, the range of the numeric values that can be stored in a numeric variable depends on its type. Within the four integer types, the type long has the largest numeric range, and within the real types, the type double has the largest range.

The progression shown in Figure 2.5 summarizes the valid assignments between types (those that will not result in a loss of precision and guarantees that the range of the variable being assigned is large enough to store the value assigned to it). A valid assignment is when the type of the variable being assigned is to the left of the type of the value being assigned to it (e.g., a double variable can be assigned int values). When this is the case, we say that the value has been promoted to the type of the variable.

[image:]

Figure 2.5
Valid promotions of numeric types.

Although the types of the variables used in the code fragment in the assignment statements below are not the same, they are valid because they follow the promotion order given in Figure 2.5.

byte aByte = 20;

char a = 'a';

int anInt;

double aDouble;

anInt = aByte;

anInt = a;

aDouble = aByte;

aDouble = anInt;

Mixed Mode Arithmetic Expressions

Mixed mode arithmetic expressions are expressions in which the operands are not of the same type. To evaluate the terms of these expressions, the operand whose type is further to the right in Figure 2.5 is promoted to the type of the other operand, the term is evaluated, and the resulting value is in the promoted type. For example, the following code fragment contains a mixed mode arithmetic expression:

double salary = 523.56;

float raise = 1.1f;

salary = 10 + salary * raise;

The arithmetic expression in the assignment statement contains an integer literal, a double variable, and a float variable. During the evaluation of this expression, the value stored in raise would be converted to a double, and then the multiplication operation would be performed. The result would be a double value. That value would then be added to the integer literal 10 after it was converted to double. The resulting double value would be assigned to the variable salary.

Casting

One use of the word casting is the process of turning an entity into something it is not. For example, a frail mild-mannered actor could be cast into the role of a professional wrestler. In computer science, the term is used to describe the process of changing the type of a value to another type.

Changing the type of a variable or numeric literal in mixed mode arithmetic expressions previously discussed is an example of automatic casting. Even when an arithmetic expression is not a mixed-mode expression, there are times when it is desirable to cast operands into other types before the expression is evaluated. For example, a value that is an integer variable could be cast into a real value before it is used in an arithmetic expression. This is a very common use of casting.

Consider the calculation of the ratio of two integer variables n1 and n2.

int n1 = 111;

int n2 = 10;

double ratio = n1 / n2;

The arithmetic expression will evaluate to an integer because both operands are integers. As a result, we will lose the factional part of the ratio, and the variable ratio will be assigned 11.0.

A situation that is more confusing is illustrated in the code fragment below. The integer denominator (100) is larger than the integer numerator (90). In this case, the variable ratio is always assigned 0.0.

int numberOfStudents = 100;

int numberPassing = 90;

double ratio = numberPassing / numberOfStudents;

To retain the factional part of a value calculated by dividing to integers, we change, or cast, the type of one of the operands into one of the real types (double or float). The syntax of this nonautomatic casting is to enclose the numeric type into which the operand is being cast inside of parentheses. The following fragment uses casting to change the fetched contents of the variable n1 into a double before the arithmetic operation is performed. The outer set of parentheses in the third statement is necessary because arithmetic operators take precedence over casting.

int n1 = 111;

int n2 = 10;

double ratio = ((double) n1) / n2;

After casting is performed, the arithmetic expression involves a double value (111.0) and an integer variable (n2): a mixed mode expression. Automatic casting then converts n2 to a double, and then the division is performed that produces a double (11.1). The value 11.1 is assigned to ratio. In this code fragment, ratio would be assigned the value 0.9.

int numberOfStudents = 100;

int numberPassing = 90;

double ratio = ((double) numberPassing) / numberOfStudents;

NOTE

Arithmetic operators take precedence over nonautomatic casting.

Another common use of casting is to inform the translator that you want to violate the promotion-only rules it imposes on assignment statements, shown in Figure 2.5. If we wanted the integer part of a double value to be assigned to an integer variable, we would use casting. The following statements assign the value 1 to the integer variable age:

double daysSinceBirth = 401.5;

int age = (int) daysSinceBirth / 365;

The mixed mode arithmetic in the second statement produces the value 1.1, which the casting converts to an integer (1) before it is assigned to the variable age. If the casting were left out of the second statement, it would not translate because it would be a violation of the promotion rules given in Figure 2.5. This use of casting informs the translator that we are intentionally violating these rules.

2.6.4 The Math Class

If we were to examine the code of applications written by several different programmers, we would quickly come to the realization that mathematical calculations, such as raising a number to a power or calculating the square root of a number, are performed in many programs. For example, a program that computes the radius of a circle given its area would divide the area by the constant PI, and then take the square root of the result. Obviously, the accuracy of the calculation is dependent on a precise value of PI. In addition, because the square root is not one of the mathematical operators available in most programming languages, the programmer would have to know the algorithm for computing the square root of a number using the math operators available in the programming language.

To facilitate the coding of programs that use common mathematical constants and calculations, Java, like most programming languages, provides precoded libraries containing these constants and mathematical functions. The constants are coded as initialized variables, and the mathematical functions are coded into subprograms. In Java, subprograms are called methods, and related methods and variables are collected into classes. As discussed in Section 1.5.1, the collection of the precoded classes available in Java is called the Java Application Programmer Interface, or Java API. A complete description of the classes contained in the API, is available online. To locate this documentation, simply type “Java API Specification” into the search window of your browser.

The API class that contains mathematical constants and methods is called the Math class. Table 2.4 lists a mathematical constant and some of the most commonly used methods that are included in this class. The third column of the table gives a series of assignment statements that illustrate the use of the class’s constants and methods. Notice that the name of the Math class followed by a dot precedes the name of the constant or method used in the statement. The angles used in the trigonometric functions that appear in the last three rows must be expressed in radians. The methods compute and return a value, which the coding examples in the rightmost column of the table assign to a variable.

Table 2.4
Commonly Used Math Class Constants and Methods

	Constant or Method
	Description
	Coding Example

	PI
	The ratio of the circumference of a circle to its diameter (a double)
	area = Math.PI * r * r;

	abs
	Computes and returns the absolute value of a number, n (returns the type it is sent)
	nAbsolute = Math.abs(n);

	pow
	Computes and returns a number, n, raised to the power p (returns a double)
	nToTheP = Math.pow(n, p);

	sqrt
	Computes and returns the square root of a number, n (returns a double)
	rootN = Math.sqrt(n);

	toRadians
	Converts an angle, a, in degrees to radians (returns a double)
	aRads = Math.toRadians(a);

	sin
	Computes and returns the sine of an angle, aRads, specified in radians
	sinA = Math.sin(aRads);

	cos
	Computes and returns the cosine of an angle, aRads, specified in radians
	cosA = Math.cos(aRads);

	tan
	Computes and returns the tangent of an angle, aRads, specified in radians
	tanA = Math.tan(aRads);

The following code fragment calculates and outputs the sine of 45 degrees and 2 raised to the third power:

double angle = 45.0;

double angleInRadians = Math.toRadians(angle); //returns a double

double sineOfAngle = Math.sin(angleInRadians); //returns a double

System.out.println("The sine of " + angle + " is " + sineOfAngle);

System.out.println("2 cubed = " + Math.pow(2, 3));

Random Numbers

“A random number is a number generated by a process whose outcome is unpredictable and which cannot be subsequently reliably reproduced.”2 Random numbers are used in many computer applications such as game programs, encryption programs, and simulation programs. For example, flight simulator programs used to train pilots to react to air turbulence introduce turbulence into the flight at random times during the simulation.

The Math class contains a method named random that can be used to generate pseudorandom numbers. The numbers are not truly random because the sequence of numbers the method generates is based on the computer’s real-time clock (i.e., the time of day) resolved to one millisecond, and therefore can be reliably reproduced.

The method returns a double in the range: 0.0 ≤ randomNumber < 1.0. (The highest number generated by the method is always less than 1.0.) The following code fragment outputs two random numbers in that range. The specific numbers output would depend on the time of day the code fragment was executed.

double randomNumber;

randomNumber = Math.random();

System.out.println(randomNumber);

randomNumber = Math.random();

System.out.println(randomNumber);

The method can be used to generate numbers in the range: min ≤ randomNumber < max using the assignment statements:

double randomNumber1 = min + Math.random() * (max - min);

int randomNumber2 = int(min + Math.random() * (max - min));

The second assignment statement uses casting to change the computed real number into an integer.

2.7 DIALOG BOX OUTPUT AND INPUT

Dialog boxes are a graphical way to communicate with the user of a Java program and offer an alternative to the console-based output produced by the println method in the System class. The message dialog box (Figure 2.6) is used to convey output to the user, and the input dialog box (Figure 2.7) is used to obtain input from the user. They are predefined graphical objects that automatically resize themselves to display the string argument sent to them. The string sent to a message dialog box is the text to be output to the user. In the case of an input dialog box, the string is an input prompt to be displayed to the user.

After a dialog box is displayed, the program execution is halted until the user clicks a button displayed in the box or strikes the return key. In the case of a graphics application, dialog boxes are normally used for all communication between the program and its user. Two methods in the class JOptionPane, showMessageDialog, and showInputDialog are used to display message (output) and input dialog boxes, respectively.

2.7.1 Message Dialog Boxes

The method showMessageDialog is a static method, as are the Math class’s methods presented in Table 2.4 and its random method. As we will learn in Chapter 3, not all methods are static methods. When static methods are invoked, we must precede the name of the method with the name of its class followed by a dot. The showMessageDialog method and the Math class’s pow method have another thing in common: they are both sent two arguments that are coded inside the parenthesis that follows the name of the method. For the pow method, we learned that these are the numbers to be raised to a power followed by the power to which to raise it.

In the case of the showMessageDialog, its two parameters describe the window to which the message box will be output followed by a string that contains the text of the output message. To output the message “Frogger, by George Smith,” we would code

JOptionPane.showMessageDialog(null, "Frogger, by George Smith");

This would produce the message box shown in Figure 2.6(a). Coding null as the first argument causes the message dialog box to be displayed in the center of the monitor.

[image:]

Figure 2.6
Two message dialog boxes.

The second argument, the string, can contain all of the elements and features of the string sent to the println method used to perform output to the console. As we have learned, the string can be a concatenation of a mix of string literals and numeric variables. Just as with console output, the string will be output on one line unless new-line escape sequences (\n) are included in the string. The width and height of the message box will expand to accommodate the string. For example, the statement

JOptionPane.showMessageDialog(null, "Frogger" + "\nby George Smith," +

 "\nAKA Game Boy Georgie." + "\nOK?");

produces the output in Figure 2.6(b).

These features are especially useful in a very common use of a message box: to display a game’s splash screen. A game splash screen is used to describe a game, its objective, and the manner in which the game pieces are controlled by the player. Usually, the name of the game and its creator (e.g., “Created by Game Boy Georgie”) are also included.

2.7.2 Input Dialog Boxes

Input dialog boxes, which are displayed by the static method showInputDialog, are used to obtain input from the program’s user (Figure 2.7). It is sent one argument, which the method displays as a prompt to the user. A text box is displayed below the prompt into which the user types the input. The box contains two buttons labeled “OK” and “Cancel.” The string sent to the method can be a concatenation of a mix of string literals and variables, and the width and height of the input box is adjusted to accommodate the string and its embedded new-line escape sequences. Figure 2.7 shows the input dialog box produced by the statement

String s = JOptionPane.showInputDialog("Frogger has five " +

 "difficulty levels:" +

 "\n1 is the easiest," +

 "\n5 the most difficult," +

 "\nEnter your level");

[image:]

Figure 2.7
An input dialog box before the user enters input.

If, in response to the displayed prompt, the user types into the text box and then clicks “OK” (or strikes the Enter key), the location of a String object that stores the user input text would be placed in the reference variable s. (For brevity, we would say that the InputDialogBox method “returns a string,” when in fact it actually creates and returns the address of a String object.) If the user clicked “OK” or struck the Enter key without making an entry in the text box, the returned String object would contain the empty string (“”). Finally, if the user clicked “Cancel,” s would store the null string. (It would be set to null.)

2.7.3 Parsing Strings into Numerics

Most of us would agree that there is a fundamental difference between the string "one hundred seventy-six” and the number 176. For one thing, we would not try to add the string "one hundred seventy six" to the string "ten" to obtain "one hundred eighty six". Rather, if we read the question, “what is the sum of one hundred seventy-six and ten?” we would first convert the numbers to their numeric representations, 176 and 10, and then perform the addition. In computer science, the difference between strings and numerics goes deeper than that because even if we were told to add “176” and “10,” we would still have to convert these two strings to their numeric representations before performing the addition.

[image:]

Operands in arithmetic expressions cannot be strings.

As discussed in Chapter 1, characters are stored using their Extended ASCII representation, and numerics are represented using their binary representation. Inside of String objects, the Extended ASCII representation is used. The difference between these two representations is shown below.

[image:]

Because an input dialog box returns a string, when 176 is typed into its text box it returns the string "176", which must be converted to a numeric if it is to be used in an arithmetic expression. This conversion process is referred to as parsing strings into numerics. There is a set of classes in the API, called wrapper classes, which contain static methods to perform this conversion. The string to be converted to a numeric is sent to the method as an argument coded inside the open and close parentheses that follow the name of the method. The decision as to which class and method to use is based on the primitive numeric type the string is being converted to, as shown in Table 2.5.

Table 2.5
Numeric Wrapper Classes and Their Parsing Methods

	To Convert a String to the Numeric Type
	Use the Static Method
	In the Wrapper Class

	byte
	parseByte
	Byte

	short
	parseShort
	Short

	int
	parseInt
	Integer

	long
	parseLong
	Long

	float
	parseFloat
	Float

	double
	parseDouble
	Double

To change the string literal "176" to its integer numeric representation, we would code:

int numericValue = Integer.parseInt("176");

To convert the string s to a numeric double, we would code:

double numericValue = Double.parseDouble(s);

Most often, the statements to accept a user input via an input dialog box, and the conversion of the returned string to a numeric, are coded one after the other.

String s = JOPtionPane.showInputDiaog("Enter your age");

int age = Integer.parseInt(s);

s = JOPtionPane.showInputDiaog("Enter your weight");

double weight = Double.parseDouble(s);

If the string sent to the wrapper class methods contains anything other than digits (i.e., the characters ‘0’, ‘1’, …, ‘9’), a runtime error NumberFormatException occurs, and the program terminates. If the empty string is passed to the methods (the user clicked “OK” in an input dialog box without typing an input) or the null string is passed to methods (the user clicked “Cancel” without making an entry), the same runtime error occurs. We will learn how to deal with these errors at runtime to bring the program to a more informative conclusion in Chapter 4 and how to permit the user to correct the erroneous input in Chapter 5 “Repeating Statements: Loops.”

NOTE

A runtime error is an error that occurs while the program is in execution.

The application shown in Figure 2.8 calculates the area of a circle given its radius, and it also calculates the radius of a circle given its area. The inputs to the program (a radius of 10 and an area of 200) and the corresponding outputs are show in Figure 2.9. The program demonstrates the use of assignment statements, parsing a string into a numeric, performing calculations, the use of the Math class, and dialog box I/O.

[image:]

Figure 2.8
The application AssignmentMathAndDialogIO.

Line 1 of Figure 2.8 is an import statement. Import statements make API classes, and the constants and methods they contain, available to our programs. In this case, the class JOptionPane, which contains the methods to perform dialog box input and output, is imported into the program. These methods are used to output the program’s splash screen (lines 10–11) and to input the radius of a circle (lines 12–13). The new-line escape sequences (\n) in the strings sent to these methods produce a two-line message on the splash screen and a two-line input prompt, as shown at the top of Figure 2.9.

Line 14 parses the string representation of the input radius returned from the input dialog box into a double and assigns that double to the variable radius. Line 15 calculates the area of the circle. It uses the Math class’s method pow to square the input radius and then multiplies that by the constant pi (Math.PI). Lines 16–18 output the radius and the computed area to a message dialog box (Figure 2.9c). The input radius and the calculated area are added to the output string with the use of the concatenation operator on line 18.

[image:]

Figure 2.9
Input and resulting output from the application AssignmentMathAndDialogIO.

In a similar way, lines 20–26 accept an input area and compute the circle’s radius. This calculation uses the Math class’s sqrt method on line 23 to perform the calculation. The method accepts one argument, which in this case is the result of dividing the area by pi. The input to and output from this portion of the program is shown in Figure 2.9.

2.8 GRAPHICAL TEXT OUTPUT

In Section 2.4, we invoked (or some would say “used” or “called”) the println and print methods of the PrintStream class to perform text output to the system console. In this section, we will learn how to use the method drawString in the API Graphics class to perform text output to a graphics window. This type of output is called graphical text output. Unlike console output, we can specify the font type, size, and style (e.g., bold style) of graphical text output. In addition, we can output the text to any location in a graphics window. In game programming, text output is typically used to display the game’s level of difficulty, the remaining time, the score, or other information on the game’s status.

With this added capability come added responsibilities. For example, every time a graphics window that has been minimized is restored, the graphical text must be output again, or it will not be visible in the window. In fact, anything that appears in the window before it was minimized must be redrawn when the window is restored. One mechanism for doing this in graphics programs is to place the graphical output in a call back method. Our game environment contains several call back methods. In this section, we will learn how to use the call back method draw, the Graphic class’s drawString method, and how to set the font type, size, and style of graphical text output.

2.8.1 The drawString Method

The drawString method is a part (member) of the API Graphics class and is used to output text to a graphical object (perhaps a window). When the method is invoked three arguments are passed to it. The first argument is the text to be output. The second and third arguments are the x and y coordinates where the text will be output. These coordinates locate the lower left position of the first character of text. Their origin is the upper left corner of the graphical object in which the text is to be displayed (e.g., our game board), with x positive to the right and y positive down.

To output the text “Hello World” to our game environment’s game board, positioned with the lower left corner of the “H” at (200, 300), we would code:

g.drawString("Hello World", 200, 300);

Notice that the two characters g. precede the name of the method. This is because the method must draw its text on a Graphics object. In our case, the object g would have to be a Graphics object attached to our game board because we want the text to be drawn on the game board. As we will see in the next section, the attachment of the object g to our game board is performed for us by the game environment.

A method that operates on an object is called a nonstatic method. The syntax used to invoke these methods is the name of the object it is operating on, followed by a dot, followed by the name of the method and its argument list. We have used this syntax in Section 2.4 to invoke the print and println methods. They were invoked by proceeding their names with the Java pre-defined PrintStream object System.out followed by a dot. (As previously discussed, when we invoke static methods, we precede the method’s name with the name of the method’s class followed by a dot. For example, Math.sqrt(9);)

The simplest way to determine if a method is static or nonstatic is to click on its class name in the lower left window of the online Java API Specification then scroll down through the API documentation to the method’s name. If the method is static, the word “static” will appear in the column to the left of the methods name. For example:

	
static double

	
sqrt(double a) Returns the correctly rounded positive square root of a double value

If the method is a nonstatic method, the word “static” will not appear in the column to the left of the methods name.

The remaining issue is determining where in our game application program we place the invocation to drawString. The short answer is in the draw call back method, which we will discuss next.

2.8.2 The draw Call Back Method

Figure 2.10 presents the Java application class GraphicalTextOutput that creates a game window object on line 7, which is displayed by line 11 when the main method executes. Lines 2–12 are identical to that of the game code template in Figure 1.31 except for the change in the application’s class name (lines 4 and 6) and the title of the window (line 7). When the program is run, the window shown in Figure 2.11 appears on the monitor.

[image:]

Figure 2.10
The application GraphicalTextOutput.

[image:]

Figure 2.11
The output produced by the application GraphicalTextOutput.

Lines 14–18 is a coding of the game environment’s draw call back method. The first line of the draw method, called the method’s signature, must always be identical to the code on line 14, and it requires that the game environment be added (imported) to the program (line 1). The invocation to the drawString method has been coded on line 16, which, when executed, outputs the graphical text “Hello World” to our game board beginning at pixel location (250, 220). To use the drawString method the Graphics class must be imported into the program (line 2). But, when does it execute?

We have learned that the main method is invoked by the Java runtime environment causing its statements to execute, beginning with its first executable statement (the program entry point) and ending when the execution reaches the end of its code block, in this case, line 12. Thus, it would appear that line 11 would display the application’s window, and then the program would end. But the draw method must have executed because the characters Hello World appear in the program’s window (Figure 2.11). So again, we ask the question, “when does it execute?”

The answer is fundamental to why the method draw is referred to as a call back method. Line 11 in the main method invokes the method showGameBoard, which requests that the game environment display the game board window. Before the game environment displays the game’s window, it invokes, or calls back, the draw method coded in the application, causing it to execute. When the draw method ends, the game environment completes the display of the game’s window requested by the showGameBoard method. Thus, the application calls the game environment to display the game board window (line 11), and the game environment calls back the application’s draw method to perform its drawings on the game board before the window is displayed. Specifically, the execution sequence is line 11 in the method main, the code of the showGameBoard method, the code at the beginning of a method in the game environment, the draw call back method lines 14-18), and finally, the remainder of the code in the game-environment method.

In fact, every time the program’s window has to be redrawn (e.g., the window was minimized and then the window’s icon on the status bar is clicked), the game environment’s code invokes the draw method to redo its drawings on the game board. This can easily be verified by adding the statement

System.out.println("the draw method was invoked");

to the draw call back method. Then, every time the draw method is invoked, we will see an output on the system console.

NOTE

Even though the main method containing the program’s entry point ends its execution, a graphical program continues to execute until the program’s graphical window (e.g., the gameboard window) is closed.

2.8.3 The setFont Method: A First Look

Like the drawString method, the setFont method is a part (member) of the API Graphics class. It is used to change font type, style, and size. The output in Figure 2.11 used the default font values. Once changed, all subsequent graphical text output will use the new (or current) font type, style, and size until it is changed again. The method is passed one argument. The following code, when added to the draw method, changes the font type to Arial, the style to bold italic, and the font size to 16 points, and then outputs the text The Font was Changed. The syntax of the argument sent to the setFont method will be explained in Chapter 3.

g.setFont(new Font("Arial", Font.BOLD + Font.ITALIC, 16));

g.drawString("The Font was Changed", 150, 300);

2.9 THE COUNTING ALGORITHM

Counting is something that is done in most programs and is considered to be a fundamental algorithm in computer science. For example, in game programs it is used to count the number of seconds remaining in a game or the number of seconds since the game began. In the first case, the time starts at a designated amount of time and counts down to zero; in the second case, the time starts at zero and counts up. In both cases, the game’s time is usually displayed on the game board. In this section, we will discuss the counting algorithm, and we will learn how to use it inside the game environment’s call back method timer1 to count seconds.

Most of us began to learn how to count by memorizing the integers beginning with 1. Our parents may have said to us, “say this: one, two, three, four.” Most of us, on the first try, perhaps said “three, four,” or “one, two, four,” or some other erroneous sequence. Through repetition, eventually we memorized the sequence and extended it by recognizing that each new element is “one more.”

Somewhere along our cognitive development path, we discovered the counting algorithm. In support of that is the realization that most people never memorized the integers from 1,242,518 to 1,243,589. However, most of us could recite that sequence of integers if asked to do so because we use the counting algorithm to determine the sequence. Below is the generalized counting algorithm that can be used to count forward or backward by any increment:

int count = aBeginningValue;

// repeat the next statement until count reaches the ending value

count = count + aCountingIncrement

For example, to count upward from 1 to 10 by 1s, we code:

int count = 1;

// repeat the next statement until count reaches 10

count = count + 1; // 1 becomes 2, 2 becomes 3, 3 becomes 4, …

To count backward by 5s, from 1,165 to 875, we code:

int count = 1165;

// repeat the next statement until count reaches 875

count = count + -5; // 1165 becomes 1160, 1160 becomes 1155, …

Repeating statements is the topic of Chapter 5, so we will revisit the counting algorithm in that chapter. However, if we want to count seconds within a game program, the second line of the counting algorithm can be repeated by placing it inside a call back method named timer1. This method is invoked by the game environment once every second causing the statement to be repeated once a second.

2.9.1 A Counting Application: Displaying a Game’s Time

The game environment has three timer call back methods named timer1, timer2, and timer3. Their signatures (first lines) are:

public void timer1()

public void timer2()

public void timer3()

If you code these methods into your game program, they will be invoked every time their respective timers “tick.” For example, the method timer2 will be invoked every time timer2 ticks. Because counting seconds is so common in games, by default timer1 ticks every second. It begins ticking when the game window’s Start button is clicked, pauses when the Stop button is clicked, and resumes ticking when the Start button is clicked. After a timer call back method ends its execution, the game environment invokes the draw call back method. The details of the other two timers, which are normally used to animate game objects, will be discussed in Chapter 6.

Figure 2.12 presents the graphical application CountingSeconds that illustrates the use of the counting algorithm to count upwards by one, starting from zero. The output produced by the program three seconds after the user clicks the Start button is shown in Figure 2.13.

The declaration of the counter variable count and its initialization to zero seconds is coded on line 8. (Note that the key word static is coded at the beginning of this line. The need for it will be explained in Chapter 3.) Declaring this variable on line 8 places it outside of the code blocks (the open and close braces) of all of the class’s methods, which makes it makes available to all of the class’s methods. Variables declared in this way are said to be class level variables.

[image:]

Figure 2.12
The application CountingSeconds.

[image:]

Figure 2.13
The output produced by the application CountingSeconds three seconds after the Start button is clicked.

The second line of the counting algorithm is coded on line 23 inside the timer1 call back method (lines 21–24). Because timer1 ticks once a second (by default), line 23 is repeated every second, causing the counter variable count to count seconds. Each time the timer1 method ends, the game environment invokes the draw method, which displays the new time on the game board by outputting the contents of the class-level variable count (line 18). The output appears in bold Arial 18 point font because line 17 invokes the Graphic class’s setFont method to change the current font values. The import statement on line 3 makes the constants and methods of the Font class available for use by that statement.

2.10 FORMATTING NUMERIC OUTPUT: A FIRST PASS

In this chapter, we have discussed how to perform numeric output, but we have not discussed how to format numeric output to improve its readability, such as adding a comma every three digits to the left of the decimal point, or adjusting the precision of the fractional part of a number output to the right of the decimal point. The format method in the DecimalFormat class can be used to accomplish both of these commonly used types of output formatting. We will conclude this chapter with an introduction to the techniques used to format numeric output; we will present more details on these techniques in Chapter 5.

The application presented in Figure 2.14 uses the DecimalFormat class’s format method to format the output of a real number (line 12) and an integer (line 13). The method returns a string containing the formatted numeric value and is sent one argument. The argument is the numeric variable to be formatted: speedOfLight and population on lines 12 and 13 respectively.

This nonstatic method is invoked (on lines 12 and 13) using the DecimalFormat object df declared on line 10. The formatting to be performed is associated with the decimal format object and is specified as a string literal coded inside the parentheses at the end of line 10. The string literal #,###.## coded on this line indicates that commas will appear every three digits to the left of the decimal point, and real numbers (nonintegers) will be output with two digits of precision. The level of precision used in the formatting can be changed by adding or removing pound signs to the right of the decimal point on line 10.

[image:]

Figure 2.14
The application BasicNumericFormatting.

The output produced by the program is given in Figure 2.15. As this output shows, real numbers are always rounded up (299792458.7153 was output as 299792458.72), and integer output does not contain a decimal point.

[image:]

Figure 2.15
The output produced by the BasicNumericFormatting application.

2.10.1 The printf Method

Another way of formatting numeric output to the System console is to use the printf method. Like the print and println methods it is invoked on System.out, but the information passed to it is not simply the items to be output. Rather it is passed two sets of information separated by a comma: the formatting information for each item to be output, followed by the items to be output.

System.out.printf(“Formatting Information”, Items To Be Output);

The items to be output are a sequence of variables and/or string literals each separated by a comma, normally followed by a space for readability purposes. The formatting information is a string that contains a sequence of format specifiers, one for each item to be output. Each specifier begins with a % sign followed by a description of the item’s formatting. The % sign can be preceded by a sequence of characters to be output before an item is output.

Within the formatting information, there must be a format specifier for each item to be output. The format specifiers are associated with the items to be output in the order in which they are coded. For example, the third format specifier would be used to format the third item to be output.

Replacing lines 10-13 in Figure 2.14 with line 2 shown below would produce the first line of output shown in Figure 2.15. Replacing them with line 4 shown below would produce both lines of output shown in the figure. Lines 6-7 annotates the output as shown below line 7. Within the formatting information, an output’s annotation is placed before the % signs, as shown on line 6.

1   // produces the first output shown in Figure 2.15

2   System.out.printf("%,.2f \n", speedOfLight);

3   // produces both outputs shown in Figure 2.15

4   System.out.printf("%,.2f \n%,d \n", speedOfLight, population);

5   // produces the below output

6   System.out.printf("Light speed: %,.2f \nPopulation: %,d \n",

7      speedOfLight, population);

Light speed: 299,792,458.72

Population: 1,097,603,176

Within the above formatting specifiers the comma after the % sign imbeds a comma within a numeric output every three digits, and the .2 produces two digits of precision rounded up. The characters f and d are use to format the output as a floating point decimal or a signed decimal integer respectively. The upside of this approach to formatting numeric output is that it is more succinct, however it is also more cryptic and the ordering of the formatting text within the format specifiers, placed after the percent sign, is important.

A good use of the printf method is to align outputs. The below code produces the output shown below it. Within the format specifiers on line 3, the 14 specifies the width of the output item. The – (dash) indicates the output should be left justified within the output width. The default is right justified. The s produces string output.

1 String[] paint = {"Paint", "Pan and Roller"};

2 String[] screws = {"Philips head", "Slot head"};

3 System.out.printf("%-14s %-14s \n%-14s %-14s \n",

4      paint[0], paint[1], screws[0], screws[1]);

Output Produced

Paint      Pan and Roller

Philips head   Slot head

2.11 CHAPTER SUMMARY

This chapter introduced the basic components of a Java program and the Java template for developing a program that performs input, mathematical calculations, and output. Variables are declared to store data during the program’s execution. Primitive variables store one data value, and reference variables store a memory address where the object that contains the data is located. The type of the data (for example, character or integer), must also be declared. Good coding style dictates that variable names be meaningful as well as syntactically correct. Meaningful variable names indicate what the data represents. They begin with a letter and cannot contain spaces.

The print and println methods are used to output a string to the console window to which the object System.out is attached. Escape sequences permit characters with special meaning to be used in output statements. The concatenation operator joins data values and strings into a single output string.

String objects, which are reference variables store the memory address that refers to, or references, the actual string. Strings can be created and initialized using either a one-line or two-line grammar. The default value for an uninitialized string is null. Strings have to be converted into numeric values to perform mathematical operations, and there is a set of classes in the API, called wrapper classes, which contain static methods to perform this conversion.

Java, like most programming languages, provides the ability to perform basic arithmetic calculations and provides additional features, including the API Math class, to perform more complex calculations. Arithmetic calculations are performed in Java using arithmetic expressions. Arithmetic expressions consist of a series of operands separated by operators. The parts of an arithmetic expression inside the parentheses are evaluated first using the rules of precedence to determine the order of the operations. If the operators are of equal precedence, they are evaluated from left to right. Higher precedence operators are evaluated first. The division of two integers always results in a truncated integer value, and the mod operator is used to determine the remainder of integer division.

Values are assigned to variables using the assignment operator. Generally, the type of the value being assigned to a variable should match the type of the variable. Type casting and promotion are provided and are used with mixed-mode expressions to ensure that the variable types are compatible and there is no loss of precision.

Dialog boxes are a graphical way to communicate with the user of a Java program and offer an alternative to console-based input and output. The method drawString in the API Graphics class can be used to perform text output to a graphics window, and the setFont method can be used to change the default font, style and size. The counting algorithm is used to keep track of elapsed seconds in a game program. Chapter 3 will extend the concepts of objects, classes, and methods and their application to creating game programs.

Finally, the DecimalFormat class is introduced to provide ways to format numeric output to improve its readability.

Knowledge Exercises

1. True or False:

a) The type of the data stored in a variable can change as the program executes.

b) Variables must be declared in a program before they are used.

c) Variables must be initialized when they are declared.

d) It is grammatically incorrect to begin a variable name with an upper-case letter.

e) Spaces can be used in variable names for better readability.

2. Which statement in a Java application program is executed first?

3. What are variables? Name two types of variables and the information each one stores.

4. Which of the following is not a primitive data type?

a) boolean

b) char

c) String

d) int

5. Give the default initial values for variables declared to be of the following types:

a) boolean

b) char

c) double

d) int

6. Write a well-composed declaration statement to declare variables that can store:

a) Maggie’s age initialized to 32

b) The first initial of Ryan’s name initialized to the letter ‘R’

c) The cost of a taco

d) The number 21,234,096,464

e) The fact that it is snowing

7. Is a numeric literal, coded in a program, represented as a float or a double? Explain.

8. Determine if each of the following variables is well composed and valid. For those that are not, explain why not.

a) 2ndplace

b) middleInitial

c) winningTeam

d) fgp3

e) test1 grade

f) myScore

g) SalePrice

9. Write the code to output two lines to the system console. The first line will contain your name, and the second line will contain the town in which you live, using:

a) Two println statements

b) One println statement

Then give the equivalent printf statements.

10. Write a well-composed variable declaration statement to declare a string String object initialized to Skyler’s address, which is 21 First Avenue, using the:

a) One-line object-declaration grammar

b) Two-line object-declaration grammar

11. Draw a picture of the memory allocated by the statements:

a) int distance = 675;

b) String myName = new String("Jane");

12. Give one statement to:

a) Output the annotated contents of the memory cell priceOfCorn

b) Output the sentence: Martin said: “I had a dream.”

c) Change the contents of the variable myBalance to 234.54.

13. Evaluate each of these expressions:

a) 17 - 5 * 2 + 12

b) 31 - 7 * 2 + 14

c) (48 + 12) / 12 + 18 * 2

d) 21 - 9 + 18 + 4 * 3.7

14. Give the code to:

a) Declare the variable quizAverage and store the average of the variables quiz1, quiz2, quiz3, and quiz4 in it

b) Calculate the sine of 45 degrees and store the value in the variable sineOf45

c) Calculate and output the square root of 45.67

d) Calculate and output 34.7 to the 5th power

15. Write the variable declaration to declare the variable average and the assignment statement to store the average of three speed limits: 55, 57, and 60 miles per hour.

16. Give an assignment statement to store the integer part of the value stored in the double variable bankBalance in the variable dollars.

17. True or False:

a) You must include an import statement in a program to perform I/O using dialog boxes.

b) A message dialog box can be used to obtain input from the program user.

c) A string is always returned from an input dialog box.

d) When the user clicks “OK” without making an input into an input dialog box, null is returned.

e) Dialog boxes will size themselves to accommodate the string argument sent to them.

18. Write the code to output two lines to a message dialog box. The first line will contain your first and last name, and the second line will contain your date of birth in the format “My birthday is: dd\mm\yyyy” (yes, those are backslashes).

19. Give the code to allow the program user to enter a checking account balance using an input dialog box. Include a well-composed user prompt.

20. Think of a game. Write the code to output the name of the game and its creator, the task (objective) of the game, and how the game pieces are controlled to a message dialog box of reasonable size.

21. Give the code to declare a double variable named deposit and to parse the input contained in the string sDeposit into it.

22. Write the code to declare an integer variable named speedLimit and to parse the input contained in the string sSpeedLimit into it.

Programming Exercises

1. Write a Java application that outputs your name on one line followed by the town in which you live to the system console.

2. Write a program to calculate the average of five quiz grades: 100, 97, 67, 85, and 79. Output the quiz grades and the average to the system console. The output should be well annotated with the quiz grades on one line and the average on another.

3. Write a program to accept an angle (input in degrees) and a real number. Then, output the angle and its sine, cosine, and tangent. Follow that output with the output of the input real number, its cube, and the square root of the number. The outputs should occupy several lines and be sent to both the system console and to a message dialog box. The input prompts should be well composed, and the outputs should be well annotated.

4. Repeat Programming Exercise 3, but output the information to the system console and to the middle of the game board. Use 20-point italic Arial font for the game-board output.

5. Write a program to ask the user to enter the product of a pair of real numbers (of your choosing), with the input rounded to one digit of precision. After the product is entered, output the user’s input and the correct product, rounded to one digit of precision. The outputs should occupy several lines, and be sent to the system console and to a message dialog box. The input prompts should be well composed, and the outputs should be well annotated.

6. Write a program to ask the user to enter the product of a pair of real numbers of your choosing. After the product is entered, output the correct answer and the number of seconds it took the user to enter the product to the center of the game board and to the system console. Use 20-point italic Arial font for the game-board output. The output should be on two lines and well annotated.

7. Repeat Programming Exercise 6, but output the numbers with commas every three digits on the left side of the decimal point, and use one digit of precision.

Endnotes

1 The URL of the Edition 7 API documentation is: http://docs.oracle.com/javase/7/docs/api/ It is named: Java Platform, Standard Edition 7 API Specification.

2 http://www.randomnumbers.info/content/Random.htm

CHAPTER 3

METHODS, CLASSES, AND OBJECTS: A FIRST LOOK

3.1Methods We Write

3.2Information Passing

3.3The API Graphics Class

3.4Object Oriented Programming

3.5Defining Classes and Creating Objects

3.6Adding Methods to Classes

3.7Overloading Constructors

3.8Passing Objects To and From Worker Methods

3.9Chapter Summary

[image:]

[image:]

In this chapter

This chapter extends the concepts of methods, classes, and objects discussed in the previous chapter to enable us to design and implement our own classes and the methods that they contain. These concepts facilitate the development of our programs by allowing us to divide a large program into several smaller classes, separately develop these classes, and then integrate them into the larger program. Once written, these classes can also be used in other programs, just as the API classes are. Several design tools will be introduced in the chapter to methodize the specification of a class and the object it defines. The understanding of material presented in this chapter is the foundation of the advanced OOP topics discussed in Chapters 7 and 8.

After successfully completing this chapter, you should:

•Be able to write void and nonvoid methods

•Understand how to share primitive information and objects between methods

•Understand the concept of value parameters

•Be able to read a Unified Modeling Language (UML) diagram and use it to specify a class

•Understand how to design and specify graphical and nongraphical objects

•Be able to identify, write, and use a set of methods that most classes contain

•Understand the concept and use of public and private data members and methods

•Be able to design, construct, modify, and access an object using its class’s methods

•Use methods of the Graphics class to draw lines, rectangles, ovals, and circles

•Have acquired the foundational skills required for a study of Chapters 7 and 8

3.1 METHODS WE WRITE

In Chapter 2, we became familiar with several methods available in the Java Application Programmer Interface. For example, the methods println and print perform output to the system console, pow and sqrt perform calculations, and drawString and setFont perform text output to the program window. Being resident in the API, these methods are available to all Java programmers, and their use expedites the program development process because only one programmer, the API programmer, had to discover their algorithms and then write, test, and debug their code. The rest of us simply use the methods by importing them into our program and writing a one-line invocation statement. Because most of the cost of software development is the salaries paid to the programmers, the use of prewritten methods also makes software more affordable.

In this section, we will learn how to write our own methods. Not only will this allow us to reuse the code that we write in other programs, but it also facilitates the development of our programs by dividing a large program into several smaller subprograms called methods. By dividing a large program into subprograms, these methods can be developed by several programmers working in parallel, which greatly reduces the calendar time required to produce a program.

NOTE

The Motivation for Writing Methods
Extends our problem solving capabilities: Humans are good at solving small problems but not large problems
Reduces development time: Methods can be developed in parallel by several members of a programming team
Reduces cost: Methods can be written in such a way that they can be used in any program using a one-line invocation statement

3.1.1 Syntax of a Method

In Java, all the methods we write must be part of a class. They must be coded within the class’s code block, the open and close braces that begin and end a class statement. The class statement can be the one that contains the program entry point, the method main, or some other class that we will learn how to create later in this chapter. When methods are coded inside the class that contains the method main, good coding style dictates that they be coded after it.

The minimum code required to create a method is:

returnType methodName()

{

 //the code of the method is placed here

}

The first line of the method is called the method’s signature. The signature is followed by a set of open and close braces that define the bounds of the method’s code block. The statements to be executed when the method is invoked are coded inside this code block.

The method’s signature, the first line of the method’s code, must include the type of the information returned from the method, followed by the method’s name, followed by an open and close set of parentheses. If the method does not return a value to the invoker, for example, compute and return the square root of a number, the keyword void is used as the return type. In this case, the method is said to be a void method.

A method that simply outputs the name of the student newspaper to the system console every time it is invoked would be an example of a void method.

void outputNewspaperName()

{

System.out.println("The Student Voice");

}

The syntax and coding style used for naming methods are the same as those used to name variables:

•they cannot contain spaces

•they should begin with a lower-case letter

•new words should begin with an upper-case letter

Normally, they are only comprised of letters. Digits, the dollar sign, and the underscore are not normally used in their names. For example, a method that adds two integers together and returns the result could be named addTwoInts rather than add_2_Ints.

Figure 3.1 presents the application AVoidMethod that contains the implementation and two different invocation forms of the void method outputNewspaperName. The output it produces is shown in Figure 3.2.

[image:]

Figure 3.1
The console application AVoidMethod.

[image:]

Figure 3.2
The output produced by the console application AVoidMethod.

The program consists of two methods: the method main (lines 3–9) and the method outputNewspaperName (lines 11–14). Both of these methods are coded within the program class’s code block that begins on line 2 and ends on line 15.

NOTE

A method cannot be coded inside of another method’s code block.

The signature of the method outputNewspaperName, coded on line 11, begins with the key word static. Not all method signatures begin with this key word. As we have learned, methods fall into two categories: those that operate on objects (nonstatic methods) and those that do not (static methods). An example of a method that operates on an object is the method println. It operates on, or sends its output string to, the console object whose name is System.out. Methods that do not operate on an object must include the key word static in their signature. The method outputNewspaperName does not operate on an object, so its signature begins with the key word static. In Section 3.5, we will discuss methods that we write that do operate on objects, and we will gain more insight into what it means to say a method operates on an object.

NOTE

Methods that do not operate on an object must include the key word static in their signature.

The method outputNewspaperName is invoked in lines 5 and 7 of the application’s main method. Line 7 just mentions the name of the method followed by open and close parentheses. This invocation syntax is valid because the static method is coded within the same class, AVoidMethod, as the invocation statement (line 7). The more generalized syntax for invoking a static method is used on line 5. Here, the invocation statement begins with the name of the class in which the method is coded followed by a dot:

AVoidMethodApp.outputNewspaperName();

We used this syntax to invoke the static methods pow and sqrt that are coded in the Math class.

double ans = Math.pow(3.0, 2.0);

double root = Math.srt(9.0);

Because these two methods are not coded in the same class in which they are normally invoked, the name of the class must be included in the invocation statement. The only exception to this is the use of a static import statement. When either syntax is valid, the shorter syntax makes our programs more readable and is therefore preferred.

The execution sequence of the application begins on line 5 of the main method. This invocation statement causes the code in the code block of the outputNewspaperName method to execute (lines 12–14), which produces the first line of output (Figure 3.2). Then line 6 of the main method executes, producing the second line of output. Line 7 causes the outputNewspaperName method to execute a second time, which produces the third line of output. Finally, line 8 executes, which produces the last output line.

NOTE

After a method executes, the next statement to execute is the statement immediately after the statement that invoked it.

3.2 INFORMATION PASSING

For a method to function properly, information must often be passed to it when it is invoked, and some methods must return one piece of information to the invoking statement. Consider the Math class’s nonvoid static method pow. When it is invoked, a number (n) and a power (p) are passed to it, and the method returns the result of its calculation: np. The left side of Figure 3.3 depicts this sharing of information between the invoker (top left) of the method pow and the method (bottom left). The right side of the figure generalizes this concept of shared information between the invoker, often called the client, and the method that performs some "work" for the client, often referred to as the worker method. For example pow’s work is to compute a given number (n) raised to a given power (p).

[image:]

Figure 3.3
The sharing of information between a method and its invoker.

As depicted in the right side of Figure 3.3, an unlimited number of pieces of information can be sent from the invoking client to a worker method, however, only one piece of information can be sent back to the client from the worker method. We say that the client sends the method an argument list containing the shared information, and the worker method receives the shared information in its parameter list (either or both of which could be empty).

NOTE

No more than one piece of information can be returned from a method.

3.2.1 Parameters and Arguments

If a method is to receive information passed to it from the client, then its signature must contain a parameter list. The parameter list is coded inside the open and close parenthesis of the method’s signature. The parameters in the list are separated by commas, and each parameter consists of a variable name preceded by its type. For example, the signature of a method whose work is to output a person’s age and weight would have an int and a double parameter in its parameter list.

static void outputAgeAndWeight(int age, double weight)

{

System.out.println(age: " + age + " weight: " + weight);

}

Each parameter receives one piece of information sent to it by the client code’s invocation statement, and the type of the parameter must match the type of the information sent to it. The client’s statement used to invoke the method outputAgeAndWeight would contain two arguments in its argument list, within parentheses.

outputAgeAndWeight(myAge, myWeight);

This statement passes the contents of the variables myAge and myWeight to the method.

Arguments, information that is to be shared with the worker method, can be variables (e.g., myAge, myWeight) that have been previously declared in the client code, or string or primitive literals.

NOTE

The order, number, and type of the arguments in a method invocation statement must match the order, number, and type of the parameters in the method’s signature.

Each time a method is invoked, the variables in the method’s parameter list are allocated and paired up with the arguments in the invocation’s argument list (the first parameter paired with the first argument, the second parameter paired with the second argument, etc.), and the value stored in each of the arguments is copied into the paired parameters. For the invocation statement

outputAgeAndWeight(myAge, myWeight);

the value in the argument myAge is copied into the parameter age of the method outputAgeAndWeight, and the value contained in the argument myWeight is copied into the parameter weight. This type of information passing is called passing by value, and the parameters are called value parameters because the values contained in the arguments are copied into the parameters. Once the parameters have been allocated and this transfer of information is complete, the code in the worker method’s code block begins execution.

Consider the sequence of code that contains a main method and the method outputAgeAndWeight:

public static void main(String[] args)

{  int myAge = 23;

    double myWeight = 185.4;

   outputAgeAndWeight(myAge, myWeight);

}

static void outputAgeAndWeight(int age, double weight)

{

  System.out.println("age: " + age + " weight: " + weight);

}

Figure 3.4 depicts a sequence of seven events that occur when this code executes and illustrates the process of passing information using value parameters. The left side of figure shows the main method’s (client) code and its execution sequence (events 1, 2, 3), which includes the RAM memory allocated to its two arguments (event 2 is depicted in the bottom left portion of the figure).

The right side of the figure shows the code of the method and its execution sequence (events 4, 5, 6, and 7), which includes the RAM memory allocated to its two parameters (event 5 is depicted in the bottom right portion of the figure). The passing of the values stored in the client’s arguments into the paired worker parameters is depicted as event 6 in the bottom center of the figure. After the information is passed, the code block of the method executes (event 7).

[image:]

Figure 3.4
The transfer of information to a method via value parameters.

The dotted line in the figure is a line that the code in the client and worker methods cannot cross. The client code on the left of the figure cannot access the contents of the member cells age and weight, and the worker method code cannot access the memory cells myAge and myWeight. Inserting the statement

myAge = myAge + 1;

into the code of the method outputAgeAndWeight would result in a translation error because myAge is only known to the client code.

When the method completes its execution, the variables named in its parameter list are de-allocated, and their storage is returned to the memory manager. The result is that the values stored in these memory cells are lost, in that they are no longer available to the program. An understanding of this is fundamental to the notion of value parameters. It is also important to realize that the four memory cells created during events 2 and 5 are separate and distinct. To emphasize this, the names of the parameters (age and weight), coded in the worker method’s signature, were intentionally chosen to be different than the names of the arguments passed to method (myAge and myWeight). Even if the argument and parameter names were the same (e.g., both coded as age and weight), event 5 would still create two distinct memory cells on the right side of Figure 3.4 named age and weight. A coding of the symbols age and weight in the worker method would refer the contents of these to memory cells, which would be de-allocated when the method ends its execution.

NOTE

Every time a method is invoked, the variables in its parameter list are allocated, and they are de-allocated when the method ends its execution.

3.2.2Scope and Side Effects of Value Parameters

The only way to pass information between arguments and parameters (i.e., between client code and worker method code) in Java is via value parameters, so it is important that we understand the limitations of the value parameter memory model presented in Figure 3.4 and its implications. As depicted in the figure, the client code has two variables it can access, myAge and myWeight, and the method has two variables it can access, age and weight. The client code cannot access the variables age and weight, and the worker method cannot access the variables myAge and myWeight.

In programming language jargon, we say that the worker method’s variables age and weight are defined within the scope of its code, and the variables myAge and myWeight are out of its scope. A Java statement can only access variables that are within its scope.

Definition

The scope of a variable is the portion of a program in which it is defined and can therefore be accessed.

It is syntactically correct to make the argument names in a method invocation the same as the parameter names coded in the method’s signature. For example, the names of the variables declared in the main method and the worker method’s parameter list could both be named myAge and myWeight.

public static void main(String[] args)

{  int myAge = 23;

   double myWeight = 185.4;

   outputAgeAndWeight(myAge, myWeight);

}

static void outputAgeAndWeight(int myAge, double myWeight)

{

   System.out.println("age: " + myAge + " weight: " + myWeight);

}

As previously mentioned, this coding of the method would still create two memory cells assigned to the method’s parameters on the lower right side of Figure 3.4, but their names would now be myAge and myWeight. Now, the statement

myAge = myAge + 1;

written into the worker method’s code would not result in a translation error because there is now a variable named myAge that is within its scope. The method’s code would access the contents of its memory cell myAge, and the contents of that variable would be changed to 24. When the method endes and execution returnes to the client code, the contents of the client code’s memory cell myAge would be unchanged. It would still contain the value 23.

Normally, this is a good thing because it prevents an unwanted side effect of the method’s code changing the client’s data. Preventing this side effect assures that the values stored in the client code variables before the method was invoked will be the same values stored in those variables after the method completes it execution. In some cases, however, this is not what we want.

Consider the case of a method, named swap, that the client invokes to swap the contents of two of its variables, a and b, via the statements

int a = 10;

int b = 20;

swap(a, b);

System.out.println("a is: " + a + " and b: is " + b);

If the method is successful, the output produced after swap completes its execution should be a is 20 and b is 10.

The method swap would have two integer parameters to receive the values to be swapped, and its code would implement the swapping algorithm. The code of the method, preceded by a main method that invokes it, is given below:

 public static void main(String[] args)

{

   int a = 10;

   int b = 20;

   swap(a, b);

   System.out.println("a is:" + a + " and b: " + b);

 }

static void swap(int a, int b)

{

   int temp = a;

   a = b;

   b = temp;

}

Unfortunately, because Java uses value parameters, this coding of the method does not swap the client’s variables, and the output produced by the last statement in the main method is a is 10 and b is 20.

Consistent with the memory model of value parameters, the client and the method each have their own memory cells named a and b. The method swaps the values contained in its two memory cells a and b, which has no side effects on the contents of the memory cells a and b allocated in the client code. These two cells remain unchanged (they still contain 10 and 20, respectively), which makes it appear that the swap algorithm was improperly coded in the worker method.

It turns out that it is impossible to write a method that swaps the contents of two client variables using primitive-type parameters because, by design, value parameters prevent a method from changing the values in the client’s argument list. Some programming languages (e.g., C and C++) solve this problem by allowing another type of parameter called a reference parameter. Java does not support this type of parameter because it can lead to some undesirable side effects

3.2.3 Returned Values

A worker method can return one, and only one value to the method that invokes it. A method that returns a value is called a value returning or nonvoid method, and the key word void is not used in its signature. It is replaced with the type of the information the method returns. For example, the method showInputDialog in the API class JOptionPane is a nonvoid method that returns a reference to a String, so its signature contains the type String rather than the keyword void.

Methods can return the contents of reference variables, as the method showInputDialog does, or they can return the contents of primitive variables. In both cases, the returned value should be thought of as replacing the invocation of the method in the statement that invoked the method after the method executes. If the value is to be used later in the program, the invocation should be coded as the right part of an assignment statement that assigns the returned value to a variable.

For example, the two statements below prompt the user to enter a person’s age and return the characters that are entered, but only the second one retains the location of the String object that is returned.

JOptionPane.showInputDialog("enter a person's age");

String sAge = JOptionPane.showInputDialog("enter a person's age");

A nonvoid method must contain a return statement or the method will not translate. The statement begins with the key word return, which is followed by the value that is to be returned. The value to be returned can be a literal, a variable, the value of an arithmetic expression, or a value returned from a method invocation. The following code segment contains a nonvoid method multiply preceded by the code of the main method that invokes it. The method multiply calculates and returns the product of two numbers passed to it.

public static void main(String[] args)

{

    double a = 10.0;

   double b = 20.0;

    double product = multiply(a, b);

   System.out.println(a + " x " + b + " = " product);

}

static double multiply(double a, double b)

{

   double c;

   c = a * b;

    return c;

}

Because, as previously mentioned, an arithmetic expression can be coded in a return statement, the method could have been coded more succinctly as:

static double multiply(double a, double b)

{

    return a * b;

}

There can be more than one return statement in a nonvoid method, but we will not have a use for that feature of the language until we gain an understanding of the material presented in the next chapter.

3.2.4 Class Level Variables

Class level variables are another way of sharing information among methods. However, the manner in which the information is shared and the syntax used to code class level variables are both very different than when arguments parameters and return statements are used to share information.

To begin with, unlike using arguments and parameters to pass information to a worker method, in order for methods to share information using class variables, the methods must be coded in the same class. The information sharing is accomplished by coding the variable outside of the code blocks of the methods in the class. Good coding style dictates that they be coded at the top of the class before the code of any of the methods. When this done, the variable is within the scope of all of the methods in the class. The methods actually share the same variable, which permits any method in the class to fetch and overwrite the variable’s contents. Unlike arguments and parameters, class variables provide a two-way path for methods to share information. One method can write a value into the variable, and another method can read the value from it.

Although we did not explain class variables in this much detail in Chapter 2, the program presented in Figure 2.12 used a class variable named count (line 8) to share the game’s time between the method timer that was incrementing it (line 23), and the method draw that was outputting it to the game board (line18). As shown on line 8 when a class variable is used in the program’s class, its declaration must begin with the key word static:

static int count = 0;

Aside from that, its declaration syntax is the same as that used to declare a variable inside of a method’s code block.

A variable can be declared inside a method’s code block that has the same name of a class-variable. When this is done, a memory cell is created with the same name as the class variable and is called a local variable. All uses of the variable’s name inside the method’s code block refer to the local variable, and the local variable can only be accessed by the method’s code. To access the class variable from inside the method, the name of the variable would be preceded by the name of the class followed by a dot (just as when we invoke static methods).

Wherever possible, it is good programming practice not to use the names of class variables for naming variables declared inside of methods. For one thing, it reduces the program’s readability because, if we fail to realize that the local variable is declared, we would erroneously believe that the class variable is being used inside the method. In addition, if we neglect to declare the local variable when coding the method, the translator will assume we want to use the class variable, and it will not remind us that we neglected to declare the local variable.

[image:]

It is good programming practice not to use the names of class variables for naming local variables declared inside of methods.

Figure 3.5 presents a program that contains four worker methods and demonstrates information sharing via value parameters, return statements, and class variables, the use of local variables, and the features of methods that make them reusable. The inputs to the program and the outputs the program produces are shown Figure 3.6.

Lines 30–36 contain the code of the method inputInteger. Its signature (line 30) indicates that it is a nonvoid method that returns an integer and has a String parameter named prompt. The method passes the string sent to it to an input dialog box (line 33) to be displayed as a prompt to the program user. The returned user input is parsed into the integer variable a (line 34), and then the parsed value is returned to the invoker (line 35). The inclusion of a string parameter in its signature allows the invoker to specify the prompt sent to the input dialog box. In addition, the method parses the input integer, freeing the invoker from that responsibility. Both of these features make this a highly reusable method. It is invoked five times within the program (on lines 11, 17, 18, 23, and 24), and each time it is sent a different prompt.

Two class variables, a and b, are declared on lines 4 and 5 with a initialized to 10. The value in the class variable a is included in the string passed to the invocation of inputInteger on line 11, which is displayed as the prompt in the input dialog box (Figure 3.6a) produced by line 33. The method inputInteger declares its own local variable a on line 32, so the assignment of the parsed value of the user input into the variable a (line 34) changes the contents of the local variable, leaving the class variable unchanged. This is verified by the first output (Figure 3.6b) produced by the program (lines 14–15), which indicates that a 10-year-old child will be 13 in 3 more years.

The method dif is invoked on line 13 to calculate the first output: the years to reach the desired age. It is passed the desired age, input on lines 11-12, as the first argument on line 13. Because the method main does not declare a local variable named a, the second argument on line 13, a, is the class variable. The method then calculates the difference between the two values passed to its two parameters (line 40), the desired age and the value stored in the class variable. Because the desired age was input as 13, and the output indicates that it will be reached in 3 more years, the class variable passed to the method’s second parameter must have contained the value 10 at the time dif was invoked. The previous assignment into the local variable a on line 34 had no effect on it.

It should be noted that even if the parameter a was reassigned inside the method dif, the class variable would still retain the value 10 because Java uses value parameters. All references in the method dif to the variable a refer to the parameter, which can be thought of as a local variable.

Two swap methods, swapParameters and swapClassLevels, are coded on lines 43–55. The first of these methods is invoked on line 19. It contains two parameters, a and b (line 43), to receive the values to be swapped, which are input on lines 17 and 18 (Figures 3.6 c and d). Although the names of the parameters are the same as the names of the class-level variables, they are not the same memory cells as the class variables. When the values stored in the parameters are swapped (lines 45–47), the output produced by lines 20–21 of the main method confirms a feature of value parameters: changes to parameters have no effect on the arguments sent to the method. The numbers output by the main method are output in the same order in which they were input: 1111 followed by 2222 (Figure 3.6 e).

Because the main method does not declare local variables named a and b, lines 23 and 24 store the values returned from inputInteger in the program’s class variables (Figures 3.6 f and g). The second swap method, swapClassLevels, is invoked on line 25. It has an empty parameter list (line 50) and only one local variable, temp. Therefore, the variables a and b used in this method default to the class-level variables. Because these are shared with the main method, the swapping of the values in these variables performed on lines 52–55 does have an effect on the output produced by the main method (lines 26–27). As a result, the numbers input on lines 23 and 24 (8888 and 9999) are output in reverse order (9999 followed by 8888) by lines 26 and 27 (Figure 3.6 h).

[image:]

Figure 3.5
The application MethodsAndParameters.

[image:]

[image:]

Figure 3.6
Inputs and resulting outputs produced by the application MethodsAndParameters.

3.3 THE API GRAPHICS CLASS

Having gained a deeper understanding of methods and the techniques for sharing information between methods and the program code that invokes them, we will reinforce those concepts in this section by examining several worker methods in the API Graphics class. As discussed in Chapter 2, this class contains methods for drawing text on Graphics objects. It also contains methods used to change the drawing color and for drawing lines, rectangles, ovals, and circles on Graphics objects.

3.3.1 Changing the Drawing Color

All drawing performed on a Graphics object is performed in the current color. The default current color is black. The setColor method in the Graphics class can be used to change the current drawing color. One argument, used to specify the new value of the current drawing color, is passed to the method. Table 3.1 gives the names of the thirteen predefined color variables in the class Color. Because these variables are static variables, they are referred to by their name preceded by Color followed by a dot. For example, to set the color of all subsequent drawings on the Graphics object g to red, we would code:

g.setColor(Color.RED);

As previously discussed, the Graphics object attached to our game board is passed into the draw method’s parameter g when the game environment invokes the draw method. Therefore, if this statement were coded in the draw call back method, the current drawing color of the game board would be changed to red.

Table 3.1
Thirteen of the Predefined Colors in the Color Class

	Color
	Variable Name

	black
	BLACK

	blue
	BLUE

	cyan
	CYAN

	dark gray
	DARK_GRAY

	gray
	GRAY

	green
	GREEN

	light gray
	LIGHT_GRAY

	magenta
	MAGENTA

	orange
	ORANGE

	pink
	PINK

	red
	RED

	white
	WHITE

	yellow
	YELLOW

3.3.2 Drawing Lines, Rectangles, Ovals, and Circles

Figure 3.7 presents five of the methods in the Graphics class. These methods are nonstatic void methods. As their names imply, the first method is used to a draw line, and the remaining four methods are used to draw rectangles and ovals. To specify the location of the item to be drawn, all of the methods are passed (x, y) coordinates whose units are pixels.

The line drawing method, drawLine, is passed two sets of (x, y) coordinates, which are the endpoints of the line to be drawn. For example, to draw a line from (30, 50) to (60, 80) on the Graphics object g, we would code:

g.drawLine(30, 50, 60, 80);

The rectangle drawing methods drawRect and fillRect are used to draw the outline of a rectangle and to draw a filled (solid) rectangle, respectively. Their first two arguments specify the coordinates of the upper left corner of the rectangle, and the third and forth coordinates specify the width and height of the rectangle in pixels. For example, to draw the outline of a rectangle whose upper left corner is at (100, 200) and is 50 pixels wide and 75 pixel high on the Graphics object g, we would code:

g.drawRect(100, 200, 50, 75);

To draw this rectangle as a solid rectangle, filled with the current drawing color, we code:

g.fillRect(100, 200, 50, 75);

The method drawOval is used to draw the outline of an oval, and the method fillOval is used to draw a solid oval filled with the current color. These ovals are drawn within a specified rectangle (which is not drawn). The method’s four parameters are identical to those of the rectangle methods previously discussed and are used to specify the rectangle’s (x, y) location and its width and height. For example, to draw the outline of an oval 50 pixels wide and 70 pixels high inscribed inside a rectangle whose upper left corner is at (100, 200), we would code:

g.drawOval(100, 200, 50, 75);

To draw this oval as a solid oval filled with the current drawing color, we code:

g.fillOval(100, 200, 50, 75);

[image:]

Figure 3.7
Primitive-shape drawing methods in the Graphics class.

The oval drawing methods can be used to draw circles by making the third and fourth arguments, the height and width of the rectangle that encloses the oval, the same number of pixels. For example, to draw a solid circle 50 pixels in diameter inscribed inside a rectangle whose upper left corner is at (100, 200) we would code:

g.fillOval(100, 200, 50, 50);

When the statements presented in this section are coded in the game environment’s draw call back method, the lines and shapes they draw appear on the game board because, as mentioned at the end of Section 3.3.1, the Graphics object passed into the draw call back method’s parameter g is attached to our game board.

Figure 3.8 presents the application LinesAndShapes that draws two lines in the default color (black), two dark-gray rectangles, a red oval, and a blue circle on the game-board object. The graphical output of the program is shown in Figure 3.9. Lines 16–26 coded inside the draw method perform the drawing. Consistent with the variable names given in Table 3.1, the argument sent to the setColor method on line 19 has an underscore separating the words DARK and GRAY.

[image:]

Figure 3.8
The application LinesAndShapes.

[image:]

Figure 3.9
The output produced by the application LinesAndShapes.

3.4 OBJECT ORIENTED PROGRAMMING

Early programming languages were designed in the procedural paradigm. In this paradigm, a program is decomposed into smaller parts called subprograms, and the language provides a mechanism for combining the subprograms into the larger program. During the design process, the programmer focuses on the definition of the subprograms and how the program’s data will be stored. In this paradigm, the subprograms and the program’s data are separated and coded into two distinct entities.

Object oriented programming is a more recent programming paradigm. The paradigm is an attempt to facilitate the development of programs that deal with objects, such as starships, or people, or Web pages. In this paradigm, the program is decomposed into the various classes to which the objects belong. During the design process, the programmer focuses on determining the objects the program will deal with, the attributes of each object (e.g., a starship’s name), and the operations that can be performed on each object (e.g., changing a starship’s location). In this paradigm, the operations (subprograms) and attributes (data) are collected and coded into one entity called a class.

Both paradigms are in use today. Some programming solutions are better designed and more easily implemented using the procedural paradigm, and others are more easily designed and implemented using the object paradigm. C is a procedural language, C++ is a language that can be used in both the procedural and object paradigm, and Java is an object oriented language. If the program deals with objects, then the object paradigm should be strongly considered.

3.4.1 What Are Classes and Objects?

A class is a blueprint of how to construct an item, and an object is a particular item or instance of a class. For example, we all belong to the class human. That class contains a genetic blueprint of how to construct a human object, which we call a person. As per the human blueprint, all people have common attributes. For example, all people have colored-eyes, colored-hair, and eventually grow to an adult height. But clearly, all people (except identical twins) are also different. For example, people grow to different heights, have different-colored eyes, and different hair colors, what makes objects different is that each object contains its own value of the attributes contained in the blueprint.

Definition

A class is a blueprint of how to construct an item, and an object is a particular item or instance of a class.

The value of Mary’s three attributes could be 63 inches for height, blue for eye color, and red for hair color. The value of her sister Kate’s attributes could be 68 inches for height, brown for eye color, and black for hair color. No wonder these two objects look different. Now suppose Kate, who always admired her sister’s red hair and blue eyes, dyed her hair to a red color and inserted a set of blue contact lenses into her eyes. These hair coloring and lens insertion operations would change the values of two of Kate’s attributes, and she would then look like a taller version of Mary.

In object oriented languages, a class is the mechanism for defining the blueprint of an entity. As such, it contains the attributes that each object in the class will have (e.g., height, hair color, and eye color). To store the different values of these attributes for each object constructed from the blueprint, the attributes are represented within the class as variables. In addition, because the values of the attributes of an object can change, the class contains methods (e.g., setEyeColor and setHairColor) that can operate on the variables to change, or set, the values they store to new values.

3.5 DEFINING CLASSES AND CREATING OBJECTS

During the design process of an object oriented program, the programmer focuses on determining the objects the program will deal with, the attributes of each object, and the operations that can be performed on them. The blueprint for each type of object will be coded into a programming construct called a class that will represent the attributes as variables and the operations as methods. In the remainder of Section 3.5, we will discuss a graphical tool used to specify a class and the Java syntax used to code that specification into a Java program.

NOTE

The programming construct class is comprised of variable definitions and method definitions.

3.5.1 Specifying a class: Unified Modeling Language Diagrams

A unified modeling language (UML) diagram is a graphical representation of a class. The diagram consists of three rectangles stacked on top of each other. From top to bottom, as shown in Figure 3.10, these rectangles are used to specify the class name, the variables that will be part of the class, and the class’s methods. The variables are called data members (of the class), and the methods are called member methods because they are both part of (members of) the class being specified.

[image:]

Figure 3.10
The template of a UML diagram.

[image:]

Figure 3.11
The specification of the class Person, Version 1.

As an example, consider a program that is going deal with people objects where each person has three attributes: eye color, hair color, and height. The UML diagram used to specify the class, whose name was chosen to be Person, is shown in Figure 3.11. The name of the class appears at the top of the diagram, and the class’s three data members are tabulated in the second box of the diagram.

To succinctly convey information about a class’s data members and methods, UML diagrams employ a standardized notation, some of which is included in Figure 3.11. For example, the type of each data member is specified by following its variable name with a colon and the type of the variable. As shown in the figure, the class Person has two String data members and one integer data member.

Non-primitive data member variables, such as eyeColor and hairColor in the class Person, are referred to as instance variables, because they will store the address of an instance of a class. More specifically, eyeColor will store the address of an instance of the class String. Just as we say that the variable height is an integer, we say the variable eyeColor is an instance of a String.

The three data members of the class Person are preceded with a plus (+) sign. The plus sign is used to denote the access property of a data member of a class. When the UML specification of a class is coded into a Java class construct, the + sign is coded as the key word public. Another alternative is to precede the names of the data members with a minus (-) sign, which is coded as the key word private. We will learn more about the implications of the use access modifiers in the next section.

3.5.2 The Class Code Template

Like the data members of a class, a class itself can be public or private, although most classes are public. We will discuss private classes in Chapter 7. The code template for a public Java class is given below:

public class ClassName

{

   //data members are coded here

   //member methods are coded here

}

The name of the class, given at the top of the UML diagram, is substituted for ClassName on the first line of the template. The declaration of the class’s data members and the code of its member methods are coded inside of a pair of braces that make up the class’s code block. The variables that represent a class’s data members are coded before the code of the class’s member methods. While this is not a Java syntax rule, it is considered good coding practice. The code of the class specified by the UML diagram presented in Figure 3.11 is given in Figure 3.12 with the data members set to initial values.

[image:]

Figure 3.12
The code of the class Person specified in Figure 3.11.

Normally, the initial values are chosen to be the most common value of the data members. In this case, the assumption is that most people have blue eyes, red hair, and are 65 inches tall.

3.5.3 Creating Objects

In Section 2.5, we examined a two-line syntax for declaring objects in the class String. For example:

String firstName;

firstName = new String("John");

The first line creates the reference variable firstName that can store the address of a String object, which is initialized to the default value null. The second line creates a new String object, stores the string John "John" inside of it, and then overwrites the null value stored in the variable firstName with the address of the object. Alternately, the two lines of code can be consolidated into one line:

String firstName = new String("John");

When talking about the object created with either the two- or one-line syntax, in the interest of brevity we say that "we created a string object named firstName," or we might be asked to "output the object firstName." However, experienced programmers know that it is more accurate to say, "we created a string object referenced by the variable firstName," or "output the object referenced by firstName." With that understanding, we will use the brief version in the remainder of this text.

By changing the name of the class coded in the one- or two-line syntax and usually the code inside the parentheses, both versions of the syntax can be used to declare an object in any class. The code fragment below uses the one-line grammar to create two Person objects, one named mary and the other named kate:

Person mary = new Person();

Person kate = new Person();

The memory allocated by these two statements is shown in Figure 3.13. As defined in the Person class (Figure 3.12), each object contains the same three variables set to initial values. The variables hairColor and eyeColor store the address of string objects that contain the initial values. At this point, Mary and Kate are identical twins and will remain so until we add methods to the class that can change the values of the data members.

[image:]

Figure 3.13
Two Person objects and the statements that constructed them.

Constructor methods

Let us assume that the two lines of code that created the objects mary and kate

   Person mary = new Person();

   Person kate = new Person();

were coded in the main method of a program that dealt with people, or more precisely, Person objects. These two lines of code should be thought of as the main method’s request to the class to create two Person objects. If I call a carpenter and request that he create, or construct, a shed for me, I become his client. The two terms, construct and client, used in this analogy are used in the programming jargon of classes and objects. We would say that the class Person has constructed two objects for the client code main. Any section of code that declares an object in a class is considered to be client code (of that class), and the class is said to have constructed the objects for the client code.

Every class has at least one member method that constructs new objects. These non-void methods are called constructors, and they execute every time the object declaration syntax is used to declare an object. During the execution of a constructor method, the storage is allocated for the class’s data members, the initial values are stored in the data members, the collection of data members is assigned a memory location (considered to be the location of the object), and that location is returned to the client code. The assignment operator included in the object-declaration grammar then stores the returned location of the object in the object’s reference variable (e.g., mary).

The name of a constructor method is always the name of its class, so the code to the right of the key word new in the declaration of mary’s object

Person mary = new Person();

is actually an invocation to the constructor method named Person that has no parameters and returns the address of a newly created Person object.

The class Person shown in Figure 3.12 does not contain a constructor method, which in this case would be a method named Person. When a class does not contain a constructor, a Java-provided constructor method is used to construct objects. This constructor, referred to as the default constructor, has no parameters, and it performs the functions previously mentioned:

1.Allocates the storage for the data members of the class

2.Stores the initial values in the data members

3.Assigns the collection of data members a memory location

4.Returns the location to the client code

Because the class Person does not contain any methods, the two Person objects mary and kate declared as

Person mary = new Person();

Person kate = new Person();

would be created by the default constructor, which would perform the four functions listed above. Each object’s data members would be set to the initial values specified in the data-member portion of their class (Figure 3.12) during function 2. In Section 3.6.2, we will learn how to add constructor methods that we write to a class. These methods can contain parameters and code to extend the four functions performed by the default constructor.

3.5.4 Displaying an Object

Objects can be displayed to the system console and to a graphical game board in one of two ways. We can simply mention the name of the object or invoke the toString method on the object inside a method invocation used to display strings, or we can add a method to the object’s class that, when invoked, outputs the object. The following statements use the first approach to display the Person object mary to the system console object, System.out and then to a GameBoard object named g at location (210, 100).

System.out.println(mary);

g.drawString(mary.toString(), 210, 100);

This approach is usually not too interesting because what is displayed is the location of the object that is stored in the reference variable mary preceded by an ampersand (@) and the name of the object’s class. Referring to Figure 3.13, Mary’s object is located at address 15, so the output to the system console and the game board would be Person@F. The second alternative, adding a method to the object’s class that when invoked outputs the object, produces a more interesting and useful output. This technique will be discussed in Section 3.6.

Figure 3.14 presents an application that creates two Person objects, whose class is defined in Figure 3.12, and outputs their locations to the system console and the game board. The output is shown in Figure 3.15, except that the program does not produce the more interesting output of the actual object Mary shown in the middle of the game board. As previously mentioned, the techniques for producing that output will be discussed Section 3.6, and the code to produce the output will be left as an exercise for the student.

Lines 7, 10, and 11 create two Person objects using the two-line syntax. The reference variables mary and kate are declared as class variables on line 7, so they can be accessed from the main method and the draw call back method. Lines 13–14 and lines 21–22 output the object’s locations to the system console and the game board, respectively. These locations can be thought of as the locations assigned to the two objects by Java’s memory manager when lines 10–11 execute.

[image:]

Figure 3.14
The application ClassAndObjectBasics.

System console output:

Person@3a6727

Person@4a65e0

Game board output:

[image:]

Figure 3.15
The object locations output by the application ClassAndObjectBasics.

3.5.5 Designing a Graphical Object

During the specification and design of a program we identify the types of objects that the program will deal with and the operations to be performed on them. Then during the program development process, a class is developed for each of the object types, and the operations performed on the objects become the methods of the class. A common operation performed on objects is to display them, and in the previous section we were able to display a Person object’s location without adding a method to the Person class. To produce the more interesting display of an object, such as the drawing of the object mary with her red hair and blue eyes shown in the middle of Figure 3.15, we add a method to the object’s class that uses the shape and line drawing methods of the Graphics class to produce the output.

In Section 3.6, we will learn how to add this method, whose name usually begins with the prefix show, and other methods that perform common operations on objects to an object’s class. In preparation for the coding of this method, the programmer has to design each type of graphical object using the basic drawing shapes available in the Graphics class. In this section, we will become familiar with techniques used to design these objects so that the drawing can be easily coded into a show method, and the object can be easily manipulated by other class methods that perhaps relocate the object, erase the object, or animate the object.

Drawing an Object

To begin, we draw a picture of the object using the graphical shapes available in the API Graphics class discussed in Section 3.3. The object should be inscribed in a rectangle, and if ovals are used, they should be inscribed in their own rectangle. Figure 3.16 shows a sketch of a snowman-type object comprised of two rectangles and two circles. The rectangles that inscribe the ovals and the entire object are shown in red.

The dimensions, in pixels, of each of the basic shapes that make up the game piece should be given in the drawing. For example, the snowman’s hat is specified on the upper right side of the figure to be 10 pixels wide and 15 pixels high. Ovals that are circles, such as a snowman’s head and body, can be specified with one dimension (e.g., the diameter of the snowman’s head is 20 pixels). After the dimensions of all of the shapes that make up the object have been noted on the drawing, the overall width and height of the inscribing rectangle is added to the drawing. This is shown in Figure 3.16 on the bottom and left side of the inscribing rectangle. The width is simply the width of the snowman’s body, 40, and the height is the sum of the heights of the shapes that make up the snowman, 77 (15 + 2 + 20 + 40).

The color of each shape that makes up the object should also be given, as shown in the lower right portion of the figure. The word default used in the object’s color specification implies that snowmen objects could be constructed with hats that are not black. Finally, a point that will be used to locate the object on the game board is noted on the drawing. As shown in the upper left side of the figure, this point is typically the upper left corner of the inscribing rectangle.

[image:]

Figure 3.16
The design of a snowman game piece.

The next step in this design process is to determine the locations of each of the shapes’ upper-left corner relative to the (x, y) location of the game piece, which for our snowman is the upper left corner of the inscribing rectangle. These locations, along with the width and height of each of the shapes, are entered into in a table that will be used in the show method to draw each of the shapes. The table is a digital representation of the object, and the process of determining the data is referred to as digitizing the object.

The digital representation of our snowman object is given in Table 3.2. As previously mentioned, each location in the table is relative to the (x, y) location of the upper corner of the rectangle that inscribes the snowman object. Therefore, each location given in the table begins with an x or y followed by the x or y distance to the corner of the shape. When reading the locations in the table, it should be remembered that the positive x direction is to the right, and the positive y direction is down.

To determine these distances, we either consider the dimensions of each of the shapes given in Figure 3.16, or we draw the object on a piece of graph paper whose origin is the upper left corner of the object’s inscribing rectangle. Then, the x and y distances to the upper-left corner of each shape are simply the x and y coordinates of the shape’s inscribing rectangle’s upper left corner. The following two examples illustrate the technique of determining the x and y coordinates of each shape by considering the dimensions given in Figure 3.16.

Table 3.2
Digital Representation of the Snowman Object Shown in Figure 3.16

[image:]

1.To determine the x location of the upper left corner of the snowman’s hat, which is x + (20-5) as indicated in the first row and third column of the table, half the width of the snowman’s inscribing rectangle (20) is added to x because the center of the hat is at the center of the inscribing rectangle. Half the width of the hat (5) is subtracted from x because the left side of the hat is half the width of the hat closer to the left side of the snowman’s inscribing rectangle than is the center of the hat.

2.To determine the y location of the upper left corner of snowman’s head, which is y + (15+2) as indicated in the third row and fourth column of the table, the height of the hat (15) and the height of the hat brim (2) are added to y.

It should be noted that when lines are used in the object’s drawing, each line is entered on a separate row of the table and, as indicated in the column headings of Table 3.2, the coordinates of the endpoints of the lines are entered into the rightmost four columns of the table. During the design phase of the program, a table is produced for each type of object in the program.

3.6 ADDING METHODS TO CLASSES

Many of the methods added to a class perform operations on the objects in the class. Some of these operations are so commonly performed, such as a method to display an object or a method to change the value of a data member, that they are included in most classes. To improve program readability, the names of these methods usually begin with a designated prefix. For example, the names of methods that display objects usually begin with the prefix show, and a method that begins with the prefix set usually changes the value of one of an object’s data members.

In this section, we will study the techniques for adding methods to classes and how to use them to perform operations on objects. These methods will be added to a class named SnowmanV1 that defines the object depicted in Figure 3.16 and digitized in Table 3.2. Its UML diagram will be progressively developed, by adding methods to it, as we move through the next few sections of this chapter.

Our starting point will be the UML diagram shown in Figure 3.17, which is implemented in Figure 3.18. The class has three data members, two integers, and a reference variable used to specify the location of a SnowmanV1 object and its hat color. As shown in the UML diagram, the data member hatColor will refer to a color constant in the class Color. The code of the class SnowmanV1 is presented in Figure 3.18. The three data members are coded on lines 4–6. The default location of the snowman is (5, 30), which is the upper left corner of the game board. The hat color has been initialized to the color constant BLACK.

[image:]

Figure 3.17
The UML diagram of the class SnowmanV1

[image:]

Figure 3.18
The Class SnowmanV1

The use of a graphical snowman in this chapter will make the concept of operating on an object less abstract, and therefore more easily understood. For example, rather than the class’ show method simply displaying an object’s (x, y) location, its show method will display the object in a more tangible way: by drawing it on the game board at its (x, y) location. Rather than simply outputting the increased value of an object’s x location, we will see the object move to the right.

3.6.1 The show Method

A method that begins with the prefix show is used to display an object and is a nonstatic method. Because the drawing methods of the Graphics class cannot be used to draw on the system console, we have to define what it means to show an object on the system console. The commonly accepted meaning is that the output would consist of the annotated values of the object’s data members. This version of a show method, named showXYToSC (SC for system console) would invoke the println method and pass it a string that concatenates the annotation and the class’s x and y data members. For example:

public void showXYToSC()

{

  System.out.println("x is: " + x +

      "\ny is: " + y);

}

After this code is added to the class then snowman sm1 could be output to the system console using the statement:

sm1.showXYToSC();

which would produce the output:

x is: 5

y is: 30

The statement sm1.showXYToSC(); can be read in three different ways:

1.The object sm1 is invoking the showXYToSC method.

2.The method showXYToSC is invoked on the object sm1.

3.The showXYToSC method is operating on the object sm1.

All three of these are synonymous; that is, they mean the same thing. In general, to cause a method to operate on an object, we precede the name of the method with the name of the object followed by a dot.

An important point to remember is that if we just focused on the code of the showXYToSC method and asked the question, when it mentions the data members x and y, which object’s data members is it talking about, the answer is the data members of the object that invoked it. The true meaning of the statement "a method operates on an object" is that all occurrences of the names of the data members coded inside the method refer to the data members of the object that invoked it.

Figure 3.19 presents the expanded UML diagram that reflects the addition of two show methods, showXYToSC and show. The method show will use the digitized version of a snowman, presented in Table 3.2, to display a SnowmanV2 object on the game board. Because the shape drawing methods in the Graphics class will need access to the game board object, the show method will have one parameter: a reference to a Graphics object. The characters g: Graphics that appear inside the parentheses of this method in the UML diagram is UML notation to indicate that this method has one parameter named g that is a reference to a Graphics object.

The code of this expanded class is given in Figure 3.20. A client application that declares a SnowmanV2 object and outputs the object’s address to the system console and the object to both the system console and the game board is shown in Figure 3.21. The application’s output is shown in Figure 3.22.

[image:]

Figure 3.19The UML diagram of the class SnowmanV2.

The client code (Figure 3.21) invokes the default constructor on line 7 to declare a SnowmanV2 object named sm1. The declaration uses the one-line object declaration syntax and is at the class level, so the object can be accessed by the main method and the draw call back method. Line 11 outputs the object’s location to the system console, and line 12 invokes the showXYToSM method of the Snowman’s class to display snowman sm1 to the system console. This method is coded on lines 12–16 of the Snowman class (Figure 3.20).

Line 19 of the application invokes the SnowmanV2 class’s show method to display snowman sm1 on the game board. This invocation is coded in the draw call back method for two reasons. First, the show method must be passed a Graphics object on which to perform its drawing, and the draw method is the only call back method that is passed a Graphics object when it is invoked. It passes the Graphics object to the show method as an argument on line 19. Secondly, when the game board needs to be redrawn, the game environment invokes draw, which will then invokes show to redraw the snowman.

Lines 18–26 of Figure 3.20 are the code of the show method. The method’s signature (line 18) includes the parameter g specified in the class’s UML diagram (Figure 3.19). It uses this parameter to invoke methods in the Graphics class used to change the current drawing color (setColor lines 20 and 23) and to draw the rectangles and circles specified in Table 3.2. All of the shape locations sent to the Graphics class methods as arguments on lines 21–25 are those contained in the table. They contain the variables x and y because they are relative to the upper left corner of the rectangle that inscribes the snowman. Because the method does not declare local variables named x and y, the class-level data members x and y are used in these arguments. As a result, the snowman is drawn as shown in Figure 3.21 with the upper left corner of its inscribing rectangle at (5, 30).

[image:]

Figure 3.20
The class SnowmanV2.

[image:]

Figure 3.21
The application ShowMethods.

System Console Output

SnowmanV2@3a6727

x is: 5

y is: 30

Graphical Output

[image:]

Figure 3.22
The console and graphical output produced by the application ShowMethods.

3.6.2 Constructors and the Keyword this

In Section 3.5.3, we learned that constructors are methods that construct objects, and the names of these methods must be the same as the class of the objects they construct. If a constructor method is not included in the specification and code of a class, a Java provided default constructor creates the object by performing the following four functions:

1.Allocate the storage for the data members of the class

2.Set the initial values into the data members

3.Assign the collection of data members a memory location

4.Return the location to the client code

Because the class SnowmanV2 does not contain a constructor method, the default constructor is used to create all instances of this class (objects declared in this class). As a result, function 2 would locate them all at (5, 30), and they would all have black hats. When displayed, they would be displayed on top of each other giving the appearance that only one of them was displayed.

To allow the client code to specify the values of the data members of a newly constructed object, we add a constructor method to its class. Its code template is the same as the template used to code any other method, except its name must be the same as the class’s name, and its signature cannot contain a return type. Its signature can contain a parameter list, and it can contain Java statements in its code block. When a constructor method is included in the code of a class, the default constructor is no longer available to construct objects in the class.

Figure 3.23 presents the UML diagram of the class SnowmanV3 that contains a two-parameter constructor, which is a constructor with a parameter list that contains two parameters. When the client code uses this constructor method to create an object, just before the fourth function normally performed by the default constructor is performed, the constructor method executes. Storage is allocated for the constructor’s parameters, the values of the client’s arguments are copied into them, and then the code of the constructor executes.

As with any method, the values copied into the parameters of the constructor could be used anywhere in the constructor’s code block by coding the names of the parameters. It is often the case that these parameters are used by the client code to specify the initial values of the data members. When this is the case, the constructor’s code block simply assigns the parameters to the data members:

[image:]

Figure 3.23
The UML diagram of the class SnowmanV3.

public SnowmanV3(int xLoc, int yLoc)

{ x = xloc;

  y = yLoc;

}

After this two-parameter constructor’s code is included in the code of the class SnowmanV3, the client could use the following code to declare two snowmen located at the upper right and lower left corners of the game board:

   SnowmanV3 sm1 = new SnowmanV3(5, 30);

   SnowmanV3 sm1 = new SnowmanV3(460, 423);

The Keyword this

A method in a class can contain a parameter whose name is the same as the name of one of the class’s data members. When this occurs, we say that the parameters shadow the data members. For example, the signature of the SnowmanV3 class’s two-parameter constructor could have been coded as:

public SnowmanV3(int x, int y)

When the parameter names shadow data member names, the use of the name within the constructor refers to the parameter, not to the data member. As previously stated, parameters should be considered to be local variables. An assignment into the variable x within the constructor’s code body changes the value stored in the parameter, not the value stored in the class-level data member x. We can refer to the data member within the code of constructor (or any other member method whose parameter list employs shadowing), by preceding the data member’s name with the key word this followed by a dot, e.g., this.x. This syntax could be thought of as the variable x that is a data member of this class. Using this syntax, the SnownanV3 class’s two-parameter constructor could be coded as:

public SnowmanV3(int x, int y)

{ this.x = x;

 this.y = y;

}

This coding of the two-parameter constructor, which uses shadowing, is actually preferred when the parameter list is being used to reset the initial values of the data members. When shadowing is used, the name and type of the parameters and the class’s data members in the UML diagram (Figure 3.24) are the same, which is a cue to anyone looking at the UML diagram that the constructor will reset the initial values of the data members.

Figure 3.25 is the implementation of the SnowmanV3 class specified in Figure 3.24. A client application that declares and displays two instances of the class is shown in Figure 3.26, and the output to the game board produced by the application is shown in Figure 3.27.

The two-parameter constructor is coded on lines 12–16 of Figure 3.25. It is good programming style to code the constructor as the first method after the data member declarations. Because the names of the constructor’s parameters are the same as the class’s data members, the keyword this is used on lines 14 and 15 to access the class’s data members and assign the initial values passed into the parameters to them.

[image:]

Figure 3.24
The modified UML diagram of the class SnowmanV3.

The client code (Figure 3.26) invokes the constructor twice, once on line 9 and again on line 10, to create two snowmen named sm1 and sm2. The arguments sent to the constructor specify the initial (x, y) locations of the snowmen, which the constructor stores in the two data members of the objects. Lines 19 and 20 of the client code invoke the show method. During the first execution of the method, the variables x and y on lines 27–31 of Figure 3.25 refer to the x and y data members of snowman sm1. Because these variables contain the coordinates (5, 30), this snowman is drawn in the upper left corner of the game board. Similarly, during the second invocation of the show method of the SnowmanV3 class, the variables x and y on lines 26–31 refer to the x and y data members of snowman sm2, and it is drawn at the lower right corner of the game board (460, 423).

3.6.3 Private Access and the set/get Methods

In the interest of simplicity, the data members and the member methods of the classes we have discussed all had public assess as indicated by the plus (+) sign that precedes them in their UML diagrams. Another type of access available in Java is private access, which is denoted in a UML diagram by a minus (-) sign. In this section, we will examine the difference between public and private access and learn which access modifier is normally used for the data members and member methods of a class. This will lead us to a discussion of methods that begin with the prefixes set and get that are commonly coded in most classes.

[image:]

Figure 3.25
The class SnowmanV3.

[image:]

Figure 3.26
The application ConstructorAndThis.

[image:]

Figure 3.27
The output from the application ConstructorAndThis.

Public and Private Access

In the case of a member method, access is the act of invoking the method. In the case of a data member, access is the act of fetching or assigning the contents of the data member. Designating private access to the data members or methods of a class places no restrictions on the code of the methods contained in the class. Any line of code in a method of a class can invoke any private or public method in the class and can fetch and assign the value stored in any of its data members.

Private access places restrictions on client code. Client code cannot invoke methods of a class that are assigned private access, nor can it access the data members of a class that are assigned private access. If an application declared an object named mary, and the object’s class contained a method named show, then the client code statement

mary.show();

would result in a translation error if the method was assigned private access.

NOTE

Public access allows client code to access a class’s data member or method, but private access does not.

The syntax we have used in client code to access (invoke) a public method can also be used in client code to access an object’s public data. The syntax is the member (method or data) name proceeded by the object name followed by a dot. This syntax was used on line 12 of the application shown in Figure 3.21

sm1.showXYToSC()

to invoke the public method showXYToSC coded on lines 12–16 of Figure 3.20. This method outputs two data members, x and y, to the system console. Because the access modifier used in the declaration of these two data members is public, their contents could have been fetched and then output by the client code by replacing line 12 of the client code (Figure 3.21) with the statement:

System.out.println("x is: " + sm1.x + "\ny is: " + sm1.y);

In addition, the client code could set the x location of snowman sm1 to 10 by coding:

sm1.x = 10;

Normally, methods in a class are assigned public access. Exceptions to this will be given in subsequent chapters. Assigning them public access allows the client code to invoke them.

Good programming practice dictates that all data members in a class be assigned private access because allowing the client public access to an object’s data members can lead to some insidious and difficult to find programming errors.

That being said, it is often the case that client code has a need to obtain (get) the value stored in an object’s private data member, or set the value to a new value. Because any method in a class can access both private and public data members that are part of its class, public methods that begin with the prefixes get and set are added to the class. The client then invokes these methods to fetch and change the values stored in an object’s private data members.

NOTE

Normally, methods in a class are assigned public access, and data members are assigned private access. Client code invokes the set and get methods of the class to access an object’s private data.

Set Methods

A set method is a void method used to change, or set, the value stored in an object’s private data member to a new value. The new value is passed into it as an argument. Because most classes have more than one data member, set is not a method name, but a prefix used in naming methods. Normally, we code a set method for every private data member in the class. The method names begin with the set prefix, which is followed by the name of the data member they operate on. For example, setX would be the name of the method the client code would invoke to change the contents of an object’s private data member named x.

The signature of a set method contains one parameter and its code block contains one line of code. The method’s parameter receives the new value of the data member, and the line of code simply assigns the new value to the data member. Because the value passed into the method is to be the new value of the data member, the parameter’s type always matches the type of the data member. Below is the code of the setX method that sets the value of a private integer data member named x to the value of the argument passed to it.

public void setX(int x)

{

 this.x = x;

}

Because the method is public, the client code could invoke it to change the data member x of the object sm1 to 100:

sm1.setX(100);

String Immutability

The String class does not contain set methods to change the value of the characters stored in a String object. This is because Java strings are immutable. Once a value has been stored in a String object, the value cannot be changed. Although the following code fragment appears to change the value "Robert" stored in the string object created on the first line to "Bob", in fact it does not. Rather, it creates a new string object, stores "Bob" in it, and assigns the address of the newly created object to the variable name.

String name = "Robert";

name = "Bob";

Although this gives the appearance that the value stored in the object has changed, in reality, the new string value "Bob" is stored in a different object. The process is illustrated in Figure 3.28.

[image:]

Figure 3.28
The immutability of String objects.

get Methods

A get method is a nonvoid method used to fetch, or get, the value stored in an object’s private data member. The value is returned via a return statement. Like set, get is a prefix used in naming methods that fetch and return private data, and normally, a get method is coded for every private data member in a class.

Good programming practice dictates that the names of these methods begin with the prefix get, which is followed by the name of the data member on which they operate. For example, getX would be the name of the method the client code would invoke to fetch the contents of an object’s private data member named x.

The signature of a get method contains a return type, and its parameter list is empty. The return type is always the same as the type of the data member it fetches. Its code block contains one line of code that simply returns the value of the data member. Below is the code of the getX method that returns the integer value of an object’s private data member named x:

public int getX()

{

 return x;

}

Assuming a client application had declared an object named sm1, the following client code increases the object’s private data member x by one:

int currentX = sm1.getX();

sm1.setX(currentX + 1);

Figure 3.29 shows the code of the class SnowmanV4. It is the same code as the class SnowmanV3 shown in Figure 3.25, except its three data members have been assigned private access (lines 6–8) and the console output method has been removed. In addition, set and get methods for its private data members x and y have been added to the class. The code of these four methods, getX, setX, getY, and setY begin on lines 27, 32, 37, and 42, respectively.

[image:]

Figure 3.29
The class SnowmanV4.

The application class SetGetButtonClick shown in Figure 3.30 illustrates the use of set and get methods to access private data members.

[image:]

Figure 3.30
The application SetGetButtonClick.

The program is identical to the ConstructorAndThis application shown in Figure 3.26, except that lines 14–16 and 26–30 have been added. Lines 16 and 29 illustrate the use of the setX method to change the x value of Snowman sm2 and thus reposition it horizontally. Lines 26–30 illustrate the use of the getX method and the rightButton call back method to move snowman sm1 to the right one pixel every time the right button is clicked.

When the program begins, two snowmen, sm1 and sm2, declared on lines 9 and 10, are displayed on the game board by lines 22 and 23 of the draw call back method (Figure 3.30) at the upper-left and lower-right corners of the game board. Then, line 14 displays an input dialog box asking the user to enter the new value of snowman sm2’s x coordinate. Line 16 invokes the setX method to operate on snowman sm2, passing it the new x coordinate parsed on line 15. The method stores the new value in sm2’s x data member (line 34 of Figure 3.29). The result is that when the game board is redrawn after the dialog box closes, the snowman is drawn at its new x position. Figure 3.31 shows snowman sm2 in its new location, at the middle of the game board, after the user enters 250 in the input dialog box.

Lines 26–30 is an implementation of the game environment’s rightButton call back method. As its name implies, this method is invoked every time the button on the game window with the right arrow head (→) is clicked. It uses the getX method on line 28 to fetch the current x coordinate of sm1. Then it invokes the setX method to set the x data member of snowman sm1 to one more than its current value. Because the rightButton call back method executes every time the right button is clicked, and the draw method is invoked when it completes its execution, sm1 moves one pixel to the right very time the button is clicked. The upper portion of Figure 3.31 shows sm1’s new location after 60 clicks of the game board’s right (→) button.

3.6.4 The toString and input Methods

The methods we have developed in Section 3.6 perform work for a client application. They construct objects, display objects, and access the values of an object’s private data members. The methods toString and input are two other methods we can write to perform work for the client applications. These methods expand the client’s ability to access private data members, and both of the methods normally permit access to all of an object’s data members in one invocation.

The toString Method

The toString method is a nonvoid method that returns a string containing all the annotated values of an object’s data members to the client application. The method’s parameter list is empty. Its code progressively concatenates identifying annotation with the value of each of an object’s data members, and the resulting string is the method’s returned value. For example, the SnowmanV4 class shown in Figure 3.29 contains three data members: x, y, and hatColor. A typical coding of this class’s toString method would be:

1 public String toString()

2  {

3    String s;

4   s = "x is: " + x +

5     "\ny is: " + y +

6     "\nhatColor is: " + hatColor;

7    return s;

8   }

Because a class can have an unlimited number of data members, it is good coding practice to code the concatenation of each data member’s annotation and variable name on a separate line, as coded on lines 4, 5, and 6. Because the client code often sends the returned string to an output device, the inclusion of a new-line escape sequence in all but the first data member’s annotation improves the readability of the output.

[image:]

Figure 3.31
The output of the application SetGetButtonClick after the snowmen are relocated.

The variable hatColor,coded at the end of line 6, is declared as a reference variable in the SnowmanV4 class. When a reference variable is coded where a string is expected (as is expected here because the variable is preceded by the concatenation operator), the translator considers it to be an implicit invocation of another toString method. In Section 3.5.4, the location stored in the reference variable mary was output with an explicit invocation of a Java-provided default toString method. Because the class Color contains its own toString method, that method is implicitly invoked on line 6, and the string it returns is then concatenated into the string s. Rather than returning contents of the variable hatColor (an address), Color's toString method places a description of the color stored in the Color object hatColor into the returned string.

The input Method

The input method is a void method that allows the program user to enter new values for all of the data members of an object. The method’s parameter list is empty. Its code prompts the user to enter new values for each of an object’s data members, parses numeric inputs, and assigns the new values to the object’s data members. For example, the SnowmanV4 class shown in Figure 3.29 contains three data members: x, y, and hatColor. A typical coding of this class’s input method would be:

1 public void input()

2  {

3   String s;

4    int red, green, blue;

5

6   s = JOptionPane.showInputDialog("enter the value of x");

7   x = Integer.parseInt(s);

8   s = JOptionPane.showInputDialog("enter the value of y");

9   y = Integer.parseInt(s);

10   s = JOptionPane.showInputDialog("enter hat's red intensity");

11   red = Integer.parseInt(s);

12   s = JOptionPane.showInputDialog("enter hat's green intensity");

13   green = Integer.parseInt(s);

14   s = JOptionPane.showInputDialog("enter hat's blue intensity");

15   blue = Integer.parseInt(s);

16   hatColor = new Color(red, green, blue);

17 }

Because the variables x,y, and hatColor are not declared within the method, assignments into them (on lines 7, 9, and 16) change the values stored in the SnowmanV4 object’s data members.

Line 16 creates a new color object using the Color class’s three-parameter constructor and stores its address in the data member hatColor. The arguments sent to the constructor are the shade intensities of the colors red, green, and blue that combine to produce the desired new color. The range of a color’s intensity is 0 (lowest intensity) to 255 (highest intensity). High intensities produce bright colors. The program user would have to have knowledge of how to mix shade intensities of these three colors to produce a desired color. These intensities are input and parsed on lines 10–15. In the simplest case, if the desired color were to be either red, green, or blue, the intensity of the other two colors would be input as zero. White is an equal mix of the three colors, and black is the absence (zero intensity) of the three colors.

Figure 3.32 presents the class SnowmanV5 that includes the code of the toString (lines 29–36) and input methods (lines 38–54) discussed in this section, and Figure 3.33 presents the application ToStringAndInput that demonstrates the use of these methods. The console and graphical outputs produced by the program are presented in Figure 3.34.

Lines 8 and 9 of the application (Figure 3.33) declares two snowmen, sm1 and sm2, located at (7, 30) and (460, 420), respectively. The SnowmanV5 class’s toString method is invoked inside of the println method’s argument list on lines 13 and 14 to obtain annotated versions of the current values of each snowman’s data members. The returned string is concatenated with the names of the snowman and output to the system console (top of Figure 3.34).

The output contains a description of each the snowman’s current hat color: java.awt.Color[r=0,g=0,b=0]. This is the string returned from the SnowmanV5 class’s toString method’s implicit invocation of the Color class’ toString method (line 34 of Figure 3.32). The r=0, g=0, b=0 portion of the output indicates that the red (r), green (g), and blue (b) intensities of the color are all zero: the default hat color black.

Line 15 of the application displays the game board, with the two snowmen drawn on it at their initial locations wearing their black hats (Figure 3.34a). The SnowmanV5 class’s input method is invoked on lines 20 and 21 of the application (Figure 3.33), which allows the user to input new values of the two snowmen’s data members. Finally, line 18 redisplays the game board, and the two snowmen are drawn at their new locations with their new colored hats as shown on in Figure 3.34b. This output reflects user inputs of:

(200, 200) for sm1’s location and (0, 255, 0) for its (red, green, blue) color intensities;

(250, 200) for sm2’s location and (0, 0, 255) for its (red, green, blue) color intensities.

[image:]

Figure 3.32
The class SnowmanV5.

[image:]

Figure 3.33
The application ToStringAndInput.

Console Output:

sm1’s

x is: 7

y is: 30

hatColor is: java.awt.Color[r=0,g=0,b=0]

sm2’s

x is: 460

y is: 420

hatColor is: java.awt.Color[r=0,g=0,b=0]

Game Board Output:

[image:]

Figure 3.34
The console and game board output from the application ToStringAndInput.

3.7 OVERLOADING CONSTRUCTORS

Overloading constructors is an object oriented programming term used to describe a class that contains more than one constructor method. The code of each constructor is different, which is the motivation for coding more than one constructor. There is no limit on the number of constructors a class can contain. The name of a constructor method must be the name of the class, so all of the constructor methods in a class have the same name. For example, if the class’s name is SnowmanV4, then the name of all of the constructors would be SnowmanV4.

Any of a class’s constructors can be used by a client application to allocate an object in the constructor’s class. Because the names of the methods are the same, the only way the Java translator knows which constructor is being used is to examine the type and number of arguments in the client’s invocation statement.

Consider the code of the class SnowmanV6 presented in Figure 3.35. It contains three constructors, which begin on lines 12, 15, and 20. The signature (line 12) of the first of these constructors contains no parameters and is therefore referred to as the no-parameter constructor. To use the no-parameter constructor, the client’s declaration statement would not contain any arguments:

SnowmanV6 s1 = new SnowmanV6();

Because the constructor’s code block is empty, the snowman’s x, y, and hatColor data members would retain their default values set on lines 7–9, and when the snowman was drawn it would appear at (7, 30) with a black hat.

To use the two-parameter constructor on line 15, the client’s declaration statement would have to contain two integer arguments:

SnowmanV6 s1 = new SnowmanV6(250, 250);

This constructor allows the client to specify the initial location of the newly created snowman. Lines 17–18 would execute and set the value copied into the method’s parameters (250) into the object’s x and y data members. When the snowman was drawn, it would appear at (250, 250) wearing a black hat.

To use the three-parameter constructor on line 20, the client’s declaration statement would have to contain two integer arguments and a reference to a Color object:

SnowmanV6 s1 = new SnowmanV6(350, 250, Color.BLUE);

This constructor allows the client not only to specify the initial location of the snowman, but also its hat color. Lines 22–24 would execute and set the values 350 and 250 into the object’s x and y data members, and it would set the object’s data member hatColor to blue. In this case, when the snowman was drawn, it would appear at (350, 250), and because line 28 of Figure 3.35 uses the object’s hatColor data member to set the current color before drawing the hat, it would be wearing a blue hat.

An attempt to create a snowman with an argument list that does not match one of the parameter lists on lines 12, 15, or 20 would result in a translation error. For example, the client statement

SnowmanV6 s1 = new SnowmanV6(350.34, 200, Color.BLUE);

would result in a translation error indicating that the translator can find a constructor whose parameters are a double, followed by an integer, followed by a Color object.

NOTE

Each constructor in a class must have a unique parameter list, and the type and number of the arguments in the client’s object declaration statement must match one of these lists.

It should be noted that once a constructor is coded in a class, the Java-provided default constructor discussed in Section 3.5.3 can no longer be used to create an instance of the class. As a result, to default to the values in data member’s declaration statements, a no-parameter constructor (e.g., lines 12–14 of Figure 3.35) must be added to the class.

Figure 3.36 presents the application OverloadingConstructors that uses the three constructors shown in Figure 3.35 to construct three snowmen on lines 8, 9, and 10: one at the default location (7, 30), one at the center of the game board (250, 250), and one to its right at (350, 250) with a blue hat. Before each snowman’s hat is drawn, line 28 of the snowman’s class’s show method (Figure 3.35) sets the current drawing color to the snowman’s hat color. As a result, when the three snowmen are drawn on the game board (lines 19–21 of Figure 3.36) at their initial locations, one is wearing a blue hat (Figure 3.37).

[image:]

Figure 3.35
The class SnowmanV6.

[image:]

Figure 3.36
The application OverloadingConstructors.

[image:]

Figure 3.37
The output from the application OverloadingConstructors.

3.8 PASSING OBJECTS TO AND FROM WORKER METHODS

The techniques and syntax used to pass primitive information (i.e., values stored in primitive variables) between client and worker methods were discussed in Section 3.2. The same techniques and syntax presented in that section can be used to pass objects between client and worker methods. In the case of objects, the information passed is actually the addresses of the objects stored in the reference variables that refer to the objects. An unlimited number object addresses can be passed to a worker method via its parameter list, and the address of one object can be returned from a worker method via its return statement.

Passing Objects to Worker Methods

The first row of Table 3.3 gives the syntax used to invoke the Game class’s static method add1ToX passing it the address of the SnowmanV6 object sm1. The right-most column gives the syntax of the method’s signature. For comparative purposes, the second row of the table gives the syntax used to pass the integer age to static method add1toAge and the syntax of the method’s signature. As shown in the table, the syntax used to pass objects to worker methods is the syntax used to pass primitive values to worker methods. The primitive type coded in the method’s parameter list is replaced with the type of the reference variable (i.e., the object’s class name), as shown in the rightmost column of the table.

The following code segment is a static worker method named moveRight that increases the x data member of the SnowmanV6 object passed to it by one pixel:

public static void moveRight(SnowmanV6 aSnowman)

{

int currentX = aSnowman.getX();

  aSnowman.setX(currentX + 1);

}

Table 3.3
Syntax Used To Pass Objects and Primitives to Worker Methods

	Information Passed

	Client Method’s Invocation Statement

	Worker Method’s Signature Coded in the Class Game

	An Object’s address

	Game.add1ToX(sm1)

	static void add1ToX(SnowmanV6 sm)

	An Integer value

	Game.add1ToAge(age1)

	static void add1ToAge(int age)

Figure 3.38 is modified version of the program presented in Figure 3.30 that moves a snowman one pixel to the right every time the game board’s right arrow button is clicked. The method moveRight has been added to the program (lines 32–37), and it is used to move two snowmen to the right every time the right arrow button is clicked. This method is invoked on lines 28 and 29 to move the two SnowmanV6 objects, sm1 and sm2, to the right one pixel. The objects are created on lines 9 and 10 using the class’s three-parameter constructor. The first invocation of moveRight (line 28) passes the location of sm1 to the method, and the second invocation (line 29) passes sm2’s location to the method. Because the static method moveRight is coded in the same class as the invocation statements on lines 28 and 29, the name of the class need not be included in the invocations.

[image:]

Figure 3.38
The application ObjectsAsParameters.

Figure 3.39 illustrates the passing of the location from the reference variable sm1 into the method’s moveRight parameter aSnowman, and the change in the x data member of the object after the method executes. The client code’s RAM memory is shown on the left side of the figure, and the worker method’s RAM memory is shown on the right side of the figure. Each time the method is invoked, the value stored in the invocation’s argument is copied into the parameter aSnowman. The dashed arrow at the top of the figure illustrates this process for the first invocation of the method (line 28) when the location of snowman sm1 is passed to the parameter aSnowman.

[image:]

Figure 3.39
The passing of the object sm1 to the worker method moveRight.

After the snowman’s location, 200, is copied into the worker method’s parameter aSnowman, the use of this variable on lines 34 and 36 of Figure 3.38 refers to the client’s snowman object sm1. Line 34 fetches sm1’s x data member, and line 36 changes the value stored in this data member. While the method is in execution, the snowman object is shared between the client code and the worker method it invoked. Although we normally say we are “passing an object to a method,” we really should say we are “passing the address of the object to a method.”

NOTE

Technically speaking, objects are not passed to and from methods. Rather, the addresses of the objects are passed between the methods.

Because the sm1’s address is shared, when the worker method ends the initial value of its x data member (10) stored inside the object has been overwritten with the value 11. This is not a contradiction of the idea that value parameters prevent worker methods from changing the client’s information passed to it as parameters because the information passed to the method moveRight is the contents of the variable sm1, not the object’s data member x. This is a subtle but important point to understand. While it is true that the worker method can change the contents of the data members of the object sm1 because aSnowman stores the object’s address, it cannot change the address stored in the variable sm1 (which was passed to it).

Returning an Object from a Worker Method

An object’s address can be returned from a method using the same syntax used to return a primitive value from a method. The keyword void in the method’s signature is replaced with the type of the information being returned. To return the location of an object from a method, the name of the returned object’s class replaces the keyword void. As is the case when primitive values are returned from a method, if the returned address is to be used by the client code that invoked the method, the client code must assign the returned address to a variable.

The static method shown in Figure 3.40 creates a snowman object located half way between the two snowmen whose addresses are passed into its parameters, and returns the address of the newly created snowman. Assuming the method is added to the class SnowmanV6, the following code fragment invokes the method and stores the returned address of the newly created snowman in the reference variable aSnowman:

SnowmanV6 aSnowman;

aSnowman = SnowmanV6.halfWayBetween(snowman1, snowman2);

The signature of the method on line 1 of Figure 3.40 states that the address of a SnowmanV6 object will be returned from the method. A SnowmanV6 object is created on line 4, and its address is returned on line 9.

[image:]

Figure 3.40
A method that returns an object.

3.9 CHAPTER SUMMARY

This chapter began our study of the concepts used to design and implement classes, which will be expanded in Chapters 7 and 8. We learned that a class is similar to a blueprint enabling us to define and construct an item, and that an object is a particular item or instance of the class. In the same manner that we use the classes and methods available in the Java API to facilitate the design and development of a program, we can also use and reuse the classes we create.

Methods are subprograms, which are key components of classes. They perform the work of the class by creating, displaying, and manipulating the class’s objects. Several versions of a class’s constructor methods are normally available in a class to create an object and initialize various subsets of its data members. The names of methods that perform tasks common to most classes have been standardized, and they are included in most classes. The methods named toString and show are used to display an object on the console or on the game board, and the input method and methods that whose names begin with the prefixes set and get are used to change the values of an object’s data members.

The first line of a method is called the method’s signature. Java uses value parameters to pass information to a method and a return statement to transfer one value from a method. The list of information passed to a method is called an argument list, which is a sequence of variables and literal values separated by commas. This information is copied into the list of variables declared in the method’s signature, which is called a parameter list. Before the method begins execution, the value stored in the ith argument of the invocation statement is copied into the ith parameter of the method. An argument’s type must match the type of its corresponding parameter. Value parameters prevent a method from changing the value stored in thevariables coded in the argument list.

Several methods in a class can have the same name if their parameter lists are different. When this feature is used in the coding of a class’s methods, we say that the methods with the same name are overloaded. Constructor methods are often overloaded because their names must be the same as the class’s name. Normally, methods have public access to permit methods defined outside of the class to invoke them, and data members have private access to prevent methods defined outside of the class from inadvertently changing their values.

A class’s data members are declared as class level variables. Class level variables are variables declared outside of the code block of a method and inside the code block of the class. It is good programming practice to declare these class-level variables at the beginning of the class’s code block before the implementation of the class’s methods.

All class variables declared in a class, whether they are declared public or private, can be directly accessed within the class’s methods by simply coding the name of the variable. The only exceptions to this are if the method declares a parameter, or variable, within its code block with the same name. When this is the case, the class variable is accessed within the method by preceding its name with the key word this followed by a period. The context in which direct access syntax can be used to access a variable is called the scope of the variable.

A UML diagram is a graphical depiction of a class developed during the design of the class. This tool not only facilitates the design of the class, but it also documents the data members and methods that make up the class. It is used as the starting point for the implementation of the class. Other class design tools discussed in this chapter are the techniques used to depict and digitize a graphical object, which serve as the basis for the implementation of their show methods.

The methods in the API Graphics class can be used to implement a graphical object’s show method. This class provides methods for drawing lines and basic shapes on a previously declared Graphics object. The units of the (x, y) location of the lines, shapes, and the size of the shapes passed to these methods is pixels or picture elements. These methods provide the foundation for the rest of the graphical topics in this text.

Knowledge Exercises

1. Indicate whether the following statements are true or false:

a) Methods must be coded inside the code block (i.e., the open and close brackets) of a class.

b) The first line of a method is called its title.

c) The first line of a method always ends with a semicolon.

d) All methods must contain a code block.

e) The method pow in the Math class is an example of a void method.

f) We can invoke methods we did not write.

2. Indicate whether the following statements are true or false.

a) It is good programming practice to begin a method name with an uppercase letter.

b) It is good programming practice to make the names of methods representative of the work they perform.

c) A method’s name should not contain capital letters.

3. Fill in the blank:

a) The signature of a method that does not operate on an object must contain the keyword __________.

b) The signature of a method that does not return a value must contain the keyword __________.

c) When we invoke a static method, we begin the invocation statement with the name of __________ followed by a dot.

d) When we invoke a nonstatic method, we begin the invocation statement with the name of __________followed by a dot.

4. Give the invocation statement to invoke the class Boat’s moveBoat method whose signature is: public static void moveBoat().

5. Indicate whether the following statements are true or false:

a) Client code is code that invokes a method.

b) A method can invoke the same method more than once.

c) Parameters are used to pass information to a method, and the information is passed into the method’s arguments.

d) One or more pieces of information can be passed to a method.

e) One or more pieces of information can be returned from a method.

f) The type of a parameter must match the type of the information it receives.

g) Parameters and arguments share the same variable.

h) Java passes information to methods using the concept of reference parameters.

i) When a method changes the value of an integer passed to it, the original value is no longer available to the client code.

6. Give the signature of a public method named add that adds two integers sent to it and returns the result.

7. After an invoked method completes its execution, which statement executes next?

8. Indicate whether the following statements are true or false:

a) A class-level variable must be coded inside a method in the class.

b) Class-level variables are used to share information between all of the methods defined in the class.

c) A method cannot declare a variable with the same name as a class-level variable.

d) When a method changes the value stored in a class-level variable, the original value is no longer available to the other method in the class.

e) More than one class-level variable can be coded in a class.

9. Give the declaration of a class-level variable named checkAmount that is coded in the program’s class.

10. Fill in the blank:

a) The method __________ in the Graphics class is used to change the current drawing color.

b) The constant__________in the Color class stores the color red.

c) The import statement __________ is used to access the methods defined in the Graphics class.

d) The import statement __________ is used to access the color constants defined in the Color class.

 11. Give the name of the method in the Graphics class used to:

a) Draw the outline of a rectangle

b) Draw a filled rectangle

c) Draw the outline of an ellipse

d) Draw the outline of a circle

e) Draw a filled circle

f) Draw a line

12. Give the Java statement (or statements) to draw the following shapes and lines on the Graphics object g:

a) A line from (200, 30) to (100, 75) drawn in the current color

b) The outline of a 100-pixel wide by 50-pixel high rectangle located at (20, 200) drawn usingthe current color

c) A blue filled circle whose diameter is 30 pixels located at (250, 300)

d) A blue filled ellipse 100-pixel wide by 50-pixel high located at (300, 100)

13. Fill in the blank:

a) Using the words object and class in: House is to __________ as blueprint to__________.

b) Classes are comprised of member __________ and __________.

c) The name of the graphic used to specify a class is a __________ diagram.

d) Data members of a class are usually designated to have __________ access.

e) Member methods of a class are usually designated to have __________ access.

14. Give the Java code to declare an object named joe in the class Person using the class’s no-parameter constructor, and:

a) the one-line declaration syntax.

b) the two-line declaration syntax.

15. Referring to Exercise 14:

a) What is actually stored in the variable joe?

b) Is joe a primitive-type variable? If not, what is the its type?

c) Draw a picture (similar to Figure 3.13) of the memory allocated by Exercise 14a, assuming the class Person has two integer data members named age and idNumber.

16. Give the Java code to declare a class whose object will be coffee cups. Each coffee cup will have a size (ounces) and a price. The class will not contain any methods.

17. Referring to Exercise 16:

a) Give the code of the two-parameter constructor of the class defined in Exercise 16.

b) Give the client code used to declare a $3.85 coffee cup whose size is 8 ounces.

c) Give the code to output the coffee cup declared in part B to the system console using an implicit invocation of the toString method.

d) Repeat part C of this question using an explicit invocation of the toString method.

e) What is output to the console by the invocation in part C and B?

f) Give the code to produce the same output generated by part D to the graphic object g.

18. Give the code of a method named toString that, when added to the class defined in Exercise 16, returns the values of its two data members fully annotated.

19. Give the code of a method named show that, when added to the class defined in Exercise 16, outputs the values of its two data members to the center of a 500 wide by 500 high Graphics object named g.

20. Using a sketch similar to Figure 3.16, show the design of a recreational vehicle (RV) that has two side windows, tires a large entrance door.

[image:]

21. Give a table similar to Table 3.2 that contains the digitized version of the RV design specified in Exercise 20.

22. When must the keyword this be used in a method to access one of the data members of its class?

23. A class contains one integer data member named total whose access is private.

a) Use the keyword this in a statement coded inside one of the class’s method that doubles the value stored in the data member total.

b) Give a statement coded inside one of the class’s method that doubles the value stored in the data member total without using the keyword this.

c) Give the code of a set method that client code could use to change the value of the data member total.

d) Give the code of a get method that client code could use to fetch the value of the data member total.

e) Assuming the appropriate set and get methods exist, give the client code to double the value of the total of the object named myAccount that uses the set and get methods.

f) Assuming the data member total was declared to have public access, give the client code to double the value of the total of the object named myAccount without using set and get methods.

g) Give the code of the class’s toString method.

h) Give the code of the class’s input method.

i) Which access modifier key word, public or private, results in more restricted access?

24. Indicate whether the following statements are true or false:

a) A class need not contain an explicitly coded constructor.

b) A class can contain several constructors.

c) A class can contain several constructors with different names.

d) A class can contain several constructors with the same signature.

e) When a constructor invocation is proceed by the keyword new, an object is created, and its address is returned.

f) The Java provided default constructor has no parameters.

25. A client application has declared three objects named ship1, ship2, and ship3 that are instances of the existing class Starship. Each starship contains a data member that stores the color used to draw the starship.

a) Give the signature of a static method in the Starship class named largest that is passed two Starship objects and returns the address of one of them.

b) Give the client code statement used to invoke the static method described in part A of this exercise and place the returned address in ship1.

c) If the method changed the value of the color data member of one of the starships passed to it, would it be drawn in the new or old color after the method completes its execution?

d) Give the signature of a nonstatic method in the Starship class named sameModel that compares two Starship objects and returns a Boolean value.

e) Give the client code statement used to invoke the nonstatic method described in part D of this exercise and store the returned Boolean value in the variable isSame.

26. Using a sketch similar to Figure 3.16, show the design of the user-controlled game piece that is part of the game you specified in Preprogramming Exercise 1 of Chapter 1.

27. Give a table similar to Table 3.2 that contains the digitized version of the game piece design specified in Exercise 26.

Programming Exercises

1. Write a nongraphical application that contains a static method with an empty parameter list that outputs your name and your age on one line to the system console. The main method of the application should invoke it three times. The output it produces should be annotated as shown below (assuming your name is Tommy and you are 18 years old):

The author of this program is Tommy who is 18 years old.

2. Write a graphical application that contains a static method that is invoked by the draw call back method. It should have one parameter to receive the Graphics object g passed to it. When invoked, the method should output your name and your age to the center of the game board as shown below (assuming your name is Tommy and you are 18 years old):

The author of this program is Tommy who is 18 years old.

3. Write a nongraphical application that contains a static method to compute and return the square root of the product of three real numbers passed to it. The main method of the application should invoke it and then output the three numbers and the returned value clearly annotated.

4. Write a graphical application that contains a static method to compute and return the square root of the product of three real numbers passed to it. The draw method should invoke it and then output the three numbers and the returned value clearly annotated.

5. Write a nongraphical application that contains a static method to compute and return the square root of the product of three real numbers that are declared and initialized as class-level variables. The main method of the application should invoke it and then output the three numbers and the returned value clearly annotated.

6. Write a graphical application whose draw method displays an old television on a table with an antenna on it.

[image:]

7. The statistics kept for each player on a ladies softball team include each player’s name, number of homeruns, and batting average a real number.

a) Give the UML diagram for a class named TeamMember whose objects can store the three private pieces of data for a player. The class should include a three-parameter constructor, a toString method, a method to input the statistics for a player, and a showSC method to output a player’s statistics to the system console.

b) Progressively implement and test the TeamMember class by adding one method and verifying it before adding the next method. A good order to add the methods is the toString method, followed by the constructor, the showSC method, and finally the input method. (The client code can create a TeamMember object using the Java supplied default constructor to test the toString method.)

c) After all of the methods are verified, comment out the test code in the client application and add two TeamMember instances to the program whose statistics are passed to the three-parameter constructor. Output these players to the system console and then output them again after the user inputs new names, home run counts, and batting averages for each player.

8. Write a graphical application that contains a class named RV whose objects are the recreational vehicle designed and digitized as described in Knowledge Exercises 20 and 21. The class’s private data members should be the vehicle’s body color and (x, y) location.

a) Give the UML diagram for the class. It should include a three-parameter constructor, a toString method, a method to input the values of all of an object’s data members, and a show method to draw the RV at its current (x, y) location.

b) Progressively implement and test the RV class by adding a method and verifying it before adding the next method. A good order to add the methods to the class is the three-parameter constructor, followed by the toString method, the show method, and finally the input method. The client code should create an RV object using the three-parameter constructor to test all of the methods as they are progressively added to the class.

c) After all of the methods are verified, comment out the test code in the client application and add two RV instances to the program whose location and color are passed to the three-parameter constructor. Output these vehicles to the system console and the game board and then output them again after the user inputs a new color and a new (x, y) location for each vehicle.

9. After implementing and testing the class described in Programming Exercise 7, progressively add a set and a get method to the class for each of the class’s data members. After the set and a get methods have been verified, create two instances of the class using the three-parameter constructor and display them to the system console. Then, ask the user how many home runs and batting average points should be added to each player’s statistics. Use the set and a get methods to change the statistics and then output the two players to the system console.

10. After implementing and testing the class described in Programming Exercise 8, progressively add a set and a get method to the class for each of the class’s data members. After the set and a get methods have been verified, create an instance of the class using the three-parameter constructor and display it on the system console and the game board. Every time one of the game board’s directional buttons is clicked, the RV’s location should be changed by two pixels in the appropriate direction.

11. Using the skills developed in this chapter, begin to implement the game you specified in Preprogramming Exercise 1 of Chapter 1. Begin by completing Knowledge Exercises 26 and 27 to design and digitize the user-controlled game piece. Then, implement the class of the digitized game object, beginning with a UML diagram of the game piece that includes a constructor with the appropriate number of parameters, a show method to draw the object on the game board at its current (x, y) location, a toString method, and a set and a get method for each of the class’s data members. After progressively implementing and testing all of the class’s methods, write a graphical application that displays the game piece on the game board and then moves the game piece by two pixels in the appropriate direction every time one of the game board’s directional buttons is clicked.

Endnotes and References

1 Lanzinger, Franz. Classic Game Design: From Pong to Pac-Man with Unity. Dulles, Virginia: Mercury Learning and Information, 2014.

2 Schell, Jesse. The Art of Game Design. Burlington, MA: Morgan Kaufmann Publishers, 2010.

CHAPTER 4

BOOLEAN EXPRESSIONS, MAKING DECISIONS, AND DISK INPUT AND OUTPUT

4.1 Alternatives to Sequential Execution

4.2 Boolean Expressions

4.3 The if Statement

4.4 The if-else Statement

4.5 Nested if Statements

4.6 The switch Statement

4.7 Console Input and the Scanner Class

4.8 Disk Input and Output: A First Look

4.9 Exceptions: A First Pass

4.10 Chapter Summary

[image:]

[image:]

In this chapter

To control the sequence of operations, Java provides three decision-making statements, and in this chapter, we will learn how to write the Boolean condition on which these decisions are based. By default, Java statements execute in the order in which they are coded, although at some point in most algorithms, a decision has to be made as to which of its steps should be executed next. When depicted in a flow chart, this part of the algorithm begins with a diamond shape. To implement these algorithms, programming languages include decision statements that use Boolean expressions as conditions to determine whether to execute or skip statements. Java also provides two statements that always skip a predetermined set of statements, one of which will be discussed in this chapter.

In addition, this chapter extends the input and output techniques of the previous chapters to include input from the system console as well as disk I/O, and it introduces a technique used to alter the sequential execution path of a program when an unexpected error occurs.

After successfully completing this chapter, you should:

•Be familiar with the logical and relational operators and their order of precedence

•Be able to write and evaluate simple and complex Boolean expressions

•Understand how to compare strings and determine their alphabetic order

•Be able to write if, if-else, and switch statements to implement the decision-making part of an algorithm

•Understand the use of the break statement

•Be able to perform console input using the Scanner class and its methods

•Be able to create, open, read, and write sequential text files to and from a disk

•Begin to understand how to use try and catch blocks to handle an error exception

•Use decision-making statements to control a timer, a graphical object’s visibility and motion, and detect collisions between two objects

4.1 ALTERNATIVES TO SEQUENTIAL EXECUTION

When a Java application begins, the first statement to execute is the first executable statement in the method main. The order in which the remainder of the instructions execute is referred to as the execution path of the program, or the flow of the program. The default execution path of a Java statement block is sequential. It can be thought of as the statements executing in line number order. After the first statement in the block executes, the remaining statements execute in the order in which they are written unless one of the statements specifically alters the execution path.

Many algorithms cannot be formulated in a way that all of its steps are executed sequentially. Therefore, programming languages provide statements to change the default sequential execution path. Programmers use these statements, or constructs, to alter the sequential flow of the program, so they are referred to as control-of-flow or control statements. We have already used one of these constructs: the invocation of a method. Assuming a method was invoked on line 10 of a program, the next statement to execute would not be line 11, but rather, the first executable statement in the method’s code block. Line 11 would execute after the method completed its execution.

Aside from method invocation statements, programming languages provide additional control-of-flow statements to alter the default execution path. Some of these statements are used to skip a group of statements, and others are used to repeat a group of statements. Most often, these control-of-flow statements include a logical expression, called a Boolean expression, to decide when to skip statements or to decide how many times to repeat statements. In this chapter, we will discuss the Java statements used to skip a group of statements. The Java statements that are used to repeat a group of will be discussed in Chapter 5.

4.2 BOOLEAN EXPRESSIONS

Boolean (logical) expressions are named after George Boole, an English mathematician who conceived of a symbolic algebra for logic. Like mathematical algebraic expressions, Boolean expressions consist of operators and operands. Unlike mathematical expressions, Boolean expressions evaluate to one of two values: true or false. Boolean expressions used in control-of-flow statements can either be a simple Boolean expression, or a combination of two or more simple Boolean expressions called compound Boolean expressions.

4.2.1 Simple Boolean Expressions

A simple Boolean expression evaluates to either true or false. In Java, these expressions consist of a relational or an equality operator surrounded by two operands. Java’s four relational operators are given at the top of the Table 4.1, and its two equality operators are at the bottom of the table. The first column in the table gives the name (which implies the meaning) of each operator, and the second column gives the Java symbols (keystrokes) that represent them. The symbols for the last four operators in the table are typed as two keystrokes without spaces. The third column of the table gives examples of simple Boolean expressions involving each of the six operators, all of which evaluate to true.

Table 4.1
Java’s Relational and Equality Operators

	Operator
	Java Symbol
	Examples that Evaluate to true

	Less than
	<
	5 < 7

	Greater than
	>
	6.31 > 3.14

	Less than or equal to
	<=
	5 <= 5

	Greater than or equal to
	>=
	‘c’ >= ‘a’

	Equal to
	==
	6 == 3 * 2

	Not equal to
	!=
	23 != 54

[image:]

A common mistake made when coding simple Boolean expressions is to code the equal to operator as a single equal (=) keystroke, which is interpreted by the translator as the assignment operator. Think of this operator as "is equal" to (= =).

When one of the four relational operators is used, the two operands can be anything that can be converted to (interpreted as) a numeric. This includes numeric literals, numeric variables, and arithmetic expressions, as well as character literals and character variables. When a character literal or character variable is used, the character (e.g., 'A') is interpreted as an integer (e.g., 65), and the numeric value is used to evaluate the relational expression. The following code fragments are syntactically correct, and the third one evaluates to true because 'A' and 'C' are interpreted as 65 and 67 (see Appendix C), then the expression is evaluated.

int age = 13;

5 < 2 * 21

100 >= age

'A' < 'C'

25 <= 2 * (age + 1)

The interpretation of characters in simple Boolean expressions as numeric imposes an ordering on them called lexicographical or dictionary order, which is the order in which they appear in the Extended ASCII table (Appendix C).

When the types of the operands used with one of the four relational operators do not match (e.g., one is a float and one is a double, or one is an integer and the other is a character), one of the operands is promoted before the expression is evaluated. For example, the following simple Boolean expressions are syntactically correct and evaluate to true:

4.521 < 10       // 10 is promoted to the double 10.0

Math.PI >= -2    // -2 is promoted to double -2.0

2 < 'A'          // 'A' is promoted to 65

When one of the two equality operators is used in a simple Boolean expression, the choices for the operands are expanded. Not only can the two operands be anything that can be converted to a numeric, but they can also be two Boolean operands (literals or variables) or two reference variables (including the value null). For example:

4.535 != 21

65 == 'A'

true != false

myName != yourName

name == null

Like the arithmetic operators, the operators in Table 4.1 have an order of precedence associated with them. The four relational operators have equal precedence, and the two equality operators have equal precedence. The precedence value of the relational operators is higher than the precedence value of the equality operators. The expression

true == 'C' >= 'A'

is syntactically correct and evaluates to true because first 'C' >= 'A' evaluates to true, and then true == true evaluates to true. As shown in Appendix E, the arithmetic operators have higher precedence than the relational and equality operators.

NOTE

Arithmetic expressions in simple Boolean expressions are evaluated first. In more complex expressions, the relational operators are evaluated next, followed by the equality operators, and then the logical operators. The assignment operator is evaluated last.

4.2.2 Compound Boolean Expressions

Like simple Boolean expressions, compound Boolean expressions also evaluate to either true or false. When used in a control-of-flow statement, compound Boolean expressions use the Java conditional binary logical operators AND and OR to combine the truth values of two or more operands. Alternately, compound Boolean expressions can use the unary logic operator NOT to reverse the truth value of a single operand, just as the negation operator reverses the sign of an operand in a mathematical expression. The operands in compound Boolean expressions must evaluate to Boolean values (true or false). Most often, these operands are simple Boolean expressions but could be a Boolean literal or a non-void method invocation that returns a Boolean value.

Table 4.2 gives the three Java logical operators normally used in control-of-flow statements and the symbols used to represent them. The three operators are shown in decreasing precedence order: the NOT operator has the highest precedence, followed by the AND operator, and the OR operator has the lowest precedence. As shown in Appendix E, the arithmetic operators and the relational and equality operators have higher precedence than the logic operators. The Java symbols for the AND (&&) and OR (||) operators given in the second column of the table are each two keystrokes. The keystrokes (||) used in the symbol for the OR operator is located above the Enter key on the keyboard.

Table 4.2
Java’s Logical Operators

	Logical Operator
	Java Symbol
	Examples that Evaluate to true

	Not
	!
	! (‘p’ > ‘x’)

	And
	&&
	8 < 10 && 6 == 2 * 3

	Or
	||
	7 < 4 || 8 >= 5

All of the compound logical expressions shown in the rightmost column of Table 4.2 evaluate to true. To evaluate the truth value of a complex Boolean expression, we must know the meaning of the conditional logic operators. As previously stated, the meaning of the unary NOT(!) operator is simply to reverse the truth value of its operand. For example, because 'p' comes before 'x' in the extended ASCII table, ('p' > 'x') evaluates to false and !('p' > 'x') evaluates to true. Similarly, !(6 > 10) evaluates to true.

The meaning of the two binary logical operators, AND and OR, is usually conveyed in truth tables such as the one shown in Table 4.3. The four possible combinations of the truth values of their two Boolean operands, A and B, are given in the two columns on the left side of the table. The corresponding values of the AND and OR operators for each of the four possible values of their operands is given in the two columns on the right side of the table. Summarizing the resulting values, A && B evaluates to true only when A and B are both true, and A || B evaluates to false only when A and B are both false. The compound Boolean expression in the third row of Table 4.2 evaluates to true because one of the operands, 8 >= 5, is true.

Table 4.3
Meaning of Java’s Binary Logical Operators

[image:]

Figure 4.1 presents an application that evaluates simple Boolean expressions whose operands are literals, primitive and reference variables, and a compound Boolean expression. The output produced by the program is given at the bottom of the figure.

When a compound expression is evaluated, it follows the order of precedence from left to right. Parentheses can also be used to make the ordering clear or to enforce a certain ordering in the evaluation. For example, the expression on line 23 might be written as

((i1 == 5 || c1 < 'A') && (d1 != 21.8))

to specify the order of evaluation. Evaluating the sub-expressions in a different order might give a different result.

[image:]

Figure 4.1
The application BooleanExpressions and the output it produces.

Lines 5–8 declare and initialize integer, double, character, and Boolean variables. These variables are used in simple Boolean expressions that are evaluated and output on lines 15–21. The types of the operands in the expressions on lines 15, 16, and 19 do not match, so promotion is used before these expressions are evaluated. The contents of the character variables on line 18 are interpreted as numerics before the Boolean expression is evaluated. Because 65 ('A') is less than 67 ('C'), the fifth output is true.

Line 23 contains an example of a compound Boolean expression containing two conditional logical operators OR and AND. Although the order of the operations in this expression is not important, the AND operation, having higher precedence, is evaluated first. This reduces the expression to

i1 == 5 || false

which evaluates to true (the next to the last output in Figure 4.1).

The operands in the Boolean expression output on line 25 are the two string variables declared on lines 9 and 10. Both strings are initialized to "Bob" by the String class’s one-parameter constructor, yet the comparison for equality on line 25 produces an output of false (the last output). This is because the equality operators always compare the contents of the reference variables rather than the contents of the objects they refer to. Because the objects s1 and s2 are stored in different locations, the contents of s1 and s2 are not equal, and the Boolean expression on line 25 evaluates to false. Most often, to compare the contents of two objects, we have to add a method to the object’s class that performs the comparison and then returns a Boolean value.

4.2.3 Comparing String Objects

In Chapter 7, we will discuss techniques for comparing the contents of any two objects. Strings are used so often in programs that the String class provides several methods for comparing them. One of these is the equals method. It is a non-static method that returns a Boolean value. The returned value is true when the contents of the string object sent to it is the same as the contents of the string object that invoked it. The comparison of the two strings is case sensitive. The following code fragment demonstrates the use of the method. The first three invocations to the method return true, and the last two return false.

String name1 = new String("Bob");

String name2 = new String("Bob");

String name3 = "BOB";

String name4 = "Mary";

System.out.println(name1.equals(name2));

System.out.println(name1.equals("Bob"));

System.out.println(name1.equals("Bob") || name1.equals("Mary");

System.out.println(name1.equals(name3)); // false, case mismatch

System.out.println(name1.equals(name4)); // false, different names

The third invocation demonstrates that a method that returns a Boolean value can be used as an operand in a compound Boolean expression.

The String class contains three other non-static methods for comparing strings. Their names are: equalsIgnoreCase, compareTo, and the compareToIgnoreCase. Like the equals method, the equalsIgnoreCase method returns a Boolean value, which is true when the contents of the string object sent to it is the same as the contents of the string object that invoked it. Unlike the equals method, case sensitivity is ignored when making the comparison.

The String class’s compareTo and compareToIgnoreCase methods determine the relative lexicographical order of two String objects. These non-static methods return an integer whose value reflects the lexicographical order of the string that invoked it relative to the string sent to it as an argument. The compareTo method considers case sensitivity, and the compareToIgnoreCase ignores case sensitivity. The code fragment below compares the lexicographical order two strings s1 and s2:

int order1 = s1.compareTo(s2);

int order2 = s2.compareToIgnoreCase(s2);

The values returned to the variables order1 and order2 would be:

•negative when s1 comes before s2 in lexicographical order

•positive when s1 comes after s2 in lexicographical order

•zero when s1 and s2 are equal in lexicographical order

Although the compareTo and the CompareToIgnoreCase methods can be used to determine when two strings are equal, it is good coding practice to use the equals and equalsIgnoreCase methods when testing two strings for equality because it makes our code more readable.

4.3 THE IF STATEMENT

The if statement is one of two Java control-of-flow statements that can be used to alter the default sequential execution of a program based on the truth value of a Boolean expression. The other statement is the if-else statement, which will be discussed in Section 4.4.

The syntax of the if statement begins with the keyword if, followed by a Boolean expression inside parentheses, followed by a statement or group of statements to be skipped or executed. When there is a group of statements, they must be coded as a statement block; that is, they must be enclosed in braces. The group of statements will be executed when the Boolean condition is true, and skipped when the Boolean expression is false. Thus, the syntax of the statement is:

	
One Statement Syntax

if(a Boolean expression)

a Statement to be skipped

or executed

	
Multiple Statement Syntax

if(a Boolean expression)

{ Statement1 to be skipped or executed

:

Statementn to be skipped or executed

}

Even when there is just one statement, it is better coding practice to enclose the one statement in braces, which makes the statement more readable and less prone to errors. For example, if during the development of the program we were to decide to add a second statement and neglected to add the open and close braces around the two statements, the second statement would not be considered part of the if statement. It would always execute. The two coding examples given below are not equivalent:

	if(a false Boolean expression)

statement1

statement2

	if(a false Boolean expression)

{ statement1

statement2

}

The code on the left always executes statement2, even though the indentation seems to imply that its execution is dependent on the truth value of the Boolean expression. A good habit to acquire when writing an if statement is to write this code fragment first:

if()

{

}

and then fill in the Boolean condition and the statements to be skipped when the condition is false. Most often, we see the if statement coded as:

if(a Boolean expression)

{

  //One or more statements possibly to be skipped

}

The meaning, or semantics, and the execution path of the if statement is illustrated in Figure 4.2

[image:]

Figure 4.2
The meaning and execution path of the if statement.

We conclude this section with a discussion of a use of the if statement, making game objects disappear, and then present a game programming application that demonstrates several uses of the if statement.

Using the if Statement

In many games, the game’s objects disappear based on events that occur as the game progresses. When Pac-Man collides with a food pellet, the pellet disappears, or when Frogger is hit by a car, she disappears. Often, after the event occurs the object not only becomes invisible, but it is eliminated from the game. Graphic objects can be made to disappear by either drawing them in the color of the program’s window (or in our case the game board), or by not drawing them at all.

To convey the visibility status of a game piece object, e.g., a food pellet, a Boolean data member is added to the object’s class. When an event occurs that changes the status (for example, when food pellet p1 is eaten by Pac-Man), the truth value of the data member is reversed by the code that detected the event. The draw call back method can use the truth value of this data member in an if statement’s Boolean condition to decide whether or not to draw the object. If a Boolean data member named eaten, initialized to false, was added to the class of Pac-Man’s pellets, and the data member was set to true when the pellet was eaten, then adding the following code fragment to the draw call back method would make pellet p1 disappear after the pellet was is eaten.

if(p1.getEaten() == false)

{

  p1.show(g);

}

If the variable count was being used to keep track of the game’s time, and pellet p1 was only to appear after the game had been played for 20 seconds, then a compound Boolean expression would be used in the above code fragment.

if(p1.getEaten() == false && count >= 20)

{

   p1.show(g);

}

In this case the pellet, p1, would appear 20 seconds into the game, and it would disappear when an event changes that pellet’s data member eaten to true.

In Section 2.9.1 (Figure 2.12), the counting algorithm was used to keep track of a game’s time. Figure 4.3 presents the code discussed in that section with three if statements added to it: two to the draw call back method (lines 17–31) and one to the timer1 method (lines 33–40). In addition, a BoxedSnowman object s1, whose class is given Figure 4.4, has been added to the application (line 10). The graphical output produced by the program is given in Figure 4.5.

When the application shown in Figure 4.3 is launched, the number of elapsed seconds is displayed on the game board starting from zero (top left side of Figure 4.5). To begin the game the start button is clicked, which causes the elapsed time to be updated every second. Five seconds into the game, the snowman s1 appears at the center of the game board (top right side of Figure 4.5). After ten seconds, the game ends. The elapsed time remains at ten seconds, a message appears on the game board indicating that the game is over, and the snowman disappears from the game board (bottom portion of Figure 4.5).

Line 20 of the application displays the number of elapsed seconds, which is stored in the class variable count. This variable is incremented on line 35 of the timer1 call back method, which (by default) executes once a second. Ten seconds into the game, the Boolean condition of the if statement that begins on line 36 becomes true, and line 38 invokes the game environment’s stopTimer method to stop timer 1 from ticking. As described in Appendix B, this method is passed one argument, which specifies the timer number (1, 2, or 3) that is to be stopped. It is a nonstatic method, invoked on the program’s GameBoard object gb, which was declared on line 8.

The Boolean data member visible has been declared on line 9 of the BoxedSnowman class (Figure 4.4) to store the visibility status of a snowman, and the class contains a set and get method (lines 51–59) to allow client code to access this private data member. To make the snowman appear after five seconds has elapsed, snowman s1’s visibility status is fetched by a call to the getVisible method on line 21 of the application, and the returned value is used in the compound Boolean expression to decide when to show the snowman on the game board. The snowman will be shown when its visible data member is true and the game’s time is five seconds or greater. Since visible is initialized to on line 9 of the BoxedSnowman class to true, the snowman is displayed on the game board five seconds into the game.

To make the snowman disappear after ten seconds, the if statement inside the timer1 call back method (lines 33–41) sets snowman s1's visible property to false (line 36) when count equals ten. This causes the first term in the Boolean expression on line 21 to become false, and line 23, which displays the snowman on the game board, does not execute.

The if statement that begins on line 26 displays the game ending messages when the game time reaches ten seconds.

[image:]

Figure 4.3
The application IfStatement.

[image:]

Figure 4.4
The BoxedSnowman class.

[image:]

Figure 4.5
The output produced by the application IfStatement.

4.4 THE IF-ELSE STATEMENT

Like the if statement, the if-else statement is a Java control-of-flow statement that can be used to alter the default sequential execution path of a program by skipping statements based on the truth value of a Boolean expression. This statement can be thought of as having two clauses: an if clause and an else clause. Each clause has a statement block associated with it. One, and only one, of these blocks will execute. When the Boolean condition is true, the statement block associated with the if clause executes. When it is false, the statement block associated with the else clause executes. The syntax of the if-else statement is:

if(a Boolean expression)

{

    // One or more if clause statements

}

else

{

    // One or more else clause statements

}

and its meaning and execution path is given in Figure 4.6

[image:]

Figure 4.6
The meaning and execution path of the if-else statement.

Because the statements in the code block that follow the else clause are executed when the if statement’s Boolean expression is false, the else clause does not contain its own Boolean expression. The following code fragment determines what weight jacket to wear based on the temperature stored in the memory cell temperature:

if(temperature <= 45)

{ System.out.println("It is a frigid " + temperature + " degrees,");

System.out.println("Wear your heavy jacket.");

}

else

{ System.out.println("It is rather mild " + temperature + " degrees,");

System.out.println("Wear your light weight jacket");

}

The if-else statement is used to choose one of two statement blocks to execute: the first when the if statement’s Boolean condition is true and the second when it is false. By coding just one statement into the else clause’s statement block that is another if-else statement, we can choose between one of three mutually exclusive alternatives, as illustrated in the following coding template:

 if(Boolean expression 1)

{

   // One or more if clause statements in code block 1

}

   else if(Boolean expression 2)

{

    // One or more if clause statements in code block 2

}

 else

{

   // One or more else clause statements in code block 3

}

As indicated by the second comment in the template, the second set of open and close parentheses defines the code block of the second if statement. Because the second if statement is the only statement in the first else clause’s code block, not coding it inside a set of brackets improves readability. Figure 4.7 illustrates the meaning and execution path of the code template.

This coding process can be progressively repeated when there are more than three mutually exclusive alternatives. The following code template illustrates the use of this concept to choose one of four mutually exclusive code blocks to execute:

if(Boolean expression 1)

{

   // One or more if clause statements in code block 1

}

else if(Boolean expression 2)

{

    // One or more if clause statements in code block 2

}

else if(Boolean expression 3)

{

    // One or more if clause statements in code block 3

}

else

{

    // One or more else clause statements in code block 4

}

To improve the readability, it is good programming practice to indent as shown above and to keep the first line of the if statements on the same line as the else clauses that proceeded them.

[image:]

Figure 4.7
The meaning and execution path of an if-else statement whose else clause statement is an if-else statement.

As an example, the following code fragment determines which one of four colors, red, green, blue, or white, was contained in the String object carColor.

if(carColor.equals("Red"))

{

  System.out.println("the car color is Red");

}

else if(carColor.equals("Green"))

{

  System.out.println("the car color is Green");

}

else if(carColor.equals("Blue"))

{

  System.out.println("the car color is Blue");

}

else

{

  System.out.println("the car color is White");

}

These decision statements are executed in the sequence shown in Figure 4.7. The Boolean expressions are evaluated in the order in which they are coded. Only one of the statement blocks will execute, which will be the statement block associated with the first true Boolean condition. When none of the Boolean conditions are true, the statement block associated with the last else clause executes. The last else clause and its associated statement block are optional. When it is included, one and only one statement block in the construct always executes.

[image:]

Figure 4.8
Determining the color contain in the String object carColor.

We conclude this section with a discussion of a common use of the if-else statement (detecting collisions between game pieces) and then present a game-programming application that utilizes this common game event.

Detecting Collisions: Use of the if and else-if Statements

Most games involve some sort of interaction between the game-piece objects. For example, the ball in a Pong game rebounds off a paddle, the frog in a Frogger game is hit by a truck, or a meteorite collides with a space craft. All of these interactions are referred to as collisions, and usually the score or the length of the game is influenced by these collisions. The Boolean conditions in an if-else construct are used to detect the occurrence of collisions, and the code blocks inside the construct are used to take the appropriate action (e.g., change the score or end the game) when a collision occurs.

There are several algorithms used to detect collisions, all of which involve the use of decisions statements. In one of the simplest algorithms, we imagine a rectangle enclosing each game piece. That is, the entire game piece is inscribed inside a rectangle, as shown in Figure 4.9, and the location of the upper-left corner of the rectangle is the game piece’s (x, y) location. Then, we consider two objects to be in a collided state when their rectangles touch or overlap.

For example, consider the two snowmen s1 and s2 depicted in Figure 4.9a that are 40 pixels wide and 77 pixels high. If snowman s2 were moving to the left, a collision with snowman s1 would occur when the left side of s2’s rectangle was at the same x location as the right side of s1’s rectangle. This situation is depicted in Figure 4.9b. The following Boolean expression, which is true when this event occurs, can be used to detect this collision state.

s2.getX() == s1.getX + 40; // The snowmen are 40 pixels wide

[image:]

Figure 4.9
Noncollided and collided game pieces.

Although this collision detection scheme is simple, it is not always accurate. When the rectangles of the two snowmen depicted in Figure 4.9b are at the same x location, the bodies of the two snowmen are touching each other. This is not the case for the two snowmen, s3 and s4, shown in Figure 4.9c. If snowman s4 were moving to the left when the left side of its rectangle is at the same x location as the right side of s3’s rectangle, as shown in Figure 4.9d, the two snowmen would not be in a collided state. There would still be a small amount of separation between the left side of s4’s body and the right side of s3’s head.

Fortunately, in most cases, the game’s player would not notice the separation and would visually confirm this pseudo-collision as an actual collision. If we are willing to accept this limitation of our collision-detection scheme, we can extend this simple scheme to detect a collision between the two snowmen as they approach each other from any direction.

Figure 4.10 depicts snowman s2 in the following four positions relative to snowman s1:

•Position 1: s2 is to the right of s1

•Position 2: s2 is to the left of s1

•Position 3: s2 is below s1

•Position 4: s2 is above s1

When snowman s2 is in any of these positions relative to snowman s1, then the two snowmen cannot be in a collided state. In fact, s2 could be in two of these positions simultaneously, e.g., to the right and above of snowman s1, which would also be a non-collided state.

Each of the four positions depicted in Figure 4.10 can be easily detected with a simple Boolean expression. Assuming the snowman is inscribed inside a rectangle that is w pixels wide and h pixels high, the right column of Table 4.4 gives the Boolean conditions that evaluate to true when the snowmen are in each of the four positions.

Table 4.4
Boolean Expressions to Detect the Four Non-collided Positions in Figure 4.8

	Position of Snowman s2 Relative to s1
	Boolean Expression to Detect the Position

	1. s2 is to the right of s1
	s2.getX() > s1.getX() + w

	2. s2 is to the left of s1
	s2.getX() + w < s1.getX()

These four Boolean expressions can be used in if-else statements to determine when the two snowmen have not collided; otherwise they have collided.

if(s2.getX() > s1.getX() + w) // s2 right of s1

{

   System.out.println("no collision");

}

else if(s2.getX() + w < s1.getX()) // s2 left of s1

{

   System.out.println("no collision");

}

else if(s2.getY() > s1.getY() + h) // s2 below s1

{

   System.out.println("no collision");

}

else if(s2.getY() + h < s1.getY()) // s2 above s1

{

   System.out.println("no collision");

}

else // collision

{

   System.out.println("collision");

}

Alternately, the Boolean conditions could be combined to form a compound Boolean condition that would evaluate to true for a non-collision.

(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX() ||

s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY())

[image:]

Figure 4.10
The non-collided positions of snowman s2 relative to snowman s1.

Using this compound Boolean expression, the series of if-else statements to detect a collision would become

if(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX() ||

   s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY())

{

  System.out.println("no collision");

}

   else //collision

{

   System.out.println("collision");

}

The truth value of the Boolean condition could also be reversed, using Java’s not (!) logical operator, and the if clause of the if-else statement would detect a collision between the two snowmen.

if(!(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX() ||

s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY()))

{

System.out.println("collision");

}

else // no collision

{

System.out.println("no collision");

}

The following code fragment uses an expanded version this if-else statement’s Boolean expression to detect when a collision occurs and snowman s2 is in a visible state. When this occurs, the game’s score (the variable score) is increased by 1, and snowman s1’s visible property is set to false.

if(!(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX()||

   s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY()) &&

   s1.getVisible == true) // collision and s1 is visible

{

  score = score + 1;

  s1.setVisible(false);

}

An additional term has been added at the end of the Boolean expression. Because it is preceded by the && (AND) operator, the expanded expression is only true when the two snowmen collide and snowman s1 is visible. This prevents the score from increasing when a game object (i.e., s2) collides with an invisible game object that is no longer part of the game (i.e., s1).

4.4.1 Conditional Expressions

A conditional expression is a succinct alternative way of a writing a simple if-else statement, whose code blocks each contain one statement, that produces a value usually of the same type. For example they both perform an integer calculation or invoke the same non-void method. The conditional expression contains the two characters of the conditional operator, ?:, and three operands.

The first operand must evaluate to a Boolean condition. This is followed by the question mark of the conditional operator, which is followed by the two operands separated by the conditional operator’s colon. The first of these two operands becomes the value of the conditional expression when the Boolean condition is true, otherwise the second operand is the value of the conditional expression when the condition is false. For example, the conditional expression (a < b ? a * 2 : b * 2) evaluates to a * 2 when a is less than b otherwise it evaluates to b * 2. The value produced by the conditional expression must be used within a line of Java code: e.g., assigned to a variable, or output to a file or to the system console as shown below.

1 System.out.println(a < b ? a * 2 : b * 2);

2 int c = a < b ? a * 2 : b * 2;

	
Equivalent to Line 1 above

if(a < b)

{

   System.out.println(a * 2);

}

else

{

   System.out.println(b * 2);

}

	
Equivalent to Line 2 above

if(a < b)

{

   c = a * 2;

}

else

{

   c = b * 2;

}

When the types of the values produced by the code blocks are different, the values must be able to be promoted, or cast into the same type. For example, if one value is a double and the other is an integer the integer would be promoted to a double, unless the double was cast to an int. If the values are addresses of objects, they must be instances of the same class or, we must utilize the techniques of inheritance and polymorphism discussed in Chapter 8 to reconcile the differences.

4.5 NESTED IF STATEMENTS

Just as the else clause of an if-else statement can contain an if statement, the statement block of an if statement can also contain other if statements. This method of coding is referred to as nested if statements, because the second if statement can be thought of as an egg inside the nest formed by the first if statement’s code block.

The following code fragment contains a Boolean variable raining and an integer variable temperature, and uses a nested if statement to determine if a sweater and a raincoat should be carried on a cold day when it is raining.

if(raining == true)

{

  System.out.println("Take your umbrella, ");

 if(temperature <= 50) // begins a nested if-else statement

  {

    System.out.println("take a sweater, ");"

    System.out.println("and your raincoat.");

  }

}

An if-else statement can also be nested inside an if statement as demonstrated in the below code fragment:

if(raining == true)

{

 System.out.println("Take your umbrella, ");

 if(temperature <= 50) // begins a nested if statement

 {

  System.out.println("take a sweater, ");"

  System.out.println("and your raincoat.");

 }

 else // temperature is > 50 degrees

  {

  System.out.println("and your raincoat");

 }

}

The else clause in an if statement is always paired with the if statement whose code block ends just before the else clause. The indentation used in the code fragment above is considered good programming practice because it implies this pairing: the else clause is part of the if statement that checks the temperature. This code fragment is equivalent to the code fragment below, which is considered to be poor programming style because its indentation erroneously implies that the else clause is part of the if statement that determines if it is raining.

if(raining == true)

{

System.out.println("Take your umbrella, ");

 if(temperature < 50) // begins a nested if statement

{

   System.out.println("and carry your raincoat too");

} // end of the inner if statement

else

{

   System.out.println("but not your raincoat");

}

{ // end of the outer if statement

The following code segment is another example of the use of a nested if statement. It is an alternate way of determining when snowmen s1 and s2 have collided and s1 is visible.

if(!(s2.getX() > s1.getX() + w || s2.getX() + w < s1.getX()||

s2.getY() > s1.getY() + h || s2.getY() + h < s1.getY()))//collision

{

    if(s1.getVisible == true) // and s1 is visible

  {

    score = score + 1;

    s1.setVisible(false);

  }

}

4.6 THE SWITCH STATEMENT

The switch statement is another control-of-flow statement available in Java. It is not as versatile as the if and if-else statements in that the decisions these statements make cannot be based on an explicitly written simple or compound Boolean expression. The syntax of the switch statement limits the operator used in its decision making to equality. In addition, the equality must be between:

•two String objects

•two byte, short, char, or int primitive-data types (or classes that "wrap" these data types), or

•two instances of a previously defined enumerated type (which will be discussed in Chapter 7)

All uses of the switch statement can be coded using an if-else statement, but not vice versa. That being said, there are times when the use of the switch statement makes our programs more readable and therefore easier to understand, modify, and maintain. It can only be used when the decision as to which statements to execute and which statements to skip is based on a choice selected from a group, or menu, of finite choices. When this is the case, the use of the switch statement is considered to be good programming practice.

The syntax of the switch statement is depicted in Figure 4.11. The indentation used in the figure also reflects good programming practice.

[image:]

Figure 4.11
The syntax of the switch statement.

As shown in the figure, the first line of the statement begins with the keyword switch, and the remaining lines of the statement consist of case clauses and a default clause enclosed in a set of brackets. When typing the statement, it is best to begin by typing the following required syntax and then filling in the remainder of the statement’s first line and the case and default clauses that are appropriate to the particular use of the statement.

switch()

{

}

Referring to Figure 4.11, the three most common (and difficult to discover) syntax errors made when coding a switch statement are:

1.neglecting to code the open and close parentheses after the keyword switch

2.coding a semicolon after the close parenthesis on the first line of the statement

3.neglecting to code the colon (not semicolon) after the choiceValue1, or choiceValue2... or after the keyword default

The entity enclosed in the parentheses after the keyword switch is referred to as the choice expression. The choice expression must be a variable whose type is one of the allowable types previously mentioned (e.g., a String object, an integer variable, etc.) or it can be an expression that evaluates to one of these types.

[image:]

Figure 4.12
Semantically equivalent switch and if-else statements.

When a switch statement begins execution, the value of the choice expression is determined and then the statement block of the first case clause whose choice value is equal to that value is executed. If the choice expression is not equal to one of the choice values, the default clause’s statement block executes. Figure 4.12 illustrates the meaning and execution path of a switch statement (Figure 4.12a) by comparing it with an equivalent if-else statement (Figure 4.12b).

As an example, the following code fragment determines which one of four colors, red, green, blue, or white, is contained in the String object carColor:

switch (carColor)

{

case "red":

{

   System.out.println("the car color is red");

   break;

}

case "green":

{

   System.out.println("the car color is green");

    break;

}

case "blue":

{

   System.out.println("the car color is blue");

    break;

}

default:

{

   System.out.println("the car color is white");

}

}

The following code fragment illustrates the use of an arithmetic expression as the choice expression in a switch statement:

int i;

String s = JOptionPane.showInputDialog("enter an integer");

i = Integer.parseInt(i);

switch (i * 2)

{

  case 10:

  {

    System.out.println("two times the number is 10");

    break;

  }

   case 20:

  {

    System.out.println("two times the number is 20");

    break;

  }

default:

  {

    System.out.println("two times the number is not 10 or 20");

  }

}

There is no limit to the number of case clauses that can be used in a switch statement. The default clause is optional and, if used, must be coded as the last clause in the statement. The brackets surrounding the statements in the case and default clauses are not necessary and are only used to improve readability.

Several cases can be assigned to the same statement block using the syntax

case 2: case 5: case 7:

{

   // statement block for all three cases

    break;

}

The above statement block would execute when the choice expression evaluates to 2, 5, or 7.

The break statement at the end of the code block of each case is also optional. However, unlike the optional bracket pairs, its presence has a major impact on the execution path of the construct. A break statement is a control-of-flow statement that does not use a logical expression to decide when to execute or skip statements. Rather, when a break statement is executed inside a switch statement, it always ends the execution of the switch statement in which it is coded. Basically, it means: break out of this statement. It can also be used inside if or if-else statements to end their execution.

When a break statement inside a control-of-flow statement is executed, the next statement to execute is the one that immediately follows the control-of-flow statement. When executed inside a switch statement, the statement blocks in all of the subsequent case clauses and the statement block in the default clause are skipped, and the next statement to execute is the one that follows the close brace at the end of the switch statement. (That is, the close brace that is paired with the open brace after the keyword switch.)

When the break statement is not coded at the end of a case clause, after the statements in that clause execute, the statements in all subsequent case clauses execute until a break statement is encountered. If a break statement is not encountered, the default clause also executes. Because most times the choices coded into the switch construct are mutually exclusive, a break statement is usually coded as the last statement in each case clause.

Figure 4.13 shows a game application that uses the switch and break statements to change the position of a snowman on a game board, uses the if and if-else statements to determine the game’s score, make a second snowman disappear and then reappear at a new location, and to determine when the game is over.

 When the application is launched, two snowmen, one wearing a black hat and the other wearing a green hat, appear on the game board below the game’s score and remaining time (Figure 4.14a). The game begins when the player clicks the Start button on the game board. The objective of the game is to make the two snowmen collide as many times as possible before time runs out, using the keyboard cursor control keys to move the black-hat snowman. Each time they collide, a point is awarded and the green-hat snowman disappears. It reappears at a new location after the black-hat snowman has been moved to a location such that the two snowmen are no longer in a collision state.

The game’s snowmen, s1 and s2, are instances of the BoxedSnowman class (Figure 4.4). They are created on lines 9 and 10 of the application shown in Figure 4.13 using a three parameter constructor to specify the snowmen’s position and hat color: s1 green, s2 black. Line 29 of the draw call back method outputs the remaining time, and line 60 outputs the player’s score just before the draw method ends.

Lines 54–58 invokes the BoxedSnowman class’s show method to draw the snowmen on the game board at their current (x, y) locations. The if statement that begins on line 55 checks the visibility status of snowman s1 to decide if it should be drawn (line 57). The initial value of a BoxedSnowman’s visible property is true (Figure 4.4, line 9), so when the game is launched, it appears on the game board.

[image:]

[image:]

[image:]

Figure 4.13
The DecisionsControlOfFlow application: A decision statement case study.

The use of a switch statement is illustrated on lines 67–92. In this case, the switch statement is used to determine which of the four cursor-control keyboard keys was struck to move the snowman s2 two pixels from its current location. The statement is coded inside the game environment’s call back method keyStruck (line 63), which is invoked by the game environment every time a keyboard key is struck. The method has one parameter named key whose type is char, and the game environment passes a character, the key that was struck, into it. After keyStruck completes its execution, the game environment invokes the draw call back method.

The parameter key on line 63 is used as the switch statement’s choice expression on line 67. When the keyboard left, right, up, or down cursor-control keys are struck, they generate the characters 'L', 'R', 'U', or 'D', respectively. These characters are used as the switch statement’s cases on lines 69, 75, 81, and 87 to decide in which direction to move snowman s2.

[image:]

When a key on the keyboard is held down, it transmits characters 20 times a second just as if the key was being pressed and released 20 times a second. For this reason, to control the motion of game pieces, key strokes are preferred over button clicks.

Figure 4.14b shows the game board three seconds after the Start button was clicked and the right and down cursor keys were used to move snowman s2 adjacent to snowman s1. One more right cursor keystroke will cause a collision.

Line 31 begins an if-else statement that contains a nested if-else statement (line 37) and two nested if statements (lines 43 and 46). The keyword else that appears on lines 37 and 43 are part of the if-else statements that begin on lines 31 and 37, respectively. Line 31 decides if the game is over, and when it is, it announces it to the game’s player.

The if-else statement that begins on line 37 decides if the two snowmen have collided when snowman s2 is visible. Its Boolean expression, as discussed at the end of Section 4.4, is true when it is not the case that snowman s2 is to the right, to the left, or below or above snowman s1, and s1 is visible. When this is the case, the if clause’s code block increases the player’s score by one point using the counting algorithm (line 40) and sets the visible property of snowman s1 to false (line 41). Setting s1’s visible property to false causes it to disappear from the game board (Figure 4.14c) because the Boolean condition in the if statement that draws s1 (line 55) is now false. The setting of s1’s visible property to false also prevents the awarding of points until s1 is again visible which occurs when the two snowmen are no longer in a collision state. The determination that the two snowmen are no longer in a collision state is performed by the if statement on line 43. Its Boolean condition is the same as the condition on lines 37 and 38, except that the NOT (!) operator and the test for visible have been removed. This Boolean condition is true when the snowmen are not in a collision state. Then the nested if statement that begins on line 46 executes and decides if snowman s1 is invisible. When it is invisible, the nested if statement’s code block executes relocating snowman s1 by swapping its x and y coordinates. This code block also sets s1’s visible property to true (line 50), which causes the if statement that begins on line 55 to draw snowman s1 on the game board at its new location (Figure 4.14d).

[image:]

Figure 4.14
The output of the DecisionsControlOfFlow application.

4.7 CONSOLE INPUT AND THE SCANNER CLASS

We have already learned how to perform input and output using message dialog boxes and how to send output to the system console using the println method. The system console can also be used to perform keyboard input using methods in the Scanner class. These nonstatic methods can also be used to perform input from a disk file, which will be discussed in the next section.

Just as there is a predefined output object attached to the system console, System.out, there is a predefined input object attached to the console, System.in. However, before we use the input methods in the Scanner class we have to declare a Scanner object and pass the console object to the Scanner class’s one-parameter constructor. The following code fragment declares the Scanner object consoleIn:

Scanner consoleIn = new Scanner(System.in);

The Scanner object, consoleIn, can then be used to invoke non-void methods in the Scanner class, which accept input from the system console. As the user types the input, the keystrokes are output to the console. The names of the three most frequently used methods in this class all begin with the word next. Their full names and the type of data they return are given in Table 4.5. To use the methods, include the following import statement in your program:

import java.util.Scanner;

Table 4.5
Commonly Used Input Methods in the Scanner Class

	Method Name
	Returned Type

	nextInt
	int

	nextDouble
	double

	nextLine
	String

As their names imply, nextInt and nextDouble are both used to accept numeric input. When the input is an integer, nextInt is used, and nextDouble is used when the input is a real number. Both methods parse the input characters into a numeric value, and so there is no need to use the parsing methods in the wrapper classes Integer and Double. The method nextLine is used to accept String input.

When these methods are invoked, the program’s execution is suspended until the user completes the keyboard input by striking the Enter key. Then, the methods return the input value. Until that point, the user can edit the input using the Backspace and Delete keys. It is good programming practice to precede the method invocations with a well-composed prompt output to the system console. The following code fragment accepts a person’s name, age, and weight entered into the system console:

Scanner consoleIn = new Scanner(System.in);

String name;

int age;

double weight;

System.out.print("Enter your name: ");

name = consoleIn.nextLine();

System.out.print("\nEnter your age: ");

age = consoleIn.nextInt();

System.out.print("\nEnter your weight: ");

weight = consoleIn.nextDouble();

Several numeric inputs can be entered on one line as long as they are separated (delimited) by at least one space. Spaces that precede a numeric input are ignored. The following code segment accepts a person’s age and weight input on one line to the system console.

int age;

double weight;

Scanner consoleIn = new Scanner(System.in);

System.out.print ("Enter your age and weight on one line " +

 "separated by at least one space: ");

age = consoleIn.nextInt();

weight = consoleIn.nextDouble();

[image:]

Several numeric inputs, separated by at least one space, can be input on the same line.

Spaces that precede a string input are not ignored. They are considered, and become, part of the input string. Spaces typed after a numeric input will become part of a string input subsequently read from the same line. For this reason, strings should not be input on the same line as numeric inputs.

[image:]

Numeric and string inputs should not be input on the same line.

When a numeric input and a string are read from two separate input lines, and the numeric input precedes the string, two invocations of nextLine are required to capture the string. This is because numeric inputs leave the character generated by the Enter key "behind," and the nextLine method considers this a valid input string (the empty string ""). The following statements accept a person’s age, followed by the person’s name and address. The first string input is properly preceded by an additional invocation of the nextLine method.

Scanner consoleIn = new Scanner(System.in);

int age;

String name;

String address;

System.out.print("\nEnter your age: ");

age = consoleIn.nextInt();

consoleIn.nextLine(); // clears the enter keystroke left behind

System.out.print("Enter your name: ");

name = consoleIn.nextLine();

System.out.print("Enter your address: ");

address = consoleIn.nextLine();

To fully understand Scanner class input, we must recognize that the characters the user types are transferred to a memory resident storage area called an input buffer. When a Scanner method is invoked and the buffer is empty, the method pauses until an Enter key is struck. If the buffer is not empty, the method accepts an input from the buffer, and then the input is deleted from the buffer. The nextLine method also deletes the Enter keystroke from the buffer; however, Scanner methods that return numeric values do not remove this character from the buffer.

When reading numeric inputs, this is not a problem because the numeric input methods not only skip leading spaces in the buffer, they also skip the Enter keystroke. This whitespace is ignored until the buffer is empty or they find an input to process. However, the newline method does not skip the Enter keystroke. As a result, when an invocation to nextLine follows a numeric input it encounters a nonempty buffer containing an Enter keystroke. The nextLine method reads and removes the Enter keystroke from the buffer and returns the empty string ("").

NOTE

When reading a string from the console after a numeric input, two invocations of the newLine method are required to read the string. The first invocation flushes the new line (empty string) from the buffer.

Figure 4.15 presents an application that demonstrates the use of the Scanner class’s methods to accept input from the system console. The console inputs and corresponding outputs are given at the bottom of the figure.

Line 1 imports the Scanner class’s methods into the application, and line 6 uses the Scanner class’s one-parameter constructor to create the object consoleIn passing it the predefined console input object System.in. Lines 11–16 accept a string, integer, and a double from the system console, each input on a separate line. These values are output on lines 17–18.

Lines 20-25 change the order of the inputs beginning with two numeric inputs on the same console line (lines 20–22). Then, a string is input (lines 23–25). Line 24 clears the Enter keystroke left in the buffer after the second numeric is read (line 22). Lines 26–27 outputs the second set of inputs. Referring to the bottom of Figure 4.15, the user entered several spaces between the input age, 5, and the input weight, 35. These spaces were ignored by the nextDouble method invoked on line 22. The weight output (35.4) on the last line of the figure confirms this.

[image:]

[image:]

Figure 4.15
The application ScannerConsoleInput followed by sample inputs and the corresponding outputs.

4.8 DISK INPUT AND OUTPUT: A FIRST LOOK

Unlike RAM memory, disk storage is nonvolatile, which means it retains the information stored on it when the computer system is powered down. As a result, it is used to archive data and program instructions. There are two types of disk files: text files and binary files. Information stored in binary files normally occupies less storage on the disk, and the information transfer is faster. That being said, text files are in wide use because all of the information in the file is stored as ASCII characters, which means it can be opened, read, modified, and restored using any text editor.

In this section, we will limit our discussion of disk file I/O to text files and the techniques for accessing the file’s data items in the order in which they appear in the file. This type of access is called sequential access. The alternate form of access, called random access, allows the data items to be accessed in any order. We will extend our discussion of disk I/O in subsequent chapters.

4.8.1 Sequential Text File Input

Information stored in a text file can be sequentially read into a program using the Scanner class’s methods presented in Table 4.5. In fact, all of the concepts discussed in Section 4.7 used to read or input data from the system console apply to sequential text file input. The one exception is the creation of the Scanner object.

To accept input from the system console, the object was created by passing the predefined object System.in to the Scanner class’s one-parameter constructor. To accept input from a sequential text file, a File object is passed to the Scanner class’s one-parameter constructor. This File object is created using the File class’s one-parameter constructor that accepts a string argument containing the file’s path and name. Case sensitivity in this string is ignored. The import statement import java.io.*; is used to access the File class.

The code fragment presented in Figure 4.16 reads an integer from the beginning of the file named data.txt resident on the root of the C drive.

[image:]

Figure 4.16
Code fragment to read an integer from the disk file data.txt resident on the root of the C drive.

The string argument sent to the File class’s constructor (on line 1 of Figure 4.16) contains a forward slash, which is preferred over the backslash for two reasons. First, all operating systems accept a forward slash in a path definition. Second, to use a backslash the escape sequence for a backslash (\\) would have to be used inside the string argument. Most Windows-friendly programmers often forget to code the escape sequence and code the string argument as "c:\data.txt". This would result in a translation error: illegal escape character, because \d is not a valid escape sequence.

A more insidious error occurs when a single backslash is erroneously coded, and the character that comes after it is a valid escape character. For example, if the file name was newData.txt, and it was located on the root of the C drive, the following line of code would not result in a translation error on a Windows system because \n is a valid escape sequence.

File fileObject = new File("c:\newData.txt");

However, it would result in a runtime error indicating that the file does not exist because the \n would be replaced at compile time with a new line or line feed (LF) character, and the name of the file passed to the constructor would be the LF character followed by ewData.txt.

[image:]

Always use forward slashes (/) when specifying a file path.

Even when the forward slash is used to specify the path to the file, the file must exist or a runtime error indicating that the file does not exist will occur. If the path is not specified (i.e., just the file name and its extension is coded), the file is assumed to be inside the project folder created by the IDE or a subfolder of that folder. The exact location may be IDE-specific.

Except for lines 1 and 2 of Figure 4.16, the code used to read data from a text file is the same as the code used to read data from the system console, except that no prompts are output. We simply imagine that instead of the user typing the data into the system console in response to input prompts, the same data (character for character, line for line) was typed into a text editor and then saved to the disk file.

For example, if a person’s age, weight, and name were typed into the C-drive resident text file data.txt whose contents are shown in Figure 4.17, then the code fragment presented in Figure 4.18 would read these values from the disk file. With the exception of lines 1 and 2, Figure 4.18 contains the same code used to read an age, weight, and name from the system console (lines 7–9 and 20–25 of Figure 4.15) with the two user prompts (lines 20 and 23) removed and the name of the Scanner object changed.

[image:]

Figure 4.17
The data contained in the disk file data.txt resident on the root of the C drive.

[image:]

Figure 4.18
The code fragment to read the data contained in the file shown in Figure 4.17.

To process a sequential file, Java maintains a read position pointer that is initially positioned at the first character in the file. Each time a data item is read from the file, this pointer is moved to the next item in the file. After the last item in the file has been read, the pointer is positioned at a special character called an end of file (EOF), which is automatically placed at the end of all disk files. In Chapter 5, we will discuss the importance of the addition of the EOF character to the file and how to detect when we have reached it.

There are some additional issues to consider when reading data from a text file that do not arise when performing console input. These include the need to know:

•the name and the path to the file to declare the File object (line 1 of Figure 4.18)

•the order of the information in the file, so the statements on lines 7, 8, 9, and 10 of Figure 4.18 are coded in the proper sequence

•the type of each piece of information in the file, so the proper Scanner class method can be invoked to read each piece of information

This information is described in a file specification given to the programmer by the software engineer who designed the file.

4.8.2 Determining the Existence of a File

Another issue to consider when reading data from a text file that does not arise when performing console input is how to prevent a runtime error if the data file does not exist. The File class contains a non-void method named exists that can be used to detect the existence of a file, and the System class contains a static method named exit that can be used to end a program.

The exists method in the File class returns true when the file exists, and the exit method in the System class has one integer parameter, which is usually passed a zero. The following code segment demonstrates the use of these two methods to bring a program to a more informative user-friendly ending when it tries to use a disk file that does not exist:

File fileObject = new File("c:/data.txt");

if(!fileObject.exists()) // file does not exist

{

   System.out.println("the file does not exist, the program is terminating")

   System.exit(0);

}

[image:]

It is good programming practice to check for a disk file’s existence to avoid a runtime error that is normally difficult for the user to understand.

4.8.3 Sequential Text File Output

Information can be sequentially output (written) to a text file using the print and println methods that are used to write information to the system console. In addition, the Java syntax used to format console output data, such as the spacing of the output information, moving to a new line, and specifying the precision of numeric outputs, is the same syntax used to format disk-file output. The one exception to this is the output annotation.

Output annotation is normally not included in the string sent to the methods and print and println when writing to a disk file because most disk files are read by programs, not people. When the file’s data will not be processed or read by a program (perhaps the file’s contents will be examined after it is printed), output annotation is included. Alternately, the reader could refer to the file’s specification to identify unannotated file information.

To write to the system console, the print and println methods operate on a predefined object System.out attached to the system console. To write to a sequential text file, these methods operate on a programmer-defined object in the PrintWriter class. This object is created using two lines of code that are analogous to the two lines used to create the Scanner object used to perform disk input.

The PrintWriter object is created using the class’s two-parameter constructor, which is passed to an object in the FileWriter class. The file’s path and name is passed to the FileWriter object when it is created. Case sensitivity in this string is ignored. The import statement import java.io.*; is used to access the PrintWriter and the FileWriter classes.

The code fragment presented in Figure 4.19 creates a sequential text file named data.txt on the root of the C drive and then outputs the contents of the variable score followed by a new-line character to the beginning of the file.

[image:]

Figure 4.19
Code fragment to write an integer to the beginning of the disk file data.txt resident on the root of the C drive.

Lines 1 and 2 of Figure 4.19 create the disk file and the object fileOut that is used to invoke the println method on line 5. A generic term used to describe the functionality of these two lines is that they create and open the file. If the file had already existed, it would have been deleted and then recreated. All the information previously written to a deleted file is lost.

Data written to a text file using the print and println methods should be thought of as being placed in the file exactly as the data would have appeared on the system console (line for line, character for character) had the methods operated on System.out. The only exception is that a new-line character does not appear on the system console. Rather, it causes the cursor to move to the beginning of the next line. The characters of the first data item are followed in the file by the characters of the second item, which are followed by the third, etc.

Figure 4.20 presents an application that writes a person’s age, weight, and name to a sequential text file named data.txt and then reads the data from the file and outputs the information to the system console. The system console output produced by the program is shown at the end of the figure, and the characters written to the disk file are shown in Figure 4.21.

Lines 1 and 2 of Figure 4.20 make the Scanner, File, FileWriter, and PrintWriter classes available to the program. Their constructors are used on lines 8–12 to create objects fileIn and fileOut, which are used on lines 18–19 and lines 23–26, respectively, to write to and read from the file.

[image:]

Figure 4.20
The application DiskIO and the console output it produces.

[image:]

Figure 4.21
The characters output to the file data.txt by the application DiskIO.

A throws clause has been added to the end of the signature of the main method (line 6). This tells the translator that the programmer is aware that some serious runtime problems (e.g., an attempt was made to read past the EOF character) could develop during the execution of the program. However, the programmer has chosen not to include code to deal with those problems. Without the throws clause, this program will not translate. We will discuss the code to deal with these problems in the next section of this chapter.

The string containing the name of the file on lines 8 and 10 does not contain a path. Therefore, the file is created inside the project folder created by the IDE. This is not always desirable but is often used in game programs because the file contains information about the game, such as the highest score achieved to date.

Line 18 writes two numbers to the file separated by a space as shown in Figure 4.21. The space is a very important part of the output. Without it, Nora’s age (5) and her weight (35.4) would be adjacent to each other and would therefore be considered one number (534.4) by anyone reading the file including line 23 of the program. The result would be one of the serious runtime errors the programmer chose to ignore because a double, 534.4, cannot be parsed into the integer variable age.

Lines 20 and 27 invoke the close method in the FileWriter and Scanner classes. These statements release the system resources required to perform disk I/O. If they are not included in a program that performs disk input and/or output, the Java runtime environment releases the resources when the program ends. It is not only good programming practice to code them immediately after the last disk I/O statements, but in this program it is essential that line 20 be part of the program.

Here’s why: During the execution of a program that writes to a disk file, the data is actually written to a RAM resident buffer. The characters stored in the buffer are written to the disk file when the buffer is full or the FileWriter’s close method is executed. This method flushes a partially full buffer to the disk file during the program’s execution. Because the number of characters written by this program does not fill the buffer, eliminating line 20 from the program presents line 23 with an empty disk file from which to read. This situation causes the program to terminate in a runtime error.

When the FileWriter class’s close method executes an end of file (EOF) character is added to the end of the file.

NOTE

Always invoke the FileWriter class’s close method after the last file output statement.
Always invoke the Scanner’s class’s close method after the last file input statement.

4.8.4 Appending Data to an Existing Text File

Data can be appended (added to the end) of a disk file by changing the second argument sent to the PrintWriter’s two-parameter constructor from false to true. For example, line 11 of Figure 4.20 to would be changed to:

PrintWriter fileOut = new PrintWriter(fileWriterObject, true);

When the program is run, if the file does exist it would not be deleted. (If it does not exist, it would be created.) Each execution of the program would add data to the end of the file followed by an EOF character. Figure 4.22 shows the contents of the file after three executions of the program, assuming the file did not exist before the program’s first execution and the value true was passed to the PrintWriter constructor.

[image:]

Figure 4.22
The output by 3 executions of DiskIO with the file open for append.

4.8.5 Deleting, Modifying, and Adding File Data Items

Java, like most programming languages, does not contain a method to delete or modify a file data item or add a data item anywhere in the file except at its end. These operations can be accomplished by including the disk I/O methods discussed in this chapter in algorithms that perform these tasks. For example, the delete algorithm would be:

1.Read all of the file’s information into RAM memory

2.Close the file

3.Delete the file

4.Recreate the file

5.Write all of the information except the item to be deleted back into to the file

6.Close the file

Because the coding of these algorithms requires knowledge of the material covered in Chapters 5 and 6, we will return to this topic in Chapter 6.

4.8.6 Redirecting the System.in and System.out

In some applications is it necessary to redirect System.in and System.out to a disk file so that output performed by the println or print methods can be written to a disk file and then input back to the program on a subsequent running of the program using the Scanner class’s nextLine method.

To redirect System.out to a file, an instance of the class File is created and its constructor is passed the path to the file. Then an instance of the class PrintStream is created, and its constructor is passed the File object. Finally, the System class’s static method setOut is invoked and passed the PrintStream object. All subsequent output to System.out will be written to the file. The following method redirects System.out to the text file data.txt located in the folder MyDocuments on the root of the C drive. The string “This is written to a disk file” is then written to the file data.txt, and the file is closed.

public static void redirectSystemOut() throws FileNotFoundException

{

   File file = new File("c:/MyDocuments/data.txt");

   PrintStream ps = new PrintStream(file);

   System.setOut(ps); // System.out is now the file data.txt

   System.out.println("This is written to a disk file");

   ps.close();

}

Similarly, to redirect System.in to a file, an instance of the class File is created and its constructor is passed the path to the file. Then an instance of the class FileInputStream is created, and its constructor is passed the File object. Finally, the System class’s static method setIn is invoked and passed the FileInputStream object. All subsequent input performed by the methods in the Scanner class will be read from the file. The following method redirects System.in to the text file, data.txt, located on the root of the C drive. It then reads a line of text from the file, data.txt, and outputs it, and finally closes the file.

public static void redirectSystemIn() throws FileNotFoundException

{

   File file = new File("c:/MyDocuments/data.txt");

   FileInputStream fis = new FileInputStream(file);

   System.setIn(fis); // System.in is now the file data.txt

   Scanner consoleIn = new Scanner(System.in);

   System.out.println(consoleIn.nextLine());

   fis.close();

}

4.9 EXCEPTIONS: A FIRST PASS

An exception is a Java feature that a method can use to communicate to its invoker that an unexpected event has occurred during the method’s execution when the method does not contain code to deal with it. When the event is one that Java deems serious, a throws clause must be added to the signature of the method in which the invocation is coded, or instructions to deal with the event must be added to the code block that contains the invocation statement.

The former approach was taken in the program that appears in Figure 4.20 on line 6. The Scanner and FileWriter class constructors invoked on lines 9 and 10 are methods that can encounter serious unexpected events during their execution. Therefore, a throws clause was added to the signature of the main method (line 14) because the main method contains these two invocations. In this section, we will cover a brief introduction to the alternative to the throws clause: adding instructions to deal with the event in the code block that contains the invocation statements. Chapter 10, "Exceptions, A Second Pass" contains a more in-depth discussion of exceptions.

As the word “throws” implies, a baseball analogy was used in the selection of the Java keywords associated with exceptions, and the analogy is helpful in gaining an understanding of exceptions. Imagine that when the serious event occurs during a method’s execution the method says, "I take exception to that event, and I am not going to continue executing. My last action will be to let my invoker know of this problem by throwing an exception object back to it."

If the invoker wants to deal with the problem, its code block catches the exception object and deals with the problem. Otherwise it throws the exception object on to the Java runtime environment. The term throws is a Java keyword we have already used (line 6 of Figure 4.20) when we did not want to deal with an unexpected problem. Two other keywords, try and catch, are used when we want to deal with the problem.

Each of these keywords begins a code block, and the try code block is always coded immediately before the catch code block. The following code fragment is a template for a try statement that will catch a thrown IOException object. As shown in the template, the type of exception object caught is coded in a parameter list after the keyword catch.

try

{

  // the code containing the method invocations and other statements

}

catch(IOException e)

{

  // the statements to deal with the unexpected events

}

The statements that invoked the methods that could throw the exception object must be coded inside the try block. Other statements can be included in the try block. Effectively, you are trying these invocation statements to see if the methods they invoke throw an exception object.

When an exception object is thrown by a method invoked inside the try block, the remainder of the statements in the try block do not execute, and execution passes to the first statement in the catch block. If an exception is not thrown, the statements in the try block complete their execution, and the catch block statements are not executed. In either case, the statements following the catch code block executes after the try block or the catch block completes execution.

The use of the template is illustrated in the following code fragment. It attempts to read the value stored in a disk file into the variable score and catches the IOException object thrown by the Scanner class’s constructor when this constructor encounters a problem.

int score;

try

{

   File fileObject = new File("data.txt"); // input

   Scanner fileIn = new Scanner(fileObject);

   score = fileIn.nextInt();

   fileIn.close();

}

catch(IOException e)

{

   System.out.print ("The score could not be read from the disk file,");

   System.out.println(" but the game will continue.");

}

//rest of the game's statements

If the reading of the score was essential to the continuation of the program, the second statement in the catch block would be replaced with the following two statements to terminate the program’s execution:

System.out.println(" the program is terminating.");

System.exit(0);

The program in Figure 4.23 illustrates the use of disk input and output in a game program and the use of exceptions to deal with unexpected disk I/O problems. It is the same program presented in Figure 4.13, modified to keep track of the highest game score ever achieved. When the game is over, this score is read from a disk file. If a new high score was not achieved, the game player is informed and encouraged to keep practicing. Otherwise, the new high score is written to the disk file and the game player is congratulated.

[image:]

[image:]

[image:]

[image:]

Figure 4.23
The ExceptionBasics Application: A decision and exceptions case study.

When the application is launched, two snowmen, one wearing a black hat and the other wearing a green hat, appear on the game board below the game’s score and remaining time (Figure 4.24a). The game begins when the player clicks the Start button on the game board. The objective of the game is to make the two snowmen collide as many times as possible before time runs out using the keyboard cursor-control keys to move the black-hat snowman. Each time they collide, a point is awarded, and the green-hat snowman disappears. It reappears at a new location after the black-hat snowman has been moved to a location such that the two snowmen are no longer in a collision state.

The changes to the program are the additions of the lines 3–4 that make the Scanner, File, FileWriter, and PrintWriter classes needed to perform disk I/O available to the program, the elimination of the throws clause in the main method’s signature and the addition of lines 40–67 that perform the disk I/O. Figure 4.24 presents several outputs produced by the program under various game conditions.

The signature of the main method (line 16) does not contain a throws clause because the disk I/O is performed inside the code block of a try statement (line 39). Line 44 reads the highest score ever achieved from the disk file HiScore.txt using the Scanner object inFile created by lines 42–43. Then, the file is closed (line 45). Normally, the programmer would use a text editor to create the file and store a score of zero in it as part of the program’s development. Because the file’s path is not specified on line 42, the file must be stored inside the project folder created by the IDE.

When a new high score is achieved, as determined by line 47, line 49–50 informs the game player of this achievement (Figure 4.24b). The new high score is written to the disk file (line 54) using the PrintWriter object fileOut created on lines 51–52, and the file is closed (line 55). Because the second argument sent to the PrintWriter constructor on line 52 is false, the file containing the old high score is deleted and recreated before the new high score is written to it. (The new high score is not appended to the file.)

When a new high score is not achieved, lines 59–60 of the if-else statement that begins in line 47 produces the output shown in Figure 4.24c. If a problem occurs during the disk I/O performed inside of the try block, execution of the try block is terminated, and the catch block (lines 63–66) executes producing the error message at the end of the text output shown in Figure 4.24d.

[image:]

Figure 4.24
Outputs produced by the application ExceptionBasics.

4.10 CHAPTER SUMMARY

Ordinarily, a Java program executes its statements sequentially. The if, if-else, and switch statements are used to alter this sequential path of execution by selecting which statement, or group of statements, to execute next. When the resulting decisions of an if or if-else construct effect more than one statement, these statements must be coded inside a code block.

Both the if and if-else statements evaluate Boolean expressions to determine whether to execute or skip the statements included in their code blocks. Boolean expressions use the logical and relational operators (all of which have a precedence order associated with them) and evaluate to true or false. These statements may be nested, which allows them to test for several conditions, or several conditions can be tested by one statement using compound Boolean conditions. The if statement is used to decide to skip or execute one group of statements, and the if-else statement is used to decide which of two mutually exclusive groups of statements to execute.

Although all uses of the switch statement can be coded using an equivalent set of nested if-else statements, the use of the switch statement makes our programs more readable when the decision to be made is based on one or more discrete values. The values can be references to a strings or primitive values whose type is byte, short, char or int, or the values of an enumerated type.

Most often, a break statement is used to prevent the cases coded below the one that is equivalent to the current value of the switch variable from executing. A default clause can be included at the end of the statement that will execute when the value of the switch variable does not match any of the statement’s cases. Decision statements have many applications to game programming, such as controlling the value of a timer, increasing a score when an event occurs, testing to see when there is a collision between objects, and determining which keystroke has been entered and responding to it.

The String class provides methods for comparing String objects because they cannot be compared using the relational operators. The equality operator compares the contents of variables, but String reference variables contain the address of the strings they refer to, not the strings themselves. Therefore, to compare strings, the String class provides methods such as equals and compareTo, which make case sensitive comparisons, and equalsIgnoreCase and compareToIgnoreCase, which ignore case sensitivity.

Disk I/O is useful for storing game data, such as the highest score achieved, and any other type of data that must be retained after a program ends. When data is stored in RAM buffers, it is volatile and is not preserved from one game to the next. In contrast, when data is stored in a text file, it can be read and compared each time the game is played. The constructors in the File and Scanner classes, and the constructors in the FileWriter and PrintWriter classes, can be used to "attach" Scanner and PrintWriter I/O objects to a file. Text output can then be sent to the file using the methods in the PrintWriter class, and information can be read from the file using the Scanner class’s methods. Methods in the scanner class can also be used to accept input from the system console. The File class method, exists, can determine if a file exists before attempting to use it, and it is always good programming style to close a file after using it.

Disk I/O often causes errors such as when code attempts to access a file that does not exist or whose pathname is incorrect. This causes an exception error to be generated, which disrupts the normal flow of a program. Java provides two exception-related constructs, called try and catch blocks. When an exception occurs within the code of a try block, the program’s execution path is transferred into the code of the catch block, which is designed to process (handle) and recover from runtime exceptions. A System class method, exit, can be used inside a catch block to terminate a program gracefully.

Knowledge Exercises

1. The variables i, j, k and m have been declared as: int i = 10; int j = 20; int k = 30; int m = 40. Evaluate the following as true or false:

a) i <= j

b) k == 30

c) i != j && j >= k

d) i != j || j >= k

e) (i <= k && k >= m) || (j * 2 == m && k > j)

f) m <= k || i + j + k >= m

2. What is the normal default execution sequence (path) of all Java programs?

3. What are the two types of statements available in Java to alter the default execution path?

4. Write the Java code to output the contents of the variable myBalance when it stores the value 10.0 to the system console.

5. Modify the Java code in Question 4 by adding a statement to output my balance is not 10.0 when the memory cell myBalance does not store 10.0.

6. Write an if or if-else statement to perform each of these tasks:

a) Add 5 to a grade if the grade is greater than 75

b) Produce the output buy tickets if the cost is less than $150.00, otherwise output too expensive. Then use a conditional expression to produce the same output.

c) Output the value stored in the variable GPA to the system console if the String object name contains the string Anna

d) For the strings referenced by s1 and s2, if s1 comes before s2 in alphabetical order, output in alphabetical order otherwise output the message not in order.

7. True or false:

a) An if statement must contain one Boolean expression.

b) An if-else statement must contain two Boolean expressions.

c) An if statement must contain a statement block.

d) The code block of an if statement executes when its Boolean condition is true.

e) The code block of an if statement can contain another if statement.

f) The code block of an else clause cannot contain another if statement.

g) An if or if-else statement may be nested within another if statement’s code block.

h) Java contains an if-else-if statement.

8. The string s1 just received input from an input dialog box. Give the statement to output OK to the system console when the user enters Stop Sign (case sensitive).

9. True or false:

a) A switch statement must contain a default clause.

b) A switch statement can have multiple cases.

c) The choice values of a switch statement can be strings.

d) A switch statement must contain at least one break statement.

e) A switch statement is normally used to determine a choice between several alternatives.

f) Every switch statement can be written as equivalent if-else statements.

g) A sequence of if-else statements can always be written as an equivalent switch statement.

10. Write the switch statement to output the menu selection stored in the string variable item, assuming the choices are Hamburger, Taco, or BLT (use system-console output).

11. Write the equivalent if-else statements to output the menu selections given in Question 10.

12. What API class must be imported into your program to accept input from the system console?

13. Give all of the statements, excluding import statements, to:

a) accept the year of a person’s birth input from the system console (include a prompt)

b) accept a person’s name input from the system console (include a prompt)

14. What is the advantage of saving information in disk files versus saving the information in main memory?

15. True or false:

a) Text files can be viewed using the program Notepad.

b) Text files cannot be printed on a printer.

c) By convention, text files end with the extension .txt

d) It is best to use two forward slashes to specify the path name where the file is located.

16. Write all of the import statement(s) necessary to perform disk I/O.

17. Give all of the statements, excluding import statements, to:

a) read the year of a person’s birth from the disk file Dates.txt stored on the root of the E drive

b) read a person’s age and name from the disk file Names.txt stored on the root of the E drive

c) read the year of a person’s birth from the disk file bDays.txt stored on the root of the E drive

18. Give all the statements necessary to append the contents of the variables myBalance and yourBalance to the disk file Balances.txt stored on the root of the C drive.

19. Give all the statements necessary to output the contents of the variables myBalance and yourBalance to the disk file Balances.txt stored on the root of the C drive. If the file already exists, delete it before performing the output.

20. Give all the statements necessary to determine if the file Data.txt exists on the root of the C drive, and output The File Exists to the system console if it does.

21. Write the statement needed to close the file attached to the scanner object inputFile.

22. Briefly discuss how the try and catch block can be used to handle exceptions detected by methods invoked within a program.

Programming Exercises

1. Write a program to ask a user to input two strings from the system console. If the strings are identical output Stings Identical to the system console. Otherwise output them in alphabetical order.

2. Write a program for a travel agency, which presents the user with the following menu as a console input prompt:

Where do you want to vacation?

 Enter: 1 for Disney World, 2 for Las Vegas, 3 for Paris or 4 for Alaska

After accepting the customer’s numeric response from the system console, use either an if-else or a switch statement to output two destination-appropriate messages to the text file vacation.txt (for example, if the user chose 4 for Alaska, you might want to output the messages Bring a warm jacket and enjoy Alaska and Say "Hello" to Frosty for me). Feel free to add bells and whistles such as adding a welcome message or adding additional destinations.

3. Write a program to ask a user to enter a student name, major, and GPA from the system console. If the GPA is greater than 3.5, set a Boolean variable, honors, to true, otherwise set it to false. Create a text file called StudentInfo.txt and output the name, major, GPA, and the student’s honors status to four separate lines of the file.

4. Extend the program described in Programming Exercise 4 to ask the user the name of the file in which to store the data. After writing the data to a text file with that name, add the phrase End of Student Record as the last line of the file. Then, read five lines store in the file and output them on five separate lines to a message box with the appropriate annotation. Before reading the data, ask the user the name of the file from which to read. Use a try and a catch block to output the message problems opening or reading the file when an IOException is thrown.

5. Write a graphical game application that contains a class named RV whose objects are the recreational vehicle designed and digitized as described in Knowledge Exercises 20 and 21 of Chapter 3. When the application is launched, the RVs appear on the screen. The game player is given 10 seconds to move any part of the RV beyond the top, bottom, right side, and left side of the game board using the keyboard cursor control keys. The game begins when the game player clicks the Start button and ends when the time expires or some part of the RV has moved beyond all four boundaries of the game board. During the game, a countdown of the time remaining should be displayed at the top of the game board, and the countdown should stop at the end of the game.

[image:]

[image:]

6. Write a graphical game application that contains a class named RV whose objects are the recreational vehicles designed and digitized as described in Knowledge Exercises 20 and 21 of Chapter 3. The application should also contain a class named Mouse whose objects are designed and digitized in a similar manner. When the application is launched, one RV and one mouse appear on the screen at different random locations. The user is given 10 seconds to move the mouse to the RV using the keyboard’s cursor control keys. The game begins when the game player clicks the Start button and ends when the time expires or the mouse has collided with the RV. During the game, a countdown of the time remaining should be displayed at the top of the game board, and the countdown should stop at the end of the game. The game begins when the game player clicks the Start button and ends when the time expires or some part of the mouse has collided with the RV.

7. Write the game application described in Programming Exercise 6 modified to include three RVs at different locations. In this version of the game, the game player has to make the mouse collide into all three RVs and the RVs disappear when the mouse collides with them. The player’s score will be the time remaining after all the RVs have disappeared. A record of the lowest score ever achieved will be kept in the disk file LowScore.txt.

8. Using the skills developed in this chapter, continue the implementation of the parts of your game (specified in Preprogramming Exercise 1 of Chapter 1) that require cursor-key motion control, disk I/O, collision detection, and stopping a time countdown. To test the collision detection, you will have to add a class to your application that implements your second type of game piece.

CHAPTER 5

[image:]

REPEATING STATEMENTS: LOOPS

5.1 A Second Alternative to Sequential Execution

5.2 The for Statement

5.3 Formatting Numeric Output: A Second Pass

5.4 Nesting for Loops

5.5 The while Statement

5.6 The do-while Statement

5.7 The break and continue Statements

5.8 Which Loop Statement to Use

5.9 The Random Class

5.10 The Enhanced for Statement

5.11 Chapter Summary

[image:]

In this chapter

In this chapter, we will learn the techniques used to repeat the execution of a designated group of statements an unlimited number of times, which gives us the ability to perform a significant amount of processing with just a few repeated statements. Not only does this reduce the time and effort required to produce a program, but it also allows us to utilize algorithms whose implementation require the use of these repetition, or loop, statements. We will discuss the syntax and execution path of Java’s three how to nest these statements. Our knowledge of these statements will be expanded in Chapter 6, which covers the concept of arrays, because loops are used to unlock the power of arrays.

We will learn why repetition statements are an integral part repetition statements, consider which one is best suited for particular applications, and learn of two fundamental algorithms, summing and averaging, and how to generate a repeatable sequence of pseudorandom numbers using loops and the methods in the class Random. In addition, we will extend our knowledge of numeric formatting introduced in Chapter 2 and learn to produce output consistent with any of the world’s currency systems.

After successfully completing this chapter you should:

•Understand the syntax and execution path of Java’s for, while, and do-while repetition statements

•Know which statement to use for a particular application

•Understand why a for loop is an automatic counting loop

•Understand the role of sentinels in repetition statements and their use in while and do-while loops

•Be able to explain the totaling and counting algorithms and the role loops play in their implementation

•Know how to generate a set of random numbers using the methods in the class Random and loop statements

•Be able to use the NumberFormat class’s methods to format currency output in a local specific format

•Be able to use the DecimalFormat class’s methods to format numeric output with leading/trailing zeros and comma separators and display a numeric value as a percentage or using scientific notation

5.1 A SECOND ALTERNATIVE TO SEQUENTIAL EXECUTION

Often, the proper execution path of a program’s statements requires that a sequence of instructions be executed several times. For example, a program accepts three input deposits and adds them to a bank balance after each input. In this case, the input statement and the arithmetic statement to add the input deposit to the bank balance would be repeated three times.

One alternative would be to code one input and one arithmetic statement, copy and paste them into the program two more times, and then execute the three groups of statements sequentially. Another alternative would be to enclose one input and one arithmetic statement in a repetition statement’s code block, which is repeated three times. Although both approaches would produce the same result, the second alternative is most often preferred, especially when the statements are to be repeated a large number of times. Not only does this approach save coding time, but it also improves the readability of our programs by significantly reducing the length of the program, and, more importantly, making it obvious to the reader that the statements are being repeated.

A repetition statement is most often referred to as a loop statement. The term loop comes from an aircraft “loop” maneuver often performed at air shows during which the aircraft repeatedly travels in a vertical circle. Figure 5.1 illustrates the maneuver and programming analogy.

Like many programming languages, Java provides three repetition or loop statements: the for, the while, and the do-while statements. While there is the possibility for significant overlap in the use of these three statements in our programs, good coding practice and ease of use greatly narrow the choice of which statement to use in a particular context. One of the objectives of this chapter is to specify clear criteria for when each of these three statements is best used in our programs. We will begin our study of repetition statements with the for statement.

[image:]

Figure 5.1
Airplane and programming loops.

5.2 THE FOR STATEMENT

The for statement is often called an automatic counting loop. It is most often used when we know how many times to repeat the loop’s statements. In some cases, this is known at the time the program is written; for example, a program that always processes three deposits. In other cases, the number of times the loop is to execute is specified, or determined, during the program’s execution. For example, before entering deposits the program users are asked to enter the number of deposits they will be making into their bank account during this execution of the program. The criterion common to both of these alternatives is that before the loop executes the number of repetitions is known. When this is the case, the for loop is the best repetition statement to use.

5.2.1 Syntax of the for Statement

The left side of Figure 5.2 shows an example of a for statement containing a group of statements that will executes its statement block three times. The meaning of the statement and its execution path are illustrated on the right side of Figure 5.2. The integer variable i is called the loop or loop control variable. The statement(s) enclosed inside the braces are called the loop’s code block, or the body of the loop. They are said to be inside the loop. These are the statements to be repeated.

[image:]

Figure 5.2
A for loop that executes three times and its execution path.

When a loop is correctly written, the loop variable is initialized, tested, and changed. In a for loop, all three of these actions are coded within the for statement’s parentheses. Referring to the left side of Figure 5.2, the statement i=1; sets the initial value, i<=3; tests to see if i has reached its terminating value or if the loop should continue, and i=i+1; changes or increments the value of the loop’s control variable.

Referring to the items enclosed inside the parentheses after the keyword for, the code:

•i=1; is called the initialization expression

•i<=3; is called the condition to continue expression or continuation condition

•i=i+1; is called the increment

The initialization expression is an assignment statement. As shown on the top-right side of Figure 5.2, this assignment statement always executes once to initialize the loop variable just before the loop begins. The condition to continue expression is a Boolean expression involving the loop variable, which executes at least once. The loop body is repeatedly executed while this Boolean expression is true. If the Boolean condition is false when the loop begins, the statements in the loop body are not executed. The increment is an assignment statement. The statement is used to change the loop variable after the statements in the loop body are executed. When the increment is one, the equivalent coding i++; is commonly used.

The loop shown in Figure 5.2 executes its statement body three times. When the for statement begins, the loop variable i is initialized to 1. The condition to continue (i <= 3) evaluates to true (1 <= 3), and the statements in the loop body execute for the first time. The loop variable is then incremented to 2, the condition is tested and is still true (2 <= 3), and the statements execute a second time. The loop variable is then incremented to 3, the condition is still true (3 <= 3), and the statements execute a third time. Finally, the loop variable becomes 4, the condition (4 <= 3) is false, and the loop ends. After the loop ends, the statement immediately following its close brace executes.

The following code fragment contains a for statement that executes its loop body 500 times:

 int i;

 for(i=1; i<=500; i=i+1)

    {

      //statement(s) to be repeated

       }

The most common errors made when coding the for statement are:

•placing a semicolon after the close parenthesis

•neglecting to code the semicolon after the initial condition or after the condition to continue, both of which result in a translation error

•neglecting to code the open and close braces around the statements when more than one statement is to be repeated

•modifying the loop variable within the body of the loop which alters the automatic counting

When a semicolon is coded after the close parenthesis, the statement is syntactically correct, however, none of the statements that would have normally formed the loop body are considered to be part of (inside) the loop. They default to sequential execution and each statement executes once. When braces are not coded, the statement is also syntactically correct, however, the first statement after the for statement is the only statement considered to be part of the loop. Regardless of the indentation used, it is the only statement repeated.

The generalized syntax of the for statement and its execution path are shown at the top and bottom of Figure 5.3, respectively.

 for(initialization expression; condition to continue; increment)

 {

    //statement(s) to be repeated

 }

[image:]

Figure 5.3
The generalized syntax of the for statement and its execution path.

In addition to the loop variable, the initialization expression, test to continue, and the increment can all contain other variables that can be used to adjust the flow of the statement at runtime. For example, the following code fragment outputs the values in the five times table from 10 to 50 on one line:

int i;

int beginValue = 10;

int endValue = 50;

int tableValue = 5;

for(i=beginValue; i<=endValue, i=i+tableValue)

{

System.out.print(i + " ");

  }

Figure 5.4 presents a console application named ForLoopCounting that utilizes this feature of the statement to count from a user input starting value to a specified ending value, by a specified increment. The bottom part of the figure gives the user prompts and inputs and the corresponding outputs generated by the program.

The input starting and ending values, and the increment to count by, are parsed into the variables start, end, and increment on lines 10, 12, and 14 of Figure 5.4. These variables are used in the initialization expression, condition to continue, and increment of the for statement that begins on line 18. As indicated by the input and output at the bottom of Figure 5.5, the program user inputs 3 as a starting value, 27 as an ending value, and an increment of 5. After the value 23 is output, the loop variable i becomes 28 (= 23 + 5). Because 28 is not less than or equal to the ending value 27, the loop ends and 28 is not output.

[image:]

Figure 5.4
The application ForLoopCounting and typical inputs and outputs.

Line 18 presents a feature of the for statement we have not previously discussed. It declares the loop variable i as part of the initialization expression by proceeding its assignment statement with the keyword int. When this is done, the scope of the loop variable is limited to the for statement and its statement body. The loop variable cannot be used by statements that follow the loop or by statements that precede the loop. After the loop ends, the Java memory manager reclaims the storage assigned to the loop variable, and the variable’s lifetime is said to be over. If another variable named i had been declared in the program before or after the loop statement, all references to the variable i inside the for statement (lines 18-21) would refer to the loop variable, not the variable declared outside the loop. This feature ensures that the loop will count correctly.

A for loop can also be used to count down to an ending value. In this case, the loop variable is initialized to the starting countdown value, and it is decremented each pass through the loop. The statement’s Boolean condition checks to see if the ending value is reached. The following code fragment counts down from ten to zero:

for(int i= 10; i>= 0; i--)

{

System.out.println(i);

}

In general, the initialization expression and the increment can contain more than one assignment statement. When this is the case, they are separated with commas as shown in code fragment below. The loop’s execution path is shown in Figure 5.5.

int i, j, k;

for(i=1, j=10, k=4; i<= 3; i=i+1, j=j+3, k=k-1)

{

  //statement(s) to be repeated

}

5.2.2 A for Loop Application

Figure 5.6 shows a graphical application that draws the first row of a checkerboard on a light-gray-colored game board as shown in Figure 5.7. The program uses a for loop to draw the eight checkerboard squares and then uses another for loop to draw a red checker on the row’s black squares.

[image:]

Figure 5.5
Execution path of a for loop containing multiple initialization-expression and increment-assignment statements.

Inside the draw method, line 26 of Figure 5.6 uses the game environment’s setBackground method to change the game board’s background color to light gray. Then line 29 begins a for loop that executes eight times. During each iteration of the loop, a black or red checkerboard box is drawn (line 36) using the current drawing color. The first statement in the loop body (line 31) sets the current color to firstColor (black), then line 32 uses the modulus operator to determine if the loop variable, col, is even (col % 2 == 0). If it is, the current color is changed to secondColor (red), which causes the even checkerboard boxes (2, 4, 6, and 8) to be drawn in red. The counting algorithm, whose increment is the width of the checkerboard boxes, is used on line 37 to calculate the x location of the next checkerboard box to be drawn.

Line 42 begins a second for loop that draws a red checker (line 45) on the black checkerboard boxes. Before the loop begins, the current drawing color is set to red (line 41). Because the for statement’s increment adds 2 to the loop variable col, this variable stores the column numbers 1 (firstCheckerCol), then 3, 5, and 7. These are the column numbers of the black boxes, which are used on line 44 to calculate the x location of each column’s checker. In this calculation, one is subtracted from the column number col before it is multiplied by the box width because column 1’s checker should be drawn at an x value of 20.

[image:]

Figure 5.6
The application CheckerBoardRow.

[image:]

Figure 5.7
The output from the application CheckerBoardRow.

5.2.3 The Totaling and Averaging Algorithms

The totaling or summation algorithm, like the counting algorithm, is a fundamental algorithm of computer science. Both of these algorithms are used in most programs. As the totaling algorithm’s name implies, it is used to calculate a total, or sum, of a group of values. For example, it could be used to calculate the total of a group of deposits input to a program, and once the total is known, the average deposit can be easily determined by dividing the total by the number of deposits.

The totaling algorithm is very similar to the counting algorithm, except that the counting algorithm adds (or subtracts) a constant increment to the current value of the counter every time it is executed, and the totaling algorithm adds the next item to be totaled to the current value of the total every time it is executed:

counting algorithm: count = count ± constantIncrement;

totaling algorithm: total = total + newItem

If we were adding a group of deposits, the variable newItem would contain the next deposit. As was the case with the counting algorithm, the name of the variable on the left side of the assignment operator can be any valid variable name. Similarly, the same variable name must be used on the right side of the assignment operator, and the name should be representative of what it stores. For example, when calculating a new bank balance:

balance = balance + deposit;

The chosen variable is generically referred to as the totaling or summation variable. Before the algorithm is used, the variable is set to an initial value, which is the current (beginning) value of the sum. For example, it could be the bank balance before the new deposits are made. Often, this value is zero. As is the case with the counting algorithm, once the initial value is set, the summation algorithm is repeatedly executed.

The following code fragments add up the integers from one to four:

[image:]

The contents of the memory cell sum would progress from 0, to 1, to 3, to 6, and finally to 10. In most cases, as shown on the right, a loop is used to repeat the summation algorithm.

Figure 5.8 presents a Java console application named TotalingLoop that demonstrates the use of the totaling algorithm and the calculation of an average. A set of sample inputs and the program’s corresponding outputs is given at the bottom of the figure. The monetary outputs produced by lines 15–16 and lines 30–34 are formatted as U.S. currency using an object in the NumberFormat class declared on line 13. This class and its methods used to produce this currency formatting will be discussed in the next section.

The program accepts a given number of input deposits and uses the totaling algorithm (line 25) to calculate their total. The number of deposits to be processed is input on line 17, then the parsed value is used in the Boolean condition of the for statement that begins on line 21 to process that number of deposits.

Before the loop begins, the totaling variable, total, is initialized to zero (line 20). During each iteration of the loop that begins on line 21, a new deposit is input and parsed. Then, the total algorithm is used on line 25 to add the new deposit to the total of the previously input deposits. After all the deposits are processed, the new balance (line 27) and the average deposit (line 28) are calculated. Lines 15–16 output the beginning balance, and lines 30–34 output the total of the deposits, the average deposit, and the new balance to the system console.

[image:]

[image:]

Figure 5.8
The application TotalingLoops and typical inputs and outputs.

5.3 FORMATTING NUMERIC OUTPUT: A SECOND PASS

The use of the DecimalFormat class to improve the readability of numeric outputs was briefly discussed in Chapter 2 (Section 2.10). In this section, we will expand that discussion and also discuss the use of the NumberFormat and Locale classes that were used to format the currency outputs produced by the program shown in Figure 5.8. We will begin with an introduction to the techniques used to format numeric output as currency.

NOTE

All numeric formatting rounds up the fractional part of a numeric value, and all of the digits in the integer portion of the numeric value are always included in the formatted version of the number.

5.3.1 Currency Formatting

The monetary outputs produced by the program shown in Figure 5.8 are formatted as United States currency. There is a leading dollar sign and a decimal point separating the dollar amount from the cents, which are displayed as two rounded digits to the right of the decimal point. In addition, a comma is used as a thousands separator in the dollar amount. Had the output been negative, it would have been enclosed in parentheses. All of this formatting conforms to the way U.S. currency is displayed within the world of finance and makes the units of the output recognizable as dollars and cents.

Two methods in the NumberFormat class, getCurrencyInstance and format, and constants defined in the class Locale can be used to format numeric values as currency. The constants in the class Locale are used to specify which of the world’s currencies to use in the formatting.

The NumberFormat class’s method getCurrencyInstance is used on line 12 of Figure 5.8 to create a currency formatting object named us. The method accepts one argument, which is normally one of the predefined static constants in the Locale class. As the name of the class implies, this argument specifies the locale of the format that will be associated with the formatting object. Line 13 uses the constant Locale.US, to specify that the currency formatting associated with the object us will be United States currency: dollars and cents.

The object us is then used on lines 15-16 and lines 30-33 to invoke the NumberFormat class’s format method. This method converts the numeric value passed to it to a string using the formatting associated with the object that invoked it. As a result, the four numeric outputs produced by the program are formatted as U.S. currency.

By changing the argument passed to the method getCurrencyInstance on line 13, the numeric output produced by the program could be made to conform to other currency formats used in the financial world. For example, the following code fragment produces the two outputs, which are formatted as pounds (the United Kingdom’s currency) and euros (the European Union currency), respectively. The output of the code fragment is given below the code.

double price = 1234567.889;

NumberFormat uk = NumberFormat.getCurrencyInstance(Locale.UK);

NumberFormat france = NumberFormat.getCurrencyInstance(Locale.FRANCE);

System.out.println(uk.format(price));

System.out.println(france.format(price));

Output:

£1,234,567.89

1 234 567,89 €

NOTE

The formatting performed does not take into account monetary exchange rates.

The Default Locale

The getCurrencyInstance method invoked on line 13 of Figure 5.8 is overloaded. There are two version of it: a one-parameter version that was invoked on line 13 and a no-parameter version. The no-parameter version of the method can be used to format numeric currency in the default locale of the computer’s operating system. Assuming the default locale of the operating system was Italy, the following code fragment would produce two identical lines of output formatted as euros (Italy’s currency).

double price = 1435.2;

NumberFormat italy = NumberFormat.getCurrencyInstance(Locale.ITALY);

NumberFormat osDefault = NumberFormat.getCurrencyInstance();

System.out.println(italy.format(price));

System.out.println(osDefault.format(price));

5.3.2 The DecimalFormat Class: A Second Look

The methods in the DecimalFormat class, which were briefly discussed in Section 2.10 of Chapter 2, can also be used to format numeric output. Normally, these methods are used when the numeric value is not currency.

Like the NumberFormat class, the DecimalFormat class contains a nonstatic method named format that returns a string containing the formatted version of the numeric value sent to it as an argument. This method is invoked with a DecimalFormat object that can be declared using the class’s one-parameter constructor. The constructor is passed a string argument, called the formatting string, which contains the formatting information. In Section 2.10, we used the formatting string argument "#,###.##" to produce an output that contained a comma every three digits to the left of the decimal point and to format real numbers (nonintegers) with a maximum of two digits of precision.

Other characters can be used in the formatting string to produce other forms of numeric output formatting. The pound signs (#) to left and right of the decimal point can be replaced with zeros, which are used to format the numeric value with leading and trailing zeros. In addition, a percent sign (%) can be added to the end of the formatting string. The percent sign is used to format the numeric value as a percentage. For example, the value 0.237 would be formatted as 23.7%, assuming one digit of precision was specified in the formatting string. Numeric values can also be formatted in scientific notation.

Regardless of the characters used in the formatting string, the fractional part of a numeric value is always rounded up and all of the digits in the integer portion of the numeric value or a leading zero are always included in the formatted value unless scientific notation is being used.

Leading and Trailing Zeros

Inserting zeros into the formatting string adjacent to the decimal point will add leading or trailing zeros to the formatted value. For example, when the numeric value being formatted does not have an integer part (e.g., .254), inserting a zero to the left of the decimal point in the formatting string will format the value as 0.254. Adding a zero the right of the decimal point will format the value 167 as 167.0. If the number does have a fractional or integer part, then the digit adjacent to the decimal point in the numeric value always appears in the formatted value.

The code fragment below formats numeric values with one leading zero and two trailing zeros and produces the output shown below the code. The third output value is rounded to the specified two digits of precision.

 double n1 = .2;

 double n2 = 167.0

 double n3 = 1.4672

DecimalFormat ltz = new DecimalFormat("#,##0.00");

System.out.print(ltz.format(n1) + " " + ltz.format(n2) + " " + ltz.format(n3));

Output:

0.20 167.00 1.47

Percentages

A formatting string that ends with a percent sign is used to format a numeric value as a percentage. The value will be multiplied by 100, and a percent sign will be added to the right side of the string from the format method. For example, the value 0.254 would be formatted as 25.4%. The code fragment below formats numeric values as percentages with one leading zero and one trailing zero. The output it produces is shown below the code.

double n1 = 0.002;

double n2 = 0.16 DecimalFormat pct = new DecimalFormat("#,##0.0%");

System.out.println(pct.format(n1) + " " + pct.format(n2));

Output:

0.2% 16.0%

Scientific Notation

Scientific notation is a formatting of a numeric value into a mantissa followed by an exponent. Usually, the mantissa and the exponent are separated by the letter E. The mantissa contains the digits of the numeric value with its decimal point shifted left or right. To determine the numeric value, the mantissa is multiplied by 10 raised to the value of the exponent. For example, 23.971E2 represents the numeric value 2,397.1.

A formatting string that ends with the character E followed by the number of leading zeros to be displayed in the exponent is used to format a numeric value in scientific notation. At least one zero must be included after the letter E in the formatting string. The formatted value will contain the mantissa and the exponent separated by the letter E. The mantissa is formatted using the portion of the formatting string to the left of the letter E, which should contain only zeroes and a decimal point.

The code fragment below formats numeric values in scientific notation with the mantissa shown with one digit to the left of the decimal. The output it produces is shown below the code.

double n1 = 0.00000215;

double n2 = 16123067533.1

DecimalFormat sn = new DecimalFormat("0.0000E0");

System.out.println(sn.format(n1) + " " + sn.format(n2));

Output:

2.1500E-6 1.6123E10

NOTE

All digits of the exponent will always be included in the scientific formatted version of a numeric value.

Table 5.1 summarizes the characters used in the DecimalFormat class’s format string and the formatting they produce. All digits in the integer portion of numeric value will always be included in the formatted version of the numeric unless scientific notation is being used. All digits of the exponent are always displayed when using scientific notation.

Table 5.1
The DecimalFormat Class’s Formatting Characters and Their Meaning

	Character

	Formatting Produced

	Formatting String Example

	.

	Output a decimal point in this position

	

	#

	Output a digit in this position if it exists

	"#.#"

	0

	Output a digit in this position if it exists, else a zero

	"0.00"
One leading zero, two digits of precision

	,

	Output a comma separator in this position, as necessary

	"#,##0.00"
Comma separator every three digits (with one leading zero and two digits of precision)

	%

	Output a numeric value as a percentage
(Multiply the numeric by 100 and add a percent sign to its right)

	"0.000%"
Convert numeric to a percentage followed by a percent sign (with one leading zero, three digits of precision)

	E

	Output the numeric value in scientific notation

	"0.0000E0"
Mantissa formatted with 5 digits
x.xxxxEx
 All digits of the exponent are displayed

Figure 5.9 illustrates the use of the methods in the DecimalFormat class to format numeric outputs. The program produces four groupings of outputs, which are shown in Figure 5.10. Each grouping outputs the same three numbers: n1, n2, and n3 (lines 15–33) using different formatting strings, which are defined on lines 7–10.

The first three output groupings use comma separators every three digits. The second and third groupings also use leading and trailing zeros, with the outputs in the third grouping displayed as percentages. The fourth output grouping uses scientific notation.

The first numeric output in the first grouping (0.006) has been truncated because its formatting string (line 7) only contains three digits of precision. It contains a leading zero because all numeric values contain a leading zero unless scientific notation is being used. The last two outputs in the first grouping do not contain trailing zeros because the pound sign (#) was used on line 7 to specify their precision.

The outputs in the second grouping contain trailing zeros because a zero was used in their formatting string to specify their precision (line 8). Finally, the exponent (11) in the second numeric output of the last grouping contains two digits even though its formatting string specifies one digit of precision. All the digits of an exponent are always displayed, regardless of the number of zeros used to specify the leading zeros of the exponent.

[image:]

Figure 5.9
 The application DecimalFormatClass.

[image:]

Figure 5.10
The output produced by the application DecimalFormatClass.

5.4 NESTING FOR LOOPS

As we have learned, loops can be used to repeat a statement or a group of statements contained inside a statement block. When the statement block contains a loop, we say that the loop that is inside the statement block is nested inside the other loop. The loop in the statement block is called the inner loop because it is inside the other loop, which is referred to as the outer loop. The loop in the statement block can be thought of as an egg inside the nest formed by the outer loop. Consider the following code fragment that computes the average of a runner’s ten qualifying race times:

total = 0;

for(int i = 1; i<=10; i++)

{

input = JOptionPane.showInputDialog("Enter a race time");

aRaceTime = Double.parseDouble(input);

total = total + aRaceTime;

}

System.out.println(" Your average time is " + total / 10);

This code could be used to process 100 runners by nesting it inside an outer loop that executes 100 times.

for(int j = 1; j<=100; j++) //each runner (the outer loop)

{

total = 0;

 for(int i = 1; i<=10; i++) //each race (the inner loop)

{

  input = JOptionPane.showInputDialog("Enter a race time");

  aRaceTime = Double.parseDouble(input);

  total = total + aRaceTime;

}

System.out.println(" Your average time is + total / 10);

}

As is the case with nested decision statements, there is no limit on how many loops can be nested inside of other loops. The following code fragment processes the 10 qualifying times for 100 racers in 5 states using two levels of nesting.

for(int k = 1; k<=5; k++) //each state

{

  for(int j = 1; j<=100; j++) //each runner

  {

   total = 0;

   for(int i = 1; i<=10; i++) //each race

   {

     input = JOptionPane.showInputDialog("Enter a race time");

     aRaceTime = Double.parseDouble(input);

     total = total + aRaceTime;

    }

     System.out.println("Your average time is + total /10);

   }

   }

The indentation used in the above code fragment is considered good programming practice because it makes the use of nested loops, and the nesting levels, obvious to anyone reading the code. It can be quickly determined that the three statements in the innermost loop will execute 5,000 times (= 5 * 100 * 10). When using nested loops, it is also good programming practice to progressively develop the code from the inside of the nest outward. The innermost loop (e.g., one that processes 10 races) is coded first, tested, and corrected. Then, this loop is enclosed in a loop (e.g., one that processes 100 runners), and this nested structure is again tested. The process continues until the outermost loop (e.g., one that processes 5 states) is complete.

[image:]

[image:]

Figure 5.11
The graphical application CheckerBoard.

Figure 5.11 contains a graphics application that illustrates the use of nested for loops to draw the checkerboard shown in Figure 5.12, and a second set of nested for loops to draw three rows of red checkers on the board. A significant portion of the code is the same as the code shown in Figure 5.6 that drew one row of a checkerboard containing red checkers.

Lines 31 to 49 contain the first set of nested for loops used to draw the eight rows of the checkerboard. The inner loop, that begins on Lines 33 and ends on Line 42, is same code used on Lines 29 to 38 of Figure 5.6 to draw one row of a checkerboard. This loop is now nested inside an outer loop that begins on line 31, which executes eight times. With each pass through the outer loop, the inner loop draws another row of the board. To prevent the rows from being drawn on top of each other, line 43 increases the y location of the next row of boxes to be drawn in the inner loop by the height of the boxes, and line 44 resets the x location of the each row’s first box to 12. Before the outer loop ends, lines 46–48 swap the colors of the odd and even column boxes. This will make the colors of the boxes to be drawn in each column of the next row different from the color of the boxes in the row above them.

The inner loop that begins on lines 60 and ends on line 64 is the same code used on lines 42–46 of Figure 5.6 to draw one row of red checkers. This loop is now nested inside an outer loop that begins on line 31, which executes three times. With each pass through the outer loop, the inner loop draws the next row of checkers. After a row is drawn, the y location of the next row of checkers is calculated and assigned to the variable checkerY on line 65. The value stored in this variable is increased by the height of the boxes then used during the next iteration of the inner loop (line 63) to draw a row of checkers.

[image:]

Figure 5.12
The output produced by the application CheckerBoard.

Line 66 reinitializes the x location of the first checker in a row to 20. The if statement on line 54 decides when the row number is even. Because only the odd-numbered rows (rows 1 and 3) should have a checker in the first column of the board (at x = 20), checkerX is increased by the width of a checkerboard box (line 56) when the row number is even. Then, line 57 sets the variable firstCheckerCol, used on line 60 as the column number of a row’s first checker, to 2 (line 57)

5.5 THE WHILE STATEMENT

Many applications require that a sequence of statements be repeated until a Boolean condition becomes false, rather than repeating until the statements have been executed a given or known number of times. For example, a program might continue to ask for a password until the correct password is entered. When this is the case, the while or the do-while statements are normally used to code the loop that repeats the statements. If the statements should be executed at least once, the do-while statement is used. Otherwise, the while statement is used. In this section, the while statement will be discussed, and the do-while statement will be discussed in Section 5.6.

5.5.1 Syntax of the while Statement

The generalized syntax of the while statement and its execution path are shown on the left and right sides of Figure 5.13, respectively:

[image:]

Figure 5.13
The syntax and execution path of the while statement.

The statement begins with the keyword while followed by a Boolean expression enclosed in parentheses, which is followed by a code block containing the statements to be repeated. While it is the case that a single statement to be repeated need not be coded inside a statement block, as discussed in Section 5.2.1, it is good programming practice to do so.

As shown on the right side of Figure 5.13, the statements in the block will be repeated as long as the Boolean condition is true. If, when the statement begins execution, the Boolean condition is false, the statement block will not be executed.

The following code fragment outputs the square root of 1.2, 2.3, 3.4, and 4.5:

double n = 1.2;

while(n != 5.6)

{

   System.out.println(Math.sqrt(n));

   n = n + 1.1;

}

The most common errors made when coding the while statement are:

•placing a semicolon after the close parenthesis

•neglecting to code the open and close brace around the statements when more than one statement is to be repeated

When a semicolon is coded after the close parentheses, the statement is syntactically correct, however, none of the statements that would have normally formed the loop body are considered to be part of (inside) the loop. They default to sequential execution, and each statement executes once. When braces are not coded, the statement is also syntactically correct, however, the first statement after the while statement is the only statement considered to be part of the loop. Regardless of the indentation used, it is the only statement repeated. When coding a while loop, it is good programming practice to code the following fragment and then add the Boolean condition and the statements to be repeated:

while()

{

}

A common logic error made when coding the while statement is that the statements inside the statement block, during some repetition of the loop, do not change the Boolean expression to false. The statement, or statements, intended to do that were either incorrectly coded or were not included in the loop’s statement block. In either case, once the loop begins, it never ends, and the loop is said to be an infinite loop. The following code fragment is an infinite loop because the statement that increments n is not part of the loop’s statement block. On each iteration through the loop, n’s value remains 1.2, and the Boolean condition never becomes false.

double n = 1.2;

while(n != 5.6)

{

System.out.println(Math.sqrt(n));

}

   n = n + 1.1;

Infinite loops can also occur when the loop’s Boolean expression is improperly coded, as is the case in the following code fragment. The variable n assumes the values 1.2, 2.3, 3.4, 4.5, 5.6 …, but never the value 5.5.

double n = 1.2;

while(n != 5.5) //n never becomes 5.5

{

   System.out.println(Math.sqrt(n));

   n = n + 1.1;

}

5.5.2 Sentinel Loops

Many applications require that a sequence of instructions be repeated until a signal to stop is detected. The signal is referred to as a sentinel value, and a loop that ends when it detects a sentinel value is called a sentinel loop.

Sentinel loops are commonly used to process a set of input data, and the sentinel value is chosen to be a specific value of the input data. The value selected must be a value that would never occur in that data set (for example, a student grade of -1). As another example, you might want to continue to process bank deposits until a negative deposit is entered, or when data is being read from a disk file to continue to process data until an End of File (EOF) marker is encountered. Although for loops that contain break statements could be used to code sentinel loops, they are more easily coded using the while and do-while statements.

Often, the use of sentinel loops in our programs makes them easier to use. Imagine you are a data-entry person using the program shown in Figure 5.8 to process a group of input deposits. When the program is launched, you are asked for the number of deposits. If the first item on the list of deposits you were given to enter was the number of deposits, the automatic counting performed by the for loop used in the program would be perfect for the application.

However, if the number of deposits was not included in the list of deposits, then before you used the application, you would have to count the number of deposits. Not only would this be time consuming when the list of deposits was long, but if you miscounted the number of deposits, the program would either terminate before all the deposits were entered (because your count was too low) or ask you to enter a deposit that did not exist (because your count was too high). Generally speaking, when the number of data items to be processed is not easily determined, sentinel loops make our programs much easier to use.

The following code fragment is a template for a sentinel loop that uses a while statement to process a set of inputs. Each input is read into a variable called the sentinel variable.

//obtain the first input into the sentinel variable

while(//the input is not the sentinel value)

{

   //statement(s) to perform the loop's processing

   //obtain the next input into the sentinel variable

   }

The template begins with a statement to accept the first input and the same statement, which accepts all subsequent inputs, is also coded as the last statement in the while statement’s code block. The other statements in the statement block perform the processing of each input. This placement of the input statements in a sentinel loop prevents the processing of the sentinel value, even if it is the first input (i.e., the data set is empty).

The three most common errors made when coding a sentinel loop are:

•neglecting to code the statement to accept the first sentinel variable input before the while statement

•neglecting to code the statements to accept all subsequent inputs of the sentinel variable at the end of the loop’s code block

•coding the statements to accept all subsequent inputs of the sentinel variable inside the loop’s code block before the processing statements

The first error results in the loop processing the default value of the sentinel variable, or if the default value is the sentinel value, the loop does not execute at all. The second error results in an infinite loop because once the loop is entered, the sentinel variable is not changed. When the third error is made, the first input is not processed.

The application SentinelWhileLoop presented in Figure 5.14 demonstrates the use of the code template. It is a sentinel loop version of the program shown in Figure 5.8 that totals and averages a set of input deposits. Typical inputs and outputs are shown at the bottom of Figure 5.14. As previously discussed, this version would be preferred if the number of deposits was not the first data item.

Following the format of the while loop sentinel template, line 18 accepts the initial value of the sentinel variable input. The Boolean expression (on line 19) of the while statement uses this variable to decide if the statement’s code block should be executed. If anything other than the sentinel value (-1) has been input, an execution of the loop’s statement block is performed.

Because an average is to be calculated and the user is no longer required to enter the number of deposits, the counting algorithm is used on line 23 to count the number of deposits processed. The counting variable, numOfDeposits, is initialized to zero on line 15. Consistent with the while sentinel loop template, the last line of the loop’s code block (line 24) accepts the next input value and stores it in the sentinel variable input.

[image:]

Figure 5.14
The console application SentinelWhileLoop and the output it produces.

Another commonly used form of a while sentinel loop parses the input after each input is accepted. This adaptation of the while loop sentinel template in the program shown in Figure 5.14 would be coded as:

input = JOptionPane.showInputDialog("Enter a deposit, -1 to end");

deposit = Double.parseDouble(input);

while (!deposit == -1.0)

{

    //statement(s) to perform the loop's processing, less the parsing

   input = JOptionPane.showInputDialog("Enter a deposit, -1 to end");

deposit = Double.parseDouble(input);

}

5.5.3 Detecting an End Of File

Often, large data sets are stored in disk files, and the programs that process them read the data from the disk file until a sentinel value is detected. Because the sentinel value is chosen to be a value outside the range of the data set’s values, most sentinel values vary from one application to another. In the case of a disk-based data file, there is one sentinel value that works for all data sets: the End of File (EOF) marker that is placed at the end of each file.

In Section 4.8.1 of Chapter 4, we used the methods in the Scanner class to read data from a disk text file. The Scanner class also contains a method named hasNext that can be used to detect the EOF marker in a file. The method has no parameters and returns false when the EOF marker is encountered. The following code fragment uses a sentinel loop to read all the integer data values from the disk text file data.txt stored on the root of the C drive and outputs the values to the system console. The value returned from the method hasNext is stored in the sentinel-variable notEOF.

int dataItem;

File fileObject = new File("c:/data.txt");

Scanner fileIn = new Scanner(fileObject);

boolean notEOF; //the sentinel variable

notEOF = fileIn.hasNext(); //fetch the 1st sentinel variable value

while(notEOF) //more data to process

{

   dataItem = fileIn.nextInt();

   System.out.println(dataItem);

   notEOF = fileIn.hasNext(); //fetch next sentinel value

}

   fileIn.close();

The following code fragment is a more succinct and more commonly used version of an EOF sentinel loop:

int dataItem;

File fileObject = new File("c:/data.txt");

Scanner fileIn = new Scanner(fileObject);

while(fileIn.hasNext()) //more data to process

{

   dataItem = fileIn.nextInt();

   System.out.println(dataItem);

}

fileIn.close();

Figure 5.15 presents a modified version of the program shown in Figure 5.14 that processed a group of deposits entered from the keyboard. The new version of the program reads the deposits from a disk file using the file’s EOF marker as a sentinel value. A set of file inputs and the corresponding program outputs are given at the bottom of Figure 5.15.

The instructions in Figure 5.14 that accept input from the keyboard have been removed from the program. Lines 1 and 2 of Figure 5.15 have been added to access the Scanner and File classes. In the interest of brevity, exceptions that could be generated during the disk file input performed by the program are not processed by the modified program. Rather, a throws clause has been added to the end of line 7.

Line 21 begins a sentinel while loop that ends when an EOF marker is detected. Inside the loop, line 23 reads and parses the next deposit using the Scanner object created by lines 13 and 14. Line 35 closes the disk file after the console output is performed.

[image:]

Figure 5.15
The application EndOfFile, a set of file inputs, and corresponding outputs.

An alternate approach to using the Scanner class’s hasNext method to detect the end of a file is to write the number of data items into the file as the file’s first value. If the data file processed by the program shown in Figure 5.15 had been written this way, lines 21-26 would be coded as shown below:

21   numOfDeposits = fileIn.nextInt(); //read the number of data items

22   for(int i = 1; i <= numOfDeposits; i++) //each data item

23   {

24   deposit = fileIn.nextDouble();

25   total = total + deposit;

26   }

Most often, the use of the hasNext method to detect the end of the file is the better approach because if new data were added to end of the file, updating the number of data items at the beginning of the file would require reading, deleting, and rewriting the entire file. This is a time-consuming process.

5.6 THE DO-WHILE STATEMENT

As previously discussed, when a loop in an application is to execute a known number of times, the for statement is best suited for the application. When the number of times to execute the loop is not known, either the while or the do-while statements are preferred. Of these two statements, the do-while statement is the better alternative when the loop’s statements should be executed at least once. For example, the code to check a password is normally coded inside a do-while loop because the password has to be entered at least once.

5.6.1 Syntax of the do-while Statement

The generalized syntax of the do-while statement and its execution path are shown on the left and right sides of Figure 5.16, respectively.

[image:]

Figure 5.16
The generalized syntax of the do-while statement.

The statement begins with the keyword do followed by the loop’s statement block. The keyword while and the statement’s Boolean expression enclosed in parentheses are coded after the statement block’s close brace. It is good programing style to code the keyword while and the Boolean expression on the same line as the close brace because it improves the readability of the statement. The do-while statement ends with a semicolon coded after the close parentheses that terminates the Boolean expression.

As shown on the right side of Figure 5.16, the loop’s statement(s) will be executed at least once because they are executed before the Boolean condition is tested. After they execute, the Boolean expression is tested, and the statements are repeated until the Boolean condition becomes false. The do-while loop is called a post-test loop because the test to terminate the loop is performed after the loop’s statement block has executed at least once.

The most common syntactical errors made when coding the do-while statement are:

•placing a semicolon after the keyword do

•neglecting to include a semicolon after the Boolean expression

•neglecting to code the open and close braces around the statements when more than one statement is to be repeated

All of these coding errors are syntax errors and are detected and reported by the Java translator. When coding a do-while loop, it is good programming practice to code the following code fragment and then add the statements to be repeated and the Boolean condition, even if only one statement is to be repeated.

do

{

   }while();

The most common logic error made when coding this statement is that the statements inside the statement block, during some repetition of the loop, do not change the Boolean expression to false. In this case, once the loop begins, it never ends and is said to be an infinite loop. For example, the following code sequence is an infinite loop because the loop’s statement does not change the string variable password, which is used in the Boolean condition. The user-entered password is mistakenly stored in the string object pw leaving the string password unchanged each time through the loop.

String password = "";

String pw;

do

{

   pw = JOptionPane.showInputDialog("Enter The Password");

   }while(!password.equals("Mercury"));

The following code fragment is the correct coding of a do-while statement that verifies the entry of the correct password, Mercury.

String password = "";

do

{

   password = JOptionPane.showInputDialog("Enter The Password");

}while(!password.equals("Mercury"));

Infinite loops can also occur when the loop’s Boolean expression is improperly coded. In the code fragment below, the logical operator NOT (!) has been left out of the Boolean expression, and any password other than the correct password, Mercury, is accepted.

String password = "";

do

{

   password = JOptionPane.showInputDialog("Enter The Password");

}while(password.equals("Mercury"));

5.7 The BREAK AND CONTINUE STATEMENTS

The break and continue statements are used inside a for, while, or do-while loop’s coded block to alter the loop’s execution path. Just as a break statement terminates the execution of a switch statement, a break statement may also be used to terminate a loop. Execution continues with the statement that follows the loop.

NOTE

When a break statement is executed inside a loop, the execution of the loop terminates.

When a continue statement is executed in a loop, the current iteration of the loop is terminated, and statements that come after it in the loop’s body are not executed during that iteration of the loop. Execution continues with the testing of the loop statement’s Boolean condition. When a continue statement is executed inside a for loop, the loop variable is incremented before the Boolean condition is tested.

NOTE

When a continue statement is executed inside a loop, the current iteration of the loop terminates.

To illustrate the use of these two statements, the code fragment below gives a game player three chances to enter the password “Mars” to access a game. The break statement is used to exit the loop after the message Look up your password is output. The continue statement is used to skip the message box output and the break statement until three incorrect passwords are entered.

int count = 1;

String password = "";

do

{

    if(count <= 3)

   {

     password = JOptionPane.showInputDialog("Enter your password");

     count++;

     continue;

    }

    JOptionPane.showMessageDialog(null, "Look up your password");

    break;

}while(!password.equals("Mars"));

5.8 WHICH LOOP STATEMENT TO USE

When the number of times to repeat the loop’s statements is known, the for statement should be used to code the loop. The number of times to repeat the loop could be known at the time the program is written (e.g., the program will always process 100 race times), or it is determined during the program’s execution before the loop statement is executed. For example, before entering a group of deposits, the program users are asked to enter the number of deposits they will be making into their bank account. In both of these cases the for loop is the preferred loop statement.

When the number of times to execute the loop is not known, either a while or a do-while loop is preferred to a for loop. The while statement is the better alternative when there are times (cases) when the loop body should not execute even once. The do-while statement is the better alternative when the loop’s statements should always be executed at least once. Table 5.2 summarizes the criteria for selecting the best loop statement for a particular application.

Table 5.2
Criteria for Selecting the Best Loop Statement

	Is the Number of Times the Loop Will Execute Known?
	Loop Statement

	Yes
	for

	No, and there are cases when the loop body should not execute even once

	while

	No, and the loop body should always execute at least once

	do-while

The boundaries between the use of the three loop statements become somewhat blurred with the use of the counting algorithm inside a while loop and the use of a break statement inside a for loop. For example, to average 100 items, most programmers would use a for loop. However, a while loop that contains the counting algorithm can also be used, as illustrated in the following code fragment:

int count = 1;

double total = 0;

double average;

String sItem;

while (count <= 100)

{

    sItem = JOptionPane.showInputDialog("enter an item");

    total = total + Double.parseDouble(sItem);

    count++;

}

average = total / 100;

System.out.println("The average of the 100 items is: " + average);

The for loop is preferred for this application because when a while loop is used and we neglect to increment the counter (count++;) in the loop’s body, the loop becomes an infinite loop. If we use a for loop and neglect to increment the counter in the first line of the for statement, the translator would alert us to the oversight.

Consider a program that totals input items until a -1 is entered or 100 items have been entered. Most programmers would use a while loop for this application. However, it can be coded using a for loop that contains a break statement.

double total = 0;

String sItem;

for(int i = 1; i <= 100; i++)

{

   sItem = JOptionPane.showInputDialog("enter an item");

   if(sItem.equals("-1"))

   {

   break;

   }

   total = total + Double.parseDouble(sItem);

}

System.out.println("The total of the items is: " + total);

When this for loop is used it would appear that the loop will always execute 100 times. However, the loop terminates before 100 iterations when the break statement executes. From a code readability point of view, the following while loop is the preferred loop statement for this application because the first line of the while loop clearly states the two conditions that will end the input loop.

int count = 1;

double total = 0;

String sItem;

sItem = JOptionPane.showInputDialog("enter an item, or -1");

while (!sItem.equals("-1") && count <= 100) //tests both conditions

{

   total = total + Double.parseDouble(sItem);

   count = count++;

   sItem = JOptionPane.showInputDialog("enter an item, or -1");

}

System.out.println("The total of the items is: " + total);

5.9 THE RANDOM CLASS

Pseudorandom numbers, their use in computer programs, and the ability to generate them with the Math class’s random method were discussed in Section 2.6.4 of Chapter 2. The methods in the class Random can also be used to generate pseudorandom numbers. In fact, these methods do the work of the Math class’s random method in that the method random invokes the Random class’s methods to generate the numbers it returns.

Table 5.3 lists the Random class’s constructors and some of its methods used to generate pseudorandom numbers. Each time these methods are invoked, they return the next number in a sequence of random numbers. An object in the class Random is used to invoke them, which is created using one of the class’s constructors.

Random randomObject1 = new Random();

Random randomObject2 = new Random(123456);

Table 5.3
Random Class Methods

	Method

	Description

	Coding Example

	Random()

	Creates a Random object based on the seed value time of day

	Random ro = new Random();

	Random(long seed)

	Creates a Random object based on the seed argument sent to it

	Random ro = new Random(675);

	nextDouble()

	Returns the next pseudorandom real number in the range: 0.0<=randomNumber<1.0

	double rn = ro.nextDouble();

	nextInt()

	Returns the next pseudorandom integer in the range of the int primitive type

	int rn = ro.nextInt();

	nextInt(int max)

	Returns the next pseudorandom integer in the range zero to one less than max

	int rn = ro.nextInt(20);

When the one-parameter constructor is used to create the object, the sequence of numbers the methods generate is based on the integer argument sent to the constructor, which is called a seed value. When the no-parameter constructor is used to create the object, the sequence of numbers the methods generate is based on the time of day because the seed value defaults to the real-time clock’s value expressed in milliseconds. Sequences of numbers generated with objects created using the same seed value will be identical.

The one-parameter constructor is used when it is desirable to generate the same sequence of pseudorandom numbers every time the program is run. Conversely, the no-parameter constructor is used when it is desirable to generate a sequence of pseudorandom numbers that rarely repeats because the program would have to be run at exactly the same time of day to generate the same sequence of numbers.

Like the Math class’s random method, the method nextDouble generates and returns a pseudorandom real number (a double) in the range: 0.0 <= randomNumber < 1.0. The method can be used to generate a real number in the range: min ≤ randomNumber < max using the following assignment statement (and sample object declaration):

Random randomObject2 = new Random(98765);

randomNumber = min + randomObject2.nextDouble() * (max - min);

The following code sequence outputs a sequence of ten pseudorandom real numbers in the range 20.0 ≤ randomNumber < 50.0. It would be very unusual for this code to generate the same sequence of numbers during two executions of the program because the sequence’s seed value is the time of day in milliseconds. (The Random object is created with the no-parameter constructor.) Alternately, the one-parameter constructor could be used to generate a repeatable sequence of numbers.

double randomNumber;

double min = 20.0;

double max = 50.0;

Random randomObject2 = new Random(); // time of day seed value

for(int i = 1; i<=10; i++)

{

   randomNumber = min + randomObject2.nextDouble() * (max - min);

   System.out.println(randomNumber);

}

As shown in the Table 5.3, there are two versions of the nextInt method, which is used to generate and return a random integer (of type int). The no-parameter version returns a pseudorandom number over the full range of an int type variable (see Table 2.1).

The one-parameter version of the nextInt method is used to generate a sequence of integers, each of which are within a specified range. The numbers returned from the method are in the range zero to one less than the argument sent to it. The following code sequence generates a pseudorandom number between zero and nine, inclusive:

Random randomObject2 = new Random();

randomNumber = randomObject2.nextInt(10)

The use of this method can be generalized. The following code sequence outputs ten random integers in the range three to six, inclusive. The initial values of the variables max and min specify the lowest and highest numbers generated in the sequence. Every time this code is run, the same sequence of numbers is generated (5, 5, 5, 4, 3, 5, 5, 3, 6, 4) because the one-parameter constructor was used to create the Random object.

int randomNumber;

int min = 3;

int max = 6;

Random randomObject1 = new Random(98765); //repeatable random set

for(int i = 1; i<=10; i++)

{

   randomNumber = min + randomObject1.nextInt(max - min + 1);

   System.out.println(randomNumber); //in the range min to max inclusive

}

Figure 5.17 shows a number-guessing game program in which the player is asked to guess a number between 32 and 38, inclusive. The inputs and outputs for a correct answer on the second guess are shown in Figure 5.18.

Line 1 imports the Random class into the program. Line 8 declares an instance of this class, randomObject, which is used to invoke the nextInt method on line 15. The use of the no-parameter constructor on line 8 ensures that each time the program is run, there is the possibility that a different pseudorandom number will be generated by line 15. The maximum and minimum values of the pseudorandom numbers used on line 15 are specified on lines 9 and 10.

[image:]

Figure 5.17
The application RandomClass.

[image:]

Figure 5.18
The inputs and corresponding outputs produced by the application RandomClass.

5.9.1 The SecureRandom Class

As previously mentioned, the random numbers generated by the Math class’s random method and the Random class’s methods appear to be perfectly random, but in fact they can be predicted. Thus, they are more correctly referred to as pseudorandom numbers. This is usually not a concern when the random number is used to position a game piece at a random location on a game board, but it can be a concern if the random number is used within a security system.

When this is the case, an object in the SecureRandom class should be used to generate the random numbers. Its use is similar to the use of the Random class except that we invoke the methods described in the last three rows of the Table 5.3 on a SecureRandom object to generate the random numbers. To convert the application shown in Figure 5.17 to generate a non-pseudorandom number to be guessed by the user, the variable randomObject declared on line 8 of the application is declared to be an instance of the SecureRandom class. The remainder of the application is unchanged. The new line 8 of Figure 5.17 is:

SecureRandom randomObject = new SecureRandom();

Numbers generated by a SecureRandom object are not predictable. This added security does not come for free in that there is a decrease in speed performance associated with the use of this class. When security is not a serious issue, a Random object should be used to generate the (pseudo) random numbers.

5.10 THE ENHANCED for STATEMENT

The enhanced for statement, sometimes referred to as the for-each statement, is an alternate syntax of a for loop that is used to fetch all of the elements of an array sequentially. During the execution of the loop, the elements of the array cannot be modified, so its use is limited. It can be used to output or total the elements of an array.

The syntax of the statement is given below, in which anElement is a variable whose type, aType, is always the type of the elements of the array arrayName:

for(aType anElement: arrayName)

{

   //statement(s) that use the variable anElement

}

For example, if the array is an array of references to String objects, the statement would be coded as shown below:

for(String anElement: arrayName)

{

   //statement(s) that use the variable anElement

}

A colon is always coded after the variable anElement. If there is only one statement to be executed within the loop, the open and close braces need not be coded, but it is good programming practice to include them.

The number of times the loop executes is always equivalent to the length of the array, in the above case arrayName.length, unless the loop contains a break statement. During the execution of the loop, the variable anElement assumes the value of each element of the array in ascending order, beginning with the first element (during the first iteration of the loop) and ending with the last element (during the last iteration of the loop). The two loops shown below are equivalent, and both produce the system console output Nora Ryan Logan.

String anArray = {"Nora", "Ryan", "Logan");

for(String anElement: anArray)

{

   System.out.print (anElement + " ");

}

System.out.println();

for(int i = 0; i < 3; i++)

{

   System.out.print (anArray[i] + " ")

}

Within the loop’s body, the variable used in the enhanced for statement (e.g., anElement), can be used anywhere it is syntactically correct to use a variable of its type. An advantage of the enhanced for loop is that it cannot produce an ArrayIndexOutOfBounds error because it does not use a loop variable to access the elements of the array. The disadvantage is that the elements of the array cannot be changed inside the loop. We will see a more practical use of the enhanced for statement in Chapter 13, "Generics."

5.11 CHAPTER SUMMARY

Many applications require that the statements in a statement block be repeated, and in this chapter we discussed three ways to perform this repetition: a for loop, a while loop, and a do-while loop. The for loop is an automatic counting loop used when the number of times to repeat the statements is known. The do-while and while loops end when their Boolean condition becomes false and they are usually used to detect a sentinel value of the data they are processing. The do-while loop is used whenever the loop’s block should be executed at least once, and the while loop is a more general-purpose loop that can be used in most applications.

The loop control variable of a for loop is used to control the number of iterations of the loop. The statement’s initialization expression sets its initial value. At the end of each loop iteration, the increment expression executes, which normally changes the value of the loop variable. The for and while loops are called pretest loops: they test their Boolean condition to continue at the beginning of the loop; the do-while loop is a posttest loop, testing its condition to continue at the end of an iteration.

The totaling or summation algorithm is a loop-based algorithm because it sums a set of items by repeatedly adding the value of a new item to an existing subtotal and making the result the new subtotal. Its template is: total = total + newItem. Each time through the loop, the value of the variable newItem assumes the next value to be totaled, which is often input by the user or from a disk file. The variable total is initialized to zero before the totaling loop begins. The counting algorithm can use used inside a loop’s statement block to count the number of times the loop executes and can then be divided into the total the loop calculates to determine the average of the totaled values.

Often, a sentinel value is used to terminate a loop when the number of input values to be processed is unknown. Two Java statements, break and continue, also enable us to control the number of times all or some of the statements within the body of the loop will be executed. When a break is executed within a loop, the loop terminates. The continue statement can be used to end the current iteration of the loop and is useful when conditions dictate that the remaining statements in the loop’s block should be skipped during the current iteration. When a loop is used to obtain and process an unknown number of inputs from a file, Java’s End of File (EOF) character or the Scanner class’s hasnext method can be used as a sentinel to terminate the loop.

Nested loops are used to repeat loop-based algorithms. Examples include averaging 10 grades and repeating this for 20 students or processing a set of race times for 100 runners. Nested loops are particularly useful in creating two-dimensional graphics that are composed of many instances of the same repetitive shape, such as the eight rows of eight squares of a checkerboard.

The Random class’s nextInt and nextDouble methods can be used to generate a random integer or real number and, when used inside of a loop, to generate a set of random numbers. The nextInt method is easier to use than the Math class’s random method because it returns an integer in the positive range of the int type or within a specified range. This makes it ideal for generating random game board pixel locations. In addition, when the methods are invoked using a Random object created with the class’s one-parameter constructor, they generate a repeatable sequence of pseudorandom numbers. This is particularly useful in applications that require the same starting point every time they are launched and is always used when the random numbers are generated within a graphics call back method.

The methods in the DecimalFormat class can be used to insert leading/training zeros and comma separators into numeric output, specify the output’s precision, and convert the output to a percentage or display it using scientific notation. The methods in the NumberFormat and Locale classes are used to produce local dependent currency formatting for use in financial and international applications.

Our knowledge of these statements will be expanded in Chapter 6, which covers the concept of arrays because loops are used to unlock the power of arrays. Also, in the next chapter, we will see how loops can be used with arrays to enable us to input, output, and process large data sets.

Knowledge Exercises

1. True or false:

a) The body of a while loop will always execute at least once.

b) The for loop is an automatic counting loop and should be used where the number of repetitions is known.

c) A sentinel is a data value that can be used to terminate a loop.

d) The do-while loop will continue until the Boolean expression in the while statement becomes true.

e) A while loop is a posttest loop.

f) Checking for the EOF condition can be used to control a loop.

g) A nested loop is a loop within a loop.

h) Every while loop can be written as a for loop without using a break statement.

i) Every for loop can be written as a while loop.

j) The break statement ends the current iteration of a loop.

k) A for loop ends when Boolean condition becomes true.

l) The continue statement can be coded inside any loop.

m) Placing a semicolon after the parenthesis in a while loop can cause an infinite loop.

n) The statement block of a do-while loop may not be executed.

o) A for loop may be designed to count down by decrementing the control variable.

p) Loops may be used to validate user input or to give the user another chance to enter a value, such as a password, that was typed incorrectly.

2. Write a loop that outputs the integers from 20 to 100 to the system console and the appropriate term, odd or even, next to each output value.

3. Write a loop that outputs the sum of the even integers from 1 to n, where n is a value input by the user, to a message box.

4. Consider the following code fragment:

   int i = 10;

   int sum = 0;

   while (i <= 100)

   {

      sum = sum + i;

      i++;

   }

   System.out.println("The sum of the integers from 10 to 100 is: " + sum);

a) How many times does this loop execute?

b) Write an equivalent for loop.

c) Write an equivalent do-while loop.

5. Consider the following code fragment:

   int i = 1;

   while (i != 20)

   {

      i = i + 2;

   }

   System.out.println("The value of i is " + i);

a) Will this loop terminate? If not, why not?

b) What numbers does it output?

6. Consider the following code fragment:

   int num = 4;

   for (int i = 2; i <= 7; i++)

   {   System.out.println("Number is " + num);

       num = num + i;

   }

a) What is the value of num after the loop has executed twice?

b) How many times will the body of the loop be executed?

c) What value will be output on the fourth time through the loop?

d) What is the value of num when the loop ends?

e) What causes this loop to terminate?

7. Consider the following code fragment:

   int x = 11;

   while (x > 0)

   {   x = x - 3;

       System.out.println(x);

   }

a) Give its output

b) Write an equivalent for loop

8. Write the code fragment for an input validation loop that asks a user to enter an integer in the range of zero to five, displays an error if the input is out of range, and gives the user an unlimited number of chances to enter it correctly.

9. Write the code fragment for an input validation loop that asks a user to enter an integer in the range of zero to five, displays an error if the input is out of range, and gives the user at most three chances to enter it correctly.

10. Explain the difference in the execution paths of a while loop and a do-while loop.

11. Give a code fragment to produce the following output to the system console every time it is executed:

a) A different set of 20 random integers in the range 0 to 500 using the Random class and then using the SecureRandom class.

b) The same set of 20 random integers in the range 0 to 500

c) The same set of 20 random integers in the range 7 to 500

d) The same set of 20 random integers in the range min to max

12. Give the declarations and output statements required to display the value stored in the double variable balance, formatted as specified below. Also give the resulting formatted output.

a) US currency

b) One leading and one trailing zero, with comma separators every three digits to the left of the decimal point

c) Scientific notation with four digits of precision

d) Two trailing zeros, comma separators every three digits to the left of the decimal point, and a leading zero only when the balance contains a value that only has a fractional part

e) Spanish currency

Programming Exercises

1. Write a program that uses a for loop to calculate and output the product of the integers from n to 1 (n factorial) to a message box. For example, when n = 4, the output would be 24 = 4 * 3 * 2 * 1. The value of n will be input by the user via an input dialog box, and the output should be properly annotated.

2. You have just been hired by the TravelStars agency, and your first assignment is to produce a histogram to graphically represent the ratings that travelers have given to various hotels. Your program will begin by asking the user to enter the number of hotels to be including in the histogram. Then, ask a user to input each hotel’s name, the hotel’s star rating, an integer between 1 and 10 stars inclusive. The histogram should be output to the system console and formatted as shown below.

	Hotel Name	Rating

	Hotel 1	**********

	Hotel 2	******

	Hotel 3	********

	Hotel 4	**

	Hotel 5	****

3. Write a program that uses nested loops to output one or more of these patterns (or create some of your own):

4. Write a program that asks the program users for the country in which they were born and their salary for the each of the last 12 months. Output each month’s salary, as well as the total pay for that year in the format of their local currency, to the system console, properly annotated.

5. Write a program that outputs 25 random integers to the system console that are within a range (minimum value and maximum value) specified by the user.

6. Write a program to simulate the toss of two dice. Every time the user clicks the OK button on a message generate two random outputs between 1–6, as well as the sum of the two dice. If the total is 7 or 11, output You win, otherwise output Better luck next time.

[image:]

7. Write a graphical application that displays 650 of the 2,500 stars that can be seen in the night time sky. The stars will be drawn on the game board as filled ovals whose diameter is a random number between one and three pixels. There will be 400 white, 200 yellow, and 50 red stars, positioned at random (x, y) locations on a black-colored game board. You can change the color of the game board by invoking the Component class’s setBackground method in the main method and passing it the color black.

8. Write the application described in Programming Exercise 7 using three nested loops to draw the stars.

[image:]

9. Write a graphical application to simulate a journey to the sun by Captain Burk. Before the game board is displayed, the captain will be required to enter the noncase sensitive password "SS" (short for Starship). Then, he will be asked to enter the tonnage of each item in his cargo. When a -1 is entered, output the total weight of the cargo to a message box and display the game board described in Programming Exercise 7 or 8 with a 50-pixel-diameter sun positioned at the center of the game board. The sun will be a yellow instance of a HeavenlyBodies class you will add to the application that contains:

•The four data members of a heavenly body: its (x, y) location coordinates, its diameter, and its color

•A four-parameter constructor

•A show method, and set and get methods for all the data members

 Use an input dialog box for all input.

10. Write the graphical application described in Programming Exercise 9 expanded to include these features:

•Before the game board is displayed, the captain will be asked how many (of a maximum of three) planets to add to the night sky and then asked to enter the location and diameter of each planet. The color of the three planets will be red, green, and blue, respectively, and they will be instances of HeavenlyBodies displayed on the game board.

•When the Start button is clicked, the diameter of the sun should increase by 2 pixels every 20 milliseconds to simulate the Captain Burk’s journey to the sun.

•When the Start button is clicked a white comet (a HeavenlyBodies object) will travel from the upper-left to the lower-right corner of the gameboard with its diameter increasing from 3 to 50 pixels.

11. Using the skills developed in this chapter, continue the implementation of the parts of your game requiring knowledge of loops. Be sure to add this feature:

•Do not permit the game to be played until the case-sensitive password "gp" (game player) is entered. After three unsuccessful password entries, output the statement passwords are case sensitive and terminate the program by invoking the System class's exit method.

CHAPTER 6

ARRAYS

6.1 The Origin of Arrays

6.2 The Concept of Arrays

6.3 Declaring Arrays

6.4 Arrays and Loops

6.5 Arrays of Objects

6.6 Passing Arrays Between Methods

6.7 Parallel Arrays

6.8 Common Array Algorithms

6.9 Application Programmer Interface Array Support

6.11 Deleting, Modifying, and Adding Disk File Items

6.12 Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we will introduce the concept of an array and the powerful features of the construct that make it a part of most programs. These features include the ability to store and retrieve large data sets, and, when combined with the concept of a loop, these data sets can be processed with only a few instructions. Array processing algorithms such as sorting, searching, and copying will be discussed and implemented, as will algorithms introduced in Chapter 4 for inserting and deleting items stored in a disk text file. We will also explore the API methods that implement many of the classical array processing algorithms.

One-dimensional arrays, which can be used to store a list of items, will be discussed as well as multi-dimensional arrays, and we will use two-dimensional arrays to organize data in tables as rows and columns.

After successfully completing this chapter you should:

•Understand the advantages and importance of using arrays

•Be familiar with the Java memory model used to store arrays

•Be able to construct and use arrays of primitives and objects

•Understand and be able to implement the algorithms used to search an array, sort it, and find the minimum and maximum values stored in it

•Be familiar with and be able to use the array-processing methods in the API

•Understand the concept of parallel arrays and use them to process data sets

•Know how to use arrays to insert, delete, or update data items stored in a disk file

•Be able to apply array techniques to game programs

6.1 THE ORIGIN OF ARRAYS

The machines we call computers received their name because the first operational versions of these machines were primarily used by mathematicians to perform rapid computations on large data sets. They were machines whose task was to compute; they were computers. However, long before computers were operational, mathematicians were using subscripted variables, such as x2 or x4, to represent the data used in their formulas and calculations, so it was natural for them to want to use these subscripted variables in the formulas evaluated by these early computing machines.

To facilitate the writing of these subscripted variables into a program, the designers of FORTRAN (which stands for Formula Translation), the first high level programming language used by mathematicians, included a construct that modeled subscripted variables. The construct was named array. Thus, the computer concept of an array has its roots in the mathematical model of subscripted variables.

6.2 THE CONCEPT OF ARRAYS

Consider a program that processes five people’s ages stored in the integer memory cells age0, age1, age2, age3, and age4. The declaration of these variables would be rather straightforward:

int age0, age1, age2, age3, age4;

But suppose that instead of processing five people’s ages, the program processed five million people’s ages. Although the declaration syntax for the five million memory cells would still be straight forward, it would be quite lengthy and very time consuming to write. In fact, a good typist would take more than a month to type just the variable declarations for this program, assuming the typist typed continuously for eight hours each day without stopping to eat. (This, by the way, is a violation of the federal labor laws.) Using the construct array, the same typist could type the declaration of the five million memory cells in seconds.

That’s all an array is: a technique used to declare memory cells, which is rooted in the mathematical concept of subscripted variables.

Definition

An array is a programming concept used to declare groups of related memory cells in which each member of the group has the same data type, the same first name, the array’s name, and a unique last name called an index.

The memory cells are related in the same way that our integer memory cells age0 through age4 were related: each one stores a person’s age, or perhaps a person’s weight, or perhaps an address of a snowman game piece. In Java, The unique last names, the indexes (or indices), are always sequential integers beginning with zero (i.e., 0, 1, 2, 3, 4, …). In addition, Java syntax requires that the unique last name is enclosed in open and close brackets, for example, [2].

Figure 6.1 shows ten memory cells used to store people’s ages. The five memory cells on the left were declared to be five separate integer variables with the statement

int age0, age1, age2, age3, age4;

The five memory cells on the right were declared to be part of a five-member or element array named age.

[image:]

Figure 6.1
Storage allocated to five integer variables and to a five-element array named age.

As shown in Figure 6.1, the amount of storage allocated to the integer variables on the left side of the figure is the same as the amount of storage allocated to array elements shown on the right side of the figure: five distinct integer memory cells. From a memory-allocation viewpoint, the only difference in the way memory is allocated to the memory cells that make up the elements of an array is that the array elements are always allocated as contiguous memory; that is, if each memory cell occupied four bytes of storage, and age[0] was stored in bytes 100–103, the memory allocated to the subsequent four elements of the array would begin at byte addresses 104, 108, 112, and 116. (In contrast, the five integer variables might be stored in different locations scattered around memory.)

Array elements can be used in our programs anywhere it is syntactically correct to code the name of a memory cell: in input and output statements, in arithmetic and logic expressions, on the left side of an assignment operator, and as arguments and parameters. To use them, we simply code their complete names. For example, the statements on the left and right sides of Figure 6.2 are equivalent, although they are syntactically different because the statements on the right side of the figure use the array construct.

[image:]

Figure 6.2
Equivalent statements with and without the use of arrays.

Although the syntax involved in using arrays is a bit more cumbersome because of the coding of the open and close brackets, as previously mentioned, they do give us the ability to rapidly declare large numbers of variables. In addition, as we will see later in this chapter, when arrays are used inside of loops they also give us the ability to process large data sets with just a few lines of code. For these two reasons, most programs use arrays.

6.3 DECLARING ARRAYS

In Java, all arrays are stored inside of an object. Although we most often state that we are “declaring an array,” it is more accurate to state that we are “declaring an object that contains an array.” In fact, as we shall see, the object contains not only the array but an also an integer data member named length.

The syntax used to declare an array object is similar to the syntax used to declare non-array objects in that a reference variable is declared that will refer to the array object, and the keyword new is used to construct the object. Where they differ is that the array-object declaration syntax also includes a set of brackets to indicate that the reference variable will refer to an array object, and the number of elements the array will contain (called the size of the array) is enclosed in another set of brackets. The generalized syntax is:

aType[] arrayName = new aType[arraySize];

where:

aType is the type of the elements of the array

arrayName is the name of a reference variable that will store the address of the array object, also considered to be the name of the array

arraySize is the number of elements in the array

To declare an array object that could store five integer ages we would write:

 int[] ages = new int[5];

This statement allocates the memory shown in Figure 6.3. Not only is the storage for the array’s elements allocated inside the object, but an integer named length is allocated and initialized to the size of the array. The index of the first element of an array is always zero, and the indexes of the remaining elements of an array are assigned sequential integer values in ascending order. This implies that the index of the last element of an array is always one less than the size of the array. In a five-element array, ages[5] does not exist, which is somewhat counterintuitive, and attempting to access it results in a runtime error.

NOTE

The indices of an array containing n elements are 0 through n-1, and the size of the array is n.

Conceptually, the array object declaration would be drawn as shown on the right side of Figure 6.1, which is the way we most often visualize an array. Figure 6.3 gives a more accurate depiction of the storage allocated to the array object created by the declaration given in the figure’s caption and the reference variable, ages, that refers to the array object.

[image:]

Figure 6.3
The array object created by the statement int[] ages = new int[5];.

When an array object is created, the elements of the array are initialized to their default values (e.g., zero for an array of integers), and the array object is assigned an address (address 100 in Figure 6.3). The data member length is initialized to the size of the array. For example in Figure 6.3, length stores the value 5 inside the array object ages.

The data member length is a public data member, so rather than using a get method to access it, it can be accessed by coding the name of the array object followed by length, preceded by a dot. The following code fragment outputs a 5, the size of the array ages:

 int[] ages = new int[5];

System.out.println(ages.length);

The data member length is a final variable and cannot be assigned a value. The following code fragment results in a translation error:

 int[] ages = new int[5];

ages.length = 23; //syntax error: can’t re-assign a final constant

6.3.1 Dynamic Allocation of Arrays

An array object, like any other object, can be allocated dynamically during the execution of the program. As we have learned, to do this we most often use the two-line object declaration syntax. The first line is used to declare the reference variable that will refer to the object, and good programming practice dictates that this line is coded at the top of the method or class in which the array will be used. The second line of the syntax is used to allocate the object and set the reference variable pointing to it. This line is normally coded further down in a method.

The splitting of the array object declaration syntax permits the size of the array to be determined by the processing the program performs. For example, the size of the array could be read from the first line of a disk file that also contains the data that will be stored in the array, or the size of the array could be input by the user. For example:

int[] ages;

String sSize = JOPtionPane.showInputDialiog("How many ages" + "will be entered?");

 int size = Integer.parseInt(sSize);

ages = new int[size];

Many applications, in which the number of data items to be processed is determined at run time, would be very difficult to code without the use of arrays. For example, consider an application that outputs a set of input data in reverse order. This requires declaring a variable for every data item because they must all be saved until the last data item is input and then output. Because the number of inputs is not known until runtime, without the use of arrays, we would have to guess the maximum number of inputs, allocate that number of variables, and keep our fingers crossed that we did not guess too low.

The fact that the length data member of an array object cannot be changed is consistent with the fact that, in Java, the size of an array cannot be changed. As is the case with all objects, the reference variable that refers to the object can be assigned to another object. In the case of an array, we can make use of this fact to effectively resize the array at runtime by assigning the reference variable to the address of a smaller, or a larger, array object.

For example, an array initially sized to five elements could be made to refer to a new array object whose size is based on a user input.

 int[] data = new int[5];

:

:

String sSize = JOPtionPane.showInputDialiog("How many ages" + "will be entered?");

 int size = Integer.parseInt(sSize);

data = new int[size];

Assuming the user entered a “3” in response to the above prompt, Figure 6.4 shows the changes in the contents of the reference variable data and the array object that data refers to, resulting from the execution of the above code. It should be noted that if the original five-element array contained five people’s ages, these ages would be lost after the dynamic allocation.

[image:]

Figure 6.4
The effect of the statement data = new int[3];.

As shown in Figure 6.4, the five-element array object’s address is overwritten with the address of the new three-element array object, causing the storage allocated to the five-element array to be reclaimed by the Java runtime memory manager. In Java, the storage allocated to objects that are not referred to by a reference variable is reclaimed for use by other programs. In Section 6.9, we will discuss techniques for transferring the values into a resized array when it is created.

6.4 ARRAYS AND LOOPS

Using arrays inside loops gives us the ability to process large data sets with just a few lines of code. This is because the index used to specify which element of the array is being processed can not only be a numeric literal (e.g., a = age[2];), but it can also be an integer variable. The only restriction on the integer variable is that the value stored in it must be a valid element number of the array. The following code segment outputs the third element of the array price twice. When the last statement executes, the current contents of the variable index is fetched, substituted for the variable index, and the output is performed.

 double[] price = new double[100];

 int index = 2;

System.out.println(price[2]);

System.out.println(price[index]);

This array feature is commonly used with the loop variable of a for statement as the array index. Using this approach, the code to decrease the price of each of the 10,000 items a department store sells by 10% in preparation for its annual Labor Day sale can be coded in just two lines of code:

 for(int i = 0; i < 10000; i++)

{

salePrice[i] = price[i] * 0.9;

}

The first time through the loop the variable i stores the value 0, and salePrice[0] is computed. The second time through the loop i stores the value 1, and salePrice[1] is computed. This process continues until finally salePrice[9999] is computed.

Two common mistakes are made when processing arrays inside of loops, both of which are syntactically correct:

•the loop variable is initialized to 1 instead of to 0

•the Boolean condition is incorrectly coded using the <= operator instead of <

The first mistake stems from the fact that most of us begin with 1 when we count: 1, 2, 3, etc., so our natural tendency is to initialize the loop variable to 1 instead of 0. When this mistake is made, the first element of the array (element zero) is not processed.

Coding the Boolean condition incorrectly is the most common mistake. When all the elements of the array are to be processed, our code is much more understandable if we use the size of the array, price.length, in the Boolean condition. However, when we do this, we must use the less than (<) operator in the condition (e.g., i < price.length). Unfortunately, most novice programmers, intent on processing the last element of the array, use the <= operator, and the last iteration of the loop generates an index that is one greater that of the last element of the array (e.g., 5 for a five-element array). The result is a runtime error indicating that the program generated an ArrayIndexOutOfBoundsException. This error occurs whenever a program uses an array index that is not in the range 0 to one less than the array’s size.

Figure 6.5 presents the application ArraysAndLoops that uses many of the array concepts discussed thus far in this chapter to compute, and output, the sale price of a group of input items. It accepts the prices of a set of items to be placed on sale, then computes and outputs the sale price of the items. A sample set of inputs and the corresponding outputs produced by the program are given at the bottom of the figure.

[image:]

Figure 6.5
The application ArraysAndLoops and a set of inputs and corresponding outputs.

After the user enters the number of items to be placed on sale (line 12), two array objects are dynamically allocated on lines 14 and 15, and their addresses are assigned to the reference variables price and salePrice. These variables were declared on line 8.

The program uses two for loops that begin on lines 17 and 24. The first loop accepts the input of the non-sale prices, and the second loop computes and outputs the sale prices. The loop variable, i, of the for loop that begins on line 17 is used to change the element of the array price (line 21) that stores the parsed input. The second for loop, which begins on line 24, uses its loop variable to index its way through the array price and the array salePrice (line 26) as it computes the new values of the salePrice array.

The first loop uses the variable size, which was used to size both arrays on lines 14 and 15, in its Boolean condition. The second loop uses the length data member of the array object price in its Boolean condition. Either approach can be used. However, the latter approach is preferred because it more clearly indicates that the entire array is being processed within the loop, and eliminates the chance that an incorrect variable (other than size) would be coded in the Boolean condition. The second approach is also preferred when the array is passed into a method that will process the array’s contents for reasons that we will discuss in Section 6.6. Both for statements correctly use the less than operator (<) in their Boolean conditions.

6.5 ARRAYS OF OBJECTS

Technically speaking, there is no way to declare an array of objects. The elements of an array cannot be objects; they can only be primitive or reference variables. However, when the array elements are reference variables, each element of the array can contain the address of an object. When this is the case, we often say that we have “an array of objects” because it is easier to say than “an array of reference variables that refer to objects” (which is what we actually have).

Leaving aside the technical jargon, when we set each element of an array of reference variables to point to an object, we can rapidly process all of the objects by indexing through the array of reference variables. In addition, just as it was easy to declare a large number of variables using arrays, we can easily declare a large number of objects using arrays of reference variables.

The first step in applying the power of arrays to programs that process objects is to declare (an array object that contains) an array of reference variables. The second step is to declare the objects and set their addresses into the elements of the array. The syntax used to declare the array of reference variables is the same syntax used to declare an array of primitive variables. The following declaration creates an array of reference variables that could refer to five Snowman objects:

Snowman[] sm = new Snowman[5];

The storage allocated by this declaration is shown in Figure 6.6. Because the array contains reference variables, they are initialized to the default value of a newly created reference variable: null. Otherwise, the figure is identical to Figure 6.3, which shows the storage allocated when an array of five integers is declared.

[image:]

Figure 6.6
The storage created by the declaration Snowman[] sm = new Snowman[5];.

As shown in Figure 6.6, the declaration of the array object does not allocate any Snowman objects. To do this, we have to invoke a constructor in the Snowman class and set the returned address of the newly constructed Snowman into an element of the array. Assuming the class has a two-parameter constructor, one way to do this is to write five declaration statements:

sm[0] = new Snowman(50, 100);

sm[1] = new Snowman(100, 100);

sm[2] = new Snowman(150, 100);

sm[3] = new Snowman(200, 100);

sm[4] = new Snowman(250, 100);

Assuming the constructor’s parameters are the (x, y) location of a Snowman object, our five newly created snowmen will be standing shoulder to shoulder (at x = 50, 100, 150, 200, and 250) when they are drawn on the game board. An equivalent but more efficient way to construct the five snowmen would be to place the invocation of the constructor inside a loop. The use of a loop is the preferred coding technique, which we would quickly realize if we had to declare a group of 5,000 snowmen.

 for(int i = 0; i < 5; i++)

{

sm[i] = new Snowman(50 + i * 50, 100);

}

Because the loop variable is used as the index into the array sm, sm[0] receives the address of the first Snowman created inside the loop. During each additional pass through the loop, the next sequential element of the array receives the address of a newly created Snowman. In addition, the loop variable is used to change the x coordinate of the snowmen, using the expression (50 + i * 50), each time through the loop. The storage created after the loop completes its execution is shown in Figure 6.7.

[image:]

Figure 6.7
An array of five reference variables pointing to five Snowman objects.

6.5.1 Processing an Array’s Objects

In Section 6.4, we learned that large primitive data sets could be processed with just a few lines of code using the concepts of arrays and loops. To accomplish this, the data set was stored in an array of primitive variables, and the processing instructions were coded inside a loop. The loop variable was used as the index into the array, which caused the processing instruction(s) to operate on a different element of the array during each pass through the loop.

Similarly, we can process large sets of objects with just a few lines of code by storing the objects’ addresses inside an array of reference variables and then perform the processing on each object inside a loop. The only difference is that instead of performing the processing on the array elements themselves, the array elements are used to invoke the class’s processing methods on the objects they reference.

For example, the code to add one to each of five people’s ages stored in an array of integers named ages is very similar to the code that moves each of five snowmen stored in an array of objects named sm one pixel to the right. The following code fragment illustrates the similarities:

 int x;

 for(int i = 0; i < 5; i++)

{

ages[i] = ages[i] + 1; //increment the ages

x = sm[i].getX(); //move the snowmen

sm[i].setX(x + 1);

}

Each time through this loop, the loop variable is used to change the element of the two arrays involved in loop’s processing instructions. In the case of the integer array, the value stored in one of the elements of the array, ages, is incremented by one; that is, the contents of the array ages is changed. However, the loop processing does not change the contents of the array sm. Rather, it uses the contents of the array sm to specify which Snowman object will be changed (operated on) by the getX and setX methods during each pass through the loop. In this case, the x data member of each Snowman object is increased by one.

That is not to say that the contents of an array of reference variables cannot be changed inside a loop. As we have already seen, this is done when objects are constructed and the default null values stored in the elements of the array are overwritten with the location of the newly constructed (Snowman) objects. Conversely, all five snowmen could be eliminated from a game by overwriting their addresses stored in the array with the value null:

 for(int i = 0; i < 5; i++)

{

sm[i] = null;

}

This would cause the Java memory manager to recycle the storage allocated to the five Snowmen objects and make it available to other programs running on the system.

The game application in Figure 6.8 uses the concepts discussed in this section to conduct a parade of eight snowmen whose class is shown in Figure 6.9. The output produced by the program when it is launched and the output produced several seconds after the start button is clicked are shown on the left and right sides of Figure 6.10, respectively.

An array of reference variables named parade that will be used to store the addresses of eight Snowman objects, is created on line 7 of Figure 6.8. When the game is launched, the snowmen are displayed along a left-to-right downward-sloping diagonal (as shown in Figure 6.10a), until the Start button is clicked. Then they parade around the game board reflecting off its boundaries, eventually coming to the positions shown in Figure 6.10b.

The creation, display, animation, and reflection of the snowmen are performed inside four loops. Within each iteration of these loops, a different snowman is processed because the loop variable is used as an index into the parade array. The first of these loops (lines 11–14 of Figure 6.8) is used to create the snowmen and place the addresses of these eight objects in the reference variable array parade. On line 13, the loop variable, i, is used inside the argument list sent to the SnowmanV7 class’s two-parameter constructor to calculate each snowman’s initial (x, y) location along a downward-sloping diagonal. During each iteration of the loop that begins on line 21, a different snowman is displayed on the game board at its current (x, y) location.

The remaining two loops, which begin on lines 31 and 41, move the snowmen around the game board and bounce (reflect) them off the vertical and horizontal boundaries of the game board. The loops are coded inside the timer3 call back method (lines 27–56), whose interval is set to 20 milliseconds on line 15. As a result, every 20 milliseconds (1/50th of a second), the game environment invokes this method, and the loops are executed. After the timer3 method completes its execution, the game environment invokes the application’s draw method (line 19), which displays the snowmen at their new (x, y) position.

The for loop coded on lines 31–39 of the application performs the animation of the snowmen. By using the loop variable, i, as an index into the parade array, each snowman’s x and y position is fetched (lines 33 and 36), incremented by their corresponding speed data members (lines 34 and 37), and set to their new values (lines 35 and 38). Being coded inside the timer3 method, this code changes each snowman’s (x, y) position every 20 milliseconds. The rapid repositioning and redrawing of the snowmen (every 1/50th of a second) gives the appearance of continuous motion.

The for loop coded on lines 41–55 of Figure 6.8 performs the reflection of the snowmen off the boundaries of the game board. The two data members, xSpeed and ySpeed were added to the class SnowmanV7 (Figure 6.9, lines 7 and 8) along with their corresponding set and get methods (lines 41, 45, 49, and 53) to perform this reflection. The loop variable, i, is used inside two if statements (that begin on lines 43 and 49 of Figure 6.8) to index into the parade array. Their Boolean conditions determine when a snowman’s current (x, y) position is at or beyond the vertical (line 43) and horizontal (line 49) boundaries of the game board.

When this is the case, the snowman’s speed is fetched (lines 45 and 51), its sign is reversed (lines 46 and 50), and the new value is set into the snowman’s speed data member (lines 47 and 53). Then, during the next execution of the timer3 method, when each snowman’s speed is used to reposition it on the game board, those that reached a game board edge appear to bounce off the edge because the sign of their speed has been reversed.

[image:]

Figure 6.8
The application SnowmanParade.

[image:]

Figure 6.9
The class SnowmanV7.

[image:]

Figure 6.10
The output of the application SnowmanParade.

6.6 PASSING ARRAYS BETWEEN METHODS

As discussed in Section 3.8, reference variables can be part of a worker method’s parameter list. This gives us the ability to pass the location of objects declared in a method into a worker method it invokes. Knowing the object’s location enables the worker method to perform some processing on the object by referring to it using the parameter name that received the object’s location. In addition, when the returned type of a non-void worker method is the name of a class, the worker method can return the location of one object in that class to the method that invoked it.

Because arrays are stored in objects, the ability to pass reference variables to and from worker methods also gives us the ability to pass arrays to and from worker methods. To do this, we simply pass the array object’s reference variable to and from the worker method. While there are no conceptual differences to consider when passing array and non-array objects to and from worker methods, there are some minor syntactical differences in the signature of the worker method.

In the remainder of this section, we will discuss these differences and present examples of passing arrays to and from worker methods. We will begin with a discussion of passing arrays to a worker method and conclude with a discussion of returning an array from a worker method.

6.6.1 Passing Arrays of Primitives to a Worker Method

Consider the array age, shown on the left side of Figure 6.11, which stores the ages of five people that have the same birthday. The following code fragment defines and initializes this array and passes it to the static worker method birthday coded in the class Party.

 int[] age = new int[5];

 for(int i=0; i < age.length; i++)

{

age [i] = 21 + i;

}

Party.birthday(age); //method invocation statement

[image:]

Figure 6.11
Passing an array of primitives to a method.

Looking at the method invocation statement, there is no way to tell if the argument age sent to the method birthday is a primitive variable or an array. This is because the syntax of an invocation statement used to pass an array reference to a worker method is the same syntax used to pass a primitive variable to a worker method, which is also the same syntax used to pass any reference variable to a worker method. From an invocation statement’s viewpoint, there is nothing new to learn about passing arrays to worker methods.

As previously discussed, it is the syntax of the signature of the worker method that is different. When a parameter listed in a method’s signature is an array, a pair of braces [] is coded in between the parameter’s name and its type. The following is the code of the static worker method birthday that is passed an integer array. The work of the method is to add one to each element of the array.

 static void birthday(int[] theAges)

{

for(int i=0; i < theAges.length; i++)

{

   theAges[i] = theAges[i] + 1;

}

}

NOTE

When a parameter in a worker method’s signature is an array, code a pair of braces [] in between the parameter’s name and its type. For example:

static void birthday(int[] theAges)

As indicated by the dashed arrows at the top of Figure 6.11, when the method is invoked and passed the argument ages, Java’s use of value parameters copies the value stored in the argument (100) into the method’s parameter theAges. Then the method’s code is able to access the elements of the array object because its parameter, theAges, now stores the array’s address. Effectively, while the method is executing, the array object is shared between the client code and the worker method it invokes. Although we normally say we are “passing an array to a method,” we really should say we are “passing the address of an array object to a method.”

NOTE

When passing an array to a worker method, the address of the array is passed to the method, and the array object is shared between the client and worker methods.

Because the array’s address is shared, if the worker method changes the contents of the array, the client code no longer has access to the original contents of the array. This is not a contradiction of the idea that value parameters prevent worker methods from changing the client’s information passed to it because the information passed to the worker method is the array’s address, not the array’s elements. This is a subtle but important point to understand. Referring to Figure 6.11, while it is true that the worker method can change the contents of the elements of the array because theAges stores the object’s address, it cannot change the address of the array stored in the variable age (which was the information passed to it).

If the worker method contained the statement below, it would lose access to the client’s array object, but the client code would not. The address of the client’s array object would still be stored in the variable age.

theAges = new int[20];

6.6.2 Passing Arrays of Objects to a Worker Method

As mentioned in Section 6.5, technically speaking, Java does not support arrays of objects. However, an array’s elements can be reference variables that each store the address of an object. When this is the case, we often say that the array is “an array of objects” because it is simpler than saying the array is “an array of reference variables that point to objects.” When passing an array of objects to a method, the invocation statement and the method’s signature use the same syntax used to pass an array of primitive variables to a method. As discussed in the previous section, the only indication that arrays are being passed is the inclusion of a pair of braces [] in between the parameter’s name and its type in the signature of the worker method.

The left side of Figure 6.12 shows the array, parade, containing five reference variables that store the addresses of five SnowmanV7 objects whose class is shown in Figure 6.9. To pass this array to a worker method, we take advantage of Java’s value parameter implementation and pass the address of the array to the method using the same syntax we used to pass the address of an array of primitives to a method.

[image:]

Figure 6.12
Passing the location of an array of objects to a method.

For example, suppose we wanted to use the static worker methods move and bounce coded in the class PassingArrays to reposition the SnowmanV7 objects on the game board and reflect them off the edges of the board. Assuming these methods each had one parameter used to pass the array of snowmen named parade to the methods, the client code statements to invoke the worker methods would be:

PassingArrays.move(parade);

PassingArrays.bounce(parade);

If the parameter name in the worker methods was sm, the signature of the methods would be:

 static void move(SnowmanV7[] sm);

 static void bounce(SnowmanV7[] sm);

The dashed arrows at the top of Figure 6.12 illustrate the passing of the array’s location into the method’s parameter, sm, which permits the methods to reference the array of snowmen during their execution. The result is that while the methods are executing, the client code and the worker methods share the array of reference variables and the objects they refer to. If the worker methods’ code writes new values into the data members of the snowmen objects, then these new values would be available to the client code after the worker methods completed their execution.

The application PassingArrays, shown in Figure 6.13, illustrates the sharing of the information contained in integer and object arrays with invoked methods and the methods’ ability to change the contents of the array’s elements and the objects they reference. Figure 6.14 shows the console output produced by the program, and Figure 6.15 shows the graphical output it produces (which is the same as that produced by the application SnowmanParade). The class SnowmanV7 referred to in Figure 6.13 is the same class (shown in Figure 6.9) used in the SnowmanParade application.

To verify the concept that the client and worker methods share primitive arrays, we have also included the array object ages and the method birthday within the PassingArrays application. Referring to Figure 6.13, the application’s main method declares an array of five integers named ages on line 11. These variables are initialized to the values 21 through 25 inside the for loop that begins on line 13. On line 17, this array is passed to the method birthday (lines 45–51), and the address of the array is stored in the method’s parameter theAges (line 45). The code of the method increases each element of the array by 1 inside its for loop (line 49). When the method ends, the for loop in the method main (lines 18–20) outputs the contents of the array, producing the console output shown in Figure 6.14. The fact that all of the ages output by the method main have been increased by 1 verifies that the methods main and birthday shared the same array of integers.

The code of the graphical portion of the applications PassingArrays is the same as the code of the application SnowmanParade (Figure 6.8) except that the code that moves and reflects the snowmen (coded on lines 29–55 of Figure 6.8) have been placed inside the static methods move and bounce (lines 53–87 of Figure 6.13). In addition, invocations of these methods have been placed inside the game environment’s timer3 method, lines 41 and 42. Thus, the graphical output of the two programs is the same. When the game is launched, the snowmen are displayed along the left-to-right downward-sloping diagonal, as shown Figure 6.15a. When the Start button is clicked, they parade around the game board bouncing off its edges. Figure 6.15b shows the program’s graphical output several seconds after the Start button is clicked.

The timer3 method now consists of two statements: the invocations of the move and reflect methods (lines 41 and 42 of Figure 6.13). The address of the array parade (declared on line 7) is passed into the parameter sm of these methods, whose signatures are given on lines 53 and 68. Inside their for loops, the methods change the (x, y) location (lines 61 and 64) and speed data members (lines 78 and 84) of the snowmen referenced by sm’s elements. Because the array is shared between these methods and the timer3 method, the new locations and speed of the snowmen have been placed into the Snowman array reference by parade. This fact is verified during the next invocation of the game environments draw method when the snowmen are drawn at their new locations and reflected off the edges of the game board.

[image:]

[image:]

Figure 6.13
The application PassingArrays.

[image:]

Figure 6.14
The console output produced by the application PassingArrays.

[image:]

Figure 6.15
The graphical output of the application PassingArrays.

6.6.3 Returning an Array from a Worker Method

As discussed in Section 3.8, an object’s address can be returned from a method via a return statement. Because arrays are stored in objects, this also gives us the ability to return the address of an array from a worker method. The only syntactical difference to consider when returning the address of an array object is in the signature of the worker method. When a method returns an array, a pair of braces [] is coded in between the method’s name and its returned type. As is the case when any value or address is returned from a method, if the returned address is to be used by the client code that invoked the method, the client code must assign the returned address to a variable.

The following is the code of the static worker method birthdayV2 that is passed an integer array and returns a copy of the array with all of its elements increased by one. The contents of the array theAges passed into the method are unchanged.

static int[] birthdayV2(int[] theAges)

{

 int[] newAges = new int[length.theAges]; //declares the returned array

 for(int i = 0; i < theAges.length; i++)

{

newAges[i] = theAges[i] + 1;

}

 return newAges; //returns the address of the new array

}

The syntax of the signature of a method that returns an array of objects is the same as the syntax used in the above method’s signature, except the primitive type is replaced with the name of the object’s class (e.g., SnowmanV7[] would replace int[]). In Chapter 7, we discuss and present a very important example of returning an array of objects from a method.

NOTE

When a method returns an array, a pair of braces [] is coded in between the method’s name and its returned type in the method’s signature. For example:

static int[] birthday(int[] theAges)

The return statement only contains the name of the array without the braces. For example:

return newAges;

6.7 PARALLEL ARRAYS

Suppose you were writing a program to maintain a database of student information for a school that had 1,000 students. Specifically, three pieces of information would be stored for each student: the student’s identification number, age, and grade point average (GPA). If you were an object oriented programmer, you would begin by creating a class, probably named Student, which contained three data members, one for each piece of information. In addition, the class would contain a constructor to construct student objects and an input method to input information into a student object. Your application could then create the database as shown below:

Student[] studentInfo = new Student[1000]; //1,000 Student object array

for(int i = 0; i < 1000, i++)

{

studentInfo[i] = new Student(); //create a new Student object

student[i].input; //input a student’s information

}

Now suppose that your program was going to be maintained by Anna, a programmer who was not trained in object oriented programming. She is not familiar with the concept of classes, the construction of objects, data members, and the idea that a class’s non-static methods (e.g., the input method) can operate on an object’s data members.

Anna’s programming training was in the alternate programming paradigm, the procedural paradigm, in which objects do not play a central role in the language’s constructs. She is not “object friendly”. Because both the procedural and object oriented paradigms include the concept of arrays, you have decided to eliminate the use of the Student class from your program and simply use three arrays. One array will store all the student identification numbers, another will store all the student ages, and the third array will store all the student grade point averages (GPAs). Your application would then create the database as shown below:

[image:]

The code that is used to input the student information is an example of the use of parallel arrays. This is easily recognized when we examine the input prompts on lines 8, 10, and 12. On line 8, the user is instructed to input a student’s ID number, implying that any of the 1,000 student IDs could be entered. Perhaps ID number 15647. However, on lines 10 and 12, the user is instructed to enter THAT student’s age and THAT student’s GPA. This implies that the next two entries must be the age and GPA of the student whose ID number was just entered.

Because the loop variable is used as the index into the three arrays, a student’s information is stored in the same element of all three arrays. This is the concept of parallel arrays. Each piece of data that is associated with a particular student is stored in the same element of each of the three arrays that comprise the data set. We would not be using the concept of parallel arrays if a particular student’s ID number was stored in element 3 of the id array, and that student’s age and GPA were stored in element 24 of the age array and element 6 of the GPA array, respectively.

The name parallel arrays comes from the idea that if we were to draw the three arrays side by side and then draw parallel horizontal lines below and above each element of the array, as depicted in Figure 6.16, all of a student’s information would be contained between two of the lines. For example, the age of the student whose ID is 76892 would be 19, and the student’s GPA would be 4.0. All of Al’s information, including his GPA of 1.7, would have been entered during the first iteration of the input loop. (Please study more, Al.)

[image:]

Figure 6.16
Three parallel arrays.

It is important to remember that parallel arrays are a concept or a model, not a programming language construct. The concept is used when the programmer stores all the data for a particular entity in the same elements of two or more arrays.

Parallel arrays are used less frequently in programs coded in object oriented programming languages like Java because all of the data for a particular entity can be stored inside an object as its data members, rather than in the elements of several arrays. However, if we wanted to group several different objects together, e.g., a snowman and its child, then a set of parallel arrays of objects is a perfect way to do this.

For example, suppose that five snowmen had one snow child each. Then, if the arrays parent and child were used to store the addresses of the snowmen and the snow children, respectively, by considering the two arrays to be parallel, we could quickly locate a child’s parent or locate a parent’s child. The address of a parent and the address of its child would be stored in the same two elements of the arrays: parent[2]’s child’s address would be stored in child[2].

Figure 6.17 shows the graphical application ParallelArrays that uses three parallel arrays to associate a parent snowman with its snow child and their family name. The parent snowman’s class, ParentSnowman, is shown in Figure 6.18, and the snow child’s class, SnowChild, is shown in Figure 6.19.

When the program is launched, the graphical output shown in Figure 6.20a is produced. The parent snowmen are lined up vertically on the left of the game board, and the snow children are located at random locations to their right. Every child and parent has their family name (last name) displayed on their bellies. When a key is struck, the children are repositioned next to their parents as shown Figure 6.20b. Parallel arrays are used to make the association between a parent, its child, and the family name.

Three array objects are created on lines 14–16, with the first of these (the array names) initialized to the names of the five families (B, D, A, E, and C). Then the other two array objects are filled with references to ParentSnowman and SnowChild objects inside the for loop that begins on line 20. The constructors used to create the objects on lines 24 and 25 accept three arguments. The first two are the x and y location of the object, which for the children are random numbers generated on lines 22 and 23. The third parameter is the family name that will appear on the object’s belly. The constructors store this name in the parent and child classes’ data member name on line 17 of Figures 6.18 and 6.19, respectively.

The loop that begins on line 20 of Figure 6.17 establishes the arrays as parallel arrays. With each pass through the loop, the loop variable i is used on lines 24 and 25 as an index into the array names to select the family name of a parent (line 24) and its child (line 25). This name is passed to the ParentSnowman and SnowChild constructors, and the returned addresses are stored in the element i of the parent and child arrays. Because the same index number is used in all three arrays, a parent, its child, and their family name are all stored in the same element number of their respective arrays.

The parallel construction of the arrays makes it easy to reposition the children next to their parents, which is done in the for loop that begins on line 42 of the keyStruck call back method. Lines 44 and 45 fetch the (x, y) location of the ith child’s parent, and these values are used on lines 46 and 47 to reposition the ith child to the right of its parent. Fifty pixels are added to the parent’s x coordinate to move the child to the right of its parent, and 35 pixels are added to the y coordinate of the parent to account for the difference in height of the parent and child objects.

Parallel arrays are also used in the API Graphics class’s method fillPolygon. This method is used on lines 31 and 28 of Figures 6.18 and 6.19, respectively, to draw the triangular noses of the parent snowmen and their children. The method has three parameters, two of which are arrays of integers:

 public void fillPolygon(int[] xPoints, int[] yPoints , int nPoints)

The parameters are used to specify the x coordinates of the vertices of a polygon (xPoints), the y coordinates of the vertices of a polygon (yPoints), and the number of vertices (nPoints). Within the method, the two arrays are used as parallel arrays. The coordinate of the ith vertex of the polygon is assumed to be (xPoints[i], yPoints[i]). That is, the x and y coordinates of a vertex are assumed to be at the same element number in the xPoints and yPoints arrays. Knowing this, the two arrays xPoly and yPoly passed to the method on line 31 of Figure 6.18 have been set up as parallel arrays on lines 20 and 21. Because the desired coordinates of the three vertices of a parent’s nose are (x + 20, y + 25), (x + 15, y + 30), and (x + 25, y + 30), these x and y parings are coded in the same elements of both arrays. A similar set of parings defines a child’s nose on lines 21 and 22 of Figure 6.19, which are used to draw the child’s nose on line 28 of that figure.

[image:]

Figure 6.17
The application ParallelArrays.

[image:]

[image:]

Figure 6.18
The class ParentSnowman.

[image:]

[image:]

Figure 6.19
The class SnowChild.

[image:]

Figure 6.20
The graphical output of the application ParallelArrays.

6.8 COMMON ARRAY ALGORITHMS

As we have seen, arrays can be used to easily declare and process large data sets. Often, the processing performed on these data sets involves searching for a particular piece of data (e.g., the snowman family whose name is C), finding the name of the snowman family that is first or last in alphabetical order, or displaying the snowman families in sorted order based on their names. Searching, finding minimums and maximums, and sorting are all array-processing algorithms that are very commonly used in programs. We will begin our study of these algorithms with the array searching algorithm.

6.8.1 Searching

As its name implies, this algorithm is used to search an array to determine the element number of the array that contains a given value. For example, it could be used to search an array containing a group of people’s ages to find the element number whose value is 32. If a parallel array contained the names of the people, then the element number could be used as an index into the name array to output the name of a person who is 32 years old. In an object oriented context, it could be used to search an array of parent snowmen to find the element number of the snowman whose name data member contains the string “C” and then use this element number to display its family name on the game board.

An algorithm to search for, or locate, a particular value contained in an array is shown in Figure 6.21. Named the Sequential Search, it begins its search at element zero and sequentially searches through the array in element number order. The implementation on the left side of the figure searches the integer array ages for the value 32, and the code on the right searches the object array parent for an object whose age data member is 32. These target values are specified on line 1. Lines 2–12 constitute the searching algorithm. Except for the names of the arrays and the Boolean conditions on line 6, the algorithms are identical. Line 6 of the array of objects version of the algorithm (the right side of the figure) assumes that the class of the objects contains a getAge method to fetch an object’s age data member.

[image:]

Figure 6.21
The Sequential Search algorithm.

The initializing value on line 1 of Figure 6.21 is the target value to be found. Line 2 initializes the Boolean variable found to false. This variable will be set to true if the target being searched for is found. The loop that begins on line 4 indexes its way through the array. Inside that loop, the if statement on line 6 determines if element i of the array contains the target value. If it does, found is set to true (line 8), elementNumber is set on line 9 to the element number that contains the target value, and the code breaks out of the loop (line 10). Subsequent code would have to examine the variable found before using the index stored in the variable elementNumber because, if the target value is not found, the value stored in the variable elementNumber would be out of bounds (i.e., equal to its initial value, -1).

The algorithm on the right side of Figure 6.21 can be used to locate a value stored in any primitive-type data member contained in the array’s objects, as long as the class of the objects contains a get method to fetch the data member (which would be invoked on line 6). If the data member is not a primitive-type variable, but rather a reference variable, then the class of the object it references also must contain an equals method to be used in the Boolean condition on line 6. Typically, this method returns true when the object that invoked it is equal to the argument sent to it (the variable target). The String class contains an implementation of this method.

Assuming the data member’s name was lastName that referenced a string, and we were searching for the name Jones, lines 1 and 6 of the algorithm would become:

Line 1: String target = "Jones";

Line 6: if(parent[i].getLastName().equals(target))

It should be noted that if several elements of the array contained the target value, the variable elementNumber would be set to the index of the lowest of these elements. If the highest element number of the array that contains the minimum value is desired, then the break statement on line 10 of Figure 2.21 would be eliminated from the algorithm. In addition, when the algorithms are implemented as a method that returns the element number of the target value, the method returns the variable elementNumber. The signature of the method would be:

public static int findValue(ArrayType[] arrayOfvalues, TargetType target)

where ArrayType and TargetType are the types of the array and the value being searched for, respectively. The method below is an implementation of the Sequential Search algorithm. It searches the array of SnowChild objects passed to its first parameter and returns the index of the first child whose name is the string passed to its second parameter. Otherwise, it returns a -1.

public static int findValue(SnowChild[] anArray, String target)

{

int elementNumber = -1;

for(int i = 0; i < anArray.length; i++)

{

  if(anArray[i].getName().equals(target))

  {

    elementNumber = i;

    break;

  }

}

return elementNumber;

}

6.8.2 Minimums and Maximums

The algorithms to locate the minimum or maximum value contained in an array are very similar to the searching algorithm discussed in the previous section. They also use a for loop to search the entire array, but when the loop terminates, the variable elementNumber contains the element number of the minimum or maximum value in the array. When the array is an array of objects, this value is the minimum or maximum value stored in a particular data member of the objects.

The code shown on the left side of Figure 6.22 is an implementation of the algorithm to locate the minimum value contained in an array of primitive values (in this case, an array of people’s ages). The code on the right searches the object array parent for the minimum value stored in one of the object’s data members (in this case, the integer data member age). Except for lines 1, 6, and the different array names the algorithms are identical.

Lines 1 and 6 of the array of objects version of the algorithm (right side of the figure) assume that the class of the objects contains a getAge method to fetch the object’s data member (age).

Both algorithms begin with the assumption that the minimum value is stored in, or is referenced by, the first element of the array. Therefore, line 1 sets the variable min to that value, and line 2 stores its index (zero) in the variable elementNumber. The for loop that begins on line 4 compares the value stored in the variable min to all of the other members of the array. If it finds a value smaller than the value stored in min (line 6), it saves that value in min (line 8) and its element number in the variable elementNumber (line 9). When the loop ends, elementNumber contains the index of the minimum value in the array.

[image:]

Figure 6.22
The minimum value algorithm.

Using an approach similar to the search algorithm, the algorithm on the right side of Figure 6.22 can be used to locate the minimum value of any primitive type data member contained in the array’s objects, as long as the objects’ class contains a get method to fetch the data member (invoked on lines 1, 6, and 8). If the data member is not a primitive type variable, but rather a reference variable, then the class of the object it references also must contain a compareTo method to be used in the Boolean condition on line 6. Typically, this method returns a negative number when the object that invoked it is less than the argument sent to it (the variable min). The String class contains an implementation of this method.

Assuming the data member referenced a String object, and the data member’s name was lastName, lines 1 and 6 of the algorithm would become:

Line 1: String min = parent[0].getLastName();

Line 6: if(parent[i].getLastName().compareTo(min) < 0)

Finally, when the array is an array of String objects, lines 1 and 6 of the algorithm would become:

Line 1: String min = parent[0];

Line 6: if(parent[i].compareTo(min) < 0)

It should be noted that if several elements of the array contained the minimum value, the variable elementNumber would be set to the index of the lowest value of these elements. If the highest index of the array that contains the minimum value is desired, then the less than operator (<) used in the Boolean expression on line 6 would be changed to the less than or equal to operator (<=). When the algorithms are coded as a method that returns the element number of the minimum value, the method returns the variable elementNumber. The signature of the method would be:

public int findMin(ArrayType[] arrayOfvalues)

where ArrayType is the types of the array elements (e.g., double, String, SnowChild, etc.). The following method searches the array of SnowChild objects passed to it and returns the index of the snow child that contains the minimum value of the primitive data member x.

public int findMin(SnowChild[] arrayOfvalues)

{

int min = arrayOfValues[0].getX();

int elementNumber = 0;

for(int i = 1; i < arrayOfValues.length; i++)

{

  if(arrayOfValues[i].getAge() < min)

{

  min = arrayOfValues[i].getAge();

  elementNumber = i;

}

return elementNumber;

}

Locating Maximums

The algorithm to locate the maximum value contained in an array is the same as that used to locate the minimum value, except that the less than operator (<) used on line 6 of Figure 6.22 is replaced with the greater than operator (>), and good coding style dictates that the variable min be renamed max.

6.8.3 Sorting

There are many algorithms for sorting the elements of an n element array. One of the simplest is the Selection Sort algorithm. It begins by locating the minimum value contained in elements 1 to n-1, and if it is smaller than element zero (j = 0), it is swapped into element zero. Then it locates the next smallest value, and if it is smaller than element one (j = 1), swaps it into element one. This process is repeated for j = 2, 3, … n-2. When the algorithm ends, the array is sorted in ascending order.

For example, suppose we wanted to sort an array of five integers, 12, 9, 3, 4, and 11, shown in the left column of Table 6.1 in ascending order. First, we locate the smallest value among 9, 3, 4, and 11 which is 3. Because it is less than 12 (the value in element j = 0), it is swapped with 12, which produces the ordering shown in the second column of the table. Then the smallest value among 12, 4, and 11 is located, which is 4. Because it is less than 9 (the value in element j = 1), it is swapped with 9, producing the ordering shown in the third column of the table. The remaining two steps for j = 2 and j = 3 and the final sorted array are shown in the three right-most columns. When the array is an array of objects, the algorithm sorts the objects based on the value of one of the class’s data members.

Table 6.1
The Progression of the Selection Sort Algorithm

[image:]

The code shown on the left side of Figure 6.23 is an implementation of the Selection Sort algorithm for sorting an array of primitive values (in this case an array of people’s ages). It uses nested loops: the inner loop searches for a minimum value, and the outer loop places it into its correct positioning in the array. The right side of the figure is an implementation of the algorithm used to sort an array of ParentClass objects based on the value of one of their primitive type data members (in this case, the integer data member age). Except for the names of the arrays, the type of the variable declared on line 2, and the use of the getAge method on lines 6, 10, and 12 on the right side of the figure, the implementations are identical.

The code that begins on line 6 and ends on line 15 is essentially the algorithm to locate the minimum value of an array’s elements, which was discussed in Section 6.8.2 and implemented in Figure 6.22. The differences are that line 6 initializes the minimum value, min, to the jth element of the array rather than the first element, and line 7 initializes the minimum element number, iMin, to j rather than zero. In addition, the loop that begins on line 8 initializes its loop variable to j + 1 rather than one. The variable j is the loop variable of an outer loop that begins on line 4 and ends on line 23. Because it is initialized to zero on line 4 the first time lines 6–15 execute, this code is in fact identical to the minimum value algorithm.

After the search for the minimum value ends (line 15), if j is not the index of the minimum value of the remaining unsorted portion of the array (as determined by the if statement on line 17), then lines 19–21 place the minimum value in element j by swapping element j with element iMin. The first time through the outer loop, element zero stores the minimum value contained in the array. After the second iteration of the outer loop, the next lowest element is stored in element 1. When the algorithm ends, the array is sorted in ascending order. To sort the elements of an array in descending order, the less than (<) operator in the Boolean condition on line 10 is changed to the greater than (>) operator.

It should be noted that when sorting an array of objects (right side of Figure 6,23), lines 19–21 swaps the references to the objects contained in the array parents. For example, on the first iteration of the outer loop, the location of the object whose age data member is the minimum value is placed in the first element of the array parents. The alternative is to swap the contents of the data members of the objects, which is more time consuming. In either case, if the sorted objects were output from the first element of the array to the last, they would appear in sorted order based on the contents of the age data member.

[image:]

Figure 6.23
The Selection Sort algorithm.

The algorithm on the right side of Figure 6.23 can be used to sort an array of objects based on any primitive type data member contained in the array’s objects, as long as the class of the objects contains a get method to fetch the data member (which would be invoked on lines 6, 10, and 12).

If the data member is not a primitive type variable, but rather a reference variable, then the class of the object it references also must contain a compareTo method to be used in the Boolean condition on line 10. Typically, this method returns a negative number when the object that invoked it is less than the argument sent to it (the variable min). The String class contains an implementation of this method. Assuming the data member referenced a String object and the data member’s name was lastName, line 10 of the algorithm would become:

Line 10: if(parent[i].getLastName().compareTo(min) < 0)

When the array is an array of String objects, line 10 of the algorithm would become:

Line 10: if(parent[i].compareTo(min) < 0)

An Array Algorithm Case Study

Figure 6.24 presents the graphical application ArrayAlgorithms that illustrates the use of the array processing algorithms discussed in this chapter to process parallel arrays of snow families. When the application begins, the user is asked to enter the names of five snow families (e.g., “I”, “B”, “N”, “E”, and “G”). Then the five families, each consisting of a ParentSnowman and a SnowChild object, whose classes are shown in Figures 6.18 and 6.19, respectively, are displayed (Figure 6.25a).

After the program is launched, when the user types the name of a snow family (e.g., “I”), the family is searched for and alternately disappears (Figure 6.25b) and reappears (Figure 6.25a). When the up-arrow cursor key is struck, the family whose name is the minimum in sorted order (e.g., “B”), alternately disappears (Figure 6.25c) and reappears (Figure 6.25a). Finally, when the “S” key is struck, the visible snow families are displayed in sorted order by family name (Figure 6.25d).

[image:]

[image:]

[image:]

[image:]

Figure 6.24
The application ArrayAlgorithms.

The loop that begins on line 18 of the main method accepts the five family names (line 20) and allocates the five child and parent objects (lines 22 and 23). With each pass though the loop, a child and a parent object are created, assigned positions next to each other on the game board, and given their family name. Then, the loop variable is used to write the addresses of these two newly created family members into the same (ith) element of the child and parent arrays, making these two arrays parallel.

The loop that begins on line 30 of the draw method displays the five snow families on the game board, if they are visible as determined by the if statement’s Boolean condition on line 32. When the Boolean condition is true, the ith parent and the ith child are drawn. Because the arrays were set up to be parallel, a parent and its child are drawn (lines 31–34).

Use of the Search Algorithm

The code, to make a family alternately disappear and reappear when their one-character family name is typed, is on lines 43–55 of the keyStruck method. This method is invoked by the game environment whenever a key is typed, and the typed character is passed into the method’s parameter, key (line 43). To locate a ParentSnowman object with that family name, line 44 invokes the findValue method (lines 75–87) passing it the parent array (parent) and the string version of the family name (sKey). The method findValue is an implementation of the object version of the search algorithm discussed at the end of Section 6.8.1. If an object is found with that family name (the returned array index is not -1 on line 45), then the index is used on lines 47–54 to reverse the visibility of the parent object. Assuming an “I” was struck twice, the game board would change from the board displayed in Figure 6.25a to that shown in Figure 6.25b and then back again.

[image:]

Figure 6.25
The graphical output of the application ArrayAlgorithms.

Because in this application the search is for a particular value of a String object (the case-insensitive family name), this implementation of the search algorithm uses the String class’s equalsIgnoreCase method on line 80 to compare the name passed to it (contained in the parameter targetValue) to the name returned by the ParentSnowman class’s getName method.

Use of the Minimum Value Algorithm

The code to make a family whose name is first in alphabetical order alternately disappear and reappear when the up-arrow curser key is struck is coded on lines 57–68 of the keyStruck method. To locate a ParentSnowman object whose family name is first in alphabetic order, line 59 invokes the findMin method (lines 89–102), passing it the parent array. The method findMin is an implementation of the algorithm discussed in Section 6.8.2 that searches an array for a minimum value. In this coding of the algorithm, the method returns the array element number (line 101) that references the object whose name data member is first in alphabetic order (line 95). The returned element number is used on lines 60–67 to reverse the visibility of the parent object. Because the draw method (lines 28–37) only draws the snowman parent and its child when the parent’s visible data member is true (line 32), both the parent and child disappear and reappear when the up-arrow key is typed.

In this application, the search is for a minimum value of a String object (the case-insensitive family name), findMin uses the String class’s compareToIgnoreCase method on line 95 to determine if the name returned by the ParentSnowman class’s getName method is less than the string referenced by min.

Use of the Selection Sort Algorithm

The code to sort the parent and child arrays in ascending order based on family names when the S key is struck is coded on lines 69–72 of the keyStruck method. To sort the parent and child arrays, line 71 invokes the selectionSort method (lines 104–139) passing it the parent array. The method selectionSort is an implementation of the sorting algorithm discussed in Section 6.8.3. In this coding of the algorithm, the method not only swaps the elements of the array passed to it (lines 125–127) but also the elements of its parallel array child (lines 128–130). (Because the address of the child array is declared as a class-level variable, the selectionSort method has access to it.) In addition, the method swaps the y data members of the parent objects (lines 132–134) and then positions the children next to their parents (lines 135–137), so the families will appear in sorted order from the top to the bottom of the game board.

Because in this application, the sorting is based on a String object (the case-insensitive family name), the method selectionSort uses the String class’s compareToIgnoreCase method on line 117 to determine if the name returned by the ParentSnowman class’s getName method is less than the string referenced by min.

6.9 APPLICATION PROGRAMMER INTERFACE ARRAY SUPPORT

The System and Arrays classes in the Java Application Programming Interface contain methods for processing arrays, and the API class ArrayList provides a means of storing data in an “array-like” object that can expand beyond its original size. The ArrayList class is one of the API’s generic collection classes, which will be discussed in Chapter 13 after the topic of generics is introduced. We begin our discussion with the System class’s arraycopy method.

6.9.1 The arraycopy Method

As its name implies, the arraycopy method in the System class is used to copy the contents of one array (called the source array) into another array (called the destination array). The method is a static method and is therefore invoked by first coding the name of its class, System, rather than the name of an object. Its signature contains five parameters, and a typical invocation would be:

System.arraycopy(sourceArray, sourceIndex, destinationArray, destinationIndex, numElements);

where:

sourceArray is the name of the array that is being copied (an array object reference variable)

sourceIndex is the index of the first element copied from sourceArray (an int)

destinationArray is the name of the array being copied to (an array object reference variable)

destinationIndex is the index of the first element copied into destinationArray (an int)

numElements is the number of sequential elements to be copied (an int)

Both the source array and destination arrays must exist (have been previously declared) before the method is invoked. Figure 6.24 shows the result of executing the invocation:

System.arraycopy(age, 0, sum, 1, 2);

[image:]

Figure 6.26
The use of the System class’s arraycopy method.

If the sourceIndex, destinationIndex, and numElements values passed to the method are such that the copying causes element numbers to be generated that do not exist, a runtime error (ArrayIndexOutOfBoundsException) will occur.

6.9.2 The Arrays Class

The API Arrays class contains two methods that can be used to copy one array into another and contains several other useful methods for processing arrays of primitives and strings. These include a method to facilitate the output of all of the elements of an array by converting them to a single string, a sorting method, a search method, a method to determine if the corresponding elements of two arrays are equal, and a method that sets the elements of an array to a specified value. The searching and sorting method algorithms execute faster than the algorithms discussed in Sections 6.8.1 and 6.8.3. Some of the methods in the class Arrays are summarized in Table 6.2.

Table 6.2
Methods in the API Arrays Class

	Function

	Method Name

	Typical Invocation

	Copies all or a portion of an array beginning with the first element

	copyOf

	int[] a = Arrays.copyOf(sourceArray, 10);
Returns an array containing the first ten elements of the array sourceArray

	Copies an array beginning with any element

	copyRangeOf

	int[] a = Arrays.copyRangeOf(sourceArray, 2, 10);
Returns an array containing the third (index 2) through the ninth elements of array sourceArray

	Converts an array’s contents to a string

	toString

	String arrayContents = Arrays.toString(anArray);
Returns a string enclosed in braces containing the contents of the array’s elements, each separated by a comma and a space

	Sorts the elements of an array in ascending order

	sort

	Arrays.sort(anArray);
Sorts all of the elements of the array anArray

Arrays.sort(anArray, 1, 5);

Sorts the values at index 1 through index 4 of the array anArray

	Searches for (locates) a target value in a sorted array

	binarySearch

	int i = Arrays.binarySearch(anArrray,
targetValue)

Returns the index of an occurrence of targetValue in the sorted array anArray or returns a negative value if an occurrence is not found

	Sets the elements of an array to a given value

	fill

	Arrays.fill(intArray, 4);
Sets all of the elements of the array intArray to the value 4

Arrays.fill(stringArray, 1, 4, "FillValue");

Sets the second (index 1) to the fourth (index 3) elements of the array stringArray to “FillValue”

All of these methods are static methods, and the program presented in Figure 6.27 illustrates their use. The output generated by this program appears in Figure 6.28.

Lines 15 and 16 of Figure 6.27 output all of the elements of the string and integer arrays stringArray and intArray created on lines 6 and 8. The parameter sent to the println method on lines 15 and 16 is the string returned from the Arrays class’s toString method. The returned string is a concatenation of all of the elements of the array sent to the method separated by a comma and a space (lines 2 and 3 of Figure 6.28). It begins with an open bracket [and ends with a close bracket].

Lines 21 and 23 of Figure 6.27 use the Arrays class’s static copyOf method to create a copy of the arrays stringArray and intArray and assign the newly created array addresses to the variables copyStringArray and copyIntArray, respectively. The second parameter sent to this method specifies the number of elements to be copied, and the copy always begins at element 0. If the number of elements to be copied exceeds the size of the source array (as it does on line 21), the elements are filled in with default values consistent with their type (null for string references) as shown on line 6 of Figure 6.28.

The Arrays class’s equals method is used on lines 29 and 31 of Figure 6.27 to compare two integer arrays for equality. The method returns true if all of the corresponding elements of the two arrays passed to it are equal, as they are on line 29; otherwise, it returns false (line 31). The returned Boolean values are output and shown on lines 10 and 11 of Figure 6.28.

Line 36 of Figure 6.27 uses the one-parameter version of the Arrays class’s static method sort to sort all of the elements of the array stringArray, and line 38 uses the three-parameter version of the method to sort the values at indices 1 through 4 of the array intArray. The third argument sent the three-parameter version of the method is always one larger than the index of the highest element to be sorted. This can be verified by comparing the output of the unsorted values (line 7 of Figure 6.28) to the output of the sorted values (line 15 of Figure 6.28). The sort is always performed inside the arrays passed to the method.

After the array stringArray is sorted (line 36), the Arrays class’s method binarySearch can be used to determine the index of a given value in the array. Line 44 invokes this method to search the array for the index of the element containing the string “Fred.” This string’s position in sorted order is index 2 (line 14 of Figure 6.28), so the method returns the value 2 (line 18 of Figure 6.28). If there were several occurrences of the item being searched for in the array, it is uncertain as to which occurrence’s index would be returned. Line 45 searches for the name “Doris,” which is not contained in the array. When the item searched for is not in the array, a negative index is returned, in this case the value -3 (line 19 of Figure 6.28). When the search value is not found, the absolute value of the returned index is one greater than the index where the item would be if it were in its sorted position in the array. Line 14 of Figure 6.28 shows the sorted version of the array.

The Arrays class’s methods copyOf and copyRangeOf can be used to copy all or part of the elements of an array. As previously stated, the copyOf method always begins its copy at index 0 of the array, and the second argument passed to it indicates the number of elements to copy. The method is used on line 50 of Figure 6.27 to copy the first four elements of the array intArray into a newly created array whose address is assigned to the variable copyIntArray. The contents of the returned array is shown on line 22 of Figure 6.28, which can be compared to the contents of the array intArray shown on line 15 of the figure.

When the copyRangeOf method is used, the copying can begin and end anywhere in the source array. As shown on line 52 of Figure 6.27, the source array is specified as the first argument sent to the method, the starting index is the second argument, and the third argument is always one more that the last index to be copied. Therefore, line 52 specifies that the elements at index 2–9 should be copied into a newly created array. If the value of the last argument specifies an index that is beyond the bounds of the source array (as it is on line 52), default values (e.g., zero for numeric types, null for char and String types) are entered into the out-of-bounds elements of the returned array. Thus, the last four elements in the integer array returned from the invocation on line 52 contain zeros (line 22 of Figure 6.28).

Lines 58 and 60 of Figure 6.27 use the Arrays class’s fill method to set sequential elements of the arrays intArray and stringArray (specified as the first argument sent to this method) to a value specified by the last argument sent to the method. The two-parameter version of this method (invoked on line 58) fills all of the elements of the array sent to it. The four-parameter version of this method, invoked on line 60, fills a specified sequential range of elements of the array sent to it. The index at which to start the fill is the second argument sent to the four-parameter version of the method, and the third argument is always one more than the last index to be filled. The contents of the filled arrays are shown on lines 25 and 26 of Figure 6.28.

[image:]

[image:]

Figure 6.27
The application ArraysClass.

[image:]

Figure 6.28
The output produced by the application ArraysClass.

6.10 Multi-dimensional Arrays

Java, like most programming languages, supports multidimensional arrays. Like one-dimensional arrays, each memory cell in a multidimensional array shares the same “first name,” the name of the array, and all of the array’s element must be the same type. To close out this analogy, unlike one-dimensional arrays, each element of multi-dimensional arrays have two or more unique last names.

The simplest multi-dimensional array is a two-dimensional array, which conceptually is a group of memory cells arranged in rows and columns (left side of Figure 6.29). In Java, there is no limit to the number of dimensions an array can have. Three-dimensional arrays can be visualized as multiple two-dimensional arrays each in a different plane (right side of Figure 6.30). In effect, we have added a depth dimension to the two-dimensional array. Because we live in a three-dimensional world, multi-dimensional arrays with more than three dimensions are not often used in programs, although there are times when they are useful.

[image:]

Figure 6.29
Visualization of a two- and three-dimensional array.

6.10.1 Two-Dimensional Arrays

A two-dimensional array is similar to a two-dimensional table with rows and columns. Two-dimensional arrays are typically used to store a group of data items for several entities. For example, a group of 5 examination grades for each of 4 students, or the 10 qualifying times for each of the 100 cyclists in the Tour de France. (A three-dimensional array with five planes could store the last five years’ Tour de France qualifying time results, one year per plane.)

The names of the memory cells (elements) that make up a two-dimensional array begin with the name of the array followed by the element’s row and column number. Figure 6.30 shows the names of all of the twenty elements of a four-row by five-column two-dimensional array named grades.

The name of an array element can be used anywhere the name of a non-array variable can be used, e.g., in arithmetic expressions, in output and input statements, in argument lists, and on the right side of the assignment operator. When it is used, the element’s row number is always written before its column number. Thus, we would code grades[2][4] to access the contents of the third row and fifth column of the grades array shown in Figure 6.30.

NOTE

The indices of both the row and column numbers start from zero.

[image:]

Figure 6.30
The element names of a four-by-five two-dimensional array named grades.

The syntax used to declare a two-dimensional array is a simple extension of the one-dimensional array declaration syntax discussed in Section 6.3. The only difference is that an additional set of empty brackets is added before the name of the array, and the number of columns is specified after the number of rows. (In a similar way, a third set of empty brackets and the number of planes is added to declare a three-dimensional array.) The Java statement to declare the two-dimensional integer array grades, shown in Figure 6.30, would be:

int[][] grades = new int[4][5]; //four rows and five columns

The equivalent two-line syntax is:

int[][] grades;

grades = new int[4][5];

The numeric literals in the second line of the two-line grammar can be replaced with integer variables to specify or change the size of the array at run time.

As is the case with all array declarations, these declarations create a reference variable named grades that refers to an array object containing the array’s elements. To facilitate the processing of all of the elements of a two-dimensional array, the array object also contains one additional public data member per row that stores the number of elements (columns) in each row of the array. For the array grades, depicted in Figure 6.30, each of these variables would store the integer value 5, and their names would be:

grades[0].length, grades[1].length, grades[2].length, and grades[3].length

The array object would still contain the public data member grades.length that stores the number of rows contained in the array (the integer value 4).

Initializing Two-Dimensional Arrays

The elements of a two-dimensional array can be initialized when the array is declared. As with one-dimensional arrays, when this is done the number of rows and columns in the array is not specifically stated but is implied from the number of initial values, and an initial value must be specified for each element of the array. The initialization syntax is most easily understood if we consider a two-dimensional array to be a one-dimensional array with each of its elements being a row of the two-dimensional array. In addition, it is most easily read if we write each row’s initial values on a separate line. The array declaration below uses this coding style to declare the two-dimensional array ages depicted in Figure 6.31, initializing all of its values to those shown in the figure.

[image:]

NOTE

If one element of an array is to be initialized, all of the elements must be initialized.

[image:]

Figure 6.31
The elements of the array grades after its initialization.

The number of initial values specified in each row of a two-dimensional array need not be the same. The following declaration produces the array ages, shown in Figure 6.32, which has a different number of elements in each of its three rows:

int[][] ages = { {10, 11, 12},

{20, 21, 22, 23, 24},

{30, 31} };

Inside the array object ages, the public variables named ages[0].length, ages[1].length, and ages[2].length would store the integer values 3, 5, and 2, respectively. These variables are used in the code fragment below to output all of the elements of the array ages shown in Figure 6.32 and are often used by methods that are passed two-dimensional arrays to determine the number of columns in each row of the array.

for(int row = 0; row < ages.length; row++) //each row

{

for(int col = 0, col < ages[row].length; col++) //each column in a row

{

System.out.print(ages[row][col] + " ");

}

System.out.println();

}

[image:]

Figure 6.32
The elements of the array ages after its initialization.

6.11 DELETING, MODIFYING, AND ADDING DISK FILE ITEMS

In Section 4.8.5, it was mentioned that Java, like most programming languages, does not contain a method to delete or modify a file data item or to add a data item anywhere in the file except at its end. These operations can be performed by algorithms that combine the disk I/O methods discussed in Chapter 4 with the use of arrays and loops. An array is used because all of the data must be read into RAM memory to delete or modify a data item or to add an item to an arbitrary position in a data file. Because disk data files normally contain large data sets, this can easily be accomplished by reading each item into an element of the array and placing the read statement inside a loop.

In the remainder of this chapter, we will discuss these algorithms and their processing of a file of primitive data items that are all of the same type. The use of algorithms to process a file that contains the data members of several objects, with the data members possibly being different types, will be discussed in Chapter 7.

Deleting an Item From a Disk File

The algorithm to delete a data item from a file would be:

1.Open the file, read the number of items contained in the file, and allocate an array of that size

2.Inside a for loop, read all of the file’s data items into the array

3.Close the file

4.Delete and recreate the file and write the new number of items to the file

5.Inside a for loop, write the elements of the array, except the item to be deleted, to the file

6.Close the file

When the algorithm ends, there would be one less item in the file, the deleted item, and the remaining data would be in their original order.

The item to be deleted can be specified by its position in the file, e.g., “delete item number 25,” or by specifying the data value to be deleted, e.g., “delete the deposit 34.56.” When the position in the file is specified, Step 5’s loop variable is used to decide if the next element of the array should be written to the file. Assuming Step 1 of the algorithm stored the number of items read from the file in the variable count, and Step 2 reads the data into the array data, the following code fragment illustrates Step 5’s process when deleting item 25 from the file:

//delete item 25

for(int i = 0; i < count; i++)

{

if(i != 25 - 1)

{

//write the item, data[i], to the file

}

}

When the value of the data item to be deleted is specified, the decision to write the next element of the array back into the file is based on the contents of the array element. Assuming Step 1 of the algorithm stored the number of items read from the file in the variable count and then read the data into the array data, the following code fragment illustrates Step 5’s process when deleting all of the occurrences of 35.56 from the file:

//delete 35.56 from the file

for(int i = 0; i < count; i++)

{

if(data[i] != 35.56)

{

//write the item, data[i], to the file

}

}

The application DeleteFileItem shown in Figure 6.33 deletes a game score input by the program’s user from the disk text file scores.txt. It uses the six-step algorithm discussed in this section and the file input and output methods discussed in Chapter 4. The number of items in the file is read from the file on line 16 and then used to size the array on line 17. It is also used on line 31 to write the new number of file items into the file after it is deleted and recreated by lines 29 and 30. The value to be deleted from the file is parsed into the variable deletedItem on line 35 and then used in the Boolean condition on line 38 to prevent the deleted item from being rewritten to the file.

[image:]

Figure 6.33
The application DeleteFileItem.

Detecting an End of a File

If the number of items in the file was not stored in the file, then line 16 of Figure 6.33 would be replaced with the following code fragment that counts the number of items in the file before the array is declared and then closes and reopens the file. In addition, line 31 would be removed from the program.

while(fileIn.hasNext()) //count the data items

{

count++;

fileIn.nextDouble();

}

fileIn.close();

fileObject = new File("data.txt");

fileIn = new Scanner(fileObject);

Modifying an Item Stored in a Disk File

The algorithm to modify an item in a disk file would be the same as the deletion algorithm except that an else clause would be added to Step 5’s if statement (line 38 of Figure 6.33). Assuming the new value of the data item was stored in the variable newValue, the else clause would be coded as:

else

{

//write the new value to the file

}

Because the number of data items in the file would remain the same, Step 4 (line 31 of Figure 6.33) would write the original number of data items back into the file.

Inserting a New Item into a File

To insert a new item into a file, its position in the file and its value must be known. The algorithm, shown below, is the same as the deletion algorithm except for Step 5, and the number of items in the file written to the file in Step 4 would be increased by one:

1.Open the file, read the number of items contained in the file, and allocate an array of that size

2.Inside a for loop, read all of the file’s data items into the array

3.Close the file

4.Delete and recreate the file and write the new number of items to the file

5.Inside a for loop, write the elements of the array, and the new item to the file

6.Close the file

Assuming the following: the new item’s position in the file is stored in the variable itemNumber; the new value is stored in the variable newValue; and position numbers in the file begin at zero, then the Step 5 for loop becomes:

//add newValue to the file at position itemNumber

for(int i = 0; i < count; i++)

{

if(i == itemNumber)

{

   //write the newValue to the file

}

//write the item, data[i], to the file

}

In addition to modifying text files and data files, these file operations will also enable us to record players’ scores and update the high scores of a game.

6.12 CHAPTER SUMMARY

The concept of an array presented in this chapter provides us with a powerful tool for storing, retrieving, and processing data, especially large data sets. Unlike primitive variables, which contain only a single value, an array contains multiple data elements that are all of the same type. When an array is created, its data items are all initialized to their default values. The index of an array always begins at zero and extends to n-1, where n is the number of elements in the array (the size of the array). To distinguish one element from another, we use an index after the array name, as in an element’s name, grade[4], which is the name of the fifth element of the array.

In Java, all arrays are stored inside an object. This object is declared using a syntax similar to that used to declare non-array objects. A set of brackets is added to the declaration after the object’s type, and a second set of brackets containing the size of the array is written after the keyword new. Every array has a public data member named length, which stores the size of a one-dimensional array or the number rows in a two-dimensional array. Two-dimensional arrays also contain an array of public data members named length whose elements store the number of elements in each row of the array.

Loops are often used to efficiently input, output, and process the data in an array using the loop variable as an index into the array. Array elements can be used in any Java statement where a variable can be used; they can receive input and be output, used in mathematical expressions, assigned values, passed as an argument into a method, and returned from a method. In addition, like any object, the location of an array object can be passed to a method and returned from it. The concept of parallel arrays is implemented using either multiple one-dimensional arrays or using multidimensional arrays. In either case, we can use this concept to organize related information such as student ID numbers and GPAs and quickly and efficiently access it.

Sorting and searching for particular values, including minimum and maximum values, are very common programming operations, and their algorithms are very similar. The Selection Sort algorithm can be used to sort an array in ascending or descending order. It uses nested loops to locate the smallest (or largest) value in the array and to store it in the first element. Then, it searches for the next smallest value and stores it in the second element, and repeats this process until the entire list is sorted.

An array’s elements can be either primitive or reference variables. An array of objects can be simulated by creating an array in which each element is a reference variable. For example, we can create an array of snowmen, or more correctly, an array of reference variables that refer to Snowman objects. The position or speed of all these Snowmen objects can easily be changed within a loop to create a parade of Snowmen objects that appear to be marching around the game board screen.

The System class method arraycopy is used to copy a sequential set of elements from one array into another array. Other API methods include toString, sort, and fill, which converts all of an array’s elements to a single string, efficiently sorts the elements into ascending order, or sets an array’s elements to a given value, respectively.

Finally, arrays are used in the implementation of algorithms that insert new items into a text file and that delete or update existing items. These algorithms use the disk I/O methods discussed in Chapter 4 to read an existing data set from a disk file into an array. Then, the file is deleted and recreated, and the data set is written back to the file with new items inserted into it, or existing items deleted or updated.

Knowledge Exercises

1. True or false:

(a) An array is a technique for naming groups of memory cells.

(b) All the elements of an array need not be of the same data type.

(c) The size of an array can be dynamically allocated.

(d) Once an array is created, its size cannot be changed.

(e) The largest index of an array is its length - 1.

(f) An array cannot be passed into a method.

(g) Arrays can only be one or two dimensional.

(h) Arrays can be initialized when they are created.

(i) An efficient way to perform an operation on an entire array is to process it in a loop.

(j) In Java, the first index or subscript always begins with 1.

2. Give two features of an array that makes it more powerful than a set of non-array variables.

3. Mention at least two differences between an array element and a non-array variable.

4. Explain the difference between an array and an array object.

5. Assume that the array gameScores has been created using the following declaration:

int[] gameScores = new int[100];

Answer the following questions with respect to this array:

True or false:

(a) The size of this array is 100.

(b) The first element in this array is gameScores[1]

(c) The last element in this array is gameScores[100]

(d) This is a valid assignment to this array: gameScores[5] = 93.2;

(e) When invoked, gameScores.length would return the value 99.

(f) Give the Java statement to store the value 12 the second element of the array.

(g) Give the statement to output the last element of the array to the system console.

(h) Give the Java statements to output all of the elements of the array to the system console.

(i) Give the Java statements to output the average of all of the elements of the array.

(j) Draw a picture of the memory allocated by the declaration.

6. Find at least two errors in the following code and explain what should be done to fix them:

//prices start at $0 (not available) and increase from $5, to $10, $15….

int size = 25;

double[] ticketPrice = new double [size];

for (int i = 1; i <= 25; i++)

{

ticketPrice[i] = i * 5;

}

System.out.println ("The price of a tier " + " i " + " ticket is: " + ticketPrice[i]);

7. Assume that you have been given these declarations below, answer the questions that follow them.

final int MAX = 45;

int[] x = new int[MAX];

double[] y = {22.54, 3.6, 54.76, 10.8, 5.62};

double z;

(a) How many elements does the array x contain?

(b) What is the subscript or index of the last element of array x?

(c) What is the largest valid subscript of array y?

(d) Write the statements to multiply the very first element of the array by 7.

(e) Write the statements that increase the last element of array y by 20.5.

(f) Write a statement that assigns the sum of the first 3 elements of array y to z.

8. Give a statement to allocate an array that can store:

(a) Three thousand characters using the one-line declaration syntax

(b) Two hundred strings using the two-line declaration syntax

(c) Five thousand Snowmen objects using the one-line declaration syntax

(d) Five quiz scores for 100 students

9. Give the statement(s) to:

(a) Declare three parallel arrays that can store the names, weights, and target weights for 50 people in a weight loss clinic

(b) Output all of the information stored in the arrays declared in part a to the system console, one person per line

(c) Output Joe Smith’s weight and target weight to the system console

(d) Output all of the names to the system console in alphabetical order

10. Write a method that is passed two arrays of doubles, each of the same size, and returns an array whose ith element is the sum up to the ith elements of the two arrays passed to it.

Programming Exercises

1. Refer to the program in Figure 6.24. Modify the code in the keyStruck method to include the instructions to move the third parent snowman and its child 20 pixels to the right each time the “M” key is struck.

2. As part of a research project, you have collected the following data and have initialized and stored it in an initialized array using the declaration:

int[] ages = {21, 32, 45, 23, 19, 41, 27, 20 , 21, 43,

39, 24, 25, 22, 44};

Write a program to do each of the following tasks (with all output going to the system console):

(a) Search for a value input by the user and report if it is found or not

(b) Search for and output the minimum and maximum ages in the data set

(c) Calculate and output the average age

(d) Copy the ages to a new array called sortedAges, sort this array in ascending order, and then output both arrays

3. Write a program to accept a given number of names, input by the program user, and write the names in sorted order to a disk file named Students.txt. Then, ask the user which name should be eliminated from the file and eliminate that name from the file. Finally, read all of the names from the modified file and output them in reverse alphabetical order.

4. Write a graphical application that includes a class that defines a solid disk object whose diameter, color, and location are specified when an object is constructed. When the program is launched, the user should be asked how many disks to display on the game board, then asked the size, color, and location of each disk. The disks should then be displayed on the game board at their specified locations.

[image:]

5. Modify the program described in Programming Exercise 4 so only disks whose diameters are 50 pixels or smaller are displayed when the down-arrow key is struck and only those disks that are larger than 50 pixels are displayed when the up-arrow key is struck.

6. Write a graphical application that includes a class that defines a flower with a red center whose petal color and location is specified when a Flower object is constructed. When launched, the program should display a garden of 100 flowers at random locations on the lower portion of the game board. The (x, y) locations of the flowers will be randomly generated and be in the range (7 ≤ x ≤ 500 – w) and (300 ≤ y ≤ 500 – h), where w and h are the width and height of the flower.

[image:]

7. Modify the program described in Programming Exercise 6 so every time the down-arrow game board button is clicked, 20 of the remaining flowers disappear from the garden.

8. Write a graphical application that includes a class that defines a light-gray colored raindrop whose height is 4 pixels and whose width is 6 pixels. When the application is launched, 300 raindrops should appear on the game board at random locations. The (x, y) locations of the raindrops will be in the range (7 ≤ x ≤ 496) and (30 ≤ y ≤ 494).

9. Modify the program described in Programming Exercise 8 so when the Start button on the game board is clicked, the raindrops move downward two pixels every 40 milliseconds, giving the appearance that it is raining. When a raindrop reaches the bottom of the game board (the y coordinate of its location is greater than 500), reset its y coordinate to 30.

10. Add the garden described in Programming Exercise 6 to Programming Exercise 8.

[image:]

11. Add the garden described in Programming Exercise 6 to Programming Exercise 9.

12. Using the skills developed in this chapter, continue the implementation of the parts of your game that require multiple instances of one of your game pieces. To facilitate the processing of these objects, they should be part of an array of objects.

Enrichment

Investigate at least two other sorting algorithms and discuss their advantages and disadvantages over the Selection Sort algorithm.

Investigate why the binarySearch method in the API Arrays class is faster than the search method presented in this chapter.

References

Knuth, Donald, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed. New York: Addison-Wesley, 1998.

Levitin, Analy. Introduction to the Design and Analysis of Algorithms, 3rd ed. New York: Addison-Wesley Longman, 2011.

McAllister, William. Data Structures and Algorithms. Sudbury, MA: Jones and Bartlett Publishers, 2009.

CHAPTER 7

METHODS, CLASSES, AND OBJECTS: A SECOND LOOK

7.1 Static Data Members

7.2 Methods Invoking Methods Within their Class

7.3 Comparing Objects

7.4 Copying and Cloning Objects

7.5The String Class: A Second Look

7.6The Wrapper Classes: A Second Look

7.7Aggregation

7.8Inner Classes

7.9Processing Large Numbers

7.10Enumerated Types

7.11Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we will extend our knowledge of the features that can be incorporated into the classes we write, our knowledge of the String and the wrapper classes, and explore two other often-used classes defined in the Java Application Programming Interface (API). We will learn the techniques and motivation for writing classes whose objects share a data member and whose methods invoke each other, as well as the techniques and motivation for defining classes whose data members are objects. In addition, we will discuss what it means to compare, copy, and clone objects and how to write methods that perform these operations. An understanding of the topics in this chapter will enable us to more efficiently write complex programs, increase the reusability of the classes we write, and process numeric values that are beyond the size and precision of the primitive numeric types.

After successfully completing this chapter, you should:

•Understand static data members and their ability to share storage among all instances of a class within an application

•Become more familiar with the distinction between public and private methods

•Understand the fundamental differences between deep and shallow comparisons and copies

•Be able to compare two instances of a class

•Be able to use the deep copy technique to copy data members and clone objects

•Know how to create strings from primitive values, convert strings to characters, tokenize a string, and utilize other common string-processing methods

•Be able to create and use a wrapper class object and its autoboxing feature

•Understand how to aggregate an object into a class and the advantages of doing so

•Comprehend the relationship between, and implementation of, inner and outer classes

•Be able to use the BigInteger and BigDecimal classes for processing large numbers of arbitrary precision

7.1 STATIC DATA MEMBERS

Consider a worker class named Student that contains two data members named idNumber and gpa and a two-parameter constructor. The following code fragment would produce the Student objects ryan and mary depicted in Figure 7.1, assuming the first and second arguments passed to the constructor are used to initialize data members idNumber and gpa, respectively. As discussed in Chapter 3, each instance contains storage for its two data members.

Student ryan = new Student(1567, 3.26);

Student mary = new Student(2373, 2.87);

[image:]

Figure 7.1
Two Student objects and the data members allocated to them.

Like methods, data members of a worker class can be declared to be static data members by including the keyword static in the data member’s declaration statement. For example:

 private static int studentCount = 0;

When a data member of a class is declared to be static, each instance of the class declared within an application does not contain storage for the data member. Rather, one storage cell is shared among all objects declared within an application. For example, if an additional static data member named studentCount were added to the class Student, the memory allocated to the two Student instances ryan and mary shown in Figure 7.1 would be expanded by one shared integer variable shown at the bottom of Figure 7.2.

[image:]

Figure 7.2
Two Student objects and the shared static data member studentCount.

A very common use of static data members is to keep track of the number of instances of a class (objects) that have been declared within an application. To accomplish this, a line of code to increment the static data member is included in each of the class’s constructors. Below is an implementation of the Student class’s two-parameter constructor that uses the class’s static data member studentCount to keep track of the number of objects declared in the class:

 public Student(int idNumber, double gpa)

{

   studentCount++; //counts the number of Student objects declared

   this.idNumber = idNumber;

   this.gpa = gpa;

}

Figure 7.3 shows the changes to the data member studentCount after two Student objects have been constructed with this version of the constructor. Normally, static data members in a class are declared with private access, and a get method is coded in the class to fetch the value of the data member. When the data member is being used to count the instances of a class, a set method is not coded to generally limit the data member’s write access to the class’s methods (and specifically, to the class’s constructors).

[image:]

Figure 7.3
The changes to the static data member studentCount after two objects are created.

It is good coding style to declare the get method to be a static method. This forces the invoker (as shown below) to code the name of the class in the invocation statement rather than the name of an object, which implies to its reader that the value being fetched does not belong to a particular object. For example:

 int numberOfStudents = Student.getStudentCount();

Figure 7.4 uses the concepts discussed in this section to keep track of the number of instances of the class Student that are declared within in a program. Line 2 declares the static data member studentCount and initializes it to zero. This variable is incremented within the class’s two-parameter constructor on line 8 every time the constructor is invoked to create an object. The class’s toString method (lines 13–18) does not return the value of the static variable because normally the string it returns includes only the values of a particular object’s data members. The number of Student instances declared in a program can be fetched by invoking the class’s getStudentCount method (lines 20–23). As previously discussed, this is a static method, and the class does not contain a setStudentCount method to restrict applications’ write access to the static variable.

[image:]

Figure 7.4
The worker class Student.

7.2 METHODS INVOKING METHODS WITHIN THEIR CLASS

A method in a worker class can invoke another method in its class. This is a common coding technique and, if used properly, can reduce the time required to develop a class and make our programs easier to read and understand.

Suppose that the UML diagram that specified the class Student shown in Figure 7.4 also required a method named show to be part of the class that outputs the annotated values of the data members of an object to the system console. One way to code the method would be:

 public void show()

{

String s = "id is " + idNumber +

"\ngpa is " + gpa;

System.out.println(s);

}

However, a better way to code this method would be to take advantage of the fact that the UML diagram also specified that a toString method would be part of the class, and a method in a class can invoke other methods in its class. Knowing this, the show method would be coded after the toString method was completed and verified (taken for a test drive), so it could be invoked to perform some work for the show method. This approach reduces the code of the show method to one executable statement, as shown below:

 public void show()

{

System.out.println(toString()); //toString does all the work

}

Figure 7.5 is an expanded version of the class Student shown in Figure 7.4 with this coding of the show method added to it (lines 25–28).

Normally, when a nonstatic worker method is invoked within client code, its name is preceded by the name of an object followed by a dot. It would be impossible to use this syntax to invoke the toString method on line 27 of Figure 7.5 because objects (instances of worker classes) are declared in client code. Because line 27 is syntactically correct, the question of which object’s data members will be output to the console by the invocation of toString on line 27 arises. The answer is: the object the client code used to invoke the show method. When a nonstatic method of a class is invoked by another method in the class, the method operates on the same object upon which the method invoking it is operating.

For example, the toString method invoked on line 27 of Figure 7.5 would return a string containing Ryan’s student information when the following client-code fragment was executed:

StudentV2 ryan = new StudentV2(1567, 3.26);

ryan.show();

NOTE

When a method in a class invokes another method in its class, the invocation statement is not preceded by the name of an object followed by a dot, and both methods operate on the same object.

[image:]

Figure 7.5
The class StudentV2.

Private Class Methods

Another example of a worker class method invoking a method in its class evolves from the design process discussed in Section 1.7. When a UML diagram of a class specifies that a complicated method is to be included in the class, it is good programming practice to divide it into several simpler methods that are added to the complicated method’s class. This is consistent with the divide and conquer problem-solving technique. Once each of the simpler methods have been coded and tested, often in parallel by several different programmers, the complicated method is written as a series of invocations of the simpler methods that are part of its class.

Because the only reason the simple methods were written was to perform the work of a more complex method in their class, the simpler methods are normally declared to be private methods. Private methods can only be invoked by the code of other methods within their class, and their signature begins with the keyword private rather than with the keyword public. When this is done, we say that the method has private access, and an attempt to invoke a private method from within a method that is not a member of its class results in a translation error. Often, methods are declared private to prevent methods that are not part of their class from invoking them. We will discuss this further in Section 7.4.

7.3 COMPARING OBJECTS

In Section 6.8, we discussed algorithms for searching, finding minimums and maximums, and sorting an array of objects. Fundamental to all of these algorithms is the ability to compare two objects. Generally speaking, the phrase “compare two objects” is ambiguous. It could mean that we want to compare the contents of a particular data member of two objects or the contents of two or more data members of two objects, or it could mean that we want to compare the contents of the reference variables that refer to the objects. Therefore, before we write a method that compares two objects for a particular application, we have to define what it means to “compare two objects” in the context of that application.

The simplest case is when the objects being compared are strings, but even then we would have to decide whether to simply compare the length of the strings or compare the strings for equality or lexicographical order and decide if these comparisons should be case sensitive. Once we define what it means to compare two string objects for a particular application, then in most cases, either the String class’s length method or its equals or compareTo method (or its case-insensitive versions of these methods) can be used to compare the strings. The use of these methods to compare string objects was discussed in Section 4.2.3, and the use of these methods to compare data members of objects that are strings was discussed in Section 6.8.

When the objects being compared are not strings, we normally add a method to the object’s class to perform the comparison after defining what it means to compare two objects. It is good coding style to name these methods equals or compareTo, or to at least use these words in a longer method title.

A fish tank analogy is useful in gaining an understanding of how to write and use these methods as well as the methods that will be discussed in the next section of this chapter. Figure 7.6 depicts two snowman objects: sm1 and sm2 in a fish tank. In this analogy, reference variables float at the top of the tank because they are light (They only contain one address). Objects are depicted at the deeper levels of the tank because they contain multiple data members, which make them heavy. Our snowmen contain three data members: each snowman’s (x, y) location and its reference variable name.

A shallow comparison is performed at the surface of the tank. It compares the contents of the two reference variables that float on the surface of the tank (e.g., sm1 and sm2 in Figure 7.6). A deep comparison is performed at the bottom of the tank. A deep comparison compares the contents of two objects. The methods that perform shallow and deep comparisons are fundamentally different and will be discussed separately.

[image:]

Figure 7.6
A fish tank analogy of shallow and deep comparisons.

7.3.1 Shallow Comparisons

In Chapter 4, we used the relational operators to compare two primitive values. For example, to determine if the values stored in the integer variables age1 and age2 are equal, we used the equality operator (==):

if(age1 == age2)

This comparison is a shallow comparison because primitive variables contain one value, so they would float on the top of a fish tank. Because reference variables also float, the same syntax used to perform a shallow comparison of two primitive values can be used to perform a shallow comparison of two objects. In effect, a shallow comparison of two objects determines if two reference variables refer to the same object.

Normally, a method named equals, such as the method equals in the String class, performs a deep comparison of two objects. It compares information contained inside the objects. For this reason, when coding a shallow equals method in the class of the objects being compared it is good coding practice to name the method shallowEquals. This name clearly indicates that the method is making a shallow comparison. The following method, which would be coded inside the class ParentSnowman, performs a shallow comparison of the ParentSnowman object that invoked it and the object passed to its parameter. It uses the equality relational operator to perform the comparison.

 public boolean shallowEquals(ParentSnowman ps) //a shallow comparison

{

  if(this == ps) //this contains the address of the invoking object

  {

   return true; //the invoking object and ps refer to the same object

  }

  else

  {

   return false; //ps does not reference the invoking object

  }

}

An exception to this comparison-method naming convention is the method equals in the API class Object. It performs a shallow comparison of two objects. The following code fragment illustrates the use of this shallow comparison method. It outputs the Boolean value true and then false because the variables ps1 and ps2 contain the same address and ps1 and ps3 do not.

ParentSnowman ps1 = new ParentSnowman();

ParentSnowman ps2 = ps1; //ps2 is initialized to the address in ps1

ParentSnowman ps3 = new ParentSnowman();

 boolean sameAddresses;

sameAddresses = ps1.equals(ps2); //shallow comparison, returns true

System.out.println(sameAddresses);

sameAddresses = ps1.equals(ps3); //shallow comparison, returns false

System.out.println(sameAddresses);

7.3.2 Deep Comparisons

Deep comparisons compare the contents of two objects’ data members. As previously mentioned, before we write a method that performs a deep comparison for a particular application, we have to determine which of the objects’ data members to compare for that application. For example, if we decide that two snowmen are equal if they are at the same game board position, then the x and y data member of the two objects would be compared. Once this decision is made, the class’s get methods are used to fetch the data members, and they are compared using the relational operators if they are primitive variables. If they are reference variables that refer to other objects, they are compared using the deep comparison method in the objects’ class.

The method shown in Figure 7.7, which would be coded in the class ParentSnowman, performs a deep comparison of two ParentSnowman objects: the object that invokes it and the object passed to its parameter. As depicted in Figure 7.6, each ParentSnowman object contains its (x, y) location and a reference to its family name (a string). The method returns true when the two objects are at the same game board (x, y) location and the objects’ family name, referenced by string data member name, are the same.

[image:]

Figure 7.7
A deep comparison method named equals that would be part of the ParentSnowman class.

It should be noted that the invocation of the equals method on line 4 of Figure 7.7 is an invocation of the String class’s equals method. This method is invoked because name is a string variable and the argument that follows its name on line 4, ps.getName(), returns a reference to a String object.

There are four common errors made when coding the third term of the Boolean condition on lines 3 and 4 of Figure 7.7:

1. name == ps.getName()

2. this.getName() == ps.getName()

3. name.equals(ps)

4. this.equals(ps)

When either of the first two errors is made, a shallow comparison of the name data members is performed, and the Boolean condition evaluates to false even when the strings are the same. The two addresses, not the strings, are being compared. When the third error is made, a string is being compared to a ParentSnowman object, and the Object class’s equals method is invoked, which also makes a shallow comparison.

When the fourth error is made, the program ends in a runtime StackOverflow error. Two ParentSnowman objects are being compared causing line 4 to repeatedly invoke the same method of which it is a part. This is a concept called recursion. It is not considered a syntax error because when recursion is properly used, it can facilitate the coding of many algorithms. We will learn more about the proper use of this coding technique in Chapter 9.

Deep comparisons are also performed to compare the relative order of two objects. A method that compares two objects to determine their relative order is normally named compareTo, and it returns an integer. The string class contains a method named compareTo that determines the lexicographical order of two String objects. Aside from changing the name of the method presented in Figure 7.7 and the returned type and value, compareTo methods would use the less than (<) or the greater than (>) operator to compare primitive data members and use previously coded compareTo methods to compare data members that are objects.

7.4 COPYING AND CLONING OBJECTS

The deep and shallow fish tank analogy also helps us to understand the techniques used to copy and clone objects. We can make both shallow and deep copies of objects, and clones of objects can easily be created from deep copies of objects. Figure 7.8 illustrates the difference between a shallow and a deep copy. Shallow copies copy the contents of one object’s reference variable into another object’s reference variable. Deep copies copy all of the values of one object’s data members into the data members of another object. We will begin with a discussion of shallow copies.

[image:]

Figure 7.8
A fish tank analogy of shallow and deep copies.

7.4.1 Shallow Copies

In Chapter 2, we used the assignment operator to copy the contents of one primitive variable into another. For example, the following line of code copies the value stored in the integer variable age1 into the variable age2:

 age2 = age1;

This statement actually performs a shallow copy between two primitive variables because primitive variables contain only one value, so they would float on the top of a fish tank. Because reference variables also float (contain one value, an address) and the assignment operator can be used to assign reference variables, the same syntax is used to make a shallow copy of an object. The following line of code makes a shallow copy of object sm1 into object sm2:

 sm2 = sm1; //a shallow copy of object sm1 into object sm2

Although we say we are making a shallow copy of an object, we are actually copying the contents of one object’s reference variable into the other object’s reference variable, as shown at the top of Figure 7.8. It is important that we understand the consequences of this.

Referring to Figure 7.8, after the shallow copy of object sm1 into sm2 is complete, the address of the snowman object on the right side of the fish tank that was stored in the reference variable sm2 has been overwritten with the address of the snowman object on the left side of the fish tank. Now both reference variables, sm1 and sm2, refer to the same object. As a result, the snowman on the left now has two names. In addition, the snowman on the right side of Figure 7.8 is no longer part of the program (unless another variable in the program also stored its address) because the address of the object is no longer known to the program. When an object’s address is not stored in a program reference variable, the Java memory manager reclaims its storage.

NOTE

A shallow copy gives one object two names, and it may eliminate an object from the program.

The following code fragment makes a shallow copy of object ps1 into ps2, and as a result outputs the data members of the object declared on line 1 twice:

1 ParentSnowman ps1 = new ParentSnowman(250, 250, "A");

2 ParentSnowman ps2 = new ParentSnowman(10, 20, "X");

3

 4 ps2 = ps1; // makes a shallow copy of object ps1 into object ps2

5 System.out.println(ps1.show());

6 System.out.println(ps2.show());

7.4.2 Deep Copies and Clones

As shown in the bottom of Figure 7.8, when we make a deep copy of an object, the values of its data members are copied into the data members of another object. Unlike performing a shallow copy, when a deep copy is complete both objects still exist, and the values stored in their data members are identical. The method arraycopy discussed in Section 6.9.1 can be used to deep copy one array object into another.

Generally speaking, a method has to be added to a class to be able to make deep copies of instances of the class. A deep copy method uses the class’s set methods to copy the data members of the object that invoked it into the data members of the object sent to its parameter.

The method shown in Figure 7.9 is a deep copy method, which would be coded in the class ParentSnowman. As depicted in Figure 7.8, each ParentSnowman object contains its (x, y) location and the object’s family name, referenced by the string data member name:

[image:]

Figure 7.9
A deepCopy method that would be part of the ParentSnowman class.

In some cases, it is desirable to deep copy a subset of one object’s data members into another object. When this is the case, it is good programming practice to name the method copy, rather than deepCopy, to alert the reader of the method’s signature to the fact that not all of an object’s data members are being copied.

Cloning Objects

When an object is cloned, a new instance of the object’s class is created, and the values of all of an existing object’s data members are copied into the corresponding data members of the new object. If one object existed before the clone was created, two objects exist after it is created. To create a clone of an object, a method (usually named clone) is coded in the object’s class. The method is a nonvoid method that returns the address of the newly created clone object.

Figures 7.10 and 7.11 show two alternate codings of a clone method, which would be coded in the class ParentSnowman. Both methods return the address of a newly created clone of the object that invoked them. The version shown in Figure 7.10 invokes the class’s deepCopy method on line 4 to copy the values of the data members of the object that invoked the method into the clone object created on line 3. This version of the method assumes that the class contains a deep copy method and a no-parameter constructor. The new object is identical to (an exact copy of) an existing object.

[image:]

Figure 7.10
A clone method using a deepCopy method that would be part of the class ParentSnowman.

The alternate coding of the clone method presented in Figure 7.11 uses the class’s three-parameter constructor on line 3 to copy the values of the data members into the clone when it is constructed. If each object only contains three data members, then the newly created object is identical to (an exact copy of) an existing object. Generally speaking, to produce an exact copy of an object with n data members, this version of the clone method would have to invoke an n-parameter constructor on line 3 of Figure 7.11.

[image:]

Figure 7.11
An alternate clone method that would be part of the class ParentSnowman.

If it is appropriate to a particular application for the clone method to copy only a subset of an object’s data members into the newly created object, then line 4 of Figure 7.10 would be changed to an invocation of the class’s copy method, and the clone method would be renamed partialClone to indicate that invocations of this method do not make an identical copy of the object that invoked it.

Figure 7.12 is the code of a class named ParentSnowmanV2 that is an expanded version of the ParentSnowman class shown in Figure 6.18. The expanded version adds the following methods to the class:

•a copy method (lines 29–35) that copies four of an object’s data members into another object

•a partial-clone method (lines 36–41) that invokes the copy method

•a shallow compare method (lines 42–52)

•a deep compare method (lines 53–63) that compares the hatColor data members of two objects

•a method that detects collisions (lines 64–75) between two snowmen

In addition, three static data members (lines 5–7) and a get method (lines 93–96) to fetch one of these data members have also been added to the class.

As discussed in Section 7.1, the three static data members declared on lines 5, 6, and 7 of Figure 7.12 are shared by all instances of this class. The first of these, snowmanCount initialized to zero, will be used to count the number of snowmen constructed. It is incremented inside the no-parameter constructor (line 18) and the four-parameter constructor (line 27) every time these constructors execute. The client can fetch the value of the variable snowmanCount using the get method coded on lines 93–96.

The other two static variables, w and h, store the width (40) and height (77) of a snowman, as depicted in Figure 4.9. Because the class’s show method draws all snowmen with the same width and height, it is appropriate that these two variables be shared by all instances of the class. The variables are used in the Boolean condition coded within the collidedWith method (lines 64–75) that detects a collision between the snowman that invoked it and the snowman passed to its parameter ps. The values of the variables x and y used on lines 66 and 67, and within other methods of the class, are the values of the x and y data members of the snowman that invoked the method. Alternately, we could code these data members as this.x or this.y.

The class’s copy method (lines 29–35) copies four of a snowman’s seven nonstatic data members (lines 31–34). When the method completes its execution, the snowman passed to its parameter will have the same name, hat color, and location as the snowman that invoked the method. To prevent methods that are not part of the ParentSnowmanV2 class from erroneously invoking this method to make a deep copy of all of an object’s data members, it is declared as a private method on line 29.

The copy method is invoked on line 39 by the class’s partialClone method, which means that clones will have only the same name, hat color, and location as the snowman from which they were cloned. Their xSpeed, ySpeed, and visible data members will retain their default values (set on lines 12–14). As previously discussed in Section 7.2, the fact that the copy method is a private method does not prevent the class’s clone method from invoking it.

The deep comparison performed on line 55 of the equals method determines if two snowmen have the same hat color by invoking the API Color class’s equals method. If they do, the method returns the value true.

[image:]

[image:]

[image:]

[image:]

Figure 7.12
The class ParentSnowmanV2.

The application shown in Figure 7.13 uses most of the concepts discussed up to this point in this chapter. When the game board’s Start button is clicked, a snowman guard, whose family name is “G” patrols his game board garden looking for three green-hat snowmen who have wandered into the garden (Figure 7.14a). When he finds (collides with) one, he positions the green-hat snowman behind himself and continues his search (Figure 7.14b). Each time he reaches the border of his garden, he clones himself and posts the clone at the garden’s edge (Figure 7.14c) to guard the garden from wandering snowmen. After the guard has found the three green-hat snowmen and posted six clones at the garden’s boundaries, the animation ends (Figure 7.14d).

[image:]

[image:]

[image:]

Figure 7.13
The application DeepAndShallow.

[image:]

Figure 7.14
Graphical output produced by the application DeepAndShallow.

This animation uses an array of ten ParentSnowmanV2 snowmen objects, whose class is shown in Figure 7.12; the array, ps, is declared on line 11 of Figure 7.13. The patrolling snowman guard and the three green-hat snowmen, declared on lines 12–15, are referenced by indices 0 and 1–3, respectively. The remaining six elements of the array will be used to reference the clone snowmen.

The patrolling of the guard and the game termination are dependent on timer3. Line 17 of the main method sets timer3’s increment to 20 milliseconds, which means that the timer3 call back method (lines 34–75) executes every 20 milliseconds. Its code determines if the patrol is over (lines 36–44), moves the patrolling guard (lines 42–57), posts clone guards (lines 50–63) and gathers up the intruders (lines 66–74). Line 36 determines if ten snowmen have been constructed, which would mean that all six guards have been posted. If so, the patrol is ended by line 38, which stops timer3. While the timer is ticking, lines 42–47 use the Snowman class’s set and get methods to fetch, change, and overwrite the current values of the patrolling guard’s (x, y) location every 20 milliseconds. This keeps the snowman on patrol.

Lines 50 and 57 determine if the guard has reached a vertical (line 50) or horizontal (line 57) edge of the garden. If it has, lines 52–54 and lines 59–61 reflect the guard off the edge by changing the sign of the x and/or y speed data member. Then, lines 55 and 62 invoke the partialClone method to create the clone snowman and store its returned address in the next available element of the array ps. The index of this element is the static value returned from the getSnowmanCount method, which is invoked on the left side of these lines. Because the partialClone method in the ParentSnowmanV2 class (Figure 7.12) copies the current (x, y) position of the patrolling snowman into the clone, the clone is positioned at an edge of the garden.

Just before the timer3 method ends, the for loop that begins on line 66 indexes through the last nine elements of the array. For each of these elements, the if statement’s Boolean condition on lines 68 and 69 determines if:

•the element of the array references a snowman (is not null)

•the referenced snowman has collided with the patrolling guard (ps[0]) as determined by the collidedWith method

•the referenced snowman is an intruder as determined by the equals method (Its hat color is not equal to the guard’s hat color.)

When this is the case, the (x, y) position of the green-hat wandering snowman is set to the (x, y) position of the patrolling guard (lines 71–72). On the next tick of timer3, the patrolling guard is only moved two pixels, so the guard and the snowman remain in a collided state, and the wandering snowman’s position is reset by lines 74–75 to the patrolling guard’s new position. The resulting effect is that the wandering snowman goes on patrol with the guard. It cannot be seen on patrol because line 31 of the draw method draws the patrolling guard, ps[0], last (i.e., on top of the green-hat snowmen that have joined the patrol).

After the game ends, a series of left button clicks will separate the patrolling guard from the green-hat guards that have joined the patrol as shown in the center portion of Figure 7.15. This is accomplished by decrementing the x coordinates of each green-hat patrolling snowman (line 82) and the guard (line 84) by a different amount on each button click. Until the game ends, the left button is inactive because the body of the if statement on line 79 that separates the snowmen is only executed when the Boolean variable gameOver is set to true on line 39 of the timer3 call back method.

[image:]

Figure 7.15
Graphical output produced by the application DeepAndShallow after the animation ends and several left button clicks have been performed.

7.5 THE STRING CLASS: A SECOND LOOK

In Section 2.5, we discussed the creation of String objects, and in Section 4.2.3, we discussed the String class’s methods equals and compareTo, which are used to compare two strings. In addition to these methods, the class contains a rich collection of methods used to create strings, to convert strings to characters, and to process string data.

7.5.1 Creating Strings from Primitive Values

Aside from the one-parameter constructor discussed in Chapter 2 that is passed a string literal or a string object such as

String name1 = new String("Robert");

String name2 = new String(name1);

the String class also contains several overloaded constructors. Each of these creates a new string object and returns its address. Two of the most frequently used constructors have a character array passed to them. The following code fragment uses the one-parameter version of these two methods to create the string name1 initialized to Joanne Jones and the three-parameter version to create the string name2 initialized to anne Jo. (The second argument sent to the three-parameter version of the constructor would be zero to include the first character of the array in the string object.)

char[] c = {'J', 'o', 'a', 'n', 'n', 'e', ' ', 'J', 'o', 'n', 'e', 's'};

String name1 = new String(c); //all characters used

String name2 = new String(c, 2, 7); //7 characters used, starts @ index 2

The static method valueOf in the String class also can be used to create and return the address of a string object initialized to the argument passed to it. Overloaded versions of this method use a char, int, long, float, or double parameter. Integer type byte and short arguments can be passed to the int parameter version of this method. In addition, there is a version of the method that accepts a character array passed to it. The following code fragment demonstrates the use of this overloaded method, to output the string: x102030405.556.66yz.

 char c = 'x';

 byte b = 10;

 short s = 20;

 int i = 30;

 long l = 40;

 float f = 5.55f;

 double d = 6.66;

 char[] cArray = {'y', 'z'}

String s2 = String.valueOf(c) + String.valueOf(b) + String.valueOf(s) +

 String.valueOf(i) + String.valueOf(l) + String.valueOf(f) +

String.valueOf(d) + String.valueOf(cArray);

System.out.println(s2);

7.5.2 Converting Strings to Characters

The String class method charAt can be used to convert a particular character contained in the string object that invoked it to type char, and it returns the character. The following code fragment stores the character 'S' in the variable c.

String aString = "Joe Smith";

 char c = aString.charAt(4); //character numbers begin at zero

The method toCharArray converts a string object that invokes it to an array of characters and returns the address of the array. After the following code fragment executes, the character arrays c1 and c2 contain the same character sequence:

char[] c1 = {'J', 'o', 'a', 'n', 'n', 'e', ' ', 'R', 'a', 'y'};

char[] c2;

String aString = "Joanne Ray";

c2 = aString.toCharArray();

7.5.3 Processing Strings

The String class contains several methods to process string data. Two of these methods, compareTo and equals (and their related methods compareToIgnoreCase and equalsIgnoreCase) were discussed in Section 4.2.3. Table 7.1 describes other String class methods often used to process strings.

All of these methods are nonstatic methods. They can be used to determine the existence or location of a given substring in a string, fetch a substring from a specified position in the string, produce an uppercase or lowercase version of a string, replace the first or all occurrences of a substring with a given string, and tokenize a string to determine if a string begins or ends with a specified string.

Table 7.1
String Processing Methods in the String Class

[image:]

The application StringProcessing presented in Figure 7.16 uses some of the methods described in Table 7.1 to process a sentence input by the user. If the word Hello appears at the beginning of the sentence it is eliminated, and if the word Tom is in the sentence it is changed to XXX. A typical input and corresponding output are given in the left and right sides of Figure 7.17, respectively.

Line 16 uses the String class method split to create a new String array and place each word of the sentence input on line 11 into its elements. Then, it stores the address of the array returned from split in the variable sArray that is declared on line 8. The string consisting of a space followed by a plus sign passed to split on line 16, instructs the method to consider one or more spaces as token delimiters in the sentence. Line 19 clones the string input on line 11 and stores its address in the variable s2.

Lines 20–23 remove the word Hello from the beginning the cloned string s2. The indexOf method is used in the if statement’s Boolean condition on line 20 to determine if the substring “Hello” begins at the index zero of the string s2. If it does, the substring method is used on line 22 to return the substring of s2 that begins at index 6 (after the word Hello and the space that follows it). The address of this new string object is stored in (shallow copied into) s2. Line 20 could have been coded as shown below:

 if(s2.startsWith("Hello"))

The replaceAll method is invoked on line 24. It effectively creates a clone of the string object s2 and replaces all occurrences of the word Tom with the string literal “XXX.” The returned address of the modified clone is then assigned to (shallow copied into) the variable s2.

[image:]

Figure 7.16
The application StringProcessing.

[image:]

Figure 7.17
Input to the application StringProcessing and the corresponding output.

Tokenizing a String

Generally speaking groupings of sequential characters within a string, which are most often separated by white-space (e.g., a tab, a new line, or space keystrokes), are called tokens. Tokenizing a string is the process of separating a string into its component tokens. The application shown in Figure 7.16 use the String class’s split method to perform this process.

Another way of tokenizing a string is to declare an instance of the StringTokenizer class and pass its constructor the string to be tokenized. The class’s nextToken method is repeatedly invoked on the StringTokenizer object within a while loop whose code block processes the tokens. This method sequentially returns one token per invocation, beginning with the token on the left side of the string. The class’s hasMoreTokens method returns false if all of the tokens in its StringTokenizer object have been fetched.

The following code outputs token1 token2 token3 regardless of the width, or type, of the white-space between the tokens.

String s = "token1    token2    token3";

StringTokenizer tokens = new StringTokenizer(s);

while(tokens.hasMoreTokens())

{

System.out.print(tokens.nextToken() + " ");

}

7.6 THE WRAPPER CLASSES: A SECOND LOOK

As discussed in Section 2.7.3, the six numeric wrapper classes (e.g., Integer, Double, etc.) contain methods that parse a string into integer or real values that can then be stored in primitive variables. In addition to these methods, all of the wrapper classes contain constructors to create a wrapper class object and also contain a collection of useful constants. A seventh wrapper class, the class Character, contains methods to perform common operations on characters. In this section, we will discuss these additional features of the wrapper classes and a related topic called autoboxing.

7.6.1 Wrapper Class Objects

A wrapper class’s one-parameter constructor can be used to create a wrapper object. Wrapper class objects contain a single private primitive data member whose type is consistent with the class’s name. For example, an object in the class Double contains a double primitive data member, and an instance of an Integer contains an int data member. The argument passed to the one-parameter constructor is stored in the object’s data member. Envisioning the primitive value being wrapped in the object is the basis of the phrase wrapper classes.

The wrapper classes contain methods that return the value stored in an object’s data member. These methods perform the function of get methods, but their names begin with the primitive type they return followed by the word Value. For example, the Integer class contains a method named intValue that returns the value of the class’s integer data member, and the Character class contains the method charValue that returns the value of the class’s character data member.

The Integer class also contains the methods byteValue, shortValue, longValue, floatValue, and doubleValue that cast the returned value of the data member into the other numeric primitive types. The other numeric wrapper classes contain five similarly named methods used to cast the data member they return into different numeric types. The following code segment wraps the value 20 in an Integer object and outputs the value as an integer and a double (e.g., 20 followed by 20.0):

Integer n = new Integer(20);

System.out.println(n.intValue() + " " +

n.doubleValue()); //outputs: 20 20.0

Each of the wrapper classes contains an equals and a compareTo method to perform a deep comparison of the data wrapped in the object that invoked them and the object sent to their parameter. The equals method returns the Boolean value true when the two objects are equal, otherwise it returns false. The equality operator (==) can be used to perform a shallow comparison to determine if two wrapper class reference variables refer to the same object.

The compareTo method returns an integer, which is negative, zero, or positive when the invoking object is less than, equal to, or greater than the object sent to its parameter, respectively. This version of the method coded in the numeric wrapper classes always returns -1, 0, or 1. The integer returned from the Character class’s version of the method also gives an indication of the lexicographic separation of the characters contained in the objects being compared.

The following code fragment outputs the value -25. The value is negative because the character ‘a’ appears before ‘z’ in the Unicode table, and its absolute value is 25 because ‘a’ is 25 characters before ‘z’.

Character c1 = new Character('a');

Character c2 = new Character('z');

System.out.println(c1.compareTo(c2)); //outputs: -25

The wrapper classes do not contain set methods to change the value of the data member wrapped in the object. This is because wrapper class objects, like String objects, are immutable. Once a value has been stored in a wrapper class’s data member or inside a String object, the value cannot be changed. As is the case with String objects, the assignment operator can be used to reassign the address stored in the object’s reference variable to a newly created object that contains the assigned (different) value. Although this gives the appearance that the value stored in the object has changed, in reality, the new value has been stored in a different object.

The assignment operator can also be used to shallow copy (the address of) two wrapper class objects. The following code fragment outputs the value 12.5 twice. Although it initially creates two instances of a Double, d1 and d2, after the third line executes, these variables reference the same object. The object containing the value 54.6 is reclaimed by the Java memory manager. The coding of the variables d1 and d2 in the argument sent to the println method are two implicit invocations of the Double class’s toString method.

Double d1 = new Double(12.5);

Double d2 = new Double(54.6);

d2 = d1; //d1 and d2 reference the same object which contains 12.5;

System.out.println(d1 + " " + d2); //outputs: 12.5 12.5

7.6.2 Autoboxing and Unboxing

The autoboxing feature of wrapper classes makes it easier to use wrapper class objects in our programs. This feature automatically “wraps” primitive values into wrapper objects. For example, wrapper class objects can be declared using the abbreviated syntax used to declare String objects, as discussed in Section 2.5. The following line of code wraps, or boxes, the integer 20 in an Integer object and writes its address in the variable n1:

Integer n1 = 20; //autoboxing of the value 20 in an object declaration

When this statement executes, the autoboxing feature creates an Integer wrapper object, stores (boxes) 20 in its data member, and returns the object’s address. The statement is equivalent to the following statement:

Integer n1 = new Integer(20);

Autoboxing can also be used to effectively reassign or set the primitive value stored in a wrapper class object. The following code fragment outputs the value 3.6. The right side of line 2 uses autoboxing to create a new Integer wrapper object, stores 3.6 in its data member, and returns its address. The returned address is then stored in the variable n1. The wrapper object containing the value 2.5 is reclaimed by the Java memory manager.

1   Double n1 = 2.5;

2   n1 = 3.6; //Autoboxing of the value 3.6 in an assignment statement

3   System.out.println(n1);

It should be noted that if the value to be boxed in a wrapper class object (e.g., n2) is already stored in another wrapper class object (e.g., n1) of the same type, then a new object is not created. Rather, n2 is set to refer to n1's object. The only exception to this is if the long form of the object-declaration grammar is used to declare and initialize the new object. This caveat also applies to String objects. The code fragment shown in Figure 7.19 demonstrates these concepts, as well as the use of the equality operator and the wrapper class’s equals method. The output it produces is shown at the bottom of the figure.

Lines 2, 7, and 11 do not create a new object but simply assign n2 the object’s address that is stored in n1. Line 16 creates a new object even though the object n1 created on line 15 stores the same value because the long form of the object-declaration syntax (which includes the keyword new) is used to create it.

[image:]

Figure 7.18
Examples of when autoboxing creates new objects.

The unboxing feature of wrapper classes allows us to use the name of a numeric wrapper class object in arithmetic expressions. The following code fragment outputs the values 7 and 16. The value stored in the object n2 is unboxed from it on lines 2, 3, and 4. The unboxing fetches the value 7 from the object on lines 2 and 3, and the value 8 on line 4.

1   Integer n2 = 7;

2   int n3 = n2; //auto Unboxing of n2

3   n2++; //auto Unboxing of n2, incrementing, and Autoboxing the new value

4   n2 = n2 * 2; //auto Unboxing, multiplying, and Autoboxing the new value

5   System.out.println(n3 + " " + n2);

The location of wrapper class objects can be passed to and returned from a method using the same syntax used to pass any object’s location to or from a method. The most common use of wrapper class objects is to pass a primitive value to a generic method that is expecting an object or to store a group of primitive values in a Java collection object. Generic methods and collections, and the role wrapper objects play in their use, will be discussed in Chapter 13.

7.6.3 Wrapper Class Constants

The six numeric wrapper classes all contain static data members named MAX_VALUE, MIN_VALUE, and SIZE. The values of a class’s MAX_VALUE and MIN_VALUE constants are the maximum and minimum values that can be stored in the primitive numeric data member of an instance of that class. The value of the constant SIZE is the number of bits that make up the primitive data member’s storage cell.

The following code fragment produces the output 127 -128 8, which are the maximum and minimum values that can be wrapped in a Byte object, and the size of the object’s data member (8 bits). These are the same values presented on the first row of Table 2.1, which specified the range and size of the primitive numeric types.

System.out.println(Byte.MAX_VALUE, + " " + Byte.MIN_VALUE, +

" " + Byte.SIZE);

7.6.4 The Character Wrapper Class

The wrapper class Character contains all of the methods, constants, and the autoboxing features of the numeric wrapper classes discussed previously in Section 7.6. Its value method, named charValue, returns the character stored inside the Character instance that invokes it. Naturally, the Character class’s constants such as MAX_VALUE, MIN_VALUE, and SIZE store values relevant to primitive char values, and the class’s methods operate on Character objects and are passed char parameters.

In addition to the analogous numeric wrapper class methods, the Character class contains two static methods named toUpperCase and toLowerCase that change the case of a character primitive passed to their char-type parameter. The Character class also contains seven other static methods described in Table 7.2 that return a Boolean value. These methods can be used to determine if the character passed to it is a digit or a letter, an uppercase or lowercase letter, or is Java whitespace. The methods are very useful in programs that process text information.

Figure 7.19 contains a program ParseSentence that demonstrates the use of four of the methods shown in Table 7.2 to determine the number of upper and lowercase letters, digits, and whitespace in an input sentence. A typical input sentence and the corresponding output the program produces is shown in Figures 7.20a and 7.20b, respectively.

The code inside the for loop that begins on line 14 of Figure 7.19 counts the number of occurrences of the four different types of characters contained in the sentence input on line 13. The String class’s length method is invoked on line 14 to determine the number of characters in the sentence.

Each time through the loop, the loop variable is passed to the String class’s charAt method to fetch the ith character from the sentence. Lines 17, 21, 25, and 29 use four of the character-testing methods presented in Table 7.2 to determine if the character returned from the charAt method is an upper- or lowercase letter, digit, or whitespace.

Table 7.2
The Character-Testing Methods in the Class Character

[image:]

[image:]

Figure 7.19
The application ParseSentence.

[image:]

Figure 7.20
An input to the application ParseSentence and the resulting output.

7.7 AGGREGATION

Just as a group of primitive variables can be collected into an object by declaring them as data members in the object’s class, instances of other types of objects can also be collected, or aggregated, into an object. We have already utilized this concept many times in this textbook. For example, lines 10 and 11 of Figure 7.12 indicate that a String and a Color object will be part of a ParentSnowmanV2 object. As a result, the ParentSnowmanV2 class would be considered an aggregated class.

Definition

An aggregated class is a class that includes in its data members instances of other classes.

Aggregating an object into a class is a simple task. As shown in Figure 7.21, which contains lines 10–11 and lines 20–28 of Figure 7.12, we simply declare a data member that can reference the object (lines 10 and 11) and assign the reference variable the address of an object (lines 11, 25, and 26).

[image:]

Figure 7.21
A code fragment from an aggregated class.

The difficult part of the aggregation shown in Figure 7.21 falls on the authors of the String and Color classes. They had to anticipate the operations that would be performed on aggregated strings or Color objects and provide methods to perform these operations. In the case of the String class, this includes operations such as comparing two strings, outputting a string to the console, and all of the other operations that were discussed in Section 7. 5. These methods are invoked by the code of the aggregated class to operate on the objects.

Properly anticipating the operations that will be performed on an aggregated object is a key component of the concept of aggregation. In addition, where possible, the signatures of these methods are standardized, as is the case for the equals method in the String and Color classes. Providing commonly used methods whose signatures are standardized facilitates the use of aggregation in our programs.

Instances of a class that we write can also be aggregated into other classes using the same syntax discussed above. (In this case, the burden of identifying the operations that will be performed on the aggregated objects and writing the classes falls on us.) This use of aggregation gives us the ability to extend the design concept of divide and conquer, used to divide complicated methods into smaller methods, to classes we write. The component objects of a large class (e.g., a ParentSnowman class) can be identified (e.g., a Hat object and a Nose object), and then the component classes can be written. Once written, instances of these classes can be aggregated into the larger class. In addition, instances of component classes can be aggregated into the classes of other programs just as instances of API classes are used in most Java programs.

The concept of aggregation gives us the ability to:

•use instances of existing objects in classes we write

•extend the design concept of divide and conquer to classes we write

•define a complicated object as an aggregation of component objects defined in other classes

•easily operate on aggregated component objects as separate entities

Figure 7.22 shows the UML representation of a class named SnowmanV8 that aggregates a Hat and String object into it. The symbol for aggregation in a UML diagram is the diamond shown below the SnowmanV8 class. The lines that connect it to the Hat and String classes indicate that the SnowmanV8 class aggregates at least one Hat and one String object into it. The last two data members of the SnowmanV8 class specify that one of each of these objects is aggregated into the class.

[image:]

Figure 7.22
UML diagram of the SnowmanV8 and the Hat classes.

During the design of the Hat class, it was anticipated that classes that aggregate hats will want to include hats of different colors and sizes. The last three parameters of the class’s constructor were included in its parameter list to allow for this, as were its last three data members. The Hat class’s show method will use these data members to draw a properly sized and colored hat. In addition, it has been anticipated that classes that aggregate Hat objects will want to clone them, so the class includes a clone method. Finally, it was assumed that once created, a hat’s color would not be changed, so a setHatColor data member was not included in the Hat class.

Figure 7.23 shows the code of the class Hat that is specified in Figure 7.22. Lines 22 and 23 of the show method scale the hat top and its brim using the hat’s specified width (w) and height (h). This unburdens the authors of all classes that aggregate hats from knowing how to scale a Hat object. That task is left to the hat specialist, which illustrates another advantage of aggregation. In addition, they do not have to include the Hat class’s data members and method in their class, making the aggregated class easier to code and understand. The clone method, lines 25–29, invokes the class’s constructor in line 27 to create a clone of the Hat object that invokes it and returns the address of the newly created clone on line 28.

[image:]

[image:]

Figure 7.23
The class Hat.

Figure 7.24 shows the code of the class SnowmanV8 that is specified in Figure 7.22. This class begins the aggregation of a String and a Hat object with the declaration of its last two data members on lines 9 and 10. Line 16 of the constructor completes the aggregation of the String object by creating a string and setting its address into the data member name.

The aggregation of the Hat object is completed on line 52 of the setHat method that assigns the address of a Hat object passed to its parameter on line 50 to the data member aHat declared on line 10. This means that until the setHat method is invoked, a SnowmanV8 object should be drawn without a hat on his head. This is easily accomplished by including an if statement (line 22) in the class’s show method that only invokes the Hat class’s show method (line 26) when the data member aHat does contain its default value, null. This demonstrates another advantage of aggregation: aggregated objects can easily be treated as separate entities in a program. The snowman can be drawn with or without a hat.

Before the hat is drawn, it must be positioned on the snowman’s head. This is accomplished by lines 24 and 25, which use the Hat class’s setX and setY methods to set the (x, y) position of the hat above the snowman’s head. The argument sent to these methods uses the Hat class’s setW and setH methods to fetch the height and width of the hat, which are used to center the hat on the snowman’s head.

Lines 38–49 of Figure 7.24 contain the code of the SnowmanV8 class’s collidedWith method specified in Figure 7.22. It detects a collision between the snowman that invokes it and the Hat object passed to its parameter. It uses the Hat class’s get methods in the Boolean expression on lines 40 and 41 to decide if a collision has occurred.

[image:]

[image:]

Figure 7.24
The class SnowmanV8.

Figure 7.25 presents the application Aggregation. When launched, it displays a hatless snowman and a hat rack containing six different hats, as shown in Figure 7.26a. The keyboard cursor-control keys are used to move the snowman to the hat he wishes to wear, perhaps the blue hat as shown in the upper right side of the figure (7.26b). The chosen hat is cloned and positioned on his head (Figure 7.26c), and follows him around the game board as shown on the lower right side of the figure (7.26d).

The application’s draw method (lines 23–32) draws the hat rack on lines 25 and 26, and then its for loop invokes the hat class’s show method to draw the six hats created on lines 12 to 17. The parameters sent to the Hat class’s five-parameter constructor specify different locations, colors, and sizes for each hat.

Line 31 of the draw method invokes the SnowmanV8 class’s show method to draw the snowman that was created on line 8 on the game board. When the application is launched, the snowman’s data member, aHat, declared on line 10 of the Figure 7.24, still contains its null default value. This causes the snowman to be drawn without a hat, as shown in Figure 7.26a, because the Boolean condition on line 22 of Figure 7.24 is false.

Every time a cursor key is struck, the code of the switch statement (lines 37–62) inside the keyStruck call back method moves the snowman two pixels left, right, up, or down. Then, the if statement (lines 66–69) uses the loop variable of the for loop to check each hat in the array hats to determine if the snowman has chosen (collided with) any of the hats on the hat rack.

When a hat is chosen it is cloned, and the clone is aggregated into the snowman object by invoking the hat class’s setHat method and passing it the address of the cloned hat (line 68). The aggregation is accomplished by line 52 of Figure 7.24, which assigns the cloned hat’s address (passed to the setHat method) the snowman’s data member aHat. Because the data member is no longer null, lines 24–25 of Figure 7.24 position the aggregated hat centered and on top of the snowman’s head at its current position, and line 26 draws the hat at that position.

[image:]

[image:]

Figure 7.25
The application Aggregation.

[image:]

Figure 7.26
Output generated by the application Aggregation.

7.8 INNER CLASSES

An inner class is a class defined inside another class. Just as classes can contain data members and methods, they can contain other classes. The class that contains the inner class is called the outer class. Normally, a class is defined as an inner class only if the outer class will aggregate instances of the inner class. Consider the Hat class (Figure 7.23) discussed in the previous section. Because both the class SnowmanV8 and the application Aggregation declared Hat objects, the Hat class was not coded inside the SnowmanV8 class. Inner classes are most often used in Java programs that use a Graphical User Interface (GUI), also called a point-and-click interface. In this section, we will become familiar with the syntax of inner classes and the ability of the inner and outer classes to access each other’s data members and methods.

Figure 7.27 presents the class PhoneBook that contains an inner class PhoneNumbers, which begins on line 28 and ends on line 48. Instances of the inner class contain a person’s office, cell, and home phone numbers. These three strings are declared as aggregated data members of the inner class on lines 30–32, and the class’s constructor assigns them input values (lines 36–40) when a PhoneNumbers object is created. The class’s show method (lines 43–47) outputs the three phone numbers to the system console.

[image:]

Figure 7.27
The class PhoneBook and its inner class PhoneNumbers.

The outer class PhoneBook declares two parallel arrays each containing three elements on lines 10 and 11 and assigns their addresses to the variables name and numbers, declared on lines 5 and 6. After creating the arrays, the for loop (lines 13–17) in the outer class’s constructor completes the aggregation of the String and PhoneNumbers objects into the outer class by creating new instances of these classes and assigning their addresses to the elements of the parallel arrays name and numbers (lines 15 and 16).

NOTE

The code of an outer class can invoke a constructor in an inner class.

Each time the inner class’s constructor is invoked on line 16, it not only creates a new object, but it also accepts input into the data members of the newly created object on lines 36–41. The argument passed to this one-parameter constructor on line 16 is the loop variable declared on line 13. Lines 36, 38, and 40 of the constructor use this value to index into the outer class’s name array, which causes the person’s name that was just input on line 10 to become part of the prompts output by lines 36–41.

NOTE

The code of an inner class can access the data members of its outer class.

The outer class’s showAll method (lines 19–26) outputs all of the names and numbers in the two parallel arrays to the system console. Inside its for loop, line 23 outputs a person’s name, and then line 24 invokes the inner class’s show method to output that person’s phone numbers.

NOTE

The code of an outer class can invoke the methods in an inner class.

In general:

•the code of an inner and outer class can access each other’s members (both data members and methods)

•an inner class is not visible outside of the outer class

The application InnerClass, shown in Figure 7.28, declares a PhoneBook object to store the names and phone numbers of a person’s three best friends. Then, it invokes the class’s showAll method to output the names and numbers input by the program user. Figure 7.29 shows two typical first inputs and a typical console output produced by the program.

[image:]

Figure 7.28
The application InnerClass.

[image:]

Figure 7.29
Two typical inputs to the application InnerClass and a typical set of outputs.

7.9 PROCESSING LARGE NUMBERS

Occasionally, there is a need to process an integer that is larger or smaller than the maximum or minimum values that can be stored in the primitive type long. For example, the encryption used on the Internet involves processing prime numbers that contain 309 digits, which far exceeds the 19-digit maximum value that can be stored in the primitive type long. Similarly, we might need to process a real number that is larger or smaller than the maximum or minimum values of the primitive type double or require more than the 15 digits of precision the type double provides.

The Java API contains two classes that can be used to process numbers that are too large or too small to be stored in primitive types or that require more than 15 digits of precision; they are the BigInteger and BigDecimal classes. As their names imply, they can be used to process numbers beyond the range of the primitive integer and real types, and the BigDecimal can also provide a specified number of digits of precision. Objects in these classes, like String and wrapper class objects, are immutable.

Processing of objects in these classes is performed by using the methods that are part of these classes. For example, addition is performed by the method add, which adds the object that invoked it to the object passed to its parameter and returns a reference to an object that contains their sum. There are methods to perform all of the operations normally performed on primitive numeric types, including modulo arithmetic, methods that are analogous to the Math class’s methods, and methods to perform other common operations on numbers such as finding the greatest common denominator, generating a prime number, and determining if a number is prime.

The BigInteger Class

Consider a program to generate a specified term of the Fibonacci sequence. The first two terms of this sequence, f1 and f2, are both defined as 1. Any other term in the series is defined as the sum of the two previous terms: fn = fn-2 + fn-1. From term 93 (f93) on, the values of the terms exceed the size of the primitive type long.

The application FibonacciTerm, shown in Figure 7.30, demonstrates the use of some of the constants and methods in the class BigInteger. The program calculates and outputs a specified term (greater than 2) of the sequence and identifies those terms that are larger than the maximum value of the primitive type long. A set of program inputs and corresponding outputs are shown in Figure 7.31.

Line 1 of Figure 7.30 imports the class BigInteger into the program, and lines 10–12 create three instances of the class. The first two are assigned the address of the class’s static object that stores the value 1. There are two other static objects defined in the class, TEN and ZERO, which store the values 10 and 0, respectively. Line 12 uses the class’s valueOf method that returns the address of a BigInteger object set to the value passed to its parameter. In this case, the maximum value of the primitive type long is passed to the method, which is a static constant in the wrapper class Long.

The for loop that begins on line 16 computes the terms of the sequence from 3 to the number input on line 14. Each time through the loop, the add method is used on line 19 to calculate the next term of the sequence and the address of the object containing the value returned from the method is assigned to the variable fn. Line 20 sets fnMinus1 to the previous value of fn.

When the loop ends, line 22 uses the class’s toString method to convert the calculated value stored in the object fn to a string before it is output. The conversion could have been coded as an implicit invocation of the toString method:

System.out.println("f" + n + " = " + fn);

Finally, the BigInteger class’s compareTo method is used in the Boolean condition on line 23 to determine if the calculated term of the sequence is larger than the maximum value of a long type primitive. The integer value the method returns is interpreted in the same way as the integer value retuned from the String class’s compareTo method.

[image:]

Figure 7.30
The application FibonacciTerm.

[image:]

Figure 7.31
Sample inputs to the application FibonacciTerm and the corresponding outputs they produce.

The BigDecimal Class

As previously mentioned, the BigDecimal class can be used to represent real values to a specified precision. The code fragment shown in Figure 7.32 computes and rounds up the number 176 divided by 7 to a precision of 19, 18, 17, and 16 digits. The resulting BigDecimal object, returned from the three-parameter version of the class’s divide method, is output at the bottom of the figure using an implicit invocation of the BigInteger class’s toString method. The divide method divides the object that invoked it by the first argument sent to it.

The second argument sent to the divide method specifies the precision of the computed value. The third argument specifies the rounding mode used to determine the rightmost digit of precision. This can either be an integer or a constant defined in the class RoundingMode. The class’s constant HALF_UP, used in Figure 7.32, is used to perform the conventional upward rounding.

[image:]

Figure 7.32
Use of the BigDecimal class’s divide method.

7.10 ENUMERATED TYPES

Enumeration is the process of defining a new type and specifying, or enumerating, a finite set of values that instances of the type can assume. The use of enumeration can make our programs more readable. Java supports enumerated types. The following enumeration statement defines the enumerated type Team and specifies that there are three values in its set of values: Yankees, Braves, and Giants.

 // Declaration of an enumerated type

enum Team {Yankees, Braves, Giants}

An enumeration statement is coded at the class level; it cannot be coded inside (local to) a method. The values that appear in the statement can be any valid identifier, which implies that they cannot be strings or primitive literals. The following declarations are invalid:

 // Invalid enumeration statements: values not identifier names

enum Team {"Yankees", "Braves", "Giants"} //can’t contain quotes

enum ID {NY Yankees, Atlanta Braves, SF Giants} //spaces not allowed

An enumeration statement can also be written in a separate Java file whose name is the same as the statement’s enumerated type name; e.g., Team.

At an abstract level, the identifiers can be thought of as static constants in a class whose name is the enumerated type name (e.g., Team) and whose values are the identifier names. In this abstract view, the enumerated values are analogous to the static double constant PI in the Math class whose value is the double 3.141592653589793. The following code fragment outputs 3.141592653589793 Yankees to the system console:

 // Accessing the values of enumerated types

enum Team {Yankees, Braves, Giants}

System.out.println(Math.PI + " " + Team.Yankees);

Continuing the analogy, just as the numeric constant Math.PI can be assigned to a variable of its type (i.e., double), an enumerated constant can be assigned to a variable of its type (e.g. Team). The following code fragment also outputs 3.141592653589793 Yankees to the system console:

 // Assigning an enumerated type value

enum Team {Yankees, Braves, Giants}

Team myTeam = Team.Yankees;

 double valueOfPi = Math.PI;

System.out.println(valueOfPi + " " + myTeam);

For the most part, considering the identifiers in an enumeration statement to be analogous to static constants is consistent with the Java syntax of enumerations. An exception to this is when an enumerated type variable is used in a switch statement after the keyword switch. In this context, the enumerated type name is not used to qualify the identifier coded as the choice value after the keyword case. In the code fragment shown in Figure 7.33, when an enumerated value such as Yankees is used within the switch statement, the type name Team is not used to qualify the identifier, as shown on line 6. When the identifier is used in other statements (e.g., line 7 of Figure 7.33), the type qualifier is used.

[image:]

Figure 7.33
Syntax of enumerated types in a switch statement.

The API interface Enum defines a set of methods that implement operations commonly performed on enumerated types. When discussing them, it useful to move away from the abstract view of an enumeration’s identifiers being static constants to a more concrete view of them. While it is true that the enumerated type is a class, it is a special kind of class. In addition, the identifiers are not static constants in the class, but rather each identifier is a static reference variable that refers to an instance of the class.

As such, like static constants, we access the contents of these reference variables by the name of the identifier proceed by the name of the class followed by a dot (just as we have been doing). Figure 7.34 shows the three objects created by the enumeration shown below, the variables that reference them, and the contents of the variable myTeam after the assignment statement is executed:

[image:]

Figure 7.34
Three objects of the enumeration Team.

As shown in Figure 7.34, each object has an ordinal value associated with it, which always begins with zero. The values are assigned sequentially to the identifiers in the order (left to right) in which they appear in the enumeration statement. The Enum class’s method ordinal returns the ordinal value assigned to the object that invoked it. The code fragment below outputs 1 to the system console.

// Invocations of the Team class’ ordinal method

enum Team {Yankees, Braves, Giants}

Team myTeam = Team.Braves

System.out.println(myTeam.ordinal());

The ordinal method can also be used with an enumerated type object in the same way any other method is used with an instance of its class. For example, the statement

System.out.println ("The ordinal value of " + Team.Giants +

" is " + Team.Giants.ordinal());

results in the console output The ordinal value of Giants is 2 .

NOTE

The ordinal values of an enumerated type always begin with zero.

The methods in the class Enum, four of which are shown in Table 7.3, operate on an enumerated type’s objects. The class’s toString method returns the name of the object’s identifier converted to a string. The code fragment below outputs Yankees Yankees using an explicit and implicit invocation of the method:

// Invocations of the Enum class’s toString method

enum Team {Yankees, Braves, Giants}

Team myTeam = Team.Yankees

System.out.println(Team.Yankees.toString() + " " + myTeam.Yankees);

Table 7.3
Commonly Used Methods in the Class Enum

	Method Name and Parameter List
	Returned Type
	Description

	compareTo(EnumType enum2)
	int
	diff = enum1.compareTo(enum2)
Returns the difference between the ordinal values of enum1 and enum2, positive for
emum1 > enum2

	equals(EnumType enum2)
	boolean
	equal = enum1.equals(enum2)
Returns true when the ordinal values of enum1 and enum2 are equal, otherwise false

	ordinal()
	int
	value = enum1.ordinal()
Returns the ordinal values of enum1

	toString()
	String
	value = enum1.toString()
Returns the value of enum1

The Enum class’s compareTo method is an implementation of the method defined in the interface Comparable. The comparison it makes is based on the ordinal values associated with the object that invoked the method and the argument passed to it. The following code fragment outputs -2 because the identifier Yankees’ ordinal value (0) is two less than the identifier Giants’ value (2).

// Invocations of the Team class’ compareTo method

enum Team {Yankees, Braves, Giants}

Team myTeam = Team.Yankees

System.out.println(myTeam.compareTo(Team.Giants));

The Enum class’s method equals returns true when the object that invoked it has the same ordinal value as the object passed to its parameter.

7.11 CHAPTER SUMMARY

Java classes consist of data members and methods that operate on the data, and an object is an instance of a class. When a data member is declared to be static, all instances of the class share the variable. Often, a static variable is incremented inside a class’s constructor to keep track of the number of objects that have been created.

It is good programming practice to write a complicated method as several simpler methods that it can invoke. Usually, the simpler methods are given private access to prevent methods that are not part of the class from invoking them. Methods can invoke private methods that are part of their class by simply coding the method’s name and an argument list.

The object addresses stored in two reference variables can be compared using the relational operators, and they can be copied using the assignment operator. These are referred to as a shallow comparison and a shallow copy, respectively. After a shallow copy, two reference variables refer to the same object. To compare or copy objects, we first need to define which of their data members will be compared or which will be copied. Comparing and copying the data members of two objects is referred to as deep comparisons and deep copies. In both cases, a method has to be written to perform these operations.

Deep comparison methods return a Boolean value, and it is good programming practice for the methods to be named compareTo, as defined in the API interface Comparable, or named equals when the comparison is performed to determine equality. The String class contains deep comparison methods with these names. Deep copy methods either copy all of the data members from one object to another or copy all of the data members into a newly created object called a clone and return the address of the clone object. The names of deep copy methods ordinarily contain the word “copy,” such as the arraycopy method in the System class, and clone methods are usually named clone.

In addition to deep comparison methods, the String class contains methods to perform common operations on String objects. These include locating and fetching substrings (the methods indexOf and substring), changing the case of a string (toUpperCase and toLowerCase), replacing a part of a string with another string (replaceFirst and replaceAll), and determining if a string begins or ends with a particular string (startsWith and endsWith). In addition, its split method can be used to place substrings of a string separated by a designated delimiter, usually white space, into the elements of the array it creates and returns. The substrings are called tokens, and the process is called tokenizing the string.

Autoboxing is the automatic construction of a wrapper class object without having to explicitly invoke the class’ constructor, and auto-unboxing is the process of fetching the primitive value stored in a wrapper class object without having to invoke a get method. This feature can be used to pass a primitive value to a wrapper-class parameter or to assign a retuned wrapper class object to a primitive variable. The Character wrapper class contains a variety of methods used to process characters such as determining if a character is a letter or a digit, if it is lower or upper case, or if it is white space. The numeric wrapper classes contain static constants whose values are the maximum and minimum numeric values that they can wrap. The methods in the classes BigInteger and BigDecimal give us the ability to process numbers whose absolute value is too large to be stored in primitive types or that require more than 15 digits of precision. Objects in these classes, like String and wrapper class objects, are immutable.

Aggregation is the process of declaring a data member of a class to be a reference to an object. This permits us to define a complex object as an aggregate of simpler component objects, extending the concepts of reusable code and divide and conquer to the design of classes. A class, called an inner class, can also be defined within another class called an outer class. The inner class can access the data members defined in the outer class and vice versa. The outer class can create instances of the inner class and invoke its methods. Enumeration is the process of defining a type and specifying, or enumerating, the values that instances of the type can assume. The use of enumeration can make our programs more readable.

Knowledge Exercises

1. True or false:

a) Static data members allow one storage cell to be shared among all instances of their class.

b) A method cannot invoke another method in its class.

c) Methods that are declared private can be invoked by other methods within their own class.

d) A deep comparison determines if two reference variables refer to the same object.

e) To make a clone of an object, we make a shallow copy of it.

f) The variables s1 and s2 refer to two different objects. After I make a shallow copy of s2 into s1, I have two identical objects.

g) Autoboxing constructs a wrapper class object without explicitly invoking the class’s constructor.

h) An outer class can invoke the methods of its inner class.

2. Consider the class Student shown in Figure 7.4.

a) Why is its data member studentCount declared to be static?

b) Why is the class’s get method declared to be a static method?

c) Write the statement to output the variable studentCount to the system console.

d) Why does the class not contain a public method named setSudentCount?

3. Explain the difference between a deep and a shallow comparison.

4. Explain the difference between a deep and a shallow copy.

5. Explain the difference between a deep copy and a clone.

6. How does the method equals in the API Object class differ from the equals method in the String class?

7. Write a code fragment to output Two Objects to the system console if the variable s1 and s2 refer to two different objects.

8. Write a method that could be added to the class Student, shown in Figure 7.5, which would clone the Student object that invoked it.

9. What is output by these statements, assuming the following declarations have been made:

String s1 = "Computers rock"; String s2 = "Hello world";

a) System.out.println(s2.indexOf("world"));

b) System.out.println(s1.substring(10));

c) System.out.println(s2.replaceFirst("world", "everyone"));

d) System.out.println(s2.starts("world"));

e) String[] s = s2.split();

System.out.println(s[1]);

f) if(s1.equalsIgnoreCase("Computers Rock")

{

System.out.print("True - these are the same.");

}

else

{

System.out.print("False - they are not the same.");

}

10. Give the code to:

(a) create an instance of the wrapper class Integer that contains the value 20 without explicitly invoking the class’s constructor

(b) set the integer variable age to the value stored in the Integer instance number

(c) output the maximum and minimum values that can be stored in a primitive variable declared to be type long to the system console

(d) output true to the system console if the character contained in the variable aCharacter is white space or a digit

11. Define aggregation in the context of a Java class.

12. Give three advantages of using aggregation in the classes we design.

13. How would you represent an integer in your program that was larger than the maximum value of the primitive type long?

14. How would you input an integer to your program that was larger than the maximum value of the primitive type long?

15. How would you double the integer discussed in Exercise 13?

16. Give the code to define two BigInteger objects initialized to 1,234,567,890,123,456 and 9,876,543,210,654,321, multiply the numbers, and output the result.

17. Assume an enumerated type CarColor has been declared as:

 enum CarColor {RED, WHITE, SILVER, BLACK, BLUE}

a) What is the ordinal value of SILVER?

b) Write a statement to create a variable, favoriteColor, of type CarColor and set it to BLUE.

c) Write a statement to output the favoriteColor and its ordinal value to the system console.

18. Give a sequence of code that uses the StringTokenizer class methods to fetch integers from this string and outputs their sum.
String numbers = "213 45434 -4537 34 65456 81"

Programming Exercises

1. Add a deep comparison method and a clone method to the class shown in Figure 7.4. The deep comparison method should return 0 when two instances of the class are equal (i.e., both objects’ id numbers and GPA are equal). Then write an application that declares an instance of the class named s1 and two other instances named s2 and s3. The object s2 should have the same id as s1, and s3 should have the same GPA as s1. Output the three objects to the system console followed by s1 equals s2 or s1 equals s3, as determined by two invocations of the deep comparison method. Then clone s1, store the returned address in s2, and repeat all of the output.

2. Write a program that accepts an arithmetic expression that does not contain parentheses and verifies that is correctly written. It is correctly written if each of the operators in the expression is between two operands preceded and followed by a space: for example 2 * 3 + 5. Output a correct expression to the system console. Otherwise, output the expression up to the point were the first error was detected, then a caret (Shift 6 key stroke), and then the remainder of the math expression. The second line of output, in both cases, should be the number of tokens (operators and operands) that were in the original expression. (Use the split method in the String class.)

3. Modify the class PhoneBook shown in Figure 7.27 so each of the three listings in a PhoneBook instance will also have an address consisting of a street, city, state, and zip code. To accomplish this, add another inner class named Address to the class Phonebook. The new information should be input in a similar way to that of the phone numbers. To verify your modifications to the class, write an application that declares an instance of a PhoneBook, accepts user inputs, then outputs the entire phonebook.

4. Write a program that calculates and outputs the sum of the integers from 1 to 10,000,000,000. Hint: the sum is (10,000,000,000 * 10,000,000,001) / 2, which is not equal to 3,883,139,820,726,120,960.

5. Write a program to multiply two real numbers of any size and precision input via a dialog box and output their product with seven digits of precision, rounded up.

Enrichment

1. Investigate and learn who was the first to discover that the sum of the integers from 1 to n is (n * (n +1)) /2 and the circumstances under which he discovered it.

2. Explore the Fibonacci sequence to discover its presence in art, architecture, music, and nature and investigate the relationship of the Fibonacci sequence to the Golden ratio.

3. Research the Fibonacci searching algorithm.

CHAPTER 8

INHERITANCE

8.1The Concept of Inheritance

8.2The UML Diagrams and Language of Inheritance

8.3Implementing Inheritance

8.4Using Inheritance in the Design Process

8.5Polymorphism

8.6Interfaces

8.7Serializing Objects

8.8Java Docs

8.9Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we expand our knowledge of object oriented programming into the advanced topics of inheritance, polymorphism, interfaces and adapter classes, and the serialization of objects. These OOP concepts can significantly reduce the time and effort required to design and develop a software product.

We will learn that Java supports two forms of inheritance, chain inheritance and multiple child inheritance. Both of these allow us to rapidly create a class from a similar existing class and to easily expand and/or modify the new class to adapt it to the requirements of a particular project. When used as a design tool, inheritance not only reduces the cost of a software product under development, but it also reduces the cost of future products by increasing the reusability of the classes we write. Using inheritance, application-dependent parts of a method can be written in a way that they can invoke methods that implement the yet-to-be-determined requirements of future products.

Polymorphism is another fundamental characteristic of OOP, which allows things to exist in many (“poly”) different forms (“morph”), such as when one array references many different types of objects or when one invocation morphs itself into an invocation of a method appropriate to a particular launch of a program. Polymorphism also allows us to pass different types of objects to one type of parameter.

Interfaces allow us to define the signature and functionality of related methods without having to implement them, and adaptor classes facilitate the use of interfaces. Using object serialization, we can easily save a collection of objects to a disk file and reuse the objects in a future launch of the same or different program.

After successfully completing this chapter you should:

•Understand the advantages, terminology, syntax, and importance of using inheritance

•Know how to implement a child class that inherits data members and methods from an existing parent class using the extends clause

•Be able to invoke and modify an inherited method and expand inherited methods and data members

•Be able to distinguish between overriding and overloading methods

•Know how to use inheritance as part of the design process

•Understand the processes that Java uses to locate a method at translation and run time

•Be able to comprehend and use polymorphism and polymorphic arrays

•Understand abstract classes, interfaces, and adapter classes and how to implement and use them

•Write and read a group of objects to and from a disk file

8.1 THE CONCEPT OF INHERITANCE

Definition

Inheritance is an OPP programming concept in which new classes that contain all of the data members and methods of an existing class can be efficiently created and then expanded and/or modified. The concept of inheritance implies that two classes have a relationship with each other in which one class, called a child class, inherits attributes from the other class, called the parent class.

The concept of inheritance is fundamental to object oriented programming. If properly used, it can greatly reduce the time and effort required to develop a software product. For example, suppose that one of the classes specified during the design of a new program is similar to an existing class in that the existing class contains many of the data members and methods listed in the new class’s UML diagram. The best way to develop the new class would be to simply add the existing class to the program and modify and/or add to it. One approach to this would be to copy the source code of the existing class, paste the code into a new class, and then modify the copied code. A better approach would be to use the concept of inheritance.

Although we may have been importing the existing class into our programs for many years, we may not have its source code. For example, the Java API does not contain the source code of any of the classes included in it. Rather, it contains the classes’ translated byte codes. This fact would eliminate the copy and paste alternative but not the inheritance alternative. To use the concept of inheritance, we only need the byte codes of the existing class. In addition, software engineering studies reveal that copying, pasting, and modifying code that we did not write can be more time consuming than a completely independent development of a new class. Inheritance allows us to modify an existing class that was added to a new program in a way that does not introduce the errors that are associated with the copy-paste-modify alternative.

Even if there are no existing classes that contain many of the data members and methods of the classes specified for a new program, the time and cost to develop the program can still be reduced using the concept of inheritance during the design process. Finally, the use of inheritance in the design of our programs also makes them easier to read and intuitively easier to understand because the classes we write better model the real world. Because we know that children inherit attributes from their parents, it is intuitive that a game’s new ChildSuperHero class would inherit attributes from an existing game’s ParentSuperHero class. The attributes inherited by the ChildSuperHero class would be the data members and the methods of the ParentSuperHero class, which could then be efficiently expanded or modified to model the child super hero.

In summary:

•Inheritance reduces the cost and time to develop a software product

•Inheritance is the best way to incorporate and then morph an existing class into a new class

•We do not need the source code of the existing class, only its byte code translation, to utilize the concepts of inheritance

•Inheritance is used in the OOP program-design process even when there are no existing classes to be morphed and incorporated into the program

8.2 THE UML DIAGRAMS AND LANGUAGE OF INHERITANCE

Inheritance introduces a new feature into UML diagrams and has a set of terms associated with it. An early understanding of this feature and the jargon of inheritance is fundamental to the remainder of the material in this chapter.

Inheritance UML Diagrams

Figure 8.1 shows the UML diagram of the classes RowBoat and SailBoat. The RowBoat class’s UML diagram contains five data members and twelve methods, and the UML diagram of the SailBoat contains no data members and one constructor method. Instances of the class SailBoat will actually contain more data members and methods than those listed in the class’s UML diagram because the upward-pointing arrow in the center of the figure indicates that the SailBoat class inherits from the RowBoat class. As noted next to the arrow in the figure, the Java keyword used to establish this relationship is extends.

The Parent-Child Relationship

The concept of inheritance implies that two classes have a relationship with each other in which one class, called a child class, inherits attributes from the other class, called the parent class. The attributes inherited are all of the data members and all of the methods of the parent class except for the parent class’s constructors. As indicated on the left side of Figure 8.1, there are two other pairs of terms that are used in the literature to refer to the parent and child class. The parent class is sometimes called the super class, and then the child class is called the subclass. Alternately, the term base class can be substituted for parent class, in which case the child class is referred to as a derived class. These three pairs of terms: parent class-child class, super class-sub class, and base class-derived class should not be unpaired and intermixed.

[image:]

Figure 8.1
The class RowBoat and the class SailBoat.

Because a child class inherits all of the data members and methods of the parent class and contains all of the data members and methods specified in its own UML diagram, a child class’s data members and methods add to, or extend, a parent class. As specified in Figure 8.1, all instances of the classes SailBoat and RowBoat will have five data members, but the SailBoat class extends the complement of methods that can operate on a SailBoat object from 12 to 13.

NOTE

Inheritance does not work in reverse. Parents do not inherit the data members and methods added to the child class.

Establishing the Parent-Child Relationship

When a child class is implemented, the parent-child relationship is established by the inclusion of an extends clause on the right side of the class’s heading. This clause begins with the keyword extends followed by the name of the parent class. For example:

public class SailBoat extends RowBoat

NOTE

To establish an inheritance relationship, an extends clause is included at the end of the class statement of the child class:

public class ChildClassName extends ParentClassName

Forms of Inheritance

A class can only extend or inherit from one class. In chain inheritance a child class can be the parent of another class. This is supported in Java, as is the ability for several child classes to inherit from the same parent class. These two forms of inheritance are illustrated in the upper-left and upper-right portions of Figure 8.2, respectively.

Multiple inheritance, the concept that a child class can inherit attributes from more than one parent, is not supported in Java. Multiple inheritance is depicted in the lower-right portion of Figure 8.2.

We say that class B on the top left side of Figure 8.2 directly inherits from class A, as do classes B, C, and D at the top right side of the figure. A class that directly inherits from another class extends it by including an extends clause in its heading. We say that classes C and D on the top left side of Figure 8.2 indirectly inherit from class A because they either inherit from a class that directly inherits from class A (in C’s case) or directly inherit from a class that indirectly inherit from class A (in D’s case).

[image:]

Figure 8.2
Various forms of inheritance.

8.3 IMPLEMENTING INHERITANCE

In addition to the keyword extends, which is used to indicate that a child class inherits from a parent class, there are other keywords and concepts that are associated with inheritance. Most of these are used in the implementation of a child class, but an understanding of some of these keywords, such as final and abstract, and the concepts associated with them, apply to the implementation of a parent class. In the remainder of this section, we will discuss the keywords and concepts of inheritance that apply to the implementation of a child class; we will discuss the relevant parent class issues in Section 8.4.

Figure 8.3 presents the code of the class RowBoat specified in the top portion of Figure 8.1. The class does not utilize any of the concepts of inheritance presented in this chapter. Nevertheless, it can become a parent class if another class extends it. This class will be the parent of child classes used in parts of this chapter to demonstrate the basic of concepts inheritance and the use of the keywords associated with these concepts.

[image:]

[image:]

Figure 8.3
The class RowBoat.

The RowBoat class’s three-parameter constructor (lines 12–17 of Figure 8.3) can be used to create and position a rowboat on the game board at the (x, y) location passed to its first two parameters. The value passed to the constructor’s third parameter is the size (length) of the rowboat. The x, y, and length data members of a rowboat created with the class’s default constructor (lines 8–11) would retain the default value of the type int: 0. Because the constructor does not include a parameter to specify the color of the boat, it would default to green (line 6).

The show method (lines 22–32) draws a rowboat on the game board at its current (x, y) location and then draws the price of the boat on it (lines 29–31). The price is returned from the invocation of the class’s calculatePrice method on line 26. Line 20 of this method multiplies the length of the boat by the static variable PRICE_PER_FOOT to determine the price of the boat.

The application ShowTwoRowBoats shown in Figure 8.4 creates two rowboats of lengths 200 and 150 feet (lines 7-8) and displays them on the game board (lines 16-17) as shown in Figure 8.5.

[image:]

Figure 8.4
The application ShowTwoRowBoats.

[image:]

Figure 8.5
The output produced by the application ShowTwoRowBoats.

8.3.1Constructors and Inherited Method Invocations

The class SailBoat is specified in the bottom portion of Figure 8.1. Sailboats use rowboats for their hull and are delivered without a mast and sail. As delivered, they actually are rowboats, except for the fact that the purchaser can specify the color of the boat. Because they are so similar to rowboats, we can utilize the concept of inheritance to rapidly develop their class.

To begin with, they will inherit all of a rowboat’s attributes as indicated by the arrow that connects them to the class RowBoat in Figure 8.1. This will save the time and cost associated with declaring a sailboat’s five data members, writing and verifying the associated set and get methods, and writing and verifying the methods to draw them and to calculate their price.

To implement the expanding capability into the SailBoat class, the ability to specify the color of the boat when it is purchased, a four-parameter constructor is included in the SailBoat class. When a sailboat is constructed, the color of the new boat will be passed to the constructor’s fourth parameter.

Figure 8.6 presents the code for the class SailBoat. Because we are using inheritance by including the extends clause at the end of its heading (line 3), the class consists of only ten lines of code. A sailboat’s location, price per foot, length, and color can be stored in its inherited data members. In addition, the values stored in the data members can be fetched and set, the sailboat’s price can be calculated, and the boat can be drawn on the game board using the methods inherited from the RowBoat class.

Invoking A Parent Class Constructor

Parent class constructors are not inherited, but they can be invoked within the code of a child class’s constructor. The SailBoat class’s constructor (lines 5–9 of Figure 8.6) invokes the parent class’s constructor on line 7 and passes it the (x, y) location of the sailboat and its length. The invocation begins with the keyword super, rather than the name of the parent (also known as super) class, followed by an argument list. This is the syntax a child class uses to invoke a parent class constructor. Lines 14–16 of Figure 8.3 then execute and place the values passed to it into the SailBoat object’s inherited data members x, y, and length.

NOTE

When a child class constructor invokes a parent class constructor, the invocation statement must be coded as the first line of the child class constructor.

Every time a child class constructor is executed, a parent constructor must be executed before the remainder of the child class’s constructor is executed. If an explicit invocation, such as the one on line 7 of Figure 8.6, is not included as the first line of a child class constructor, the parent’s no-parameter constructor is automatically executed. In this case, the parent class must:

1.contain the code of a no-parameter constructor

2.contain no constructors at all, in which case the Java default constructor will be executed

If one of these two conditions is not met, and the first line of the child class is not an explicit invocation of a parent constructor, the child class will not translate.

Invoking a Parent Class Method

A child class method can invoke any parent method whose access is designated public or whose access is designated protected. We will discuss protected access, its use, and its implications later in this chapter.

Because the RowBoat class does not contain a four-parameter constructor, line 8 of Figure 8.6 invokes the method setColor to store the color of the new sailboat that was passed to the constructor on line 5. If the SailBoat class contained a setColor method, it would have executed. Because it does not, we move up the inheritance chain to the parent class. The parent class does contain a public setColor method (lines 61–64 of Figure 8.3), and the invocation on line 8 causes it to execute.

[image:]

Figure 8.6
The class SailBoat.

An alternate and equivalent coding for line 8 of Figure 8.6 would be:

this.setColor(color);

Because all of the RowBoat class’s set methods are public, line 7 of Figure 8.6 could have been coded as the following three lines. The one-line alternative shown in the figure is preferred.

    setX(x); //or this.setX(x);

    setY(y); //or this.setY(y);

    setLength(length); //or this.setLength(length);

NOTE

The syntax used to invoke a parent method from within a child method is the same syntax (that was discussed in Chapter 7) used to invoke another method in its class.

The application InheritanceBasics presented in Figure 8.7 creates two rowboats and a cyan-colored sailboat and then displays them on the left and right sides of the game board, respectively. The program’s output is shown in Figure 8.8

The show method is invoked on line 20 of Figure 8.7 to display the sailboat whose location, size, and color is specified on line 9. Because a SailBoat object (sb1) invoked the method, the search for the method begins in the SailBoat class just as it does for classes that do not extend other classes. If the SailBoat class contained a show method with a graphics parameter, it would have been executed. Because it does not, we move up the inheritance chain to the parent class RowBoat. It contains a public show method with a graphics parameter (line 22 of Figure 8.3), and the invocation on line 20 causes it to execute. The inherited show method draws the sailboat object sb1.

Line 26 of the inherited show method invokes the method calculatePrice. The search for this method also begins in the SailBoat class because the show method that issued the invocation is operating on an instance of this class, sb1. Because the SailBoat class does not contain a calculatePrice method, the search continues up the inheritance chain, and RowBoat class’s version of the method executes.

[image:]

Figure 8.7
The application InheritanceBasics.

[image:]

Figure 8.8
The output produced by the application InheritanceBasics.

8.3.2Overriding Methods

Consistent with the concept of inheritance, the SailBoat class’s four-parameter constructor added to the attributes inherited from its parent class. As previously mentioned, child classes can also modify the inherited attributes. The mechanism for modifying an inherited method is called overriding a method, which allows a child class to contain a method whose signature is exactly the same (same returned type, name, and parameter list) as the parent’s method it is modifying.

Suppose that a second version of a sailboat, named SailBoatV2, was being offered for sale. This type of sailboat is not only delivered in a specified color, but it also has a mast installed on it. In order to properly display the new type of sailboat (with a mast), the RowBoat's show method would be overridden. The modified version of the method, coded in the new SailboatV2 class, would incorporate the drawing of the mast into its version of the method.

Because the UML diagram of the RowBoat shown in Figure 8.1 contains many more data members and methods than the UML diagram of the SailBoat class, we may be tempted to make the new class a child of the RowBoat class. If we do this, in addition to overriding the inherited show method, we would also have to rewrite the code of the SailBoat class’s four-parameter constructor when the new class is coded. A better approach would be to take advantage of the fact that Java supports chain inheritance, which is depicted on the left side of Figure 8.2, and make the new class a child of the SailBoat class. The new class would then inherit all of the attributes (data members and methods) of both the RowBoat and the SailBoat classes, which gives it the ability to invoke the SailBoat class’s four-parameter constructor. This approach to the design of the new class is depicted in Figure 8.9.

[image:]

Figure 8.9
The inheritance chain of the class SailBoatV2.

The implementation of the class SailBoatV2 is shown in Figure 8.10. As specified in Figure 8.9, it extends the class SailBoat (line 3). Its four-parameter constructor (lines 5–8) simply invokes its parent’s four-parameter constructor on line 7, passing it the (x, y) location, length, and color of the new sailboat that was passed to it. It also overwrites the show method it inherits from the RowBoat class (lines 11–17).

[image:]

Figure 8.10
The class SailBoatV2.

Invoking a Parent’s Version of an Overwritten Method

The overridden version of the show method coded in the SailBoatV2 class begins by invoking its inherited show method (line 13 of Figure 8.10) to draw the hull of the sailboat. As when invoking an inherited constructor, the keyword super is used in the invocation. When invoking a nonconstructor inherited method, the keyword super is followed by a dot.

The SailBoatV2 class’s inheritance chain is used to locate the invoked method. The syntax super. that proceeds the name and argument list of the invocation on line 13 tells the translator that we do not want the search to begin for the invoked method in the SailBoatV2 class but rather to begin the search in its parent class. Otherwise, the SailBoatV2 class’s show method would invoke itself.

Because the RowBoat does contain a show method whose parameter is a Graphics object (line 22 of Figure 8.3), this method executes and draws the hull of the boat. Then, lines 14–16 of Figure 8.10 incorporate the modification to this method by drawing the sailboat’s mast. If the search up the inheritance chain did not locate a show method whose parameter was a Graphics object, the translation of the SailBoatV2 class would have ended in a translation error.

The @Override directive

The @Override directive that appears on line 10 of Figure 8.10 instructs the translator to search up the SailBoatV2 class’s inheritance chain for a method with the same signature that is coded on the line that follows it. If it cannot find a method with that signature, the translation ends in an error.

It is good programming practice to include this translation directive before the signature of a method that is meant to override an inherited method. Suppose the method name or parameter list typed on line 11 was syntactically correct but did not match the parameter list of the method it was overriding. For example, suppose the signature with the method’s name was misspelled as shown below:

11 public void shown(Graphics g) //does NOT override inherited show method

Without the directive on line 10 of Figure 8.10, the class would translate, but the inherited show method would not have been overridden. The client invocation on line 20 of Figure 8.11 would then cause the inherited method to execute, and the sailboat would be drawn without a mast.

Figure 8.11 presents the application OverridingMethods, which is the same application presented in Figure 8.7, except the sailboat it creates on line 9 is now a SailBoatV2 object. As a result, the SailBoatV2 class’s overridden show method is invoked on line 20, and the sailboat is drawn with a mast. The output it produces is shown in Figure 8.12

[image:]

Figure 8.11
The application OverRidingMethods.

[image:]

Figure 8.12
The output produced by the application OverRidingMethods.

Final Methods

A method can be declared to be a final method by coding the keyword final in its signature immediately after the method’s access modifier. When a method is declared to be final, it cannot be overridden by a child class. An attempt to do so results in a translation error. For example, if the signature of the show method on line 22 of the RowBoat class (Figure 8.3) was coded as shown below, the SailBoatV2 class shown in Figure 8.10 could not override it.

22 public final void show(Graphics g)

Methods that enforce security on systems are usually declared to be final to prevent them from being overridden.

Overriding versus Overloading Methods

The concepts of overriding and overloading methods are often confused because both concepts can be used to code a new method that has the same name as an existing method. In addition, the two topics are often considered to be more restrictive than they actually are. Before concluding our discussion of overriding methods, we will discuss the differences between, and commonalities shared by, these concepts.

One difference between the concepts of overriding and overloading methods also allows us to identify which concept is being used. When two methods in an inheritance chain have the same name and the same parameter list, the concept of overriding methods is being used. When two methods in an inheritance chain, or within the same class, have the same name and different parameter lists (i.e., either the number and/or type of the parameters are different), the concept of overloading methods is being used.

A second difference is that the concept of overriding a method cannot be used to modify the functionality of a method coded in its class because two methods with the same name and parameter list cannot be coded in the same class. The code of an overridden method and the code of the method that overrides it must appear in two different classes in an inheritance chain. The concept of overloading a method is less restrictive. The code of an overloaded method and that of the method it overloads can appear in the same class or in different classes within an inheritance chain.

The concepts of overriding and overloading methods have many things in common:

•both concepts are used to modify or expand the functionality of an existing method

•both concepts can be used to produce a new method that has the same name as an existing method

•both static and nonstatic methods can be overridden and overloaded

•a child class can overload and override any of its inherited methods

•the translator always uses the same technique to locate and identify a method that is being invoked regardless of the whether the method has been overridden or overloaded

This section will conclude with a summary of the search path the translator uses to locate an invoked overridden or overloaded method, and a summary of the syntax used to invoke inherited methods.

Summary of the Method Search Path

When an overloaded or overridden method is invoked, the translator uses the same search process to locate the method that it uses to locate all invoked methods. The class of the object’s reference variable, or the class of an invoked static method, is searched for a method whose name and parameter list matches the name and argument list in the invocation statement. If a match is not found in that class, the search continues up the class’s inheritance chain.

Summary of the Inherited Method Invocation Syntax

As we have learned, a child class method can invoke a method inherited from its parent. If the method is not overridden in the child class, the method is invoked by coding the name of the method followed by an argument list. When the method is a static method, this syntax is preceded by the name of the parent class followed by a dot. If the parent method is overridden and is not a static method, the invocation is preceded by the keyword super followed by a dot.

8.3.3Extending Inherited Data Members

A child class’s ability to extend the attributes it inherits is not limited to overriding and overloading inherited methods or including new methods in its class. It can also extend the data members it inherits by declaring additional data members inside its class definition. Figure 8.13 presents the inheritance chain of a class named SailBoatV3, which is a sailboat delivered with a mast and a sail. To facilitate the implementation of the new class, it extends the SailboatV2 class because, in all other aspects, this new type of sailboat is a SailBoatV2 object.

As shown in its UML diagram, the SailBoatV3 class will override its inherited calculatePrice method. The new version of this method will use the class’s new data members sailArea and pricePerSquareFoot to calculate and include the cost of the sail in the boat’s price. The boat’s sailArea will be specified using the last parameter of the class’s five-parameter constructor. In addition, the inherited show method will be overwritten. This version of the method will be used to draw the sail on the boat’s mast.

NOTE

The name of a data member added to a child class can be the same as the name of an inherited data member, but it is good programming practice to avoid duplicating inherited data member names.

[image:]

Figure 8.13
The inheritance chain of the class SailBoatV3.

Figure 8.14 shows the implementation of the SailBoatV3 class that extends the class SailBoatV2 (line 3). Its two additional data members, pricePerSquareFoot and sailArea, are declared on lines 5 and 6. Line 12 of the class’s constructor stores the sail area passed to its last parameter in the data member sailArea. Line 19 of the expanded calculatePrice method multiplies these data members to determine the sail’s price and then adds this product to the price returned from line 18’s invocation of RowBoat’s version of the method.

Lines 25–31 implement additional functionality of the overridden show method by defining the (x, y) coordinates of the triangular sail’s vertices and then drawing the sail. Line 32 invokes the class’s inherited show method to draw the boat’s hull and mast.

Figure 8.15 presents the application ExtendingDataMembers, which is the same application presented in Figure 8.11, except it creates a yellow instance (sb2) of the class SailBoatV3 on line 10. As a result, the SailBoatV3 class’s version of the show method is invoked on line 22, and the yellow sailboat is drawn with a sail as shown in the bottom right portion of Figure 8.12. Although the lengths of the two sailboats declared in the application (lines 9–10) are both 200, the cost of the second boat (sb2) is higher because of the $600 additional cost of the boat’s 300-square-foot sail (at $2 per square foot as per line 5 of Figure 8.14).

[image:]

Figure 8.14
The class SailBoatV3.

[image:]

Figure 8.15
The application ExtendingDataMembers.

[image:]

Figure 8.16
The output produced by the application ExtendingDataMembers.

Parent Class Methods Invoking Child Class Methods

As previously discussed at the end of Section 8.3.1, when the RowBoat class’s show method invokes the method calculatePrice (line 26 of Figure 8.3), the search for the method begins in the class of the object that invoked the show method. When line 22 of Figure 8.15 executes, the search for the calculatePrice method begins in sb2’s class, SailBoatV3. Because this class overrides the inherited version of the calculatePrice method, sb2’s price is calculated by its version of the method coded on lines 16–20 of Figure 8.14. This is precisely what should happen because otherwise the cost of the sail would not be included in the price of the sailboat sb2. The Java process used to locate invoked methods, which is summarized at the end of Section 8.3.2, causes the RowBoat class’s show method to invoke the SailBoatV3 class’s calculatePrice method to determine the price of a SailBoatV3 sailboat instance.

8.4 USING INHERITANCE IN THE DESIGN PROCESS

The time and effort required to create a new class can be greatly reduced if we can extend the attributes of an existing class using the basic techniques of inheritance discussed in the previous section. These techniques include inheriting methods and data members into the new class, overriding and overloading these methods to change and extend their functionality, and adding new methods and data members to the new class. But even if there are no existing classes that provide some of the functionality of the classes specified for a new program, the time and cost to develop the program can still be reduced using the concept of inheritance during the design process.

Suppose your Uncle Ed asked you to develop a Java program to “keep track of the inventory” of a boat store he was about to open that will carry rowboats, sailboats, and powerboats. After several follow-up conversations with him, you have determined that “keeping track of the inventory” means knowing the location of each boat on his storage lot, knowing each boat’s price and size, and other details that are particular to the type of the boat such as the number of oars, the sail area, and the horsepower of a powerboat. Translating all of this into an OPP design, you concluded there will be three worker classes in the program and produced the UML diagrams shown in Figure 8.17.

Before proceeding to the coding phase of Uncle Ed’s (or any other) program, we should apply the basic concepts of inheritance previously discussed in this chapter and the other more advanced inheritance concepts, such as abstract classes, to the design process.

8.4.1Abstract Classes

After the UML diagrams that describe the objects that will be part of the program are prepared, their data members and methods should be compared to determine their commonalities. An examination of the data members of the classes specified in Figure 8.17 reveals that the first five data members in all three classes are the same. In addition, the signatures of all of their methods, except for their constructors, are the same. If we were to give these UML diagrams to three programmers to implement, each programmer would have to code the same five data members into their class and write the same six set and get methods to change and fetch the values of the data members. In addition, the code of their calculatePrice, show, and toString methods would share some similar code.

[image:]

Figure 8.17
The class design of a boat store’s inventory application.

To avoid this duplication among the three classes, a forth class named Boat is added to the design as shown at the top of Figure 8.18. This class will be an abstract class. A class is designated to be abstract by including the keyword abstract in its heading. For example:

public abstract class Boat //an abstract class

[image:]

Figure 8.18
The use of inheritance in the design of a boat store’s inventory application.

An abstract class is used to collect data members and methods that are common to several classes into one class. It is not meant to be the class of one of the types of objects that will make up a program. For example, you cannot purchase an instance of a Boat object from Uncle Ed. He only sells rowboats, sailboats, and powerboats. Consistent with this use of abstract classes, an attempt to declare an object in an abstract class results in a translation error.

As shown in the bottom portion of Figure 8.17, after the abstract Boat class is added to the design of Uncle Ed’s program, the duplicated five data members and the set and get methods are eliminated from the original three classes and moved into the UML diagram of the Boat class. Then, as indicated by the arrows in the figure, the original three classes become subclasses of the Boat class. By simply including the keyword extends in the heading of the classes they code, the authors of the original three classes no longer have to code five of their class’s six data members or the six set and get methods. But the reduction in effort does not end here.

Each of the original classes also contained methods to draw the boat it defines and calculate its price as well as a toString method. The signatures of these methods are the same in all three classes, and your conversations with Uncle Ed revealed that they share some common functionality. He has told you that the base price of each type of boat is calculated in the same way because they share a common hull. In reflecting on what he said, you realize that this introduces some common functionality into the show methods because each boat’s hull will look the same. It also introduces some common functionality into the calculatePrice method because each boat’s hull will be priced in the same way. Because each of the toString methods will return the annotated values of the classes’ first five data members, these methods also share some common functionality.

Methods in the child classes that have the same signature and share some common functionality also become part of the parent class’s UML diagram, as shown in the UML diagram of the Boat class, which now includes a calculatePrice, a show, and a toString method. Unlike the set and get methods that were eliminated from the child classes, some trace of these relocated methods are retained in the UML diagrams of the child classes to provide the functionality that is not common to each child class.

For example, the functionality of calculating the additional cost of a powerboat’s motor would have to be retained in the PowerBoatV2 class, and the cost of a rowboat’s oars would be calculated in the RowBoat class. In the design presented in Figure 8.18, the child classes provide additional functionality by overriding the Boat class’s calculatePrice, show, and toString methods. The code of these methods would invoke Boat’s version of the method to calculate and return the price of the boat’s hull, draw the boat’s hull, and to build and return a string containing the annotated versions of Boat’s five data members.

Comparing the UML diagrams in Figures 8.17 and 8.18, we can see that the use of inheritance in the design presented in Figure 8.18 has significantly reduced the effort required to produce Uncle Ed’s program. The number of data members to be coded by the programmers has been reduced from 18 to 8, and the number of methods has been reduced from 30 to 22. In addition, the constructor in the Boat class will implement the commonality within the constructors in the other three classes, which will reduce the effort required to produce the constructors in the other three classes.

Figures 8.19–8.22 present the implementation of the design depicted in Figure 8.18. The Boat class is declared abstract on line 4 of Figure 19. Consistent with our design philosophy, it includes all of the data members common to the other three classes, and its methods provide the functionality shared by the other three classes. Those classes extend the Boat class (line 3 of Figures 8.20–8.22). They each include a data member particular to their type of boat (e.g., line 5 of Figure 8.20), and their methods invoke Boat’s methods (e.g., lines 9, 15, 21, and 31 of Figure 8.20) before adding the functionality particular to their type of boat. For example, line 16 of Figure 8.20 computes the cost of the oars, lines 22-26 draw the oars, and line 31 adds the number of oars to toStrings returned strings. The implements clause in the heading of the class Boat (line 4 of Figure 8.19) will be discussed in Section 8.7.

The application DesignTechniques shown in Figure 8.23 uses the new design to add a rowboat with four oars (line 8), a sailboat with a 200-square-foot sail (line 9), and a powerboat with a 400-horsepower motor (line 10) to Uncle Ed’s inventory. The boats are then displayed on his lot (Figure 8.24).

[image:]

[image:]

Figure 8.19
The abstract class Boat.

[image:]

Figure 8.20
The child class RowBoatV2.

[image:]

Figure 8.21
The child class SailBoatV4.

[image:]

Figure 8.22
The child class PowerBoat.

[image:]

Figure 8.23
The application DesignTechniques.

[image:]

Figure 8.24
The output produced by the application DesignTechniques.

8.4.2Designing Parent Methods to Invoke Child Methods

In addition to creating an abstract class to collect the common attributes shared by the various objects that will be part of a program, there are other inheritance concepts that should be considered when designing and coding the methods in an abstract or nonabstract parent class. One of them is the ability of a parent method to invoke a child class’s method.

As discussed at the end of Section 8.3.3, the code of a method in a super class that is operating on an instance of a direct or indirect subclass can invoke a method coded in the subclass. The syntax used is the familiar syntax of coding the method’s name followed by the appropriate argument list. For example, if a nonstatic method named extras is added to the child class RowBoatV2, shown in Figure 8.20, then it could be invoked inside any of the methods of its parent class Boat, shown in Figure 8.19, by coding: extras();

This presents an alternate approach to adding functionality to an inherited method during the design phase. Instead of child classes overriding an inherited method, they simply include a method that implements their version of the added functionality, and the code of the parent’s inherited method includes an invocation of this method. The signature of the method added to the child classes must be the same in all of the child classes that intend to add functionality to the inherited method.

If this design approach was taken to calculate the price of a rowboat, sailboat, and powerboat, the Boat class’s calculatePrice method, lines 17–20 of Figure 8.19, would be changed to the version of the method at the top Figure 8.25. This version of the method invokes the method extras to calculate an additional cost to be added to the price of the hull for oars, a sail, or a motor. The empty version of the method extras shown at the bottom of the figure has to be added to the Boat class or it will not compile. The child classes’ calculatePrice methods in Figures 8.20, 8.21, and 8.22 would be replaced with the code of the extras method shown in the upper, middle, and lower portions of Figure 8.26, respectively.

[image:]

Figure 8.25
A parent method that invokes the child’s method extras and the empty implementation of the extras method coded in the parent class.

[image:]

Figure 8.26
Three child class implementations of the method extras

8.4.3Abstract Parent Methods

An alternative to including the empty version of the method extras shown at the bottom of Figure 8.25 is to code it as an abstract method in the parent class, in this case, the class Boat (Figure 8.19). Abstract methods include the keyword abstract in their signature before their returned type. In addition, their signature ends with a semicolon. As shown below, they do not contain an open and close brace or any code.

 public abstract int extra();

When this approach is used, the parent class must be declared abstract because the parent class no longer contains an implementation of a method it invokes. In addition, the translator will verify that each nonabstract class that inherits directly or indirectly from the abstract class implements a method whose signature matches the signature of the abstract method. If it does not, the child class will not translate. In effect, the inclusion of an abstract method in a parent class is a promissory note, enforced by the translator, that child classes will implement (override) the abstract method.

The use of abstract methods in a super class is considered to be good programming practice when:

•The super class will not be instantiated. Its sole purpose is to collect the common data members and functionality shared by its direct and indirect subclasses.

•Most of its direct and indirect subclasses will add functionally to the super class method that invokes the abstract method.

In the event that a subclass does not need to add functionality to the super class method that invokes an abstract method, the subclass would implement the abstract method with an empty code block.

8.4.4Final Classes

A class can be declared to be a final class by coding the keyword final in its heading immediately after the class’s access modifier. When a class is declared final, it cannot be extended. An attempt to do so results in a translation error. For example, if the heading of the PowerBoat class (line 3 of Figure 8.22) was coded as shown below, then it could not be a parent class.

3 public final class PowerBoat extends Boat

Classes that contain methods that enforce security on systems are usually declared to be final to prevent their methods from being overridden.

A class cannot be declared abstract and final because it would be rendered useless. If it were abstract, instances of the class could not be created; if it were also final, it could not be extended. In short, nothing could be done with it.

8.4.5Protected Data Members

When a method or a data member in a class is designated to have private access, the method can only be invoked and the data member can only be directly accessed by the methods defined inside the class. A private method cannot be invoked by methods defined outside of its class. A private data member can be indirectly accessed by a method defined in another class by invoking its set and get methods. When a method or a data member is designated to have public access the method can be invoked, and the data member can be directly accessed, by methods defined outside of its class.

A class’s methods and data members can also be declared to have protected access by beginning their declaration with the keyword protected.

 protected int count;

The access modifier protected is less restrictive than private access and more restrictive than public access. Restrictions imposed by protected access are package dependent.

When a method or a data member is designated to have protected access, the method can be invoked, and the data member can be directly accessed, by methods defined inside its class and its direct and indirect subclasses. As illustrated in the bottom and top left portions of Figure 8.27, the access is permitted whether or not the parent’s protected data members/methods and the child classes are defined in the same package.

Methods in nonchild classes can only access another class’s protected methods, and directly access its protected data members, if the nonchild class is defined in the same package as the protected methods and data. This is illustrated in the top right and bottom portions of Figure 8.27.

When an access modifier (public, private, or protected) is not specified for a class’s data member or method, it can be directly accessed by the code of any other class in the package. This is referred to as package access.

[image:]

Figure 8.27
Restrictions imposed by private, protected, and public access.

NOTE

Protected methods and data members are hidden from nonchild classes defined in separate packages.

8.4.6Making a Class Inheritance Ready: Best Practices

When designing a class, we should always consider the possibility that other classes may extend it. If for some reason we want to prevent the class from being extended, the class is declared final. If a nonfinal class contains a constructor, it should also contain a no-parameter constructor even if its code block is empty, otherwise the child class’s constructors will always have to explicitly invoke a parent constructor. A parent class that was created to collect the methods and data members common to other classes should be declared abstract.

Each method in a nonfinal class should be examined to decide if its functionality could be compromised if it were overridden in a subclass. When that is the case, the method should be declared final. To permit restricted modifications to a final method, the method should invoke an abstract method whose signature is defined within the final method’s class, then subclasses can add functionality to a final method by implementing the abstract method. This abstract method approach should also be used when the algorithm of a parent class method requires that child classes add functionality particular to them because the translator will verify that the child classes implement the abstract method. This approach should also be considered when it is anticipated that a child class is likely to override a parent method.

A parent data member that stores a constant should always be declared as final to prevent it from being changed. Generally speaking, it is good programming practice to declare all nonfinal data members in a parent class to be private rather than protected and, where appropriate, include set and get methods to permit access to them. This maintains the encapsulation of the data members, which eliminates the possibility that a method in a child class could unintentionally access the data members by using a variable with the same name that it neglected to declare.

8.5 POLYMORPHISM

Polymorphism is the idea that something can exist in several different forms. We have already discussed several uses of polymorphism in computer science. One use of polymorphism we discussed is overloading methods. A method can be overloaded or morphed into a new form, with the new form having a different parameter list. These different forms of the method can be coded inside the same class, such as constructors with several different parameter lists, or one form of a method’s parameter list can be coded in a super class, and another form could be coded in its subclass.

Other uses of polymorphism occur within the concept of inheritance. Two of these uses were already discussed. The first is the inheritance concept of overriding methods. In this use of polymorphism, one form of a method exists in the super class, and another form of the method, with the exact same signature, exists in the subclass. The second involves the invocation of a method by a parent method. Due to the search path used to locate the invoked method at run time, this invocation could take on the form of an invocation of a parent class method or a child class method with the same signature.

Polymorphism is also used to indicate that a child can take on the form of a parent because a child is also a parent. This should not be surprising because we have already learned that a child class inherits everything from a parent: all of its data members and all of its methods (except for its constructors). This polymorphic inheritance concept opens up a set of programming practices that makes our programs easier to write and easier to understand. In the remainder of this section, we will discuss these programming practices and the syntax used to incorporate them into the programs we write.

8.5.1Parent and Child References

Because a child object is also considered to be a parent object, a parent reference variable can store the address of, or point to, a child object. This is a form of polymorphism because it permits a parent reference variable to assume many different forms. It can be a reference to a parent object, or it can be a reference to an instance of any class that inherits directly or indirectly from it.

Line 4 of the following code fragment illustrates the use of this form of polymorphism. Line 1 declares the variable aBoat to be a Boat class reference variable. Because the class PowerBoat (Figure 8.22) extends the class Boat (Figure 8.19), the variable can be morphed into a reference to a PowerBoat object. This is accomplished using the assignment statement on line 4. After line 4 executes, the variable aBoat stores the address of a PowerBoat object, the same object referenced by pb1.

//A super class reference variable can reference a subclass object

1 Boat aBoat; //declares a reference variable in the super class Boat

2 PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

3

4 aBoat = pb1; //aBoat and pb1 now reference the same powerboat

Consistent with this form of polymorphism, a super class reference variable that refers to one type of subclass object can be reassigned to reference an instance of another one of its subclasses. After the following code sequence executes, the variables aBoat and sb1 both reference the same SailBoatV4 object, whose class (Figure 8.21) also extends Boat.

//A super class reference variable can reference any subclass object

1 Boat aBoat; //declares a references variable in the super class Boat

2 PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

3 SailBoatV4 sb1 = new SailBoatV4(220, 200, 200, Color.GREEN, 200);

4

5 aBoat = pb1; //aBoat references a powerboat

6 aBoat = sb1; //aBoat now references a sailboat

NOTE

A super class reference variable can refer to any instance of a class that directly, or indirectly, inherits from it.

Using the syntax of coercion, the address of a child class object stored in a parent reference variable can be coerced into a child reference variable. After line 5 of the following code fragment executes, the child reference variable pb2 stores the address of a powerboat. If pb2 were declared to be a reference to a subclass of Boat other than the PowerBoat class, line 6 would result in a translation error.

//A subclass reference can be coerced into a child reference variable

1 Boat aBoat; //declares a references variable in the super class Boat

2 PowerBoat pb1 = new PowerBoat(50, 300, 200, Color.MAGENTA, 400);

3 PowerBoat pb2;

4

5 aBoat = pb1; //aBoat now reference the same PowerBoat child

6 pb2 = (PowerBoat) aBoat; //valid when aBoat references a PowerBoat

There is one restriction on the use of assignment statements that mixes child and parent reference variables. A child class reference variable cannot be assigned the address of a parent class object because a parent object is not a child object. An attempt to do so results in a translation error. A good way to remember this restriction comes from the old family adage: Parents can point to their children when they correct them, but it is rude for children to point to their parents.

The following code fragment uses the nonabstract parent class RowBoat defined in Figure 8.3 and the SailBoat class that extends it (Figure 8.6). Assigning the location of the parent class object declared on line 1 to the child class reference variable, sb1, on line 4 produces a translation error, as does line 5, which attempts to coerce the address of the parent RowBoat object into the child class reference variable.

//A subclass reference variable can NOT reference a superclass object

1 RowBoat rb1 = new RowBoat(30, 150, 200);

2 SailBoat sb1;

3

4 sb1 = rb1; //syntax error: child reference assigned a parent object

5 sb1 = (SailBoat) rb1; //coercion does not remedy the problem

NOTE

The addresses of parent objects cannot be assigned to child reference variables.

8.5.2Polymorphic Invocations

Definition

A polymorphic invocation is the act of invoking a method using a parent reference variable that refers to a child object.

When a method is invoked using a parent reference variable that refers to a child object, it is referred to as a polymorphic invocation. Consider the client code fragment shown in Figure 8.28 that uses the super class Boat (Figure 8.19) and its subclass PowerBoat (Figure 8.22). Although the variable aBoat declared on line 1 is of type Boat, it has been assigned the address of a child PowerBoat object. This is valid because parents can point to children. The show method is invoked on line 5 using this parent reference variable, which makes line 5 a polymorphic invocation of the show method.

[image:]

Figure 8.28
Polymorphic invocation of the method show by the object referenced by aBoat.

The translator always looks into the class of the reference variable that invoked a nonstatic method to verify the signature of the method, for both polymorphic and nonpolymorphic invocations. As a result, line 5 begins its search in the class Boat for a method named show whose parameter list is a Graphics object. Because the Boat class contains a method with that signature (line 21 of Figure 8.19), line 5 is valid syntax. The parent class Boat need not implement the method show; it can simply define the method’s name and its signature as an abstract method.

If the class Boat did not contain a show method whose parameter list matched line 5’s argument list, the translator’s search would progress up through the classes in Boat’s inheritance chain. Because the class Boat does not explicitly extend a class, the search would end unsuccessfully in the class Object, and line 5 of Figure 8.28 would produce a translation error.

NOTE

The class of the parent reference variable used in a polymorphic method invocation must include, or have inherited, an implementation or an abstract version of the invoked method.

At runtime, the Java runtime environment uses a different starting point in its search to locate the method named in a polymorphic invocation. Unlike the translator that begins its search in the class of the parent reference variable coded in the invocation statement, the runtime environment begins its search in the class of the object referenced by the variable. For example, the search for the show method invoked on line 5 of Figure 8.28 would begin in the PowerBoat class because the variable aBoat references the PowerBoat object assigned to it on line 1. In effect, the invocation is morphed at runtime into an invocation of the show method that correctly draws a powerboat.

The programming language concept use to implement this form of polymorphism is called dynamic binding. The invocation is attached, or bound to, the method to be executed during runtime. Line 5 of Figure 8.29 is not a polymorphic invocation because line 1 declares pb1 to be a PowerBoat reference variable and assigns it the location of a PowerBoat object. For non-polymorphic invocations, the method located by the translator’s search to verify the existence of a method with the appropriate signature is the method executed at runtime.

[image:]

Figure 8.29
Nonpolymorphic invocation of the method show by the object referenced by pb1.

The application PolymorphicInvocations shown in Figure 8.30 is a modification of the application DesignTechniques presented in Figure 8.23. This version of the application uses polymorphic invocations inside its draw call back method to produce the output shown in Figure 8.31, which is the same output produced by the original version (Figure 8.24).

Line 11 of Figure 8.30 creates three Boat reference variables, which are then assigned (lines 15–17) the location of the three objects created on lines 8, 9, and 10. This is valid syntax because all three of these objects’ classes (Figures 8.20–8.22) extend the class Boat (Figure 8.19).

Because the variables boat1, boat2, and boat3 now reference child objects, the invocations on lines 23–25 are polymorphic invocations. The appearance of a properly drawn rowboat, sailboat, and powerboat on the game board shown in Figure 8.31 confirms that the search path used by the Java runtime environment to locate the show method it executed began in the classes of the objects rather than the class of the three reference variables (i.e., Boat). If the search had begun in the Boat class, its show method would have drawn three hulls without oars, or a sail, or a propeller (lines 23-32 of Figure 8.19).

[image:]

Figure 8.30
The application PolymorphicInvocations.

[image:]

Figure 8.31
The output produced by the application PolymorphicInvocations.

8.5.3Polymorphic Arrays

Definition

A polymorphic array is an array of parent reference variables that are used to store references to child objects.

Polymorphic arrays are declared using the syntax discussed in Section 6.5, which is used to declare any array of reference variables. For example, the array inventory declared below has the potential to become a polymorphic array because the class Boat defined in Figure 8.19 is the super class of the subclasses defined in Figures 8.20–8.22:

Boat[] inventory = new Boat[9];

If and when an element of the array inventory is assigned the address of a subclass object, it is then being used as a polymorphic array. Arrays of abstract class reference variables can only be used as polymorphic arrays because we cannot create an instance of an abstract class.

Each element of a polymorphic array could be assigned the address of the same type of subclass instance, in which case the array would be called a homogeneous polymorphic array. When at least two different subclass objects are referenced from within the array, the array is being used as a nonhomogeneous polymorphic array. Nonhomogeneous polymorphic arrays bring the power of arrays into the concept of inheritance and further reduce the number of lines of code required to produce an application.

The application PolymorphicArrays shown in Figure 8.32 is a modification of the application PolymorphicInvocations presented in Figure 8.30. It uses a polymorphic array to store a nine-boat inventory of Uncle Ed’s boat store. The output it produces is shown in Figure 8.33.

Line 11 of Figure 8.32 creates a polymorphic array named inventory whose elements are reference variables in the abstract class Boat (Figure 8.19). Each time the loop that begins on line 15 executes, lines 17–21 create three new boats whose classes are shown in Figures 8.20–8.22. Then, lines 22–24 add them to Uncle Ed’s inventory by storing them in the polymorphic array. The loop variable, i, is used on lines 17–20 to change the (x, y) location, number of oars, and size of the boats. It is also used on lines 22–24 to change the elements of the array that store the boats’ addresses.

The for loop that begins on line 32 uses polymorphic invocations of the show method to draw each boat on the game board, which represents Uncle Ed’s boat storage lot.

[image:]

Figure 8.32
The application PolymorphicArrays.

[image:]

Figure 8.33
The output produced by the application PolymorphicArrays.

Advantages of Polymorphic Arrays

The addresses of the new boats created on lines 17–21 of Figure 8.32 could have been assigned directly into the array elements on these lines, in which case, lines 8–10 and 22–24 would be eliminated from the program. This approach would have reduced the program to 31 lines with much of the programs brevity coming from the use of a polymorphic array.

An alternative approach to this program would have been to declare three nonpolymorphic arrays, one for each type of boat, as shown below:

 RowBoatV2[3] rb = new RowBoatV2[3];

 SailBoatV4[3] sb = new SailBoatV4[3];

 PowerBoat[3] pb = new PowerBoat[3];

The addition of these three lines and the additions to the body of the output loop (line 34), which now requires an output of three arrays rather than one, would expanded the 31-line version of the program to a 36-line program. Reductions in coding effort are typically realized when polymorphic arrays are used.

In addition, if the details of the nine boats in Uncle Ed’s inventory, including their type, were to be input by the program user instead of being hard coded (as on lines 17–21), the polymorphic approach would reduce the storage requirements of the program. Any mix of nine rowboats, sailboats, and powerboats could be saved in the nine-element polymorphic array, but the three-nonpolymorphic-array approach would require that all three arrays be expanded to nine elements to accommodate the case when all of the boats are of one type (e.g., all sailboats).

8.5.4Polymorphism’s Role in Parameter Passing

Because a super class can point to (i.e., store the address of) an instance of any of its subclasses, a parameter whose type is the super class can be passed an argument whose type is any of its subclasses. Taking this concept to its extreme, because all classes inherit directly or indirectly from the class Object, any object’s address can be passed to a parameter whose type is Object. We will utilize this fact when we code generic classes in Chapter 13.

Suppose we wanted to code a method that determined if two of Uncle Ed’s boats occupied the same (x, y) location. We would code the method in the super class Boat (Figure 8.19) to enable any instance of its subclasses (a rowboat, a sailboat, or a powerboat) to invoke it. The method would compare that object’s x and y data members to those of the objects passed to its parameter. To ensure that any of these three types of boats could be passed to the method, the parameter’s type would be the super class Boat. The code for the method is given below:

1 public boolean samePosition(Boat aBoat) //code in the superclass Boat

2  {

3   if(x == aBoat.x && y == aBoat.y)

4   {

5    return true;

6   }

7   else

8   {

9    return false;

10   }

11  }

If the method was to determine if any of Uncle Ed’s boats occupied the same (x, y) location, the static method shown below could be coded in the super class Boat. The method signature contains one parameter, a reference variable that can store the address of an array of instances of the class Boat or instances of Boat’s subclasses. When the method is invoked, it is passed the polymorphic array that contains Uncle Ed’s boat inventory. It returns true if two or more boats are at the same (x, y) location.

1 public static boolean samePositionV2(Boat[] boats) //coded in the

2  {         //superclass Boat

3   for(int i = 0; i< boats.length; i++)

4   {

5    for(int j = i + 1; j< boats.length; j++)

6    {

7     if(boats[i].x == boats[j].x && boats[i].y == boats[j].y)

8     {

9      return true;

10     }

11    }

12   }

13   return false;

14 }

8.5.5The methods getClass and getName and the instanceof operator.

Suppose your Uncle Ed expanded the requirements of his inventory program to include outputting the inventory of a specified type of boat. For example, print the details of all of the sailboats in the inventory. Then when a customer expressed an interest in a sailboat, Uncle Ed could give the customer a list of the sailboats currently in his inventory.

If the three nonpolymorphic arrays were used in the program, the type of the boat the customer was interested in could be used in the Boolean conditions of nested if-else statements to decide which of the three arrays to output. The following pseudocode fragment uses this approach to output the type of boat stored in the input string typeSpecified:

if(typeSpecfied.equalsIgnoreCase("rowboat")

{

  //a for loop to output the contents of the rowboat array

}

else if(typeSpecified.equalsIgnoreCase("sailboat")

{

  //a for loop to output the contents of the sailboat array

}

else

{

  //a for loop to output the contents of the powerboat array

}

Although this implementation of the new requirement is rather straight forward, as discussed at the end of the previous section, this three-nonpolymorphic-array approach increases the program’s size and its storage requirements. A more efficient single-polymorphic-array implementation of the new requirement could be used if there was some way of identifying the type each object referenced in the polymorphic array. The following pseudocode fragment could then be used to output only the type of boat stored in the input string typeSpecified:

for(int i=0; i < inventory.length; i++)//inventory is a polymorphic array

{

  if(//inventory[i] is of the typeSpedified)

   {

     System.out.println(inventory[i].toString());

   }

}

Fortunately, the API classes Object and Class provide the ability to identify the type, (i.e., the class) of any object.

The getClass Method in the Class Object

All classes inherit from the class Object. It is a super class of all classes contained in the API and the implied super class of every programmer defined class. The class Object is at the top of every class’s inheritance chain. We have already taken advantage of this fact in Chapter 3 when we used the toString method inherited from the class Object to output the location of an object.

One of the other methods inherited from the class Object is its getClass method. This method has an empty parameter list and returns the location of an instance of a Class object.

The getName Method in the Class Class

When an object is constructed information about the object, such as its class name and the name of the class it extends, is recorded in an instance of a Class object that is created by the Java Virtual Machine and associated with the constructed object. The location of the associated Class object can be fetched by invoking Object’s getClass method on the constructed object, which can then be used to invoke any of the methods in the class Class.

One of these methods, getName, can be used to determine the name of any object’s class. The method has an empty parameter list and returns a string containing the class’s name. The following code fragment uses the five-parameter constructor of the class PowerBoat (Figure 8.22) to construct the object pb2 and uses the getClass and getName methods to output the name of pb2’s class, PowerBoat:

1  PowerBoat pb = new PowerBoat(160, 350, 120, Color.MAGENTA, 400);

2  Class c = pb.getClass();

3  System.out.println(c.getName());

Often lines 2 and 3 are combined into one line:

   System.out.println(pb.getClass.getName());

This abbreviated code version is used in the following code fragment to output only the PowerBoat objects stored in the polymorphic array inventory:

for(int i=0; i < inventory.length; i++)

{

  if(inventory[i].getClass().getName().equalsIgnoreCase("PowerBoat"))

   {

    System.out.println(inventory[i].toString());

   }

}

The application ObjectAndClass shown in Figure 8.34 is a modification of the application PolymorphicArrays presented in Figure 8.32. When launched, it asks the user what type of boat the customer is interested in and then uses the getClass and getName methods to identify that subset of Uncle Ed’s inventory and outputs a description of these boats to the system console. The graphical and console output produced by the application is shown in Figure 8.35.

Line 8 of Figure 8.32 and the body of the loop that begins on line 15 create a polymorphic array named inventory whose elements are reference variables in the abstract class Boat defined in Figure 8.19. Each time the loop executes, lines 17–21 create three new boats whose classes are shown in Figures 8.20–8.22. The addresses of these objects are placed directly into the elements of the polymorphic array on lines 17, 19, and 21.

The Boolean condition of the if statement coded on line 29 uses the methods getClass and getName to determine if the class name of the object referenced by the ith element of the array inventory is the same as the string s input on line 25. If it is, the object is output to the console on line 31 using a polymorphic invocation of the toString method. The console output is shown in the bottom portion of Figure 8.35. Figure 8.35a shows the dialog box displayed by line 25 containing the user input SAILBOATV4, which resulted in the console output shown at the bottom of Figure 8.35. Figure 8.35b shows the graphical output produced by the polymorphic invocations of the show method (line 41 of Figure 8.34).

[image:]

Figure 8.34
The application ObjectAndClass.

[image:]

[image:]

Figure 8.35
The output produced by the application ObjectAndClass.

The instanceof Operator

Java provides a more succinct syntax than that used on line 29 of Figure 8.34 for determining the class of an object: its relational operator instanceof. This is a binary operator that can be used in a Boolean expression. Its first operand must be a reference variable, and its second operator must be a case-sensitive class name. The operator returns the value true when the class name is the class of the object referenced by the first operand. The Boolean condition on the last line of this code fragment evaluates to true.

Boat[] inventory = new Boat[2];

inventory[0] = new PowerBoat(50, 100, 200, Color.MAGENTA, 400);

if(inventory[i] instanceof PowerBoat)

Because a string variable cannot be used as one of the arguments, it cannot be used in the Boolean condition on line 29 of Figure 8.34 to determine if an element of the array inventory is an instance of the class whose name is stored in the string s.

The two most common uses of the instanceof operator are to:

1.Ensure that the casting of a polymorphic reference to an object does not result in a syntax error

2.Eliminate the need to include an implementation or an abstract version of a method in a parent class when the method is invoked polymorphically

The code fragment below demonstrates both of these uses. The instanceof operator is used on line 8 to prevent the translation error associated with an attempt to cast the RowBoat object declared in line 3 into a PowerBoat reference on line 10. In addition, because the casting permits a nonpolymorphic invocation of the show method on line 11, the translator looks into the PowerBoat class, rather than the Boat class, to verify the method’s signature. The Boat class would not have to include a show method with the same signature as the PowerBoat class.

1  Boat[] inventory = new Boat[2]; //used as a polymorphic array

2  inventory[0] = new PowerBoat(50, 100, 200, Color.MAGENTA, 400);

3  inventory[1] = new RowBoatV2(50, 300, 75, Color.YELLOW, 2);

4  PowerBoat pb1;

5

6  for(int i = 0; i < inventory.length; i++)

7  {

8   if(inventory[i] instanceof PowerBoat) //show the powerboat(s)

9   {

10    pb1 = (PowerBoat) inventory[i];

11    pb1.show()

12   }

13  }

NOTE

When using a preexisting super class to implement a polymorphic array, the use of the instanceof operator and casting eliminates the syntax error associated with using the elements of the array to polymorphically invoke a child class method whose signature is not defined in the parent class. It also eliminates the need to include a version of the method in the super classes that we write.

8.6 INTERFACES

An interface is very similar to an abstract super class. Prior to Java Versions 8 and 9, they were similar to an abstract super class that contained only abstract methods and/or static final constant definitions. A basic understanding of interfaces is most easily explained by comparing them to this type of super class, so we will begin with a discussion of pre-Version 8 interfaces. The extended similarities introduced in Java Versions 8 and 9 will be discussed in Section 8.6.2.

Like a class, the source code of an interface is saved in a file with a .java extension, and its translation is stored in a file with a .class extension. In addition, it is good programming practice to begin the name of an interface with a capital letter.

Definition

An interface is a specification of the signatures of related methods that are implicitly abstract and/or a declaration of public constants that are implicitly static and final.

Figure 8.36 compares the syntax and keywords associated with an abstract super class and an interface. At the bottom of the figure, it also compares the syntax of heading of a class that extends an abstract super class and a class that implements an interface. As shown on the top right side of the figure, the heading of an interface substitutes the keyword interface for the two keywords abstract and class used in the definition of an abstract super class. In addition, the interface definition eliminates the keyword abstract used in the method signatures defined in an abstract class. Because the constant definitions included in an interface are implicitly static and final, these keywords are not used and the constants should be initialized. Interface methods and constant definitions are always implicitly public. They cannot be declared to be private or protected.

As shown in the bottom right side of Figure 8.36, a class that implements an interface uses the keyword implements in its heading rather than the keyword extends. Consistent with the use of these keywords, we say that a class implements an interface rather than extends it.

A syntactical difference not shown in Figure 8.36 is that while a class’s heading can state that it extends one (and only one) super class, it can state that it implements more that one interface. When this is the case, the names of the interfaces in the class’s implements clause are separated by commas. For example:

  public class Class1 implements Interface1, Interface2, Interface3

[image:]

Figure 8.36
A comparison of abstract super class and interface syntax.

When a class implements one or more interfaces and also extends a class, the extends clause is coded in its heading before the implements clause. For example:

  public class Class2 extends Parent implements Interface1, Interface2

A class that includes an implements clause in its heading must implement all of the abstract methods whose signatures are included in the interface. There only two exceptions to this. The first exception is when the class is an abstract class, in which case it cannot implement any of the methods, and its subclasses must include implementations of all of the interface abstract methods. The second exception is when the class inherits implementations of the methods. These inherited implementations are treated like any other inherited methods. For example, the same search techniques are used to locate them at translation and runtime, and subclasses can override the inherited implementations. In addition, the inherited version of the overridden method can be invoked by preceding the method name with the keyword super followed by a dot.

As is the case with abstract classes, we cannot declare an instance of an interface, but the type of a reference variable can be the name of an interface. A very important use of interface reference variables and interfaces in general is in the coding of generic classes, which will be discussed in Chapter 13.

In summary, a pre-Version 8 interface can be considered to be an abstract super class that contains only public abstract methods and public static final constant definitions, with the following idiosyncrasies:

•a class can implement several interfaces

•interfaces and abstract classes have syntactical differences (shown in Figure 8.36)

•interfaces cannot contain method implementations

•interfaces are used in the coding of generic classes

When to Define and Use an Interface

The similarities of an interface and an abstract class can be a source of confusion when trying to decide which construct to use for a particular programming application. An interface is preferred when we want to standardize the signatures and functionality of methods that implement a commonly performed task on objects that may not be related. By “may not be related,” we mean that with the exception of the class Object, the classes that perform these common tasks may not share a common ancestor.

For example, the need to compare two objects was anticipated to be such a common task that an interface named Comparable is included in the Java API. It defines the signature of a method named compareTo, and the interface’s documentation describes the functionality of the method. Many nonrelated classes included in the API, such as the String class and the BigInteger class, implement this interface, and they all implement the functionality described in the interface’s documentation. They all compare two objects and return a zero, a negative or a positive value, that reflects the equality or ordering of the two objects being compared. This use of interfaces facilitates the use of any class’s compareTo method if we know that the class has implemented the interface Comparable. 	In general:

•an interface is defined to standardize the signatures and functionality of methods that implement a commonly performed task on objects that may not share a common ancestor other than the class Object

•interfaces facilitate the use of methods by standardizing both their signature and their functionality, as described in their documentation

The code of the interface Drawable is shown in Figure 8.37. It defines the signatures of two methods commonly used in game applications. As is typically the case, the description of the interface, which is given in Table 8.1, contains the signatures of the methods and describes the functionality of the two methods. It is considered good programming practice that all implementations of an interface’s methods conform to the functionality described in the interface’s documentation.

[image:]

Figure 8.37
The interface Drawable.

Table 8.1
The Documentation of the Interface Drawable

	The Interface Drawable

	Methods

	Returned Type

	Signature and Functionality Description

	boolean

	canDraw(int width, int height)Returns true if the object that invokes it can be drawn on a Graphics area whose lower right corner is at location (width, height)

	void

	show(Graphics g)Draws the game piece that invoked it on the graphic object g at its current (x, y) location

To close out our discussion of pre-Version 8 interfaces, consider the following scenario. The author of the game application InterfaceUse, shown in Figure 8.38, purchased a package containing the translated versions (bytecodes) of several game piece class implementations. The documentation of the package, which included a copy of Table 8.1, stated that all of the game-piece classes implemented the interface Drawable described in that table.

Six instances of two of these classes, TopHat and SnowmanV9, are declared on lines 11–16 of the application. Knowing that both of these classes implement the interface Drawable, the application programmer realized that the addresses of the six objects could be efficiently stored in a polymorphic array of type Drawable (which is declared on line 7 and assigned on lines 11–16 of Figure 8.38), and that the objects could then be efficiently drawn/not drawn using invocation of the two methods defined in the interface (lines 22–27 of Figure 8.38).

The output of the program is given in Figure 8.39, which reflects the fact that top hats can only be drawn if they are completely on the game board, and snowmen cannot be drawn if they are completely off the game board. The source code of the two game-piece classes and the class GamePiece that they extend (which in this hypothetical scenario, the application programmer never saw) are given in Figures 8.40, 8.41, and 8.42, respectively.

[image:]

Figure 8.38
The application InterfaceUse.

[image:]

Figure 8.39
The output produced by the application InterfaceUse.

[image:]

Figure 8.40
The class TopHat.

[image:]

Figure 8.41
The class SnowmanV9.

[image:]

Figure 8.42
The abstract class GamePiece.

As shown in Figures 8.40 and 8.41, the TopHat and SnowmanV9 classes implement the interface Drawable and include an implementation of the functionality of the two Drawable methods particular to them. The implementer of the TopHat class decided that a top hat can only be drawn if it is completely on the game board, so the version of the method coded in Figure 8.40 returns true when this is the case. Snowmen will eventually be made to enter the game board from its edges, so they can be drawn if any part of them is on the game board. The code of the SnowmanV9’s canDraw method coded in Figure 8.41 returns true when this is the case.

The output of the program shown in Figure 8.39 contains one top hat and three snowmen. This confirms the fact that the polymorphic invocations of the canDraw and show methods on lines 24 and 26 of Figure 8.38 are locating the correct subclass methods. As noted by the comments at the end of lines 11 and 13 of Figure 8.38, the blue and green top hats are partially off the game board, in which case their canDraw method returns false, and they are not drawn. All three snowmen are either partially or completely on the game board, in which case their canDraw method returns true, and they are all drawn.

The data members common to the classes TopHat and SnowmanV9 are collected in the abstract class GamePiece (Figure 8.42), which they extend. They are declared in this super class with protected access (lines 5–9 of Figure 8.42). As indicated in the top half of Figure 8.27, this gives the subclasses’ methods the ability to access them directly without using set and get methods (e.g., lines 17 and 18 of Figure 8.40). In our hypothetical scenario, the application would be coded in a separate package, so it would not be able to access these data members.

8.6.1Adapter Classes

When an interface contains a significant number of abstract methods, it is good programming practice to provide an adapter class for the interface. The term adapter class is a generic term for a class that implements an interface with methods that contain empty code blocks. It is also good programming practice to assign the name of the adapter class the name of the interface class it implements, concatenated with the word “Adapter.” For example, the name of the adapter class for the interface Drawable shown in Figure 8.37 would be DrawableAdapter. The code of this class is given in Figure 8.43.

[image:]

Figure 8.43
The adapter class DrawableAdapter.

The adapter class is provided to permit a new class to implement only the methods defined in the interface that are relevant. When this is the case, the new class extends the adapter class and then overrides the empty methods with its implementation. For example, if the specification of the class RocketShip only required that it implement the show method in the Drawable interface, then, assuming the DrawableAdapter class shown in Figure 8.43 exists, the code of the RocketShip class would be written as follows:

public class RocketShip extends DrawableAdapter

{

  // the data members of the class RocketShip

  

  @Override

  public show (Graphics g)

  {

   //the code to draw a RocketShip object

  }

  

  //the remainder of the methods of the class RocketShip

}

We will extend some of the adapter classes in the Java API when we study graphical user interfaces in Chapter 11. The game programming environment contains an interface named Drawable that defines the signatures of all of the draw call back methods described in Appendix A. The game environment also contains the adapter class DrawableAdapter, so a game program’s class does not have to implement all of the call back methods if it extends DrawAbleAdapter, as does line 4 of Figure 8.37.

It should be noted that when a new class is a child class the use of an adapter class is not an alternative, because a class can only extend one class. The new class’s heading would have to contain an implements clause, and all of the interface methods would have to be implemented. The interface methods not used by the class would simply contain an empty code block.

8.6.2Interface Enhancements in Java Versions 8 and 9

An interface’s similarity to abstract classes was expanded in Java Versions 8 and 9 beyond the inclusion of abstract method signatures and final static constants. Like an abstract class an Interface can now also contain public static and non-static method implementations, which the implementing class effectively inherits.

As shown in the bottom half of Figure 8.36, the syntax of a non-static interface method must include the keyword default in its signature, and the syntax of a static interface method is the same as that used within an abstract class. As implied by the keyword default, the interface’s implementation of a non-static method can be overridden within a class that implements the interface. Unlike abstract classes, interfaces cannot contain declarations of data members (non-static class level variables).

The syntax used to access static final constants and invoke static and default methods defined in an interface, is the same syntax used to access static final constants and invoke static and default methods defined in an abstract class. The only exception is the syntax used to invoke a default method that has been overridden by the implementing class. Simply preceding the method name with the prefix super., as we would to invoke an overridden method defined in a super class, is an ambiguous syntax because a class can implement more than one interface. To resolve this ambiguity, the name of the interface that contains the version of the method being invoked is used as a prefix to super. in the invocation.

For example, if signature of the overridden default method being invoked was void aMethod() and it was coded in the interface Interface3, the invocation would be:

Interface3.super.aMethod();

The keyword super is included in the syntax to distinguish the invocation from that of a static method invocation.

An Interfaces Role in the Design Process

An interface’s role in the design process is to provide implementations of methods commonly used within the classes of many different applications by simply including an implements clause in the application’s class headings. Since a class can implement more than one interface, these methods can be coded within several different interfaces. The implementing class can utilize, and possibly override the method implementations contained in the interfaces, and still be able to declare itself to be a child of another class. In addition, the design of a particular application can include a new interface that defines static final constants, abstract methods, and static and default method implementations common to several of its classes that are not already defined in existing interfaces.

However, an interface named Boat could not replace the abstract super class Boat in the design presented in Figure 8.18, because an interface cannot contain data members. The four data members (x, y, length, and color) defined in the class Boat would still have to be defined in a parent class, or within each of the other three classes. And since an interface, like a parent class, cannot directly access data members defined in its implementing classes, the interface Boat could not contain the get and set method implementations contained in the class Boat. These too would still have to be defined in a parent class, or within each of the application’s classes.

But a method in an interface could invoke the get and set methods coded in the classes that implement the interface using the same coding techniques that permit parent class methods to invoke child class methods previously discussed in Section 8.4.2. Thus the Boat class’s calculatePrice, show, and toString methods in Figure 8.19 could be coded in an interface. Their code would invoke the get methods coded in its implementing classes to fetch the data members declared within its implementing classes, or declared within these classes’s parent class. Lines 23–26 of the show method in Figure 8.19 illustrate this coding technique.

8.7 SERIALIZING OBJECTS

Definition

Object serialization is the act of disassembling objects before writing them to a disk file.

Object deserialization is the act of reassembling objects after they are read from a disk file.

In Section 4.8, we discussed techniques used to transfer information to and from a disk file. As part of these techniques, information is written to the disk using the methods in the PrintWriter class (e.g., println and print). These methods write a string to the file, which means that the information in the file is represented as ASCII characters. Any piece of information written to the file that is not a string must be converted to a string before it is written.

This means that when the contents of the variables houseNumber and quantity defined in the code fragment below are written to the disk, they produce the same output to the disk: the three characters 175.

String houseNumber = "175"

int quantity = 175;

Because the type of the information written to the file (e.g., String and int)is not represented in the file, a written description of the information in the file must be provided with the file to properly read and process the data in the file. When a reference to an object is included in the parameter passed to the PrintWriter’s output methods, the object’s toString method is implicitly invoked, and the returned string is written to the file. In this case, the file description should include not only the types of the data members written to the file, but also the order in which they were written and the objects’ classes, so the object written to the file can be properly reconstructed by the program that reads the information from the file.

The writeObject method in the class ObjectOutputStream presents a better alternative for writing the data members of an object to a disk file. When this method is used to write an object to a file, all of the information required to reconstruct the object when it is read from the file (the data members’ types, the order in which they were written, and the class of the objects) is written to the file by the method. This information can then be used by the readObject method contained in the ObjectInputStream class to reconstruct the object when the method is used to read the object from the file. The gleaning of all of this additional information from objects when they are written to a file is called object serialization, and the use of this information to efficiently recreate objects when they are read from a file is called object deserialization.

Object serialization allows us to write all of an object’s data members to a disk file as a single entity by simply invoking the ObjectOutputStream class’s writeObject method and passing the object to the method’s parameter. Object deserialization allows us to read all of an object’s data members from a disk file by simply invoking the ObjectInputStream class’s readObject method. This method recreates a serialized object and returns the address of the recreated object. Because the class of each object is written to the file, the file can contain different types of objects. When these objects are related as subclasses of the same super class, the file can be written to and read from polymorphically.

The application SerializingObjects presented in Figure 8.44 demonstrates the serialized writing and reading of objects to/from a disk file. It is a modification of the application PolymorphicArrays shown in Figure 8.32. This version of the application outputs the nine-boat inventory of Uncle Ed’s boat yard, stored in a polymorphic array, to a serialized disk file using the writeObject method and reads the objects back into the array using the readObject method. Sample outputs produced at various points in the program’s execution are given in Figure 8.45.

Line 12 of Figure 8.44 creates a polymorphic array named inventory whose elements are reference variables in the abstract class Boat (Figure 8.19). Each time the loop that begins on line 16 executes, lines 18–22 create three new boats whose classes are shown in Figures 8.20–8.22. Then, lines 23–25 add them to Uncle Ed’s inventory by storing them in the polymorphic array. When the program in Figure 8.44 is launched, line 37 of the draw method displays the boats on the game board because each element of the array inventory contains a non-null reference (line 35). The initial output of the program is shown in Figure 8.45a.

When the game board’s right arrow button is clicked, line 59 of the button’s call back method writes the serialized version of all of the boat objects to a disk file named “Inventory.” The file is created and attached to the ObjectOutputStream object outFile on lines 52 and 53; this is the object used on line 59 to invoke the writeObject method.

After subsequent clicks of the game board’s up arrow button, line 46 of the button’s call back method deletes the boats from the polymorphic array by setting all of its elements to null. When the call back method ends, the game environment invokes the draw call back method. This method then displays an empty game board (Figure 8.45b) because line 35 prevents the show method from executing. If it had executed, the program would have been terminated by a NullPointerException because all of the elements of the array inventory are null.

To restore and redisplay Uncle Ed’s inventory, line 77 of the left button call back method reads the serialized boat objects from the disk file “Inventory” and places their addresses into the polymorphic array. The file is opened and attached to the ObjectInputStream object inFile on lines 72 and 73; this is the object used on line 77 to invoke the readObject method. After the left button call back methods ends, the draw call back method executes and line 37 of the draw call back method displays the restored nine-boat inventory on the game board (left side of Figure 8.42) via polymorphic invocations to the boats’ show methods. The redisplay of the inventory verifies that line 59 correctly wrote the serialized objects to the disk file, and line 77 correctly read them back into the polymorphic array.

The coercion used in Figure 8.44 on line 77 is necessary because the readObject method, invoked on that line, returns a reference whose type is Object. When writing and reading serialized objects, the exceptions coded on lines 64, 81, and 84 must be caught (as shown) or thrown (to be discussed in Chapter 10) inside the methods that perform the disk I/O. Alternately, a throws clause can be included in the methods’ headings. If the methods override a method, the overridden method must contain the same throws clause, or the throws clause alternative cannot be used. Because the call back methods override the methods in the DrawableAdapter class, the catch clause alternative was used in this program.

[image:]

[image:]

Figure 8.44
The application SerializingObjects.

[image:]

Figure 8.45
Outputs produced by the application SerializingObjects.

In order for an object to be serialized, its data members must be serializable. Primitive variables and strings are serializable, as are primitive arrays. The API documentation indicates that if a class implements the interface Serializable, then instances of the class are serializable; in addition, objects whose data members reference these serializable objects are serializable. The documentation of the API classes state which interfaces they implement. The API Color class, the BigDecimal and BigInteger classes, and many other API classes implement the interface Serializable.

The heading of the class whose objects are permitted to be serialized should indicate that it implements the interface Serializable, and all of its data members should be serializable. If any of the class’s data members are not serializable, they should be declared transient.

The Serializable interface is imported from the API java.io package (line 3 of Figure 8.44), and it does not contain any method signatures to implement. Because all of the objects being serialized in the application SerializingObjects extend the class Boat, the implements clause was added to that class’s heading (line 4 of Figure 8.19).

8.8 JAVA DOCS

Javadoc is a tool used to standardize and automate the documentation of Java constructs such as classes, interfaces and packages and the entities within them such as data members, constructors, methods, and inner classes. The documentation produced is in an HTML format. Javadoc is the tool used to produce the on-line documentaiontion of the Java API. We can use this tool to rapidly produce documentation in a format familure to Java programmers for the classes, interfaces, and packages we write.

The Javadoc tool can be downloaded, and is incorporated into Java integrated development environments such as Eclipse and NetBeans. Figure 8.46 shows the first two portions of a Java Doc that was created within the NetBeans IDE. It documents the class Student shown in Figure 8.47, which was coded within that environment. The left and right side of the figure show the first and second portion of the generated documentation respectively. For brevity, the remainder of the documentation is not shown.

[image:]

Figure 8.46
The first two portions of the Java Doc of the class Student shown in Figure 8.47.

After the entity to be documented is written within a programming environment a few simple clicks initiates the generation of the default Javadoc HTML file, which is saved in the project’s folder and then displayed in the default browser. For example in NetBeans the file would be generated by clicking Run on the main menu, and then clicking Generate Javadoc (Java Docs Generator) within the drop-down menu. The HTML file would be placed in the project folder’s subfolder \dist\javadoc. Private methods and data members are not included within the generated documentation.

[image:]

Figure 8.47
The class Student containing Javadoc comments included in Figure 8.47a and b.

To add additional text to the default documentation of an entity (e.g. a class, a method, etc.), a multi-line Javadoc comment containing the additional text is added immediately before the entity’s code in the Java source file. These comments begin with the three sequential key strokes /** and end with the two sequential keystrokes */. The class Student shown in Figure 8.47 contains eight Javadoc comments. The comment on lines 1–4 contains two lines of additional documentation text, lines 2–3, each of which begins with an asterisk. These leading asterisks are optional and do not become part of the Java Doc, but most programmers feel they improve the readability of the Java source code.

The text within each entity’s comment is incorporated into the portion of the Java Doc where the entity’s documentation appears. For example, the text on lines 2–3 within the comment that precedes the class’s heading is made part of the Class documentation near the top of Figure 8.46a. Similarly the text within the comments that precede each of the class’s data member declarations, lines 7–12, is added to the Fields (data member) area of Figure 8.46a. At the bottom of that figure a static field weeksPerSemester, which Javadoc gleaned out of the interface Gradeable that Student implements, is shown.

Figure 8.46b shows the next part of the Java Doc that describes a class’s constructors and methods, followed by the class’s inherited methods. The text in the comments that begin on lines 14, 20, 30, and 38 of Figure 8.48 are displayed in the appropriate areas of this part of the Javadoc. The text in first line of these comments that do not begin with an at-sign (@), are displayed in the portion of the documentation shown in Figure 8.46b. Comment text that begins with an at-sign, when included, is coded immediately after the text that does not begin with an at-sign.

Javadoc includes 11 tags that begin with an at-sign. The two used in Figure 8.47, @parm (on lines 21, 22, and 39) and @return (on line 31), are the most often used tags. They add programmer composed descriptions of a method’s parameters and its returned type to the last (Detail) portion of the Java Doc, which is not shown in Figure 8.46. The descriptive text is written after the tag. When the @parm tag is used, the name of the parameter being described must appear between the tag and the descriptive text. Below is the Method Detail area of the Detail portion of the Java Doc that includes the text after the tags on lines 31 and 39.

Method Detail

•getName
public java.lang.String getName()
Gets a student’s name
Returns:
A string representing the student’s name

•setAddress
protected void setAddress(java.lang.String address)
Sets a Student’s address
Parameters:
address - The student’s address

8.9 CHAPTER SUMMARY

Inheritance establishes a parent-child relationship between two classes in which all of the methods and data members of the parent class become part of the child class. Including the keyword extends in the class’s heading of any Java class designates it as a child class, and the class name that follows it designates its parent class. A Java class can have one parent, and it can have multiple children unless the class is declared to be final. A child class also inherits the data members and methods of its parent’s class’s parent recursively. When a method is invoked on an object, the runtime environment begins its search for the method in the object’s class and continues the search up the class’s inheritance chain.

Functionality is added to an inherited class by coding additional data members and methods in the child class and by overriding an inherited method: that is, including a method in a child class that has the same signature as an inherited method. The translator will verify the signature of an overridden method if the child class includes the @Override directive before the signature of its version of the method. This is considered to be good programming practice. Inherited methods can be overloaded in the child class by changing the type or number of parameters in their parameter list.

To prevent a method from being overridden, the keyword final is used in its signature. When a class is declared to be final, it cannot be extended. Methods that enforce security on systems are usually declared to be final to prevent them from being overridden. An abstract class is used to collect data members and methods that are common to several classes into one parent class, which is considered to be good design practice. A class is designated to be abstract by including the keyword abstract in its heading before the keyword class. An abstract class cannot be instantiated.

Parent class constructors are not inherited, but they can be invoked as the first line of a child class constructor by coding the keyword super followed by an argument list. If the child does not explicitly invoke a parent constructor, the parent’s default constructor is implicitly invoked. The child can also invoke inherited public or protected methods, including parent methods that were overridden, by beginning the invocation with the keyword super followed by a dot. This is often done in overridden methods to include the functionality of the parent method in the child’s version of the method. Methods and data members whose access is designated protected are hidden from nonchild classes contained in a separate package. Protected methods and data members of a class can be accessed by members in the same package as the class as well as by members in its subclass.

Polymorphism is a powerful feature of inheritance that is based on the fact that parent reference variables can store the address of a child class object. This permits us to store references to any type of child object in one array of parent reference variables, and to execute each child’s version of a method by invoking it on each element of the polymorphic array. It also permits a child class instance to be passed to, and processed by, a method whose parameter type is that of the parent class. The method can perform child class specific processing by using the getClass and getName methods and the instanceof operator to determine the name and class of the object passed to the method. Alternately, polymorphism also permits a parent method to invoke a child class method to perform child class specific processing. The parent class usually includes an abstract version of the method to impose a translator enforced requirement that its children provide an implementation of the method.

Interfaces are similar to abstract classes that only contain abstract methods and static final constants. Interfaces are used to share constants and to standardize the signatures and functionality of methods that perform common tasks on objects that may not share a common ancestor. When a class includes an implements clause in its heading, it must provide an implementation for every method defined in the interface. Alternately, it could extend a class (referred to as an adapter class) that provides empty implementations of the interface’s methods and override one or more of the methods. A class can implement multiple interfaces, and interfaces play an important role in the implementation of generic methods and classes.

Objects can be transferred to and from disk files using the techniques called serializing and deserializing, respectively. Object serialization is the act of disassembling objects before writing them to a disk file, and object deserialization reassembles them after they are read from the disk file.

Knowledge Exercises

1.True or false:

a)Parent class is to child class as base class is to super class.

b)A parent class can inherit data members and methods from to a child class.

c)A Java parent class can have multiple child classes that inherit its data members and methods.

d)A parent class includes an extends clause in its heading to specify its child class.

e)A child class inherits all the methods of its parent class including the parent’s constructors.

f)In Java, a child class may only extend (inherit from) one class.

g)Several child classes can inherit from the same parent.

h)Parent class constructors are not inherited, but they can be invoked from within the child class.

i)When two methods in an inheritance chain have the same name but different parameter lists, we say they are overridden.

j)An inherited method can be invoked by a method within a child class.

k)The keyword final is used to prevent a method from accidentally being overridden.

l)A class can implement more than one interface.

m)To extend a class, we must have the source code of the class.

n)By default, a parent’s no-parameter construct is always invoked when a child class constructor begins execution.

2.Explain the difference between chain inheritance and multiple inheritance. Which one does Java support?

3.What are two advantages of using inheritance in the software design and implementation processes?

4.Give the statement used in a child class method to invoke an inherited two-parameter constructor.

5.Explain the restrictions imposed by these three types of access: public, private, and protected.

6.Give the statement used in a child class method to invoke an inherited method named output that has no parameters and is not overridden.

7.Give the statement used in a child class method to invoke an inherited method named input that has no parameters and is overridden.

8.Why should the @Override directive be used, and where is it coded?

9.How can we prevent a method from being overridden by a child class?

10.Give two reasons for overriding an inherited method.

11.Explain when you would overload a method instead of overriding it.

12.How can we prevent a class from being extended? Give an example of when we would want to impose this restriction.

13.Explain how an abstract class is used during the design process.

14.True or false:

a)A parent reference variable can store the address of a child object.

b)A child reference variable can store the address of a parent object.

c)The address of a child object stored in a parent reference variable can be assigned to a child reference variable.

d)When a method is invoked on a parent reference variable, the version of the method in the parent’s class always executes.

e)Child references variables can be passed to parent type parameters.

15.Give the declaration of a 200-element polymorphic array that can store instances of the child classes Train and Airplane that extend the class Transporter.

16.What are the differences between using extends and implements in a class’s heading?

17.What can be included in an interface, and what is an advantage interfaces have over abstract classes?

18.What is an adapter class, and what is the advantage of extending an adapter class?

19.Explain what you would do to implement an adapter class for the interface ManyMethods that defines 20 method signatures.

Programming Exercises

1.Develop a UML diagram for a class named Vehicle that has three private data members: price, color, and model. Its methods will include a default and a three-parameter constructor, a toString method, set and get methods, and a method to input all of the values of its data members. Assume the class Vehicle extends the class Transporter.

2.Implement the class described in Exercise 1 and write an application that verifies your implementation. You can assume the Transporter class has no data members or methods.

3.Cars and trucks have a price, color, and model. Cars also have a radio type, and trucks have a maximum tonnage that they can haul. Develop the UML diagrams for a car and a truck class using the concepts of inheritance to reduce the time and effort required to develop the classes. All of the data members should be private, and each class should have a four-parameter constructor, a toSting method, set and get methods, and a method to input all of the values of its data members.

4.Implement the classes described in Exercise 3 and write an application that verifies your implementation. Then, change the application so it can be used to input a mix of 10 cars and trucks and output them to the system console.

5.Modify Exercise 4 to include the use of a polymorphic array.

6.Write an application that asks the user how many two-dimensional shapes (squares, rectangles, circles and ellipses) to draw on the game board, as well as the type, location, and color of each shape. Any of the circles or squares can be drawn filled or unfilled. After all inputs have been performed, the shapes will appear on the game board. The name of each shape will be displayed just above it, as will the formula to compute the shapes’ area if the shape is a circle or a rectangle. When user strikes the S, R, C, or E key, all of the squares, rectangles, circles, or ellipses will alternately appear or disappear respectively. Your design should utilize the techniques of inheritance and polymorphism to minimize the effort required to produce the program.

7.Supermarkets carry three categories of items in their inventory: canned goods, flowers, and produce. Every item in the store has a name, a unit price, and a quantity in stock. In addition, produce items have an expiration date and a weight (because they are sold by the pound), and flower items have a color and a variety (i.e., house plant, garden plant, arrangement).

Develop UML diagrams for each of the three categories of items, canned goods, produce, and flowers, utilizing the techniques of inheritance and polymorphism to minimize the effort required to implement the classes, then implement the classes and verify their implementation. All of the data members should be private, and each class should have a constructor that can be passed the values of all of its data members, a toString method, set and get methods, a method to input all of the values of its data members, and a method to compute an item’s price.

The price of an item is its base price plus a 15% profit margin. The base price of a canned-good item is just its unit price. The base price of a produce item is its unit price times its weight, and the base price a flower item is its unit price, except for arrangements which have a $5.00 preparation fee.

8.Design and implement a class called SuperStore that clients can use to declare a store that sells the canned goods, produce, and flowers described in Exercise 7. When an instance of this class is created, its constructor will be passed the number of items (canned goods plus produce plus flower items) that the store will carry, and the city location of the store (a string). The class will contain:

a)a method (named Superstore(maxNumOfItems, city)) to create an instance of a super store and specify its location and the maximum number of items the store will carry;

b)a method (named addItem(anItem)) to add a new canned good, produce, or flower item to the store’s inventory (one method);

c)a method (named outputInventory()) to output all the information for the entire inventory (all canned goods, produce, and flowers) to the system console preceded by the store’s name and location,

d)a method (named outputGenericGroup(integerCategoryID)) to output all the information for the entire inventory of either canned goods, produce, or flowers to the console, preceded by the store’s location. Your design should include a polymorphic array to store the Superstore’s inventory.

Note:Whenever an item is output, the output should include all of an item’s input information, preceded by the item’s generic category (e.g., This item is a Canned Good) and the item’s calculated selling price.

9.Write an application that creates an instance of the superstore described in Exercise 8, allows the user to enter the initial inventory (items a–d below), and then repeatedly outputs the inventory (item e below).

a)What is the maximum number of items that will be in the new store’s inventory?

b)What is the location of the store?

c)How many items will be in the initial inventory?

d)Repeatedly present a menu to allow the user to select the generic category of an item (an integer) and then request the information for that item until all items have been entered.

e)Repeatedly present the user with the following menu until a “3” is entered:

Enter 1 to output all the information for all of the items in the inventory

Enter 2 to output all the information for all of the items in a particular generic category

Enter 3 to quit the program.

Enrichment

1.Why does Java not allow multiple inheritance? How is the diamond problem a consequence of multiple inheritance?

2.How can most of the features of multiple inheritance be simulated in Java?

3.Oracle’s Javadoc materials:https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

CHAPTER 9

RECURSION

9.1What is Recursion?

9.2Understanding a Recursive Method’s Execution Path

9.3Formulating and Implementing Recursive Algorithms

9.4A Recursion Case Study: The Towers of Hanoi

9.5Problems with Recursion

9.6Chapter Summary

[image:]

[image:]

In this chapter

In this chapter we introduce recursion, a very powerful tool used in problem solving in which a problem’s solution is expressed in terms of a simpler version of itself. The implementation of the recursive solution results in a method that invokes itself. We will examine the execution path of a recursive method, explore a methodology for discovering and implementing recursive algorithms, and practice this methodology on a set of progressively more difficult problems.

Although recursion can provide succinct and eloquent solutions to many problems, such as the Towers of Hanoi problem, the drawing of fractals, and the solution to many puzzles, the implementation of some recursive solutions can produce runtime problems. They can require large amounts of RAM memory and can result in unacceptably long execution times. We will identify the characteristics of recursion that cause these problems and learn a technique called dynamic programming used to solve one cause of unacceptably long execution times.

After successfully completing this chapter you should:

•Understand recursion and a recursive method’s execution path

•Be able to design and implement a recursive solution to a problem by discovering its base case, a reduced solution, and a general solution

•Understand why recursive solutions require more time and storage than their iterative counterparts

•Know when to use a recursive solution and when an iterative solution would be more practical or efficient

•Understand how dynamic programming techniques can improve the efficiency of a recursive algorithm

9.1 WHAT IS RECURSION?

In general, recursion is defining something in simpler terms of itself, a property often referred to as self-similarity. In computer science, recursion is a technique used in the coding of methods and formulating algorithms. Usually, these methods or algorithms refer back to or are applied to themselves. When this technique is used to code a method, we say that the method is recursive. Before the execution of a recursive method ends, it either invokes itself or another method whose execution eventually leads to an invocation of the recursive method. Figure 9.1 illustrates both of these forms of recursion.

[image:]

Figure 9.1
The two forms of recursive methods.

In mathematics, recursion is often used to define functions and series that can also be defined without using recursion. For example, a non-recursive definition of ten factorial (10!) is:

10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

This non-recursive definition of 10! can be generalized to a non-recursive definition of n! for any positive value of n.

Definition

The non-recursive definition of n! for values of n ≥ 0

n! ≡ n * (n - 1) * (n - 2) * (n – 3) * (n – 4)** 3 * 2 * 1 and 0! ≡ 1

Alternately, the definition of 10! can be more succinctly stated recursively as

10! ≡ 10 * (10 - 1)! and 0! ≡ 1

This recursive definition can be generalized to a recursive definition of n! for any positive value of n.

Definition

The recursive definition of n!

n! ≡ n * (n - 1)! and 0! ≡ 1

The equivalence of the recursive and non-recursive definitions can be easily understood by examining the non-recursive definition of 10! and 9!

[image:]

The last nine terms in the equation for 10! are contained in the right side of the equation for 9!, so 10! can certainly be expressed as 10 * 9!, which is the recursive definition of 10!. Having been shown this example, most of us would accept the fact that 9! can be used to calculate 10!, that is:

10! = 10 * 9!

This is the recursive way of calculating 10! which we now understand because we have realized that 9! = 9* 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1. In effect, we have used the non-recursive definition of 9! to understand the recursive definition of 10!.

A recursive definition typically appears to define an entity in simpler terms of itself. The two uses of the factorial operator in the recursive definition of n! could be considered an example of this because the definition states that for positive values of n,

“n factorial is equal to n times n minus one factorial.”

What makes this part of the recursive definition acceptable is that, although the word “factorial” is used in two phrases that make up the sentence (“n factorial” and “n minus 1 factorial”), the two phrases are different. In addition, the recursive definition of n! contains another crucial part: zero factorial is defined as one (0! ≡ 1).

The reason this second part of the definition is crucial to the validity of a recursive definition is that the recursive definition relies on being able to calculate (n – 1)! in order to calculate n!. Knowing that the value of zero factorial is defined as one gives us the ability to calculate (n – 1)!. This fact may come as a surprise, but it becomes more obvious after a close examination of Figure 9.2, in which the recursive definition of n! is used in a progressive way to calculate (4)!. The right side of line 6 completes the calculation by substituting the value one (1), which is defined to be the value of zero factorial (0!)

The recursive definition of n factorial: n! ≡ n * (n – 1)! and 0! ≡ 1.

[image:]

Figure 9.2
Calculating 4! using the recursive definition of n factorial.

The progression from lines 2 to 5 of Figure 9.2 is analogous to the progression of four phone calls shown at the top of Figure 9.3 initiated by you after your friend Evie asks you the value of four factorial. Remembering the recursive definition of n factorial, you know 4! is 4 * 3!. Because you don’t know the value of 3!, you call your friend Logan and ask him the value of 3!. He realizes it is 3 * 2! and calls his friend Skyler to ask her the value of 2!, who calls Ryan to ask him the value of 1!. Finally, Ryan calls Breanne to ask her the value of 0!,

[image:]

Figure 9.3
A progression of five phone calls to determine the value of four factorial.

This leads to the end of the sequence of four phone calls as depicted at the bottom-right of Figure 9.3. In response to Ryan’s call, Breanne examines the definition of 0! and tells Ryan the value of 0! is defined as 1 and hangs up. Ryan multiplies 1 by the value of 0! that Breanne told him, 1, tells Skyler the value of 1! is 1, and hangs up his phone. This scenario continues with Skyler telling Logan the value of 2! is 2, and Logan telling you the value of 3! is 6. Finally, you multiply 4 by the value of 3! that Logan told you, 6, and you tell Evie the value of 4! is 24.

Recursion is not only used to more succinctly define formulas and series in mathematics, but it is also used to more succinctly define algorithms in computer science. It is for this reason that programming languages permit the two types of recursive invocations illustrated in Figure 9.1. If we were going to write a method that calculated n!, and the recursive definition of n! was used as the method’s algorithm, then, when it was used to calculate 4!, the sequence of four phone calls illustrated in Figure 9.3 would be the method invoking itself four times. Evie asking you the value of 4! would be the initial invocation of the method.

Not all algorithms can be expressed recursively, but the effort expended in implementing those that can be is significantly less than implementing a non-recursive version of the algorithm. For this reason, an understanding of how recursive methods execute, how to formulate and implement a recursive algorithm, and some problems associated with the use of recursion is an essential tool to have in our programming toolbox.

9.2 UNDERSTANDING A RECURSIVE METHOD’S EXECUTION PATH

A recursive method is invoked, like any other method, by coding its name followed by an argument list used to pass values to the method’s parameters. If the method returns a value, the value is either assigned to a variable for use in subsequent statements or used in the statement that contains the invocation of the method. Looking at the invocation statement, there is no way to determine if the method being invoked is recursive or not. Below is an invocation of a recursive method named fact that returns 4!, which could also be the invocation of a method with the same signature that is non-recursive:

long fourFactorial = fact(4);

The recursive version of this factorial method would differ from the non-recursive version within the implementation of the method. The recursive version implements the recursive definition of n factorial using the coding model shown at the top of Figure 9.1. Figure 9.4 shows the code of the method fact that calculates the value of n! recursively.

[image:]

Figure 9.4
A recursive method that calculates n!.

If the Boolean condition on line 4 of Figure 9.4 is true, line 6 returns 1, the value of 0! specified in the definition of n!. Otherwise, line 10 of the method invokes itself. Consistent with the first part of recursive definition of n!, it passes fact the value of n-1, and the method calculates and returns the value of (n-1)!. Then line 11 uses the returned value to calculate n factorial, which is returned on line 12.

Although the calculations performed by lines 10 and 11 are coded sequentially, they do not execute sequentially because line 10 of the initial invocation of the method initiates the first of the progression of four phone calls depicted at the top of Figure 9.3. When calculating 4!, the first of these phone calls (or, more accurately, recursive invocations) is passed the value 3 (i.e., 4 - 1).

The three subsequent recursive invocations of the method by line 10 pass the values 2, 1, and finally 0 to the method. The line-by-line execution sequence of the method to reach this point, beginning with the initial invocation of the method, is given below and is represented by the red arrows in Figure 9.5.

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the first recursive invocation the value 3

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the second recursive invocation the value 2

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the third recursive invocation the value 1

Lines 1, 2, 3, 4, 8, 9, 10 //which passes the fourth recursive invocation the value 0

[image:]

Figure 9.5
The execution sequence of the invocations of the method fact to calculate 4!

Because the fourth recursive invocation of the method is passed the value zero, its execution sequence is lines 1, 2, 3, 4, 5, and 6 because the Boolean condition on line 4 for this execution of the method evaluates to true. As a result, line 6 returns the value 1 (0!) to line 10 of the third recursive invocation (as indicated by the green arrow on the right side of Figure 9.5). Then lines 11 and 12 of the third, second, and first recursive invocations execute, returning the values 1, 2, and 6 (as indicated by the other three green arrows in Figure 9.5). Finally, lines 11 and 12 of the initial invocation of the method execute and return 24 = 4 * 6.

Two important observations to make from an examination of Figure 9.5 are that:

1.because of the recursive invocations spawned by line 10 of the initial invocation of the method, a considerable amount of time is required to complete the execution of this line of code

2.the recursive invocations of the method would have continued had it not been for the fact that the fourth recursive invocation was passed the value zero

Armed with an understanding of the execution path of recursive methods, we will discuss the techniques used to discover recursive algorithms and the nuances of implementing them.

9.3 FORMULATING AND IMPLEMENTING RECURSIVE ALGORITHMS

Most people do not possess an innate ability to think recursively. When shown the non-recursive and recursive definitions of n factorial, most of us would say that we are able to understand the non-recursive definition, but we are confused by its recursive counterpart. Therefore, it should come as no surprise that most of us have trouble recognizing that there is a recursive solution to a problem and have even more trouble trying to discover the algorithm even after we are told that one does exist.

Fortunately, we can learn to think recursively because the discovery of recursive algorithms can be methodized, and once discovered, many recursive algorithms are implemented in a very similar way. After gaining a basic understanding of the methodized process, lots of practice facilitates the learning curve.

9.3.1The Base Case, Reduced Problem, and General Solution

The recursive-algorithm discovery process is broken into four discovery steps:

1.identify the base case or cases

2.identify the reduced problem or problems

3.identify the general solution

4.combine the base case, reduced problem, and general solution into a recursive algorithm

We have already used a base case, reduced problem, and general solution in the program presented in Figure 9.4 without identifying them by name. The base case, reduced problem, and general solution of the recursive algorithm for n factorial implemented in Figure 9.4 are identified in Table 9.1.

Prior to coding the method shown in Figure 9.4, we did not discover these three parts of the recursive algorithm for n!. They were discovered by the person that originally formulated the recursive definition of n!, who was probably born with the ability to think recursively. We simply discussed a method that implemented this definition of n! to gain insights into the execution path of a recursive method. This was a useful exercise because an understanding of the method’s execution path, and an awareness of these three parts of the recursive definition of n!, do facilitate an understanding of the discovery process.

Table 9.1
The Base Case, Reduced Problem, and General Solution for n!

	Base Case
	Reduced Problem
	General Solution

	0! ≡ 1
	(n – 1)!
	n * (n – 1)!

Discovering the Base Case

The recursive-algorithm discovery process begins with the identification of the problem’s base case. To discover the base case, we search for a particular instance of the problem whose solution is known. For example if we were trying to discover the recursive algorithm for n factorial, we would ask ourselves if there is a particular value of n: 0, or 1, or 2, or 3, or 4, etc., whose factorial value is known. Most people know that 0! is defined as 1, which is the base case for n factorial. The base case for another problem, xn, is also a definition: x0, which is also defined as 1. For some problems, the base case is not a definition but a trivial case of the problem that most of us know, such as 1 * 1 = 1. Another example of a trivial base case is associated with the problem of outputting a string of n characters in reverse order. In this case, when n is one, we simply output the string.

When the problem involves an integer n, often (as we have seen) the base case is the solution to the problem when n = 0 or, for some problems, when n = 1. The determination of the base case is a crucial first step in the discovery process because it is used to discover the reduced problem, which is then used to discover the general solution. In addition, when we implement the algorithm, as shown on line 4 of Figure 9.4 and on the far right side of Figure 9.5, it is the base case that halts the progression of recursive invocations and is sometimes referred to as the stopping condition. Some problems, as we will see, contain multiple base cases.

Discovering the Reduced Problem

Identifying the reduced problem is often the most difficult part of the four-step discovery process. Usually, it can be identified by considering the following three criteria. The reduced problem:

1.is a problem similar to the original problem

2.is usually between the original problem and the base case and is usually closer to the original problem than it is to the base case

3.becomes the base case for all versions of the original problem when progressively reduced

For example, the reduced problem for n! is (n – 1)!. Clearly, this is similar to the original problem in that it also involves n and uses the factorial operator. It is between the original problem and the base case (0!), and for most values of n (n > 2), it is closer to the original problem than it is to the base case. This would be an acceptable reduced problem if progressive reductions caused it to become the base case for all values of n.

By progressive reductions, we mean that we repeatedly apply the relationship between the candidate reduced problem and the original problem to the reduced problem to produce new versions of the problem. For n!, the relationship is that the number used in the reduced problem (n – 1) is one less than the number used in the original problem (n). Applying this relationship to the reduced problem (n – 1)!, the new version of the problem becomes ((n – 1) – 1)! = (n – 2)! on the first reduction. Subsequent new versions of the problem are ((n – 2) – 1)! = (n – 3)!, (n – 4)!, (n – 5)!, etc. Because this progressive reduction of (n – 1)! for any positive value of n will eventually become the base case, (n – 1)! is an acceptable reduced problem for n!.

An example of an unacceptable reduced problem for n! is (n – 2)!, although it satisfies most of our criteria. It is a problem similar to the original problem, it is between the base case (0!) and the original problem, and it is also closer to the original problem than it is to the base case. What makes it unacceptable is that progressive reductions, for odd values of n, do not result in the base case. For example, for n = 7 the reduced problem would be (7 – 2)! = 5!, and its progressive reductions would be:

(5 – 2)! = 3!,  (3 – 2)! = 1!,  (1 – 2)! = -1!.

The reductions skip over the base case, zero factorial. They never become the base case for odd values of n. Another unacceptable candidate reduced problem is (n + 1)!. For n = 7, the reduced problem would be (7 + 1)! = 8!, and its progressive reductions would be 8!, 9!, 10!, 11!, etc. The result would be an infinite series that never becomes the base case.

Some problems, as we will see, contain multiple reduced problems.

Discovering the General Solution

The general solution is the solution to the original problem. To discover the general solution, we think of a way to solve the original problem assuming that we have already found a valid reduced problem. That is, we think of a way of use the solution to the reduced problem in the solution of the original problem.

In the case of n!, this translates into the question of how (n – 1)! can be used to calculate n factorial. The answer is multiplying (n – 1)! by n, so the general solution for n! is n × (n – 1)!

The first three steps of the recursive-algorithm discovery process are summarized in Table 9.2.

9.3.2Implementing Recursive Algorithms

Once we have discovered the base case, reduced problem, and general solution for a particular problem, they are combined into a recursive algorithm. Finding the correct combination usually involves some creativity, which comes naturally to some people while the rest of us have to develop this creative ability through practice.

For many problems, the base case, reduced problem, and general solution are combined in a similar way. For a subset of these problems, they are combined in an identical way, which is depicted in the flow chart shown in Figure 9.6. By working with this subset of problems, we will begin to develop the ability to think recursively. Continued practice with the super set of problems will further develop our skills.

Table 9.2
The Recursive Algorithm Discovery Process

	Step
	Process
	Comments

	1:
Base Case Discovery
	Search for a particular instance of the problem whose solution is known, because it is a defined solution or it is a trivial solution that is known to most people.
	The base case for n! is 0! ≡ 1

If the problem involves an integer n, the base is often when n = 0 or n = 1.

	2:
Reduced Problem Discovery

	Search for a version of the problem that:
•is similar to the original problem

•usually is between the original problem and the base case and closer to the original problem

•when progressively reduced becomes the base case for all versions of the original problem

	The reduced problem for n! is (n – 1)!
n! ≤ (n – 1)! ≤ 0!

The progressive reductions of (n – 1)! are:
(n – 1)!, (n – 2)!, (n – 3)!, etc., which becomes the base case, 0!, for all values of n.

	3:
General Solution Discovery

	Think of a way to solve the original problem, assuming that we have already found a solution to the reduced problem.

	The reduced problem is used in the general solution, e.g.,
n! = n * (n – 1)!

The algorithm shown in Figure 9.6 is most easily understood by comparing it to a particular implementation of it: the code of the method to recursively compute n! presented in Figure 9.4. The problem of calculating n! is one of the problems in the subset of problems whose three components (base case, reduced problem, and general solution) can be combined exactly as shown in Figure 9.6.

Figure 9.7 represents the code of this method with comments added to it to aid in an understanding of the manner in which the algorithm combines its three components. These comments refer to the blue-font numbers shown on the left side of each of the flow-chart symbols shown in Figure 9.6.

The if statement coded on line 4 of Figure 9.7 represents the question in symbol 2 of the flowchart, which is used to decide if the problem to be solved is the base case. The return statement (line 6) inside the if statement’s code block represents flowchart symbols 3 and 4 that terminate the algorithm after returning the base case solution.

Symbol 5 of the flowchart is typically the most confusing part of the algorithm because it is the most confusing part of recursion. It calculates the solution to the reduced problem using this same algorithm. It is the recursive part of the algorithm. The right side of line 10 implements symbol 5 by re-invoking the method and passing it the reduced problem. As we have learned, this symbol of the flowchart can occupy a significant portion of the algorithm’s execution time. Every time it is entered, it spawns another execution of the algorithm, beginning at symbol 1, to calculate the solution to a new (reduced) factorial problem.

After flowchart symbol 5 calculates the solution to the reduced problem, symbol 6 uses it to calculate the general solution to the original problem. Line 11 of Figure 9.7 implements flowchart symbol 6. After symbol 7 returns the problem’s solution (line 12 of Figure 9.7), symbol 8 ends the algorithm.

[image:]

Figure 9.6
A template for some recursive algorithms.

[image:]

Figure 9.7
A recursive method that calculates n! commented to correlate to the algorithm presented in Figure 9.6.

9.3.3Practice Problems

Now that we have acquired a basic understanding of recursion, the best way to extend our ability to think recursively is to apply our newly acquired skills to a set of problems that can be solved recursively. The problems presented in Table 9.3 are tabulated in an order intended to extend these skills in an incremental manner. As we move from the problems at the top of the table to those at the bottom of the table, their recursive solutions become increasingly dissimilar to the recursive solution n!. For this reason, which is consistent with the adage that “practice makes perfect,” it is best to work our way through all of the problems in the order in which they are tabulated. Table 9.4 (included in the Chapter Summary) presents the base case, reduced problem, and general solution for each of the problems presented in Table 9.3

Table 9.3
Several Problems That Have Recursive Solutions in Difficulty Order

[image:]

As noted in the table, some problems have multiple base cases and reduced problems, and one problem uses its reduced problem twice in its general solution. As we have learned, the starting point is the determination of a problem’s base case, then its reduced problem, and then its general solution. They should be entered into a copy of the last three columns of the table below the column entries for n!, and in most cases, they can be combined into a recursive solution using the algorithm depicted in Figure 9.6.

The correctness of the discovered base case, reduced problem, and general solutions should be verified by comparing them to the entries in Table 9.4 in the Chapter Summary. Implementing each problem’s recursive solution before moving on to the next problem is highly recommended because it augments the learning process.

It is not unusual in the beginning, or at some other point in this learning process, not to be able to discover one or more of the three components of the recursive solution (i.e., its base case, reduced problem, or general solution). When this is the case, it is still useful to implement the recursive algorithm using the component(s) presented in Table 9.4. Consistent with this idea, many students begin by skipping the discovery process and simply implement a recursive method to calculate xn using the components given in the second row of Table 9.4 and the flow chart presented in Figure 9.6.

A description of the last problem in Table 9.3, The Towers of Hanoi, is given in the beginning of the next section.

9.4 A RECURSION CASE STUDY: THE TOWERS OF HANOI

The recursive solution to the Towers of Hanoi problem is a good example of the simplicity and power of recursive algorithms. Its recursive solution can be implemented as seven lines of code. Applying the techniques we have learned to produce a recursive solution, this problem will serve as a good capstone to our discussion of how to formulate and implement recursive algorithms. Not only will this reinforce our knowledge of the discovery process, but the implementation of the problem’s recursive algorithm will introduce an often-used nuance into the parameter list of a recursive method that is not used in the solutions of the other problems presented in Tables 9.3 and 9.4.

Statement of the Problem

The problem was conceived by the French mathematician Eduardo Lucas in 1883. It involves three towers and a set of n disks or rings, each with different diameters. The original legend claimed that the Brahmins of an ancient Indian temple were charged with moving 64 golden disks, and when the last one was in its final place, the world would come to an end.1 As we will see, there is no need to worry about this because the disks had to be moved in a specified order, and if one disk were move per second it would take 585 billion years (264 - 1 seconds) to relocate the disks.

The left side and right sides of Figure 9.8 illustrate the problem’s starting and ending points for four rings (n = 4). The rings are initially stacked in decreasing order by size on one of the towers, which we will refer to as the starting tower. The left side of Figure 9.8 shows four rings stacked on a starting tower named A. The right side of the figure shows the four rings relocated to the tower named B, which we will refer to as the destination tower. We will refer to the third tower shown in the figure, whose name is C, as the extra tower.

[image:]

Figure 9.8
The Towers of Hanoi problem’s starting and ending points using four rings.

The solution to the problem is a specification of the order in which to move the rings that will relocate all of them from a designated starting tower (tower A) to a designated destination tower (tower B) without violating the following two conditions:

1.Only one ring (a top ring) can be moved at a time, and it must be placed on a tower before another ring is moved.

2.A larger ring cannot be placed on top of a smaller ring.

These conditions imply that when the problem is solved, the rings will be stacked on the designated destination tower in decreasing size order, as shown on the right side of Figure 9.8. The problem solutions (i.e., the order in which the rings are moved to relocate them from tower A to tower B) for two, three, and four rings are given in Figure 9.9. Figure 9.10 depicts the three-ring solution.

Notice that there is a pattern to predicting the number of moves that will be needed for n rings. For two rings, there are three moves, for three rings, there are seven moves, and for four rings, there are fifteen moves. In general, the minimum number of moves for n rings will be 2n -1. This is why moving the legendary 64 golden disks would require 264 -1 moves and extraordinarily long time.

The Base Case

We have learned that the formulation of a recursive solution to a problem begins with a search for its base case: a known, defined, or trivial solution to the problem. We have also learned that when the problem involves n items, a good place to begin the search is when n = 0 or n = 1. This problem involves n rings, so we will begin by considering the case when there are zero rings. This is a legitimate base case for this problem because the trivial solution would be to do nothing. An alternate base case is when n = 1 because if we were asked to move one ring from tower A to tower B, we would simply state “move the top ring on tower A to tower B.” Both of these are trivial solutions because most people would know them, and they do not require a consideration of the two conditions of the Towers of Hanoi problem. Either of these base cases can be used in the recursive solution to the problem. The n = 1 base case is the one that appears in Table 9.4.

[image:]

Figure 9.9
Three Towers of Hanoi problem solutions.

[image:]

Figure 9.10
The solution to the three-ring Towers of Hanoi problem.

NOTE

Towers of Hanoi base case:
n = 1: Move 1 ring from one tower to another tower

Reduced Problem

To discover the reduced problem, we can use a new tool often employed when the problem involves n items. We try to solve very simple versions of the problem, not quite as trivial as the base case, but close to it. Then, we examine the solutions looking for similarities and try to generalize the similarities into a reduced problem. For example, suppose we were able to produce the two- and three-ring solutions shown in Figure 9.9, which many non-recursive thinking people could probably do. If we are visual learners, it helps to sketch out each step of the solutions, as has been done in Figure 9.10 for the three-ring solution.

Examining Figure 9.10 and the two-ring solution in Figure 9.9, we notice that just before the half-way point of both solutions (move 4 of Figure 9.10 and move 2 of the two-ring solution), all of the rings except for one have been moved to tower C. Examining the moves made after the midpoint of both solutions (moves 5–7 in Figure 9.10 and move 3 of the two-ring solution in Figure 9.9), we realize that these also move all of the rings except for one.

Because the ability to move all but one ring from one tower to another tower is common to both the two- and three-ring solutions, perhaps this could be the reduced problem. When generalized, it becomes: move n-1 rings from one tower to another tower. This generalization does satisfy the three criteria for a reduced problem restated below and is the one that appears in Table 9.4:

1.It is similar to the original problem: move n rings from one tower to another tower.

2.It is closer to the original problem than either of the problem’s base cases (n = 0 and n = 1), and it is between the original problem and these base cases.

3.When progressively reduced, it does eventually become one of the base cases: move one or move zero rings.

Another way of discovering this reduced solution would be to compare the illustration of the starting point in Figure 9.10 to the illustration of move 3 in that figure and to compare the illustrations of move 4 to move 7. From these comparisons, we would be likely to observe that the problem could be solved if we knew how to move n-1 rings, and then conclude that we need to make a call to a friend who knows how to move n-1 rings from one tower to another tower.

NOTE

Towers of Hanoi reduced problem:
Move n-1 rings from one tower to another tower.

The General Solution

To discover the general solution, we ask ourselves how we can use the reduced problem to solve the original problem. In the case of the Towers of Hanoi, this question becomes: “how can we use the ability to move n-1 rings to solve the problem of moving n rings from one tower to another tower?” The answer can often be found by examining the solutions developed to the very simple versions of the problem previously used to determine the reduced problem.

The three move sequences on both sides of move 4 in Figure 9.10, which shows the n = 3 solution, represent a movement of 3-1 rings from one tower to another. This means that if move 4 of Figure 9.10 was preceded and followed with a version of the reduced problem, it would be the general solution of the n = 3 ring problem:

1.use the reduced problem to move 2 rings from tower A to C (moves 1–3)

2.move 4 (move 1 ring from tower A to tower B)

3.use the reduced problem to move 2 rings from tower C to B (moves 5–7)

Once we have found a way to use the reduced problem to solve one of the simpler problems used in the discovery of the reduced problem (e.g., the 3 ring problem), its use is extrapolated to the n ring general solution. This is the general solution presented in Table 9.4.

NOTE

Towers of Hanoi general solution:

1.use the reduced problem to move n-1 rings from tower A to C

2.move 1 ring from tower A to tower B

3.use the reduced problem to move n-1 rings from tower C to B

Implementation

The base case, reduced problem, and general solution of this problem can be combined into a recursive algorithm using the flow chart shown in Figure 9.6. The application presented in Figure 9.11 implements this algorithm in a method named hanoi (lines 8–24). The signature of the method contains four parameters: the number of rings, followed by the name of the starting tower, the name of the destination tower, and the name of the third tower. It is invoked on line 5 to output the moves required to transfer four rings from tower A to tower B. The output produced by the program is shown in Figure 9.12.

As the names of the last three parameters in the signatures of the hanoi method on lines 8 and 9 indicate, the method uses the tower name passed to its parameter (fromTower) as the starting tower, and the tower names passed to the method’s second and third parameters (toTower and thirdTower) are used as the destination tower and the extra tower, respectively. As a result, when the method is invoked recursively on line 20 of the general solution to move all but the bottom ring from the starting tower to the extra tower, the second argument used in the invocation is the parameter thirdTower, and the last argument is the parameter toTower. This effectively swaps roles of the extra tower and the destination tower during this invocation of the method, and n-1 rings are relocated to the extra tower.

Similarly, when the method is invoked on line 23 of the general solution to move the n-1 rings placed on the extra tower from the extra tower to the destination tower, the first argument used in the invocation is the method’s parameter thirdTower, and the last argument is the method’s parameter fromTower. This effectively swaps roles of the extra tower and the starting tower during this invocation of the method.

When the method hanoi is invoked, and line 12 detects the base case (the value passed to nRings is 1), the output produced by lines 14–15 includes the names of the towers passed to the method’s first and second parameters fromTower and toTower. This ensures that when the invocations on lines 20 and 23 degenerate to the base case, the values of the first and second arguments passed to the method will be included in the base case’s output (lines 14–15).

[image:]

Figure 9.11
The application TowersOfHanoi.

[image:]

Figure 9.12
The output produced by the application TowersOfHanoi.

9.5 PROBLEMS WITH RECURSION

Because only a small percentage of the population has an innate ability to think recursively, most of us need to be trained in how to discover and implement recursive algorithms. To a certain extent, the discovery and implementation process can be methodized, but a good deal of effort is necessary to become a good recursive programmer.

Another problem with recursion is that applications that use recursive algorithms tend to run more slowly. If two versions of the same application were developed, one that used a recursive algorithm and one that used a non-recursive algorithm, the non-recursive version would typically run faster. The difference in speed is due to the manner in which modern computer systems transfer execution to, and return from, an invoked method and the larger number of method invocations that recursive algorithms typically perform by repeatedly invoking themselves.

Every time a method is invoked, whether or not it is recursive, the runtime environment has to suspend the execution of the program to perform tasks associated with the invocation. Typically, these tasks include allocating the memory for the invoked method’s parameters and local variables and transferring the value of the arguments into these parameters. Not only does this take time, but each method invocation requires additional RAM memory for the storage of the method’s parameters and local variables.

Storage must also be allocated to save the contents of the CPU registers and the invoking method’s return address to complete the method’s execution. Java stores this information in an area of storage called the run-time stack. After each invocation completes its execution, the invoking method cannot continue its execution until the information is retrieved from the run-time stack and stored in the CPU’s registers.

As shown in Figure 9.5, the recursive method to calculate n! invokes itself four times to calculate 4!; to compute 40! requires 40 invocations, and n! requires n invocations. A non-recursive, or iterative, version of the method is given in Figure 9.13. It does not issue any method invocations during its execution regardless of the value of n. Its speed advantage over the recursive version increases with increasing values of n. In addition, it does not require storage allocated for the parameters, local variables, CPU register values and return addresses associated with the additional invocations of the recursive version of the method.

[image:]

Figure 9.13
An iterative method that calculates n!.

The number of invocations issued by some recursive algorithms can make the recursive solution incalculable from a time viewpoint. The implementation of the recursive definition of the Fibonacci sequence is one such example.

Definition

The recursive definition of the terms of the Fibonacci sequence:

f1 ≡ 1 and f2 ≡ 1;

for n ≥ 2: fn = fn-1+ fn-2

Consistent with this definition, the first eight terms of the sequence are 1, 1, 2, 3, 5, 8, 13, and 21. This recursive definition has two base cases, f1 ≡ 1 and f2 ≡ 1, two reduced problems, fn-1 and fn-2, and its general solution is fn = fn-1+ fn-2. While this may look innocent, when these base cases, reduced problems, and the general solution are combined as shown in Figure 9.6 and implemented into a recursive method, the number of recursive invocations made to calculate the 40th term in the sequence, f40, is 204,668,309. The reason there are this many invocations is illustrated in Figure 9.14, where the arrows in the figure should be interpreted as the method invoking itself to calculate a term of the series. Referring to the top of the figure, to calculate f40, the method is invoked to calculate f39 and f38. To calculate f39, the method is invoked to calculate f38 and f37. As shown in the remainder of the figure, during the recursive definition of f40, f39 is calculated once, but f38 is calculated twice, f37 three times, f36 five times, f35 eight times, etc.

[image:]

Figure 9.14
Some of the 204,668,309 invocations required to calculate the 40th term of the Fibonacci sequence.

Another problem with recursion is that during a recursive method’s execution, if the recursive chain of invocations gets too long, the storage required for the return addresses and CPU register contents can exceed the capacity of the run-time stack. When this happens, the method’s execution will produce a runtime StackOverflowException error, and unless the exception is caught, the application will be terminated. Below is a summary of the problems with recursion that were discussed in this section:

1.Most programmers need to be trained in how to discover and implement recursive algorithms.

2.The number of recursive invocations issued by a recursive method can make it significantly slower than its interactive counterpart.

3.Methods that implement recursive algorithms can require prohibitively large amounts of RAM storage.

4.Recursive methods are prone to terminating in a StackOverflowException error.

One solution to the last three problems will be discussed in Section 9.5.2.

9.5.1When to Use Recursion

In light of the problems associated with recursion, and considering the fact that recursive algorithms have an iterative counterpart, the question of when we should use recursion in our programs arises. The short answer is when the recursive algorithm significantly reduces the algorithm-discovery and implementation time, and the additional storage requirements and execution time associated with a recursive method are acceptable.

This is not the case for most of the problems presented in Table 9.3. Certainly, the first five problems presented in the table would normally not be coded using recursion because their non-recursive (iterative) solution is easy to discover and simple to code. They were included in the table to facilitate the learning process. On the other end of the spectrum, recursion is usually used to find a greatest common divisor and in the solution to the Towers of Hanoi problem. The following three-line general solution of the Towers of Hanoi is much simpler than a non-recursive solution to the problem:

1.move n-1 rings from tower A to tower C

2.move one ring from tower A to tower B

3.move n-1 rings from tower C to tower B

Other common uses of recursion include the solution of puzzles, such as mazes, the Sudoku puzzle, the Eight Queens problem, the Knight’s Tour, the searching and sorting of lists of data, and the drawing of fractals.

Fractals and the Sierpinsky Triangle

Fractals are mathematical or geometric objects that have the property of self-similarity, that is, each part of the object is a smaller or reduced copy of itself. Geometric fractals are implicitly recursive because they begin by drawing a shape and then extend the drawing by repeatedly redrawing the shape at smaller and smaller scales. Generally speaking, the repetitions are infinite, although the drawing process is normally terminated when the shapes become too small to see.

Given an equilateral triangle, the Sierpinsky fractal is produced by creating three equilateral triangles whose vertices are the three original vertices and the midpoints of the sides adjacent to these vertices. This process is then repeated recursively for the three resulting equilateral triangles. The first three steps in this process are shown in Figure 9.15.

[image:]

Figure 9.15
The first three steps in the creation of a Sierpinsky Triangle.

The fractal shown in Figures 9.16 is a Sierpinsky Triangle on which the process has been repeated six times. It was created by the application RecursiveFractal shown in Figure 9.17. Line 20 of the application invokes the recursive method drawSierpinsky (31–47) to draw the fractal. The invocation passes the method the number of times to repeat the Sierpinsky process (plus one for the drawing of the original triangle), the vertices of the original triangle (declared as Point objects on lines 8, 9, and 10), and the graphics object g because the method draws the triangles (lines 39–41). The vertex at the top of Figure 9.16 is p1, the lower left vertex is p2, and the lower right vertex is p3 (lines 8-10).

[image:]

Figure 9.16
A six-iteration Sierpinsky fractal.

Line 34 tests for the base case, which is when the number of invocations of the method has been decremented to zero by line 42. The general solution is in lines 44–46, which recursively invokes the method to draw three triangles. The vertices of these triangles are one of the vertices passed to the method and the midpoints of the lines joining the other two vertices. Each of these three invocations spawns 363 additional invocations of the drawSierpinsky method for the fractal drawn by the application. The locations of the midpoints of the sides of the triangle passed as the third and fourth arguments on lines 44–46 are calculated by the midPoint method (lines 23–29). The two integer data members of the API Point class (x, y) are public data members, which eliminates the need to invoke set and get methods on lines 26 and 27.

The recursive execution sequence of the lines 44–46 draws all of the blue lines that make up the mostly blue large upper triangle shown in Figure 9.16, before the mostly blue large lower left triangle is drawn, which is drawn before the mostly blue large lower right triangle is drawn.

[image:]

Figure 9.17
The application RecursiveFractal.

9.5.2Dynamic Programming

Dynamic programming is a technique that can sometimes be used to solve three of the problems associated with recursion: unacceptably long execution times, excessive memory requirements, and a StackOverflowException error. It does this by reducing the number of recursive invocations. The basis of this technique is the idea that once a value is computed recursively, it should not be computed again.

For example, Figure 9.18 shows the 25 invocations required to compute the seventh term of the Fibonacci series recursively. During this computation, once the first invocation to compute f3, shown on the lower left side of the figure, completes its execution, the other four invocations to compute f3 shown in the figure could be eliminated because the value of f3 is already known. Once computed, if that value was stored in a static class-level variable, the other four invocations of f3 could be replaced with a new base case that simply returned the value stored in the variable. A similar approach would eliminate three of the four invocations to compute f1, seven of the eight to compute f2, two of the three to compute f4, and one of the invocations to compute f5. The result would be that only seven invocations would be required to compute f7 recursively: one invocation to compute f7, and six more recursive invocations to compute f6, f5, f4, f3, f2, and f1 (see highlights in Figure 9.19).

Figure 9.19 illustrates this improved process of computing f7 = 13 using dynamic programming in the implementation of its recursive algorithm. The invocation of the method to compute f7 still spawns the recursive invocations shown on the far left side of Figure 9.18 to compute f6 though f1 (black arrows in Figure 9.19). Now, however, after these terms are computed and before they are returned (blue arrows in Figure 9.19), the computed values are stored in an array (red arrows) named data in Figure 9.19. In addition, before a recursive invocation is made to compute the value of fi, the ith element of the array is examined to see if it is nonzero. If it is, the value has already been computed, in which case the value is fetched from the array (green arrows in Figure 9.19), and the recursive invocation is not issued.

[image:]

Figure 9.18
The 25 invocations required to compute the seventh term of the Fibonacci sequence recursively.

[image:]

Figure 9.19
The seven invocations required to compute the seventh term of the Fibonacci sequence recursively using dynamic programming.

Referring to the left side of Figure 9.18, this eliminates the need to recalculate f2 when calculating f4, to recalculate f3 when calculating f5, to recalculate f4 when calculating f6, and to recalculate f5 when calculating f7. When dynamic programming is applied to the calculation of the 40th term of the Fibonacci series, the number of invocations of the recursive method is reduced from 204,668,309 invocations to 40 invocations.

The application FibonacciDynamic shown in Figure 9.20 contains two implementations of the recursive algorithm to calculate the nth term of the Fibonacci series. One of these implementations incorporates dynamic programming into the algorithm. After the user is asked to enter the number of the term to be calculated, the application invokes both methods and then outputs the calculated values and the number of invocations required to perform the calculations. A typical input and the resulting outputs produced by the application are shown in Figure 9.21.

The output statement that begins on line 18 invokes the non-dynamic implementation, fib, and produces the first two lines of output shown in Figure 9.21. It is passed the number of the term to be calculated, which was input and parsed on lines 13–16. The method fib (lines 28–42) counts the number of times it is invoked by incrementing the counter variable invocations on line 31. The variable is defined as a class-level variable on line 6, so all of the recursive invocations share it.

Line 33 of the method identifies the two defined base cases and returns the base case value, one, on line 35. Lines 38 and 39 invoke the method recursively to compute the two reduced problems, and their resulting sum is returned on line 40. A typical set of recursive invocations generated by this method when it is passed n = 40 and n = 7 are shown in Figures 9.14 and 9.18, respectively.

The output statement that begins on line 23 invokes the dynamic implementation, fibDynamic, and produces the last two lines of output shown in Figure 9.21. Before the dynamic version of the method is invoked on line 23, line 21 sets the invocation counter back to zero. Like its non-dynamic counterpart, fib, this method (lines 44–75) is passed the number of the term to be calculated (line 44), counts the number of times it is invoked (line 48), and identifies the two defined base cases on line 51. Unlike its dynamic counterpart, line 53 stores the value of these base cases (one) in the array data before returning the value. The array data is defined as a static class-level array on line 7, and its ith element is used to store the ith term of the sequence after it is calculated.

Lines 56–59 check for an additional base case, the value in the nth element of the array data is non-zero, in which case it returns the value. This prevents the recursive invocations to calculate fn-1 and fn-2 when the nth term of the sequence has already been calculated and stored in the array.

Line 62 checks the value data[n-1] to determine if the value of fn-1, the first reduced problem, has not been calculated. When that is the case, line 64 issues a recursive invocation to calculate it and stores the returned value in element n-1 of the array. Line 64 then sets the variable rp1 to the calculated value. Lines 67–71 perform the analogous operations for the second reduced problem, fn-2. The general solution, the value of fn, is calculated and returned on lines 72 and 73.

[image:]

[image:]

Figure 9.20
The application FibonacciDynamic.

[image:]

Figure 9.21
Output of FibonacciDynamic.

9.6 CHAPTER SUMMARY

Recursion is a problem solving tool that can provide a more succinct, elegant solution to a problem than solutions based on other problem solving techniques. Recursive algorithms are implemented within a recursive method, which is a method that repeatedly invokes itself either directly or indirectly until a condition, called a base case, is reached and terminates the sequence of invocations. If the base case is not reached, the method terminates in a stack overflow runtime error because the RAM memory, dedicated to saving the information required to complete each invocation, has been exceeded. While most people don’t naturally possess the innate ability to think recursively, they can learn how to do so via a divide-and-conquer methodology reinforced with lots of recursive problem solving practice.

The methodology consists of discovering a problem’s base case, reduced problem, and general solution and combining these components into a recursive solution to the problem. The base case is a known, defined, or trivial solution to a similar but usually simpler problem. If the problem involves an integer, n, the base case is usually a version of the problem when n is zero or one. For example, the base case for nn could be the definition, x0 ≡1, or the trivial case x1 = x.

The reduced problem is a simpler version of the problem that satisfies this condition: when the relationship between the problem and reduced problem is repeatedly applied to the reduced problem, it becomes the base case. For example, the relationship between xn and the candidate reduced problem xn-1 is the reduction of the exponent by one. When this is repeatedly applied to the reduced problem xn-1, it becomes xn-2, which becomes xn-3, which eventually becomes both base cases: first x1 and then x0. The discovery of the reduced problem is normally the most difficult part of the methodology.

The general solution is the recursive solution to the original problem under the assumption that the solution to the reduced problem is known. For example, if we know how to calculate xn-1, then xn can be calculated by multiplying xn-1 by x. Once a valid base case, reduced problem, and general solution have been discovered, the last step of the methodology is to combine them as shown in Figure 9.6. While the methodology cannot be used to formulate all recursive algorithms, by practicing with problems within its domain, we will develop the skills necessary to extrapolate the methodology to the recursive solution of problems beyond its domain.

It is important to understand not only how to use recursion, but when to use it or not use it as well. It should be used when the recursive algorithm significantly reduces the algorithm-discovery and implementation time and when the additional storage requirements and execution time are acceptable. Appropriate problems for recursive solutions are those whose structures are inherently recursive, such as trees, mazes, nested lists, and fractals.

Solutions for some of the common recursive problems are presented in Table 9.4.

Table 9.4
Base Cases, Reduced Problems, and General Solutions for Several Problems With Recursive Solutions

[image:]

Knowledge Exercises

1.True or false:

a) A method that invokes itself directly or indirectly is said to be recursive.

b) By definition, zero factorial is equal to one.

c) Finding the base case is the most difficult part of discovering a recursive algorithm.

d) Every problem has a recursive solution.

e) Implementations of recursive solutions can result in a StackOverFlow error.

f) Recursion is useful in drawing fractals.

g) Implementations of recursive solutions always execute quickly.

2.Which invocation of a recursive method takes the longest time to complete: the first invocation or the last?

3.Which of the flow-chart symbols in Figure 9.6 makes the algorithm it depicts recursive?

4.Calculate the value of 8! using both iterative and recursive techniques.

5.Calculate the value of the sixth term of the Fibonacci sequence using both iterative and recursive techniques.

6.How many terms of the Fibonacci sequence are calculated when the recursive technique (Figure 9.7) is used to calculate the sixth term of the sequence?

7.What is the name of the technique used to reduce the calculations performed in Exercise 6?

8.How many terms of the Fibonacci sequence are calculated when the technique of Exercise 7 is applied to Exercise 6?

9.Give the base case, reduced problem, and general solution used in the recursive solution of the calculation of the sum of the even integers from n up to m, where both n and m are even.

10.Explain why (n-2)! is not a valid reduced problem for n!.

11.Why is it important in the calculation of a factorial that zero factorial be defined as 1?

(0! ≡1)

12.Use a recursive algorithm for the greatest common divisor to compute the greatest common divisor of 15 and 255.

13.What is the last step in the recursive solution-discovery methodology discussed in this chapter?

14.How many moves would be required in the Towers of Hanoi problem to move six rings? How many for ten rings? How many for n rings?

Programming Exercises

1.Write a recursive method that is passed two integers, x and y, and returns the value of x raised to the power y. Include the method in an application that verifies its functionality.

2.Write a recursive binary search method that is passed an array of integers and an integer value and returns the index of the array that contains the integer passed to it. If the integer is not found, the method returns -1. Include the method in an application that verifies its functionality.

3.Write a recursive method that calculates the sum of the elements of an integer array passed to it. Include the method in an application that verifies its functionality.

4.Write both a recursive and an iterative method to find and return the greatest common divisor of two integer arguments, x and y, passed to it. Include the methods in an application that verifies their functionality.

5.Write a recursive method that returns true when the string passed to it is a palindrome. A palindrome is a string that reads the same backwards and forwards. For example, “MADAMIMADAM,” “TOOT,” and “WOW.” Include the method in an application that verifies its functionality.

6.Write a recursive method that outputs the string passed to it in reverse. Include the method in an application that verifies its functionality.

7.Write a graphical application that moves one of the Towers of Hanoi rings from one tower to another every time the up button of the game board is clicked. The program should begin by asking the user to input the number of rings to be relocated, and show the entire solution.

Enrichment

1.Binary trees are recursive structures. Find out how binary tree traversals are performed and explain the recursive algorithms for in-order, pre-order and post-order tree traversals. Why is recursion a suitable approach to tree traversals?

2.How can a recursive algorithm be used to count the nodes in a binary tree?

3.Fractals have the property of self-similarity, and they are often implemented recursively. Research the characteristics of some well-known fractals, such as the Koch snowflake, the Cantor Set, and the Mandelbrot and Julia sets. Explore their algorithms and implementations.

4.Investigate the Heap Sort and Quick Sort recursive algorithms to discover why they are so efficient. Explain briefly how the algorithms work.

5.The Eight Queens and the Knight’s Tour problems both have recursive solutions. Investigate these problems and the recursive algorithms used to solve them.

6.Recursion is used in solving mazes. Research a recursive algorithm for traversing a maze and explain the base case, the reduced problem, and the general solution.

References

Barnsley, Michael. Fractals Everywhere. San Diego, CA: Academic Press, Inc., 1988.

Mandelbrot, Benoit. The Fractal Geometry of Nature. NewYok: W.H. Freeman and Co., 1977.

Peitgen, Heinz-Otto, et al. Fractals for the Classroom, Strategic Activities, Part One. New York: Springer-Verlag, 1991.

Peitgen, Heinz-Otto, et al. Fractals for the Classroom, Complex Systems and Mandelbrot Set, Vol. 2. New York: Springer-Verlag, 1992.

Roberts, Eric. Thinking Recursively. NewYork: John Wiley and Sons, 1986.

Roberts, Eric. Thinking Recursively with Java, 20th Anniversary Ed. NewYork: John Wiley and Sons, 2005.

Endnotes

1	 Epp, Suzanna, Discrete Mathematics with Applications, 3rd Ed., Brooks Cole, 2004. p, 461.

CHAPTER 10

EXCEPTIONS: A SECOND LOOK

10.1An Overview

10.2Java’s Exception Classes and Exception Objects

10.3Processing Thrown Exceptions

10.4The Throw Statement and Error Messages

10.5Defining Exception Classes

10.6Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we will discuss the features Java provides within its implementation of the concept of exceptions. This will expand our knowledge of the try-catch construct, the API exception classes, and the differences between checked and unchecked exceptions, which were discussed in the context of performing disk I/O. In addition, we will learn how to write methods that throw exceptions when they detect errors, as the methods in the API classes do, and how to create our own exception classes that make our programs more readable. We will also discuss ways of using exceptions to facilitate the implementation of methods that do not normally detect errors and the role of the finally clause in exception handling.

After successfully completing this chapter, you should:

•Be able to use the try-catch construct to process errors detected by methods you invoke and fully understand the execution path of the construct

•Know when to include a finally clause within a try-catch construct and its role in the construct’s execution path

•Understand how to design and implement algorithms that detect errors and throw exception objects

•Be able to distinguish between the checked and unchecked exceptions as well as to know the differences between these two types of exceptions and their appropriate use

•Be able to define and use new exception classes to develop more readable code

•Know how to use the features of exceptions in non-error detecting methods to facilitate their development

•Understand the translator enforced coding order of multiple catch clauses coded within the try-catch construct

10.1 AN OVERVIEW

During the development of a program, a significant amount of time is spent testing the methods of the classes that make up the program because one very important programming goal is to produce an error free program. To improve the chances of attaining this goal, the development process begins by dividing a large program into smaller classes, and each class is divided into a collection of small methods because the solution to small problems tends to be less error prone. Then, each method is written and enters an iterative testing process aimed at exposing and eliminating the errors in the method’s algorithm and its implementation. (Recall that the programming development process was explained in Chapter 1, and Figure 1.28 illustrates this process.)

Unfortunately, a successful completion of this process does not guarantee that a method will never produce a runtime error or an incorrect result because an unanticipated event could occur during its execution. For example, the user might input a zero divisor into a method that divides two inputs, or the user could direct the method to read data from a file that does not exist. To avoid these failure modes, during the design process we should identify the events that will result in a runtime error or an erroneous result and incorporate code into the method that recognizes them when they occur. For example, before a divisor is used, we should always make sure it is not zero, and we should check for the existence of a file before we attempt to read from the file.

Assuming that this error or failure mode recognition process is properly incorporated into the design of a method’s algorithm, we are now faced with the task of deciding what actions to take when these anticipated events occur and incorporating these actions into the method’s algorithm. When the method is part of a class that will be imported into someone else’s program, this becomes an impossible task because the author of the method does not know what action the user of the class wants to take: terminate the program with an informative error message, give the user an opportunity to correct an erroneous input, or some other course of action.

To solve this dilemma, Java and other programming languages use the concept of exceptions. The name of this concept comes from the analogy of someone asking you to do something you cannot or should not do and you respond, “I take exception to your asking me to do that.” A method that has determined it is being asked to divide by zero should take exception to that, and a method that has determined that it is being directed to read data from a disk file that does not exist should take exception to that.

The concept of exceptions is based on the idea that a method’s algorithm should identify the occurrence of a problem and inform the invoker that it occurred. The burden of what is to be done after the problem occurs is passed on to the invoker. This allows for a recovery from the error that is appropriate to, and implemented by, each application that imports the method’s class. For example, one application that received a divide-by-zero exception from a method it invoked could simply inform the program user that division by zero is not possible and terminate, while another application invoking the same method can give the user an opportunity to reenter the divisor.

Exception Terminology: A Baseball Analogy

As mentioned in Chapter 4, the terminology of exceptions comes from a communication analogy between two persons that involves a baseball. One person wraps a message around the ball and then throws the ball to the other person who catches it, unwraps the message, and reads it. Applying the analogy to the communication of error messages, when a method’s algorithm detects a problem, it wraps an error message around an exception object and throws the object to the code block that invoked it. The code block can catch the thrown exception object, unwrap the error message, and process it.

To extend the analogy a bit further, if a person chooses not to catch a thrown ball, some other ordered collection of people can elect to catch it. The runtime environment maintains a history, or the order of a method’s invocation sequence. For example, if the method main invoked method A, and method A invoked method B, and method B invoked method C, then C’s invocation sequence would be main, A, B. Invocation sequences are stored in a structure called the runtime stack. If method C invoked method D during its execution, then C would be added to, or pushed onto, the runtime stack before D’s execution began. The runtime stack would then contain the invocation sequence main, A, B, C.

To return to our analogy, if C chooses not to catch an exception that is thrown by the method it invoked during its execution, D, then each of the methods on the runtime stack are given a chance to catch it in the reverse order in which they were invoked (last in, first out). In our original example, B would be given a first chance to catch the thrown exception object, then A, and then main. We say that the exception object propagates up the runtime stack. If none of the methods on the runtime stack catch the exception, the Java Runtime environment catches and processes it.

NOTE

All uncaught exception objects are caught by the Java Runtime environment.

After catching an exception, the Java Runtime environment outputs an error to the System console that includes the unwrapped message and then terminates the program. This commonly occurs during the development process when a coding error results in a method being invoked that uses a reference variable that contains a null value or an array index is generated that is beyond the bounds of the array. The console outputs, produced by the Java Runtime environment when these two errors occur, are familiar to most of us:

•exception in thread “main” java.lang.NullPointerException

•exception in thread “main” Java.lang.ArrayIndexOutOfBoundsException: -23

Using the techniques discussed in Chapter 4, which are expanded in this chapter, we can catch thrown exceptions and then either continue the program’s execution after exceptions are caught or bring the program to a more informative “soft-landing” termination.

10.2 JAVA’S EXCEPTION CLASSES AND EXCEPTION OBJECTS

Figure 10.1 shows some of the API classes that are direct or indirect subclasses of the class Throwable. Instances of all of these classes are considered Java exception objects that can be thrown and caught by try-catch blocks. Error messages can be wrapped around these objects before they are thrown and unwrapped and processed when they are caught.

NOTE

In Java, an exception object is an instance of the API class Throwable or an instance of a class that is a direct or indirect subclass of it.

Checked and Unchecked Exceptions Classes

As shown at the top of Figure 10.1, the classes Exception and Error are the two direct subclasses of Throwable. The class Error and all of its descendants are unchecked exception classes. Conversely, the class Throwable and the class Exception are checked exception classes. All direct and indirect subclasses of the class Exception are also checked exception classes except for the class RunTimeException and its descendants.

[image:]

Figure 10.1
A subset of the exception classes included in the Java API and their inheritance chains.

When we invoke a method whose algorithm uses an instance of a checked exception to communicate to its invoker that an error has occurred, the invoking method must catch the object or include a throws clause in its heading to inform the translator that it is intentionally going to ignore the error detected by the method it invoked. The syntax of a throws clause is the keyword throws followed by one or more exception class names separated by commas. The exception object classes coded in the clause must be the type of the ignored checked exception or a direct or indirect super class of it.

As shown in Figure 10.1, the class IOException is a checked exception class. Instances of this class and its descendants are thrown by the methods discussed in Chapter 4 that perform disk I/O. That is why the two disk I/O programs shown in Figures 4.20 and 4.23 had to include a throws clause at the end of the main method’s signature (line 6 of Figure 4.20) or perform the disk I/O from within a try-catch construct (lines 39–66 of Figure 4.23) that could catch the thrown checked exception object. If the disk I/O methods threw instances of unchecked exceptions, not including either a throws clause or the try-catch construct in the method that invoked them would be syntactically correct.

NOTE

Thrown checked exceptions must be caught, or the signature of the invoking method must include a throws clause.

Errors that cause instances of the class Error or its descendants to be thrown are considered abnormal conditions; they should normally not occur. They are not caused by programming errors, an I/O error, or something that can be dealt with within an application. When they do occur, they are best processed by the Java Runtime environment, the catcher of all uncaught exceptions. Runtime errors that generate checked exceptions are considered to be situations that can be dealt with by a method within an application and are serious enough that the translator requires that they either are dealt with or that the method indicates that it is intentionally ignoring the error via a throws clause.

Errors that cause instances of the class RunTimeError or its descendants to be thrown are considered errors that will be eliminated during the testing phase of the application’s development, and therefore, the translator does not require that the application process these errors or indicate that they are intentionally being ignored via a throws clause. In situations where the programmer feels that erroneous input or other non-programming error-related events could cause these unchecked exception objects to be thrown, a try-catch construct should be included in the portions of the application where these events could occur.

10.3 PROCESSING THROWN EXCEPTIONS

Exceptions are processed using a try-catch construct. The construct consists of a try clause that is immediately followed by a catch clause. The statements associated with each of these clauses are always enclosed in a set of brackets, even if there is only one statement associated with them. For this reason, they are commonly referred to as try and catch blocks.

The try block is used to detect thrown exceptions, and the catch block is used to process the errors that produced the exceptions. As illustrated in Figure 10.2, one try block can be followed by multiple catch blocks, and the catch blocks must immediately follow the try block. Coding statements in between any of the blocks is a syntax error. In the absence of a finally block, which will be discussed later in this chapter, at least one catch block must be included in the construct.

[image:]

Figure 10.2
Syntax of the try-catch construct.

The first line of each catch block includes a single parameter that is a reference to an exception object. Its type must be Throwable or a descendent of that class. When multiple catch blocks are included in the construct, each block must contain a different parameter type.

The execution path of the try-catch construct is shown in Figure 10.3. The statements in the try block are executed until one of them causes an exception, at which point the execution of the try block statement terminates, and the statements in the catch block whose parameter matches the type of the thrown exception object begins execution.

[image:]

Figure 10.3
The execution path of the try-catch construct.

NOTE

A thrown exception object can be caught by a catch block whose parameter type is a direct or indirect super class of the thrown exception type.

After the statements in the catch block complete their execution, the statements that follow the catch blocks begin execution. If the type of the thrown exception object does not match any of the parameter types in the catch blocks, and it is an unchecked exception, the statements that follow the catch blocks are executed. If an uncaught exception is a checked exception, the method terminates.

Figure 10.4 presents the application ProcessingExceptions that calculates the quotient and remainder of two input numbers and gives the user three opportunities to correct the erroneous input of a zero divisor. The for loop that begins on line 18 provides the three attempts to perform the division. Its statement block (line 19–42) includes the calculations, the error detection of a zero divisor, and the error processing.

Line 22 performs the division of the two numbers initially input and parsed on lines 12–16. Java’s divide operator, used on line 22, throws an ArithmeticException object whenever the operation’s divisor is zero. Because the statement is inside the try block that begins on line 20, whose catch block processes this type of exception (line 26), when the error occurs, the if-else statement that begins on line 28 executes. If three attempts to perform the division have not been made, the if statement’s code block accepts another value of the divisor (Figure 10.5a), and the next iteration of the loop begins. After the third failed attempt to perform the division, the else clause’s code block executes (lines 35–40) outputting an error message (Figure 10.5b), and line 39 terminates the program.

When the division performed on line 22 is successful, the try block completes its execution, and lines 43–45 output the result of the division (Figure 10.5c). The break statement at the end of the try block (line 24) should not be interpreted as breaking out of the try-catch construct; rather, its action is to terminate the for loop. The process of exiting a try-catch construct, illustrated in Figure 10.3, does not involve a break statement; this statement is used to terminate a switch or loop construct. If the try-catch construct were not coded inside the for loop that begins on line 18, the break statement on line 24 would have produced a translation error.

[image:]

[image:]

Figure 10.4
The application ProcessingExceptions.

[image:]

Figure 10.5
Outputs produced by the application ProcessingExceptions.

While it is true that the error checking performed with the try-catch construct used in the application shown in Figure 10.4 could be performed using an if-else statement, in most cases, the use of exceptions make our code more readable and simpler to code when more than one error can occur within in a code block.

The application MultipleCatchBlocks presented in Figure 10.6 is a modified version of the application presented in Figure 10.4. This version of the program uses a second catch block to verify that the two user inputs are integers, and, in the interest of brevity, ends after it processes this or the divide-by-zero error. Determining if the input string is an integer is a relatively simple thing to do because the Integer class’s parseInt method throws a NumberFormatException object when the string passed to it contains any character other than a digit or a leading plus or minus sign. (The API online documentation of every method included in the API identifies the exceptions each method’s throws.)

To take advantage of this fact, the parsing of the inputs has been moved into the program’s try block (lines 17 and 19 in Figure 10.6), and the program’s second catch block (lines 30–36) processes a NumberFormatException object. As shown in Figure 10.2, there is no limit to the number of catch blocks that can be associated with one try block.

Figure 10.7a shows an erroneous (non-integer) user input, which terminates the try block on line 7. Figure 10.7b shows the resulting error-message output by lines 32–34 before the program is terminated by line 35.

[image:]

Figure 10.6
The application MultipleCatchBlocks.

[image:]

Figure 10.7
Outputs produced by the application MultipleCatchBlocks.

Unwrapping Error Messages

The Throwable class’s getMessage method can be used to unwrap an error message. The method returns a string containing the message that was “wrapped around” the exception object that invoked it. The following code fragment outputs the message contained in the object caught by the catch statement:

catch (RuntimeException e)

{

 System.out.println(e.getMessage());

}

10.3.1Non-error Checking Use of Exceptions

There are times when it is advantageous to use a try-catch construct not to detect and process errors but to efficiently identify and process data. Consider the case when an input string contains a mix of characters and numerics, and we want to process just the numerics. For example, add up the numbers in the string:

Please add up 3.4 plus 5 plus -2 OK?

After isolating the tokens (entities separated by white space) in the input string, we can avoid processing (totaling) the non-numeric tokens by using the NumberFormatException thrown by the Double class’s parseDouble method to bypass the totaling algorithm. We are effectively using exceptions to identify the numeric tokens in the string. Normally, the catch block in this type of application is empty and is only included in the application to make it syntactically correct.

The application ParsingNumerics, shown in Figure 10.8, accepts an input string and outputs the sum of the numerics contained in the string. A typical input and output is shown in Figure 10.9.

Line 14 of the application uses the String class’s split method to place the tokens of the string, input on line 12, into the elements of the String array tokens. The right side of the totaling algorithm on line 19 uses the loop variable of the for loop (that begins on line 15) to attempt to parse each token into a double. Because line 19 is inside a try block (lines 17–21), when the token is nonnumeric, the parseDouble method invoked on that line throws a NumberFormatException object, and line 19 does not complete its execution. The exception is caught by the catch statement (line 22), and the next iteration of the for loop begins.

When the parsed token is a numeric, line 19 completes its execution by adding the parsed token to the current total. Then, the token and a plus sign are concatenated into the string numerics. When the loop ends, line 27 replaces the rightmost plus sign in the string numerics with an equal sign. Then, the string and the total of the numeric values are output to a message box on line 28.

[image:]

Figure 10.8
The application ParsingNumerics.

[image:]

Figure 10.9
An input to the application ParsingNumerics and the resulting output.

10.3.2The finally Clause

A try-catch construct can include a finally clause. When it does, as shown in Figure 10.10, the finally clause must immediately follow the last catch clause. Statements cannot be coded between the last catch clause and the finally clause. It is similar to the other two clauses in that it must contain a code block that could be empty or contain one or more statements.

[image:]

Figure 10.10
Syntax of the try-catch-finally construct.

The finally block’s function is to implement the tasks associated with the construct that should be performed after the try block or one of the catch blocks completes its execution. The finally block always executes. Figure 10.11 shows the execution path of the try-catch-finally construct.

[image:]

Figure 10.11
The execution path of the try-catch-finally construct.

The most common use of the finally clause is to close out the processing of the construct. Because the clause always executes, this processing includes the tasks that are common to, and would otherwise be implemented at, the end of the try block and all of the catch blocks. A proper understanding of the use of the finally block is that if it is not included in the construct, its code would have to be pasted into the end of the try block and into the end of all of the catch blocks. A good example of its use is to close all of the files that were opened during the execution of the other portions of the construct.

Java supports a try-finally construct. It is an error-detection and processing construct that does not contain a catch clause. The finally clause must immediately follow the try clause; statements cannot be coded in between them. After the try block completes its execution, the finally block executes, whether or not an exception is generated during the execution of the try block. When the finally block completes its execution, if an exception was not generated during the execution of the try block, the statements in the method that follow the finally block execute. If an exception was generated during the execution of the try block, the method of which it is a part terminates after the finally block completes execution. The statements that follow the finally block do not execute because the thrown exception was not caught. If the exception is a checked exception, the method’s signature must contain a throws clause, or it will not translate.

The try-finally construct is used when the thrown exception is to be propagated up the run-time stack. The finally clause’s code block can be empty, or it can contain the residual processing to be performed before the construct completes execution. For example, files being written to in the try block are closed or an output is performed. The exception thrown during the execution of the try block is not propagated up the runtime stack until the finally block completes its execution.

The application TryFinally, presented in Figure 10.12, contains a method named appendDataItem (lines 20–35), which is invoked on line 11, to write the string data to a disk file. The method uses a try-finally construct (lines 24–33) to make sure that the disk file to which it writes is closed when it ends execution. The signature of the method (lines 20 and 21) contains two string parameters; the first is the name of the file, and the second is the data item to be written to the file. The method does not contain a catch clause because it defers the decision as to what to do when a file output error occurs to its invoker. As a result, its signature contains a throws clause.

Line 28 writes to the file, and line 32 closes the file. Because the file is closed inside the finally block, it is executed whether or not an error occurs. Line 34 informs the user that the disk write was successful. It only executes if an exception is not thrown in the try block because the method does not include a catch clause. The console output shown at the bottom of Figure 10.12 was produced by line 34 after a successful disk write.

If the disk write is unsuccessful, the method ends after the finally block completes its execution. The thrown exception propagates up the runtime stack to the method main, where it is caught by line 13; then line 15 perform its output, and the program is terminated (line 16).

The declaration of the variable fileOut, which is assigned the address of a PrintWriter object on line 27, has to be coded outside of the try block (line 23). Otherwise, it would not be visible to and could not be used by line 32 to close the file.

[image:]

[image:]

Figure 10.12
The application TryFinally and the output it produces.

10.4 THE THROW STATEMENT AND ERROR MESSAGES

When designing an algorithm for a method, we should always consider what could go wrong and include a strategy in the algorithm to detect the error. Even the design of a game piece’s set method could include the ability to detect when the value passed to it is outside a valid range. For example, the setX method in a game piece’s class could include an if statement to make sure the game piece’s new x coordinate is within the boundaries of the game board: minX ≤ newX ≤ maxX, as shown below.

public void setX(int newX)

{

  if(newX < minx || newX > maxX)

  {

   // Take some action

  }

  else

  (

   x = newX;

  }

}

To complete the algorithm, we must decide what action to take when the error is detected; that becomes the code of the if statement’s code block. One strategy may be to set the x coordinate to a value that is within the bounds of the game board. However, this strategy may not be acceptable to all applications that use, or will use, this type of game piece. Even if one strategy can be found, such as asking the game player to re-enter the location of the game piece, one application may require a mouse click on the game board to identify the correct location and another may ask that the new location be entered via a dialog box.

When it is the case that one strategy may not suit the requirements for all applications that use instances of the game piece, the best strategy is for the method to throw an exception object whose message provides as much information as possible about the cause of the error. Then, each application can catch the object, examine the error message, and implement a recovery strategy that best suits the application.

The throw Statement

A method uses a throw statement to throw an exception. The statement begins with the keyword throw, which is followed by a reference to an exception object:

throw exceptionObject;

An exception object is an instance of an exception class, which is the API class Throwable or any of its direct or indirect subclasses. Referring to Figure 10.1, if we want the thrown exception to be an unchecked exception, the object thrown should be an instance of the class RunTimeException or one of its descendants. Checked exception objects are instances of the class Exception or one of its descendants other than RunTimeException.

NOTE

When a method throws a checked exception object, its signature must include a throws clause containing the name of the object’s class or one of its ancestor classes.

Once a decision has been made as to whether the exception will be checked or not, it is good programming practice to declare the exception object to be an instance of an exception class whose name best describes the error that was detected. This makes our programs more readable. For example, if a null reference was detected, the NullPointerException class would normally be chosen.

NOTE

A throws clause begins with the keyword throws followed by the name of one or more exception classes separated by commas.

Creating Error Messages

An error message is created by passing a string containing the message to an exception class’s one-parameter constructor when an exception object is created. The error is wrapped around, or contained in, the object when it is created. The setX method, shown in Figure 10.13, uses this approach on lines 5 and 9 to communicate which game board edge of a 500-pixel-wide board would have been breached by a 40-pixel-wide game piece. Exception object messages can be accessed using the Throwable class’s getMessage method.

[image:]

Figure 10.13
A game piece’s setX method that throws an exception containing a descriptive message.

The signature of the method shown in Figure 10.13 does not include a throws clause because a RuntimeException is an unchecked exception class. An alternative to the nameless objects created on lines 5 and 9 would be to use named exception objects, but the nameless-object approach used in the figure tends to be more readable.

// named exception object alternative to Line 5 of Figure 10.13

RuntimeException e = new RuntimeException("Beyond the board's RIGHT");

throw e;

NOTE

When a string is not passed to an API Exception class’s constructor a default error message is used.

Execution Path of the throw Statement

After a throw statement is executed within a method, the execution of the method ends, and the exception object propagates up the invocation sequence stored in the runtime stack. If the method is a non-void method, a value is not returned from the method.

On the client side, if the method was invoked inside a try block, the try block’s execution ends, and the execution sequence of the catch and finally blocks begins. If the exception is not caught by the invoking method, it continues up the invocation sequence stored in the runtime stack until it is caught. If the Java Runtime environment catches the exception object, the error message is displayed to the system console, and the application is terminated.

The class BoxedSnowman2 is shown in Figure 10.14. Its set methods that begin on lines 37 and 53 throw a RunTimeException object when the value passed to them locates a portion of a snowman beyond the boundaries of the game board. The if statements on lines 39 and 43 of the setX method detect that an erroneous value of the snowman’s x coordinate was passed into the method’s parameter newX. When this is the case, lines 41 and 45 throw a nameless RunTimeException object containing appropriate error messages.

The throwing of the exception objects terminates the execution of the setX method, leaving the x data member unchanged. If an erroneous value is not detected, line 47 performs the normal function of a setX method: setting the value passed to the method into the object’s x data member. Similar modifications have been made to the standard coding of the class’s setY method (lines 53–64).

The class’s three-parameter constructor (lines 9–19) has also been modified to only create snowmen that are completely on the game board. In the interest of brevity, this is accomplished by invoking the class’s setX and setY methods (lines 12 and 13) to store the object’s location in its x and y data members. If either of these method invocations, coded inside the try block that begins on line 11, produces a thrown exception (because the intialX or intialY value passed to the constructor is invalid), the constructor does not complete its execution, and it does not return the address of a newly created snowman. Because the constructor does not contain a catch clause, a thrown exception propagates its way up the invocation sequence stored in the runtime stack. The empty finally clause, lines 15-17, is included to make the use of the try clause syntactically correct.

[image:]

[image:]

Figure 10.14
The class BoxedSnowman2.

The application ThrowingExceptions, shown in Figure 10.15, displays a BoxedSnowman2 object on the game board at a user specified location, which can be moved around the game board using the keyboard cursor control keys. The application uses try-catch constructs on lines 24–32 and lines 50–82, to ensure that both the initial and subsequent game board locations of the snowman are within the boundaries of the board.

The loop that begins on line 16 and ends on line 33 asks the user for the initial location of the snowman and creates a snowman at that location. It continues to execute until the user enters a valid initial (x, y) BoxedSnowman location: one that would position the entire snowman on the game board. The user-specified x and y coordinates, input and parsed on lines 17–22, are passed to the BoxedSnowman2 class’s three-parameter constructor on line 26. Because line 26 is inside of a try block (that begins on line 24), if the setX or setY methods in the BoxedSnowman2 class invoked by its constructor throws an exception, line 26 will not complete its execution. As a result, the snowman is not created.

The thrown exception is caught on line 29; line 31 outputs the exception message, and the next loop iteration begins. An erroneous user input and the corresponding output are shown at the top of Figure 10.16. When the user enters a valid location for the snowman, line 26 places the address of the newly created snowman in the variable s1, and the truth value of the Boolean variable correctXY used on line 16 is set to true (line 27), which terminates the loop. Line 35 causes the draw call back method to execute, and line 43 displays the snowman on the game board (Figure 10.16c).

Lines 46–83 implement the game environment’s keyStruck call back method, which is used to move the snowman around the game board. Inside of its switch statement that begins on line 52, lines 57, 63, 69, and 75 invoke the BoxedSnowman2 class’s set methods to move the snowman when one of the cursor control keys is struck. If these methods determine that the new x or y coordinate passed to them is invalid, they do not change the snowman’s location and terminate after throwing a RuntimeException object.

Because the set method invocations are coded inside a try-catch construct (lines 50–82), the thrown exception is caught on line 79. Its message is unwrapped and placed in the String object message (line 81). When the keyStruck method ends, the draw call back method executes, and line 42 outputs the thrown error message to the top of the game board (Figure 10.16d). The next time a key is struck, the object message is set to the empty string on line 48, which causes the draw call back method to eliminate the message after a valid snowman motion.

[image:]

[image:]

[image:]

Figure 10.15
The application ThrowingExceptions.

[image:]

[image:]

Figure 10.16
Output produced by the application ThrowingExceptions.

10.5 DEFINING EXCEPTION CLASSES

A new exception class can be defined by extending an existing exception class. Defining and using new exception classes in our programs makes them more readable and easier to understand because the names we give to them can be more representative of the error that caused the exception to be thrown. For example, if we defined an exception class named OffBoardException and used it on line 41 of Figure 10.14 and line 29 of Figure 10.15, the reason for throwing and catching the exception would be self-evident.

The concepts involved in and the syntax used to extend exception classes are the same concepts and syntax that apply to extending non-exception classes discussed in Chapter 8. The child class inherits all of the methods and data members in its inheritance chain, which includes the getMessage method defined in the class Throwable.

NOTE

The child of a checked exception class is always a checked exception class.
The child of an unchecked exception class is always an unchecked exception class.

Figure 10.17 presents the definition of the exception class OffBoardException, which is an exception class because it extends RuntimeException and is an unchecked exception class because RuntimeException is an unchecked exception class. The brevity of its code is typical of most non-API exception classes and can be used as a template for defining other exception classes. Both of its constructors simply invoke the RuntimeException class’s constructor. The message passed to the class’s one-parameter constructor (line 7) is passed to its parent’s constructor, which wraps it around the object it creates. The inherited default message is the null string. This class could be used everywhere the RuntimeException class is used in Figures 10.14 and 10.15.

[image:]

Figure 10.17
The non-API exception class OffBoardException.

Catch Block Ordering

The application DefinedExceptionClass, shown in Figure 10.18, demonstrates the order in which exception objects in the same inheritance chain must be caught, whether they are API classes or defined exception classes. The catch clause that catches an OffBoardException object (line 13) is coded before the clause that catches its parent class’s RuntimeException object (line 19), which is coded before the clause that catches its parent class’s Exception object (line 25).

The correct ordering of the catch blocks is up the inheritance chain of the exception objects from child to ancestors. This implies that when one of the catch blocks in a try-catch construct catches a Throwable exception object, that catch clause must be coded last. The ordering is a consequence of the polymorphic feature of inheritance. Because a parent type parameter can point to (reference) a child, a catch clause that catches an instance of a super class will also catch an exception object in a class that inherits directly or indirectly from it. Coding the catch blocks of a try-catch construct in any other order produces a translation error because the catch blocks that catch the child class exceptions have been rendered unreachable.

The method test, coded on lines 32–48 of Figure 10.18, throws exception objects when it is passed the value 1, 2, or 3. It is invoked on line 11 inside a try block that begins on line 9 and is passed the loop variable of the for loop that begins on line 7. This causes it to throw one of three different types of exceptions. Because one of the exceptions is a checked exception (an instance of the class Exception on line 36), the method’s signature (line 32) contains a throws clause.

The order of the catch clauses coded on lines 13–29 is consistent with the inheritance chain of the exception classes OffBoardException (Figure 10.17), which inherits from the class RuntimeException, which inherits from the class Exception (Figure 10.1). These catch clauses output the message attached to the objects they catch, proceeded by annotation particular to each catch clause (Figure 10.19). The messages are created on lines 36, 40, and 45.

[image:]

[image:]

Figure 10.18
The application DefinedExceptionClass.

[image:]

Figure 10.19
The output produced by the application DefinedExceptionClass.

10.6 CHAPTER SUMMARY

One very important programming goal is to produce reusable methods, and the concept of exceptions helps us achieve this goal. It gives us the ability to defer the decision as to what to do when an error occurs during the execution of a method to the invoker of the method. This extends the reusability of a method because the action to take when an error occurs is usually application dependent. One application may choose to terminate the program, while another application may re-invoke the method after giving the user a chance to correct an erroneous input.

Under Java’s implementation of exceptions, the invocation of a method that could detect an error is coded inside the try clause of a try-catch construct, and the clause is immediately followed by one or more catch clauses. Each catch clause has a parameter list with one parameter whose type is the API class Throwable or one of its descendants. The type used in each parameter list must be different.

When the method detects an error, it executes a throw statement, which terminates the execution of the method and the invoker’s try clause. The throw statement includes an exception object in the class Throwable, or one of its descendants, that contains information about the error. This object is passed to the catch clause that contains a parameter in the exception object’s class or one of its ancestors. The code block of that, and only that, catch clause then executes to perform the application-dependent processing associated with this type of error.

Instances of the class Throwable and each of its subclasses contain default error information, which can be overwritten when these exception objects are created by passing a string to the classes’ constructors. The code within the catch clauses can invoke the getMessage method on the exception object passed to them to fetch the string containing the exception error information.

The API classes Exception and Error are the two direct subclasses of Throwable. The class Error and all of its descendants are unchecked exception classes, while the Throwable and Exception classes are checked exception classes. Conditions that cause instances of the Error class or its descendants to be thrown are considered abnormal and are best processed by the Java Runtime Environment. The method that contains the try-catch construct must catch a thrown checked exception, or the method must inform the translator that it will intentionally ignore the error via a throws clause added to its signature. If a thrown checked exception is not caught within an application, the runtime environment terminates the program and outputs the exception object’s error information.

A finally clause can be used to implement tasks that should be performed after a try-catch block is completed. It is coded immediately after the last catch block, and it always executes. It must be coded after the try clause when there are no catch clauses associated with the try clause.

When designing an algorithm for a method, we should always consider what could go wrong and include a strategy in the algorithm to detect the error. Usually, the Boolean condition of an if statement is used to detect an error, and the if statement’s code block creates and throws an exception object. A new exception class can be defined by extending an existing exception class. Defining and using new exception classes in our programs makes them more readable and easier to understand because the name we give to the class can be more representative of the error that caused the exception to be thrown. All of these design issues contribute to the development of readable, more reusable and maintainable software.

Knowledge Exercises

1.True or false:

a) An important programming design goal is to produce an error-free program.

b) Dividing a large program into smaller classes and testing each class guarantees that errors will not occur at runtime.

c) All uncaught exception objects are caught and handled by the Java Runtime environment.

d) The class Throwable has one direct subclass: Exception.

e) Abnormal conditions that cause an instance of the class Error to be thrown are best processed by the Java Runtime environment.

f) The class Exception is an unchecked exception class, and the class Error is a checked exception class.

g) An exception object is an instance of the class Throwable or one of its subclasses.

h) The API exception classes cannot be extended.

i) Any method that throws a checked exception must include a throws clause in its signature.

j) If a method throws an exception, the method invoking it must contain a try-catch block.

k) The code block of a finally clause always executes.

l) If the methods invoked inside a try block do not throw an exception, the program skips the catch block(s).

m) A try-catch construct can also be used to identify and process data as well as to detect errors.

n) The child of an unchecked exception class is always an unchecked exception class.

o) Some methods in the API classes throw exceptions.

2.Mention at least three things that might cause a runtime error or an exception in a program.

3.When would you choose to throw a checked rather than an unchecked exception?

4.Name a class you would extend to create an unchecked exception class.

5.Name a class you would extend to create a checked exception class.

6.Explain in some detail what happens when an error, such as division by zero, occurs in a Java program.

7.Tell whether each of these exceptions or errors is checked or unchecked:

a) IOException

b) RunTimeException

c) EOFException

d) ArithmeticException

e) NullPointerException

f) AnnotationFormatError

g) IndexOutOfBoundsException

h) VirtualMachineError

8.Explain the difference between the throws clause and the throw statement. Give an example of how each one is used.

9.Explain how you would fetch the string containing a caught exception object’s error information.

Programming Exercises

1.Write a program that creates a three-element array and asks the user which element of the array should be output. Use a try-catch block to recover from an attempt to output an array element whose index is not 0, 1, or 2. Inform the user that an erroneous input was made, output the exception object’s error information, and give the user an unlimited number of opportunities to correct the error. Do not use an if statement in this program.

2.Repeat Exercise 1 and include a separate method that is passed the array and the input index and performs the output. This method should use an if statement to detect an erroneous index and throw an unchecked exception containing the message: The range of the index must be between 0 and 2.

3.Repeat Exercise 2, modifying the method so it throws a checked exception in a new exception class named InvalidIndexException.

4.Repeat Exercise 2, modifying the method so it throws a checked exception in a new exception class named IndexTooLowException when the array index passed to the method is too low, and throws a checked exception in a new exception class named IndexTooHighException when the array index passed to the method is too high.

5.Write a program to output the number of operators contained within a valid arithmetic expression input by the program user. Use a try-catch construct to count the operators. Hint: the parseDouble method throws an exception when it is passed anything other than a string that represents a valid real number or a valid integer.

6.Write a static method named inputInt within a class named ValidNumericInput that displays the prompt passed to it in an input dialog box, accepts an integer input from the user, and returns the parsed integer. If the user does not enter a valid integer, or if the user clicks OK or Cancel without making an entry, the method throws an exception in the programmer-defined exception class BadIntegerEntry. The thrown exception object will contain a message indicating which event caused the exception: no entry or non-integer entry. Use the method in an application that gives the user an unlimited number of opportunities to enter two valid integers by invoking the method inside a try-catch construct coded inside a loop. Each time an erroneous input is made, the application will output the thrown exception object’s error message before re-invoking the method. Note: a no-entry Cancel click returns null, and a no-entry OK click returns the empty string "″.

7.Write a program to accept a sentence from the keyboard terminated by a new line. Use the Integer class’s parseInt method to locate all the integers. Then, write them to the disk file numbers.txt (don’t specify a path) one number per line in the order in which they appear in the sentence. After storing the integers in the disk file, ask the user which of the numbers to delete from the file via an invocation of the inputInt method described in Exercise 6. When the method throws an exception, the application should tell the program user which mistake (no-entry or non-integer entry) occurred and ask for another entry. Before terminating, the application should read the modified contents from the file and output them to the system console.

Enrichment

1.Read the API documentation on the class Throwable and its two direct subclasses.

2.Investigate how to determine from the API online documentation if an API method throws and exception and what exception it throws.

3.Investigate how the language C++ implements the concept of exceptions.

CHAPTER 11

GRAPHICAL USER INTERFACES

11.1Overview

11.2Enhancing Swing Dialog Boxes

11.3FX Dialog Boxes

11.4Creating a GUI Interface

11.5Event Processing

11.6The Pane Container and Layout Managers: A Second Look

11.7Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we will learn how to create more user-friendly and informative dialog boxes and how to build and incorporate graphical user interfaces (GUIs) into programs that can be run on computers as well as tablets and smartphones. The use of these point-and-click interfaces makes interacting with a program more user-friendly. Java provides three packages, the Abstract Window Toolkit (AWT), Swing, and FX to facilitate the development of dialog boxes and GUIs. FX will be used in most of this chapter.

Principles for designing a GUI interface will be explained and illustrated as will the techniques for adding GUI components to a program’s window, and performing the processing associated with the user’s interaction with its components. These components include panes, buttons, text fields, labels, tool tips, and 2-D graphics. Various layout managers, used to organize the components, will be discussed and compared.

Methods called event handlers will be discussed. These methods are invoked by the Java Runtime Environment (JRETM) when an event, such as a mouse click or a mouse drag, is performed on the GUI. We will learn how to write these event handler methods and how to register the methods with the Runtime Environment.

After successfully completing this chapter you should:

•Be able to create and use more informative and user-friendly dialog boxes.

•Know how to design and implement GUIs that contain panes, text fields, buttons, labels, tool tips and 2-D graphics using Java’s FX features.

•Know the three (or sometimes four) step process for adding components to a container.

•Be familiar with layout managers to rapidly position components in a GUI window.

•Understand how to write event handler methods to process mouse, keyboard, timer, and paint events that occur on a GUI.

•Know techniques for registering event handler methods with the Java Runtime Environment, so they are executed when the specific events occur.

•Be familiar with Java Lambda expressions, and their role in registering event handlers.

11.1 OVERVIEW

A graphical user interface is a means of interacting with a program. Most often referred to using the acronym GUI (pronounced “goo-ee”), its design goal is to make the use of a program self-evident. GUIs are much more user-friendly than the original command-based interaction scheme in which a program would issue a text-based prompt that generically amounted to “what would you like to do?” and the user responded by typing a command such as “tax program”.

Developed during the late 1970s, graphical interfaces were initially used to communicate with the operating system, but their power and ease of use was quickly adopted into all of the applications run on a system. Wherever possible, text-based prompts are replaced with icons, and keyboard input is replaced with mouse clicks, audio commands, and touch screen/pad input.

Just as graphical road signs succinctly communicate information to motorists, GUI objects, called components, permit us to quickly navigate our way through a program. The features of each of these components, which include clickable buttons, check boxes, radio buttons, scroll bars, sliders, and menu bars, to name a few, facilitate particular I/O functions that are common to most programs. Figure 11.1 shows some of the more commonly used components.

[image:]

Figure 11.1
Commonly used GUI components.

While the use of GUIs has reduced the time and effort required to interact with a program, incorporating a GUI into a program can significantly increase the time and effort required to develop it. In reaction to this, many integrated development environments provide a GUI-builder feature that allows the programmer to rapidly develop the interface. It is built by selecting commonly used GUI components from a graphical display, dragging them to a position on a displayed window that will become the user interface, and then setting features associated with them such as their color, size, text type, and visibility. As the programmer builds the interface, the IDE adds the code to the program that creates and displays the components and adds empty methods to the program that will execute when the user interacts with the components. The programmer then adds the code to perform the application-dependent processing associated with the components to these methods.

Java’s GUI Feature Evolution

The Java code to generate a graphical interface relies heavily on three groupings of classes added to Java. The first of these groupings of classes added was named the Abstract Windows Toolkit (AWT). This was superseded by the Swing collection of classes that both duplicated and extended the range of the types of GUI components available in the AWT package to include file and color-chooser dialog boxes. It also provided additional features such as tool tips and the ability to interact with the GUI in a drag-and-drop mode.

All Swing components were designed to be 100% cross-platform compatible. Java applications that use components in the Swing package are less dependent on the graphical features of the platform’s operating system on which the application is run. For example, minor differences in the components’ appearance (or look) and the change in their appearance when the user interacts with them (their feel) that are platform dependent can be eliminated. We already have some experience with using Swing GUIs, in that the input and message dialog boxes introduced in Chapter 2 are part of Swing’s JOptionPane class.

In 2011, a third grouping of GUI generating classes named FX, was added to Java. It provides features not available in Swing, such as support for mobile touch devices, easier animation, and the use of special effects within the GUI, and enhanced ability to place GUI components inside of other GUI components. FX is the future of GUIs in Java. In future enhancements to Java GUIs will be added to FX. However, Oracle has stated that Swing will continue to be part of Java.

In the next section we will cover several techniques for enhancing the look and functionality of Swing’s two dialog boxes. In the remainder this chapter, and in the entire next chapter, we will discuss the generation and use of FX graphical user interfaces. The equivalent topics for Swing graphical user interfaces are discussed in the Swing versions of these two chapters that are on the book’s companion disk, and posted to the book’s companion files FTP site.

11.2 ENHANCING SWING DIALOG BOXES

As we have learned in Chapter 2, Swing’s dialog boxes provide the ability to easily add a graphical user interface to our programs to perform two tasks common to most applications: accept a user input in response to a displayed prompt; or to display a message to the user. In both cases the execution of the code that displayed the dialog box’s window is suspended until the user responds to, or closes, the dialog box.

In addition to the versions of the showInputDialog and showMessageDialog methods discussed in Chapter 2, the JOptionPane class provides several overloaded versions of these methods and other methods that can be used to provide more informative and user-friendly dialog boxes. The default icon and title displayed in the dialog boxes can be changed, the dialog boxes can be displayed in the middle of a specified window such as the game board’s window, and a default input or a set of input selections can be displayed in an input dialog box.

Table 11.1 presents a summary of the overloaded versions of the showInputDialog and showMessageDialog methods, with their signatures given in its left column. The check marks in the columns to the right identify the features of each version of the methods. The top section of the table presents the input dialog methods, and the message dialog methods are presented in the bottom section. The signatures of the methods that have been used up to this point in the textbook are shown at the beginning of the two sections of the table. All of the input dialog box methods return a reference to a String object except for the last one shown in the top portion of the table, which returns an Object reference.

Table 11.1
Options for Displaying Input and Message Dialog Boxes

[image:]

The parameter window in the signatures of the message-box methods and last four input-box methods could be passed a reference to a GUI component such as a window. When it is, the dialog box is displayed in the center of the component. If the parameter is passed a null value, the dialog box is displayed in the center of the window of the program that invoked the method. To display it in the center of the game board window, the method would be passed the GameBoard object gb as shown on line 12 of the application CenteredMsgBox, shown in Figure 11.2. The output it produces is shown in Figure 11.3.

Normally, the prompt and defaultInput parameter used in the input dialog method signatures shown in the Table 11.1 are passed a String object. The defaultInput is displayed in the text area of the input box when it appears on the monitor, and can be changed (overtyped) by the program user. The argument passed to the parameter title (used in the fifth, sixth, and last rows of the table) is displayed in the title bar at the top of the dialog box. The parameter message in the message dialog method signatures is normally passed a String object or any object that contains a toString method. The parameter icon in the sixth row of the table is used to pass a programmer-defined instance of the Icon class to the method.

[image:]

Figure 11.2
The application CenteredMsgBox.

[image:]

Figure 11.3
The output produced by the application CenteredMsgBox.

The methods in Table 11.1 whose signatures contain the parameter messageIcon can be passed any of five static constants defined in the class JOptionPane. This parameter is used to specify which one of five predefined icons will be displayed on the left side of a dialog box. Table 11.2 gives the names of the constants, their integer value, and the icons that are associated with each of them. The methods in Table 11.1 whose signatures do not contain the parameter messageIcon always display the default icons identified parenthetically in the rightmost column of Table 11.2. An integer literal between -1 and 3 inclusive (one of the five constants’ values) can alternately be passed to this parameter.

Table 11.2
The JOptionPane Class’s Predefined Dialog Box Icon Constants and Icons

[image:]

The last method shown in the input portion of the Table 11.1 implements all the features presented in that portion of the table. In this version of the method the default input is designated to be one of a valid set of inputs contained in an array passed to the method’s selectionValues parameter. The designation of the default value is performed by passing one of the elements of the array to the parameter initialSelectionValue. The elements of the array can be String objects, instances of a class that contains a toString method, or several other options that will be discussed later in this chapter. If a null value is passed to the parameter selectionValues, the user can type the input value; otherwise, the user can only select one of the objects in the array, which are displayed in a drop-down box.

The application EnhancedDialogBoxes presented in Figure 11.4 demonstrates the use of all of the features implemented by the overloaded dialog box methods presented in Table 11.1, except centering the dialog box in a GUI component (which was demonstrated in the application presented in Figure 11.2). The dialog box outputs produced by the program are shown in Figure 11.5.

The string ERROR passed to the second parameter of the method invoked on line 12 of Figure 11.4 appears in the title area of the message box it outputs (Figure 11.5a). This message box also contains the non-default Error icon, whose number (0) is passed to the method’s third parameter using the static constant JOptionPane.ERROR_MESSAGE.

Line 15 displays an input dialog box containing the default input, Sophomore, as shown in Figure 11.5b. The default value is passed to its second parameter on line 16.

The method invoked on line 19 displays the input dialog box that is shown in Figure 11.5c. The box contains the title Standing, passed to the method’s third parameter on line 21, and the Question icon because the numeric literal 3 is passed to its fourth parameter. The default input Junior is displayed in the text area of the input box because the third element of the array, defined on lines 7 and 8, is passed to the method’s last parameter on line 24. The null value passed to the method on line 22 indicates that a programmer-defined icon is not passed to the method.

Figure 11.5d shows the input box displayed after the user clicks the box’s down arrow to display the valid input choices passed to the method on line 23. The coercion on line 19 is necessary because the method invoked on that line returns an Object reference variable that contains the address of the user selected String object contained in the array passed to it on line 23.

[image:]

Figure 11.4
The Application EnhancedDialogBoxes.

[image:]

Figure 11.5
The output produced by the application EnhancedDialogBoxes.

11.3 FX DIALOG BOXES

The early versions of FX did not support dialog boxes, but current versions do. Not only do these dialog boxes provide all of the functionality and enhancements of Swing’s dialog boxes described in Section 11.2, but FX’s implementation of dialog boxes permits the programmer to add additional GUI components to them. For example, we can add a second input text field to one of FX’s dialog boxes so that the user can input both a username and password before clicking the dialog box’s OK button.

FX’s Alert, TextInput, ChoiceDialog, and Dialog classes are used to create dialog boxes. An instance of the FX Alert class is analogous to a Swing message dialog box, and instance of the FX TextInputDialog class is analogous to a Swing input dialog box. An instance of the FX ChoiceDialog class is an input dialog box that can display a group of input choices. The FX class Dialog can be used to construct other programmer composed dialog boxes.

The graphical interface that represents instances of these classes share a common layout consisting of the three rectangular areas, sometimes referred to as bars, shown in Figure 11.6(a). The top area of the dialog box is referred to as its Title area, the middle area its Header area, and the bottom area its Content area.

[image:]

Figure 11.6
FX dialog box areas.

The Header area can be eliminated as shown in the dialog box depicted in Figure 11.6(b). When it is eliminated, the icon is placed in the Content area. This presentation of an FX dialog box more closely models the Swing dialog boxes that do not contain a Header area.

Unlike Swing dialog boxes, the code that creates an FX dialog box must end with a separate statement that causes the dialog box to be displayed to the user. Normally the method invoked is the method showAndWait on the dialog box instance. This not only displays the dialog box, but also pauses the program execution pending a user action on the dialog box. The action includes clicking a button displayed within the dialog box, clicking the X in its title bar, or striking the keyboard’s Esc or Enter key. Assuming the dialog box was named aDialog, the line of code would be:

aDialog.showAndWait();

This line of code, and the code to create the dialog box that will be introduced in the next section, must be placed inside a JavaFX application. The structure of a JavaFX application is different from the structure of the Java (non-GUI) applications discussed thus far in this text. It will be explained in Section 11.3.2.

11.3.1	FX Message Dialog Boxes

The easiest way to create an FX message dialog box that displays a message to the program user is to declare an instance of the Alert class using the class’s three-parameter constructor. To output the message “The Program is terminating” we would code:

Alert messageDialog = new Alert(Alert.AlertType.INFORMATION,

"The Program is terminating", ButtonType.OK);

messageDialog.showAndWait();

This would produce the message box shown in Figure 11.7(a), and the program execution would pause pending a user action on the dialog box. The first argument passed to the constructor specifies the icon to be displayed, the second argument is the displayed message, and the third argument determines the annotation on the box’s button. Three other convenient choices for specifying the displayed icon are the AlertType class’s static constants WARNING, ERROR, CONFIRMATION that display the other three icons shown in Table 11.2. The AlertType class’s static constant NONE is used to eliminate the display of an icon within a dialog box.

To eliminate the Header area of the dialog box and move the displayed icon to the Content area, we can declare an instance of the Alert class using the class’s one parameter constructor. Then we would invoke two other Alert class methods to eliminate the Header area and specify the displayed message. To output the message “The Program is terminating” we would code:

Alert messageDialog = new Alert(Alert.AlertType.INFORMATION);

messageDialog.setHeaderText(null); //Eliminates the header

messageDialog.setContentText("The Program is terminating"); //Displayed message

messageDialog.showAndWait();

This would produce the message box shown in Figure 11.7(b). When the three-parameter constructor is used to create the Alert object, inserting the above invocation of the setHeaderText method in between the invocation of the constructor and the showAndWait method will also eliminate the Header area.

[image:]

Figure 11.7
FX messages dialog boxes.

Normally, for a message dialog box, we would like the text displaed in the Title area to be the default text “Message”. When that is not the case, we can use the Alert class’s inhertited setTitle method to change the text. The below line of code would change the displayed title bar text of a dialog box named dialogBox to “Thought you should know”.

dialogBox.setTitle("Thought you should know");

This statement can be used to change the title bar text of any type of an FX dialog box.

11.3.2The FX Program Structure

The structure of a JavaFX GUI application, which is shown in Figure 11.8, does have two things in commom with the structure of the Java applications presented in previous chapters. They both begin by defining a program’s class (line 6), and they both contain the method main that is invoked by the Java Runtime Environment to begin the program’s execution (line 19).

However, in an FX applicaion, the program’s class must extend the class Application (line 6), and most often the method main in an FX application does not do much. It simply invokes the inherited method launch (line 21) and passes launch the arguments passed to it by the Java Runtime Environment. Then the FX application’s life time begins.

First the application’s empty GUI user interface is created, which for a desktop application is a window, and the Java Runtime Environment invokes the application’s init method, then its start method, and then its stop method. The signatures of these methods are defined in the class Application. The Application class’s implementation of the init and stop methods do not contain any code, and can be overridden within the application to perform intialization tasks, before the GUI interface is displayed, and shutdown tasks after the GUI interface is closed. These two methods are not overridden in Figure 11.8.

[image:]

Figure 11.8
FX program structure.

The Application class’s start method is abstract, and must be overridden within the application (lines 8–17). This method contains one parameter that is passed the user interface object, an instance of the class Stage (line 9), created by the Java Runtime Environment. If we ignore the application’s intialization and shutdown tasks, this method, rather than the FX application’s method main, should be thought of as the entry point of a JavaFX application. Since main does not have access to the user interface that is passed to the start method, the code that would have been placed in the method main in a non-GUI Java application is coded in the start method.

In the FX theater analogy jargon, an instance of the class Stage is refered to as the application’s “stage” to which we can add a “scene”. The stage is a desktop application’s window. The scene will be displayed on the stage. It is an instance of a Scene object (line 12). When the scene is created it is passed an instance of a decendent of the class Parent, which is declared on line 11 to be an instance of the Pane class named root. The choice of this class is application-dependent. It can be thought of as a “container” object, because it normally contains a collection of GUI components (buttons, text fields, ….) to be displayed on the user interface. These objects, being application-dependent, would be created and then added to the container object prior to line 12.

The collection of GUI components is stored in a tree structure within the container object, which is added to the scene by passing it to the scene object’s constructor (line 12). The three-parameter version of the constructor can also accept the width and height of the scene. Lines 14–16 add a title to the top of the user interface (the stage) on line 14, add the scene of components to the stage (line 15), and then display stage (line 16).

Figure 11.9 shows the relationship between an FX program’s stage, scene, GUI component container object, and the application’s GUI components. The start method is coded in reverse order (from the bottom to the top of Figure 11.9). The GUI components are created first (which will be discussed later in this chapter), then the container object is created (line 11 of Figure 11.8) and the componets are added to it, then the container is added to the scene (line 12 of Figure 11.8), and then scene is added to the stage (line 15 of Figure 11.8).

[image:]

Figure 11.9
Relationship between and FX stage, scene, container, and GUI components.

Having gained an understanding of the FX program template, we can use it to write our first FX GUI application. By adding the below code to the end of the start method shown in Figure 11.8, the program’s window will be displayed with an FX message dialog box horizontally centered on it as show in Figure 11.10.

Alert messageDialog = new Alert(Alert.AlertType.INFORMATION);

messageDialog.setHeaderText(null);

messageDialog.setContentText ("Close the program window" +

"\nto terminate the program");

messageDialog.showAndWait();

[image:]

Figure 11.10
Display of a message box within an FX GUI application.

11.3.3FX Input Dialog Boxes

Input dialog boxes are used to obtain input from the user, perhaps the user’s first name, in response to a displayed prompt. To create an FX input dialog box we declare an instance of the TextInputDialog class. This class contains a no-parameter constructor and a one-parameter constructor. The one-parameter constructor is used when we want display a default input to the user. To create an input dialog box, containing the prompt “Enter your name:” with a default input of “Mary”, similar to the one shown in Figure 11.5(b) that does not contain a Header area, we would code:

TextInputDialog inputDialog = new TextInputDialog("Mary"); //Default input Mary

inputDialog.setTitle("Input dialog box");

inputDialog.setHeaderText(null); //Eliminates the header area

inputDialog.setContentText("Enter your name:"); //The prompt

inputDialog.showAndWait();

As discussed in Section 11.3.3, the invocation of the method showAndWait would pause the program execution pending a user action on the dialog box. However, when the dialog box is an instance of the class TextInputDialog, we also need to obtain the contents of the dialog box’s text box before execution continues.

To do this we simply modify the invocation of the showAndWait method in the above code segment to capture the address of the returned instance of the class Optional. In our discussion of FX message boxes we ignored the returned object, which is always an option in Java. The code to place the address of the returned object in the variable response is:

Optional<String> response = inputDialog.showAndWait();

The inclusion of the characters <String> in the above statement causes the translator to check that the instance of the class Optional returned from showAndWait contains a String data member. Its inclusion here is not necessary, but it is considered good programming practice as will be discussed in Chapter 13 Generics. To fetch the string stored in the returned object’s data member we invoke the get method on the returned object. The below statements display the input dialog box inputDialog and then output the user input to the system console.

Optional response = inputDialog.showAndWait();

System.out.println("Your name: " + response.get());

The isPresent method can be invoked to determine if the user clicked the dialog box’s title bar’s X or the Cancel button to close out the dialog box. Either of these actions would cause it to return false.

11.3.4A Complete FX Application

Figure 11.11 is a complete FX application that uses the FX program structure (shown in Figure 11.8) to create and display the application’s GUI window, and uses the dialog box skills we have learned to interact with the user. It also introduces the use of the Optional class’s isPresent method. The application’s window is not displayed until the user enters his/her name via a displayed input dialog box. The user’s name is then incorporated into the window’s title, and the window is displayed. The program’s input dialog box displaying the default user name Mary is shown in Figure 11.12(a), and the application’s window displayed after the user entered Alice via the dialog box is shown in Figure 11.12(b).

Lines 8–12 and lines 26–39 of the FX application’s code shown in Figure 11.11 are part of the FX program structure. When the start method (line 11) begins execution, lines 14–17 create an input dialog box with no Heading area (line 16).

Then on line 21, the dialog box is displayed and the returned object is stored in the variable response. This statement is coded inside a do-while loop that begins on line 19, to force the user to either accept the default name Mary, or enter a different name. The Boolean condition of the loop on line 22 contains an invocation of the method isPresent on the returned object response. The method returns false if the user clicked the dialog box’s Cancel button or the X in its title bar, i.e. a response was not made. This causes another iteration of the loop to be performed, and the dialog box is redisplayed.

When the loop ends, line 24 invokes the get method on the object response to fetch the string containing the entered name, and output it to the system console. A similar invocation is used on line 29 to add the user’s name to the application window’s title bar, and then line 32 displays the application’s window.

[image:]

Figure 11.11
The application FirstFXApplication.

[image:]

Figure 11.12
The application FirstFXApplication dialog box and window.

11.3.5FX Choice Dialog Boxes

A choice dialog box is used to obtain an input the user selects from a group of displayed valid inputs. For example, a user is asked to input his/her class standing, and the choices are Freshman, Sophomore, Junior, or Senior.

To create an FX choice dialog box we declare an instance of the ChoiceDialog class. This class contains a no-parameter constructor, which is not often used. There are two other constructors that both use the first argument passed to them as the default input choice. The most often used of these two constructors considers the second argument passed to it to be an array containing the valid choices. The other constructor accepts an unlimited number of arguments, with the first one being the default choice, and the remaining arguments being the other valid choices.

To create a choice dialog box named inputDialog with no Header area, similar to the one shown in Figure 11.5(d) but with a default input of “Freshman”, we would code:

String[] choices = {"Freshman", "Sophomore", "Junior", "Senior"};

ChoiceDialog dialog = new ChoiceDialog ("Freshman", choices);

dialog.setTitle("Choice Dialog");

dialog.setHeaderText(null);

dialog.setContentText("Select your class standing");

Then, as we have discussed in Section 11.3.3, the code to pause the program’s execution pending a user action on the dialog box, and place the user’s selection in the String variable status we would code:

Optional response = dialog.showAndWait();

if (response.isPresent())

{

  String status = response.get();

}

The FX application ChoiceDialogBoxes shown in Figure 11.13 uses these coding techniques to solicit a student’s status using the dialog box shown in Figure 11.14(a), and then displays the application’s window with the student’s status incorporated into the window’s title, as shown in Figure 11.14(b).

It uses a different coding style than that used in the application presented in Figure 11.11. The code to create the dialog box (lines 25–29) and the code to display it and capture the returned Optional object (line 31), are coded inside a method named getStanding that begins on line 23. From a software engineering viewpoint, this divide-and-conquer coding style is preferred. It makes the code more readable, and the method could be written and tested by one programmer, with the rest of the program written by another programmer.

The method is a non-void method. On line 34 it returns the Optional object produced by showAndWait to the invoker if the user selected one of the input choices (i.e., did not click the X in the dialog box’s title). As we have previously discussed, the Boolean condition on line 32 is true when that is the case. Otherwise, on line 37, the method returns the Optional object returned from the invocation of the Optional class’s static method ofNullable that contains the empty string passed to it.

The code getStanding().get()on line 17 of the start method invokes the getStanding method, and then the Optional class’s get method is invoked on the returned object to fetch the returned string. Then that string is concatenated to the rest of the window’s title annotation. Line 17 is a succinct way of coding the following two lines:

Optional optionalObject = getStanding();

primaryStage.setTitle(optionalObject.get() + " Remote Registration");

Also in the interest of brevity, the number of import statements (lines 1–7) included in the program has been reduced by replacing the names of the imported classes that would appear after the last period in the import statements, with an asterisk. For example, if the application used three classes in the util package, the three import statements used to import them have been replaced with line 1.

[image:]

Figure 11.13
The application ChoiceDialogBoxes.

[image:]

Figure 11.14
The application ChoiceDialogBoxes’s dialog box and window.

11.4 CREATING A GUI INTERFACE

Dialog boxes are a convenient way of outputting messages to the user and obtaining an input from the user during the execution of a program. However, most of the user interactions with an application are with GUI components contained in the program’s window such as buttons, text boxes, radio buttons, and other components.

JavaFX provides a rich assortment of GUI components, some of which are shown in Figure 11.1, that can be added to a window. While there is some overlap in the roles that they play in the I/O process, each component has been designed to facilitate a particular I/O function. For example, the functionality of radio buttons makes them the best components to use to acquire one choice from a small set of mutually exclusive choices.

The most common components used in GUI interfaces are buttons, text fields, labels, check boxes, radio buttons, combo boxes, and list views. Table 11.3 contains the constructor methods commonly used to create these components, grouped by the components’ intended functionality, and gives a brief description of the I/O function they were designed to facilitate. It also includes the names of the container classes that are most commonly used to collect and position these components.

Table 11.3
Commonly Used JavaFX GUI Components

[image:]

The components listed in the first six rows of Table 11.4 are often referred to as controls, because they are descendents of the Control class and the user interacts with them to control the execution path of the program. The container classes listed in the bottom row of the table are used to group and position components added to them. All of them except the Group class are descendents of the Pane class. That is why some of their names end with the word Pane. Instances of these classes not only can be added to a scene, but they can also be added to other container objects.

11.4.1Designing the Interface

Before beginning the coding process of declaring and adding GUI components to the user interface, it is very useful to make a quick sketch of the interface’s design, which shows all of the components to be added and their position (layout) in the window. A design sketch of an adding machine GUI is shown in Figure 11.15. Its level of detail is typical of that contained in a design sketch.

The choice of which components to add is based on the I/O requirements of the program and the component’s targeted use listed in Table 11.3. As noted in the table, the TextField component can be used for both input and output.

If the program involves a series of user interactions that should be entered in a particular order, adding input components to the window from left to right and top to bottom in the order of interaction enhances the friendliness of the interface. The layout of the components in Figure 11.15 implies the user should enter the two numbers to be added, and then click the Compute button, before clicking the Clear button.

[image:]

Figure 11.15
The GUI design for an adding machine.

After the design of the interface has been completed a four-step coding process is used to add the components to a container object:

1.Create the component control objects included in the design

2.Specify the components’ properties such as size, font style, tool tip, visibility, and location

3.Create the container object and set its properties

4.Add the components to the container

11.4.2Creating Controls and Setting Their Properties

The more commonly used constructors used in Step 1 of this process to create the components, are listed and described in Table 11.3. The string passed to these constructors and the observable list passed to the combo box’s and list view’s constructor, become the annotation that will appear on, within, or next to the component. For example, the following statement creates a button with the text Click Me displayed on it, and a text field with the text Hamburger displayed in it.

Button aButton = new Button("Click Me");

TextField entree = new TextField ("Hamburger");

Technically speaking, these constructors use the arguments passed to them to set properties of the object, after they create it. For example, a width property of a button and label component are set to accommodate the display of all characters in the string passed to it. In so doing they performed a portion of Step 2 of our process.

The top portion of Table 11.4 describes some of the methods used in Step 2 to specify properties of the components. The last row of the table gives a generic description of the method used to add a component to a container. As stated in that row, the type of the object it is invoked on and its parameter list depend on the container to which the component is being added. We will see an example of its use in the next section.

Table 11.4
Methods Used to Specify a Component’s Properties and Add it to a Container

[image:]

11.4.3Adding the Controls to a GridPane Container

As discussed in Section 11.3.2, FX GUI control components are not added to a window or a scene. Rather they are added to a container object that is an instance of the class Group, or the class Pane, or a class that inherits from Pane. Then the container object is added to the scene object, which is then added to the stage object.

The two FX programs presented in this chapter so far declared an empty container instance of the class Pane or StackPane and added that object to the Scene object, as shown on lines 14 and 15 of the application presented in Figure 11.13. One way of adding controls to a StackPane container is to pass them to its constructor. The code to create and add two buttons to the center of the application’s window would be:

// create the controls
Button button1 = new Button("Button 1");
Button button2 = new Button("Button 2");

// add the controls to container

StackPane thePane = new StackPane(button1, button2);
// add the pane to the Scene
Scene scene = new Scene(thePane, 300, 250);

The StackPane container is listed at the bottom of Table 11.3 as one of the FX containers that both contain and locate the components. This set of containers is referred to in the Java literature as “layout managers”. In the case of a StackPane controls are displayed stacked on top of each other, and so the last control to be added to it, button2 in the above code, would be the only one visible. If button1 were larger than button2, we would see the portion of button1 that button2 did not cover. In some applications this is exactly what we want to happen, but it is clearly not a suitable container for our adding machine application.

The GridPane Layout Manager

The fact that our application’s GUI interface (shown in Figure 11.15) consists of components arranged on four rows, and some of the rows (the bottom three rows) have some of their components in the same columns, suggests that we should use a GridPane container to position the components for us. Details about the use of other layout managers, and the way to determine the best layout manager for an application, will be discussed in Section 11.6.

A GridPane container consists of a rectangular grid cells that components are placed and displayed in. The display of a component can extend to the set of adjacent cells below and to its right, if they are unoccupied. The row and column numbers of the cells begin at zero, and increase as we move down and to the right. When a component is added to the grid, its cell column and row number is specified. To permit the component to be displayed in its adjacent cells, the number of columns and the number of rows to display the component in is specified to be greater than one. Components added to the same cells are stacked on top of each other.

The number of rows and columns the grid will contain is not explicitly specified by the programmer. When container is constructed, it has no rows and columns. As components are added to the container, one row and/or one column is added to the grid if the component’s row and/or column do not already exist, subject to the condition that every row and column must contain at least one component. Therefore, when all the components have been added to the grid, the number of rows and columns is equal the number of components that were added to a new row and the number of components that were added to a new column respectively.

The width of a column is set to the maximum of the widths of the components in that column, and the height of a row is set to the maximum of the heights of the components in that row. For example, the height of the two text fields in Figure 11.15 dictates the height of the row they and three labels occupy.

Assuming all the components in the adding machine’s window occupy one column and one row, except for the label in row 0 that occupies five columns, Figure 11.16(a) shows the user interface with the column and row boundaries displayed. From the figure it is easy to see that the width of the columns is not the same. The height of all of the rows is also not the same, but that is not as easy to see.

The text fields in columns 0 and 2 of row 1, set the width of those columns and the height of that row. The width of the labels in columns 1, 3, and 4 set the width of those columns.

[image:]

Figure 11.16
An application’s GUI column width and row heights, and the spacing between its columns and rows.

A GridPane’s Properties

Table 11.5 lists the signatures and descriptions of methods used to set the properties of a GridPane object, and add components to it. To add spacing between the row and column boundaries, the setHGap and setVGap methods can be invoked on the GridePane object and passed the number of units of spacing to be inserted between the cell columns and cell rows. Figure 11.16(b) shows same user interface depicted Figure 11.16(a) with ten units of spacing inserted between the row and column boundaries. Assuming the name of the GridPane object is named grid, the code to accomplish this would be:

grid.setHgap(10);

grid.setVgap(10);

Table 11.5
Methods Invoked on a GridPane Object to Set its Properties and Add a Component to it

[image:]

Adding Components to a GridPane

After declaring the components and setting their properties, the components that make up the GUI interface design can be added to a GridPane container in any order. However, from a readability and debugging point of view, it’s best to create and add them one row at a time starting at row 0, and working our way across the rows from left to right. Using this technique the code to declare the component in row 0 of our adding machine, set its text property, center it, and add it to a GridPane container named grid is:

Label description = new Label("Computes a + b");

grid.setHalignment(description, HPos.CENTER);

grid.add(description, 0, 0, 5, 1);

The third line of the above code places the label description in column 0 and row 0, and indicates when it is displayed it can occupy five columns and one row and should be centered in these columns. However, until we add other components to the interface to establish more columns, it would be displayed in column 0.

The application AddingMachine show in Figure 11.17 constructs the GUI interface shown in Figure 11.16 using a GridPane layout manager and then displays it. The code of the application follows our four-step coding process to create the user interface. Within each of these steps the coding style previously discussed, starting at row 0 of our interface design and working our way across the rows from left to right, is used.

Rather than declaring the reference variables used to store the address of the GUI components inside the start method, they are declared as class level variables on lines 12–14. The reason for this will be discussed in Section 11.5.

Beginning with row 0 of our interface design, the GUI components are created and their properties are set (Steps 1 and 2 of our coding process) on lines 20–39. These two steps are combined for each component in that a component is created and its properties are set before the next component is created. In some cases a property is set by the constructor (e.g., line 20), and in other cases a method listed in Table 11.6 is used (e.g. line 21).

Within lines 20–39 the setFont method is invoked several times to overwrite the default values of the font type and size properties of GUI components. It is passed a nameless instance of the Font class to specify the values of these two properties. Line 23 and 27 invoke the setPrefSize method to reduce the default size of the two text fields. Similarly, line 32 uses the setMinWidth method on the label sum, which sets the width of column 4, to ensure that that column is wide enough to display the number 9,999.99. Line 39 associates a tool tip with the clear button.

Step 3 of our coding process—create the container object and set its properties—is performed on lines 42–50. The GridLayout layout container grid is declared on line 42, and then the GridLayout class’s methods presented in Table 11.5 are used to set some of the container’s properties. The spacing between the cells is set on lines 43–44, and the spacing between the container and the edges of the window, is set on line 45. On this line, the right edge window spacing is set to 0, because the width of the label sum, set on line 32 provides sufficient spacing.

Lines 46–50 set the alignment property of the cells that five of the components will be displayed in, to center the components within those cells. The default is left justified. This is not necessary for the cells of the other five components, because these components are each displayed in one column and they set the width of that column. For example, the text field component aValue sets the width of column 0 and the label component plus sets the width of column 1, as shown in Figure 11.16.

Step 4 of our coding process—add the components to the container—is performed on lines 53–62. The GridLayout class’s add method, presented in Table 11.5, is invoked on our container object grid to do this. The first argument passed to this method is the name of the component object to be added to a cell in the container. The other four arguments are the column and row number of the cell to place the component in, followed by the number of columns and rows to display the component in. These four arguments have been aligned in columns for instructional purposes.

Examining the progression of the value of the second argument as we move down through the invocations on lines 53–62, it is clear that the components have been added to the container in row number order. In addition, if we examine the progression of the value of the first argument for each of the rows, it is clear that the components have been added to the container’s rows in column number order. This is consistent with the preferred coding style previously discussed.

[image:]

[image:]

Figure 11.17
The application AddingMachine.

11.5 EVENT PROCESSING

After the graphical interface is built, the next step in the GUI programming process is to identify the components in the interface that require application-dependent processing to be performed when the user interacts with them. For our adding machine, these would be the Compute and Clear buttons. When the Compute button is clicked, the two text field entries should be added, and the result output. A click of the Clear button should clear the text boxes and the output sum.

In GUI jargon, when the user interacts with a component on the interface, we say that an action has been performed on the interface, or that an event has occurred. A click on one of our buttons is an example of an event. Other examples include the completion of an entry into a text box denoted by the striking of the Enter key, the movement of the mouse pointer over the window, or simply a click into a text box.

GUI events are detected by the Java Runtime Environment and some of them are dealt with, or processed, with no effort on the programmer’s part. For example, when the user of a program’s GUI interface clicks into one of its text fields, the insertion point cursor (caret) appears in the text field. This event is processed, or handled, by the code of API methods associated with the text field. When the click event occurs, the Runtime Environment executes a process to notify these methods that the event has occurred. After being notified of the event, they execute and display the insertion caret in the text field. Other sections of code associated with the text field subsequently handle keystroke events by displaying a typed character in the text field, and moving the caret to the right.

Events such as a click into a text box can be handled by the API methods because the action to be taken (display the caret at the position of the click) when the event occurs is part of the predefined look and feel of the GUI component. These application independent GUI events are always processed by API methods. Other GUI events that occur on an application’s interface, such as the clicking of the Compute button on our adding machine’s interface, require the application programmer to write code to process the event because the action to be taken (perform the addition) is specific to the application.

More accurately, the application programmer partially processes these types of events because most often some processing that is part of the look and feel of the component also needs to be performed. For example, when the user clicks the Compute button of our adding machine, the API responds to the event by executing code that makes the button appear to have been depressed, because this is part of a predefined look and feel of a button. Then, the application performs the processing specific to it: fetch and parse the inputs, perform the addition, and display the result.

To initiate application-dependent processing when a GUI event occurs, the Java event-handling process permits the application programmer to add a method to the application that will be invoked when the event occurs. We say that the programmer can add to the list of methods that are listening for the event to occur, and these methods are generically referred to as event handlers. Figure 11.18 illustrates this concept and the event processing execution path it produces.

[image:]

Figure 11.18
Java’s event-processing process.

The process can be thought of as the execution of a switch statement, which executes the cases relevant to the event.

NOTE

Each component object added to the interface has its own event listener lists.

The action of adding an application-dependent event handler method to a component’s listener list is referred to as registering the event handler method. Below is a summary of the event processing terminology we have discussed.

Event: An action that occurs during the execution of a program. Examples include a click on a button object that is part of its scene, a mouse movement across the program’s scene, or a keystroke when the keyboard’s focus is the program’s window.

Event handler: The code to be executed when event occurs.

Registering an event handler: The process of associating a particular event handler method, with a particular action on a particular object.

11.5.1Implementing an Event Handler

The techniques to implement an event handler method and register it have evolved as new versions of Java were released. Currently there are six different coding techniques supported, and some of the syntax used within these techniques differs between Swing and FX GUI applications. The coding style we will use will cause a method coded within the application class whose name reflects the event that occurred, to be invoked when the event occurs. One example is a method named computeClickHandler. The application-dependent processing will be coded inside that method.

When an event handler method is invoked by the Java Runtime Environment, it is passed an object containing information about the event. This object is called the event object. Although most of the time the name of its class differs between FX and Swing based applications, in the case of a button event handler the object’s class name is the same, ActionEvent. The signature of the method we will use to perform the application-dependent process when the Compute button in our adding machine application GUI (Figure 11.16) is clicked will be:

public void computeClickHandler(ActionEvent e)

The right column of Table 11.6 presents the event handler method parameter type for events on buttons, the keyboard keys, and the mouse. Its left column presents the more popular events on these three components.

As previously stated, the argument passed to the event handler contains information about the event. This information can be fetched by invoking methods in the parameter’s class on it. In the case of a button, the ActionEvent class’s getSource method returns the address of the Button object on which the event occurred. This method is used to determine which button was clicked when multiple buttons are registered with the same event handler method. We will show an example of its use later in this chapter.

Table 11.6
Event Handler Method Parameter Type for Events on Buttons, the Keyboard, and the Mouse

	Type of Event (Action)
	Event Handler’s Parameter Type

	On Button Objects

The button is clicked
	ActionEvent

	On the Keyboard

A keyboard key is typed (pressed and released), or a key is pressed, or a key is released
	KeyEvent

	On a Mouse

The mouse is clicked, or the mouse is dragged, or the mouse is moved
	MouseEvent

To complete the coding of the Compute button’s event handler within our application AddingMachine shown in Figure 11.17, we have to fetch the two string inputs contained in the text boxes named aValue and bValue, parse them, perform the addition, and then output the result to the label named result. The code to do this within the event hander is show below.

public void computeClickHandler(ActionEvent e)

{

   String s;

   double a, b, result;

   DecimalFormat f = new DecimalFormat("#,##0.00");

   

   s = aValue.getText();

   a = Double.parseDouble(s);

   s = bValue.getText();

   b = Double.parseDouble(s);

   result = a + b;

   sum.setText(f.format(result));

}

11.5.2Registering the Event Handler

To execute the above method when the Compute button is clicked, the method must be registered with the Java Runtime Environment as the Compute button’s click event handler. To resister an event on any type of GUI component in an FX application, we invoke a method whose name begins with the characters setON on the component object. In our application the name of the button object is compute.

The characters in remainder of the method’s name reflect the event that will be handled. As indicated in the left column of Table 11.6 the only action that can be performed on a button is a click, and so the suffix used is simply Action making the name of the method setOnAction.

Finally, setOnAction, like all event handler registration methods, contains one parameter. The argument passed to it is used to convey the class in which the Java FX event handler method named handle is coded, or the actual code of that method.

NOTE

When an event occurs within an FX application, the Java Runtime Environment always invokes the abstract method handle whose signature is defined in the interface EventHandler.

To convey the class within the application that implements the method handle, the application passes an instance of that class to the method setOnAction. Then when the event occurs the runtime environment invokes the method on that object. The implication here is that the method coded in the application class to perform the application-dependent processing must be named handle, and the object passed to the setOnAction method must be an instance of the class in which this method is coded. The class can be the application’s class or an inner class declared within it, and the class’s heading must indicate that it implements the interface EventHandler.

Alternately, to convey the code of the event handler method handle, the application passes a Lambda expression to the setOnAction method that contains the event handler method’s code. Normally the Lambda expression simply contains one line of code that is an invocation of a method coded in the application class that performs the application-dependent processing. Now the programmer is free to choose a name for that method that is representative of the event it services, e.g., computeClickHandler. As a result this technique is more commonly used to register the event handler, and we will use this alternative in the remainder of this chapter.

The code to register the application’s Compute button’s event handler method such that the method computeClickHandler, coded within the application, is invoked when the event occurs is:

compute.setOnAction((e) -> computeClickHandler());

The code (e) -> computeClickHandler() is the Lambda expression, and the Java statements to the right of the -> token in the Lambda expression become the code of the method handle. In this case there is only one statement, an invocation of the method computeClickHandler. We are now free to add this appropriately named method to our application, and place the code to service the event inside of it. We will gain a deeper understanding of Lambda expressions and their syntax in Sections 12.5 and 13.5.

Completing the Adding Machine Application

Figure 11.19 shows the application AddingMachineV2, which is the completed version of our adding machine. It is the program shown in Figure 11.17 with the previously discussed Compute button’s event handler method, and the Clear button’s handler method added to it (lines 73–85 and 87–93 respectively). The registering of these components’ event handlers is performed on lines and 37 and 39 respectively. Because we have used Lambda expressions on these lines, the class’s heading does not contain an implements clause.

Figure 11.20(a) shows the application’s GUI interface after the user entered two numbers to be added and then clicked the Compute button. Figure 11.20(b) shows the interface after a subsequent click on the Clear button.

Figure 11.19
The application AddingMachineV2.

[image:]

[image:]

[image:]

[image:]

Figure 11.20
The application AddingMachineV2’s window after a Compute button click followed by a Clear button click.

Alternate Event Processing Coding Style

In the application AddingMachineV2 we coded two event handler methods, one for the Compute button and one for the Clear button, to perform the processing associated with a click event on those components. An alternate, and often used, coding style is to place the code bodies of all of the application’s button handler methods inside one method The method would be named to imply that it performs the application-dependent processing for a click event on any of the buttons contained in the GUI interface, e.g., buttonClickHandler.

Inside this method, the code bodies of each button’s event handler would be placed inside a different clause of an if-else statement. Each clause’s Boolean condition would determine if the button whose event handler code body it contains was clicked.

As previously mentioned, the Java Runtime Environment invokes the method handle in response to an event on a GUI component. When it does, it passes that method an object that contains information about the event. In the case of a button click, that object is an instance of the class ActionEvent, and the information includes the address of the Button object that was clicked. To fetch that address, the ActionEvent class’s inherited getSource method is invoked on the argument passed to the method handle.

The Java statements to the right of the -> token in our Lambda expression become the code of the method handle. To access the ActionEvent argument passed to handle by the Java Runtime Environment within that code, we use the variable name coded to the left of the -> token, which is named e in the Lambda expressions coded on lines 37 and 39 of Figure 11.19. To pass this argument on to our multi-button event handler method buttonClickHandler when handle invokes it, we recode the invocation in the Lambda expressions on lines 37 and 39 of Figure 11.19 to be:

(e) -> buttonClickHandler(e)

and the signature of our multi-button event handler would be:

private void buttonClickHandler(ActionEvent e)

Figure 11.21 shows the code of this method. It provides the functionality of the two event handlers on lines 73–93 of Figure 11.19. The signature of the method includes a parameter named e of type ActionEvent to receive the argument passed to the method from its invocation coded in the revised Lambda expression.

The getSource Method

The Boolean condition in the if statement on line 7 of Figure 11.21 invokes the getSource method on ActionEvent object e to determine if the Compute button was clicked. If that is the case, it executes the same code presented on lines 73–84 of Figure 11.19 to service the button click. Otherwise it executes the else clause’s code block, which contains the same code presented on lines 90–92 of Figure 11.19, to service a click on the Clear button.

[image:]

Figure 11.21
The alternate coding style for the application AddingMachineV2 event handlers.

11.5.3Drawing 2-D Shapes

A paint event is a generic term for any event that causes a graphical object to be drawn or redrawn. The most obvious paint events are the initial display of an application’s GUI window and maximizing a window after it has been minimized. A more subtle paint event is continuously redrawing a window and all of its GUI components as it is dragged across the monitor.

In addition to the GUI components we have studied so far, Java FX provides an assortment of 2-D shapes that can be displayed within a window. Like the other GUI components we have studied, they are drawn/redrawn when a paint event occurs.

There are two techniques available for adding 2-D shapes to a window. One of these uses the same four-step approach we have used to add control objects (e.g., buttons, labels, etc.) to a window: create the component objects, set their properties, declare a container, and add the objects to it. However, when the component objects are 2-D shapes the objects created in the first step are instances of a class that inherits from the class Shape. The following code draws a 50 unit radius orange Circle object whose center is (150, 125) units from the upper left corner of a light pink colored scene.

Pane root = new Pane();

Circle circle = new Circle(150, 125, 50); //xc, yc, radius

circle.setFill(Color.ORANGE);

root.getChildren().add(circle);

Scene scene = new Scene(root, 300, 250);

scene.setFill(Color.LIGHTPINK);

The second technique used to display 2-D shapes in a window employs an art studio analogy. Within this analogy a rectangular canvas is created, and then a brush is created and associated with the canvas. The brush is used to draw shapes on the canvas. The canvas is an instance of the class Canvas, and the brush is an instance of the class GraphicsContext. The brush is created and associated with the canvas by invoking the method getGraphicsContext2D on the canvas and assigning the returned address to the brush. The shapes are drawn on the canvas by invoking 2-D shape methods defined in the GraphicsContext2D class on the brush. To display the shapes in an application’s window, the canvas must be added to the window’s container.

The below code draws a circle filled with the default color black, using a brush named brush, on a canvas named canvas.

1  Canvas canvas = new Canvas(40, 90); //(width, height) of the canvas

2  canvas.setLayoutX(280);

3  canvas.setLayoutY(40);

4  GraphicsContext brush = canvas.getGraphicsContext2D();

5  brush.fillOval(0, 51, 37, 37); //xULcorner, yULcorner, w, h

Line 1 creates our canvas. It is declared to be an instance of the class Canvas 40 units wide and 90 units high named canvas. This is the object we will draw on. Lines 2 and 3 specify the x and y coordinates of the upper left corner of the canvas. When the canvas is added to a Pane container, this is where its upper left corner will be placed relative to the upper left corner of the container. Details of these two methods are given in Table 11.4.

Line 4 associates the GraphicContext variable brush with the canvas declared on line 1 by storing the address of the canvas’ GraphicsContext in the variable brush. This object is the brush we will use to draw on the canvas.

Line 5 uses that brush to draw a circle (actually an oval whose width and height are both 37 units) on the canvas by invoking the fillOval method defined in the GraphicsContext class. The (x, y) location of upper left corner of the rectangle that encloses it, relative to the upper left corner of the canvas object, is specified to be (0, 51).

The circle is drawn is black because the default fill color property of a GraphicsContext is black. To change that property of our brush to a different color, we can invoke the GraphicsContext method setFill on it before a filled shape is drawn, and pass setFill a static constant defined in the Color class. To change our circle’s fill color to white the invocation would be:

brush.setFill(Color.WHITE);

2-D shapes can also be drawn unfilled using a line (called a stroke) to outline their perimeter. To do this, the prefix fill in the name of the method used to draw the shape is changed to stroke: e.g., strokeOval. In addition, the suffix used in the method to change the brush’s line drawing color is changed to Stroke: e.g., setStroke. Unlike a paintbrush used to draw shapes on a piece of paper, a GraphicsContext brush can be dipped into two different colors at the same time. One color is used when drawing filled shapes, and the other color is used when drawing outlined (stroke) shapes.

Table 11.7 presents commonly used methods defined in the GraphicsContext class to draw shapes, text, and images on a canvas and set their properties. The first four entries in the table have stroke counterparts.

Table 11.7
Commonly Used Methods in the GraphicsContext class

[image:]

The draw method that begins on line 46 of the class SnowmanOnACanvas shown in Figure 11.22 draws a snowman on a 40 x 90 pixel Canvas object it creates on line 48. When an instance of this class is created its constructor, which begins on line 11, is passed an x and y coordinate and the color of the snowman’s hat. These are stored in three of the object’s data members on lines 13–15. Then line 16 of the constructor invokes the class’s draw method, defined on lines 46–62 to draw the snowman on the canvas.

The draw method begins by declaring a 40 by 90 pixel Canvas object on line 48 and storing its address in the data member canvas. Then lines 49–50 set the initial (x, y) location where the canvas will be placed when it is added to a non-layout container, to the values stored in the data members x and y. Line 52 declares the GraphicsContext variable brush and associates it with the canvas object canvas. This will be the draw method’s brush.

Lines 53–61 draw the snowman shown in Figure 11.23 on the canvas referenced by data member canvas, using the techniques and the methods in Table 11.7 that we have discussed. After setting the current fill color (line 53) and stroke color of our brush (lines 53–54), the snowman’s body and head are drawn as filled circles (lines 55 and 57) outlined by slightly larger stroke circles (lines 56 and 58). Then the current fill and stroke colors are changed to the data member hatColor (line 59), and the hat and brim are drawn as filled rectangles (lines 60–61).

[image:]

[image:]

[image:]

Figure 11.22
The class SnowmanOnACanvas.

[image:]

Figure 11.23
The window displayed by the application DrawingShapes1.

The application DrawingShapes1 shown in Figure 11.24 displays the window shown in Figure 11.23. Line 15 declares an instance of the class SnowmanOnACanvas passing its constructor the canvas’s initial (x, y) location (280, 40), and the snowman’s hat color: blue.

Pane container root is created on line 18. The code sm1.getCanvas()on the right side of line 21 returns the address of the canvas with the drawing on it, and then adds that component’s address to the container root. Then the container root is added to the scene (line 23), and the scene is added to the stage (line 26), and the stage is displayed (line 27). Since a Pane is a non-layout container, the upper left corner of the canvas is positioned at its specified (x, y) location relative to the pane’s upper left corner.

[image:]

Figure 11.24
The application DrawingShapes1.

11.5.4Keyboard, Mouse, and Key Frame Timer Events

Many of the GUI components included in the API respond to mouse-click events and keyboard events such as the pressing or typing of a key. The most obvious examples of this are radio-button event handlers and check-box event handlers that change the appearance of these components when they are clicked. Another example is the appearance of the caret in a text field when it is clicked, and the subsequent display of typed characters in the text field to the left of the caret. The GUI support in the API includes implementations of these non-application-dependent event handlers and their registrations.

Just as GUI components respond to these events to maintain their look and feel, there is often the need for an application to respond to a mouse or keyboard event in an application-dependent manner. Application-dependent processing of a Button click event has already been discussed in this chapter. Other mouse events, such as the dragging of the mouse or clicking on a portion of the application’s window that does not contain a GUI component may be an important event in a particular application.

For example, a mouse-drag event could be used to move the snowman shown in Figure 11.23 to another location in the program’s window, or a key-typed event such as typing the cursor control (arrow) keys could be used to move the snowman around the window. Similarly, a timer-tick event is certainly an important event to many applications that are time dependent.

In this section, we will learn how to incorporate keyboard, timer, and mouse events into any Java application. Although we have reacted to some of these events in our game programs, the details of the keyboard, timer, and mouse event handler implementations and their registration was performed by the game environment. Essentially, in the remainder of this section, we will gain insights into how this was accomplished by the game environment, so we can process these events in any application we write.

Keyboard and mouse events are processed within an application using the techniques discussed in Sections 11.5.1 and 11.5.2. As mentioned there, when an event occurs within an FX application, the runtime environment invokes a one-parameter method named handle to process events and we must overwrite that method. The technique we have used thus far to do this is to invoke a method whose name begins with setOn on the component the event occurred on, and pass it a Lambda expression. The Lambda expression becomes the code of the method handle.

The prefix setOn is followed by a suffix that is dependent on the event to be serviced. As discussed in Section 11.5.2, when the event is a button click, the suffix is Action, and the name of the method is therefore setOnAction. Table 11.8 presents the names of the analogous methods to invoke for keyboard events and two, of the eleven possible, mouse events. These methods are invoked on the application’s Scene object. The table also includes the method setOnAction for comparative purposes.

Table 11.8
A Subset of FX Event Handler Registration Methods

	Event, and the Event Object Generated
	Method

	A key is pressed, generates a KeyEvent
	setOnKeyPressed(aLambdaExpression)

	A key is released, generates a KeyEvent
	setOnKeyReleased(aLambdaExpression)

	A key is typed (pressed & released), generates a KeyEvent
	setOnKeytyped(aLambdaExpression)

	The mouse is clicked, generates a MouseEvent
	setOnMouseClicked(aLambdaExpression)

	The mouse is dragged, generates a MouseEvent
	setOnMouseDragged(aLambdaExpression)

	A button is clicked, generates an ActionEvent
	setOnAction(aLambdaExpression)

Keyboard Events

A key-pressed event occurs when a keyboard key is struck, and a key-released event occurs when a key is released. In addition, a key-typed event occurs only when a non-action key is struck. The action keys include the keys Shift, Num Lock, End, Home, Caps Lock, function keys, arrow keys, Page-up, Page-down, Backspace, etc.

Whenever any key is held down, it repeatedly generates a key-pressed event. If the key is a non-action key, it also continually generates a key-typed event. In either case, when the key is released, a single key-released event occurs.

When the event handler services a key-typed event the getCharacter()method, invoked on the KeyEvent argument passed to the event handler method, returns a string containing the character (lower or upper case) generated by the non-action keys. The returned character can be used to determine which non-action key has been struck. The following key event handler performs its output when the key P (lower or upper case) is typed:

public void keyTypedHandler(KeyEvent e)

{

  if(e.getCharacter.equals("P") || e. getCharacter.equals("p"))

  {

    System.out.println("The P key was struck");

  }

}

When the event handler services a key-pressed or a key-released event the getCode method, invoked on the KeyEvent argument passed to the event handler method, returns a constant defined in the class KeyCode that is associated with the pressed or released key. The following event handler performs its output when the right arrow key is struck.

public void keyPressedHandler(KeyEvent e)

{

  if(e.getCode() == KeyCode.RIGHT)

  {

    System.out.println("The right arrow key was struck");

  }

}

The application Animation1 shown in Figure 11.25 is the application DrawingShapes1 shown Figure 11.24, with a keyboard handler added to it. When the left or right arrow key is pressed the snowman, shown in Figure 11.23, is moved 4 units in the direction of the key pressed. Holding the key down continuously generates key-pressed events, causing the snowman to move smoothly across the window.

[image:]

[image:]

Figure 11.25
The application Animation1.

Line 25 of the application invokes the Scene class’s setOnKeyPressed method on the object scene and passes it a Lambda expression that becomes the code of the method handle that the runtime environment will invoke when a key-pressed event occurs. The code contains one statement, an invocation of the method keyEventHandler and passes it the KeyEvent object passed to the Lambda expression’s parameter e when a key-pressed event occurs. The method keyEventHandler is coded on lines 32–44. The Boolean conditions of the if-else statement that begins on line 36 invoke the getCode method on the object e passed to the method to determine if the left or right arrow key was pressed.

Inside the if-else statement, lines 38 and 42 use the getTraslateX and setTranslateX methods to change the x location of the canvas the snowman was drawn on by speed (4) units. This causes the window to be redrawn with the canvas at a new, current, x location. Its current location is its initial x location (280 on line 16), set by the setLayout method (line 49 of Figure 11.22) before the canvas is added to the container on line 22 of Figure 11.25, plus the net amount it has been translated from that location.

To change the net amount it has been translated, lines 38 and 42 of Figure 11.25 invoke the getCanvas method on the SnowManOnACanvas object sm1 to fetch the address of the Canvas object the snowman was drawn on. Then the Canvas class’s inherited method setTranslateX is invoked on that object to change the net amount the canvas has been translated from its initial location. The setTranslateX method is passed a new value of the net x translation. The new value is the current value, fetched by the invocation of the getTranslateX method, plus or minus 4 units stored in the variable speed defined on line 34. Changing the translation of the canvas caused the window to be redrawn, with the canvas containing the snowman in its new position.

Mouse Events

As mentioned previously in this chapter, there are eleven events that can occur on a mouse. Two of the most common are the mouse-click and mouse-drag events. A mouse-click event occurs when either of the mouse buttons is released after it is pressed. A drag event occurs when either of the mouse buttons is pressed and then the mouse is moved.

To determine which button has been clicked or pressed, the MouseEvent class’s getButton method can be invoked on the object passed to the event handler method. The method returns a constant defined in the MouseButton class that can be used to determine if the left button (MouseButton.PRIMARY) or right button (MouseButton.SECONDARY) caused the event. The following code segment can be used inside a mouse-click or mouse-dragged event handler to perform the processing associated with a left or right button click or drag action.

public void mouseButtonHandler(MouseEvent e)

{

  if(e.getButton() == MouseButton.PRIMARY)

  {

    //Code associated with the left button

  }

    else if(e.getButton() == MouseButton.SECODARY)

    {

      //Code associated with the right button

    }

}

The application Animation2 shown in Figure 11.26 is the application DrawingShapes1 shown in Figure 11.24 with a mouse-clicked, and a mouse-dragged, event handler added to it. When the program is launched, it displays the window shown in Figure 11.23. After selecting the canvas on which the snowman is drawn by left clicking it, it can be dragged with the left mouse button to any location in the window. To end the drag, a left click is performed on any portion of the window outside the canvas.

[image:]

[image:]

Figure 11.26
The application Animation2.

Lines 25 and 26 of the application invoke the Scene class’s setOnMouseClicked and setOnMouseDragged method respectively on the object scene, and passes them a Lambda expression. These Lambda expressions become the code of the method handle that the runtime environment will invoke when a mouse-click (line 25) or a mouse-drag (line 26) event occurs. Each Lambda expression contains one statement that invokes a method, coded within the application on lines 33–51 and 53–60, and passes these methods the MouseEvent object passed to them when their event occurs.

The method mouseClickkedHandler (line 33) executes when a mouse-clicked event occurs. The Boolean condition of the if statement that begins on line 35 invokes the getButton method on the object e passed to the method to determine if the left button was clicked. If it was not, the Boolean class level variable sm1Clicked (that was declared on line 13) is set to false. If the left mouse button was clicked, the if-else statement that begins on line 37 executes. Lines 37–40 determine if the click occurred when the tip of the mouse pointer was within the perimeter of the canvas. If it was, the class level variable sm1Clicked is set to true on line 44. If it was not, sm1Clicked is set to false on line 48. This variable is used in the method mouseDraggedHandler on line 55 to determine if the canvas was selected to be dragged by a left button click.

Within the if statement’s Boolean condition on lines 37–40, the getX and getY methods are invoked on the argument passed to the parameter e to fetch the (x, y) location of the mouse pointer’s tip depicted as a triangle in Figure 11.27. The remainder of the code to the right of the Boolean relational operators on each of those four lines determines the current location of the edges of the canvas. Specifically, the remainder of the code on lines 37 and 38 determines the current values of the canvas’s left and right edge x coordinates, and the remainder of the code on lines 39 and 40 determines the current values of the canvas’s upper and lower edge y coordinates.

[image:]

Figure 11.27
The canvas at its initial, current, and dragged x position.

As shown in Figure 11.27, a component’s (the canvas’s) current x location is equal to its initial x location plus the net amount it has been translated in the x direction. Lines 37–38 invoke the SnowManCanvas’s class’s getX method on sm1 to determine the x coordinate of the canvas’s initial location, and they invoke the Canvas’s class’s getTranslateX methods to determine the net amount the canvas has been translated in the x direction. A component’s current y location is determined in a similar way.

Thus the below code within lines 37–40 determine the current (x, y) location of the upper left corner of the canvas, which is also the x location of its left edge and the y location of its upper edge.

1 sm1.getX() + sm1.getCanvas().getTranslateX()

2 sm1.getY() + sm1.getCanvas().getTranslateY()

Line 38 of Figure 11.26 adds 40, the width of the canvas, to the above first line, to determine the x coordinate of the canvas’s right edge. Line 40 adds 90, the height of the canvas, to the above second line to determine the y coordinate of the canvas’s lower edge. Thus the Boolean expression of line 37 determines if the curser position is to the right of the left edge of the canvas, and the Boolean condition on line 38 determines if the cursor is to the left or the canvas’s right edge. In a similar way, lines 39 and 40 determine if the cursor is between the canvas’s upper and lower edge.

When this is the case, line 42 of Figure 11.26 subtracts the canvas’s current translation (XTranslate1 in Figure 11.27) from the cursor’s current x position (XCursor1 in Figure 11.27), and stores that value in the variable class level variable deltaX. As can be deduced by examining Figure 11.27 and the first equation at the bottom of the figure, this value is equal to the sum of the canvas’s initial x position, Xinitial, and the horizontal distance between the canvas’s left edge and the tip of the mouse pointer (d) when the click occurred. Similarly, line 43 stores the sum of the canvas’s initial y position and the vertical distance between the canvas’s top edge and the tip of the mouse pointer when the click occurred in the variable class level variable deltaY.

Whenever the mouse is dragged one unit in any direction, the method MouseDraggedHandler that begins on line 53 executes. The first term of the Boolean condition of the if statement on line 55 verifies that the canvas was left clicked before the drag occurred. The second term verifies that the left mouse button is being used for the drag.

When both of these conditions are true, line 57 gets the sm1’s Canvas object and invokes the setTranslateX method on it. This method changes the value of the canvas’s x translation to the value passed to it, e.getX() - deltaX. Since e.getX() after the drag returns the new x coordinate of the mouse pointer referred to as XCursor2 in Figure 11.27, and deltaX is equal to XInitial + d, the new value of the canvas’s x translation is set to XCursor2 – (XInitial + d).

Examining Figure 11.27, this can be deduced to be XTranslate2, the horizontal distance from the initial position of the canvas’s left edge to the dragged position of the canvas’s left edge. Similarly line 58 computes the canvas’s new vertical translation. When the MouseDraggedHandler method ends, the application’s pane is redrawn by the runtime environment using the new values of the canvas’s x and y translation to position the canvas.

Key Frame Timer Events

A key frame timer event is an ActionEvent that occurs when a KeyFrame timer object’s time interval expires. As is the case with the keyboard and mouse events we have discussed, when the event occurs the Java Runtime Environment invokes the method handle whose signature is defined in the interface EventHandler.

When a KeyFrame object is created, its time interval must be specified by passing an object in the class Duration to the first parameter of its constructor. In addition, a Lambda expression that becomes the code of the method handle can also be passed the constructor. The following line of code constructs a KeyFrame object whose time interval duration is 0.1 seconds, and whose event handler will invoke the method kF1KeyFrameHandler.

KeyFrame kF1 = new KeyFrame(Duration.seconds(0.1), e -> kF1KeyFrameHandler(e));

Its first argument is an invocation of the Duration class’s static method seconds that is passed the duration of the key frame’s time interval in seconds and returns a Duration instance that represents that time interval. The description of this method, and other commonly invoked methods within this argument, are shown in the top portion of Table 11.9. The lower portion of the table contains methods commonly used in the Timeline class.

A KeyFrame object is associated with a Timeline object by passing it to the Timeline object’s constructor when it is created. Multiple key frames can be associated with one timeline, by passing them to the constructor. When one key frame is associated with a timeline, the timeline is a linear sequence of that key frame’s timer events separated by the key frame’s specified duration, as shown in Figure 11.28a. Each interval in the sequence is referred to as a cycle.

Table 11.9
Commonly Used Methods in the Duration and Timeline Classes

	Methods Commonly Used Methods in the Duration Class
	Description

	public Duration millis(double ms)
	Returns a Duration object that represents ms milliseconds

	public Duration seconds(double s)
	Returns a Duration object that represents s seconds

	public Duration minutes(double m)
	Returns a Duration object that represents m minutes

	public Duration hours(double h)
	Returns a Duration object that represents h hours

	Commonly Used Methods in the Timeline Class

	Timeline(KeyFrame keyFrame1, . . .)
	Constructs a Timeline object compose of the KeyFrame objects passed to it

	public void setCycleCount(int nCycles)
	Sets the number of cycles to be executed, before the Timeline object that invokes it is over, to nCycles

	public void play()
	Executes the Timeline object that invokes it beginning at the timeline’s current position

	public void pause()
	Pauses the Timeline object that invokes it at the timeline’s current position

	public void playFromStart()
	Executes the Timeline object that invokes it beginning at the timeline’s initial position

The number of cycles of the key frames in a timeline is specified by invoking the setCycleCount method on the Timeline instance and passing it the number of cycles. The default is one cycle. When a cycle ends, the code in the Lambda expression of its key frame executes and then the next cycle begins. The cycle sequence is initialed by invoking play method on the timeline.

The below code creates the timeline tL1 shown in Figure 11.28a, consisting of two one-second duration cycles, and plays it. At the end of each cycle the method kF1KeyFrameHandler, is invoked.

KeyFrame kF1 = new KeyFrame(Duration.seconds(1.0), e -> kF1KeyFrameHandler(e));

Timeline tL1 = new Timeline(kF1);

tL1.setCycleCount(2);

tL1.play();

When multiple key frames are associated with a timeline, the timeline is the parallel execution of all of the key frames passed to the time line’s constructor, as shown in Figure 11.28b. All of the cycles of all of these key frames begin at the same time, which dictates that all subsequent cycles of all of key frames begin when the cycle of the key frame with the longest duration time ends as shown in the figure.

[image:]

Figure 11.28
Times lines tL1 and tL2.

The below code creates the timeline tL2 shown in Figure 11.28b. It contains three key frames, kF1, kF2, and kF3. kF1’s duration is 1 second, kF2’s duration is 0.8 seconds, and kF3’s duration is 0.5 seconds. When each cycle ends, three different methods are invoked.

KeyFrame kF1 = new KeyFrame(Duration.seconds(1.0),

e -> kf1KeyFrameHandler(e));

KeyFrame kF2 = new KeyFrame(Duration.seconds(0.8),

e -> kf2KeyFrameHandler(e));

KeyFrame kF3 = new KeyFrame(Duration.seconds(0.5),

e -> kf3KeyFrameHandler(e));

TimeLine tL1 = new TimeLine(kF1, kF2, kF3);

tL1.setCycleCount(2);

tL1.play();

Figure 11.29 presents the application Animation3. It is the application DrawingShapes1 shown Figure 11.24 with a timeline added to it that animates the snowman’s canvas. When the program is launched, it displays the window shown in Figure 11.30a, and then the snowman’s canvas is smoothly translated diagonally to the position shown in Figure 11.30b. When it reaches the edge of the window, it is translated back to its original position. This is process is repeated until the cycle count, set on line 25, expires.

Line 18 of the application shown in Figure 11.29 declares an instance of the class SnowManOnCanvas, with a green color hat positioned at (0, 0). Line 28 of the application creates a Pane object, and line 30 adds the snowman’s Canvas object to that container.

[image:]

[image:]

Figure 11.29
The application Animation3.

The KeyFrame object kF1 is declared on lines 22–23. The constructor is passed a cycle duration of 0.03 seconds, and the Lambda expression that will become the code of the method handle invoked by the run time environment when an ActionEvent occurs. An ActionEvent occurs at the end of every cycle, in this case every 0.03 seconds. Lines 24 declares the Timeline object tL1 and passes its constructor the KeyFrame object kF1. Lines 25–26 set the timeline’s number of cycles to 430, and then plays the timeline. This starts the animation that continues for 13.9 seconds: 430 cycles x 0.03 seconds per cycle.

[image:]

Figure 11.30
The extremes of the canvas translation produced by the application Animation3.

The method invoked by the event handler handle, begins on line 40. The Boolean condition of the if statement that begins on line 42 determines if the left edge or bottom edge of the canvas is outside the scene. When it is, lines 45–46 reverse the sign of the values added to the canvas’s current translation, speedX and speedY, which reverses the canvas’s traversal direction. These two variables are initialized on lines 19 and 20.

11.6 THE PANE CONTAINER AND LAYOUT MANAGERS: A SECOND LOOK

The application AddingMachine presented in Figure 11.17 declared a GridPane layout manager to position GUI components in the scene. In this section we will discuss a popular alternative to using a layout manager to position a GUI’s components. Then we will discuss four other often-used layout managers.

11.6.1Working with the Pane Container

An instance of the class Pane is a container that GUI components can be added to, but it does not manage the positioning of the components added to it. Rather, the programmer specifies the (x, y) locations of the upper left corner of the components relative to the upper left corner of the Pane object before they are added to the Pane container. We had a glimpse of this approach within the animation applications previously discussed in this chapter.

The application AddingMachineV3, shown in Figure 11.31, uses this technique to recode the building of the GUI window, displayed by the application AddingMachineV2, presented in Figure 11.20. A component’s (x, y) location is stored in two of its properties, and so it makes sense to assign their values in the portion of the application where the component properties are specified. In Figure 11.31, that is done on lines 32–73.

To specify the x location of a component’s upper left corner relative to upper left corner of the container it will be added to, the setLayoutX method is invoked on the component and the value of the coordinate is passed to the method. Similarly the setLayoutY method is used to specify a component’s y location. For example, lines 32 and 33 set the location of the label description declared on line 20.

When the program is run for the first time and its window is displayed, most often some of the (x, y) locations of the components need to be adjusted. After the adjustments are made, the application is run again and some additional adjustments are often necessary. To reduce the number of iterations in this process, the design of the interface, shown in Figure 11.15, should be drawn on a piece of graph paper. Then the (x, y) coordinates of the upper left corner of each component can be read from the graph paper and coded into the program.

Using this approach requires two more lines of code per component to specify its location, and a few iterations to tune up the locations. However, even when a layout manager is used a few iterations are usually required to adjust component spacing and centering within the container.

There is one other difference between this version of our adding machine and the earlier version. In this application all of the components are added to the container using the statement on lines 78 and 79. The addAll method, instead of the add method, is invoked on the pane container and the names of all of the components are passed to it as arguments. This is a preferred coding style, because it reduces the number of lines in the program. The GUI window it produces is shown in Figure 11.32

[image:]

[image:]

[image:]

Figure 11.31
The application AddingMachineV3.

[image:]

Figure 11.32
The application AddingMachineV3’s window.

11.6.2VBox and HBox Layout Managers

A VBox layout manager is a Pane that places the components added to it in one vertical column. Within the column, the components are arranged from top to bottom in the order in which they were added to the container. An HBox layout manager is also a Pane that places the components added to it in one horizontal row. Within the row, the components are arranged from left to right in the order in which they were added to the container. If the VBox or the HBox pane is the only pane added to the scene, the scene’s size is adjusted to display all of the components within it.

The spacing between all or individual components added to layout panes can be specified, as can the spacing between the edges of the pane container they are added to (the scene or another pane). In addition, if the container they are added to is larger than the space require to display them, their alignment within the container (e.g., center them) can be specified. Table 11.10 describes the constructors and commonly used methods in the VBox class. There are analogous methods in the HBox class.

Table 11.10
Constructors and Commonly Used Methods in the VBox Class

	Method
Constructors
	Description
* indicates the HBox class has an analogous methods

	VBox()
	Constructs an empty VBox with no spacing between components*

	VBox(double spacingSize)
	Constructs an empty VBox with the specified spacingSize units between components*

	VBox(Node component, …)
	Constructs VBox with no spacing between components, the and adds the … component to it*

	VBox(double spacingSize, Node component, …)
	Constructs an VBox with the specified spacingSize units between components, and adds the … component to it*

	Methods
	

	void setPadding(new Insets(double units))
	Sets the spacing around the edges of the VBox to the specified units of spacing

	void setSpacing(double units)
	Sets the spacing between the VBox’s components to specified units of spacing

	void setAlignment(Pos.A_CONSTANT)
	Sets the alignment of a VBox’s components to the specified static constant defined in the class Pos

	void setMargin(Node component, new Insets(double units)
	Sets the spacing between a VBox and its adjacent components to the specified units of spacing

The code shown in Figure 11.33 creates the GUI window shown in Figure 11.34. Its scene is composed of a VBox pane, which contains an HBox and a VBox each containing three components.

Lines 1–6 create the six GUI components. The first three are added to an HBox named hbPane declared on line 8, and the second three are added to the VBox named vbPane1 declared on line 9. Those lines also set the spacing between the three components they contain to be 5 units. Line 10 sets the maximum width of the object vbPane1’s rows to 216 units. Then these two layout panes are added to another VBox named scenesPane on line 12. The spacing between this pane’s rows is set to 20 units on line 13, and the spacing around its outside edges is set to 10 units on line 14. Then this VBox is added to the application’s scene on line 16.

[image:]

Figure 11.33
Part of the code used to create the window in shown in Figure 11.34.

[image:]

Figure 11.34
The window whose scene is created by the code in Figure 11.30.

11.6.3FlowPane Layout Manager

A FlowPane is a Pane divided into equal width rows. Each row’s width is the width of the pane. Each row’s height is set to the height of the tallest component in the row. Figure 11.35 shows a GUI built using a FlowLayout pane. Five components were added to it: three buttons, then a label, and then a text field.

Beginning with the top row, components are positioned in the rows from left to right in the order in which they are added to the container. A row’s height is adjusted to accommodate the component in the row whose height is the largest. The components in a row are left justified by default. When a row fills up, the next component is added to the row below it. If the pane’s height cannot accommodate all the rows necessary to display the components, they are not shown or are partially shown. If a single component is too wide for a row, it is only partially displayed.

The application FlowLayoutGUI, shown in Figure 11.36, builds the graphical interface shown in Figure 11.35 using a flow layout manager. Following our GUI-building coding process, the components are declared and their properties are set on lines 21–28. The font of the component second is set, to a larger size than the default font size, on line 23.

The FlowLayout pane root is declared on lines 31–32 and all of the components are passed to its constructor. The first two optional arguments passed to the constructor set the spacing between components on the same row to 20 units, and the spacing between the rows to 10 units. Line 34 creates the application’s scene, and the layout pane is passed to it, as are the width and height of the scene. That becomes the width and height of the flow layout pane because the preferred values of those dimensions were not specified.

[image:]

Figure 11.35
The application FlowLayoutGUI's window.

[image:]

Figure 11.36
The application FlowLayoutGUI.

11.6.4BorderPane Layout Manager

A BorderPane layout manager is a Pane that is divided into five regions named Top, Left, Center, Right, and Bottom. One component can be added to each region, which can be another pane containing multiple components. A component does not have to be added to a region. The positions of these regions in the border pane are shown in Figure 11.37.

The width of the Top and Bottom regions of a border pane is always the same, and the height of the Left, Center, and Right regions is always the same. The height of the Top and Bottom regions is adjusted to be the size of the components added to them.

When the size of the container the border pane is added to is not specified, the width of the Top and Bottom regions is adjusted to be the size of the widest component added to them. The height of the Left, Center, and Right regions is adjusted to be the largest of the heights of the components added to them.

When the size of the container the border pane is added to is specified, the width of the Top and Bottom regions is the container’s specified width. The Center region’s width is the width remaining between the Left and Right regions, and the height of these regions is the height between the Top and Bottom regions.

The BorderPane class has a no-parameter constructor and two other constructors as shown in the top of Table 11.11. The most often used one of these is the no-parameter constructor. Components can be added to the center region, or to all of the regions, when the BorderPane object is created using the two other constructors. More commonly, a region’s component is added to it using the methods in the lower portion of the table.

[image:]

Figure 11.37
BorderPane layout regions.

Table 11.11
Constructors and Commonly Used Methods in the BorderPane Class

	Method
Constructors
	Description

	BorderPane()
	Constructs and empty Borderpane

	BorderPane(Node center)
	Constructs a BorderPane with the component center in its Center region

	BorderPane(Node center, Node top, Node right, Node bottom, Node left

	Constructs a BorderPane with the components center, top, right, bottom, and left in the pane’s Center, Top, Right, Bottom, and Left regions

	Methods
	

	void setTop(Node component)
	Places the component in the Top region of the BorderPane

	void setLeft(Node component)
	Places the component in the Left region of the BorderPane

	void setCenter(Node component)
	Places the component in the Center region of the BorderPane

	void setRight(Node component)
	Places the component in the Right region of the BorderPane

	void setBottom(Node component)
	Places the component in the Bottom region of the BorderPane

	void setPadding(new Insets(double value))
	Sets the spacing around the edges of the BorderPane to value units of spacing

The class AddingMachineV4 shown in Figure 11.38 builds the GUI interface of the adding machine discussed in Section 11.4.1 using a BorderPane layout manager. The user interface it produces is shown in Figure 11.39. Although it is not identical to the interface shown in Figure 11.20 built by the class AddingMachineV2 shown in Figure 11.19, the use of the border layout manager does facilitate the implementation of this GUI.

The GUI components are declared and their properties are set on Lines 19–38 of Figure 11.38. Then three HBox objects named top, center, and bottom are declared on lines 40, 42, and 45 and the components they will contain are passed to their constructors. Since the HBox objects center and bottom constructed on line 42 and 44 contain multiple components, their constructor is also passed a component horizontal separation of 10 and 50 units respectively.

The BorderPane object root is declared on Line 48, and the padding around its edges is set to 10 units on line 49. Then the three HBox objects top, center, and bottom are placed in root’s the Top, Center, and Bottom regions on lines 50–52. The root pane is passed to the application’s scene on line 54.

[image:]

[image:]

Figure 11.38
The application AddingMachineV4.

[image:]

Figure 11.39
The GUI interface produce by the application addingMachineV4.

11.7 CHAPTER SUMMARY

User-friendly graphical interfaces are incorporated into a program by displaying GUI components such as buttons, text fields, and labels in a window that the user can interact with. Java FX is Java’s third generation GUI package added to the Application Programmer Interface. It was preceded by Swing, which was preceded by AWT. Being third generation, FX provides features not available in Swing such as support for mobile touch devices, easier animation, and the use of special effects within a GUI.

The overloaded versions of the showInputDialog and showMessageDialog methods in the Swing’s JOptionPane class can be used to display more informative and user-friendly dialog boxes than those versions used in previous chapters. Equivalent dialog boxes can be created in FX by declaring an instance of the TextInput or the Alert classes. Both the Swing and the FX implementations can tailor the displayed icon to the message being conveyed, and both can display a default input or a set of valid inputs from which to choose an input.

An FX application extends the class Application, and like other Java applications it must contain a method named main invoked by the runtime environment. Normally in an FX application, this method only contains an invocation of the method launch. The method launch creates a Stage object, the application’s window, and then invokes the application’s start method passing it the Stage object. GUI components are added to container objects that are added to a Scene object, and then the scene is added to the stage and the stage is displayed.

The (x, y) position of each GUI component added to a container, called a pane, can be specified by the programmer, or the program can use a layout manager to facilitate the positioning of the components. FX provides ten layout managers. Five of the more commonly used ones position the components in a row (HBox), a column (VBox), a set of rows or columns (FlowPane), a rectangular grid of cells (GridPane), or five predefined regions (BorderPane) within the container. A layout manager can be added to another layout manager.

An event handler is a method that is invoked to perform the application-dependent processing associated user interactions on the GUI components, or some other event such as dragging the mouse, or typing a keyboard key, or the end of a KeyFrame timer cycle. In FX that method’s name is handle. It is the only abstract method defined in the functional interface EventHandler.

The application-dependent code is placed inside of an implementation of the method handle within the application, or defined in a Lambda expression that is passed to a method associated with the event. When invoked, the method handle is passed an object that contains information about the event that can be fetched by the application-dependent code using various get methods defined in the object’s class.

There are two techniques used to add 2-D shapes, including lines, to a program’s window. When the 2-D objects are instances of a class that inherits from the class Shape, such as the class Circle, we can use the same four-step approach used to add control objects (e.g., buttons, labels, etc.) to the container.

The second technique employs an art studio analogy. An instance of the class Canvas is created, and then a GraphicsContext brush object is created by invoking the method getGraphicsContext2D on the canvas. The shapes are drawn on the canvas by invoking 2-D shape methods defined in the GraphicsContext2D class on the brush object. After the shapes are drawn, the canvas is added to the window’s container.

Knowledge Exercises

1.True or false:

a) GUI stands for Graphical Unified Interface.

b) GUIs do not reduce the time and effort needed to interact with a program.

c) To create a graphical user interface, we declare an instance of a Pane container class, add the GUI components to it, and then add it to the scene.

d) The GUI package added to Java most recently is FX.

e) Check boxes permit multiple selections to be made.

f) When a key is pressed an Action event occurs.

g) Java applications and Java FX applications both begin by executing in their main method.

h) A dialog box cannot be used to display several valid inputs from which a user can choose.

i) When the position of the GUI components is to be specified, a VBox container should be used.

j) The border layout manager specifies three regions for the components.

k) The North and South regions of the border layout are always the width of the scene.

l) All the cells of a grid layout must have the same height and width.

2.Give the FX code to ask a person for their age using a dialog box containing an exclamation point icon, and the title Happy Birthday.

3.Name at least three GUI components, and explain their usual uses.

4.Give the code to:

a) Declare a button named b1 containing the text “Click ME”.

b) Relocate Button b2 to location (200, 400).

c) Fetch the text displayed in the TextField named tf1 and output it to the system console.

d) Create a TextField named tf2 whose default input is First Name.

e) Change the text of Label lb1 to “The Answer is Yes”.

f) Add and the Button b3 to the Pane p1 and locate it at (200, 100).

g) Make the size of the TextBox named tb2 100 units wide and 50 units high.

h) Attach the tool tip “Click After Entering a Number” to the Button named b4.

5.Give the names, the regions of the border layout, and give the code to add a button to each region.

6.Describe the position of components c1, c2, and c3 added to a VBox layout manager.

a) Give the code to make the pane p2’s layout manager BorderLayout.

7.Give the code to display a 600 x 800 unit red window from within an FX application.

8.What is the name of FX’s event handler method?

9.Give the Lambda expression to execute the method clickHandler that will determine which Button component was clicked.

10.Give the code to register the event handler coded in the class MyClass when the user types a non-control keyboard key.

11.Repeat question 10 for a left mouse click.

12.Three Button objects named b1, b2, and b3 are registered with the same event handler. Give the code in the event handler method to output “Button 2” when b2 is clicked.

13.Give the code to invoke the method keyHandler()when a key is released.

14.Give the code to draw a square on the Canvas object c1.

Programming Exercises

1.Write a program with a GUI that allows the user to input the length and width of a rectangle. The GUI will have three buttons. When one of the buttons is clicked, the area of the rectangle is displayed in square feet. When the second button is clicked, the perimeter of the rectangle is displayed. When the third button is clicked, the GUI is restored to the condition it was in when the program was launched. Each button will have its own event handler.

2.Modify the program in Exercise 1 so one event handler performs the calculations, and the restoration of the GUI to its launch condition is performed by separate methods.

3.Modify the program in Exercise 2 to include an additional input for the cost of carpet per square foot and a fourth button to calculate and display the cost of the rectangular carpet.

4.Create a program to display a GUI window with the following features: its size is 400 x 450 units. The window title is Surprise! The window should contain a button labeled “Press Here”. When the button is pressed, the background color should change to your favorite color and a circle (or a smiley face for extra credit) should appear.

5.Write a program whose GUI contains three buttons, labeled RED, YELLOW, and BLUE, which cause a filled rectangle to be drawn in the appropriate color when clicked.

6.Write a GUI application that will react to a mouse-click event by displaying the x and y coordinates of the position in the window where the mouse was clicked.

7.Create a GUI window with a mouse and a piece of cheese drawn on it, each at random locations. The keyboard directional arrow keys can be used to move the mouse to the piece of cheese.

8.Expand the application described in Exercise 7 so the user can also drag the cheese to the mouse.

9.Write a GUI application called StopWatch that displays the minutes and seconds that have elapsed since the interface’s Start button was clicked. When the interface’s Reset button is clicked, the elapsed time should return to zero, and the timer should stop. Each button should have separate, appropriately named, methods to perform their application-dependent processing.

10.Design and implement a GUI calculator that the user can use to add, subtract, multiply, or divide two operands. The operands will be entered into one text field by clicking buttons labeled 0 though 9, or one labeled with a decimal point. The input of the first operand will be terminated by the user clicking one of four buttons, each labeled with one of the four arithmetic operators. The input of the second operand entered will be terminated by the user clicking a button labeled with an equals sign. The result of performing the math operation on the two operands will be displayed in the text field. Also, include a Clear button to clear the calculator so another operation can be performed, and buttons to save, recall, and clear the contents of the text field.

11.Write a GUI application named Know Your Shapes that displays a colorful circle, square, rectangle, and ellipse, each with a text field below it. After the user types the names of each shape in the text boxes and clicks the Done button, display Correct in the text fields in which the typed names are correct and the correct name of the shape in the text boxes in which the typed name is incorrect. After five seconds have elapsed, clear the text boxes and output Try again to the GUI.

Enrichment

Create an FX program that displays a random animation of two graphical objects that bounce off the edges of the window and disappear when they collide.

Reference

Lowe, Doug. FX for Dummies. Hoboken NJ: John Wiley & Sons, 2015.

CHAPTER 12

GRAPHICAL USER INTERFACES: A SECOND LOOK

12.1 Borders, Checkboxes and Radio Buttons

12.2 Combo Boxes and List Views

12.3 Menus

12.4 File Chooser and Color-Picker Dialog Boxes

12.5 Lambda Expressions and Functional Interfaces: A Second Look

12.6 Scene Builder

12.7 Chapter Summary

[image:]

[image:]

In this chapter

In Chapter 11, we became familiar with the techniques used to create an FX application’s program window and add labels, buttons, and text fields to it, and how to respond to the user’s interaction with these components via keystrokes or mouse clicks and drags. In this chapter, we expand our knowledge of the other GUI component classes available in the API FX package. Check boxes, radio buttons, combo boxes, and lists views allow a user to select one or more inputs from a set of valid inputs. The procedure for adding a component to a window is expanded to include the grouping of radio buttons and the use of collections.

Menus are a common component of GUIs, and both drop-down and pop-up menus are discussed in this chapter, as are submenus. In addition, the file-chooser dialog boxes and the color-picker component used to facilitate disk I/O and color selections are presented in this chapter.

After gaining a deeper understanding of the code we add to our programs to build a GUI, we will discuss the use of Scene Builder. Scene Builder is a Java provided GUI drag-and-drop interface incorporated into most of the popular integrated development environments, including NetBeans and Eclipse, which facilitates the creation of a graphical user interface.

After successfully completing this chapter, you will:

•Be able to display a border around GUI component groupings.

•Be able to create and position check boxes, radio buttons, combo boxes, and lists views and perform processing when the user selects inputs associated with these components.

•Understand how to implement drop-down and pop-up menus and submenus and perform processing in response to menu selections.

•Know how to use API defined dialog boxes to facilitate the input of file I/O paths and file names.

•Know how to use the color-picker component to select a predefined color or to compose a custom color.

12.1 BORDERS, CHECK BOXES AND RADIO BUTTONS

The GUI components check box and radio button are shown in the upper center and upper right portion of Figure 12.1. Groupings of check boxes and radio buttons are used to facilitate the selection of one or more inputs from a small set of valid inputs. When the user can select several of the inputs from the set, check boxes are used in the GUI. When the inputs are mutually exclusive, that is only one of the valid inputs can be selected, radio buttons are used.

Ordinarily a set of check boxes or a set of radio buttons is added to an instance of a Pane, most often a VBox, and then that is added to another pane or the application’s scene. This makes the check box set or radio button set easier to reposition in the window because only the pane’s location needs to be changed, rather than changing the position of each of the boxes or buttons individually. In addition, a label can be added to the top of the pane to provide additional information about the box or button set, and the pane’s border can be made visible to give the visual impression that the check boxes or buttons are part of a set. This is the approach that was taken when the GUI illustrated in Figure 12.1 was created.

[image:]

Figure 12.1
GUI components.

12.1.1Pane Borders

One way of making a pane’s border visible is to invoke the setStyle method, inherited from the class Node, on the pane object. The argument passed to it is a string that defines the CSS style of the object. In the API documentation, CSS stands for Cascading Style Sheets, which is an FX feature used to specify the visual appearance (style) of a window’s individual components, its panes, or its entire scene.

The following lines of code were used to declare the VBox pane named basicsPane displayed in the upper left corner of Figure 12.1. The string argument used on the second line specifies the border color style of the pane to be blue, with an intensity of 70%.

VBox basicsPane = new VBox();

basicsPane.setStyle("-fx-border-color: rgba(0, 0, 200, 0.7);");

The style string passed to setStyle can be a concatenation of several style strings. For example, the code below also specifies the pane’s background color to be red, with an intensity of 5%.

basicsPane.setStyle("-fx-border-color: rgba(0, 0, 200, 0.7);" + "-fx-background-color: rgba(200, 0, 0, 0.05);";

The syntax used in FX CSS is similar to that used in HTML. In these examples the function rgba() stands for red-green-blue with alpha transparency. A detailed discussion of CSS is beyond the scope of this book.

12.1.2Check Boxes

A grouping of check boxes is used on a GUI to facilitate the selection of one or more inputs from a small set of valid inputs. When the user clicks a check box, a check mark either appears in the check box or is removed from it. Using the techniques discussed in this section, check boxes are created, added to, and positioned in GUI containers. Processing can be initiated when the user checks or unchecks them. However, to give users time to review and finalized their selections, the processing associated with them is usually performed when a button within the scene is clicked.

Creating Check Boxes

Check boxes are instances of the FX class CheckBox and can be created using the class’s one (String) parameter constructor, or its default constructor. The text that appears beside the check box when it is displayed is the string passed to the one-parameter constructor or the string passed to the class’s setText method invoked on the component. The following code fragment creates the first two check boxes shown in the top center of Figure 12.1:

//Creates two check boxes and initializes their text

CheckBox cb1 = new CheckBox("This choice");

CheckBox cb2 = new CheckBox();

cb2.setText("And/or this choice");

The setText method can be used to set the text property of most GUI components that display text, and it can be used to change the text initially associated with a component. As discussed in Chapter 11, the properties of components and containers can be set and fetched using the methods shown in Table 11.4 of that chapter, which is recreated in this chapter as Table 12.1 for convenience.

By default, a check box is initially displayed unchecked (without a check mark). When it is unchecked, the check box’s value of its selected property is false. The method setSelected can be invoked on a check box object to change the value of the property to the Boolean value passed to it. The following two lines of code create a check box that contains a check mark.

//Creates a selected check box

CheckBox cb1 = new CheckBox("This choice");

cb1.setSelected(true);

Table 12.1
Methods Used to Specify a Component’s Properties and Add it to a Container

[image:]

Adding Check Boxes to Containers and Positioning Them

Like other components, check boxes are added to, and positioned in a GUI layout pane container using the techniques discussed in Chapter 11 Section 11.4.3 and Sections 11.6.2–11.6.4. The following code fragment adds three check boxes to the VBox container checkPane:

//Adds three check boxes to the VBox checkPane
CheckBox cb1 = new CheckBox("This choice");
CheckBox cb2 = new CheckBox("And/or this choice");
CheckBox cb3 = new CheckBox("And/or this choice");
VBox checkPane = new VBox(cb1, cb2, cb3);

They can also be added to, and positioned in, a pane container using the techniques discussed in Section 11.6.1.

Determining a Check Box’s Status

The status of a check box, checked or unchecked, can be determined by invoking the isSelected method on it. The method returns the Boolean value true if the box is checked when the method is invoked, otherwise, it returns false. The following code fragment outputs check box 1 was checked to the system console.

//Determines if the checkbox cb1 is checked

CheckBox cb1 = new CheckBox("This choice");

cb1.setSelected(true);

if(cb1.isSelected() == true)

{ System.out.println("check box 1 was checked"); }

Check Box Events

In most applications that use check boxes, the interface contains a button that is clicked after the user checks one or more of the check boxes, and then the processing associated with the checked boxes is performed from within the button’s overridden version of the method handle. When this is the case, the status of the check boxes is determined by invoking the isSelected method within the code of the event handler method. The coding of the event handler and the techniques used to register it in the button’s event handler list, are the same as those discussed in Section 11.5.1.

In applications where it is important to perform some processing immediately after a check box is clicked, a check box event handler is implemented. A check box click generates an ActionEvent and so the techniques used to perform the application-dependent processing when the event occurs is similar to those of a button click. The only difference is that the setOnAction method would be invoked on the CheckBox object.

Figure 12.2 shows the application CheckBoxEvent who’s GUI interface, shown in Figure 12.3, contains one check box that is declared on line 14 and added to the applications container on line 18. The user can use the check box to select or unselect Hamburger. Its event handler code is defined within the Lambda expression on line 15. It contains one statement that invokes the method cb1Handler defined on lines 25–35. The Boolean condition of the if statement on line 27 of that method invokes the isSelected method on the check box object to determine if the click selected a hamburger. If so, line 29 performs the output. If the click unselected a hamburger, line 33 performs the output.

[image:]

Figure 12.2
The application CheckBoxEvent.

[image:]

Figure 12.3
The application CheckBoxEvent’s window.

12.1.3Radio Buttons

Ordinarily, a radio button is grouped with other radio buttons into a mutually exclusive grouping because their most common use in GUIs is to facilitate the selection of one input from a small set of valid inputs. When the user clicks a radio button, a dot either appears on the button or is removed from it. Using the techniques discussed in this section, radio buttons can be created, added to, and positioned in GUI containers and made mutually exclusive.

Application-dependent processing can be initiated when the user selects, or unselects, a radio button. However, to give users time to review and finalize their selection, the processing associated with them is usually performed when a button within the scene is clicked.

Creating Radio Buttons

A radio button is an instance of the FX class RadioButton, and can be created using the class’s one (String) parameter constructor or its default constructor. The text that appears beside the radio button when it is displayed is the string passed to its one-parameter constructor, or the string passed to its class’s setText method invoked on the radio button. The below code fragment creates the first two radio buttons shown in the top-right portion of Figure 12.1.

//Creates two radio buttons and initializes their text
RadioButton rb1 = new RadioButton("This choice");
RadioButton rb2 = new RadioButton();
rb2.setText("Or this choice");

The setText method can be used to set the text property of most GUI components that display text, and it can be used to change the text initially associated with a component. As previously mentioned in this chapter, the properties of components and containers can be set and fetched using the methods shown in Table 12.1

By default, a radio button is initially displayed unselected without a center dot and its selected property is false. The method setSelected can be invoked on a check box object to change the value of that property to the Boolean value passed to it. The following two lines of code create a radio button that contains a center dot.

RadioButton rb1 = new RadioButton ("This choice");

rb1.setSelected(true);

Making Radio Buttons Mutually Exclusive

By default, a set of radio buttons is not mutually exclusive: one, several, or all of them could be selected at the same time. Because they are ordinarily used to choose one input from a set of mutually exclusive inputs, a set of radio buttons is normally designated to be mutually exclusive. When this designation is made, after one button in the set is selected, the previously selected button in the set is simultaneously unselected.

To designate a set of radio buttons to be mutually exclusive, their ToggleGroup property is set to the same ToggleGroup object. The following code fragment creates a mutually exclusive set of two radio buttons:

//Makes three radio buttons mutually exclusive
RadioButton white= new RadioButton("White Walls");
RadioButton yellow = new RadioButton("Yellow Walls");
ToggleGroup wallsColorGroup = new ToggleGroup();
white.setToggleGroup(wallsColorGroup);
yellow.setToggleGroup(wallsColorGroup);

Adding Radio Buttons to Containers and Positioning Them

Like other components, radio buttons are added to, and positioned in, a GUI layout pane container using the techniques discussed in Chapter 11 Section 11.4.3 and Section 11.6. The following code fragment adds three radio buttons to the VBox container radioPane:

//Adds three radio buttons to the VBox radioPane
RadioButton rb1 = new RadioButton("This choice");
RadioButton rb2 = new RadioButton ("Or this choice");
RadioButton rb3 = new RadioButton ("Or this choice");
VBox radioPane = new VBox(rb1, rb2, rb3);

The techniques used to add, and position, radio buttons in a pane container are discussed in section 11.6.1.

Determining a Radio Button’s Status

The status of a radio button, selected or unselected, can be determined by invoking the isSlected method on it. The method returns the Boolean value true if the button is selected when the method is invoked, otherwise, it returns false. The following code fragment outputs Hamburger was selected to the system console.

//Determines if the radio button rb1 is selected
RadioButton rb1 = new RadioButton("Hamburger");
rb1.setSelected(true);
if(rb1.isSeclected() == true)

{

 System.out.println(rbi.getText() + "Hamburger was selected");

}

Radio Box Events

In most applications that use radio buttons, the interface contains a Button object that is clicked after the user selects one of the radio buttons in a group. Then the processing associated with the selection is performed from within the button’s overridden version of the method handle. When this is the case, the status of a radio button in a group is determined by invoking the isSelected method on the radio button within the code of the event handler. The coding of this method, and the techniques used to register it in the button’s event handler list, are the same as those discussed in Section 11.5.1.

In applications where it is important to perform some processing immediately after a radio button is selected or unselected, a radio button event handler is implemented. Selecting a radio button generates an ActionEvent and so the technique used to perform the application-dependent process when the event occurs is similar to that of a button click. The only difference is that the setOnAction method would be invoked on the RadioButton object.

The application MealMenu shown in Figure 12.4 accepts a user’s food order, and outputs the order to the system console. When the program is launched, the window in Figure 12.5a appears. Under the assumption that most customers would want napkins, the Napkins check box is initially checked. Figure 12.5b shows the window with a completed food order. The Place Order button is then clicked, and the order is output to the system console. The output for the order shown in Figure 12.5b would be Taco, and cheese, and napkins.

Line 21 of the application invokes the setOnAction method on the Button object placeOrder declared on line 20, and the invocation of the method placeOrderHandler in its Lambda expression becomes the code of the button’s event handler. When the button is clicked, that method coded on lines 71–99 is invoked.

Lines 24–28 declare the label whose text is Entrée and the three radio buttons that make up the entrée part of menu, and they are then added to the VBox pane declared on line 30. Similarly lines 42–49 build the VBox layout pane that contains the check boxes preceded by a label whose text is Extras. Line 47 sets the napkins check box selected property to true causing it to be displayed with a check in it when the program is launched.

The radio buttons are made mutually exclusive on lines 36–39 by setting their ToggleGroup property to reference the same ToggleGroup object, entreeGroup, declared on line on 36. Lines 56–62 declare a GridPane layout manager, and place the two Vbox panes in its first row (line 60) and then place the Place Order button in its second row (line 61). The forth argument passed to the add method on line 61 specifies that the button will occupy two columns, and line 62 specifies that the button will be centered within the columns it occupies.

The decision statements in the method placeOrderHandler on lines 74–97, invoked when the Place Order button is clicked, invoke the isSelected method on the radio and check box objects to determine which items were selected or checked. If they were selected or checked the method returns true, and the item is added to the string order output on line 98.

[image:]

[image:]

[image:]

Figure 12.4
The application MealMenu.

[image:]

Figure 12.5
The application MealMenu’s window before and after the selections have been finalized.

The output for 12.5 b is: Your order is Taco, and cheese, and napkins

12.2 COMBO BOXES AND LIST VIEWS

The GUI components ComboBox and ListView are shown in the lower left and lower center portion of Figure 12.1. These components are similar to a set of radio buttons and a set of check boxes in that they are used to facilitate the selection of one or more inputs from a set of valid inputs items. When the number of items in the set is small, most GUI designers use radio buttons and check boxes to present the selection alternatives. Otherwise a combo box or a list view is the preferred component, because they can include a scroll bar to permit the user to view the alternative selections without taking up a large portion of the program’s window.

By default, the number of rows of items displayed in these two components is dependent on the height of the pane they are added to. When the pane’s height not large enough to display all of the items, a scroll bar is displayed. Alternately, the number of items displayed in a combo box’s drop-down panel can also be specified by invoking the setVisibleRowCount method on the combo box object and passing it an integer row count.

A combo box is analogous to a set of radio buttons in that the user can only select one of its items, and a list view is analogous to a set of check boxes in that the user can select one or more of its items. However, by default only one item can be selected from a list view’s items. To permit the user to select multiple items from a list view, the setSelectionMode method is invoked on the list view’s data member SelectionModel and passed the SelectionMode class’s static constant MULTIPLE as shown below.

ListView aListView = new ListView();

aListView.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

To select multiple sequential items from a list view’s selections the user holds down the Shift key and clicks the first and last items in the sequential grouping. To select a group of non-sequential items, the Ctrl key is held down while the items are clicked.

Another difference between a combo box and a list box is that a combo box can display a prompt, or display a text field that the user can type a selection into that is not in the combo box’s items list. By default, a prompt and the text field are not shown. Table 12.2 presents commonly used methods to construct a combo box and a list view, sets their properties, adds items to them, and fetches the selected item(s). We will discuss all of these methods within this section.

Table 12.2
Methods to Construct a Combo Box and a List View, Set Their Properties, and Add Items to Them

[image:]

Adding Items to a Combo Box and List View

A ComboBox and a ListView object contain a data member named items that references the list of valid selection items it can display. More specifically, the data member stores the address of an ObservableList object, whose class name reflects the fact that the list of items can be observed by the user. There are two techniques used to add items to an observable list. The first one will be explained using an instance of a ComboBox, and the second one will be explained using an instance of a ListView.

In the first of these techniques, after creating a ComboBox object, we fetch the address of its ObservableList object by invoking the class’s getItems method on it. Then the addAll method is invoked on the returned object and the combo box’s selection items are passed to it as arguments. The following code segment declares a combo box named entrees, then fetches the address of the available list stored in its data member items, and then adds the items Hamburger and Taco to its ObservableList of items.

//First technique for adding items to a combo box or list view
ComboBox <String> entrees = new ComboBox();
ObservableList <String> entreesItemList = entrees.getItems();
entreesItemList.addAll("Hamburger", "Taco");

An equivalent, and slightly more succinct, coding is:

ComboBox <String> entrees = new ComboBox();
entrees.getItems().addAll("Hamburger", "Taco");

The version of the addAll method invoked above, always adds the items passed to it to the end of the list in the same order as the order of the items passed to it. Alternately, the method add can be used to append one item to the list or add an item at a specified position (index) in the list. The below code adds the string BLT Sandwich to the beginning of the items list of the combo box named entrees.

//Adding one item to the combo box entrees at a specified location

entrees.getItems().add(0, "BLT Sandwich");

The second technique used to add items to either a combo box or a list view, is to create an instance of the ObservableList class containing the items, and pass that object’s address to the constructor when the combo box or list view object is created. After creating the combo box or list view, the constructor stores the address passed to it in the object’s items data member. The FXCollections class’s static method observableArrayList is used to create the ObservableList object. The following code sequence creates a list view extras, containing the items Fork and Napkins.

//Second technique for adding items to a combo box or list view

ObservableList extrasItems = FXCollections.observableArrayList("Fork",

"Napkins");

ListView extras = new ListView(extrasItems);

Fetching the Selected Items

To fetch the item selected from a combo box the getValue method is invoked on the ComboBox object. The returned value is the item selected. If the String item Taco was selected from the combo box entrees, the below line of code would output You selected a Taco to the system console.

System.out.println("You selected a " + entrees.getValue());

To fetch the item, or items, selected from a list view is not as simple. First the getSelectionModel method is invoked on the ListView object. This method returns an instance of the class MultipleSelectionModel. Then the getSelectedItems() method is invoked on that object to fetch an ObservableList object that contains the items selected. The items selected can be gleaned out of that object using an enhanced for loop. The below code sequence outputs all of the items selected from the ListView object extras to the system console.

//Fetching the items selected from a list view
ObservableList<String> extrasSelected;
extrasSelected = extras.getSelectionModel().getSelectedItems();
for(String extra : extrasSelected)

{

 System.out.println(extra);

}

Combo Box and List View Events

In most applications that use a combo box and/or a list view, the interface contains a Button object that is clicked after the user finalizes the item selection(s). Then the processing associated with the selection is performed from within the button’s overridden version of the method handle. The coding of this method, and the techniques used to register it in the button’s event handler list, are the same as those discussed in Section 11.5.1.

In applications where it is important to perform some processing immediately after an item is selected, a combo box and/or a list view event handler is implemented. Selecting an item generates an ActionEvent, and so the technique used to perform the application-dependent process when the selection occurs is similar to that of a button click. The only difference is that the setOnAction method would be invoked on the ComboBox or the ListView object.

Figure 12.6 presents the application MealMenu2 that accepts a user’s food order using a combo box and a list view, and outputs the order to the system console. When the program is launched, the window in Figure 12.7a appears. Figure 12.7b shows the window with a completed food order. The Place Order button is then clicked, and the order is output to the system console. The output for the order shown in Figure 12.5b would be: Your order is a BLT Sandwich, and Mayonnaise, and a Paper Plate, and Utensils.

Lines 26–29 declares the ObservableList object containing the entrée’s items, which is passed to the ComobBox constructor on line 30. Line 31 places the label text Make a Selection within the combo box, and then adds it and its label to a VBox on line 32. Lines 41 declares the ListView object extras, and lines 42–44 uses the alternate technique previously discussed to define and add items to it. Line 45 permits multiple selections to be made from the list box. Line 46 adds the List View and its label to a second VBox.

Line 53 of the application invokes the setOnAction method on the Button object declared on line 52, and the invocation of the method placeOrderHandler in its Lambda expression becomes the code of the button’s event handler. When the button is clicked, the method coded on lines 66–76 is invoked. Line 68 adds the selected entrée item to the string output in line 75, and lines 69–74 add the selected extra items to it. Line 70 places the selected extra items into the ObservableList object declared on line 69, and then the enhanced for loop that begins on line 71 adds them to the output string.

[image:]

[image:]

Figure 12.6
The application MealMenu2.

[image:]

Figure 12.7
The application MealMenu2’s window.

The output is: Your order is a BLT Sandwich, and Mayonnaise, and a Paper Plate, and Utensils

12.3 MENUS

A menu is a GUI component used to obtain one of several valid inputs from the program user. In this way, menus are similar to combo boxes. The advantage menus have over combo boxes and the other GUI components we have discussed is that they can be used to present a wide variety of valid inputs while occupying a relatively small portion of the program’s window. In addition, because many applications place menus in the same position within their window, they present an input interface that is familiar to the user.

The Java API supports two types of menus: drop-down menus and pop-up menus. The most common location for a drop-down menu is just below the window’s title bar. Pop-up menus remain invisible until the user performs a platform-dependent action, usually a mouse action or key action. The most common mouse action to expose a pop-up menu is a right button mouse click. We will begin our discussion of menus with drop-down menus.

12.3.1Drop-Down Menus

The program window in Figure 12.8a shows a drop-down menu whose menu bar is positioned just below the window’s title bar. The menu-bar object contains one drop-down menu object on its left side that has the string “A Menu” associated with it. The user has clicked this menu object to expose the menu’s five drop-down items and then clicked, or hovered over, the forth of these items to expose another dropdown menu containing three more items. Figure 12.8b gives the FX classes of the objects that make up the program’s menu, displayed in Figure 12.8a. These classes are MenuBar, Menu, and MenuItem. The two submenu objects shown in Figure 12.8a are instances of the class Menu.

The MenuItem objects within a drop-down menu are the terminal components of the menu. These items are the set of valid inputs. The user selects one of these inputs by clicking it, which generates an action event just as clicking a Button object generates an action event. To display the menu bar just below the window’s title bar, the menu bar is positioned at the top of the pane passed to the scene’s constructor.

[image:]

Figure 12.8
Drop-down menu components and their API classes.

Building a Drop-Down Menu System

Generally speaking, a drop-down menu system consisting of a menu bar containing one or more drop-down menus is created using the following six-step process. The below code fragments, used to illustrate each step of the process, were used to create the portion of a window’s menu that is displayed in Figure 12.9.

1.Create the menu bar

MenuBar aMenuBar = new MenuBar();

2.Create the menus and their submenus

Menu dollarMenu = new Menu("Dollar");
Menu extrasMenu = new Menu("Extras");
Menu sandwichMenu = new Menu("Sandwich");
Menu mexicanMenu = new Menu("Mexican");

3.Create the menu items and the submenu items

MenuItem saladItem = new MenuItem("Salad");
MenuItem chickenSoupItem = new MenuItem("Chicken Soup");
MenuItem hamburgerItem = new MenuItem("Hamburger");
MenuItem bltItem = new MenuItem("BLT");

4.Add the items to the submenus and the items and submenus to the menus

sandwichMenu.getItems().addAll(hamburgerItem, bltItem);dollarMenu.getItems().addAll(saladItem, chickenSoupItem,sandwichMenu, mexicanMenu);

5.Add the menus to the menu bar

aMenuBar.getMenus().addAll(dollarMenu, extrasMenu);

6.Add the menu bar to the pane container

Pane pane = new Pane();
pane.getChildren().addAll(aMenuBar);

[image:]

Figure 12.9
A drop-down menu system that contains two submenus.

Menu Separator Bars

Separator bars are added to a drop-down menu to visually group related elements, or to separate unrelated items. There are two separator bars in the Dollar drop-down menu shown in Figure 12.9: one above the Sandwich submenu and one below it. Separator bars are menu items that are instances of the class SeparatorMenuItem, and so they are added to a menu the same way other menu items are added to it. The two menu separators in Figure 12.9 were added to the drop-down menu dollarMenu using the following code fragment:

//Add a separator bar above and below the sandwich submenu

SeparatorMenuItem seperator1 = new SeparatorMenuItem();

SeparatorMenuItem seperator2 = new SeparatorMenuItem();

dollarMenu.getItems().addAll(saladItem, chickenSoupItem,separator1,sandwichMenu, separator2 mexicanMenu);

Menu Item Events

When the user clicks one of the items in a menu, an action event occurs just as when a Button object is clicked. The processing associated with the selected menu item is performed within the overridden method handle, whose code can be defined in a Lambda expression passed to the setOnAction method invoked on the menu item. The below code would cause the method dollarMenuItemHandler to be invoked when the MenuItem object saladItem is clicked.

saladItem.setOnAction(e-> dollarMenuItemHandler(e));

Most often, clicks on any of the terminal items in a menu are handled by the same method. When this is the case, the getSource method can be invoked within the method on the ActionEvent object passed to it to identify which of the menu items was selected by the user. The Boolean condition in the below if statement is true if the user clicked the MenuItem object saladItem.

if(e.getSelected() == saladItem)

{

 //The processing associated with a saladItem selection

}

The application ExpandedDollarMealMenu shown in Figure 12.10 contains the code to build and display the menus shown in Figure 12.11 using our six-step process. The three Mexican food items displayed in the window on the right side of the figure are defined on lines 29–31, and added to the Mexican food submenu on line 45. Lines 46–47 add the items and submenus to the dollar meal drop-down menu, and also add the two separator bars created on lines 42–43 to it.

The application also contains the code to determine the user’s meal selection, from the Dollar menu, and output it to the system console. After the seven terminal items are created within the third step of our process, lines 33–39 register the event handler for the seven terminal items (one item per line) by invoking the setOnAction method on them and passing the method a Lambda expression. Since all item clicks will be serviced by the method dollarMenuItemHandler(ActionEvent e) coded on lines 68–102, the Lambda expressions contain the same one line of code: an invocation of that method.

The Boolean expressions within if-else statements of the method dollarMenuItemHandler invoke the getSource method on the ActionEvent argument passed to the method (e.g., line 72) to determine the user’s selection. This method returns the address of the MenuItem object that was clicked.

[image:]

[image:]

[image:]

Figure 12.10
The application ExpandedDollarMealMenu.

[image:]

Figure 12.11
Five of the terminal nodes of the ExpandedDollarMealMenu application’s Dollar menu.

Check Menu and Radio Menu Items

Check menu and radio menu items permit the user to make more than one selection from a drop-down menu. As discussed in Section 12.1.3, most often a radio item is grouped with other radio items, and only one selection can be made from within the grouping. Like the other menu items, check menu and radio menu items can be added to a menu displayed on the menu bar, or added to its submenus. Unlike the radio buttons discussed in Section 12.1.3, a radio menu item is displayed with a box to its left rather than a circle.

A check menu item is an instance of the class CheckMenuItem, and a radio menu item is an instance of the class RadioMenuItem. The techniques used to declare them, add them to menus and submenus, and service a click event on them, are the same techniques used for the menu items previously discussed in this section. In addition, the technique used to group radio menu items into a mutually exclusive toggle group is the same technique used to group radio buttons discussed in Section 12.1.3.

The following code sequence creates three check menu items, and adds them to the Menu object extrasMenu, and also adds the separator separator1 and the submenu beverageMenu to the extras menu (see Figure 12.12b).

Menu beverageMenu = new Menu("Beverage");
SeparatorMenuItem separator1 = new SeparatorMenuItem();

CheckMenuItem cheeseItem = new CheckMenuItem("Cheese");
CheckMenuItem ketchupItem = new CheckMenuItem("Ketchup");
CheckMenuItem napkinsItem = new CheckMenuItem("Napkins");

extrasMenu.getItems().addAll(cheeseItem, ketchupItem, napkinsItem,separator1, beverageMenu);

The following code creates the Beverage submenu’s items shown in Figure 12.12b. It declares three radio menu items, makes them mutually exclusive, and adds them to the submenu beverageMenu.

RadioMenuItem waterItem = new RadioMenuItem("Water");
RadioMenuItem juiceItem = new RadioMenuItem("Juice");
RadioMenuItem sodaItem = new RadioMenuItem("Soda");
ToggleGroup beverageGroup = new ToggleGroup();
waterItem.setToggleGroup(beverageGroup);
juiceItem.setToggleGroup(beverageGroup);

sodaItem.setToggleGroup(beverageGroup);

beverageMenu.getItems().addAll(waterItem, juiceItem, sodaItem);

Adding all of the above sections of code to the application ExpandedDollarMealMenu shown in Figure 12.10 produces the drop-down menu and submenu shown in Figure 12.12. Figure 12.12a shows the application’s window, and Figure 12.12b shows the window after the user has clicked the Extras menu and made two selections from its three check items, and one selection from the Beverage submenu’s radio items.

[image:]

Figure 12.12
Check Box and Radio Box items in a drop-down menu.

When the user selects a check menu item or a radio menu item displayed on a menu, an ActionEevent occurs. The code to execute the method extrasMenuItemHandler when the click occurs on the check menu item cheeseItem is given below. As previously discussed, its signature would be extrasMenuItemHandler(ActionEvent e)and its code would invoke the getSource() method on the argument passed to it to determine which menu item was selected.

cheeseItem.setOnAction(e-> extrasMenuItemHandler(e));

Normally, on a menu that permits multiple selections, we would not want to perform the application-dependent processing until user selections were complete and a button was clicked. The code to add the Button object placeOrder to the menu bar area of the window shown in Figure 12.12 whose container is named pane, and execute the method placeOrderItemHandler when the button is clicked, is given below.

Button placeOrder = new Button("Place Order");
placeOrder.setLayoutX(134);
placeOrder.setLayoutY(1);
placeOrder.setOnAction(e-> placeOrderItemHandler(e));
pane.getChildren().add(placeOrder);

12.3.2Pop-Up Menus

A pop-up menu is a space-saving alternative to a menu bar based, drop-down menu. Unlike drop-down menus, pop-up menus are associated with a particular component in a graphical interface, and they remain invisible until the user performs a platform-dependent action on the GUI component. A common action on the component is a right mouse click.

Pop-up menus are instances of the class ContextMenu and can be created using the class’s default constructor:

//Create a pop-up menu object
ContextMenu aPopUpMenu = new ContextMenu();

The techniques discussed in the previous section used to add menu items, submenus, and separators to drop-down menus, and to perform application-dependent processing when a menu item is selected, are the same techniques used for pop-up menus. The only difference is that a pop-up menu is not added to a menu bar. Instead it is associated with a GUI component. When that GUI component is right clicked, the pop-up menu becomes visible (pops up) with its upper left corner positioned at the mouse pointer.

To associate a pop-up menu with a component, the setContextMenu method is invoked on the GUI component, and the pop-up menu object is passed to the method. When the user performs the platform-dependent action on the component (e.g., right clicking the component), the menu becomes visible. The last line of the following code sequence associates the ContextMenu object aPopUpMenu with the Label component aLabel.

//Associating a pop-up menu with a component
aLabel = new Label("Right click this text to change its color");
aLabel.setTextFill(Color.BLUE);
aLabel.setContextMenu(aPopUpMenu);

The application PopUpMenu shown in Figure 12.13 creates the pop-up menu shown in Figure 12.14a, which appears when the text displayed in the window is right clicked. Figure 12.14b shows the window after the user selected Green from the menu by left clicking it. This application uses a coding technique similar to that used in Figure 12.10. The highlighted lines in Figure 12.13 identify the adaptation of that technique to this application, and also identify the lines that change the color of text displayed in the window to green.

[image:]

[image:]

Figure 12.13
The application PopUpMenu.

[image:]

Figure 12.14
The Pop-up menu produced by the application PopUpMenu used to change the text’s color to green.

12.4 FILE-CHOOSER AND COLOR-PICKER DIALOG BOXES

FX provides three dialog boxes that can be used to facilitate commonly performed user tasks: specifying the path to a file to be opened, specifying the path to a file to be saved, and specifying a color to be used in a graphics application. The FileChooser class contains methods that display file-open and file-save dialog boxes. An object in the ColorPicker class is a dialog box containing a predefined palette of colors from which to choose, and provides the ability to define a custom color.

12.4.1File-Chooser Dialog Boxes

Figure 12.15a shows an Open file-chooser dialog box, and Figure 12.15b shows a Save file-chooser dialog box. Both dialog boxes are displayed by the application FileChoosers, shown in Figure 12.16.

Line 21 displays the Open file-chooser dialog box by invoking the showOpenDialog method on the FileChooser object fileChooser declared on line 17, passing the method the application’s stage object. Line 21 of the application does not complete its execution until the user clicks the dialog box’s Open or Cancel buttons or closes the dialog box. Until one of these events occurs, the user can browse the system’s file structure to locate and select a file to be opened, or the user can click a folder’s name and then type the name of a file name into the File Name text field.

When a folder is selected by double-clicking its name, the path to the folder appears in the text field at the top of the dialog box, and its subfolders are displayed. When a file is selected by clicking its name, the file name is displayed in the dialog box’s File Name text field. A subsequent click of the Open button will close the dialog box. Whenever the Cancel button or the X at the top right of the dialog box is clicked, the dialog box closes.

[image:]

Figure 12.15
File-chooser Open and Save dialog boxes.

When the dialog box closes, the method showOpenDialog returns the address of a File object, or null if the dialog box was closed by clicking the Cancel button or the X. When that is not the case, the Boolean condition of the if statement on line 22 is true, and the returned File object contains a string that represents the path to the file. To fetch this string, the File class’s getPath method is invoked on the returned object. Lines 24–25 use this method to fetch and output the selected file’s path to the system console.

To display the file when the user closes the dialog box by clicking Open, the open method is invoked on a Desktop object and the method is passed the file path. The following two lines would be added to the code block of the if statement on line 22 to display the file to the user.

Desktop desktop = Desktop.getDesktop();

desktop.open(file);

Lines 29–34 use a sequence of code similar to lines 21–26 to display a Save file-chooser dialog box and output the path to the saved file to the system console. The only difference is that line 29 invokes the showSaveDialog method instead of the showOpenDialog method.

The output produced by the application is shown in Figure 12.17. To generate this output, the user clicked the Open button of dialog box shown in Figure 12.15a, and then clicked the Save button of the dialog box shown in Figure 12.15b.

NOTE

The look and feel of the dialog boxes displayed in Figure 12.15 is platform dependent.

[image:]

Figure 12.16
The application FileChoosers.

[image:]

Figure 12.17
The output produced by the application FileChoosers.

12.4.2Color-Picker Control

A ColorPicker object is a control component that can be added to a pane container. It is used in applications where the user will be asked to select a color. The selected color can then be used as the color of another component or a drawn shape. To facilitate this process, the color-picker contains a pallet of 120 predefined colors that the user can select a color from, and a drop-down window that can be used to compose a custom color. The color pallet object also contains a color-chooser that displays the current color. Initially it is the only part of the color-picker visible.

The three parts of a color-picker component are shown in Figure 12.18. When the color-chooser is clicked, the pallet is made visible. When the text Custom Color displayed at the bottom of the pallet is clicked, the drop-down custom color window is also made visible.

The ColorPicker class contains a default constructor and a one-parameter constructor that can be passed an instance of the class Color. Most often it is passed one of the Color class’s static constants to specify the current color. The below code sequence declares the ColorPicker object aColorPicker, with a current color of orange, that is displayed in Figure 12.18.

ColorPicker aColorPicker= new ColorPicker(Color.ORANGE);

[image:]

Figure 12.18
The three parts of a ColorPicker object.

Displaying Color-Picker

Like other control components a color-picker’s visible property is true by default, and so it is displayed when the container it is added to is displayed. To prevent it from being displayed, its visible property is set to false by invoking the setVisible method on it and passing the method the Boolean value false. At the point in the program’s execution when the color-chooser should be displayed, setVisible would be invoked on it and passed the value true.

Alternately, the color-picker can be added to a visible container at the point in the program’s execution when the color-chooser should be displayed, and removed from the container when it should not be displayed.

Color-Picker Events

When the user clicks any of the predefined colors on the color pallet, or the Save or Use buttons in the custom color window, an ActionEvent occurs and the current color becomes the color clicked in the color pallet or the new color composed in the custom color window. The technique used to register the event handler associated with these actions on a color-picker is the same technique used to register a click on a button. For example, the below line of code would cause the method handle to be invoked and passed an ActionEvent object when these click actions occurred on the color-picker object aColorPicker.

aColorPicker.setOnAction(e-> handle(e));

The method handle shown below would be coded inside the application. It would perform the application-dependent processing in response to the color-picker event. If the application-dependent processing of other components’ action events were also coded inside this method, the getSource method would be invoked on the object passed to the method to determine on which component the event occurred. The code block of the if statement inside the method handle shown below would execute when the event occurred on the color-picker object aColorPicker.

public void handle(ActionEvent e)

{

 if(e.getSource() == aColorPicker)

 {

 System.out.println("New current color selected");

 }

 //some other action event occurred

 else if…

 }

Fetching and Applying the Selected Color

A color-picker object contains a data member named value that stores the object’s current color property. Initially, value is assigned the color passed to the color-picker’s constructor. Subsequently it is assigned the color selected by the user, or the custom color created by the user, or the color passed to the color-picker’s method setValue. To fetch the current color, the class’s getValue method is invoked on the color-picker object. The method returns an instance of the class Color.

If lines 15 and 21 of the application presented in Figure 11.24 were replaced with the lines 1–3 shown below, and the method handle (lines 5–11 shown below) was added to the application, then the user would be able to select the snowman’s hat color from a color-picker object before the snowman was displayed. The variables aColorPicker and root on lines 1 and 3 below would have to be declared at the class level in Figure 11.24 so that they could be accessed within the below code.

1 aColorPicker = new ColorPicker();

2 aColorPicker.setOnAction(e -> handle(e));

3 root.getChildren().add(aColorPicker);

4

5 public void handle(ActionEvent e)

6 {

7 Color c = aColorPicker.getValue();

8 sm1 = new SnowManOnACanvas(280, 40, c);

9 root.getChildren().remove(aColorPicker);

10 root.getChildren().addAll(sm1.getCanvas()); //add(canvas)

11 }

To change the color of a Button object or Pane object such as a VBox pane, the method setStyle is invoked on the object and passed a CSS string that describes its background color. A detailed description of FX’s CSS feature is beyond the scope of this book. However, constructing the CSS string from the Color object returned from the getValue method is a simple feature of CSS to illustrate.

The below four lines of code changes the background color of the VBox pane named root, declared on line 1, to the current color of the color-picker object aColorPicker.

1 VBox root = new VBox();

2 String c = aColorPicker.getValue().toString();

3 c = "#" + c.substring(2,8);

4 root.setStyle("-fx-background-color: " + c);

Line 2 invokes the Color class’s toString method on the Color object returned from the getValue method, and stores the address of the returned string in the variable c. Then line 3 gleans character 2 through 7 from that string. These six characters are the concatenation of the two digit hexadecimal intensities of the colors red, green, and blue that make up the selected color. For example, ff0000 would be the brightest color of red possible. This string preceded by the three characters "#" is then concatenated into the end of a CSS property name on line 4 and passed to the setStyle method invoked on the VBox root.

Figure 12.19 contains the code of the application ColorPickerDemo. When launched it displays the window shown in Figure 12.20a. The user can click the Pick Color button to change the background color of the window to a different color selected from a color-picker. The process can be repeated until the user is satisfied with the window’s color, then a click of the Like Color button removes the two buttons from the window (Figure 12.20c).

[image:]

[image:]

Figure 12.19
The application ColorPickerDemo.

Line 11 declares the color-picker object aColorPicker whose current color is orange, and lines 19–20 declare the two buttons. Lines 22–24 associates their ActionEvent handlers with the same method, handle, coded on lines 37–56. Line 28 adds the two buttons to a VBox layout pane named root declared in line 18. The VBox is added to application’s scene on line 30.

When the Pick Color button (named pickColor) is clicked and the color-picker object (named aColorPicker) is not contained in the VBox, the Boolean condition of the if statement on line 39 is true. Line 42 adds the color-picker to the VBox, which causes its color-chooser to be displayed as shown in Figure 12.20b. A subsequent click on the color-chooser displays the color pallet, but does not generate an action event.

When a color is selected by clicking one of the color pallet’s colors or selected from the custom color window by clicking its Save or Use buttons, an action event occurs on the color-picker object aColorPicker. Since the color-picker is displayed, the if statement on line 44 of the event handler method executes and its Boolean condition is true. Lines 46–47 in the code block of this if statement fetches the selected color, and then line 48 makes that the color of the VBox pane. Line 49 removes the color-picker object from the VBox returning the window to the one displayed in Figure 12.20a, but with its background color changed to the selected color, e.g., orange.

If the user clicks the Like Color button when the color-picker is not displayed, the if statement on line 51 executes and its Boolean condition is true. Lines 54 of this if statement’s code block removes the two buttons from the VBox, and the applications window is the one displayed in Figure 12.20c.

[image:]

Figure 12.20
The progression of the application ColorPickerDemo’s window as the user interact with it.

12.5 LAMBDA EXPRESSIONS AND FUNCTIONAL INTERFACES: A SECOND LOOK

Lambda expressions were added to Java in Version 8. Generally speaking, they can be thought of as a concise implementation of an abstract method whose signature is defined in an interface that contains one, and only one, abstract method. This type of interface is referred to as a functional interface. It is also called a Single Abstract Method (SAM) interface. The interface can also contain static constants, and static and default method implementations. The abstract method can be a void or non-void method, and its signature can contain parameters.

As we have previously mentioned, the interface EventHandler contains only one abstract method, handle, and so it is a functional interface. Therefore, in Chapters 11 and 12 we could implement handle’s code block with a Lambda expression.

From the translator’s viewpoint, the name of the interface that contains the abstract method’s signature being implemented by the Lambda expression is implied from the context in which the Lambda expression is coded. For example, the Lambda expression on line 22 of Figure 12.19 is coded in the position where the argument passed to setOnAction's one parameter would normally be coded. Since this parameter’s type is the functional interface EventHandler, the Lambda expression is considered to be an implementation of that interface’s abstract method handle.

Syntax of a Lambda Expression

To understand the execution path of a Lambda expression we need to become failure with its syntax. The syntax of a Lambda expression is:

Parameter list -> Code Body

The two keystrokes symbol -> is called the “arrow token” or the “lambda operator,” and it is always coded between the parameter list and the code body. Like the two keystrokes of the logic equals token ==, the two keystrokes of the arrow token must be sequential, i.e., no white space is typed in between them.

The number of parameters in the parameter list must be the same as the number of parameters in the signature of the abstract method the Lambda expression is implementing. The syntax of the parameter list is the same syntax used in non-Lambda expression method implementations except:

•The parameter types can usually be omitted e.g., (x, y, z) ->. The translator will infer them from the abstract method’s signature.

•For one parameter the parentheses can be omitted: e.g., x ->.

•When the parameter list is empty we just code the parentheses: () ->.

The names of the parameters in the lambda expression need not be the same as the names of the parameters in the abstract method’s signature. As in named (non-Lambda) method implementations, the parameters are value type parameters.

The Code Body of a Lambda expression cannot return a value if the method it is implementing is a void method, and it must return a value of the type specified in the signature of a non-void method it is implementing.

The Code Body of the Lambda expression uses the same syntax as a code body in a named method except if the code body consists of just one statement, then:

•The open and close braces { } that begin and end the Code Body need not be coded. If they are not coded a semicolon is not included at the end of the statement.

•If the Lambda expression is implementing a non-void method, the returned value would be the result of the one statement. For example, the Lambda expression x -> x + 1 returns the value passed to the method incremented by one.

•If the Lambda expression is implementing a non-void method and the one statement is inside a code block, then the keyword return must be used. For example: x -> {return x + 1;}.

The Lambda expression coded on line 22 of Figure 12.19, e -> handle(e), conforms to these syntax rules. It is an implementation of the one-parameter method handle defined in the function interface EventHandler. Its one statement simply invokes a method with the same name coded within the application, and passes that method the argument passed it by the runtime environment. As a result, the Lambda expression begins with one parameter that, in this case, is not enclosed in parentheses. In addition, it contains only one statement, making the open and close braces optional. Since they were not used, a semicolon was not coded at the end of the statement.

When a Lambda expression is implementing a non-void method, the type of the item returned from the Lambda expression must be compatible with the return type coded in the abstract method’s signature.

The following are all valid lambda expressions.

//Implements a void method with no parameters

 () -> System.out.println("Output from a Lambda Expression.") or

 () -> { System.out.println("Output from a Lambda Expression."); }

//Implements a void method with two parameters using two statements

 (x, y) -> { System.out.println("x = " + x + " y = " + y);

 System.out.println("x + y = " + (x + y));

 }

//Implements a non-void method with two parameters

//that returns 2*x + 3*y

 (x, y) -> { x = x * 2;

 y = y * 3;

 return (x + y);

 }

Lambda expressions can also contain decision statements, loops, and method invocations.

Executing a Lambda Expression with an Abstract Method Invocation

To execute in the code of a Lambda expression, the Lambda expression is assigned to a variable whose type is the name of the interface. There are three coding contexts we can use to do this. Then that variable is used to invoke the abstract method.

The most overt of these three coding contexts is shown in Figure 12.21. The lambda expression coded on lines 4–6 is assigned on line 4 to the variable b, whose type is the name of the functional interface the Lambda expression is implementing. This functional interface, named AFuncIterface, is coded on lines 12–15. Then that variable is used on line 8 to invoke the abstract method twoAsAndThreeBs defined in the functional interface. This causes the Lambda expression’s code previously assigned to the variable b, to become the code of the interface’s abstract method, and the code executes. Since the method is passed 1 and 2 on line 8, the integer 8 is returned from the method and then output on line 9.

[image:]

Figure 12.21
Assigning a Lambda expression to a variable.

A second coding context used to assign a Lambda expression to a variable whose type is the name of the interface is shown in Figure 12.22. On line 4 the method output2AsAnd3Bs, coded on lines 9–14, is invoked and the Lambda expression is passed to its parameter. This parameter’s type is the name of the functional interface containing the abstract method that the Lambda expression is intended to implement, just as the variable b’s type was in previously discussed context.

As is the case with any argument passed to a parameter of a method, before the method begins execution the argument (in this case the Lambda expression) is assigned to the parameter (in this case the parameter named e). Then that variable is used on line 12 to invoke the abstract method twoAsAndThreeBs defined in the functional interface (lines 16–19). This causes the Lambda expression’s code previously assigned to the parameter e, to become the code of the interface’s abstract method, and the code executes. Since the method is passed 1 and 2 on line 12, the integer 8 is returned from the method and then output on line 13.

[image:]

Figure 12.22
Assigning a Lambda expression to the parameter of a void method.

The coding context of Lambda expressions shown in Figure 12.22 offers us insights into the event handler registration process used in Chapters 11 and 12 where a Lambda expression was passed to the parameter of non-static methods that began with the prefix setOn. After receiving the Lambda expression, these methods save the parameter passed to it and then use it to invoke the method handle when the run-time event occurs on the object that invoked it.

This coding context is also used to pass Lambda expressions to methods in the IntStream class that is part of the stream package. The stream package was added to Version 8 of Java to incorporate the functional programming paradigm into it.

The third coding context used to assign a Lambda expression to a variable whose type is the name of the functional interface is shown in Figure 12.23. Here the variable is assigned the item returned from an invocation of a non-void method named lambdaBuilder (line 4). The method (lines 10–13) is passed the Lambda expression and simply returns the argument it receives. Then the returned value is passed to a method (line 7) that uses it to invoke the abstract method (line 18). This causes the lambda expression’s code to become the code of this execution of the abstract method.

[image:]

Figure 12.23
Assigning a Lambda expression to the parameter of a non-void method.

12.6 SCENE BUILDER

Scene Builder is a Java FX programming environment created by Oracle to facilitate the creation of graphical user interfaces within an FX application. It provides the same type of tools that Microsoft’s Visual Studio provides for quickly developing user interfaces within Visual Basic and Visual C++ programs.

The programmer is presented with a window and a set of drop-down menus that display lists of controls, containers, menus, and shapes that can be selected for inclusion in an application’s GUI. The selected item is then dragged to its position within the displayed window. The item can be resized by dragging its edges, and its text property can be set by simply clicking the item and typing on it.

Other properties, such as color, font, spacing, and alignment can be easily set by clicking the component and selecting the desired property from a drop-down menu of component’s properties. As this process is being used to develop the user interface, the environment is generating the corresponding code.

The bottom line is that the user interface can be rapidly created without the programmer writing the code to generate it. In addition, the application-dependent processing is simply written into the event handler methods created and registered by the environment.

Scene Builder is incorporated into the popular IDEs such as NetBeans and Eclipse, and Oracle provides a set of online documentation describing its use. NetBeans also contains a drag-and-drop environment for creating GUI’s using Swing components.

12.7 CHAPTER SUMMARY

The GUI components check box, radio button, combo box, and list view are used to select one or more inputs from a set of valid inputs. These components are instances of the classes CheckBox, RadioButton, ComboBox, and ListView, respectively. Ordinarily, either a set of radio buttons or a combo box is used when the choices are mutually exclusive, and a set of check boxes or a list view is used when this is not the case. To make radio buttons mutually exclusive, their ToggleGroup property is set to the same ToggleGroup by invoking the setToggleGroup method on them.

When the set of input choices is large, a combo box or a list view is preferred over radio buttons and check boxes because they both can display a scroll bar. This permits the user to view a large number of selection choices within a small space on the program’s window. The number of selections displayed in a combo box’s drop-down panel can be specified by invoking the setVisibleRowCount method on the combo box object and passing it an integer row count.

The annotation to be displayed next to a radio button or a check box can be passed to the constructor invoked to create these objects. The selections displayed in a combo box or a list view is added to them by passing their constructor an instance of an ObservableList containing the selections, or by invoking the add or addAll methods on the observable list whose address is stored in combo box’s or list view’s items data member. The selections are passed to these methods as arguments.

Multiple non-sequential values in a list view can be selected by clicking them while holding down the Ctrl key on the keyboard. Multiple sequential values can be selected by clicking the first value in the sequence, holding down the Shift key, and then clicking the last value in the sequence. The ability to select one or more values from a list is not its default mode, however the multiple selection mode can be specified.

Normally, a set of check boxes, a set of radio buttons, a combo box, or a list view is added to an instance of a Pane, and the pane is then added to the window’s scene or another pane. This makes the components easier to position in the window, and the pane’s border can be made visible to give the impression that the boxes or buttons it contains are part of a set.

In most applications that use check boxes, radio buttons, combo boxes or list views, the interface contains a button that is clicked after the user finalizes the selections and the application-dependent processing is performed within the button’s event handler. When it is important to perform processing immediately after a selection is made, an event handler is associated with the check box, radio button, combo box, or list view. The selections produce ActionEvents, and so the setOnAction method is invoked on the component to register its event handler.

When the application-dependent processing on several components is processed by the same event handler, the getSource method can be invoked on the argument passed to the event handler to determine which component caused the event. To determine if a particular check box or radio button has been selected, the isSelected method is invoked on the object. This method returns true or false. The selection made in a combo box or all the selections made in a list view can be determined using the methods presented in Table 12.2, which also describes a method to display a text field in a combo box into which the user can type a non-displayed selection.

The Java API supports two types of menus, drop-down menus and pop-up menus, which are used to construct a user-friendly interface that presents a group of valid input selections within a relatively small portion of the program’s window. The annotation associated with these components is passed to their class’s one-parameter constructor when they are created.

Drop-down menus are added to, and displayed on, a menu bar whose location in the window is platform dependent. Pop-up menus are associated with other GUI components and remain invisible until the user performs a platform-dependent action (e.g., a right mouse click) on the associated component. The addAll method is invoked on a menu bar object to add items and drop-down menus to it, and invoked on a drop-down or pop-up menu object to add a menu selection item or a drop-down (sub) menu to them. Horizontal separator lines can also be added to these menus to visually group their related elements.

Menu selection items are instances of the classes MenuItem, or CheckMenuItem, or RadioMenuItem that are displayed as the string passed to their constructor. Check menu and radio menu items provide the functionality of check boxes and radio buttons, and a check box is displayed to the left of their text.

When the user selects a menu item, an ActionEvent occurs. The event is serviced using the same techniques used to service action events on Button objects, and the getSource method is invoked on the object passed to the event handler method to determine which menu selection item was selected. When the menu selection items are check boxes, processing is usually performed when a button is clicked after the user finalizes the selections, and the isSelected method is invoked within the event handler method on the menu selection items to determine the selections.

In addition to these GUI components, the FileChooser class provides methods to facilitate the commonly performed user tasks of opening and saving files. Dialog boxes to perform these tasks are displayed by creating an instance of this class and invoking the class’s showOpenDialog or showSaveDialog method on the object. Both methods return a File object that contains the selected file path, which can be fetched by invoking the getPath method on the returned object.

An instance of the class ColorPicker provides a palette of colors from which to choose a color, and also provides the ability to define a custom color. When the ColorPicker object is added to a visible container, it is displayed. When a color is selected, an ActionEvent occurs. The selected color can be determined by invoking the getValue method on the ColorPicker object. The two character hexadecimal intensities of the selected color’s red, green, and blue intensities are characters 2 through 7 of the string version of the object returned from the getValue method.

Knowledge Exercises

1. True or false:

a) Radio buttons are commonly used to select one or more inputs from a set of valid inputs.

b) Adding check boxes or radio buttons to a pane makes them easier to position.

c) Combo boxes are used to make multiple selections from a set of valid inputs.

d) Combo boxes or lists views are used when the number of input choices is large.

e) A scroll bar can be displayed in a combo box.

f) A scroll bar is not displayed in a list view if all of the items can be displayed.

g) Multiple values can be selected from a list view component at one time.

h) Multiple items can be selected from a combo box at one time.

i) The elements displayed in a list and/or combo box are defined as an array of objects.

j) GUI components can be made invisible.

k) Combo boxes can be edited, allowing a user to type a choice into a text field.

l) List views can be edited, allowing a user to type a choice into a text field.

m) Java supports drop-down but not pop-up menus.

n) Radio buttons and check boxes can be added to a menu.

2. Give examples of when you would use a group of check boxes and when you would use a group of radio buttons.

3. State when you would use a combo box and when you would use a list view.

4. Explain how or give examples:

a) Radio buttons can be grouped together to make them mutually exclusive.

b) A border can be displayed around a Pane object.

c) A border’s color can be changed from its default color.

5. Compare and contrast the features of combo boxes and lists.

6. Discuss the differences between drop-down and pop-up menus.

7. State an advantage of using menus in your applications.

8. Briefly explain the function of the FileChooser dialog boxes.

9. What is returned from the method invoked to display a FileChooser dialog box?

10. Briefly explain the function of a ColorPicker object.

11. Give a line of code to specify that the method saladClickHandler() should be invoked when the user clicks the check box object salad.

12. Give the code to add the three items of your choice to the list view snacks.

13. Give the code to determine if the check box soda was selected.

14. Give the class of each of the following components:

a) Check box

b) Radio button

c) Combo box

d) List view

e) Drop-down menu

f) Pop-up menu

Programming Exercises

1. Design, write, and test a GUI application for the Speedy Cable Service. Include a menu to offer the user any combination of the following service options: basic, movie, sports, premium, and learning. When a user clicks the Calculate button, the monthly bill for all of the services selected should be computed and output in a dialog box. The monthly costs are as follows: basic is $30, movie is $15, sports is $20, premium is $30, and learning is $12. Customers can also select high or extra-high definition for a fee of $10 or $15 per month respectively.

2. Using a GUI design, write and test an application for a bank that offers the user the following choices: make a deposit, make a withdrawal, or check the balance of an account from a drop-down menu. Dialog boxes should be used for user input and output after a menu item is selected.

3. Colorful Sports Inc. just hired you to write a pop-up menu GUI application that their customers will use to order winter clothing from a selection of three custom-colored items they sell: shirts for $30, parkas for $150, and gloves for $15. The customer can select any or all of the items and can specify the size (small, medium, large, or extra large) for each item selected. When an item is selected, present the users with a color-chooser from which they can select the color of the item. Provide a Place Order button that calculates and outputs the total cost to the GUI, including an 8% sales tax, the items ordered, and a swatch of the color of each item to the GUI. Include a Reset button on the GUI that clears the output and all of the selections that were made. Design the GUI.

4. Write the code and test the application described in Exercise 3.

5. Design a GUI for Sam’s Sandwich Shop to allow users to place orders for sandwiches. The selections should include (but are not limited to) the following items: the choice of bread (Italian, wheat, rye), one or more fillings (ham, cheese, turkey, tuna, lettuce, tomato, mayonnaise, and mustard), and one or more beverages (soda, water, and coffee). After the selections are made, allow the user to click a button and view the order in a dialog box. Provide a Place Order button, and Reset button that clears the output and all of the selections that were made.

6. Write a program to implement the design for Sam’s Sandwich Shop in Exercise 5 and output the order.

7. Design a GUI for the Tanya’s Tour Trips travel agency that her customers can use to select the year, month, and day of their trip, the number of people traveling (up to four people), and a group of cities to be visited from a list of 30 cities. When the Book It button is clicked, the date of travel (mm/dd/yy) is output to the GUI along with a scrollable list of the cities to be visited. The GUI should also provide a Reset button that clears the output and all of the selections.

8. Write a program to implement the design for Tanya’s Tour Trips in Exercise 7.

9. Write a GUI application that asks the user to select three colors from a set of predefined colors or a user defined custom color. After the selections are made, three rectangular swatches of the colors should be displayed in the window.

Enrichment

Investigate some of the features of Cascading Style Sheets (CSS). Here are some suggested resources:

www.w3schools.com/Css

www.w3schools.com/Css/css_intro.asp

www.w3schools.com/html/html_css.asp

There are many video tutorials. Here are a few:

What is CSS and How Does it Work? https://www.youtube.com/watch?v=XPv4EeB0PJ8 Zero to Hero https://www.youtube.com/watch?v=1Rs2ND1ryYc

CSS in 2020 a Practical Guide https://www.youtube.com/watch?v=QG8Zv_doPOM

CHAPTER 13

GENERICS AND THE API COLLECTION FRAMEWORK

13.1 Overview

13.2 Generic Methods

13.3 Generic Classes

13.4 The API Collections Framework

13.5 Streams and Functional Programming

13.6 Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we extend our knowledge of methods and classes by incorporating the feature of generics into them. This will make the methods and classes we write more reusable and less error prone. A generic method can be passed arguments of different types, and the types of the data members of a generic class can be specified when an instance in the class is created. These powerful features can be used to write classes called data structures that can store, fetch, and process a set of any type of objects. Data structures such as lists, queues, stacks, sets, and hash maps will be discussed.

A set of highly reusable generic methods, interfaces, and classes make up the Java Collection Framework. The methods implement classic computer algorithms, and the classes implement commonly used techniques for efficiently processing large data sets. We will learn the functionality of these methods and classes and how to incorporate them into the programs we write. In addition, we will discuss two groupings of classes included in the framework and the advantages of the Map grouping that can be used to efficiently locate a particular object in a large data set by simply specifying a key value that has been associated with the object.

After successfully completing this chapter, you should:

•Know how generic classes and methods extend reusability and reduce runtime errors

•Understand the difference between a value parameter list and a type parameter list

•Be able to write generic classes and methods and use generic interfaces

•Know how to invoke generic methods and how to declare instances of generic classes

•Understand and be able to write and use overloaded generic methods

•Be able to use the methods in the Java Collection Framework in the programs you write, including the methods defined in the Collections class

•Understand the generic interface hierarchy defined in the Java Collection Framework

•Create applications that use the generic data structures classes implemented in the framework

•Understand the differences between Lists, Sets, Queues and Priority Queues, and Maps and their implementations in the framework

13.1 OVERVIEW

A feature of programming languages that extends the reusability of methods and classes is called generics. It provides reusability by permitting the type of a method’s parameters and returned value to be specified by the method’s invoker and by permitting the type of a class’s data members to be specified when an instance of the class is created. Thus, the use of generics makes it possible to write one sort method that can sort an array of any type of object passed to the method and to write one class that can store, fetch, delete, and process a set of objects of any type. In addition, the use of generics can also move certain type-checking errors from runtime to compile time, where they are easier to detect and eliminate.

Java supports generics and provides a syntax that can be used to implement methods and classes in a generic way. Using this powerful feature of the language, we can pass any type of argument into a generic method’s parameter and specify the type of a generic class’s data members and its methods’ parameters. In addition, the Java API provides generic implementations of many of the classic algorithms used to efficiently process and store large data sets containing data of any type. These generic implementations are known as collections, and they comprise the Java collections framework.

In the first part of this chapter, we will become familiar with Java’s implementation of generics, how to write generic methods and classes, and how to invoke generic methods and declare instances of generic classes. This will facilitate our understanding of the second part of the chapter in which we will become familiar with many of the methods, interfaces, and classes in Java’s Collection Framework, all of which are implemented using generics.

13.2 GENERIC METHODS

When any method with a non-empty parameter list is invoked, values are passed into each of its parameters. These values are usually different for each invocation of the method, and they can be either primitive values or the address of an object (reference values). The parameter list, enclosed in parentheses at the end of the method’s signature, can be thought of as a list of values that will be passed to the method or a value parameter list. This list contains the name of each parameter and the type of the value that will be passed to it. When the value passed to the method is a primitive value, the type is a primitive type. When the value passed to the method is a reference value, the address of an object, the type is a class name.

Generic methods are passed values just like non-generic methods. What makes them different from non-generic methods is that at least one of the parameters in their value parameter list can be passed a reference to an instance of any class. A specific class name is not coded for this parameter. Instead, a type placeholder is coded in the value parameter list as the parameter’s class name, and the placeholder is included in a type parameter list section of the method’s signature.

 public static <T> void outputAnyObject(T theObject)

Type parameter lists are coded just to the left of the method’s returned type. They are a list of the type placeholders used in the method’s parameter list, separated by commas, and the list is enclosed in angle brackets. For example: <T> or <T1, T2>. Good coding style dictates that placeholder names begin with a capital letter and be as brief as possible. All of the type placeholders used in a method’s value parameter list must be included in the method’s type parameter list.

For example, the first signature shown below could be used for a generic method that outputs an instance of any class, and the second signature could be used for a method that outputs two instances of any class:

 public static <T> void outputAnyObject(T theObject)

 public static <T> void outputAnyTwoObjects(T object1, T object2)

The type placeholders that appear in a method’s signature can be used within the code body of the method. Often, they are used to declare local reference variables within the methods that can reference instances of the class of the parameter of which they are a part.

The signatures of generic methods can also include non-generic types. For example, the following signature could be used for a generic method that outputs an instance of any class a given number of times (i.e., nTimes):

 public static <T> void outputNTimes(T theObject, int nTimes)

The following signature could be used for a method that outputs two objects, possibly of two different classes, a given number of times:

 public static <T1, T2> void outputNTimes2(T1 obj1, T2 obj2, int nTimes)

NOTE

The primitive types (int, double, char, etc.) cannot be passed to generic parameter types.

Only object references can be passed to generic parameter types. To pass a primitive value to a parameter whose type is a generic placeholder, it must be wrapped inside an instance of a primitive wrapper class (e.g., Integer, Double, Char, etc.). As we will see, this can be performed by the autoboxing feature of Java.

Generic Returned Types

In a non-void generic method, one of the type placeholders can be used to designate the returned type. For example:

 public static <T1, T2> T2 output2Objects(T1 object1, T2 Object1)

In this case, T2 is the returned type, and the method would have to return the address of an object whose class is the same as the class of the second argument passed to it. To return an object that is the same type as the first parameter, the returned type would be changed to T1. Generic methods can return primitive values and non-generic reference variable types, just as non-generic methods can, by coding their specific type as the method’s return type.

The application GenericParameters shown in Figure 13.1 contains a generic method output2Objects (lines 18–24) that outputs two objects of any type sent to it and returns the object passed to its second parameter. The method is invoked twice within the application. In the first invocation of the method (line 12), the arguments are two primitive variables, amount and price, declared on lines 5 and 6. Because primitives cannot be passed to generic parameters, these two arguments are autoboxed, and then the address of the Integer and Double objects are passed to the method’s parameters.

NOTE

Primitive arguments are autoboxed into wrapper objects before they are passed to generic parameters.

Similar autoboxing is performed on the first argument of the second invocation (line 13), which is a primitive char variable declared on line 7. The second argument in this invocation is an instance of the class Student, shown in Figure 13.2, which is declared on line 8. Before the application ends, lines 14 and 15 of Figure 13.1 output the generic method’s returned values. The program’s output is shown in Figure 13.3.

The declarations on lines 5–7 of the application could have declared amount, price, and initial to be three wrapper objects and initialized them using the wrapper classes’s constructors as shown below. Although the coding of the invocation statements would not change, this would eliminate the need for the autoboxing. The declarations on lines 5–7 are considered to be better programming style.

Integer amount = new Integer(45);

Double price = new Double(567.89);

Character initial = new Character('P');

The type parameter list in the signature of the generic method output2Objects (line 18) includes two generic placeholders: T1 and T2. These placeholders are used in the method’s parameter list as the types of the objects passed to it. The placeholder T2 is also used as the method’s returned type because that is the generic type of the method’s second parameter that is returned on line 23.

Lines 20 and 21 output the objects passed to the method to the system console using implicit invocations of the toString method. During the first invocation of the generic method (line 12), the toString methods of the Integer and Double classes are invoked because this invocation passes these autoboxed types into the method’s type placeholders. Similarly, during the second invocation of the method (line 13), the toString methods of the Character class and Student class (lines 12–16 of Figure 13.2) are invoked. If the Student class did not contain a toString method, the toString method inherited from the class Object would have been invoked.

The object returned on line 12 of Figure 13.1 is an instance of the wrapper class Double. Its assignment to the primitive double variable returnedPrice declared on line 9 is valid because Java’s autounboxing feature unwraps the value stored inside the object before the assignment is made.

[image:]

Figure 13.1
The application GenericParameters.

[image:]

Figure 13.2
The class Student.

[image:]

Figure 13.3
The output produced by the application GenericParameters.

13.2.1 Overloading Generic Methods

As discussed in Chapter 3, overloaded methods are a set of methods defined in a class that have the same name and different parameter lists. When the translator encounters an invocation of an overloaded method in a set of non-generic methods, it seeks a version of that method whose parameters match the invocation’s arguments. This version of the method is invoked when the program executes the invocation statement. If a match cannot be found, a translation error is generated.

NOTE

Generic methods can be included in a set of overloaded methods.

Generic methods can overload non-generic methods and other generic methods. When generic methods are included in a set of overloaded methods, the translator seeks a version of the method that best fits the argument list in the method invocation statement. To determine a best fit, the translator follows a set of protocols. The protocols do not take into consideration the order in which the overloaded methods are coded. If a best fit cannot be found that is consistent with the protocols, a translation error is generated.

The methods shown in Figure 13.4 can be used to illustrate three of these best-fit protocols. The figure contains four overloaded versions of the method identifyYourself, each of which has two parameters. Version 1, shown at the top of the figure, is non-generic. The other three versions are generic. As we will discover, the best-fit protocols do not permit all four of these methods to be included in a set of overloaded methods.

When the method identifyYourself is invoked and passed two integer primitive arguments, Version1 could be executed because it has two integer parameters. The other three versions of the method could also be executed because one argument (in the case of Version 2) or both of the arguments (in the case of Versions 3a and 3b) could be autoboxed and the Integer wrapper object(s) could then be passed to the methods’ parameters. The best-fit protocol in this case results in Version 1’s execution because the types in its parameter list (int) are an exact match with the two integer arguments passed to it.

When the method is invoked and the first argument passed to it is an object and the second is an integer primitive value, Version 2 could be invoked. Version 3a could also be invoked because the second argument could be autoboxed, and the resulting Integer wrapper object could then be passed to the method’s second parameter. It turns out that Version 3b could also be invoked, even though its parameter list implies that the two objects passed to it must be of the same type, T. The best-fit protocol in this case results in Version 2’s execution because the type of its second parameter, int, is an exact match for the second argument passed to the method.

[image:]

Figure 13.4
A set of overloaded methods.

Best-fit protocols do not allow Versions 3a and 3b to be in the same class because both can accept two object instances of the same type or different types. When coded in the same class, an attempt to invoke identifyYourself and pass it two objects results in a translation error, indicating that the invocation is ambiguous (could be serviced by either version of the method). The coding of Version 3a is preferred over Version 3b.

The application GenericOverloading, shown in Figure 13.5, includes the first three overloaded versions of identifyYourself presented in Figure 13.4. The invocations of the method on lines 5–8 and the output produced by the program (Figure 13.6) demonstrate the translator’s best-fit selection protocols. The coding order of the methods has been reversed to demonstrate that the best-fit protocols do not consider the order in which the methods appear in the class.

In the interest of brevity, lines 6–8 pass the method nameless instances of the classes Integer and Double, and the Student class (shown in Figure 13.2).

[image:]

Figure 13.5
The application GenericOverloading.

[image:]

Figure 13.6
The output produced by the application GenericOverloading.

13.2.2 Arrays as Generic Parameters and Returned Values

As is the case for non-generic methods, any parameter in a generic method’s parameter list can be a reference to an array object. By specifying the parameter’s type to be one of the generic placeholders included in the method’s type parameter list followed by an open and closed brace, the address of any array of objects can be passed to the parameter. The following generic method signature could be used for a method that outputs the contents of a non-primitive type array and returns one of its elements.

 public static <T> T outputArray(T[] anArray)

The pair of brackets that follow the placeholder in the method’s signature indicate that the address of an array will be passed to the method’s parameter.

The application GenericsArrayParameters, shown in Figure 13.7, contains a generic method named outputArray (lines 24–33) that outputs the contents of the array of objects passed to it to the system console. The method also returns one element of the array whose index is specified by the invoker. Any array to be output can be passed to the method’s first parameter, except for an array of primitive values. (As previously mentioned, the Java autoboxing feature will not convert an array of primitives passed to the method to an array of wrapper class objects.) The output produced by the program is shown in Figure 13.8.

The method’s signature (line 24) contains two parameters, anArray and elementReturned, and includes one generic placeholder, T, in its type parameter list. This placeholder is used as the type of the method’s first parameter. It is also used as the method’s generic returned type because an element of the array will be returned by the method. The method’s for loop (lines 26–29) outputs all of the array elements using an implicit invocation of the toString method, and line 32 returns the array element whose index is passed to the method’s second parameter. The application invokes the method three times, passing it a different array each time.

The first two invocations pass the method the array of wrapped integer values (line 15) and an array of wrapped real numbers (line 16), declared and initialized on lines 5 and 6 respectively. These arrays cannot be declared as arrays of primitive values because Java will not autobox an array of primitive values before passing it to a generic array parameter. The values contained in the returned Integer and Double objects are autounwrapped and assigned to the primitive variables intReturned and doubleReturned.

An array of Student objects, whose class is defined in Figure 13.2, is passed to the method on line 17. The address of the student object returned from this invocation is assigned to the reference variable studentReturned declared on line 10. Lines 19–21 produce the last three outputs, which are the contents of the two returned wrapper objects and the returned Student object.

[image:]

Figure 13.7
The application GenericArrayParameters.

[image:]

Figure 13.8
The output produced by the application GenericArrayParameters.

Returning Generic Arrays

As discussed in Chapter 6, when a non-generic array is returned from a method the type of the array followed by a set of brackets (e.g., Student[]) replaces the keyword void in the method’s signature, and a return statement that includes the array’s name is coded in the method.

The same syntax is used to return a generic array from a generic method, except that the type of the array is replaced with one of the generic placeholders used in the method’s signature. For example, the following method signature could be used in a method that returns a generic array whose type was the same as the first argument passed to the method:

public static <T1, T2> T1[] returnArray(T1[] anArray, T2 anObject)

The array returned would be the one whose name is included in a return statement executed within the method.

The generic method shown in Figure 13.9 swaps the first two elements of the array passed to it and returns the modified array to the invoker. As previously mentioned, the array passed to the method cannot be an array of primitive values. Line 3 of the method creates a generic local variable named temp whose type is the type placeholder used to specify the type of the array passed to the method.

[image:]

Figure 13.9
A generic method that returns an array.

13.2.3 Copying a Generic Array

Although local generic variables can be declared inside a generic method, limits are imposed on the creation of generic arrays inside a generic method. The syntax used to create a non-generic array inside a method, which could be used to hold a copy of another non-generic array, cannot be used to create a generic array. The following declaration produces a compile time generic array creation error if T is a generic placeholder:

T[] copy = new T[100]; //not allowed

The good news is that a copy of a generic array can be created within a generic method using the Arrays class’s copyOf method that was discussed in Chapter 6, and the copy can then be modified and returned from the method. Another alternative is that an array-like instance of the class ArrayList can be created, modified, and returned from a generic method. The ArraysList class will be discussed later in this chapter (Section 13.3.1), as will the correct syntax for creating a generic array that is not a copy of another generic array.

Lines 29–39 of the application ReturningGenericArrays, shown in Figure 13.10, is a generic method named invertArray that copies any type of array passed to it and then returns a modified version of the array to the method’s invoker. The returned array contains the elements of the array passed to the method with their order reversed (first to last becomes last to first). The output produced by the program is shown in Figure 13.11.

Line 31 of the method declares a generic array reference variable named copy using the placeholder T that appears in the method’s signature (line 29). The Arrays class’s copyOf method is used on line 33 to create a duplicate of the array passed to the method and assign its address to the variable copy. The code of the for loop that begins on line 34 then copies the object references from the original array (anArray) into the newly created array (copy) in reverse order. Line 38 returns the array created inside the method to the invoker.

The first time the method is invoked (line 14), it is passed the Integer wrapper array declared on line 7. The second invocation (line 15) passes the method the array of objects declared on lines 9–12. This array is created by initializing it to three nameless Student objects whose class is shown in Figure 13.2.

The arrays returned from the method invocations are output inside the two for loops that begin on lines 17 and 23. The first of these loops outputs the contents of the original and reverse order Integer arrays, iArray and iArrayReturned, side by side (top part of Figure 13.11). The second loop repeats this process for the Student arrays sArray and sArrayReturned (bottom part of Figure 13.11).

[image:]

Figure 13.10
The application ReturningGenericArray.

[image:]

Figure 13.11
The output produced by the application ReturningGenericArrays.

13.2.4 Operating on Generic Objects

As we have already seen, one way to perform processing on an object is to invoke a worker method. For example, to fetch the private integer data member named x of an instance of a Snowman object named s1, we could invoke the class’s getX method on the object to perform the work of fetching the variable’s contents:

Snowman s1 = new Snowman();

int x = s1.getX();

When the translator processes this invocation, it searches the object’s class and its inheritance chain for a method named getX that has an empty parameter list and returns an integer. If it finds a method with this signature, the translation continues. Otherwise, the translation ends in a cannot find symbol method getX() error.

Now consider the case when the s1 is a generic parameter in the signature of a generic method, and the invocation of the getX method is issued from within the generic method, as shown in this code fragment:

 public static <T> boolean collision(T s1, T s2)

 {

 int x1 = s1.getX()

 :

 }

In this case, the translation of the method will end in a cannot find symbol method getX() translation error, even if the class of the argument passed to s1 contains a getX method. The object s1’s class is specified to be the generic type placeholder T in the method’s parameter list, so now there is no relationship between the parameter s1 and the Snowman class, or any other class. The translator cannot look into T to locate the method getX; it is simply a generic placeholder.

To remedy this problem, the author of the generic method collision would include an extends clause inside the type parameter list of the generic method’s signature that included the name of an interface that defines the getX method’s signature. Assuming the name of the interface is Detectable, the modified signature of the generic method would be:

public static < T extends Detectable <T> > boolean collision(T s1, T s1)

The extends clause added to the method’s signature directs the translator to look into the interface Detectable to verify the getX method’s signature, and only objects whose classes implement this interface can be passed to this method.

NOTE

The keyword extends is always used in a type parameter list to identify an interface. The keyword implements is not used.

The class of any object passed to the method would have to implement the interface Detectable(i.e., include an implements clause in its heading, and an implementation of a getX method whose signature is defined in that interface). If it did not implement the interface, the translator would issue the error message. In the case when two Snowman objects were passed to the method, the error message would indicate that the method could not be applied to (Snowman, Snowman).

The application OperatingOnGenericObjects shown in Figure 13.12 contains a generic method named min (lines 15–26) that returns the address of the smallest object in an array of objects passed to it. The work of comparing two elements of the array is performed by a worker method named compareTo, which is invoked on an element of the generic array (line 20) and passed a reference (defined on line 17) to an element of the array. An extends clause involving the array’s generic placeholder T has been added to the method’s signature (line 15) to permit the translator to look into an interface named Comparable to verify the signature of the compareTo method invoked on line 20. The syntax <T> that follows the name of the interface specifies that an object in the class T will be passed to the compareTo method. The result is that only objects whose classes implement this interface can be passed to the method min, and the object passed to the compareTo method on line 12 must be a reference to the type of object passed to the method min.

Several API classes including the String class and the primitive wrapper classes, which include the Integer class, implement the interface Comparable. It is left up to the implementer of the interface to decide what it means for an object in the implementing class to be equal to, greater than, or less than another instance of the class. As would be expected, the Integer class compares two Integer objects numerically.

The class StudentV2 (shown in Figure 13.13) also implements the interface Comparable. The inclusion of <StudentV2> at the end of the implements clause in the class’s heading designates that its version of the compareTo method must be passed a StudentV2 instance. Line 20 effectively compares the ages of two instances of the class numerically.

The method min, invoked on line 11 of Figure 13.12, is passed the array of Integer objects declared on line 5, and the returned minimum object is then output to the system console (Figure 13.14). During this invocation of the method, the Integer class’s implementation of compareTo is invoked on line 20 because the type of anArray is Integer. In the second invocation of the method min (line 12), the method is passed the StudentV2 array, defined on lines 6–9 of Figure 13.12, which causes line 20 to invoke the compareTo method on lines 18–21 of Figure 13.13. The returned minimum StudentV2 object returned from min is then output to the system console (Figure 13.14).

[image:]

Figure 13.12
The application OperatingOnGenericObjects.

[image:]

Figure 13.13
The class StudentV2.

[image:]

Figure 13.14
The output from the application OperatingOnGenericObjects.

13.3 GENERIC CLASSES

A generic class is a class whose heading contains a type parameter list, which is used to specify the type of one or more of its data members. They are widely used in the implementation of data structures. The class can contain both non-generic and generic methods that use the type placeholders included in the class’s type parameter list. The type parameter list is coded immediately after the class’s name. For example:

 public class AGenericClass <T1, T2, T3>

If a generic class extends another class and/or implements an interface, the extends and implements clauses are added to the method’s heading after its type parameter list. For example, the heading of a generic class named Employee that was a subclass of Person could be:

public class Employee <T> extends Person implements Comparable<Employee>

The following statement declares an instance of this class using its two parameter constructor:

Employee s1 = new Employee <Integer> (45323, "Ryan");

The <Integer> included in the declaration is called a type argument list. A type argument list is enclosed in angle brackets and consists of a list of one or more class names separated by commas (e.g., <Integer, String, Integer>). It is coded immediately before the arguments passed to the class’s constructor. The type argument list must include one class name for each type parameter included in the class’s heading.

When an instance of a generic class is declared, the class names in the type argument list of the declaration are matched with the type parameters in the class’s heading, one for one in the order in which they appear. These class names are effectively substituted for the type placeholders wherever they are used in the class’s code. For example, when the object s1 is declared on line 3 of the main method shown at the top of Figure 13.15, the class String is effectively substituted for the placeholder T on lines 3 and 6 of the class AStudentV3 shown in the bottom portion of the figure. As a result, s1’s data member id is a reference to a String object, and the first parameter passed to the class’s constructor on line 3 of the main method must be a String (CS103 on line 3 of main).

Similar substitutions are made when the object s2 is declared on line 4 of the main method. Because the type argument list on that line contains the class Integer, s2’s data member age will be a reference to an Integer object, and the first argument passed to the class’s constructor on line 4 of the main method must be an instance of an Integer. In this case, it is the nameless Integer wrapper containing a 10. The integer literal 10 could be substituted for the nameless object passed to the constructor on line 4, because it would be autoboxed before it was passed to the constructor’s first parameter.

[image:]

Figure 13.15
A generic class and a main method that declares two instances of the class.

When an instance of a generic class is declared, a type argument list should always be included in the declaration immediately before the arguments passed to the class’s constructor, as shown on lines 3 and 4 of the main method in Figure 13.15. Its inclusion provides Java type checking and is considered good programming practice.

The type argument list can also be included between the class name and the variable name on the left side of an object declaration statement. When used, this list must match the argument list that appears on the right side of the declaration. For example, lines 3 and 4 of the main method shown in Figure 13.15 would become:

AStudentV3 <String> s1 = new AStudentV3 <String>("CS103", "Tom");

AStudentV3 <Integer> s2 = new AStudentV3 <Integer>(new Integer(10),"Ryan");

The inclusion of the argument list in front of the variable names effectively extends the type checking Java performs. A subsequent attempt to assign the reference variable s1, whose id data member was specified to be a string, to s2, whose id data member is an instance of an Integer (e.g., s2 = s1), results in an incompatible types translation error. This level of translation-time type checking is usually desirable. Although the following two declarations are also syntactically correct, they are considered unsafe from a type-checking viewpoint.

//******** Unsafe generic object declarations *********//

AStudentV3 <String> s1 = new AStudentV3("CS103", "Tom");

AStudentV3 s1 = new AStudentV3("CS103", "Tom");

The application GenericClasses, shown in Figure 13.16, declares four type-safe instances of the generic class StudentV3 shown in Figure 13.17. The output produced by the program is shown in Figure 13.18. Each StudentV3 object has an identification (ID) number and a name. The type of the ID is declared to be generic on line 3 of Figure 13.17 by coding the placeholder T, included in the class’s heading, as the type of the data member id. The class’s constructor also uses the type parameter T as the type placeholder for its first parameter.

The three object declarations on lines 6–8 of Figure 13.16 use the preferred type-safe two-argument list syntax to declare one object with a String type ID (line 6), and two Integer type ID objects (lines 7 and 8). A fourth object is declared on line 9 using the type-safe one-argument list syntax. The types of the first argument passed to the constructors invoked on lines 6–9 are consistent with the class names these lines pass to the StudentV3 class’s type parameter list (when autoboxing is considered). The four objects are output on lines 13–16 using an implicit invocation of the generic class’s toString method (lines 11–15 of Figure 13.17). When lines 14–16 of Figure 13.16 execute, the Integer class’s toString method is invoked implicitly on line 14 of Figure 13.17 to add the IDs of objects s2, s3, and s4 to the string s.

The reference variable s5 declared in line 10 of Figure 13.16 can only reference a StudentV3 object whose id data member is a string because its declaration includes a String type parameter. The reference variable s5 declared on line 11 can reference any StudentV3 object because it does not include a type parameter list. Type-safe assignments are performed on these variables on lines 18 and 19, and then the objects they reference are output on lines 20 and 21.

Line 23 of Figure 3.16 invokes the StudentV3 class’s compareTo method to compare the object s5 references to the object s6 references. This method (lines 16–19 of Figure 13.16) compares the name data members of two StudentV3 instances: the object that invoked it and the object passed to its parameter. To make the comparison, the method invokes a compareTo method on line 18. Because the name data members used in the invocation are strings, the String class’s compareTo method is invoked. The returned value is seven because the first letter in s5’s name (the T in Tom) is seven characters beyond the first letter of s6’s name (the M in Maggie). This retuned value is the last output shown in Figure 13.17.

[image:]

[image:]

Figure 13.16
The application GenericClasses.

[image:]

Figure 13.17
The class StudentV3.

[image:]

Figure 13.18
The output produced by the application GenericClasses.

13.3.1 Generic Data Structure Classes

A data structure is an object that can store a larger set of objects, such as 10,000 Student objects, in a way that facilitates the operations that will be performed on them. Common operations are fetching and updating an object. An array is a data structure that is part of every programming language, and we have used this data structure to store objects such as Snowmen and strings. Other common data structures are stacks, queues, linked lists, trees, and hashed structures. These data structures are usually implemented as generic classes so that, like an array, they can be used to store a set of any type of object. In this section, we use the data structure queue to illustrate the nuances of implementing a generic data structure class.

A queue can be thought of as a fair waiting line that has a front or head and rear or tail end. When an object is added to a queue, it is added at the end, or rear, of the queue. When an object is fetched from the queue, the object at the front of the queue is fetched and deleted from the queue. This process of adding and fetching objects is referred to as a First In First Out (FIFO) process: the first object added to the data structure is the first object fetched (and deleted) from the data structure. The add operation is called enqueue (enter the queue), and the fetch/delete operation is called dequeue (depart from the queue).

Queues are used by applications that process objects, once and only once, in the order they are received. Print requests to a shared printer are stored in a queue, as is information about airplane objects waiting for their turn to land on a busy runway, as are processes waiting to be run by an operating system.

A Non-generic Queue

The class Queue shown in Figure 13.19 is a non-generic array-based implementation of a queue that can only store StudentV4 objects whose class is shown in Figure 13.20. The class Queue contains a constructor (lines 11–15), an enQueue method (lines 17–30), and a deQueue method (lines 32–46). The implementation of these methods make the class a circular queue because lines 27 and 42 reposition the front and rear of the queue back to zero to prevent them from exceeding the bounds of the array. The application NonGenericQueueApp, shown in Figure 13.21, declares a Queue object (line 5) and then adds (enqueue), fetches/deletes (dequeue), and outputs several StudentV4 objects. The output produced by the program is shown in Figure 13.22.

The queue implementation shown in Figure 13.19 is array based. It stores the object passed to the enqueue method on line 17 in an array of StudentV4 objects named data, declared on lines 9 and 14. The dequeue method returns an element of this array on line 44.

The size of the array is passed to the class’s constructor (line 11) and stored in the data member size (line 13). The enqueue method returns false (line 21) when the queue is full, as determined by line 19, and the dequeue method returns null (line 37) when the queue is empty, as determined by line 35. The remaining implementation details are not relevant to our discussion and are typically discussed in a data structures textbook.

The application shown in Figure 13.21 creates an instance of a Queue on line 5 that can store a maximum of four StudentV4 objects. Then it creates four objects and invokes the enqueue method to store them in the queue (lines 8–15). An attempt to store a fifth object in the queue (lines 16–18) returns false (the first output shown in Figure 13.22, produced by lines 17–18). The other five outputs shown in Figure 13.22 are produced by the five invocations of the dequeue method inside the for loop that begins on line 20 of Figure 13.21. The fifth invocation returns null because the queue is empty.

[image:]

Figure 13.19
The class Queue.

[image:]

Figure 13.20
The class StudentV4.

[image:]

Figure 13.21
The application NonGenericQueueApp.

[image:]

Figure 13.22
The output produced by the application NonGenericQueueApp.

A Generic Queue Implementation

When implementing a generic data structure, one that can store objects of any class, it’s a good idea to implement it as a non-generic version of the structure, such as the implementation shown in Figure 13.19, then, after it is tested and verified, convert it to a generic implementation. This approach is consistent with the concept of divide and conquer.

The class GenericQueue, shown in Figure 13.23, is the generic version of the class Queue shown in Figure 13.19. The code in the two figures can be compared line by line to find the changes made to produce the generic version, indicated by the yellow highlights in Figure 13.23. The first step in this conversion process is to add a generic parameter list <T> to the generic version’s heading (line 3 of Figure 13.19) and then use this as a placeholder to eliminate the occurrences of the class name StudentV4 from the class. This class name appears on lines 9, 14, 17, and 32 of the non-generic version. The new versions of lines 17 and 32 in Figure 13.23 simply substitute the generic placeholder T for the class name.

Lines 9 and 14 allocate the array data in the non-generic version. There are two options here, neither of which is as obvious as the changes made on to lines 17 and 32. The complication stems from the fact that Java does not permit the declaration of a generic array.

The most obvious change to the two lines, which is shown below, is not valid because Java does not support the use of a generic placeholder in the creation of an array. The new version of line 14 produces a generic array creation translation error.

9 private T[] data;

14 data = new T[n] //generic array creation is not allowed

Because all Java classes inherit from the class Object and since polymorphism allows parents to point to children, the following innovative change to line 14 eliminates the generic array creation translation error:

9 private T[] data;

14 data = (T[]) new Object[n] //object can point to any class instance

The coercion on line 14 is necessary because line 9 declares data as a reference to an array of type T. We could proceed in this way and complete the conversion with the following change to line 26, but the changes made to line 14 are considered type-unsafe:

26 data[rear] = (T) newItem;

The better type-safe approach is to substitute an instance in the API generic class ArrayList for the array declared on lines 9 and 14. Taking this approach, the new versions of these lines are shown on lines 9 and 14 of Figure 13.23. Because the variable data now references an ArrayList object, the invocations of this class’s add and get methods replace the array element accesses on lines 26 and 44 of the non-generic version of the queue in the type-safe conversion of the class shown in Figure 13.23. These two changes complete the generic conversion of the class Queue.

[image:]

Figure 13.23
The class GenericQueue.

The application GenericQueueApp shown in Figure 13.24 is the same application presented in Figure 13.21, except that it declares a generic queue object on line 5. Both of these applications produce the same output, which is shown in Figure 13.22. The use of the type argument list at the beginning of the declaration on line 5 of Figure 13.24 ensures that only StudentV4 instances will be stored in the queue. An attempt to enqueue another type object into the queue, aQueue, declared on that line, will result in a cannot find symbol method enqueue translation error.

Because the class GenericQueue is generic, the application could have declared a second instance of this class to queue 100 Snowman objects using the following declaration:

GenericQueue <Snowman> snowmanQueue = new GenericQueue <Snowman> (100);

[image:]

Figure 13.24
The application GenericQueueApp.

13.4 THE API COLLECTIONS FRAMEWORK

Programs often process information that is comprised of a collection of instances of one class. For example, a process that stores the maintenance work orders for an apartment complex, stores transcripts of all of the students at a college, or searches employee personnel records for a particular employee’s phone number. To facilitate the storage and processing of information groups such as these (i.e., work orders, transcripts, and personnel records), the Java API provides collection classes. A single instance of one of these classes, a collection object, can store an entire information group.

The class GenericQueue, shown in Figure 13.23, is an example of a generic collection class. One instance of this class could store all of the maintenance work orders for an apartment complex, a second instance could store the transcripts of all of the students at a college, and a third instance could be used to store a company’s employee records. Like our GenericQueue class, the API collection classes are generic, and they are therefore highly reusable.

While a queue collection object would be a perfect choice for storing work requests because of its first-in-first-out characteristic, this same characteristic (especially the deletion associated with first-out) makes a queue instance a poor choice for a transcript collection or an employee record collection. In recognition of the fact that any one collection class is not ideally suited for all applications, the Java API implements a variety of the most useful types of collection classes. This variety includes a set, priority queue, linked list, hash map, and several other collection-class implementations. These classes are part of the API Collections Framework. The framework also includes:

•A set of interfaces that define the generic signatures of methods common to groups of collection classes, such as the methods add and remove that add an item to and delete an item from a collection

•A set of static generic methods contained in the class Collections that implement algorithms that efficiently perform common operations on collections such as sort, binarySearch, min, and max whose names imply their functionality

13.4.1 Framework Interfaces

There are eight core collection interfaces, shown in blue in Figure 13.25, that are divided into two groups: those that extend the interface Map and those that extend the interface Collection. The core interface Map is not a sub-interface; it does not extend another interface. The other seven core interfaces are sub-interfaces; they directly extend an interface.

The significance of the inheritance chains shown in the figure is that a class that implements one of the core interfaces must implement all of the methods whose signatures are contained in it and in its parent interfaces. In addition, any method that can operate on an instance of a class that implements a parent interface can also operate on an instance of a class that implements one of the parent’s child interfaces.

All of the core interfaces are generic. As shown next to their names in Figure 13.25, they include one or two type parameters in their type parameter lists to represent the type of the information stored in the collection. The type parameter list of the interface Collection, and all of its sub-interfaces, contains one type parameter. An object stored in the API collection classes that implement these interfaces is called an element. The type parameter lists of the interfaces Map and SortedMap include two parameter types. The object pairs stored in a collection class that implements Map or SortedMap are called a key and a value.

[image:]

Figure 13.25
The core interfaces of the Java collections framework (shown in blue).

NOTE

Classes that implement the core framework interfaces are called collection classes

13.4.2 Framework Algorithms: The Collections Class

The Collections class implements algorithms that efficiently perform common operations on the objects contained in a collection. The class contains 52 static methods, most of which are passed an instance of a class that implements a specific framework core interface or an extension of one of these interfaces. Some of the frequently used methods are shown in Table 13.1. The methods in the top portion of the table can only be invoked on objects whose class implements the interface List. The methods in the bottom portion of the table can be invoked on objects whose class implements the interface Collection. The use of these methods will be demonstrated within the applications and classes presented in the remainder of this chapter.

Table 13.1
Collections Class Methods

[image:]

13.4.3 The LinkedList and ArrayList Classes

The API Framework classes LinkedList and ArrayList implement the List interface. An instance of a class that implements this interface can contain duplicate objects in its collection. In addition, the objects in the collection have a sequential ordering imposed upon them from zero to one less than the number of elements in the collection. As a result, objects stored in a class that implements the interface List can easily be processed sequentially based on their location in the list. The ArrayList and LinkedList classes implement many of the same interfaces, so they share many of the same methods, including the ability to be operated upon by the methods in the Collections class.

Objects are added to a collection class that implements the interface List by passing them to the add method defined in the interface. The one-parameter version of the method appends the object to the collection. The two-parameter version of the method is passed an object and an integer (index), which becomes the new element’s location in the collection. The location of the element previously at that position, and the locations of all of the elements beyond it, are increased by one. The add method effectively inserts the new element in between two existing elements. Instances of the ArrayList class and the LinkedList class expand to accommodate the number of elements added to the collection, and elements are not deleted when they are fetched.

Having already used the ArrayList class in the implementation of our generic queue at the end of Section 13.3.1 (Figure 13.23), we will use an instance of LinkedList in the remainder of this section to become more familiar with many of the methods these two classes share. The following code fragment adds three StudentV4 objects to the LinkedList instance underGrads:

// Create a linked list and add the elements to it
LinkedList <StudentV4> underGrads = new LinkedList<StudentV4>();
StudentV4 s1 = new StudentV4(2071, "Dana");
StudentV4 s2 = new StudentV4(8129, "Annie");
StudentV4 s3 = new StudentV4(6142, "Nadia");

undergrads.add(s1);
undergrads.add(s2);
undergrads.add(1, s3); //s3 is added in between s1 and s2

The get and remove methods are passed an integer, which is the location of the element to be fetched or removed from the collection. When an element is removed, the locations of all of the elements beyond it are decreased by one. An overloaded version of the remove method is passed a reference to the object to be removed, and the getLast method returns a reference to the element with the highest index. The last two lines of the following code fragment remove s3 from the linked list underGrads and outputs object s2’s information twice.

// Delete and fetch elements of a linked list
LinkedList <StudentV4> underGrads = new LinkedList<StudentV4>();
StudentV4 s1 = new StudentV4(2071, "Dana");
StudentV4 s2 = new StudentV4(8129, "Annie");
StudentV4 s3 = new StudentV4(6142, "Nadia");

undergrads.add(s1);
undergrads.add(s2);
undergrads.add(1, s3); //s3 is added in between s1 and s2

undergrads.remove(1); //deletes s3 from the linked list
System.out.println(undergrads.get(1)); //fetches the element 1, now s2
System.out.println(undergrads.getLast()); //fetches the last element, s2

The application LinkedListApp, shown in Figure 13.26, demonstrates the use of a LinkedList generic collection object to store and output student transcript objects. The transcripts are instances of the class Transcripts shown in Figure 13.27. Each transcript contains three data members: name, gpa, and creditsEarned, defined on lines 3–5 of that figure. The application also demonstrates the use of many of the Collections class’s methods listed in Table 13.1 and the use of an iterator, which is a time-efficient way of sequentially processing all of the elements in a LinkedList. The output produced by the program is shown in Figure 13.28.

Line 10 of the application shown in Figure 13.26 is a type-safe declaration of a genetic LinkedList collection object named underGrads that can store a collection of Transcripts objects. Any attempt to add anything other than a Transcript instance to this collection results in a translation error. The objects created on lines 11–14 are added to the collection using the LinkList class’s add method on lines 16–19. Because the overloaded version of the method that is passed a specific location at which to insert the elements is not used, the new elements, t1, t2, t3, and t4, occupy locations zero through three respectively.

Line 25 outputs the objects by invoking the LinkList class’s get method inside the for loop that begins on line 23. The method is passed the loop variable, i, as the location of the element to be fetched. The annotation produced by line 22, and the four lines of output produced by line 25, are shown at the top of Figure 13.28. The LinkLink class’s size method is used in the for statement on line 23 to terminate the loop.

Lines 28–57 use the Collections class’s static methods to process the elements of the list. The elements of the collection of Transcript are sorted by invoking the Collections class’s sort method on line 30 and passing it the collection object underGrads. The sort method orders and relocates the elements within the collection object’s first four locations, then lines 31–34 output them in element-location order (the second group of outputs shown in Figure 13.28). Examining these lines, we see that the transcripts have been sorted in ascending order based on the value of the students’ GPA.

The API documentation of the Collections class indicates that its sort methods sorts in “ascending order, according to the natural ordering of its elements.” This is another way of stating that the sort method invokes the compareTo method defined in the interface Comparable as part of its sorting algorithm, and it is left to the designer of the class of the list’s elements (in our case, the class Transcripts) to decide what it means to say one element is less than another. Once this decision has been made, the compareTo method is implemented in a way that reflects the decision.

NOTE

The class of the objects being sorted using the Collections class’s sort method, must implement the interface Comparable or a translation error is generated.

In this case, it was decided that one transcript is less than another if its GPA is lower, and the coding of the compareTo method on lines 21–27 of Figure 13.27 reflects that decision.

Consistent with the description of the compareTo method in the interface Comparable, the method returns a negative number on line 26 if the object that invoked it is less than the object passed to it, (otherwise it returns a positive number for greater than and zero for equal). The implements clause included in the heading of the class indicates that the compareTo method will be passed a reference to a Transcripts instance. Omitting the parameter list in the implements cause on line 1 of Figure 13.27 would result in a translation error on that line and line 30 of Figure 13.26.

Lines 38 and 39 of Figure 13.26 invoke the Collections class’s max and min methods that return a reference to the maximum and minimum elements in the collection. These methods also invoke the Transcripts class’s compareTo method to compare two elements, so they return a reference to the elements in the collection with the highest and lowest GPA (the third group of outputs in Figure 13.28).

Lines 42–48 of Figure 13.26 produce the fourth group of outputs shown in Figure 13.28. Before the output is performed, line 44 invokes the Collections class’s replaceAll method. The method is passed the LinkedList collection object underGrads and the two Transcript objects t1 and t2. This causes all occurrences of t1 in the collection to be replaced with t2 (in this case, just one replacement is made).

Line 52 uses the Collections class’s binarySearch method to find and output the current location of object t4, which at this point is the second element (location 1 in the collection). Line 57 invokes the swap method to swap the first (location 0) and the last (location 3) elements in the collection. The collection is then output within the while loop that begins on line 59 that uses an iterator to traverse and output the list.

[image:]

[image:]

Figure 13.26
The application LinkedListApp.

[image:]

Figure 13.27
The class Transcripts.

[image:]

Figure 13.28
The output produced by the application LinkedListApp.

Iterators

An iterator is an object that can be used to move through (traverse) an ordered list, usually in a forward (increasing element location) direction or in a backward (decreasing element location) direction. The iterator’s class ordinarily contains methods that can fetch, add, and remove the list element just after or just before the iterator’s current location and determine if there is an element just before and just after the iterator’s current location. The API class ListIterator provides all of these methods.

An iterator’s current location is always either between two elements of a list, just before the first element, or just after the last element. Figure 13.29 shows the five possible iterator positions for a collection that contains four elements. The ListIterator class’s hasPrevious method returns false when the iterator is positioned before the first element in the list, and its hasNext method returns false when the iterator is positioned after the last element in the list. Otherwise, they return true. The method next returns the element to the iterator’s right and then advances the iterator one position to the right. The method previous returns the element to the iterator’s left and then advances the iterator one position to the left.

[image:]

Figure 13.29
Positions of a list iterator.

Line 58 of Figure 13.26 invokes the LinkedList class’s listIterator method, which creates and returns an instance of the class ListIterator. The method is passed the iterator position 0, which, as shown in Figure 13.29, positions the iterator before the first element in the list. The iterator object anIterator, declared and initialized on line 58, is used to invoke the hasNext method in the Boolean condition of the while loop that begins on line 59. The output statement on line 61 of the loop outputs all of the elements of the list by invoking the iterator’s next method inside the println method, which returns the address of the next element of the array and advances the iterator.

The use of an iterator in a while loop is a more time-efficient way to traverse a list than the other output traversals that use for loops in the application LinkedListApp (e.g., lines 45-48). The reason it is more efficient is that the iterator maintains its position in the list after each iteration of the loop, which means it only has to advance one element during the next iteration. In contrast each iteration of the application’s for loops that do not use an iterator begins at the first element of the list. As a result, the number of elements the for loops have to traverse to output the last element in the list is the same number of elements traversed by the while loop to output all of the elements in the list.

13.4.4 The HashSet, TreeSet, and LinkedSet Classes

The framework collection classes HashSet, TreeSet, and LinkedSet implement the interface Set. An instance of a class that implements Set cannot contain duplicate objects in its collection, as determined by the implementation of the equals method in the objects’ class. For example if the elements in the collection were the Major League Baseball teams, an attempt to use the class’s add method to include a duplicate team object in the collection would result in a non-operation, and the add method would return false.

These three classes do not contain a get method for fetching elements from the collection. They do have a method named iterator that can be used to attach an iterator to an instance of these classes, which is used in the following code fragment to fetch and output all of the elements of the TreeSet object ts. An instance of a TreeSet maintains its elements in a sorted order, and a traversal of it using an iterator returns the elements in ascending order. The following code fragment outputs 4 7 22 to the system console:

 TreeSet <Integer> ts = new TreeSet<Integer>();

 ts.add(22); //Autoboxing

 ts.add(4);

 ts.add(7);

 Iterator anIterator = ts.iterator();

 while (anIterator.hasNext())

 {

 System.out.print(anIterator.next() + " ");

 }

Instances of the HashSet, TreeSet, and LinkedSet classes expand to accommodate the number of elements added to the collection. Elements can be removed using the classes’s remove method. Several of the Collections class’s methods, such as max, min, addAll, and disjoint can be used to process elements in these three collection classes. The class LinkedSet extends HashSet.

13.4.5 The ArrayDeque and PriorityQueue Classes

The framework collection classes ArrayDeque and PriorityQueue implement the interfaces Deque and Queue, respectively. An instance of these classes can contain duplicate objects in its collection. In addition, the objects in the collection have a first-in-first-out ordering imposed upon them. As a result, the methods implemented in these classes to add and remove objects are not passed an integer index to specify the new element’s location in the collection.

Instances of these classes would be good candidates for collecting the maintenance work orders of an apartment complex. Ordinarily work orders, such as polishing doorknobs, rats running around the kitchen, replacing a light, and toilets backing up, are added in the order in which they are received. Obviously, some of these are more urgent than others.

Each class adds its own embellishment to the first-in-first-out ordering of a traditional queue collection. The class ArrayDeque has a method named add that adds a new element to the end or rear of the collection, and a method named remove that removes an element from the front of the collection. When elements are added to the collection with the addFirst method and removed with the remove method, the collection object emulates a last-in-first-out collection (called a stack).

The PriorityQueue class’s first-in-first-out ordering would be more accurately described as first in - with the highest priority - first out, in that the elements are maintained in a priority ordering. An element’s priority is determined by the natural ordering of the objects as defined by their class’s implementation of the compareTo method specified in the interface Comparable. The collection object uses the integer returned from the compareTo method as the element’s priority. Normally, one of the element’s data members is used to designate the element’s priority and is then used to determine the integer returned from the implementation of the compareTo method. The element with the lowest natural ordering has the highest priority (e.g., a priority of 1 is higher than a priority of 2).

The application Queues, shown in Figure 13.30, demonstrates the use of the ArrayDeque and PriorityQueue classes to collect maintenance work orders that are objects in the class WorkOrder (Figure 13.31). An instance of a WorkOrder contains three data members: an apartment number, a description of the work to be performed, and a priority declared on lines 3–5 of the class. The output produced by the application is shown in Figure 13.32.

The application Queues (Figure 13.30) declares an instance of ArrayDeque named tasks on line 7, which specifies that all of the collection’s elements will be WorkOrder instances. Lines 10–13 uses the class’s add method to add four new work orders to the collection, which are then dequeued using the remove method and output (line 18) inside the while loop that begins on line 28. The loop’s Boolean condition uses the ArrayDeque’s size method to determine when all of the work orders have been removed from the queue. This method returns the number of elements in the collection. As shown in the top of Figure 13.32, the work orders are fetched and output by lines 16–19 in the chronological order in which the work orders were added to the collection tasks on lines 10–13.

To remedy the fact that the use of the tasks collection has the maintenance man polishing a door knob while rats are running around the apartment complex and toilets are backing up, the PriorityQueue object ptasks is declared on line 8 of the application. The work orders are added to this collection on lines 23–26 in the same chronological order in which they were added to the tasks collection (lines 10–13). The work orders in the ptasks collection are fetched and output on line 32 inside a while loop (line 30) that duplicates the loop used to output the tasks collection (line 16).

This time, the output is prioritized by the value of the work orders’ data member priority. The two highest priority work orders, given a priority of 1 on lines 24 and 26 when they were added to the collection, are output before the two lower priority work orders. The Rats running around the kitchen work order is placed in front of the Toilet backing up work order on the queue because it was added to the queue chronologically before the toilet maintenance request. Even though the Polish doorknob work order was the first order added to the ptasks collection (line 23), it is fetched by line 32 after the two priority 1 work orders and the priority 7 work order within the collection because it has a lower priority: 10.

To define the natural ordering of WorkOrder objects, lines 20–23 of the WorkOrder class (Figure 13.31) implements the compareTo method. The integer returned from this method is used in the manner described in the Comparable interface by a PriorityQueue collection object to determine its elements’ priority ordering. The method is passed a WorkOrder object as designated in the implements clause in the class’s heading. The implements clause, which includes a type parameter list consistent with the method’s parameter list on line 20, must be included in the class’s heading.

[image:]

Figure 13.30
The application Queues.

[image:]

Figure 13.31
The class WorkOrder.

[image:]

Figure 13.32
The output produced from the application Queues.

13.4.6 The HashMap, TreeMap, and LinkedHashMap Classes

The framework collection classes HashMap and LinkedHashMap implement the interface Map, and the TreeMap class implements the Map and SortedMap interfaces. Instances of these classes store objects, called values, which are paired (associated) with another object called a key. Each value object must be associated with a unique key object. The values stored in these collection classes are analogous to the elements stored in the collection classes previously discussed in this chapter. They are instances of any class.

When a key and a value pair are added to the collection using the class’s put method, the key and the associated value are passed to the method. This establishes the key and value association. A value is fetched from the collection by invoking the class’s get method and passing it the key associated with the value to be fetched. The following code fragment declares a TreeMap collection object named patientInfo whose keys are Strings and whose values are instances of the class Patient shown in Figure 13.33. It adds the object value p1 and its associated string key Jones to the collection and then outputs the value after it is fetched from the collection by passing the key Jones to the TreeMap class’s get method.

TreeMap<String, Patient> patientInfo = new TreeMap<String, Patient>();

Patient p1 = new Patient("Tom Jones", "2/3/1989", "643 976-4545");

 //Save the key and value pair in the collection

patientInfo.put("Jones", p1);

 //Fetch and output the value whose key is “Jones”

System.out.println(patientInfo.get("Jones"));

The output produced by the code fragment’s implicit invocation of the Patient class’s toString method (lines 13–16 of Figure 13.33) is shown below:

name Tom Jones, DOB: 2/3/1989, Cell Number: 643 976-4545

Fetching a value from a collection by specifying a key associated with the value is the most commonly used mode of accessing values stored in a collection and is a feature supported by the API classes that implements the Map interface.

Instances of the classes HashMap, TreeMap, and LinkedHashMap expand beyond their initial default capacity to accommodate the number of values added to them. From a speed viewpoint, a HashMap collection object affords the best performance, followed closely by TreeMap instances. A TreeMap collection object imposes a sorted order on the values in the collection, and a LinkedHashMap collection object maintains the order in which the values were added to collection. A HashMap collection object imposes a pseudorandom order on the values. The class of keys associated with the values added to a TreeMap collection object must implement the interface Comparable to define the natural ordering of the keys stored in the collection object.

[image:]

Figure 13.33
The class Patient.

The application TreeMapApp, shown in Figure 13.34, demonstrates the use of a TreeMap collection object named patientInfo (declared on line 8) to store a collection of Patient object values and the techniques used to fetch values from the collection and output the entire collection. A set of inputs and the resulting outputs produced by the program are shown in shown in Figure 13.35. The class Patient is shown in Figure 13.33.

Lines 17–20 of Figure 13.34 add the objects declared on lines 10–13 to the collection object patientInfo by passing its add method a string key and an associated value. The keys are the last names of the patients. Although a value’s key need not be contained in the value’s object, in this case, the value object does contain the last as well as the first name of the patient.

The sentinel loop that begins on line 26 and ends on line 41 is used to repeatedly fetch and display a patient’s information, given the patient’s last name. The user is prompted to enter a person’s last name before the loop begins (lines 23–25) and at the end of every loop iteration (lines 38–40) via an input dialog box (Figure 13.35a). If the user clicks Cancel in response to the prompt, the showInputDialog method returns a null value, and the loop ends.

When the returned value is not null, the input string is passed to the collection object’s get method on line 28. The get method returns the address of the value object in the collection associated with that string key or a null if the key is not associated with a value in the collection. When a null is returned, lines 31–32 inform the user that the person is not in the database (the collection). Otherwise, the person’s information is output to a message dialog box on line 36 using an implicit invocation to the Patient class’s toString method. A typical output is shown in Figure 13.35b.

When the while loop ends, the enhanced for loop that begins on line 44 fetches and outputs all of the value objects stored in the collection to the system console (shown in the bottom portion of Figure 13.35). The keys passed to the get method invoked on line 46 are sequentially accessed from the Set of keys returned from the collection object’s keySet method invoked on the right side of line 44. The collection values are output in last-name sorted order because a TreeMap collection object maintains the key set in sorted order, and the set returned from the ketSet method reflects that ordering.

[image:]

Figure 13.34
The application TreeMapApp.

[image:]

Figure 13.35
An input and the outputs produced by the application TreeMapApp.

The following code fragment produces the same output as the enhanced for loop on lines 44–48 of Figure 13.34 when substituted for it. It uses an Iterator object to traverse the key set.

// Use of an iterator to traverse a TreeMap instance (i.e, patientInfo)

Set <String> keys = patientInfo.keySet();

Iterator anIterator = keys.iterator();

while (anIterator.hasNext())

{

  String k = (String) anIterator.next();

  System.out.println(patientInfo.get(k));

}

13.5 STREAMS AND FUNCTIONAL PROGRAMMING

Streams and Lambda expressions were added to Java in Version 8. These enhancements effectively added a fourth programming paradigm, functional programming, to the three programming models Java already supported: procedural, object oriented, and generic programming. Within the functional model, the programmer describes what to do by sequentially invoking pre-coded functional methods, methods that return a value, rather than describing how to do it by coding the processes’ algorithms.

While this approach to programming has its disadvantages, a major advantage is that the functional methods implement operations commonly used to process data contained in collections and disk files, saving the programmer the time required to develop these methods. In addition, the streams that invoke them can be executed concurrently without the programmer having to write the multithreaded code. The functional paradigm also eliminates inadvertent interaction, referred to as coupling, between the modules that make up a program. For example, a sequence of code within this paradigm could not inadvertently change a class level variable.

A Stream is a programming construct that generates a sequence of objects, referred to as data elements which are then processed by a pipeline of one or more sequentially executed functional methods, referred to as intermediate tasks or intermediate operations. After a data element has been processed by an intermediate task, it is replaced with the task’s returned object which is then processed by the next task in the pipeline. Data element n does not enter the pipeline until element n-1 has been processed by the last task in the pipeline, or element n-1 was removed from the pipeline and not replaced, or element n-1 reaches an intermediate task that operates on more than one element. The last task in the pipeline is referred to as the terminal task, and it produces the pipeline’s result. A pipeline with two intermediate tasks is illustrated below.

Stream Data Source [image:] .task1’sName [image:] .task2’sName [image:] .terminalTask’sName

As shown in the below syntax diagram, the coding of a stream begins with a stream source that generates the data elements. This is followed by zero or more intermediate task names each preceded by a dot, followed by one terminal task preceded by a dot and followed by a semicolon.

Syntax Diagram of a Stream

[image:]

The following is the coding of a stream that conforms to this syntax, and produces the average of the numbers on line 1 that are less than or equal to 3.05.

1 DoubleStream.of(2.5, 3.9, 2.1, 3.1, 2.3) // data source

2 .filter(x -> x <= 3.05) // intermediate task

3 .average(); // terminal task

Line 1 is the stream’s data source, line 2 is an intermediate task, and line 3 is a terminal task.

13.5.1A Stream Data Source

The Stream Data Source portion of the stream’s pipeline is analogous to a sequential loop whose code block is the stream’s tasks coded in task number order. On the ith iteration of the loop, the data element i of the stream’s data source enters the loop, and is processed by the stream’s tasks as previously described.

The data elements of the data stream can be a sequence of non-random or random numeric values, the elements of an array, the elements of a collection, or the contents of a file. The Interfaces IntStream, LongStream, and DoubleStream contain static methods to generate streams of non-random numbers. For example, line 1 of the below code produces a stream data source whose data elements are the integers 3 though 6 inclusive, and line 2 produces the equivalent sequence of doubles. Line 3 is an alternative way of coding line 1, however the of method is normally used to generate a non-sequential integer stream.

 // Stream data sources that produce streams of numbers
 1 IntStream.rangeClosed(3, 6)
 2 DoubleStream.of(3.0, 4.0, 5.0, 6.0)
 3 IntStream.of(3, 4, 5, 6)

To use elements of an array as the stream’s data source, the Arrays class’s static method stream is invoked and passed the array. The method returns a stream data source containing the elements of the array in ascending array index order. The array can be an array of numeric primitives or objects. Lines 1–2 below produce a stream whose elements are the five doubles coded on Line 1. Lines 5 and 8 produce streams whose elements are the instances of the class String and Color stored in the arrays created on lines 4 and 7 respectively.

 // Streams of array elements

1 double[] doubles = {1.1, 5.2, 3.3, 16.4, 12.0};

2 Arrays.stream(doubles)

3

4 String[] StringObjects = {"Element1", "Element2", "Element3"};

5 Arrays.stream(StringObjects)

6

7 Color[] ColorObjects = {Color.RED, Color.GREEN, Color.BLUE};

8 Arrays.stream(ColorObjects)

To use the objects stored in a collection as a stream’s data source the Collection interface’s stream method is invoked on the collection instance. The below line of code creates a stream data source whose elements are the four instances of the Transcript class (Figure 13.27) created and added to the LinkedList collection named undergrads on lines 10–19 of Figure 13.26.

 // A stream of a collection elements

1 underGrads.stream()

13.5.2Stream Terminal Tasks

Table 13.2 presents a description of the 13 terminal tasks defined in the Stream interface. Some of these tasks are overloaded within this interface. The interfaces IntStream, LongStream, and DoubleStream contain equivalent tasks that operate on numeric streams, and include additional tasks that operate on numeric stream elements such as average and sum.

The parameter types of the methods in the first eight rows of Table 13.2 are functional interfaces, and therefore the argument passed to them can be a Lambda expression. These Lambda expressions would be implementations of the functional interface Comparator for the min and max tasks, the functional interface BinaryOperator for the reduce task, the functional interface Predicate for the anyMatch and allMatch and noneMatch tasks, and functional interface Consumer for the for and forEachOrdered tasks.

Table 13.2
The Terminal Tasks Defined in the Interfaces Stream

[image:]

The reduce Terminal Task, BinaryOperators Interface, and the get Method

The reduce task repeatedly evaluates the binary operation within the Lambda expression it receives passing the expression a sequential pair of stream elements, beginning with the first two elements that reach the task. In this case the binary operation must be an operation performed on two stream elements of the same type, and it must return an element of that type. The result of the binary operation replaces the pair of elements in the stream, thus reducing the stream by one element. The returned value is then paired with the next stream element and they are processed by the Lambda expression and replaced with the returned result. This process continues until there is only one pair of elements in the stream. The result of processing that last pair of elements is the value retuned from the reduce task.

The following section of code produces the output shown below it. Line 2 is the stream’s data source. Its elements are the four strings within the array defined on Line 1. The binary operator x + y in the Lambda expression passed to the reduce task on line 3, repeatedly generates the concatenation of two sequential strings that reach it, which then replaces them in the stream. After the third concatenation the stream is reduced to one string element which is wrapped in the Optional object reduce returns. The invocation of the Optional class’s get method, at the end of the Lambda expression on line 3, extracts the string from the Optional object which is assigned to the variable s on line 2. Line 4 outputs the string s.

1 String[] StringObjects = {"Element1", "Element2", " ... ", "ElementN"};

2 String s = Arrays.stream(StringObjects)

3    .reduce((x, y) -> x + y).get());

4 System.out.println(s);

The output string produced

Element1Element2 ... ElementN

When the get method is invoked on an object that does not contain a value, the method throws a NoSuchElementException. The class contains two methods, ifPresent and isPresent, to determine if the Optional object contains a value.

The numeric stream classes contain an overloaded two parameter version of the reduce task, whose first parameter becomes the (new) first element of the stream, and then the reduction process is performed using the Lambda expression passed to the tasks’s second parameter. The following code segment outputs the value 22.2 calculated as: 2.2 + 1.0*2.0 + 2.0*2.0 + 3.0*2.0 + 4.0*2.0 = 22.2

1 double[] values = {1.0, 2.0, 3.0, 4.0};

2 double avg1 =

3 DoubleStream.of(values)

4    .reduce(2.2, (x, y)-> x + y * 2.0); //2.0 becomes element 1

5 System.out.println("reduced1 " + avg1);

The min and max Tasks and the Comparator Interface

The min and max terminal tasks return the minimum and maximum value of the stream elements that reach the terminal task. To do this, they use the two parameter Comparator Lambda expression passed to them that defines the natural ordering of two stream elements as defined in the Comparable interface. The returned element is wrapped in an Optional object.

The following code uses the max task on line 3 to determine the Transcript class (Figure 13.27) object with the highest gpa, and then outputs that transcript. The stream’s data source on line 2, is the LinkedList collection of four transcripts named undergrads created on lines 10-19 of Figure 13.26. The compareTo method invoked on a Transcript stream element within the Lambda expression on Line 3, is coded within the Transcript class on lines 21-27. The entire stream is coded within the argument passed to the println method invocation that begins on line 1. This is an alternative coding style when the stream’s returned value is not going to be used beyond the sequence of code that contains the stream.

1 System.out.println("\nThe student with highest GPA is: " +

2 underGrads.stream()

3    .max((x, y) -> x.compareTo(y)).get());

The output produced

The student with highest GPA is: name: Carol; gpa: 3.8; credits earned: 45

The anyMatch, noneMatch, allMatch Tasks and the Predicate Interface

The Predicate functional interface defines a one parameter method that returns a Boolean value. The anyMatch, noneMatch, and allMatch terminal tasks return true if the one parameter Lambda expression Predicate passed to them returns true for any stream element, no element, or all of the elements respectively. Otherwise, these terminal tasks return false. For example, the anyMatch terminal task on line 4 of the below code returns true because the stream of names defined in the array on line 1 contains the name Alice. If the noneMatch or allMatch tasks were used on line 3, they would return false.

1 String[] studentNames ={"Dana", "Carol", "Alice", "Bob"};

2 System.out.println("There is a student named Alice? " +

3    Arrays.stream(studentNames)

4      .anyMatch(x -> x.equals("Alice")));

The output produced

There is a student named Alice? true

As shown on line 4 above, a Predicate Lambda expression contains one parameter to receive the stream object, and returns a Boolean value. If the stream objects are numeric values, the Lambda expression’s code can simply be a Boolean expression containing relational and logic operators as shown below on line 4. The output produced by line 5 is given below it.

1 double[] gpas = {3.2, 3.6, 2.8, 4.0, 2.7};

2 boolean inRange =

3 DoubleStream.of(gpas)

4       .allMatch(x-> x >= 2.0 && x <= 4.0);

5 System.out.println("All GPAs are in the range 2.0 to 4.0? " + inRange);

The output produced

All GPAs are in the range 2.0 to 4.0? true

The forEach and forEachOrdered Task, and the Consumer Interface

The Consumer functional interface defines a method that is intended to perform an action on the object passed to it. The method does not return a value, and so it is said to consume the object passed to it. The terminal tasks forEach and forEachOrdered are used to perform the action, defined in the Lambda expression passed to them, on each element of the stream that reaches them. The Lambda expression x -> System.out.print(x) is often used within the forEach and forEachOrdered methods to perform an output action on all of the elements that reach these terminal tasks, as shown on line 3 below.

1 String[] RGandBStringObjects = {"RED ", "GREEN ", "BLUE "};

2 Arrays.stream(RGandBStringObjects)

3     .forEach(x -> System.out.print(x));

The output produced by the above code

RED GREEN BLUE

An alternative coding of the Lambda expression that uses the method reference operator :: incorporated into Java in Version 8 is System.out::println. This syntax can be used when a Lambda expression consists of one statement that invokes another method. When the translator encounters the method operator it considers the item on its right to be a method that is being invoked on the object on its left. To invoke a static method, the class name is coded on the left side of the operator. Within the context in which it is coded, the translator can deduce the Lambda Expression’s parameters, and replaces it with the equivalent Lambda expression.

The following code uses the method reference operator on line 3 to output the four instances of the Transcripts class (Figure 13.27) contained in the LinkedList collection of transcripts, named undergrads, created on lines 10-19 of Figure 13.26. The println method invokes the toString method coded in the Transcripts class.

1 System.out.println("The students are:");

2 underGrads.stream()

3     .forEach(System.out::println);

The output produced by the above code

The students are:
name: Dana; gpa: 3.5; credits earned: 45
name: Carol; gpa: 3.8; credits earned: 45
name: Alice; gpa: 1.7; credits earned: 22
name: Bob; gpa: 2.6; credits earned: 120

The forEach and the forEachOrdered terminal tasks process the stream elements in the same order unless the stream is generated with the parallel or parallelStream method in the BaseStream Interface. When this is the case, the forEachOrdered task maintains the ordering of the stream elements and the forEach task does not.

The toArray and collect Terminal Tasks, and the Collectors Class

The toArray and the collect terminal tasks combine the elements of the stream into one entity. As its name implies, when the toArray task is used the entity returned is an array containing the stream’s elements. The below sequence of code uses the toArray terminal task on line 3 to return an array of doubles containing the stream elements produced on line 2.

1 double[] arrayOfElements =

2 DoubleStream.of(2.5, 3.9, 2.1, 3.1, 2.3)

3     .toArray();

4 System.out.println(Arrays.toString(arrayofElements));

The output produced

[2.5, 3.9, 2.1, 3.1, 2.3]

When the collect task is used the entity returned is normally a collection of objects such as a Map, a List or a Set, however it could also be a non-collection entity such as a string or a numeric. The returned entity depends on the static method invocation passed to the task, which is usually a static method defined in the Collectors class that returns a reference to Collector. A detailed discussion of these methods is beyond the scope of this book.

13.5.3Stream Intermediate Tasks

Table 13.3 presents a description of the eight intermediate tasks defined in the Stream interface. The interfaces IntStream, LongStream, and DoubleStream contain equivalent tasks that operate on numeric streams, and include additional tasks that operate on numeric stream elements, such as average, and tasks to convert one type of numeric stream to another type of numeric stream.

The parameter type of the methods in the first four rows of Table 13.3 are functional interfaces, and therefore the argument passed to them can be a Lambda expressions. These Lambda expressions would be implementations of the functional interface Predicate for the filter tasks, the functional interface Function for the map and flatMap tasks, and functional interface Consumer for the for the peek task.

Table 13.3
Intermediate Tasks

[image:]

The filter and sorted Intermediate Tasks, and the Function Interface

The filter intermediate task eliminates an element from the stream passed to its one parameter Lambda expression predicate if the Lambda expression’s Boolean condition evaluates to false. The task is said to “filter” these elements out of the stream. The sorted intermediate task returns a stream containing the stream’s elements in their natural sorted order. To do this it invokes the stream element’s compareTo method within its sorting algorithm.

Line of 2 of the below code creates a stream data source whose elements are the four instances of the Transcript class (Figure 13.27) created and added to the LinkedList collection named undergrads on lines 10–19 of Figure 13.26. The filter task on line 3 returns a stream that includes only those transcript elements whose gpa is 2.0 or higher. Line 4 sorts these elements in GPA ascending order using the Transcripts class’s compareTo method coded on lines 21–27 of Figure 13.27. The output produced by lines 1 and 5 is shown below the code.

1 System.out.println("The students with GPA >= 2.0 in sorted GPA order");

2 underGrads.stream()

3 .filter(x -> x.gpa >= 2.0) //gpa has package access

4 .sorted() //invokes compareTo method in Transcripts class

5 .forEach(x -> System.out.println(x));

The output produced by the above code sequence

The students with GPA >= 2.0 in sorted GPA order

name: Bob; gpa: 2.6; credits earned: 120

name: Dana; gpa: 3.5; credits earned: 45

name: Carol; gpa: 3.8; credits earned: 45

The flatMap, map, distinct, and peek Intermediate Tasks

Consider the six line code segment shown in Figure 13.36. As we have learned, line 1 generates a stream whose elements are 1, 2, and 3 and line 6 outputs the entire stream of elements that reaches it. If lines 2–5 were eliminated from it, the output would be the first line of output shown below the code segment. The functionality of the flatMap, map, distinct, and peek intermediate tasks on lines 2, 3, 4 and 5 will be illustrated by progressively adding each of these lines in between lines 1 and 6, executing each resulting code segment, and examining the resulting output. This will produce the last for outputs at the bottom of Figure 13.36.

[image:]

Figure 13.36
The use and functionality of the intermediate tasks flatMap, map, distinct and peek.

Including line 2 of Figure 13.36 in between lines 1 and 6 incorporates the flatMap intermediate task into the stream. This expanded three line code segment changes the output to the second line of output shown at the bottom of the figure. When an element enters the flatMap task, it is mapped into (replaced with) the stream returned from flapMap that consists of zero or more elements produced by the Lambda expression passed to its Function parameter.

Line 2’s Lambda expression invokes the IntStream class’s static method rangeClosed, passing its parameter the integer 1 and the stream’s integer element. This method returns a stream whose elements are the inclusive integers between the two arguments passed to it. The three elements 1, 2 and 3 generated by line 1 are therefore replaced with the three streams 1, 1 2, and 1 2 3 respectively. These 6 elements are then output on line 6.

Including line 3 in between lines 1–2 and 6 of Figure 13.36 incorporates the map intermediate task into the stream. This expanded four line code segment changes the code segment’s output to the third line of output in the lower portion of the figure. When an element enters the map task, it is mapped into (replaced with) the value returned from the Lambda expression passed to its Function parameter.

Line 3’s Lambda expression simply multiplies the element passed to it by 10 and returns the value which replaces the element in the stream. The six elements 1, 1, 2, 1, 2, 3 generated by line 2 are therefore replaced with the six stream elements 10, 10, 20, 10, 20, and 30. These 6 elements are then output on line 6.

Including line 4 in between lines 1–3 and 6 of the above code incorporates the distinct intermediate task into the stream. This expanded five line code segment changes the code segment’s output to the fourth line of output in the lower portion of the figure. When an element enters the distinct task, it is eliminated from the stream if the task previously processed an element with the same value. And so, the six stream elements produced by line 3 10, 10, 20, 10, 20, and 30 are reduced to three distinct elements 10, 20, and 30. These 3 elements are then output on line 6.

Completing the code segment in Figure 13.36 by adding line 5 in between lines 1–4 and 6 incorporates the peek intermediate task into the stream. This expanded six line code segment changes the code segment’s output to the fifth line of output at the bottom of the figure. When an element enters the peek task, it is consumed by the task, but not eliminated from the stream (as its name peek implies), because the task returns a stream with the element replaced by itself. In addition, the element and can be operated on by the Lambda expression passed to the task’s Consumer parameter.

The operation performed on line 5 simply outputs an element followed by two spaces. Then line 6 outputs the element’s replacement followed by two spaces. And so each one of the stream elements that enters the peek operation is output twice, once on line 5 and once on line 6, before the next element enters the stream. The resulting output is the last line of output shown at the bottom of Figure 13.36, which is produced when all six lines of the code segment in the figure are executed.

The limit and skip Intermediate Tasks

The limit and skip intermediate tasks both reduce the size of the stream. The limit task returns a stream consisting of the stream’s first n elements, where n is the long integer passed to it. The skip task returns a stream with the first n elements removed from it, where n is the long integer passed to it. For example, if the stream elements are 10, 20, and 30, .limit(2) would replace the stream with a stream whose elements are 10 and 20 and .skip(2) would replace the stream with a stream containing the element 30.

13.6 CHAPTER SUMMARY

Generic implementations of methods and classes extend their reusability, thereby reducing the time and cost required to develop a software product. A generic method is an implementation of an algorithm that can process any type object passed to one or more of its parameters. Within the method’s parameter list, the names of the parameters are preceded by a generic type placeholder, such as T or T1, instead of the name of a specific class. When a primitive value is passed to a parameter that uses a generic placeholder, it is autoboxed, and the address of the wrapper object is passed to the method.

All of the placeholders used in the method’s parameter list must appear in a generic parameter list included in the method’s signature just before its returned type: e.g., <T, T1>. One of these placeholders can also take the place of a specific returned type within the method’s signature, and the placeholders can be used within the method to declare reference variables that can reference the type of objects passed the method’s generic parameters. When a wrapper class object is returned from a generic method, it is unboxed before it is assigned to a primitive value. The copy method in the Arrays’ class or an instance of an ArrayList is used to copy generic arrays passed to a method because Java does not support the declaration of a generic array.

Using the syntax of generics, one method can be written that produces an annotated output of an array of any type of object passed to it, but in this case, the class of the objects contained in the array would have to include a toString method. The class of the objects passed to a generic method must indicate that it implements an interface that defines the signature of the methods invoked within the generic method to operate on the objects passed to it. Typically, they are API interfaces such as Comparable and Cloneable. Like non-generic methods, generic methods can be overridden and overloaded. The version of an invoked overloaded method is identified using a best-fit protocol involving the argument and the method’s parameter types.

Generic classes can contain generic methods, and generic placeholders can be used to specify the type of one or more of the class’s data members. All of the placeholders used in the class must appear in a generic parameter list that is coded in the class’s heading just after its class name. To maximize the type checking performed by the translator, the declaration of an instance of a generic class should include a generic parameter list that specifies the type of each of the class’s placeholders for the object being declared. If the class implements an interface whose method signatures are generic, the class names passed to the type parameters of the class’s implementation of the method should be included in its implements clause, for example:

className implements Comparable<theArgumentsClassName>.

The API collections framework contains a group of generic classes that implement many of the classic data structures used to efficiently store and process large data sets. These implementations include the classes LinkedList, ArrayList, ArrayDeque, PriorityQueue, and ArrayBlockingQueue, whose items are sequentially accessed, and the classes HashMap, TreeMap, and LinkedHashMap, whose values are accessed by specifying an object, called a key, that is associated with an object when it is added to the data set. The LinkedList and LinkedHashMap classes provide the poorest performance from a speed viewpoint. The collections framework also includes several interfaces used by its generic classes and a class named Collections whose methods can perform common operations on the items and values stored in instances of its collection classes such as sorting, searching, swapping, and locating maximums and minimums.

Knowledge Exercises

1. True or False:

a) Objects can be passed to parameters that use generic placeholders.

b) Primitive values can be passed to generic parameters.

c) The parameter lists of generic methods can include parameters of primitive types and/or class names.

d) The placeholder used as a method’s returned type must appear in the method’s type parameter list.

e) A type parameter list can include type placeholders that are not used in the method’s parameter list.

f) A generic method can declare a reference variable using one of its generic type placeholders.

g) An array of any type of object can be passed to a parameter of a generic method.

h) A generic method can declare an array of one of its generic types.

i) Generic methods can be overloaded.

j) Generic methods can be overridden.

k) The syntax of the invocation statement used to invoke a non-generic method is the same syntax used to invoke a generic method.

2. Give the signature of a generic method:

a) Named output that has two generic parameters and does not return a value

b) Named find that has one generic parameter and two integer parameters and returns an integer

c) Named clone that returns an instance of the object passed to its generic parameter

d) Named min that is passed an array of any type of object and returns a reference to one of the array’s elements

3. Give the statement(s) to make a copy of an array passed to a parameter named values whose generic placeholder is T1.

4. Give the signature of a generic method with one parameter that operates on the object passed to its parameter using a method with no parameters defined in the interface Addable.

5. True or False:

a) Generic classes can contain generic methods.

b) Generic classes can contain non-generic methods.

c) The heading of a generic class must contain a generic parameter list.

d) The type specification of a generic class’s data members can be a generic placeholder.

e) Generic classes can extend other classes.

f) Generic classes can implement interfaces.

6. Give the heading of a generic class named g6Class whose code uses two generic placeholders.

7. Give the heading of a generic class named g7Class that implements the compareTo method defined by the interface Comparable to compare the object that invoked it to another g7Class object.

8. Give a type-safe declaration of an instance of the class ArrayList that will be used to store 200 String objects.

9. Give a type-safe declaration of a reference variable that can reference the object declared in Exercise 8.

10. True or False:

a) The collections framework is part of the API.

b) The collections framework contains many generic classes that implement data structures used to efficiently store large data sets.

c) The items stored in an instance of the framework class LinkedList can be associated with a key.

d) The sort method in the Collections class can be used to sort the values of an instance of the framework class HashMap.

e) The values stored in an instance of the framework class TreeMap are maintained in sorted order based on the keys with which they are associated.

f) An iterator can be used to sequentially traverse through the elements stored in the framework collection classes.

11. Give the name of a frameworks class you could use to store a data set whose elements would be fetched by specifying a value associated with a string such as Mary Smith.

12. Give the name of a frameworks class you could use to store a data set whose elements would be fetched on a first-in-first-out basis.

13. Give a type-safe declaration statement to declare an object in the class identified in Exercise 12 that will store values that are objects in the class PhoneListing.

Programming Exercises

1. Write a generic method that outputs the three objects passed to it to the system console, each on a separate line. Test it by passing it a String, Double, and Integer object. (Why are these three classes used in this programming exercise?)

2. Write an overloaded version of the method described in Programming Exercise 1 that adds an integer primitive parameter to the method’s signature and outputs it, too. Test it by passing the method an Integer, Double, and String object and an integer primitive value.

3. Write a generic method that outputs the first of two different objects passed to it to the system console and returns the second object passed to it. Test it by passing it a String and an Integer object and then outputting the returned object.

4. Write a generic method that returns the larger of two objects of the same type passed to it. Test it by passing it two String objects and two Integer objects. Then output the returned objects to the system console. (Why are the String and Integer classes used in this programming exercise?)

5. Write a generic method that sorts and outputs an array of objects passed to it to the system console, each on a separate line. Test it by passing it an array of Integer objects.

6. Expand the method described in Programming Exercise 5 so it also makes a copy of the sorted array and returns it. Test your method by outputting the returned array.

7. Write a generic data structure class named arrayDS that uses an ArrayList object to store any type of object passed to its insert method and returns the object whose index is passed to its fetch method. Test the class by declaring a type-safe instance of the class that can store a set of salaries: Double objects. Then, accept a given number of salaries and insert them into the data structure. When the input is complete, ask the user for the item number to fetch from the data structure and output it to the system console.

8. Expand Programming Exercise 7 to include two additional lines of output that contains the maximum and minimum salaries in the data structure. Use the methods in the framework Collections class to determine the salaries to be output.

9. Declare a type-safe data structure instance of the framework class HashMap whose keys are String objects (a person’s name) and whose value is a Double object (the person’s weight). Then accept a given number of persons’ names and weights and insert them into the data structure. Fetch back the weight of the person whose name is input by the user, and output it to the system console. Finally, use an iterator to output the names and weights of all the objects in the data structure, one person per line.

Enrichment

Investigate the new features of Java 8, especially the use of lambda expressions and generics.

Investigate the differences between a deque and a queue.

Oracle’s Processing Data with Java SE 8 Streams, Part 1

https://www.oracle.com/technical-resources/articles/java/ma14-java-se-8-streams.html

References

Horstmann, Cay. Java SE 8 for the Really Impatient. Upper Saddle River, NJ: Pearson, 2014.

CHAPTER 14

MULTITHREADING AND CONCURRENCY

14.1Overview

14.2Creating and Initiating Threads

14.3Thread States

14.4The Producer-Consumer Problem

14.5Solutions to the Producer Consumer Problem

14.6The Synchronized Statement

14.7Chapter Summary

[image:]

[image:]

In this chapter

In this chapter, we will learn the techniques used to divide a program into two or more independent execution paths, called threads, and how to share information among them them. Using these techniques, one of a program’s threads can perform a time-consuming calculation on a set of inputs while another thread is accepting the next set of inputs. We will learn that modern operating systems can give the impression that threads are in concurrent execution or actually execute them concurrently.

We will discuss the problems associated with threads sharing data, the techniques and Java constructs used to avoid these problems, and the meaning of the term thread safe used in the description and implementation of several Java API classes such as the generic collection class ArrayBlockingQueue. We will learn how to write methods and classes that are thread safe using Java’s synchronized method construct and its synchronized statement.

The Java syntax used to implement thread classes, create thread objects, and initiate and terminate their execution will be presented. We will learn that threads have a lifetime, and that during this lifetime, a Java thread exists in one of six states. The restrictions imposed on a thread while in these states, and the events that cause threads to transition from one state to another, will be discussed. During this discussion, we will be introduced to methods such as wait, sleep, and notify, which a programmer can use to transition a thread from one state to another.

After successfully completing this chapter, you should:

•Understand what threads are, how they are used, and how they can share information

•Know how to divide a program into one or more threads or execution paths

•Understand the six transition states of threads

•Be able to implement thread classes, create thread objects, and initiate and terminate threads

•Understand the concepts of concurrency and synchronization and how to create thread safe classes

•Be able to explain the Producer-Consumer synchronization problem connected with threads and its solution

•Know how to use thread safe Java API classes within a multithreaded application

14.1 OVERVIEW

In computer science, concurrency is the concept of executing several programs, or several parts of a program, at the same time or giving the user the impression that they are being executed at the same time. For example, one program may be displaying and updating the time of day while another program is playing a music video available on a Website. In addition, one part of the music program could be downloading the video from the Website while another part of that program is playing the part of the video already downloaded.

Concurrently executing programs, such as a time-of-day program and a program that plays music videos are often referred to as processes. Concurrently executing parts of a process, such as the two parts of a music video program that downloads and simultaneously plays the video, are referred to as threads. Figure 14.1 shows two processes in concurrent execution. Even what appears to be a single program running on a computer system could be a process with a set of simultaneously executing threads. In fact, when we consider the support every program receives from the operating system and the Java Runtime Environment, every Java program is a process with multiple threads.

[image:]

Figure 14.1
A single-thread and a double-thread process.

A thread can be considered to be an execution path through a program, and the programs discussed up to this point in the text should be thought of as having one thread. This thread, called the main thread, contains the code of the method main, and it is created and started by the Java Runtime Environment when the program is launched. As we will see, the main thread can create and start other threads. The creation and starting of threads, and the sharing of information and system resources among them, are the topics of concurrent (multitasking) programming.

Actual and Perceived Concurrency

For a thread to be in execution, the address of one of its instructions must be stored in the instruction register of a CPU in order for the instruction to be interpreted (decoded) and executed by the CPU’s data path. As a result, two or more threads can only execute concurrently if the system they are running on has more than one CPU or the system’s CPU contains multiple data paths, called cores. A system that has one CPU containing one data path can give the impression that several threads are executing simultaneously by sharing the CPU’s processing time among threads.

Threads that share a CPU’s data path are each given a quantum (or “time slice”) of CPU time based on a scheduling algorithm, which is platform or operating system dependent. Fortunately, the speeds of modern computers permit a significant number of instructions, often in the millions, to execute during a time quantum. In addition, the time interval between the quanta is small enough to give the system user the perception that all of the threads are being executed without interruption. This is analogous to our perception that an incandescent light bulb does not blink sixty times a second.

Several of the popular sorting algorithms, such as the Merge Sort and the Quick Sort, can be coded concurrently. They both divide the lists of items to be sorted into sublists which can be sorted simultaneously.

14.2 CREATING AND INITIATING THREADS

There are three ways to create and initiate the execution of a thread. All of them involve coding a class that includes a method named run defined in the interface Runnable. When a thread is allocated its first quantum of CPU time, its execution begins with the first executable statement in the method run. This method is to a thread as the method main is to an application. The thread’s algorithm is coded in this method.

Defining a Thread’s Class

A thread class’s heading must either indicate that it implements the interface Runnable or extends the class Thread (which implements the interface Runnable). Figure 14.2 shows a thread class named ExtendsThread that extends the class Thread, and Figure 14.3 shows a class named ImplementsRunnable that implements the interface Runnable. As shown in Figure 14.2, the first executable statement in the constructor of a class that extends Thread should be an invocation of its parent’s constructor. Both classes implement the method run, defined in the interface Runnable, and contain the String data member name that is initialized to the string passed to the class’s constructor.

[image:]

Figure 14.2
The class ExtendsThread that extends the class Thread.

[image:]

Figure 14.3
The class ImplementsRunnable that implements the interface Runnable.

Initiating a Thread’s Execution

The code of the main method creates an object in the thread’s class. The next step is to initiate this object’s execution from within the main method, which makes the thread eligible for a quantum of CPU time. The way this is done depends on whether the thread class’s heading indicates that it extends the class Thread or implements the interface Runnable.

If the class extends the class Thread and is named ExtendsThread (as in Figure 14.2), the following code fragment would be used in the main method to create the Thread instance thread1 and make the thread eligible for a quantum of CPU time:

//Create and initiate a thread whose class extends Thread

ExtendsThread thread1 = new ExtendsThread("thread1");

thread1.start();

We will learn more about the Thread class’s start method in the next section. When any thread is granted its first quantum of CPU computing time, its execution begins with the first executable statement in its run method.

If the thread’s class implements the class Runnable (as in Figure 14.3), there are two alternative approaches to initiate the thread’s execution. Assuming the thread class is named ImplementsRunnable, the following code fragment would be used in the main method to create the Thread instance thread2 and make the thread eligible for a quantum of CPU time. It creates a Runnable object and passes it to the one-parameter constructor of the Thread class.

// Create and initiate a thread whose class implements Runnable

ImplementsRunnable runnableObj = new ImplementsRunnable("thread2");

Thread thread2 = new Thread(runnableObj);

thread2.start();

The alternate technique when the thread class implements the interface Runnable is to not explicitly declare the Thread instance or initiate its execution. This approach uses the concept of an executor service to create the thread and manage the initiation and execution of the thread. Using this approach, we can reduce the amount of overhead associated with creating multiple threads because an executor maintains an expandable pool of threads, each of which can be assigned or reassigned to a Runnable object.

The following code fragment illustrates this approach. It invokes the Executors class’s static method newCachedThreadPool to create an executor service referenced by threadLauncher. This object maintains a thread pool and is capable of adding threads to the pool and assigning runnable objects to existing threads. Its execute method assigns the Runnable object passed to its parameter (in our case, an instance of the class ImplementsRunnable) to one of the threads in its pool and initiates its execution.

ImplementsRunnable runnableObj = new ImplementsRunnable("thread3");

ExecutorService threadLauncher = Executors.newCachedThreadPool();

threadLauncher.execute(runnableObj); //initiate thread3 as runnableObj

The application CreatingThreads, shown in Figure 14.4, creates and initiates three threads using the three techniques discussed in this section. The output produced by the threads is shown in Figure 14.5.

The first thread, created on line 8, is an instance of the class ExtendsThread shown in Figure 14.2, which as its name implies, extends the class Thread. The second thread is created on line 12 by passing the object created on line 11, runnableObj1, to Thread's one-parameter constructor. The object runnableObj1 is an instance of the class ImplementsRunnable shown in Figure 14.3, which implements the class Runnable. These two threads are initiated on lines 19 and 20 of Figure 14.4.

To initiate the third thread, another instance of the class ImplementsRunnable (Figure 14.3) is created on line 15, the instance runnableObj2. Line 23 passes this object to the execute method invoked on threadLauncher: the object created on line 16 that contains a thread pool. The invocation of execute on line 23 causes a thread to be added to this thread pool, the object runnableObj2 is associated with the thread, and the thread is initiated.

These three threads and the main thread will share CPU time during the program’s execution. As soon as a thread receives a quantum of computing time, the first statement in its run method (lines 15 and 13 of Figures 14.2 and 14.3, respectively) output the thread’s name data member to the system console. The output sequence shown in the lower portion of Figure 14.5 indicates that the main method ended before any of the threads were granted a quantum of computing time. The output also indicates that thread1 was granted a quantum of computing time before thread2, which was granted a quantum of computing time before the third thread. The last console output shown at the bottom of the figure was generated after the user entered 80 in the input dialog box displayed by thread1 (shown in the upper portion of the figure) and then clicked OK. At this point, the other two threads had already completed their execution.

[image:]

Figure 14.4
The application CreatingThreads.

[image:]

Figure 14.5
An input to the application CreatingThreads and the outputs generated by it.

14.3 THREAD STATES

The time from when a thread object is created until it no longer exists is called a thread’s lifetime. During its lifetime, a thread is in one of six Java-defined states within the Java Virtual Machine. The names of the six states are: new, runnable, blocked, waiting, timed waiting, and terminated. Figure 14.6 shows these states and the possible transitions from one state to another depicted by the arrows in the figure. The green arrows indicate that the thread is becoming more likely to being granted a quantum of computing time.

14.3.1The New, Runnable, and Terminated States

As shown on the left side of Figure 14.6, when a thread is created, it enters the new state. It remains there until it is initiated by the method start or the method execute (e.g., lines 19 and 23 of Figure 14.4, respectively). Once initiated, it enters the runnable state. Only threads that are in the runnable state can be assigned a quantum of CPU computing time by the operating system. When the thread completes its execution, it enters the terminate state. All system resources allocated to a task that is in this state are reclaimed, and the task ceases to exist (shown in the lower right side of Figure 14.6).

[image:]

Figure 14.6
Transitions among the six states of a thread during its life.

Threads that are in the runnable state can be assigned a quantum of computing time by the operating system. The algorithm used to select which of the threads in the runnable state receives the next quantum of CPU time is platform dependent and is normally based on a priority assigned to the thread. The higher the task’s priority, the more likely it is to receive a quantum of computing time when it is in the runnable state. Round robin scheduling is a common algorithm used by operating systems to assign a quantum of computing time to tasks of equal priority while they are in the runnable state. Figure 14.7 shows this process for three tasks of equal priority named thread1, thread2, and thread3.

[image:]

Figure 14.7
Round robin scheduling of three threads in the runnable state.

By default, Java assigns the newly created thread the priority of the thread that created it. When an application’s main method is created, its priority is set to the Thread class’s static integer constant, NORM_PRIORITY, which is midway between the class’s constants MAX_PRIORIY and MIN_PRIORITY. This default priority value can be changed by invoking the Thread class’s setPriority method and passing it a new priority within the range of the static constants Thread.MAX_PRIORITY to Thread.MIN_PRIORITY, inclusive.

14.3.2The Blocked, Waiting, and Timed Waiting States

Most threads over their lifetime transfer between the runnable state into the waiting, timed waiting, or blocked states several times. These transitions can be initiated by various events, such as the thread performing I/O or by threads invoking methods that initiate the transfer.

The Blocked State

After a thread has issued a request for input (e.g., displayed an input prompt to the user and is waiting for the completion of the input), it is moved from the runnable state into the blocked state because it cannot continue its execution until the input is complete. This transfer from the runnable state into the blocked state and back again, shown in the bottom center of Figure 14.8, is associated with the initiation and completion of an input event.

A thread can also enter the blocked state if it contains a Java concurrency construct called a synchronized code block, but it cannot enter the code block if a warning, called a lock, has been issued indicating it is unsafe to execute the code. For example, if the task of a thread’s synchronized code block was to increase the pressure inside a storage tank, another thread whose task was to determine if the tank’s pressure sensor was functional could issue a lock until it determined that the sensor was functional. Synchronized code blocks are also used to prevent one thread from changing shared data while another thread is reading it.

The transition from the runnable state to the blocked state and back again, initiated by a locked and then unlocked synchronized code block, is also depicted in the bottom center portion of Figure 14.8. We will learn more about synchronized code blocks and locks later in this chapter.

[image:]

Figure 14.8
Actions and events that transition a thread from the runnable state and back again.

The Waiting and Timed Waiting States

A thread moves from the runnable state to the waiting or timed waiting state when it, or another thread, invokes the wait method on the thread. It can also enter the timed waiting state when the sleep method is invoked on it. These state transitions are shown in the top center portion of Figure 14.8.

When a thread in the runnable state invokes the wait method and does not pass it an argument, the thread enters the waiting state. A thread that does not have all the system resources it needs to complete its algorithm, such as when a piece of data or a resource it needs is not yet available, will enter the waiting state via an invocation of the no-parameter version of the method wait. The thread will reenter the runnable state when another thread notifies it or notifies all of the threads waiting for the data item or resource, that the data item or resource is available via an invocation of the notify or notifyAll methods. This transition back to the runnable state is depicted at the top-left portion of Figure 14.8.

When a thread in the runnable state invokes the wait method or the Thread class’s static method sleep and passes it an integer argument, the thread enters the timed waiting state for that number of milliseconds. When the time period expires, the thread returns to the runnable state, as shown in the top right portion of Figure 14.8. A thread that cannot perform its task until a known period of time passes can use either the sleep or the wait method to exit the runnable state. The following code fragment would be used by a task to remove itself from the runnable state for one second (i.e., 1000 milliseconds):

Thread.sleep(1000);

Threads placed in the timed waiting state with an invocation to wait also exit the state when an invocation to the notify or notifyAll method is made by some other thread. If a thread was willing to wait for up to one minute for a piece of data that was not yet available, and then proceed with or without the data item, it would do so using the following code fragment:

int t = 1000 * 60; //one minute = 60,000 milliseconds

wait(t); //in the timed waiting state

Concurrent algorithms that use the methods wait, sleep, notify, and notifyAll to perform state transitions are quite common, however, an error-free implementation of these algorithms can be rather elusive. As a result, Java provides several levels of support to facilitate their use. Armed with an understanding of how to create threads, thread states, and the events and methods that initiate transitions between states, we are now ready to expand our concurrency knowledge base by implementing a classic concurrent algorithm: the Producer-Consumer algorithm, which if not properly implemented results in the Producer-Consumer problem.

14.4 THE PRODUCER-CONSUMER PROBLEM

The Producer-Consumer problem is a classic concurrency synchronization problem that arises when one thread is producing (i.e., generating) a resource that another task is consuming (i.e., using). For example, one thread is computing a data value that another thread outputs to the system console after combining it with other data values. The word consumer is used in the name of the problem because an assumption of the problem is that once the resource (e.g., a data item) is obtained by the thread that uses it, the thread that produced it no longer needs to maintain a record of it. (This situation was made famous by the Pac-Man game.)

In object oriented programming, data is shared between threads using an object whose address is known to both the producer and consumer threads. The shared resource is typically a data member of the object whose class implements a set method the producer method invokes and a get method the consumer thread invokes. The object is referred to as a buffer object, or more simply a buffer, because it is a holding area for the shared resource. A bounded buffer is a buffer object that can hold a specified number of shared items. An object in the API class ArrayBlockingQueue, which we will learn more about later in this chapter, can be used as a bounded buffer to safely share data between producer and consumer tasks.

The class Buffer, shown in Figure 14.9, is an example that buffers an integer data item in its data member sharedData, defined on line 3. The single thread application BufferDemo, shown in Figure 14.10, uses the Buffer object aBuffer to store three integer data items it alternately produces (stores in the buffer’s data member) on line 10 and then consumes (fetches) and outputs on line 13. The output generated by the program is shown in Figure 14.11.

[image:]

Figure 14.9
The class Buffer.

[image:]

Figure 14.10
The application BufferDemo.

[image:]

Figure 14.11
The output produced by the application BufferDemo.

Although the application Buffer does produce and consume integer data items stored in a Buffer object, it does not illustrate the producer and consumer problem because the buffer is not shared between two threads. The main thread is the only thread in the application. It does not simulate a producer thread performing a second write to the buffer before a consumer thread is issued a quantum of computing time to read the first item written to the buffer. In this single thread example, once line 10 of Figure 14.10 executes, it cannot execute again until line 13 executes.

There is one case when this single thread producer-consumer application could degenerate into a producer-consumer problem: if lines 10 and 11 of Figure 14.10 were switched with lines 13 and 14. In this case, the consumer would be consuming its first data item before the producer produced it, and the last data item produced (3) would not be consumed. Figure 14.12 shows the application’s output when lines 10–11 and lines 13–14 are switched. As shown in the figure, the first item consumed is the default value of the buffer object’s integer data member sharedData, 0, which is not a produced value, and the last data item consumed is 2. The data item 3 is not consumed.

[image:]

Figure 14.12
The output produced by the application BufferDemo when lines 10–11 are switched with lines 13–14.

While this error in the application would be easily discovered and rectified because the erroneous output is repeatable and the producer and consumer are in the same thread (main’s thread), this type of problem is much more difficult to avoid, discover, and rectify when the producer and consumer are in different threads or in entirely different applications. The complications include the fact that the output becomes less repeatable or predictable in a multithreaded version of the application, and the producer and/or consumer’s time quantum could expire before their invocations of the set and get methods complete execution.

To illustrate these complications, the producer and consumer tasks, lines 10–11 and 13–15 of Figure 14.10, have been transferred into two different classes named Producer and Consumer, shown in Figures 14.13 and 14.14, respectively. These classes implement the interface Runnable, so instances of these classes can be used to separate the producer and consumer tasks into two separate threads.

When a Producer object is created, the class’s constructor (line 8 of Figure 14.13) is passed an instance of the class Buffer whose code is shown in Figure 14.9. The address of the Buffer class object is stored in the data member sharedData declared on line 5. The producer tasks coded as lines 24 and 25 are inside a for loop (lines 15–26) that executes ten times. The loop variable, i, is passed to the shared Buffer object’s setData method on line 24. A producer object will produce the values 1 to 10 in ascending order.

Line 19 invokes the Thread class’s static method sleep to move the Producer object into the timed waiting state for a random time period of up to ten milliseconds. This is to simulate a random number of time quanta expiring during the processing required to produce the shared data item, i. The Random object delay used to generate the time increment passed to the sleep method is declared on line 6. The sleep method can throw a checked InterruptedException object, which is why it is coded inside a try-catch construct (lines 17–23).

The code block of the class Consumer, shown in Figure 14.14, is similar to that of the Producer class’s code block. The most obvious difference is that producer tasks (lines 24–25 of Figure 14.13) have been replaced by the consumer tasks (lines 28 and 29 of Figure 14.14). In addition to this change, before the consumers run method ends, it invokes the method outputConsumedSummary (line 35). This method outputs two lines of statistics that summarize the performance of a Consumer thread. The two arrays it uses to store the statistics are declared on lines 6 and 7 and updated each time through the run method’s for loop on lines 32 and 33.

[image:]

Figure 14.13
The class Producer.

[image:]

[image:]

Figure 14.14
The class Consumer.

The application PCThreadProblems presented in Figure 14.15 declares an instance of a Producer and a Consumer object on lines 10 and 11, passing their constructors the shared Buffer object declared on line 8. Then, lines 13–15 associate these runnable objects with threads and initiate them. The output produced by two successive executions of the application is shown on the left and right sides of Figure 14.16. Line numbers were added to the figure to facilitate its discussion.

If there were no producer-consumer problems, both columns of output would be the same as the output shown in Figure 14.17, in which all of the values produced are immediately followed by the value being consumed. Each value produced (the values 1 through 10) is consumed once and only once, as indicated by the summary at the bottom of the figure. As the summary at the bottom of each column of Figure 14.16 indicates, not all of the data produced by the two executions of the application PCThreadProblems were consumed. On the left side of the figure, only the values 1, 3, 5, 6, and 7 were consumed, with 1 being consumed twice and 3 and 6 being consumed three times each. Similar problems occurred during the second execution of the application, as shown on the right side of the figure.

These problems occur in this producer-consumer multithreaded application because the producer and consumer are not waiting for each other to complete their tasks. Whenever either thread receives a quantum of computing time, it produces or consumes as many values as it can, without any consideration of whether or not the other thread has consumed or produced a value. Referring to lines 13–15 of the left column of Figure 14.16, the consumer thread was able to consume the same value (6) from the buffer three times before the producer thread could produce the value 7 (line 16). In some cases, the producer thread was able to produce several values before the consumer thread was able to consume them, as shown on lines 7–9 of the right column in Figure 14.16.

The obvious remedy is for the producer to produce a value and not produce another value until the consumer consumes the value. Similarly, once the consumer consumes a value, it should not consume another value until the producer produces another value. This process is referred to as synchronizing the producer and consumer tasks. Synchronizing these tasks assures that the producer and consumer will alternate their access to the buffer, as depicted in Figure 14.17.

[image:]

Figure 14.15
The application PCThreadProblems.

[image:]

Figure 14.16
The output produced by two successive executions of the application PCThreadProblems.

[image:]

Figure 14.17
A problem-free producer-consumer output.

14.5 SOLUTIONS TO THE PRODUCER CONSUMER PROBLEM

One approach to solving producer-consumer problems revealed by the application shown in Figure 14.15 is to replace the Buffer class instance declared on line 8 of Figure 14.15 with an instance of a synchronized API collection class. These classes are said to be thread safe. API collection classes that are thread safe do not allow a consumer to consume unless a producer has produced and vice versa.

We will discuss this approach after we discuss and implement changes to the Buffer class that would make it thread safe. In this thread safe buffer implementation, the wait and notify methods and a Java lock are used to synchronize a producer’s and consumer’s access to the shared data object. The changes we will make to the Buffer class are effectively what we would see if we looked “under the hood” of the API’s implementations of its thread safe collection classes.

14.5.1Synchronizing a Buffer Class: Synchronized Methods

The changes we will make to the Buffer class to make it thread safe involve modifications to the class’s setData and getData methods that are based on the following three synchronization criteria:

•Its getData method should have a way of determining if a new data item has been written to the buffer and only return a value when this is the case

•The setData method should have a way of determining if the data item currently in the buffer has been consumed and only overwrite the data item when this is true

•When one method is in execution, the other method should not be allowed to begin execution; that is, they should not be permitted to execute concurrently, they should be mutually exclusive

The first two criteria will involve adding two Boolean data members to the Buffer class, which we will name writeable and readable. These variables will be used by the setData and getData methods to determine if they should write to, or read from, the buffer. The setData method will write to the buffer when writeable is true, and the getData method will read from the buffer when readable is true.

Before the methods end their execution, they will reverse the truth values of the two variables:

•setData will set readable to true to indicate to getData that it can read from the buffer, and it will set writeable to false to remind itself that it cannot write to the buffer

•getData will set writeable to true to indicate to setData that it can write to the buffer, and it will set readable to false to remind itself that it cannot read from the buffer

The code fragments shown in Figure 14.17 illustrate these ideas but should be considered pseudocode. They will be modified when incorporated into the revised Buffer class because they do not satisfy our third criteria: when one method is in execution, the other method should not be allowed to begin execution.

[image:]

Figure 14.18
Pseudocode of the first two producer-consumer synchronization criteria.

The need for the third criterion is more easily understood in the context of the first two criteria, which are expressed in Figure 14.18. Consider the case when the code fragment of the getData method shown on the right side of the figure has just completed line 3, setting writeable to true. If at this point the setData method was allowed to execute, the Boolean condition on line 1 (on the left side of figure) would evaluate to true, and line 3 would write a new value into the buffer. Here’s the problem: line 5 of the getData method has not yet executed to return the value that was just overwritten. Allowing this situation to occur results in a lost data item, i.e., a produced data item that is not consumed. Other execution-sequence scenarios result in the other equally unacceptable outcome: a data item is consumed twice. It is often critical that the execution of a portion of a thread’s code not be interrupted once it begins. This section of code is referred to as a critical section.

Java provides a remedy for this situation by allowing us to declare methods to be synchronized. When two or more methods in a class are declared synchronized and one of the methods is in execution, the other method(s) cannot begin execution. A thread that attempts to initiate the execution of a second synchronized method enters the waiting state. Declaring the setData and getData methods to be synchronized would solve the lost data item problem we cited previously. When the methods are synchronized after the getData method sets writeable to true on line 3 (right side Figure 14.18), the setData method cannot begin its execution until line 5 of the getData method executes and returns the now non-overwritten data value to its invoker. The producer thread that invoked the setData method would enter the waiting state.

There are two subtle, but remaining pieces to the puzzle that the following two questions expose:

•How does the producer thread that was moved to the waiting state when it invoked setData while getData was in execution return to the runnable state?

•What if the getData method is invoked while readable is false, in which case its return statement (line 5 of Figure 14.18) is unreachable? (The Java version of the pseudocode would produce a translation error.)

The solution to the first remaining piece of the puzzle is that the getData method invokes either the notify method (or notifyAll method) just before it ends. This moves one (or all) of the threads that invoked methods synchronized to the getData method from the waiting state to the runnable state. In our case, the setData method would then begin its execution when the operating system granted the thread that invoked it a CPU time quantum. A similar modification, an invocation of the method notify or notifyAll, must be added to the setData method.

The solution to the second remaining piece of the puzzle (what if the getData method is invoked while readable is false, in which case its return statement is unreachable) also has to do with a thread entering the waiting state. In this case, the thread that invoked the setData method effectively places itself into the waiting state to pause its execution until readable becomes true. It does this by invoking the wait method inside the getData method. The thread will return to the runnable state when a thread that invoked the setData method issues an invocation to notify or notifyAll. A similar modification has to be made to the thread that invokes the setData method.

Synchronizing the setData and getData methods also prevents another facet of the producer-consumer problem from occurring: deadlock. Deadlock occurs when two or more threads, which share resources, are all waiting for each other to complete and none of them can proceed. The situation is analogous to north bound and east bound cars at the stop signs of an intersection with their drivers waiting for each other to proceed, or north and south bound cars are waiting for each other at a one lane bridge. To see when this would occur in non-synchronized methods, let us once again consider the case when the code fragment of the getData method shown on the right side of Figure 14.18 has just completed line 3, setting writeable to true. If at this point, the setData method was allowed to execute and run to completion, line 4 of the method would set writeable back to false. After the method ended, the getData method would continue its execution at line 4, and readable would be set to false. Now both writeable and readable are false and neither method can execute.

NOTE

When writeable data is being shared between two or more threads, the access to the data must be synchronized.

Synchronized Methods

Methods are declared synchronized by including the keyword synchronized in their signature. The execution of a class’s synchronized methods is mutually exclusive, and a lock analogy is used to explain the transfer of execution from one synchronized method to another.

One lock is shared by all of the synchronized methods, and initially it is available to all of the synchronized methods. When a synchronized method is invoked by a thread, it must first acquire the lock for it to begin execution. Once acquired, the lock effectively locks out all invocations of other synchronized methods issued by threads. When an invocation is issued by a thread and the lock is not available (i.e., another synchronized method has previously acquired the lock), the thread enters the waiting state until the method in execution surrenders the lock. A method implicitly surrenders the lock when it invokes the wait method, the notify method, or the notifyAll method.

The Synchronized Buffer Class SynchronizedBuffer

The class SynchronizedBuffer, shown in Figure 14.19, is the thread safe version of the class Buffer presented in Figure 14.9. It uses synchronized methods and other concepts discussed in this section to eliminate the producer-consumer problems resulting from the use of the Buffer class by the application PCThreadProblems (Figure 14.15).

The SynchronizedBuffer’s revised setdata and getData methods begin on lines 12 and 31 of Figure 14.19, respectively. Their signatures include the keyword synchronized, which declares them to be synchronized methods and making their executions mutually exclusive. Lines 25–27 of the setData method and lines 45–47 and line 49 of the getData method are analogous to lines 3–5 on the left and right sides of Figure 14.18, respectively. This is the portion of the methods that access the shared buffer and reverse the truth values of the Boolean variables writeable and readable declared on lines 4 and 5 of Figure 4.19.

The while statements at the beginning of these methods (lines 16 and 36), use the variables writeable and readable in their Boolean conditions. When these variables are false, the methods place themselves in the waiting state by invoking the wait method (lines 18 and 38). This prevents the return statement on line 49 from being unreachable, and also surrenders the lock.

The variable readable is initialized to false on line 5. This guarantees that if a consumer thread executes before a producer thread and the getData method acquires the lock, it will execute the wait statement on line 38, surrender the lock, and enter the waiting state. Then, when a producer thread executes and invokes the setData method, the method can acquire the lock. Because writeable is initialized to true on line 4, the producer method’s execution proceeds to completion (lines 25–28) producing a data item, reversing the truth values of the Boolean variables, and finally invokes notifyAll to surrender the lock.

After notifyAll is invoked, the consumer task will reenter the runnable state, and its pending invocation of getData can reacquire the lock. Because the setData method set readable to true, the getData proceeds to completion. Before it ends, it reverses the truth value values of the Boolean conditions, invokes notifyAll, and returns the consumed data item its invoker.

Instead of the getData method returning the buffer’s data item sharedData on line 49, it returns the contents of the local variable dataItem. This local variable was assigned sharedData's value on line 47. This is done because the invocation to notifyAll has to be coded before the return statement on line 49, or it will be unreachable. Here's the problem: once notifyAll is invoked, the producer thread could execute and invoke the setData method. Because writeable has already been set to true (line 45) the setData method will execute to completion and overwrite the contents of the variable sharedData before line 49 executes. If this happened and line 49 returned the variable sharedData, the new data item written would be returned, and a data item would be lost. By returning the variable dataItem, the getData method correctly returns the potentially overwritten data item.

[image:]

[image:]

Figure 14.19
The class SynchronizedBuffer.

In the interest of completeness, the changes to the original Producer and Consumer classes (presented in Figures 14.13 and 14.14) necessary for them to share data via an instance of the class SynchronizedBuffer are given as highlighted lines of code in Figures 14.20 and 14.21. Aside from their class names being changed to ProducerV2 and ConsumerV2, the only changes to these classes are the substitutions of the SyncronizedBuffer class’s name for the Buffer class’s name. One similar highlighted substitution was made on line 8 of the application PCThreadSync presented in Figure 14.22, which is a modification of the application PCThreadProblems presented in Figure 14.15.

A typical output produced by the application PCThreadSync is given in Figure 14.23. As shown in the two-line summary at the bottom portion of the figure, the synchronization techniques incorporated into the shared buffer object have resulted in every produced data item (the integers 1 through 10) being consumed once and only once.

[image:]

Figure 14.20
The class ProducerV2 using a SynchronizedBuffer object.

[image:]

[image:]

[image:]

Figure 14.21
The class ConsumerV2 using a SynchronizedBuffer object.

[image:]

Figure 14.22
The application PCThreadSync.

[image:]

Figure 14.23
The output produced by the application PCThreadSync.

One remaining issue concerning the output that is revealed in the first two highlighted lines output at the top portion of the Figure 14.23 should be discussed. Based on these outputs, it appears that data item 2 was consumed before it was produced. This was not the case.

What actually happened was that after data item 2 was produced by the producer thread’s second invocation of the setData method (line 24 of Figure 14.20) and the setData method invoked notifyAll on line 28 of Figure 4.19, the consumer thread was brought from the waiting state to the runnable state. At that point, the producer thread’s time quantum must have expired before line 25 of Figure 14.20 could execute and produce its output: Produced 2.

The next time quantum must have been awarded to the consumer thread, and its invocation of the getData method on line 28 of Figure 14.21 ran to completion consuming data item 2. The consumer thread’s time quantum still had not expired, so line 29 of Figure 14.21 executed producing the puzzling output: Consumed 2.

When the producer thread was finally awarded a CPU time quantum, it continued where it left off when its previous time quantum had expired and executed line 25 of Figure 14.20, producing the output Produced 2. It was not the process of consuming and producing that was reversed; rather, it was the outputs that announce these events that were reversed. No data was lost. This same set of events occurred after data item 3 was produced, as evidenced by the third and fourth highlighted lines in Figure 14.23.

The remedy would be to perform the output inside of the synchronized methods setData and getData. This was purposely not done in order to reinforce the point that tasks (such as these output tasks) that need to be synchronized should be implemented inside synchronized methods and to illustrate the uncertainty of two sequential instructions (e.g., lines 24–25 of Figure 14.20) executing without interruption in a multithreaded application.

14.5.2The API ArrayBlockingQueue Class

The API generic class ArrayBlockingQueue can be used as a producer consumer buffer. It is a synchronized thread safe implementation of a queue, which means that the solutions to the producer-consumer problems discussed in this chapter have been incorporated into the class.

A queue is a collection whose elements are maintained in a first-in-first-out order, which makes instances of this class well suited for use as a producer-consumer buffer. The first data item added to the buffer is the first item returned (and removed) from the buffer. The buffer stores references to objects because the class is a generic class. An instance of this class effectively performs all of the synchronization functionality of instances of the class SynchronizedBuffer shown in Figure 14.19.

The class’s constructor is passed an integer parameter, which is the maximum number of elements that can be stored in the buffer at one time. The buffer is actually an array of reference variables, and this array-based queue is implemented as a circular queue. When used as a producer-consumer buffer, it is usually more efficient to increase the size of the buffer (the array) beyond one element, especially when the time between productions and consumptions can vary by a significant amount of time, because the producer and the consumer tasks do not have to alternate. That is, the producer could produce several items while the consumer is processing the first item.

The class’s put method is invoked by the producer thread to add a data item, passed to it, to the rear of the queue. When the put method is passed a primitive value, the value is autoboxed before being added to the buffer. If the buffer is full when the put method is invoked, the method waits until an element becomes available (i.e., an item is consumed), and then the new item is added to the buffer.

The class’s take method is invoked by the consumer thread to fetch a data item's address from the front of the queue and remove it from the buffer. If the buffer is empty when it is invoked, the method waits until an object is added to the buffer (i.e., an item is produced), and then its address is returned and deleted from the buffer.

The application PCThreadSyncAPI, shown in Figure 14.24, is a modified version of the synchronized producer-consumer multithreaded application presented in Figure 14.22. This version uses an instance of the API ArrayBlockingQueue as a data buffer. Figure 14.25 shows a typical output produced by its producer and consumer threads, which are now instances of the classes shown in Figures 14.26 and 14.27.

The changes to the application class shown in Figure 14.22 are highlighted in Figure 14.24. They include the change to declaration of the shared buffer object on lines 9 and 10, and the changes to the names of the producer and consumer classes on lines 11 and 12. The invocation of the constructor on line 10 is passed an Integer type argument because the buffer will store autoboxed integers. It is also passed a buffer size of one to make the application consistent with the application shown in Figure 14.22.

The producer and consumer classes shown in Figures 14.20 and 14.21 have been modified to reflect the change in the class of the shared buffer object. The modified versions of these classes are shown in Figures 14.26 and 14.27 and have been renamed ProducerV3 and ConsumerV3. The type of the shared buffer object declared on line 6 of these classes has been changed to the ArrayBlockingQueue, as has the type of their constructors' parameter (lines 9 and 10 in Figures 14.26 and 14.27, respectively).

Line 21 of the ProducerV3 class invokes the ArrayBlockingQueue class’s put method to add a data item to the buffer, and line 25 of the ConsumerV3 class invokes the class’s take method to fetch a data item from the buffer. The data item address returned from the take method is coerced into the Integer reference variable dataItem declared on line 18 of the consumer thread’s class because the take method is generic and its returned type is Object.

The application does not include an implementation of a synchronized buffer class. That implementation was done for us by the author of the API ArrayBlockingQueue class.

[image:]

Figure 14.24
The application PCThreadSyncAPI.

[image:]

Figure 14.25
Output produced by the application PCThreadSyncAPI.

[image:]

Figure 14.26
The class ProducerV3.

[image:]

[image:]

Figure 14.27
The class ConsumerV3.

14.6 THE SYNCHRONIZED STATEMENT

The synchronized statement is an alternative way of synchronizing a thread’s access to a shared data item, which in this case, must be an object. The statement begins with the keyword synchronized, followed by a set of parentheses that enclose the thread’s name for the shared data item, which is followed by a statement block as shown below:

synchronized (sharedObject)

{

//one or more statements

}

In order for a thread to execute the statements contained in the code block, it must acquire a lock that Java associates with the shared object. If another thread has already acquired the lock, a thread that unsuccessfully attempted to acquire the lock enters the blocked state, as shown in the lower center portion of Figure 14.8. The lock is released when the synchronized statement block of the thread with the lock completes its execution. At that point, all threads that entered the blocked state, because they could not acquire the shared object’s lock, return to the runnable state.

A thread does not have to acquire the lock to execute the methods of the shared data object when the invocation statement is not inside a synchronized statement’s code block. This implies that the synchronized statement only restricts access to a shared data object’s methods when at least two threads contain synchronized statements involving that object. In contrast, the synchronized-method construct discussed in the previous section prohibits all threads from executing any of the synchronized methods of an object until the threads acquire the object’s lock. An understanding of this is fundamental to knowing how to use these two alternative synchronization features of the Java language and the restrictions they impose.

NOTE

Synchronized methods within a class cannot be executed concurrently, they are mutually exclusive.
Similarly, a synchronized statement on a shared object prevents threads that contain the same synchronized statement from concurrently executing the code block associated with their statement. The code blocks are mutually exclusive.

The application SynchronizedStatement, shown in Figure 14.28, demonstrates the use of the synchronized statement to produce an accurate count of the number of transactions made on an ATM system that has two ATM locations. Each ATM machine’s transactions are processed by a separate thread in this multithreaded application. When the total number of transactions made on the ATM system reaches a maximum, which in the interest of brevity has been set to three, both ATM machines on the system are shut down.

The two Runnable objects, created on lines 9 and 10 of the application, are instances of the class AtmTransaction shown in Figure 14.29. When created, they are passed an instance of the buffer class Counter (Figure 14.30) declared on line 8 of the application. The objects share the Counter instance and use its methods to count the total number of transactions made on the ATM system.

Figure 14.31 shows two sets of outputs produced by the program. The output on the left side of the figure shows the two machines being shut down after three transactions have been made on the system. The output on the right side of the figure exhibits a producer-consumer problem: each ATM machine has performed three transactions for a total of six transactions. This output was produced when the synchronized statement on line 18 of Figure 14.29 was eliminated from the AtmTransactions class’s run method.

The loop that begins on line 14 of Figure 14.29 simulates the threads’ processing transactions at the ATM machines with which they are associated. The synchronized code block that begins on line 18 accomplishes the thread synchronization. When one of the ATM threads begins the code block’s execution, the execution of the other thread in this class cannot proceed past line 18 until the execution of the code block, which ends on line 28, is complete.

Lines 25–28 increments the transaction Counter object shared by the threads. Line 26 moves the thread to the timed waiting state to simulate the thread’s time quantum expiring between the fetching of the counter’s value (line 25) and the incrementing and setting of it (line 27). When the thread’s wait time interval expires and it is granted another CPU time quantum, the current transaction count is incremented, set, and then output to the system console (lines 27 and 28). While one ATM thread is in the timed waiting state, it still holds the lock on the shared data object, and the other thread cannot enter the synchronized statement’s code block. This causes the sequence of fetching, incrementing, and setting the shared data item to be uninterruptible. The code to actually process a transaction (e.g., dispense funds) would replace the comment on line 34.

When the number of transactions performed on the ATM system reaches three, as determined by the if statement on line 21, the break statement (line 23) ends the loop, and the shutdown message is output by line 36. When the synchronized statement on line 19 is eliminated (i.e., commented out), the unsynchronized thread execution produces six transactions before the ATM system is shut down, as shown on the right side of Figure 14.31. The line-by-line unsynchronized execution sequence of the threads that produces the first two outputs (1 and 1) is shown in Figure 14.32. As the highlighted portions of the figure indicate, due to the simulated expiration of ATM 1’s time quantum (line 26 in the top-left portion of the figure), ATM 2’s thread is allowed to fetch the counter’s value (line 25 in the top-right of the figure) before ATM 1’s thread can write the incremented value to the shared counter (line 27 in the middle-left of the figure). The result is that each ATM increments a count of 0 and outputs a 1 (middle-left and bottom-right portions of the figure).

[image:]

Figure 14.28
The application SynchronizedStatement.

[image:]

Figure 14.29
The class AtmTransaction.

[image:]

Figure 14.30
The class Counter.

[image:]

Figure 14.31
Output produced by the application AtmTransaction.

[image:]

Figure 14.32
SynchronizedStatement’s thread-execution sequence when the synchronized statement is eliminated from the AtmTransaction class.

NOTE

Synchronized statements are used inside of classes that extend Runnable to synchronize the invocations of a shared object’s methods.
Synchronized methods are used inside a shared object’s class to synchronize invocations to the shared object’s methods.

14.7 CHAPTER SUMMARY

Programs can be divided into a two or more independently executing parts called threads. Threads are instances of a class that implements the interface Runnable or a class that extends the class Thread (which implements the interface Runnable). These objects are typically created, and their execution is initiated from within the program’s main method. Once initiated, their execution begins with the first executable statement in their run method, whose signature is defined in the interface Runnable.

During the lifetime of a thread, which is the time between when the thread is created and when it is terminated, it exists in one of six Java states named new, runnable, blocked, waiting, timed waiting, and terminated. When a thread object is created, it enters the new state, and when it completes its execution, it enters the terminated state. The remainder of its lifecycle is spent in the other four states. Threads that are in the runnable state can be assigned a quantum of execution time by the operating system, and the algorithm used to assign threads in the runnable state a quantum of commuting time is platform dependent. Events, such as performing input or output, can cause threads to transition out of and back into the runnable state, as can invocations of the methods notify, notifyAll, wait, and sleep.

Threads can share data and communicate with each other via the data members of an object, which is referred to as a shared data buffer object. The address of the buffer object is passed to the threads’ constructor when they are created, and the threads access the data using the buffer class’s set and get methods or equivalent methods. When the shared data is writeable, such as in the producer-consumer problem, a variety of problems can develop that do not occur in single threaded applications. The Java synchronized method construct and Java’s synchronized statement can be used to avoid these problems.

When the set and get methods are coded as synchronized methods, and a thread attempts to initiate their execution before a previously initiated execution of them is completed, the thread is removed from the runnable state and placed in the waiting state. The thread is returned to the runnable state when the set or get method in execution issues an invocation to the notify or notifyAll method at the end of its execution. When the synchronized statement is used, the threads sharing the buffer object place their invocations of the set and get methods inside the synchronized statement’s code block. When a thread’s execution path attempts to execute the statements within the code block while another thread’s synchronized statement’s code block is in execution, the thread is moved from the runnable state to the blocked state. It is returned to the runnable state when the processing performed by the statements in the code block of the synchronized statement in execution is completed.

An instance of an API class that is designated to be thread safe can be used as a data buffer object to share data among threads in a safe, problem-free way. The generic class ArrayBlockingQueue, which is part of the collections framework, is thread safe. When a buffer object in this class is shared by two or more producer and consumer threads the producer threads are blocked from overwriting objects in the buffer that have not been consumed, and the consumer threads are blocked from fetching objects from the buffer that have not been produced or have been previously consumed. In addition, the buffer can be specified to hold more than one item, which can improve the performance of a producer-consumer application.

Knowledge Exercises

1.True or False:

a) All Java programs contain at least one thread.

b) Programs with multiple threads must be run on a system that has more than one CPU.

c) The scheduling algorithm used to assign a CPU to a thread is platform dependent.

d) Two threads can never be in execution at the same time.

e) A thread’s class must implement the Java API class Runnable.

f) The method start can be used to initiate the execution of a thread.

g) A thread’s class does not have to contain a method named run.

h) Once a thread begins its execution, it always continues to execute until it completes its execution.

2.If you wanted a thread to output the message Thread1 is executing as soon as it begins executing, where would you code the output statement?

3.Give the states a Java thread can be in during its lifetime.

4.In which state must a Java thread be for it to receive a quantum of execution time?

5.Give the method(s) invoked to place a thread in the waiting state.

6.Give the method(s) invoked to place a thread in the timed waiting state.

7.Give two ways a thread could enter the waiting state.

8.Give two ways a thread could enter the blocked state.

9.True or false:

a) A thread can place itself into the waiting state.

b) A thread can remain in the waiting state indefinitely.

c) When a thread leaves the blocked state, it enters the waiting state.

d) A thread can be in two states at the same time.

e) A thread in the terminated state can return to the runnable state.

f) After a thread’s execution is initiated, it enters the new state.

g) Once a thread leaves the runnable state, it cannot return to that state.

h) The invocation wait(3) places a thread in the timed waiting state for three seconds.

10.Give the code to:

a) Create and initiate the execution of a thread whose class Output extends the class Thread.

b) Create and initiate the execution of a thread whose class Input implements the interface Runnable.

c) Accomplish Exercise 9c using an executor service.

11.Explain the producer and consumer problem and some of the solutions to it.

12.Define the term thread safe in the context in which it is used in the API documentation.

13.Give the two features of Java that can be used to synchronize the access to a shared buffer object.

14.True or false:

a) A producer thread reads data from a shared buffer.

b) If threads sharing a data item only fetch its value, there is no need to synchronize access to it.

c) All of the API classes are thread safe.

d) The API class ArrayBlockingQueue is thread safe.

e) When a class that is thread safe is used to share data among threads, deadlock cannot occur.

Programming Exercises

In the following exercises, do not use an API class to share data between threads unless explicitly told to do so.

1.Give a thread safe invocation of the getY method on the shared buffer object xyLocation that is an instance of a non-thread safe class.

2.A thread safe class can be used to share its string data member title among concurrent threads. Give the code of the class’s setTitle method.

3.Write a program that creates and launches a thread that outputs the string Happy Birthday Nadia a given number of times to the system console, one output per line. The number of times to perform the output will be input by the program user via an input dialog box and passed to the thread class’s one-parameter constructor.

4.Write a program that creates and launches two threads that output their names a given number of times to the system console, one output per line. Their names and the number of times to output their names will be input by the program user via a message dialog box and passed to the thread class’s two-parameter constructor. The two threads should be instances of the same class and launched after all the user I/O is complete. Use the program to demonstrate, via the program’s output, that threads share a CPU’s computing time.

5.Repeat Exercise 2, but this time, the threads should be instances of two different classes, and the thread that produces the most output should complete its output before the other thread begins its output, regardless of the order in which the threads are launched. Verify the correctness of your program when one of the threads produces a large amount of output by reversing the order in which the threads are launched.

6.Write a program that computes and outputs two terms of the Fibonacci sequence whose term numbers are input by the program user, each term being calculated concurrently by a separate thread. After accepting the two inputs, the application will create and launch the threads. The thread class should invoke the recursive method given below to perform the calculation. Use the program to discover a set of inputs that causes the first thread launched to complete its execution first and a set of inputs that causes the second thread launched to complete its execution first.

public static long fibonacci(long n)

{

if(n==1 || n==2)

{

return 1;

}

else

{

return(fib(n-1) + fib(n-2));

}

}

7.Write a program that repeatedly asks the user to enter an integer via an input dialog box and outputs the integer to the system console, until the user enters -1. The input and output should be performed by two separate threads. After each output, the output thread should enter the waiting state for a random amount of time between 1 and 5 seconds. Examine the output to be sure that every number input is output when you enter the inputs as rapidly as possible.

8.Write a program that repeatedly computes and outputs the nth term of the Fibonacci sequence, with the term number being input by the program’s user, until the user enters -1. The main method will launch two threads: one that performs the input and another that calculates and outputs the value of the term to the system console. Examine the output to make sure that there is an output for every input when the term numbers are input as rapidly as possible and the term numbers are in the range of 30–50. The calculation/output thread should invoke the method given in Exercise 6 to compute the value of the Fibonacci term. Perform the synchronization using synchronized methods in the buffer class.

9.Repeat Exercise 8 using synchronized statements.

10.Repeat Exercise 8 using an instance of the API ArrayBlockingQueue class as a shared data buffer. The buffer should only hold one data item. Which approach is less work and therefore more efficient?

11.Repeat Exercise 10 using an instance of the API ArrayBlockingQueue class that can hold four shared data items. Discover the range of Fibonacci term numbers for which this sized buffer noticeably improves the program’s performance and explain why this is the case.

Enrichment

1.Investigate classical synchronization problems such as the Dining Philosophers problem and the Readers-Writers problem.

2.Explore other thread synchronization techniques used in hardware or software.

3.Find other examples of synchronization in everyday problems, such as accessing a shared database.

4.Look for other synchronization problems such as the Sleeping Barber problem and explain how these are similar to problems presented in this chapter.

References

Silberschatz, Abraham, et al. Operating System Concepts, 9th Ed. New York: John Wiley and Sons, 2013.

APPENDIX A

DESCRIPTION OF THE GAME ENVIRONMENT

A.1 OVERVIEW OF THE GAME ENVIRONMENT

The game environment is comprised of the interface Drawable and the two classes DrawableAdapter and GameBoard. To use the game environment in an application, the interface and these two classes must be included as part of the application (see Appendix B).

Figure A.1 shows a Java application that displays the game environment’s window shown in Figure A.2. It assumes the game environment package edu.sjcny.gpv1 has been added to the system’s CLASSPATH variable. If the alternate approach described in Appendix B and in the IDE Tools subfolder contained on the book’s DVD, which does not require a change in the system’s CLASSPATH variable, was used to incorporate the game environment into the application’s project, the import statement may not be necessary.

[image:]

Figure A.1
The application GameWindowDemo that displays the game environment window.

As shown on line 2 of Figure A.1, game programs that use the game environment must extend the class DrawableAdapter and declare a static class level instance of the application’s class using the default (no-parameter) constructor, as shown on line 4. Then, an instance of the class GameBoard is declared, passing the constructor the class level instance of the application’s class and the title of the game (line 5). Finally, the showGameBoard method in the DrawableAdapter class is invoked from within the main method (line 9) and passed the GameBoard object declared on line 5. This method displays the application’s window shown in Figure A.2.

[image:]

Figure A.2
A game application’s window.

The Game Window

As shown in Figure A.2, a game application’s window contains six buttons on its right side. The large pink panel to the left of the buttons is called the game board. Game piece objects are displayed on the game board. The color of the game board can be changed by invoking the API Component class’s setBackground method on the GameBoard object (declared on line 5 of Figure A.1) and passing it the new board color (an instance of an API Color class object).

Timers and Timer Methods

In addition to the six buttons, a GameBoard object has three timers associated with it. These begin ticking when the game’s player clicks the game window’s Start button, and they stop ticking when the game window’s Stop button is clicked. The GameBoard class contains methods (subprograms) that the programmer can invoke to stop and start a timer, and a method to change the rate at which a timer ticks. These methods are invoked on the GameBoard object declared on line 5 of Figure A.1. Section A.2.1 gives the signatures and a description of each of these methods. By default, the tick rates of the timers (named 1, 2, and 3) are once every second, once every half second, and once every quarter second, respectively.

Each timer has a call back method, or subprogram, associated with it, which the game environment invokes every time the timer ticks. The names of the methods, which are described in Section A.2.3, are timer1, timer2, and timer3. The class DrawableAdapter contains empty implementations of the methods. If the programmer includes (overrides) these methods in a game program, the game environment will invoke (or “call back”) the programmer’s versions of the methods after every tick of the timers. Java code placed inside of these methods can be used to keep track of a game’s time and to animate objects on the game board.

Game Player Action Methods

There are eight other call back methods in the game environment, which are described in Section A.2.3. Seven of these are invoked by the game environment when the game player performs input actions common to most games. Four of these are associated with the game window’s left, right, up, and down buttons, one is associated with the keyboard, and two are associated with the mouse. Empty implementations of the methods are coded in the class DrawableAdapter. If the programmer includes (overrides) these methods in a game program, the game environment invokes (calls back) the programmer’s overridden version of the methods every time the game player clicks a directional button, presses a keyboard key, or drags or clicks the mouse on the game board.

The eighth call back method in this group of methods is associated with redrawing the game window. It is called by the game environment every time the game window needs to be redrawn (e.g., is minimized and then restored) and every time the seven game player input action call back methods or the three timer call back methods complete their execution. An empty implementation of this method is also included in DrawableAdapter class.

Game Window Coordinate System

The game window has a Cartesian coordinate system associated with it as shown in Figure A.3. The coordinate system’s origin is in the upper left corner of the game window, with the positive x direction to the right and the positive y direction downward. The height and width of the top and left borders of the window place the upper left corner of the game board at (5, 30). The game window can be sized by using the last two parameters of the game board’s four-parameter constructor to specify the coordinates of the lower right corner of the game board, which defaults to (500, 500).

[image:]

Figure A.3
The game environment coordinate system.

A.2 DESCRIPTION OF THE GAME ENVIRONMENT’S CLASS AND INTERFACE

The game environment is comprised of two classes, named GameBoard and DrawableAdapter, and one interface named Drawable.

A.2.1 The GameBoard Class

The class GameBoard contains two constructors. One creates a default-sized game board with a programmer specified title, and the other adds the ability to create a game board and specify its size. A game application must construct a static GameBoard object and pass it a static instance of the application’s class (see lines 4 and 5 of Figure A.1). Assuming the static instance of the application class was named ga, the following line of code creates the GameBoard instance gb with a default game board size, 500 x 500 pixels:

 static GameBoard gb = new GameBoard(ga, "The Game's Title");

The GameBoard object can be used within the game application class to invoke the class’s other three methods that are used to set the time increment of any of the GameBoard object’s three timers and to start and stop these timers. The following invocation stops timer 2:

gb.stopTimer(2);

Constructors

 public GameBoard(Object app, String windowTitle)

This method constructs a GameBoard object, defaulting to the coordinates of the lower right corner of the game board to (500, 500).

Parameters:

app is an instance of the application’s class.
windowTitle will be displayed as the title of the application’s window in its title bar.

public GameBoard(Object app, String windowTitle,

 int xMaxValue, int yMaxValue)

This method constructs a GameBoard object whose lower-right corner is specified by the last two arguments passed to it.

Parameters:

app is an instance of the application’s class.
windowTitle will be displayed as the title of the application’s window in its title bar.
xMaxValue is the x-pixel coordinate of the lower-right corner of the game board.
yMaxValue is the y-pixel coordinate of the lower-right corner of the game board.

Methods

public void setTimerInterval(int timerNumber, int interval)

This method sets the interval of one of the game environment’s three timers. The default increments for the timers are 1000ms (1 second) for timer 1, 500ms (1/2 second) for timer 2, and 250 ms (1/4 second) for timer 3.

Parameters:

 timerNumber is the number of the timer (1, 2, or 3) whose interval is being set.
 interval is the time between ticks of the timer in milliseconds (e.g., 1000 = 1 second).

 public void startTimer(int timerNumber)

This method starts the timer whose number (1, 2, or 3) is passed to it. While the timer is ticking, the timer’s call back method (timer1, timer2, or timer3) will be executed on each subsequent tick of the timer. Ticking is stopped when the game player clicks the game board’s Pause button or when the GameBoard class’s stopTimer method is invoked. Ticking is restarted when the Start button is clicked or this method is reinvoked.

Parameters:

timerNumber designates the timer to be started: 1, 2, or 3.

  public void stopTimer(int timerNumber)

This method stops the timer whose number (1, 2, or 3) is passed to it. After this method is invoked, clicking the game board’s Start button will not restart the timer. The timer’s call back method (timer1, timer2, or timer3) will not be executed until the timer is started again via an invocation of the startTimer method, which will also reactivate the game board’s Start button.

Parameters:

timerNumber designates the timer to be stopped: 1, 2, or 3.

A.2.2The DrawableAdaper Class

A game program’s class must extend the class DrawableAdaper (as on line 2 of Figure A.1). It provides empty implementations of the eleven call back methods defined in the game package interface Drawable. A description of these eleven methods is given in Section A.2.3. In addition, it provides a method that displays an instance of a GameBoard object passed to it (line 9 of Figure A.1).

Methods of the Class DrawableAdapter

 public static void showGameBoard(GameBoard gb)

This method displays the game program’s window. Normally, it is invoked as the last statement in the game program’s main method.

Parameters:

gb is the application’s GameBoard object.

A.2.3 The Interface Drawable

The interface Drawable defines eleven call back methods invoked by the game environment. They are coded (as required) in the game application’s class (the class that contains the method main). They are used to service various actions by the game’s player (e.g., a mouse click or drag, a keystroke, or a button click), and to perform processing such as animation every time a game environment’s timer ticks.

The call back method draw is invoked by the game environment when the game window has to be redrawn (e.g., it is dragged to a new location) and after any of the other ten call back methods complete their execution.

Call Back Methods

public void draw(Graphics g)

This method is invoked when the game application window is initially displayed or needs to be redisplayed and each time one of the other ten call back methods complete their execution.

Parameters: g is an instance of the API class Graphics attached to the game board, which is passed into this method when it is invoked by the game environment. It can be used to draw two-dimensional shapes on the game board by invoking the methods in the Graphics class.

public void timer1()

This method is invoked every time timer 1 ticks. The timer ticking can be started or stopped by invoking the GameBoard class’s startTimer and stopTimer methods, respectively. If the timer is ticking, it is stopped whenever the Stop button in the game’s window is clicked and restarted whenever the Start button in the game’s window is clicked.

public void timer2()

This method is invoked every time timer 2 ticks. The timer ticking can be started or stopped by invoking the GameBoard class’s startTimer and stopTimer methods, respectively. If the timer is ticking, it is stopped whenever the Stop button in the game’s window is clicked and restarted whenever the Start button in the game’s window is clicked.

public void timer3()

This method is invoked every time timer 3 ticks. The timer ticking can be started or stopped by invoking the GameBoard class’s startTimer and stopTimer methods, respectively. If the timer is ticking, it is stopped whenever the Stop button in the game’s window is clicked and restarted whenever the Start button in the game’s window is clicked.

public void leftButton()

This method is invoked whenever the Left button in the game’s window is clicked.

public void rightButton()

This method is invoked whenever the Right button in the game’s window is clicked.

public void upButton()

This method is invoked whenever the Up button in the game’s window is clicked.

public void downButton()

This method is invoked whenever the Down button in the game’s window is clicked.

public void keyStruck(char key)

This method is invoked whenever a key on the keyboard is struck. If the key is held down, the method is continually invoked until the key is released.

Parameters: key contains the upper case version of the character that was struck. The cursor control keys return ‘L’, ‘R’, ‘U’ or ‘D’ when the left, right, up, or down arrows are struck.

public void mouseClicked(int x, int y, int buttonPressed)

This method is invoked whenever a mouse button is clicked.

Parameters: x and y are the game board coordinates of the mouse cursor location at the time the mouse was clicked.

buttonPressed contains a 1 if the left mouse button was clicked or a 3 if the right mouse button was clicked.

public void mouseDragged(int x, int y)

This method is continually invoked while the mouse is being dragged.

Parameters: x and y are the game board coordinates of the mouse cursor location at the time the method is invoked.

APPENDIX B

USING THE GAME ENVIRONMENT PACKAGE

The game environment can be easily used within the Eclipse, NetBeans, and JCreator IDEs without changing the operating system’s CLASSPATH variable by following the IDE-specific directions listed below. Alternately, the package edu.sjcny.gbv1, which is in the Package subfolder of the Game Environment\Class, Package and JAR file folder on the DVD that accompanies this text can be stored on your system and added to its CLASSPATH variable. Then, the following import statement can be used to incorporate the game environment into a game application:

import edu.sjcny.gpv1.*;

[image: image]

NON-CLASSPATH ALTERING IDE-SPECIFIC INSTRUCTIONS

Eclipse IDE

Method 1: Import the Eclipse project template

1.Create a folder and bring up Eclipse into that folder.

2.Import the project EclipseGameTemplate7 into the folder.

•Click File - Import – General - Existing Projects into Workspace – Next

•Browse to the DVD folder:
 Game Environment\IDE Specific Tools\Eclipse\Workspace
 and click the EclipseGameTemplate7 template folder, then click OK

•Check the box next to Copy Projects Into Workspace, then click Finish

3.Open the project EclipseGameTemplate7 and add the program-specific code to it.

Method 2: Add the game environment JAR file or its classes to a new Eclipse project

Either the JAR file gameEnvironment.jar contained in the folder GameJAR or the classes contained in the GameClasses folder can be added to any existing Eclipse project and its build path. Both of these folders are in the Game Environment\IDE Specific Tools\Eclipse subfolder on the DVD that accompanies this textbook. To add them to an existing Eclipse project’s build path:

[image: image]

1. Launch Eclipse in the existing project’s workspace

2.Locate and copy the folder GameJAR or GameClasses

3.Right click the project node in Eclipse’s Package Explorer view pane, then click Paste

4.Right click the project node in the Package Explorer view pane, then click Properties - Java Build Path - Libraries

(a) To add the gameEnvironment.jar file, click “Add JAR’s…” and locate and check the gameEnvironment.jar JAR file, click OK, click OK

(b) To add the GameClasses folder, click “Add Class Folder” and locate and check the GameClasses folder, click OK, click OK

NetBeans IDE

1.Create a folder with a name relevant to the program being developed

2.Copy the NetBeans project NBGameTemplate7 located in the Game Environment\IDE Specific Tools\NetBeans subfolder on the DVD that accompanies this textbook and paste it into the folder created in Step 1

3.Open the project NBGameTemplate7 and add the program-specific code to it

JCreator IDE

Method 1

1.Create a folder with a name relevant to the program being developed

2.Copy the JCreator project JCGameTemplate7 located in the Game Environment\IDE Tools\JCreator subfolder on the DVD that accompanies this textbook and paste it into the folder created in Step 1

3.Open the project JCGameTemplate7 and add the program-specific code to it

Method 2

1.Create a JCreator project

2.Copy and paste the folder edu (i.e., the package edu.sjcny.gpv1, contained in the Game Environment\IDE Tools\JCreator subfolder on the DVD that accompanies this book, into the project’s class folder

3.Include the following import statement in the application:

import edu.sjcny.gpv1.*;

APPENDIX C

ASCII TABLE

[image:]

[image:]

[image:]

[image:]

APPENDIX D

JAVA KEY WORDS

[image:]

1: added in version 1.2
2: added in version 1.4
3: added in version 5.0

APPENDIX E

JAVA OPERATORS AND THEIR RELATIVE PRECEDENCE

1 is highest precedence

[image:]

APPENDIX F

USING THE GAME GLOSSARY OF PROGRAMMING TERMS

Abstract class A class that includes the keyword abstract in its signature and cannot be instantiated; it is used during the design process to collect data members and methods common to several classes

Aggregated class A class that contains at least one data member that references an object

Aggregation The concept of referencing objects from a class’s data members

Algorithm A step-by-step solution to solving a problem or performing a task that a computer system can execute

Applet A Java program that runs from within another program, which is typically a Web browser; it has restrictions placed on its instruction set consistent with this execution mode’s need for enforced security

Applet container program The program, typically a Web browser, within which an applet runs; the container invokes the methods that are part of the applet’s lifecycle

Applet lifecycle The period of time that begins when an applet’s execution is initiated and ends when it is terminated; during this time period, the applet’s container program invokes the applet methods init, start, paint, stop, and destroy to manage its execution

Application Programming Interface (API) A collection of packages containing interfaces and implementations of classes and data structures that can easily be incorporated into a Java program

Application software All non-operating system software, typically for use by human users

Argument A value passed to a method when it is invoked

Argument list A sequence of argument names separated by commas enclosed in a set of parentheses

Array An ordered collection of primitive or reference variables stored inside an object, which are sequentially associated with an integer beginning with zero; arrays are an implementation of the mathematical concept of subscripted variables

Array of objects An array of reference variables that contains the addresses of a set of instances of the same class

ASCII Table A specific tabulation of characters and control characters and the bit patterns used to represent them

Assignment The act of changing the contents of a variable

Atomic components Graphical user interface (GUI) components that cannot contain other components, such as text fields and buttons; most of the program user’s interactions are with these components

Autoboxing A context-sensitive feature of Java in which primitive literals or variables are replaced with instances of wrapper classes that contain their values

Base case Part of the methodology of formulating recursive algorithms, which is a known or trivial solution to the problem

Base class A class that is inherited from, also known as a parent or super class

Binary numbers A number system based on two, as opposed to the decimal system, which is based on ten

Bit A single unit of storage that can assume two states, which are referred to as off and on, or zero and one, or false and true

Boolean expression An expression involving relational and logic operators that evaluates to true or false

Buffer Memory used to temporarily store data during program execution

Byte A set of eight contiguous (adjacent) bits, often used to represent a single character in the Modern Latin (English) alphabet

Byte codes The translation of a program produced by the Java language translator into intermediate code

Central processing unit (CPU) Electronic circuitry that interprets and executes instructions; the CPU can perform arithmetic and logic operations, has the ability to skip or re-execute instructions based on the truth value of a logic operation, and contains a limited amount of storage called registers

Chain inheritance When the parent class of a class extends another class

Child class A class that inherits from (extends) another class; also known as a sub- or derived class

Class A collection of variables and methods; a blueprint for an object

Class-level variable A variable defined within a class but outside of a method’s code block

Cloning an object Creating a new instance of a class and (deep) copying the values of all of the data members of an existing instance of the class into the new instance

Code block A set of instructions enclosed with a set of open and close braces, { }

Collection A data structure that is accessed without specifying a key

Collections Framework of the API Part of the API that contains generically implemented data structures, methods that perform common operations on data elements, and a set of associated interfaces

Computer system A set of electronic circuits, mechanical devices and enclosures, and instructions that these devices execute to perform a task

Concatenation The act of appending one string to another

Concurrency Executing several programs, or several parts of a program, at the same time

Constructor A method in a class that is used to create an instance of a class and return its address; its name is the same as the class’s name

Consumer A process that expends data

Content pane The portion of a widow or other top-level container that holds the visible components added to the container

Control of flow statement A statement that overrides the default sequential execution path of a program, such as a decision statement, a repetition (loop) statement, or a subprogram invocation

Counting algorithm An algorithm that counts by adding an increment to, or subtracting a counting increment from, the current value of a counter

Data members The variables defined within a class

Data structure An organization of data within memory to facilitate its processing from a speed and memory requirements viewpoint

Deep comparison of two objects Comparing the values of one or more of the data members of an object to the corresponding data members of another instance of the class

Deep copy of an object Copying the values of one or more of the data members of an instance of a class into the corresponding data members of another instance of the class

Derived class A class that inherits from (extends) another class; also known as a child or subclass.

Deserializing objects The act of reassembling objects after they are read from a disk file

Dialog box A predefined pop-up graphical interface used to pause a program’s execution until the program user acknowledges a message or performs an input

Divide and conquer Expressing or defining a complicated entity as a set of less complicated entities; for example, expressing the solution to a complex problem as the solutions to a set of simpler problems, or defining the data members of a complex class to be instances of less complicated classes

Dynamic binding Delaying the process of locating an invoked method until runtime

Dynamic programming A programming technique aimed at reducing execution time, which avoids repetitive processing by saving and then reusing prior processing results

Element One of the variables contained in an array or one object contained in a data structure

Enumerated type A user defined type created within a Java program by specifying its type name and allowable values within an enum statement

Event An asynchronous occurrence during a program’s execution that can be used to redirect the execution path of a program

Event handler A method that is executed when an event occurs

Exception class The API class Throwable or a descendent of that class

Exception error message A string contained within an exception object that normally contains descriptive error information

Exception object An instance of the API class Throwable, or one of its decedents, which can be passed to a catch clause when an error is detected during the execution of a method

Exceptions A programming construct that promotes the reusability of methods by deferring the decision as to what action to take when an error condition is detected to the invoker of the method

Final class A class that cannot be a parent class; it cannot be extended

Flow chart A graphical representation of an algorithm

Fractal A mathematical or geometric object that has the property of self-similarity; that is, each part of the object is a smaller or reduced copy of itself

General solution Part of the methodology of formulating recursive algorithms; it is a solution to the original problem that uses the portion of the methodology known as the reduced problem

Generic class A class that contains generic methods and is coded in a way as to permit the type of its data members to be specified when an instance of the class is created

Generic method A method that can perform its algorithm on any type of object passed to it

Generic parameter A parameter that can be passed an object of any type and whose type is specified using a type placeholder

Generic parameter list A list of the type placeholders, coded within a method’s signature, that are used in the method’s parameter list

Generics A programming concept that promotes reusability by permitting the type of a method’s parameters and returned value to be specified by the method’s invoker and permitting the type of a class’s data members to be specified when an instance of the class is created

Get method A method used to fetch the values of a class’s private data members

Graphical User Interface (GUI) A means of interacting with the program user via a point-and-click mode, as opposed to a text-based mode, aimed at facilitating the I/O process

Hypertext Markup Language (HTML) A scripting language for writing instructions to be downloaded and executed by a Web browser to build and display a Web page; the script can contain instructions to download and execute a Java applet

Index The integer associated with a variable in an array

Inheritance A programming concept in which a new class can contain all of the data members and methods of an existing class by simply including an extends clause in its heading

Inner class A class that is defined within another class

Input method A method normally named input that ordinarily permits the program user to input the values of all of an object’s data members

Instance of a class A specific object in the class

Integrated Development Environment (IDE) A program used by a programmer to develop a software product; it contains a collection of tools (e.g., a syntax checker, translator, editor, file-management system) that facilitate the development process

Interface A Java construct used to specify the signatures of related methods that are implicitly abstract and/or a declaration of public constants that are implicitly static and final

Iterator An object that can be used to perform time-efficient processing on all of the data elements contained in any data structure that imposes an ordering on its data elements

Java Development Kit (JDK) A set of tools used to develop Java programs; these tools include the API classes, a debugger, a compiler, an interpreter, an applet viewer, a documentation generator, a disassembler, various linking, loading, and binding tools, and a runtime environment

Java Virtual Machine A virtual computer system whose programming language is Java byte codes

Key A value associated with a data element that can be used to refer to the element

Layout manager A predefined protocol for the sizing and positioning of components added to a GUI container

Listener list An association of events and their event-handler methods that is part of a GUI component object

Local variable A variable defined within a code block whose scope is limited to the instructions within the code block

Loop A sequence of instruction that is repeated a specified number of times or until a Boolean value becomes true or false

Map A set of data structures that associate a key with each data element stored in the structure; the key can be used to specify the data element on which to operate

Menu mnemonic A menu shortcut key (hot key) associated with a terminal menu item

Methods The subprograms defined within a class, a sequence of instructions that perform a particular task

Multidimensional array An array in which each variable of the array is associated with 2, 3, … indices, for example an array of rows and columns

Multiple inheritance When a class inherits from more than one class; this is not supported in Java

Multitasking Executing several threads of an application at the same time or giving the impression that they are executing at the same time

Nested loops Coding loops inside of loops

Nested statements Statements that are contained within another statement or another statement’s statement block

Non-void method A method that returns a value, whose type is specified in the method’s signature

Object A particular occurrence of a class that contains all of the class’s non-static data members

Object oriented programming (OOP) An approach to programming (a programming paradigm) aimed at facilitating the development of programs that deal with objects, such as starships, people, or Web pages

One-dimensional array An array in which each variable of the array is associated with one index

Operating system software A program to manage the resources of a computer system and to permit a user of the system to interact with it, usually via a point-and-click interface

Overloading methods The act of writing two or more methods in the same class that have the same name but different parameter lists

Overriding a method Rewriting an inherited method using the exact same signature of the inherited method

Parallel arrays A use of multiple one-dimensional arrays in which the ith element of each array is associated with the same entity; for example, if Mary’s age was stored in the second element of one array, then the rest of Mary’s information would be stored in the second element of the other arrays

Parameter A variable that can receive a value (an argument) passed to the method when it is invoked

Parameter list A sequence of parameter names, each proceeded by its type, separated by commas, and enclosed in a set of parentheses

Parent class A class that is inherited from, also known as a super or base class

Parsing The act of changing a string into a numeric; also the act of separating a string into its component parts that are separated by a specified delimiter

Platform A particular CPU model and operating system

Platform independence The concept that the programmer’s translation of a program can be transmitted to, and then run on, any computer system

Polymorphism The ability of one invocation to morph itself into an invocation of a parent’s version of a method or any of its children’s versions of the method; rooted in the fact that a parent reference variable can refer to an instance of a child class

Pop-up menu A space-saving alternative to a menu-bar-based drop-down menu that remains invisible until the user performs a platform-dependent mouse or keyboard action on a GUI component

Precedence rules A specification of the order in which to perform a set of operations

Primitive variable A variable that can store a numeric value, a Boolean value, or one character; the type used in its declaration is one of the primitive types

Primitive type The Java types byte, short int, long, float, double, char, and boolean

Priority queue A queue that associates a priority with each of its data elements; the elements assigned the highest priority are fetched and deleted (on a first-in-first-out basis) before those of lower priority

Private data member A data member of a class that cannot be directly accessed by methods that are not part of the class; get and set methods are used to fetch and change their values

Producer A process that generates data

Pseudorandom numbers Apparent, but not truly, random numbers

Public data members Data members of a class that can be directly accessed by methods that are not part of the class; they are accessed by coding their name preceded by either the name of an instance of the class or the class name, followed by a dot

Queue A data structure in which the data elements are fetched and deleted on a first-in-first-out basis

Random access memory (RAM) High-speed, high-cost storage physically located in close proximity to the central processing unit

Recursion The act of defining something in terms of itself

Recursive method A method that invokes itself or initiates a sequence of method invocations that eventually leads to an invocation of itself

Reduced problem Part of the methodology of formulating recursive algorithms, it is a problem similar to the original problem, usually between the original problem and the base case, usually closer to the original problem, and (when progressively reduced) becomes the base case for all versions of the original problem

Reference variable A variable that can store a memory address; the type used in its declaration is the name of a class

Registering an event handler The act of associating an event-handler method with a particular event that could be performed on a GUI component

Runtime the time during which the program is in execution

Scope of a variable or a method The range of a program’s instructions within which a variable can be used or a method can be invoked

Sentinel loop A loop that ends on a particular value of the data it is processing or on a particular user input; for example, a negative deposit

Serializing objects The act of disassembling objects before writing them to a disk file so they can be recreated when they are read from the disk

Set methods Methods used to change the values of a class’s private data members

Shallow comparison Comparing the contents of one variable to the contents of another variable using the equality (==) operator

Shallow copy Copying the contents of one variable into another using the assignment (=) operator

Shared buffer Memory used to temporarily share a data item among one or more threads

Show method A method named show that ordinarily outputs all of the data members of an object or draws the object

Signature of a method The first line of a method’s code

Software engineer A computer professional that produces programs that are error free, within budget, on schedule, and satisfy the customers’ current and future needs

Stack A data structure in which the data elements are fetched and deleted on a last-in-first-out basis

States of a thread The six statuses a thread can assume from the time it is created to the time it is terminated

Static data member A class’s data member that is designated to be shared by all instances of the class by including the keyword static in its declaration

Static method A method that is designated to be invoked by preceding the method name by the method’s class name followed by a dot; they are intended to be methods that do not operate on instances of the class

String A finite sequence of characters

Subclass A class that inherits from (extends) another class, also known as a derived or child class

Super class A class that is inherited from, also known as a parent or base class

Swapping algorithm An algorithm that swaps the values contained in two variables

Synchronized buffer A buffer whose access is managed in a way that imposes protocols of proper access to the data on the threads that share the buffer

Syntax The rules for forming properly constructed program instructions; the grammar of a programming language

Text file A file whose information is intended to be characters and is therefore interpreted using the ASCII or Unicode tables; ordinarily the file extension .txt is appended to the file’s name

Thread An independent execution path through a program

Token A component part of a string that is terminated by a specified delimiter, for example, a space

Tokenizing a string Extracting all of the tokens from a string

Top-level container The basic building block component of a graphical interface, which contains the other GUI components that make up the interface

toString method A method named toString whose task is to return the string representation of an object; ordinarily, the string contains the annotated values of all of an object’s data members

Totaling or summation algorithm An algorithm that computes the sum of a set of numeric values by repeatedly adding each value to the subtotal of the values in the set that preceded it

Type placeholder Any valid identifier that is not the name of a class used within the application of which it is a part; a placeholder is used as a type of a generic parameter and can be used as a returned type

Unboxing A context-sensitive feature of Java in which an instance of a wrapper class object is replaced with the primitive value it contains

Unicode An expanded tabulation of characters and control characters and the bit patterns used to represent them

Universal modeling language (UML) diagram A graphical representation of a class that specifies the class’s name, data members, and the signatures of its methods; it is used to design a class

Variable A named memory cell that can store a specific type of data item

Void method A method that does not return a value

Worker method A method that is invoked by another method to perform a specific task (work) for it; for example, fetching the value of one of an object’s data members or drawing the object

Wrapper class An API class that contains non-static primitive data members of a particular type

APPENDIX G

USING THE ONLINE API DOCUMENTATION

The documentation of the Application Programing Interface (API) is available online. To access it, you can Google: Java API documentation and click the link that begins with docs.oracle.com/javase, such as the one shown below:

http://docs.oracle.com/javase/7/docs/api/

To quickly locate the documentation on a particular class, you can Google the class’s name and then click the link to the class’s documentation. The following link was displayed after Googling Java Math class:

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Clicking this link displays the information shown in Figure G.1, which is typical of the format of the documentation for any class. As shown in the figure, the class name is at the top of the documentation. Below it is the package that is imported into a class to gain access to the API class and its methods. This package name can be copied from the documentation and pasted into the class’s file just before its class heading. It is preceded by the keyword import and followed by a semicolon.

Below the package name is the specification of the class’s access and inheritance details. In the case of the Math class, this information indicates that the class’s access is public, the class is final (which means it cannot be extended as a parent class), and its parent class is the class Object. Below that is a general description of the class.

Below the general descriptive information is a Field Summary (Figure G.2), which is a tabulation of the name and description of all of the data members contained in the class. This is followed by a Method Summary, which is a tabulation of the names of each method in the class and their parameter list followed a brief description of the method’s functionality.

To the left of each data member’s name in the Field Summary is its type, which may be preceded by the key word static. Static data members are accessed by preceding their name with the name of the class followed by a dot. To the left of each method’s name in the Method Summary is the method’s returned type, which may be preceded by the key word static. Static methods are invoked by preceding their name with the name of the class followed by a dot. Non-static methods are invoked by preceding their name with the name of an instance of the class followed by a dot.

More detained documentation on a data member or a method can be displayed by clicking the name of the data member in the Field Summary or the name of the method in the Method Summary. Figure G.3 was displayed when the method name acos, shown at the bottom of Figure G.2, was clicked.

[image:]

Figure G.1
The top portion of the online documentation of the Math class.

[image:]

Figure G.2
The partial Field Summary and Method Summary of the API Math class.

[image:]

Figure G.3
Detailed documentation of the Math class’s acos method.

APPENDIX H

SOLUTIONS TO SELECTED ODD KNOWLEDGE EXERCISES

CHAPTER 1

1. (b) The number of computers grew from 200 to 800 – a factor of 4

3. Operating systems (such as: Windows. Linux or Apple OS X) are the instructions used by the computer system to schedule tasks, to allocate memory and other system resources, to detect errors and to perform other computer system functions. Application software is commonly used by the human user, while system software is used by the computer system. Examples of application software include word processors, spreadsheets, mail readers, Web browsers, and game programs.

5. Both a and c are characteristics of secondary storage which is nonvolatile, has a very large capacity and is slower and cheaper than RAM.

7. (a) A device that is only used for output is a printer or a speaker.

(c) Devices used for both input and output include touch screens, flash drives, floppy disks, and writable CDs, DVDs.

9. The computer as we know it today was the work of many people over hundreds of years, beginning with the development of early calculating machines: the abacus, the slide rule, Napier’s bones and the Pascaline. The modern computer was based on the designs of Babbage, von Neumann, Mauchly, and Eckert. Lady Ada Lovelace and Grace Hopper were pioneers in the field of programming languages. Metcalfe and Boggs, Cerf and Kahn and Berners-Lee connected computers together into networks, the Internet and the World Wide Web, respectively.

11. (b) loses its contents if power is interrupted.

13. (c) chips, replacing the larger transistor circuits.

15. (a) First programmer - Lady Ada Augusta Byron, the Countess of Lovelace

(b) Inventor of the Java programming language – James Gosling

17. Platform independence is the ability of software to run on any computer system or platform. Every manufacturer’s chipset has its own unique machine language and therefore usually requires its own translating program to translate from source code instructions to its machine language. Java achieves platform independence by compiling the source code instructions into byte code, which is later translated on the end user’s computer into its own specific machine code.

19. A class is a group of related data members and member methods. It is the template used to create an object. An object is a particular instance of a class. From one class we can create an unlimited number of objects or instances of the class, just as with a blueprint we can create many houses, or with a cookie cutter, we can create many batches of cookies.

21. (a) CPU – central processing unit

(c) I/O – input/output

 (e) JVM – Java virtual machine

(g) GUI- graphical user interface

23. (d) (5, 30) since it is 5 pixels to the left of the left boundary and 30 pixels below the top.

25. (1) character data, (2) translated instructions, and (3) numeric data.

27.

(a) 01010011 = 83 in decimal

(b) 00101111 = 47 in decimal

CHAPTER 2

1. (a) False, the contents of the variable may change but the data type does not

 (c) False

(e) False

3. A variable is a named memory cell that stores one data item that can change during program execution. Primitive variables can store a single numeric data value, one character, or one Boolean truth value. Reference variables store (RAM) memory addresses.

5. (a) boolean false (c) double 0.0

7. Numeric literals, containing decimals such as 19.5, are assumed to be type double. If a numeric literal is to be assigned to a float variable, the letter f for float, must be appended to the literal to inform the translator that a loss of precision is acceptable, otherwise an error results. (This is a correct declaration float weight = 19.5f;)

9. (a) System.out.println("Sara Larson");
 System.out.println("Smalltown, USA");

(b) System.out.println("Sara Larson \nSmalltown, USA \n");

(a) System.out.printf("Sara Larson \n");
 System.out.printf("Smalltown, USA \n");

(b) System.out.printf("Sara Larson \nSmalltown, USA \n\n");

11. [image:]

13. (a) 17 - 5 * 2 + 12 = 19

(c) (48 + 12) / 12 + 18 * 2 = 41

(d) 21 - 9 + 18 + 4 * 3.7 = 44.8

15. double average = ((double)(55 + 57 + 60)) / 3;

17. (a) True (b) False, it is used for output

(c) True (d) False, it would return the empty string ("")

(e) True

19. sBalance = JOptionPane.showInputDialog("Type your current " + "checking account balance");

21. double deposit;
 deposit = Double.parseDouble(sDeposit);

CHAPTER 3

1. (a) True

(b) False, it is the method signature

(c) False

(d) False, this method returns a value

3. (a) The signature of a method that does not operate on an object must contain the keyword static.

(c) When we invoke a static method, we begin the invocation statement with the name of the class followed by a dot.

5. (a) True

 (c) False, the client method sends an argument into the worker method’s parameter

 (e) False, a method can only return a single value

 (g) False

 (h) False, value parameters

7. The statement following the statement that invoked the method executes next.

9. static double checkAmount;

11. (a) drawRect

(c) drawOval

 (e) fillOval, using the same value for the height and width

13. (a) House is to object as blueprint is to class.

(c) The name of the graphic used to specify a class is a UML diagram.

 (e) Member methods of a class are usually designated to have private access.

15. (a) The address of the object joe

 (c)

[image:]

17. (a) public CoffeeCup(int size, double price)

{  this.size = size;

  this.price = price;

}

(b) CoffeeCup cup1 = new CoffeeCup(8, 3.85);

(c) System.out.println(cup1);

(d) System.out.println(cup1.tostring();

(e) CoffeeCup@456af2 (the address, 456af2, will probably be different)

(f) g.drawString(cup1.toString(), 200, 250);

19. public void show(Graphics g)

{

   g.drawString("size is: " + size, 250, 250);

   g.drawString("price is: " + price, 250, 280;

}

20. [image:]

21. This might be a typical response based on the model given in Exercise 20

[image:]

23. (a) this.total = total * 2;

 (c) public void setTotal(int total)

{

  this .total = total;

 }

(e) int currentTotal = myAccount.getTotal();
 myAccount.setTotal(currentTotal * 2);

(g) public void toString()

 {

 System.out.println("The total is: " + total);

}

 (i) private

25. (a) static Starship largest(Starship ship1, Starship ship2);

 (b) ship1 = largest(ship1, ship2);

 (c) The new color.

 (d) public boolean sameModel(Starship ship1, Starship ship2);

 (e) isSame = sameModel(ship1, ship2);

CHAPTER 4

1. (a) True (c) False (e) True

3. Method invocations and control-of-flow (or control) statements, such as decision and loops, alter the execution path.

5. if (myBalance ==10.0)

 {

  System.out.println(myBalance);

 }

  else

 {

  System.out.println("my balance is not 10.0");

 }

7. (a) True

 (c) True, although it can be empty

 (e) True

 (g) True

9. (a) False, but it is good programming style to include a default statement

 (c) True

 (e) True

 (g) False, it can only be written as a switch statement if the selection statements are of the appropriate type

11. if(item.equals("Hamburger"))

 {

 System.out.println("You ordered a Hamburger.");

}

 else if(item.equals("Taco"))

 {

 System.out.println("You ordered a Taco.");

 }

 else if(item.equals("BLT"))

 {

 System.out.println("You ordered a BLT sandwich.");

 }

 else

 {

 System.out.println("You did not place a valid order.");

 }

13. (a) Scanner consoleIn = new Scanner(System.in);

 System.out.println("Type the year of your birth: ");

 int birthYear;

 birthYear = consoleIn.nextInt();

 (b) Scanner consoleIn = new Scanner(System.in);

 String name;

 System.out.print("Enter your name: ");

 name = consoleIn.nextLine();

15. (a) True (b) False (c) True

17. (a) File fileObject = new File("e:/Dates.txt");

 Scanner fileIn = new Scanner(fileObject);

 int year;

 year = fileIn.nextInt();

 (b) File fileObject = new File("e:/Names.txt");

 Scanner fileIn = new Scanner(fileObject);

 String name;

 int age;

age = fileIn.nextInt();

fileIn.nextLine(); // to flush the buffer

name = fileIn.nextLine();

19. import java.io.*;

 public class DiskIO

 {

public static void main(String[] args) throws IOException

 {

 double myBalance =2567.00;

 double yourBalance = 3876.25;

 new // if file exists it will be deleted

 FileWriter fileWriterObject = new FileWriter("c:/Balances.txt");

 PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

 fileOut.println(myBalance + " " + yourBalance);

 fileOut.close();

 }

 }

21. inputfile.close();

CHAPTER 5

1. (a) False, it is possible for a while loop body not to execute at all

(c) True

(e) False, it is a pretest loop

(g) True

(i) True

(k) False, when the Boolean condition becomes false.

(m) True, since the loop is never entered the loop control variable is not changed

(o) True

3. int n;

 int count =1;

 int sum =0;

 String instring;

 instring = JOptionPane.showInputDialog("Type a number: ");

 n = Integer.ParseInt(instr);

 while(count <= n)

 {

  if (count % 2 ==0) //number is even

  {

  sum = sum + count;

  }

 count++;

 } //end while

 JoptionPane.showMessageDialog(null, "The sum of even integers " +

 "from 1 to " + n + " is " + sum);

5. (a) The value of i is never equal to 20, so the loop never terminates.

(b) Because the loop does not terminate the output statement after the loop is never reached and is not executed.

7. (a) Output: 8, 5, 2, -1

(b) for (int x = 8; x >= -1; x = x - 3)

 {

  System.out.println(x);

 }

9. int trys = 0;

 int input;

 String sInput;

 do

 {

 trys++;

 sInput = JOptionPane.showInputDialog("Enter a number from 0 to 5");

 input = Integer.parseInt(sInput);

 if(input >= 0 && input <= 5)

 {

  JOptionPane.showInputDialog("Thanks for the valid input");

  break;

 }

 else

 {

 JOptionPane.showInputDialog("invalid input");

 }

 } while(trys < 3);

11. (a) int randomNumber;

 Random randomObject1 = new Random(); // uses time of day

 for(int i=1; i<=20; i++)

 {

  randomNumber = randomObject1.nextInt(501);

  System.out.print(randomNumber + " ");

 }

 SecureRandom randomObject2 = new SecureRandom();

 System.out.println();

 for(int i=1; i<=20; i++)

 {

 randomNumber = randomObject2.nextInt(501);

 System.out.print(randomNumber + " ");

 }

(c) int randomNumber;

 int min =7;

 int max =500;

Random randomObject = new Random(2468); // uses seed

 for(int i=1; i<=20;, i++)

 {

 randomNumber = min + randomObject.nextInt(500 – min + 1);

 System.out.print(randomNumber);

 }

CHAPTER 6

1. (a) True

(c) True

(e) True

(g) False, arrays can be multi-dimensional

(i) True

3. An array element is a reference variable, while a non-array element may be a primitive or a reference variable. An array variable is able to store many elements, while a primitive variable only stores one. An array variable uses square brackets ([]) and an index to indicate the position of an element in the array, while a non-array variable does not.

5. (a) True

(c) False, gameScores[99]

(e) False, 100

(g) System.out.println(gameScores[99]);

(i) int total = 0;

 for(int i = 0; i < gameScores.length; i++)

 {

  total = total + gameScores[i];

 }

 System.out.println(total / gameScores.length);

7. (a) 45

(c) 4

(e) y[4] = y[4] + 20.5;

(f) z = y[0] + y[1] +y[2];

9. (a) String[] names = new String[50];

 double[] weights = new double[50];

 double[] targetWeights = new double[50];

(c) for(int i = 0; i < names.length; i++)

 {

 if(names[i].equalsIgnoreCase("joe smith")

  {

    System.out.println(weight[i] + " " + targetWeight[i]);

   }

  }

CHAPTER 7

1. (a) True

(c) True

(e) False, a deep copy

(g) True

3. A shallow comparison compares reference variables or the addresses of two objects to determine if they refer to the same object or two different objects. A deep comparison compares the contents of the data members of two objects to determine if they are the same.

5. Explain the difference between a deep copy and a clone. A deep copy copies the values of the data members of one object into the data members of another object, using the set method. When an object is cloned, a new instance of the object’s class is created, and the values of all of an existing object’s data members are copied into the corresponding data members of the new object. There are now two objects instead of one.

7. if(s1 != s2)

 {

 System.out.println(" Two objects");

 }

9. (a) 6

(c) Hello everyone

(e) Hello

11. Aggregation is combining objects so that the instance of one class is a field in another class. It establishes a “has a” relationship.

13. Use the API BigInteger class to create a BigInteger object.

BigInteger num1 = new BigInteger ("123456789101112133456789");

15. Invoke the BigInteger multiply method on the BigInteger object. For example,

BigInteger num1 = new BigInteger ("123456789101112133456789");

BigInteger num2 = new BigInteger.valueOf(2);

BigInteger largenum = num1.multiply(num2);

17. (a) 2

(b) CarColor favoriteColor = CarColor.BLUE;

(c) System.out.println(CarColor.BLUE + " " + favoriteColor.ordinal());

CHAPTER 8

1. (a) False

(c) True

(e) False, constructors are not inherited

(g) True

(i) False, they are overloaded

(k) True

(m) False, all we need are the class’s byte codes

3. Reduced coding time: a parent class can collect functionality and data members common to several classes into one class so they need only be coded once in the parent class.

 Code reusability: A child can inherit all of the data members and methods of a previously developed class not coded as part of its program, and then add methods and data members or overwrite methods that are not suited for its applications.

5. Public: Child classes and client code have direct access. Protected: Child classes have direct access but not client code in a separate package. Private: Neither child classes nor client code have direct access.

7. super.input();

9. Declare the method to be final.

11. When you wanted to expand its parameter list.

13. An abstract class is used to collect all of the data members and methods that are common to two or more classes that will make up a program. The classes simply extend it, and then add the data members and methods specific to them to it.

15. Transporter[] vehicles = new Transporter[200];

17. An interface can contain the signatures of related methods that are implicitly abstract and/or declarations of public constants that are implicitly static and final. An advantage of an interface is that any class that implements the interface must implement all of the methods defined in the interface.

19. Include the implements ManyMethods clause in the adapter class’s signature, and implement all 20 of the methods defined in the interface with empty code blocks.

CHAPTER 9

1. (a) True

(c) False, usually the most difficult part is the discovery of the reduced problem

(e) True, if the base case is not realized

(g) False; typically they are slower than their loop base (iterative) counterparts because of the time required to transfer execution to the recursive invocations they make

3. The symbol with the number 5 to its left

5. Iterative: f1 = 1; f2 = 1; f3 = 1 + 1 = 2; f4 = 1 + 2 = 3; f5 = 2 + 3 = 5; f6 = 3 + 5 = 8;

 f7 = 5 + 8 = 13; f8 = 8 + 13 = 21;

Non-iterative: f8 = f7 + f6 = (f6 + f5) + (f5 + f4) =

    (f5 + f4) + (f4 + f3) + (f4 + f3) + (f3 + 1) =

    (f4 + f3) + (f3 + 1) + (f3 + 1) + (1 + 1) + (f3 + 1) + (1 + 1) (1 + 1) + 1 =

    (f3 + 1) + (1 + 1) + (1 + 1) + 1 + (1 + 1) + 1 + (1 + 1) + (1 + 1) + 1 +

    (1 + 1) (1 + 1) + 1 =

    (1 + 1) + 1 + (1 + 1) + (1 + 1) + 1 + (1 + 1) + 1 + (1 + 1) + (1 + 1) + 1 +

    (1 + 1) (1 + 1) + 1 =

    21

7. Dynamic programming

9. Base case: if(m == n) return n;

Reduced problem: sum of the even integers from m-2 to n

General Solution: m + the reduced problem

11. Because that is the base case, which halts the recursive invocations.

13. Combine the base case, reduced problem and general solution into a recursive algorithm, using a flow chart similar to the one shown in Figure 9.6

15. To move six rings: 26 -1 For ten rings: 210 – 1 For n rings: 2n -1

CHAPTER 10

1. (a) True

(c) True

(e) True

(h) False

(j) False, but if the exception is a checked exception the method’s signature must contain a throws clause

(l) True

(n) False

3. When the error that caused the problem is a serious error, because the translator will then warn the programmer that a catch block to deal with the problem was not included in the program that invoked the method.

5. Exception

7. (a) Checked

(c) Checked

(e) Unchecked

(g) Unchecked

9. Invoke the getMessage method on the exception object passed to the catch clause:

String error = e.getMessage();

CHAPTER 11

1. (a) False, it stands for Graphical User Interface

(c) True

(e) True

(g) True

(i) False, a Pane container should be used

(k) True

3. Buttons are used to initiate processing; Radio buttons are used to select one item from a set of mutually exclusive items; Check boxes are used select to one or more items from a set of items.

5. North, west, center, east, and south

7. Pane root = new Pane();

 root.setStyle("-fx-background-color: red");

 Scene scene = new Scene(root, 600, 650);

9. compute.setOnAction(e -> clickHandler(e));

11. scene.setOnMouseClicked(e -> clickHandler(e));

13. scene.setOnKeyreleased(e -> keyHandler(e));

CHAPTER 12

1. (a) False, they are normally used to select one input from a set of mutually exclusive inputs

(c) False, only one selection can be made

(e) True

(g) True

(i) False, they are defined in an ObservableList

(k) True

(m) False

3. A combo box is used to select one item from a set of items; lists are used to select one or more items from a set of items.

5. Only one item can be selected from a combo box, one or more values can be selected from a list. The items in a combo box are displayed when the arrow in its drop-down button is clicked. A list is displayed with a scroll bar by default when the size of the list box is too small to display all of its values.

7. Menus take up very little space in a window, because their items are only displayed when the user indicates that she wants to use them by clicking them.

9. The path to the selected file.

11. salad.setOnAction(e -> saladClickHandler());

13. if(cb1.isSelected() == true)

CHAPTER 13

1. (a) True

(c) False

(e) False

(g) True

(i) True

(k) True

3. T1[] copy;

 copy = Arrays.copyOf(values, values.length);

5. (a) True

(c) True

(f) True

7. public class G7Class <T> implements Comparable<GClass>

9. ArrayList <String> s2;

11. HashMap, or TreeMap, or LinkedHashMap

13. PriorityQueue <PhoneListing> pl = new PriorityQueue <PhoneListing>();

CHAPTER 14

1. (a) True, until the program it is part of ends

(c) True

(e) True, or they can extend the class Thread (which implements the interface Runnable).

(g) False

3. New, runnable, waiting, timed waiting, blocked, and terminated

5. The wait method

7. The method invokes the wait method, or the method invokes the sleep method.

9. (a) True

(c) False

(e) False

(g) False

11. The consumer task is using data generated by another task, the producer task. Two problems can occur. The producer generates a data item and overwrites a previously generated data item not yet processed by the consumer task, or the consumer reprocess a previously processed data item (or a data item containing a default value) because the producer has not generated a new data item.

13. Use synchronized methods or synchronized statements.

INDEX

A

abstract

class, 376

methods, 386

super class, 402

Abstract Windowing Toolkit (AWT), 487, 489

access, 84

private, 111, 113

protected, 387

public, 97, 113

ActionEvent, class, 515

adapter classes, 409

Alert class (FX), 496

algorithm, 5

animation (FX), 530, 533, 539

anonymous, (nameless) objects, 474

API. See Application Programming Interface (API)

Application class, 497

Application Programming Interface (API), 19

on-line documentation, 416, 725

arguments, 44, 70, 81

arithmetic operators, 50

array(s), 239

as argument and parameters, 255

dynamic allocation of, 243

length, 233, 243

of objects, 247

parallel, 262

as returned types, 261

multi-dimensional, 287

ArrayBlockingQueue class, 684

ArrayIndexOutOfBoundsException, 246

arraycopy method, 282

ArrayDeque class, 636

ArrayList class, 629

Arrays class, 283

arrow token, 591

ASCII, 30

table, 709

assignment, 53

autoboxing and unboxing, 328

AWT, 487, 489

B

base case, 431–432

base class, 359–360

BigDecimal class, 348

BigInteger class, 346

rounding mode, 348

binary files, 175

binary number system, 32–34

binarySearch method, 283, 629

bit, 30

boolean, 43

boolean expressions, 140

border(s), 556

BorderPane class, 547–551

Boxing. See autoBoxing and unboxing

blocked state, 667

break statement, 166

Button class, 505, 507

byte codes, 18, 32

C

call back methods, 64

Canvas class, 531

case clause, 164–165

casting, 55

catch block ordering, 481

catch clause, 184. See Exceptions

catching thrown exception process, 459, 463

centering a dialog box, 491

Central Processing Unit (CPU), 3–4

chain inheritance, 361

char, 43

Character wrapper class, 330

CheckBox class, 557

events, 559

property methods, 557

status, 559

checked exceptions, 460–461

child class, 359–360

ChoiceDialog class, 502

circle method, 522

class, 20, 22, 96

class level variables. See data members

client, 81, 123

clone method, 313

close method, 181

code block, 78

coercion, 390

Collections class, 628

methods, 629

collections framework, 628

collision detection, 156–161

Color class, 92, 120, 416

color-picker control, 585

displaying, 586

events, 587

fetching and applying color, 587–590

ComboBox class, 566–572

event handling, 569

fetching selections, 569

methods, 567

scroll bar, 566

comments, 48

Comparable interface, 351

compareToIgnoreCase method, 145

compareTo method, 351

comparing objects, 307–310

concatenation, 44–45

concurrency, 660. See also threads

conditional expressions, 142, 160

 conditional operator, 160

console input, 171–175

console output, 44–48

constructors, 99–100, 109–110

Java provided default, 109

invoking parent, 365

overloading, 123–126

continue statement, 225–226

counting algorithm, 67

currency formatting, 204, 206–207

D

data members, 20–22, 96–99

data types, 42–43

decision statements, 140. See also if statement;

if-else statement;

switch

deep comparison, 308, 309

deep copy, 311, 312

default clause, 164

default constructor, 99–100

provided by Java, 109

default dialog box input, 491, 493

default parent methods, 369

in interfaces, 403–404, 411

derived class, 359–360

deserialization of objects, 411–416

design process

interface’s role, 411

of applications, 376

of graphical objects, 102

of GUIs, 506

dialog boxes FX, 495–497, 499–504

areas of, 495, 496

choice dialogs, 502

input dialogs, 499

message dialogs, 496

dialog boxes Swing, 58–64, 489–494

disk file I/O, 175–183

appending to, 182

detecting end of file, 221, 293

input, 176–178

modifying contents, 182, 291

output, 178–181

serialized objects, 411

divide and conquer, 24

double, 42

Double wrapper class, 61–62, 328

do-while loops, 218, 223

draw call back method, 65–66

drawing shapes see

Graphics class

Graphics in an FX window

drawOval method, 93

drawString method, 64–65

driver code, 24

drop-down menus, 572

creating, 573

events, 574–575

separator bars, 574

E

Eclipse, 595, 707

empty string, 60

end of file, 177, 181, 218, 234

detecting, 221

enhanced Swing dialog boxes, 489–494

enum, 349

enumeration, 348

equalsIgnoreCase method, 145

equals method, 145

escape sequences, 45–48

EventHandler interface, 517

event processing, 513–521

button click events, 515–517

event handlers, 515

getSource method, 516, 520–521

keyboard events, 527–531

listener lists, 514–515

methods and interfaces, 517–521

mouse events, 531–535

parameter types, 516

process, 515

registering handlers, 517

timer events, 535–539

exceptions, 183, 457

Executors class, 663

exit method, 178

extends keyword, 360

F

Fibonacci series, 346, 444

final keyword

classes, 387

data members, 371

methods, 371

variables, 243

file(s). See disk file I/O

file access, 175

random, sequential, 175

file chooser dialog box, 583–585

File class, 176, 183

FileWriter class, 179, 183

fill method, 285

fillOval method, 93, 523

finally clause. See Exceptions

first in first out (FIFO), 621

float, 43

FlowPane class, 545–547

Font class, 67, 70

for loops, 197, 212

formatting numeric output, 70, 206

fractal, 445

functional interface, 551, 590

functional programming paradigm, 594, 643

FX application structure, 497

animation, 530, 533, 539

G

game environment

description, 699

introduction to, 26

package use, 707

garbage collection, 312

general solution, 431

 discovery of, 433

generic classes, 617

generic data structures, 621

generic methods, 602

getCharacter method, 529

getChildren method, 522

getClass method, 398

get method, 115

getName method, 398

getSource method, 516, 521, 575, 579, 587, 596

getTranslateX method, 531

Graphics class, 64, 91–94

GraphicsContext class, 522

methods, 523–524

graphics in an FX window, 522–527

GridPane class, 505, 508

adding components, 510–511, 513

setting properties, 510

Group class, 505, 508

GUI applications, 488, 505

GUI components, 488, 505

containers, 507

graphics, 522

setting properties, 489

H

handle method, 517, 520, 531

HashMap class, 639

HashSet class, 636

hasNext method, 633, 635

hasPrevious method, 635

HBox class, 505, 543, 544

Hgap. See setHgap method

I

icons, 492

IDE, 22

if-else statement, 152–160

if statement, 146–152

immutability, 114, 328

implements keyword, 402–404, 407

implicit invocation, 119

import statement, 29, 63, 70

increment (++) operator, 198, 715

index of an array, 245, 270

indexOf method, 324

IndexOutOfBoundsException, 246, 460

infinite loop, 217

information passing, 81–91

inheritance, 358

forms of, 361

method search path, 372

role in the design process, 376

initialization of,

arrays, 264, 265, 289

variables, 42

init method (FX), 497

inner class, 342–345

input devices, 3

input dialog boxes

Swing, 60, 489

FX, 499

input method, 119–120

instance, 20

instanceof operator, 401–402

int, 42

integer division, 51

Integer wrapper class, 61–62, 327–328

interface

keyword, 403–404

method implementations, 404–406, 411

intermediate stream operations, 644, 650–653

IntStream interface, 645, 650

invocation, 64–65, 78

of child methods by parents, 376

of parent methods, 365, 372

iteration, 202

iterators, 635

instance variables, 20, 97

J

Javadoc generation, 416

Java FX, 489, 495, 497. See also GUI and FX

Java keywords, 713

Java Version 8 and 9 enhancements, 410

Java virtual machine, 18

JDK, 720

JVM, 18

K

KeyCode class constants, 529

keyboard

events, 529

focus, 515

getCharacter method, 529

input buffer, 174

key values, 628, 640–643

keyword(s), 42, 713

L

Label class, 505, 509

lambda expressions, 517, 590

assignment to abstract methods, 593–594

execution of, 592

syntax of, 517, 591

use in event handlers, 517

use in streams, 594

layout managers, 508, 543

See also GridPane class; HBox class;

StackPane class; VBox class

left to right evaluation, 50

length, 233, 307

lifecycle, 694

lifetime, 665

LinkedHashMap class, 639

LinkedList class, 629

LinkedSet class, 636

List interface, 628

ListView class, 566–572

event handling, 569

fetching selections, 569

scroll bar, 566

literals, 43–45

local variables, 88–91

lock, 667, 676. See also synchronizing methods

logarithm. See Math class methods

logical operators, 142–145

long, 42

Long class, 346

loops, 195

do-while, 223–225

for, 197–203

nesting, 212–215

while, 216–220

M

main memory, 3-4

main method, 40

Map interface, 640

Math class methods, 56–58

math operators, 51

maximum algorithm, 273, 629

max method, 629

memory manager, 83, 101, 201, 245, 312

menus. See drop-down menus; pop-up menus

message dialog box

Swing, 59, 489

FX, 496

method(s), 20, 78–80

invocations, 64–65

names, 79, 88

non-void, 142

overloaded, 123–126, 131, 371–372

overridden, 368–372

parameters, 81

recursive, 426. See also recursion

search path, 372

signature, 66, 78

minimum algorithm, 271–273, 629

min method, 629

mixed mode arithmetic, 51, 55

mnemonics, 720

modulo (%) operator, 50

MouseButton class constants, 531

mouse events, 514, 516, 528, 531–535

current dragged location, 534–535

multi-dimensional arrays, 287–290

multiple inheritance, 361

Multitasking, 661. See also threads

N

naming conventions

methods, 79

variables, 41, 88

nesting else-if and if statements, 154–156, 161–162

nesting loops, 212–215

NetBeans, 22, 28, 417, 555, 595, 708

new keyword, 98–100

nextDouble method, 172

nextInt method, 172

nextLine method, 172

next method, 635

notify and notifyAll methods, 668

null keyword, 49

NumberFormatClass, 204

numeric literals, 43

NullPointerException, 413

O

object(s), 21–22

array of, 247–260

comparisons, 307–310

copying and cloning, 310–322

deep copy and clones, 311–314

shallow copy, 311–312

creating, 98

returning, 129, 261

Object class, 396

object oriented design, 95–97, 102–104, 376–388

object serialization. See serializing objects

OOP, 21–22, 721

operators, 5, 51, 143, 715

Optional class, 500, 503

get method, 503

ordering of catch blocks, 481

output devices, 4

overloading methods, 123, 371

@Override directive, 370

overriding methods, 371, 410

P

Package(s), 19, 26, 387–388

package access, 387

padding, 549

paint events, 522

Pane class container, 498, 540

borders, 556

positioning components, 540–543

parallel arrays, 262

parallel processing. See concurrency

parameters, 81

Lambda expressions, 521, 591–592

parent-child relationship, 359

establishment of, 360

parent class, 358, 359

parseDouble method, 61

parseInt method, 61

parsing strings into

numerics, 60–63

tokens, 326

passing by value, 82

passing objects, 127–129

passing primitives, 82–83

pixels, 26

placeholders, 603

platform independence, 17

polymorphic

arrays, 394

advantages of, 396

invocations, 392–394

polymorphism, 389

pop-up menus, 580

precedence of operators, 51–55, 715

primitive data types, 43

print and println methods, 44

printf method, 71

PrintWriter class, 179

PriorityQueue class, 636

private access. See access

procedural programming paradigm, 95, 262

processing arrays, 282–287

processing large numbers, 345–348

producer-consumer

problem, 668

solutions, 676–689

program development process, 23–25

programming jargon, 717–723

promotion, 54

prompt, 58, 60, 172, 491

public access. See access

Q

quantum computing, 10

queues, 621

generic implementation, 624

implementation, 621

PrioityQueue class, 636

R

radians, 57

radio button(s), 488, 505, 561

events, 562

grouping, 561

status of, 562

RAM, 3, 83

RadioButton class, 561

random numbers, 58, 228–231

Random class, 228–231

SecureRandom class, 232

recursion, 310, 426–452

Fibonacci sequence, 444

redirecting console I/O, 182

reduced problem, 440

reference variables, 42, 48–50

registering event handlers, 517, 530, 532, 537

relational operators, 141

remainder of division, 50

replaceAll method, 324

representing information, 30–34

characters, 30

instructions, 31

numbers, 32

reserved (key) words, 713

returned values. See information passing

return statement, 86–87

return type, 79

constructors, 109

round-robin scheduling, 666

run method. See threads

Runnable interface, 661

runnable state, 665

runtime error, 62

runtime stack, 459

S

SAM interface, 590

Scanner class, 171–175

Scene Builder, 595

scene in FX application, 498

getChildren method, 522

setting its color, 522

scope, 84

scroll bars, 488, 566

SDK (Software Development Kit), 25

searching algorithm, 270–271, 280, 283

SecureRandom class, 232

sentinel loops, 218–220

detecting End Of File, 221

Serializable interface, 416

serializing objects, 411

setHgap method, 510

set method, 114

setOnAction method, 517

check box event, 559

color picker event, 587

combo box and list view events, 569

keyboard events, 528

menu events, 574, 581

setOn prefix, 517, 528

setPadding method, 510, 544, 548

setTranslateX method, 531

setVgap method, 510

shallow

comparisons, 308

copy, 311

short, 43

showAndWait method, 495, 499

showInputDialog method, 60, 490

showMessageDialog, 59, 490

show method, 105–108

Sierpinsky fractal, 445

signature of a method, 66, 76

single abstract method interface, 590

sleep method, 667–668

software engineer, 13

sorting algorithms, 273–279, 283, 629

sort method, 629

special characters, 31, 177

specifying a program, 13–17

split method, 324–326

square root. See Math class methods

stack, 637

stack overflow error, 452

StackPane class, 501, 505, 508

stage in FX application, 497–498

start method (FX), 497

static

data members, 302–304

methods, 59, 80

static interface methods, 410

stepwise refinement. See divide and conquer

stop method (FX), 497

streams, 643

intermediate tasks, 644, 650–653

pipeline, 644

sources, 644–645

terminal tasks, 644–650

string

comparisons, 145–146

immutability, 114

literals, 44–45

processing methods, 324

String class methods, 324

StringTokenizer Class, 326

strokeLine method, 524

strokeOval method, 523

student games (samples), 17

subclass, 359–360

super class, 359–360

super keyword, 365–369

swap method, 85–86

Swing package, 489

switch

keyword, 164

statement, 163

synchronized code block, 667

synchronizing methods, 678

ArrayBlockingQueue class, 684

SynchronizedBuffer class, 678

synchronized statement, 689

syntax error, 45

System.exit, 178

System.in, 172

System.out, 44

T

tab escape sequence, 46

take method, 685

terminal stream operations, 644–650

terminated state, 667, 694

TextFields class, 505, 507

text files, 175

TextInputDialog class, 495, 499–500

this keyword, 109–111

thread(s), 659–693

creation, 661

launching, 663

life cycle, 666

producer-consumer

problem, 668–675

solution, 676–684

run method, 661, 663

synchronized statement, 689–693

thread safe, 676, 684, 694

ArrayBlockingQueue class, 684–689

Throwable class, 460

throws clause, 181, 183, 413, 458, 461, 473

throw statement, 473

timelines (FX)

creation, 536

execution, 537

use in animation, 539

ToggleGroup class, 561

tokenizing strings, 324, 326–327

toLowerCase method, 324, 331, 352

tool tips, 511

toString method, 100–102, 118–119

totaling (summation) algorithm, 204–206

toUpperCase method, 277, 324, 331, 352

Towers of Hanoi, 438–442

TreeMap class, 639

TreeSet class, 636

try clause, 184. See Exceptions

two dimensional arrays, 288–290

type

parameter list, 603–606

placeholders, 603

U

UML diagrams, 96–97, 109, 359–361

unboxing, 328

unchecked exceptions, 460

Unified Modeling Language (UML), 96

V

valueOf method

BigInteger class, 346

String class, 322

value parameters, 82–84

variables, 41–44

class level, 87

naming, 41

primitive, 41

scope, 85

reference, 42, 48–50

VBox class, 505, 543–545

void keyword, 79

volatile memory, 5

W

waiting line, 621

waiting state, 667

while loops, 216

window (FX), 498–499

X

x, y coordinates

drawstring method, 64

game board, 27

graph object design, 103

mouse pointer, 533

OEBPS/images/1.21.jpg

OEBPS/images/1.22.jpg

OEBPS/images/1.20a.jpg

OEBPS/images/1.20b.jpg
<&¥

OEBPS/images/1.19.jpg

OEBPS/images/1.2.png
Computer System

]

Hardware Component
(Electronic circuits, enclosures,
mechanical devices)

Software Component
(Instructions to be
executed by the hardware)

OEBPS/images/1.26.png
An Implementation of
the JVM

Website

Java byte code
download

Byte code
Memory translator for the
manager Intel CPUWindows.
platform

APl implementation for the Intel
CPU/Windows platform

Intel CPU executable
statements

JRE

OEBPS/images/1.27.png
The Class Starship

Data members: name, X, y
Member methods: draw, create, move

(GEONO)

Three Starship objects ®

@ ©) ®

Game board after Game board after Game board relocating
creating three starships. drawing the Orion the Jewel

OEBPS/images/1.24.png
ACs+ G++ translator A computer
program for the Intel Executable module for the Intel running an Intel
CPU/Windows CPU/Windows platform CPU/Windows
platform platform
G++ translator A computer
for the Intel Executable module for the Intel running an Intel
CPU/OS X CPU/OS X platform CPU/OS X
platform platform
Ci++ translator A computer
for the Motorola Executable module for the running a
CPU/Windows Motorola CPU/Windows platform Motorola CPU/
platform Windows platform

< <>

Programmer’s Systems Program Users’ Systems

OEBPS/images/1.25.png
Javacode | Java translator

Download of the
JVM byte codes

| forthedvM

<>

Programmer’s Systems

Byte code
translator for
the Intel
CPU/Windows
platform

Executable module for the Intel
CPU/Windows platform

Byte code
translator for
the Intel
CPU/OS X
platform

Executable module for the
Intel CPU/OS X platform

Byte code
translator for
the Motorola

CPU/Windows

platform

Executable module for the
Motorola CPU/Windows platform

>

Program Users’ Systems

OEBPS/images/1.5.jpg

OEBPS/images/1.6.jpg

OEBPS/images/1.30.jpg
The coordinates of this
point are used to size the game board.

OEBPS/images/1.4.png
input

Sutput

input input
Input/Output Gentral)
Devices Processing Unit Backing)
(V0 Devices) piy Storage
output output
input output

Storage Devices —»|

Random Access
Memory
(RAM)

OEBPS/images/1.29.jpg

OEBPS/images/1.3.png
Software Component

(Instructions)

Operating System
Software
Windows, OS, and Linux)

Application Software
(MS Word, Angry Birds,
Interet Explorer)

OEBPS/images/1.28.png
begin Supply program | Outputs
inputs and verify [— &
outputs '

Locate and correct
syntax errors

Outputs incorrect

[] Programmer'srole [| Tester's role

OEBPS/images/1.9.jpg

OEBPS/images/1.7.jpg
]
e

OEBPS/images/1.8.jpg

OEBPS/images/10.12b.jpg
13 caten(IoBxception e)

14 t

15 System.out.println("There were problems writing to the file");
16 System.exit (0);

17 b

18 }

19

20 public static void appendDataltem (SEFing fileName,

21 String dataltem) throws IOException
23 | erintwriter fileout = null;

24 try

25 t

26 FileWriter fileWriterObj = |new FileWriter(fileName, Erue):
27 fileout = new PrintWriter(fileWriterObj);

28 fileout.println(dataltem);

29 }

3 finally

3 {

3 ‘fileout.close();

3

3

3

3

ERvi i s

Program output:
The data was written to the file

OEBPS/images/10.13.jpg
public void setX(int newX)
{
if (newX > 460) //
{

}
if (newX < 6€) //beyond g
{

throw new RuntineException (MBEYONANEHENBOAFA"SIIERTIEAGEY) ;

¥
X = newX;

OEBPS/images/10.11.png
try blocks

catch
blocks

finally
block

-

-

n=1
P —

Execute the nth try
block statement

Exception
thrown?

try block yes

finished?

Execute the statements in the catch block whose:
parameter is the type of the thrown exception object

i

Execute the statements in the £inally block

i

Statements that follow the finally block

OEBPS/images/10.12a.jpg
import
import j

io.*;
.swing.*;

public class TryFinally
{
public static void main(Stringl] args)
{
String da
try
{

= JoptionPan

.showInputDialog ("Enter a

3
4
5
€
5
N
9
1

0

OEBPS/images/10.1.png
Throwable
(checked: instances need to be caught or thrown)

[

Exception
checked

*

Error
unchecked

%

I I
EOFException I0Exception AnnotationFormatError | | VirtualMachineError
(checked) (checked) (unchecked) (unchecked)
RunTimeException
(unchecked)
I 1
AvithmeticException IndexOutOfBoundsException NullPointerException

(unchecked)

(unchecked)

(unchecked)

OEBPS/images/10.10.jpg
try
{
//try to execute the statements in this statement block

}

catch (ExceptionClassl thrownObjectl

{

//statements to execute when an ExceptionClassl object is thrown

}

catch (ExceptionClass2 thrownObject2

{

//statements to execute when an ExceptionClass2 object is thrown

catch (ExceptionClassN thrownObjectN
{
//statements to execute when an ExceptionClassN cbject is thrown
}
finally
{

//code executed

er one of the above blocks completes execution

OEBPS/images/1.jpg

OEBPS/images/1.png
CHAPTER 1

INTRODUCTION

11 The Computer System 2
1.2 A Brief History of Computing . . .
1.3 Specifving a Program ..
1.4 Sample Student Games . . .
1.5 Java and Platform Independence

1.6 Object-Oriented Programming Languages . . .
1.7 Integrated Development Environments

and the Program Development Process.

1.8 Our Game Development Environment: A First Look .
1.9 Representing Information in Memory.30

110 Chapter Summary34

In this chapter

This chapter presens topics thet are fndamental to computing and the programming
process and disasses took thet programmers we to write prograns Becawse the foas of

this ext & on learning to program, an underfinding of these conceps and took & essential
The topics include a brief htory of computing, which will highlight some of the importnt
confributions to the field and facilite an undertinding of the modern computer sysem

a well & how dda is $ored. The took disssed in the chapter are wed to develop an
unambiguows description of a program and to minimize the effort required to transform this
description info a fimctional program tha can nn on any compter sysem or mobile device.

After successfully completing this chapter. you should:

* Understand the hardware and software components of a computer system

* Gain an appreciation for the history and evolution of computing

* Beable to specify simple programs and games

* Have used some examples of student-written game programs

+ Understand why Java programs can be run on any computer system

* Be familiar with the concept of objects. classes. and the object-oriented programming paradigm

* Understand the programming process and the role of Integrated Development Environment
programs in this process

* Be familiar with the features of the game-development tool on the CD that accompanies
this textbook

* Understand how data is represented inside computer systems

OEBPS/images/10.14a.jpg
import J awt.*;

public class BoxedSnow

{

private int x = §;
private int y = 30;

private Color

= Color.BLA(

public BoxedSnown

= intial
= int.

this.
¥
public void show(
{

Color = hatC

olor;

phics g) //g is the g

Color (hatColor) ;

intialX, int intialY, Color hatC

olor)

OEBPS/images/10.14b.jpg
g.fillrect(x + 15, y, 10, 15);
g.fillRect(x + 10, y + 15, 20,
g.setColor (Color.WHITE) ;
g.filloval(x + 10, y + 17, 20,
g.filloval(x, y + 37, 40, 40);
g. Tor (Color.RED) ;
g.filloval(x + 19, y + 53, 4, 4); //button
g.setColor (Color.BLACK) ;
g.drawRect (x, y, 40, 77); //inscribing
32 }
33 public int getX()
34 {
35 return x;
36 }
37 CECETTARSEEREENTERE)]
38 {
39 if (newX > 460)
40 {
a1 |EREGW hewW REAEINEEXEEPEION ("x is beyond the board's RIGHT");
42)
43 if (newX < €)
44 {
5 [EREGW hiew RUAEIMEEXCEPEIN ("x is beyond the board's LEFT");
46 }
47 X = newx;
48 }
49 public int get¥()
50 {
51 return y;
52 }
53 [CHSICENCTORSEEMEENERN)
54 {
55 if (newY < 30)
56 {
57 EHEGW hewW REAEINEEXEEPEION ("y is beyond the board's TOB");
58 }
59 if (newy > 423)
€0 {
61 |thzow new RuntimeException|("y is beyond the board's BOTTOM");
& ¥
63 y = newy;
64 }
65)

OEBPS/images/16.png
‘ Operands in arithmetic expressions cannot be strings.

OEBPS/images/15.png
! Avoid assigning a numeric with a fractional part (e.g., types £1loat and double) to
TIP an integer type variable because it will generate a translation error.

OEBPS/images/14.png
B\VB

slveT

6\’0

36

OEBPS/images/14.9.jpg
public class Buffer
{

private int sh:

public Buffer()
{

¥

public int
{
return s

¥

OEBPS/images/14.8.png
waiting

timed waiting

notify
Threadis notifyAll

created

wait (t)

notifyAll "
sleep (t)

wait

Thread is

runnable

initiated
/0 pending, or
Synchronized statement's
object lock is unavailable

its execution
/0 complete, or

Synchronized statement’s
lock becomes available

blocked

time interval t expires
notify (tasks waiting)

Thread is completes

Thread’s
resources
reclaimed

OEBPS/images/14.7.png
thread1 thread2 thread3:

—_» Assignment of time quanta

OEBPS/images/14.6.png
waiting timed waiting

Thread is
created

runnable

Thread is
initiated

Thread’s
resources
reclaimed

Thread is completes
its execution

blocked

OEBPS/images/14.5.jpg
Console Output:

main method has completed ifs exceution
threadl is exceuting

thread2 is executing

thread3 is executing

Correct 23 + 57 =80

OEBPS/images/14.4.jpg
B D R S R S 0 0 0 U1 W D

BESombntmmolb o

)
©

>

w2

[

3

@

b

>

5
by

5

t

)

import java.util.concurrent.*;

public class CreatingThreads

public static void main(String[] args

// create a thread
ExtendsThread threadl = new ExtendsThread(“threadl”);

// create a runnable object and then a thread
ImplementsRunnable runnableObjl = new ImplementsRunnable (“thread2”);
Thread thread? = new Thread(runnableobjl); //creates a thread

// create a runnable object and a thread pool
ImplementsRunnable runnableObj2 = new ImplementsRunnable (“thread3”)
ExecutorService threadLauncher Executors.newCachedThreadPool () ;

// initiate the threads
threadl.start(); //initiates thread 1
thread2.start(); //initiates thread 2

// assign a runnable object to a thread in the thread pool
threadLauncher. execute (runnableobj2) ;

threadLauncher. shutdown () ;

System.out.println(“main method has completed its execution”);

OEBPS/images/10.15a.jpg
import edu.sjcny.gpvl.*;
import java.awt.*;
import javax.swing.*;

public class ThrowingExceptions extends DrawableAdapter
{ static ThrowingExceptions ge = new ThrowingExceptions ();
static Game board gb = new Game board(ge, "THROWING EXCEPTIONS");
static BoxedSnowman2 sl;
static String message = "";

public static void main(Stringl] args)
{ string s;

boolean correctxy = false;

int x, y;

OEBPS/images/14.32.jpg
ATM 1 Thread ATM 2 Thread
Lines 15-21

Line 25[€0ut=0= shared.getCounter ();
Line 26 Entered timed waiting state
Lines 15-21
Line 25 gouit=0=shared.getCounter();
. Line 26 Entered Timed waiting state
Line 27 shared.setCounter (0 + 1):
Lines 28 Output: 1
Lines 15-21
Line25count=1=shared.ge
Line 26 Enter timed waiting state
Line 27 shared.setCounter (0+1):

Lines 28 Output: 1

OEBPS/images/10.17.jpg
FE oo o 0 w0

public class OffBoardException extends RuntimeException
! public OffBoardException ()

! super () ;

;ublic OffBoardException (String mes

OEBPS/images/10.18a.jpg
B W W W W W W W L W 1) B 1 DD R 1) B 1 DD R R S S 0 @) Gy U1 W b

PSRl R R vl R Rt ST R SRR = R =R R TR TR =Y

import java.io.IOException;

public class DefinedExceptionClass

public static void main(String[] args)

for (int i:

catch (OFfBOATAEXCEPEION =) //a child of RuntimeException

System.out.print ("Caught by the OffBoardException " +
"catch block: ");
System.out.println(e.getMessage());
)
catch (REREIMEEXCEPEIOGN <) //a child of Exception

System.out.print ("Caught by the RuntimeException " +
"catch block: ");
System.out.println(e.getMessage());
}
catch (EXEEpEIoNl €) //a child of throwable

System.out.print ("Caught by the Exception catch bloc
System.out.println(e.getMessage ());
}
}

}
public static void test(int path) [ENEGWSIEXCEpticn

£ (path

1) //throw an Exception object

throw new Exception("a message attached to an Exception object");
}

£ (path

//throw a RuntimeException object

throw new RuntimeException("a message attached to a " +
"RuntimeException object");

}

£(path == 3) //throw an OffBoardException object

OEBPS/images/10.16c.jpg

OEBPS/images/10.16d.jpg

OEBPS/images/10.16a.jpg
. enter the snowman’s X coordinate
/6o

OEBPS/images/10.16b.jpg

OEBPS/images/10.15b.jpg
16
17
18
19
20
21
23
24
25
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
14
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
€0
61
ez
€3
64

while (GOEFECEXY==)false) //x or y is not valid
{ s = JoptionPane.showInputDialog("enter the snowman's " +
"X coordinate");
x = Integer.parselnt(s);
s = JOptionPane.showInputDialog("enter the snowman's " +
"Y coordinate");

y = Integer.parseInt(s);

try
{

|Sky=pnewyBoxEaSnOWMaN2 (XY COLOEFBLUE) ;//<xception produced?
} //end try

{
JOptionPane. showMessageDialog (null, [exgetMessage));

} //end catch
} //end while

showGame board (gb) ;

}

public void draw(Graphics g)
{

g.setColor (Color.BLACK) ;

g.setFont (new Font ("Arial", Font.BOLD, 18));

}

public void keyStruck(char key)
{ int newx, newy;

‘message = "'
{
switch (key)
{
case 'L

{
newx = sl.getx() - 2;
SIEsSTR(meWX); //could cause an exception
break;

}

case 'R':

{
newx = sl.getx() + 2;
s1.setX(newx); //could cause an exception
break;

OEBPS/images/10.15c.jpg
tion

break;

¥

case 'D':

tion

OEBPS/images/10.18b.jpg
i

throw new OffBoardException("a message attached to an " +
"offBoardException object");

OEBPS/images/14.31.jpg
1
3

An ATM shutting down
An ATM shutting down

[RESERR

An ATM shutting down

3

An ATM shutting down
With Synchronization Without Synchronization

OEBPS/images/14.30.jpg
public class C

{

unter

private static int counter =

public int getCounter()
{
return counter;

¥

public void setC
{
counter = value;

¥

unter (int value)

public static void outputC
{
System.out.println(counter);

¥

unter ()

OEBPS/images/6.20a.jpg
. -0Q 0Q Q Q@ 0

OEBPS/images/14.3.jpg
Tov G W

10
11
12
13
14
15

public class ImplementsRun:
{

private String n:
private int nLin

me ;

public Imp:

public void run() /
{

Sys
¥

m.out.println(

ntsRunnable (String n

ble implements Runnable

ntry point

scuting”) ;

OEBPS/images/6.20.jpg

OEBPS/images/14.29.jpg
1 public class AtmTransaction implements Runnable
2 {

3

4

5

6

5

M

9

public void run()
{

int count;

while (true)
{
//u:
try
{
synehzonizea(sharea) //incre
{

£ a

ynchronized st.

if (shared.getCounter >= 3

e end of time quantum

pro

System.out.println("aAn ATM is shutting down
}

OEBPS/images/6.2.jpg
age3=new Sc r(System.in) .nextInt();|age[3]=new Scanner (System.in).nextInt();

age3 = age3 + 1; age[3] = age[3] + 1;

System.out.println("Your age is" + [System.out.println("Your age is" +

age3); age(3]);
if (age3 >= 18) if(age[3] >= 18)
{ {
System.out.println("You can " + System.out.println("You can " +

"Drive now"); "Drive now");

¥ ¥

double avghge = averageTwo (age0, double avghAge = averageTwo(age[0],

agel) ; age[l]);

Without arrays With arrays

OEBPS/images/14.28.jpg
util.concurrent.ExecutorService;
util.concurrent.Executors;

3
4 public class SynchronizedStatement
5 {

6 public static void main(Stringl] args)
8

{

.shutdown () ;

OEBPS/images/6.19b.jpg
50 public boolean getVisible()

51 { return visible

52}

53

54 public veid setVisible (boolean newvisible)
55 { visible = newvisible;

56}

57

58 public veid setName(String newName)

59 { name = newName;

0 ¥

1

public String get
{ return name;

¥

3
3
3
3
3
3

G

OEBPS/images/14.27b.jpg
50
51
52
53
54
55
56
57
58
59
1]
31

G

if (consumedba

{

ali-1]

true)

System.out.print (" " + i)
¥
¥
System.out.print ("\nTimes consume
for (int i i<=10; it+4)
{
if (consumedDa

{

i-11 true)

System.out.print (" " + timesConsumed(i-11):

¥

OEBPS/images/6.19a.jpg
import

public class SnowChild
{

3
4
5 private int x = §;
6
;
.

private int y = 30;
private boolean visible = true;

private STring name;

public SnowChild()

g.s
g.setFont (new Font ("Ar: » Font.BOLD, i

31 g.drawstring(name, x + 10, y + 33); /

2)

33

34 public int getx()

35 { return x;

36)

37

38 public veid setX(int newx)

39 { % = newx;

0)

a1

42 public int gety()

43 { return y;

4y

45

46 public veid setY(int newY)

47 { y = newy;

5)

OEBPS/images/14.27a.jpg
import util.Random;

import java.util.concurrent.ArrayBlockingQueue;
3

4 public class Consumerv3 implements Runnable

5 {

6 ArrayBlockingQueue <Integer> sharedData;

7 int[] timesConsumed = new int[10];

8 boolean[] consumed = new boolean[10];

9

¥

public void run()
{

Random delay = new Random();
Integer dataltem = 0;
for (int i i <= 10; i++)

xtInt (10) + 1);

¥
outputConsumedSummary () ;

¥

private void outputConsumedSummary ()

{

{
¥
System.out.print (
for (int i

OEBPS/images/6.18b.jpg
g.setColor (Color.BLACK) ;

g.fillRect(x + 15, y, 10, 15);
g.fillRect(x + 10, y + 15, 20,

g. (Color.WHITE) ;

g.filloval(x + 10, y + 17, 20, 20);
g.filloval(x, y + 37, 40, 40); //body
g.setColor (Color.RED) ;

//nose
lor (Color.BLi
tFont (new Font ("Arial", Font.BOLD, 16€));

rawString(name, x + 16, y + 62); //n.

)i

¥

public int getX()
{ return x;

¥

public void setX (int newx)
{ x = newX;

¥

public int get¥()
{ return y;

¥

public void setY(int newy)
{ y = newy;

¥

public boolean getVisible()
{ return visible

¥

public void setVisible (boolean newvisible)
{ visible newvisible;

¥

60
61 public String getName()
62 { return name;

63}

64}

OEBPS/images/14.26.jpg
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;

public class Producerv3 implements Runnable
{
ArrayBlockingQueue <Integer> sharedData;

dom delay = new Random();

@ oG W

public Producery3 (AFFayBOCKINGQUSUS <INTEgSEs ShareaData)
{

this.sharedD:
}

public void run()
{

(10) + 1)

System.out.println("Produced " + i);
¥

catch (InterruptedException e)

{

¥

OEBPS/images/6.18a.jpg
import J Wt X;

public class Pa

{

entSnow

private int x = §;
private int y = 30;
private boolean visible = true;

private SeEing nanel

public Pare:

0

s g) //g is the ga

OEBPS/images/14.25.jpg
Produced
nsumed
Produced
Consumed
nsumed
Produced
Produced
Consumed
Produced
Consumed
Produced
Consumed
Produced
nsumed
Produced

nsumed
Consumed
Produced
Produce.
Consumed
nsw
Times consumed:

RO om Mmoo ;e s ww e
A
f
|
|

OEBPS/images/6.17.jpg
o o o s W 0 b
=

[
o

T
=g

14

I EEREE
EREN

30
31
32
33
34
35
36
37
38
39
40
a1
42
43
4
45
46
47
48
49
50

import edu.s;
import java.awt.
import java.util.Random;

public class ParallelArrays extends DrawableAdapter

{
static ParallelArrays ge = new Parallelrrays();
static GameBoard gb = new GameBoard(ge, "Parallel Object Ar:
static ParentSnowman[]
static SnowChild[]

public static void main(String[] args)

{
Random rn = new Random(500);

int %, y;

i< 5 i)

% = 100 + rn.nextInt (500 - 100 - 30);
extInt (500 - 30 - 30);

}

public void draw(Graphics g)
{
i<5; i+4)
[i].show(g) 7

child[i].show(q);

public void keyStruck (char key)
{

int x, y;

for(int i = 0; i< 5; i++)

(
ERSEETEEEEGEEROR

SEpp") ;

OEBPS/images/10.19.jpg
Caught by the Exception catch block: a message attached to an Exception object
Caught by the RuntimeException catch block: a message attached to a RuntimeException object
Caught by the OffBoardException catch block: a message attached to an OffBoardException object

OEBPS/images/14.24.jpg
@ oG W

9
10

util.concurrent.ExecutorService;
util.concurrent.Executors;
a.util.concurrent.ArrayBlockingQueue;

import J
import
import ja

public class PCThreadSyncAPT
{
public static void main(String(] args

{

execute (producerThrea
launcher.execute (consumerThr:

launcher. shutdown () ;

OEBPS/images/6.16.jpg
999

age gpa
15647 18 17
3452 El 255
76802 1 40
34376 2 385
77834 1 33
15823 20 23

Arsinfo
Flo's irfo.
Bobisinfo
Josinfo
Eds ifo.

Jen's info.

OEBPS/images/10.2.jpg
try

{
ement block

ute the statements in this sta

//try to exe

¥
catch (ExceptionClassl thrownObjectl)

o execute when an ExceptionCl object is thrown

52 thrownobject2)

execute when an ExceptionCl t is thrown

t is thrown

OEBPS/images/6.15.jpg
x
N ol
2 1
x N
X n
1 1
. ~

‘1 w1 s
I Cax [

(a) Initial output (b) Output after several reflections

OEBPS/images/10.8.jpg
L 0 B 1D B 1 0D B3 1D D) 1 S S S 0 @] Oy U W)

R A R R R R =R e =R N T N S =

import javax.swing.*;

public class ParsingNumerics

public static void main(String[] args)

String input;
String[] tokens;
double sum = 0;
String numeri

input = JoptionPane.showInputDialog("Enter a String containing " +
"numerics") ;

for (int i = 0; i<tokens.length; i++)

try

USSR IO BAESEDoUBIE(ESKERSIEINE //only numeric added
nUmeriCs = nuner CS okenS PRSI //bui 1d output string
}
catch (NumberFormatException e) //non-numeric

//prevents termination of application when exception is thrown
}

} //replace the last plus sign with an equals and produce the output
numerics = numerics.substring (0, numerics.length() - 2) + "= ";
JoptionPane. showMessageDialog (null, NUMSEiEs|Fysum) ;

}

OEBPS/images/10.png
TP It is good coding style to declare all variables at the beginning of a program.

OEBPS/images/10.5c.jpg
Message

15/4 =3, with a remainder of 3

OK

OEBPS/images/10.6.jpg
import javax.

W W W W W W W W W W R B 1) 1 1 0 R 1) D 1 S R S 10 0 - Oy U1 W 0D

B SR e RSt Rd oS omamtmmo b o

wing.*;
public class MultiplecatchBlocks

public static void main(String[] args)

String sa, sb;
int a = 0;

int b = 0;

int quotient = 0;
int remainder = 0;

sa = JoptionPane.showInputDialog ("This program calculates " +
"a / b\nEnter the value of a");

|EI=)InteGeEIpATSETRENSa)E //throws a NumberFormatException
sb = JoptionPane.showInputDialog ("Enter the value of b");
Dy=pIntegeryparseInty(sb) //throws a NumberformatException
quotient = a / b;
remainder = a % b;

} //end of the try block

catch (ArithmeticException e) //process divide by zero

JoptionPane. showMessageDialog (null, "Division by zero " +
"is undefined. \n" +
"\nThe program is ending");
system.exit (0);
} //end of the first catch block
catch (NERBEEFOERAtEREEPEIGAIE) //process non-integer input
JoptionPane.showMessageDialog (null, "Enter only digits " +
"for the operands." +
"\nThe program is ending");
system.exit (0);
} //end of the second catch block
JoptionPane.showMessageDialog(null, & + " / " + b + " = " +
quotient + ", with a " +
"remainder of " + remainder)

OEBPS/images/10.4b.jpg
i

o

n

o

SSGRGSEEERUAGROEECRNan ROl a0

B W0 W W W W W W W W R 1D B 1 D) B 1) B 1 L)

JoptionPane. showInputDialog ("This program calculates a / b " +
"\nEnter the value of a");

a = Integer.parselnt(s);
s = JoptionPane.showInputDialog ("Enter the value of b");
b = Integer.parseInt(s);
for (int i ; i++) //three attempts to divide a and b
try
|GEGEIEREN=NEN/IB: //throws an ArithmeticException
remainder = a % b;
|BE@aK //ends the for loop and Line 43 executes
}
catch (ArithmeticException e)

3) //three attempts to divide have not been made

s = JoptionPane.showInputDialog ("A divisor cannot be zero." +
"\nPlease re-enter it");
b = Integer.parselnt(s);
}
else

JoptionPane.showMessageDialog (null, "Division by zero " +
"is undefined \n" +
"The program is ending");
SYSEEmUERIEN0) //terminate the program
}
} //end of the try-catch construct
}//end of for loop
JoptionPane.showMessageDialog(null, a + " / " + b + " = " +
quotient + ", with a " +
"remainder of " + remainder)

OEBPS/images/10.5.jpg
@ 15/4=3, with a remainder of 3

OEBPS/images/10.3.png
try blocks.

catch
blocks

-

——

Execute the n® t -y
block statement

Exception
thrown?

try block yes

finished?

Exectte the statements in the catch block whose
parameter is the type of the thrown exception object

I

Statements that follow the catch blocks

OEBPS/images/10.4a.jpg
Qo0 W e

import javax.swing.*;

public class ProcessingBxceptions
{
public static void main(String[]
{
string s;
int a, b;
int quotient = 0;
int remainder = 0;

args)

OEBPS/images/10q.jpg

OEBPS/images/11.11.jpg
Qo0 W

import java.util.Optional;
import javafx.application.Application;
import javafx.scene.Scens;

import javafx.scene.control.TextInputDialog;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class FirstFXApplication extends Application
{
Goverride
public void start(Stage primaryStage)
{
Optional response;
‘TextInputDialog inputDialeg = new TextInputDialeg("Mary");
inputDialog.setTitle ("Input dialog box");
inputDialog.setHeaderText (null);
inputDialog.setContentText ("Enter your name

do
{
‘response = inputbialog.showAndWait () ;

} Whilen(responses15sPrEsent () ==/false) ;//nc nere entered

ackPane root = new StackPane();
ene scene = new Scene (root, 450, 300);

primaryStage.setTitle (response.get() +

" is using this program");
age.setScene (scene) ;
primarystage.show();

public static void main(String[] args)
{
launch (args) ;

}

OEBPS/images/102.png

OEBPS/images/11.21.jpg
‘public void buttonClickHandler (ActionEvent &)
{

1

3 string s;

4 oubl

5 DecimalFormas

3

7 (if (e.getSource() == compute)
8 {

(") ;
bvalue.setText ("") ;
sum. setText ("x, xxx.xx") ;

OEBPS/images/11.19c.jpg
98

avalue.setText ("");
bValue.setText (")
sum. setText ("x, xxx.xx");

}

public static void main(String[]
{
launch(args) ;

}

args)

OEBPS/images/11.2.jpg
1 import edu.sjcny.gpvl.*;

2 import javax.swing.JOptionPane;

3

4 public class CenteredMsgBox extends DrawableRdapter

54

6 static CenteredMsgBox ge = new CenteredMsgBox ();

7 static GameBoard gb = new GameBoard(ge, "My Game");

8

9 public static void main(string args(])

0

11 showGameBoard (gb) ;

12 JoptionPane. showMessageDialog (@b, "A Messages Box Centered " +
13 "in the Game Board Window");
14 showGameBoard (gb) ;

15}

16}

OEBPS/images/11.19a.jpg
Qo0 W e

R R SR

st

20

import java.text.DecimalFormat;

import java:
import java:
import java:
import java:
import java:
import java:
import javat

.application.Application;
.event.*;

X.geometry. *;
x.scene.Scene;
x.scene.control.*;

%

%

I

.scene.layout.*
.scene. text.Font;

import javafx.stage.Stage;

public class AddingMachineV2 extends Application

{

Label description, plus, equals, sum, a, b;
TextField aValue, bValue;
Button compute, clear;

@override
public void start(Stage primaryStage)
{
//stepl: Declare the component cbjscts,
description = new Label ("Computes a
description.setFont (new Font ("Arial",
avValue = new TextField();
avValue.setPrefsize (120, 30); plus = new Label("+");
plus.setFont (new Font ("Arial", 24));
bvalue = new TextField();
bvalue.setPrefsize (120, 30); equals = new Label ("=");
equals.setFont (new Font ("Arial, 24));
sum = new Label ("X, Xxx.xx");
sum. setFont (new Font ("Arial", 16));
sun. setMinWidch (68) ;
a = new Label("a");
a.setFont (new Font ("Arial, 24));
b = new Label("b");
b.setFont (new Font ("Arial", 24));
compute = new Button (" Compute ") ;

Set their properties

OEBPS/images/11.19b.jpg
clear = new Button (" Clear ");

Tooltip.install (clear, new Tooltip("Clears operands and result"));

//Step 3: Declare the component container, and set its properties
GridPane grid = new GridPane();

grid.setHgap(10);

grid.setvgap(10);

grid.setPadding (new Insets(10, 0, 10, 10))

grid.setHalignment (description, HPos.CENTER);
grid.setHalignment (a, HPos.CENTER);

grid.setHalignment (b, HPos.CENTER);

grid.setHalignment (compute, HPOS.CENTER);
grid.setHalignment (clear, HPOS.CENTER);

@

//step 4:
grid.add
grid.add
grid.add
grid.add
grid.add
grid.add
grid.add
grid.add
grid.add
grid.add

the components to the component container
description, 0, 0, 5, 1);
avalue, 0, 1, 1, 1);
plus, 1, 1, 1, 1);
bvalue, 2, 1, 1, 1);
equals, 3, 1, 1, 1);
sum, 4, 1, 1, 1)

a, 0,2, 1, ;

b, 2, 2, 1, 1);

compute, 0, 3, 1, 1);
clear, 2, 3, 1, 1);

Scene scene = new Scene(grid); // add the container to the scene
primar
primar
primar

age.setTitle("Calculator");
age.setScene (scene) ;
age.show () ;

}

oot vl catpnsstlusl st e)]
{

string s;
double a, b, result;

DecimalFormat f = new DecimalFormat ("#,##0.00");
s = aValue.getText();

a = Double.parseDouble (s) ;

s = bvalue.getText () ;

b = Double.parsebouble (s) ;

(result));

OEBPS/images/11.13.jpg
Qo0 W

11
12
13
14
15
16
17
18
19
20
23
24
25
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

import
import.
import.
import.
import.
import.
import.

java.util.*;
appli

Javafx.event.
Javafx.scene.

Javafx.scene
Javafx.scene

Javafx.stage.

cation.*;
.

*;

.control.*;
.layout.*;
;

public class ChoiceDialogBoxes extends Application

{

@override
public void start(Stage primaryStage

{

StackPane root = new StackPane();

Scene scene =

new Scene(root, 450, 300);

primaryStage.sets

ene (scene) ;

primarystage. show() ;

‘private static Optional getStanding()
{

string[]

choices = {"Freshman", "Sophomore",

"Junior",

"Senior"};

dialog.setTitle ("Choice Dialeg");
dialog.setHeaderText (null);
dialog.setContentText ("Select your class standing”);

}
e
{
}
}

{
‘return response;
1s,

e

public static void main(string[] args

{

launch(args) ;

}

OEBPS/images/11.17.jpg
Qo0 W e

2

import
import.
import.
import.
import.
import.
import.
import.

javafx.
javafx.
javafx.
javafx.
javatx.

application.Application;
event.*;

geometry.*;

scene.Scene;
scene.control.*;
scene.layout.*;

scene. text.Font;
stage.Stage;

public class AddingMachine extends Application

{
‘Label description, plus, equals, sum, a, b;
‘TextField avalue, bvalue;
‘Button compute, clear;

@override
public void start(Stage primaryStage
{

//stepl: Decla

e the camponent objects, Step2:

‘description = new Label("Computes a + b");
‘description.setFont (new Font("Arial", 24));
avalue = new TextField();
‘avalue.setPrefsize (120, 30);
plus = new Label("+");
plus.setFont (new Font ("Arial",
bValue = new TextField();
bValue.setPrefSize (120, 30);

t their properties

24));

equals = new Label ("=

")
als.setFont (new Font ("Arial",

24));

sum = new Label ("x,xxx.xx");
sum.setFont (new Font ("Arial", 24));
‘sum. setMinWidth (€8) ;.

a = new Label("a");

a.setFont (new Font ("Arial", 24));

b = new Label("b");

b.setFont (new Font ("Arial", 24))

compute = new Button(" Compute ")
Clear)

clear = new Button ("

OEBPS/images/26.png
! Several numeric inputs, separated by at least one space, can be input on the same
TIP line.

OEBPS/images/25.png
When a key on the keyboard is held down, it transmits characters 20 times a second
just as if the key was being pressed and released 20 times a second. For this reason,
to control the motion of game pieces, key strokes are preferred over button clicks.

!
TIP

OEBPS/images/24.png
A common mistake made when coding simple Boolean expressions is to code the
equal to operator as a single equal (=) keystroke, which is interpreted by the transla-
tor as the assignment operator. Think of this operator as "is equal” to (= =).

!
TIP

OEBPS/images/23.png
Endnotes and References

OEBPS/images/21.png

OEBPS/images/20.png
! It is good programming practice not to use the names of class variables for naming
TIP local variables declared inside of methods.

OEBPS/images/2.png

OEBPS/images/11.22c.jpg
54
55
56
57
58
59
€0
61
ez
63

brush
brush
brush

brush
brush

.setStroke (Color.BLACK) ;

.filloval(0, 51, 37, 37); //Body's xUL, yUL,
.strokeoval (0, 49, 38, 37);

brush.
.strokeoval(9, 32, 21, 19);
.setFill (hatColor);

brush.
brush.

filloval(9, 32, 18, 18); //Head

illRect (10, 28, 20, 6); //Hat brim
illRect (14, 17, 12, 15); //hat

n

OEBPS/images/2.4.png
age firstName

The String object at
memory address 1096

OEBPS/images/11.24.jpg
Qo0 W e

11
12
13
14
15
16
18
19

import javafx.application.Application
import javafx.scene.Scene

import javafx.scene.canvas.*;
scene.layout.Pane;
import javafx.scene.paint.Color
import javafx.stage.Stage;

public class DrawingShapesl
{

private SnowManOniACanvas sml;

public void start(Stage primaryStage
{
//stepl: declare the components, Step2: set their properties
sml = new SnowManOnACanvas (280, 40, Color.BLUE);

// Step 3: Declare the container and set its properties

// Step 4: Rdd the components to the component container

Scene scene = new Scene(root, 600, 300, Color.LIGHTGRREY);

primaryStage.setTitle ("Drawing On a Canvas!");
primaryStage.setscene (scene);
primarystage.show () ;

OEBPS/images/18.png
Programming Exercises

OEBPS/images/11.22a.jpg
W

import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext
import javafx.scene.paint.Color;

OEBPS/images/17.png

OEBPS/images/11.22b.jpg
<o wm

11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

public class SnowmanOnACanvas

{

private int x, y;
private Color hatColor;
private Canvas canvas;

{

}

public int getx()
{
return x;

}

public void setX(int newx)
{
X = newx;
canvas.setLayoutx (x);

}

public int gety()
{
return y;

}

public void set¥(int newy)
{
y = newy;
canvas.setlayout¥ (y);

}

public Canvas getCanvas ()
{
return canvas;

}

public void draw()

{

(CanVASI=InEWICAAVAS (40;S0) //Width and height of the canvas
[canvas:setIayoutX (%) //X position of the Canvas' upper left corner (UL)

canvas. setlayout? (n); /7

brush.setFill (Color.WHITE) ;

OEBPS/images/11.29.jpg
Qo0 W e

R R SR

st

N
B2 m

©

23
24
25
26
28
29
30
31
32
33
34
35
36
39
40
41
42
43

import javafx.application.Application;

scene.Scene;
scene.layout.Pane;
scene.paint.Color;
stage.Stage;
event.ActionEvent;
util.puration;
animation.KeyFrame;

import javafx.animation.Timeline;

public class Enimation3 extends Application

{

private SnowManCanvas sml;
private double speedX, speedy;

public void start(Stage primarystage)

{

tLl.setCycleCount (430);
til.play();

Scene scene = new Scene(root, 600, 300, Color.LIGHTGRREY);

primaryStage.setTitle ("Animation Using a Timeline
primaryStage.setScene (scene);
primarystage.show () ;

public void kFlKeyFrameHandler (ActionZvent)

{

OEBPS/images/11.29b.jpg
44 {

45 speedX = -speedX;

46 speedY = -speedY;

47 }

8 =ml.getCanvas () .setTranslateX (sml.getCanvas () .getTranslateX () +
speedX) ;

19 sml.getCanvas () .setTranslateY (sml.getCanvas () .getTranslate¥ () +
speedy) ;

50)

51

52 public static void main(Stringl] args)

53

54 launch (args) ;

55}

56 }

OEBPS/images/11.26a.jpg
@ oG W

9

35
36
37

import
import
import
import
import
import
import

ion.Application;

.input.MouseEvent;
.input.MouseButton;

WO

public class Animation2 extends Application

{

private SnowM:
double deltaX,
boolean smlClicked

public void start(s
{

sml = new Snowl

280, 40, Color.BLUE);

= new

left click

$£((e.getBuLton() == MouseButton.PRIMARY)) /
{

[ifl(e.getxX() > sml.getX() + sml.getCanv:

=() .getTranslateX()

113

OEBPS/images/11.26b.jpg
() < sml.getX() + sml.getCanvas () .getTranslateX() + 40 &&
[GetY() > sml.get¥() + sml.getCanvas().getTranslate¥() &6
40 e.get¥() < sml.get¥() + sml.getCanvas()

48 smlClicked = false;

53 public void mouseDraggedHandler (MouseEvent e
54 (

55 if (smiClicked == true && e.getButton(
56 {

57 sml.getC
58 sml.get:

MouseButton.PRIMARY)

0 ¥

1

public static void main(String[] args
{
launch

gs) ;
¥

SR

OEBPS/images/11.25a.jpg
e e

import javafx.
import javafx.
import javafx.
import javafx.
import javafx.

application.Application;
scene.

scene
scene
scene

Scene;
.canvas.*;
.layout.Pane;
.paint.Color;

OEBPS/images/11.25b.jpg
<o

11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42

43
14
45
46
47
48
49
50

import javafx.stage.Stage;
public class Enimationl
{

private SnowManOniACanvas sml;

public void start(Stage primaryStage

{

//stepl: declare the components, Step2: set their properties
sml = new SnowManOnACanvas (280, 40, Color.BLUE);

// Step 3: Declare the container and set its properties
Pane root = new Pane();

// Step 4: Add the components to the component container
root.getChildren () .addall (sml.getCanvas());

Scene scene = new Scene(root, 600, 300, Color.LIGHTGRREY);

primaryStage.setTitle ("Annimation Using the Keyboard")
primaryStage.setScene (scene);
primarystage.show();

}
‘public void keyEventHandler (KeyEvent)
{

int speed = 4;

(if (e.getCode() == KeyCode.RIGHT)
{
- sml.getCanvas () . setTranslateX (sml.getCanvas () .
‘getTranslateX() + speed);
}
else if (e.getCode() == KeyCode.LEET
{
- sml.getCanvas () .setTranslateX (sml.getCanvas () .
‘getTranslateX() - speed);
}
}

public static void main(string[] args
{

launch(args) ;

OEBPS/images/11.33.jpg
Button btnl = new Button("A Button");

(a
new Button("A Button");
TextField tf2 = new TextField("3 componets in
("A Label");

an HBox");

VBox") ;

o

OEBPS/images/11.36.jpg
1 import javafx.application.Application;
2 .scene.Scene;

3 .scene.control.Button;

4 .scene.control.Label;

5 .scene.control.TextField;

6 .scene.layout.FlowPane;

7 .geometry.Insets;

8 .scene.text.Font;

9 import javafx.stage.Stage;

10

11 public class FlowLayoutGUI extends Application

12 {

13 Button rst, second, third;

14 Label fourth;

15 TextField the

16

] @override

18 public void start(Stage primaryStage)

19 {

20 //Steps components their proj
21 izt = mew Dutton(vAddea Firotn;

22 second = new Button("Added Second, Larger Font Sets Row's Height");
23 second. setFont (new Font ("Sherif”, 22));

24 third new Button("Added Third, Could Not Fit in Row 1");
25 fourth = new Label ("Added Forth, This Component's Width Forces " +
26 "Fifth Component to Next Row");

27 fifth = new TextField("Fifth Component");

28 fifth.setPrefwidth(150);

29

30 //Step 4: add the components to the container

31 Flowpane root = new FlowPane (20, 10, first, second, third, fourth,
32 rifen);

33

31 Scene scene = new Scene (root, 600, 180);

35

36 primaryStage.setTitle ("Flowlayout Pane");

7 primaryStage.setScene (scene);

38 primarystage.show () ;

39 }

40

41 public static void main(String[] args)

4z {

13 launch (args) ;

44 }

45 }

OEBPS/images/11.31b.jpg
0w oo oo
saiea

prefsize (120, 30);
Font (new Font ("Ar:
youtx (395) ;

youty (50) ;
Prefsize (120, 30);
Font (new Font ("Aria
youtx (105) ;

youtY (85) ;

Prefsize (20, 30);
eight (30)

Font (new Font ("Arial", 24));
LayoutX (275) ;

youtY (85) ;

Prefsize (20, 30);
PrefHeight (30) ;

.setFont (new Font ("Arial", 24));
.setLayoutx (70);
.setlayouty (120);
.setPrefsize (90,

a o

t:
€.
€.
€.

BOG o a

oin i i D i i

25);

¥

public void comput:
{

dler (ActionEvent e)

string s;

b, result;

DecimalForn £ = new DecimalFormat ("#, 40

LgetTexc();
.parseDouble (=) ;
LgetTexc();
.parseDouble (s) ;

L00");

OEBPS/images/11.31c.jpg
97 sum. setText (£.format (result));
98)

99
100
101
102
103
104
105}

106 public static veid main(String[] args)
107

108 launch
109}

110 }

ClickHandler (ActionEvent e)

() ;
()

gs) ;

OEBPS/images/11.31a.jpg
import
import
import
import
import
import
import
import

.application.Application;
.ActionEvent;

o BB R

public class AddingMachineV3 extends Application
{
Label description, plus, eq
TextField avalue, bvalue;
Button compute, clear;

1s, sum,

@override
public void start(Stage primaryStage)
{

// step 1, decl

TextField();

new Label ("+");

new TextField();

el ("=");

el ("x, xxx.xx");

)i

1("b");

compute = new Button(" Compute ")
clear = new Button (" Clear ");

// step ecify the comp

Prefsize (300, 30);

Font (new Font ("Arial", 24));
(607

. (507
.setPrefsize (120, 30);
.setFont (new Font ("Aria
youtx (195) ;

youtY (50) ;
tPrefSize (20, 30);
tFont (new Font ("Arial", 24));
outX (365) ;
outY (50) ;
tPrefsize (20, 30);
tFont (new Font ("Ar:
outx (230) ;
outY (50) 7

oaaa

in

", 24));

oo

@

o i i

OEBPS/images/11.8.jpg
Qo0 W e

T
S ombntemb o

©
b

)
o

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.layout.Pane;
import javafx.stage.Stage;

public class BasicProgramTemplate extends Zpplication
{

@override

public void start(stage primarystage)

{

primaryStage.setTitle ("An FX program window

}

public static void main(string[] args)
{
launch (args) ;

}

OEBPS/images/11.4.jpg
© @ U W

021 00 B3 10 D) 1 00 B3 1 B b b b b b
slsuronlabobanhoh -

import javax.swing.JOptionPa

public class EnhancedDialogBoxes
{
public static void main(String[] args

{

string sl, s2;

// Titled me

or icon
JoptionPane.showMessageDialog (null, "The Disk I/0 Failed

‘JoptionPane.ERROR MESSAGE).
// Input box with a default input
51 = JOptionPane.showInputDialog("Enter your Class Standing",
"Sophomore") ;

/ B Non-default icon titled Input box, a valid set of inputs

s2 = [SEEiNg) JoptionPane.showInputdDialog(null, "Select your " +
"class standing",
"Standing”, 3,
null,
inputoptions,
inputoptions[2])

System.out.println(sl + " " + 52);

OEBPS/images/11.5.jpg
ERROR

@ meviskioraies f—""—'—""—'f%” e
‘Sophom¢
& | e
L = L =
@)

i Standing

- Selectyour class standing

OEBPS/images/11.38.jpg
Qo0 W e

2

application.Application;
geometry.*;
scene.control.*;
scene.layout.*;
scene.text.Font;

import javafx.scene.Scens;
import javafx.stage.Stage;

public class AddingMachineV4 extends Application

{

Label description, plus, equals, sum, a, b;
TextField aValue, bValue;
Button compute, clear;

@override

public void start(Stage primaryStage)

{
//Step 1: Declare the component objects, Step 2
description = new Label ("Computes a + b");
description.setFont (new Font ("Arial", 24));
avalue = new TextField();
avalue.setPrefsize (120, 30);
plus = new Label ("+");
plus.setFont (new Font ("Arial", 24));
bvalue = new TextField():
bvalue.setPrefsize (120, 30);
equals = new Label("=");
equals.setFont (new Font ("Arial", 24));

set their

properties

OEBPS/images/11.38b.jpg
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
-,

58
59

60
61
ez
€3
64
€5
66

}

sum = new Label ("x,xxx.xx");

sum.setFont (new Font("Arial", 16));

sum. setMinWidth (68) ;

a = new Label("a");

a.setFont (new Font ("Arial", 24));

b = new Label("b");

b.setFont (new Font ("Arial", 24));

compute = new Button(" Compute ");

clear = new Button (" Clear ");

Tooltip.install (clear, new Tooltip("Clears operands and result"));

top.setAlignment (Pos.CENTER) ;

center.setAlignment (Pos.CENTER) ;
center.setPadding (new Insets(15));

bottom.setAlignment (Pos.CENTER) ;

age.setTitle ("BorderPane Layout Calculator");
age.setScene (scene) ;
age.show () ;

primar
primar

public static void main(string[] args)

i

launch(args) ;

OEBPS/images/12.10c.jpg
SEaISGRIDB

Q||
f

R

P
oS

[P —
gy

80

4

AR

0 omooo o
R AR I

[SR=RCE:

[ERn s

298

100
101
102
103

¥

public static void m

{

primaryStage.show() ;

launch

args);

order = order + "a Sa

tSource () == chickenSoupItem)

order = order + "Chicken Soup";

tSource() == bltItem)

order = order + "a BLT Sandwich";

etSource () hamburgerItem)

order + "a Hamburger";

tSource() == tacoltem)

order + "a Taco";

etSource () == chililtem)

order = order + "Chili";

OEBPS/images/12.13a.jpg
import x.application.Application;
import x.event.ActionEvent;
import x.5cene. Scene;

import x.5cene.control.*;

import x.scene. layout. Stackp
import x.scene.paint.Color;
import x.5tage.Stage

public class PopUpMenu extends Appli
{

ion

Label alabel;
MenuItem red, green, blue, black, orange;

@override
public void start(Stage primaryStage
{

the pop-up m

the menu i
new Menultem("Red");
IIIIIIIIIIIIIIIIIIIIIIII
blue = new MenuItem("Blue");
new Menultem ("B "

setOﬁActloﬁ1e > colorChange!
atorl= new Sep:

new StackPa
() .add(

Scene scene = new Scene(root, 300, 150);

("Pop-Up Menu!

OEBPS/images/12.10a.jpg
@ oG W

import X ion.Application;
import X .ActionEven
import x.5cene. Scene
import x.scene. control. *;
import x.scene
import x.stage.
dedDollarMealMenu extends Application

public class Ex
{

MenuItem

dItem, chickenSoupItem,
acoItem, nacholtem, chiliTtem;

burgerItem, bltItem,

override
public void =

e primaryStage)

OEBPS/images/12.10b.jpg
o

o

e

P A S SR S el R R St R SRl R S Rl SRR R R AR =R

G0 UG UG U1 U1 U1 U1 s i i B G W L W W W W W W D 1 B 1 B 1 1)

//1- Create the menu bar, which is an instance of the class
MenuBar aMenuBar = new MenuBar ();

//2- Create the menus and their submenus
Menu dollarMenu = new Menu("Dollar");
Menu extrasMenu = new Menu("Extras");
Menu sandwichMenu = new Menu("Sandwich");
Menu mexicanMenu = new Menu("Mexican");

//3-Create menu items and sub-menu items. Register event handlers
saladItem = new MenuItem("Salad");

chickenSoupItem = new MenuItem("Chicken Soup");

hamburgerItem = new MenuItem("Hamburger");

bltItem = new MenuTtem("BLT");

chickenSoupItem.setOnAction(e-> dollarMenultemHandler (e));
hamburgerItem.setOnAction(e-> dollarMenultemHandler(e));
bltItem.setOnAction (e-> dollarMenultemHandler(e));
tacoItem.setOnAction (e-> dollarMenultemHandler(e));
nachoItem.setOnAction(e-> dollarMenuIltemHandler (e));
chiliItem.setOnAction(e-> dollarMenuIltemHandler (e))

//4- Bad items to the submenus and items and submenus to the menus
‘SeparatorMenultem separatorl = new SeparatorMenultem();
SeparatorMenultem separator2 = new SeparatorMenuItem();
sandwichMenu.getItems () .addall (hamburgerTtem, bltItem);

mexicanMenu.getItems () .addall (tacoltem, nachoTtem, chiliTtem);
dollarMenu.getItems () .addall (saladItem, chickenSoupltem, SEPAaratorly
sandwichMenu, separator2, mexicanMenu);

//5- Bdd the menus to the menu bar
aMenuBar .getMenus () .addAll (dollarMenu, extrasMenu);

//6- Add the menu bar to the pane container
Pane pane = new Pane();
pane.getChildren () .adda11 (aMenuBar) ;

Scene scene = new Scene(pane, 350, 200);

primaryStage.setTitle ("Expanded Dollar Meal Menu");
primaryStage.setScene (scene) ;

OEBPS/images/11.jpg

OEBPS/images/11.png
! It is good practice to include comments in your program to describe the portions
TIP that are not obvious to the reader.

OEBPS/images/12.17.jpg
Console output:
The path to read the file from is

E:\My Documents\Class Notes\CS210 Class Notes.doex.
The path to write the file to is:

E:My Documents\Class Notes\CS210 Class Notes.doex.

OEBPS/images/12.19a.jpg
1 .Bpplicat
3 eometry.Insets;
4 .Sc

5 .control.*;
5 .layout.VBox;
3 .Stage

8

9

10

11

12 Button pickC

13 VBox root;

14

15

OEBPS/images/12.13b.jpg
49 }
50

extFill (Color.ORBNGE) ;

public static void main(String[] args)

OEBPS/images/12.16.jpg
1 import io.File;
import io.IOException;
import x.application.Application;
import X t.ActionEve:
import x.scene.
import x.scene.
import x.5tage.
import x.5tage.

10 public class Fil:
11

cosers extends Application

12 override
13 public void start(Stage primaryStage) throws IOException
14 (

32 System.out.println("The path to write the file to is:\n" +
33 file.getPath());

new Scene (root, 400,
setTitle("File Chooser D:
setScene (scene) ;

39 primarystage.show () ;

20)

42 public static void main(String(]
43 (
44

45)
46)

o
4

et
)

OEBPS/images/Figure7_26c.jpg

OEBPS/images/Figure7_26b.jpg

OEBPS/images/Figure7_26a.png

OEBPS/images/Figure4_5c.jpg
Your game time is: 10
Game Over
Have a Good Day

OEBPS/images/Figure4_5b.jpg
Your game time is: 5

OEBPS/images/6.25.jpg
S" key Is struck.

OEBPS/images/8.38.jpg
W 0 B 1D B 1 0D B 1D D) K B B S S 0 @) 0y 1 Wb

Cemlourenrobo o ms b

import edu.sjcny.gpvl.*;

extends Dr:
= new Interf:
new Game3

700, 700);

public static void main(String[] args)
{

new TopHat (-
new TopHat (3!
new TopHat (6!
new SnowmanvV:
new Snowman'
items[S] = new Snowmanv'
showGameBoard (gb) ;

}

10, 30, Color.BLUE, 51, 60); //part off
30, 360, Color.BLACK, 51, 60);

00, 640, Color.GREEN, 51, 60); //part off
9(-

9(

9(

10, 120, Color.BLUE, 80, 152); //part off
200, 360, Color.BLACK, 80, 152);
400, 640, Color.GREEN, 80, 152); //part off

public void draw(Graphics g)

for (int 1

if (items[i].candraw (700, 700))

i < items.length; i++)

OEBPS/images/fig3-6b.jpg
. Enter the first number to swap

. Enter the second number to swap

[1111]

(Lo] [cance |

Swapped using parameters: 1111 2222

Enter the second number to swap

1999
Lo]

(a)

IIHE]

. Enter the first number to swap
sss:

[Lox_][conce]

® Swapped using class levels: 9999 8388

OEBPS/images/6.24d.jpg
t.length; j++)

t.length; it++)

OEBPS/images/8.37.jpg
import

public interface Drawa
{
boolean canD:
void show

abledieight) ;

3
4
5
€
5

OEBPS/images/fig3-6a.jpg
You are 10 years old
How old do you wish you were?

—__

(Lo] [comen]

OEBPS/images/10.9.jpg
Message

Enter a String containing numerics

Pl

lease add up 3.4 plus S plu-20KY |

OK

[Lcancet |

@

34+5+.2=64

OK

OEBPS/images/6.24c.jpg
G

oo oo oo o

[

=

pep)
CeSeaREBESsalaaranrEanal

@ @moooonononon -

¥
else
{
parent [index] .setVisible (true);
¥
¥
if (key == 's') //
{
selectionSort (pa:
¥
¥

public static int findValue(ParentSnowman(] parent, String targetValue)
(
int e
for(int i = 0; i<
(
if (parent([i] .getNare () .equalsIgnoreCase (targetvalue))
(

thumber = i;

ntNumber = -1;
rent.length; i++)

return elementNumber;

jomiiie D e mhnlibnEEEa el ez
(

String min = parent[0].get

int ntNumber = 0;

for(int i 1; i < parent.length; i++)

(if (parent[i].getNane () .compareTolgnoreCase (min) < 0)
(

min = parent[i].

ntNumber =

return elementNumber;

¥

public static void s
{
int iMin, tempInt;
Parentsnowman temp!
SnowChild tempChild
string min;

OEBPS/images/8.36.jpg
Abstract Super Class
Definition of the super class Parent

public EBSEFRCEICIEsE Parent
{ public SEstic final int

// .. other stants

10;

public @bstract int extra();

//.. other abstract methods

public void show()
{ sysem.out.println(this) }
//.. other non-static metho

public static int addl(int a)
{ return a + 1; }
other static methods

Heading of a class that extends the
super class Parent
public class Child extends Parent

Interface

Definition of the interface AnInterface

public intdrface Aninterface
{ public int a = 10;
// .. other

stants

public int extra();

// .. other abstra

t signatures

public defdult veid show()
{ Sysem.out.println(this) }
//.. other non-static methods

public static int addl(int a)
{ return a + 1; }
other static methods

Heading of a class that implements the

interface AnInterface

public class AClass implements AnInterface

OEBPS/images/fig3-5.jpg
1 import javax.swing.JOptionPane;

3 public class MethodsAndParms

4

5 static int

6

7 public static void main(String[] args

8 {

9 int desiredhge, first, second, difference; // local V:

10

11 desiredAge = inputInteger("You are " + a + " years old" +

2 "\nHow old do you wish you were?"):
13 difference = [dif(desirednge, &)

14 JoptionPane. showMess log(null, + "Only " + difference +
15 " Years to go");

16

17 first = inputInteger ("Enter the first number to swap");

8 cond = inputInteger ("Enter the second number to s

19 swapParameters (first, second);

opiongans.sheessageSislog (i, "Suapped using parameters: ¢

a = inputInteger ("
b = inputInteger ("
swapClassLevels () ;

nter the first number to swap");
Enter the second number to swap”);

JoptionPane.showMessageDialog (null, "Swapped using class " +
i ra+mnab);

R

LaSRnRen

static int inputl:

{
EEEJEH // = local variable

String sInput = JoptionPane.showInputDialog (prompt);
a = Integer.parseInt(sInput);
return a;

nteger (String prompt)

G o

498

38 static int dif (int desiredage, int a)
39 ¢

40 return desiredge - a;

a1 }

42
43
4t
45
46
47
48
45
50
51
52
53
54
55
56 }

OEBPS/images/10.7.jpg
Input

‘This program calculates a /b
Enter the value of a

[Fiteer]

OK

Cancel ‘

Message

—/

Enter only digits for the operands.
The program is ending

OK

(b)

OEBPS/images/6.24b.jpg
1]
31

parent = new ParentSnowman([5];
child = new SnowChild[5];

i< 5; i+4)

showGameBoard (gb) ;
¥

public void draw(Graphics g)
{
for(int i =
{
if(parenc[i].getvisible() == true)

{ parent[i].show(q);
child[i].show(g);

i<5; i++)

¥
¥
public void keyStruck(char key!

{

int index;

String skey cter.toString (key) ;

e family's visibility
nt [index] .getVisible () == true!

ent [index] .setVisible (false) ;

parent [index] .setVisible (true);

visibility of min

first family in alphabetic order
true)

ent [index] .setVisible (false) ;

OEBPS/images/8.35b.tiff.jpg

OEBPS/images/fig3-40.jpg
oo s W

public static [SnowmanVé ha
{

int x,

ayBetween (SnownanVé sml, Snowmanvé sm2)

OEBPS/images/8.12a.jpg

OEBPS/images/6.24a.jpg
B R 0 0 o0 U w0

ELbbo

import edu.sjcny.gpvl.*;
import java.awt.*:

import javax.

ing.*;

public class ArrayAlgorithms extends DrawableAdapter

static
static
static
static

public

Arrayalgorithms ge = new ArrayAlgorithms();

GameBoard gb = new GameBoard(ge, "ArrayAlgorithmsApp");:
ParentSnowman[] parent;

SnowChild[] child;

static void main(String[] args)

String name;

OEBPS/images/8.35b.jpg
System Console Output:

Location: (10, 250), length: 110, Color: java.awt.Color[r=
Location: (180, 250), length: 125, Color:
Location: (350, 250), length: 140, Color:

55.6=0], Sail Area: 200
1. Sail Area: 220
=0], Sail Area: 240

OEBPS/images/fig3-38.jpg
import edu.sjcny.gpvl.*;
import _swing.
import j

public class ObjectsAsp
{

static ObjectsAsP: eters g: new ObjectsAs: meters () ;
static GameBoard gb new GameBoard(ga, "Objects As Parameters");
static SnomanVe sl = new SnowmanVe (5, 40, Color.ReD):

static SnowmanVe S2 = new SnowmanVe (460, 423, Color.BLUE);

public static void main(Stringl] args)
{
String s
int newx

@ oG W

JoptionPane. showInputDialog ("sm2's new x location?");

public static void draw(Graphics g) // the dra
{

sml.show(g) ;

sm2. show (g) 7

¥

wing call back method|

public void rightButton() /

pixel right

click

{

int currentX = aSnowman.getX();
currentX++;

‘aSnowman.seti (currenty) ;.
}

OEBPS/images/pg59.jpg
1
0

base-2 position values
internal representation

OEBPS/images/6.23.jpg
1 int iMin, min;
2 int cemp;
3
4 for (int 3 = 0; 3 < ages.lengsh; 3+4) for (int 3 = 0; 3
. «

min = ages(3]; min = parent(3].getAge();
7 iMin = 3 imin = 3;
° for (int i = 3+1; i < ages.lengch; i+4) |8 for (int 1= 3+1; 1 < parent.lengch; i
o « B «
10 if (ages(i] < minm) 10 if (pazent(i].gethge()
1 f 1 «
12 min = ages(il; 12 min = parent(i].getAge();
15 iin = 17 13 sin = 1
14) 12)
5 1)
16 16
17 if (iMin != 3) 17 if (iMi; 3
O FCR
18 cemp = ages(31; 18 vemp = parent(3l;
20 ages[3] ages[iMin]; 20 parent[3j] parent[iMin];
21 ages[iMin] D 21 parent[iMin] temp.
2 2
25) 23

Sorting an Array of Primitives Sorting an Array of Objects

OEBPS/images/8.35a.jpg
Are you intersted in, a rowboatV2,

a sailboatvV4, or a powerboat?

OEBPS/images/fig3-36.jpg
import edu.sjcny.gpvl.*;

2 import

3

4 public class OverloadingConstructors extends Dra

5

6 static OverloadingConstructors ga= new OverloadingConstructors():

7 static GameBoard gb = meBoard (ga, "Overloading
nstructors");

8 static

10 static

11

12 public static void main(Stringl] args

13

14 showGameBoard (gb) ;

15}

16

17 public void draw (G:
18 {

phics g) //the drawing call back me

OEBPS/images/1.1.jpg
Number of Computers per

1,000 Citizens

Proliferation of Computers

——UsA
= Australia
- Singapore
‘Swizeriand|

1985

P —
| e ———

1990 1995 2000 2005
Year

——China

OEBPS/images/6.22.jpg
it+)

int min = parent[0].getAge();
int elementNumber = 0;

for(int i = 1; i< parent.length; i++)
{
if (parent[i].getAge() < min)

T e w

Minimum Primitive Array Value Algorithm

Minimum Object Array Value Algorithm

OEBPS/images/8.35.tiff.jpg
Are you intersted in, a rowboatV2,

OEBPS/images/fig3-35.jpg
1 import j wt.Color;
2 import 7/ ed for drawing s
3

4 public class SnownanVé

5 {

6 //da

7 private int x = 7;

8 private int y = 30;

9 private Color Color = Color.BLACK;

€(int x, int y)

public void show(
{

phics g)

g.fillRect(x + 15, y, 10, 15);
g.fillRect(x + 10, y + 15, 20,
g.setColor (Color.WHITE) ;
g.flllOval(K +10, y + 17, 20, 20);
g.filloval(x, y + 37, 40, 40);

34)

35 public int getx()

36

37 return x;

38}

39 public veid setX(int newx)

0 |

a1 X = newx;

2)

43 public int gety()

4 |

45 return y;

%6)

47

48 public veid setY(int newY)

9 |

50 y = newy;

51}

OEBPS/images/tb9.4.jpg
Problem Base Case Reduced Problem General Solution

Factorial of a positive
integer, n!

A number x raised to a
s :

um of the integers
from 1 ton

Sum of the integers
from 1to (n—1)

1+ sum of the integers
from 1to (n—1)

Product of two positive
integers, m x n

Output an n character
tring s in reverse order

1 output s

Output the last
n— 1 characters of
string s in reverse
order

Output the lastn — 1
characters of string s
in reverse order. Then
output the first

i character of s

Problems with Mumple Base Cases and Reduced Problems

 Generate the n® termof f;=1andf;=1 | £ andf,
he Fibonacei
Sequence, fa

Find the greatest fm=n,GCD=m : GCD(m—n,n)and : iffm >n)
ommon divisor of two GCD(m, n—m) GCD(m - n, n)
positive integers m and o
GCD(wm,),
or m > n GCD(m, n—m)

A Problem with Multiple Base Cases

Search a sorted list of f the list is empt; Search a desig- if I > middle item, sub
items for I return not found nated sorted sub list is the items after it,

£ the middle item list for I
s I, return found

else sub list is items
before it.

Search the sub list for T

A Problem that Uses the Reduced Problem Twice

Towers of Hanoi =1: Move 1 ting | Move n-1 rings Move n-1 rings from
Move n rings from from one tower to : from one towerto : AtoC

ower A to tower B nother tower another tower Move 1 ring from A,
using tower C toB b

Move n-1 rings from
CtoA

OEBPS/images/6.21.jpg
1 int target = 32; 1 int target = 32;
2 int elementNumber = - 2 int elementNumber = -1;
3 boolean found = false; 3 boolean found = false;
4 for(int i = 0; i < ages.length; i++) [4 for(int i = 0; i< parent.length; i++)
5 5 ¢
6 == target) 6 if(parent[i].getAge() == target))
7 74
8 found = true; 8 found = true;
9 elementNumber = i 9 elementNumber = i
10 break; 10 break;
1) [EIY
12) 12)
Searching an Array of Primitives Searching an Array of Objects

OEBPS/images/8.34.jpg
)

(SRR R I R SR

4

B G W W W W W W W W W R 1 B B 1 D 1 0

OB BEERYS

import edu.sjcny.gpvl.*;
import java.awt.
import _swing.

public class ObjectAndClass extends Dra
{ static ObjectAndClass ge
static GameBoard gb = new GameBoard(ge, "getClass and getName Methods");

public static void main(String[] args)

{

ableAdapter

string s;

// Use of a polymorphic array
for(int i = 0; i < 3; i++)

|inventory[i%3]1= new RowBoatvV2(10 + i*130, 75, 120,

Color.YELLOW, i*2 + 2);

ERVENEOEY[IX3FILINE new SailBoatv4 (10 + i%170, 250 , 110+ i *15,

Color.GREEN, 200 + i*20);

EAVEREOEYIIFSIENRINS new PoverBoat (20 + i*160, 350 , 120+ i *15,

Color.MAGENTZ, 400);

s = JoptionPane.showInputDialog("Interested in, a rowboatV2," +
"\n 1lboatV4, or a powerboat?");
for(int i = 0; i < inventory.length; i++)

if (inventory (1] .getClass () .getNane) .equalsTgnorecase (s)
system.out. printin (HVEREGEVISINEGSEEIRG0))

}
}
showGameBoard (gb) ;

}

public void draw(Graphics g)

for(int i =

i< 9; i+4)

inventory[i].show(g);

}

OEBPS/images/fig3-34.jpg

OEBPS/images/tb9.3.jpg
Problem Base Case Reduced Problem General Solution

actorial of a positive (@-1)! n* (a-1)!

number x raised to a
integer, X*

tring, s, in reverse

le Base Cases and Reduced Problems

enerate the n® term of :
he Fibonacci Sequence.

mon divisor of two
ositive integers m and

GCD(m, n), for m > H
A Problem with Multiple Base Cases
carch a sorted list of g

items for T
A Problem that Uses the Reduced Problem Twice

‘owers of Hanoi:

Move n rings from
fower A to tower B

OEBPS/images/8.33..tiff.jpg

OEBPS/images/fig3-33.jpg
import edu.sjcny.gpvl.*;
import WELk;

public class ToStringAndInput extends Dr.
{
static ToStringAndInput ge = new ToStringAndInput();
static GameBoard gb = new GameBoard (ge, "toString And input
Methods") ;

8 static

E static

public static void main(String(] args

{
System.out.println("sml's\n" + sml.toString());
System.out.println("sm2's\n" + sm2.toString());
showGameBoard (gb) ;
sml.input ()
sm2.input();
showGameBoard (gb) ;

¥

B

public void dr:
{
sml.show(g) ;
sm2. show (g) 7

¥

OEBPS/images/tb7.2.jpg
Returns true if the

Character Passedto Code Example

its Parameter i

a digit in the range acter.isDigit('4');
0to 9

an upper or lower case

Method Name and
Parameter List

an upper- or lowercase
letter or digit (0-9)

the alphabet

Tava defined white
space (e.g.. space,
tab, or a new line

h

OEBPS/images/fig3-32.jpg
@ oG W

import J
import

g box input

public class Snowmanvs

{

//data members
private int x
private int y = 30;

private Color hatColor = Color.BLAC

//member methods
public Snowmanvs(int x, int y
{
this.x = x;
this.y = y;
¥

public void show(s) //g

{
g.setColor (hatColor) ;
g.fillRect(x + 15, y, 10, 15);
g.fillRect(x + 10, y + 15, 20,
g.setColor (Color.WHITE) ;
g.filloval(x + 10, y + 17, 20, 20);
g.filloval(x, y + 37, 40, 40); //body

¥

public String toString()
{

String s;
s ="x dis: "+ x+

Mny is: "+ y +

"\nhatColor is: " + hatColor;
return s;

¥

public void input ()
{

string s;

e . ShowInputD:
seInt(s);

e.showInputDialog("enter the
seInt(s);

e . ShowInputD:
.parselnt (s);
showInputdi

ue of x");

ue of y");

log("enter hat's red intensity");

R

og("enter hat's green intensity");
reen = Integer.parselnt(s);

e . ShowInputD:
seInt(s);

new Color(red, green, blue);

og("enter hat's blue intensity”);

OEBPS/images/tb7.1.jpg
Function

Locate a given
substring in a
tring

ctcha
substring from a
tring

Convet a string

haracters

eplace a given
substring in a
tring with a

given substring

ctermine if a
tring begins
r ends with a

given string

Tokenize a
tring

Method and
Parameter Type
indexof

Parameter(s): String
or

String, int

tring

Parameter(s):
intor

int, int

Parameter(s): String
or

String, int

Example and Description

int i s1.indexOf (target);

Returns the index of the first occurrence of substring

Returns the index of the first occurrence of substring t
that begins at or after the index start in the string 51

start to the end of 51
t, end);
Returns the substring of 51 from index start to
index end -1
07

Creates a clone of string 51 consisting of all uppercase charac-
ters

pLit (")}
Returns a string array whose elements are the substrings of 51
that are separated by one or more spaces

plit (" h) Y
Returns a string array whose elements are the substrings of 51

that are separated by one or more spaces: there will be n or few-
r els in the returned arr:

OEBPS/images/tb6.1.jpg
Original After 12and 3 i After 9and 4 : After 12 and 9 After 12
Array were swapped | were swapped ; were swapped § and 11 were

OEBPS/images/8.32.jpg
import edu.sjcny.gpvl.*;

import *:

3

4 public

5 {

6 static new PolymorphicArrays();

7 static meBoard (ge, "POLYMORPHIC ARRAYS");
8 static

static
static

public static void main(String[] args

i< 3; i+

rb = new RowBoatV2(10 + i * 130, 75, 120, Color.YELLOW, i * 2 +

sb = new SailBoatV4(10 + i * 170, 250, 110 + i * 15, Color.GREEN,
00 + i * 20);

new PowerBoat (20 + i * 160, 350, 120 + i * 15, Color.MAGENTA,

Le]
£
[

OEBPS/images/8.31.tiff.jpg

OEBPS/images/fig3-30.jpg
import edu.sjcny.gpvl.*;
import 3
import

bleRdapter
{
static set
static meB

new SetGetButtonClick ();

3
4
5 public class
6
N
8 d (g t Set and Button

lick™);

9 static Snown new Snowmanv4 (5, 30); //top-left
10 static SnowmanV4 sm2 = new Snowmanv4 (460, 423); //bottom-right co
11

12 public static veid main(String[] args

phics g) //the drawing call back me

public void rightButton() //moves s
{
int currentX = sml.getX();
sml.setX (currentX + 1);

pixel right per click

OEBPS/images/8.30.jpg
@ oG W

import edu.sjcny.gpvl.*;
import WELk;

public class PolymorphicInvocations extends Dr

{

static PolymorphicInvocations ge = new PolymorphicInvocations ();
static GameBoard gb = new GameBoard(ge, "Design Techniques");

static RowBoatV2 rbl = new RowBoatV2 (50, 200, 120, Color.YELLOW,
static SailBoatVd sbl = new SailBoatv4 (220, 200, 200, Color.GREEN,
static PowerBoat pbl = new PowerBoat (50, 300, 200, Color.MAGENTA,

public static void main(Stringl] args)

{

show

¥

eBoard (gb) ;

public void draw (G

4);
200);
400);

OEBPS/images/fig3-29.jpg
awt.*;

import J

public class Snowmanvd

{

anv4 (int x, int y)

public

this.x = X;

this.y = y;
¥
public s g)
{
g.setColor (hatColor) ;
g.fillRect(x + 15, y, 10, 15);
g.fillRect(x + 10, y + 15, 20, 2); //brim
g.setColor (Color .WHITE) ;
g.filloval(x + 10, y + 17, 20, 20); //head
g.filloval(x, y + 37, 40, 40); //body

}
public int getX()
(

return x;

}

public void setX(int newX)
(

}

EEEISERRERERAN]

(

return y;

}
e cerel sestEn e
(

y = newy;

¥

OEBPS/images/tb11.5.jpg
Method Signature

Centers the component control horizontally
within its cell range

alignment (Node c
VPos

Centers the component control vertically
within its cell range

Sets the spacing around the outside of the
edges of a Gridp:

int right,
int bottom,

Sets the horizontal and vertical spacing be-
tween cells

Shows the row and column edges, and the
edges of the spacing between them when the
argument passed to show is true

int col, int
int cspan, int rs

Adds component aNode into the cell (col,
row) and permits it to span cSpan columns

OEBPS/images/8.3.jpg
33

import java.awt.*;
public class RowBoat
{

private static int ER:
private int x, y, length
private Color color

PER_FOOT = 10;

public RowBoat ()
{

¥
public RowBoat (int ¥, int y, int length
{

this.x = x;
this.y = y;
this.length = length;

¥
public int calculatePrice()
{

return length * PRIC
¥
public void show(Graphics g)

._PER_FOOT;

int[] xBoat
int[] yB

{x, x + length, x + 6 * length/7, x + length/14};
{y, y, y+length / 7, y + length / 7};

setColor (color); //d:
g.fillPolygon (xBoat, yB
setColor (Color.BLACK) ;

//draw the boat's price in black

.setFont (new Font ("Ar: ", Font.BOLD, 16));
g.drawstring ("$" + String.valueOf (price), x + 10, y + 16)

¥

public int getX()

{

return x;

a

OEBPS/images/fig3-26.jpg
@ oG W

import edu.sjcny.gpvl.*;
import Wt .Graphics;

public class ConstructorAndThis extends Dr:
{
static ConstructorindThis
static GameBoard gb

nstructors

public static void main(String[] args
{
show

¥

eBoard (gb) ;

public void dr:

(Graphics g) //the drawing call back me

nd " +

Word:this");

hod

OEBPS/images/tb11.4.jpg
etvisible (boolean visible)

etMinWidth (int mWidth)

ght (int mHeight)

Description

Changes the text displayed on the component
to theText

Sets the font style of the container or compo-

nent that invoked the method to fontstyle

The component is made visible when the

method is passed true, invisible when passed
alse

Sets the minimum width of a component to

dth
Sets the minimum height of a component to
mHeight

Sets the component’s location within an in-
stance of a Pane to (%, y)

Adds a component (or components) to a con-
tainer. The type of the object they are invoked
on, and the parameter lists, depend on the

OEBPS/images/8.29.jpg
o U W

static Powe

public void draw(Graphics g)
{

EEISSFERE)
}

0,

200,

Color.MAGENTA,

400) ;

OEBPS/images/fig3-25.jpg
import
import ja

awt.Graphics; //nesded for drawing shapes

public class Snowmanv3

{

int x = 5;
public int y = 30;
public Color hatColor = Color.BLACK;

¥

public void showXYToSC ()
{
System.out.println("x is: " + x +
Mny is: "+ y);
¥

public void show (G
{

.setColor
.fillRect
.fillRect
lor
.filloval
.filloval

hatColor);

x + 15, y, 10, 15);
x + 10, y + 15, 20, 2); //brim
Color ITE) ;

x + 10, y + 17, 20, 20); //hea
x, y + 37, 40, 40); //body

waaaaa

OEBPS/images/tb11.3.jpg
Commonly Used Component Constructors Component's Targeted Use
Input Components

Select one or more inputs from a small group of

d by clicki r b
Select one input from a small group of suggested
inputs by clicking a button

ComboBox) or several (:
¢) from a large group of suggested inputs

Input or Output componem

i Keyboard input, String output

I

Annotate a window including placing prompts af
: text boxes: String output to the window

Inmate Processing Component

i Execute instructions associated with the click of
the button

Group components and 2D shapes, and positior
them in the window

OEBPS/images/8.28.jpg
o W

static BOat aBOat = new BowerBoat (50, 300, 200, Color.MAGENTE, 400);

public void draw(Graphics g)
{

[@BBAEL show (g) ;
}

OEBPS/images/fig3-21.jpg
1 import edu.sjcny.gpvl.*;

2 import j we.Graphics;

3 public class ShowMethods extends D:

4

5 static ShowMethods ga = new ShowMethods ()

6 static GameBoard gb = new GameBoard(ga, "Show Methods"
T static|SHOVRSVZISHLS nev] SnowEaVZ ()il

8

9 public static void main(stringl] args

phics g) //the drawing call back me

hod

OEBPS/images/tb11.2.jpg
Constant Name

'LAIN_MESSAGE

RROR_MESSAGE

INFORMATION_MESSAGE

WARNING_MESSAGE

UESTION_MESSAGE

Value Icon Common Icon Use

none - Other defined icons are inappropriate:

® An error or problem has occurred

For your information
(message dialog box default)

Consider possible ramifications

reply to the prompt is requested (input
dialog box default)

OEBPS/images/8.27.png
Package 1
Package 2 private inta

protected intb
AChid Class

public intc

>
direct access permitted

Package 4

Package 3

A Non child Class

Class B
A Child or
Nonchild

Class f» protected intb

P> publicint

private inta

OEBPS/images/fig3-20.jpg
ing

public class Snown

{

//da 5
public int x = 5;
public int y = 30;
public Color olor = Color.BLACK;

@ oG W

r meth
public void ShowXYToSC ()

System.out.println("x is: " + x +
Moy is: "+ y):
¥

public void show (G
{

phics g) //g to the method

g.fillRect(x + 15, y, 10, 15);
g.fillRect(x + 10, y + 15, 20, 2); //brim
g.setColor (Color WHITE) ;

g.filloval(x + 10, y + 17, 20, 20); //hea
g.filloval(x, y + 37, 40, 40); /

OEBPS/images/tb11.1.jpg
Feature(s) Incorporated into the Method

Method Default Specify Input
Input Window Title Icon Choices

Input Dialog Boxes
Wl tDials
L,
defaultInput)
howInputDialog (Component window,
Object prompt)
howInputDialog (Component window,
Object prompt, Obj
defaultInput)
howInputDialog (Component window,
Object prompt,
String title, int

howInputDialog (Component window,
object prompt, String
title, int messageIcon,
Icon icon, Object[]
selectionValues, Objec:
initialSelectionvalue)

howMessageDialog (Component window,
Object message)

ageDialog (Component window,
Object message,

String title, int

OEBPS/images/8.26.jpg
public int extras() //RowBoatV2’'s version of the method extras
{

return oars * 10;

public int extras() //SailBoatV4’s version of the method extras
{

return szilhrea *

public int extras() //PowerBoat’s version of the method extras
{

return horsePower * 3;

OEBPS/images/fig3-2.jpg
The Student Voice
Page 1

The Student Voice
Page 2

OEBPS/images/tab4-3.jpg
Operand Truth Values Meaning of Operators

a B A& B Al B

OEBPS/images/8.25.jpg
public int calcul.
{

return length * PRICE_PER FOOT +|EREEESE
}

atePrice()

public int extras()
{
return 0;

}

OEBPS/images/fig3-18.jpg
[

public class Snowmanvl

{

3
4
5
€
5

OEBPS/images/tab3-2.jpg
Component Shape Shape’sXor Shape’sYor Width orLine’s Height or
Line’s X, Line’s Y, X, Coordinate Line’s Y,
Coordinate Coordinate Coordinate

OEBPS/images/8.24.tiff.jpg

OEBPS/images/fig3-14.jpg
import cny.gpvl.*;
import j WEL*;
public class Class
{

ics ge = new C
new GameBoard (ge,

sAndobjects:
& Object Basics");

Jov G W

public static
Y = new
new

0z
0

.println(mary) ;
.println(kate);

rd(gb);

OEBPS/images/tab2-1.jpg
9,223, 372,036,854,775,808 to

1.40129846432481707 E-45 to
3.4028234663852886 E+38

7 digits of precision)
4.94065645841246544 E-324 to
1.797693134862157 E+308

5 di

rue or false

pper and lowercase keyboard characters and other
ntities

OEBPS/images/fig3-12.jpg
public class
{

OEBPS/images/tab13.3.jpg
Intermediate Task

<T> filter (Predi

tream <I> peek (Consumer<? super T>
action)

tream <T> £latMap (Function<? super T,?
extends Stream<? extends R>> mapper)

tream <T> sorted()

tream <I> skip(long n)

<T> limit(long maxSize)

tream <T> distinect()

Description

Returns a Stream whose elements are this
tream’s elements for which the predicate
Boolean-valued function) evaluates to true
eturns a Stream consisting of the results of

pplying the given mapper function to the ele-
ments of this stream.

Returns a stream consisting of the elements of
this stream, additionally performing the action
n each element as elements are consumed from
the resulting stream.

Returns a Stream whose elements are this
tream’s elements sorted in natural order
Returns a Stream whose elements are this
tream’s elements with the first n elements elimi.
ted from it
Returns a Stream whose elements are this
tream’s first maxSize elements that exist

Returns a Stream whose elements are this
tream’s distinet elements such that no two ele-
ts refe th bject

OEBPS/images/tab13.2.jpg
Terminal Task

Optional<T> min (Comparator<?
comp:

Optional<T> max (Compara

1<T> reduce (Binaryo
cumulato:

ong count ()

Object[] toArray ()

Optional<T> f£indFirst ()

21<T> findAny ()

super

=

Returns an Optional object containing the
minimum element in a stream determined by us-
ing the comp: or passed to it

Returns an Optional object containing the
maximum clement in a stream determined by
using the Comparator passed to it

Produces one clement from the stream’s ele-
ments using the accumulator passed to it
Determines if all the elements of a stream match
the B d to it
Determines if any of the elements of a stream
match the Boolean valued predicate passed

o it

Determines if none of the elements of a stream
match the Boolean valued predicate passed
o it

Sequentially iterates through a stream’s element:
performing the action on each element

terates through a stream’s elements perform-
ing the action on each element in its defined
encounter order

Returns the number of elements in the stream
that reach this terminal task

‘reates and returns an array containing the

Returns an Optional object containing the first
element in the stream

Returns an Optional object containing one of
the stream’s elements

Places the stream’s elements into one entity

OEBPS/images/8.23.jpg
Qo0 W e

import edu.sjcny.gpvl.*;
import java.awt.*;

public class DesignTechnigues extends Drawablehdapter
{
static DesignTechn:
static GameBoard gb

es ge = new DesignTechniques () ;
new GameBoard(ge, "Design Techniques");

sta

public static void main(string[] args
{
showGameBoard (gb) ;

}

public void draw(Graphics g)

{

OEBPS/images/8.22.jpg
W 1 0 1 0) 1)

8
9
0

31

import java.awt.

public class PowerBoat EXEends|BOat
{
private [IRE/HNOFSEPOWEE; //extended (additional) data member

public PowerBoat (int x, int y, int length,
Color color, int horsePower)
{
super (x, y, length, color);
this.horsePower horsePower;
}
@override
public IRENCAICUIAEEPEIEE() //overrides parent method
{
int hullPrice - Super.calculateprice():

return hullPrice + horsePower * 3;

}

@override

public void show(Graphics g) //overrides parent method

{

int[] xSail = {getX() + getlength()/2, getx(),
getX() + getlength()/2,};

int[] ysail = {getY¥() - getLength()/2, getY() - getLength()/8
gety() - getLength()/8};

g.setColor (Color.BLACK); //draw the shaft
g.filloval(getX() - 13, get¥() + getlength()/7 , 30, 4);
g.setcolor (Co lor GRAY); //draw the propeller
g.filloval(getX() - 20, get¥() + getlength()/7, 20, 6)
g.filloval(getX() - 13, get¥() + getlength()/7 - 7, 6, 20)

¥

public SEFIRGIESSERIRGN) //overrides parent method
{

return [SUBSENESSERIRGN + ", Horsepower: " + horseBower;
}

OEBPS/images/fig3-1.jpg
od invocation

d invocation

OEBPS/images/8.21.jpg
import J

public class

ailBoatvs [EXESRASIEEEE]
{
private [int|SailArea; //extended (additiona:

public SailBoatVé (int x, int y, int length
color color, int sailArea

{
super (x, ¥,
this. 1Rre
}
@override
public SnEICAICISEEPELEEN) //
{
int hullPrice
return hullPrice
}
@override
public|VodISHON(SEREhIEsIG) //cverrides e
{

int[] xSail =

t method

+ saillrea

int[] ySail

.setColor (Color.BLACK) ; //draw tl
.fillRect (getX() + getlength()/2, get¥() - getlength()/2, 3
getLength()/2);

.setColor (Color
g.fillPolygon (x:

¥

public SEFIAGNESSERIAGN) //overrides parent method

{

return GEPEENEGSEEIRGN) + ", Sail Area: " + sailhrea;

aaq

//dr

a

1, v

OEBPS/images/fig2-9.jpg
Circle area and radius.
calculation program

‘The area of a circle whose radius = 10.0
is 314.1592653580793

‘The radius of a circle whose area = 200.0
is 7.978845608028654

Tocalculate an area,
enter a radius

|

OEBPS/images/tab13.1.jpg
Method Description

Operate on collection objects whose class implements List

- binarySearch : Retums the index of a specified element

Copies one list’s elements into another
£SubList : Returns the index of the first occurrence of a specified sublist of elements

Replaces all occurrences of a specified element with a specified element
Sorts the list’s elements using their overridden compareTo method
Swaps the position of two elements whose indices are specified
Adds all specified elements, or all clements of an array, to a collection
Determines if two collections contain no elements in common
Determines the number of occurrences of a specified element

gest of the elements using their overridden compareTo method

Returns the smallest of the elements using their overridden compareTo method

OEBPS/images/3.19.png
Snowmanv2

+x @ int
+y @ int
+ hatColor: Color

OEBPS/images/6.jpg

OEBPS/images/3.17.png
Snowmanv1l

+y: int
+ hatColor: Color

OEBPS/images/6.9.jpg
import

public class Snowmanv7
{

int x;

int y;

public Snowma
{ this.x = x;

this.y = y;
¥

V7 (int %, int y)

public void show (G s q)
{ g.setColor(Color.BLACK);
fillRect(x + 15, y, 10, 15); // hat
JfillRect(x + 10, y + 15, 20, 2); // brin

(
(
(
(
(=
(

.setColor (Color.WHITE) ;
.filloval(x + 10, y + 17, 20, 20); //
.filloval y + 37, 40, 40); // body

waaaaaaq

Tor (Color.RED) 7
¥

public int getX()
{ return x;

¥

public void setX (int newx)
{ x = newX;

¥

public int get¥()
{ return y;

¥

public void setY(int newy)
{ y = newy;
¥

{ return xspe

OEBPS/images/8.png

OEBPS/images/3.16.png
(x, y) location of the
snowman. /

white, the default
color of the hat is
black.

/ %0 The circles are

OEBPS/images/6.8.jpg
EEEEr R

DO S S e o @
FobobUahewhbr o
=2 -‘

>
3

U100 U1 U1 O] U1 s B B W W W W W W W W W W R 1 T 1) D 1 Db
R A e R R Tl el R A SRR T

import java.awt.Graphics;
import edu.sjcny.gpvl.*;

public class SnownanParade extends DrawableAdapter
{ static SnowmanParade ge = new SnowmanParade () ;
static GameBoard gb = new GameBoard(ge, "Snowman Parade");
static SnowmanV7[] parade = new Snowmanv7(8];

public static void main(string[] args)

(
[ESE (EnE5=07 11/ paradeI1engER; [EF#) //create cach snowman

showGameBoard (gb) ;

}

public void draw(Graphics g) //draw each snowman

}

public void timer3()
{

int x, speed, y;

ORI PAEAdE T IETGE)] //ove each snowman
{

x = parade[i].getX();
x = x + parade[i].getXspeed();
parade[i].setX (x);
y = parade[i].gety();
y =y + parade[i].get¥Speed();
paradelil.set¥(y);

}

Eox(int L =07 £ < parade.length; i#%) //reflect each snowman

{
£ (parade[i].getX() >= 460 || parade[i].getX() <= 6)//x

speed = parade[i].getXSpeed();
speed = -speed;
parade[i].setxSpeed (speed);

}
if (parade[i].get¥() >= 420 || parade[i].get¥() <= 30)//y
{

speed = parade[i].get¥YSpeed();

speed = -speed;

parade[i].setvSpeed (speed);

}

OEBPS/images/8.9.png
RowBoat

five data members

+ show(g: Graphics)
and the class's 11 other methods (see Figure 8.1)

T

sailBoat

+ SailBoat(x: int, y: int, length: int
color: Color)

1

SailBoatV2

+ SailBoatV2(x: int, y: int,
length: int, color: Color)
+ show(g: Graphics)

OEBPS/images/Figure2_7.jpg
Input -

Frogger has five difficulty levels:
1is the easiest,

5 the most difficult,

Enter your level

I

OK || cancel |

OEBPS/images/3.13.png
hairColor hairColor

eyeColor eyeColor

height

height

Person mary = new Person(); Person kate = new Person();

OEBPS/images/6.7.png
sm

length

OEBPS/images/8.8.tiff.jpg

OEBPS/images/Figure2_6b.jpg
Frogger
by George Smith

AKA Game Boy Georgie.

OK?

OEBPS/images/3.11.png
Person

+ eyeColor: String
+ hairColor: String
+ height: int

OEBPS/images/6.6.png
sm

yﬁ 100

OEBPS/images/8.8.jpg

OEBPS/images/Figure2_6a.jpg
Message

@ Frogger, by George Smith

OEBPS/images/3.10.png
Class Name

Data Members
(variables)

Member Methods

OEBPS/images/6.5.jpg
import javax.swing.*;
import java.text.NumberFormat;

public class ArraysAndLoops
{
public static void main(String[] args)
{
double NIFUECEIEREIEE
string s;
int size;
NumberFormat NumberFormat.getCurrencyInstance () ;
s = JOptionPane.showInputDialog ("How many sale items?
size = Integer.parselnt(s);

i

1o e Wb

2

"t price");

o] = penlaleasall=(E)7]
for(int i = 0; i < price.length; i++)
[

salePrice[i] = price[i] * 0.9;

stem.out.println("The sale price of item " + (i + 1)
28 " is " + fm.format (salePrice[il));

Inputs:

5

10.00

20.00

30.00

40.00

50.00

Outputs:

The sale price of item 1 is $9.00
The sale price of item 2 is $18.00
The sale price of item 3 is $27.00
The sale price of item 4 is $36.00
The sale price of item 5 is $45.00

s = JoptionPane.showInputDialog ("Enter item " + (i + 1)

+

¥

OEBPS/images/8.7.jpg
@ oG W

import edu.sjcny.gpvl.*;

import

public class Inheri

{

Wt *;

ceBasics extends D

static Inheri
static

new GameBoard(ge, "Inheritance Basics
static RowB new RowBoat (30, 150, 200);
static RowBoat rb2 = new RowBoat (30, 250, ;

public static void main(String[] args
{
showG

¥

eBoard (gb) ;

public void draw (G
(

rbl.show(g);
show () ;

OEBPS/images/Figure2_13.jpg
Your game time is: 3

OEBPS/images/29.png
! It is good programming practice to check for a disk file’s existence to avoid a run-
TIP time error that is normally difficult for the user to understand.

OEBPS/images/6.4.png
length

OEBPS/images/8.6.jpg
o @ o0 W

import
public class SailBoat EXEends|ROWSOaE
t(int x, int y, int length, [COLGE COLGE)

gth); //invok

OEBPS/images/Figure2_11.jpg

OEBPS/images/28.png
’ Always use forward slashes (/) when specifying a file path.

OEBPS/images/6.33.jpg
a.util.Scanner;
io.*;
.swing.*;

import
import

public class DeleteFileItem
{
public static void main(String[] args) throws IOException
{
double[] da
double deletedItem;
int count

@ oG W

//Step 1: Open the file, read the number of items, allocate the array
File fileObject = new File("score.txt");
Scanner fileIn = new Scanner(fileObject)

of t
count; i++)

into the array

.nextDouble () ;

FileWriter fileWriterol new FileWriter (" Ltxt")
PrintWriter fileout = new PrintWriter(fileWriterobject, false);

//step 5: write the elements of the arr
e . ShowInputD:

y without the item
og("enter score to delete");

i < count; i++)

fileout.println (d

}
¥

//Step 6: Close the
fileout.close();

OEBPS/images/8.5.tiff.jpg

OEBPS/images/Figure1_1.jpg
Number of Computers per

1,000 Citizens

900

Proliferation of Computers

800

700 1
600

500

400

300
200

100

* o __—

1985

1990 1995 2000

Year

2005

—e—UsA
—=— Australia
Singapore
- Switzerland
——China

OEBPS/images/27.png
’ Numeric and string inputs should not be input on the same line.

OEBPS/images/6.32.jpg
row 0
row 1

row 2

column O imn 1 column 2 imn 3 column 4
10 11 12
20 21 22 23 24
30 31

OEBPS/images/8.5.jpg

OEBPS/images/Figure14_5.jpg
Whatis 23 +57 2

OEBPS/images/6.31.jpg
column O column 1 column 2 column 3 column 4

row 0 10 11 12 13 14
row 1 20 21 22 23 24
row 2 30 31 32 33 34
row 4 40 41 42 43 44

OEBPS/images/8.47.jpg
ce of this c
* environment, and is g
*/

public class Student extends Academic implements Gradeable

{

exists within
able

/** A student's
public String name;

/** B student's address */

public String address;

/** B student's tuition */

protected static final double tuition = 14300.00;

e: last, first */

Jx%

es a student with a default e Jones */

public Student ()
{

name = "Jones";

The student's nam
address The students address

public Student (String name, String address
{

this.name = name;

this.address = address;

¥

ts a Student's name

Jx%

* @return A string representing the student's name
x/

public String getName ()

{

return name;

s 2 Student's
address The

protected void setAddress(String address
{

this.address = address;

¥

OEBPS/images/Figure13.35b.jpg
Message

@ Norm Baum, DOB: 5/9/1945, Cell Number: 541 386-2371

oK

OEBPS/images/8.45b.tiff.jpg

OEBPS/images/Figure13.35a.jpg
Input

Enter a patient's last name
Click Cancel to output all patients

[Baum|

OK Cancel

OEBPS/images/Fig_11.27.jpg
Xtranslate2

% >
__ Aranslatel 1 _current X locations |
. Y

Xinitial
Y canvas’s canvas’s canvas’s
initial current dragged
position position position
d 7 \
7 X i
Xcursort > Drag action

Xcursor2

After the click: deltaX = e.getX() - sm1.getCanvas().getTranslateX() = Xcursort = Xtransiater = Xinitial + d
After the drag: e.get(x) — delta = Xcusorz = (Xinitial +) = Xrrastate2

OEBPS/images/6.30.jpg
row 0
row 1
row 2

row 3

column O column 1 column 2 column 3 column 4
grades[O)[0] | oradesiO)[f] | gradesiO)i2) | gradesiOi3] | grades[ol4]
grades[1][0] grades(i][1] | orades[f][2] | orades[f][3] | orades[f]4]
gradesi2)l0] | oradesi2)[) | oradesi2)i2) | gradesi2)i3] | grades(2]l4]
gradesi3)(0] | oradesi3)[1) | orades[3)i2) | grades(3)i3] | grades(3]4]

OEBPS/images/6.3.png
age

yﬁ 100

OEBPS/images/8.45a.jpg

OEBPS/images/6.29.png

OEBPS/images/8.45.jpg

OEBPS/images/Fig_11.18.jpg
A click of the

button

N

The button's click event

X

)

N/

Execution path

listener list g
L L
\ !]
Y. x \l_/ \
event event event event
Eventhandlermethods| |2 e, handler hendien haneler
Ry code 1 code 2 code3 | ** coden

OEBPS/images/6.29.jpg
A Two-Dimensional Array A Three-Dimensional Array

OEBPS/images/8.44b.jpg
49 public void rightButton() tput inventory to the file

57 if (inventory([i] != null)
{

50 outPile.writeobject (invencorylil);
}

61 }

outFile.close():

}
‘cateh (I0Excsption &)
{
}
}

public void leftButton() //input inventory from the file
{
try

{ FileInputStream fis = new FileInputStrean("Inventory");
‘ObjectInputStrean infile = new ObjectInputStream(fis);

S oo oo ooy o)
SEIRGRT

1
SHE S

R

-
QR

for(int i = 0; i < 9; i++)

(
[vemeaai = (i) shalle seeeuesi0)r |
}

inFile.close();

R
aada

80 }

@
=
a
B
o
o

I

@ o @
RO
.
B
o
o
5

@ @

2588

OEBPS/images/Fig_11.15.jpg
Computesa +b

TextFields

X Y
+

a ,\Labe.\s >y

Compute

Clear

'\Euttons/

OEBPS/images/6.28.jpg
Jov G W

[Tom,

Sorting first all,
, Fred,

[Blice, B
(3, 2, 5,

6, 8

arching for

(4, 4,
[Rlice,

4, 4, 4
Fillva:

o

Filling all or part o

41

va.

41

1

copyOf method
null,

, null,

Arr:

null,

Tom]

null]

ys.fill method

OEBPS/images/8.44a.jpg
(SRR R T R N R =R R N T N T S =

P N L R R S e e e PN e

GRESHESeRLRGR

&

import edu.sjcny.gpvl.*;
import java.awt.

public lelass SerializingObjects extends DrawableAdapter
static SerializingObjects ge = new SerializingObjects();

static GameBoard gb = new GameBoard(ge, "SERIALIZING OBJECTS");

static RowBoatV2 rb;
static SailBoatVé sb;
static PowerBoat pb;
static Boat[] inventory = new Boat[%];

public static void main(String[] args)
for(int i =

i< 3; i+

new RowBoatv2 (10 + i * 130, 7
new SailBoatVé (10 + i * 170,

200 + i * 20);
pb = new PowerBoat (20 + i * 160, 350, 120 + i * 15,

s

50, 110 + i * 15,

400);
inventory[i * 3] = rb;
inventory[i * 3 + 1] = sb;
inventory[i * 3 + 2] = pb;

}

showGameBoard (gb) ;

}

public void draw(Graphics g)

for(int i = i< 9; dit4)

public void upButton() //delete the RAM based inventory

for(int i = i< 9; ditd)

, 120, Color.YELLOW, i * 2 + 2);

Color.GREEN,

Color.MAGENTA,

OEBPS/images/fig4-5.jpg
‘Your game time is: 10
ame Over
Have a Good Day.

©

OEBPS/images/6.27b.jpg
ROBEE%

1
3

ERrR- AR

ROBES

6

S O G @ U U LT UG U G U1 Un Q1

D23 Lw

System.out.println("\nCopying arrays using the " +
"Arrays.copyof method");

System.out.println(Arrays.toString(copyStringArray));

System.out.println(Arrays.toString(copyIntArray));

//determining if all the elements of two arrays are squal
System.out.println("\nTesting two arrays for equality " +
"using the Arrays.esquals method");

copyIntArray[0] =

//sorting arrays
System.out.println("\nSorting all or part of an array: " +
"the Arrays.sort method");

System.out.println(Arrays.toString(stringArray));

System.out.println(Arrays.toString(intArray));

//searching for an element of a sorted array
System.out.println("\nSearching for a value: the " +
"Arrays.binarySearch method");

//copying a part of an array
System.out.println("\nPartial copies: the " +
"Arrays.copy and copyRange methods");

System.out.println(Arrays.toString(copyIntArray));

System.out.println(Arrays.toString(copyIntArray));

//setting all elements of a array to one value
System.out.println("\nFilling all or part of an arra
"the Arrays.fill method");

System.out.println(Arrays.toString(intArray));

System.out.println(Arrays.toString(stringArray));

"

OEBPS/images/8.43.jpg
public class DrawableAdapter implements Drawable
{

boolean canDraw (int dra

{

lewidth, int drawableHeight)
return false;

¥

void show

{

phics)7

¥

OEBPS/images/fig4-4.jpg
Jov G W

40

50

60

import J
import j

public class BoxedSnowm

{

Wt
awt

lor;

private int x
private int y
private

int intialY, Color

s g9 //g9

{

+15, v, 15);
y + 15, 20,

+:18, oy +53; «4; 4); j/foukton

or.BLACK) ;

waaaaaaaaa

}

public int getX()
{
return x;

¥

public void setX(int n
{

x

}

X;

public int get¥()
{
return y;

¥

OEBPS/images/6.27a.jpg
import java.util.Ar:
public class Ar
{

0w
o

public static void main(String[] args

{

string[] copyStringArray;

int[] copyIntAr:
int[] filledTntarr:

//outputting the nts of an s
System.out.println("Outputing

"ar

using the " +
s.toString method");

OEBPS/images/8.42.jpg
Fo o @ o 0 w0

=

import java.awt.*;
public abstract class
{
‘protected int x;
protected int y;
protected int w;
protected int h;
protected Color ha

OEBPS/images/fig4-3.jpg
32
33

34
35
36
37
38
39
40
a1
42

import edu.sjcny.gpvl.*;
import 3
import

public class
{
static
static
static int count = 0;
static BoxedSnowman sl = new BoxedSnowma:

(250, 215, Color.BLACK);

public static void main(Stringl] args)

meBoard (gb) ;

public void draw(Graphics g) // the draw call back method

etFont (new Font ("Arial", Font.BOLD, 18));
String ("Your game time is: " + count, 10, 50);

over", 10, 70);
ood Day", 10, 90);

@

public void timerl()

t = count + 1;

gb. stopTimer (1) ;
s1.setvisible (false);

OEBPS/images/6.26.png
System.arraycopy (age, 0, sum, 1, 2);

OEBPS/images/8.41.jpg
BEEaloamebrdlom o nis i

WW W W W W W E B 1) 1 1 1) R 1) D) 1 b 2 S 1 1 10 @ -) U1 W 0D

ERi

awt.*;
.swing.

import J
import

Public class Snownanvs EXEeRdS|GaNEPISCe) dnplanents DizNablE
{

public Snowmanvd(int ¥, int y, Color hatColor, int w, int h)

{
this.
this.
this. = hatColor;
this.w = w;
this.h = h;
}

.setColor (Color.WHITE) ;
.filloval(x + 20, y + 30, 40, 40); //head

g («

g ¢

g.filloval(x, y + 70, 80, 80); //body
g.setColor (hatColor) ;

g.fillRect(x + 30, y, 20, 30); //hat
g.fillRect(x + 20, y + 30, 40, 2); //brim

}
public boolean canDraw(in€ gbWidth, int gbiieight) //Not completely off
{ //the game board
if(x + W >= 6 &6 x <= gbWidth
I
y +h > 30 &8 y <= gbHeight)
return true;
}

else

return false;

}

OEBPS/images/fig4-12.jpg
switch (choice)

{

case choiceValuel:

{
// statements for cho:
break;

¥

case choiceValue2:

{
// statements for choiceValue2
break;

¥

case choiceValueN:

{
// statements for cho:
break;

Valuell

¥
default:

{
// default statements

¥

(a)

if (choice == choiceValuel)
{

// statements for choiceValuel
}
else if (choice == choicevalue2)
{

// statements for choiceValue2
}
else if (choice == choicevValueN)
{

// statements for choiceValueN
}
else
{

// default statements
}

(b)

OEBPS/images/6.25d.jpg

OEBPS/images/8.40.jpg
import J

public class Top
{

public Top!
{
this.
this.
this.
this.

(int x, Color h

int y, color, int w, int h)

6 &5 x + w <= gbWidth
ss
y >= 30 && y + (int) (b * 1.1) <= gbHeight
{
return true;
¥
else
{

return false;

¥

OEBPS/images/fig4-11.jpg
(choiceExpression!
choicevaluel:

ment block for choice
choic
// statement block for choice
break
choicevalus

// statement block for choice
break.

OEBPS/images/7.34.jpg
// shallow copy of an enumerated object

enum Team {Yankees, Braves, Giants}

Team myTeam = Team.Vankees; low copy

Team. Yankees Team.Braves Team.Giants
100 20 300
myTeam 100 200 300
100 Yankees Braves Giants
— 0 i 2

OEBPS/images/6.25c.jpg

OEBPS/images/8.4.jpg
import edu.sjcny.gpvl.*;

import WELk;

3

4 public class ShowIwoRowBoats extends DrawableAdapter
5 { static ShowTwoRowBoats ge new ShowTwoRowBoats (),
6 static GameBoard gb = new GameBoard(ge, "Show Two Row Boats");
7 static RowBoat rbl = new RowBoat (30, 150, 200);

8 static new RowBoat (30, 250, 150);

9

10 public static veid main(String[] args)

1

12 eBoard (gb) ;

13)

14 public void draw(
15 {

16 rbl.show(g)
17 rb2.show (g) ;
18)

19 }

OEBPS/images/fig4-1.jpg
{

public class BooleanExpressions

public static void main(String[] args

{

int il =
double dl = 3.53; double d2 = 54.88

char cl = 'A'; char c2

boolean bl = true; boolean b2 = false;

string sl = new String("Bob")

string s2 = new String("Bob");

System.out.println(il < 5);

System.out.println(dl > d2);

System.out.println(il >= d1); // int: il promoted
System.out.println(dl <= 3); r 3 is promoted
System.out.println(cl < c2);

System.out.println(10 > c2);

System.out.println(bl == b2) ;

System.out.println(il == 5 |

System.out.println(sl == s52); and 52

OEBPS/images/tb11.7.jpg
Method Signature
Drawing on the canvas

illRect (double x, double y,
double width,
double height)
(double[] x, double[] y,
int numOfPoints)

111Polyg

Text (String

Line (double x1, double yl,

double x2, double y2)
(Image img,

double y)

g properties
tFill (Paint color)

Description

* Indicated that there is a corresponding
Stroke method
Draws a filled rectangle on the canvas whose
upper left corner is located at (x, y), width
wide and height high*
Draws a filled polygon on the canvas. x and y
are parallel arrays that contain the (x, y) coor-
dinates of the numOfPoints verticies*
Draws an filled oval width wide and height
high on the canvas whose enclosing rectan-
gle’s upper left comer is located at (x, y)*
Draws the string theText with its upper left
edge at (x, y) in the current font.*
Draws a line using the current stroke line
dth fr
Draws the image stored at the specified path
img on the canvas at (%, y). Image types sup-
ported are BMP, JIF, JPEG, and PMP

Sets the current fill color of a fill shape to
color

Sets the current line color of a stroke shape to
color

Sets the current line width of stroke shape to

OEBPS/images/8.3b.jpg
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
ez
€3
64
65

}
public int get¥()
{
return y;
}
public int getlength()
{
return length;
}
public Color getColor()
{
return color;
}
public void setX(int x)
{
this.x = x;
}
public void setY(int y)
{
this.y =
}
public void setLength(int length)
{
this.length = length;
}
public void setColor(Color color)
{
this.color = color;

}

OEBPS/images/fig3-8.jpg
@ oG W

import edu.sjcny.gpvl.*;
import t.x;

public class LinesAndsh
{

static L
static

public static void main(String[] args

eBoard (gb) ;

g) // the ing call back method

Line (100, 75, 260, 75); //Lines
Line (300, 50, 400, 100);

g.setColor (Color.DARK_GRAY) ;

g.drawRect (100, 170, 100, €0); //:
g.fillRect (280, 170, 150, 40);

g. lor (Color.RED) ;

g. 300, 180, 80); //ovals
g. lor.BLUE) ;

g.

300, 100, 100);

OEBPS/images/pg-523.jpg
Method Signature
Drawing on the canvas

illRect (double x, double y,
double width,
double height)
(double[] x, double[] y,
int numOfPoints)

111Polyg

Text (String

Line (double x1, double yl,

double x2, double y2)
(Image img,

double y)

g properties
tFill (Paint color)

Description

* Indicated that there is a corresponding
Stroke method
Draws a filled rectangle on the canvas whose
upper left corner is located at (x, y), width
wide and height high*
Draws a filled polygon on the canvas. x and y
are parallel arrays that contain the (x, y) coor-
dinates of the numOfPoints verticies*
Draws an filled oval width wide and height
high on the canvas whose enclosing rectan-
gle’s upper left comer is located at (x, y)*
Draws the string theText with its upper left
edge at (x, y) in the current font.*
Draws a line using the current stroke line
dth fr
Draws the image stored at the specified path
img on the canvas at (%, y). Image types sup-
ported are BMP, JIF, JPEG, and PMP

Sets the current fill color of a fill shape to
color

Sets the current line color of a stroke shape to
color

Sets the current line width of stroke shape to

OEBPS/images/fig3-7.jpg
drawLine (int x1, int yl, int x2, int y2)
Draws a line, using the current color, between the points (x1, y1) and (2, y2)

drawRect (int x, int y, int width, int height)
Draws the outline of a rectangle whose upper left corner is at (x, y) and whose width and height
are width and height, using the current color

drawoval (int x, int y, int width, int height)
Draws the outline of an oval bounded by the rectangle whose upper left corner is at (x, v) and
whose width and height are width and height, using the current color

fillRect (int x, int y, int width, int height)
Draws a rectangle whose upper left corner is at (. y) and whose width and height are w
neignt, filled with the current color

dthand

filloval (int x, int y, int width, int ght)
Dravws an oval bounded by the rectangle whose upper left corner is at (x, v) and whose width and
height are width and height, filled using the current color

OEBPS/images/pg-263.jpg
i o ety et e Ll i e

N

int[] 1d = new int[10001;

int[] age = new int[1000];
double[] gpa = new double[1000];
string sInput;

for(int i = 0; i < 1000, i++)

sInput = JOptionPane.showInputDialog("Enter a student's ID number);

id[i] = Integer.parseInt (sInput);

sInput = JoptionPane.showInputDialog ("Enter THAT student's age);
age[i] = Integer.parselInt (sInput);

sInput = JoptionPane.showInputDialog ("Enter THAT student's GEA);
gpali] = Double.parseDouble (sInput);

OEBPS/images/11.17b.jpg
//Step 3: Declare the component coni

ner, and set its properties

GridPane grid = new GridPane();

grid.

setvgap (10) ;

grid.
grid.
grid.
grid.

//step 4:

grid.
grid.
grid.
grid.
grid.
grid.
grid.
grid.
grid.
grid.

Scene scene = new

primar

setHalignment
setHalignment
setHalignment
setHalignment

add
add
add
add

avalue,
plus,
bvalue,
add (equals,
add (sun,
add (a,

add (b,

add (compute,
add (clear,

primarystage.show() ;

}

public static void main(String[]

{

launch(args) ;

}

a,
b,
compute,
clear,

HPOS.CENTER) ;
HPOS.CENTER) ;

ene (grid); // add the

.setTitle ("Adding Machine"
.setScene (scene)

HPOS.CENTER) ;
HPOS.CENTER) ;

the components to the component container

description, OJNOY

1); //col, nCols, nRows

1

row,

args)

container to the scene

OEBPS/images/6.25b.jpg

OEBPS/images/6.25a.jpg

OEBPS/images/8.39.tiff.jpg

OEBPS/images/dvd.jpg

OEBPS/images/image6.jpg

OEBPS/images/image5.jpg

OEBPS/images/copener.jpg

OEBPS/images/image4.jpg

OEBPS/images/common.jpg

OEBPS/images/image31.jpg
7 BorderPane Layout Calculator

Computesa +b

| + = X XXXXX

Compute Clear

OEBPS/images/common-img.jpg

OEBPS/images/image30.jpg
Border Pane Regions

The Top Region‘

A Wide Left Region

The Bottom Region

Center Region

A Narrow Right Region

OEBPS/images/CO6_1.jpg
D Q 0O 0
..o.;o@..o.._o...oo

OEBPS/images/image3.jpg

OEBPS/images/image29.jpg
7 Flowlayout Pane.

Added Second, Larger Font Sets Row's Height

Added Third, Could Not Fitin Row 1 | Added Forth, This Component's With Forces Fifth Component to Next Row

Fifth Component

OEBPS/images/image28.jpg
3 componets in an HBox | A Label

AButton

3 more componets in a VBox.

Alabel

OEBPS/images/image27.jpg
&7 Calculator

Computesa +b

OEBPS/images/image24.jpg
7 Hello World!

OEBPS/images/image2.jpg
o

OEBPS/images/image15.jpg
&7 An FX program window [= 8] =

7 Message

Close the program window
to terminate the program

OEBPS/images/image11.jpg
7 GUI Components

e

Basics Check Boxes Radio Boxes
2 Text Field V] This choice: Tis choice
o And/or this choice: Or this choice:
V| And/or this choice: ® Or this choice:
2 Button
Combo Box Scrolled List View Vertical Slider
APrompt ~ Choice 1 A
or Choice 1 andfor Choice 2
e and/or Choice 3 i
ocrices |} and/or Choice 4
andor Choice 5
anels ! Volume

OEBPS/images/image10.jpg
Expanded Dollar Meal 2

Salad

Chicken Soup

OEBPS/images/image1.jpg
7 GUI Components.

=)

Default Choice:

Basics Check Boxes Radio Boxes
2 Text Field /| This choice Tis choice
I And/or this choice: ® Or this choice:
(V] And/or this choice. Or this choice:
2 Button
Combo Box Scrolled List View Vertical Slider

Choice 1
And/or choice 2
And/or choice 3
And/or choice 4
And/or choice 5

Volume

OEBPS/images/h3.png
* 59 [« 5%

OEBPS/images/h2.png
Person joe = new Person();

OEBPS/images/h1.png
distance [675 myName 1024

N

The String objectat
memory address 1024

int distance = 675; String myName = "Jane";

OEBPS/images/g3.png
public static double acos (double a)

Returns the arc cosine of a value; the retumed angle is in the range 0.0 through pi. Special case:
* Ifthe argument is NaN or its absolute value is greater than 1, then the result is NaN.
The computed result must be within 1 ulp of the exact resuit. Resuits must be semi-monotonic.
Parameters:
a - the value whose arc cosine is to be retuned.
Retumns:

the arc cosine of the argument.

OEBPS/images/g2.png
Field Summary
The data member's type
and static designation

A data member followed by its description

Nadifer and Type

static double

static double

Feld ang #Cription
«
E

The double value thatis closer han any other fo e, the base of the naiural logarithms.
PI
‘The doubLe value that s closer than any ofher to pi, the ratio of the circumference of a circle to s diameter.

Method Summary

The method's returned type

A method's name and parameter list

and static designation
‘Modifier and Type Method and Dw:nm;g/

static double

static float

static int

static long

static double

abs (double a)

Reurs th absolte vali ofa double valte
abs (£loat a)

Relurs te absolte vale ofa £1oat valie
abs (int a)

Retus the bsolute value of an it vae.
abs (Long a)

Relurs the absolute value ofa Long velte.

acos (double a)
Relurns the arc cosing of a value ihe retumed angle s i the range 0.0 tough pi.

OEBPS/images/g1.png
PerCuss NexlClass Fames BoFames A Clsss

oy oo Con s D ol G et

vty

Class Math 4—————C12ss Name

S e Package to be imported

suslic final class Math g Class access and inheritance details General description
extonds Goject
e i s e eformg s e o st ey orert g, e e s

U o U ot i S, DRSS o1 qart OO 56 5 LA M 04412629 L, T G120 TS &SN RERTAESION s
st ety s ot equed

B Ty e Ot St e NG 011 S f BT o B 1 G301 T e s o TOMISS FLrs, e 3t 1
e ikt nebots S st rm b e st

) oeon 7ecI0ns T O e 01 e 5N e M0 AEOTS) DTS P 1t I 5 WS 2 ST F a g
oS et e e e e o st ke e e Vg s b sy f oo s e Pnle s gt e
mber U o By ottty aen o ey s n s ks 05, e o s s e Ftng g e 1 el el a e ooy e o
bt 30 e oot e o, g Tt Tt W e, ke
o, rrmaly, i 1 fc bt Vi s et unte,te sl s e s code st s, s f i i e e hh ol e s 1y b
16 For i sl e o gt s o el oy e e B iy e, oo g s b e ool G aunens o ot Tt
S AT L R a1 03 Up s 1 S i mndseng 5o 5 s, sroneg 11
o el At ey o

OEBPS/images/Figure7_26d.jpg

OEBPS/images/8.20.jpg
import J awt.*;

public class RowBoatv2 ExESHAS|BGAE
{

private int oars; /

public RowBoatV2(int x, int y, int length, Color c, int oars)

{

extende

(addit ata member

al)

this.
}
@override
public iREICAICISESPELEEN) //
{

int hullerice - SUPSEYCAICHIGEEPECE0N

return hullPrice + oars * 10;

}

@override

public void show(Graphics g) //overrides

t method

oars; i++) /

g.fillRect(getX() + i*10, getY() - 2
g.filloval(getX() + i*10-2
}
}
public String oString() /
{

}

’ Vi /7]
gety() - 30, 6, 10);

7/

t method

I

"+ oars;

OEBPS/images/fig2-8.jpg
L import javax.swing.JopticnPane;
3 public class AssignmentMathAndDialogIO
4 {
5 public static void main(String[] args
6 {
setitig &
8 double area, radius;
9
10
1T
1z
13
14
15
16
17 " whose radius = "+
18 radius + Mn is " + arca);
19
20 s =JOptionPane.showInputDialog ("To calculate a radius" +
21 ®\n enter an area");

2 area = Double.parseDouble (s);

L
o

24 JoptionPane.showMessageDialog (null, "The radius of a circle" +
25 " whose area = " +
26 area + "\nis " + radius)

OEBPS/images/tab12.2.jpg
Method

Constructors

u:

)

Description

Constructs objects that contains no items

Constructs objects that contain the items in
: the ObservableList object passed to it

Methods in the comboBox class

Displays the argument thePrompt passed to
it on the combo box
Makes a ComboBox object’s textField
visible when v is true, and accepts the
user entry as a valid item choice
Displays a maximum of nRows items when
the ComboBox’s drop-down arrow is clicked
i Returns the selected item whose type is < ;

Methods in the Listview class

(
c

i Permits multiple item selections. Use the
static constant SINGLE to permit one item
leati
Returns an ObservableList object contain-
ing the items selected.

Fetches the address of the ObservableList
containing the component’s items

Creates and returns an Obs
bject th tains the it

OEBPS/images/8.2.png
Class A

Class B

Class C

I

Class D

_— 1

Class A

Chain inheritance is
supported in Java

Class B Class C Class D
Muttiple children are
supported in Java
Class A Class B Class C
~_1
Class D

Multiple inheritance Is
not supported in Java

OEBPS/images/fig2-6.jpg

OEBPS/images/tab12.1.jpg
tring getText ()
etFont (Font fontStyle)

etVisibl

(Boolean visible)

Description

Changes the text displayed on the component
to theText

Returns the text displayed on the component

Sets the font style of the container or compo-

The component is made visible when the
method is passed true, invisible when passed

Sets the minimum width of a component to
mWidth

Sets the minimum height of a component to
mHeight

Sets the background color of a container to

Sets the component’s location within an in-
stance of a to (2, v)

Adds a component (or components) to a con-
tainer. The type of the object they are invoked
on, and the parameter lists, depend on the

OEBPS/images/8.19b.jpg
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

¥

:aubuc int gety ()

! return y;

:aubuc int getLength()
! return length;
:aubuc Color getColor()
! return color;

:aubuc void setX(int x)
! this.x = x;

:aubuc void setY(int y)
! this.y = y;

¥

OEBPS/images/fig2-5.jpg
double

& float € long € int & short & byte € char

Note: a valid promotion is from right to left (€)

OEBPS/images/tab1-2.jpg
n b v Binary Representation of n
0

010000
0100001

OEBPS/images/8.19a.jpg
@ oG W

public abstract class B

{

io.serializable;

implements

private static int PRICE_PER_FOOT

—/ o

this.x = x;

this.y = y;

this.length = length;

this.color = color;
}
public SRENCELCAIAEEREICE) //vill
{

return length * PRICE_PER_FOOT;
}
public VOLAISHOW(SERERICEIg) //xi11 be
{

common to all type

errid

int[] xBoat = {getX() , getX() + length, getX() + 6*length/7
getX() + length/14};

int[] yBoat = {get¥(), get¥(), get¥() + length/7
gety() + length/7};

int price = calculatePrice();

.setColor (color);

.fillPolygon (xBoat, yBoat, xBoat.length);

1lor (Color.BLi)i

.setFont (new Font("Arial", Font.BOLD, 16));
.drawstring("$" + String.valueOf (price), x + 10, y + 16);

aaaaa

¥
public SEring €oString()l //will be overridde:
{

return "Location: (" + x + ", " +y +"), length: " + length +
Color: " + color;

¥
public int getX() //
{

return x;

t metho:

OEBPS/images/fig2-4.jpg
age 21 tirstane | 1096

“John”

The String object at
memory address 1096

int age String firstName = "John

OEBPS/images/q9_a.jpg

OEBPS/images/8.18.png
Boat abstract

pricePerFoot: int
x: int

y: int

length : int
color: Color

I

RowBoatV2 (x: int , y: int,
c: Color, length: int,
oars: int)
calculatePrice (int

show (g: Graphics)
toString(): String
getx(): int
gety(): int
getLength(): int
getColor () : Color
setX(x: int)
set¥(y: int)

/

*\\\\\\\\\\\»

RowBoatV3

sailBoatV4

ores: int

sailArea: int

RowBoatV2 (x: int, y:
length:
cars: int)

calculatePrice(): int

show (g: Graphics)
toString(): String

int, c: Color,

+

int, sailBoatV2

R

(x: int,
length:
sailArea : int)
calculatePrice(): int

show (g: Graphics)
toString(): String

: int,
int, c:

Color,

PowerBoat

- horsePower: int

+

+
+
+

PowerBoat (x: int, y: int,
length: int, c: Color,
horsepower: int)

calculatePrice(): int

show(g: Gr aphics)

toString(): String

OEBPS/images/fig2-3.jpg
public class ConsoleOutput
{
public static void main(String(]
{
// Primitive variab
int age = 21;

args

)

double weight = 185.25;
boolean isRaining = false;
char letterl 'A';
System.out.println("The Program's Output Appears Below");
System.out.println("\t\t\"Hello World!\"");
System.out.print ("\nJohn is " + age + " years old");
System.out.println(" and weighs " + weight + " pounds");
System.out.println ("To it is " + isRaining +

" that it is raining\n");

System.out.println("The first letter of the alphabet is " +
letterl);

System.out.println("1/2 + 1/4 = 3/4");//blank lines are igno

Program Output

The Program’s Output Appears Below
“Hello World!”

John is 21 years old and weighs 185.25 pounds
Today it is false that it is raining

The first letter of the alphabet is A
1/2+1/4=3/4

OEBPS/images/q7_a.jpg

OEBPS/images/8.17.png
RowBoatv2 sailBoatV4

- pricePerFoot: int - pricePerFoot: int

- x: int - x: int

- y: int - y: int

- length: int - length : int

- color: Color - color: Color

- oars: int - saildrea: int

+ RowBoatV2 (x: int, int, + SailBoatV2 (x: int, y: int,
length: int, c: Color, length: int, c: Color,
ocars: int) sailArea : int)

+ calculatePrice(): int + calculatePrice(): int

+ show(g: Graphics) + show(g: Graphics)

+ toString(): String + toString(): String

+ getX(): int + getx(): int

+ getY(): int +gety(): int

+ getLength(): int + getLength(): int

+ getColor(): Color + getColor(): Color

+ setX(x: int) + setX(x: int)

+ set¥(y: int) + set¥(y: int)

PowerBoat

- pricePerFoot: int
int

int

- length: int

- color: Color

- horsePower: int

+ PowerBoat (x: int, y: int,
length: int, c: Color,
horsepower: int)

calculatePrice(): int

show (g: Graphics)

toString(): String

getx(): int

gety(): int

getLength(): int

getColor () : Color

setX(x: int)

set¥(y: int)

IR

OEBPS/images/fig2-2.jpg
Well Composed
firstName
depositl
myBalance
Valid
zipCode

phoneNum
gradsl

Poorly Composed
Fst
theFirstoftheBankDeposits
nb

Invalid
zip Code

phone#
Istora

OEBPS/images/q6_2.jpg

OEBPS/images/8.16.tiff.jpg

OEBPS/images/fig2-15.jpg
299,792,458.72
1,097,603,176

OEBPS/images/q6_1.jpg

OEBPS/images/fig2-14.jpg
@ oG W

import 3 ext.DecimalFormat;
public class BasicNumericFormatting
! public static void main(String[]
! double speedoflight = 2997
int population = 1097603176;

args)

458.7153;

Decim

Format df = new DecimalFor:

(", REELERY)

System.out.println(df.for
System.out.println (df.for

(speed0fLight)) ;
(population));

OEBPS/images/pg_731.jpg
Component Shape Shape’s X or Shape’s Y | Width Line’s | Height Line’s
Line’s X, Line’s X, coordinate | Y, coordinate
coordinate , coordinate
window rectangle x y 8 4
body rectangle x y 18 9
door rectangle x+14 v+2 4 6
cab rectangle x+18 v+ 5 5
rear tire circle x+3 v+8 5 5
front tire circle x+11 Y48 5 s

OEBPS/images/pg_715.jpg
Operator Description Precedence Operator Description Precedence

7

OEBPS/images/fig2-12.jpg
@ U W

9

import cny.gpvl.*;
import we .
import wt.Font;

public class CountingSeconds extends DrawableAdapter
{
static CountingSeconds ga = new Countin
static GameBoard gb = new GameBoard(ga,
static int count = 0; // a cl.

conds () ;
The Counting Algorithm");
1 variab;

public static void main(String[] args

rd(gb);

public void draw (G
{

@) // the drawing call back method

g.setFont (new Font ("Arial", Font.BOLD, 18));
g.drawstring ("Your game time is: " + count, 10, 50):

¥

public void timerl()
{
count = count + 1;

}

OEBPS/images/fig2-10.jpg
9

import edu.sjcny.gpvl.*;
import java.awt.Graphics;

public

{

TextOutput extends Dr: pter

static GraphicalTextoutput
static GameBoard gb = new

new GraphicalTextoutput()
eBoard(ga, "Graphical Text Output");

public static void main(String[] args
{
show

¥

eBoard (gb) 7

public void d.
{
g.drawstring ("Hello World", 250,

hod

a) drawing call back m

0);

OEBPS/images/pg_713.jpg
Java Keywords

implements

OEBPS/images/fig2-1.jpg
1

public class ProgramName

{

3 public static void main(String[] args
4 {
5
3 }
71
Java Program Template
1 public class ProgramName
2 {
3 public static void main(String[] args
4 {
5 System.out.println("Hello");
6 ¥
7}

Java Program to Output the Word “Hello™

OEBPS/images/pg_712.jpg
Decimal Octal Hex inary Char Description
116 164 074 01110100 t
01110101

01110111
01111000

01111010
01111011

01111101
01111110

OEBPS/images/fig1-33.jpg
27
128

28
64

26
32

24
16

28
8

base-2 position values

OEBPS/images/pg_711.jpg
Decimal

Octal Hex
113

04B

inary
01001011

01001100

01001111

01010010

01010101

01010110

01011000
01011001

01011011
01011100

01011110
01011111

01100001
01100010

01100101

01101000

01101011

01101100

01101110
01101111

01110001
01110010

Description

OEBPS/images/fig1-32.jpg
off on off off off off on off

on-off Depiction

01000010
1-0 Depiction

OEBPS/images/pg_710.jpg
Decimal

Octal Hex

inary

00100011

00100110

00101001

00101100

00101101

00101111
00110000

00110010
00110011

00110101
00110110

00111000
00111001

00111100

00111111

01000010
01000011

01000101
01000110

01001000
01001001

Char

Description

OEBPS/images/fig1-31.jpg
1 import edu.sjcny.gpvl.*;

2 public class GameWindowDemo extends DrawableAdapter
3 {

4 static GameWindowDemo ga = new GameWindowDemo();
5 static GameBoard gb = new GameBoard(ga, "The Game Window");
6

7 public static void main(String[] args)

8 {

9 showGameBoard (gb) ;

0}

11}

OEBPS/images/pg_709.jpg
Decimal Octal Hex inary
000 000 000 00000000
00000001

00000011
00000100

00000110
00000111

00001001
00001010 feed, new line)

00001100
00001101

00010000

00010011

00010110

00010111

00011001
00011010

00011100
00011101

00011111
00100000

OEBPS/images/fig1-29.jpg

OEBPS/images/pg_427.jpg
10*9%*8*7*6*5%4*3%2%1 FEETFOTS*4*3IFAT]

(10 = 1) ©-1)

OEBPS/images/fig1-23.jpg
Name of the game

Objects (starships, trucks, sling shots, etc.) that will be part of the game
Objective of the game

Way to calculate the score of the game

Time limits imposed on the game

Game pieces (objects) that will be animated

Game pieces controlled by the game player (the program’s user)
Input devices used to control the game objects

Particular colors to include in the game

Determining when the game ends

Events that take place when the game ends

Keeping track of the highest game score achieved and the name of the game player who
achieved it

OEBPS/images/pg_204.jpg
int sum

sum
sum
sum
sum

sum
sum
sum
sum

b o

oW e

OR

int sum
for (int i

sum

v
1; i<=

sum + i;

4

i

i+ 1)

OEBPS/images/fig1-20.jpg

OEBPS/images/pg-61.jpg
Extended ASCII Representation of 1/6 'Y Representation of 1/6
00110001 00110111 00110110 10110000
"y " 6 176

OEBPS/images/fig1-14.jpg

OEBPS/images/pg-33.jpg
&
0

base-2 position values
internal representation

OEBPS/images/PE_6.jpg

OEBPS/images/fig1-13.jpg

OEBPS/images/dvd2.png
©
% e

OEBPS/images/logo.jpg

OEBPS/images/dvd1.png
sl
e

OEBPS/images/KE_20.png

OEBPS/images/dvd.png
sl
e

OEBPS/images/image9.jpg
Expanded Dollar Meal

Salad
Chicken Soup

Hamburg

OEBPS/images/13.png
NOTE

The abbreviated grammar to declare a string String object is:
String referenceVariableName = intialStringLiteralValue;

OEBPS/images/13.9.jpg
{

w0 o

OEBPS/images/5.4.jpg
1 import javax.swing.*;

3 public class ForLoopCounting

4

5 public static void main(string[] args)

6 { int start, end, increment;

7 string input;

8

9 input = JOptionPane.showInputDialog("Enter the starting value:");
L start = Integer.parselnt (input);

11 input = JOptionPane.showInputDialog("Enter the ending value: ");
2 end = Integer.parselnt (input);

13 input = JoptionPane.showInputDialog ("Count by?: ");

1 increment = Integer.parseInt (input);

15

16 System.out.println("Counting from " + start + " to " + end +
17 " by " + increment + "s:");

15 for(int imstart; icend; imitincrement)

19 {

20 System.out.println(i);

21)

23)

Input prompts and user inputs:
Enter the starting value: 3
Enter the ending value: 27
Count by?: 5

Outputs:

Counting from 3 to 23 by 5s:
3

8

13

18

23

OEBPS/images/13.8.jpg
111
222
333
444
age 19 name Sam Jones
age 20 name Nora King

40
333
age 20 name Nora King

OEBPS/images/5.3.png
initialization
expression

condition to
continue

true

statement(s)

increment(s)

false

OEBPS/images/72.png
W7 Annimation Using a Timeline

OEBPS/images/13.7.jpg
30

public class

{

ericsar:

public static void main(Stringl] args)

{

¥

public static KTSIENoutputArra:

{

}

Integer[] intar: = {10, 20, 30, 40, 50};
Double[] doubleArray = {11.1, 22.2, 33.3, 44.4};
Student[] studentAr: = new Student[2];

int intReturned;
double doubleReturned;
Student studentReturne

studentarray[0] = new Student (19, MSamigonest):
studentArray([1] new Student (20, "Nora King");

returned
d doub:

intReturned = outputArray (ifEAFEEY, 3); //autounbox the
doubleReturned = OutputAr: (doubleATEay, 2); //int
studentReturned = outputArray (SEUGEREATEEY, 1)

System.out.println(intReturned);
System.out.println (doubleReturned) ;
System.out.println(studentReturned) ;

(T[] anArray, int elementReturned)

Array.length; i++)

for (int i
{

System.out.println(ankrray[il);
¥
System.out.println();

OEBPS/images/5.2.png
Set the initial value i=1;

Test to continue

int i;
for (i=1; i<=3; i=i+l)
(
//statement (s) to be repeated statement(s)
)
f ot
Change the loop variable =i

OEBPS/images/71.png
kF1

Timeline tL1 Timeline tL2
Cycle 1 Cycle2 Wi Cycle 1 Cycle2

i Cycle 1 Cycle2
K3 Cycle 1 Cycle2,

Time Time

T T

1 i1

(@) (b)

OEBPS/images/13.6.jpg
Version 1 was invoked
Version 2 was invoked
Version 3a was invoked
Version 3a was invoked

OEBPS/images/5.18d.jpg
Message

Great, you guessed it.

OEBPS/images/70.png
&1 Calculator e d (=] |

Computes a + b Computes a + b
63744 + o121 = 15587 + = XXXX.XX
a b a b
Compre e compute

@) (b)

OEBPS/images/13.5.jpg
0319 03 B3 10 1) 1 10 B 1 5 1 1 b b 1 0 @] 0y U1 W 1

slouronrabnlanmwiono

public class GenericOverloading

public static void main(String[] args)

identifyYourself(l, 2); //int, int: Version 1
identifyYourself (new Integer(10), 2); //object, int: Version 2
identifyYourself (2, new Double(20.3)); //int, cbject: Version 3a
identifyYourself (new Integer(10), new Student (19, "Evie")); //V3a

// Version 3a

public static <TI;IT2> void identifyYourself (TN, T21k)

System.out.println("Version 3a was invoked");
}
// Version 2
public static <¢I> void identifyYourself (TV&; int b)
System.out.println("Version 2 was invoked");

}

// Version 1
public static void identifyYourself (En€la, intb)
System.out.println("Version 1 was invoked");

}

OEBPS/images/5.18c.jpg
@

Enter guess number 2
Or click Cancel to quit

EF|

o]

Cancel

OEBPS/images/7.png

OEBPS/images/13.4.jpg
// Version 1
public static void identifyYourself (int a, int b
{
System.out.println("Version 1 was invoked");

¥

// Version 2
public static <T> void identifyYourself (T

int b)

System.out.println("Version 2 was invoked");

a, T2 b
{
System.out.println("Version 3a was invoked");
¥
// Version 3b
public static <T> void identifyYourself (T &, T b

{
System.out.println("Version 3b was invoked");

}

OEBPS/images/5.18b.jpg
Enter guess number 1
Or click Cancel to quit

[3¢] |

OK | Cancel

OEBPS/images/7.9.jpg
o U W

ep copy into ps method

OEBPS/images/13.36.jpg
ream.rangeClosed(l, 3)
.flatMap(x -> IntStream.rangeClosed(l, x))

stem.out.print(x + " "))
)-> System.out.print(x + " "));

o e W

Output produced by including
Lines 1and 6: 12 3

Lines 1-2and6: 112123

Lines 1-3 and 6: 10 10 20 10 20 30
Lines I-4 and 6: 10 20 30

Lines 1-5 and 6: 10 10 20 20 30 30

OEBPS/images/5.18a.jpg
Message

Secret Number Guessing Game
guess a number between 32 and 38

OEBPS/images/7.81.png

OEBPS/images/13.35.jpg
Enter a patient's last name
Click Cancel to output all patients

[

(o] [comen

@

Console Output:
Amy Adams, DOB: 8/5/1991, Cell Number: 643 531-2283
Norm Baum, DOB: 5/9/1945, Cell Number: 541 386-2371
Tom Jones, DOB: 2/3/1989, Cell Number: 643 976-4545
Ray Rondo. DOB: 2/6/1998. Cell Number: 643 736-2949

)

OEBPS/images/5.18.jpg
guess anumber between 32 and 38

Input

Message

@ Great, you guessed it.

(d)

OEBPS/images/7.8.png
Shallow Copy

Deep Copy {‘
———

x

nane [
]

OEBPS/images/13.34.jpg
Qo0 W

11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
14
45
46
47
48
49
50

import java.util.TreeMap;
import javax.swing.*;

public class TreeMapApp
{
public static void main(string[] args)
{
TreeMap<String, Patient>patientInfo = new TreeMap<String, Patient>();
string lastName;
‘Patient pl = new Patient("Tom Jones”, "2/3/1989", "643 976-4545");
Patient p2 = new Patient ("Amy Adams", "8/5/1991", " ;
Patient p3 = new Patient("Norm Baun", "5/9/1945",
Patient p4 = new Patient("Ray Rondo", "2/6/1993",
Patient aPatient;

//s

wve the key and value pairs in the collection
patientInfo.put ("Jones", pl);
patientInfo.put ("Adams", p2);
patientInfo.put ("Baun", p3);
patientInfo.put ("Rondo", pd);

//Fetch and output a patient’s value (object)
lastName = JOptionPane.showInputDialog("Enter a patient's last " +
"name \nClick Cancel " +
"to output all patients");
while (IasENameI=Inull) //not a Cancel click
{
‘aPatient = patientInfo.get(lastName);
{if(aPatient =='null) //key is not in collection
{
JoptionPane. showMessageDialog (null, "That person is not in" +
"our data base");
}

else //output the value
{
‘JoptionPane.showMessageDialog (null, aPatient);
}
lastName = JOptionPane.showInputDialog("Enter a patient's last " +
"name \nClick Cancel " +

"to output all patients");
}

//output all patients
for (String key: [pAEIENEINEOIKEYSET()) //all keys in the collection
(

¥

OEBPS/images/5.17.jpg
import javax.swing.*;

public class RandomClass
public static void main(String[] args)

[Random randomobject = new Random() //tine of day seed value
[0 T = KT |

int secretNumber;
string sGues
int count

JoptionPane.showMessageDialog (null, "Secret Number Guessing Game" +
"\nguess a number between " +
max + " and " + min);

S R S 0 @ 0y U1 W
Sohkbbie

b
a
o

)

.showInputDialog ("Enter a guess " + count +

"\nor click cel to quit");

clicked

Integer.parseInt (sGuess));

ncel was clicke:

D;

log(null, "Secret Number was " +
secretNumber) ;

showMess:

Dialog(null, "Great, you gus

o

ed it.");

n

OEBPS/images/7.7.jpg
public boolean eq

{

return true;
}

else
{

return false;

/15

//dif:

ps.gett ()

nt locat

als (ParentSnowman ps

&

/

eep comparison

d/or family n

OEBPS/images/5.16.png
—!

Statement(s) to be
repeated

do

//statement (s) to be repeated

Boolean
expression

}while (Boolean expression); false

OEBPS/images/7.6.png
shallow comparisons compare
reference variables

deep comparisons
name compare
data members

OEBPS/images/7.5.jpg
public class Studentv2

{ private static int studentCount = 0;
private int idNumber;
private double gp

public StudentV2 (int idNumber, double gpa
{
studentCount++;
this. idNumber
this.gpa = g
¥

//counts the number of Student objects decla
idNumber;

public String toString()
{

string s

"id is " + idNumber +
"\ngpa is " + gpa;
return s;

¥

public static int getStudentCount ()
{
return studentCount;

¥

public void show()

OEBPS/images/13.33.jpg
public class Patient

String name;
String DOB;
string cellNumber;

public Patient(String name, String DOB, String cellNumber)

@ o W

10
11
12
13
14
15
16
17

¥

public

{

¥

.DOB = DOB;
.cellNumber = cellNumber;

i

string tostring()

return name + ",

" 4 DOB + ", \tCell Number: " + cellNumber;

OEBPS/images/13.32.jpg
Work Orders Non-prioritized by an ArrayQueue
Apartment 1C, Polish doorknob.

Apartment 8A, Rats running around kitchen.
Apartment 8A, Replace light bulb in hall.
Apartment 12B, Toilet backing up.

Work Orders Prioritized by a PriorityQueue
Apartment 8A, Rats running around kitchen.
Apartment 12B, Toilet backing up.
Apartment 8A, Replace light bulb in hall.
Apartment 1C, Polish doorknob.

OEBPS/images/5.15b.jpg
Disk File Inputs
20.10
30.20
40.30

Outputs

Your beginning balance was: $1,000.24
The total of the 3 deposits is $90.60
The average deposit was: $30.20

Your new balance is: $1,000.84

OEBPS/images/13.31.jpg
artmentNumber;

1
3
4 String cription;
5 int priority;

6

orkorde.

r (String location, String , int priority)

tNumber tion;

this.description = description;
this.priority = priority;

¥

public String toString()

{
return "Apartment " +
", " + description;

tmentNumber +

OEBPS/images/5.15a.jpg
J o e W

@

10

import

2%t Number!

public class EndOfFile

{

public static void main(String(]

{

double ba
int numof)
double deposit, to
NumberFormat us

NumberFormat. g

.out.println ("Th:
us.

OEBPS/images/7.4.jpg
public class Stu
(private static int studentCount = 0;
private int idNumber,
private double gp

public Student (int idNumber, double gpa
{
//counts the number of Student objects decl
this.idNumber = idNumber
this.gpa = gpa
¥

public String tostring()
{

String s "id is " + idNumber +
"\ngpa is " + gp

return s;

return studentCount;

OEBPS/images/13.30.jpg
import java.util.*;

public class Queues

public static void main(String[] args)

.add (new Workorder ("

(", "Polish door knob.", 10));
cs.add (new Workorder

¢

s

A", "Rats running around kitchen.", 1));
A", "Replace light bulb in hall.", 7)
2B", "Toilet backing up.", 1));

.add (new WorkOrder

1c
8,
8,
.add (new Workorder ("1

tasks "

System.out.println("Work Orders Non-prioritized by an ArrayQueue");

while (EasKsISize(II=10)
System.out.println (Easksuremovel)) ;

Lout.println();

add (new Workorder|("1CM, "Polish doox knob.", 10));

add (new Workorder|("8A", "Rats ruaning around kitchen.", 1));
add (new Workorder ("8A, MReplace 1ight bulb in hall.™, 7)) ;
add (new Workorder (W12BM, "Toilet backing up.", 1))

System.out.println("Work Orders Prioritized by " +
"a PriorityQueue");
while (ptasks.size() != 0)

System.out.println|(PtasksSuEemeven)) ;

(SRR R T R N R =R R N T N T S =

W W W W 0 B 1D B 1 1) B3 1D D) 1 b 1 B S S 0 @ Oy U W)

e

OEBPS/images/5.15.jpg
ext. Numb:

import 3

public class EndOfFile
{

Jov G W

public static void main(String(]

8 {

double b
int numof)
double deposit,
NumberFormat us

NUMOF!
total

em.out.println ("Your
us. fo

31

32

33

34

E -

36 }
37)
Disk File Inputs
20.10

30.20

40.30

Outputs

Your beginning balance was: $1,000.24
The total of the 3 deposits is $90.60
The average deposit was: $30.20

Your new balance is: $1,000.84

OEBPS/images/7.34.png
Team.Yankees Team.Braves Team.Giants
[100 200 300

myTeam 200 300

Braves

OEBPS/images/CO2_3.jpg
Welcome to Java Game Programming.

Get ready to learn alot
and have fun doing it!
Your game begins now!

OEBPS/images/13.3.jpg
45
567.89

P
age 19 name Sam Jones

567.89
age 19 name Sam Jones

OEBPS/images/5.14.jpg
{
8 double b:
9 int numof]
10 double d:

it, nce,

11 string input;
12 NumberFormat us = NumberFormat.g
13

14 em.out.println("Your

"y

/ numofDeposi

.out.println("The t the
" d
.out.println("The
us. for:
.out.println("Your

Inputs
2010
3020
4030
-1

Outputs

Your beginning balance was: $1,000.24
The total of the 3 deposits is $90.60
The average deposit was: $30.20

Your new balance is: $1,000.84

OEBPS/images/7.33.jpg
@ oG W

// Using enun
enum Team {Yankees, Br.

Team myTear
switch (myTeam

{
case [¥ankess: // no
System.out.printin(nyTean + " " + [Sai.Yankess)

}

OEBPS/images/Chapter_9_opener.png

OEBPS/images/13.29.png
element O element 1 element 2 element 3

terator T
position 0 1 2 3 4
| Five possible fterator locations in a four-element list
hasPrevious () hasNext ()

retums false retums false

OEBPS/images/5.13.png
Boolean false
while (Boolean expression) expression
(
//statement (s) to be repeated
} true

Statement(s) to be repeated

OEBPS/images/7.32.jpg
indingM
indingM
ndingMod
ndingM

Output:

25.1428571428571428571
25.142857142857142857
25.14285714285714286
25.1428571428571429

OEBPS/images/Chapter_8_opener.jpg

OEBPS/images/13.28.jpg
All transeripts in order of entry
name: Dana; gpa:
name: Carol; gpa: 3.8; credits carned: 43
name: Alice: gpa: 17 credits carned: 22
name: Bob; gpa: 2.6; credits earned: 120

; credits carned: 45

All transeripts in sorted order by GPA

name: Alice: gpa: 17; credits carned: 22
name: Bob; gpa: 2.6; credits earned: 120
name: Dana; gpa:
name: Carol; gpa: 3.8; credits carned: 43

5: credits earned: 45

Highest GPA is name: Carol; gpa: 3.8; credits carned: 43
Lowest GPA is name: Alice; gpa: 1.7: credits carned: 22

All transeripts replacing Dana’s transeript with Carol’s transcript
name: Alice: gpa: 17; credits carned: 22
name: Bob; gpa: 2.6; credits earned: 120
name: Carol; gpa: 3.8; credits carned: 43
name: Carol; gpa: 3.8; credits carned: 43

t4, Bob, is currently at location 1

All transeripts output using an iterator after locations 0 and 3 were swapped
name: Carol; gpa: 3.8; credits carned: 43
name: Bob; gpa: 2.6; credits earned: 120
name: Carol; gpa: 3.8; credits carned: 43
name: Alice: gpa: 1.7; credits carned: 22

OEBPS/images/5.12.jpg

OEBPS/images/7.31.jpg
Inputs to Three Executions of the Program:

93
300

Corresponding Outputs:

£92 = 7540113804746346429

Which does NOT exceed the maximum value of type long
£03 = 12200160415121876738

Which EXCEEDS the maximum value of type long

£300 = 222232244629420445529739893461909967206666939096499764990979600
Which EXCEEDS the maximum value of type long

OEBPS/images/Chapter_5_Opener.jpg

OEBPS/images/13.27.jpg
double gpa;
int creditsEar

ned;

public Transcripts(String name, double gpa, int creditsEarned
{
this
this.gpa = gpa
this.credits

}

creditsEarned;

public String toString()
{

OEBPS/images/5.11b.jpg
50
51
52
53
54
55
56
57
58
59
1]

d oo oo oo o O
883 y

//Draw tl Cl s
for (SHENEGHI= R SISHIEGHFR) //Tirst thr
{

foz (int _
(

* poxWidth;

OEBPS/images/7.30.jpg
1 import java.math.BigInteger;

2 import j ng.

3

4 public class FibonacciTerm

5 {

6 public static void main(String(]

7 {

8 int n;

9 BigIn r temp;

10 Biginteger faMinusl - [B1GTREEGER.ONE;

BigIn r fn
BigInteger

string
n = Integer.
for (int i

fnMinusl = temp;
}
System.out.println("E" + n + " = " + EALEGSEEIAGN)) ;

) > 0)

if (FANCOMPAEETS (1ongMaxvaly

out.println("Which EXCEEDS the
"type long");

out.println("Which d NOT
"type long");

maximum value of " +

OEBPS/images/Chapter_3_Opener.jpg

OEBPS/images/13.26b.jpg
39

41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
1]
31
ez
€3
64

System.out.println("\nall transcripts replacing "+
"Dana's transcript with Carol's transcript");

i< 4; i+)

System.out.println(underGrads.get(i));

//The Collections
System.out.println("\nt4, Bob, is currently

Collections.binarySearch (underGrads, t4));

//use o iterator
System.out.println("\naAll transcripts output using
ter locations 0 and 3 were s

while (anIterator.hasNext())
{

System.out.println (EATEETatormexel)) ;
¥

OEBPS/images/5.11.jpg
1 import edu.sjcny.gpvl.*;
import java.awt.Color;
import wt.Graphics;

{

static CheckerBoard ge = new CheckerBo:
static

rd ()7

3

4

5 public class CheckerBoard extends Dra
o

5

8 d(ge, "Nested For loops")

eBoard gb = new GameB

public static void main(String[] args
{

showGameBoard (gb) ;
¥

public void draw(

{
int xBox
int yBox = 5
int boxwWidth
int boxHeight
int firstCheckercol
int checkerx
int checkery

color secon
Color temp;

gb.setBackground (Color.LIGHT_GRAY) ;

//Draw the che: ozrd boxes

fox(int zow = 1; Tow <= 8; Towt) I/

{
for (int col = 17 col <=8 colth) //
{

h row

ch column

g. setColor(firstColor);
£(col % 2 == 0)
{

g. se
¥
g.fillRect (xBox, yBox, boxWidth, boxHeight);
xBox = xBox + boxWidth;

olor (secondColor) ;

48

OEBPS/images/7.3.png
ryan mary 25

15
25
idNumper | 15 idNumber | 2373
gpa gara | 2.87

studentCount.]

OEBPS/images/Chapter_1_Opener.png

OEBPS/images/13.26a.jpg
WW W W W W W W 1 B 1 R 1) D) 1 1) B B S b b S 0 @] 0y U1 W b

R R R R ST R SR = R = R TR W =Y

import java.util.LinkedList
import java.util.Collections
import java.util.List

import java.util.ListIterator

public class LinkedListApp

public static void main(String[] args

Transcripts tl = new Transcripts("Dana
Transcripts t2 = new Transcripts("Carol
Transcripts t3 = new Transcripts("Alice
Transcripts t4 = new Transcripts("Bob",

[ERGEFGEEASNEEANED) ; //2dd the transcripts to the list
underGrad
underGrad

underGrad

//output the transcripts sequentially
System.out.println("\nall transcripts in order of entry");

for(int i - 0; i < UNdSrGEAds;SIZE(); i++)

System.out .println (UHGSEGEAGSIGEE(D)) ;
}

//The Collections class’s sort method
System.out.println("\nAll transcripts in sorted order by GPA");

for(int i = 0; i < underGrads.size(); i++)

System.out .println (UHGSEGEAGSIGEE(D)) ;
}

//The Collections class’s min and max methods
System.out.println("\nHighest GPA is " +

(Collections.max (underGrads)) ;

OEBPS/images/5.10.jpg
Comma separators
0.006

161,234,563 468.5
1.53

Leading & Trailing Zeros &Commas
0.006

161,234,563.468.500

1530

Percentages

0.62%
16,123,456,346,850.00%
153.00%

Scientific Notation
6.2000E-3
1.6123E11
1.5300E0

OEBPS/images/7.29.jpg
Console Output:
Name: Alice
PhoneNumbers: home:657-2342 cell:574-8976 office:345-6589

Name: Tom
PhoneNumbers: home:367-4367 cell:754-3564 office:386-1212

Name: Annie

PhoneNumbers: home'456-4698 cell-765-8204 office:830-5623

OEBPS/images/Chapter_13_opener.png
.O rv »

e % %

‘©-v f

OEBPS/images/5.1.png
statement

statement

statement

statement

OEBPS/images/7.28.jpg
@ oG W

public class Innerc:
{
public static void main(Stringl] args)
{
PhoneBook bestFriends = new PhoneBook();
bestFriends.showAll();
}
}

OEBPS/images/Chapter_12_opener.png
MEND |= [
DESIGN El

OEBPS/images/7.27.jpg
import

.swing.

public class PhoneBook
{
private String[]
private PhoneNumbers

@ oG W

public PhoneBook() /. thre

ings

public void showaAll()
{
for(int i =

{

;i< ngth; i++)

System.out.println("\nName: " + name[i])
‘numbers[i].show ()
¥
}

private class PhoneNumbers /
{
private String home;
private String cell;
private String office;

public PhoneNumbers (int i
{

home = Jopticne + name[i] +
number") ;

cell = JOptionPane.showInputDialog("enter " + name[i] +
Hig number")

office = JoptionP

e.showInputDialog("enter " + name[i] +
"'s OFFICE number");
}
public void show()
{
System.out.println ("PhoneNumber:
" cell:

home:" + home +
+ cell + " offic:

+ office);

OEBPS/images/Chapter_11_opener.jpg
M“luo-
O mxm

275B

Iﬂ93

OEBPS/images/Chapter_10_opener.jpg

OEBPS/images/cover.jpg
Programming
Fundamentals
Using Java

A Game Application Approach
Second Edition

;; EE———

OEBPS/images/14.23.jpg
Produced 1
nsumed 1 <-—-

Consumed
Produced
Consumed
Produced

Consumed
Produ
onsumed
Produced
onsumed
Produced ¢
Produced
nsume:
nsumed
nsw
Times consumed:

OEBPS/images/14.22.jpg
import util.concurrent.ExecutorService;
import java.util.concurrent.Executors

public class PCThreadsync
{
public static void main(Stringl] args)
{
SynchronizedBuffer aBuffer = new SynchronizedBuffer();

new Producer V2 (Buffer)

Producerv2 producerThr: ;
new Consumer V2 (aBuffer);

consumerThr

Consumer’

ExecutorService launcher = Executors.n
execute (producerThrea
execute (consumerThre;

hedThreadPool () ;

launcher

launcher. shutdown () ;

OEBPS/images/6.14.jpg

OEBPS/images/14.21c.jpg
54
55
56
57
58
59
1]
31
ez
€3
64

¥

System.out.print ("\nTimes consume
for (int i

{

if (consumedba

{

¥

i <= 10; i++4)

i-11 true)

System.out.print (" " + timesConsumed(i-11):

OEBPS/images/6.13b.jpg
HE

1o oo o

for(int i = 0; i < 8; i++)
73 {
74 if(sm[i].getX() >= 460 || sm[i].getX() <= &)

tXSpeed() ;

)

>= 420 || sm[i].get¥() <= 30)

.getySpesd();

v R R

OEBPS/images/14.21b.jpg
5 3
€ private int[] timesConsumed = new int[10];

7 private boolean[] consumedD new boolean[10]
8

{
this.sharedDa
¥

public void run()

{
Random delay = new
int Item;

for (int i

{

i<=10; i++4)

try

nextInt(10) + 1); //simula

a
&

timesConsumed[
¥
outputConsumedSummary () ;

¥

private void outpu
{

try

{

Thr:
¥
catch (Interruptedsxception e)
{
¥
System.out.print ("Consumed da
for(int i = 1; i <= 10; i++)

{
if (consumedData[i-1]

{

nsumedSummary () /.

.sleep(5000) ;

true)

System.out.print (" " + i)

1

OEBPS/images/6.13a.jpg
39

import edu.sjcny.gpvl.*;

import

public
{

static
static
static

new SnowmanV7[8];

public static void main(Stringl] args)

V7(10 + 1 * 50, 100 + i * 30);

gb.setTimerInterval(3, 20);
showGameBoard (gb) ;
¥

public void draw(Graphics g)
{
for(int i
{
PEEEGSIEIESHONIGNH| // show che parade a
}
}

i<8; i+

its current locatio:

public void timer3()
{

oemEE Gzt o]
}

OEBPS/images/14.21a.jpg
import java.util.Random;

public class [CORSEREEV2| implements Rur
{

OEBPS/images/6.12.png
The argument:
parade

Client’s RAM Memory

The parameter:
sm

‘Worker Method's RAM

OEBPS/images/14.20.jpg
import J

util.Random;

public class |PEGAUESEVZ implements Runnable
(
oo Stplaomiuceliiian: Sloucanz::g

private Random de new Random() ;

{
this.sharedD:
¥

public void run()
{
for (int i

{

i <= 10; i++4)

processing
xtInt (10) + 1);

i):
System.out.println("Produced " + i);

OEBPS/images/6.11.png
The argument: -

age 100

100

Client’s (invoker's) RAM Memory

The parameter:
{100 theAges

Worker Method’s RAM

OEBPS/images/14.2.jpg
Qo0 W e

B30 e o o
Fobobahewhbiro

5
3

R
ERE g

5
&

[

import javax.swing.*;

public class ExtendsThread Extends|Thiead
{

private String name;

public ExtendsThread(String name)
{
supez ()

this.name = name;

}

PUBISEIVEIANERR(] //A thread’s entry point
{

System.out.println(name + " is executing");

String answer = JoptionPane.showInputDialog("What is 23 + 57 2");
if (answer.equals ("80"))

{

System.out.println("Correct, 23 + 57 = 80")
}
else
{
System.out.println("Incorrect, 23 + 57 = 80")

}

OEBPS/images/6.10.jpg
(@) Initial output (b) Output several seconds after Start is clicked

OEBPS/images/14.19b.jpg
7 public SynchronizedBuffer (
8 {

0)
12 public synchronized void set

13
14 try

=
le = false;
true;
notifyAll();

tem;

OEBPS/images/6.1.jpg
100
aget
age2
=
aged

biimdicoiele &

ey

age[0
age(l]
age[2
ageld
age[4]

OEBPS/images/14.19a.jpg
o U W)

public class SynchronizedBuffer
{
int share a;
private BosleanIWEIEEabIEI=IERS
private boolean readable = false;

OEBPS/images/59.png
Message -

Input

enter the snowman’s X coordinate

X is beyond the board's RIGHT

OK

OEBPS/images/14.18.jpg
o U W)

if (writ

{

setData method

le == true)

//write the buffer’s data member
writeable = false;
ble = true;

ERTIFSERE

//return buf:

getData method
== true)

= true;
false;

OEBPS/images/58.png
Input

Message

Enter a String containing numerics

[Prease add up 3.4 plus 5 plu -2 OK?|

(i) 34+5+2-64

OK

OEBPS/images/57.png
Input

This program calculates a /b
Enter the value of a

Fiteen|

OK Cancel

Message

AL

j) Enteronly digits for the operands.
The program is ending

OK

OEBPS/images/pg289.jpg
intll il ages = { {10, 11, 1=, 13, 1&},
{20, 21, 22, 23, 24},
{30, 31, 32, 33, 34};
140, 41, 42, 43, 44} }

OEBPS/images/pg204.jpg
int sum =

sum
sum
sum
sum

sum
sum
sum
sum

oS
W

OR

int sum

for (int i

{

sum

sum + i;

OEBPS/images/14.17.jpg
Produced
Consumed
Produced
Consumed
Produced
nsumed
Produced
Consumed
Produced
Consumed
Produced
Consumed
Produced
Consumed
Produced
Consumed
Produced
Consumed ¢
Produced
nsumed
Consumed

1
1
3
3
4
4
5
5
€
€
5
5
s
s
9

OEBPS/images/14.16.jpg
Produced
Consumed
Consumed
Produced
Produced
Consumed
Consumed
Consumed
Produced
Produced
Consumed
Produced
Consumed
Consumed
Consumed
Produced
Consumed
Produced
Produced
Produced
Consumed
Times consumed

1
1
1

R R TR LI RN
A
f
|
|

e
ww
[y
w o
[

First Execution

Produced
Consumed
Produced
Consumed
Produced
Consumed
Produced
Produced
Produced
Consumed
Produced
Produced
Consumed
Produced
Consumed
Consumed ¢
Produced
Consumed
Consumed
Consumed
Consumed
Times consumed:
Second Execution

[R

w

OEBPS/images/56.png
Input -

Message

A divisor cannot be zero.
Please re-enter it Division by zero is undefined

I | The program is ending

o] [emen] ox

OEBPS/images/14.15a.jpg
import util.concurrent.ExecutorService;

2 import java.util.concurrent.Executors;

3

4 public class PCThreadProblems

5 {

6 public static void main(String[] args)

7 {

8 Buffer aBuffer = new Buffer();

9

10 Producer producerThre. new Producer (aBuffer);
11 Consumer consumerThre: new Consumer (aBuffer);
12

13 ExecutorService launcher = Executors.r hedThreadpool ();
14

15

16

17 launcher. shutdown () ;

18 }

19 }

OEBPS/images/54.png

OEBPS/images/8.15.jpg
@ oG W

import edu.
import j

public class Extending]

{

cny.gpvl.*;
WL A

Members extends Dr:
static
static

ExtendingD:

new

meB!

Members ge = new Extending]
d(ge, "EXTENDI

able: ter

embers ();
DATA MEMBERS");

static = new RowBoat (30, 150, 200)
static 250, 150);
static 150,

public static void main(Stringl] args)
{

showGameBoard (gb) ;
¥

public void draw(Graphics g)
{

rbl.show(g);

rb2.show (g) ;

sbl.show(g) ;

OEBPS/images/14.14b.jpg
catch (InterruptedException e)

¥

private void outputConsumedSummary() //outputs fin tistics

{

Thr:

catch (InterruptedException e)
{
¥

System.out.print ("Consumed da

for(int i = 1; i <= 10; i++
{
if (consumedData[i-1] true.
{
System.out.print (" " + i)

¥
¥

System.out.print ("\nTimes consume

for (int i i <= 10; i++)
{
if (consumedData[i-1] true)
{
60 System.out.print (" " + timesConsumed[i-11);
61)
62)
63}

64}

OEBPS/images/51.png

OEBPS/images/8.14.jpg
(SRR R T R N R =R R N T N T S =

W W W R 1 0 1 1 1 1 1) B3 1) F 1 b b 10 0 - Oy U1 W)

import java.awt.*;

public class SailBoatV3 extends SailBoatV2

|private int sailirea; // additional data members

public SailBoatV3(int x, int y, int length,

Color color, HAEISailATes)

super (x, y, length, color);
this.sailkrea = sailirea;

}

@override
public int calculatePrice() //invokes the method it overrides

int hullPrice - [SUpeEICALCEIAEEPEICE(); //invokes RowBoat’s method
return hullerice + sailAzea A pricePerSUAreRst:
}

@override

public void show(Graphics g)

int[] xSail = {getX() + getlength()/2, getX(),
getX() + getlength()/2,};

int[] ySail = {getY() - getLength()/2, getY¥() - getLength()/8,
get¥() - getlLength()/8};

g.setColor (Color.WHITE); //draw the sail
g.fillPolygon (xSail, ySail, xSail.length);

OEBPS/images/14.14a.jpg
import java.util.Random;

public class Consumer implements Run:

ble
{

private int[] timesConsumed = new int(10];

private boolean(] consunedbata = new boolean(10];

public

public void run()
{
Random de
int

y = new
altem;

for(int i =

i <= 10; i++4)

try

xtInt (10) + 1); //simula

OEBPS/images/5.png

OEBPS/images/8.13.png
RowBoat

five data members

+ show(g: Graphics)
+ calculatePrice(): int
and the 10 other methods of the class
(See Figure 8.1)

SailBoat

+ SailBoat(x: int, y: int, length: int,
color: Color)

SailBoatv2

+ SailBoatV2 (x: int, y: int, length: int,
color: Color)
+ show(g: Graphics)

SailBoatV3

sailarea: int
pricePerSquareFoot: int

+ SailBoatv3(x: int, y: int,
length: int, color: Color
sailArea: int)

+ show(g: Graphics): int

+ calculatePrice () : int

OEBPS/images/14.13.jpg
0210 13 B 10 1) 1D 10 B 1 1 1 1 B 2 1 0 @] O U1 W D

slouronrabolanewiono

import java.util.Random;

public class Producer implements Run:

{

private Buffeyshareapata;
private Random delay - new Random();

public Producer (SUEfer ShareAData)
{

this.sharedData = sharedData;
}

public void run()
for(int i =

i<= 10; i++4)

[IThread:sleep(delay nextInt(L0)IFIL); //sinulate data processir
}

catch (InterruptedException e)

OEBPS/images/5.9.jpg
.out
.out
.out
.out

.out
.out
.out
.out

.out
.out
.out
.out

.out.
.out
.out
.out

.println("
.println
.println
.println

.println
.println
.println
.println

.println
.println
.println
.println

‘printin
.println
.println

161234563468.5;
1.530;

"
ltz.
ltz.

ling Zeros, & Com

ltz.

"\nPe
pct. forr
pct. forr
pct. forr

OEBPS/images/8.11.jpg
import edu.sjcny.gpvl.*;
import j WELk;

public class OverridingMethods extends D
{ static OverridingMehtods ge
static GameBoard gb = new
static RowB!
static RowB!

ableAdapter

new OverridingMethods () ;
me B d(ge, "OVERRIDII METHODS") ;
t rbl = new RowBoat (30, 150

@ oG W

public static void main(String[] args
{
show

¥

eBoard (gb) ;

public void draw (G
(

rbl.show(g);

b2 show (g) 7

OEBPS/images/14.12.jpg
Consumed 0
Produced 1
Consumed 1
Produced 2
Consumed 2
Produced 3

OEBPS/images/5.8b.jpg
Inputs
3
2010
3020
4030

Outputs

Your beginning balance is: $1,000.24
The total of the 3 deposits is $90.60
The average deposit was: $30.20
Your new balance is: $1,090.84

OEBPS/images/8.10.jpg
import J

public class SailBoatV2 [éxtends SailBoat /

{

public SailBoatV2(int x,

SibeE (5 LEHGER NEO1SE); //invore the b

{

¥

[EOVEEEIEE //translator verified an inherite

public void show (G
{

SuBSEISHGUIG)Y //invok= the pa

g.setColor (Color.BL:

g.fillRect (getX ()

3, getLength()

phics g)

)i //dr

overriding a parent method
int y, int length, Color color)
t's structor

method has this signature
// overwrites the parent's method

hod to draw the b

t

+ getiength()/2, geti() - getlengsh()/2,

OEBPS/images/14.11.jpg
Produced 1
Consumed 1
Produced 2
Consumed 2
Produced 3
Consumed 3

OEBPS/images/5.8.jpg
Jov G W

30
31
32
33
34
35
36

import J ing.Jopt
import 3 ext . NumberFor
import 3 util.L

public class To
{
public static void main(String(]
{
double ba
int numof)
double deposit,
string input;

eginning ba

ingL

to

numOfDeposits = Integer.p:

h

OptionPane.showInputDialog("Enter a dej
Doub: uble (input) ;

}
System.out.println("The tota

" deposit.
.out.println ("Th:

seInt (input)

input

System.out.println("Your new balance is

OEBPS/images/8.1.png
RowBoat s called the
parent class,or

super class, or

base class

SailBoat is called the
child class,or
sub class, or
derived class

RowBoat.

- pricePerFoot: int
- x:int

- y: int

- length : int

- color: Color

RowBoat ()

RowBoat (x: int, y: int, length: int)
calculatePrice(): int
show(g: Graphics)
getx(): int

gety(): int
getlength(): int
getColor () : Color
setX(x: int)

set¥(y: int)

setlength (length: int)
setColor (colorw: Color)

IR A e A

Inherits from extends

SailBoat

+ SailBoat (x: int, y: int, length: int,
color: Color)

OEBPS/images/14.10.jpg
public class BufferDemo
{
public static void main(Stringl] args)
{
private Buffer aBuffer = new Buffer();
private int dataltem;

for(int i =

{
SBUEFSFUSSEDAEANE) ; //produce = data ite

i<=3; i++)

OEBPS/images/5.7.jpg

OEBPS/images/79.png
#° Dollar Meal

{87 Dollar Meal

Entrees

Make a Selection

Entrees

a BLT Sandwich

L Mayonnaise

a Paper Plate

Utensils

(@)

OEBPS/images/14.1.png
A Clock Program

Thread to determine and update the time of day

A Music Video Program

Download thread

Music- and video-playing thread

Time

OEBPS/images/5.6.jpg
@ oG W

import J

WE.k;

import edu.sjcny.gpvl.*;

public class CheckerBoardRow extends D;

{

blehdapter

static
static

eckerBoardRow ge
eBoard gb = new

public static void main(String[] args

eBoard (gb) 7

public void draw(G

{
int boxX = 12;
int boxY = 5
int boxwidth = 60;
int boxHeight = 53;
int checkerx =
int checkerY = 55;
int firstCheckercol
Color firstColor
Color secondColor

//Draw th: r s
for(int col = 1; col <= 8; col++)
{

g. setColor (firstColor); //black

it(colx2 =10
{

//praw th che
g.setColor (Color.RED) ;

for (tnt col = firstCheckerCol; col <=9 col= col + 2)
{

g.filloval (checkerX, checkerY, 40, 40);
¥

OEBPS/images/78.png
7 Dolar Meal (e 1 Dollar Meal

Entree Entree
(O Hamburger Hamburger
Taco ® Taco

BLT Sandwich BLT Sandwich

OEBPS/images/5.5.png
false

true

Statement(s)

i+3; k=k-1;

OEBPS/images/77.png

OEBPS/images/1.18.jpg

OEBPS/images/76.png

OEBPS/images/1.14b.jpg

OEBPS/images/1.16.jpg

OEBPS/images/1.14a.jpg

OEBPS/images/1.12.jpg

OEBPS/images/1.13a.jpg

OEBPS/images/1.10.jpg

OEBPS/images/1.11.jpg
"/
.:
ﬂ} 7

OEBPS/images/12.6b.jpg
37
38
39
40
41
42
43
4
45

7

<200 oo o
258388

P
oS

[Epp—
IaaR

78
79
80
81

82

setPadding (new Insets(5));

//Declare the Place Order button and register its event handle
placeOrder = new Button("Place Order");

, listPane);
eorder, HPOS
1,2, 1)

¥

.out.println(order) ;

public static void main(Stringl] args)

OEBPS/images/12.6a.jpg
1 x.application.Application;
2 x.collections. *;

3 %.geometry. *;

4 x.scene. control. *;

5 x.scene. layout.*;

3 X. e.text.Font;

7 x.scene

8 x.stage

9

public class MealMenu2 extends

ion

entre
ListView ext:
Button placeOrder;

@override
public void s
{

T(st

pri;

idPane root = new Gridl ;
root.setPadding (new Insets(10));
root.se p(5);

, its items, the ComboBox and VBox
1("Entrees");
(" 14));

//peclare the C
Label entreeslbl = new

", "a BLT Sandwich",

comboF:

dth(180) ;

ight (180) ;
pacing(7) ;

adding (new Insets(5));

2
2

o a

3
3
s,

o i i
oaaa
G a o

OEBPS/images/4.19.jpg
e W

FileWriter fileWriterObject
new PrintWri

PrintwWri
int score

fileout

fileout.println(sco

w FileWriter("c:/da
(fileWriterob:

ct,

txt")

false);

OEBPS/images/12.4c.jpg
grid, 400, 195);

G

e("Dollar
ene) ;

iz

oo oo oo o

==

String order = "";

)

=

else if (blt.issSelected())
{

order = order + "BLT sandwich";

if (cheese.isselected())

pep)
R AR S v i B i = R]

@@ mmoonon oo -

order = order + ",

0 @

if (ketchup.isSelected())
92 order = order + ", and ketchup";

kins.iss

ected())

26 order = order + ", and kins";

.out.println(order) ;
99 1

o
4

et
@

OEBPS/images/4.18.jpg
o @ o0 W

File fileobject
S ner fileIn
String name;
int age;

double weight;

new File("c:/d:
new Sc

txt");
ner (fileobject) ;

[

a = fileIn.nextInt();

weight = fileIn.nextDouble();
filel extLin
name = filel

0z
extLine();

OEBPS/images/7.13.jpg
1 import

import
3
4 public class DeepAndShallow extends DrawableAdapter
5 { static DeepAndshallow ge 0
6 static GameBoard gb = new d Shallow");
7 static entSnowmanV2[] ps;
8 static boolean gameOver = false;

public static void main(String[] args)

ps[0] ntSnowr "G", Color.BLUE);
psll] ntsnow: Color.GREEN) ;
psi2] entsnom Color.GREEN) ;
psl3] ntsnow: 3", Color.GREEN);

gb.setTimerInterval(3, 20);
showGameBoard (gb) ;
¥

¥

34 public void timer3()

OEBPS/images/12.4b.jpg
14
15

0

@override
public void s
{

primarystage)

String blue = "-fx-border-color: rgba(0, 0, 200, 0.7);"

but d regi
new Button("Place Order");

radio but buttons
adioLbl = new Labe
diolbl.setFont (new Font("Arial", 16));
mburger = new RadioButton("Hamburger");
new RadioButton("Taco
blt = new RadioButton("BLT Sandwich")
'VBox radioPane = new VBOX(radiolbl, hamburger, taco, blt);
radicpane.secPrefiideh (160)
dioPane.setstyle (blue
dioP: setsSpacing (1)
dioPane.setPadding (new Insets(10))

‘ToggleGroup entreeGroup = new ToggleGroup();
lIIIIIIlIllllllllllllllllllllllllllllll

taco.setToggleGroup (entr:
blt.setToggleGroup (entr:

//build the check box VBO
Ibl = new Label ("Extras"
Lbl.setFont (new Font ("A
cheese = new CheckBox ("Che
eckBox ("Ketchup”) ;

oS

PrefWidth (180) ;
style (blue);
Spacing (10) ;

19
T
T
tPadding (new Insets(10));

i i i
oaaa

//Rdd the
Gridpa:

=)
new Insets(10));

grid = new Grid
ddl*\g(
5);

grld.ret?
grid.s;

OEBPS/images/4.17.jpg
Nora

354

OEBPS/images/7.12d.jpg
147 return visible;
148}
149 }

OEBPS/images/9.20b.jpg
30 long rpl, rp
31 invocations+

33 if (AE=I1IA/==12) //defined base cases

3¢ {

35 return 1;
36 }
37 else //general solution

38 { rpl - / late first reduced problem
39 p2 / late second reduced problem
20 return rpl + rp2

41)

42)

43

44 public static long fibDynamic(int n]

5

46 long rpl = 0;

47 long rp2, gs;

48 invocations++;

//thres base cases
if(n 11ln
{
data[n]
return
}
[lse if(data[n]1=10) //dynamic programming base case
{
¥
else //general solution
{
[EE(GEEAASIIN==10) //calculate flrst reduced problem

2) //defined base cases

ER AR

second red

d problem

8
9
0
1
3
4
5
6
7
8
9
0
1

H
5.
s:
5.
s
5
H
5
5
5
&
@
@
&
&
&
&
&
&
&
7
7

gs = rpl + rp2;
return gs;

i

OEBPS/images/12.4a.jpg
@ oG W

import x.application.Application,
import x.geometry. *;
import . .Scens;
import x. .control.*;
import x. .layout.
import . .text.Font;
x.

import .Stage

public class MealMenu extends Application

{

OEBPS/images/4.16.jpg
ner fileIn
score;

txt");

OEBPS/images/7.12c.jpg
99 return xSpeed;
100}
101 public veid setXspeed(int newxspesd)
102

103 xSpeed = newxspeed;
104}

105 public int get¥speed()
106 {

107 return yspeed;
108}

109 public veid set¥sSpeed(int newvSpesd)
10

111 ySpeed = newyspeed;
12}

113 public veid setHatColor(Color newHatColor)
14

115 hatColor = newsatColor;
116}

117 public Color getHatColor ()
18

119 return hatColor;

120}

121 public int getx()

122

123 return x;

124}

125 public veid setX(int newx)
126 {

127 % = newx;

128}

129 public int get¥()

130

131 return y;

132}

133 public veid setY(int newY)
134 |

135 ¥ = newy;

136}

137 public String getName ()
138 |

139 return name;

140}

141 public veid setName(String newName)
142 |

143 name = newName;

144}

145 public boolean getVisible()
146

OEBPS/images/9.20a.jpg
0301 10 13 10 13 19 10 13 10 15 1 1 1 1 5 1 1 10 00 - 01 U1 W 0D

PR ST AR e] TR N e Y

import javax.swing.*;
import java.text.Decimalformat;

public class FibonacciDynamic

public static void main(String[] args)

Decimalformat f = new DecimalFormat ("#, ###");

String s = JOptionPane.showInputDialog("Enter the term number," +
" n, to be evaluated:" +
" 1<= n <=100");

int n = Integer.parseInt(s);

Systen.out printin("cn = * + [EEGHEE(EBY +
"\ncalculated making " + f.format(invocations) +
" invocations");

invocations = 0;
System.out.println();

System.out printin("fn = * + [EECEE(EEOSRIEI) +
"\ncalculated making " + f.format(invocations) +
" invocations");

public static long fib(int n)

OEBPS/images/Figure3_6h.png
Message

@ Swapped using class levels: 9999 8888

OK

OEBPS/images/12.23.jpg
public static void main(String[] args
{
// pass ti
AFuncInterfa

xpression to a non-void m
ambdaBuilder((x, y)-> { X = 2 * x;
y=3*y;
return x + y;})i

o

output2AsAnd3Bs (e) ;

¥

public static AFuncInterface lamdaBuilder (AFuncInterface e
{
return e;

¥

public static void output2AsAnd3Bs (AFuncInterface e)
{
// invoke the abstract
int ans twoAsSAndThr:
System.out.println(ans);

hod using the
eBs (1, 2);

e // the functional inte

public interface AFuncInterfa

{

@

int twoAsAndThreeBs (int a, int b)

}

OEBPS/images/4.15b.jpg
t.print ("Ente:
t.println ("Ag:
" Na

t.print ("\nEnter your

Console inputs and outputs:

Enter your name: Breanne

Enter your age: 18

Enter your weight: 125.7

Age: 18 Weight: 125.7 Name: Breanne

Enter your age and weight on one line: 5 354
Enter your name: Nora
Age: 5 Weight: 35.4 Name: Nora

OEBPS/images/7.12b.jpg
5
8
9

S oo oo oo o

PR
GEon s

76

public void show(

{

¥

return false;

return true;
¥

else
{

return false;

o
G @
a'd
jig

return true;
¥
else
{
return false;
}
¥

phics g) // g is t

int[] xPoly = {x + 20, x + 15, x + 25};
int[] yPoly = {y + 25, y + 30, y + 30};

.setColor (hatColor) ;
.fillRect(x + 15, y, 10, 15); // hat
-fillRect (x + 10, y + 15, 20, 2); // brim
(
(
(x

.setColor (Color.WHITE

Jfilloval(x + 10, y + 17, 20, 20); 1/
.filloval y + 37, 40, 40); // body
lseccolor (Color.RED) ;

.fillpolygon (xPoly, yPoly, 3); // nose
)i

.setFont (new Font ("Arial", Font.BOLD, 16)
.drawstring (name, x + 16, //

Qaaaaaaaaaaq

return snow

Count;

public int getxspeed()

{

object

OEBPS/images/9.2.jpg
1o

w0 o

OEBPS/images/Figure3_6g.png
Input

Enter the second number to swap
[o09g] |

OK Cancel

OEBPS/images/12.22.jpg
@ oG W

public static void ma

{

¥

n(string[] args)

//pass the Lambda expression to a method's AFuncInterface parameter

output2AsAnd3Bs((X, y)-> { x = 2 * x;
v=3*y
return x + y;})i

public static void output2AsAnd3Bs (AFuncInterface e)

{

¥

public interface AFuncInterfa

{

}

//invoke the abstract method using the pa:
int ans = twoAsAndThreeBs (1, 2);

System.out.println(ans);

//the functional interface

int twoAsAndThreeBs (int int b); //tl stract method

OEBPS/images/4.15.jpg
o @ o0 W

public class Sca
{

nsoleInput

public static void main(Stringl] args)
{

String name;
int
double weight;

OEBPS/images/7.12a.jpg
38

import J

public class Pare:
{

private int x
private int y
private
private
private
private int yspeed

private boolean visible = true;

public

snow ount++;

entSnow

2(int intialX, int intialY, String »

Eolompacolon)

x = intialX;
y = intialy,
this
this.

}

return theClone;

if (this == ps)
{

return true;
¥

else

{

OEBPS/images/9.19.png
— =% Invoking method

¥ Recursive invocation
v
y Stored value

-
[Returned value

A
| Fetched value

OEBPS/images/Figure3_6f.jpg
Enter the first number to swap

[ssss]

OEBPS/images/12.21.jpg
n(string[] args)
bda expression to ¢
(% y) > {x=

v =

he AFuncInter
*ox;

3ty

return x + y; };

//invoke the abstract method on the AFuncInterf:

int ans = b.twoAsAndThreeBs (1, 2
System.out.println(ans); //outputs

¥

public interface AFuncInterfa

{

int twoRsAndThreeBs (int

}

@

functional interfa

stract method

OEBPS/images/4.14.jpg
Score:0 Time remaining: 10 Score:0 Time remaining: 7

L

Score:1 Time remaining: 0
‘Game Over
Have a Good Day.

é

© @

OEBPS/images/7.11.jpg
oo W

public ParentSnow:
{

arentSnowman theClone
return theClone;

OEBPS/images/9.18.png
xlx

3
Ny

2 2 o#

4

/\f

¥
f2 fl

OEBPS/images/Figure3_6e.png
Message

@ Swapped using parameters: 1111 2222

OK

OEBPS/images/12.2.jpg
public class CheckBoxEvent extends Application

@ oG W

9 CheckBox cbl;
10

11 @ ride

12 public void s
13 {

14

15

16

yStage.
primarystage.

¥

‘public veid cblHandler()
{
if(cbl.isSelected() == true)
{

System.out.println("Hamburger Selected");

System.out.println("Hamburger Un-Selected");

OEBPS/images/4.13c.jpg
0w oo oo
ee3ad

[RESR=g=]

94
95
96
97

98
99
100
101
102

}

public void timerl()

{

¥

ewX = 52.getX() -
s2.setX(newX);
breal
¥
case 'R':

{

newX = s2

setX(n
break;

¥

case 'U':

{

newy = s2.get¥() -
52.setY (newy) ;
break;

d of switch

count = count - 1;
if (count 0)

{
gb. stopTimer (1) ;
¥

OEBPS/images/7.10.jpg
o U W

return theClone;

OEBPS/images/9.17.jpg
import edu.sjcny.gpvl.*;

import

public class Recursiver.

{

extends Drawableh

apter

static RecursiveF:
static GameBoard gb = new
static Point pl = new Point(
static Point p2
static Point p3

new RecursiveFractal();
meBoard (ge, "RECURSIVE FRACTAL
0, 70); //vertices of the
new Point (25, 460);

new Point (475, 460);

public static void main(String args(l)
{

showGameBoard (gb) ;
¥

public void draw (G
{

phics g)

lor (Color.BLUE) ;
Sierpinsky(8, pl,

public static Point midPoint (Point pl, Point p2
{
Point midPoint = new Point();
midPoint.y = pl.y + (p2.y - pl.y)/
midPoint.x = pl.x + (p2.x - pl.x)
return midPoint;

¥

public static void drawSierpinsky(int iterations, Point pl, Point p2
Point p3, Graphics g)

{
if (iterations == 0) //I
{

return;

-, p2.
.Y, P3.
, p3.y, pl.

g.dravLine
iterations—

problems to draw top, left & right side triangles recursive
drawsierpinsky (iterations, pl, midPoint(pl,p2), mideoint(pl,p3), g)
drawsierpinsky (iterations, p2, midPoint(p2,pl), mideoint(p2,p3), g)
drawsierpinsky (iterations, p3, midPoint(p3,pl), mideoint(p3,p2), g

}

1

4

OEBPS/images/Figure3_6d.png
Input

Enter the second number to swap
[2222] |

OK Cancel

OEBPS/images/12.19b.jpg
16

{

: £ (e.getsource () = pickSolor &
0 ‘troot.getchildren () .contains (aCelorpicker))

string ¢
47 c="#" 4 c.
48 root.

) .tostring () ;

ackground-color: " + c);
reicker);

50 }

58 public static void main(Stringl] args)
59 {
60

61)
62)

OEBPS/images/4.13b.jpg
Y ()
v ()

o @

1.9
g

1", Font.BOLD, 18));
ning: " + count, 260, 50);

= 0) //game o

olor (Color.BLACK) ;

String("Game Over", 205, 70);
String ("Have od Day", 175, 90)
else if(!(s2X > s1X + w || 52X + w < s1X || s2Y > sl¥ + & |
52Y + h < s1¥) && sl.getVisible() == true) // collisio
{
score = score + 1
s1.setvisible (false);
¥
else if(52X > 51X + w || 52X + w < s1X || s2Y > s1Y¥ + h |
s2Y + h < s1¥) // no collision
{
if(sl.getVis false) // not visible
{ temp = sl
s1.setX(s
sl.sety(t
sl.setVis (true);

show (g) 7
if (sl.getVisible() == true

s1.show(g) 7

9 setColor (Color.BLACK) ;
60 drawstring("Score: " + score, 150, 50)
61)
62
63 public void keyStruck(char key) // call back me
64 (

5 int newX, newy;

switch (key)
{

883

case 'L

OEBPS/images/7.1.png
Student ryan = new Student (1567, 3.26); Student mary = new Student (2373, 2.87);

ryan mary 25

15

idNumber

gpa

OEBPS/images/9.15.png
A

OEBPS/images/Figure3_6c.png
Input

Enter the first number to swap
[1111]

OK Cancel

OEBPS/images/4.13a.jpg
import edu.sjcny.gpvl.*;
import j we.
//Use of decision

public class DecisionsControlOfFlow extends Dr:

{

static DecisionsControlofFlow ge = new DecisionsControlOfFlow();
static GameBoard gb = new GameBoard(ge, "Control Of
static BoxedSnownan sl = new BoxedSnowman (300, 200
static BoxedSnowman s2 = new BoxedsSnowman (30, 100,
static int score = 0;
static int count = 10;

Color.BLACK) ;

public static void
{

ain(String[] args)

showGameB,

d(gb);
}

public void d.
{

phics g) //call back method

int w = 40;
int h = 77;
int slx, slv,

OEBPS/images/6q.jpg

OEBPS/images/9.14.png
~ ~a
37 37 / 36
¥ N "¢
136 135, 136 I

OEBPS/images/Figure3_6b.png
Message

@ Only 3 Years to go

OK

OEBPS/images/69.png
utes a +

Computes a + b,

=| poooooc

Clear |

E—

OEBPS/images/9.13.jpg
© @ U W

public static long factIte
(
long n
for(int i = n;

io>=

nFact = nFact * i;
¥
return nFact;

tive(int n)

OEBPS/images/Figure3_6a.png
Input

You are 10 years old
How old do you wish you were?

19

OK Cancel I

OEBPS/images/9.12.jpg
move one ring from tower A to tower C
move one ring from tower A to tower B
move one ring from tower C to tower B
move one ring from tower A to tower C
move one ri

ng from tower B to tower A

move one 13

ng from tower B to tower C
move one ring from tower A to tower C
move one ring from tower A to tower B
move one ring from tower C to tower B
move one ring from tower C to tower A
move one ring from tower B to tower A
move one ring from tower C to tower B

move one ri

ng from tower A to tower C

move one 13

ng from tower A to tower B
move one ring from tower C to tower B

OEBPS/images/Figure3_37.jpg

OEBPS/images/4.10.png
% y) W —
location of
snowman, s2

VN

Position 4, s2 above s1

Position 2, s2 left of s1

Position 3, s2 below s1

Position 2, s2 right of s1

OEBPS/images/35.png
it+)

@ N o O w N

NN NN R R R e o
W NP O WU 8 WK L O

int iMin, min;

ParentClass temp;

for (int j = 0; j < parent.length; j++)
{

min = parent[j].getAge();

iMin = j;

for (int i =
{

j+1; i < parent.length;

if

(parent[i] .getAge () < min)
{
min = parent[i].getAge();
iMin = 1i;
}
}
if (iMin != j)
{
temp = parent[j];

parent[j] = parent[iMin];

parent[iMin] = temp;

it+)

1 int iMin, min;
2 int temp;
3
4 for (int j = 0; j < ages.length; Jj++)
5 {
6 min = ages[j];
7 iMin = j;
8 for (int i j+1; i < ages.length;
9 {
10 if (ages[i] < min)
11 {
12 min = ages[i];
13 iMin = i;
14 }
15 }
16
17 if (iMin != 3)
18 {
19 temp = ages[j];
20 ages|[j] = ages[iMin];
21 ages[iMin] = temp;
22 }
23}
Sorting an Array of Primitives

Sorting an Array of Objects

Figure 6.23
The Selection Sort algorithm.

OEBPS/images/68.png
1 Choice Dislog i
o Selctyourdas standing
Freshman

7 Sophomre Remote Registration

=@

(b)

OEBPS/images/34.png
1 int target = 32; 1 int target = 32;
2 int elementNumber = -1; 2 int elementNumber = -1;
3 boolean found = false; 3 boolean found = false;
4 for(int i = 0; 1 < ages.length; it++) |4 for(int i = 0; i< parent.length; i++)
5 { 5 {
9 if (ages[i] == target) 9 if (parent[i] .getAge () == target))
7 { 7 {
8 found = true; 8 found = true;
9 elementNumber = i 9 elementNumber = i
10 break; 10 break;
11} 11
12} 12}
Searching an Array of Primitives Searching an Array of Objects
Figure 6.21

The Sequential Search algorithm.

OEBPS/images/67.png
7 Input dialog box

o Enter your name:
e | e

7 Alice is using this program

(@)

(b)

OEBPS/images/9.11.jpg
031 00 13 10 1) 1 1 B b S 0 @ 0y U W)

(R R =Rl =R N T N S Y

public class TowersOfHanoi

public static void main(String[] args
}

//output the solution for four rings

public static void hanoi (int nRings, String fromTower,

string toTower, String thirdTower);

if (nRings

1) //pase case

System.out.println("move one ring from tower " + EEOMTGWEE +

" to tower " + [EOTOWEE)

return;

}

//general solution
hanoi (nRings-1, fromTower, EHIEGTOWEE, [EOTOWEE); //reduced problem
System.out.println("move one ring from tower " + fromTower +

" to tower " + toTower);

hanoi (nRings-1, EHIFET6WEE, toTower, EEOmTOWeE); //reduced problem

OEBPS/images/31.png
Programming Exercises

OEBPS/images/66.png
scene
height

The stage object passed to the start method
The desktop top’s application window

The stage’s area (width x height units)
The scene is added to this

The scene object (occupies the entire stage area)
The container is added to this

The container object. e.g. a Pane object
(occupies the entire scene)
Components are added to this.

<« scepe width — —»

OEBPS/images/9.10.png
sl sll alo

OEBPS/images/Figure3_34.jpg
(b)

OEBPS/images/3.png

OEBPS/images/65.png
7 Message

Message

The Program is terminating

7 Message

o The Program is terminating

(b)

OEBPS/images/9.1.png
{

//code of the beginning
//of the method

//remaining code of the method

A Method Reinvoked by Itself

//beginning code
//of the methodA

methodB() ;
//remaining code

//0f the method
}

public void methodB ()

//beginning code
//of the methodB

methodc () ;

//remaining code
//of the method

public void methodC()
(
//beginning code
//of the methodC

//remaining code
//of the method

A Method Eventually Reinvoked by
Another Method

A Reinvocation of methoda

OEBPS/images/Figure3_31.jpg

OEBPS/images/3.4.png
1

int myAge = 23;
double myWeight = 185.4;

myAge 03

myWeight
185.4

Client's RAM Memory

4
7
3 outputAgeAndWeight (myAge, myWeight) l

{

}

6: Pairings made
and values copied

23

185.4

static void outputAgeAndWeight (int age, doube weight)

System.out.println("age: "+ age + " weight: " + weight);

age

5: Memory
cells allocated
weight

Method’s RAM Memory

OEBPS/images/64.png
W1 This s the Title area

This is the Header and Icon area

This i the Content, aka Message, area

1 Thi s the Tite area

G Tis i the Content, aka Message, area

(@)

(b)

OEBPS/images/86.png
7 Color Picker De... L= | =) [0S | % Color Picker De... L=/ = |38 | % Color Picker De... L= |) |Wb

OEBPS/images/Figure3_27.jpg

OEBPS/images/3.39.png
Copied upon invocation of the method

sml | oo

RAM address 200

hatColoxr|Color.RED

Client's (invoker's) RAM

by
200 aSnowman
56 current X

Worker Method moveRight’s RAM

OEBPS/images/63.png
ERROR ﬁ

. The Disk VO Failed

OK

Enter your Class Standing
]saphomofel
OK Cancel

@

Standing

©

OEBPS/images/85.png
Custom Color window

7 Color Picker Demo

Custom Colors

Current Color

Hue:
Saturation:

Brightness:

Opacity:

New Color

I
RGB Web

8 |*
100

100

100 |%

[Save | use || concel

Pick Color

Like Color

M Orange

Color-Chooser

Color Pallet

Custom Color.. |

OEBPS/images/Figure3_22.jpg

OEBPS/images/3.3.png
Number, n Argument 1
Invoker 2
Invok lient)
nvoker Exponent, p (client) N
n
Returned ;
value Method :
een (for a nonvoid (worken)
method)
Parameter 1
The Math Class’s pow Method Any (Worker) Method

OEBPS/images/63.jpg
i Snowmarbaradetpp S

OEBPS/images/84.png
Console output:

The path to read the file from is:

E:\My Documents\Class Notes\CS210 Class Notes.docx
The path to write the file to is:

E:\My Documents\Class Notes\CS210 Class Notes.docx

OEBPS/images/Figure3_15.png
Person@e42a580
Person@183ca7dn

OEBPS/images/3.28.png
Address
21

"Robert"

Storage created by:

String name = "Robert";

Name | 2+-g67 Address
867

"Bob"

Storage after executing:
name = "Bob";

OEBPS/images/62.jpg

OEBPS/images/83.png
Open

@)~ = PATROTE 5 Ty o » G

Save As =)

<o) [ioss s

5] @)l Forr vy > i~ 4] [T G 5
Ogmize = Newtoldr = 0 @ [ogmaes Newosw)
E Recem lces = e B e o 3 Documents = e . Omemoatia Type
. [atenfient spsom e o=) AveeFient S5 LsE P Tet Do
by) 5101l e o ssmias H= [opemp— asonm11on v _ Mo
D s] Ct10 s s o s A aeer) 210G Nors o S 09 Mo
o) 5230 s s o S50m 1109 A 8] G520 s e doce BRG]
= P & Homesro
H = pe— ssomu0A) 570 s e doce e —
B Compuer i
& Homegrons Lo
{5 PATROT ©)
8 Compuer el C\ptcstcor
o) i ———————————| 0
12 PATROT)
[P = : Flename: €521 i Notsdocx -
I — e B
Flerame €S20 Cls Note o -]
Copm] Cema] | | @ e rtoen) o]

(b)

OEBPS/images/Figure2_9e.jpg
Message

The radius of a circle whose area = 200.0
is 7.978845608028654

OEBPS/images/3.24.png
Snowmanv3

+ hatColor: Color

+ SnowmanV3 (i Ent, y: int)
+ showXYToSC ()
+ show(g: Graphics)

OEBPS/images/61.jpg

OEBPS/images/82.png
7 Pop-Up Menu

7 Pop-Up Menu

[Right click this text to change its color

[Right click this text to change its color

(b)

OEBPS/images/Figure2_9d.jpg
To calculate a radius
enter an area

pod]
o] [ema

OEBPS/images/6.png
Preprogramming Exercises

OEBPS/images/81.png
A Expanded Dollar Meal 3

[BE=3=)

'
7 Expanded DollarMeal 3 || B il

Dollar ~ Extras

Place Order

Dollar

Place Order

+ Cheese
Ketchup
 Napkins

V Juice
Soda

(@)

(b)

OEBPS/images/Figure2_9c.jpg
Message

The area of a circle whose radius = 10.0
is 314.1592653589793

OEBPS/images/80.png
1st Menu ftem Alt+1
2nd Menu ltem

1st Submenu
1st Submenu Item

2nd Submenu Item

3rd Submenu Item

AMenultem object
AMenultem object

AMenu object

A Menultem object
A Menultem object
A Menultem object

(@)

(b)

OEBPS/images/Figure2_9b.jpg
To calculate an area,
enter a radius

OEBPS/images/Figure2_9a.jpg
Message

Circle area and radius
calculation program

[iex]

OEBPS/images/3.23.png
Snowmanv3

+x :int
+y i int
+ hatColor: Color

+ showXYToSC ()
+ show(g: Graphics)

OEBPS/images/13.25.png
Collection<f>

Map<k, V>

List<E> | [e | [o> | [sotetmeper, v> |
i i
[sotesetce> | [Dequece> |

OEBPS/images/13.24.jpg
B e o m o 0w
=1

[
oo

[

[
o

[
&

=

[

[

rOBRES

i

public class GenericQueueApp
public static void main(String[] args

StudentV4 aStudent

astudent = new StudentVé4(l, "Nora");
aQueue.enQueue (aStudent) ;

aStudent = new StudentVé4(2, "Logan")
aQueue . enQueue (astudent) ;

aStudent = new StudentVé4(3, "Evie");
aQueue . enQueue (aStudent) ;

aStudent = new Student

(4, "Ryan");

aQueue . enQueue (astudent) ;

astudent = new StudentV4(5, "Skyler"); //queue

System.out.println("Fifth enqueue successful? " +
aQueue . enQueue (aStudent)) ;

i<

il
w
"
e
I

for (int i //one more that the queue’s capacity

{

System.out.println(aQueue.deQueue());

OEBPS/images/4q.jpg

OEBPS/images/13.23.jpg
public class GenericQueue <T>
{
private int size;
private int numOfNodes
private int front = 0;
private int rear =

private BEFSyIISEIKTSIGETE;

@ oG W

public boolean enQueue (TNHSWItEN)
! if (numOfNodes == size
! return false;
;lse //add the
! numofNodes = numOfNodes + 1;

ect to the structu

rear =
return true;

¥

public T deQueue() //fetch
{
int frontLocation;
if (nurOfNodes == 0) //the
{
return null;
¥
else
{
frontLocation = front;
front = (front + 1) % size;
nunOfNodes = numOfNodes - 1

object

ue is empty

OEBPS/images/48.png

OEBPS/images/7.26.jpg

OEBPS/images/13.22.jpg
Fifth enqueue successful? false
ID: 1: Name: Nora

ID: 2: Name: Logan

ID: 3: Name: Evie

ID: 4: Name: Ryan

null

OEBPS/images/47.png
Class Student

java lang Gbject
Academic
Student
Allimplemented Interfaces:
Gradeable

puslic class Student
Sxrands Aeademic
implements Gradeable

Aninstance of this dlass exists within an Academic environment, and is Gradeable

Field Summary
Modifier and Type. Field and Description
Java.lang.String address
Astudent's address
3ava.lang.String name
Astudent’s name: last, first
protected static double tuition

Astudent's annual tuition

Fields inherited from interface Gradeable.

esksPerSemestaz

the Class and Field portion of the Java Doc
(a)

structor Summary

Constructor and Deseription
Stagent ()
Creates student with 2 default name Jones

Student (3ava.lang.String name, Java.lang.String address)
Creates student with the specifed name and address

A—
ssmrmirn e
Gets a student’s name
‘Sets a Student’s address

Methods inherited from class Academic.

sezentiec

a

Methods inherited from class java.lang.Object

clone, equals, finalize, gecClass, hashCode, mocify, movifyAll, soString,

the Method portion of the Java Doc
(b)

OEBPS/images/7.25b.jpg
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
1]

fal

S oo oo oo o
SEIRGRT

=
SHE S

newx = sm.getx() + 2;
sm.setX(newX);
breal

¥

case 'U':

{

newY = sm.gety ()
sSm.setY (newY);

new &
i<hats.length; i++

quiring
r(int i

[SESEtREEREES [RCIOREINNE //clone the hat and add it to s

¥

OEBPS/images/CH14-CO1.png

OEBPS/images/13.21.jpg
public class No:

{

ericQueueApp

public static void main(String(]
{

args)

new Studentv4 (2,
nQueue (aStudent) ;

new StudentV4 (3, "Evie");
nQueue (aStudent) ;

nQueue (aStudent) ;
t = new Studentv4(5, "Skyler"); //qu
System.out.println("Fifth enqueue successful? " +

usue . enQueue (aStudent)) ;

for(int i=1; i <= 5; i++) //one more than the que;
{

System.out.println(aQue

deQueue());

OEBPS/images/43.png
Input

Input

enter your name

[Atice]

enter Alice’s HOME number

[657-2342

OEBPS/images/7.25.jpg
import

import
public class Aggregation extends D: lendapter
{ static Aggregation ge = new Aggregation();

static
static
static

meB!

public static void main(String[] args

{

hats[0] = new Hat(100, Color.RED, 17);
hats[1l] = new (12 100, color. 25, 21);
hats[2] = new Hat(100, Ccolor 20, 17);
hats[3] = new (2 100, color EN, 40, 34)
hats[4] = new Hat(100, Color.BLUE, 30, 25);
hats[5] = new (100, Color.MAGENT2, 35, 29);
Sm = new Snowm 8 250);

eBoard (gb) ;
¥

public void d
{
g.setColor (Color.BLACK) ; //the hat rack
g.fillRect (20, 95, 460, 5);
for (int i=0; i<hats.length; i++
{
hats[i].show(g);

¥

sm.show(q) ;
¥
public void keyStruck(char key) //
{

int newX, newy;

all back method

switch (key) //to move the snowman

d(ge, "Aggregation");

OEBPS/images/add1.png
10! =10*%9*8*7*6*5*4*3*2%] N=09*8*THE*5%4*3*%2%]
~

(10— 1)!=9! O-1

OEBPS/images/13.20.jpg
able <Studentvéd>

public class StudentV4 implements Compa:

private int id;
private String name;

public StudentV4 (int id, String
{

this.id =

this
¥

public String toString()
{

string s;

return s = "ID: " + id + "; Name: " + n
¥

I
&
o

public int com
{
return name.compareTo (s.name) ;

¥

eTo (Studentvé s)

OEBPS/images/42.png
Input

Message

Enter a sentence
[A ‘dog named Nadia has 231 toys|

The sentence contains:

2 Upper case letters,

19 Lower case letters,

3 Digits and

6 Whitespace characters.

OEBPS/images/7.24b.jpg
50 public void setHat (HaE|NEwHaE)

51

2 EEEENSIREWHAEH //acor
53}

54 public int getx()

55

56 return x;

57}

58 public void setX(int newx)
59

60 % = newx;

61}

62 public int gety()

63

64 return y;

3 ¥

6 public void setY(int newY)
67

69 y = newy;

69}

70)

OEBPS/images/a3.png
TheGamés Title Is Displayed Here

N

s, 30)

The coordinates of this point are used to
size the game board default is (500, 500)

OEBPS/images/13.2.jpg
public class Student

int age;
string

public
{
this
this
}

public String toString()
{
string s;
return s

OEBPS/images/41.png
Input

Enter a sentence, Please
Don't begin it with Hello,
don'tinclude the word Tom.
Hello will be removed, and
Tom replaced with XXX.

[Hetio Tom, how are you Tom?|

Message -

There are 6 words in your sentance:
Hello Tom, how are you Tom?

The revised sentence is:

XXX, how are you XXX?

OK

OEBPS/images/7.24a.jpg
import j awt.*;

public class Snowmanvs

{
private static int w = 40;
private static int h = 77;
private int x;
private int y;
private String name; //d

public Snowmanve (int intialX, int intialy

{
X intialX;

y = intialy;
[name = sy / /20

¥

public void show(Graphics g)

{ int[] xPoly = {x + 20, x + 15, x + 25};
int[] yPoly = {y + 8, y + 13, y + 13};

for aggr

t into this c.

a string ol

hat on

¥

g.se (color.

g.filloval(x + 10, y, 20, 20);

g.filloval(x, y + 20, 40, 40);

g.setColor (Color.RED) ;

g.fillPolygon (xPoly, yPoly, 3); // n
g.setColor (Color.BLACK) ;

g.setFont (new Font ("Ar: ", Font.BOLD, 16));
g.drawstring(name, x + 10, y + 45); //

¥

return true;
¥
else
{

return false;

¥

OEBPS/images/a1.jpg

OEBPS/images/13.19.jpg
{

// R No

public class Queus

int
int
int
int

private
private
private
private

size;
numOfNodes
front = 0;

n;
new StudentV4([n];

{

return false;
¥
else //add the
{

structu;

numofNodes = numOfNodes + 1;
eizallezeil = nEniiieo
rear = (rear + 1) % size;

return true;

¥

public Studentva degueus() //
{

int frontLocation;
0)

if (numOfNodes
{
return null;
¥
else //return an
{
frontLocation = front;
front = (front + 1) %

//the qu

t from

numOfNodes = numOfNodes

the

structu;

OEBPS/images/40.png
s

;

L

: —
) ey
: 5

(a) Game board when the program is launched

(b) Game board after green-hat snowman 2 is found
and placed behind the guard

Bowp

G i 3

o

D

(c) Game board after three clones are posted and
green-hat snowman 3 is about to be found

(d) Game board after six clones have been posted and
all the wonderers have been found

OEBPS/images/7.23b.jpg
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

X = newx;
¥
public int get¥()
{
return y;
¥
public void setY(int newY)
{
¥y = newy;
¥
public Color get
{
return h

¥

olor ()

olor;

OEBPS/images/a.1.jpg
B0 @ o U1 W b

import edu.sjcny.gpvl.*; //May not be necessary

public class GameWindowDemo extends DrawableAdapter

static GameWindowDemo ga = new GameWindowDemo () ;

static GameBoard gb = new GameBoard(ga, "The Game's Title");

public static void main(String[] args)

showGameBoard (gb) ;

1}

OEBPS/images/13.18.jpg
ID:

ID:
ID:

ID:

Scil03; Name: Tom
1672; Name: Maggic
45323; Name: Ryan

53812; Name: Logan

Scil03; Name: Tom
1672; Name: Maggic

OEBPS/images/4.9.png
(% ¥) ——— ,«— 40 —>

location of
snowman s1

77

|

N
-

S1

i B
C

]

s2

() No collision

©)

N
\

(b) Collision

@
/

(©) No collision

L @)

~

(

) sS4

(d) Pseudo collision

OEBPS/images/7.23a.jpg
import J

3 public class &

4 {

5 private int x;

6 private int y;

7 private int w = 20;

8 private int h = 17;

9 private Color olor;
10

11 public color, int w, int h)
12 {

13 this.

(int x, int y, Color ha

14 this.
15 this.
16 this.
17 this.

18)
public

brim

(
‘Hat theClone = new Hat(x, y, hatColor, w, h);

return theClone;
¥
30 public int ge
31|

()

32 return w;
33)

34 public int getH()

35

36 return h;

31)

38 public int getx()

39 |

20 return x;

a0y

42 public veid setX(int newx)

43 {

OEBPS/images/95.png

OEBPS/images/13.17.jpg
public class StudentV3 <E> implements [Comparable<Studentvas
private [ENEE;

private String name;

public StudentV3(Eidd, String name)
{

this.id = id;

this
¥
public String tostring()
{

string s;

return s = "ID: " + @i+ "; Name: " + n
¥
public int com
{

return name. conpareTo (s.nane)
}

&
&
o

€To (StudentV3 s)

OEBPS/images/4.8.png
is carColor
“Red™?

false true

is carColor

“Green"? output

“Red”

output

is carColor “Green’

“Blue™?

OEBPS/images/7.22.png
Snowmanv8

~x: int

- yi int

- wi int

- h: int

- name: String

- aHat: Hat

+ SnowmanV (intialX: int,

intialY: Hat)

+ show (g:Graphics)

+ collidedWith(hat: Hat)

+ setHat (newHat: Hat)

+ getx(): int

+ setX(x: int)

+ gety(): int

+ setY(y: int)

Hat APIString

~ x: int
~yioint String class data members
- i int
- h: int
- hatColor Color

+ Hat(x: int, y: int, String class methods
hatColor: Color,
wi int, hi int)

setY(y: int)
getHatColor(): Color

+ show(g: Graphics)
+ clone(): Hat
+ getH(): int
+ setii(h: int)
+ getW(): int
+ setW(w: int)
+ getX(): int
+ setX(x: int)
+ get¥(): int
+

+

OEBPS/images/94.png
1 IntStream.rangeClosed (1, 3)

2 .flatMap (x —-> IntStream.rangeClosed(l, x))
3 .map(x -> x * 10)

4 .distinct ()

5 .peek(x -> System.out.print(x + " "))

6 .forEach ((x)-> System.out.print(x + " ")),

Output produced by including
Linesland6: 1 2 3
Lines1-2and6: 1 1 2123

Lines 1-3 and 6: 10 10 20 10 20 30
Lines 1-4 and 6: 10 20 30

Lines 1-5and 6: 10 10 20 20 30 30

OEBPS/images/4.7.png
false

Statements preceding
the decision
statement

1= 1 £ Statement's
Boolean
expression

false

true

20 3£ Statement’s
Boolean
expression

true

Statements in the
39 (1se) code block

Statements
inthe
1% code block

Statements in the
2" code block

i

Statements after the decision statements

OEBPS/images/7.21.jpg
10

public Pa

ntsD

2(int intialX, int intialy,

{

x = intialX;

OEBPS/images/93.png
Stream Data Source | . intermediate task ? . terminal task ;

OEBPS/images/7.20.jpg
Message

— The sentence contains:
Input 2 Upper case letters,
19 Lower case letters,

- Enter a sentence 3 Digits and
|A dog named Nadia has 231 toys| 6 Whitespace characters.

ok || cancel | oK

(@) Input (b) Output

OEBPS/images/91.jpg
ber, n, to be evaluated: 1<=n <=100

oK

Cancel

OEBPS/images/90.png

OEBPS/images/13.16b.jpg
B 0 R L

(RN R =R

S6I=NS2; //sate
System.out.println(ss);
System.out.println(sé);

Systen. out..printin (S5COMPATETa(SE)

OEBPS/images/13.16a.jpg
public class GenericClasse;
{

public static void main(Stringl] args)

{

o

Integer id = new Integer(1672);

Studentv3 s1 = new StudentV3 KSEFings ("scilo3",
studentv3 52 = new StudentV3 XKINEEgETS (16
StudentV3 new StudentV3 <Integer> (45323,
Studentv3 s4 tV3 KINEEgErS (53812, "Logan");

StudentvV3 <String> s5 = null;

System.out.println
System.out.println
System.out.println
System.out.println

"Tom") ;

"Maggie") ;

"Ryan") ;

OEBPS/images/4.6.png
false

Statements

preceding the

if-else statement

Code block of
the else clause

Boolean
expression

true

Code block of

the i £

clause

Statements after the
else clause

OEBPS/images/13.15.jpg
1

public static void main(String[] args)

{
new AStudentv3 <SEEING> ("ESI03", "Tom");

AstudentV3 sl
new AStudentV3 <INEeger> (new Integer (10), "Ry

AStudentV3 s2

public class Astudentv3 &I3
{
private TEE;

private String name;

public StudentV3(ENid, String name)
{

this.id = id;

this

o @ o s w0

H

OEBPS/images/4.24.jpg
Score:0 Time remaining: 10

]

Score: 2 Time omining:0
Game Over

e Go0dBy
BestScore s 7, Koep Hractiing

OEBPS/images/7.2.png
idNumber

gpa

studentCount 0

OEBPS/images/13.14.jpg
iArray minimum is: 23
sArray minimum is: age 16 name Maggie

OEBPS/images/4.23d.jpg
117 }

118 case 'D':

119 {

120 newy = s2.get¥() + 2;
121 52.5etY (newy) ;

122)

123)

124}

125 public void timerl() // a call back method
126 ¢

127 count = count - 1;

128 if (count == 0)

129 t

130 gb.stopTimer (1) ;

131)

132}

133 }

OEBPS/images/7.19.jpg
@ oG W

10

import ja

.swing.*;

public class ParseSent
{
public static void main(String[] args
{
int uppe
int low
int numeric
int whitespace =
char c;

nce

0;

eDialog(null, "The sentence contains:\n" +
upperCase + " Upper case letters,\n" +
owerCase + " Lower case letters,\n" +
numeric + " Digits and\n" +
whitespace + "

OEBPS/images/9.png

OEBPS/images/13.13.jpg
public class StudentV2 implements Comparable<Studentva>

private int
private String name;

public StudentV(int
{
this
this
¥

e, String name)

public String toString()
{
string s;
return s =

OEBPS/images/4.23c.jpg
84

0w oo oo
ee3ad

[SR=RCE:

[ERn s

ee9s

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

else if(!(s2X > s1X + w || 52X + w < 51X ||
s2Y + h < s1Y) && sl.getVisible()
{
score = score + 1;
5l.setVisible (false);
¥
else if(52X > s1X + w || 32X + w < s1X || s2

52Y + h < slY) // no collision

{

if(sl.getVisible() == not visible
{ temp = sl.getx();

sl.set¥(sl.gety () ;

sl.sety(temp);

s1.setvisible (true);

¥

52.5how(q)
if(sl.getvisible()

true)

g.setColor (Color.BLACK) ;
g.drawstring("Score: " + score, 150, 50);
¥
public void keyStruck(char key) // a call back
{
int newX, newy;
switch (key)
{
case '

WX = 5
setX(n
break;

¥

case

{
newx = s
52.5etX(n
break;

¥

case

{

R

[T

vy
set¥ (n
breal

s52Y > s51¥ + h
== true)

Y > s1Y + h ||

method

OEBPS/images/7.18.jpg
t is not

//a new o

em.out.println("nl
System.out.println(

@ oG W

System.out.println("nl & n2

9 5(n2)) System.out.println("nl contain
10

11 t is not created, an
12 refer to the
13 & n2 contain
14

15

16 ct is created

17 m.out.println("nl & n2 refer to the
13 System.out.println("nl & contain
Output produced:

nl & n2 refer to the same object
nl & n2 contain the same value
nl & n2 refer to the same object
nl & n2 contain the same value
nl & n2 refer to the same object
nl & n2 contain the same value
nl & n2 contain the same value

OEBPS/images/9.jpg

OEBPS/images/Figure4_5a.jpg

OEBPS/images/13.12.jpg
public class Op:
{

ingOn

icobj

public static void main(String(]
{

Ini {110, 36,

Studentv2 A = {new S

new

8 new

9 new

Array.length; i++)

OEBPS/images/4.23b.jpg
public void draw(Graphics g) // a call back method

int w = 40;
int h = 77;
int slX, slY, s2X, s2Y, temp;

.getx();

1Y = sl.gety(

.getx(); s2
L.
(

1X
2% = = s2.gety(

i

.setColor (Color.BLACK) ;
.setFont (new Font ("Arial", Font.BOLD, 18));
.drawString ("Time remaining: " + Lount, 260, 50);

Qaaun

if (count

0) // the gane is over

GhROBRabntanrnnna

g.setColor (Color.BLACK) ;
g.drawstring ("Game Over", 205, 70);
g.drawstring ("Have a Good Day", 175, 90):

7
8

File fileObj = new File("HiScore.tzt");
Scanner fileIn = new Scanner (fileobj);
highScore = fileIn.nextInt();
fileIn.close();

if (score >= highScore) // a new high score
g.drawstring ("Great, Your Score is the Highest Ever.," +
"It Will Be Saved", 10, 110);
leWriter fileWriterObj = new FileWriter ("HiScore.txt");
PrintWriter fileOut = new PrintWriter(fileWriterObj, false);

BES8a88GRENES

fileout.println(score);
fileout.close();
}

else // not a new high score

4
5
€
7
8

g.drawString ("Best Score is
", Keep Practi:

" + highScore +
ing", 110, 110);

GROID2S

g.drawString ("Problems With High Score File", 120, 110);

3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5.
5:
5.
5.
5!
5
5
5
5
&
&
5
&
&
&
&
&

OEBPS/images/7.17.jpg
Entera sentence, Please
Don't begin it with Hello,
don'tinclude the word Tom.
Hello will be removed, and
Tom replaced with XXX.
[Hetlo Tom, how are you Tom?]

3 [Cancel

‘There are 6 words in your sentance:
Hello Tom, how are you Tom?

‘The revised sentence is:

XXX, how are you XXX?

OK

@ Input

(b) Output

OEBPS/images/9.9.jpg
1-
2
3

2
3

5
6
7-

Two-Ring Solution
move one ring from tower A to tower C
move one ring from tower A to tower B
move one ring from tower C to tower B

Three-Ring Solution
move one ring from tower A to tower B
move one ring from tower A to tower C
move one ring from tower B to tower C
move one ring from tower A to tower B
move one ring from tower C to tower A
move one ring from tower C to tower B
move one ring from tower A to tower B

Four-Ring Solution
1- move one ring from tower A to tower C
2- move one ring from tower A to tower B
3- move one ring from tower C to tower B
4~ move one ring from tower A to tower C
5- move one ring from tower B to tower A
6- move one ring from tower B to tower C
7- move one ring from tower A to tower C
8- move one ring from tower A to tower B
9- move one ring from tower C to tower B
10- move one ring from tower C to tower A
11- move one ring from tower B to tower A
12- move one ring from tower C to tower B
13- move one ring from tower A to tower C
14- move one ring from tower A to tower B
15- move one ring from tower C to tower B

OEBPS/images/Figure4_24d.jpg
Score:$ Time remaining: 0
Game Over
Have a Good Day
Problems With High Score File

[]

[

OEBPS/images/13.11.jpg
N
(SRS

age 17 name Robert age 16 name Maggie
age 20 name Carol age 20 name Carol
age 16 name Maggie age 17 name Robert

OEBPS/images/4.23.jpg
1 import edu.sjcny.gpvl.*;

import j
3

4

5 //ill, xceptions

6

7 public class ExceptionBasics extends Dr pter
8 {

static ExceptionBasics ge = new ExceptionBasics ();
10 static GameBoard gb = new GameBoard(ge, "Exception Basics");

11 static BoxedSnowman sl = new BoxedSnow (300,

12 static BoxedSnowman s2 = new BoxedSnow (30, 100, Color.BLACK);
13 static int score 0:

14 static int count = 10;

15

16 public static void main(Stringll args)

17 {

18 eBoard (gb) ;

OEBPS/images/7.16.jpg
@ oG W

import J .swing.*;

public class StringProcessing

! public static void main(String[] args
! string sl,

.showInputDialog ("Enter a sentence, Please\n" +
"Don't begin it with Hello,\n" +
"don't include the word Tom.\n" +
"Hello will be removed, and \n" +
"Tom replaced with XXX.");

nts

new String(sl);
if (s2.indexOf ("Hello")

52 = s2.substring(6);
¥
52 = s2.replaceAll ("Tom", "XXX");

Joptionp

eDialog(null, "There are " + nWords +
" words in your sentence:\n" +
51 + "\nThe revised sentence is:\n" +

OEBPS/images/9.8.png

OEBPS/images/Figure4_24c..png
Score:2 _Time remaining: 0
Game Over

Have a Good Day
Best Score is: 7, Keep Practicing

OEBPS/images/13.10.jpg
1 import java.util.Arrays;
3 public class ReturningGenerichrrays
4 {
5 public static void main(Stringl
3 {
7 1,2,3,4};
K iArrayReturned;
9 {new
new

new
Student[] sArrayReturne

for(int i = 0; i < iArray.length; i++) //all the Integer Ob;

.out.println(iArray[i] + "\t" + iArrayReturne

[i1):

m.out.println();

for(int i = 0; i < sArray.length; i++) //all the Student Objects

.out.println(sArray[i] + "\t" + sAr:

public static <T1> [TI[] invertArray (TL[] aAATray)
300

31 TL] copy;

32

33 copy = Arrays.copyof (anArray, anArray.length);

34 for(int i i < copy.length; i++
35 (

36 copy[i] Array[copy.length - 1 - i]
37)

38 return copy;

39)

40 |}

OEBPS/images/4.22.jpg
5 35.4n'Nora Smithn'S 35.4n'Nora Smithn'5 35.4n'Nora Smithn'e*"
n' represents a new-line character
ef represents an EOF character

OEBPS/images/7.15.tif.jpg

OEBPS/images/9.7.jpg
public long fact(int n|
{
long nMinuslFactorial
if(n == 0) //Flow chart symbol 2
{
return 1; //Flow chart symbols 3
¥

else

9 {

10 nMinuslFactorial =

11 nFact - n * nMinuslFactoria.

12 return nFact; //Flow chart symbols
13)

d

t(n-1); //Flow chart
//Flow chart

ymbol 5

OEBPS/images/Figure4_24b..png
Score: 1 Tme romalning;
Game 0

Have 3 Good Day.
rea,Your Score 1 th Highest Eve. Wil Bs Saved

OEBPS/images/13.1.jpg
1 public class GenericParameters
2 {

3 public static void main(Stringl] args)
4 {

5

6

8

9

10 Student returnedStu 7

11

12 [gesuEmedPEEGS = output2Cbiects (ENOUAE, PEECE);

13 returnedstudent = output20bjects (imitial, [51) ;
14 System.out.println(returnedprice);

15 System.out.println(returnedStudent);

16 }

public static <EIFNEI2> T2 output20bjec
{
System.out.println(objectl);
System.out.println(object2 + "\n");

(T objectl, W2 object2)

OEBPS/images/4.21.jpg
5 35.4n'Nora Smithn'e”’
n' represents a new-line character
e represents an end of file (EOF) character

OEBPS/images/7.15.jpg

OEBPS/images/9.6.png
Is this the
base case?

Return the known, base
case, solution

Determine the solution to
the reduced problem using
this algorithm

Use the reduced problem
solution to determine the

general solution

Retum the
general solution

OEBPS/images/Figure4_24a.png

OEBPS/images/12.png
’ “String s contains the null string,” means that s stores a null value.

OEBPS/images/4.20.jpg
public class DiskIO

Scanner fileIn = new Scanner (fileObject);

String name = "Nora Smith";
int age = 5
double weight =

// write three data items to the disk file

fileout.printlin (age * MM ¥ weight) ;

fileout.println(name);

LW W R 1 1 1 1 B3 1) D) 1 D) 12 1 S 1 B S S 0 0) Oy U W)

(SRR R T R N R =R R N T N T S =

System console output
Age: 5 Weight: 35.4 Name: Nora Smith

public static void main(String[] args) throws IOException
File fileObject = new File("data.txt"); // input

FileWriter fileWriterObject = new FileWriter (W&EAUEXE™); // output
PrintWriter fileOut = new PrintWriter(fileWriterObject, false);

//read the data from the disk file
age = fileIn.nextInt();
weight = fileIn.nextDouble();
fileIn.nextline(); // clears New Line after a numeric from the buffer
name = fileIn.nextLine():
filemn.close();
System.out.println("Age: " + age + " Weight: " + weight +
" Name: " + name);

OEBPS/images/7.14.jpg
(8) Game board when the program is launched (b) Game board after green-hat snowman 2 Is found
and placed behind the guard

(©) Game board after three clones are posted and (d) Game board after six clones have been posted and
areen-hat snowman 3 is about to be found all the wonderers have been found

OEBPS/images/9.5.png
Initial First Recursive Second Recursive ‘Third Recursive Fourth Recursive
Invocation: Invocation Invocatiol Invocation: Invocation:
fact(4) fact (3) fact(2) fact (1) fact (0)

2 2 [2 12 2
3 13 H £l 3 3
4 if (n == 0) if(n == 0) 4/if (n == 0) 4 AAf (n == 0) 4 Af (n 0y
6 return 1; 3 return 1; 6 return 1; 6 return 1; 6 return 1;
u u d 7 i 1
8 3 8 s 1 8 o
0 .fact(n-1); e fact (n-1); - fact (n-1) ;e fact (n- 10 .fact(n-1);
1 : 6 2 1 :
12 return nfact;| 1y return nfact;|[l2 return nfact;||l2 return nfact; return nfact;
B L3 : 13 : 13 :
L4 14 4

OEBPS/images/Figure4_14d.jpg
Score: 1 Time remaining: 0
Game Over
Have a Good Day

OEBPS/images/4.2.png
Statements preceding
the 1£ statement

Boolean
expression

true

Code block of the i £
statement

false

Statements after the
if statement

1

OEBPS/images/7.13c.jpg
@@ @ m o

LSRG

.setX(ps[0].getx ()

- 1); // move the guard

OEBPS/images/9.4.jpg
1 public long
{

t(int n)

3 long nMinuslFactorial,

4 if(n

5 {

6 return 1;

7 ¥

8 else //calculate (n-1)! and then n!
9 {

10 nMinuslFactorial = Eact(n=1)

n * nMinuslFactorial;

OEBPS/images/Figure4_14c.jpg
Score:1 Time remaining: 5

OEBPS/images/7.13b.jpg
1]

// has p:
for(int i

{

-hat wandering s
ngth; i++)

ition wan

¥

public void leftButton()
{
if (gameOver
{ for(int i

{

OEBPS/images/9.3.png
Hi Evie,

=46

Logan,
what's 317

Logan

HiLogan,
2=24

Ryan,
what's 117

Breanne,
what's 01?7

Breanne

OEBPS/images/Figure4_14b.jpg
Score: 0 Time remaining: 7

E-!

OEBPS/images/9.21.jpg
[B et tommmber oo ot 1=n <100

Console output:
f = 102,334,155
caleulated making 204.668.309 invocations

f = 102,334,155
caleulated making 40 invocations

OEBPS/images/Figure4_14a.jpg
Score: 0 Time remaining: 10

OEBPS/images/Figure3_9.jpg
4 ines snd shapes ==

