


Python

Second Edition



LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY 

By purchasing or using this book and disc (the “Work”), you agree that this li-
cense grants permission to use the contents contained herein, including the disc, 
but does not give you the right of ownership to any of the textual content in the 
book / disc or ownership to any of the information or products contained in it. 
This license does not permit uploading of the Work onto the Internet or on a net-
work (of any kind) without the written consent of the Publisher. Duplication or 
dissemination of any text, code, simulations, images, etc. contained herein is lim-
ited to and subject to licensing terms for the respective products, and permission 
must be obtained from the Publisher or the owner of the content, etc., in order to 
reproduce or network any portion of the textual material (in any media) that is 
contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone involved 
in the creation, writing, or production of the companion disc, accompanying al-
gorithms, code, or computer programs (“the software”), and any accompanying 
Web site or software of the Work, cannot and do not warrant the performance 
or results that might be obtained by using the contents of the Work. The author, 
developers, and the Publisher have used their best efforts to ensure the accuracy 
and functionality of the textual material and/or programs contained in this pack-
age; we, however, make no warranty of any kind, express or implied, regarding 
the performance of these contents or programs. The Work is sold “as is” without 
warranty (except for defective materials used in manufacturing the book or due 
to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and any-
one involved in the composition, production, and manufacturing of this work will 
not be liable for damages of any kind arising out of the use of (or the inability to 
use) the algorithms, source code, computer programs, or textual material con-
tained in this publication. This includes, but is not limited to, loss of revenue or 
profit, or other incidental, physical, or consequential damages arising out of the 
use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to re-
placement of the book and/or disc, and only at the discretion of the Publisher. The 
use of “implied warranty” and certain “exclusions” varies from state to state, and 
might not apply to the purchaser of this product.

(Companion files are also available for downloading by writing to the publisher 
at info@merclearning.com.)

An Introduction to Programming
Second Edition

Mercury Learning and inforMation
Dulles, Virginia 

Boston, Massachusetts
New Delhi

Python

James R. Parker
University of Calgary



An Introduction to Programming
Second Edition

Mercury Learning and inforMation
Dulles, Virginia 

Boston, Massachusetts
New Delhi

Python

James R. Parker
University of Calgary



Copyright ©2021 by Mercury Learning and inforMation LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any 
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic 
display, or mechanical display, including, but not limited to, photocopy, recording, Internet 
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and InforMation

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

James R. Parker. PYTHON: An Introduction to Programming, Second Edition.
ISBN: 978-1-683926-24-5

The publisher recognizes and respects all marks used by companies, manufacturers, and devel-
opers as a means to distinguish their products. All brand names and product names mentioned 
in this book are trademarks or service marks of their respective companies. Any omission or 
misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the 
property of others.

Library of Congress Control Number: 2020952465

212223321    Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. 

For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free). 
Digital versions of our titles are available at: www.academiccourseware.com and other e-vendors. 
All companion files are available by writing to the publisher at info@merclearning.com.

The sole obligation of Mercury Learning and inforMation to the purchaser is to replace the book 
and/or disc, based on defective materials or faulty workmanship, but not based on the operation 
or functionality of the product. 



Contents

Preface xv

Chapter 0: Modern Computers 1
0.1 Calculations by Machine 2
0.2  How Computers Work and Why We Made Them 3

0.2.1  Numbers 6
Example: Base 4 7
Convert Binary Numbers to Decimal 8
Convert Decimal Numbers to Binary 8
Arithmetic in Binary 9

0.2.2  Memory 11
0.2.3 Stored Programs 13

0.3 Computer Systems Are Built in Layers 17
0.3.1 Assemblers and Compilers 18
0.3.2 Graphical User Interfaces (GUIs) 19

Widgets 20
0.4 Computer Networks 21

0.4.1 Internet 23
0.4.2 World Wide Web 24

0.5 Representation 25
0.6 Summary 30



vi  ■ Contents

Chapter 1: Computers and Programming 35
1.1 Solving a Problem Using a Computer 36
1.2 Executing Python 37
1.3 Guess a Number 39
1.4 Rock–Paper–Scissors 40
1.5 Solving the Guess a Number Problem 40
1.6  Solving the Rock-Paper-Scissors Problem 41

1.6.1   Variables and Values–Experimenting with the  
Graphical User Interface 42

1.6.2   Exchanging Information with the Computer 44
1.6.3 Example 1: Draw a Circle Using Characters 46
1.6.4 Strings, Integers, and Real Numbers 46
1.6.5 Number Bases 47
1.6.6   Example 2: Compute the Circumference of Any Circle 49
1.6.7 Guess a Number Again 50

1.7 IF Statements 51
1.7.1 Else 54

1.8 Documentation 55
1.9 Rock-Paper-Scissors Again 57
1.10 Types Are Dynamic (Advanced) 60
1.11 Summary 62

Chapter 2: Repetition 67
2.1 The WHILE Statement 69

2.1.1 The Guess-A-Number Program Revisited  71
2.1.2 Modifying the Game 72

2.2 Rock–Paper–Scissors Revisited 73
2.2.1 Random Numbers 74

2.3 Counting Loops 78
2.4 Prime or Non-Prime 79

2.4.1 Exiting from a Loop 82
2.4.2 Else 83

2.5 Loops That Are Nested 84
2.6 Draw a Histogram 86
2.7 Loops in General 89



 Contents   ■ vii

2.8 Exceptions and Errors 90
2.8.1 Problem: A Final Look at Guess a Number 94

2.9 Summary 96

Chapter 3: Sequences: Strings, Tuples, and Lists 101
3.1 Strings 102

3.1.1 Comparing Strings 103
3.1.2 Slicing – Extracting Parts of Strings 105
3.1.3 Editing Strings 107
3.1.4 String Methods 110
3.1.5 Spanning Multiple Lines 112
3.1.6 For Loops Again 113

3.2 The Type Bytes  114
3.3 Tuples 115

3.3.1 Tuples in For Loops 116
3.3.2 Membership 118
3.3.3 Delete 119
3.3.4 Update 120
3.3.5 Tuple Assignment 121
3.3.6 Built-in Functions for Tuples 122

3.4 Lists  123
3.4.1 Editing Lists 125
3.4.2 Insert 126
3.4.3 Append 126
3.4.4 Extend 126
3.4.5 Remove 127
3.4.6 Index 128
3.4.7 Pop 128
3.4.8 Sort 129
3.4.9 Reverse 130
3.4.10 Count 130
3.4.11 List Comprehension 131
3.4.12 Lists and Tuples 132
3.4.13 Exceptions 133

3.5 Set Types 135
3.5.1 Example: Craps 136

3.6 Summary 138



viii  ■ Contents

Chapter 4: Functions 143
4.1  Function Definition: Syntax and Semantics 144

4.1.1 Problem: Use the function poundn to Draw a Histogram 146
4.1.2 Problem: Generalize the Histogram Code for Other Years 147

4.2 Function Execution 150
4.2.1 Returning a Value 150
4.2.2 Parameters 153
4.2.3 Default Parameters 156
4.2.4 None 158
4.2.5 Example: The Game of Sticks 159
4.2.6 Scope 161
4.2.7 Variable Parameter Lists 163
4.2.8 Variables as Functions 165

Example: Find the maximum value of a function 167
4.2.9 Functions as Return Values 168

4.3 Recursion 170
4.3.1 Avoiding Infinite Recursion 175

4.4 Creating a Python Module 176
4.5  Program Design Using Functions–The Game of Nim 178

4.5.1 The Development Process Exposed 182
4.6  Summary 184

Chapter 5: Files: Input and Output 189
5.1 What Is a File? A Little Theory 191

5.1.1 How Are Files Stored on a Disk? 194
5.1.2 File Access is Slow 195

5.2 Keyboard Input 195
5.2.1  Problem: Read a number from the keyboard  

and divide it by 2  196
5.3  Using Files in Python: Less Theory, More Practice 197

5.3.1 Open a File 198
File Not Found Exceptions 199

5.3.2 Reading from Files 200
End of File 201
Common File Input Operations 202
CSV Files 205
The With Statement 210



 Contents   ■ ix

5.4 Writing to Files 211
Example: Write a table of squares to a file. 212

5.4.1 Appending Data to a File 212
Example: Append another 20 squares to the  
table of squares file. 213

5.5  Summary 213

Chapter 6: Classes 217
6.1 A Casual Introduction to Classes 218
6.2 Classes and Types 220
6.3 Classes as Encapsulated Modules 221
6.4 Classes as Data Abstractions 223
6.5  The Python Class – Syntax and Semantics 225

6.5.1 A Really Simple Class 226
6.5.2 Encapsulation 230

6.6 Classes and Data Types Again 231
6.6.1 Example: A Deck of Cards 232
6.6.2 A Bouncing Ball 234
6.6.3 Cat-A-Pult 240

Basic Design 240
Detailed Design 241

6.7 Subclasses and Inheritance 246
6.7.1 Non-Trivial Example: Objects in a Video Game 246

6.8 Duck Typing 250
6.9  Summary 251

Chapter 7: Graphics 255
7.1  Introduction to Graphics Programming 256
7.2 Graphics in Python–Pygame 257
7.3 Initializing Pygame 258

7.3.1 Colors 258
7.4 The Event LOOP 260
7.5 Drawing 261

Example: Create a Page of Note Paper 264
Example: Creating a Color Gradient 265



x  ■ Contents

7.5.1 Lines and Curves 267
Example: Note Paper Again 267

7.6 Arcs and Curves 268
7.6.1 Polygons 271
7.6.2 Text 273
7.6.3 Example: A Histogram 274
7.6.4 Example: A Pie Chart 278
7.6.5 Images 283

Pixels, Again 284
Example: Identifying a green car 285
Example: Thresholding 286
Transparency 287

7.6.6 Generative Art 289
7.7 Summary 291

Chapter 8: Manipulating Data 295
8.1 Dictionaries 296

8.1.1 Example: A Naïve Latin – English Translation 298
8.1.2 Functions for Dictionaries 301
8.1.3  Dictionaries and Loops 302

8.2 Arrays 303
8.3 Formatted Text, Formatted I/O 304

8.3.1 Example: NASA Meteorite Landing Data 305
8.4 Advanced Data Files 309

8.4.1 Binary Files 309
Example: Create a File of Integers 309

8.4.2 The Struct Module 310
Example: A Video Game High Score File 311

8.4.3 Random Access 313
Example: Maintaining the High Score File in Order 315

8.5 Standard File Types 316
8.5.1 Image Files 316
8.5.2 GIF 316
8.5.3 JPEG 318
8.5.4 TIFF 320
8.5.5 PNG 322



 Contents   ■ xi

8.5.6 Sound Files 324
8.5.7 WAV 324
8.5.8 Other Files 325
8.5.9 HTML 326
8.5.10 EXE 327

8.6  Summary 327

Chapter 9: Multimedia 333
9.1 Mouse Interactions 334

Example: Draw a Circle at the Mouse Cursor 335
Example: Change Background Color Using the Mouse 336

9.1.1 Mouse Buttons 337
Example: Draw Lines Using the Mouse 338
Example: A Button 338

9.2 The Keyboard 340
Example: Pressing a “q” Creates a Random Circle  341
Example: Reading a Character String 342

9.3 Animation 343
9.3.1 Object Animation 343

Example: A Ball in a Box 344
Example: Many Balls in a Box 346

9.3.2 Frame Animation 348
Example: Read Frames and Play Them Back  
as an Animation 349
Example: Simulation of the Space Shuttle  
Control Console (A Class That Will Draw an  
Animation at a Specific Location) 350

9.4 RGBA Colors – Transparency 355
9.5 Sound 356

Example: Play a Sound 357
Example: Control Volume Using the Keyboard 357
Example: Play a Sound Effect at the Right Moment:  
Bounces 358
Music 359

9.6 Summary 360



xii  ■ Contents

Chapter 10: Basic Algorithms 363
10.1 Sorting 364

10.1.1 Selection Sort 364
10.1.2 Merge Sort 368

10.2 Searching 371
10.2.1 Timings 372
10.2.2 Linear Search 373
10.2.3 Binary Search 374

10.3 Random Number Generation 375
10.3.1 Linear Congruential Method 376

10.4 Cryptography 378
10.4.1 One-Time Pad 380
10.4.2 Public Key Encryption (RSA) 381
10.4.3  Example: Encrypt the Message “Depart at Dawn”  

Using RSA 382
10.5 Compression 384

10.5.1 Huffman Encoding 388
10.5.2 LZW Compression 394

10.6 Hashing 399
10.6.1 DJB2 400
10.6.2 SDBM 400

10.7 Summary 400

Chapter 11: Programming for the Sciences 405
11.1 Finding Roots of Equations 406
11.2 Differentiation 408
11.3 Integration 410
11.4  Optimization: Finding Maxima and Minima 412

11.4.1 Newton Again 413
11.4.2 Fitting Data to Curves – Regression 415
11.4.3 Evolutionary Methods 418

11.5  Longest Common Subsequence (Edit Distance) 423
11.5.1 Determining Longest Common Subsequence (LCS) 424
11.5.2 NumPy 429
11.5.3 One Dimensional Arrays (Vectors) 430
11.5.4 Two Dimensional Arrays (Matrices) 432



 Contents   ■ xiii

11.5.5 Sample Problem: Finding Paths 433
11.5.6 Linear Regression Again 435

11.6 Summary 436

Chapter 12: How To Write Good Programs 441
12.1  Procedural Programming – Word Processing 442

12.1.1 Top-Down 444
12.1.2 Centering 453
12.1.3 Right Justification 454
12.1.4  Other Commands 457

12.2  Object Oriented Programming – Breakout  462
12.3  Describing the Problem as a Process 463

12.3.1  Initial Coding for a Tile 466
12.3.2  Initial Coding for the Paddle 467
12.3.3 Initial Coding for the Ball 469
12.3.4 Collecting the Classes 470
12.3.5  Developing the Paddle 471
12.3.6  Ball and Tile Collisions 473
12.3.7  Ball and Paddle Collisions 475
12.3.8  Finishing the Game 476

12.4  Rules for Programmers 479
12.5  Summary 486

Chapter 13: Communicating with the Outside World 489
13.1 Email 491

Example: Sending an email 491
13.1.1 Reading email 495
13.1.2  Example: Display the Subject Headers for  

Emails in the Inbox 496
13.2 FTP 500

13.2.1  Example: Download and Display the README  
File from an FTP Site 501

13.3 Communication Between Processes 502
13.3.1  Example: A Server That Calculates Squares 503

13.4 Twitter 507



xiv  ■ Contents

13.4.1  Example: Connect to the Twitter Stream and Print  
Specific Messages 508

13.5 Communicating with Other Languages 512
13.5.1  Example: Find Two Large Relatively Prime Numbers 512

13.6 Summary 514

Chapter 14: Parsing–The Structure of Data 517
14.1 Grammars 518
14.2 PYJ and JULIA 520
14.3 Language Symbols and Scanning 523
14.4 Parsing a Programming Language 527
14.5 WHILE Statements 528
14.6 FOR Statements 529
14.7 IF Statements 531
14.8 Expressions 533
14.9 Functions 534
14.10 Examples 536

Chapter 15:  Communicating Using Graphics: Windows,  
User Interfaces, and Pygame 543

15.1 A Paint Program 544
Interface 545

15.2 Building the Mondrean Interface 547
15.3 Selecting  547
15.4 The Buttons 548

Drawing 551
15.5 Images and Surfaces 555
15.6 Stacks: Undraw and Redraw 556
15.7 Color Selection 560
15.8 Image File Selection 561

Index 565



Preface
Welcome to the second edition! This is a book that is intended to be used to teach 
programming to introductory students. There is material here for intro CS, but 
also for Science and other disciplines. I still believe that programming is an es-
sential skill for all professionals and especially academics in the 21st century and 
I have tried to make that clear in the contents of this book.

There are two new chapters and some seriously revised ones. First, the book 
exclusively uses the Pygame library. The Glib module has been updated but is no 
longer used in this book. This means that Chapters 7, 9, and 12 are quite different 
from those in the previous edition. Also, Pygame no longer supports video, so 
rather than build a new module from scratch, video is not discussed.

The new Chapter 14 concerns parsing. This can be a more advanced topic, 
but parsing is a good thing to know about for many reasons, not the least of 
which is to deal with user input effectively. The main example is a programming 
language for which a parser (and compiler) will be written. The language was de-
veloped for this book and is called PyJ: it is a small subset of the Julia language, 
which in turn is a variation on Python designed for efficiency.

The new Chapter 15 involves graphical input. Here a paint-type program will 
be developed, so as to clarify ideas in mouse input and graphical output. The re-
sulting program (Mondrean) is actually usable for making drawings.

I use a “just-in-time” approach, meaning that I try to present new information 
just before or just after the reader needs it. As a result, there are a lot of examples, 



xvi  ■ Preface

and those examples were carefully selected to fit into the place they reside in the 
text. Not too soon, and not too late.

I believe in object-oriented programming. My master’s thesis in the late 
1970s was on that subject, and I cut my teeth on Simula, was there when C++ 
was created, and knew the creator of Java. I do not believe that object-oriented 
programming is the only solution, though, and realized early that good objects 
can only be devised by someone who can already program. I am therefore not an 
“objects first” teacher. I am a “whatever works best” teacher.

A lot of my examples involve games. That’s because undergraduate students 
play games. They understand them better than, say, accounting or inventory sys-
tems, which have been typical early assignments. I believe in presenting students’ 
assignments that are interesting. Not all students like games, and certainly not 
computer games, but a large number do. And they come to a game assignment 
with prior knowledge of the genre.

I have taught computer science for 26 years, and then moved to the arts. 
That’s because of many things, but my experience teaching in a Drama depart-
ment and more recently in the Art department has helped me immensely in un-
derstanding the role of computing and programming in general. I strongly feel 
that every student in a university should know how to write, and know how to 
program a computer. If you can’t understand the computer, you are at the whim 
of programmers who, unseen in downtown high-rises and basements, who dic-
tate how the world will work by default. The (sometimes poor) design decisions 
made, and the lack of attention paid to human needs results in actual policy being 
formed, and that is simply wrong. It’s not always true that the code is bad, but 
when it is, it can have far reaching consequences.

Here is a truth: nobody wants to run your program. What they want is to 
get their work done, or play their game, or send their email. If you are an excel-
lent programmer then you will enable that, and nobody will know your name. 
But nobody will curse your code either. The truth is that good code is invisible. 
It simply allows things to flow smoothly. Bad code is memorable. It interferes, 
makes people frustrated and angry. If you believe in karma, then I know what 
you would prefer.

You see, software (any computer program) is ubiquitous. Cars, phones, fridg-
es, television, and almost everything in our society is computerized. Decisions 



Preface   ■ xvii

made about how a program is to be built tend to live on, and even after many 
modifications can affect how people use that device or system. Creating good 
software means making a productive and happy civilization. It sounds trite, but if 
you think about it I’m sure you will agree. 

Python is a great language for beginning programmers. It is easy to write 
the first programs, because the conceptual overhead is small. That is, there’s no 
need to understand what ‘void’ or ‘public’ means at the outset. Python does a 
lot of things for a programmer. Do you want something sorted? It’s a part of the 
language. Lists and hash tables (dictionaries) are a part of the language. You can 
write classes, but do not have to, so it can be taught objects first or not. The re-
quired indentation means that it is much harder to place code incorrectly in loops 
or if statements. There are hundreds of reasons why Python is a great idea.

And it is free. This book was written using Python version 3.4, and with the 
PyCharm API. The modules used that require download are few, but include  
PyGame and tweepy. All free.

Overview of Chapters
Here’s a breakdown of the book, for instructors. It can be used to teach computer 
science majors or science students who wish to have a competency in program-
ming.

Chapter 0: Historical and technological material on computers. Binary num-
bers, the fetch-execute cycle. This chapter can be skipped in some syllabi.

Chapter 1: Problem solving with a computer; breaking a problem down so it 
can be solved. The Python system. Some simple programs involving games that 
introduce variables, expressions, print, types, and the if statement.

Chapter 2: Repetition in programming: while and for statements. Random 
numbers. Counting loops, nested loops. Drawing a histogram. Exceptions (try-
except)

Chapter 3: Strings and string operations. Tuples, their definition, and use. 
Lists and list comprehension. Editing, slices. The bytes type. And set types. Ex-
ample: the game of craps.

Chapter 4: Functions: modular programming. Defining a function, calling 
a function. Parameters, including default parameters, and scope. Return values. 



xviii  ■ Preface

Recursion. The Game of Sticks. Variable parameter lists, assigning a function to a 
variable. Find the maximum of a mathematical function. Modules. Game of Nim.

Chapter 5: Files. What is a file and how are they represented? Properties of 
files. File exceptions. Input, output, append, open, close. Comma separated value 
(CSV) files. Game of Jeopardy. The with statement.

Chapter 6: Classes and object orientation. What is an object and what is a 
class? Types and classes. Python class structure. Creating instances, __init__ 
and self. Encapsulation. Examples: deck of playing cards; a bouncing ball; Cat-
a-pult. Designing with classes. Subclasses and inheritance. Video game objects. 
Duck typing.

Chapter 7: Graphics. The Pygame module. Drawing window; color repre-
sentation, pixels. Drawing lines, curves, and polygons. Filling. Drawing text. 
Example: Histogram, Pie chart. Images and image display, getting and setting 
pixels. Thresholding. Generative art.

Chapter 8: Data and information. Python dictionaries. Latin to English 
translator. Arrays, formatted text, formatted input/output. Meteorite landing 
data. Non-text files and the struct module. High score file example. Random ac-
cess. Image and sound file types.

Chapter 9: Digital media: Using the mouse and the keyboard. Animation. 
Space shuttle control console example. Transparent colors. Sound: playing sound 
files, volume, pause. Pygame module for sound.

Chapter 10: Basic algorithms in computer science. Sorting (selection, 
merge) and searching (linear, binary). Timing code execution. Generating ran-
dom numbers; cryptography; data compression (including Huffman codes and 
RLE); hashing.

Chapter 11: Programming for Science. Roots of equations; differentiation 
and integration. Optimization (minimum and maximum) and curve fitting (re-
gression). Evolutionary algorithms. Longest common subsequence or edit dis-
tance.

Chapter 12: Writing good code. A walk through two major projects: a word 
processor written as procedural code and a breakout game written as object-
oriented code. A collection of effective rules for writing good code.



Preface   ■ xix

Chapter 13: Dealing with real world interfaces, which tend to be defined for 
you. Examples are Email (send and receive), FTP, inter-process communication 
(client-server), Twitter, calling other languages like C++.

Chapter 14: Parsing. Introduction to grammars and BNF. Parsing data. A 
small compiler for a small language. 

Chapter 15: Graphical Interaction. Using the mouse in complicated ways. 
Drawing, erasing, modifying images.

Chapter Coverage for Different Majors
A computer science introduction could use most chapters, depending on the 
background of the students, but Chapters 0, 7, 9, and / or 11 could be omitted.

An introduction to programming for science could omit Chapters 0, 10, 
and 12.

Chapter 13 is always optional, but is interesting as it explains how social me-
dia software works under the interface.

Basic introduction to programming for non-science should include Chap-
ters 0, 1, 2, 3, 4, 5, and 7.

Companion Files (A disc is included in the physical book or 
files are available for downloading from the publisher by writ-
ing to info@merclearning.com.)
The accompanying disc contains useful material for each chapter. 

•	 	Selected exercises are solved, including working code when that is a part of 
the solution. 

•	 	All significant examples are provided as Python code files, which can be 
compiled and executed, and can be modified as exercises or class projects. 
This includes sample data files when appropriate. 

•	 	All figures are available as images, in full color.

Instructor Ancillaries
•	 	Solutions to almost all of the programming exercises given in the text. 

•	 	MS PowerPoint lectures provided for an entire semester (35 files) including 
some new examples and short videos.



xx  ■ Preface

•	 	All of the Python code that appears in the books has been executed, and 
all complete programs are provided as .py files. Some of the numerous pro-
gramming examples (over 100) that are explored in the book and for which 
working code is included:

o An interactive breakout game

o The Game of Nim

o A text formatting system

o Plotting histograms and pie charts

o Reading Twitter feeds

o Play Jeopardy Using a CSV Data Set

o Sending and receiving Email

o A simple Latin to English translator

o Cryptography

o Rock-Paper-Scissors

•	 	Hundreds of answered multiple choice quiz and sample examination ques-
tions in MS Word files that can be edited and used in various ways.

Dedicated Website
Please consider contributing material to the on-line community at https://sites.
google.com/site/pythonparker/ and do have fun. If you don’t then you’re doing it 
wrong.

J. Parker
February 2021



■ ■ ■ ■ ■

In this chapter

Humans are tool makers and tool users. This is not unique in the animal king-
dom, but the facility that humans have with tools and the variety of applications 
we have for them does make us unique. Starting with mechanical tools (machines) 
like levers and wheels that could lighten the physical effort of everyday life, more 
and more complex and specific devices have been created to assist with all facets 
of our lives. This was extended in the twentieth century to assisting with mental 
efforts, specifically calculation.

Computers are devices that humans have built to facilitate complex calcula-
tions. Early computers were used to do some of the computations needed to design 
the first nuclear bombs, but now computers seem to be everywhere, embedded 
within cars and kitchen appliances, and even with our own bodies. The success of 
these devices in such a wide range of application areas is a result of their ability 
to be programmed – that is, the device itself is only a potential when first built 
and has no specific function. It is designed to be configured to do any task that 
requires calculations, and the configuring process is what we call programming.

0chaPter

Modern  
coMPuters

0.1 Calculations by Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 How Computers Work and Why We Made Them  . . . . . . . . . . . . . . . . . . . . . . . . 3

0.3 Computer Systems Are Built in Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

0.4 Computer Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

0.5 Representation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

0.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



2  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

To some extent, this has taken the place of a lot of other tool development 
that used to be done by engineers. When designing a complex machine like an 
automobile, for example, there used to be a lot of mechanical work involved. 
The careful timing of the current to the spark plug was accomplished by rotating 
shafts with sensors, and resulted in the firing of each cylinder at the correct mo-
ment. The air to gasoline mixture fed into the engine was controlled by tubes and 
cables and springs. Now all of these things are done using computers that sense 
electric and magnetic events, do calculations, and send electrical control signals 
to actuators in the engine. The same computer can be used to control a refrigera-
tor, make telephone calls on a cellular phone, change channels on a television, 
and wake you up in the morning. It is the flexibility of the computer that has led 
to them becoming a dominant technology in human society, and the flexibility 
comes largely from their ability to be programmed.

 0.1 CALCULATIONS BY MACHINE
People have been calculating things for thousands of years and have always 

had mechanical aids to help.

When someone programs a computer, they are really communicating with it. 
It is an  imperative and precise communication. Imperative, because the computer 
has no choice; it is being told what to do and will do exactly that. Precise, because 
a computer does not apply any interpretation to what it is being told. Human lan-
guages are vague and subject to interpretation and ambiguity. There are sentences 
that are legal in terms of syntax, but have no real meaning: “Which is faster, to 
Boston or by bus?” is a legal sentence in English that has no meaning. Such vaga-
ries are not possible in a computer language. Computers do not think and so can’t 
evaluate a command that would amount to “expose the patient to a fatal dose of 
radiation” with any skepticism. As a result, we, as programmers, must be careful 
and precise in what we instruct the machine to do.

When humans communicate with each other, we use a language. Similarly, 
humans use languages to communicate with computers. Such languages are ar-
tificial (humans invented them for this purpose, all at once), terse (there are few, 
if any modifiers, and no way to express emotions or graduations of any feeling), 
precise (each item in the language means one thing), and written (we do not speak 
to the computer in a programming language). 



 Chapter  0  ·  Modern Computers   ■ 3

Computer languages operate at a high level and do not represent the way 
the computer actually works. There are a few fundamental things that need to be 
known about computers. It’s not required to know how they operate electroni-
cally, but there are basic principles that should be understood to put the process 
of using computers in a practical context.

 0.2  HOW COMPUTERS WORK AND 
WHY WE MADE THEM

The reason people use computers is different depending on the point in his-
tory in which one looks, but the military always seems to be involved. There have 
been many calculating devices built and used throughout history, but the first 
one that would have been programmable 
was designed by Charles Babbage. The 
military, as well as the mathematicians 
of the day, were interested in more ac-
curate mathematical tables, such as those 
for logarithms. At the time, these were 
calculated by hand, but the idea that a 
machine could be built to compute more 
digits of accuracy was appealing. This 
would have been a mechanical device of 
gears and shafts, but it was not completed 
due to budget and contracting issues. 

Babbage continued his work 
in design and created, on paper, a 
programmable mechanical device called 
the analytical engine in 1837. What does 
programmable mean? A calculation 
device is manipulated by the operator 
to perform a sequence of operations: 
add this to that, then subtract this and 
divide by something else. On a modern 
calculator, this would be done using a 
sequence of key presses, but on older Figure 0.1 

Punched cards for the Analytical Engine. 



4  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

devices, it may involve moving beads 
along wires or rotating gears along shafts. 
Now imagine that the sequence of key 
presses can be encoded on some other 
media: a set of cams, or plugs into sockets, 
or holes punched into cards. This is a 
program.

Such a set of punched cards or cams 
would be similar to a set of instructions 
written in English and given to a human 
to calculate, but would instead be coded 
in a form (language) that the computing 
device could use immediately. The direc-
tions on the cards could be changed so 

that something new could be computed as needed. The difference engine only 
found logarithms and trigonometric functions, but a device that could be pro-
grammed in this way could, in theory, calculate anything. The analytical engine 
was programmed by punching holes in stiff cards, an idea that was derived from 
the Jacquard loom of the day. The location of holes indicated either an opera-
tion (e.g., add or subtract) or data (a number). A sequence of such cards was 
executed one at a time and yielded a value at the end.

Although the analytical engine was never completed, a program was writ-
ten for it, but not by Babbage. The world’s first programmer may have been a 
woman, Augusta Ada King, Countess of Lovelace. She worked with Babbage 
for a few years and wrote a program to compute Bernoulli numbers. This was the 
first algorithm ever designed for a computer and is often claimed to be the first 
computer program ever written, although it was never executed.

The concept of programmability is a more important development than is the 
development of analytical engines. The idea that a machine can be made to do 
different things depending on a user-defined set of instructions is the basis of all 
modern computers, while the use of mechanical calculation has become obsolete; 
it is too slow, expensive, and cumbersome. This is where it began, though, and the 
concept of programming is the same today.

Figure 0.2 
A portion of Babbage’s Analytical Engine



 Chapter  0  ·  Modern Computers   ■ 5

Figure 0.3 
Possibly the word’s first program: The calculation of Bernoulli numbers on the analytical engine.

Figure 0.4 
The Colossus computer breaking a code during World 
War II with the help of  Dorothy Du Boisson (left) and 
Elsie Booker

During World War II, computers were run using electricity. Work on break-
ing codes and building the atomic 
bomb required large amounts of 
computing. Initially, some of this 
was provided by rooms full of hu-
mans operating mechanical cal-
culators, but they could not keep 
up with the demand, so electronic 
computers were designed and 
built. The first was Colossus, de-
signed and built by Tommy Flow-
ers in 1943. It was created to help 
break German military codes, 
and an updated version (Mark II) 
was built in 1944.



6  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

In the United States, there was a need for computational power in Los 
Alamos when the first nuclear weapons were being built. Electro-mechanical 
calculators were replaced by IBM punched-card calculators, originally designed 
for accounting. These were only a little faster than the humans using calculators, 
but could run twenty-four hours a day and made fewer errors. The punch-
card computer was programmed by plugging wires into sockets to create new 
connections between components.

 0.2.1  Numbers

The electronic computers described so far, and those of the 1940s generally, 
had almost no storage for numbers. Input was through devices like cards, and they 
had numbers on them. They were transferred to the computation unit, then moved 
ahead or back, and perhaps read again. Memory was a primitive thing, and vari-
ous methods were devised to store just a few digits. A significant advance came 
when engineers decided to use binary numbers.  

Electronic devices use current and voltage to represent information, such as 
sounds or pictures (radio and television). One of the simplest devices is a switch, 
which can open and close a circuit and turn things like lights on and off. Electric-
ity needs a complete circuit or route from the source of electrons, the negative 
pole of a battery perhaps, to the sink, which could be the positive pole. Electrons, 
which is what electricity is, in a simple sense, flow from the negative to the posi-

tive poles of a battery. Electricity can be made 
to do work by putting devices in the way of the 
flow of electrons. Putting a lamp in the circuit 
can cause the lamp to light up, for example.

A switch makes a break in the circuit, 
which stops the electrons from flowing; they 
cannot jump the gap. This causes the lamp to 
go dark. This seems obvious to anyone with 
electric lights in their house, but what may 
not be so obvious is that this creates two states 
of the circuit, on and off. These states can be 
assigned numbers. Off is 0, for example, and 
on is 1. This is how most computers represent  

Battery Switch

Lamp

+         –

Figure 0.5 
The switch is closed and the current is 
flowing, turning the lamp on. This is a 
“1.”



 Chapter  0  ·  Modern Computers   ■ 7

numbers: as on/off or 1/0 states. Let’s consider 
this in regards to the usual way we represent 
numbers, which is called positional numbering.

Most human societies now use a system with 
ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The num-
ber 123 is a combination of digits and powers of 
ten. It is a shorthand notation for 100 + 20 + 3, or 
1 × 102 + 2*101 + 3*100. Each digit is multiplied 
by a power of ten and summed to get the value of 
the number. Anyone who has been to school ac-
cepts this and does not think about the value used 
as the basis of the system: ten. It simply happens 
to be the number of digits humans have on their hands. Any base would work 
almost as well.

Example: Base 4

Numbers that use 4 as a base can only have the digits 0, 1, 2, and 3. Each 
position in the number represents a power of 4. Thus, the number 123 is, in base 
4, 1 × 42 + 2*41 + 3*40, which is 1 × 16 + 2*4 + 3 = 16 + 8 + 3 = 27 in traditional 
base 10 representation.

This could get confusing, what with various bases and such, so the numbers 
here are considered to be in base 10 unless specifically indicated otherwise by a 
suffix. For example, 1234 is 123 in base 4, whereas 1238 is 123 in base 8.

Binary numbers can have digits that are 1 or 0. The numbers are in base 2, 
and can therefore only have the digits 0 and 1. These numbers can be represented 
by the on/off state of a switch or transistor, an electronic switch, which why they 
are used in electronic computers. Modern computers represent all data as binary 
numbers because it is easy to represent those numbers in electronic form; a volt-
age is arbitrarily assigned to “0” and to “1.” When a device detects a particular 
voltage, it can then be converted into a digit, and vice-versa. If 2 volts is assigned 
to a 0, and 5 volts is assigned to a 1, then the circuit shown in Figure 0.7 could 
signal a 0 or 1, depending on what switch was selected.

Battery Switch

Lamp

+         –

Figure 0.6 
The switch is off (open) and the lamp 
is off, indicating a “0.”



8  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

2 V

5 V

2V
 =

 0

       

2 V

5 V

 (a) (b)

Figure 0.7 
(a) A configuration giving a 2-volt value, or a zero.
(b) A configuration giving a 5-volt value, or a one.

Convert Binary Numbers to Decimal

Consider the binary number 110112. The subscript “2” here means “base 2.” 
It can be converted into base 10 by multiplying each digit by its corresponding 
power of two and then summing the results.

Digit 1 1 0 1 1
Position 4 3 2 1 0
Power of 2 24 = 16 23 = 8 22  = 4 21 = 2 20 = 1
Digit*power 16 8 0 2 1
Sum is 16 + 8 + 2 + 1 = 2710

Some observations:

• Terminology: A digit in a binary number is called a bit (for binary digit)
• Any even number has 0 as the low digit, which means that odd numbers 

have 1 as the low digit.
• Any exact power of two, such as 16, 32, 64, and so on, will have exactly 

one digit that is a 1, and all others will be 0.
• Terminology: A binary digit or bit that is 1 is said to be set. A bit that is 

0 is said to be clear. 

Convert Decimal Numbers to Binary

Going from base 10 to base 2 is more complicated than the reverse. There 
are a few ways to do the calculation, but here’s one that many people find easy to 



 Chapter  0  ·  Modern Computers   ■ 9

understand. If the lowest digit (rightmost) is 1, then the number is odd, and other-
wise it is even. If the number 7310 is converted into binary, the rightmost digit is 
1, because the number is odd. 

The next step is to divide the number by 2, eliminating the rightmost binary 
digit, the one that was just identified, from the number. 7310 /210 = 3610, and there 
can be no fractional part so any such part is to be discarded.  Now the problem is 
to convert = 3610 to binary and then append the part already converted to that. Is 
3610 even or odd? It is even, so the next digit is 0. The final two digits of 7310 in 
binary are 01.

The process is repeated: 

Divide 36 by 2 to get 18, which is even, so the next digit is 0.
Divide 18 by 2 to get 9, which is odd, so the next digit is 1.
Divide 9 by 2 to get 4, which is even, so the next digit is 0.
Divide 4 by 2 to get 2, which is even, so the next digit is 0.
Divide 2 by 2 to get 1, which is odd, so the next digit is 1.

Divide 1 by 2 to get 0. When the number becomes 0, the process is complete.
The conversion process gives the binary numbers in reverse order (right to 

left) so the result is that 7310 =  10010012.

Is this correct? Convert this binary number into decimal again:

 10010012 = 1 × 20 + 1*23 + 1*26  = 1 + 8 + 64 = 7310.

A summary of the process for converting x into binary for is as follows:
Start at digit n=0 (rightmost)
repeat
    If x is even, the current digit n is 0 otherwise it is 1.
    Divide x by 2
    Add 1 to n
    If x is zero then end the repetition

Arithmetic in Binary

Computers do all operations on data as binary numbers, so when two num-
bers are added, for example, the calculation is performed in base 2. Base 2 is 
easier than base 10 for some things, and adding is one of those things. It’s done 



10  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

in the same way as in base 10, but there are only 2 digits, and twos are carried 
instead of tens. For example, let’s add 010112 to 011102:

 0 1 0 1 1
2

 0 1 1 1 0
2

Starting the sum on the right as usual, there is a 0 added to a 1 and the sum is 
1, just as in base 10.

 0 1 0 1 1
2

 0 1 1 1 0
2

 ----------
         1

2

The next column in the sum contains two 1s. 1 + 1 is two, but in binary that is 
represented as 102. So, the result of 1+1 is 0 with a carry of 1 is as follows:

                          1
 0 1 0 1 1

2

 0 1 1 1 0
2

 ----------
                            0 1

2

The next column has 1 + 0, but there is a carry of 1 so it is 1 + 0 + 1. That’s 0 
with a 1 carried again:
                        1
 0 1 0 1 1

2

 0 1 1 1 0
2

 -----------
     0 0 1

2

Now the column is 1 + 1 with a 1 carried, or 1 + 1 + 1. This is 1 with a carry 
of 1:
                      1
 0 1 0 1 1

2

 0 1 1 1 0
2

 ----------
      1 0 0 1

2

Finally, the leading digits are 0+0 with a carry of 1, or 0 + 0 + 1. The an-
swer is 110012. Is this correct? Well, 010112 is 1110 and 011102 is 142, and  
1110 + 1410=2510. The answer 110012 is, in fact, 2510.



 Chapter  0  ·  Modern Computers   ■ 11

Binary numbers can be subjected to the same operations as any other form of 
number (i.e., multiplication, subtraction, division). In addition, these operations 
can be performed by electronic circuits operating on voltages that represent the 
digits 1 and 0. 

 0.2.2  Memory

Adding memory to computers was another important advancement. A com-
puter memory must hold steady a collection of voltages that represent digits, and 
the digits are collected into sets, each of which is a number. A switch can hold a 
binary digit, but switches are activated by people. Computer memory must store 
and recall (retrieve) numbers when they are required by a calculation without hu-
man intervention.

The first memories were rather odd things: acoustic delay lines stored num-
bers as a sound passing through mercury in a tube. The speed of sound allows a 
small number of digits, around 500, to be stored in transit from a speaker on one 
end to a receiver on the other. A phosphor screen can be built that is activated 
by an electric pulse and draws a bright spot on a screen that needs no power to 
maintain it. Numbers can be saved as bright and dark spots (1 and 0) and retrieved 
using light sensitive devices.

Other devices were used in the early years, such as relays and vacuum tubes, 
but in 1947 the magnetic core memory was patented, in which bits were stored as 
magnetic fields in small donut-shaped elements. This kind of memory was faster 
and more reliable than anything used before, and even held the data in memory 
without power being applied, a handy thing in a power failure. It was also expen-
sive, of course.

 

 (a) (b)

Figure 0.8 
(a) A diagram of core memory showing six bits.  
(b) Actual core memory magnified to show the individual bits.



12  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This kind of memory is almost never used anymore, but its legacy remains in 
the terminology: memory is still frequently referred to as core, and a core dump is 
still what many people call a listing of the contents of a computer memory.

Current computers use transistors to store bits and solid state memories that 
can hold billions of bits (Gigabits), but the way they are used in the computer is 
still the same as it was. Bits are collected into groups of 8 (a byte) and then groups 
of multiple bytes to for a word. Words are collected into a linear sequence, each 
numbered starting at 0. These numbers are called addresses, and each word, and 
sometimes each byte, can be accessed by specifying the address of the data that is 
wanted. Acquiring the data element at a particular location is called a fetch, and 
placing a number into a particular location is a store. A computer program to add 
two numbers might be specified as follows:

• Fetch the number at location 21.
• Fetch the number at location 433.
• Add those two numbers.
• Store the result in location 22.
This may seem like a verbose way to add two numbers, but remember that 

this can be accomplished in a tiny fraction of a second.

Memory is often presented to beginning programmers as a collection of mail-
boxes. The address is a number identifying the mailbox, which also contains a 
number. There is some special memory in the computer that has no specific ad-

dress, and is referred to in various ways.  When 
a fetch is performed there is a question concern-
ing where the value that was fetched goes. It can 
go to another memory location, which is a move 
operation, or it can go into one of these special 
locations, called registers.

A computer can have many registers or very 
few, but they are very fast memory units that are 
used to keep intermediate results of computa-
tions. The simple program above would normal-
ly have to be modified to give registers that are 
involved in the operations:

Figure 0.9 
Memory as a set of cubbyholes or 
mailboxes, each with a unique address.



 Chapter  0  ·  Modern Computers   ■ 13

• Fetch the number at location 21 into register R0.
• Fetch the number at location 433 into register R1.
• Add R1 and R0 and put the result into R3.
• Store R3 (the result) in location 22.
This is still verbose, but more correct.

 0.2.3 Stored Programs

The final critical step in creating the modern computer occurred in 1936 with 
Alan Turing’s theoretical paper on the subject, but an actual computer to employ 
the concept was not built until 1948 when the Manchester Small-Scale Experimental 
Machine ran what is considered to be the first stored program. It has been the basic 
method by which computers operate ever since.

The idea is to store a computer program in memory locations instead of on 
cards or in some other way. Programs and data now co-exist in memory, and this 
also means that computer programs have to be encoded as numbers; everything 
in a computer is a number. There are many different ways to do this, and many 
possible different instruction sets that have been implemented and various differ-
ent configurations of registers, memory, and instructions. The computer hardware 
always does the same basic thing: first, it fetches the next instruction to be ex-
ecuted, and then it decodes it and executes it. 
Executing an instruction could involve more 
accesses to memory or registers.

This repeated fetch then executes a pro-
cess called the fetch-execute cycle, which is 
at the heart of all computers. The location or 
address of the next instruction resides in a 
register called the program counter, and this 
register is incremented every time an instruc-
tion is executed, meaning that instructions 
will be placed in consecutive memory loca-
tions and will be fetched and executed natu-
rally in that order. Sometimes the instruction 
is fetched into a special register too, called 
the instruction register, so that it can be  

Memory

Math
Unit

Accumulator

Instruction Register

Program
Counter

0
1
2
3
4
5
6
7
8
9

10
11

Figure 0.10 
A simple fictional computer used to explain 
stored programs



14  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

examined quickly for important components like data values or addresses. Finally, a 
computer will need at least one register to store data; this is called the accumulator. 

The stored program concept is difficult to understand. Imagine a computer 
that has 12-bit words as memory locations and that possesses the registers de-
scribed above. This is a fictional machine, but it has some of the properties of an 
old computer from the 1960s called the PDP/8.

To demonstrate the execution of a program on a stored program computer, 
let’s use a very simple program: add 21 and 433, and place the answer in location 
11. As an initial assumption, assume that the value 21 is in location 9 and 433 is 
in location 10. The program itself resides in consecutive memory locations begin-
ning at address 0.

Note that this example is very much like the previous two examples, but in 
this case, there is only one register to put data into, the accumulator. The program 
could perhaps look like this:

• Fetch the contents of memory location 9 into the accumulator.
• Add the contents of memory location 10 to the accumulator.
• Store the contents of the accumulator into memory location 11.
The program is now complete, and the result 21 + 433 is in location 11. 

Computer programs are normally expressed in terms that the computer can im-
mediately use, normally as terse and precise commands. The next stage in the 
development of this program is to use a symbolic form of the actual instructions 
that the computer will use.

The first step is to move the contents of location 9 to the accumulator. The 
instruction that does this kind of thing is called Load Accumulator, shorted as the 
mnemonic LDA. The instruction is in location 0:

0: LDA 9   # Load accumulator with location 9

The text following the “#” character is ignored by the computer, and is really 
a comment to remind the programmer what is happening. The next instruction is 
to add the contents of location 10 to the accumulator; the instruction is ADD and 
it is placed in address 1:

1: ADD 10  # Add contents of address 10 to the accumulator

 The result in the accumulator register is saved into the memory location at 
address 11. This is a Store instruction:



 Chapter  0  ·  Modern Computers   ■ 15

2:  STO 11  # Answer into location 11

 The program is complete. There is a Halt in-
struction:
3:  HLT # End of program</NL>

If this program starts executing at address 0, and 
if the correct data is in the correct locations, then 
the result 454 should be in location 11. But these in-
structions are not yet in a form the computer can use. 
They are characters, text that a human can read. In a 
stored program computer, these instructions must be 
encoded as numbers, and those numbers must agree 
with the ones the computer was built to implement.

An instruction must be a binary number, so all 
of the possible instructions have numeric codes. An 
instruction can also contain a memory address; the 
LDA instruction specifies a memory location from 
which to load the accumulator. Both the instruction 
code and the address have to be placed into one computer word. The designers of 
the computer decide how that is done.

This computer has 12-bit words. Imagine that the upper 3 bits indicate what 
the instruction is. That is, a typical instruction is formatted as shown in Figure 0.12.

code address

8 7 6 5 4 3 2 1 011   10   9

Figure 0.12 
The format of a binary instruction.

There are 9 bits at the lower (right) end of the instruction for an address, and 
3 at the top end for the code that represents the instruction. The code for LDA is 
3; the code for ADD is 5, and the code for STO is 6. The HLT on most computers 
is code 0. Here is what the program looks like as numbers: 

Code 3   Address 9
Code 5   Address 10
Code 6   Address 11
Code 0   Address 0 

Figure 0.11
An actual PDP-8 computer. 
Programs were entered as binary 
numbers using the switches on 
the front console. This was the 
smallest computer of its time.



16  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

These have to be made into binary numbers to be stored in memory. For the 
LDA instruction, the code 310 is 0112 and the address is 910 = 0000010012, so the 
instruction as a binary number is 011 0000010012, where the space between the 
code and the address is only present to make it obvious to a person reading it.

The ADD instruction has code 510, which is 1012, and the address is 10, which 
in binary is 00010102. The instruction is 101 0000010102.

The STO instruction has code 6, which is 1102 and the address is 11, which is 
0010112. The instruction is 110 0000010112.

The HLT instruction is code 0, or in 12-bit binary, 000 0000000002.
The codes are made up by the designers of the computer. Figure 0.13 shows 

an example of when memory is set up to contain this program. 

Memory

0
1
2
3
4
5
6
7
8
9

10
11

011000001001

000000000000

101000001010

000000000000
110000001011

000110110001

000000000000
000000000000
000000000000
000000000000
000000000000
000000010101

Figure 0.13 
The simple example program as it looks in memory.

This is how memory looks when the program begins. The act of setting up the 
memory like this so that the program can execute is called loading. The binary 
numbers in memory locations 9 and 10 are 21 and 433, respectively, which are 
the numbers to be summed.

Of course, there are more instructions than these in a useful computer. There 
is not always a subtract instruction, but subtraction can be done by making a num-
ber negative and then adding, so there is often a NEGate instruction. Setting the 
accumulator to zero is a common thing to do so there is a CLA (Clear Accumula-
tor) instruction; and there are many more.

The fetch-execute cycle involves fetching the memory location addressed 
by the program counter into the instruction register, incrementing the program  



 Chapter  0  ·  Modern Computers   ■ 17

counter, and then executing the instruction. Execution involves figuring out what 
instruction is represented by the code and then sending the address or data through 
the correct electronic circuits.

A very important instruction that this program does not use is a branch. The 
instruction BRA 0 causes the next instruction to be executed starting at memory 
location 0. This allows a program to skip over some instructions or to repeat some 
many times. A conditional branch changes the current instruction if a certain con-
dition is true. An example would be “Branch if Accumulator is Zero (BAZ).” 
which is only performed if, as the instruction indicates, there is a value of zero in 
the accumulator. The combination of arithmetic and control instructions makes 
it possible for a programmer to describe a calculation to be performed very pre-
cisely.

 0.3 COMPUTER SYSTEMS ARE BUILT IN LAYERS
Entering a program as binary numbers using switches is a very tedious, time-

consuming process. Lacking a disk drive, the early computers depended on other 
kinds of storage: punch cards or paper tape. It should be understood that because 
there was no permanent storage, booting one of these machines often meant tog-
gling a small “boot loader” program, then reading a paper tape. Now the computer 
would respond sensibly to its peripheral devices, like a printer or card reader. 
The paper tape contained a primitive ‘operating system’ that would control the 
few devices available. That’s what operating systems do: allocate resources and 
control devices. 

The boot loader (bootstrap program) is the lowest layer of software. It was 
provided by the computer manufacturer but had to be entered by the user. The 
paper tape system was the second layer, and the user did not have to write this 
program. Gradually, more and more layers were written to provide the user with 
a high level of abstraction rather than having to understand the entire machine.  

When disk drives became available, the operating system was stored on them, 
and a bootstrap loader was saved in a special section of memory that could not 
be erased (read only memory) so that when the computer was turned on, it would 
run the loader, which would load the operating system. This is essentially what 
happens today on Windows. 



18  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This operating system on the disk drive is a third layer of software. It provides 
basic hardware allocation functionality and also gives the user access to some 
programs to use for printing and saving things on disk – a file system.

 0.3.1 Assemblers and Compilers

Programming a computer could still be a daunting task if done in binary, so 
the first thing that was provided was an assembler. This was a program that per-
mitted a programmer to enter a text program that could be converted into a binary 
executable. It allowed memory locations to be named instead of using an absolute 
number as an address, and would convert text operation codes and addresses into 
a binary program. The addition program from the previous section could be writ-
ten in assembler as follows:

 LDA Data1   
 ADD Data2 
 STO Res  
 HLT 
Data1: 21
Data2: 433:
Res: 0
Usually, one line of text in an assembler corresponds to a single instruction or 

memory location. It’s the same program, but is easier for a programmer to under-
stand because of the named memory locations and mnemonic instruction names.

It is much harder to describe how a compiler works, but relatively easy to 
explain what it does. A compiler translates high level language statements into 
assembler, which in turn converts it into binary code. Compilers translate state-
ments like

A = 21
B = 433
C = A+B

into executable code. It is a very complex process, but essentially it allows the 
programmer to declare that certain names represent integers, that values are to 
be assigned, and that arithmetic can be done. There are also more complex state-
ments, like the conditional execution of code and function calls with parameters, 
as will be seen in later chapters. 

Compilers also implement input and output from the user (reading from 
a keyboard and writing to the video screen), sophisticated data types, and  



 Chapter  0  ·  Modern Computers   ■ 19

mathematical functions. An interpreter, which is what the language Python is, 
does a part of the compilation process but does not produce executable code. In-
stead it simulates the execution of the code, doing most of the work in software. 
The Java language does a similar thing in many cases.

The programs that someone writes (software) creates another layer for some-
one to use. An example might be a database management system that gives a user 
access to a computer that can query data for certain kinds of values. A graphics 
system gives a programmer access to a set of operations that can draw pictures. 

 0.3.2 Graphical User Interfaces (GUIs)

Most users now interface with their computers through a keyboard, one of the 
first devices to be interfaced to a computer, a mouse, the first device to permit 2D 
navigation on a screen, and Windows, a graphical construction that allows many 
independent connections to a computer to share a single video screen. GUIs are 
popular because they improve the user’s perception of what is happening on a 
computer. Previous computer interfaces were completely text based, so if there 
was a problem that the user could not see, it would go unnoticed.

GUIs, however, are difficult to program. Just opening a new window in a Mi-
crosoft-based operating system can require scores 
of lines of C++ code that would take a great deal of 
time to understand. Naturally, it is the job of a pro-
grammer to be able to do this, but it means that the 
average user could not create their own software 
that manipulated the interface in any reasonable 
way. So, what is a window and what’s involved 
in a GUI?

A window, in the operating system sense, is a 
rectangle on the computer screen within which an 
exchange of information takes place between the 
user and the system. The rectangle can generally 
be resized, removed from the screen temporarily 
(minimized), moved, and closed. It can be thought 
of as a virtual computer terminal in that each one 
can do what the entire video screen was needed to 

Figure 0.14 
The first computer mouse. 
https://commons.wikimedia.
org/wiki/Fi le:Telefunken_
Rollkugel_RKS_100-86.jpg

Figure 0.15 
Englebart’s computer mouse.



20  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

do in early systems. When the window is active, a user can type information to 
be received by the program controlling it, and can manipulate graphical objects 
within the window using a mouse, or more recently by using their fingers on a 
touch screen.  

The mouse is a variation on the tracker ball, the German engineering com-
pany Telefunken devised a working version and was the first to sell it. A mouse 
is linked through software to a cursor on the screen, and left-right motions of the 
mouse cause left-right motions of the cursor; forward and backward motions of 
the mouse cause the cursor to move up and down the screen. When the cursor is 
inside of a window then that window is active. A mouse has buttons, and pressing 
a mouse button activates whatever software object is related to the cursor position 
on the screen.  

Widgets

A widget is a graphical object drawn in a window or otherwise on a computer 
screen that can be selected and/or operated using the mouse and mouse buttons. It 

is connected to a software element that is sent a control 
signal or numerical parameter by virtue of the wid-
get being manipulated. A widget is exemplified by the 
button, a very commonly used widget on Web pages 
and interfaces. Buttons can be used to display infor-
mation as well as to control a program. Some popular 
widgets are as follows:

Button: When the mouse cursor is within the boundaries of the 
button on the screen, the button is said to be activated. Pressing 
a mouse button when the button widget is activated causes the 
software connected to the button to perform its function.

Radio Button: A set of two or more buttons used to select from 
a set of discrete options. Only one of the buttons can be selected 
at a time, meaning that the options are mutually exclusive.

Check Box: A way to select a set of options from a larger set. 
This widget consists of a collection of boxes or buttons that can 
be chosen by clicking on them. When chosen, they indicate that 
fact by using a graphical change, sometimes a check mark but 
sometimes a color or other visual effect.

Figure 0.16 
A button.

Figure 0.17 
A radio button.

Figure 0.18 
A check box.



 Chapter  0  ·  Modern Computers   ■ 21

Slider: A horizontal or vertical control with a selec-
tion tool that can be slide along the control. The rela-
tive position of the control dictates the value that the 
widget provides. This value is often displayed in a text 
box, and the range is also commonly displayed.

Drop-down List: A box containing text that displays a complete set of options 
that can be displayed when the mouse button is clicked within it. Then any one of 
the options can be selected using the mouse 
and the mouse button.

Icon: An icon is a small graphical rep-
resentation (pictogram) that represents the 
function of a program or file. When selected 
the program will execute or the file will be 
opened.

There are many other widgets and variations on the ones shown here. There 
are two basic principles at play:

 1. The widget represents an activity using a commonly understood symbol, 
and performs that activity, or one related to the symbol, when selected 
using the mouse. This is a graphical and tactile operation that replaces 
the typing of a command in previous computer systems.

 2. The software that implements the widget is a module, software that can 
be reused and reconfigured for various circumstances. A button can be 
quickly created to perform any number of tasks because the program that 
implements it is designed for that degree of flexibility.

 0.4 COMPUTER NETWORKS
Schools, offices, and some homes are equipped with computer networks, 

which are wires that connect computers together and software and special hard-
ware that allows the computers to communicate with each other. This allows 
people to send information to each other through their computers. But how does 
this really work?

Computers use electricity to perform calculations on binary numbers. Ar-
bitrary voltages represent 0 and 1, and those voltages are sent along a wire no 

Figure 0.19 
Slider.

Figure 0.20 
Drop-down list.

Figure 0.21 
Icon.



22  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

matter how long it is and still be numbers at the receiving end. As long as two 
computers are connected, this works well, but if two wires are needed to connect 
any two computers, then six wires are needed to fully connect three computers to 
each other and twelve to connect four computers. A room with thirty networked 
computers would be full of wires (870 to each computer)!  

Hawaii has an unusual problem when it comes to computer network com-
munication. It is a collection of islands. Linking them by cables is an expensive 
proposition. In the early 1970s, the technicians at the University of Hawaii de-

cided to link the computers using radio. Radio 
transmission is similar to wire transmission in 
many practical ways, and allocating 35 radio 
frequencies to connect one computer on each 
island to all of the others would have been 
possible, but their idea was better. They used 
a single radio link for all computers. When a 
computer wanted to send information along 
the network, it would listen to see if another 

computer was already doing so. If so, it would wait. If not, it would begin to send 
data to all of the other computers and would include in the transmission a code 
for which computer was supposed to receive it. All could hear it, but all would 
know which computer was the correct destination so the others would ignore it. 
This system was called Alohanet.

There is a problem with this scheme. Two or more computers could try to 
send at almost the same time, having noted that no other computer was sending 
when they checked. This is called a collision, and is relatively easy to detect; the 
data received is nonsense. When that happens, each computer waits for a random 
time, checks again, and tries again to send the data. An analogy would be a meet-
ing where many people are trying speak at once.

Obviously, the busier the network is, the more likely a collision will be, and 
the re-transmissions will make things worse. Still, this scheme works very well 
and is functioning today in the form of the most common networking system in 
earth – Ethernet.

Ethernet is essentially Alohanet along a wire.  Each computer has one con-
nection to it, rather than connections to each of the possible destinations, and col-
lisions are possible. There is another consideration that makes this scheme work 

Computer A

Computer B

Computer C

Clear Transmission
Collision

Packet

Time

Figure 0.22 
Packets transmitted on a network. Red 
ones are collisions.



 Chapter  0  ·  Modern Computers   ■ 23

better, and that it is use of packets. Information along these networks is sent in 
fixed-size packages of a few thousand bytes. In this way, the time needed to send 
a packet should be more or less constant, and it’s more efficient than sending a 
bit or a byte at a time. 

Each packet contains a set of data bytes intended for another computer, so 
within that packet should be some information about the destination, the sender, 
and other important data. For instance, if a data file is bigger than a packet, then 
it is split up into parts to be sent. Thus, a part of the packet is a sequence number 
indicating which packet it is (e.g., number 3 of 5). If a particular packet never gets 
received, then the missing one is known, and the receiver can ask the sender for 
that packet to be resent. There are also codes to determine whether an error has 
occurred.

 0.4.1 Internet

The Internet is a computer network designed to communicate reliably over 
long distances. It was originally created to be a reliable communications system 
that could survive a nuclear attack, and was funded by the military. It is distrib-
uted, in that data can be sent from one computer to another in a chain until it 
reaches its destination.

Imagine a collection of a few dozen computers, and that each one is connect-
ed to multiple others, but not directly to all others. Computer A wishes to send a 
message to computer B, and does so using a packet that includes the destination. 
Computer A sends the message to all computers that it is connected to. Each of 
those computers sends it to all of the computers that they are connected to, and 
so on until the destination is reached. All of the computers will receive every 
message, which is inefficient, but so long as there 
exists some path from A to B, the message will 
be delivered.

It would be hard to tell when to stop sending a 
message in this scheme. Another way to do it is to 
have a table in each computer saying which com-
puters in the network are connected to which oth-
ers. A message can be sent to a computer known 
to be a short path to the destination, one computer 

Figure 0.23 
The organization of the Internet.



24  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

at a time, and in this case not all computers see the message, only the ones along 
the route do. A new computer added to the network must send a special message 
to all of the others telling them which of the existing computers it is directly 
connected to, and this message will propagate to all machines, allowing them to 
update their map. This is essentially the scheme used today.

The Internet has a hierarchy of communication links and processors. First, all 
computers on the Internet have a unique IP (Internet Protocol) address through 
which they are reached. Because there are many computers in the world, an IP 
address is a large number. An example is 172.16.254.1 (obtained from Wikipe-
dia).  When a computer in, say, Portland want to send a message to, for example, 
London, the Portland computer composes a packet that contains the message, its 
address, and the recipient’s address in London. This message is sent along the 
connection to its Internet service provider, which is a local computer, at a rela-
tively low speed, perhaps 10 megabits per second. The service provider operates a 
collection of computers designed to handle network traffic. This is called a Point 
of Presence (POP), and it collects messages from a local area and concentrates 
them for transmission further down the line.

Multiple POP sites connect to a Network Access Point (NAP) using much 
faster connections than users have to connect with the POP. The NAP concen-
trates even more users, and provides a layer of addressing that can be used to send 
the data to the destination. The NAP for the Portland user delivers the message to 
a relatively local NAP, which sends it to the next NAP along a path to the desti-
nation in London using an exceptionally fast (high bandwidth) data connection. 
The London NAP sends the message to the appropriate local POP, which in turn 
sends it to the correct user.

An important consideration is that the message can be read by any POP nor 
NAP server along the route. Data sent along the Internet is public unless it is 
properly encrypted by the users.

 0.4.2 World Wide Web

The World Wide Web, or simply the Web, is a layer of software above the 
Internet protocols. It is a way to access files and data remotely through a visual in-
terface provided by a program that runs on the user’s computer, a browser. When 
someone accesses a Web page, a file that describes that page is downloaded to 



 Chapter  0  ·  Modern Computers   ■ 25

the user’s browser and displayed. That file is text in a particular format, and the 
file name usually ends in .html or .htm. The file holds a description of how to 
display the page: what text to display, where images can be found that are part of 
the page, how the page is formatted, and where other connected pages (links) are 
found on the Internet. Once the file is downloaded, the local (receiving) computer 
performs the work concerned with the display of the file, such as playing sounds 
and videos, and drawing graphics and text.

The Web is the basis for most of the modern advances in social network-
ing and public data access. The Internet provides the underlying network com-
munications facility, while the Web uses that to fetch and display information 
requested by the user in a visual and auditory fashion. Podcasts, blogs, and wikis 
are simple extensions of the basic functionality.

The Web demands the ability for a user in Portland to request a file from a 
user in London and to have that file delivered and made into a graphical display, 
all with a single click of a mouse button. Web pages are files that reside on a com-
puter that has an IP address, but the IP address is often hidden by a symbolic name 
called the Universal Resource Locator (URL). Almost everyone has seen one of 
these (http://www.facebook.com is one example). Web pages have a unique path or 
address based on a URL. Anyone can create a new web page that uses its very own 
unambiguous URL at any time, and most of the world would be able to view it.

The Web is an example of what programmers call a client-server system. The 
client is where the person requesting the Web page lives, and is making a request. 
The server is where the Web page itself exists, and it satisfies the request. Other 
examples of such systems would be online computer games, Email, Skype, and 
Second Life.

 0.5 REPRESENTATION
When applying a computer to a task or writing a program to deal with a type 

of data that seems to be non-numeric, the issue of how to represent the data on the 
computer invariably arises. Everything stored and manipulated on a computer has 
to be a number. What if the data is not numeric?

A fundamental example of this is character data. When a user types at the 
computer keyboard, what actually happens? Each key, and some key combina-
tions (e.g., the shift key and “1” held down at the same time), when pressed result 



26  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

in electrical signals being sent along a set of wires that connect to an input device 
on the computer, a USB port perhaps. Pressing a key results in an identifiable 
combination of wires being given a voltage. This is, in fact, a representation of 
the character, and one that underlies the one that will be used on the computer 
itself. As described previously, voltages can be used to represent binary numbers.

The representation of characters on a computer amounts to an assignment of 
a number to each possible character. This assignment could be arbitrary, and for 
some data it is. The value of the letter “a” could be 1, “b” could be 12, and “c” 
could be 6. This would work, but it would be a poor representation because char-
acters are not in an arbitrary order. The letter “b” should be between “a” and “c” 
in value because it is positioned there in the data set, the set of characters. In any 
case, when creating a numeric representation the first rule is as follows:

 1. If there are a relatively small number of individual data items, assign 
them consecutive values starting at 0. If there is a practical reason to start 
at some other number, then do so.

  The second rule considers the existing ordering of the elements:
 2. In cases where data items are assigned consecutive values, assign them 

in a manner that maintains any pre-defined order of the elements.
  This means that in a definition of characters the letter ‘a’, ‘b’, and ‘c’ 

should appear in that order.
 3. In cases where data items are assigned consecutive values, assign them 

in a manner that maintains any pre-existing distance between the ele-
ments.

  This means that the letters “a,” “b,” and “c” would be adjacent to each 
other in the numeric representation because they are next to each other 
in the alphabet. The character classes also have consecutive codes so that 
the code for “0” is adjacent to, and smaller than, the code for “1,” and 
so on. This set of three rules creates a reliable mapping of characters to 
numbers. However, there are more rules for making representations.

 4. In cases where the data items are assigned consecutive values, assign 
them in a manner that simplifies the operations that are likely to be per-
formed on the data.   

  In the present example of character data, there are relatively few places 
where this rule can be invoked, but one would be when comparing char-
acters to each other. A character “A” is usually thought to come before 



 Chapter  0  ·  Modern Computers   ■ 27

“a,” so this means that all of the uppercase letters come before all lower-
case ones, in a numerical sense. Similarly, “0” comes before “A,” so all 
digits come before all letters in the representation. A space would come 
before (i.e., have a smaller value) than any character that prints.

  One of the most common character representations, named the American 
Standard Code for Information Interchange or ASCII has all of these 
properties, and a few others. The standard ASCII character set lists 128 
characters with numerical codes from 0 to 127. In the table below, each 
character is listed with the code that represents it. They appear in nu-
merical order. The characters in orange are telecommunications charac-
ters that are never used by a typical computer user; green characters are 
non-printing characters that are used for formatting text on a page; letters 
and numbers for English are red; special characters, like punctuation, are 
blue. The space character is in some sense unique, and it is black.

Table 0.01
American Standard Code for Information Interchange

Code Char Code Char Code Char Code Char Code Char Code Char Code Char Code Char

0 NUL 16 DLE 32 Space 48 0 64 @ 80 P 96 ‘ 112 p

1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 A 113 q

2 STX 18 DC2 34 “ 50 2 66 B 82 R 98 B 114 r

3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 C 115 s

4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 D 116 t

5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 E 117 u

6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 F 118 v

7 BEL 23 ETB 39 ‘ 55 7 71 G 87 W 103 G 119 w

8 BS 24 CAN 40 ( 56 8 72 H 88 X 104 H 120 x

9 TAB 25 EM 41 ) 57 9 73 I 89 Y 105 I 121 y

10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 J 122 z

11 VT 27 ESC 43 + 59 ; 75 K 91 [ 107 K 123 {

12 FF 28 FS 44 , 60 < 76 L 92 \ 108 L 124 |

13 CR 29 GS 45 - 61 = 77 M 93 ] 109 M 125 }

14 SO 30 RS 46 . 63 > 78 N 94 ^ 110 N 126 ~

15 SI 31 US 47 / 63 ? 79 O 95 _ 111 O 127 DEL

  If there is a very large number of possible data values, then enumerating 
them would be unreasonable. There are other ways to solve that sort of 
problem.



28  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 5. Try to break the data into enumerable parts.
  Dates can be an example of this kind of data. There are too many dates to 

store as discrete values, as there is no actual day 0, and there is no practi-
cal final day in the general case. However, a common way to state a date 
is to give a year, a month, and a day. This is awkward from a computer’s 
perspective because of the variable number of days in each month, but 
it works well for humans. Each component is enumerable, so a possible 
representation for a date would be as three numbers: year, month, day.  
It would be YYYYMMDD, where YYYY is a four-digit year, MM is a 
number between 0 (January) and 11 (December), and DD is a number 
between 0 and 30, which is the day of the month.  

  This representation should keep the dates in the correct sequence, so 
December 9, 1957, (19571108) comes after Aug 24, 1955 (19550723). 
However, another common operation on dates is to find the number of 
days between two specified dates. This is difficult, and the only repre-
sentation that would simplify it would be to start counting days at a zero 
point. If that zero point is Jan 1, 1900 then the representation for the 
date October 31, 2017 is 43037. The number of days between two dates 
is then found by subtraction. However, printing the date in a form for 
humans to read is difficult. When selecting a representation, the most 
common operations on the data should be the easiest ones to perform.

  Another example of this sort or representation is color, which will be 
discussed in detail in a later chapter.

 6. When the data is part of a continuous stream of real values, then it may 
be possible to sample them and/or quantize them.

Sampling means to represent a sequence by using a subset of the values. 
Imagine a set of numbers coming from a seismometer. The number sequence 

represents measurements of the motion of 
the ground captured continuously by a me-
chanical device. It is normally acceptable 
to ignore some of these values, knowing 
that between a value of 5.1 (whatever that 
means) and a value of 6.3, the numbers 
would have taken on all possible values 
between those two; that’s what continuous 
means. 

Figure 0.24 
A continuous set of data has a measurable 
value between any other two.



 Chapter  0  ·  Modern Computers   ■ 29

Instead of capturing an infinite num-
ber of values, which is not possible, why 
not capture a value every second, or tenth 
of a second, or at whatever interval makes 
sense for the data concerned? Some data 
will be lost. The important thing is not to 
lose anything valuable. 

The same thing can be done spatially. 
If someone is building a road, then it must 
be surveyed. A set of height values for 
points along the area to be occupied by the 
road is collected so that a model of the 3D 
region can be built. But between any two 
points that can be sampled there is another 
point that could be sampled, on to infinity. 
Again, a decision is made to limit the num-
ber of samples so that the measurements 
are made every few yards. This limits the 
accuracy, but not in a practical way. The 
height at some specific point may not have been measured, but it can be estimated 
from the numbers around it.

The distance between two sample points is referred to as the resolution. In 
spatial sampling, it is expressed in distance units, and says something about the 
smallest thing that can be precisely known. In time sampling, it is expressed in 
seconds.

Quantization means how accurately each measurement is known. In high 
school science, numbers that are measurements are given to some number of sig-
nificant figures. Measuring a weight as 110.9881 pounds would seem impossibly 
accurate, and 111 would be a more reasonable number. Quantization in computer 
terms would be restricting the number of bits used to represent the value. Some-
thing that is stored as an 8-bit number can have 256 distinct values, for example. If 
the world’s tallest person is under 8 feet tall, then using 8 bits to represent height 
would mean that 8 feet would be broken up into 256 parts, which is 0.375 inches; 
that is 8 feet × 12 inches/foot = 96 inches, and dividing this into 256 parts =  
0.375.  The smallest difference in height that could be expressed would be this 
value, a little over a third of an inch.

Figure 0.25 
Sampling means picking an interval and only 
keeping the data values at those locations. 
The vertical lines here are sampling positions.

Figure 0.26 
The resulting signal is not as smooth as the 
original (lower resolution).



30  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Quantization is reflected in the representation as a possible error in each val-
ue. The greater the number of bits per sample, the more accurately each one is 
represented. The use of sampling and quantization is very common, and is used 
when saving sounds (MP3), images (JPEG), and videos (AVI).

There are other possible options for creating a representation for data, but the 
six basic ideas here will work most of the time, alone or in combination. A pro-
grammer must understand that she or he will need to wisely choose the represen-
tations for the data. A poor choice will result in more complex code, which gen-
erates more errors and less overall satisfaction with the result.  Spending a little 
extra time at the beginning analyzing the possibilities can save a lot of effort later.

 0.6 SUMMARY
Computers are devices that humans built to facilitate complex calculations 

and are tools for rapidly and accurately manipulating numbers. When humans 
communicate with each other, we use a language. Similarly, humans use languag-
es to communicate with computers. A computer program can be thought of as a 
sequence of operations that a computer can perform to accomplish a calculation. 
The program must be expressed in terms that the computer can do.

Early computers were mechanical, using gears to represent numbers. Elec-
tronic computers usually use two electrical states or voltages to represent num-
bers, and those numbers are in binary or base-2 form. Electronic computers have 
memories that can store numbers, and everything stored in memory must be in 
numeric form. That includes the instructions that the computer can execute.

Computers have been around long enough to provide many layers of com-
puter programs that can assist in their effective use: graphical user interfaces, as-
semblers, compilers for programming languages, Web browsers, and accounting 
packages provide a user with a different view of a computer and a different way 
to use it. Computers can exchange data between each other using wires over short 
distances (computer network) and long ones (Internet). The World Wide Web sits 
atop the Internet and provides an easy and effective way for computers all over 
the world to exchange information in any form.

Everything stored and manipulated on a computer has to be a number. What 
if the data is not numeric? In that case a numeric representation has to be devised 
that effectively characterizes the information while permitting its efficient ma-
nipulation.



 Chapter  0  ·  Modern Computers   ■ 31

Exercises

 1. Convert the following binary numbers into decimal:
 a) 0100000
 b) 0000100
 c) 0000111
 d) 0101010
 e) 0110100101
 f) 0111111
 g) 110110110

 2. Convert the following decimal numbers into binary:
 a) 10
 b) 100
 c) 64
 d) 128
 e) 254
 f) 5
 g) 999

 3. Core memory would not erase itself when its power source was removed. 
Give reasons why this is a valuable property.
 ____________________________________________________________

 ____________________________________________________________

 ____________________________________________________________

 4. Specify a device that is used for:
 a) Output only
 b) Input only
 c) Both input and output

 5. Ada, Countess of Lovelace, is generally considered to be the first programmer, 
but some contrary information has come to light recently. Search the literature 
for two articles on each side of the argument and formulate a conclusion.



32  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 6. What is the difference between a compiler and an interpreter? Give an   
example of each.

 7. Identify a GUI widget that was not discussed in this chapter. Sketch its 
appearance and describe its operation. Give an example of a situation where 
it might be used.

 8. Give the ASCII codes for the following characters:
 a) ꞌPꞌ
 b) ꞌ;ꞌ
 c) ꞌrꞌ
 d) ꞌ,ꞌ
 e) ꞌ=ꞌ

 9. What is the value of the ASCII code for the character “1” minus the code for 
the character “0”? What is 2-0? What does this say about converting from the 
character form of a number into its numeric value in general?

 10. Consider the imaginary computer devised in this chapter. It has a memory 
in which each location has 12 binary digits (bits) to store a number. In one of 
the memory locations the value 101000000000 is seen. What is this? Is it an 
instruction, a number, a character, an address, or something else? How can 
this be determined?

Notes and Other Resources

http://www.vandermark.ch/pdp8/index.php?n=PDP8.Emulator

 1. L. Carlitz (1968), Bernoulli Numbers, Fibonacci Quarterly 6: 71–85.

 2. Digital Equipment Corporation (1972) Introduction to Programming, PDP-8 
handbook series. (Online version http://www.mirrorservice.org/sites/www.
bitsavers.org/pdf/dec/pdp8/handbooks/IntroToProgramming1969.pdf)

 3. James Essinger (2004). Jacquard’s web. Oxford University Press, 
Oxford. ISBN 978-0-19-280578-2.

 4. Tony Sale, The Colossus Computer 1943–1996: How It Helped to Break 
the German Lorenz Cipher in WWII, M.&M. Baldwin, Kidderminster, 
2004; ISBN 0-947712-36-4.



 Chapter  0  ·  Modern Computers   ■ 33

 5. Stephen Stephenson (2013), Ancient Computers, Part I - Rediscovery, Edition 
2, ISBN 1-4909-6437-1.

 6. A. M. Turing (1936). On Computable Numbers, with an Application to the 
Entscheidungsproblem.

 7. Michael R. Williams (1998). The “Last Word “ on Charles Babbage. IEEE 
Annals of the History of Computing 20 (4): 10–4. doi:10.1109/85.728225.

 8. Javier Yanes (2015) Ada Lovelace: Original and Visionary, but No 
Programmer, OpenMind, 09 December 2015. https://www.bbvaopenmind.
com/en/ada-lovelace-original-and-visionary-but-no-programmer/





■ ■ ■ ■ ■

In this chapter

The vast majority of computers fthat most people encounter are digi-
tal computers. This refers to the fact that the computer works on num-
bers. Other kinds of computer do exist but are not as common. Analog 
computers operate in a number of other ways, but are usually electrical 
(they manipulate electrical voltages and currents). They may be mechanical and 
use gears and shafts to calculate a mechanical response.

1chaPter

coMPuters and
PrograMMing

1.1 Solving a Problem Using a Computer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.2 Executing Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Guess a Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Rock–Paper–Scissors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Solving the Guess a Number Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6  Solving the Rock-Paper-Scissors Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.7 IF Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.8 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.9 Rock-Paper-Scissors Again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.10 Types Are Dynamic (Advanced)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.11 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



36  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The fact that any problem must be expressed in numerical form can be chal-
lenging. I’m not good at math is a common complaint, and the belief that com-
puter programming requires a knowledge of advanced mathematics is used as a 
reason to not study programming. The kind of math commonly needed for pro-
gramming would more properly be called arithmetic, not math.

In order for a problem to be solved using a computer, the problem must be 
expressed in a way that manipulates numbers and the data involved must be nu-
meric. This is often accomplished by some kind of encoding of the data. It is so 
common that the process is invisible on modern computers. Most data have a 
variety of encodings that have been used for years and are taken for granted: im-
ages in JPEG format or sounds in MP3 are examples of commonly used encoding 
of data into numbers.

What can computers do with numbers? Addition, subtraction, multiplication, 
and division are the basic operations, but computers can compare the value of 
numbers, too.

 1.1 SOLVING A PROBLEM USING A COMPUTER
The process of solving a problem using a computer begins with a detailed 

specification of the problem to be solved. Unless the problem is completely un-
derstood, its solution on a computer is impossible. Then we examine the problem 
to see what methods that we know about and what programs we already have 
could be used in its solution. At this stage we’re diving the problem in to the part 
that we know how to solve right away, and the part that we do not. The latter 
part has to be examined in more detail until a solution can be proposed. Then 
we create an outline of the solution, often on paper using human language; this 
is pseudocode, and differs in style from person to person. This is translated into 
computer language and then typed into computer form using a keyboard. The 
resulting text file is called a script, source code, or more commonly just the com-
puter program.

A program called a compiler takes this program and converts it into a form 
that can be executed on the computer. Basically, all programs are converted into 
a set of numbers called machine code which the computer can execute.

We are going to learn a language called Python. It was developed as a gener-
al-purpose programming language and is a good language for teaching because 



 Chapter  1  ·  Computers  and Programming  ■ 37

it makes a lot of things easy. Quite a few applications are built using Python, such 
as the games Eve Online and Civilization IV, BitTorrent, and Dropbox. It is a bit 
like a lot of other languages in use these days in terms of structure (syntax) but 
has some simplifying ideas that will be discussed in later chapters.

In order to use a programming language there are some basic concepts and 
structures that need to be understood at a basic level. Some of these concepts 
are introduced in this chapter and the rest of the book teaches you to program 
by example; in all cases, coding examples are introduced by stating a problem 
to be solved. The problems to be solved in this chapter include a simple guess-
a-number game and the game of rock-paper-scissors. These problems serve as 
the motivation for learning more about either the Python language itself or about 
methods of solving problems. Any computer programs in this book will execute 
on a computer running any major operating system once the free Python lan-
guage download has been installed. 

 1.2 EXECUTING PYTHON
Installing Python is not too difficult, and involves downloading the installer, 

running it, and perhaps configuring a few specific details. This process can be 
found in Appendix I. Once installed, there are a few variations that can be used 
with it, the simplest probably being the Python Graphical User Interface or GUI. 
If you are running Python on a Windows PC, look at the Start menu for Python 
and click a link named “IDLE (Python GUI),” as shown in Figure 1.1. Click on 
this and the user interface will open. Click the mouse in the GUI window so that 
you can start typing characters there.

Python can be run interactively in the GUI window. The characters “>>>” are 
called a prompt, and indicate that Python is waiting for something to be typed at 
the keyboard. Anything typed here will be presumed to be a Python program, or 
at least part of one. As a demonstration, type “1” followed by pressing the Enter 
key. Python responds by printing “1.” Why?  When “1” was typed, it was a Py-
thon expression, something to be evaluated. The value of “1” is simply “1,” so that 
was the answer Python computed.

Now type “1+1.” Python responds with “2.” Python inputs what the user/pro-
grammer types, evaluates it as a mathematical (in Python form) expression, and 



38  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

prints the answer. This is not really programming yet, because a basic two-dollar 
calculator can do this, but it is certainly a start.

IDLE is good for many things, but eventually a more sophisticated environ-
ment is needed, one that can indent automatically, detect some kinds of errors, 
and allow programs to be run and debugged and saved as projects. This kind 
of system is called an integrated development environment, or IDE. There are 
many of these available for Python, some that are expensive and some that are 
freely downloadable. The code in this book has been compiled and tested using 
PyCharm, but most IDEs are acceptable. It is largely a matter of personal prefer-
ence. Basic PyCharm is free, but there is a more advanced version that costs a 
small amount of money.

An advantage of an IDE is that it is easy to type in a whole program, run 
it, find the errors, fix them, and run it again. This process is repeated until the 
program works as desired. Multiple parts of a large program can be saved as 
separate files and collected together by the IDE, and they can be worked on in-
dividually and tested together. A good IDE uses color to indicate syntax features 
that Python understands and can show some kinds of error while the code is 
being entered.

Figure 1.1 
Running the Python GUI.



 Chapter  1  ·  Computers  and Programming  ■ 39

A program, just like any sentence or paragraph in English, consists of sym-
bols, and order matters. Some symbols are special characters with a defined 
meaning. For example, “+” usually means add, and “-” usually means subtract. 
Some symbols are words. Words defined by the language, like if, while, and true, 
cannot also be also defined by a programmer – they mean what the language says 
they mean, and are called reserved words. Some names have a definition given 
by the system but can be reused by a programmer as needed. These are called 
predefined names or system variables. However, some words can be defined by 
the programmer, and are the names for things the programmer wants to use in the 
program: variables and functions are examples.

 1.3 GUESS A NUMBER
Games that involve guessing are common, and are sometimes used to resolve 

minor conflicts, such as who gets the next piece of cake or who gets the first kick 
at a football. It’s also sometimes a way to occupy time, and can simply be fun. 
How can we write a program to have the user guess a number that the program 
has chosen?

There are many variations on this simple game. In one version, the number 
is to be guessed precisely. One person (the chooser) selects a number, an integer, 
in a specified range. “Pick a number between one and ten” is a typical expression 
of this kind of problem. The other person, the guesser, must choose a number in 
that range. If the guesser selects the correct number, then the guesser wins. This 
is a boring game and is biased in favor of the chooser.

A more interesting variation is to start with one guess and have the chooser 
then say whether the target number is greater than or less than the guessed num-
ber. The guesser then guesses again, and the process continues until the number 
is guessed correctly. The roles of guesser and chooser can now switch and the 
game starts again. The best guesser is the one who uses the fewest guesses.

A third alternative is to have multiple guessers. All guessers make their 
selection and the one who has chosen a number nearest the correct number is 
the winner. This is the best game for solving disputes, because it involves one 
guess from each person. Ties are possible, in which case the game can be played 
again.



40  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 1.4 ROCK–PAPER–SCISSORS
This game is used to settle disputes and make random decisions. There are 

actually competitions where money is at stake. A televised contest in Las Vegas 
had a prize of $50,000.  

In this game, each of two players selects one item from the list (rock, paper, 
or scissors) in secret, and then both display their choice simultaneously. If both 
players selected the same item, then they try again. Otherwise, rock beats scis-
sors, scissors beat paper, and paper beats rock. This contest can be repeated for a 
“best out of N” competition.

Both of these games form the first problem set, and serve as the motivation 
for learning the elements of the Python language.

 1.5 SOLVING THE GUESS A NUMBER PROBLEM
The simple version of the guessing program has two versions depending 

on who is guessing. The computer should pick the number and the human user 
should guess, because the other way around involves some complex program-
ming. Here’s what has to happen for this game to be successful:

 1. The computer selects a number.
 2. The computer asks the player to guess.
 3. The player types a number on the keyboard and the computer reads it in.
 4. The computer compares the input number against the one that it selected  

and if the two agree, then the player wins. Otherwise, the computer wins. 

The Python features needed to do this include printing a message, reading 
in a number, having a place to store a number (a variable), having a way to select 
a number, and having a way to compare the two numbers and act differently de-
pending on the result.

The second version requires the above, plus a way to repeat the process in 
cases when the guess is wrong and until it is correct. In this case the method 
becomes:

 1. The computer selects a number.
 2. The computer asks the player to guess.
 3. The player types a number on the keyboard and the computer reads it in.



 Chapter  1  ·  Computers  and Programming  ■ 41

 4. The computer compares the input number against the one that it selected 
and if   the two agree, then the player has guessed correctly. Exit to Step 7.

 5. The computer determines whether the guess is higher or lower than the 
actual number and prints an appropriate message.

 6. Repeat from Step 2.
 7. Game over.

The repetition mechanism is the only new aspect to this solution, but is an 
essential component of Python and every other programming language.

 1.6  SOLVING THE ROCK-PAPER-
SCISSORS PROBLEM

The solution to this problem has no new requirements, but re-enforces the 
language features of the previous solutions. One solution to this problem is as 
follows:

 1. Select a random choice form the three items rock, paper, or scissors. 
Save this choice in a variable named choice.

 2. Ask the player for their choice. Use an integer value, where 1 = rock,  
2 = paper, and 3 = scissors.

 3. Read the player’s selection into a variable named player.
 4. If player is equal to choice:
 5.       Print the message “Tie. We’ll try again.”
 6.       Repeat from Step 1
 7. If player is equal to rock 
 8.     If choice is equal to scissors go to Step 17
 9.     Else go to Step 18
 10. If player is equal to paper
 11.   If choice is equal to scissors go to Step 17
 12.   Else go to step 18
 13. If player is equal to scissors
 14.   If choice is equal to rock go to Step 17
 15.   Else go to Step 18
 16. Print error message and terminate.



42  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 17. Print “Computer wins” and terminate 
 18. Print “You win” and terminate 

For each player selection, one of the alternate items will beat it and one will 
lose to it. Each choice is checked and the win/lose decision is made based on the 
known outcomes.

The solutions to both problems require similar language elements: a way to 
store a value (a variable), a way to execute specific parts of the program depend-
ing on the value of a variable or expression (an if statement), a way to read a value 
from the keyboard, a way to print a message on the screen, and a way to execute 
code repeatedly (a loop).

 1.6.1   Variables and Values–Experimenting with 
the Graphical User Interface

A variable is a name the programmer defines to represent a value, usually 
a number or a text string. It represents the place where the computer stores that 
value; it is a symbol in text form, representing a value. Everything that a com-
puter does is ultimately done with numbers, so the location of any thing is a num-
ber that represents the place in computer memory where that thing is stored. It’s 
like offices in building. Each office has a number (its address) and usually has a 
name, too (the occupant or business found there). Additionally, the office has con-
tents, and those contents are often described by the name given. Figure 1.2 shows 
a collection of offices in a building. In this metaphor, the office number corre-
sponds to the address and the name (variable name), being more human friendly, 
is how it is often referred to by a person (programmer). In all cases, though, it is 
the contents of the office (location) that are important. The number and name are 
ways to access it. So, someone might say “Bring me the Python manual from the 
Server Room” or “Bring me the Python manual from 607” and both would mean 
the same thing. The Python manual is the content of location 607. Now, some-
one could say “Put this Python manual in the Digital Media Lab”, which would 
change the content of location 611. In actual Python, the act of retrieving a value 
from a location does not change the content of that location, but instead makes a 
copy, but the basic metaphor is sound.

Not all strings or characters can be variable names. A variable cannot begin 
with a digit, for example, or with most non-alphabetic characters like “&” or “!,” 
although in some cases beginning with “_” is acceptable. A variable name can 



 Chapter  1  ·  Computers  and Programming  ■ 43

contain upper- or lowercase letters, digits, and “_”. Uppercase and lowercase let-
ters are not considered the same, so the variables Hello and hello are different.

Figure 1.2
Variables are names that represent addresses, like offices in a building. The name is used in 
programming to represent the value found inside. These door signs are from the author’s workplace.

A variable can change values but, unlike a real office, a simple variable can 
hold only one value at a time. The name chosen does not have to be significant. 
Programs often have variables named i or x. However, it is a good idea to select 
names that represent the kind of value that the variable contains so as to commu-
nicate that meaning to another person. For example, the value 3.1415926 should 
be stored in a variable named pi, because that’s the name everyone else gives to 
this value. 

In the GUI, type pi = 3.1415926. Python responds with a prompt, and that it 
has no value to print. If you now type pi, the response is 3.1415926; the variable 
named pi that was just created now has a value.

In the syntax of Python, the name pi is a variable, the number 3.1415926 is 
a constant, but is also an expression, and the symbol = means assign to. In the 
precise domain of computer language, pi = 3.1415926 is an assignment statement 
and gives the variable named pi the specified value.

Continuing with this example, define a new variable named radius to be 10.0 
using an assignment statement radius = 10.0. If you type radius and press the 
“Enter” key, Python responds with 10.0. Finally, we know that the circumference 
of a circle is 2πr in math terms, or 2 times pi times the radius in English.  Type 
2*pi*radius into the Python GUI, and it responds with 62.831852, which is the 
correct answer. Now type circumference = 2*pi*radius and Python assigns the 
value of the computation to the variable circumference.

Python defines a variable when it is given a value for the first time. The type 
of the variable is defined at that moment too; that is, if a number is assigned to a 



44  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

name, then that name is expected to represent a number from then on. If a string 
is assigned to a name, then that name is expected to be a string from then on. 
Trying to use a variable before it has been given a value and a type is an error. 
Attempting the calculation
 area = side*side

is not allowed unless there is a variable named side already defined at this 
point. The following is acceptable because it defines side first, and then in turn 
is used to define area:
 side = 12.0
 area = side*side

The two lines above are called statements in a programming language, and 
in Python, a statement usually ends at the end of the line (the “Enter” key was 
pressed). This is a bit unusual in a computer language, and people who already 
know Java or C++ have some difficulty with this idea at first. In other computer 
languages, statements are separated by semicolons, not by the end of the line. In 
fact, in most languages the indenting of lines in the program does not have any 
meaning except to the programmer. In Python, that’s not the case either, as will 
be seen shortly. 

The expressions we use in assignments can be pretty complicated, but are 
really only things that we learned in high school (add, subtract, multiply, and 
divide). Multiplication and division are performed before addition and subtrac-
tion, which is called a precedence rule, so 3*2+1 is 7, not 9; otherwise evaluation 
is done left to right, so 6/3*2 is 4 (do the division first) as opposed to 1 (if the 
multiplication was done first). These are rules that should be familiar because it 
is how people are taught to do arithmetic. The symbol ** means exponent or to 
the power of, so 2**3 is 23 which is 8, and this operator has a higher precedence 
(i.e., is done before) than the others.  Parentheses can be used to specify the order 
of things. So, for example, (2+3)**2 is 25, because the expression within the pa-
rentheses is done first, then the exponent.

 1.6.2   Exchanging Information with the Computer

When using most programming languages, it is necessary to carefully de-
sign the communication with the computer program. This goes two ways: the 
program informs the user of information, such as the circumference of a circle 



 Chapter  1  ·  Computers  and Programming  ■ 45

given a specific radius, and the user may want to tell the program certain things, 
like the value of the radius with which to computer the circumference. We com-
municate with a program using text, characters typed into a keyboard. When a 
computer is presenting results, that text is often in the form of human language. 
“The circumference is 62.831852” could be such a message. The sentence is ac-
tually composed by a programmer and has a number or collection of numbers 
embedded within it. 

Python allows a programmer to send a message to the screen, and hence to 
the user, using a print directive. This is the word print followed by a character 
string, which is often a set of characters in quotes. An example is as follows:

print ("The answer is yes.")

The parentheses are used to enclose everything that is to be printed; such a 
statement can print many strings if they are separated by commas. Numbers will 
be converted into strings for printing. So the following is correct:

print ("The circumference is ", 62.831852)

Figure 1.3
The Python GUI window with an example.

If a variable appears in the list following print then the value of that variable 
will be printed, not the name of the variable. Therefore, the following is also cor-
rect: 

print ("The circumference is", circumference)



46  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 1.6.3 Example 1: Draw a Circle Using Characters

Let’s print a circle with a constant predefined radius. This can be done with 
a few print statements. The planning of the graphic itself (the circle) can be done 
using graph paper. Assuming that each character uses the same amount of space, 
a circle can be approximated using some skillfully placed * characters.  Then, we 
print each row of characters using a print statement. A sample solution is shown 
in Figure 1.4.

print ("       ***        ")
print ("    *********      ")
print ("  *************      ")
print (" ***************   ")
print (" ***************   ")
print (" ***************   ")
print ("  *************    ")
print ("    *********       ")
print ("       ***        ")

Figure 1.4
Drawing a circle using print statements.

 1.6.4 Strings, Integers, and Real Numbers

Computer programs deal mainly with numbers. Integers, or whole numbers, 
and real number (reals) or floating-point numbers, which represent fractions, are 
represented differently and arithmetic works differently on the two types of num-
bers. A Python variable can hold either type, but if a variable contains an integer, 
then it is treated as an integer, and if it’s holding a floating-point number, then it 
is treated as one of those. What’s the difference? First, there’s a difference in how 
they are printed out. If we make the assignment var = 1 and then print the value of 
var, it prints simply as 1. If we make the assignment var = 1.0 and then print var, 
it prints as 1.0. In both cases var is a real or floating-point number and is treated 
as such. Numeric constants are considered real numbers. However, a variable can 
be first one thing and then another. It will be the last thing it was assigned.

Arithmetic differs between integers and reals, but the only time that differ-
ence is really apparent is when doing division. Integers are always whole, non-
fractional numbers. If we divide 3 by 2, both 3 and 2 are integers and so the 



 Chapter  1  ·  Computers  and Programming  ■ 47

division must result in an integer: the result is 1. This is because there is exactly 
a single 2 in 3, or if you like, 2 goes into 3 just once, with a remainder of 1. There 
is a specific operator for doing integer division: //.  So, 3//2 is equal to 1. The 
remainder part can’t be handled and is discarded, but can be found separately 
using the % operator.  For example, 8//5 is 1, and 8%5 is the remainder, 3. This 
explanation is an approximation to the truth, and one that can be cleared up later, 
but works perfectly well for positive numbers.

Of course, fractions work fine for real numbers, and are printed as deci-
mal fractions: 8.0/5.0 is 1.6, for example. What happens if we mix real numbers 
and integers? In those cases, numbers get converted into real numbers, but now 
things get more complicated because order can matter a great deal. The expres-
sion 7//2*2.0 does the division 7//2 first, which is 3, and then multiplies that by 
2.0, yielding the result 6.0; the result of 8/3*3.0 is 5.333. Mixing integers and real 
numbers is not a good idea, but if done, then the expressions should use parenthe-
ses to specify how the expression should be evaluated.

A real number can be used in place of an integer in most places, but the 
result is a real number. Thus, 2.0 * 3 = 6.0, not 6, and 6.0//2 is 3.0, not 3. There 
are some exceptions. To convert an integer to a real number, there is a special 
operation named float: float(3) yields 3.0. Of course, it’s possible to simply 
multiply by 1.0, and the result is a floating value, too. Converting float values 
to integers is more complicated because of the fraction issue: what happens to 
the digits to the right of the decimal? The operation int takes a floating-point 
value and throws away the fraction. The value of int (3.5) is 3, as a result. We 
can round this to the nearest integer, and the operation round (3.5) does that, 
resulting in 4.

 1.6.5 Number Bases

In elementary school, the idea of positional number systems is taught. The 
number 216 is a way to write the value of 6 + 1*10 + 2*100. Not all civilizations 
use such a scheme; Roman numerals are not positional, for example. Still, most 
people are comfortable with the idea.  What people are not as comfortable with is 
changing the number base away from 10. In Chapter 0, the binary system, or base 
2, was discussed, but any base that is a power of 2 is of some interest, especially 
base 8 and base 16.



48  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Humans use a base 10 scheme (probably because we have 10 fingers). We have 
a symbol for each of the 10 digits, 0 through 9, and each digit position to the left 
of the first digit is multiplied by the next power of 10. The number 216 is 2*102  +  
1*101 + 6*100. The base is 10, and each digit represents a power of the base multi-
plied by a digit. What if the base is 8? In that case, 216 is really 2*82 +1*81 + 6. If 
the arithmetic is carried out, this number is 128+8+6 = 142. 

If multiple number bases are used, it is common to give the base as a sub-
script. The number 216 in base 8 is written as 2168. The default would be base 10. 
In base 8, there are only 8 digits, 0 through 7. The digits 8 and 9 cannot appear. In 
bases larger than 10, more symbols are needed. A common base used on comput-
ers is 16, or hexadecimal (hex for short). In a hex number, 16 digits are needed, so 
the regular ones are used and then “A” represents 10, “B” is 11, “C” is 12, “D” is 
13, “E” is 14, and “F” is 15. The hex number 1216 is 1*16 + 2, or 1810. The number 
1A16 is 1*16 + 10 = 2610. 

In Python, numbers are given in decimal (base 10) by default. However, if a 
number constant begins with “0o” (zero followed by the letter “o”), Python as-
sumes it is base 8 (octal). The number 0o21, for example, is 218 = 1710. A number 
that begins with “0x” is hexadecimal. 0x21 is 2116 = 3310. This applies only to 
integers.

Base 2 is the most important number base because it underlies all of the num-
bers on a computer. All numbers on a modern digital computer are represented 
in base 2, or binary, in their internal representation. A binary number has only 
two digits, 0 and 1, and each represents a power of 2. Thus, 11012  is 1*23 + 1*22 +  
0*21+ 1 = 8 + 4 + 1 = 1310. In Python, a binary number begins with “0b,” so the 
number 0b10101 represents 2110.

These number bases are important for many reasons, but base 2 is fundamen-
tal, and bases 8 and 16 are important because they are powers of 2 and so convert 
very easily to binary but have fewer digits. One example of the use of hex is for 
colors. In Python, they can represent a color, and on Web pages they are certainly 
used that way. The number 0xFF0000 is the color red, for example, if used on a 
Web page.  



 Chapter  1  ·  Computers  and Programming  ■ 49

 1.6.6   Example 2: Compute the Circumference of Any Circle

When humans input information into a computer program, the text tends 
to be in the form of numbers. The Python code that was written to calculate the 
radius of a circle only did the calculation for a single radius: 10. That’s not as use-
ful as a program that computes the circumference of any circle, and that would 
mean allowing the user to tell the program what radius to use. This should be easy 
to do, because it is something that is needed frequently. In the case of sending 
a number into a program in Python, the word input can used within a program. 
For example,

radius = input ()

accepts a number from the keyboard, typed by the user, and returns it as a string 
of characters. This makes sense because the user typed it as a string of characters, 
but it can’t be used in a calculation in this form. To convert it into the internal 
form of a number, we must specifically ask for this to be done:

radius = input()
radius = float(radius)

reads a string into radius, then converts it into a floating point (real) number and 
assigns it to the variable radius again.  This can be done all in one statement:

radius = float(input())

Now the variable radius can be used to calculate a circumference. If the value 
of radius is an integer, the code is as follows:

radius = int(input())

If the conversion to a number is not done then Python will give an error mes-
sage when the calculation is performed, like:

Traceback (most recent call last):
  File "<pyshell#13>", line 1, in <module>
    circumference = 2*pi*radius
TypeError: can't multiply sequence by non-int of 
type 'float'

The line of code at which the error occurs is given and the term TypeError is 
descriptive. This error means that something that can’t be multiplied (a string) was 
used in an expression involving multiplication. That thing is the variable radius 
in this instance because it was and text string and was not converted to a number.



50  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Note that int(input()) can present problems when the input string is not an 
integer. If it is a floating-point number, this results in an error. The expression int 
(“3.14159”) is interpreted as an attempt convert pi into an integer, and so has the 
value 3 (which is erroneous). The function int was passed a string and the string 
contained a float, not an integer. This is something of a quirk of Python. It is bet-
ter to convert input numbers into floats.

 1.6.7 Guess a Number Again

The simple version of the guessing program can now nearly be written in Py-
thon. Examining the method of solution, here’s what can be coded so far; versions 
depend on who is guessing. The computer should pick the number and the human 
user should guess, because the other way around can involve some complex pro-
gramming. In that case, here’s what has to happen:

 1. The computer selects a number.
  choice = 7

 2. The computer asks the player to guess.
  print ("Please guess a number between 1 and 10: ")

 3. The player types a number on the keyboard and the computer reads it in.
  playerchoice = input()

 4. The computer compares the input number against the one that it selected 
and if the two agree, then the player wins. Otherwise the computer wins. 

It is the final step that is still not possible with what is known. It is necessary 
in this program, as it is in most computer programs, to make a decision and to 
execute certain code (i.e., do specific things) conditionally based on the outcome 
of that decision. People do that sort of thing all of the time in real life. Examples 
include the following:

“If the light is red, then stop; otherwise continue through the intersection.”
 “If all tellers are busy when you arrive at the bank, then stand in line and wait 
for the next one to become available.”
“If you need bread or milk, then stop at the grocery store on the way home.”
“If it rains, the picnic will be cancelled.”



 Chapter  1  ·  Computers  and Programming  ■ 51

Notice that all of these examples use the word “if.” This word indicates a 
standard conditional sentence in English. The condition in the first case is the 
phrase “if the light is red” (called in English the protasis or antecedent) and the 
consequence to that is the phrase “then stop” (the apodosis or consequent). Ter-
minology aside, the intent is clear to an English speaker: on the condition that 
or in the event that the light is red, then the necessary action is that the driver is 
to stop their car. The action is conditional on the antecedent, which in Python is 
called an expression or more precisely a logical expression, which has the value 
True or False.

The structure or syntax of this sort of thing in Python is as follows:
if the light is red:
 stop

or more exactly,
 if light == red:
  # execute whatever code makes the car stop

This is called an if statement.

 1.7 IF STATEMENTS
An if statement begins with the word if, followed by an expression that evalu-

ates to True or False, followed by a colon (:), then a series of statements that are 
executed if the expression is true. The names True and False are constants having 
the obvious meaning, and a variable that can take on these values is a logical or 
Boolean (named after the man who invented two state or logical algebra) variable. 
The expression is the only tricky part. It can be a constant like True, or a variable 
that has a True or False value, or a relational expression (one that compares two 
things) or a logical combination of any of these – anything that has a result that 
is true or false.

if True:   # Constant
if flag:   # Logical variable
if a < b:  # relational expression
if a<b and c>d: # logical combination

A logical expression can be any arithmetic expressions being compared using 
any of the following operators:



52  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
Logical combinations can be:

and EG:  a==b and b==c
or EG: a==b or a==c
not EG: not (a == b)  # same as !=
The syntax is simple and yet allows a huge number of combinations. For 

example,
if p == q and not p ==z and not z == p:
if pi**2 < 12:
if (a**b)**(c-d)/3 <= z**3:

The consequent, or the actions to be taken if the logical expression is true, 
follows the colon on the following lines. The next statement is indented more than 
the if, and all statements that follow immediately that have the same indentation 
are a part of the consequent and are executed if the condition is true, otherwise 
none of them are. As an example, consider the following:

 if a < b:
     a = a + 1
     b = b – 1
 c = a – b

The key word, known by  
Python, that indicates this 
is an IF statement.

An expression that 
evaluates to True or 
False

The colon indicates the end of 
the first part of the statement. 
Think of it as meaning THEN, as 
in IF expression THEN

if a<b :

Figure 1.5
Syntax of an IF statement.

In this case, the two statements following the “:” are indented by 4 more spac-
es than is the if. This tells Python that they are both a part of the if statement, and 
that if the value of a is smaller than the value of b, then both of those statements 



 Chapter  1  ·  Computers  and Programming  ■ 53

will be executed. Python calls such a group of statements a suite. The assignment 
to the variable c is indented to the same level as the if, so it will be executed in 
any case and is not conditional.

The use of indentation to connect statements into groups is unusual in pro-
gramming languages. Most languages in use ignore spaces and line breaks alto-
gether, and use a statement separator, such as a semicolon, to demark statements. 
So, in the Java language, the above code is as follows:

if (a<b) {
  a = a + 1;
  b = b – 1;
}
c = a – b;
The braces { … } enclose the suite, which would probably be called a block in 

Java or C++. Notice that this code is also indented, but in Java this means nothing 
to the computer. Indentation is used for clarity, so that someone reading the code 
later can see more clearly what is happening. 

Semicolons are used in Python too. If it is desired to place more than one 
statement on a single line, then semicolons can be used to separate them. The 
Python if statement under consideration here could be written as follows:

if a < b: a = a + 1; b = b -1
c = a - b

This is harder to comprehend quickly and is therefore less desirable. There 
are too many symbols all grouped together. A program that is easy to read is also 
easier to modify and maintain. Code is written for computers to execute, but is 
also for humans to read.

There are some special assignment operators that can be used for increment-
ing and decrementing variables. In the above code, the statement a = a + 1 could 
be written as a += 1, and b = b – 1 can be written as b -= 1. There is no real 
advantage to doing this, but other languages permit it, so Python adopted it too. 
There is another syntax that can be used to simplify certain code in languages 
like Java and C, and that is the increment operator “++” and the decrement opera-
tor “—”. Python does not have these. However, an effect of the way that Python 
deals with variables and expressions is that ++x is legal; so is ++++x. The value 
is simply x. The expression x++ is not correct.



54  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 1.7.1 Else

An if statement is a two-way or binary decision. If the expression is true, then 
the indicated statements are executed. If it is not true, then it is possible to execute 
a distinct set of statements. This is needed for the pick a number program. In one 
case, the computer wins, and in the other, the human wins. An else clause is what 
will allow this.

The else is not really a statement on its own, because it has to be preceded by 
an if, so it’s part of the if statement. It marks the part of the statement that is ex-
ecuted only when the condition in the if statement is false. It consists of the word 
else followed by a colon, followed by a suite (sequence of indented statements). A 
trivial example is as follows:

if True:
 print ("The condition was true")
else:
 print ("the condition was false")

The else as a clause is not required to accomplish any specific programming 
goals, and can be implemented using another if. The code

 if a < b:
  print ("a < b")
else:
  print ("a >= b")

could also be written as
 if a < b:
  print ("a < b")
if  not (a<b):
  print ("a >= b")

The else is expressive, efficient, and syntactically convenient. It is expressive 
because it represents a way that humans actually communicate. The word else 
means pretty much the same thing in Python as it does in English. It is efficient 
because it avoids evaluating the same expression twice, which costs something 
in terms of execution speed. It is syntactically convenient because it expresses an 
important element of the language in fewer symbols than when two ifs are used.

The final Python code for the simple solution of the guess a number program 
can now be written. 



 Chapter  1  ·  Computers  and Programming  ■ 55

choice = 7   
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())

    if choice == playerchoice:
    print ("You win!")
    else:
    print ("Sorry, you lose.")

 1.8 DOCUMENTATION
There are some problems with this program, but is does work. A large prob-

lem is that it always choses the same number every time it is executed (that num-
ber is 7). We will fix this issue later on. A less critical problem is that the program 
is undocumented; that is, there are no instructions to a player concerning how to 
use the program, and there is no description of how the program works that an-
other programmer might use if modifying this code. This can be fixed by provid-
ing internal and external documentation. 

External documentation is like a manual for the user. Most programs have 
such a thing, and even though this program is quite simple, some degree of docu-
mentation can be provided. In fact, it is brief enough that it could be printed 
whenever the program starts to run.  

print ("Pick-a-number is a simple guessing game. The")
print ("computer will select a number between 1 and 10"). 
print ("and you are expected to guess what it is.")
print ("When the program displays 'Please guess")
print ("a number between 1 and 10: ' you type in")
print ("your guess followed by the <enter> key. Your ")
print ("guess must be an integer in the range 1 to 10.")
print ("The computer will tell you if you win or lose.)

For many more sophisticated programs, such as PowerPoint, the documenta-
tion is many pages and forms a small book. It is distributed as a booklet along 
with the software or provided as a website.

Internal documentation is intended for programmers who have access to the 
source code of the program. It can take the form of written documents, too, but is 
commonly a set of comments that appears along with the code itself. High-level 
languages like Python allow the programmer to add human language text to the 



56  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

code that will be completely ignored by the computer, but that can be read by 
anyone looking at the code. These comments describe the action of the program, 
the meaning of the variables, details of computational methods used, and many 
other items of interest.

A comment begins with the character # and ends at the end of the line.

There are no rules for what can appear typed in a comment, but there are 
some guidelines developed through years of programming practice. A comment 
should not simply repeat what appears in the code, a comment explain an aspect 
of the program that might not be clear to a person looking at it, and it should be 
written in plain language. As an example, here is the guess-a-number program 
with comments included:
# This program selects a number between 1 and 
# 10 and allows a user (player) to guess what
# it is.
choice = 7   # The number selected by the computer

# Prompt the user, indicating what is expected
print ("Please guess a number between 1 and 10: ")

# Read the player's input from the keyboard
playerchoice = int(input()) # convert from string

     # Print the outcome of the game.
if choice == playerchoice:  # Is the player's guess
    print ("You win!")      # correct? Player wins!
else:                       # Otherwise the computer wins
    print ("Sorry, you lose.") 

All programs should be documented as they are being written because rela-
tively few programs are written all in one sitting. The comments in the code 
serve as reminders to the programmer about what the variables represent and why 
particular code segments read the way they do. It also indicates the current state 
of thinking about the design of the code. When the program is looked at again at 
the beginning of a new working (or school) day, the comments can be essential 
in resuming the work.

There is also something called a docstring that seems to do the same things 
as a comment, but covers multiple lines and is not really a comment. A docstring 
begins and ends with a triple quote:



 Chapter  1  ·  Computers  and Programming  ■ 57

print ("This code will execute")
"""
print ("This code is within a docstring")
"""
A docstring is actually a string, not a comment, but behaves like a comment 

and can be used in that way. It can be especially useful for temporarily comment-
ing out small sections of code while trying to find out where errors are. There 
are also programs that collect the docstrings into a separate document that can be 
used as a description of the program. Their intended use is to allow the program-
mer to explain the purpose of certain sections of code.

 1.9 ROCK-PAPER-SCISSORS AGAIN
It is time to look at the rock-paper-scissors problem and see if it can be coded. 

It takes more steps, but it is no more complicated than the guess-a-number pro-
gram. The code is the same. 

 1. Select a choice from the three items rock, paper, or scissors. Save this 
choice in a variable named choice.

  A representation for the three items was when the solution was first de-
scribed, where each choice was an integer. However, input reads strings 
so it should be possible to avoid the conversion to numbers and use the 
strings directly.

  choice = "paper"  # Computer chooses paper.

  Ask the player for their choice. 
  Print as prompt message.
  print ("Rock-paper-scissors: type in your choice:    ")

 2. Read the player’s selection into a variable named player.
  Use input as we did before, but this time read a string and keep it that 

way. The player must type one of “rock,” “paper,” or “scissors,” or else 
an error is reported.

  player = input ()

 3. If player is equal to choice:
 4. Print the message “Tie. We’ll try again.”
  Strings can be compared against each other for equality, so this step is 

quite simple:
  if player == choice:

      print ("Game is a tie. Please try again.")



58  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 5. If player is equal to rock 
 6. If choice is equal to scissors, go to Step 17.
 7. There is no “go to Step 17,” but that step simply says that the player 

wins. Just print that message here.
  if player == "rock":

      if choice == "scissors":

        print ("Congratulations. You win.")

      else:

        print ("Sorry - computer wins.")

 8. If player is equal to paper
 9. If choice is equal to scissors, go to Step 17.
  if player == "paper":

      if choice == "scissors":

          print ("Sorry - computer wins.")

      else:

          print ("Congratulations. You win.")

 10. If player is equal to scissors
 11. If choice is equal to rock, go to Step 17.
  if player == "scissors":

      if choice == "rock":

          print ("Sorry - computer wins.")

      else:

          print ("Congratulations. You win.")

This code illustrates a new concept, if not a new language feature. It has if 
statements that are nested one within the other. Again, it’s not necessary to do this 
because non-nested statements can implement the same decision. For example,

Nested IFs Non-nested IFs
if player == "scissors": if player == "scissors and 

             choice == "rock"
    if choice == "rock":     print ("Computer wins")
        print ("Computer wins.")if player ==  "scissors" and

             choice != "rock"
    else:     print ("You win")
      print ("You win.")



 Chapter  1  ·  Computers  and Programming  ■ 59

Nested if statements seem more express ive and communicate the flow of the 
program better to a human programmer than does the non-nested code.

There is another Python language element that can be used here. Looking at 
the code, there is no indication when the user makes an error. For example, if the 
user enters “ROCK” (i.e., all in uppercase letters), then it will not match any of 
the choices and the program will not indicate this. In fact, it won’t print anything 
at all. What is really wanted is a sequence of if-else-if-else statements such as

if player == "scissors":
    if choice == "rock":
else:
    if player == "rock":
        if choice == paper:
    else:
        if player == "scissors":
   ## and so on …

Python has a special feature that implements this nesting of if and else: the 
elif. The elif construct combines an else and an if, and this reduces the amount 
of indenting that has to be done. The following code snippets do the same thing:

 if a<b:    if a<b:
     print ("a<b")   print ("a<b")
 elif a>b:    else:
     print ("a>b")   if (a>b):
 else:      print ("a>b")
     print ("a=b")   else:
       print ("a=b")
If too many nested if-else statements exist, then the indenting becomes too 

challenging, whereas the elif allows the same indent level and has the same 
meaning. In some programs, this is essential, and in general, it is easy to read. 
Using the elif statement the program for the rock-paper-scissors problem looks 
like this:

choice = "paper"  # Computer chooses paper.
print ("Rock-paper-scissors: type in your choice:    ")
player = input ()
if player == choice:
    print ("Game is a tie. Please try again.")
if player == "rock":
    if choice == "scissors":



60  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

        print ("Congratulations. You win.") 
    else:

        print ("Sorry - computer wins.")
elif player == "paper":
    if choice == "scissors":
        print ("Sorry - computer wins.")
    else:
        print ("Congratulations. You win.")
elif player == "scissors":
    if choice == "rock":
        print ("Sorry - computer wins.")
    else:
        print ("Congratulations. You win.")
else:
   print ("Error: Select one of: rock, paper, scissors")

Now all of the possible outcomes are handled by the code.

 1.10 TYPES ARE DYNAMIC (ADVANCED)
To programmers who only program using Python, it would seem odd that a 

particular variable could have only one type and that it would have to be initially 
defined to have that type, but it is true. In Python, the type associated with a vari-
able can change. For example, consider the statements:

x = 10       # X is an integer
x = x*0.1      # X is floating point now
x = (x*10 == 10)    # X is Boolean

Some find this perfectly logical, and others find it confusing. As the variable 
is used according to its current type, all will be well.

Even simple Python types can be complex in terms of their implementation. 
A programmer rarely needs to know about the underlying details of types like 
integers. In many programming languages, an integer is simply a one- or two-
word number, and the languages build operations like + from the instruction set 
of the computer. If, for example, a one-word integer A is added to another one B, 
it can be done using a single computer instruction like ADD A, B. This is very 
fast at execution time.

Python was designed to be convenient for the programmer, not fast. An in-
teger is actually a complex object that has attributes and operations. This will 



 Chapter  1  ·  Computers  and Programming  ■ 61

become clearer as more Python examples are written and understood, but as a 
simple case, think about the way that C++ represents an integer. It is a 32-bit (4 
byte) memory location, which is a fixed size space in memory. The largest num-
ber that can be stored there is 232-1. Is that true in Python?

Here’s a program that will answer that question, although it uses more ad-
vanced features:

for i in range (0,65):
    print (i, 2**i)

Even an especially long integer is less than 65 bits. This program runs suc-
cessfully and quickly. Integers in Python have an arbitrarily large size. Calculat-
ing  264 * 264 is possible and results in 340282366920938463463374607431768211
456. This is very handy indeed from a programmer’s perspective.

The type of a variable can be determined by the programmer as the program 
executes. The function type () returns the type of its parameter as a string, and it 
can be printed or tested. So, the code

z = 1
print (type(z))
z = 1.0
print(type(z))

will result in
<class 'int'>
<class 'float'>

If one needed to know if z was a float at a particular moment, then  

if type(z)is float:

would do the trick. Type(z) does not return a string, it returns a type. The print () 
function recognizes that and prints a string, just as it does for True and False. So

if type(z) == "<class 'float'>":

would be incorrect.

In future chapters, this malleability of types will be further described, and 
practical methods for taking advantage of it in Python will be examined.



62  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

  1.11 SUMMARY
A computer is a tool for rapidly and accurately manipulating numbers. It can 

perform tedious repetitive tasks accurately and quickly, but must be told what 
to do and follows its instructions very literally. A computer program is a set of 
instructions for performing a task using a computer, and Python is one language 
that can be used for this purpose. Python allows a programmer to define variables 
by simply using them, and associates a type with a variable based on what it is 
given. An if statement allows parts of a program to be executed when a certain 
condition becomes true, and it can have an else part that is executed when the 
condition is false. If statements can be nested, and sometimes the elif structure is 
a good way to express a set of nested conditional code.

In this chapter, the main examples were two programs, one of which allowed 
a user to guess a number, while the other was the well-known game of rock-
paper-scissors.



 Chapter  1  ·  Computers  and Programming  ■ 63

Exercises

In the following exercises, some of the expressions may result in an error. If so, 
explain why the error occurs. The code should be Python 3. 

 1.  Evaluate the following expressions:
 a) 3*3/2
 b) 3*3//2
 c) 3*3%2
 d) (3*3)%2
 e) 3**3/3
 f) (3+2)-(2-4) 
 g) (3+2)/(2-4) 

 2. If the statements:
x = 3
y = 9
z = "2.4"

 have been executed, then evaluate the following expressions. If an error  
occurs, state why:
x/y
x//y
x%y 
y/x*z
float(x)/float(z)
float(x)//float(z)
int(x)//int(z)

 3.  Given the variable definitions presented, evaluate the following expressions 
as being True or False.
x = 12
y = 14

 a) x>3
 b) x >=12
 c) x<y
 d) x<y and y>14



64  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 e) x<y  or  y>14
 f) not (x == y)j34
 g) not(x<y) and not(y>14)

 4. What is printed with the following statements?

 a) print (int("23"))
 b) if 3**2+4**2 == 5**2:

     print ("345")
 elif 3**2 < 4**2:
     print ("34")
 else:
     print ("5")

 c) if "toast" < "jam":
       print ("toast")
   else:
       print ("jam")

 d) if "12" < "5":
    print ("12")
  else:
    print ("5")

 e) a = 12.3
  b = 100
  c = 0
  if a < b: a = a + 1; b = b -1
  c = c – b
  print (a)
  print (c)

 f) a = 100
  b = 200
  c = 300
  ab = a<b
  cd = (c == a+b)
  if ab and cd:
      print ("AB and CD")
  elif ab:
      print ("AB")
  else:
      print ("Nope")



 Chapter  1  ·  Computers  and Programming  ■ 65

 5. The United States measures temperature in Fahrenheit degrees, whereas 
Canada uses Celsius. A company is developing an app to convert between the 
two for people wanting to ski in Banff or Whistler. The formula to convert 
from Celsius degrees C to Fahrenheit degrees F is 
F = C*9/5 + 32

 Write a program that will be the basis of this app: it will read a temperature 
in Celsius, convert it to Fahrenheit, and print the result.

 6. The numerical values of coins have been arranged so that the greedy algorithm 
will result in the smallest number of coins when making change. This means 
that the largest valued coin is tried first, and as many of those coins are used 
as possible. Then the next smaller denomination coin is used, and so on until 
the pennies are dealt out. For 84 cents in change, a half-dollar could be used 
(leaving 34 cents), then a quarter (leaving 9 cents), a nickel (leaving 4 cents), 
and 4 pennies. If no half-dollar coin was available, then quarters would be 
used in its place: 3 quarters, followed by a nickel and four pennies. Write a 
program that reads a number between 1 and 99 that is an amount of change 
to be given, and prints the coin values that would be used. 

 a)  Three floating point variables a, b, and c have been read in from the 
console. Write a set of if statements that prints these in descending order.

 b)  If the value of 1.0/7.0 is printed, there are many numbers to the right of 
the decimal place. Devise a way to print only three places and write some 
Python code to test the idea.

 c)  Calculate an approximation to pi. There is an infinite series called the 
Gregory-Leibniz series that sums to pi. The series is

 Π = 4/1 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 ….

 Write a program that calculates the result of the first 15 terms of this series. 
How many digits of pi are correct? Add six more terms. How many digits are 
correct now? 

 d)  Another series that can calculate pi is the Nilakantha series. It is a little 
more complicated to calculate, but gets close to pi much faster than does 
the Gregory-Leibniz series of Exercise 9. The Nilakantha series is

 Π = 3 + 4/(2*3*4) – 4/(4*5*6) + 4/(6*7*8) – 4/(8*9*10) …

Calculate the first 15 terms of this series. How many digits of PI are correct?



66  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Notes and Other Resources

Many teaching resources for Python exist, both in print and on the Internet.

Here is the development environment used to test the code for this book,

PyCharm: https://www.jetbrains.com/pycharm/

 1. David Beazley and Brian K. Jones, Python Cookbook, 3rd Edition: Recipes 
for Mastering Python 3, http://www.onlineprogrammingbooks.com/python-
cookbook-third-edition/

 2. Cody Jackson, Learning to Program Using Python, http://www.
onlineprogrammingbooks.com/learning-program-using-python/

 3. Brad Miller, Problem Solving with Algorithms and Data Structures Using 
Python,  http://www.onlineprogrammingbooks.com/problem-solving-with-
algorithms-and-data-structures/

 4. Harry Percival, Test-Driven Development with Python, http://www.
onlineprogrammingbooks.com/test-driven-development-with-python/

 5. Lennart Regebro, Porting to Python 3: An in-depth guide, http://www.
onlineprogrammingbooks.com/porting-to-python-3-an-in-depth-guide/

 6. Zed A. Shaw, Learn Python the Hard Way. http://learnpythonthehardway.
org/book/



■ ■ ■ ■ ■

In this chapter

One of the things that makes computers attractive to humans is their ability 
to do tedious, repetitive tasks accurately and at high speed without getting bored. 
In programming terms, these actions are referred to as loops.

Consider a factory job on an assembly line. According to Henry Ford, made 
famous by his assembly line concept, it is more efficient to have each worker do 
one job well and repeat it many times a day than to teach workers how to build 
entire things (in his case, automobiles). Each worker does one relatively short job, 
and then the piece they are working on goes to the next station, where the next 

2chaPter

rePetition

2.1 The WHILE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2 Rock–Paper–Scissors Revisited  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 Counting Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 Prime or Non-Prime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5 Loops That Are Nested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.6 Draw a Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7 Loops in General  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.8 Exceptions and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96\



68  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

person does their relatively short job. One such job could be the installation of the 
electronic ignition module bracket. The instructions might be like this:

 1. Acquire a bracket and place over attachment holes with the wide end 
below the smaller end.

 2. Place a two-inch bolt in the upper-left bolt hole and screw in to two 
pounds of torque.

 3. Place a four-inch bolt in the upper-right bolt hole and screw in to two 
pounds of torque.

 4. Place a two-inch bolt in the lower-left bolt hole and screw in to two 
pounds of torque.

 5. Place a ten-millimeter nut over the bolt at the lower right and tighten to 
ten pounds.

 6. Re-tighten the bolts to ten pounds in the following order: upper left, up-
per right, and lower left.

Before Step 1 above, a new work piece (an engine, probably) is placed in front 
of the worker, and after Step 6, the piece is moved to the next station. From the 
worker’s perspective, so long as or while there is an engine at their station that 
needs a bracket, they repeat the steps. In a form that a computer might be able to 
understand, this might be written as:

while there is an engine at their station that needs a bracket,
 Acquire a bracket and place it over the attachment holes with the wide end 
below the smaller end.
 Place a two-inch bolt in the upper-left bolt hole and screw in to two pounds 
of torque.
 Place a four-inch bolt in the upper-right bolt hole and screw in to two pounds 
of torque.
 Place a two-inch bolt in the lower-left bolt hole and screw in to two pounds 
of torque.
 Place a ten-millimeter nut over the bolt at the lower right and tighten it to ten 
pounds of torque.
 Re-tighten the bolts to ten pounds of torque in the following order: upper left, 
upper right, and lower left.



 Chapter  2  ·  Repet i t ion  ■ 69

All of the actions that follow the while are indented to indicate that they are 
a part of the activities to be repeated, just as was done in a Python if statement to 
mark the things that were to be done if the condition was true. This example il-
lustrates one of the Python repetition structures quite accurately: the while state-
ment.

The key word, known by  
Python, that indicates that 
this is a WHILE statement.

An expression that 
evaluates to True or 
False

The colon indicates the end of 
the first part of the statement. 
Think of it as meaning DO as in 
WHILE expression DO

while a<b :

Figure 2.1 
Essential syntax of the WHILE statement.

 2.1 THE WHILE STATEMENT
When using this repetition statement, the condition is tested at the top or be-

ginning of the loop. If, upon that initial test, the condition is true, then the body 
of the loop is executed; otherwise, it is not, and the statement following the loop is 
executed. This means that it is possible that the code in the loop is not executed at 
all.  The condition tested is the same kind of expression that is evaluated in an if 
statement: one that evaluates to True or False. It could be, and often is, a compar-
ison between two numeric or string values, as it is in the example of Figure 2.1.

When the code in the body of the while statement has been executed, then the 
condition is tested again. If it is still true, then the body of the loop is executed 
again, otherwise the loop is exited and the statement following the loop is ex-
ecuted. There is an implication in this description that the body of the loop must 
change something that is used in the evaluation of the loop condition, otherwise 
the condition will always be the same and the loop will never terminate. Here is 
an example of a loop that is entered and terminates:

a = 0
b = 0
while a < 10:
      a = a + 1
print (a)

The condition a<10 is true at the outset because a has the value 0, so the code 
in the loop is executed.  The lone statement in this loop increments a, so that after 



70  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

the first time the loop is executed the value of a is 1. Now the condition is tested 
and, again, a<10, so the loop executes again. In the final iteration of the loop, the 
value of a starts out as 9, is incremented, and becomes 10. When the condition is 
tested it fails, because a is no longer less than 10 (it is equal) and so the loop ends. 
The statement following the loop is print (a) and the value printed is 10. This 
loop explicitly modifies one of the variables in the loop condition, and it is easy 
to see that the loop will end and what the value of a will be at that time.

Here is an example of a loop that is entered and does not terminate:
a = 0
b = 0
while b < 10:
      a = a + 1
print (a)

In this case, the value of b is less than 10 at the outset, so the loop is entered. 
The body of the loop increments a as before, but does not change b. The loop con-
dition does not depend on a, only on b, so when the loop condition is tested again, 
the value of b is still 0, and the loop executes again. The value of b will always 
be 0 each time it is tested, so the loop condition will always be true and the loop 
will never end. The print statement will never be executed.

When this program is executed, the computer will seem to become unrespon-
sive. As long as the loop is executing the program can do nothing else, and so the 
only indication that something is wrong is that nothing is happening. There are 
many reasons why a program can appear to be doing nothing: when waiting for 
the user to type some input, for instance, or when performing an especially dif-
ficult calculation. However, in this case, which is called an infinite loop, the only 
thing to do is to terminate the program and fix the loop.

Here is an example of a loop that is not entered:
a = 100
b = 0
while a < 10:
      a = a + 1
print (a)

The condition a<10 is false at the outset because a has the value 100, so the 
code in the loop is not executed. The statement following the loop is executed 
next, which is the print statement, and the value printed is 100.



 Chapter  2  ·  Repet i t ion  ■ 71

These loops are examples that illustrate the three possibilities for a while 
loop and do not calculate anything useful. The two examples from the previous 
chapter can make practical use of a while loop, and it would be useful to look at 
those again.

 2.1.1 The Guess-A-Number Program Revisited 

The program as it was written in Chapter 1 is as follows:
choice = 7   
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
if choice == playerchoice:

   print ("You win!")
else:

   print ("Sorry, You lose.")

The game would be better if it allowed the player to guess again, perhaps un-
til a correct guess was achieved. A while loop could be used to accomplish this. 
Think about what the condition might be. The loop should end when the player 
guesses the answer. Another way to say this is that the loop should continue so 
long as the player has not guessed the answer. The condition is one for continu-
ation of the loop, not termination, so the loop must be constructed in such a way 
that it continues when the condition is true. The loop will begin with this:

while choice != playerchoice:

At the beginning of the loop, the variables choice and playerchoice must be 
defined. This means that before the while statement there must be code that does 
this. The program now looks like this:

choice = 7   
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:

If the player has guessed incorrectly, then the body of the loop will execute. 
What should be done? One of the variables in the condition has to be changed, 
and the goal of the program must be kept in mind. In this case, because the player 
has guessed incorrectly, two things should happen. First, the player must be told 
that they are wrong and to make another guess. Next, the new guess must be read 



72  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

into the variable playerchoice, thus satisfying the rule that the loop condition 
must possibly have an opportunity to become False. The program is now

choice = 7   
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:
      print ("Sorry, not correct. Guess again: ")
      playerchoice = int(input())
When the player finally guesses the number, the loop will exit; if the first 

guess is correct, then the condition fails at the beginning, and this amounts to the 
same thing in this case. The last thing to do is to print a message to the player:

choice = 7   
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:
 print ("Sorry, not correct. Guess again: ")
 playerchoice = int(input())
print ("You have guessed correctly.")

Note that, as was true with the if statement and as is always true in Python, 
the indentation indicates which statements are a part of the loop (the suite) and 
which are outside.

 2.1.2 Modifying the Game

A simple modification of the game involves telling the player whether their 
guess was too large or too small. This will help them shrink the possible range of 
values and thus guess the right answer more quickly. A modification to the body 
of the loop will accomplish this.  If the value that the player guessed is smaller 
than the target, then a message to that effect is printed, and similarly if the player 
guesses a value larger than the target. The use of an if statement here is appropri-
ate, and that if statement is nested inside of the while loop:
choice = 7   
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:
    if (playerchoice < choice):
        print ("Sorry, your guess was too small. 
                  Guess again: ")



 Chapter  2  ·  Repet i t ion  ■ 73

    else:
        print ("Sorry, your guess was too large. 
                  Guess again.")
    playerchoice = int(input())
    print ("You have guessed correctly.")

This program illustrates a second level of indentation. The if-else are in-
dented to indicate they are part of the while statement. The print statements are 
indented further, to show that they are also part of the if statement.

Doing some printing inside of the loop is useful because an infinite loop will 
be obvious. It will print many lines and never stop. It’s not always practical to do 
that, so a degree of careful analysis should always be done to ensure that the loop 
can and will terminate. 

 2.2 ROCK–PAPER–SCISSORS REVISITED
This game needs a loop, and the previous implementation was not complete. 

If there is a tie, then the game has to be repeated, and a winner must be deter-
mined. This means that the loop in this case is as follows:

while there is no winner:

This happens only when the player and the computer select the same object, 
and in the original code, it was handled by the statements:

if player == choice:
    print ("Game is a tie. Please try again.")

The condition “no winner” becomes player == choice. The complete solu-
tion involves the while loop and another input from the user within the loop. Here 
is one possible answer:
choice = "paper"  # Computer chooses paper.
print ("Rock-paper-scissors: type in your choice:    ")
player = input ()

# --------- The new section of code ---------------------
while player == choice:   # Repeat input until there is a 
                              winner
    print ("Game is a tie. Please try again.")
    player = input ()
# -------------------------------------------------------



74  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

if player == "rock":
    if choice == "scissors":
        print ("Congratulations. You win.")
    else:
        print ("Sorry - computer wins.")
elif player == "paper":
    if choice == "scissors":
        print ("Sorry - computer wins.")
    else:
        print ("Congratulations. You win.")
elif player == "scissors":
    if choice == "rock":
        print ("Sorry - computer wins.")
    else:
        print ("Congratulations. You win.")
else:
    print ("Error: Select one of: rock, paper, scissors")

The termination of the loop depends on the user’s input, and on the value of 
the computer’s choice, which could also (and should) change inside the loop. The 
probability of the loop continuing after one iteration is 1 in 3, and the probabil-
ity that it will still be looping after N iterations is (1/3)N, so there is a very small 
chance of the loop repeating more than 2 or 3 times.

 2.2.1 Random Numbers

Most games depend on an element of unpredictability or chance. Those that 
do not might be more properly called puzzles. Given that computers do calcula-
tions, and that calculations should have the same result every time, how does one 
produce anything that is random using a computer? The answer is partly in how 
the term random is defined. The discussion involves some mathematics or at least 
some basic ideas in probability and statistics.

If integers in the range 1 through 10 inclusive are considered, what is the 
likelihood (chance, probability) that the number 5 will be selected at random? The 
answer is 1 in 10, or 0.1. This is true each time the question is asked. If the num-
ber 5 has just been chosen and another number is to be chosen, what is the chance 
that it will be a 5? Same answer: 1 in 10. The principle is that the next choice does 
not depend on the previous one. 



 Chapter  2  ·  Repet i t ion  ■ 75

Perhaps the wrong question is being asked. What is the likelihood that the 
number 5 will be selected twice in a row at random? The answer is 1 in 100, or 
0.01. Why? Because it depends on the question asked. To get two in a row, the 
first one must be a 5 (1 in 10) and the second one must also be a 5 (also 1 in 10), 
so the resulting likelihood is 1 in 10*10 or 1 in 100. But each time a number 
is chosen, the number 5 has a 1 in 10 chance of being selected. A mathemati-
cal discussion of randomness depends on the asking the right question, and on 
probabilities. If some event is completely random, then it should have the same 
probability of happening as the other possible events, but events can be collected 
to form more complex events. Each card in a deck of playing cards should have 
the same probability of turning up, but if the question is “What’s the chance of 
a flush?,” then the different ways that a flush can be comprised have to be taken 
into account.  

Numbers, in particular, are random only with respect to each other. Is the 
number 6 random? That’s not really a good question. Is the sequence 87394 ran-
dom? Perhaps a test could be devised to answer that. Is the sequence 66666 ran-
dom? Most would say not, but it has the same probability of being generated at 
random as does 87354. To create good games and simulations, it is necessary to 
devise ways to generate a random number using a computer and to test numbers 
to see if they are in fact random. Then it would be possible to simulate the flip-
ping of a coin or the rolling of a die.

What is the 100th digit of pi? It can be found easily. Are consecutive digits of 
pi effectively random? As it happens, the answer is not known, but it is a good 
question. What is 108763 is divided by 98581? What is the remainder? Call the re-
mainder x: what is 108763 divided by x? Are these numbers random? The search 
for a method for generating really good random numbers continues, but there are 
some pretty good methods (See Chapter 10). In Python, a random number created 
by a computer algorithm can be requested by using a built-in function.

A built-in function is like a mathematical function, and it is provided by the 
language itself. The language element print is a built-in function, as are int () and 
float (). The functions sine and square root are also built-in functions. Such func-
tions belong to modules in Python and have to be requested by the program so 
that they can be used. This means that the name of the module has to be known as 
well as the names of the built-in functions within it. The common mathematical  



76  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

functions are located within the module math and can be used by requesting the 
math module with the statement:

import math

Using a function in the math module involves using the name math followed 
by a period (.) followed by the name of the function. The “.” opens the module so 
that the names within can be used, because there may be other built-in functions 
or even variables that have the same name. If the statements

x = math.sqrt(64)
print (x)

are executed, the program prints the number 8, which is the square root of 64. 
The expression sqrt (64) is called a function call, and executes the code needed to 
calculate the square root of 64. The name sqrt is the name of the function, which 
is code provided by the Python language. This particular call always returns the 
value 8, because 8 is always the square root of 64. A module can be thought of as 
a bag of programs. Each bag contains a set of programs that do a particular class 
of things, like mathematics or drawing. By specifying the name of the module, 
access to all of the functions within is granted, and by specifying the specific 
name of a function, the code that we want is specifically made available. 

The import statement should be at the very beginning of the program.

Imagine that it is possible to have a function that produces a random number 
as a value. It is in the module named random, and the function is called random, 
too. For example,

import random
print ( random.random() )

Every time the function is used, it gives a different value, a random value. 
This value can be used to make games more realistic, because games have a ran-
dom aspect.

This code prints the value 0.07229650795715237. Why? Because random.
random () produces a random number between 0.0 and 1.0. This is the most com-
mon example of a random number function, and is really very general. Increasing 
the range is done simply by multiplying by the maximum value desired; random.
random ()*100 gives a random number between 0 and 100, for instance.



 Chapter  2  ·  Repet i t ion  ■ 77

What if the problem is to simulate the roll of a die? The bag of code that is 
the random module contains other functions related to the generation of random 
numbers, and one of them is especially suited to this problem. A die roll would 
be implemented as follows:

random.randint (1, 6)

The randint function accepts two numbers, called parameters. The first is 
the lower limit of the range of random integers to be produced and the second is 
the upper limit. Specifying 1 as the lower limit and 6 as the upper limit, as in the 
example above, means that it will generate numbers between 1 and 6 inclusive, 
which is what would be expected from rolling a die. The result of rolling two dice 
would be a number between 2 and 12, found by random.randint (2,12).

Flipping a coin is a two-level choice, and could be done with random.rand-
int (1,2).  

if (random.randint(1,2) == 1):
    print ("Heads")
else:
    print ("Tails")

Going back again to the number guessing game, a random choice for the 
computer’s number is now possible.  Instead of the first line of code being

choice = 7   

it should now be
choice = random.randint(1,10)   

Every time the program executes the program, it will select a new random 
number, as opposed to the choice always being 7.

The introduction of a random choice is a little more complicated for the rock-
paper-scissors program because the variable holding the player’s choice is a string. 
There are three possible choices, so to select one at random might look like this:

i = random.randint(1,3)
if i == 1:
    choice = "rock"
elif i == 2:
    choice = "paper"
else:
    choice = "scissors"



78  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Many of the examples in this book involve a game or puzzle of some kind, so 
the use of random numbers will be a consistent feature of the code shown.

 2.3 COUNTING LOOPS
Features of programming languages are provided because the designers 

know they are useful. The while loop is obviously useful, and is the only kind of 
loop required to implement a program. However, loops that involve counting a 
certain number of iterations are common, and adding syntax is valuable. Some-
times a loop that executes, for example, ten times, or a loop that iterates N times 
for some variable N, is needed. In Python, this is called a for loop.

In some languages, a for loop involves a special syntax, but in Python, it 
involves a new type (a class of types, really): a tuple. Here is an example of a for 
loop:

for i in (1,2,3,4,5):
    print i

This code prints the numbers 1 2 3 4 5 each on a separate line. The variable i 
takes on each of the values in the collection provided in parentheses and the loop 
executes once for each value of i. The collection (1,2,3,4,5) is called a tuple, and 
can contain any Python objects in any order. It’s basically just a set of objects. 
The following are legal tuples:
(3,6, 9, 12)
(2.1, 3.5, 9.1, 0, 12)
("green", "yellow", "red")
("red", 3, 4.5, 2, "blue", i) #where i is a variable 
                               with a value

The for loop has the loop control variable (in the case above it is i) take on 
each of the values in the tuple, in left to right order, then executes the connected 
suite. The loop therefore executes the same number of times as there are elements 
in the tuple. 

Sometimes it may be necessary to have the loop execute a great many times. 
If the loop was to execute a million times, it would be difficult to require a pro-
gram to list a million integers in a tuple. Python provides a function to make this 
more convenient: range(). It returns a tuple that consists of all of the integers 
between the two parameters it is given, including the lower end point.  



 Chapter  2  ·  Repet i t ion  ■ 79

range (1,10)   is (1,2,3,4,5,6,7,8,9)
range (-1, 2) is (-1, 0, 1)
range (-1, -3) is not a proper range.
range (1, 1000000) if the set of all integers 
                   from 1 to 9999999

Ranges involving strings are not allowed, although tuples with strings in 
them are allowed. The original example for loop can now be written:

for i in range(1,6):
    print i

and the loop that is to execute a million times could be specified as
for i in (0, 1000000):
    print i

This code prints the integers from 0 to 999999. If range() is passed only a 
single argument, then the range is assumed to start at 0; this means that range 
(0,10) and range (10) are the same.

 2.4 PRIME OR NON-PRIME
Here’s a game that can illustrate the use of a for loop, and some other ideas 

as well.  The computer presents the player with large numbers, one at a time. The 
player has to guess whether each number is prime or non-prime. A prime number 
does not have any divisors except 1 and 

The key word, known by  
Python, that indicates that 
this is a for statement.

for
A variable, the loop 
control variable, that 
will take on values in 
a given sequence

i
The key word in, 
which is basically a 
placeholder

in
A tuple (or other 
sequence type) 
that enumerates 
the values the 
variable will take

2,7,8
The colon indicates the 
end of the first part of the 
statement. Think of it as 
meaning do, as in for i in 
(2,7,8) do

:

Figure 2.2
The structure of a FOR statement

itself. 3, 5, 11, and 17 are prime numbers. The game ends either when a specific 
number of guesses have been made, or when the player makes a specific number 
of mistakes.

A key problem to solve in this game is to determine when a number is prime. 
The computer must be able to determine whether the player is correct, and so for 



80  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

any given number there must be a way to figure out whether it is prime. Other-
wise, the program for this game is not complicated:

while game is not over:
    select a random integer k
    print k and ask the player if it is prime
    read the player's answer
    if player's answer is correct:
        print "You are right"
    else:
        print "You are wrong."

The mysterious portion of this program is the if statement that asks if the 
player’s answer is correct. This means that the program must determine whether 
the number K is prime and then see if the player agrees. How can it be determined 
that a number is prime? A prime number has no divisors, so if one can be found, 
then the number is not prime. The modulo operator % can be used to tell if a 
division has a remainder: if k % n = 0, then the number n divides evenly into k, 
and k is not prime.

To find out whether a number is prime, try dividing it by all numbers smaller 
than it and if any of them have a zero remainder, then the number is not prime. 
We need to use a for loop.  

isprime = True
for n in range (1, K):
    if k%n == 0:
        isprime = False

After the loop has completed, the variable isprime indicates whether K is 
prime. This seems simple, if tedious. It does perform a lot of divisions. Too many, 
in fact, because it is not possible for any number larger than K/2 to divide evenly 
into K. A slightly better program is as follows:
isprime = True               # Is the number K prime?
for n in range (1, int(k/2))   # Divide K by all numbers < K/2
    if k%n == 0:             # If the remainder is 0 then n 
        isprime = False      # divides evenly into K: not 
                             # prime
# If isprime is still true here, then the number is prime.



 Chapter  2  ·  Repet i t ion  ■ 81

Next, this section of program should be incorporated into a complete pro-
gram that plays the game. If the game is supposed to allow 10 guesses, then the 
first step is to repeat the whole thing 10 times:

import random
correct = 0            # The number of correct guesses
for iteration in range(0, 10):  # 10 guesses

Now, select a number at random. It should be large enough so that it is hard to 
see immediately if it is prime, although even numbers are a giveaway:
K = random.randint(10000, 1000000)  # Generate a new number

Next, print a message to the user asking for their guess, and read it:
print ("Prime or Not: Is the number ",K," prime? (yes or   
        no)")
answer = input()      # Read the user’s choice

The user types in a string, “yes” or “no,” as their response. The variable 
isprime was used in the program that determines whether K is prime is logical, 
being True or False. It could be made into a string, so that it is the same as what 
the user typed, and then it could be compared directly against the user’s input:

isprime = "yes"

Now comes the code for determining primality as coded above, except with 
isprime as a string:
isprime = True               # Is the number K prime?
for n in range (1, int(k/2))  # Divide K by all numbers < K/2
    if k%n == 0:             # If the remainder is 0 then n 
        isprime = "no"       # divides evenly into K: not 
                             # prime
# If isprime is still true here then the number is prime.

At this point the variable isprime is either “yes” or “no,” depending on 
whether K is actually prime. The user’s guess is also “yes” or “no.” If they are 
equal, then the user guessed correctly.

if isprime==answer:
    print ("You are correct!")
    correct = correct + 1
else:
    print ("You are incorrect.")



82  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Finally, the outer loop ends, and the result is printed. The value of the vari-
able correct is the number of correct guesses the user made, because it was incre-
mented every time a correct answer was detected. The last statement is

print ("You gave ",correct," right answers out of 10.")

This program can be found on the CD in the directory “primegame.”

 2.4.1 Exiting from a Loop

A clever programmer would notice a serious inefficiency with the prime 
number program. When it has been determined that the number is not prime, the 
loop continues to divide more numbers into k until k/2 of them have been tried. If 
k= 999992, then it is known after the first iteration that the number if not prime; 
it is even, so can’t be prime. But the program continues to try nearly another half 
million numbers anyway. What is needed is a way to tell the program that the 
loop is over. There is a way to do this.

A loop can be exited using the break statement. It is simply the word break 
by itself. The correct way to use this in the program above is as follows:
for n in range (1, int(k/2)) # Divide K by all numbers < K/2
    if k%n == 0:               # If the remainder is 0 then n 
        isprime = "no"         # divides evenly into K: not 
                               # prime
        break

This loop terminates when the number k is known to be not prime. The state-
ment following the loop is executed next. This can save a lot of computer cycles, 
but does not make the program more correct – just faster.

A variation on this is the continue statement. This statement results in the 
next iteration of the loop being started without executing any more statements in 
the current iteration. This avoids doing a lot of work in a loop after it is known it’s 
not necessary. For example, doing some task for a list of names, except for people 
named “Smith,” could use a continue statement:
for name in ('Jones','Smith','Peters','Sinatra','Bohr',
             'Conrad'):
    print (name);
    if name == 'Smith':
        continue
# Now do a bunch of stuff …

ON THE CD



 Chapter  2  ·  Repet i t ion  ■ 83

Both the break and continue do the same thing in while and for loops.

Modifying the loop variable does not change the number of iterations the 
loop will execute. In fact, it has no effect. This loop demonstrates that:

for i in range(0, 10):
    print ("Before ",i)
    i = i + 1000
    print ("After ",i)

It prints
Before  0
After  1000
Before  1
After  1001
  .  .  .

and so on. It seems that the value of i changes after the assignment for the re-
mainder of the loop and then is set to what it should be for the next iteration. 
This makes sense if Python is treating the range as a set of elements (it is), and it 
assigns the next one to i at the beginning of each iteration. Unlike a while loop, 
there is no test for continuation. In any case, changing i here does not alter the 
number of iterations and can’t be used in place of a break.

 2.4.2 Else

The idea that the loop can be exited explicitly makes the normal termination 
of the loop something that should be detectable, too. When a while or for loop ex-
its normally by exhausting the iterations or having the expression become False, 
it is said to have fallen through. When the for loop in the prime number program 
detects a factor, it executes a break statement, thus exiting the loop. What if it 
never does that? In that case, no factor exists, and the number is prime. The pro-
gram as it stands has a flag that indicates this, but it could be done with an else 
clause on the loop.

The else part of a while or for loop is executed only if the loop falls through; 
that is, when it is not exited through a break. This can be quite useful, especially 
when the loop is involved in a search, as will be discussed later. In the case of 
the prime number program, an else could be used when the number is prime, as 
follows:



84  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

for n in range (1, int(k/2))# Divide K by all numbers < K/2
    if k%n == 0:            # If the remainder is 0, then n 
        isprime = "no"      # divides evenly into K: not 
                            # prime
        break
else:
    isprime = "yes"         # Loop not exited: it is prime

An else in a while loop occurs when the condition becomes false. Consider 
a loop that reads from input until the user types “end” and is searching for the 
name “Smith:”

inp = input()
while (inp != "Smith"):
    s = input()
    if s == "end":
        break
else:
    print ("Smith was found")
# When the program reaches this point it is no
# longer known whether Smith was found.

Of course, the else is not required, and some programmers believe it is even 
harmful. There are always other ways to accomplish the same thing.

 2.5 LOOPS THAT ARE NESTED
Just as it is possible to have if statements nested within other if statements, 

it is possible, and even likely, to have a loop nested within another loop. An ex-
ample of nested for loops is as follows:

for i in range(0, 10)
    for j in range (0, 10)
        print (i,j)

The print statement in this example executes 100 times. Each time the outer 
loop executes once, the inner one is executed 10 times, for a total of 10 * 10 or 100 
iterations. Loops can be nested to a greater depth if necessary, and while and for 
loops can be nested interchangeably.  

Since there was a discussion of prime numbers and factoring, consider the 
problem of finding the number within a given range that has the greatest number 



 Chapter  2  ·  Repet i t ion  ■ 85

of different factors. Leaving out 1 and the number itself, 2 has no factors, nor 
does 3; 4 has one (=2), 5 has none, and 6 has two (2 and 3). Which number be-
tween 0 and 1000 has the most?

From the prime number game, it is clear that the factors can be found using a 
loop. If the loop is not exited when one is found, all of them can be identified and, 
more importantly for this problem, counted. For a given number k, the factors can 
be identified using the following loop:
count = 0;
for n in range (1, int(k/2)): # Divide K by all numbers < K/2
    if k%n == 0:              # If the remainder is 0 then n 
        count = count + 1
# The number k has count numbers that divide evenly into it.

The statement count = count + 1 has replaced the isprime = “no” statement 
from the prime number game. When the loop ends, the value of count is the 
number of divisors it has. If this number is 0, then the number k is prime. The 
problem has been solved for any number k. Now solve it for all numbers between 
1 and1000 and identify the number with the largest value of count (i.e., the larg-
est number of divisors). This involves another loop enclosing this one that counts 
from 1 to 1000. 

Define a variable maxv which is, at any given moment, the number that has 
the greatest number of divisors, and another variable maxcount, which is the 
number of divisors that maxv has. Initially maxv is 1 and maxcount is 0 (i.e., the 
number 1 has no divisors). Now loop between 1 and 1000 and replace maxv and 
maxcount whenever a new number is found for which the number of divisors is 
greater than maxcount. Specifically,
maxv = 1
maxcount = 0
for k in range(1, 1000):   # Count the divisors for a range
    count = 0;
    for n in range (2, int(k/2)): # Divide K by all numbers 
                                  # < K/2
        if k%n == 0:              # If the remainder is 0 
                                  # then n
            count = count + 1     # Count this divisor
    if count > maxcount:          # A new maximum
        maxcount = count          # Save the count



86  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

        maxv = k                  # and the value itself
print ("The most divisors is ",maxv," with ",maxcount)

The result for 1 to 1000 is as follows:
The most divisors is 840 with 30

The result for 1 to 10000 is as follows:
  The most divisors is 7560 with 62

This last version needs 10 seconds to execute.

 2.6 DRAW A HISTOGRAM
A histogram is a kind of graph. It usually represents the frequency of the oc-

currence of certain discrete values. Common examples include temperature as a 
function of the month, or histograms of income as a function of year, age, race, or 
gender. Drawing one involves knowing how many categories there are and what 
the numerical values are for each category. Then the numbers are scaled so they 
fit in a particular area and the rectangles are drawn so that the heights reflect the 
relative numerical values. Figure 2.3 shows some typical examples.

A company wishes to plot a histogram of their income for each quarter of 
2016. The numerical values are stored in variables Q1, Q2, Q3, and Q4, and range 
between 0 and 1 million. We can draw simple histograms by using text. If the 
histogram is drawn so that the bars are horizontal instead of vertical, then the 
number of characters drawn in a row can be used to represent the “height” of the 
histogram bar. Using the # character, a value of 20 could be drawn as follows:

Q1:   ####################    20

This is another situation where a loop is necessary.  

There are three parts to the histogram bar above: the label, the bar, and the 
data value. The label is easy to print, and in the example there are four possibili-
ties; these are simply printed at the beginning of each line being drawn. The data 
value is not necessary, but it is useful for people looking at the graph to know 
what the exact number is. Each # character drawn could represent a range of 
values. The histogram bar is the trick. If numbers up to a million must be rep-
resented, then the bar must be scaled so that it fits on a line. If 50 characters fit 
on a line, then each # printed needs to represent 1000000/50, or 20,000 dollars. 



 Chapter  2  ·  Repet i t ion  ■ 87

Another way to say this is that every $20,000 of income results in one # character 
being printed. How many # are printed for the first quarter? Q1/20000 of them.

The print function prints out a line every time it is called. How can multiple 
things be printed on a line? The print statement has a special parameter to allow 
that. The call

print(i, end='!')

will print the variable i and then print the “!” string following that, every 
time. Normally, the print statement places an end of line character (represented 
as “\n”) at the end of every line, but the end= clause allows the programmer to 
change this to whatever they like. If the string provided is empty (contains no 
characters), then nothing extra will be printed after each call, meaning specifi-
cally that no end of line will be printed. Thus, the statement

print ("#", end="")

prints one # character, but no end of line. If another # is printed, then it will 
come right after the one just printed.  This is exactly what is needed for the histo-
gram program. A loop that prints ten # characters on one line can now be written 
as:

for i in range(0,10):
    print ("#", end="")

Given that the value of the variable Q1 is between 0 and 1000000, and each 
20000 should result in a single # character being printed, the first quarter histo-
gram bar could be drawn by the following:

print ("Q1: ", end="")
for k in range(0, int(Q1/20000)):
    print ('#', end='')
print ("     ", q1)

This includes all of the labels, and the output looks like this:

Q1: ########      190000

A complete solution to the problem would draw the histogram all four quar-
ters, along with a heading for the graph. The output might look like this:



88  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Dollars for each quarter   

 ==============================

Q1: #########      190000
Q2: #################      340000
Q3: ###########################################      873000
Q4: #####################      439833

Exercise 5 at the end of the chapter involves finishing this program.

19851980 1990 1995 2000 2005 2010

MenWomen

100
200
300
400
500
600
700
800
900

Sa
la

ry
  $

/w
ee

k

Earnings for WidgetCorp for 2016

 (a)
40

-40

30

-30

-20

-10

0

20

10

40

-40

30

-30

-20

-10

0

20

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Average Temperature in Bermuda

Temperature 
(Degrees C)

 (b)
Figure 2.3 
Examples of histograms.



 Chapter  2  ·  Repet i t ion  ■ 89

 2.7 LOOPS IN GENERAL
The concept of a loop in a programming language has been discussed for 

many years and has a large degree of both theory and practice underlying it. The 
original loop was a branch or goto, where the top of the loop was identified with 
an address or label and at the bottom there was a statement that said to “go to” or 
transfer control to that location.  Examples of this are as follows:
label1:  add 1 to x   12    x = x + 1
         subtract 2 from min   min = min - 2
         branch to label1                 go to 12

Branches were typical of assembly language programming, where each line 
of code was one actual computer instruction. The goto statement was introduced 
in the first real programming language FORTRAN, but was quickly supplement-
ed by a more structured loop construct, the do statement. Both branch and goto 
statements can be conditional.

Various kinds of loop have been developed over the years, and the most com-
monly used variation is the while loop. Theory says that the only kind that is 
needed, and probably the most general, is the loop statement as defined in the 
Ada language. It is essentially an infinite loop that allows escapes at multiple and 
various points on specified conditions. The basic syntax is as follows:

 loop
  exit when condition1;
        Statements …
  …
        exit when condition2;
 end loop;    

An exit at the top of the loop is a while loop. An exit at the end could be a re-
peat … until as in Pascal or C++, and it is a simple matter to declare and initial-
ize a control variable and test the condition  to implement a for loop. Everything 
is possible with this loop syntax.

When specifically using Python, a while loop is all that is needed. If the 
range is an integer one, then the loop is as follows:

for i in range (a .. b):

is the same as the loop



90  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

i = a
while i < b:
    …
    i= i + 1

This loop has an initialization, a condition, and an increment. As individual 
entities these are somewhat hidden in Python, being masked by the syntax, but 
the loop control variable takes on the first value the first time the loop is executed 
(initialization), iterates through the selections (increment), and terminates after it 
selects the final one (condition). The loop control variable is not really what gets 
incremented; what is incremented is a count that indicates which of the items in 
the tuple is currently being used. In the loop:

for i in ("red", "yellow", "green"):

the variable i takes on the values “red”, “yellow”, and “green”, but what gets 
incremented each time through the loop is an indication of which position in the 
tuple is represented by i. The value “red” is 0, “yellow” is 1, and “green” is 2 and 
a count implicitly starts at 0 and steps until 2 assigning values to i. This kind of 
loop is similar to that found in the language PHP, and is a level of abstraction 
above those in Java and C++.

 2.8  EXCEPTIONS AND ERRORS
Computers do not, as a general rule, make mistakes. Like other human-de-

signed and constructed devices such as cars and stoves, computers can be awk-
ward to use, can have design features that don’t turn out as expected, and can even 
break down too quickly. But they do not make mistakes. A computer program, on 
the other hand, almost certainly has mistakes or bugs coded within it. Consumers 
don’t usually make a distinction between the computer and the software that runs 
on it, but programmers and engineers must. When a computer program does not 
work properly, a programmer must exhaust all ways the program could be wrong 
before looking at an error in the computer itself.

Creating a correct program is difficult for many reasons. First, before any 
code is written, the problem to be solved must be clearly understood, and it must 
be the correct problem. Solving the wrong problem is a common error, but can’t 
be detected or corrected by the computer. Common examples of this sort of error 
come from stating the problem in English (or a human language of any description)  



 Chapter  2  ·  Repet i t ion  ■ 91

where errors in understanding occur. “Find the average of the first ten integers,” 
for example, is a little ambiguous. Is the first integer 0 or 1? What is meant by 
average, the mean or the median? Computer programmers tend to be quite literal, 
and so what they think is the answer will be written into the code, and then they 
will argue for that answer as being correct. It is very important to realize that, 
whatever the literally correct answer is, the real correct answer is based on the 
correct understanding of the problem. Sometimes it is stated badly, but no matter 
whose fault the problem is, the job of fixing it lies with the programmer. Some-
times a little time at the beginning clarifying the question can save more time 
later, and sticking with an overly pedantic interpretation will cause problems in 
the long run.

A correct program also depends on the programmer being able to identify 
all possible circumstances that can occur and knowing how to deal with each of 
them. Failing to handle one possible situation is an error, and the program will 
behave unpredictably if that situation occurs in practice. Statements that handle 
errors appear in real (in the field or commercial) code. In fact, it is common that 
there are more statements that detect and deal with errors than code that actually 
computes an answer.  One thing that should be remembered: all lines of the code 
need to be tested. In very large programs this may be impossible, but every line 
of code that has never been executed is a potential error. Test as many as possible, 
including the error detection code.

User input is a frequent cause of mistakes in programs. It’s not that the user 
is the problem; the programmer must anticipate all possible ways that a user can 
enter data. There is usually one correct way but many erroneous ones, and it is 
impossible to predict what a user will enter from a keyboard in response to any 
request. Similarly, the contents of a file may not be what the programmer expects. 
File formats are standard, but sometimes there are variations and at other times a 
user may have entered the data improperly. While the mistake is on the part of the 
user, it is also a programming mistake if the error is not detected and is allowed 
to have an impact of the execution of the program.

Programmers tend to make assumptions about the problem. It is a common 
mistake to think “this situation can never happen” and then ignore it, however 
unlikely the situation seems. Testing every statement for everything that could 
possibly go wrong may be impossible, but testing for the general situation may 
be possible. It would be great to be able to say “if any statement in this section of 



92  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

code divides by zero,” or “if any variables in this code have the wrong type,” then 
do some particular thing.

Since it is impossible to write a program of any length without there being 
coding errors of some kind included, a step towards a solution may be to check 
all data before it is operated on to ensure the pending operation is going to suc-
ceed. For instance, before performing the division a/b, test to make sure that b is 
not zero. This depends on the error being at least in principle predictable. Most 
modern languages, Python included, have implemented a way to catch errors and 
permit the programmer to handle them without having tests before each state-
ment or expression. This facility is called the exception.

The word exception communicates a way to think about how errors will be 
handled. Some code is legal and calculates a desired value except under certain 
circumstances or unless some particular thing happens. The way it works is that 
the program tries to perform some operation and errors are allowed to occur. If 
one does, the computer hardware or operating system detects it and tells Python. 
The program cannot continue in the way that was planned, which is why this is 
called an exception. The programmer can tell Python what to do if specific errors 
occur by writing some code that deals with the problem. If the programmer did 
not do this, then the default is for Python to print an error message that describes 
the error and then stop executing the program. Error messages can be seen as a 
failure on the part of the programmer to handle errors correctly.

A simple example is the divide by zero error mentioned previously. If the 
expression a/b is to be evaluated, the value of b can be checked to make sure it is 
not zero before the division is done:

if b != 0:
 c = a/b

This can be tedious for the programmer if a lot of calculations are being done 
and can be error prone. The programmer may forget to test one or two expres-
sions, especially if engaged in modifications or testing. Using exceptions is a 
matter of allowing the error to happen and letting the system test for the problem. 
The syntax is as follows:

try:
      c = a/b
except:
      c = 1000000



 Chapter  2  ·  Repet i t ion  ■ 93

The try statement begins a section of code within which certain errors are 
being handled by the programmer’s code. After that statement, the code is in-
dented to show that it is part of the try region. Nearly any code can appear here, 
but the try statement must be ended before the program ends.

The except statement consists of the key word except and, optionally, the 
name of an error. The errors are named by the Python system, and the correct 
name has to be used, but if no error name is given as in this example then any 
error will cause the code in the except statement to be executed. Not specifying 
a name here is an implicit assumption that either only one kind of error could 
possibly occur or that no matter what error happens, the same code will be used 
to deal with it. Specifying an unrecognized name is itself an error. The name can 
be a variable, but that variable must have been assigned a recognized error name 
before the error occurs. The code following the except keyword is indented too, 
to show that it is part of the except statement. This is referred to by programmers 
as an error handler, and is executed only if the specified error occurs.

This appears to be even more verbose than testing b, but any number of state-
ments can appear between the try and the except. This section of code is now 
protected from divide by zero errors. If any occur, then the code following the 
except statement is executed, otherwise that code does not execute. If other errors 
occur, then the default action takes place – an error message is printed.

Testing specifically for the divide by zero error can be done by specifying the 
correct error name in the except statement:

try:
      c = a/b
except ZeroDivisionError:
      c = 1000000

More than one specific error can be caught in one except statement:
try:
      c = a/b
except (ValueError, ZeroDivisionError):
      c = 1000000

Clearly (ValueError, ZeroDivisionError ) is a tuple, and could be made 
longer and assigned to a variable. 



94  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

There can be many except statements associated with a single try:
try:
      c = a/b
except ValueError:
 c = 0
exceptZeroDivisionError:
      c = 1000000

As was mentioned earlier, a variable can hold the value of the error to be 
caught:

k = ZeroDivisionError 
try:
      c = a/b
except k:
      c = 1000000

Finally, the exception name can be left out altogether. In that case, any excep-
tion that occurs will be caught and the exception code will be executed:

try:
      c = a/b
except:
 c = 0

 2.8.1 Problem: A Final Look at Guess a Number

The final version of the program involving guessing a number looks like this:
choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
if choice == playerchoice:
    print ("You win!")
else:
    print ("Sorry, you lose.")

Using exceptions and what has been discussed about error checking, this 
program can be improved. First, if the user enters something that is not an integer, 
it is an error. This should be caught using an exception. Rather than forcing the 
player to run the program again, a loop can be used to ask for another guess. The 
input should be within the try statement. The except statement should print an 



 Chapter  2  ·  Repet i t ion  ■ 95

error message, and the entire collection should be within a loop that continues to 
ask the user to guess a number. Here is a better version:
choice = 7
guessed = False    # Has the user guessed a reasonable num-
ber?
while not guessed: # Keep trying until they have
    print ("Please guess a number between 1 and 10: ")
    try:           # Catch potential input errors
        playerchoice = int(input())
        guessed = True  # Success so far
    except:        # An error occurred.
        print ("Sorry, your guess must be an integer.")
if choice == playerchoice:  # Correct guess?
    print ("You win!")
else:
    print ("Sorry, you lose.")

The variable guessed is set to True when a successful guess is made, and 
this stops the loop from repeating. If the user enters a real number or a string, the 
exception is caught before that happens, the error message is printed, and the user 
is asked to enter another guess.

What else is wrong with this code? The user is asked to enter a number be-
tween 1 and 10, but that value is never checked to see if it is valid. If it falls out-
side the range, then it will always be an incorrect guess and the player will lose. 
It’s a penalty for not paying attention to the rules. A program should give the user 
as much information as is reasonable, so it would be better to check the value of 
the variable playerchoice and give an error message if it is out of range. The best 
way to do this is to place the check after the except statement at the bottom of the 
loop, and set the variable guessed to False if the guess is an improper one. Then 
the loop will repeat and the player will get another guess.

This version of the program is as follows:
choice = 7
guessed = False
while not guessed:
    print ("Please guess a number between 1 and 10: ")
    try:
        playerchoice = int(input())
        guessed = True



96  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    except:
        print ("Sorry, your guess must be an integer.")
    if playerchoice<10 or playerchoice>10: # Is the guess 
                                           # in 1..10?
        print ("Your guess was",playerchoice,
                 "which is out of range.")
        guessed = False                    # Nope. Guess again
if choice == playerchoice:
    print ("You win!")
else:
    print ("Sorry, you lose.")

 2.9 SUMMARY
The ability to repeat a collection of operations is an essential part of any 

programming language. The while loop has a condition at the beginning, and so 
long as that condition is true, the statements comprising the loop will be executed 
repeatedly. The for loop has an explicit list of items for which the loop will be 
executed or a range of numerical values that define how many times the code will 
be repeated.

Most problems solved using a computer program have some degree of rep-
etition implicit in the implementation, and some computer algorithms are quite 
explicit about how the iterations are to be used and how many are needed to solve 
the problem (See Exercises 3 and 4)

Certain errors that can occur in programs can be detected automatically by 
Python. If the programmer does not address these errors, they result in a mes-
sage and premature program termination. The try-except statement allows the 
programmer to handle errors without ending the program, and permits better 
communication of the kind of error that occurred, in the context of the program, 
to the programmer or user.



 Chapter  2  ·  Repet i t ion  ■ 97

Exercises

 1. Given the following definitions
 var1 = 12 
 var2 = 100 
 var3 = -2

 var4 = 0

  What is printed by the following while loops?    
 a. while var1 < var2:

  print (var1)
  var1 = var1 + 30

 b. while var1 < var2:
    print (var1)
    var1 = var1 * 2

 c. while var1 > 0:
      var4 = var4 + 1
      var1 = var1 – 1
  print (var1, var2)

 d. while var1 > 0:
      var4 = var4 + 1
     var1 = var1 – var4
  print (var1, var2)

 3. while var1 < var3:
    print ("*", end="")
    var3 = var3 + 2

 f. while var2 > var1*var4:
      var1 = var1 + 1
      var4 = var4 + 1
  print (var1, var2)

 2. What is printed by the following for loops?
 a. for i in range (1, 10):

      print (i)      

 b. for i in (1, 10): 
      print (i)      

 c. for i in ("red", "green", "blue"): 
      print (i)      

 d. for i in range(0, 10):



98  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

       for j in range(1, 10):
           if i == j:
              print (i)                                  

 e. for i in range(0, 10):
       for j in range(0, 50):
           if i*i == j:
             print (i)                              

 d. for i in (0, 10):
    i = i * 2
    print (i)

 e. for i in range (1, 10):
    for j in range (1, i):
        print (j, end="")
    print()

 f. for i in range(0, 10):
    i = i + 1
    for j in range (1, i):
        print (j, end="")
   print()

 3. The Greek mathematician Zeno (c. 450 BCE) is credited with creating the 
paradox of the Tortoise and Achilles. A tortoise challenged the great hero and 
athlete Achilles to a footrace. All the tortoise asked was a ten-yard head start. 
The idea was that once the race began, Achilles could run the ten-yard head 
start in a small time; however, in that same time, the tortoise would move 
forward a small amount, perhaps a yard. When Achilles made up that yard, 
the tortoise would have moved ahead again a small distance; and so on. The 
logic was that Achilles could never catch up. The misunderstanding here is 
that an infinitely long series of numbers can add up to a finite value. Write a 
small Python program that sums the numbers ½, ¼, 1/8, 

1/16, and so on for 20 
iterations and suggest what the sum would be if it were carried to an infinite 
number of iterations.

 4. One way to calculate the square root of a number is to use Newton’s method. 
This starts with an initial guess: if the square root of x is being computed, 
then a fair initial guess g would be x/2. Successive estimates are given by the 
expression:
newg = (g + x/g)/2



 Chapter  2  ·  Repet i t ion  ■ 99

 Successive estimates are nearer to the actual square root. Write a program 
to computer the square root of a number that is entered from the keyboard.

 5. Complete the program that draws a histogram for the earnings of WidgetCorp 
for four quarters of 2016. Earnings are as follows:

 a. 190000
 b. 340000
 c. 873000
 d. 439833

 6. Modify the program in Exercise 5 above so that the data for the four quarters 
is read from the terminal (i.e., entered by the user from the keyboard). Test it 
for the following values:

 a. 900000
 b. 874000
 c. 200000
 d. 439000

 7.  Modify the solution to Exercise 6 in Chapter 1 (making change) so that it 
makes effective use of a for loop.  The program should still read a number 
between 1 and 99, which is an amount of change to be given, and print the 
coin values that would be used. Modify it to not use a half-dollar coin, because 
nobody has those anymore.

 8.  Convert the following for loops into the equivalent while loop:
 a. for i in range (1, 10):

     print (i, i*i)

 b. sum = 0
  for i in (range (10, 0, -1):
      sum = sum + i
      print (i, sum)

 9. A good solution to Exercise 4 above (square root) would detect negative 
numbers and print a message to the effect that square roots of negative 
numbers do not exist (not as real numbers, anyway). Modify the solution to 
Exercise 4 to use an exception to deal with that situation, and handle other 
potential errors.



100  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Notes and Other Resources

Online tutorial on Python loops: http://www.tutorialspoint.com/python/python_
loops.htm

Cornell University summary of if statements and loops: http://www.cs.cornell.
edu/courses/cs1130/2012sp/1130selfpaced/module2/module2part1/ifloop.html

Sthurlow.com: http://sthurlow.com/python/lesson04/

 1. Henry Ford and Samuel Crowther (1922). My Life and Work, Garden City 
Publishing, Garden City, N.Y. http://www.gutenberg.org/ebooks/7213

 2. David Beazley and Brian K. Jones, Python Cookbook, 3rd Edition: Recipes 
for Mastering Python 3, http://www.onlineprogrammingbooks.com/python-
cookbook-third-edition/



■ ■ ■ ■ ■

In this chapter

In Chapter 2, we noted that for loops in Python are different from those 
found in many other languages. In Java and C++, a for loop has a very explicit 
increment; a for statement looks like this in Java:

for (i=0; i<10; i=i+1)

From this, it can be inferred that the variable i starts out as 0, and so long as i 
is less than 10, the loop continues. After each iteration, the value of i is increased 
by 1, and then the condition is tested again.

In Python, the iteration is more implicit, with the loop control variable taking 
on one of a set of values in turn. There is an implication here, too, that there is a 
kind of thing, a type that a variable can have, that amounts to a list or sequence of 
other, simpler things. This is true, and using variables having these types are an 
essential part of writing useful and effective code. Python offers strings, tuples, 
and lists as objects that consist of multiple parts. They are called sequence types. 
An integer or a float is a single number, whereas a sequence type consists of a 

3chaPter

sequences: strings,  
tuPLes, and Lists

3.1 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2 The Type Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.3 Tuples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Set Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



102  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

collection of items, each of which is a number or a character. Each member of 
a sequence is given a number based on its position: the first element in the se-
quence is given 0, the second is 1, and so on. This is a fundamental data structure 
in Python and has influenced the syntax of the language. 

Strings are familiar objects and have been used in programs already, so our 
discussion begins there.

 3.1 STRINGS
A string is a sequence of characters. The word sequence implies that the or-

der of the characters within the string matters, and that is certainly true. Strings 
most often represent the way that communication between a computer and a hu-
man takes place. Human language consists of words and phrases, and each word 
or phrase is a string within a program. The order of the characters within a word 
matters a great deal to a human because some sequences are words and others 
are not. The string “last” is a word, but “astl” is not. The strings “salt” and “slat” 
are words and use exactly the same characters as “last,” but these characters are 
arranged in a different order.

Because order matters, the representation of a string on a computer imposes 
an order on the characters within, and so there is a first character, a second, and 
so on, and it should be possible to access each character individually. A string 
also has a length, which is the number of characters within it. A computer lan-
guage provides specific actions that can be done to a string: these are called op-
erations, and a type is defined at least partly by what operations can be done to 
something of that type. Because a string represents text in the human sense, the 
operations on strings should represent the kinds of things that would be done to 
text. This includes printing and reading, accessing any character, linking strings 
into longer strings, and searching a string for a particular word.

The examples of code written so far use only string constants. These are 
simply characters enclosed in either single or double quotes. Assigning a string 
constant to a variable causes that variable to have the string type and gives it a 
value. The statements

name = "John Doe"
address = '121 Second Street'



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 103

cause the variables named name and address to be strings with the assigned 
value. Note that either type of quote can be used, but a string that begins with a 
double quote must end with one.

A string behaves as if its characters are stored as consecutive characters in 
memory. The first character in a string is at location or index 0, and can be ac-
cessed using square brackets after the string name. Using the definitions above, 
name[0] is “J” and name[5] = “D.” If an index is specified that is too large, it 
results in an error because it amounts to an attempt to look past the end of the 
string. 

How many characters are there in the string name? The built-in function 
len() returns the length of the string. The largest legal index is one less than this 
value: the first character of a string name has index 0, and the final one has index 
7; the length is 8. Thus, any index between 0 and len(name)-1 is legal. The fol-
lowing code prints all of the characters of name and can be thought of as the basic 
pattern for code that scans through the characters in strings:

for i in range(0, len(name)):
    print (name[i], end="")

This may be a little confusing, but remember that the range(0,n) does not 
include n. This loop runs through values of i from 0 to len(name)-1. 

Some languages have a character type, but Python does not. A string of 
length one is what Python uses instead. A component of a string is therefore an-
other string. The first character of the string name, which is name[0], is “J,” the 
string containing only one character.

 3.1.1 Comparing Strings

Two strings can be compared in the same manner as are two integers or real 
numbers, by using one of the relational operators ==, !=, <, >, <=, or >=. What it 
means for two strings to be equal is simple and reasonable: if each corresponding 
character in two strings is the same, then the strings are equal. That is, for strings 
a and b, if a[0] == b[0], and a[1]==b[1], and so on to the final character n, and  
a[n] == b[n], then the two strings a and b are equal and a==b. Otherwise a!=b. 
By the way, this implies that equal strings have the same length.



104  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

What about inequalities? Strings in real life are often sorted in alphabetical 
order. Names in a telephone book, files in a doctor’s office, and books in a store 
tend to appear in a logical order based on the alphabet. This is also true in Python. 
The string “abc” is less than the string “def,” for example. Why? Because the first 
letter in “abc” comes before the first letter in “def;” in other words, “abc”[0] < 
“def”[0]. Yes, characters in string constants can be accessed using their index.

A string s1 is less than string s2 and all characters from 0 through k in the 
two strings are equal, so s1[k+1]<s2[k+1]. Therefore, the following statements 
are true:

"abcd" < "abce"
"123" < "345"
"ab " < "abc"

In the last example, the space character " " is smaller than (i.e., comes be-
fore) the letter “c.” What if the strings are not the same length? The string "ab" 
< "abc", so if two strings are equal to the end of one of them, then the shorter 
one is considered to be smaller. These rules are consistent so far with those taught 
in grade school for alphabetization. Trailing spaces do not matter. Leading spaces 
can matter, because a space comes before any alphabetic character; that is, " " 
< "a." Thus "ab" > " z."

Digits come before lowercase letters. "1" < "a," and "1a" < "a1." 
Most importantly, uppercase letters come before lowercase letters, so "John" < 
"john."  All of these rules are consistent with those that secretaries understand 
when filing paper documents. As an example that compares strings, consider the 
following:

a = "J"
b = "j"
c = "1"
if b<c:
    print ("Lcase < numbers")
else:
    print("Lcase > numbers")
if a<c:
    print ("Ucase < numbers")
else:
    print("Ucase > numbers")



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 105

This results in the following output:
Lcase > numbers
Ucase > numbers

Problem: Does a city name, entered at the console, come before or after the name 
Denver?

This involves reading a string and comparing it against the constant string 
“Denver.” Let the input string be read into a variable named city. Then the answer 
is as follows:

city = input()
if city < "Denver":
    print ("The name given comes before Denver in an 
            alphabetic list")
elif city > "Denver":
    print ("The name given comes after Denver in an 
            alphabetic list")
else:
    print ("The name given was Denver")

If “Chicago” is typed at the console as input, the result is as follows:

Chicago

The name given comes before Denver in an alphabetic list

However, if case is ignored and “chicago” is typed instead, then the result is 
as follows:
chicago
The name given comes after Denver in an alphabetic list

because, of course, the lower case “c” comes (as do all lowercase letters) after the 
uppercase “D” at the beginning of “Denver.”

 3.1.2 Slicing – Extracting Parts of Strings

To a person, a string usually contains words and phrases, which are smaller 
parts of a string. Identifying individual words is important. To Python, this is true 
also. A Python program consists of statements that contain individual words and 
character sequences that each have a particular meaning. The words “if,” “while,” 
and “for” are good examples. Individual characters can be referenced through 



106  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

indexing, but can words or collections of characters be accessed? Yes, they can 
be accessed if the location (index) or the word is known.

Problem: Identify a “print” statement in a string.

The statement
print ("Lcase < numbers")

appears in the example program above. This can be thought of as a string and 
assigned to a variable:

statement = 'print ("Lcase < numbers")'

Is this a print statement? It is if the first five characters are the word “print.” 
Each of those characters could be tested individually using the following code:

if statement[0] == 'p':
    if statement[1] == 'r':
        if statement[2] == 'i':
            if statement[3]=='n':
                if statement[4]=='t':
                   if statement[5]==' ':
                       # This is a print statement.

This is not an attractive format, and since this is something that is needed 
often enough, Python offers a better way to write it. A slice is a set of continuous 
characters within a string. This means their indices are consecutive, and they can 
be access as a sequence by specifying the range of indices within brackets. The 
situation above concerning the print statement could be written like this:

if statement[0:5] == "print":

The slice here does not include character 5, but is 5 characters long, includ-
ing the characters 0 through 4, inclusive. A slice from i to j (i.e., x[i:j]) does not 
include character j. This means that the following statements produce the same 
result:

fname[0]
fname[0:1]

If the first index is omitted, then the start index is assumed, so the statement
if statement[0:5] == "print":



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 107

is the same as
if statement[:5] == "print":

If the second index is omitted, then the last legal index is assumed, which is 
to say the index of the final character. The assignment

 str = statement[6:]

results in the value of str being (“Lcase < numbers”). Both indices can be omit-
ted, which means we use everything from the first to the last character, or the 
entire string.

 3.1.3 Editing Strings

Python does not allow the modification of individual parts of a string. That 
is, statements like

str[3] = "#"
str[2:3] = ".."

are not allowed. How can strings be modified? For example, consider the string 
variable

fname = "image"

If this is supposed to be the name of a JPG image file, then it must end with 
the suffix “.jpg.”

Problem: Create a JPEG file name from a basic string

The string fname can be edited to end with “.jpg” in a few ways, but the easi-
est one to use is the concatenation operator, +.

To concatenate means “to link or join together.” If the variables a and b are 
strings, then a+b is the string consisting of all characters in a followed by all 
characters in b; the operator + in this context means to concatenate, rather than to 
add numerically. The designers of Python and many other languages that imple-
ment this operator think of concatenation as string addition.

To use this to create the image file name, simply concatenate “.jpg” to the 
string fname:

fname = fname + ".jpg"



108  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The result is that fname contains “image.jpg.”             

File suffixes are very often the subject of string manipulations and provide a 
good example of string editing. For instance, given a file name stored as a string 
variable fname, is the suffix .jpg?  Based on the preceding discussion, the ques-
tion can be answered using a simple if statement:

if fname[len(fname)-4:len(fname)] == '.jpg':

Using a slice, it could also take the form
if fname[len(fname)-4:] == ".jpg"

A valuable thing to know is that negative indices index from the right side of 
the string, that is, from the end. Therefore, fname[-1] is the final character in the 
string, fname[-2] is the one previous to that, and so on. The last 4 characters, the 
suffix, are captured by using filename[-4:].

Problem: Change the suffix of a file name

Some individuals use the suffix .jpeg instead of .jpg. Some programs allow 
this, others do not. Some code that would detect and change this suffix is as fol-
lows:
if fname[len(fname)-5:] == ".jpeg":  # identfy the jpeg 
                                     # suffix
    fname = fname[0:len(fname)-5]    # remove the last five 
                                     # characters
    fname = fname + ".jpg"           # append the correct 
                                     # suffix
Problem: Reverse the order of characters in a string

There are things about any programming language that could be considered 
idioms. These are things that a programmer experienced in the use of that lan-
guage would consider normal use, but that others might consider odd. This prob-
lem exposes a Python idiom. Given what is known so far about Python, the logi-
cal approach to string reversal might be as follows:

# city has a legal value at this point
k = len(city)
for i in range(0,len(city)):
    city = city + city[k-i-1]
city = city[len(city)//2:]



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 109

This reverses the string named city that exists prior to the loop and creates 
the reversed string. It does so in the following way:

 1. Let i be an index into the string city, starting at 0 and running to the final 
character.

 2. Index a character from the end of the string, starting at the final character 
and stepping backwards to 0. Since the last character is len(city) and the 
current index is i, the character to be used in the current iteration would 
be k-i-1, where k is the length of the original string.

 3. Append city[k-i-1] to the end of the string. Alternatively, a new string rs 
could be created and this character appended to it during each iteration.

 4. After all the characters have been examined, the string city contains the 
original string at the beginning and the reversed string at the end. The 
first characters can be removed, leaving the reversed string only.

An experienced Python programmer would do this differently. The syntax 
for taking a slice has a variation that has not been discussed; a third parameter 
exists. A string slice can be expressed as

myString[a:b:c]

where a is the starting index, b is the final index+1, and c is the increment. If
str = "This string has 30 characters."

then str[0:30:2] is “Ti tighs3 hrces,” which is every second character. The incre-
ment represents the way the string is sampled, that is, every increment’s charac-
ters is copied into the result. Most relevant to the current example, the increment 
can be negative. The idiom for reversing a string is as follows:

print (str[::-1])

As has been explained, the value of str[:] is the whole string. Specifying an 
increment of -1 implies that the string is scanned from 0 to the end, but in reverse 
order. This is far from intuitive, but is probably the way that an experienced Py-
thon programmer would reverse a string. Any programmer should use the parts 
of any language that they comprehend very well, and should keep in mind the 
likely skill set of the people likely to read the code.

Problem: Is a given file name that of a Python program?



110  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A Python program terminates with the suffix .py. An obvious solution to 
this problem is to simply look at the last 3 characters in the string s to see if they 
match that suffix:

if  s[len(s)-3:len(s)] == '.py':
      print ("This is a Python program.")

But is PROGRAM.PY a legal Python program? It happens that it is, and so is 
program.Py and program.pY. What can be done here?

 3.1.4 String Methods

A good way to do the test in this case is to convert the suffix to all uppercase 
or all lowercase letters before doing the comparison. Comparing the name against 
.py means it should be converted to lowercase, which is done by using a built-in 
method named lower:

s1 = s[len(s)-3:len(s)]
if  s1.lower()== '.py':
    print ("This is a Python program.")

The variable s1 is a string that contains the final 3 characters of s. The ex-
pression s1.lower() creates a copy of s1 in which all characters are lowercase. It’s 
called a method to distinguish it from a function, but they are very similar things. 
You should recall that a method is simply a function that belongs to one type or 
class of objects. In this case, lower() belongs to the type (or class) string. There 
could be another method named lower() that belongs to another class and that did 
a completely different action. The dot notation indicates that it is a method, and 
what class it belongs to: the same class of things that the variable belongs to. In 
addition, the variable itself is really the first parameter; if lower were a function, 
then it might be called by lower(s1) instead of s1.lower(). In the latter case, the 
“.” is preceded by the first parameter.

Strings all have many methods. In Table 3.1, the variable s is the target string, 
the one being operated upon. This means that the method names below appear 
following s., as in s.lower(). Let the value of s be given by s = “hello to you all.” 
These methods are intended to provide the operations needed to make the string 
type in Python function as a major communication device from humans to a 
program. 



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 111

Table 3.1 
String Methods and their explanations

Method Explanation
(What is returned?)

Example

capitalize() Returns the target string but 
with the first letter capitalized.

s.capitalize() == 
"Hello to you all."

count(str,beg=0, 
end=len(s))

Returns a count of how many 
times the string str occurs in 
the target. If values for beg 
and end are given, then the 
count is performed using only 
character indices between beg 
and end. 

s.count("ll") == 2

endswith(suffix,  
beg=0, end=len(s))

Returns True if the target 
string ends with the given suf-
fix and return False otherwise. 
If beg and end are given, then 
do the test on the substring 
between beg and end.

s.endswith(ꞌll.ꞌ) 
==True

find(str, 
beg=0end=len(string))

If the string str appears with 
the target string, then return 
the index at which it occurs; 
return -1 if it does not occur. 
If beg and end are provided, 
then use the substring from 
beg to end.

s.find("you") == 9

index(str,beg=0,  
end=len(string))

Index is the same as find 
except that it will raise an 
exception if the string str does 
nor occur in the target 

s.index("you") == 9

isdigit() Returns True if the target 
string contains only digits and 
False otherwise.

s.isdigit() == False

islower() Returns True if the target 
string has at least 1 alphabetic 
character and all alphabetic 
characters are lowercase. 
Returns False otherwise.

s.islower() == True

(continued)



112  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Method Explanation
(What is returned?)

Example

isspace() Returns True if the target 
string contains only 
whitespace characters and 
returns False otherwise.

s.isspace() == False

isupper() Returns True if s has at least 
one alphabetic character and 
all alphabetic characters are 
uppercase. Returns False 
otherwise.

s.isupper() == False

lower() Converts all uppercase letters 
in string to lowercase.

s.lower() == s

replace(old, new  
[, max])

Replaces all occurrences of 
the string old in the target 
with the string new. If max is 
specified, replace at most max 
instances.

s.replace("you all", 
"yꞌall") == 
   "hello to yꞌall."

split(str="", 
num=string.
count(str))

Returns a list of substrings 
obtained from the target using 
str as a delimiter. Space is the  
default for str. Subdivide 
at most num times if that is 
specified (see: Chapter 3,  
section 3).

s.split(" ")  == 
["hello","to",
   ″you","all"]

splitlines( 
num=string.     
count(ꞌ\nꞌ))

Splits the target string at all (or 
num, if it is specified) NEW-
LINEs and returns a list of 
each line with the NEWLINEs 
removed.

s.splitlines() == 
"hello to you all."

upper() Converts the lowercase letters 
in string to uppercase.

s.upper() == "HELLO 
TO YOU ALL."

 3.1.5 Spanning Multiple Lines

Text as seen in human documents may contain many characters, even mul-
tiple lines and paragraphs. A special delimiter, the triple quote, is used when a 
string constant is to span many lines. This has been mentioned previously in the 
context of multi-line comments. The regular string delimiters will terminate the 
string at the end of the line. The triple quote consists of either of the two existing 



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 113

delimiters repeated three times. For example, to assign the first stanza of Byron’s 
poem “She Walks in Beauty” to the string variable poem, we would write the 
following code:

poem = '''She walks in beauty like the night
Of cloudless climes and starry skies,
And all that's best of dark and bright
Meets in her aspect and her eyes;
Thus mellow'd to that tender light
Which Heaven to gaudy day denies.'''

When poem is printed, the line endings appear where they were placed in the 
constant. This example is a particularly good one in that most poems require that 
lines end precisely where the poet intended.

Another example of a string that must be presented just as typed is a Python 
program. A program can be placed in a string variable using a triple quote:

program = """list = [1,2,4,7,12,15,21]
for i in list:
    print(i, i*2)"""

When printed, this string has the correct form to be executed by Python. In 
fact, the following statement executes the code in the string:

exec (program)

 3.1.6 For Loops Again

Earlier in this section, a for loop was written to print each character in the 
string. That loop was as follows:

for i in range(0, len(name)):
    print (name[i], end="")

Obviously, the string could have been printed using
print(name)

but it was being used as an example of indexing individual components within 
the string. The characters do not need to be indexed explicitly in Python; the loop 
variable can be assigned the value of each component:

for i in name:
    print (i, end="")



114  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

In this case, the value of i is the value of the component, not its index.  Each 
component of the string is assigned to i in turn, and there is no need to test for the 
end of the string or to know its length. This is a better way to access components 
in a string and can be used with all sequence types. Whether an index is used or 
the components are pulled out one at a time depends on the problem being solved; 
sometimes the index is needed, other times it is not.

 3.2 THE TYPE BYTES 
A string is a sequence of characters, a sequence being defined as a collection 

within which order matters. Strings are commonly used for communication be-
tween computers and humans: to print headings and values on the screen, and to 
read objects in character string form. Humans deal with characters very well. The 
type bytes represents a sequence of integers, albeit small ones. A bytes object of 
length 1 is an 8-bit integer, or a value between 0 and 255. A bytes object of length 
greater than 1 is a sequence of small integers. To be clear, if s is a string and b is 
a bytes object, then

s[i] is a character
b[i] is a small integer

A string constant (literal) is a sequence of characters enclosed in quotes. A 
bytes literal is a sequence of character enclosed in quotes and preceded by the 
letter “b.” Thus

'this is a string'

is a string, whereas
b'this is a string'

has type bytes. Any method that applies to a string also applies to a bytes object, 
but bytes objects have some new ones. In particular, to convert a bytes object to 
a string, the decode() method is used, and a character encoding should be given 
as the parameter. If no parameter is given, then the decoding method is the one 
currently being used. There are a few possible decoding methods (e.g., utf-8). To 
convert a bytes object b to a character string s, the following would work:

s = b.decode ("utf-8")

A question remains: why is the bytes type needed? The bytes type imple-
ments the buffer interface. Certain file operations require a buffer interface to 



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 115

accomplish their tasks. Anything read from some specific types of files will be of 
the type bytes, for example, as it has that interface. This will be discussed further 
in Chapters 5 and 8. Other than the buffer interface, the bytes type is very much 
like a string, and can be converted back and forth.

 3.3 TUPLES
A tuple is almost identical to a string in basic structure, except that it is com-

posed of arbitrary components instead of characters. The quotes cannot be used 
to delimit a tuple because a string can be a component, so a tuple is generally 
enclosed in parentheses. The following are tuples:
tup1 = (2, 3, 5, 7, 11, 13, 17, 19)  # Prime numbers under 20
tup2 = ("Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon")
tup3 = "hi", "ohio", "salut"

If there is only one element in a tuple, there should be a comma at the end:
tup4 = ("one",)
tup5 = "two",

That’s because it would not be possible otherwise to tell the difference be-
tween a tuple and a string enclosed in parentheses. Is (1) a tuple? Or is it simply 
the number 1? 

A tuple can be empty:
tup = ()

Because they are like strings, each element in a tuple has an index, and they 
begin at 0. Tuples can be indexed and sliced, just like strings.  

tup1[2:4] is (5, 7)

Concatenation is like that of strings, too:
tup4 = tup4 + tup5         # yields tup4 = ('one', 'two')

As is the case with strings, the index -1 gives the last value in the tuple, -2 
gives the second last, and so on. In the example above, tup2[-1] is “Carbon.” 
Also, like strings, the tuple type is immutable; this means that elements in the 
tuple cannot be altered. Thus, statements such as



116  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

tup1[2] = 6
tup3[1:] "bonjour"

are not allowed and will generate an error.

Tuples are an intermediate form between strings and lists. They are simpler 
to implement than list (which is lightweight) and are more general than strings.

Are tuples useful? Yes, it turns out, and part of their use is that they underlie 
other aspects of Python.

 3.3.1 Tuples in For Loops

Sequences can be used in a for loop to control the iteration and assign the 
loop control variable. Tuples are interesting in this context because they can con-
sist of strings, integers, or floats. The loop
for i in ("Hydrogen","Helium","Lithium","Beryllium",
          "Boron","Carbon"):

will iterate 6 times, and the variable i takes on the values in the tuple in the order 
specified. The variable i is a string in this case. In cases where the types in the 
tuple are mixed, the situation becomes more complicated.

Problem: Print the number of neutrons in an atomic nucleus.

Consider the tuple:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
       "Boron",5,"Carbon",6)

and the loop
for i in atoms:
    print (i)

This prints the following:
Hydrogen
1
Helium
2
Lithium
3
Beryllium
4



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 117

Boron
5
Carbon
6

The number following the name of the element is the atomic number of that 
element, the number of protons in the nucleus. In this case, the type of the vari-
able i alternates between string and integer. For elements with a low atomic num-
ber (less than 21), a good guess for the number of neutrons in the nucleus is twice 
the number of protons. The problem is that some of the components are strings 
and some are integers. The program should only do the calculation when it is in 
an iteration having an integer value for the loop variable, because a string cannot 
be multiplied by two. 

A built-in function that can be of assistance is isinstance. It takes a variable 
and a type name and returns True if the variable is of that type and False other-
wise. Using this function, here is a program that makes the neutron guess:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,"B
oron",5,"Carbon",6)
for i in atoms:
    if isinstance(i, int):
        j = i*2
        print ("has ", i, "protons and ", j, " neutrons.")
    else:
        print ("Element ", i)

In other words, in iterations where i is an integer as determined by isinstance, 
then i can legally be multiplied by 2 and the guess about the number of neutrons 
can be printed. 

Another way to solve the same problem is to index the elements of the tuple. 
Elements 0, 2, and 4 (even indices) refer to element names, while the others refer 
to atomic numbers. This code is as follows:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
       "Boron",5,"Carbon",6)
for i in range(0,len(atoms)):
    if i%2 == 1:
        j = atoms[i]*2
        print ("has ", atoms[i], "protons and ", j, 
               " neutrons.")
    else:
        print ("Element ", atoms[i])



118  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Note that in this case, the loop variable is always integer, and is not an ele-
ment of the tuple but is an index at which to find an element. That’s why the ex-
pression atoms[i] is used inside the loop instead of simply i as before.

 3.3.2 Membership

Tuples are not sets in the mathematical sense, because an element can belong 
to a tuple more than once, and there is an order to the elements. However, some 
set operations could be implemented using tuples by looking at individual ele-
ments (set union and intersection, for example). The intersection of two sets A 
and B is the set of elements that are members of A and also members of B. The 
membership operator for tuples is the key word in:

If 1 is in tuple1, the intersection of A and B, where A and B are tuples, is 
found using the following code:
for i in A:
 if i in B:
  C = C + i

The tuple C is the intersection of A and B. It works by taking each known 
element of A and testing to see if it is a member of B; if so, it is added to C.

Problem: What even numbers less than or equal to 100 are also perfect squares?

This could be expressed as a set intersection problem. The set of even num-
bers less than 100 could be enumerated (this is not actual code):

A = 2,4,6,8,10  … and so on  

Or could be generated within a loop:
A = ()                   # Start with an empty tuple
for i in range(0,51):    # for appropriate integers
    A = A + (i*2,)       # add the next even number 
                         # to the tuple
# Can't simply use A+i because i is integer, not a tuple.

Similarly, the perfect squares could be enumerated,
B = (4,9,16,25,36,49,64,81,100)

or, again, created in a loop:



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 119

B = ()
for i in range(0,11):
    B = B + ((i*i),)

Now set A can be examined, element by element, to see which members also 
belong to B:

C = ()
for i in A:
   if i in B:
      C = C + (i,)

The result is (0, 4, 16, 36, 64, 100).

Two important lessons are learned from this example. First, when construct-
ing a new tuple from components, one can begin with an empty tuple. Second, 
individual components can be added to a tuple using the concatenation operator 
+, but the element should be made into a tuple with one component before doing 
the concatenation.

 3.3.3 Delete

A tuple is immutable, meaning that it cannot be altered. Individual elements 
can be indexed but not changed or deleted.  What can be done is to create a new 
tuple that has new elements; in particular, deleting an element means creating a 
new tuple that has all of the other elements except the one being deleted.

Problem: Delete the element lithium from the tuple atoms, along with its 
atomic number.

Going back to the tuple atoms, deleting one of the components – in particu-
lar, Lithium – begins with determining which component Lithium is; that is, what 
is its index? Start at the first element of the tuple and look for the string Lithium, 
stopping when it is found.
for i in range(0, len(atoms)):
    if atoms[i] == "Lithium":     # Found it at location i
       break;
    else:
       i = -1                     # not found

Knowing the index of the element to be deleted, it is also known that all ele-
ments before that one belong to the new tuple and all elements after it do, too. The 



120  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

elements before element i can be written as atoms[0:i]. Each element consists of 
a string and an integer, and assuming that both are to be deleted means that the 
elements following element i are atoms[i+2:]. In general, to delete one element, 
the second half would be atoms[i+1:]. The end of the code snippet for deleting 
Lithium is as follows:

if i>=0:
    atoms = atoms[0:i] + atoms[i+2:]

The tuple atoms has not been altered so much as it has been replaced com-
pletely with a new tuple that has no Lithium component.

 3.3.4 Update

Again, because a tuple is immutable, individual elements cannot be changed.  
A new tuple can be created that has new elements; in particular, updating an ele-
ment means creating a new tuple that has all of the other elements except the one 
being updated, and that includes the new value in the correct position. 

Problem: Change the entry for Lithium to an entry for Oxygen.

An update is usually a deletion followed by the insertion or addition of a 
new component. A deletion was done in the previous section, so what remains 
is to add a new component where the old one was deleted. Inserting the element 
Oxygen in place of Lithium would begin in the same way as the simple deletion 
already implemented:
for i in range(0, len(atoms)):
    if atoms[i] == "Lithium":     # Found it at location i
        break;
else:
    i = -1                        # not found
Next, a new tuple for Oxygen is created:

newtuple = ("Oxygen", 8)

And finally, this new tuple is placed at location i while Lithium is removed:
if i>=0:
    atoms = atoms[0:i] + newtuple + atoms[i+2:]

However, an update may not always involve a deletion. If Lithium is not a 
component of the tuple atoms, then perhaps Oxygen should be added to atoms 
anyway. Where? How about at the end?



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 121

else:     # If i is -1 then the new tuple goes at the end
    atoms = atoms + newtuple

 3.3.5 Tuple Assignment

One of the unique aspects of Python is the tuple assignment. When a tuple is 
assigned to a variable, the components are converted into an internal form (that 
is, the one tuples always use). This is called tuple packing:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
       "Boron",5,"Carbon",6)

What is really interesting is that tuple unpacking can also be used. Consider 
the tuple:
srec = ('Parker', 'Jim', 1980, 'Math 550', 'C+', 'Cpsc 302', 
        'A+')

which is a tuple packing of a student record. It can be unpacked into individual 
variables in the following way:

(fname, lname, year, cmin, gmin, cmax, gmax) = srec

Which is the same as
fname = srec[0]
lname = srec[1]
year  = srec[2]
cmin  = srec[4]
gmin  = srec[5]
cmax  = srec[6]
gmax  = srec[7]

Of course, the implication is that N variables can be assigned the value of N 
expressions or variables simultaneously if both are written as tuples. Examples 
are as follows:

(a, b, c, d, e) = (1,2,3,4,5)
(f, g, h, i, j) = (a, b, c, d, e)

The expression
(f, g, h, i, j) = 2 ** (a,b,c,d,e)

is invalid because the left side of ** is not a tuple, and Python won’t convert 2 
into a tuple. Also,

(f, g, h, i, j) = (2,2,2,2,2) ** (a,b,c,d,e)



122  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

is invalid because ** is not defined on tuples, nor are other arithmetic opera-
tions. As with strings, + means concatenation, though, so (1,2,3) + (4,5,6) yields 
(1,2,3,4,5,6).

Exchanging values between two variables is a common thing to do. It’s an es-
sential part of a sorting program, for example. The exchange in many languages 
requires three statements because a temporary copy of one of the variables has to 
be made during the swap:

temp = a
a = b
b = temp

Because of the way that tuples are implemented, this can be performed in one 
tuple assignment:

(a,b) = (b,a)

This is a little obscure, even to experienced programmers. A Java program-
mer could see what was meant, but initially, the rationale would not be obvious. 
This statement deserves a comment such as “perform an exchange of values us-
ing a tuple assignment.”

 3.3.6 Built-in Functions for Tuples

As examples for the table below, use the following:
T1 = (1,2,3,4,5)
T2 = (-1,2,4,5,7)

Table 3.2
Tuple Methods and their explanations

Function Explanation
(What Is Returned?)

Example

len(T1) Gives the number of compo-
nents that are members of T1.

len(T1) == 5

max(T1) Returns the largest element 
that is a component of T1. 

max(T1) == 5

max(T2) == 7
min(T1) Returns the smallest element 

that is a component of T1.
min(T1) == 1
min(T2) ==  -1



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 123

In addition, tuples can be compared using the same operators as for integers 
and strings. The comparison is done on an element-by-element basis, just as it 
is with strings. In the example above, T1>T2 because at the first location where 
the two tuples differ (the initial component) in the element in T1 is greater than 
the corresponding element in T2. It is necessary for the corresponding elements 
of the tuple to be comparable; that is, they need to be of the same type. So if the 
tuples t1 and t2 are defined as

t1 = (1, 2, 3, "4", "5")
t2 = (-1,2,4,5,7)

then the expression t1>t2 is not allowed. A string cannot be compared against 
an integer, and element 3 of t1 is a string, whereas element 3 of t2 is an integer.

 3.4 LISTS 
One way to think of a Python list is that it is a tuple in which the components 

can be modified. They have many properties of an array of the sort one might 
find in Java or C, in that they can be used as a place to store things and have ran-
dom access to them; any element can be read or written. They are often used as 
one might use an array, but have a greater natural functionality.

Initially a list looks like a tuple, but uses square brackets to delimit it.
list1 = [2, 3, 5, 7, 11, 13, 17, 19]  # Prime numbers under 20
list2 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
list3 = ["hi", "ohio", "salut"]

A list can be empty:
list4 = []

and because they are like tuples and strings, each element in a list has an index, 
and they begin (as usual) at 0. Lists can be indexed and sliced, as before:

list1[2:4] is [5, 7]

The concatenation is like that of strings, too:
list6 = list1 + [23, 31]  

yields [2, 3, 5, 7, 11, 13, 17, 19, 23, 31]



124  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Negative values index from the end of the string. However, unlike strings and 
tuples, individual elements can be modified. So

list1[2] = 6

results in list1 being [2, 3, 6, 7, 11, 13, 17, 19]. Also,
list3[1:] = "bonjour"

results in list3 taking the value oops; it becomes
 ['hi', 'b', 'o', 'n', 'j', 'o', 'u', 'r']. 

That’s because a string is a sequence, too, and this string consists of seven 
components. Each component of the string becomes a component of the list. If 
the string “bonjour” is supposed to become a single component of the list, then it 
needs to be done this way:

list3[1:] = ["bonjour"]

The other components of list3 are sequences, and now so is the new one. 
However, integers are not sequences, and the assignment

list1[2] = [6,8,9]

results in the value of list2 being
[2, 3, [6, 8, 9], 7, 11, 13, 17, 19]

There is a list within this list; that is, the third component of list1 is not an 
integer, but is a list of integers. That’s legitimate, and works for tuples as well, but 
may not be what is intended.

Problem: Compute the average (mean) of a list of numbers.

The mean is the sum of all numbers in a collection divided by the number of 
numbers. If a set of numbers already exists as a list, calculating the mean might 
involve a loop that sums them followed by a division. For example, assuming that 
list1 = [2, 3, 5, 7, 11, 13, 17, 19]:

mean = 0.0
for i in list1:
    mean = mean + i
mean = mean/len(list1)

A list can be used in a loop to define the values that the loop variable i takes on, 
a similar situation to that of a tuple. A second way to do the same thing would be



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 125

mean = 0.0
for i in range(0,len(list1)):
    mean = mean + list1[i]
mean = mean/len(list1)

In this case, the loop variable i is an index into the list and not a list element, 
but the result is the same. Python lists are more powerful than this, and making 
use of the extensive power of the list simplifies the calculation:

mean = sum(list1) / len(list1)

The built-in function sum calculates and returns the sum of all of the ele-
ments in the list. That was the purpose of the loop, so the loop is not needed at all. 
The functions that work for tuples also work for lists (min, max, len), but some 
of the power of lists is in the methods it provides.

 3.4.1 Editing Lists

Editing a list means to change the values within it, usually to reflect a new 
situation to be handled by the program. The most obvious way to edit a list is to 
simply assign a new value to one of the components. For example,
list2 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
list2[0] = "Nitrogen"
print (list2)

results in the following output:

[‘Nitrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

This substitution of a component is not possible with strings or tuples. It is 
possible to replace a single component with another list:
list2 = ["Hydrogen","Helium","Lithium","Beryllium",
         "Boron","Carbon"]
list2[0] = ["Hydrogen", "Nitrogen"]

results in
list2 = [['Hydrogen','Nitrogen'],'Helium','Lithium',
          'Beryllium','Boron','Carbon']



126  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 3.4.2 Insert

The insert method is not normally what is thought of as an insertion. We use 
the insert method to place new components within a list. This method places a 
component at a specified index; that is, the index of the new element will be the 
one given. To place “Nitrogen” at the beginning of list2, which is index 0,
list2.insert(0, "Nitrogen")

The first value given to insert, 0 in this case, is the index at which to place the 
component, and the second value is the thing to be inserted. Inserting “Nitrogen” 
at the end of the list would be accomplished by
list2.insert(len(list2), "Nitrogen)

However, consider this:
list2.insert(-1, "Nitrogen)

Will this insert “Nitrogen” at the end? No. At the beginning of the statement, 
the value of list2[-1] is “Carbon.” This is the value at index 5. Therefore, the in-
sert of “Nitrogen” will be at index 5, resulting in

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Nitrogen’, ‘Carbon’]

 3.4.3 Append

Another way to add something to the end of a list is to use the append method:
list2.append("Nitrogen")

Results in

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’, ‘Nitrogen’]

Remember, the + operation only concatenates a list to a list, so the equivalent 
expression involving + is

list2 = list2 + ["Nitrogen"]

 3.4.4 Extend

The extend method does almost the same things as the + operator. With the 
definitions

a = [1,2,3,4,5]
b = [6,7,8,9,10]



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 127

print (a+b)
a.extend(b)
print(a)

The output is

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

However, if append has been used instead of extend above,
a = [1,2,3,4,5]
b = [6,7,8,9,10]
print (a+b)
a.append(b)
print(a)

The result would have been

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 2, 3, 4, 5, [6, 7, 8, 9, 10]]

 3.4.5 Remove

The remove method does what is expected: it removes an element from the 
list. But unlike insert, for example, it does not do it using an index; the value to 
be remove is specified. 
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
list1.remove("Helium")

results in the list1 being [‘Hydrogen’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]. 
Unfortunately, if the component being deleted is not a member of the list, then an 
error occurs. There are ways to deal with that, or a test can be made for trying to 
delete an item:
if "Nitrogen" in list1:
    list1.remove("Nitrogen")

If there is more than a single instance of the item being removed, then only 
the first one is removed.



128  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 3.4.6 Index

When discussing tuples, we noted that the index method looked through the 
tuple and found the index at which a specified item occurred. The index method 
for lists works in the same way. 
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
print (list1.index("Boron"))

prints “4,” because the string “Boron” appears at index 4 in this list (starting from 
0, of course). If there is more than one occurrence of “Boron” in the list, then the 
index of the first one (i.e., the smallest index) is returned. If the value is not found 
in the string, then an error occurs. It might be appropriate to check:
if "Boron" in list1:
    print (list1.index("Boron"))

 3.4.7 Pop

The pop method is effectively the reverse or inverse of append. It removes 
the last item (i.e., the one with the largest index) from the list. If the list is empty, 
then an error occurs. For  example,
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
list1.pop()
print (list1)

prints the result

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’]

To avoid the error that can occur if the list is empty, simply check to see that 
the length of the list is greater than zero before using pop:
if len(list1) > 0:
    list1.pop()

The method is called pop because it represents a way to implement the opera-
tion of the same name on a data structure called a stack. 



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 129

 3.4.8 Sort

This method places the components of a list into ascending order. We use the 
list1 variable that has been used so often for the following code:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
list1.sort()
print(list1)

The result is

[‘Beryllium’, ‘Boron’, ‘Carbon’, ‘Helium’, ‘Hydrogen’, ‘Lithium’]

which is in alphabetic order. The method sorts integers and floating point num-
bers, as well. Strings and numbers cannot be mixed, though, because they cannot 
be compared. So
list2 = ["Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
         "Boron",5]
list2.sort()

results in an error that is something like 
    list2.sort()
TypeError: unorderable types: int() < str()

The meaning of this error should be clear. Things of type int (integer) and 
things of type str (string) cannot be compared against each other and so cannot 
be placed in a sensible order if mixed. For sort to work properly, all of the ele-
ments of the list must be of the same type. It is always possible to convert one 
type of thing into another, and in Python converting an integer to a string is ac-
complished with the str() function; a string is converted into an integer using 
int(). str(3) would result in “3,” and int(“12”) is 12. An error will occur if it is 
not possible, so int(12.2) will fail.

If each element of a list is itself a list, it can still be sorted. Consider the fol-
lowing list:
z = [["Hydrogen",3],["Hydrogen",2],["Lithium",3],
     ["Beryllium",4],["Boron",5]]

When sorted this becomes:
[['Beryllium',4],['Boron',5],['Hydrogen',2],['Hydrogen',3],
 ['Lithium',3]]



130  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Each component of this list is compatible with the others, consisting of a 
string and an integer. Thus, they can be compared against each other. Notice that 
there are two entries for hydrogen: one with a number 2 and one with a number 3. 
The sort method arranges them correctly. A list is sorted by individual elements 
in sequence order, so the first thing tested would be the string. If those are the 
same, then the next element is checked. That’s an integer, so the component with 
the smallest integer component will come first.

 3.4.9 Reverse

In any sequence, the order of the components within it is important. Revers-
ing that order is a logical operation to provide, but may not be used very often. 
One instance where it can be important is after a sort. The sort method always 
places components into ascending order. If they are supposed to be in descend-
ing order, then the reverse method becomes valuable. As an example, consider 
sorting the list q:
q = [5, 6, 1, 5, 4, 9, 9, 1, 6, 3]
q.sort()

The value of q at this point is 

[1, 1, 3, 4, 5, 5, 6, 6, 9, 9]

To place this list in descending order, the reverse method is used:
q.reverse()

and the result is 

[9, 9, 6, 6, 5, 5, 4, 3, 1, 1]

It is hard to say whether ascending order is needed more often than descend-
ing order. Names are often sorted smallest first (ascending), but dates are more 
likely to require more recent dates before later ones (descending).

 3.4.10 Count

The count method is used to determine how many times a potential compo-
nent of a list actually occurs. It does not return the number of elements in the list 
– that job is done by the len function. We use the list q as an example:



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 131

q = [5, 6, 1, 5, 4, 9, 9, 1, 6, 3]
print (1,q.count(1), 2, q.count(2), 3, q.count(3), 99, 
q.count(99))

This code results in the output

            1 2             2 0             3 1           99 0

where the spacing is enhanced for emphasis. This says that there are 2 instances 
of the number 1 (1,2) in the list, zero instances of 2 (2,0), one instance of the num-
ber 3 (3,1), and none of 99 (99,0).

 3.4.11 List Comprehension

Two mechanisms were discussed for creating a list of items. The first is to use 
constants, as in the list q in the previous section. The second appends items to a 
list, and this could be done within a loop. Making a list of perfect squares could 
be done like this:

t = []
for i in range(0,10):
    t = t + [i*i]

which creates the list [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]. This kind of approach is 
common enough that a special syntax has been created for it in Python – the list 
comprehension.

The basic idea is simple enough, although some specific cases are compli-
cated. In the situation above involving perfect squares, the elements in the list are 
some function of the index. When that is true, the loop, index, and function can 
be given within the square brackets as a definition of the list. The list t could be 
defined as

tt = [i**2 for i in range(10)]

The for loop is within the square brackets, indicating that the purpose is to 
define components of the list. The variable i here is the loop variable, and i**2 is 
the function that creates the elements from the index. This is a simple example of 
a list comprehension.

We create random integer values with the following code: 
tt = [random.randint(0,100) for i in range(10)]



132  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

We can put the first six elements in all uppercase letters, as well:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
ss = [i.upper() for i in list1]

This is a very effective way to create lists, but it does depend on having a 
known connection between the index and the element.

 3.4.12 Lists and Tuples

A tuple can be converted into a list. Lists have a greater functionality than 
tuples; that is, they provide more operations and greater ability to represent data. 
However, they are more complicated and require more computer resources. If 
something can be represented as a tuple, then it is likely best to do so. A tuple is 
designed to be a collection of elements that as a whole represent some more com-
plicated object, but that individually are perhaps of different types. This is rather 
like a C struct or Pascal record. A list is more often used to hold a set of elements 
that all have the same type, more like an array. This is a good way to think of the 
two types when deciding what to use to solve a specific problem.

Python provides tools for conversion. The built-in function list takes a tuple 
and converts it into a list; the function tuple does the reverse, taking a list and 
turning it into a tuple. For example, converting list1 into a tuple involves the fol-
lowing code:

tuple1 = tuple(list1)
print(tuple1)

This code yields

(‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’)

This is seen to be a tuple because of the “(“ and “)” delimiters. The reverse 
operation

v = list(tuple1)
print(v)

prints the text line

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

and the square brackets indicate this is a list.



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 133

 3.4.13 Exceptions

Exceptions are the usual way to check for errors of indexing and membership 
in lists. The error is allowed to occur, but an exception is tested and handled in the 
case where, for example, an item being deleted is not in the list.

Problem: Delete the element Helium from a list.

Earlier, as an example of the remove method, a program snippet was written 
to delete the element Helium from a list of elements. 
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
if "Helium" in list1:
    list1.remove("Helium")

Because the list list1 may not have Helium as one of the components a check 
was made before an attempt to delete it. An attempt to delete an element from a 
list where the element does not appear in that list results in an AttributeError.  
Rather than perform an explicit test, a Python programmer would more likely use 
an exception here. The error can be caught as follows:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
try:
    list1.remove("Helium")
except:
   print ('Can't find Helium')

The advantage of this over allowing the error to occur is that the program can 
continue to execute.

Problem: Delete a specified element from a list.

Given the same list, read an element from the keyboard and delete that ele-
ment from the list. The basic code is the same, but now the string is entered and 
could be anything at all. It’s easier to test a program when it can be made to fail on 
purpose. The name is entered using the input function and is used as the param-
eter to remove. Now it is possible to test all of the code in this program without 
changing it. First, here is the program:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]



134  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

s = input("Enter:")
try:
    list1.remove(s)
except:
   print ('Can't find ', s)
print (list1)

Properly testing a program means executing all of the statements that com-
prise it and ensuring that the answer given is correct. In this case, first delete an 
element that is a part of the list. Try Lithium. Here is the output:

Enter: Lithium

[‘Hydrogen’, ‘Helium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

This is correct. These are the statements that were executed in this instance:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
s = input("Enter:")
try:
    list1.remove(s)  # This was successful
print (list1)

Now try to delete “Oxygen.” The output is

Enter: Oxygen

Can’t find Oxygen

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

This is correct. These statements were executed:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
         "Carbon"]
s = input("Enter:")
try:
    list1.remove(s)    # this was not successful
except:
   print ('Can't find ', s)
print (list1)

All of the code in the program has been executed and the results checked 
for both major situations. For any major piece of software this kind of testing is 



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 135

exhausting, but it is really the only way to minimize the errors that remain in the 
final program.

 3.5 SET TYPES
Something of type set is an unordered collection of objects. An element can 

only be a member of a given set once, so in that sense it is much like a mathemati-
cal set. In fact, that’s the point. Because a set is unordered operations, indexing 
and slicing are not provided. Python does support membership (is), size (len()), 
and looping on membership (for i in set).

Mathematical sets have certain specific, well-defined operations, and those 
are available on a Python set also.

Subset set1 < set2 means set1 is a true subset of s2.
Intersection  set1 & set2 creates a new set containing members in common with 

both.
Union set1 | set2 creates a new set with all elements of both.
Difference set1-set2 creates a new set with members that are not in both.
Equality set1==set2 is true if both sets contain only the same elements.

Creating a new object of type set is a matter of specifying either that it is a set 
or what the elements are. One way is to use the {} syntax:

set1 = {1,3,5,7,9}

or to use the constructor
set2 = set(range(1, 10))

which gives the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. Therefore,

set1<set2 is True

set1 & set2 is {9, 1, 3, 5, 7}   (Note: Order does not matter to a set.)

set1 | set2 is {1, 2, 3, 4, 5, 6, 7, 8, 9}

set2 – set1 is {8, 2, 4, 6}

A new element can be added to a set using add():
set1.add(11)



136  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

and removed using remove():
set1.remove(11)

or discard():
set1.discard(11)

If the element being removed is not in the set, then an error will occur (Key-
Error) when remove() is called, but not with discard(). This should be tested 
first or be placed in an except statement.

All of the examples so far involve integers belonging to a set, but other types 
can belong as well: floating point numbers, strings, and even tuples (not lists). For 
example, the following are legal sets:

{"a", "e", "i", "o", "u"}
{"cyan", "yellow", "magenta"}
{(2,4), (3,9), (4,16), (5,25), (6,36), (7,49)}

 3.5.1 Example: Craps

Craps is a dice game, and it commonly involves betting on the outcome. The 
player (shooter) rolls two dice. If, on the first roll (pass), a total of 7 or 11 is ob-
tained, then the shooter wins. An initial roll of 2, 3, or 12 loses immediately. Any 
other roll is called the point. In that case, the shooter continues to roll the dice. If 
a 7 is obtained, then the shooter loses, and if the point number is rolled, then the 
shooter wins. The shooter continues to roll until on or the other occurs. One way 
to implement this game in Python is to use sets.

Elements of the sets are the values on each die, which is to say one roll. There 
are two dice, so a total of 36 combinations exist. A single roll is a tuple, such as 
(1,1) or (3,4). There are only 12 distinct sums of two dice, and multiple ways to 
achieve them. A sequence named roll is created that contains a set for each pos-
sible value, and that set contains all of the ways that the value can be obtained. 
For instance, there are two ways to roll a 3, so

roll[3] = {(1,2), (2,1)}

Initially, a set is created for each possible roll of a pair of dice and then is 
initialized as described:



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 137

from random import *

roll = list(range(0,13))      # Create the empty list
for i in range(1,13):         # and fill with empty sets.
    roll[i] = set()

for i in range (1,7):          # Now for each possible roll
    for j in range (1,7):      # of two dice, add that roll
        k = i+j                # to the element of roll for
        roll[k].add( (i,j) )   # that value (sum of the 
                               # dice)

Now roll[i] contains all of the ways to roll a value of i. In particular, roll[7] 
contains all ways to roll a 7 and roll[11] contains all ways to roll an 11. Thus, all 
of the rolls that win on the first pass can be placed in a single set, the union of 
roll[7] and roll[11]:

winner = roll[7] | roll[11]

Similarly, the rolls that will lose for the shooter on the first pass are as fol-
lows:

loser = roll[2] | roll[3] | roll[12]

If any other roll is thrown, then that becomes the point. Roll the die amount 
to get a random number between 1 and 6, inclusive, or

die1 = randrange(1,7)
die2 = randrange(1,7)

Remember that randrange() produces a number less than the second param-
eter. Given this roll, the point is the set roll[die1+die2]. Continuing the program 
from the die rolls:
val = (die1,die2)               # A tuple, the current roll
print ("Shooter rolls ", val)   
if val in winner:               # Is this tuple a winner?
    print ("The shooter wins!")
elif val in loser:              # Is it a loser?
    print ("The shooter loses")
else:
    point = roll[die1+die2]     # Define the point set
    print (die1+die2, " is your point.")



138  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Now the dice are rolled repeatedly. If the roll is in the point set, then the 
shooter wins. If the roll is a 7 (in the set roll[7]), then the player loses. Otherwise 
the shooter rolls again.
while True:                 # Repeat until a win or 
                            #loss happens
    die1 = randrange(1,7)   # Roll the dice
    die2 = randrange(1,7)
    val = (die1, die2)      # val is a tuple
    print ("Rolls ", val)
    if val in roll[7]:      # Any 7 roll loses
        print ("The shooter loses!")
        break
    if val in point:        # Rolling the 'point' wins.
        print ("The shooter makes the point. A winner!")
        break

In a real craps game, this entire process is repeated, and bets are placed on 
each individual game as to whether the player will win or lose.

 3.6 SUMMARY
A variable can have a type, which could be a list or sequence of other, simpler 

things. Using variables having these types is an essential part of writing useful 
and effective code. Python offers strings, tuples, and lists as objects that consist 
of multiple parts. They are called sequence types.

A string is a sequence of characters. The word sequence implies that the or-
der of the characters within the string matters, and that is true of a string. Strings 
most often represent the way that communication between a computer and a hu-
man takes place. A string can be indexed to see what character is in any position 
(e.g., s[i]), can be searched for a string that occurs with it, can have characters 
concatenated to it, and can be used in many other useful operations. If a string s 
contains an integer, then int(s) yields that integer, and str(i) creates a string from 
an integer, i.

A tuple is almost identical to a string in basic structure, except that it is com-
posed of arbitrary components instead of characters. Examples are tup1 = (2, 3, 
5) and tup2 = (“Hydrogen”,“Helium”,“Carbon”). A tuple can contain mixed 
type, such as integers and strings: tup3 = (“star”, 1, “planet”, 2). An element of 



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 139

a tuple cannot be altered, so it is said to be immutable, although concatenation is 
possible.

A list is like a tuple but is not immutable, so individual elements can be modi-
fied. A list uses square brackets as a delimiter, instead of parentheses as used for a 
tuple. Changing an element involves indexing it, so if list1 is a list then list1[2] =  
6 modifies element 2 of that list.

A set is an unordered collection of objects. An element can be almost any 
type, but can only occur in a set once. This mimics a mathematical set. Elements 
can be added and removed, and the set operations union, intersection, and differ-
ence can be performed.

Exercises

For the exercises below, assume the following definitions:
str1 = "okra is the closest thing to nylon i've ever eaten."
str2 = "pull the string, and it will follow wherever you 
        wish."
str3 = "let out a little more string on your kite."
str4 = "every string is a different color, a different 
        voice."
vowels = 'aeiou'
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Boron",5,
       "Carbon",6, "Oxygen",8)

 1. What is printed by the following code snippets?    
 a. for i in range(0,len(str3)):

     print (str3[i], end=’’)

 b. for for i in range(0,len(str3)):
      print (i, end=’’)

 c. for i in range(0,len(str3)):
     print (str2[i], end=’’)

 d. for i in str3:
     print (i, end=’’)

 e. for i in str3:
     if i in vowels:
        print(i, end=’’)



140  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 f. for i in str1:
    if not(i in vowels):
        print(i, end=’’)

 2. Construct a loop that prints out all characters of str4 that correspond to a 
vowel in str3. Note: the two strings are different lengths.

 3. A Caesar cypher is a way to transmit a secret message. When encoding a 
message, each character is replaced by one that is a fixed distance further 
along the alphabet. If that distance is 6, for example, the letter “a” would be 
replaced by “g,” which is 6 positions further along. The characters at the end 
wrap around to the beginning, so “z” is “f.” Write some Python code that 
encodes str1 in this way. Ensure that it works by decrypting the following 
string:
“varr znk yzxotm, gtj oz corr lurruc cnkxkbkx eua coyn.”

Ans: uqxg oy znk iruykyz znotm zu terut o’bk kbkx kgzkt.

 4. Write a Python snippet that creates two tuples from the single tuple atoms: one 
named elements, which contains only the names, and one called numbers, 
which contains the atomic numbers of the elements in the tuple atoms.

 5. Write a Python program that reads numbers from the keyboard and appends 
them to a tuple. Stop the process when a negative number is entered and then 
print the tuple that was created.

 6. A deck of playing cards consists of 52 items: each one has one of four suits 
(clubs, diamonds, hearts, and spades) and within each suit values from 1-10, 
and the jack, queen, and king. Write a Python program that creates a deck of 
cards, shuffles them, and prints out the result.

 7. Write a Python program that reads names (single words) one at a time from a 
keyboard and deletes them from a list named names where they are already 
elements of that list. If the name is not already a member of the list, then add 
it. Typing the word “quit” terminates the program.

 8. Assume that a string named temp exists and has a value. Write Python code 
that prints temp backwards.

 9. A palindrome is a phrase (a string) that reads the same forwards and 
backwards. The name Hannah is a palindrome; so is Ogopogo, the name of a 
monster that lives in lake Okanogan. Write a Python program that determines 
whether a given string is a palindrome.



 Chapter  3  ·  Sequences:  Str ings,  Tuples ,  and Lis ts   ■ 141

 10. Most examples of palindromes contain spaces and punctuation, and these 
characters are ignored when deciding whether the phrase is palindromic. 
So is case. Thus, the phrase “I prefer pi” is a palindrome. With these 
considerations in mind, write a Python program that determines whether a 
string is a palindrome.

Notes and Other Resources

Built-in types: https://docs.python.org/3.4/library/stdtypes.html?highlight=set#set

Python strings: https://docs.python.org/3/library/string.html

Rules of Craps: http://www.bigmcasino.com/learn-more/learn-to-play-craps/
what-are-the-basic-rules-of-craps/

 1. David Mertz (2003). Text Processing in Python, Addison Wesley Professional, 
ISBN-13: 978-0321112545.

 2. David Makinson (2012).  Sets, Logic and Maths for Computing, Springer; 
2nd ed. ISBN-13: 978-1447124993.

 3. J. D. Oldham (2005). “What happens after Python in CS1?” Journal of 
Computing Sciences in Colleges, 20(6), 7–13.





■ ■ ■ ■ ■

In this chapter

There is a large and useful set of functions built in to Python. These are 
sometimes simply there for the using, like print and input, and sometimes are 
part of a module that must be imported, and like random. However large this col-
lection of functions is, it is impossible that it will include everything that every 
programmer needs. At some point, there will be a need to create a function that 
does something new, and Python should permit this.

Why would a programmer want to create a function of their own? It is partly 
a principle of “reduce, re-use, or recycle.” Functions are all about code re-use. If 
some section of code can be invoked as a function instead of being repeated many 
times, then there will be less typing involved. It is also to support more correct 
programs: a small code unit like a function can be very thoroughly tested and 
nearly guaranteed to be correct. It is also to promote the use of working code: 
once a function is tested, it can be placed in a collection of code (module) and 
used again instead of being re-written many times.

4chaPter

functions

4.1  Function Definition: Syntax and Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2 Function Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.3 Recursion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.4 Creating a Python Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.5  Program Design Using Functions–The Game of Nim  . . . . . . . . . . . . . . . . . . 178

4.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



144  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A function is really just some code that has a name, and can be executed 
simply by invoking that name. It usually represents some task that has to be done 
fairly frequently, but that’s not a requirement. Some functions are invoked (or 
called) only once. In this context a function is a way to break up a long piece of 
code into many shorter pieces which, as has been pointed out, are easier to test 
and maintain. 

A function should also have one single task, or at least one main task. That 
task should be represented in the function name.  A function named maximum 
should have the task of locating the maximum of something; a function named 
cosine should calculate the cosine of an angle. A function named wilma tells 
another programmer who is reading the code nothing about what the program is 
doing, and if a function named cosine computes the square root of a number, then 
it is not just uninformative, but misleading. There is a social compact between 
programmers that says that you should be as clear as possible about what your 
code is doing.

The fact that many functions return a value has been skipped over, but it is a 
key part of the function construct. The code within the function has a purpose, 
and often that purpose is concentrated in the return value. However it works, 
and whatever the code looks like, the purpose of the cosine function is to return 
a single value that is the mathematical cosine of a given angle. The nature of the 
function is encapsulated in that value. There are some functions that do not ex-
plicitly return a value; such a function might be called to print an error message 
or draw a graphical object in a window. Even if it is not specifically declared in 
the definition, all functions return something. If that something is not defined, 
then the function returns a value called None.

How can functions be declared and used in Python?

 4.1  FUNCTION DEFINITION: 
SYNTAX AND SEMANTICS

Unlike in the cases of if statements or for statements, a function definition 
does not involve the word “function.” As an example of a simple definition in 
Python, imagine a program that needs a function to print twenty # characters on 
a line. It could be defined as follows:



 Chapter  4  ·  Funct ions   ■ 145

def pound20 ():
    for i in range(0,20):
        print ("#", end="")

The word def always begins the definition of a function. This is followed by 
the name of the function, in this case, pound20, because the function prints 20 
pound characters (also known as a hash character or octothorpe). Then comes the 
list of parameters, which can be thought of as a tuple of variable names. In this 
case, the tuple is empty, meaning that nothing is passed to the function. Finally, 
we use the : character that defines a new suite that comprises the code belonging 
to the function. Now, the code is indented one more level, and when the indenta-
tion reverts to the original level, the function definition is complete.

Calling this function is a matter of using its name as a statement or in an ex-
pression, being careful to always include the tuple of the parameters. Even when 
the tuple is empty, it helps distinguish a function from a variable. A call to this 
function would be as follows:

pound20 ()

Figure 4.1
The syntax of a function definition.

The result is that 20 # characters are printed on one line of the output console.

A function can be given or pass one or more values that will determine the 
result of the function. A function cosine, for example, would be passed an angle, 
and that angle would be used to compute the cosine. Each call to cosine passing 
a different value can yield a different result. In the case of the function that prints 
pound characters it might be useful to pass it the number of pound characters to 



146  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

print. It should not be called pound20 anymore because it does not always print 
20 characters. It is called poundn this time:

def poundn (ncharacters):
    for i in range(0,ncharacters):
        print ("#", end="")

The variable ncharacters that is given in parentheses after the function name 
is called a parameter or an argument, and indicates the name by which the func-
tion refers to the value passed to it. This name is known only inside of the func-
tion, and while it can be modified within the function, this modification does not 
have any bearing on anything outside. The call to poundn must now include a 
value to be passed to the function:

poundn (3)

When this call is performed, the code within poundn begins executing, and 
the value of ncharacters is 3, the value that was passed. It prints 3 characters and 
returns. A subsequent call to poundn could be passed a different number, perhaps 
8, and then ncharacters would take on the value 8 and the function would print 
8 characters. It will print as many characters as requested through the parameter

 4.1.1 Problem: Use the function poundn to Draw a Histogram

In Chapter 2, a simple histogram was created from some print statements and 
loops. The same code was repeated many times, one for each histogram bar. As it 
happens, the character used to draw the histogram bars was the pound character, 
so the function poundn could be used as a basis for a histogram program. Here 
is the output that is desired:

Earnings for WidgetCorp for 2016
   Dollars for each quarter   
 ==============================
Q1: ########      190000
Q2: ################      340000
Q3: ##########################################      873000
Q4: ####################      439833

Each pound character represents $20,000, and there are four variables that 
hold the profit for each of the four quarters: q1, q2, q3, and q4. Given these  



 Chapter  4  ·  Funct ions   ■ 147

criteria, a solution using poundn would call the function four times, once for 
each quarter:
print ("Earnings for WidgetCorp for 2016")
print ("   Dollars for each quarter   ")
print (" ==============================")
q1 = 190000  # The dollar amounts for profits
q2 = 340000  # in each of the four quarters of 2016
q3 = 873000
q4 = 439833

print ("Q1: ", end="")
poundn(int(q1/20000))  # Raw dollar amount is divided by 
                       # 20000 to yield the number of 
                       # characters.
print ("     ", q1)

print ("Q2: ", end="")
poundn (int(q2/20000))
print ("     ", q2)

print ("Q3: ", end="")
poundn (int(q3/20000))
print ("     ", q3)

print ("Q4: ", end="")
poundn (int(q4/20000))
print ("     ", q4)

Each profit value must be scaled by dividing by 20,000, just as happened be-
fore. In this case, the resulting value is passed to poundn, indicting the number 
of #s to draw.

 4.1.2 Problem: Generalize the Histogram Code for Other Years

Any company will need to do financial reports every year at least. Hiring a 
programmer to do this task on a computer is not a reasonable thing to do, because 
computers can be made to do this job in a very general way. For example, given 
that each year will have four quarters and each quarter will have a profit, why not 



148  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

store these data as a list? Each year will have one list containing four items, and 
the name of the variable could initially be related to the year:

profit2016 = [190000, 340000, 873000, 439833]

The profit for the first quarter is profit2016[0], the second quarter is prof-
it2016[1], and so on. Using this variable means passing one of the elements of the 
list to poundn instead of a simple variable, but that is fine, it’s a legal expression. 
So drawing the characters for the first quarter would be done with the following 
code:

poundn(int(profit2016[0]/20000))

Now consider what else gets printed.  To print everything for the first quarter 
the code was:

print ("Q1: ", end="")
poundn(int(profit2016[0]/20000))
print ("     ", q1)

This means that the label on the left, Q1, the parameters to poundn, and the 
actual value of the profit are needed. All of these are available and can be pro-
vided within a simple loop. Assuming that the loop variable i runs from 0 to 3, 
the code within that loop that duplicates the previous example can be constructed 
one line at a time. In each iteration, the quarter is i+1 because i starts at 0; convert 
that to a string and build the label “Q1 :” from it:

print (Q1: ", end="")
print ("Q"+str(i+1)+": ", end="")

This is probably the trickiest part. The label string is constructed from the 
letter “Q,” a number between 1 and 4 indicating the quarter, and for the terminal 
string  “:” . These are simply concatenated together in the print statement. 

Now call poundn as before:
poundn(int(profit2016[i]/20000))
poundn(int(profit2016[i]/20000))

Finally, print the raw dollar value on the right:
print ("     ", q1)
print ("     ", profit2016[i])



 Chapter  4  ·  Funct ions   ■ 149

Using this plan, the entire histogram can be drawn using only four state-
ments:

for i in range(0,4):
    print ("Q"+str(i+1)+": ", end="")
    poundn(int(profit2016[i]/20000))
    print ("     ", profit2016[i])

There is another step. Since this will be done every year, create a function 
that takes the data and the year as parameters. This function is called pqhisto-
gram:

def pqhistogram (profit, year):
    print ("Earnings for WidgetCorp for "+str(year))
    print ("   Dollars for each quarter   ")
    print (" ==============================")
    for i in range(0,4):
        print ("Q"+str(i+1)+": ", end="")
        poundn(int(profit[i]/20000))
        print ("     ", profit[i])

The function pqhistogram produces the same output as did the original pro-
gram, and does so more generally and concisely. This function also brings to 
light two new ideas. One is that it is possible to pass more than one parameter to 
a function.  The second is that it is possible to call a function from within another 
function; in this case, poundn is called from inside of pqhistogram.  The call is 
made after defining the list that contains the profit values:

profit2016 = [190000, 340000, 873000, 439833]
pqhistogram (profit2016, 2016)

These parameters are positional; that is, the first value passed will corre-
spond to the first name in the parameter list, and the second to the second. This 
is the default for functions with any number of parameters.

NOTE
A def statement is not a declaration. Such things are foreign to Python. 
A def statement executes, and it creates a new function each time it is 
executed.  



150  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 4.2 FUNCTION EXECUTION
When a function is called, the first statement of that function starts to ex-

ecute, and it continues, statement by statement, through the code until the last 
statement of that function or until it returns prematurely. When that last state-
ment executes, then the execution continues from the place where it was called. 
As a function can be called from many places, Python has to remember where 
the function was called so that it can return. Parameters can be expressions or 
variables, and normally differ each time the function is called. Functions can also 
access variables defined elsewhere.

Most importantly, functions return values. 

 4.2.1 Returning a Value

All functions return a value, and as such can be treated within expressions 
as if they were variables having that value. Assuming the existence of a cosine 
function, it could be used in an expression in the usual ways. For example,

x = cosine(x)*r
if cosine(x) < 0.5:
     print (cosine(x)*cosine(x))

In these cases, the value returned by the function is used by the code to cal-
culate a further value or to create output. The expression “cosine(x)” resolves to 
a value of some Python type.  The most common purpose of a function is to cal-
culate a value, which is then returned to the calling part of the program and can 
possibly be used in a further calculation. But how does a function get its value? 
In a return statement.

The return statement assigns a value and a type to the object returned by the 
function. It also stops executing the function and resumes execution at the loca-
tion where the function was called. A simple example would be to return a single 
value, such as an integer or floating-point number:

return 0

returns the value 0 from a function. The return value could be an expression:
return x*x + y*y



 Chapter  4  ·  Funct ions   ■ 151

A function has only one return value, but it can be of any type, so could be a 
list or tuple that contains multiple components:
return (2,3,5,7,11)
return ["fluorine","chlorine","bromine","iodine",
        "astatine"]

Expressions can include function calls, so a return value can be defined in 
this way as well; for example

return cosine(x)

One of the simplest functions that can be used as an example is one that cal-
culates the square of its parameter.  

def square (x):
    return x*x

The print statement
print (square(12))

prints

144

Interestingly, the statement
print(square(12.0))

prints

144.0

The same function returns an integer in one case and a float in the other. 
Why? Because the function returns the result of an expression involving its pa-
rameter, which in one case was integer and in the other was real. This implies 
that a function has no fixed type and can return any type at all. Indeed, the same 
function can have return statements that return an integer, a float, a string, and a 
list independent of type of the parameter passed:
def test (x):  # Return one of four types depending on x
    if x<1:
        return 1
    if x<2:
        return 2.0
    if x<3:
        return "3"



152  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    return [1,2,3,4]

print (test(0))
print (test(1))
print (test(2))
print (test(3))

The output is as follows:
1
2.0
3
[1, 2, 3, 4]

Problem: Write a function to calculate the square root of its parameter.

Two thousand years ago, the Babylonians had a way to calculate the square 
root of a number. They understood the definition of a square root: that if y*y = x, 
then y is the square root of x. They figured out that if y was an over-estimate to 
the true value of the square root of x, then x/y would be an underestimate. In that 
case, a better guess would be to average those two values: the next guess would 
be y1 = (y + x/y)/2. The guess after that would be y2 = (y1+x/y1)/2, and so on. 
At any point in the calculation, the error (difference between the correct answer 
and the estimate) can be found by squaring the guess yi and subtracting x from it, 
knowing that yi*yi is supposed to equal x.

The function therefore starts by guessing what the square root might be. It 
cannot be 0, because then x/y would be undefined. x is a good guess. Then, we 
construct a loop based on the expression y2 = (y1+x/y1)/2, or more generally, yi+1 
= (yi+x/yi)/2 for iteration i. At first, run this loop a fixed number of times (here, 
we use 20 times).  
def root (x):                # Compute the square root of x
    y = x                    # First guess: too big, 
                             # probably
    for i in range(1, 20):   # Iterate20 times
        y = (y + x/y)/2.0    # Average the prior guess 
                             # and x/y
    return y                 # Return the last guess

This correctly computes the square root of 2 to 15 decimal places. This is 
probably more than is necessary, meaning that the loop is executing more times 
than it needs to. In fact, changing the 20 iterations to only 6 still gives 15 correct 



 Chapter  4  ·  Funct ions   ■ 153

places. This is exceptional accuracy: if the distance between the Earth and the 
sun were known this accurately, it would be within 0.006 inches of the correct 
value. The Babylonians were very clever.

What’s the square root of 10000? If the number of iterations is kept at 6, then 
the answer is a very poor one indeed: 323.1. Why? Some numbers (large ones) 
need more iterations than others. To guarantee that a good estimate of the square 
root is returned, an estimate of the error should be used. When the error is small 
enough, then the value is good enough. The error is x-yi*yi. The function should 
not loop a fixed number of times, but instead should repeat until the error is less 
than, say, 0.0000001. This function is named roote, where the “e” is for “error.”
# Computer the square root of X to 7 decimal places
def roote (x):
y = x                # y is supposed to be the square 
                     # root of x, so
e = abs(x-y*y)       # the error is x – y*y
while e > 0.0000001: # repeat while the error is bigger 
       # than 0.0000001
  y = (y + x/y)/2.0  # New estimate for square root
  e = abs(x-y*y)     New error value
return y

This function will return the square root of any positive value of x to within 
7 decimal places. It should check for negative values, though.

4.2.2 Parameters

A parameter can be either a name, meaning that it is a Python variable (ob-
ject) of some kind, or an expression, meaning it has a value but no permanence in 
that it can’t be accessed later on – it has no name. Both are passed to a function as 
an object reference. The expression is evaluated before being given to the func-
tion and its type does not matter in so far as Python will always know what it is; 
its value is assigned a name when it is passed. Consider, for example, the function 
square in the following context:

...
pi = 3.14159
r = 2.54
c = square (2*pi*r)
print ("Circumference is ", c)



154  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The assignments to pi and r are performed, and when the call to square oc-
curs, the expression 2*pi*r is evaluated first. Its value is assigned to a temporary 
variable, which is passed as the parameter to square. Inside the function, this 
parameter is named x, and the function calculates x squared and returns it as a 
value.  It is as if the following code executes:
pi = 3.14159
r = 2.54
# call square(2*pi*r)
parameter1 = 2*pi*r   # set the parameter value
x = parameter1        # First parameter is named x 
                      # inside SQUARE
returnvalue = x*x     # Code within SQUARE, return x*x
c = returnvalue       # assign result of function call to c
print ("Circumference is ", c)

This is not how a function is implemented, but shows how the parameter is 
effectively passed; a copy is made of the parameters and those are passed. If the 
expression 2*pi*r was changed to a simple variable, then the internal location of 
that variable would be passed.

Passing more structured objects works the same way, but they can behave 
differently. If a list is passed to a function, then the list itself cannot be modified, 
but the contents of the list can be. The list is assigned another name, but it is the 
same list. To be clear, consider a simple function that edits a list by adding a new 
element to the end:

def addend  (arg):
    arg.append("End")

z = ["Start", "Add", "Multiply"]
print (1, z)
addend(z)
print (1, z)

The list associated with the variable z is changed by this function call. It now 
ends with the string “End.” The output from this is

1 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ]
2 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ, ꞌEndꞌ]

This is the resulting output because the name z refers to a thing that consists 
of many other parts. The name z is used to access them, and the function cannot 



 Chapter  4  ·  Funct ions   ■ 155

modify the value of z itself. It can modify what z indicates; that is, the compo-
nents. Think of it, if it makes it simpler, as a level of indirection. A book can be 
exchanged between two people. The receiver writes a not in it and gives it back. 
It’s the same book, but the contents are now different.

A small modification to addend() illustrates some confusing behavior. In-
stead of using append to add “End” to the list, use the concatenation operator, +:

def addend (arg):
    arg = arg + ["End"]

z = ["Start", "Add", "Multiply"]
print (1, z)
addend(z)
print (2, z)

The output is as follows:
1 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ]
2 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ]

The component “End” is not a part of the list z anymore.  It was made a com-
ponent inside of the function, but it’s not present after the function returns. This 
is because the statement

arg = arg + ["End"]

creates a new list with “End” as the final component, and then assigns that new 
list as a value to arg. This represents an attempt to change the value that was 
passed, which cannot happen: changing the value of arg will not change the value 
of the passed variable z. Within the function arg, there is a new list with “End” 
as the final component. Outside, the list z has not changed.

The way that Python passes parameters is the subject of a lot of discussion 
on Internet blogs and lists. There are many names given for the method used, 
and while the technique is understood, it does differ from the way parameters 
are passed in other languages and is confusing to people who learned another 
language like Java or C before Python. It is important to remember that the actual 
value of an object reference being passed cannot be assigned a new value inside 
the function, but the things that it references or points to can be modified.

Multiple parameters are passed by position; the first parameter passed is 
given to the first one listed in the function declaration, the second one passed to 



156  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

given to the second one listed in the declaration, and so on. They are all passed in 
the same manner: as object references.

 4.2.3 Default Parameters

It is possible to specify a value for a parameter in the instance that it is not 
given one by the caller. That may not seem to make sense, but the implication is 
that it will sometimes be passed explicitly and sometimes not. When debugging 
code it is common to embed print statements in specific places to show that the 
program has reached that point. Sometimes it is important to print out a variable 
or value there, other times, it is just to show that the program got to that statement 
safely. Consider a function named gothere:

def gothere (count, value):
    print ("Got Here: ",count, " value is ", value)

then throughout the program, calls to gothere would be sprinkled with a different 
value for count every time; the value of count indicates the statement that has 
been reached. This is a way of instrumenting the program, and can be very useful 
for finding errors. The code being debugged may look like the following:
year = 2015         # The code below is not especially 
                    # meaningful
a = year % 19   # and is an example only.
gothere(1, 0)
b = year // 100
c = year % 100
gothere (2, 0)
d = (19 * a + b - b // 4 - ((b - (b + 8) // 25 + 1) 
     // 3) + 15) % 30
e = (32 + 2 * (b % 4) + 2 * (c // 4) - d - (c % 4)) % 7
f = d + e - 7 * ((a + 11 * d + 22 * e) // 451) + 114
gothere (3, f)
month = f // 31
day = f % 31 + 1    
gothere(4, day)
return date(year, month, day)

The output is as follows:

Got Here:  1  value is  0



 Chapter  4  ·  Funct ions   ■ 157

Got Here:  2  value is  0
Got Here:  3  value is  128
Got Here:  4  value is  5
2015 4 5
The program reaches each of the four checkpoints and prints a proper mes-

sage.  The first two calls to gothere did not need to print a value, only the count 
number. The second parameter could be given a default value, perhaps None, and 
then it would not have to be passed. The definition of the function would now be 
as follows:

def gothere (count, value=None):
    if value:
        print ("Got Here: ",count, " value is ", value)
    else:
        print (Got Here: ", count)

The output this time is

Got Here:  1
Got Here:  2
Got Here:  3  value is  128
Got Here:  4  value is  5
2015 4 5
The assignment within the parameter list gives the name value a special 

property. It has a default value. If the parameter is not passed, then it takes that 
value; otherwise it behaves normally. This also means that gothere can be called 
with one or two parameters, which can be very handy. It is important to note that 
the parameters that are given a default value must be defined after the ones that 
are not. That’s because otherwise it would not be clear what was being passed. 
Consider the (illegal) definition:

def wrong (a=1, b, c=12):
…

Now call wrong with two parameters:
wrong (2,5)



158  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

What parameters are being passed? Are they a and b? Are they a and c? It is 
impossible to tell. A legal definition would be

def right (b, a=1, c=12)

This function can be called as
right (19)

in which case b=19, a=1, and c=12. It can be called as
right (19, 20)

in which case b=19, a=19, and c=12. It can be called as
right (19, 19, 19)

in which case b=19, a=19, and c=19. But how can it be called passing b and c but 
not a?  

right (19, c=19)

In this case, a has been allowed to default. The only way to pass c without 
also passing a is to give its name explicitly so that the call is not ambiguous.

 4.2.4 None

Mistakes happen when writing code. They are unavoidable, and much time 
is spent getting rid of them. One common kind of mistake is to forget to assign a 
return value when one is needed. This is especially likely when there are multiple 
points in the function where a return can occur. In many programming languag-
es, this will be caught as an error, but in Python it is not. Instead, a function that 
is not explicitly assigned a return value will return a special value called None.

None has its own type (NoneType), and is used to indicate something that has 
no defined value or the absence of a value. It can be explicitly assigned to vari-
ables, printed, returned from a function, and tested. Testing for this value can be 
done using the following:

if x == None:

or with
if x is None:



 Chapter  4  ·  Funct ions   ■ 159

 4.2.5 Example: The Game of Sticks

This is a relatively simple combinatorial game that involves removing sticks 
or chips from a pile.  There are two players, and the game begins with a pile of 
21 sticks. The first player begins by removing 1, 2, or 3 sticks from the pile. Then 
the next player removes some sticks, again 1, 2, or 3 of them. Players alternate in 
this way. The player who removes the last stick wins the game; in other words, if 
you can’t move, you lose.

Functions are useful in the implementation of this game because both play-
ers do similar things. The action connected with making a move, displaying the 
current position, and so on are the same for the human player and the computer 
opponent. The current status or state of the game is simply a number, the number 
of sticks remaining in the pile. When that number is zero, then the game is over, 
and the loser is whichever player is supposed to move next. The code for a pair 
of moves, one from the human and one from the computer, might be coded in 
Python as follows:
displayState(val)         # Show the game board
userMove = getMove()            # Ask user for their move
val = val – userMove    # Make the move
print ("You took ", userMove, " sticks leaving ", val)
if gameOver(val):
    print("You win!")
else:
    move = makeComputerMove (val) # Calculate the 
                                  # computer's move
    print ("Computer took ", move, " sticks leaving ", val)
    if gameOver(val):
        print("Computer wins!")

The current state of the game is displayed first, and then the human player is 
asked for their move. The move is simply the number of sticks to remove. When 
the move has been made, if there are no sticks left, then the human wins. Other-
wise, the computer calculates and makes a move; again, if no sticks remain then 
the game is over, in this case the computer being the winner. This entire section 
of code needs to be repeated until the game is over, of course. 

There are four functions that must be written for this version: displayState(), 
getMove(),  gameOver(), and makeComputerMove().



160  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The function displayState() prints the current situation in the game. Specifi-
cally, it prints one “O” character for each stick still in the pile, and does so in rows 
of 6. At the beginning of the game, this function would print the following:

O O O O O O 
O O O O O O 
O O O O O O 
O O O

which is 21 sticks. The code is as follows:
def displayState(val):
    k = val  # K represents the number of 
                  # sticks not printed
    while k > 0: # So long as some are not printed …
        if k >=6: # If there is a whole row, print it.
            print ("O O O O O O ", end="")
            k = k – 6  # Six fewer sticks are unprinted
        else:
            for j in range(0,k):  # Print the remainder
                print ("O ", end="")
            k = 0                 # None remain
        print ("")

Note that the function is named for what it does. It does only one thing, it 
modifies no values outside of the function, and it serves a purpose that is needed 
multiple times. These are all good properties of a function.

The function getMove() prints a prompt to the user/player asking for the 
number of sticks they wish to remove and reads that value from the keyboard, 
returning it as the function value. Again, this function is named for what it does 
and performs a single, simple task. One possibility for the code is as follows:
def getMove ():
     n = int(input ("Your move: Take away how many?  "))
     while n<=0 or n>3:
        print ("Sorry, you must take 1, 2, or 3 sticks.")
        n = int(input ("Your move: Take away how many?  "))
     return n

The function gameOver() is trivial, but lends structure to the program. All it 
does is test whether the value of val, the game state variable, is zero. There may 
be other end-of-game indicators that could be tested here.



 Chapter  4  ·  Funct ions   ■ 161

def gameOver (state):
    if state == 0:
        return True
    return False

Finally, the most complicated function, getComputerMove(), can be at-
tempted. Naturally, a good game presents a challenge to the player, and so the 
computer should win the game it if can. It should not play randomly if that is 
possible. In the case of this particular game, the winning strategy is easy to code.  
The player to make the final move wins, so if there are 1, 2, or 3 sticks left at the 
end, the computer would take them all and win. Forcing the human player to have 
4 sticks makes this happen. The same is true if the computer can give the human 
player (i.e., leave the game in the state of having 8, 12, or 16 sticks). If the human 
moves first (as it does in this implementation), the computer tries to leave the 
game in a state where there are 16, 12, 8, or 4 sticks left after its move. The code 
could be written as follows:

def getComputerMove (val):
    n = val % 4
    if n<=0:
        return 1
    else:
        return n

There some of the details needed to finish this game properly are left as an 
exercise.

 4.2.6 Scope

A variable that is defined (first used) in the main program is called a global 
variable and can be accessed by all functions if they ask for it. A variable that 
is used in a function can be accessed by that function and is not available in the 
main program. It’s called a local variable. This scheme is called scoping: the 
locations in a program where a variable can be accessed is called its scope. It’s is 
easy to understand unless a global variable has the same name as a local one, in 
which case the question is: “what value is represented by this name?” If a vari-
able named “x” is global and a function also declares a variable having the same 
name, this is called aliasing, and it can be a problem. 



162  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

In Python, a variable is assumed to be local unless the programmer specifi-
cally says it is global. This is done in a statement. For example,

global a, b, c

tells Python that the variables named a, b, and c are global variables, and are 
defined outside of the function. This means that after the function has completed 
execution, those variables can still be accessed by the main program and by any 
other functions that declare them to be global.

Global variables are thought by some programmers to be a bad thing, but in 
fact they can be quite useful and can assist in the generality of the functions that 
are a part of the program. A global variable should represent something that is 
known to the whole program. For instance, if the program is one that plays check-
ers or chess, then the board can be global. There is only one board, and it is es-
sential to the whole program. The same applies to any program that has a central 
set of data that many of the functions need to modify.

An example of central data is the game state in a video game. In the Sticks 
game program, the function getComputerMove() takes a parameter – the game 
state. There is only one game state, and although for some games it can involve 
many values, in this case, there is only one value: the number of sticks remaining. 
The function can be re-written to use the game state variable val as a global in 
the following way:

def getComputerMove ():
    global val
    n = val % 4
    if n<=0:
        return 1
    else:
        return n

Similarly, the function that determines whether the game is over could use 
val as a global variable. It would be poor stylistic form to have getMove() use a 
global variable for the user’s move. The name does imply that the function will 
get a move, and so that value should be returned as an explicit function return 
value.

If a variable is named as global, then that name cannot be used in the func-
tion as a local variable, as well.  It would be impossible to access it, and it would 
be confusing. It is a common programming error to forget to declare a variable 



 Chapter  4  ·  Funct ions   ■ 163

as global. When this happens, the variable is a new one local to the function, and 
starts out with a value of 0. Thus, no syntax error is detected, but the calculation 
will almost certainly be incorrect. It is a good idea to identify global variables 
in their names. For example, place the string “_g” at the end of the names of all 
global variables. The game state above would be named val_g, for example. This 
would be a reminder to declare them properly within functions.

Other kinds of data that could be kept globally would include lists of names, 
environment or configuration variables, complex data structures that represent a 
single underlying process, and other programming objects that are referred to as 
singletons in software engineering. In Python, because they have to be explicitly 
named in a declaration there is a constant reminder of the variable’s scope.

 4.2.7 Variable Parameter Lists

The print() function is interesting because it seems to be able to accept any 
number of parameters and deal with them.  The statement

print(i)    

prints the value of the variable i, and 
print (i,j,k)

prints the value of all three variables i, j, and k.  Is this some sort of special thing 
reserved for print() because Python knows about it? No. Any function can do 
this. Consider a function,

fprint ( "format string", variable list)

where the format string can contain the characters “f” or “i” in any combination. 
Each instance of a letter should correspond to a variable passed to the function 
in the variable list, and it will be printed as a floating point if the corresponding 
character in the format string is “f” and as an integer if it is “i.” The call

fprint("fi", 12, 13)

prints the values 12 and 13 as a float and an integer, respectively. How can this be 
written as a Python function?

The function starts with the following definition:
def fprint (fstring, *vlist)



164  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The expression *vlist represents a set of positional parameters, any number 
of them. This is preceded by a specific parameter fstring, which is the format 
string. A simple test of this would be to just print the variables in the list to see 
if it works:

def fprint (fstring, *vlist)
    for v in vlist:
        print v

When called as fprint(“”, 12, 13, 14,15), this prints
12
13
14
15

The list of variables after the * character is turned into a tuple, which is 
passed as the parameter, so the *vlist counts as a single parameter with many 
components.   

To finish the original function, we have to remove characters from the front 
of the format string, match them against a variable, and print the result as the 
format character dictates. We need the same loop as above, but we also need an 
index for the format string that increases each time through and is used to indi-
cate the format. It is also important that the number of format items equals the 
number of variables:
def fprint (s, *vlist):
    i = 0
    if len(s) != len(vlist):    # Format string and variable 
                                 # list agree?
        print ( "There must be the same number of variables 

as format items.")
        return
for v in vlist:                 # For each variable
      if s[i] == "f":          # Is the corresponding 
                               # format 'f'?
         fv = float(v)          # Yes. Make it a float
         print (fv, " ", end="")   # … and print it
      elif s[i] == "i":            # Is the corresponding
                                   # format 'i'?
           iv = int(v)             # Yes. Make it an
                                   # integer



 Chapter  4  ·  Funct ions   ■ 165

           print(iv, " ", end="")  # … and print it
      else:
           print ("?", end="")     # Don't know what this 
                                   # is. Print it
        i = i + 1

All of the known positional parameters must come before the variable list; 
otherwise the end of the variable list cannot be determined. There is a second 
complication, that being the existence of named parameters. Those are indicated 
by a parameter such as **nlist. The two * characters indicate a list of named 
variables.  

 4.2.8 Variables as Functions

Because Python is effectively untyped and variables can represent any kind 
of thing at all, a variable can be made to refer to a function; not the function name 
itself, which always refers to a specific function, but a variable that can be made 
to refer to any function. Consider the following functions, each of which does one 
trivial thing:

def print0():
    print ("Zero")
def print1():
    print ("One")
def print2():
    print ("Two")
def print3():
    print("Three")

Now make a variable reference one of these functions by means of an assign-
ment statement:
printNum = print1   # Note that there is no parameter
                    # list given

The variable printNum now represents a function, and when invoked, the 
function it represents will be invoked. So

printNum()

will result in the output 
One



166  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Why did the statement printNum = print1 not result in the function 
print1 being called? Because the parameter list was absent. The statement

printNum = print1()

results in a call to print1 at that moment, and the value of the variable printNum is 
the return value of the function. This is the essential syntactic difference: print1 
is a function value, and print1() is a call to the function. To emphasize this point, 
here is some code that allows the English name of a number between 1 and 3 to 
be printed:
if a == 1:
      printNum = print1  # Assign the function print1
                         # to printNum
elif a == 2:
      printNum = print2  # Assign the function print2
                         # to printNum
else:
      printNum = print3  # Assign the function print3 
                         # to printNum
 . . .
printNum()                  # Call the function represented 
                         # by printNum

There are more subtle uses in this case. Consider this use of a list
a = 1
printList = [print0, print1, print2, print3]
printNum = printList[a] 
printNum()

that results in the output
One

The final iteration of this is call the function directly from the list:
printList[1]()

This works because printList[1] is a function, and a function call is a function 
followed by (). This is overly complicated, and so it is rarely used. 

For those with an interest or need for mathematics, consider a function that 
computes the derivative or integral of another function. Passing the function to 
be differentiated or integrated as a parameter may be the best way to proceed in 
these cases.



 Chapter  4  ·  Funct ions   ■ 167

Example: Find the maximum value of a function

Maximizing a function can have important consequences in real life. The 
function may represent how much money will be made by manufacturing vari-
ous objects, how many patients can get through an emergency ward in an hour, or 
how much food will be grown with particular crops. If the function is easy to use, 
then there are many mathematically sound ways to find a maximum or minimum 
value, but if a function is hard to work with, then less analytical methods may 
have to be used. This problem proposes a search for the best pair of parameters to 
a problem that could be solved using a method called linear programming.

The problem goes like this: 

A calculator company produces a scientific calculator and a graphing 
calculator. Long-term projections indicate an expected demand of at 
least 100 scientific and 80 graphing calculators each day. Because of 
the limitations on the production capacity, no more than 200 scientific 
and 170 graphing calculators can be made daily. To satisfy a shipping 
contract, a total of at least 200 calculators much be shipped each day. 
If each scientific calculator sold results in a $2 loss, but each graphing 
calculator produces a $5 profit, how many of each type should be made 
daily to maximize net profits?

Let s be the number of scientific calculators manufactured and g be the num-
ber of graphing calculators. From the problem statement,

100 <= s <= 200
80 <= g <= 170

Also,

s + g  > 200,      or      g  >  200 - s
Finally, the profit, which is to be maximized, is as follows:

P = –2s + 5g

First, code the profit as a function:
def profit (s, g):
    return -2*s + 5*g



168  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A search through the range of possibilities will run through all possible val-
ues of s and all possible values of g; that is, s from 100 to 200 and g from 80 to 
170. The function is evaluated at each point and the maximum is remembered:
# Range for s is x0 .. x1
# Range for g is y0 .. y1
# s+g must be >= sum
def searchmax (f, x0, y0, x1, y1, sum):
    pmax = -1.0e12
    ps = -100
    pg = -100
    for s in range (x0, x1+1):       # For all possible s
        for g in range (y0, y1+1):   # For all possible g
            if s+g >= sum:           # Condition is ok?
                p = f (s, g)         # Calculate the
                                     # profit.
                if p>=pmax:          # Best so far?
                    pmax = p         # Yes.
                    ps = s           # Save it and 
                    pg = g           # the parameters
    return ( (ps, pg) )

Finally, the call that does the optimization calls the search function, passing 
the profit function as a parameter:

c = searchmax (profit, 100, 80, 200, 170, 200)
print (c)

The answer found is the tuple (100, 170), or s=100 and g = 170, which agrees 
with the correct answer as found by other methods. This is only one example of 
the value of being able to pass functions as parameters. Most of the code that does 
this is mathematical, but may accomplish practical tasks like optimizing perfor-
mance, drawing graphs and charts, and simulating real world events.

 4.2.9 Functions as Return Values

Just as any value, including a function, can be stored in a variable, any value, 
including a function, can be returned by a function. If a function that prints the 
English name of a number is desired, it could be returned by a function:
def print0():
    print ("Zero")
def print1():



 Chapter  4  ·  Funct ions   ■ 169

    print ("One")
def print2():
    print ("Two")
def print3():
    print("Three")

def getPrintFun (a):     # Return a function to print a 
                         # numeric value 0..3
  if a == 0:
     return print0       # Return the function print0
                         # as the result
  elif a == 1:
     return print1       # Return the function print1 
                         # as the result
  elif a == 2:
     return print2       # Return the function print2 
                         # as the result
  else:
     return print3       # Return the function print3 
                         # as the result

Calling this function and assigning it to a variable means returning a func-
tion that can print a numerical value:

printNum = getPrintFun(2) # Assign a function to printNum

and then
printNum()    # Call the function represented by printNum

results in the output
Two

The function printFun returns, as a value, the function to be called to print 
that particular number. Returning the name of the function returns something 
that can be called.

Why would any of these seeming odd aspects of Python be useful? Allowing 
a general case, permitting the most liberal interpretation of the language, would 
permit unanticipated applications, of course. The ability to use a function as a 
variable value and a return result are a natural consequence of Python having no 
specific type connected with a variable at compilation time. There are many spe-
cific reasons to use functions in this way. Imagine a function that plots a graph. 



170  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Being able to pass this function another function to be plotted is surely the most 
general way to accomplish its task. 

 4.3 RECURSION
Recursion refers to a way of defining things and a programming technique, 

not a language feature. Something that is recursive is defined at least partly in 
terms of itself. This seems impossible at first, but consider the case of a grocery 
list (not a Python list) of items:

milk, bread, coffee, sugar, peanut butter, cheese, jam

Each element in the list can be called an item, and represents something to be 
purchased at a grocery store. The smallest list is one having only a single element:

milk
Thus, a list can be simply an item. What else can it be? It appears to be several 

items separated by commas. One way to describe this is to say it can be an item 
followed by a comma followed by a list. The complete definition is, presuming 
that the symbol -> means “can be defined as,” is as follows:

list -> item           # list can be defined as an item

list -> item, list    # list can be defined as an item, a comma, and a list

In this way the list milk is defined as a list by the first rule. The list milk, 
bread is a list because it is an item (milk) followed by a comma followed by a list 
(bread). It is plain that a list is defined here in terms of itself, or at least in terms 
of a previous partial definition of itself.

When talking about functions, a function is recursive if it contains within 
it a call to itself. This is normally done only when the thing that it is attempting 
to accomplish has a definition that is recursive. Recursion as a programming 
technique is an attempt to make the solution simpler. If it does not, then it is inap-
propriate to use recursion. A problem some beginning programmers have with 
the ideas of a recursive function is that it appears that it does not terminate. Of 
course, it is essential that a function does return, and a program that never ends 
is almost always in error. The problem really is how to make certain that a chain 
of function calls terminates eventually.



 Chapter  4  ·  Funct ions   ■ 171

The following function will never return once called:
def recur1 (i)
 recur1(i+1)

print (i)

It will not result in any output, either. Why not?  Because the first thing it 
does is call itself, and always does so.  When it does, the next thing is does is call 
itself again, and then again, and so on. The following function, on the other hand, 
does terminate:

def recur2 (i)
 if i>0:
          recur2(i-1)

print (i)

When called, it checks its parameter i. If that parameter is greater than zero, 
then it calls itself with a smaller value of i, meaning that eventually i will become 
smaller than 0 and the chain of calls will stop. What will be printed? The first 
call to recur2 that does not end up calling itself is when i==0, so the first thing 
printed is 0. Then the function returns to the previous recursive call, which had 
to be where i == 1. The second thing printed will be 1, and so on, until it returns 
to the original call to the function with the original value of i, at which point it 
prints i. This is a trivial example of a recursive function, but it illustrates how to 
exit from the chain of calls: there must be a condition that defines the recursion. 
When that condition fails, the recursion ceases.

Each call to the function can be thought of as an instance of that function, and 
it will create all of the local variables that are declared within it. Each instance 
has its own copy of these, including its parameters, and each call returns to the 
caller as occurs with any other function call. When the recursive call to recur2() 
returns, the next thing to be done is (in this case) to print the parameter value. A 
call to recur2() passing the parameter 4 results in the following instances of that 
function being created:

recur2(4) i = 4   #  This is the function state, with parameter i 
given for this instance

  i>0 so call recur2(i-1) = recur2(3)        #  This is the code 
                                             # executed
    recur2(3) i = 3                          # State
    i>0 so call recur2(i-1) = recur2(2)      # Code executed
      recur2(2) i = 2                        # State



172  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

      i>0 so call recur2(i-1) = recur2(1)    # Code executed
        recur2(1) i = 1                      # State
        i>0 so call recur2(i-1) = recur2(0)  # Code executed
          recur2(0) i = 0                    # State
          i== 0 so recur2 is NOT called      # Code executed
          print(i) -> print(0)               #  Code executed , 
                                             # prints 0
          return                             # Code executed
        print(i) -> print(1)                 #  Code executed , 
                                             # prints  1
        return                               # Code executed   
      print(i) -> print(2)                   #  Code executed , 
                                             # prints   2
      return                                 # Code executed   
    print(i) -> print(3)                     #  Code executed , 
                                             # prints    3
    return                                   # Code executed 
  print(i) -> print(4)                       #  Code executed , 
                                             # prints     4
  return                                     # Code executed

By tracing through the statements that are executed in this way, it can be seen 
that the recursion does end, and the output or result can be verified.

One important use of recursion is in reducing a problem into smaller parts, 
each of which has a simpler solution than does the whole problem. An example of 
this is searching a list for an item. If names = [Adams, Alira, Attenbourough, 
…] is a Python list of names in alphabetical order, answer the question: “Does 
the name Parker appear in this list?” There is a built-in function that does this, 
but this example is a good teaching tool. The built-in function may also be slower 
than the solution that is devised here.

The function will return True or False when passed a list and a name. The 
obvious way to solve the problem is to iterate through the list, looking at all of the 
elements until the name being searched for is either found or it is not possible to 
find it any more (i.e., the current name in the list is larger than the target name). 
Another, less obvious way to conduct the search is to divide the list in half, and 
only search the half that has the target name in it. Consider the following names 
in the list:

… Broadbent    Butterworth  Cait  Cara Carling  Devers Dillan  Eberly  
Foxworthy …



 Chapter  4  ·  Funct ions   ■ 173

The name in the middle if this list is Carling. If the name being searched for 
is lexicographically smaller than Carling, then it must appear in the first half; 
otherwise it must appear in the second half. That is, if it is there at all. A recursive 
example of an implementation of this is as follows:
# Search the list for the given name, recursively.
def searchr (name, nameList):
    n = len(nameList)         # How many elements in this 
                              # list?
    m = n/2
    if name < nameList[m]:    # target name is in the first 
                              # half
        return searchr (name, nameList[0:m])  # Search the 
                                              # first half
    elif name > nameList[m]:  # target must be in the 
                              # second half
        return searchr (name, nameList[m:n]  #  Search the 
                                             # second half
    else:

        return True

If the name is in the list, this works fine. One way to think of this is that the 
function searchr() takes a string and a list as parameters and finds the name in 
the list if it’s there. The way it works is not clear from outside the function (with-
out being able to see the source) and should not matter. If the target is to be found 
in the first half of the list, for example, then call searchr() with the first half of 
the list.

searchr (name, nameList[0:m])

The fact that the call is recursive is not really concerning. How can the prob-
lem of a name not being in the list be solved?  

When the name is not in the list, the program will continue until there is but 
one item in the list. If that item is not the target, then it is not to be found. If n=1 
(only one item in the list) and nameList[0] is not equal to the target, then the 
target is not found in the list and the return value is False. The final program is 
as follows:  
def searchr (name, nameList):
    n = len(nameList)     # How many elements in this list?
    m = int(n/2)



174  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    if n==1 and nameList[0]!=name:  #  End of the recursive 
                                    # calls
        return False   #  Itꞌs not in this 
                                    # list.
    if name < nameList[m]:    #  target name is in the first 
                              # half
        return searchr (name, nameList[0:m])  #  Search the 
                                              # first half
    elif name > nameList[m]:   #  target must be in the 
                               # second half
       return searchr (name, nameList[m:n])  #  Search the 
                                             # second half
    else:
        return True

Many algorithms have fundamentally recursive implementations, meaning 
that the effective solution in the code involves a recursive function call. Many 
standard examples in beginning programming are not properly implemented 
recursively. Commonly encountered samples with a recursive solution include 
the factorial, which has a recursive definition but is not best implemented that 
manner, and any other basically linear technique (linear search, counting, and 
min/max finding) that does not do a reasonable subdivision.  Testing the first 
component, for example, and then recursively looking at the remaining elements 
is a poor way to use recursion. It would be much better to use a loop. Let’s write 
an example: find the maximum value in a given list. The non-recursive method 
(reasonable) is as follows:

def max (myList):
    max = myList [0]
    for I in range(1, len(myList)):
        if myList[i] > max:
            max = myList[i]
    return max

This is an effective way to find the largest value in a list and is easily under-
stood by a programmer reading the code.  Here is a recursive solution:

def maxr (myList):
    m1 = myList[0]
    if len(myList)>1:
        m2 = maxr (myList[1:])
    else:



 Chapter  4  ·  Funct ions   ■ 175

        return m1
    if m1 > m2:
        return m1
    else:
        return m2

This function works by subdividing the list into two parts, as is often done 
with a recursive solution. The idea is to compare the first element in the list with 
the maximum of the remainder of the list to see which is bigger. For this particu-
lar problem, this is not an obvious approach. It is less efficient and less obvious 
than the iterative version that preceded it. The use of recursion simplifies some 
problems, but it is not a universally applicable technique. Examples of useful 
recursive functions will be examined in later chapters.

 4.3.1 Avoiding Infinite Recursion

There is a limit to how many times a function can call itself without return-
ing, because each call uses up some amount of memory and memory is a finite 
resource. Usually, when this happens, a programming error has occurred and the 
function has slipped into an infinite recursion, in which it will continue to call it-
self without end. Recursion can be confusing to visualize and this sort of problem 
occurs frequently. How can it be avoided?

Programming the function correctly eliminates the problem, of course, but 
there are some basic rules that will avoid the problem at the early stages. Assum-
ing that global variables are not being referenced:

 1. A function that begins with a call to itself is always infinitely recursive. 
The first thing the function does is call itself, and no matter what the 
parameters are, it can never end.

 2. Every recursive call within a function must have a condition upon which 
that call will be avoided. The function may return sometime before the 
call is made, or perhaps the call happens within an if statement, but there 
must be such a condition. If it exists, it is expressible as a Boolean ex-
pression, and this should be placed in a comment near the recursive call. 
The call is suspect until this happens.

 3. Avoid passing a function to itself. The call to a parameter hides the fact 
that recursion is taking place.



176  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 4. It is possible to have a global variable that is a count of the depth of 
recursion. The function will increment this count whenever a recursive 
call is made and decrease it just before returning. If the count ever gets 
larger than a reasonable estimate of the maximum depth then the func-
tion could stop any more calls and back out, or an error message could 
be printed. 

 4.4 CREATING A PYTHON MODULE
In some of the examples given so far there is a statement at the beginning that 

looks like “import name.” The implication is that there are some functions that 
are needed by the program that are provided elsewhere, possibly by the Python 
system itself or perhaps by some other software developer. The idea of writing 
functions that can be re-used in a straightforward way is very important to the 
software development process. It means that no programmer is really alone; that 
code is available for doing things like generating random numbers or interfacing 
with the operating system or the Internet, and that it does not to be created each 
time. In addition, there is an assumption that a module works correctly. When a 
programmer builds a collection of code for their own use, it needs to be tested 
as thoroughly as possible, and from that time on it can be used in a package with 
confidence. If a program has errors in it, then look in the code for that program 
first and not in the modules. This makes debugging code faster.

What is a module? It is simply a function or collection of functions that reside 
in a file whose name ends in .py. Technically, all of the code developed so far 
qualifies as modules. Consider as an example the function from the previous sec-
tion that finds the maximum value in a list. Save the functions max() and maxr() 
in a file named max.py. Now create a new Python program named usemax.py 
and place it in the same directory as max.py. If the two files are in the same direc-
tory then they can “see” each other in some sense.

Here is some code to place in the file usemax.py:
import max
d = [12,32,76,45,9,26,84,25,61, 66, 1,2]
print ""MAX is"", max.max(d),"" MAXR is"", max.maxr(d))
if max.maxr(d) != max.max(d):
    print ""*** NOT EQUAL ***"")



 Chapter  4  ·  Funct ions   ■ 177

This program is just a test of the two functions to make certain that they re-
turn the same value for the same list, the variable d. Note two things:

 1. The statement import max occurs at the beginning of the program, 
meaning that the code inside this file is available to this program. Python 
looks inside this file for the function and variable names.

 2. When the function max() or maxr() is called, the function name is pre-
ceded by the module name (max) and a period. This syntax informs the 
Python system that the name maxr() (for example) is found in the mod-
ule max and not elsewhere.

The first time that the module is loaded into the Python program, the code in 
the module is executed. This allows any variable initializations to be performed. 
Henceforth, that code is not executed again, and functions within the module can 
be called knowing that the initializations have been performed.

The module could reside in the same directory as the program that uses it, 
but does not have to. The Python system recognizes a set of directories and paths 
and modules can be placed in some of those locations as well, making it easier 
for other programs on the same computer to take advantage of them. On the 
computer used to create the examples in this book, the directory C:\Python34\Lib 
can be used to store modules, and they will be recognized by import statements.

Finally, if the syntax max.maxr(list) seems a bit cumbersome, then it is pos-
sible to import specific names from the module into the program. Consider the 
following rewrite of usemax.py:

from max import max, maxr
d = [12,32,76,45,9,26,84,25,61, 66, 1,2]
print ("MAX is ", max(d), " MAXR is ", maxr(d))
if maxr(d) != max(d):
    print ("*** NOT EQUAL ****")

The statement from max import max, maxr instructs Python to recognize 
the names max and maxr as belonging to the module named max (i.e., as resid-
ing in the file named max.py). In that case, the function can be called by simply 
referencing its name.

There appears to be a name conflict with the package named max and the 
function named max, but in fact, there is no problem. It is not uncommon to find 
this sort of naming relationship (example: random.random()). The module name 



178  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

max refers to a file name, max.py. The function name max refers to a function 
within that file.

 4.5  PROGRAM DESIGN USING 
FUNCTIONS–THE GAME OF NIM

Nim is a game so old that its origins have been lost. It was likely invented in 
China, and it is one of the oldest games known. It was also one of the first games 
to have a computer or electronic implementation and has been the frequent sub-
ject of assignments in computer programming classes. This program will imple-
ment the game and play one side. The code serves as an example of how to design 
a computer program using functions and modularity - it is an example of a top-
down design.

The game starts with three rows of objects, such as sticks or coins, and there 
are a different number of objects in each row. In this version, there are 9, 7, and 
5 sticks, which are represented by the | character. A player may remove as many 
objects from one row as they choose, but they must remove at least one and must 
take them only from one row. Players take turns removing objects, and the player 
taking the final one is the winner.

Playing this game involves asking the user for two numbers: the row from 
which to remove sticks, and how many to remove.  The human player is prompted 
for the row, then the number. Then the computer removes some sticks (take its 
turn) and prints the new state. 

A list named val contains the number of sticks in each row. Initially,
val = [5, 7, 9]

This is the game state, and is critical to the game as it defines what moves are 
possible. Also, when the state is [0,0,0] then the game is over.

When the user choses to remove N sticks from row M, the action is
val[M] = val[M] - N

Of course, N and M must be tested to make certain that M is between 0 and 
2, and M is as large as val[M]. M defines the row chosen to remove sticks from, 
and N is the number of sticks to remove. A move can therefore be defined as a 
list [row, sticks]. 



 Chapter  4  ·  Funct ions   ■ 179

A program that uses functions should be built from the highest level of ab-
straction downwards. That is, the main program should be developed first, and 
should be expressed in terms of functions that do logical things, but that may not 
be designed or coded yet. The main program could look something like this:
val = [5, 7, 9]   # the game state: 5, 7, and 9 sticks
done = False   # Is the game over?
userMove = [-1, -1] #  A move is a row and a number of 
                    # sticks.
print ("The game of Nim.")
rules()                   # Print the rules for the game
while not done:           # Run until the game is over
    displayState(val)     # Show the game board
    prompt(userMove)      # Ask user for their move
    ok = legalMove (userMove, val)  #  Was the playerꞌs move 
                                    # OK?
    while not ok:
        print ("This move is not legal.")
        displayState(val)
        prompt(userMove)     # Ask user for their move
        ok = legalMove (userMove, val)
    makeMove (userMove)       # Make it
    if gameOver(val):
        print("You win!")
        break;
    print ("State after your move is ")  # display it.
    displayState(val)

This program is built using components (modules) that are not written yet, 
but that have a purpose that is defined by what the program needs. Those mod-
ules/functions are as follows:

rules()  - Print out the rules of the game.
displayState(v) - Print the game state (how many sticks in each row).
prompt()  - Ask the user for their move.
legalMove(r, n) - Is the move legal?
makeMove(r, n) - Make this move.

Using functions, the first thing that is needed is to display the game state. 
The program prints the number of sticks in each of the three rows, and does so 
in a graphical way, rather than just displaying the numbers on a console. Given 



180  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

the situation as described so far, the non-trivial function is displayState(), which 
prints the current state of the game – how many sticks in each row. It will be 
passed a list representing the current state.
def displayState(val):             # val is the list with
                                   # the state
    for j in range(0,3):           # there are 3 rows; 
                                   # print each one
        print (j+1, ": ", end="")  # Print the row number
        for i in range(0,val[j]):  # val[j] is the 
                                   # current row
            print ("| ",end="")    # print a '|' for each 
                                   # stick
        print("")                  # print an end of line

When called at the beginning of the game, here’s what the result of a call to 
this function would be:

1 : | | | | | 
2 : | | | | | | | 
3 : | | | | | | | | | 

This function does a single task, uses a parameter to guide it and make it 
more general, and is named for what it does. These are signs of a good function. 
Note that the first row is labeled “1,” but it is element 0 of the list. It is common 
in user interfaces to adapt to the standard human numbering scheme that begins 
with 1 instead of 0. When the user enters a row number, care must be taken to 
subtract 1 from it before using it as an index.

There is no required order for writing these functions, but the next one used 
in the program is prompt().  This asks the user to input a row and then reads a 
row number, then prompts the user to enter a number of sticks to remove and then 
reads that value, too. The two numbers are placed into a list that was passed so 
that the values can be returned to the caller.
def prompt (move):
  row =    input ("Your move: which row? ")  # Prompt for row & 
                                             # read it
  sticks = input ("           how many sticks?") # Prompt for 
                                                 # sticks & read 
# Convert row to integer and decrement to be from 0 to 2. 
  move[0] = int(row)-1                   # Assign to the list[0]
  move[1] = int(sticks)                  # Assign value to list[1]



 Chapter  4  ·  Funct ions   ■ 181

This function again does a simple task, uses a parameter, and is named ap-
propriately.

Next is the question “Is this move legal?” A move is legal if the row is be-
tween 0 and 2 inclusive, and if the number of sticks in that row is greater than or 
equal to the number of sticks to be removed. The function returns True or False.
def legalMove(move, state):
    row = move[0]   # Which row was requested?
    sticks = move[1]  # How many sticks
    if row<0 or row>2:  # Legal number of rows?
        return False  # No
    if sticks<=0 or sticks>val[row]:  # Legal number of 
                                      # sticks?
        return False                  # No
    return True   # Both were ok, so the 
     # move is OK.

Making a move involves decreasing the specified row by the specified num-
ber of sticks. This could have been done in legalMove() if it was acceptable to 
do multiple things in a function. Eventually, that will be necessary, but for now, 
a new function will be written, named makeMove(), that implements a specified 
play in the game.
def makeMove(move, state):
    row = move[0]   # Subtract move[1] sticks from
    sticks = move[1]  # those that are in row 
     # move[0].
# Place the new number of sticks in the state list
    state[row] = state[row]-sticks 

There is a strategy that permits a player to always win. It involves computing 
what amounts to a parity value and making a move to ensure that parity is main-
tained. Consider the initial state and the state after taking two sticks from row 1:

Row 1 = 5 =  0 1 0 1  row 1 = 3  =  0 0 1 1
Row 2 = 7 =  0 1 1 1   row 2 = 7   = 0 1 1 1
Row 3 = 9 =  1 0 0 1  row 3 = 9  =  1 0 0 1
      Parity       1 0 1 1             1 1 0 1 
The parity is determined by looking at each digit in the binary representation 

of the values. In each column (digit position), the parity bit for that column is 1 if 



182  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

the number of 1 bit in the column is odd and 0 if it is even. This can be calculated 
using the exclusive-OR operator, which is ^. The strategy in Nim is to make a 
move that makes the parity value 0. This is always possible if parity is not 0; in 
the situation above, the computer might remove 5 sticks from row 3 giving the 
following state:

row 1 = 3  =  0 0 1 1
row 2 = 7   = 0 1 1 1
row 3 = 4  =  0 1 0 0
    Parity        0 0 0 0
This is what the sketch does after every move the player makes: it makes all 

possible moves, computing the parity after each one. When the one with zero par-
ity is found, it makes that move. The function eval() calculates the current parity 
value as val[0]^val[1]^val[2].

NOTE
The computer always wins because the user always makes the first move. 
Alternating who moves first would make the gameplay fairer.

 4.5.1 The Development Process Exposed

In the introduction to the Nim program, we said that this was an example of 
top-down design. This means that the larger program, or the main program, is 
designed first. The question should be what are the steps involved in solving this 
problem? The answer to that question is written down in terms of functions that 
have not been written yet, but that have a known and required purpose within 
the solution. In the Nim game, it is known that the user’s move will have to be 
read from the keyboard and that the current state of the game will have to be dis-
played, so those two functions can be presumed to be important to the solution 
when sketching the main program.

Once the high-level part of the program has been devised, it can be typed in 
and tested. The functions that are needed but are not yet written can be coded as 
stubs: functions that do not implement their task but that are present and prevent 
syntax errors. The first try at a solution of this sort does not solve the problem, 
but is simply a step towards the solution. In the case of Nim, the very first step 
could be written as follows:



 Chapter  4  ·  Funct ions   ■ 183

Repeat
  Display the game
  Ask user for their move
  Make user's move
  Generate computer's move
  Make computer's move
Until someone wins
Display the winner

None of these steps are written as proper Python code, but that is acceptable 
for a first step. Translating this into Python comes next.
Done = false
while not done:               # Run until the game is over
    displayState()      # Show the game board
    prompt()              # Ask user for their move
    makeMove ()        # Make it
 if not gameOver(): # Computer move?
  makeComputerMove()# Determine computer's move
 done = gameOver()  # Is the game over?
printWinner()

At this point in the design, neither the data structures nor algorithms used in 
the solution have been devised. This is merely a sequence of steps that could lead 
to a program that works. The functions can now be written as stubs:
def displayState():  def prompt(): 
    print("Display state")     print("Enter move")

def makeMove():   def gameOver():
    print ("Make move")      if random.random()<0.2:
        return False
         return True

def makeComputerMove():  def printWinner():
    print ("compute a move")     print("The winner is:")

The output from this program might be as follows:
Display state
Enter move
Make move
Display state
Enter move



184  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Make move
compute a move
The winner is:

The exact output will be random, depending on what the return value of 
gameOver() is. This code can be thought of as one iteration of the solution or 
as a prototype. The next step is to refine the solution by implementing one of the 
stubs. Each time that happens, a set of decisions is made concerning the nature 
of the data structures used to implement the solution: the use of a list for the 
game state, for instance. Three integers could have been used instead, but once 
the decision is made about the approach, it should be used consistently unless it 
becomes infeasible.

Repeatedly implementing the stubs creates new prototypes, each one more 
functional than the one before. Some of the functions may require an application 
of this same process. Complex functions can be coded in terms of other stubs, 
and so on. The simpler functions, such as those that calculate based only on their 
parameter, should be completed first and should not involve permanent design 
choices.

A programming process of this kind can be thought of as iterative refine-
ment. After the first step, a complete program that compiles and runs should be 
refined. This can be very useful, especially when dealing with graphical user 
interfaces and games. The interface might well be complete before any real func-
tionality is present, and this permits a demonstration of the concept before the 
program is done.

 4.6  SUMMARY
Python allows a programmer to create a function that does something new. 

A function is code that has a name and can be executed simply by invoking that 
name. It usually represents some task that has to be done frequently. A function 
should also have one main task and that task should be represented in the func-
tion name (for example, maximum, square, or search).  Many functions return a 
value, and finding that value is frequently the purpose of the function (e.g., sine 
or cosine).

The name of a function can be used to call that function, but it can also be 
assigned to a variable, passed as a parameter to another function, or returned as 



 Chapter  4  ·  Funct ions   ■ 185

a value. A function can have variables that belong to it; they are called local vari-
ables and vanish after the function returns. They can also use variables defined 
outside of the function if they appear in a global statement.

A special value named None is used to represent no value, and it is returned 
by a function that does not explicitly return some other value. A module is a func-
tion or collection of functions that reside in a file whose name ends in .py. 

The use of functions can organize a computer program in a logical way. A 
program can be defined in terms of functions that are desired but not yet written, 
and then those functions can be defined as code or in terms of other functions. 
Functions are often named but are incomplete, and are called stubs – they permit 
the program to be compiled while still under development.

A function that calls itself is said to be recursive. Such functions can be very 
valuable in simplifying the code for some algorithms, especially ones in which 
some thing is actually defined in terms of itself, but care must be taken when 
programming to ensure that a recursive function always ultimately returns.

Exercises

 1.  Write a Python function that takes a tuple of numbers as a parameter and 
returns the location (index) of the maximum value found in that tuple.

 2.  Word processing systems sometimes need to shorten a word to make it fit 
on a line. Write a function that takes a string containing a single word and 
decides where to hyphenate it. A hyphen can occur before the endings -ing, 
-ed, -ate, -tion,  or -ment. It could also occur after a prefix: pre-, post-, para-, 
pro-, con-, or com-. Otherwise, place a hyphen somewhere in the middle of 
the word. The function should return a tuple containing the first and second 
half of the word split at the hyphen.

 3.  Pascal’s triangle is an arrangement of numbers in rows and columns such that 
each number in a row is the sum of the two numbers above it. An example is 
as follows:

1
1      1

1     2     1
1     3     3     1



186  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 Write a function triangle(n) that prints the first n rows of such a triangle. 
Extra marks will be given for proper indentation so it looks like a triangle.

 4.  Write a function that returns the value of a quadratic function at a particular 
x value. A quadratic is a polynomial of the form

ax2 + bx + c

 The function quad() is passed values for a, b, c, and x and returns the value 
of the polynomial.

 5. A quadratic polynomial has a root at any value x for which the value of the 
polynomial is zero; that is, any x such that 

ax2 + bx + c = 0

 There can only be at most two such values (a tuple), and the expression for 
finding these values of x is

2 4 2
b b acx a

− ± −=

 Write a function (root(a,b,c))that returns the two roots of a quadratic equa-
tion having been passed a, b, and c. The result is a tuple or if there is no 
solution (i.e., square root of a negative number, or a=0), then it returns None.

 6.  Write a function (inputfloat(s)) that takes a single parameter, a string to be 
used as a prompt, and returns a number read from the console. The function 
must prompt the user for the number using the given string, read the input, 
and return the result as a floating point number. If an error occurs, return 
None.

 7.  The game of table tennis is called ping-pong. Write functions ping() and 
pong() that each take, as a parameter, a probability of hitting the ball. A 
probability is between 0.0 and 1.0. The function returns True if the ball is 
returns and False otherwise. There are two sides to the game, and each side 
serves (plays first) twice, then the other side serves twice. It will be assumed 
here that the server always succeeds. If ping is serving then pong() gets called 
first, then if pong succeeded then ping() gets called, and so on. The side that 
made the last successful hit wins a point. The game goes to 11 points, but 
must be won by a 2-point margin. Write a program that simulates ping-pong 
using two functions named ping() and pong().



 Chapter  4  ·  Funct ions   ■ 187

 8.  In mutual recursion, two functions call each other, usually repeatedly to 
some depth. A calls B, which calls A again, which calls B again, and so on. 
Recode the ping-pong exercise (Number 7 above) so that ping() calls pong() 
and pong() calls ping(). The functions return a string, that of the winner of 
the exchange.

 9. Write a function prime(n) that returns True if the number n is prime, and 
False otherwise. How many prime numbers are there between 1 and 1000?

Notes and Other Resources

Tutorial on Python Functions: http://www.tutorialspoint.com/python/python_
functions.htm

Also: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/functions.html

 1. Thomas S. Ferguson, Game Theory. https://www.math.ucla.edu/~tom/Game_
Theory/comb.pdf

 2. D. G. Luenberger, (1973). Introduction to linear and nonlinear programming 
(Vol. 28). Reading, MA: Addison-Wesley.

 3. Mitchell Wand (1980). Induction, Recursion, and Programming. North 
Holland, New York. http://tocs.ulb.tu-darmstadt.de/82570701.pdf





■ ■ ■ ■ ■

In this chapter

In the early days of computing, when computers used to fill an entire 
room, the file was invented.  A file is a collection of bytes stored on a disk 
or similar device. Storage that was not memory was called secondary stor-
age and was slow compared to how fast a computer could execute instruc-
tions (which is very slow compared to how fast a modern computer can 
execute instructions). 

A typical PC has hundreds of thousands of files. The details of how files are 
implemented is interesting, but unimportant to the discussion of how to use them 
in Python. The focus is on how and why to use them.

One set of bytes in a file can look very much like another, and unless the 
format of the file (i.e., the way the bytes are ordered) and its basic contents (i.e., 
what kind of thing the bytes represent) are known ahead of time, the information 
stored there is unusable. Computer programs are written assuming that the files 
they will read have a particular nature; if a file does not have that nature, then the 
program will not function properly.

5chaPter

fiLes: inPut and outPut

5.1 What Is a File? A Little Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.2 Keyboard Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3  Using Files in Python: Less Theory, More Practice  . . . . . . . . . . . . . . . . . . . . 197

5.4 Writing to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



190  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

What kinds of files are there? Here is a short list:

 Text files. These contain characters that a person can read and can be thought 
of as documents.
 Executable files. These hold instructions that a computer can execute. Such 
a file is a program or an app.
 Data files. It could also be a text file if it is stored as characters, but it could 
be a set of bytes that represent integers or real numbers.
 Image files. There are many types of image files, and they contain pictures 
in digital format. Many digital cameras use a format called JPEG, but GIF or 
PNG are two of many others. Not only are images stored in such a file, but 
also data about how large the image is, when it was taken, and other details.
 Sound files. The more common sound file is the MP3, but there are many 
others.
 Video. MPEG and AVI are standard formats for video, and there are a many 
files of this sort available on the Internet.
 Web pages. These are a special kind of text file. They can be examined and 
modified using basic text editors, but cannot be viewed properly (i.e., as a 
web page) except through a browser, which is really a special kind of display 
utility that can both draw images and connect to the Internet to download 
more information.

All of these files, and indeed all files, have certain things in common. Some 
of these things can be ignored when writing Python programs, but others cannot. 

 Files have names. The first way to access a file is usually by specifying its 
name. In folklore, knowledge of a true name allows one to affect another 
person or being; knowing something’s true name gives the person power over 
that thing, and so it is with files. Knowing the name of a file is the way to ac-
cess the information within.
 Files have a size. It is usually expressed in bytes, which is to say, simple 
characters. One byte is one traditional alphabetic character, although there are 
now many standards for characters in German and Swedish and Chinese that 
break that rule. Knowing how large a file is helps when using it as input, and 
when writing a file, its size grows.



 Chapter  5  ·  Fi les :  Input  and Output   ■ 191

 Basic operations on a file are read and write. To read from a file means to 
examine a byte (at least); usually bytes are read in large blocks for efficiency. 
This means moving a copy of the bytes from the disk into memory, because 
a program can only examine data that is in memory. Writing is the reverse 
process: a byte or bytes are copied from memory onto disk.
 Files must be open before they can be used. To open a file, a program must 
know its name, and then invoke the open function or program. If the true 
name of the file gives you power over it, then open is the spell used to wield 
that power. Whether a file will be read or written is normally decided at the 
time the file is opened. The open function and many other file-related opera-
tions belong to the operating system of the computer, and not normally to the 
language. It’s one reason why so much software is not portable.
 Only one program at a time can write to a file. Many programs can read a 
file simultaneously, but only one can write to it, and not while anyone else is 
reading it. Many computers can have more than one user accessing a file at 
a time, and the Internet allows many users to access a Web page at one time, 
and a Web page is a file. However, chaos ensues if more than one user can 
change a file at the same moment.

Another thing to consider is that text (and therefore text files) is a principal 
means for communication between humans and computers. It is critical that any 
scheme for writing text to a file takes into account the human aspects of text: 
sentences, lines, paragraphs, special characters, and numbers. This chapter is 
concerned with the way in which Python can use files, with files as a concept in 
general, and with how humans think of data and files.

 5.1 WHAT IS A FILE? A LITTLE THEORY
A file is a collection of bytes stored on a disk or similar device, but we need 

an understanding of the devices that contain files and their advantages and limi-
tations. This information will begin to explain the traditional mechanisms that 
have evolved for using files from programming languages generally and Python 
in particular.

The file as a data structure was devised for storing information on tapes and 
disks. Together with some other devices that are used rarely (e.g., cram files), these 
are referred to as secondary storage, where primary storage is the computer’s  



192  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

memory. Memory was (and still is) too expensive to store everything that is need-
ed on a computer, so secondary storage has the advantages of being cheaper than 
memory and can contain a much larger amount of data. Modern disks can contain 
terabytes of data, where one terabyte (Tb) is 1012  bytes. It has been estimated that 
a human being’s functional memory is about 1.25 Tb. A terabyte is a lot of stor-
age.

Most secondary storage devices store data magnetically. Since tapes are rare-
ly seen anymore, the example presented here is that of a disk. A disk is a circular 
platter made of glass or ceramic material and coated with a thin layer of magnetic 
material, often a compound of iron. That’s why they look brown: iron oxide (or 
rust) is that color. The disk is mounted on a spindle that is connected to a motor, 
which spins it at a high rate of speed.

A device called a read/write head sits above the moving disk, but very near 
to it. This device is a small piece of magnetizable metal wrapped in a fine wire, 
not unlike the read/write heads in an old video tape recorder (VCR) or cassette 
machine. It is a property of magnets and coils that a moving magnet creates 
(induces) an electric current in a nearby coil, and a coil with a current flowing 
through it can create a magnetic field. 

To write data to the moving disk, a current is sent to the read/write head, 
which creates a small magnetic mark on the disk below the head. Magnets have 
two orientations; they have a north pole and a south pole. Current flowing one 
way creates a magnet in the disk that has a north pole appearing before the south 
pole, or an N-S mark. Current flowing the other direction through the head cre-
ates a magnet on the disk that has the south pole appearing before the north pole, 
or an S-N mark. One orientation, say N-S, will represent a binary number 1, and 
the other (S-N) will represent a 0. In this way, binary numbers can be written to 
the surface of the moving disk.

Reading numbers involves the magnetic regions of the disk passing quickly 
past the read/write head and inducing small currents in the coil. These are ampli-
fied and classified by a simple electronic circuit that detects the current flow one 
way as N-S and another way as S-N, thus allowing binary numbers to be read 
from the disk.



 Chapter  5  ·  Fi les :  Input  and Output   ■ 193

Figure 5.1 
A disk drive with the cover removed show the key parts.

There are some very complicated physics involved in a disk drive. The read/
write head must be very close to the surface of a rapidly rotating disk, as close as 
3 nanometers. To accomplish this, the head is aerodynamically flying above the 
disk. If it ever touches the disk’s surface, the result is catastrophic. At the speeds 
involved, a large section of the magnetic material on the disk’s surface would be 
scraped away, and all data there would be lost. In addition, the read/write head 
would almost certainly be damaged. This event is called a head crash, and nor-
mally results in the entire disk drive being ruined. It’s one reason that frequent 
backup copies of all data should be made.

   

 (a) (b)

Figure 5.2
A track is the set of data from one circle on the disk.  Inner tracks are smaller, but contain the same 
amount of data. (b) A sector is a wedge-shaped portion of the disk. The combination (track, sector) 
gives an address for a block of data.



194  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The picture that is developing is that of a device that returns data as a stream 
of bits. To make the best use of the area of the disk, the read/write head can move 
from the outer edge of the disk to nearly the center. Imagine a set of concentric 
circles on the disk’s surface: the moving read head can position itself over any of 
them and read the data that had been written there.

The disk is divided into a set of concentric circles called tracks, each of which 
corresponds to one position of the read/write head (Figure 5.2a). The head can 
move across the disk surface, but the positions are quantized: position 0-Ntracks 
can be reached through commands to a controller that change the head position. 
The outermost track is numbered 0, and the numbers increase as the head moves 
inward to the center. The disk is also divided into sectors, each of which is a 
wedge-shaped portion of the disk (Figure 5.2b). These are again numbered 0 to 
Nsectors, and create an address for a set of bits. Data can be read from sector 3 track 
12 by positioning the read head over track 12 and waiting for sector 3 to rotate 
into position under the head.  The data takes as long to read as the sector takes to 
pass under the read head.

This description answers two important questions. First, data can be accessed 
by using the <track, sector> address. The data in a single track and sector is a 
block, and all blocks are the same size in terms of bits for the sake of convenience, 
traditionally 512 bytes (4096 bytes for AF drives). Second, it explains why ac-
cessing data takes so long when reading from a disk. Disks rotate at 7200 RPM or 
120 revolutions per second; this is one rotation every 8.3 milliseconds.

 5.1.1 How Are Files Stored on a Disk?

A file can be thought of as a set of blocks. If blocks are 512 bytes in size and 
some data to be stored in a file consists of N bytes, then that file will need [N/512] 
blocks, the next larger integer than N/512; it’s not possible to have two files share 
a single block.

It gets more complicated, though, because it will not always be possible to 
have all of the blocks that belong to a file lie next to each other. A file might con-
sist of many blocks, all of which are some distance apart in terms of their track 
and sector. There is a need for a data structure to connect these blocks in the 
correct order to make a file. It’s not very hard to do but is another step.  This data 
structure is written to the disk also. The result is that reading a file means finding 



 Chapter  5  ·  Fi les :  Input  and Output   ■ 195

the location of this data structure on the disk, getting the track and sector values, 
and then reading the data from those and copying it into memory. The data struc-
ture containing the sectors is usually found through a file name that the user has 
provided. There is a list of file names and the track/sector address of their index 
sectors in a special file someplace on the drive, or in many places.  File systems 
tend to be organized hierarchically, so that one main name is accessed to find the 
files within that part of the disk (directory), and within that directory are names 
of more files and directories. It is a significant part of the function of an operating 
system like Linux or Windows to provide a convenient way to access files.

 5.1.2 File Access is Slow

How long does it take to access a block of data on the disk? It depends on 
where the disk head is and where the disk rotation has placed the target block 
at the time the request is made. There will be only a statistical answer, but for a 
random block, it could take an average of 10 mS to move the head to the correct 
track (seek time), and will take half of a rotation (4.15 mS). Add to this the time 
needed to read the block, which is 8.3*1/ Nsectors mS, or about 0.008 mS for a disk 
with 1024 sectors. This can be ignored, and the time to access a random block can 
be estimated as 14.15 milliseconds.

As a comparison, fast computer memory can access data within 8 nanosec-
onds. If a person could write the word “Gigabyte” on a whiteboard in 8 nano-
seconds, then what could they do in 14 milliseconds? They could copy the entire 
Bible onto the board over 16 times. Disks are vastly slower than memory, and to 
use the data, it must be copied into memory. This is a bottleneck in many com-
puter systems.

 5.2 KEYBOARD INPUT
Reading data from the keyboard is very different from reading data from a 

file. Files exist before being read, and normally have a fixed size that is known in 
advance.  It is common to know the format of a file, so that the fact that the next 
datum is an integer and the one following that is a float is often known. When 
a user is entering data at a keyboard, there is no such information available. In 
fact, the user may be making up the data as they go along. Before getting too far 
into file input, it is important to understand the kind of errors that can happen 
interactively. 



196  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

These are using type errors, where the user enters data that is the wrong type 
for the programmer to use: a string instead of an integer, for example. This kind 
of error can arise in file input if the format is not known in advance.

 5.2.1 Problem: Read a number from the keyboard and divide it by 2 

This problem addresses how to treat integers like integers and floats like 
floats. When the string s is read in, it is just a string, and it is supposed to contain 
an integer. However, users will be users, and some may type in a float by mistake. 
The program should not crash just because of a simple input mistake. How is this 
situation handled?

The problem is that when the string is converted into an integer, if there is a 
decimal point or other non-digit character that does not belong then an error will 
occur. It seems that an answer would be to put the conversion into a try state-
ment block and if the string has a decimal point, then convert the string to a float 
within the except part. The code looks like this:

s = input("Input an integer: ")
try:
    k = int(s)
    ks = k//2
except:
    z = float(s)
    k = int(z/2)
print (k)

If the user types “12” in response to the prompt “Input an integer:,” then the 
program prints “6.” If the user types “12.5,” then the program catches a ValueEr-
ror, because 12.5 is not a legal integer. The except part is executed, converting 
the number to floating point, dividing by 2, then finally converting to an integer.

One problem is that the except part is not part of the try, so errors that hap-
pen there will not be caught. Imagine that the user types “one” in response to the 
prompt. The call to int(s) results in a ValueError, and the except part is executed. 
The statement

z = float(s)

results in another ValueError. This one will not be caught and the program will 
stop executing, giving a message like:



 Chapter  5  ·  Fi les :  Input  and Output   ■ 197

ValueError: could not convert string to float: 'one'
s = input("Input an integer: ")
try:
    k = int(s)
    k = k//2
except ValueError:
    try:
      z = float(s)
      k = int(z/2)
    except ValueError:
      k = 0
print (s, k)

 5.3  USING FILES IN PYTHON: LESS 
THEORY, MORE PRACTICE

The general paradigm for reading and writing files is the same in Python as it 
is in most other languages. The steps for reading or writing a file are these:

 1. Open the file. This involves calling a function, usually named open, and 
passing the name of the file to be used. Sometimes the mode for open-
ing is passed; that is, a file can be opened for input, output, update (both 
input and output), and in binary modes. The function locates the file us-
ing the name and returns a variable that keeps track of the current state 
of input from the file. A special case exists if there is no file having the 
given name.

 2. Read data from the file. Using the variable returned by open, a func-
tion is called to read the data. The function might read a character, num-
ber, line, or the whole file. The function is often called read, and can be 
called multiple times. The next call to read will read from where the last 
call ended. A special case exists when all of the data has been read from 
the file (called the end of file condition)

OR

  Write data to the file. Using the variable returned by open, a function 
is called to write data to the file. The function might write a character, 
number, line, or many lines. The function is often called write, and can 
be called multiple times. The next call to write will continue writing data 
from where the last call ended. Writing data most frequently appends 
data to the end of the file. 



198  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 3.  Close the file. Closing a file is also accomplished using a call to a func-
tion (usually named close). This function frees storage associated with 
the input process and in some cases unlocks the file so it can be used 
by other programs. A variable returned by open is passed to close, and 
afterwards that variable cannot be used for input anymore. The file is no 
longer open.

 5.3.1 Open a File

Python provides a function named open that opens a file and returns a value 
that can be used to read from or write to the file. That value refers to a complex 
collection of values that refers to the file status and is called a handle or a file 
descriptor. It can be thought of as having the type file, and must be assigned to a 
variable or the file cannot be accessed. The open function is given the name of 
the file to be opened, and a flag that indicates whether the file is to be read from 
or written to. Both of these are strings. A simple example of a call to open is as 
follows:

infile = open ("datafile.txt", "r")

This opens a file named “datafile.txt” that resides in the same directory as 
does the Python program, and opens it for input: the “r” flag means read. It re-
turns the handle to the variable infile, which can now be used to read data from 
the file.

There are some details that are crucial. The name of the file on most comput-
er systems can be a path name, which is to say, the name including all directory 
names that are used to find it on your computer. For example, on some computers, 
the name “datafile.txt” might have the complete path name C:/parker/introPro-
gramming/chapter05/datafile.txt.  If path names are used, the file can be opened 
from any directory on the computer. This is handy for large data sets that are used 
by multiple programs, such as names of customers or suppliers.

The read flag “r” that is the second parameter is what was called the mode in 
the previous discussion. The “r” flag means that the file will be open for reading 
only, and starts reading at the beginning of the file. The default is to read char-
acters from the file, which is presumed to be a text file. Opening with the mode 
“rb” opens the file in binary format and allows reading non-text files, such as 
MP3 and video files.



 Chapter  5  ·  Fi les :  Input  and Output   ■ 199

Passing the mode “w” means that the file is to be written to. If the file exists, 
then it will be overwritten; if not, the file will be created. Using “wb” means that 
a binary file is to be written.

Append mode is indicated by the mode parameter “a,” and it means that the 
file will be opened for writing and if the file exists then writing will begin at 
the end of the existing file. In other words, the file will not start over as being 
empty, but will be added to, at the end of the file. The mode “ab” appends data 
to a binary file.  

If the file does not exist and it is being opened for input, there is a problem. 
It’s an error, of course; a non-existent file cannot be read from. There are ways to 
tell whether a file exists, and the error caused by a non-existent file can be caught 
and handled from within Python. This involves an exception. It is always a bad 
idea to assume that everything works properly, and when dealing with files it is 
especially important to check for all likely problems. 

File Not Found Exceptions

The proper way to open a file is within a try-except pair of statements. This 
ensures that nonexistent files or permission errors are caught rather than causing 
the program to terminate.  The basic scheme is simple:
try:
  infile = open ("datafile.txt", "r")
except FileNotFoundError:
  print ("There is no file named 'datafile.txt'. 
          Please try again")
  return            # end program or abort this section 
                    # of code

The exception FileNotFoundError occurs if the file name cannot be found.  
What to do in that case depends on the program: if the file name was typed in by 
the user, then perhaps they should get another chance. In any case, the file is not 
open and data cannot be read. 

There are multiple versions of Python on computers around the world, and 
some versions have different names for things.  The examples here all use Python 
3.4. In other versions, the FileNotFoundError exception has another name; it 
may be IOError or even OSError. The documentation for the version being 



200  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

used should be consulted if a compilation error occurs when using exceptions 
and some built-in functions. For the 3.4 compiler version, all three seem to work 
with a missing file.

All attempts to open a file should take place while catching the FileNot-
FoundError exception.

 5.3.2 Reading from Files

After a file is opened with a read mode, the file descriptor returned can be 
used to read data from the file. Using the variable infile returned from the call to 
open() above, a call to the method read() can get a character from the file:

s = infile.read(1)

Reading one character at a time is always good enough, but is inefficient.  If 
a block on disk is 512 characters (bytes), then that should be a good number of 
bytes to read at one time or a multiple of that. Reading more data than you need 
and saving it is called buffering, and buffers are used in many instances: live 
video and audio streaming, audio players, and even in programming language 
compilers. The idea is to read a larger block of data than is needed at the moment 
and to hand it out as needed. Reading a buffer could be done as follows:

s = infile.read(512)

and then dealing characters from the strings one at a time as needed. A buffer 
is a collection of memory locations that is temporary storage for data that was 
recently on secondary storage.

Text files, those that contain printable characters that humans can read, are 
normally arranged as lines separated by a carriage return or a linefeed character, 
called a newline. An entire line can be read using the readline() function:

s = infile.readline()

A line is not usually a sentence, so many lines might be needed to read one 
sentence, or perhaps only half of a line. Computer text files are structured so that 
humans can read them, but the structure of human language and convention is 
not understood by the computer nor it is built into the file structure. However, it 
is normal for people to make data files that contain data for a particular item or 
event on one line, followed by data for the next item. If this is true, then one call 
to readline() will return all of the information for a particular thing.



 Chapter  5  ·  Fi les :  Input  and Output   ■ 201

End of File

When there are no more characters in the file, read() will return the empty 
string: “”. This is called the end of file condition, and it is important that it be 
detected. There are many ways to open and read files, but for reading characters 
in this way, the end of file is checked as follows:

infile = open("data.txt", "r")
while True:
  c = infile.read(1)
  if c == '':
    print ("End of file")
    exit()
  else:
    c = infile.read(1)

When reading a file in a for statement, the end of file is handled automati-
cally. In this case, the loop runs from the first line to the final line and then stops.

for c in f:
    print ("'", c, "'")

An exception cannot be used in an obvious way for handling the end of file 
on file input. However, when reading from the console using the input() function, 
the exception EOFError can be caught:

while True:
  try:
      c = input()
      print (c)
  except EOFError:
      print ("Endfile")
      break

There are many errors that could occur for any set of statements. It is possible 
to determine what specific exception has occurred in the following manner:

while True:
  try:
      c = input()
      print (c)
  except Exception as x:
      print (x)
      break



202  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This code prints “EOF when reading a line” when the end of file is encoun-
tered.

Common File Input Operations

There are a few common ways to use files that should be mentioned as pat-
terns. Although one should never use a pattern if it is not understood, it’s some-
times handy to have a few simple snippets of code that are known to perform 
basic tasks correctly. For example, on common operation to use with files is to 
read each line from a file, followed by some processing step. This looks like

f = open ("data.txt", "r")
for c in f:
    print ("'", c, "'")
f.close()

The expression c in f results in consecutive lines being read from the files 
into a string variable c, and this stops when no more data can be read from the 
file. 

Another way to do the same thing would be to use the readline() function:
f = open ("data.txt", "r")
c = f.readline()
while c != '':
    print ("'", c, "'")
    c = f.readline()
f.close()

In this case, the end of file has to be determined explicitly by checking the 
string value that was read to see if it is null.

Another common file operation is to copy a file to another, character by 
character. A file is opened for input and another for output. The basic “read a 
file” pattern is used, with the addition of a file output after each character is read:

f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read(1)
while c != '':
    g.write(c)
    c = f.readline(1)
f.close()
g.close()



 Chapter  5  ·  Fi les :  Input  and Output   ■ 203

A filter is a program that reads data from a file and converts it to some other 
form, then writes it out. This is often done from standard input and output, but 
can be done in the middle of a file copy. For example, to convert a text file to all 
lower case, the pattern above is used with a small modification:

f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read(1)
while c != '':
    g.write(c.lower())
    c = f.readline(1)
f.close()
g.close()

This filter can be done using less code if the entire file can be read in at once. 
The read() function can read all data into a string.

f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read()
g.write(c.lower())
f.close()
g.close()

Two files can be merged into a single file in many ways: one file after anoth-
er, a line from one file followed by a line from another, or character by character. 
A simple merging of two files where one is copied first followed by the other is 
as follows:

f = open ("data1.txt", "r")
outfile = open ("copy.txt", "w")
c = f.read()
outfile.write(c)
f.close()
g = open ("data2.txt", "r")
c = g.read()
outfile.write(c)
g.close()
outfile.close()

A more complex problem occurs when both files are sorted and are to re-
main sorted after the merge. If each line is in alphabetical order in each file, 
then merging them means reading a line from each and writing the one that is 



204  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

smallest. When one file is complete, the remainder of the second file is written 
and all files are closed.

f = open ("data1.txt", "r")
g = open ("data2.txt", "r")
outfile = open ("copy.txt", "w")
cf = f.readline()
cg = g.readline()
while cf!="" and cg!="":
    if cf<cg:
        outfile.write(cf)
        cf = f.readline()
    else:
        outfile.write(cg)
        cg = g.readline()
if cf == "":
    outfile.write(cg)
    cg = g.read()
    outfile.write(cg)
else:
    outfile.write(cf)
    cf = f.read()
    outfile.write (cf)
f.close()
g.close()
outfile.close()

Copying the input from the console to a file means reading each line using 
input() and writing it to the file. This code assumes that an empty input line im-
plies that the copying is complete. 

outfile = open ("copy.txt", "w")
line = input ("! ")
while len(line)>1 or line[0]!="!":
    outfile.write(line)
    outfile.write ("\n")
    line = input("! ")
outfile.close()

The end of the line is indicated by a character, which is represented by the 
string “\n”. Reading characters from a file will read the end of line character also, 
and detecting it can be very important.

f = open ("data.txt", "r")



 Chapter  5  ·  Fi les :  Input  and Output   ■ 205

c = f.read(1)
while c != '':
    print ("'", c, "'")
    c = f.read(1)
    if c == '\n':
        print ("Newline")

CSV Files

A very common format for storing data is called Comma Separated Variable 
(CSV) format, named for the fact that each pair of data items have a comma be-
tween them. CSV files can be used directly by spreadsheets such as Excel and by 
a large collection of data analysis tools, so it is important to be able to read them 
correctly.

A simple CSV file named planets.txt is provided for experimenting with 
reading CSV files. It contains some basic data for the planets in Earth’s solar sys-
tem, and while there is no actual standard for how CSV files must look, this one 
is typical of what is usually seen. The first line in the file contains headings for 
each of the variables or columns, separated by commas. This is followed by nine 
lines of data, one for each planet. It’s a small data file, as these things are counted, 
but illustrative for the purpose.
Table 5.1
CSV data for the planets

Name, Mass, Diam, Density, Grav, Escape, Rotation, Day, Dis-
tance,

Period, Moons, Temp

Mercury, 0.364, 3032, 339, 12.1, 2.7, 1407.6, 4222.6, 36.0, 88.0, 0, 333

Venus, 5.37, 7521,  327,  29.1, 6.4, -5832.5, 2802.0,  67.2, 224.7,  0, 867

Earth, 6.58, 7926,  344,  32.1, 7.0, 23.9,  24.0,  93.0, 365.2,  1, 59

Mars, 0.708, 4221,  246,  12.1, 3.1, 24.6,  24.7, 141.6, 687.0,  2,  -85

Jupiter, 2093, 88846 83,  75.9, 37.0,  9.9, 9.9, 483.8,4331.0, 67, -166

Saturn, 627, 31783 43,  29.4, 22.1, 10.7,  10.7, 890.8, 10747,  62, -220

Uranus, 95.7, 31763 79,  28.5, 13.2,  -17.2,  17.2, 1784.8, 30589,  27, -320

Neptune, 113.0, 30775  102,  36.0, 14.6, 16.1,  16.1, 2793.1, 59800,  14, -330

Pluto, 0.0161,  1464  131, 2.3, 0.8,  -153.3,  153.3, 3670.0, 90560, 5, -375

Problem: Print the names of planets having fewer than ten moons.

This is not a very profound problem, and uses the raw data as it appears 
on the file. The file must be opened and then each line of data is read, and the 
value of the 11th data element (i.e., index 10) retrieved and compared against 10. If 
larger, the name of the planet (index 0) is printed. The plan is as follows:



206  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Open the file
Read (skip over) the header line
For each planet
    Read a line as string s
    Break s into components based on commas giving list P
    If P[10] < 10, print the planet name, which is P[0]
It is all something that has been done before except for breaking the string 

into parts based on the comma. Fortunately, the designers of Python anticipated 
this kind of problem and have provided a very useful function:  split(). This func-
tion breaks up a string into parts using a specified delimiter character or string 
and returns a list in which each component if one section of the fractured string. 
For example,

s = "This is a string"
z = s.split(" ")

yields the list z = [“This”, “is”, “a”, “string”]. It splits the string s into sub-
strings at each space character. A call like s.split(“,”) should give substrings that 
are separated by a comma. Given the above outline and the split() function, the 
code is as follows.
try:
# Open the file
    infile = open ("planets.txt", "r")
# Read (skip over) the header line
    s =infile.readline()
# For each planet
    for i in range (0, 8):
# Read a line as string s
        s = infile.readline()
# Break s into components based on commas giving list P
        P = s.split (",")
# If P[10] < 10 print the planet name, which is P[0]
        if int(P[10])<10:
            print (P[0], " has fewer than 10 moons.")
except FileNotFoundError:
        print (" There is no file named 'planets.txt'. 

Please try again")



 Chapter  5  ·  Fi les :  Input  and Output   ■ 207

Almost the entire program resides within a try statement, so that if the file 
does not exist, then a message is printed and the program ends normally. Note 
that P[10] has to be converted into an integer, because all components of the list 
P are strings. Strings are what has been read from the file.

CSV files are common enough so that Python provides a module for ma-
nipulating them. The module contains quite a large collection of material, and for 
the purposes of the planets.py program, only the basics are needed. To avoid the 
details of a general package, a simpler version is included with this book: sim-
pleCSV has the essentials needed to read most CSV files while being written in 
such a way that a beginning programmer should be able to read and understand it.

 To use it, the simpleCSV module is first imported. This makes two impor-
tant functions available: nextRecord() and getData().  The nextRecord() func-
tion reads one entire line of CSV data. It allows skipping lines without examining 
them in detail (like headers). The function getData() will parse one line of data, 
the last one read, into a tuple, each element of which is one of the comma-sepa-
rated fields.

The simpleCSV library needs to be in the same directory as the program that 
uses it or be in the standard Python directory for installed modules. The source 
code resides on the accompanying disk and is called simpleCSV.py.  The program 
can be re-written to use the simpleCSV module as follows:
import simpleCSV
try:  # Read (skip over) the header line
    infile = open ("planets.txt", "r") # Open the file
    simpleCSV.nextRecord(infile)       # Read the header
    for i in range (0, 8):             # For each planet
        simpleCSV.nextRecord(infile)   # Read a line and 
                                       # collect substrings 
                                       # in a list
        p = simpleCSV.getData(infile)
        if int(P[10])<10:      # If number of moons 
                               # less than 10 
            print (P[0], " has fewer than 10 moons.")
  # print the planet name
except FileNotFoundError:
        print (" There is no file named 'planets.txt'.  

Please try again")



208  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Problem: Play Jeopardy using a CSV data set.

The television game show Jeopardy has been on the air for 35 years in one of 
its two incarnations, and is perhaps the best known such program on television. 
Players select a topic and a point value and are asked a trivia question that they 
must answer in the form of a question. There are sets of questions that have been 
used in Jeopardy over the years, some in CSV form, and so it should be possible 
to stage a simulated game using Python as the moderator.

A simple version of the game could work like this: read the questions and 
answers, and select the questions at random. Questions that have single-word 
unambiguous answers would be best. The player types in an answer, and wins if 
they answer ten correctly before getting three wrong.

A single line of data from the file might look like this:
5957,2010-07-06,Jeopardy!,"LET'S BOUNCE","$600","In this 
kid's game, you bounce a small rubber ball while picking up 
6-pronged metal objects","jacks"

There are 7 different data fields here separated by commas. They are: Show 
Number, Air Date, Round, Category, Value, Question, and Answer; all are strings, 
but some questions may contain commas. The CSV module can manage that.

 There are many ways that a random question can be chosen. One would be to 
read all of the data into a list, but that would require a lot of memory. Another way 
would be to randomly read a question from the file, but that would be difficult to 
do because each line has a different length. What could be done relatively easily 
would be to pick a random number of questions to skip over before reading one to 
use. We therefore select a random number K between N and M, read K questions, 
and then read the next one and ask the user that question. When the end of the file 
is reached, it can be read again from the beginning. If the file is large enough, it 
would be unlikely to ask the same question twice in a short time period.

Here is an outline of how this might work:
    Open infile as the file of questions to be used
    While game continues:
        Select a random number K between N and M
        For I = N to M:
           Read a line from the file
            If no more lines:



 Chapter  5  ·  Fi les :  Input  and Output   ■ 209

                Close infile and reopen
    Read a question and print it, ask the user for an answer
    Read the user’s answer from the keyboard
    If the user’s answer is correct:
           Count right answers
    Else:
           Count wrong answers

If the CSV module is used the parsing the input file is dealt with. What is new 
about his? When all of the data in the file has been used the program may not be 
complete. What is done then is new: close the file, reopen it, and start again from 
the beginning. This is an unusual action for a Python program but illustrates the 
flexibility of the file system. There is a nested try-except pair, the outer one that 
checks the existence of the file of questions and the inner one that checks for the 
end of the file. When the file is re-opened, a new reader has to be created, be-
cause the old one is connected to a closed file.  The file on the disk is the same, 
but when it is opened again, a new handle is built; the old CSV reader is linked 
to the old handle.

The program counts the number of right answers (CORRECT) and the num-
ber of wrong ones (INCORRECT). When there are 10 correct answers or 3 in-
correct ones, the game is over; a variable again is set to False and the main while 
loop exits. A break could have been used, but having the condition become False 
is the polite way to exit from a while loop.

The entire program looks like this:
# Jeopardy!
import simpleCSV, random

try:
    infile = open ("q.txt", "r")  # Open the file
    simpleCSV.nextRecord(infile)  # Read (skip over) the 
                                  # header line

    CORRECT = 0
    INCORRECT = 0
    again = True
    while again:
        k = random.randint (5, 10) # How many questions
                                   # to skip?



210  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

        for I in range (0, k):
            if not simpleCSV.nextRecord(infile):
 # Skip this question
                infile.close()
                print ""Reopenin"")
                infile = open ""JEOPARDY_small.tx"","""")
                simpleCSV.nextRecord(infile)
        s = simpleCSV.getData(infile)  # Read the question 
                                       # to be asked.
        print (s[5])                   # Print the question
        a = input ()                   # Read the answer
        if a.lower() == s[6].lower():  # Does player answer 
                                       # agree?
            CORRECT = CORRECT + 1      # Yes. count to 10.
            if CORRECT >= 10:
                print ""You win"")
                again = False
        else:
            INCORRECT = INCORRECT + 1  # No. Count to 3
            print ""Sorry. The answer is"", s[6])
            if INCORRECT > 12:
                print ""You lose"")
                again = False
except FileNotFoundError:
        print ""There is no question file.  We can't play"")

The With Statement

A difficulty with the code presented so far is that it does not clean up after 
itself. A file should be closed after input from it or output to it is finished; none of 
the programs written so far do that, at least not after the file operations are com-
plete. There has been no significant discussion of the close() operation, but what 
it does has been described. Normally, when a program terminates, its resources 
are returned to the system, including the closing of any open files. Intention-
ally closing a file is important for three reasons: first, if the program aborts for 
some reason, open files should be closed by the system but may not be, and file 
problems can be the result. Second, as in the Jeopardy program, closing a file 
can be used as a step in re-using it. Opening it again starts reading it at the begin-
ning. Third, closing a file frees its resources. Programs that use many files and/
or many resources will profit from freeing them when they are no longer needed.



 Chapter  5  ·  Fi les :  Input  and Output   ■ 211

The Python with statement, in its simplest form, takes care of many of the 
details surrounding file access. An example of its use is as follows:
try:
   with open ("planets.txt") as infile:  # Open the file
       simpleCSV.nextRecord(infile)      # Read the header
       for i in range (0, 9):            # For each planet
           simpleCSV.nextRecord(infile)  # Read a line, 
                                         # make a list
           P = simpleCSV.getData(infile)
           if int(P[10])<10:            # If number of moons 
                                       # less than 10
               print (P[0], " has fewer than 10 moons.") 
 # print the name
except FileNotFoundError:
       print (" There is no file named 'planets.txt'.   

Please try again")

Once the file is open, the with statement guarantees that certain errors will be 
dealt with and the file will be closed. The problem is that the file has to be open 
first, so the FileNotFound error should still be caught as an exception.

 5.4 WRITING TO FILES
The first step in writing to a file is opening it, but this time for output:

outfile = open ("out.txt", "w")

The “w” as the second parameter to open() means to open the file for writ-
ing. When writing to a file, it is important to note that opening it will create a new 
file by default. If a file with the given name already exists, it will be re-written, 
and the previous contents will be deleted.

The basic file output function is write(); it takes a parameter, a string to be 
written to the file. It only writes strings, so numbers and other types have to be 
converted into strings before being written. Also, there is no concept of a line. 
This function simply moves characters to a file, one at a time, in the order given. 
In order to write a line, an end of line character has to be written. This is usually 
specified in a string as \n, spoken as “backslash n.” The “n” stands for newline.



212  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Example: Write a table of squares to a file.

This example illustrates the typical code involved in writing to a file. The 
file must be opened, then a loop from 0 to 25 is constructed. Each number in that 
range is written to the file, as is that number multiplied by itself.  Each output 
string represents a line, and so must have a newline character added to the end.
outfile = open ("out.txt", "w")
outfile.write ("    X            X squared \n")
for i in range (0, 25):
    sout = "    "+str(i)+"       "+str(i*i)+"\n"
    outfile.write (sout)
outfile.close()

Note that the integers are explicitly converted into strings and concatenated 
into a line to be written. The elements of the line could be written in separate 
calls:

outfile = open ("out.txt", "w")
outfile.write ("    X            X squared \n")
for i in range (0, 25):
    outfile.write ("    ")
    outfile.write (str(i))
    outfile.write ("              ")
    outfile.write (str(i*i))
    outfile.write ("\n")
outfile.close()

The output file is closed after all data has been written.

 5.4.1 Appending Data to a File

Opening the file in “w” mode starts writing at the beginning of the file, and 
will result in existing data being lost. This is not always desirable. For example, 
what if a log file is being created? The log should contain a record of everything 
that has happened, not just the most recent action.

Opening the file in append mode, signified by the parameter “a,” opens the 
file for output and starts writing at the end of the file if it already exists. This 
means that data can be added to the end of an existing file.



 Chapter  5  ·  Fi les :  Input  and Output   ■ 213

Example: Append another 20 squares to the table of squares file.

The previous example created a file named “out.txt” and wrote 26 lines to it. 
It was a table of squares, and the final one was 24. This example will therefore 
begin at 25 and add 20 more values to the table.

The main difference is the opening of the output file in append mode, and 
starting the loop at 25 instead of at 0:
outfile = open ("out.txt", "a")
for i in range (25, 45):
    sout = "    "+str(i)+"              "+str(i*i)+"\n"
    outfile.write (sout)
outfile.close()

The file “out.txt” will contain the squares of the integers between 0 and 
44, inclusive, after this program runs. 

 5.5  SUMMARY
Files are computer structures within which data are stored, and almost al-

ways reside on disk devices, tape devices, or other secondary storage. Files have 
some common properties: files have names; files have a size; basic operations on 
a file are read and write; files must be open before they can be used; and only 
one program at a time can write to a file. Access to data on a file is much slower 
than access to data in memory, but file data has to be moved into memory before 
it can be manipulated.

Exceptions are events that occur while a program is executing, such as divid-
ing by zero. Rather than check for all possible exceptions every time a statement 
is executed, Python provides a try-except statement that allows the programmer 
to provide code to run when an error occurs. Specific named exceptions exist in 
Python that can be specifically caught, like ValueError, or all exceptions can be 
caught by not specifying a particular one.

Files are opened using a call to open passing a file name and a mode. If the 
mode is “r,” then the file will be read from; if it is “w,” it will be written to (for 
example, x = open(“input.txt”, “r”)). Reading from a file x is accomplished by a 
read call: x.read(n) will return a string of n characters; x.readline() will return 



214  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

one line from the file x. When there are no more characters in the file, read() will 
return the empty string: “”. This is called the end of file condition.

A CSV (comma separated values) file is a specific format that is common for 
some kinds of data, including spreadsheets. The simpleCSV package provided on 
the accompanying disk can be helpful in reading these files.

Output to a file x is done with a call to write: x.write(s) writes the string s to 
the file represented by x. The string “\n” represents the end of a line.

Note: This chapter will be extended in Chapter 8 to expand the kind of file 
operations and data that can be read from and written to a file.

Exercises

 1.  Write a program that reads a file name from the user (console) and prints out 
how many characters belong to that file.

 2.  Write a program that opens a file containing a list of file names. For each one 
print the file name followed by YES if that file exists in the current directory 
and NO if it does not.

 3. Create a file copy facility. The program should read the name of a file from 
the user’s console and create another file with the same contents. If the 
original file is named “xx.txt,” then the new file will be named “xx-copy.txt.”  
The original file will always have a name ending in .txt, and so will the copy.

 4. The CSV file “avatardata.csv” contains saved information concerning the 
preferred avatars for players of a video game. The fields are the player code 
(integer), avatar type (string, no quotes), number of times this avatar was 
played at this level (integer), a game level reached (integer, out of 12), and the 
highest score achieved on this level(integer); there is no header. Read this file 
and determine and print which player/avatar has the highest score on each 
level.

 5. Using a Python program, create a CSV file from “avatardata.csv” that 
contains only information for level 10.

 6. In an HTML file (i.e., a Web page), an image to be displayed is usually 
identified in a source tag of the form: src=“name.jpg”. The quotes are a part 
of the tag, and the text between them is an image file name. Write a program 



 Chapter  5  ·  Fi les :  Input  and Output   ■ 215

that reads an HTML file and prints the names of all of the images files that it 
references.

 7. A user will specify the name of an image file, such as a file having a name 
that ends in .jpg, .gif, or .png,  from the console. Your program will read this 
name and create “disp.html,” an html file that, when opened by a browser, 
will display this image. (This exercise requires a knowledge of basic HTML.)

 8. Two files, named sorted1.txt and sorted2.txt, contain numeric data that appear 
in the file in sorted ascending order (when looked at as a string). Merge these 
two files to create a single file having the data of both, also in sorted order.

Notes and Other Resources

Python CSV Library: https://docs.python.org/3/library/csv.html

 1. Remzi Arpaci-Dusseau  and  Andrea Arpaci-Dusseau (2015). Operating 
Systems: Three Easy Pieces. Amazon Digital Services, Inc.

 2. Marco Cesati   and Marco Cesati  (2005) Understanding the Linux Kernel, 
O’Reilly Media.

 3. Dominic Giampaolo (1999).  Practical Filesystem Design, Morgan Kaufmann 
Publishers, Inc. http://www.nobius.org/~dbg/practical-file-system-design.pdf 
www.nobius.org/~dbg/practical-file-system-design.pdf

 4. Robert Stetson (2013). How Disk Drives Work. CreateSpace Independent 
Publishing Platform.

 5. Jeopardy questions: https://docs.google.com/uc?id=0BwT5wj_P7BKXUl9tO
UJWYzVvUjA&export=download





■ ■ ■ ■ ■

In this chapter

Classes, as a programming language feature, have been around since the 
1960s. Design concepts in object-oriented programming and related subjects 
have been around nearly as long: since the 1970s. There are still arguments about 
how to teach about objects, and whether to teach them early in a programming 
course or later. Rather than try to solve this impossible problem, why not try mul-
tiple ways? Then people can choose which way they like best.

6chaPter

cLasses

6.1 A Casual Introduction to Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.2 Classes and Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.3 Classes as Encapsulated Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.4 Classes as Data Abstractions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.5  The Python Class – Syntax and Semantics  . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.6 Classes and Data Types Again  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.7 Subclasses and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.8 Duck Typing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
6.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



218  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 6.1 A CASUAL INTRODUCTION TO CLASSES
How many jokes begin with a phrase like “A man walks into a bar?” So many 

jokes begin with this line that when someone hears that phrase, they will assume 
whatever comes next is a joke. But what is a man, what is a bar, and what does 
walking entail? Walking seems to be something that a man can do, an action he 
can perform. A bar is a place where a man can walk. Can a man do anything else 
but walk? Is a bar the only place a man can walk to?

It seems silly to examine a sentence in that way, but in the context of a com-
puter program, it is more meaningful. Imagine that this discussion involves a 
computer game or simulation. A man now represents some kind of thing or object 
that is manipulated by the program. A man has properties and things it can do, 
which is to say operations it can perform. What properties does a man object 
have? See Table 6.1 for a small subset of the possibilities.
Table 6.1
Properties of the “man” object

Property Type
Name String
Sex Boolean
Phone number Integer
Height Float
Weight Float
Job String?
Home (location, address) String?
Interests Array of String
Income Float
Possessions (other objects) Array of object
Spouse person
Children Array of person

A man would appear to be a complex data type having a number of prop-
erties.  Note especially that a man can have a property or characteristic called 
spouse. A spouse is something called a person; so is a man, really. This is ab-
stract, but consider that a man is a person, and perhaps some of the characteristics 



 Chapter  6  ·  Classes   ■ 219

of a man are really those of (i.e., inherited from) a person. In fact, it would appear 
that most of them are. The only thing that distinguishes a man from other persons 
would (from the list above) be sex, which would be (perhaps) false for a man and 
true for a woman, another kind of person.

Imagine that there is a whole class of things called person that have most 
of these properties. A man could be derived from this, since man has many of 
these properties in common. A woman could be another class, perhaps having a 
few different properties. A man could have, for example, a “date of last prostate 
exam” as a property, but a woman could not. A woman could have a “date of last 
pap smear,” but a man could not. At some point, person has many common char-
acteristics, but man has some that woman does not and vice versa.

Let us consider the original proposition: what is a bar? It is clearly a thing 
(object) that can hold (contain) a man. Perhaps it can contain many men. Can it 
contain women? Why not? If a person has to be either a man or a woman, then a 
bar can contain some number of persons. A bar is a class of objects that can hold 
or contain some number of persons. It would be a container class or a holder of 
some kind.

The phrase “A man walks into a bar” might be expressed as follows:
aMan.walksInto (aBar)

where aMan is a particular man (a specific instance of a man class) and aBar is a 
specific instance of a class of objects known as bar. This man has a Name, which 
is to say that one of the properties that a man has is a Name, and this is really just 
a variable. Since each individual man has a Name there has to be a way of getting 
at (accessing) each one. It is done through each instance:
print (aMan.Name)   # Accessing /printing the name.
aMan.Name = "Ted Smith" # Assigning to the name.

Using this syntax, the dot (.) is placed after the name of the instance. The 
syntax aMan.Name means “look at the variable aMan, which is an instance of 
man, for a property called Name.”

What is the meaning of walksInto in the above expression aMan.
walksInto(aBar)? Considering the syntax just described, it would appear to be a 
function that was a part of the definition of man. It takes one parameter, which is 
something having the type bar.



220  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This way of looking at the “man walks into a bar” scenario seems sensible in 
that it organizes information and provides a clear and formal way to access it and 
manipulate it. This discussion has been a metaphor for the concept of a class and 
the ideas behind object orientation, two key elements of modern programming 
structures. Python permits the programmer to define classes like the man or bar 
objects previously described, and to use them to encapsulate variables and func-
tions and create convenient modular constructions.

 6.2 CLASSES AND TYPES
A class, in the general sense, is a template for something that involves data 

and operations (functions).  An object is an instance of a class, a specific instan-
tiation of the template. Defining a class in Python involves specifying a class 
name and a collection of variables and functions that belong to that class.  The 
man class that has been referred to so far has only a few characteristics that we 
know about for certain. It does have a function called walksInto, as one example. 
A first draft of the man class could be as follows:

class man:
    def walksInto (aBar):
        # code goes here

A function that belongs to a class is generally referred to as a method. This 
terminology likely refers back to a language devised in the 1970s named Small-
talk. According to the standard for that language, “A method consists of a se-
quence of expressions. Program execution proceeds by sequentially evaluating 
the expressions in one or more methods.”[5] In the above example, walksInto is a 
method; essentially, a method is any function that is part of a class.

Classes can have their own data too, which would be variables that belong to 
the class in that they exist inside it. Such variables can be used inside the class but 
should not be accessed from outside.

Looking closely at the simple class man above, notice that it is actually still 
an abstract thing. In the narrative about a man walking into a bar it was a specific 
man, as indicated by a variable aMan. A class is really a description of some-
thing, in that examples or instances should be created in order to make use of that 
description. This is correct. In fact, many individual instances of any class can be 



 Chapter  6  ·  Classes   ■ 221

created (instantiated) and assigned to variables. To create a new instance of the 
class man, the following syntax could be used:

aMan = man()

When this is done, all of the variables used in the definition of man are al-
located. In fact, whenever a new man class is created, a special method that is 
local to man is called to initialize variables. This method is the constructor, and 
can take parameters that help in the initialization. Creating a man might involve 
giving him a name, so the instantiation may be

aMan = man("Jim Parker")

In this case, the constructor accepts a parameter, a string, and probably as-
signs it to a variable local to the class (Name, most likely). The constructor is 
always named __init__:

def __init__ (self, parameter1, parameter2, …):

The initial parameter named self is a reference to the class being defined. 
Any variable that is a part of this class is referred to by prefixing the variable 
name with “self.” To make a constructor for man that accepted a name, it would 
look like this:

def __init__ (self, name):
    self.Name = name

When a man is created, the statement would be as follows:
aMan = man ("Jim Parker") 

 6.3 CLASSES AS ENCAPSULATED MODULES
We have been exposed to Python modules or packages already: math and 

random are two examples. These are really a collection of variables and func-
tions with a common theme or purpose that we can access when we need them. 
We don’t have to create a random number function whenever we need one, we can 
just use the one within random.  A class than be thought of as a module.

Within the module there are functions which, because they are part of a class, 
are called methods. Variables can be defined within a class and have a scope all 
their own. A variable named x can be declared within a class and also within 
other classes and the main program without any confusion.



222  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A class can be instantiated, which means an instance or version of it is cre-
ated. When we say from random import * at the beginning of a program, we are 
effectively creating an instance of random. That’s how we get access to most of 
the variables and methods within it. We can instantiate random as

import random
s = random

As an instance of random, the methods can be accessed through s using the 
dot notation. For example,

print (s.random())

with print a random number. There can be multiple instances of a class, and each 
is created by referencing the class name.

s = random
t = random
print (s.random(), t.random())

This is not always useful, as in this case, but can be when the class contains 
data important to the programmer.

Variables declared inside of a class should only be accessed by using meth-
ods. If there is a variable named name within a class named client, then the vari-
able can normally be accessed directly:

a = client       # Create an instance of client.
print (a.name)

This is considered poor form in general. We should have a get method for 
each variable we wish to use, and this method only returns the value of the vari-
able:

print (a.get_name())

Similarly, we will have a set method to assign values to variables within a 
class:

a.set_name("Parker")

This protocol makes the class a relatively safe place. Variables can only be 
accessed and changed through one single method, making it correct if those 
methods are correct, and making all such accesses easy to locate in the code. For 



 Chapter  6  ·  Classes   ■ 223

small programs, this matters a lot less than for larger ones, but it is always a good 
idea to follow this scheme.

A very important method is the constructor, which is called automatically 
by the system when an instance is created. This method is used to set up vari-
ables and data structures and perhaps read data at the beginning of some process. 
Constructors can accept parameters and then save these as local within-class 
variables. If a class named client has a constructor, then it is called whenever an 
instance is created, and the syntax of the instantiation includes a parameter list 
even if it is empty:

a = client()       # Create an instance of client.

The idea is to provide a barrier around the methods and variables in the class. 
Accesses are controlled, and if the methods in the class are correct and the correct 
protocol is followed for using get and set methods, then it will be easier to find 
problems in the class, and the resulting code should be more reliable and easier 
to modify.

 6.4 CLASSES AS DATA ABSTRACTIONS
We can define a type as a data structure and a set of operations that we com-

monly perform on that structure. This defines what is called an abstract data type 
(ADT). This is a formal abstraction for data types, but a class structure can be 
used as a beginning of practical implementations of types using the model. The 
underlying variables and data types used in the implementation should only be 
important to the person implementing the class, and all the user can do is instanti-
ate it and use the operations. 

Consider a simple type like Boolean. A Boolean variable can have one of 
two values, True or False. These are constants, and their actual values are not 
important, only that they exist and are always the same. In Python, we could have 
a statement

flag = True

and this gives the Boolean variable the value True. Using a class to represent a 
type, we could do the following:

flag = Boolean()
flag.set_true()



224  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This is more complicated, but shows what is going on. The Boolean construc-
tor establishes an instance of the class Boolean, which is assigned to the variable 
flag. We now assign a value to flag by calling its set_true method; there should 
also be a set_false. Now flag is a Boolean variable with the value True. We can 
use this in a loop by getting its value through the get method:

while flag.get():
    . . .

Boolean values can have and, or, and not operations applied to them. If we 
have two Boolean variables, a and b, then a and b is True only when both a is 
True and b is True. When implementing a Boolean class we would use a method 
named and to implement this operator:

result = a.and(b)

The operation or would be implemented as a method as well. The not opera-
tion is unary, meaning it operates on only one value. It reverses the truth value. 
We would not require a parameter for not:

result.not()

A class can have variables inside them, and one special kind is a value that 
a class defines for programmers to use specifically with that class, usually as a 
constant. An example could be the values TRUE and FALSE defined as

TRUE = 1000
FALSE = 2000
   .  .  .

These could be used outside the class as
Boolean.TRUE
Boolean.FALSE

where the name of the class is Boolean. They must, of course, not be modified 
after being defined inside the class. Python has not implemented constant vari-
ables, but that’s what these variables should be.

This implementation is the basis for a Boolean type. Python already has a 
Boolean type, but the generality of the class construct means we can create our 
own more complicated types.



 Chapter  6  ·  Classes   ■ 225

 6.5  THE PYTHON CLASS – SYNTAX 
AND SEMANTICS

The “man walks into a bar” example illustrates many aspects of the Python 
class structure, but obviously omits many details, especially formal ones that can 
be so important to a programmer. A class looks like a function in that there is a 
keyword, class, and a name and a colon, followed by and indented region of code. 
Everything in that indented region belongs to the class, and cannot be used from 
outside without using the class name or the name of a variable that is an instance 
of the class.

The method __init__ is used to initialize any variables that belong to the 
class. It is what we called a constructor above. Any variables that belong to the 
class must be accessed through either an instance (from outside of the class) or 
by using the name self (from within the class). self.name refers to a variable that 
was defined inside of the class, whereas simply using name refers to a variable 
local to a method. When __init__ is called, a set of parameters can be passed 
and used to initialize variables in the class. If the first parameter is self, it means 
that the method can access class-local variables, otherwise it cannot. Normally, 
self is passed to __init__ or it cannot initialize things. Any variable initialized 
within __init__ and prefixed by self is a class-local variable. Any method that 
is passed self as a parameter can define a new class-local variable, but it makes 
sense to initialize all of them in one place it that’s possible.

A simple example of a class, initialization, and a method is as follows:
class person:
    def __init__ (self, name):
        self.name = name

    def introduce (self):
        print ("Hi, my name is ", self.name)

me = person("Jim")
me.introduce()

This class has two methods, __init__() and introduce(). After the class is 
defined, a variable named me is defined and is given a new instance of the person 
class having the name “Jim.” Then this variable is used to access the introduce 



226  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

method, which prints the introduction message “Hi, my name is Jim.” A second 
instance could be created and assigned to a second variable named you using

you = person ("Mike")

and the method call 
you.introduce()

would result in the message “Hi, my name is Mike.” Any number of instances can 
be created, and some many have the same name as others – they are still distinct 
instances.

A new class-local variable can be created by any method. In introduce(), for 
example, a new local named introductions can be created simply by assigning a 
value to it.

    def introduce (self):
        print ("Hi, my name is ", self.name)

     self.introductions = True

This variable is True if the method introductions has been called. The main 
program can access this variable directly. If the main program becomes

me = person("Jim")
me.introduce()
print (me.introductions)

then the program will generate the output
Hi, my name is  Jim
True

This is the essential information needed to define and use a class in Python.   

 6.5.1 A Really Simple Class

A common example of a basic class is a point, a place on a plane specified by 
x and y coordinate. The beginning of this class is

class point:
    def __init__ (self, x, y):
        self.x = x
        self.y = y



 Chapter  6  ·  Classes   ■ 227

This simply represents the data associated with a mathematical point.  What 
more does it need? Well, two points have a distance between them. A distance 
method could be added to the point:
def distance (self, p):
    d =  (self.x-p.x)*(self.x-p.x) + (self.y-p.y)*  

(self.y-p.y)
    return sqrt(d)

If a traditional function were to be used to compute distance, it would be 
written similarly but not identically. It would take two points as parameters:
def distance (p1, p2):
    d = (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)* (p1.y-p2.y)
   return sqrt(d)

The distance method uses one of the points as a preferred parameter, in a 
sense. The distance between points p1 and p2 would be calculated as

d = p1.distance(p2) or d = p2.distance(p1)

using the distance method, but as
d = distance (p1, p2)

if the function was used. To a degree, the difference is a philosophical one. Is 
distance some property that a point has from another point (the method), or is 
it something that is a thing that is calculated for two things (the function). After 
a while, it is possible to see the methods and data of a class as belonging to the 
object, and as somehow being properties of it. That’s what makes a class a type 
definition.

Many object-oriented languages offer the concept of accessor methods. 
Some languages do not allow variables that belong to a class to be used directly, 
or allow specific controls on access to them. The truth is that having the ability to 
find the value of variables and to modify them is generally a bad idea. If the only 
place that a class local variable can be modified is within the class then that limits 
the places where that can occur, and allows more control over what is possible. 
Preventing errors in programs is partly a matter of restricting actions to a small 
region and of knowing exactly what is going on at all times. 

Similarly, if some object outside of a class has access to the local variables of 
that class, then it promotes a dependency on a specific implementation. One of 



228  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

the advantages of an object-oriented implementation is that the interface to the 
class is fixed and independent of the way that class is implemented. It may seem 
obvious that a point object has an x, y position and that those would be real num-
bers, but the point class is the simplest class, and taking advantage of how a class 
is coded it not always beneficial.

All that an accessor method does is return a value of important to a user of a 
class. The x and y positions are variables local to the class, and many would agree 
that they should have an accessor method:

def getx (self):
    return self.x
def gety (self):
    return self.y

Rewriting the distance() method to use accessor methods changes it only 
slightly:

def distance (self, p):
    d = (self.x-p.getx())*(self.x-p.getx()) + 
         (self.y-p.gety())* (self.y-p.gety())
    return sqrt(d)
Methods called mutators or setters are used to modify the value of a variable 

in a class. They may do more than that, such as checking ranges and types, and 
tracking modifications.

def setx (self, x):
 self.x = x
def sety (self, y):
 self.y = y

There are other methods that could be added to even this simple class just in 
case they were needed, such as to draw the point, to return a string that describes 
the object, to rotate about the origin or some other point, or to call a destructor 
method when the object is no longer needed. Until it is known what the class 
will be used for, there may not be any value for this effort, but if a class is being 
provided for general utility, like the Python string, as much functionality would 
be provided as the programmer’s imagination could invent. A draw method could 
simply print the coordinates, and could be useful for debugging:

def draw (self):
    print ("(", self.x, ",", self.y, ") ")



 Chapter  6  ·  Classes   ■ 229

Using this class involves creating instances and using the provided methods, 
and that should be all. A triangle consists of three points. A triangle class could 
be defined as follows:
class triangle:
    def __init__ (self, p0, p1, p2):
        self.v0 = p0
        self.v1 = p1
   self.v2 = p2
        self.x = (p0.getx()+p1.getx()+p2.getx())/3
  self.y = (p0.gety()+p1.gety()+p2.gety())/3

    def set_vertices (self, p0, p1, p2):
        self.v0 = p0
        self.v1 = p1
   self.v2 = p2

    def get_vertices (self):
   return ( (self.v0, self.v1, self.v2) )

    def getx (self):
        return self.x

    def gety (self):
        return self.y

The (x, y) value of a triangle is its center, or the average value of the x and the 
y coordinates of the vertices. These are the basic methods. A triangle is likely to 
be drawn somehow, and the next chapter will explain how to do that. However, 
without knowing the details, a triangle is a set of lines drawn between the vertices 
and so might be done that way. As it is, using text only, it will print its vertices:

def draw (self):
    print ("Triangle:")
    self.v0.draw()
    self.v1.draw()
    self.v2.draw()

The triangle can be moved to a new position. A change in the x and y loca-
tion specifies the change, and it is done by changing the coordinates of each of 
the vertices:

def move (self, dx, dy)
    coord = p0.getx()   



230  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    p0.setx(coord+dx)
    coord = p0.gety()
    p0.sety(coord+dy)
    coord = p1.getx()   
    p1.setx(coord+dx)
    coord = p0.gety()
    p1.sety(coord+dy)
    coord = p2.getx()   
    p2.setx(coord+dx)
    coord = p2.gety()
    p2.sety(coord+dy)
    self.x = self.x + dx
    self.y = self.y + dy

In this way of expressing things, it is clear that moving the triangle is a matter 
of changing the coordinates of the vertices. If each point had a move() method, 
then it would be clearer: moving a triangle is a matter of moving each of the 
vertices:

def move (self, dx, dy):
    p0.move(dx, dy)
    p1.move(dx, dy)
    p2.move(dx, dy)
    self.x = self.x + dx
    self.y = self.y + dy

Which of these two move() methods seems the best description of what is 
happening? The more complex are the classes, the more value there is in making 
an effort to design them to effectively communicate their behaviors and to make 
things easier to expand and modify. It is also plain that the move() method for 
a point is simpler than that for a triangle. That fact is invisible from outside the 
class, and it is not relevant.

 6.5.2 Encapsulation

In the example of the point class, there is no need for an accessor method 
because the variables can be accessed from outside the class, in spite of the argu-
ments that have been given for more controlled use of these variables. A careful 
programmer would want to ensure the integrity of classes by forcing the variables 
to remain protected in some way, and Python allows this while not requiring it.



 Chapter  6  ·  Classes   ■ 231

The variables x and y are accessible and modifiable from outside because of 
how they are named.  Any variable name in a class that begins with an underscore 
character (‘_’) cannot be modified by code that does not belong to the class. Such 
a variable is said to be protected. A variable name that begins with two under-
score characters cannot be modified or even examined from outside of the class, 
and is said to be private. All other variables are public. This applies to method 
names too, so the method __init__() that is the usually constructor is private.

Rewriting the point class to make the internal variables private would be 
done like this:

class point:
  def __init__ (self, x, y):
    self.__x = x
    self.__y = y
  def getx (self):
    return self.__x
  def gety (self):
    return self.__y
  def setx (self, x):
    self.__x = x
  def sety (self, y):
    self.__yy = y
  def distance (self, p):
    d = (self.__x-p.getx())*(self.__x-p.getx()) + 
        (self.__y-p.gety())* (self.__y-p.gety())
    return sqrt(d)
  def move(self, dx, dy):
    self.__x = self.__x + dx
    self.__y = self.__y + dy
  def draw (self):
    print ("(", self.__x, ",", self.__y, ") ")

Now the internal variables x and y cannot be modified or even have their 
values examined unless explicitly allowed by a method.

 6.6 CLASSES AND DATA TYPES AGAIN
Consider an integer. How can it be described so that a person who has not 

used one before can implement something that looks and acts like an integer? 
This is a specific case of the general problem faced when using computers – to 



232  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

describe a problem in enough detail so that a machine can solve it. The definition 
could start with the idea that integers can be used for counting things. They are 
numbers that have no fractional part, and that have been extended so that they 
can be positive or negative. 

When designing programs that use classes, it is likely that the classes rep-
resent types, although they may not be completely implemented. The design 
scheme is to sketch a high-level solution and observe what components of that 
solution behave like types. Those components can be implemented as classes. 
The remainder of the solution has a structure imposed on it by virtue of the fact 
that these other types exist and are defined to be used in specific ways. Types can 
hide their implementation, for example. The underlying nature of an integer does 
not matter much to a programmer most times, and so it can be hidden behind the 
class boundary. This has the added feature that it encourages portability: if the 
implementation has to change, the class can be re-written while providing the 
same interface to the programmer.

As noted previously, the operations on the type are implemented as methods. 
The methods can access the internal structure of the class while providing the 
desired view of the data and ways of manipulating it. The underlying representa-
tion of an integer can be unknown to a user of this class. All that is known is the 
interface, described as methods. If the interface is well documented, then that’s 
all a programmer needs to know. In fact, exposing too much of the class to a pro-
grammer can compromise it.

 6.6.1 Example: A Deck of Cards

Traditional playing cards have red and black colors, four suits, and a total of 
52 cards, 13 in each suit. Individual cards are components of a deck, and can be 
sorted: a 2 is less than a 3, and a jack less than a king. The ace is a problem: some-
times it is the high card, and sometimes it is the low card. A card possesses the 
characteristics suit and value. When playing card games, the cards are dealt from 
the deck into hands of some number of cards (for example, 13 cards for bridge 
and 5 for most poker games). The value of a card usually matters. Sometimes 
cards are compared against each other (poker), sometimes the sum of the values 
is important (as in blackjack or cribbage), and sometimes the suit matters.  These 



 Chapter  6  ·  Classes   ■ 233

uses of a deck of cards can be used to define how classes are created to implement 
card games on a computer.

Operations on a card could include to view it (it could be face up or face 
down) and to compare it against another card. Comparison operations could in-
clude a set of complex specifications to allow for aces being high or low and for 
some cards having special values (as in spades or baccarat), so a definition step 
might be very important.

A deck is a collection of cards. There are usually one of each card in a deck, 
but in some places, such as Las Vegas, there could be four or more complete decks 
used when playing blackjack. Operations on a deck would include to shuffle, to 
replace the entire deck, and to deal a card or a hand. With these things in mind, a 
draft of some Python classes for implementing a card deck can be created:

class card:
   def __init__ ( self, face, 

suit):
   def value():
   def suit():
   def facevalue():
   def view ():
   def compare():
   def initialize()

class deck:
    def __init__ (self):
    def deal_card ():
    def deal_hand (ncards):
    def shuffle():
    def replace():

The way that the methods are implemented depends on the underlying repre-
sentation. When the programmer calls deal(), they expect the method to return a 
card, which is an instance of the card class. How that happens is not relevant to 
them, but it is relevant to the person who implements the class. In addition, how it 
happens may be different on different computers, and as long as the result is the 
same, it does not matter.

For example, a card could be a constant value r that represented one of the 
52 cards in the deck. The class could contain a set of values for these cards and 
provide them to programmers as a reference:

class card:
    CLUBS_1 = 1
    DIAMONDS_1 = 2
             . . .



234  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    HEARTS_ACE = 51
    SPADES_ACE = 52

    def __init__ (self, face, suit):
             . . .
The variables for the cards, such as CLUBS_1 and DIAMONDS_1, are ac-

cessible in all instances of the card class and have the appropriate value. Variables 
defined in this way have one instance only and are shared by all instances.

A second implementation could be as a tuple. The ace of clubs would be 
(Clubs, 1), for instance. Each has advantages, but these will not be apparent to 
the user of the class. For example, the tuple implementation makes it easier to 
determine the suit of a card. This matters to games that have trump suits. The 
integer value implementation makes it easier to determine values and do specific 
comparisons. The value of a card could be stored in a tuple named ranks, for 
example, and ranks[r] would be a numerical value associated with the specific 
card.

 6.6.2 A Bouncing Ball

Animations and computer simulations see the world as a set of samples cap-
tured at discrete times. An animation, for example, is a set of images of some 
scene taken at fixed time intervals, generally 1/24th of a second or 1/30th of a 
second. Simulations use time intervals that are appropriate to the thing being 
simulated. This example is a simulation and animation of a bouncing ball, first in 
one dimension and then in two dimensions.

A ball dropped from a height h falls to the ground when released. Its speed 
increases as it falls, because it is being pulled downwards by gravity. The basic 
equation governing its movement is as follows:

 s = 1/2at2 + v0t (6.1)

where s is the distance fallen at time t, v0 is the velocity the object had at time 
t=0, and a is the value of the acceleration. For an object at the Earth’s surface, the 
value of a is 32 feet/second2 = 9.8 meters/second2. For a ball being dropped, v0 is 
0, since it is stationary initially. The distances at successive time intervals of 0.5 
seconds are shown in Table 6.2:



 Chapter  6  ·  Classes   ■ 235

Table 6.2
Distances at successive time intervals

Time S (feet)
= 16*t*t

S (meters) 
= 4.9*t*t 

0 0 0
0.5 4 1.225
1 16 4.9
1.5 36 11.025
2 64 19.6
2.5 100 30.625
3 144 44.1

A class could be made that would represent a ball. It would have a position 
and a speed at any given time, and could even be drawn on a computer screen. 
Making it bounce would be a matter of giving the ball a value that indicated how 
much of its energy would be lost each time it bounced, meaning that it would 
eventually stop moving. Writing the code for the class Ball could begin with the 
initialization (the constructor):

class Ball:
    def __init__(self, height, elasticity):
        self.height = height
        self.e = e
        self.speed = 0.0

     self.a = 32.0

This creates and initializes four variables named height, e, a, and speed that 
are local to the class. Remember, the parameter self refers to the class itself, and 
any variable that begins with “self.” is a part of the class. A variable within the 
function __init__ that did not begin with “self.” and was not global would belong 
to the function, and would be created and destroyed each time that function was 
called.

A method (function) that calculates the height of the ball at a specific time is 
something else that the Ball class should provide. This is simply the value of the 
class local variable height:

def height(self):
    return self.height



236  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The self parameter has to be passed, otherwise the function cannot access 
the local variable height. The simulation needs values of height as a function of 
time, and time increases in discrete chunks. This could be implemented in sev-
eral ways: the class could keep track of the time since it was dropped or it could 
use the time increment to determine the next speed and position. If the former, 
then a new class variable must be used to store the time; if the latter, then it means 
it has to be found to increment the speed rather than using total duration. This 
second idea is simpler than it sounds. The equation of motion s = 1/2at2 + v0t 
can use a time increment in place of t, and v0 is the velocity at the start of the 
time interval; this yields the new position. The new velocity can be found from a 
related equation of motion, which is

 v = at + v0 (6.2)

where t is again the time increment and v0 is the speed at the beginning of the 
interval.

The function that updates the speed and position in this manner is called 
delta:

def delta (self, dt):
    s = 0.5*self.a*dt*dt + self.speed*dt
    height = height - s
    self.speed = self.speed + self.a*dt

Here, the parameter dt is the time interval, and so it can be varied to get the 
position values at various resolutions.

For now, this is the Ball class. Some code is needed to test this class and show 
how well (or whether) it works, and this is the main part of the program. An in-
stance of Ball has to be created and then the delta method is called repeatedly at 
time increments of, for an example, 0.1 seconds. A table of height and time can 
be constructed in this way, and it is a simple matter to see whether the numbers 
correct. The main program is as follows:

b = Ball (12.0,  0.5)
for i in range (0, 20):
    b.delta (0.1)
    print  ("At time ", i*0.1, " the ball has fallen to", 

b.height(),  " Feet")



 Chapter  6  ·  Classes   ■ 237

The results are what should be expected, showing that this class functions 
correctly:
At time  0.0  the ball has fallen to 12.0  Feet
…
At time  0.5  the ball has fallen to 7.999999999999997  Feet
…
At time  1.0  the ball has fallen to -4.0000000000000036  Feet
…
At time  1.5  the ball has fallen to -24.000000000000004  Feet
…
At time  2.0  the ball has fallen to -52.000000000000014  Feet
…
At time  2.5  the ball has fallen to -88.00000000000003  Feet
…

Because the initial height was 12 feet, the distance fallen is 12 minus the 
value given above (4, 16, 36, 64, and 100 feet), which is in agreement with the 
initial table for the times listed. It appears to work correctly.

This code does not yet do the bounce, though. When the height reaches 0, the 
ball is at ground level. It should then bounce, begin moving in the reverse direc-
tion, with a speed equal to its former downward speed multiplied by the elasticity 
value. This does not seem challenging until it is realized that the ball is not likely 
to reach a height of 0 exactly at a time increment’s boundary. At one point, the 
ball will be above 0 and then after the next time unit, the ball will be below 0. 
When does it actually hit the ground, and where will be the ball actually be at 
the end of the time increment? This is not a programming issue so much as an 
algorithmic or mathematical one, but it is a detail that is important to the correct-
ness of the results.

It seems clear that the bounce computation should be performed in the meth-
od delta(). The height value in the class begins at a positive value and decreases 
towards 0 as the ball falls. During some specific call to delta(), the ball has a 
positive height at the beginning of the call and a negative one at the end; this 
means a bounce happened. At that time, the height of the ball is negative. The 
height of the bounced ball at the end of the time interval is the negated value of 
the height, so it is positive again, multiplied by the elasticity. 



238  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The speed that should be used in the bounce is based not the final speed, but 
the speed the ball was traveling at the time when the height was 0. This happens 
when self.height-s is zero, or when

self.height - s = 0.5*self.a*dt*dt + self.speed*dt

Solve this for the time xt that makes the equation work out, which is the stan-
dard solution to a quadratic equation that is taught in high school:

 
2self.speed self.speed 2 *self.heightaxt a

− ± +=   (6.3)

The value of xt is between 0 and dt, and is the time within the increment at 
which the ball struck the ground. At this time the ball will be moving with speed 
(self.speed + self.a*xt) instead of (self.speed + self.a*dt) for a normal time inter-
val. The ball will reverse direction and reduce speed by the value of elasticity. 
Now the ball is moving upwards.

The ball is slowed by gravity until it stops on its upward path and drops down 
again. At the top of the path, its speed is 0; at the beginning of the time interval, 
the speed is negative, and at the end, it is positive, and that’s how the peak is de-
tected. This situation is much simpler than the bounce. 

The annotated program is as follows:
# Ball.py
import math
class Ball:
# Constructor/initializer
  def __init__(self, height, elasticity):
      self.height = height  # Current height of the ball
      self.e = elasticity   # How much energy is retained each 
                            # bounce
      self.speed = 0.0      # Current speed of the ball, 
                            # initially 0, down +
      self.a = 32.0         # Acceleration: G= 32 ft/sec^2

# What Java would call an accessor: not really needed.
    def getHeight(self):
        return self.height

# Calculate the new height and speed for a change in time 
# of dt seconds.
    def delta (self, dt):



 Chapter  6  ·  Classes   ■ 239

        startHeight = self.height     # Remember the state before dt
       startSpeed = self.speed
       s = 0.5*self.a*dt*dt + self.speed*dt # Equation 1: 
                                            # position update
        self.height = self.height - s
        self.speed = self.speed + self.a*dt  # Equation 2: 
                                             # Speed update
        if self.height < 0:   # The sign changed; bounce, when?

    # Equation 3: Solve the quadratic equation to find the 
    # time of bounce
            xt = ( -startSpeed - math.sqrt(startSpeed*startSpeed 

+2*self.a*startHeight))/self.a
            if xt < 0:
                xt =  (-startSpeed + math.sqrt(startSpeed*startSpeed 

+2*self.a*startHeight))/self.a
            print ("Bounces at time ", xt)

# Equation 2 with elasticity
            self.speed = -(self.speed + self.a*xt)*self.e
            self.height = -self.height * self.e     # Correct 
                                                    # the height
            if self.e <0.03: self.e = 0.0
            else: self.e = self.e - 0.03

# Peak of the upward bounce, velocity changes sign from + to –
                     # If sign differs then the product is -ve
        elif startSpeed*self.speed < 0:  
            self.speed = 0      # Speed is 0 at the top of the bounce
            print("Peak")
        print("New speed is ",self.speed," and height starts at ", 
                   self.height)
        if self.height<0.:
            self.height = 0.

b = Ball (12.0,  0.5)  # Initial height 12 feet, elasticity is 0.5
s = Screen (20, 40)

for i in range (0, 50):
    b.delta (0.1)   # Time increment is 0.1 seconds

How can this program be effectively tested? The computed values could be 
compared against hand calculations, but this is time consuming. It was done for 
a few cases and the simulation was accurate. For this example, another program 
was written in a different programming language to calculate the same values 



240  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

and the result from the two programs was compared – they were nearly exactly 
the same. This is not definitive, but is certainly a good indication that this simula-
tion is working properly. In both programs, similar approximations were made, 
and the numbers agreed to seven decimal places.

 6.6.3 Cat-A-Pult

Early in the development of personal computers, a simple game was created 
that involved shooting cannons. The player would set an angle and a power level 
and a cannonball would be fired towards the opposing cannon. If the ball struck 
the cannon, then it would be destroyed, but if not, then the opposing player (or the 
computer) would fire back at the player’s cannon. This process would continue 
until one or the other cannon was destroyed. This game evolved with time, with 
more complex graphics, mountainous terrain, and complexity. Its influence can 
be seen in modern games like Angry Birds.

A variation of this game is proposed as an example of how classes can be 
used. The basic idea is to eliminate a mouse that is eating your garden by firing 
cats at it; hence the name cat-a-pult. The game uses text as input and output, be-
cause no graphics facility is available yet. A player types the angle and the power 
level and the computer fires a cat at the mouse. The location where the cat lands 
is marked on a simple character display and the player can try again. The goal is 
to hit the mouse with as few tries as possible.

Figure 6.1 
Typical configuration of a dueling  cannons game.

Basic Design

Before writing any code, one needs to consider the items in this game and the 
actions they can take. The items are classes, and the actions are methods. There 



 Chapter  6  ·  Classes   ■ 241

seem to be two items: a cannonball (a cat) and a cannon. The target (the mouse) 
could be a class, too. The cannon has a location, an angle, and a power or force 
with which the cannonball will be ejected. Both of the last two factors affect the 
distance the ball travels. The cannon is given a target as a parameter – in this 
example, the target is another cannon, basically to avoid making yet another class 
definition. 

The action a cannon can perform is to be fired. This involves releasing a 
cannonball with a particular speed and direction from the location of the cannon. 
In this implementation, an instance of the cannonball class is created when the 
cannon is fired and is given the angle and velocity as initial parameters; the ball 
is independent from then on. As a class, the ball has a position (x,y) and a speed 
(dx, dy). The action that it can perform is to move, which is accomplished us-
ing a method named step(), and to collide with something, accomplished by the 
method testCollision().

Detailed Design

In the metaphor of this game, the cannonball is a cat and the target is a mouse, 
but to the program, these details are not important. Here’s what is important:

 Class Cannon Class Ball
Has: position x, y position x, y
 angle (when fired) speed dx, dy
 power (when fired) name (text)
 target (another cannon) target (a Cannon class instance)
 ball gravity (force changing the height)
Does: fire step
 step test for collision

All of the Has aspects are class local variables, and in this design, they are 
initialized within the __init__ method of each class. This would entail the fol-
lowing:

self.x = x self.x = x
self.y = y self.y = y
self.power = 0 self.dx = dx
self.angle = 0 self.dy = dy
self.target = target self.target = target
self.ball = None self.gravity = 1.0
 self.name = ""



242  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The game is essentially one-dimensional. The cannonball lands at a specific 
x coordinate, and if that is near enough to the x coordinate of the target, then the 
target is destroyed and the game is over. Without a way to draw proper graphics, 
this can be imagined as a simple text display with the cannon on one side of the 
screen and the target on the other, something like that seen in Figure 6.1.

The slash character (/) on the left represents the cannon, and the “Y” repre-
sents the mouse, which is the target. The cannon is at horizontal coordinate 12, 
and the mouse is at 60; both vertical coordinates are 0. 

All of the Does aspects represent actions, or things the class object can do. 
When the cannon is fired, the ball is created at the cannon coordinates (12, 0) and 
is given a speed that is related to the angle and power level using trigonometric 
calculations (Figure 6.2).

Figure 6.2 

ASCII (text) video of the game at the beginning.

  

 (a) (b)
Figure 6.3 
(a A review of how sines and cosines are computed. (b) Using the definition of sine and cosine to 
calculate the speed of the ball (or any object) in the x and y directions.



 Chapter  6  ·  Classes   ■ 243

dy = sin(angle * 3.1415/180.0)
dx = cos(angle * 3.1415/180.0)

The angles passed to sin and cos must be in radians, so the value PI/180 is 
used to convert degrees into radians. The coordinates in this case have y increas-
ing as the ball moves upwards. When the cannon is fired, a ball is created that 
has the x and y coordinates of the cannon and the dx and dy values determined 
as above. This is accomplished by a method named fire():

Fire: takes an angle and a power
  Angle is in degrees, between 0 and 360
  Power is between 0 and 100 (a percentage)

 1. Compute values for dx and dy from angle and power, where max power 
is 0.1.

 2. Create an instance of Ball giving it x, y, dx, dy, a name (“cat”), and a 
target (the mouse)

The simulation makes time steps of a fixed duration and calculates positions 
of objects at the end of that step. Each object should have a method that updates 
the time by one interval, and it will be named step(). The cannon does not move, 
but sometimes has a cannonball that it has fired, so updating the status of the can-
non should update the status of the ball as well:

Step 1: Make one-time step for this object in the simulation. No parameters.

 1. If a ball has been fired, then update its position. This is done by calling 
the step() method of the ball.

This defines the cannon.

The ball must also possess a step() method, and it will update the ball’s posi-
tion based on its current speed and location. The x position is increased by dx, 
and the y is increased by dy. Gravity pulls down on the ball, effectively decreas-
ing the vertical speed of the ball during each interval. After some trials, it was 
determined that the value of dy should be decreased by the value of gravity dur-
ing each interval. If the ball strikes the ground, it should stop moving. When does 
this happen? When y becomes smaller than 0. When this occurs, set dx and dy to 
0, and check to see if the impact location is near to the target.



244  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Step 2: Make one-time step for this object in the simulation. No parameters.

 1. Let x = x + dx, changing the x position.
 2. Let y = y + dy, changing the y position.
 3. Decrease dy by gravity (dy = dy - gravity)
 4. If the ball has struck the ground
 5. Let dx = dy = gravity = 0
 6. Check for collision with target

Checking to see if the ball hit the target is a matter of looking at the x value 
of the ball and the x value of the target. If the difference is smaller than some 
predefined value, say 1.0, then the target was hit. This is determined by a method 
called testCollision(). If the collision occurred, then success has been achieved 
by the player, so set a flag that ends the game.

testCollision: Check to see if the ball has hit the target, and if so, set a flag to 
True. 

 1. Subtract the x position of the ball from the x position of the target. Call 
this d.

 2. If d <= 1.0, then set a flag done to True.

This defines the class Ball and completes the two major classes.

The main program that uses these classes could look something like this:
mouse = Cannon (60, 0, None)      # Create the target
player = Cannon (12, 0, mouse)    # create the cannon
player.fire (42, 65)         # Example: fire cannon at 
                             # 42 degrees 65% power
done = False                 # initialize variable 'done'
while not done:              # so long as the simulation 
                             # is not over
    player.step()            # Update the position of 
                             # the ball

Actual code for most of this example is shown in Figure 6.4, and the entire 
program is on the accompanying disk. Included in the disk version is an extra 
class that draws each state of the game as character graphics that can be dis-
played in the Python output window; the example in the figure does not include 
any output, and is unsatisfying to execute The program on the disk generates a 
numeric and graphical representation of the state, showing the axes, the cannon, 



 Chapter  6  ·  Classes   ■ 245

the ball, and the target after each step. These can be made into distinct text files 
and can be made into an animation using MovieMaker on a Windows computer 
or Final Cut on a Mac. Such an animation is also included on the disk, and is 
named catapult.mp4.

The process above loosely defines a way to design and code a program that 
uses classes.

from math import *
class Ball:
    def _ _ init _ _ ( self, x, 

y, dx, dy, 
name,  
other):

      self.xPos = x
      self.yPos = y
      self.xSpeed = dx
      self.ySpeed = dy
      self.gravity = 1.0
        self.name = name
        self.other = other

    def step (self): #  One time
                    # step
      self.xPos =  self.xPos + 

self.xSpeed
      self.yPos =  self.yPos + 

self.ySpeed
      self.ySpeed =  self.ySpeed 

- self.
gravity

      if self.yPos < 0:
            self.xSpeed = 0
            self.xSpeed = 0
            self.gravity = 0
            self.yPos = 0
            self.testCollision()

    def testCollision (self):
        global done
        d = self.xPos-self.

other.x
        if d<0: d = -d
        if d < 1.0:
            done = True

class Cannon:
    def __init__ ( self, x, y, 

other):
      self.x = x
      self.y = y
      self.other = other
      self.ball = None

    def fire ( self, angle, pow-
er):

      dy = sin(angle * 
3.1415/180.0)

      dx = cos(angle * 
3.1415/180.0)

      self.ball =  Ball(self.x, 
self.y, 

      dx*power/10.0, 
dy*power/10.0,

                 "Cat", self.other)

    def step (self):
        if self.ball != None:
            (self.ball).step()

Figure 6.4
The Ball and the Cannon classes from the Cat-a-pult simulation.

ON THE CD



246  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 

 

Figure 6.5
Frames from the text animation of the game.

 6.7 SUBCLASSES AND INHERITANCE
Classes are designed as language features that can represent a hierarchy of 

information or structure. A class can be used to define another, and properties 
from the first class are passed on (inherited) by the other. A class that is based 
on another in this way is called a subclass, and there are many types: a pet class 
with dogs and cats as special cases; a polygon having triangles and rectangles as 
subclasses; a dessert class, having subclasses pie, cake, and cookie; and even the 
initial example in this chapter of a man and a woman class and the person class 
that they can be derived from. A subclass is a more specific case of the superclass 
(or parent class) on which it is based.

The examples above are for explanation, and are not really useful as software 
components, which begs a question about whether subclasses are really useful 
things. They are, but it requires non-trivial examples to demonstrate this.

 6.7.1 Non-Trivial Example: Objects in a Video Game

To some degree, all objects in a game have some things in common. They are 
things that can interact with other game objects; they have a position within the 



 Chapter  6  ·  Classes   ■ 247

volume of space defined by the game and they have a visual appearance. Thus, a 
description of a class that could implement a game object would include:
class gobject:
    position = (0, 0, 0)       # Object position in 3D
    visual = None              # Graphics that represent
                               # the object
    def __init__ (self, pos, vis)
    def getPosition (self):
    def setPosition(self, p):
    def setVisual(self, v):
    def draw (self):

Anyone who has played a video game knows that some of the objects can 
move while others cannot. Objects that move can have their position change, and 
the position has to be updated regularly. An object that can move can have a speed 
and a method that updates their position; otherwise it is like a gobject. This is a 
good case for a subclass:
class mobject (gobject):
    speed = (0, 0, 0)  # Speed in pixels per frame 
                       # the x,y,z directions
    def __init__ (self, s)
    def getSpeed(self):
    def setSpeed(self, s):
    def move(self):
    def collision(self, gobject):

The syntax of this has the superclass gobject as a parameter (apparently) 
of the subclass mobject being defined. If an instance of a gobject is created, 
its __init__ method is called and the resulting reference has access to all of the 
methods in the gobject definition, just as one would expect. If an instance of 
mobject is created, the __init__ method of mobject is called, but not that of 
gobject. Nonetheless, all properties and methods of both classes are available 
through the mobject reference. The following is legal:
m = mobject ( (12, 0, 0))  # Create mboject with 
                           # speed (12,0,0)
m.draw()                   # Draw this object

This code is acceptable even though an mobject does not possess a method 
draw(); the method defined in the parent class is accessible and will be used. 



248  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

When the mobject is created, it is also a gobject, and all of the variables and 
methods belonging to a gobject are defined also.  However, the __init__() meth-
od for gobject is not called unless the mobject __init__() method does so.  This 
means that, for the mobject, the values of position and visual are not specified 
by the constructor and will take the default values they were given in the gobject 
class. If no such value was given, they will be undefined, and an error will occur 
if they are referenced. 

Calling the __init__() method of the parent class can be done as follows:
super().__init__((10,10,10), None)
In this instance, the constructor for gobject is called, passing a position and a 

visual. This would normally be done only in the __init__() of the subclass.

Now consider the following code. The methods are mainly stubs that print a 
message, but the output of the program is instructive:

class gobject:
# Object position in 3D
    position = (0, 0, 0) 
# Graphics that represent 

the 
# object
   visual = None
   def __init__ (self,pos,vis):
        self.position = pos
        self.visual = vis
        print ("gobject init")
   def getPosition (self):
        return self.position
        print ("getPosition")
   def setPosition(self, p):
        self.position = p
        print ("setPosition")
   def setVisual(self, v):
        self.visual = v
        print ("setVisual")
   def draw (self):
        print("Draw")

class mobject (gobject):
# Speed in pixels per frame the 
# x,y,z directions
    speed = (0, 0, 0)      
    def __init__ (self, s):
        self.speed = s
      super().__init__

((10,10,10), None)
        print ("mobject init")
    def getSpeed(self):
        print ("getSpeed")
        return self.speed
    def setSpeed(self, s):
        print ("setSpeed")
        self.speed = s
    def move(self):
        print ("Move")
    def collision(self, 

      gobject):
        print ("collision")

g = gobject ((12, 12,12), None)
m = mobject((13,13,13))
print (m.getPosition())
m.move()
m.draw()



 Chapter  6  ·  Classes   ■ 249

The output from this is
gobject init                  from the creation of the gobject instance g
gobject init                  when m is created it calls the parent __init__
mobject init                 from the mobject __init__ when m is created
(10, 10, 10)                  m.getPosition, showing access to parent methods
Move                            m.move call
Draw                            m.draw call, again showing access to parent method

Attempting to call g.move() would fail because there is no move() method 
within the gobject class. Hence, if an object was passed to a function that would 
attempt to move it, it would be critical to know whether the parameter passed was 
a gobject or an mobject. Consider a method that moves an object x out of the path 
of an mobject instance if it can, or changes the path of the mobject if it cannot. 
This method, named dodge(), might do the following:

def dodge self, (x):
    c = x.getPosition()
    c = c +  (dx, dy, 0)
    x.setPosition (c)

However, if the parameter is an instance of a gobject, then it should not be 
moved. The function isinstance() can be used to determine this. The result of

isinstance (x, gobject)

is True if x is a gobject and False otherwise. If False, then it cannot be moved 
and the dodge() method will have to move the current mobject out of the way 
instead:

def dodge self, (x):
    if isinstance(x, gobject):
        self.position = self.position + (dx, dy, 0)
else:
    c = x.getPosition()
    c = c +  (dx, dy, 0)
    x.setPosition (c)



250  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 6.8 DUCK TYPING
In many programming languages, types are immutable and compatibility is 

enforced. This is not generally true in Python, but still there are operations that 
require specific types. Indexing into a string or tuple must be done using some-
thing much like an integer, and not by using a float. Now that classes can be used 
to build what amounts to new types, more attention should be paid to the things 
a type should offer and the requirements this puts on a programmer. The fewer 
restrictions the better, and this is a principle of duck typing as well.

It should not really matter what the exact type of the object is that is be-
ing manipulated, only that it possesses the properties that are needed. In a very 
simple case, consider the classes point and triangle that were discussed at the 
beginning of this chapter. It was proposed that both could have a draw() method 
that would create a graphical representation of these on the screen, and both have 
a move() method, as well. We write a function that moves a triangle away from 
a point and draws them both:

def moveaway (a, b)
    dx = a.getx()-b.getx()
    dy = a.gety()-d.gety()
    a.move (dx/10, dy/10)
    b.move (-dx/10, -dy/10)

Which of the parameters, a or b, is the triangle, and which is the point? It 
does not matter. Both classes have the methods needed by this function, namely 
getx(), gety(), and move(). Because of this, the calls are symmetrical, and both 
of the following are the same:

moveaway (a, b)
moveaway (b, a)

A class that possesses these three methods can be passed to moveaway(), and 
a result will be calculated without error. The essence of duck typing is that, so 
long as an object offers the service needed (i.e., a method of the correct name and 
parameter set) to another function or method, then the call is acceptable. There is 
a way to tell whether the class instance a has a getx() method: the built-in func-
tion hasattr().

if hasattr (v1, "getx"):
    x = v1.getx()



 Chapter  6  ·  Classes   ■ 251

The first argument is a class instance and the second is the name of the meth-
od that is needed, as a string. It returns True if the method exists.

(The name duck typing comes from the old saying that “if something walks 
like a duck and quacks like a duck, then it is a duck.” As long as a class offers the 
things asked for, then it can be used in that context.)

 6.9  SUMMARY
A class, in the general sense, is a template for something that involves data 

and operations (functions).  An object is an instance of a class, a specific instan-
tiation of the template. Defining a class in Python involves specifying a class 
name and a collection of variables and functions that will belong to that class.  A 
method is a function that belongs to a class, and so can have easy access to its 
internal data. As a first parameter, a method can be passed the self variable by 
default, which can be thought of as a reference to the object currently executing. 
Thus, within a method, the expression self.x refers to a variable x defined in the 
class. An object is created using the name of the class: for a class named thing, 
an instance x is created using x = thing(). When this occurs, if there is a method 
in thing named __init__, then that method is called. This is referred to as an 
initializer or a constructor.

Accessing methods in an object is done using dot notation: obj.method(). 
Variables can be accessed in this way, too.

A subclass is a class that possesses all of the properties of some other class, 
the parent class or superclass, plus some new ones. The data and methods of the 
parent class can be accessed from the subclass (or child class). A subclass of thing 
named something would be defined using the syntax:

class something(thing):

A class can represent a new type, where methods represent operations.

Public variables can be accessed and modified from outside of a class; pro-
tected variables can be accessed but not modified from outside of a class, and 
must begin with an underscore character (e.g., _variable); private variables can 
neither be accessed nor modified from outside of the class, and must begin with 
two underscore characters (e.g., __variable).



252  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The principle of duck typing is that should not really matter what the exact 
type of the object is that is being manipulated, only that it possesses the proper-
ties that are needed.

Exercises

 1. Define a class named square in which the construct takes the length of the 
side as a parameter. This class should have a method area() that computes 
and returns the area of the square.

 2.  Define a subclass of square named button that also has a location, passed as 
X and Y parameters to the constructor. A button always has a width of 10. 
The button class has the following methods:
center() Return the coordinates of the center of the button
label(s) Set the value of a text label to be drawn to s

 3.  Create a class client. A client is a data-only class that has no methods other 
than __init__(), but that holds data. In this case the client class holds a name, 
a category (retail or commercial), a time value (integer) and a service value 
(integer). All values are established when the instance is created by passing 
parameters to __init__().  Now create two subclasses of client, one for each 
category, retail and commercial.

 4.  Define a class named fraction that implements fractional numbers. The 
constructor takes the numerator and denominator as parameters, and the 
class provides methods to add, multiply, negate (make negative), print, and 
find the reciprocal of a fraction. Test this class by calculating the following:

  14/16 * 3/4 
 1/2 – 1/4 

Bonus: Reduce the results to the smallest possible denominator.

 5.  Given the following class
    class value:
        def __init__ (self)
            self.val = randrange(0,100)
        and the initialization
            t = ()
            for i in range(0,100):



 Chapter  6  ·  Classes   ■ 253

                v = value()
                t = t + (v,)
 write the code that scans the tuple t and locates the smallest integer saved in 
any of the class instances.

 6.  Create a class that simulates a NAND logic gate with three inputs. The output 
will be 1 unless all three inputs are 1, in which case the output is 0. Every 
time an input is changed, the output is changed to reflect the new state; 
thus, methods to set each input and to calculate the result will be needed, in 
addition to a method that returns the output.

Input 1 Input 2 Input 3 Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

 Truth table for the 3 input NAND gate and the symbolic representation used 
in a circuit.

 7.  A queue is a data structure that accepts new (incoming) data at one end (the 
back) and stores it in the order of arrival, giving the data at the front of the 
queue when requested. It’s like a line at a cashier in a store: customers wait for 
the cashier in order of arrival. Implement a queue as a class; it has operations 
into() and out() to add items and remove items from the queue, and empty() 
which returns True if the queue has no data in it. What is added to the queue 
are objects of a class client, as seen in Exercise 6.3 above.

 8.  Simulation: The gestation period for a rabbit is 28-32 days, and they will 
breed a week after having a litter. A female rabbit (a doe) will breed for the 
first time at about 100 days old. Create a class that represents a rabbit and 



254  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

simulate the growth of a rabbit population that starts with three does at day 0. 
Assume a litter size of between 3 and 8, and that half of the offspring will be 
male. Increase time by 1 day at a time and answer the question: “How many 
rabbits will there be after 1 year?” if the initial population is three females 
and one male.

Notes and Other Resources

http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheri-
tance-in-python/
August 12, 2015.  http://componentsprogramming.com/using-the-right-terms-
method/
Duck typing in Python: http://www.voidspace.org.uk/python/articles/duck_typ-
ing.shtml

 1. R. Chugh, P. Rondon, & R. Jhala (2012, January). Nested refinements: a logic 
for duck typing. In ACM SIGPLAN Notices (Vol. 47, No. 1, pp. 231–244). 
ACM.

 2. Ole-Johan Dahl (2002). The Birth of Object Orientation: the Simula Languages 
in Software Pioneers: Contributions to Software Engineering, Programming, 
Software Engineering and Operating Systems Series, Springer. Pp. 79–80.

 3. O.-J. Dahl, K. Nygaard: Class and Subclass Declarations. In J. Buxton, ed.: 
Simulation Programming Languages. Proceedings from the IFIP Working 
Conference in Oslo, May 1967. North Holland, 1968.

 4. Adele Goldberg and Alan Kay, Smalltalk-72 Instruction Manual [page 44]

 5. ANSI Smalltalk Standard v1.9 199712 NCITS X3J20 draft, Section 3.1  
[page 9].

 6. B. Liskov, A Snyder, R. Atkinson, and C. Schaffert (1977). Abstraction 
Mechanisms in CLU. Communications of the ACM 20:8. Pp. 564–576.



■ ■ ■ ■ ■

In this chapter

Since the advent of Microsoft Windows, computer graphics have been feature 
of computers. Before that, graphics were a relatively rare thing, relegated to some 
research, to a few expensive Hollywood movies, and to science fiction.  The first 
use of 3D computer graphics in a commercial motion picture was in the film The 
Andromeda Strain (1971) (Figure 7.1) in which it was used to show a rotating 3D 
map (they called it an electronic diagram) of the underground installation where 
the action mainly takes place. A few years later, the film Westworld (1973) used 
2 ½ minutes of digitally processed video to show the visual perspective of an an-
droid. It was a very time-consuming and expensive task at that time; it took about 
8 hours to process 10 seconds of film, or about 120 hours in all.

Modern computers all possess fast graphics cards that perform most of the 
rendering tasks, and these allow for a sophisticated yet simple-to-use graphical/
windows interface to desktop computers. Graphics software is hierarchical; the 
screen itself is merely an array of picture elements (pixels) that can be set to any 
color. It has reached the point where everything seen on a computer screen is 
actually drawn – icons, windows, backgrounds, and even text.

7chaPter

graPhics

7.1  Introduction to Graphics Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.2 Graphics in Python–Pygame  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
7.3 Initializing Pygame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.4 The Event LOOP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.5 Drawing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.6 Arcs and Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



256  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

What this means is that interacting with a computer is now done with 
graphics, not characters and text. Since that is the situation, it makes sense 
to permit a beginning programmer to experiment with programming graphics  
applications.

Figure 7.1
A still from the first computer graphic sequence in a major motion picture, The Andromeda Strain   
(used with permission of the rights holder, MGM).

 7.1  INTRODUCTION TO GRAPHICS 
PROGRAMMING

The most basic aspect of graphics software is the ability to set individual pix-
els. It is difficult to use this capability to create complex pictures. How is a dog 
drawn, or a building, or even just a straight line? Those things have been figured 
out, fortunately.

At the bottom layer of software are functions that manipulate pixels. At the 
next level are lines and curves; these are the basic components of drawings and 
sketches. An artist with a pencil uses lines and curves to represent scenes. At 
the level above lines are functions that use lines to create other objects, such as 
rectangles, circles, and ellipses.  These can be line drawings or can be filled with 
colors. The next higher levels can be argued about, but text is probably in the 



 Chapter  7  ·  Graphics   ■ 257

next software layer and then shading and images, followed by 3D objects, which 
includes perspective transformation and textures.

Python does not itself have graphics tools, but various modules that are asso-
ciated with Python do. The standard graphical user interface library for use with 
Python is tkinter. There are many features of this module, including the creation 
of windows, drawing, user interface widgets such as buttons, and a host of other 
features. It is free and is normally included in the Python distribution, but it can 
easily be downloaded and used with any Python version. Because there are many 
ways that Python can be configured on various different systems, the installation 
process will not be described in detail here. A graphics module is included on the 
disk that accompanies this book; it requires tkinter. To build real, complex graph-
ics, we use another module – Pygame.

It is essential to install a version of Pygame that works with Python 3.

 7.2 GRAPHICS IN PYTHON–PYGAME
Using any modern graphics library is a useful exercise in coding. The library 

provides facilities that the programmer needs, but there is an implicit contract – 
the programmer has to use the library according to rules devised by its creator. In 
the case of Pygame, a set of initializations is needed, and it asks that you create an 
event loop that repeatedly looks for key presses and mouse clicks (events) many 
times per second. A program cannot predict when a mouse click will happen, so 
it must be ready at all times to receive one. In the case of Pygame, it breaks up 
every second into many parts (30 by default) and checks during each interval 
whether a mouse or keyboard action has taken place. If so, it attempts to alert the 
programmer by setting a flag that is related to the event. This has consequenc-
es for the main program, mainly that it be a loop that repeatedly handles these 
events. In computer science, this action is called polling. 

An important aspect of Pygame is that it creates a window and manages it. 
In C++, this can be a complicated proposition, because the operating system does 
not generally do this for you. Each window on the screen is something managed 
by a program, which has to figure out how much of the window is visible based 
on everything else that is on the screen.  



258  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 7.3 INITIALIZING PYGAME
When using Pygame, we first import it as a module:

import pygame

Then Pygame should set up a drawing area in a window. This can be done 
as follows:

screen = pygame.display.set_mode((700, 1000))

This code specifically creates a window that is 700 x 1000 pixels and returns 
a handle to it as the variable screen. A handle is a variable that is used to access 
the drawing area. In other words, it is the connection to the drawing operations. 
To draw, we call a Pygame function And pass it the drawing area as a parameter, 
such as  pygame.draw.line(screen, ….).

Now we can draw things onto the window display surface. They don’t show 
up on the screen right away, though. The system collects the changes to the draw-
ing surface and draws them all at once when the programmer tells it to.  

pygame.display.update() 

Now everything that has been drawn to screen, it should be displayed. Noth-
ing will be drawn until update() is called.  The variable screen refers to what 
Pygame calls a Surface, and is a lot like an image in that it is a collection of rows 
and columns of pixels. The upper left pixel is the pair of coordinates (0,0), and the 
first coordinate represents the X or horizontal position.

 7.3.1 Colors

To start creating computer graphics, it is necessary to understand how colors 
and images are represented. When using a computer, everything must be repre-
sented as numbers. A pixel is the color of a picture at a particular location, and so 
there must be a way to describe a color at that place. In physics, frequency is used: 
each color has a specific frequency of electromagnetic radiation. Unfortunately, 
this does not map very well onto a computer display, because monitors are based 
on television technology. On a TV, there are three colors, red, green, and blue, 
and these are used in various proportions to represent every color. There are red, 
green, and blue dots on the TV screen that are lit up to various degrees to create 
the colors that are seen. This is based on the way a human eye sees color; there 



 Chapter  7  ·  Graphics   ■ 259

are red, green, and blue sensors in the eye that in combination create our color 
perception.  Another reason that frequency is not used is that there are colors that 
are not accurately represented as frequencies; they do not appear in the rainbow. 
The colors pink and brown are two examples.

Each color in the graphics system is represented as the degree of red, green, 
and blue that combine to create that color. In that sense, it is a bit like mixing 
paint. Yellow, on a computer, is a mixture of red and green. Each pixel has three 
components: a red, green, and blue component. These could be expressed as per-
centages, but when using a computer, it is better to select numbers between 0 and 
255 (8 bits or one byte) for each color. Each pixel requires 3 bytes of storage or 4 
bytes in some cases, as will be seen shortly. If an image contains 100 rows of 100 
pixels, then it has 10,000 pixels and is 10000*3=30000 bytes in size.

To humans, colors have names. Here’s a list of some named colors and their 
RGB equivalents:

Color Red Green Blue Color Red Green   Blue
Black 0 0 0 Olive 128 128 0
White 255 255 255 Khaki 240 230 140
Red 255 0 0 Teal 0 128 128
Green 0 255 0 Sienna 160 83 45
Blue 0 0 255 Tan 210 180 140
Yellow 255 255 0 Indigo 75 0 130
Magenta 255 0 255 Orange 255 165 0

There are, of course, a great many more named colors, and even more colors 
that can be represented with RGB values in this way (16,777,202 of them, in fact). 
Each pixel is a color value. All grey values have the special situation R=G=B, so 
there are 256 distinct values of grey ranging from black to white. 

In summary, each pixel represents the color of the image or graphic at that 
point. A color is represented by the three color components (red, green, and blue), 
each having a value between 0 and 255.  A color is a tuple. Thus, (0,0,0) is black, 
(255,255,255) is white, and (255, 0, 0) is red.



260  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 7.4 THE EVENT LOOP
Here is a simple program that displays a drawing created by Pygame. Don’t 

worry about the details just now. This program draws a straight line:
import pygame
screen = pygame.display.set_mode((1000, 700))
pygame.draw.line(screen, (0,0,0), (10,10), (200,200), 2)
pygame.display.update()

The variable screen is initialized, and the line is drawn using the method py-
game.draw.line. This works, but the program terminates after update is called, 
which closes the window. The line is only on the screen for a tiny fraction of a 
second. There needs to be a time delay that permits the user to see the result. One 
way is to place the code inside an infinite loop, and that the program never ends. 
For example,
import pygame
screen = pygame.display.set_mode((1000, 700))
while True:
    pygame.draw.line(screen, (0,0,0), (10,10), (200,200), 2)
    pygame.display.update()

Here, the line is drawn and then update is repeatedly called within the loop.  
This means that the line is drawn and the screen is updated many times a sec-
ond. That’s because the program does not end and the window stays open. This 
solution is unsatisfactory, as it uses CPU cycles for no productive reason, which 
can slow down the entire computer system.  Fortunately, there is a better option. 
Pygame gives us the ability to wait, that is, to give up the CPU to other processes, 
using the time class.

Time consists of a set of time related functions, the most useful of which for 
the purposes here is probably Clock.tick. It waits until a specific time interval 
has passed since the last time tick has been called. It has one parameter, which 
is the number of times per second a tick can occur. Here, the parameter is 1/sec, 
where sec is the minimum number of seconds of delay is wanted. As a practical 
example, the loop above could be rewritten to use tick as follows:
import pygame
import pygame.time



 Chapter  7  ·  Graphics   ■ 261

clock = pygame.time.Clock()
screen = pygame.display.set_mode((1000, 700))
while True:
    clock.tick(10)
    pygame.draw.line(screen, (0,0,0), (10,10), (200,200), 2)
    pygame.display.update()

This is very typical of the main loop in a Pygame program. An instance of 
Clock is created (named clock) so that tick can be called, and it allows the loop 
to execute 10 times per second. Each call to tick ensures that no less than 1/10 of 
a second has passed since the previous call. We can think of it as meaning “wait 
until the next clock tick.” The behavior is critical for the functioning of a game, 
which updates the screen every fraction of a second. It is also what will allow the 
paint program to operate interactively.

To be clear, the use of tick allows us to release the CPU and allow other pro-
cesses on the computer to use it. After at least the period specified has passed, 
but not necessarily exactly that time, the CPU will be given back to the program 
and it will resume executing.

 7.5 DRAWING
Drawing operations that Pygame provides are at an intermediate level of 

complexity. A canvas or Pygame Surface can draw only pixels. Thus, anything 
more complicated has to be implemented in terms of the drawing of pixels. Lines, 
for example, are drawn by drawing pixels that lie on or near to the specified line. 
The method is referred to as, variously, Digital Differential Analyzer (DDA), 
scan conversion, or (usually) Bresenham’s algorithm. It will draw a line between 
two discrete points by setting pixels between them. While Pygame does allow us 
to set individual pixels, it is not convenient to only use that facility.

So, drawing a line is done using the line function in the draw package as 
follows:

pygame.draw.line(screen, color, start, end, thick)

This draws a line on the Surface named screen using the specific color, from 
the start point, a tuple that gives the x and y coordinates of the start point, to the 
specified end point, specified also as a tuple, with a line thickness of thick pixels. 
Four examples of the use of the line function are shown in Figure 7.2.



262  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Drawing a circle is done using the circle function in the draw package as 
follows:

pygame.draw.circle(screen, color, center, radius, thick)

Figure 7.2
Parameters for drawing a line

This draws a circle on the Surface named screen using the specific color, 
using the tuple center = (x, y) as the coordinates of the center point, and uses 
the floating point value radius as the radius of the circle with a line thickness of 
thick pixels. Color is as before.



 Chapter  7  ·  Graphics   ■ 263

Figure 7.3
Drawing circles.

pygame.draw.circle(screen, (0,0,0), (100, 100), 40, 2)
pygame.draw.circle(screen, (0,0,0), (200, 100), 50, 4)
pygame.draw.circle(screen, (0,0,0), (300, 100), 30, 2)
pygame.draw.circle(screen, (0,0,0), (400, 100), 20, 2)
pygame.draw.circle(screen, (0,0,0), (400, 100), 30, 2)
pygame.draw.circle(screen, (0,0,0), (500, 100), 30, 2)

pygame.draw.circle(screen, (0,0,0), (100, 210), 40, 0)
pygame.draw.circle(screen, (0,0,0), (200, 210), 50, 0)
pygame.draw.circle(screen, (0,0,0), (300, 210), 30, 0)
pygame.draw.circle(screen, (0,0,0), (400, 210), 20, 0)
pygame.draw.circle(screen, (0,0,0), (400, 210), 30, 0)
pygame.draw.circle(screen, (0,0,0), (500, 210), 30, 0)

This draws the circles seen in Figure 7.3. An important thing to notice is that 
the second set of six circles is drawn using a thickness of 0. This tells the draw-
ing program to fill the circles with the specified fill color. That is also seen in the 
figure.

Drawing a rectangle is done using the rect function in the draw package as 
follows:

pygame.draw.rect(screen, color, rectangle, thick)

This draws a rectangle on the Surface named screen using the specific color, 
using the tuple rectangle = (x, y, w, h) as the coordinates of the upper left point (x, 
y) and the width and height of the rectangle, in pixels (w,h).  The circle with a line 



264  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

thickness is thick pixels. Again, a thickness of 0 will fill the rectangle. Examples 
are shown in Figure 7.4.

Figure 7.4
Drawing rectangles using Pygame.

Drawing a single pixel is done using the set_at function in the surface pack-
age as follows:

screen.set_at((x, y), color)

This draws a single pixel on the screen surface at the location (x,y) with the 
color specified by the tuple color. 

Example: Create a Page of Note Paper

Note paper has blue lines separated by enough space to write or print text 
between them. It often has a red vertical line indicating an indentation level, and 
it serves as a place to begin writing. Drawing this is a matter of drawing a set of 
connected blue pixels in vertically separated rows, and then making a vertical 
column of red pixels.  Here is one way to code this:
import pygame

width = 400
height = 600
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 10

while True:
    clock.tick(FPS)



 Chapter  7  ·  Graphics   ■ 265

    mouseX, mouseY = pygame.mouse.get_pos()
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()

screen.fill((255, 255, 255))
y = 60                                     # Height at which to 
                                           # start
for n in range(0, 27):                     # Draw 27 horizontal 
                                           # blue lines
    for x in range(0, width):              # Draw all pixels in 
                                           # one line
        screen.set_at((x, y), (0, 0, 255)) # Draw a blue pixel
    y = y + 20                             # The next line 
                                           # is 20 pixels down
for y in range(0, height):                 # Draw connected 
                                           # vertical pixels
    screen.set_at((25, y), (255, 0, 0))    # Draw a red pixel
pygame.display.update()

The output of this program is shown in Figure 7.5a. When the pixels are 
drawn immediately next to each other, they appear to be connected, and so in 
this case, they form horizontal and vertical lines. This does not easy to do for ar-
bitrary lines; it is not obvious exactly which pixels to fill for a line between, say, 
(10, 20) and (99, 17). That’s why the line drawing functions exist.

Example: Creating a Color Gradient

When creating a visual on a computer, the first step is to have a clear picture 
of what it will look like. For this example, imagine the sky on a clear day. The 
horizon shows a lighter blue than the sky directly above, and the color changes 
continuously all of the way from the horizon to the zenith. If a realistic sky back-
ground were needed, then it would be necessary to draw this using the tools avail-
able. What would the method be?

First, decide on what the color is at the horizon (y=ymax) and at the highest 
point in the scene (y=ymin). Now ask: “how many pixels between those points?” 
The change in pixel color will be the color difference from ymax to ymin divided 
by the number of pixels. Now simply draw rows of pixels beginning with the 
horizon and moving up the image (i.e. decreasing Y value) changing the color by 
this amount each time.



266  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Let’s assume that the color at the horizon is blue (40, 40, 255) and the top of 
the image is a darker blue (40, 40, 128). The height of the image is 400 pixels; 
the change in blue over that range is 127 units. Thus, the color change over each 
pixel is going to be 127.0/400, or about 0.32. A color cannot change a fractional 
amount, of course, but what this means is that the blue value decreases by ap-
proximately 1 unit for every 3-pixel-increase in height. Do not forget that the 
horizon is at the bottom of the image, which has the greatest Y coordinate value, 
so that an increase in Y means a decrease in height and vice-versa.

 (a) (b)
Figure 7.5 
(a) A graphic of a sheet of lined paper; (b) a color gradient.

The example program that implements this is as follows:
import pygame
width = 400
height = 400
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 10
delta = 127.0/height

while True:
    clock.tick(FPS)
    mouseX, mouseY = pygame.mouse.get_pos()
    for event in pygame.event.get():
        if event.type == pygame.QUIT:



 Chapter  7  ·  Graphics   ■ 267

            quit()

screen.fill((255, 255, 255))
blue = 255
for y in range(0, height):
    yy = height - y
    for x in range(0, width):
        screen.set_at((x, yy), (100, 100, blue))
    blue = blue - delta
pygame.display.update()

The gradient image looks like that in 7.5B (a full-color version of this and all 
images is on the accompanying disk).

 7.5.1 Lines and Curves

Straight lines and curves are more complex objects than pixels, consisting of 
many pixels in an organized arrangement. A line is drawn by setting pixels. The 
fact that a line() function exists means that programmers do not have to figure 
out what pixels to draw and can focus on the higher level construct: the line or 
curve.

Example: Note Paper Again

The example of drawing a piece of note paper can be done using lines instead 
of pixels, and will be a little faster. Set the stroke color to blue and draw a col-
lection of horizontal lines (i.e., that have the same Y coordinate at the endpoints) 
separated by 20 pixels, as before. Then draw a vertical red line for the margin. 
The program is a variation on the previous version (only the drawing portion of 
the code):
screen.fill((255, 255, 255))
y = 60                            # Height at which 
                                  # to start
for n in range(0, 27):            # Draw 27 horizontal 
# blue lines
    for x in range(0, width):     # Draw a blue line
        pygame.draw.line( screen, (0, 0, 255), (0, y), 

(width, y), 1)
    y = y + 20                    # The next line is 20
                                  # pixels down
for y in range(0, height):        # Draw vertical red line

ON THE CD



268  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    pygame.draw.line( screen, (255, 0, 0), (25, 0), (25, 
height), 1)

    pygame.display.update()

The output from this program is the same as that for the version that drew 
pixels, which is shown in Figure 7.5a.

 7.6 ARCS AND CURVES
A curve is trickier than a line, in that it is harder to specify. The method used 

in Pygame is like that seen in other common graphics systems: a curve or arc is 
defined as a portion of an ellipse from a starting angle for a specified number 
of degrees, as referenced from the center of the ellipse. The angle 0 degrees is 
horizontal and to the right; 90 degrees is upwards (decreasing Y value). The el-
lipse is defined by a bounding rectangle, specifying the upper left and lower right 
coordinates of a box that just holds the ellipse. In Figure 7.6, the rectangle defined 
by the upper left corner at (100, 50) and the lower right at (300, 200) has a center 
at (200, 125) and contains an ellipse slightly longer than it is high (upper left of 
the figure). The function that draws a curve is named arc(), and it takes the up-
per left and lower right coordinates and a starting angle. The size of the arc also 
expressed as an angle.

In the upper right of the figure, the arc is drawn by the call 
pygame.draw.arc(screen, (255,0,0), (100,50,300,200),    
    math.radians(0), math.radians(90), 2)

which means that the part of the ellipse from the 0-degree point counter clock-
wise for 90 degrees will be drawn. The example at the lower left of the figure 
draws the curve from the 45-degree point for 90 degrees, resulting in the upper 
section of the ellipse being drawn. The final arc, at the lower right, uses a nega-
tive angle. The call 

pygame.draw.arc(screen, (255,0,0), (100,300,300,200),         
    math.radians(-60), math.radians(45), 2)

starts at -60 degrees or 300 degrees.



 Chapter  7  ·  Graphics   ■ 269

Figure 7.6
The result of calls to the arc function with various parameters. This illustrates how the function can 
be used.

This way of specifying arcs is fine for simple examples and single curves, but 
makes combining many arcs into a more complex curve rather difficult. Joining 
the ends together smoothly is challenging.

The arc function has two variations that are important in practice. These 
possibilities are chord and pieslice. A chord connects the starting end points of 
the arc. The call

pygame.draw.arc(screen, (255,0,0), (100,300,300,200),         
    math.radians(-60), math.radians(45), 2)

has a known bounding box and center, but the actual starting and ending points 
of the arc are not known. Those points are needed to draw both the pieslice and 
chord. The equation of an ellipse centered at the point (h,k) is

 
2 2

2 2
( ) ( 1) − −+ =x h y k

a b
A better equation for the purposes here is the parametric equation, which 

gives the same curve. It is
 x = h + a cost
 y = k + b sint



270  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

for all values of t from 0 degrees to 360 degrees (0 radians to 2p radians).

In the arc call, the enclosing rectangle is (100,300,300,200), meaning that 
(100,300) is the upper left corner and (400,500) is the lower right. The center of 
the ellipse is the center of the bounding box, which is (250,400), so h=250 and 
k=400 in the ellipse equation.

The value of a in the equation is ½ of the width of the bounding box, and b is 
½ of the height.  In this case, a = width/2 = 150 and b = height/2 = 100. We now 
know the equation of this ellipse:

 x = 250 + 150 cos t
 y = 400 + 100 sin t

The parameter t is not the angle from the center to a point on the ellipse, 
though. It is an angle within a 360-degree circle that defines all points on the el-
lipse. We can find the start and end points on the ellipse section and either join 
them with a line (chord) or draw lines from each to the ellipse center (pieslice)

def chord (cx, cy, w, h, a1, a2):
    pygame.draw.arc( screen, 
                     (255, 0, 0),
      (cx-w/2, cy-h/2, w, h), a1, 
                        a2, 13)
    xs = cx + a*math.cos(-a1)
    ys = cy + b*math.sin(-a1)
    xe = cx + a*math.cos(-a2)
    ye = cy + b*math.sin(-a2)
    pygame.draw.line(screen, 
                     (255, 0, 0),
         (xs, ys), (xe, ye), 3)

def pieslice (cx, cy, w, h, 
               a1, a2):
    pygame.draw.arc(screen, 
                    (255, 0, 0),
      (cx-w/2, cy-h/2, w, h), a1, 
                         a2, 13)
    xs = cx + a*math.cos(-a1)
    ys = cy + b*math.sin(-a1)
    xe = cx + a*math.cos(-a2)
    ye = cy + b*math.sin(-a2)
    pygame.draw.line(screen, 
                   (255, 0, 0),
         (xs, ys), (cx, cy), 3)
    pygame.draw.line(screen, 
                   (255, 0, 0),
         (xe, ye), (cx, cy), 3)

These functions work a bit differently from arc, in that they accept the center 
coordinates of the ellipse instead of the upper left. Figure 7.4 shows sample out-
put from these functions, and notes a problem. The arc function was called speci-
fying a thickness of 4 pixels. The result is not adequate. There are pixels missing 
within the lines, as if four arcs had been drawn and each was a bit different. This 
is a minor problem in Pygame.



 Chapter  7  ·  Graphics   ■ 271

There is a Pygame function that draws complete ellipses. The code
pygame.draw.ellipse(canvas, col, (x, y, w, h), t)

draws an ellipse that fits into the bounding box specified using color col and line 
thickness t.

 7.6.1 Polygons

For the purposes of discussion, a polygon includes all 
closed regions, including ellipses and circles. In that context, 
the rect() function draws axis-oriented rectangular polygons 
as a special case. A triangle can be drawn using the polygon 
function:
pygame.draw.polygon(screen,(200,100,200), 
((350, 350,(50,50), (100,300)))

The vertices of the polygon are passed to the function as a tuple (or list) in the 
third parameter. There is no line thickness given, so the polygon is filled. Any 
number of vertices can be passed, meaning that we can draw any polygon we like.

Regular polygons are special in that each side of a regular polygon is the 
same size. Specifying such as thing as a sequence of numerical coordinates can 
mean a certain amount of time spent with a pencil and graph paper, but it can 
be done in a general sense. Specify the polygon by giving the coordinates of its 
center. Specify the size as the distance from the center the center to any vertex, 
and give the number of sides desired.

Figure 7.7
A chord (left) and a pie-slice shape (right) drawn using the respective functions.



272  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

To draw an arbitrary polygon, split the 360-degree circle into N equal angles, 
where N is the number of sides.  Find points at a distance R from the center of the 
circle at each of those angles, where R is the side specified. Now simply connect 
those points. Basic trigonometry results in the following code:
def regular_polygon (xc, yc, r, n):
    pi = 3.1415926
    pi2 = pi/2
    x0 = xc + r
    y0 = yc
    verts = []
    a = 2*pi/n
    for i in range(0,n):
        x0 = xc + math.cos(pi2+a*i) * r
        y0 = yc + math.sin(pi2+a*i) * r
        verts.append([x0,y0])
    pygame.draw.polygon(screen, (0,0,0), verts, 2)

Figure 7.8 shows some examples of this function in action, drawing regular 
polygons and a hexagonal grid.

 (a) (b)
Figure 7.8
(a) Regular 3-, 5-, 7-, and 9-sided polygons. (b) A hexagonal grid.



 Chapter  7  ·  Graphics   ■ 273

 7.6.2 Text

Drawing text more complicated than drawing simpler objects. We need to 
think about fonts. A font is saved on a file and has to be installed on the computer 
system. If a font is specified by a program but does not exist, then an error will 
occur, and either the finished image will look different from what was anticipated 
or an error will occur. 

Drawing text is a very specialized operation and consist of three parts: 

A graphics rendering class is instantiated and is assigned a font and size.
The text is drawn into a small surface.
 The small surface, which is really an image containing the rendered text, is 
copied to the main display surface at the correct location. 

Within Pygame, the module font does the loading and rendering of fonts. 
Specifically, the method Font (pygame.font.SysFont) creates a new Font object 
from a font file on the host computer and provides the needed instance for ren-
dering text. The first parameter is the name of a font as a string, like “Arial” or 
“Times.” If it is None, then the default font is used. The second parameter is the 
size of the font, in pixels. The Times font at size 14 is specified by the following 
code:

f = pygame.font.SysFont("Times", 14)

Now f can be used for rendering this specific font and size only. The object 
returned by pygame.font.SysFont has a method named render that will return 
a small image (surface) that has some specified text drawn on it based on the 
defined font. Rendering the text “Warning” using the variable f above is done by 
the following:

text = f.render("Warning", False, (0,0,0))

where the second argument defines whether the text is antialiased, and the third 
argument is the color to be used. The variable text is a Pygame surface that con-
tains the image of the text. This surface is exactly the right size for the text.

Finally, this text image needs to be copied into the main display surface at 
the proper location. This introduces a new idea, called blitting. Blitting is basi-
cally copying one image into another, a pixel by pixel copy from a source to a 
destination. It is accomplished using a method within the Surface named blit. In 
this precise situation, we want to copy the pixels in the image text into the main 



274  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

display surface, which has been named screen. So, screen is the destination and 
text is the source, and the call is as follows:

screen.blit(text, (x, y))

where (x,y) specifies where the source image text will be drawn within the des-
tination. The tuple (x,y) defines the upper left coordinates in screen where the 
image text will be placed. 

A simple function that does all of the text drawing stuff is as follows:
# Draw a text string at the given point.                       **
def text (s, x, y, size=14, f=None):
    global screen
    if f == None:                   # Create a font if needed
        f = pygame.font.SysFont(None, size)
    text = f.render(s, 1, (0,0,0))  # Render the 
                                    # string in black
    screen.blit(text, (x, y))

This draws the string s at location (x,y) of the display Surface named screen, 
in black. If a font is passed, then it will be used, otherwise it will create a default 
font instance, and the size can be specified, or will default to 14 pixels.

 7.6.3 Example: A Histogram

A histogram is a way to visualize numerical data. It is especially useful for 
discrete data like colors or political parties or choices of some kind, but can also 
be used for continuous data. It displays the counts of something against some 
other value, such as a category, a percentage of people voting for specific parties, 
or the heights of grade six girls. It draws bars of various heights each representing 
the number of entries in each category. In this example the only problem is the 
plotting of the histogram, but the more general programming problem would in-
clude collecting and organizing the data. In this case, the program will read a data 
file named “histogram.txt” that contains a few key values. The program variable 
names and the corresponding data file values are as follows:

Variable Contents
title Title to be drawn at the top of the graph
ncategories Number of categories
maxsize Maximum size of any category



 Chapter  7  ·  Graphics   ■ 275

Variable Contents
hlabel Horizontal label
vlabel Vertical label
val[1] Value for category 1
val[2] Value for category 2
       …
lab[1] Label for category 1
lab[2] Label for category 2

…
You should design graphical objects carefully. In this case, the histogram has 

the general appearance shown in Figure 7.9. This visual layout helps with the de-
tails of the code, especially if the design has been drawn on graph paper, so that 
the coordinates can easily be determined.

Assume that the variables needed have been read from the file (see Exercise 2). 
Here’s what the program must do:

Create a window about 600 x 600 pixels in size.
Draw the horizontal and vertical axes (120, 80).
Draw the title and axis labels.

Title goes here (Large font)

Vertical
label
here
(medicum 
font)

Horizontal label here (medicum font)
100, 500

100,100

500, 500

10 pixels left
at the end

val[1]

val[2]

val[3]

val[4]

val[5]

val[6] val[7]

ncategories = 7
rectangle width = (400-10)/7 = 55 pixels

lab[1] lab[2] lab[3] lab[4] lab[5] lab[6] lab[7]

Figure 7.9
The visual design of a histogram before it is coded.



276  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Determine the width and height of each rectangle.
For i in range (0, ncategories)
 Draw rectangle i
 Draw label i

Development can now proceed according to the plan. Create a window, and 
set the background. Draw the title and the axes.
pygame.draw.line (screen, (0,0,0), (100,100), (100,500), 4) 
 # Y Axis
pygame.draw.line (screen, (0,0,0), (100,500), (500,500), 4)     
 # X axis
text("Title goes here (large font)", 150, 80, 24, fontt24)     
 # Title

The horizontal axis label is in a smaller font (14 pixels) at the bottom of the 
canvas (y-580). It looks nicer if the text is centered. It’s challenging to do this ex-
actly without actually drawing the string, so why not do that? In the text function, 
a Surface is created that is the right size for the string. We can use the width of 
this surface as the width of the string. A useful function that does this is textsize:
def textsize (s, size=14, f=None):
    if f == None:                   # Create a font if needed
        f = pygame.font.SysFont(None, size)
    text = f.render(s, 1, (0,0,0))  # Render the string
    x = text.get_size()[0]          # What is the size 
                                    # of the Surface?
    return x

The only new thing here is the method get_size(), which returns a tuple 
(width, height) that is the size of the Surface object. Now we can center and draw 
the X axis label:

hlabel = "Horizontal label here (medium font)"
cx = (400-textsize(hlabel, 14, fontt14)) / 2
text(hlabel, 100+cx, 530, 14, fontt14)     # Title

Drawing the vertical label is more difficult, and so it will be done later. Make 
it a function:

verticalLabel(vlabel)

Now, it is time to draw the rectangles. The width of each one is the same, and 
it is the width of the drawing area divided by the number of categories. The height 



 Chapter  7  ·  Graphics   ■ 277

is the height of the drawing area divided by the maximum value to be drawn, 
maxsize. Compute those values and set the line thickness to one pixel, then set 
a fill color. 
wid = (400-10)/ncategories    # Width of a box in pixels
ht = 390.0/maxsize            # Each value is this 
                              # many pixels high

We then make a loop that draws each rectangle. The X position of a rectangle 
is its index times the width of a rectangle. The height of the rectangle is the value 
of that data element multiplied by the variable ht that was determined before. We 
also draw the value being represented at the top of the bar, which is just above and 
to the right of the rectangle’s upper left.
for i in range(0,ncategories):
    ulx = 100 + i*wid+2               # Upper left X
    uly = int(500 - val[i]*ht-0.5)    # Upper left Y (int)
    pygame.draw.rect ( screen, (0,0,0), (ulx, uly, wid, 

val[i]*ht), 1)
    text (str(val[i]), ulx+15, uly-22, 14, fonth14)

The value of the histogram entry is drawn at the top of the rectangle.

Finally, draw the labels for each rectangle. These are below the X axis, cen-
tered within the horizontal region for each bin. The labels start at the Y axis 
(X=100 or so) and their location increased by the width of the bin each iteration 
of the drawing loop. The Y location is fixed, at 520 – the X axis is 500. Finally, 
an attempt to center these labels is done in the same way that it was done for the 
horizontal label, but the parameters are different.
x = 100+2
for i in range (0,ncategories):
    cx = wid - textsize(lab[i], 14, fonth14)
    if cx < 0:
        cx = 0
    text (lab[i], x+cx/2, 510)
    x = x + wid

Drawing the vertical label involves pulling out the individual words and 
drawing each one on its own pixel row. Words are separated by spaces (blanks), 
so one way of drawing the vertical text is to look for a space in the text, draw 
that word, then move down a few pixels, extract the next word, draw it, and so 
on, until all words have been drawn. The text is drawn starting at X=12, and the 



278  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

initial vertical position is 200, moving down (increasing Y) by 20 pixels for each 
word. This is done by the function verticalLabel(), which is passed the string to 
be drawn:
def verticalLabel(v):
    lasti = 0
    x = 12
    y = 200
    for i in range(0, len(v)): # Look at each character
        if (v[i] == " "):      # Find a space
            text (v[lasti:i], x, y) # Draw the text to 
                                    # the space
            y = y + 20              # Increment Y
            lasti = I          # End of his word is start 
                               # of next
    text (v[lasti:], x, y)     # Draw

This program is available on the disk (gradesHisto.py). The output is shown 
in Figure 7.10. This is a minimal program, and won’t always create a nice image. 
Labels that are too long and use too many categories can cause badly formatted 
graphics.

 7.6.4 Example: A Pie Chart

A pie chart is really just a histogram where the relative size of the categories 
is illustrated by an angle instead of the height of a rectangle. Each class is shown 
as a pie-slice shape of a circle whose area is related to its proportion of the whole 
sample. Pie-slice-shaped regions are easy to create because we’ve already writ-
ten the pieslice function. Using the same examples as before, look specifically at 
the grade data: there are 38 students whose grades are being displayed, and there 
are 360 degrees in a circle. A category of 10 students, for example (such as those 
receiving a “B” grade) will represent a pie slice that is 10/38 of the whole circle, or 
about 95 degrees. The process seems to be to determine how many degrees each 
category represents and draw a pie slice of that size until the whole pie (circle) is 
used up.

Create a window about 600 × 600 pixels in size.
Draw the title label.
Establish a fill color.



 Chapter  7  ·  Graphics   ■ 279

For i in range (0, ncategories)
 Determine the angle A used for this category i.
 Draw arc from previous angle for A degrees.
 Draw label i for this slice.
            Change the fill color.
The labels may present a problem, as they may not fit inside the pie slice. It is 

probably best to display the label outside of the slice and draw a line to the slice 
that represents it.

The program is similar to that for the histogram. Beginning after the label is 
drawn, find the total number of elements in all categories (the number of students 
in the class). This is the sum of all elements in val.

totalSize = 0
r = 255
fill (r, 200, 200)
for i in range (0, ncategories):
    totalSize = totalSize + val[i]

Figure 7.10
Histogram of a set of grades in a university art course.



280  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Each count val[i] in a category represents val[i]/totalSize of the entire data 
set, or the angle 360.0*val[i]/totalSize. The constant 360/totalSize is named an-
glePerCount. Now starting at angle 0 degrees, and create a pie-shaped arc the 
size of each category:
span = val[i]*anglePerCount
pieslice( 300, 300, 450, 450, angle * conv,  

(angle + span) * conv)
    label ( 300, 300, 200, lab[i], 1.25,  

angle*conv, (angle+span)*conv)

The function label draws the text label. The angle to start drawing must be 
increased so that the next arc starts where this one left off:

angle = angle + span

Change the color so that each pie piece is a different color. The code below 
changes the red component just a little.

r = r - 20
fill (r, 200, 200)

Figure 7.7b shows a way to determine where a label could go; a line from 
the center of the circle through the outer edge points in the direction of the label. 
Simply find the x and y coordinates. The y coordinate is the sine of the angle mul-
tiplied by the distance from the center, and the x coordinate is the cosine of the 
angle multiplied by the same distance. For a distance, use the radius multiplied by 
1.5. The function label() can now be written:
def label (xx, yy, r, m, s, a1, ap):
    angle = a1 + ap/2       # Bisector= start angle + 
                            # half of span
    d = r*m                 # Distance (m is usually 1.25)
    x = cos (angle* d + xx  # Angle is radians
    text (s, x, y, 20, fonth20)

The result is illustrated in Figure 7.11.

There are two more things that could be added to the pie chart program. 
Sometimes, one of the pieces is moved out of the circle to emphasize it. It turns 
out that this useful feature can be implemented in a manner very similar to the 
way the labels were drawn. Find the bisector of the angle for that section and 
before it is drawn, identify a new center point for that piece a few pixels down 



 Chapter  7  ·  Graphics   ■ 281

that bisector. This pulls the piece away from the original circle center. This is the 
function pull.

Next, the pie slices should be filled with color, not just outlined. This involves 
some significant code, because arc does not draw thick lines well and does not 
fill an arc. We’ll write our own program to draw filled arcs. Start with the para-
metric equations for an ellipse:

 x = h + a cost
 y = k + b sint

Drawing an ellipse means computing x and y for consecutive values of t 
between 0 and 360 degrees (2p radians) and connecting those values by lines. To 
fill it, use the pygame.draw.polygon method to draw the lines as a polygon, and 
set the line width to 0. To finish this, draw a filled triangle using the center point 
of the ellipse and the start and end point of the arc.

Figure 7.11
(a) The pie chart drawn using Pygame. (b) How to find the placement for labels on the chart.



282  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The code is brief, and is included below for your reference.

# Draw a portion of an ellipse
def ell(cx, cy, w, h, a1, a2):
    t = a1
    x0 = cx + w / 2 * cos(-t)
    y0 = cy + h / 2 * sin(-t)
    poly = [(x0, y0)]
    while t < a2:
        t = t + 0.0001
        x1 = cx + w / 2 * cos(-t)
        y1 = cy + h / 2 * sin(-t)
#       pygame.draw.line(screen, 
        cf, (x0, y0), (x1, y1), 3)
        x0 = x1
        y0 = y1
        poly.append((x0,y0))
    pygame.draw.polygon (screen, 
                      cf, poly)

def pieslice (cx, cy, w, h, a1, 
              a2):
    global cf
    ell(cx, cy, w, h, a1, a2)
    a = b = w/2
    xs = cx + a*cos(-a1)
    ys = cy + b*sin(-a1)
    xe = cx + a*cos(-a2)
    ye = cy + b*sin(-a2)
    pygame.draw.polygon (screen, 
cf, ((xs,ys),(cx,cy),(xe,ye)))
#    pygame.draw.line(screen, 
cf, (xs, ys), (cx, cy), 4)
#    pygame.draw.line(screen, 
cf, (xe, ye), (cx, cy), 4)

def pull (x, y, a1, ap):
    angle = (a1 + ap)/2
    d = 12
    y = -sin (angle) * d + y
    x = cos (angle) * d + x
    pieslice ( x-5, y-5, x+150, 

y+150, a1, ap)

Figure 7.12
The Final Pie Chart, with labels and pull-out section



 Chapter  7  ·  Graphics   ■ 283

 7.6.5 Images

Unlike the graphical components displayed so far, an image is fundamentally 
a collection of pixels. A camera captures an image and stores it digitally as pix-
els. Displaying an image means drawing each pixel in the appropriate color, as 
captured.

Pygame can load and display images in a limited fashion. Images reside in 
files of various formats, such as JPEG, GIF, BMP, and PNG. The same image in 
each format is stored in a distinct way, and it can require a lot of code just to get 
the pixels from the image. Pygame allows image files to be read directly: formats 
including GIF, PNG, JPG, and BMP are each identified by the last three charac-
ters in the file name.

The function pygame.image.load will read an image file and return an image 
as a surface that can be displayed in the graphics window. The file “charlie.gif” 
is a photo of checkpoint Charlie in Berlin (Figure 7.13), and has been included 
on the accompanying disk. It could be read in to a Python program with the call:

im = pygame.image.load ("charlie.gif")

The variable im now holds the image, as a Surface. We know that a Surface 
has a get_size method, and we can now create a display Surface and size it to be 
exactly as large as the image.  Displaying the image involves calling the blit func-
tion. The entire program to read and display this image is as follows:
import pygame

im = pygame.image.load ("charlie.gif")
sz = im.get_size()
width = sz[0]
height = sz[1]
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 10
while True:
    clock.tick(FPS)
    if event.type == pygame.QUIT:
        quit()
    screen.fill((180, 180, 180))
    screen.blit(im, (0,0))
    pygame.display.update()



284  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A sample result is shown in Figure 7.13.

Figure 7.13 
Displayed image of Checkpoint Charlie using Pygame.

Pixels, Again

A Surface is returned by pygame.image.load, and as such, we have read and 
write access to all of the pixels. We can get the value of a pixel in a Surface im 
using get:

pixel = im.get_at((i,j))

where i and j are the x and y locations of the pixel. The returned value is a color. 
We can change a value in the Surface using the following code:

im.set_at((i,j),c)

where c is the color to assign to the pixel at location (i,j). An image consists of 
rows and columns of pixels, and a pixel is a color. The color components are as 
follows:

red = c[0]
green = c[1]
blue = c[2]



 Chapter  7  ·  Graphics   ■ 285

These functions operate on an image, but since the main display surface is 
also of the same type, they apply to it as well.  

Example: Identifying a green car

There is a pattern here that is important to recognize when working with 
images at the pixel level – the raster scan. All of the pixels in the image are exam-
ined one at a time using a nested loop. The code is as follows:

for i in range(0, width):
    for j in range(0, height):
        # Do something to pixel (i,j)

This example uses color to identify the pixels that belong to a car in an image, 
as seen in Figure 7.10. The problem requires identifying pixels that are green and 
making them stand out in the image. All pixels have a green component. When 
something is green, the green component is the most significant one; it is larger 
than the red and blue components by some margin. In this case, that margin is ar-
bitrarily set at 20 (if it does not work, then it can be modified). If a pixel is green, 
it will be set to black; otherwise, it will become white; this will make the pixels 
that belong to the car stand out. The program begins by creating a window and 
reading in the image:

im = pygame.image.load ("eclipse.gif")
sz = im.get_size()
width = sz[0]
height = sz[1]
screen = pygame.display.set_mode((width, height))

Now look at all of the pixels, searching for a green one:
for i in range(0, width):
    for j in range(0, height):
        c = im.get_at((i, j))    # Get the color of the 
                                 # pixel (i,j)

If the pixel is green, then change it to black. Otherwise, change it to white:
if c[1] > (c[0] + 20) and c[1] > (c[2] + 20):
    im.set_at((i, j), (0, 0, 0))
else:
    im.set_at((i, j), (255, 255, 255))



286  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 Display it and the program is complete (Figure 7.14b). Note that there are 
some green pixels that do not belong to the car, but most of the car pixels have 
been identified.

 
 (a) (b)

Figure 7.14
(a) A green car. (b) The result of changing green pixels to black and all others to white.

Example: Thresholding

Image processing is a large subject, and this particular book is not the best 
choice for exploring it in detail. There are some basic actions that can be done, 
and common ones include thresholding, edge enhancement, noise reduction, 
and count, all of which can be done using in Python and drawn using Pygame. 
Thresholding in particular is an early step in many image-analysis processes. 
It is the creation of a bi-level image, having just black and white pixels, from a 
grey or color image. The previous example is different from thresholding in that 
a particular color was being searched for. In thresholding a simple grey value T, 
the threshold, is used to separate pixels into black and white: all pixels having a 
value smaller than T will be black, and the others will be white.

We can convert an RGB value to a single grey level by simply averaging 
the three color components: (red+green+blue)/3. This could be coded as function 
grey(), which converts a color into a simple grey level, which is an integer in the 
range 0 to 25. The thresholding program begins in the same way as did the pre-
vious example. Look at the color of all of the pixels in the image, one at a time:

startdraw(640, 480)
im = loadImage ("eclipse.gif")
for i in range(0, Width()):
    for j in range(0, Height()):
        c = getpixel(im, i,j)



 Chapter  7  ·  Graphics   ■ 287

Figure 7.15
Thresholded green car image

This is the standard scan of all pixels. Now convert the color c to a grey level 
and compare that against the threshold T=128. Pixels with a grey level below 128 
are set to black, the remainder are white:
for i in range(0, width):
  for j in range(0, height):
      c = im.get_at((i, j))
      g = (c[0]+c[1]+c[2])/3
      if g < T:
          im.set_at((i, j), (0, 0, 0))
      else:
          im.set_at((i, j), (255, 255, 255))

The result, the image displayed by this program, is shown in Figure 7.15.

Transparency

A GIF image can have one color chosen to be transparent, meaning that it 
will not show up and any pixel drawn previously at the same location will be 
visible. This is very handy in games and animations. Images are rectangular, 
whereas most objects are not. Consider a small image of a doughnut; the pixels 
surrounding the donut and in the hole can have the pixels set to be transparent. 
Then, when the image is drawn, the background will be seen through the hole. 

The transparency value must be set within the image by a program. Photo-
shop, for example, can do this. Then, when Python displays the images, the back-
ground image must be displayed first, followed by the images with transparency. 
As an example, Figure 7.16a shows a photo of the view through the rear and side 



288  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

windows of a Volvo. The window glass area, the places where transparency is 
desired, is colored yellow. The color yellow was then selected in Photoshop to be 
transparent, and the image was saved again as a GIF. The short Python program 
given here can display a background image and the car image over the top of the 
background, and the background will be seen through the window regions, as 
shown in Figure 7.16b. 

 

 (a) (b)
Figure 7.16 
(a An image of a car interior, The window areas have been edited manually to be some color that does 
not appear in the image otherwise. This color is then set to be transparent by Photoshop or some other 
editing tool. (b) When the background image is drawn with the car image over the top, the background 
can be seen through the windows.

im = pygame.image.load("../07images/car.gif")     # car image
s  = pygame.image.load("../07images/perseus.gif")
                                  # Background image
sz = im.get_size()
width = sz[0]
height = sz[1]
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 10
while True:
    clock.tick(FPS)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
    screen.blit(s, (0, 0))
    screen.blit(im, (0, 0))

    pygame.display.update()



 Chapter  7  ·  Graphics   ■ 289

 7.6.6 Generative Art

In generative art, artwork is generated by a computer program that uses an 
algorithm created by the artist. The artist is the creative force, the designer of the 
visual display, and the computer implements it. There are many generative artists 
to be found on the Internet: one list can be found online: http://blog.hvidtfeldts.
net/index.php/generative-art-links/

Much generative art is dynamic: it involves motion and/or interaction, but 
many works are equivalent to paintings and drawings (static). Pygame could be 
a tool for helping to render these sorts of generative art works. Unlike other sorts 
of computer programs, those associated with art do not have a known predictable 
result that can be affirmed as correct. It is true that an artist begins with an idea of 
what their work should look like and what the message underlying it is, but paint-
ings, sculptures, and generative works rarely finish the way they began.

Either begin with an idea of what the image will look like or describe the idea 
using a sentence or two. Here’s an example sentence: “Imagine a collection of 
straight lines radiating from a set of randomly placed points within the drawing 
window, with each set of lines drawn in a saturated strong color.”

Now an attempt would be made to create such an image using the functions 
that Pygame offers. It is often the case that the first few tries are in error, but that 
one of them is interesting. An artist would pursue the interesting result instead of 
sticking to the original idea, of course. Here is an example: the code below was 
written with the idea that it would produce a collection of lines radiating from the 
point (400,600) from 0 degrees (horizontal right) to 180 degrees (horizontal left) 
with the color varying slightly:
r = 255
for i in range(1, 180, 2):
    pygame.draw.line(screen, (128, r, 128), (x, y), 

 (sin(radians(i)) * 500, cos(radians(i)) * 500))
    r = r - 0.5

The Y coordinates should have been inverted. Instead, this created a much 
more interesting image. Sometimes a small error can result in a more interesting 
result. This is rarely the case when writing scientific or commercial software. 
The code for one of the other loops in the final code is as follows:



290  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

x = randrange(100, 800)
y = randrange(100, 500)
r = 255
for i in range(1, 180, 2):
    pygame.draw.line(screen, (r, 200, r), (x, y), 
     (sin(radians(-i)) * 500, cos(radians(i)) * 500))
    pygame.draw.line(screen, (r, 200, r), (x, y), 
     (sin(radians(i)) * 500, cos(radians(i)) * 500))
    r = r - 0.5

This draws some more lines in a nest set of colors from a new location.

 

Figure 7.17
Examples of generative art. Colored lines emanate from random points and intersect, creating 
interesting patterns.

Generative art should be under the control of the artist, but it does use ran-
dom elements to add interest to the image. In the piece Snow Boxes by Noah 
Larsen, a set of rectangles is drawn, but the specific size and location of these 
rectangles is random within constrained parameters. The overall color is also ran-
dom within specified boundaries. Each rectangle is drawn as a collection of white 
pixels with a density that has been defined specifically for that rectangle so that 
the image consists of spatters of white pixels that can be identified as rectangular 
regions (Figure 7.17). Each time the program is executed, a different image is 
created. The program for Snow Boxes was originally written in a language called 
Processing, but a Python version that uses Pygame is:
# Snow boxes 
# Original by Noah Larsen, @earlatron



 Chapter  7  ·  Graphics   ■ 291

screen.fill ( (randrange(0, 75), randrange(150, 255),
               randrange(0, 75)) )
fill = (255,255,255)
for i in range(0, 10000):
    screen.set_at((randrange(0, width), randrange(0, height)), 
                 fill)

for i in range(0, 20):
    xs = randrange(0, width)
    ys = randrange(0, height)
    xe = randrange(xs, xs + randrange(30, 300))
    ye = randrange(ys, ys + randrange(30, 300))

    for j in range(0, 10000):
        screen.set_at( (randrange(xs,xe + 1), 
           randrange(ys,ye + 1)) , fill)

 

Figure 7.18
Output samples from the Snow Boxes program, examples of generative art.

 7.7 SUMMARY
Since the advent of Windows, computer graphics have been a feature of com-

puters. Python does not have built-in features for doing graphics, but Pygame 
does. Drawing is accomplished by setting pixels within a drawing window to a 
desired color. Colors are specified by giving the amount of red, green, and blue 
that comprise the color.

Pygame and most graphics libraries allow the user to draw lines, polygons, 
text, and images, and to set pixels. These basic functions are combined by the 
programmer to create desired visualizations, such as histograms and pie charts.



292  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Exercises

 1. Write a Python program to create the image shown in Figure 7.19a. The 
image is grey, but the colors that are to be used to fill the circles are given as 
text. You need not include the text in your output.

 2. Draw a set of 10 lines separated horizontally by 20 pixels, each parallel to the 
line specified by the end points (10, 20) and (200, 421). These lines may begin 
anywhere in the window.

 3. Draw a pyramid using dark grey bricks (rectangles) as components. The base 
of the pyramid is to be 15 bricks long horizontally, and each successive level 
is one brick smaller. (Figure 7.19b)

 4. Draw a checkerboard. Each square should be 20 x 20 pixels, and the squares 
are red or yellow, alternating. A checkerboard is 8 x 8 squares.

 5. Write a program to draw a visual work in the visual style of Piet Mondrian’s 
famous rectangular compositions, an example of which is shown in Figure 
7.19d. Could triangular shapes be used instead of rectangles?

 6. Modify the pie chart program so that the data is read from a file named piein.
dat.

 7. Write a program that reads the file name of an image and displays the image 
in a window that is correctly sized.

 8. The image named “digit.gif” contains some pixels that are pure red; that is, 
they have a pixel value of (255,0,0). Write a program that locates these pixels, 
draws a circle around them in a display of the image, and prints their x and y 
coordinates.

 9. An edge in an image has the property that the pixel values on one side of the 
edge are significantly different (i.e., more than 40 levels) from those on the 
other side.  Write a Python program that reads an image and sets pixels at 
vertical edge locations to black and all other pixels to white; it then displays 
the result in a window. Hints: convert the image to grey or select one color 
value for the edges. Make a working copy of the image.



 Chapter  7  ·  Graphics   ■ 293

 

 (a) (b)

 
 (c) (d)

Figure 7.19
Figures to accompany the exercises.

Notes and Other Resources

 1. PyGame Tutorial – Game Development Using PyGame in Python, https://
www.edureka.co/blog/pygame-tutorial

 2. Search criteria in IMAP: http://tools.ietf.org/html/rfc3501#section-6.4.4

 3. Tkinter 8.5 reference. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/
index.html

 4. http://www.generativeart.com/



294  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 5. John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. 
Foley, Steven K. Feiner, Kurt Akeley. (2013) Computer Graphics: Principles 
and Practice (3rd Edition), Addison-Wesley Professional.

 6. Robin Landa, Rose Gonnella, Steven Brower. (2006) 2D Visual Basics for 
Designers, Delmar Cengage Learning. 

 7. Jeffrey McConnell, (2005) Computer Graphics: Theory Into Practice, Jones 
& Bartlett Learning.

 8. Matt Pearson (2011). Generative Art. Manning Publications. ISBN-
10: 1935182625.



8chaPter

ManiPuLating data

8.1 Dictionaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8.2 Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.3 Formatted Text, Formatted I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.4 Advanced Data Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

8.5 Standard File Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

8.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

■ ■ ■ ■ ■

In this chapter

A fair definition of computer science would be that it is the discipline that 
concerns itself with information. Computers are an enabling technology, but 
computer science is largely about how to store, retrieve, represent, compress, dis-
play, transmit, and otherwise handle information. Python offers facilities for ma-
nipulating information or, at a lower level, data. Data becomes information when 
a person can interpret it, and information becomes knowledge once understood.

Data on a computer is stored as numbers no matter what its original form 
was. Computers can only operate using numbers, so an important aspect of us-
ing data is the representation of complex ideas as numbers. The manner in which 
the data is represented as numbers is reflected in the methods used to operate on 
them.

This chapter is an examination of how certain kinds of data are represented 
and how computer programs can use data. Python is used for this examination, 
although some of the discussion deals in generalities. The discussion is driven by 
how things can be accomplished in a practical way using Python.



296  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Most data consist of measurements of something, and as such, are fundamen-
tally numeric. For example, astronomers measure the brightness of stars and note 
how they vary as a function of time. The data consists of a collection of numbers 
that represent the brightness on an arbitrary scale; the units of measurements are 
always in some sense arbitrary. However, units can be converted from one kind to 
another, so this is not a problem. Biologists frequently count things, so their data 
is fundamentally numeric. Social scientists ask questions and collect answers into 
groups (again a numeric result). What things are not?

Photographs are common enough in science and are not numeric values but 
are, instead, visual; they relate to a human sense that can be understood by other 
humans easily. Many photographs are analyzed by a computer these days, and 
there is a way to represent photos digitally. Another human sense that is used 
to examine data is hearing. Birds sing songs that communicate certain ideas, 
including what they observe and their willingness to mate. Sounds are vibrations 
and can indicate problems with machinery, the approach of a vehicle, the pres-
ence of a predator, or the current state of the weather. Touch is less often used, 
but is essential in the control of objects by humans. A person controlling a device 
at a great distance can profit from the ability to feel the touch of a tool across a 
computer network.

Then there are search engines, which can be thought of as an extension of 
human memory and reasoning. The human ability to access information has im-
proved significantly over the past twenty years. If the phrase “Python data ma-
nipulation” is entered into the Google search engine, over half a million results 
are returned. 

How is all of this done? It does take some clever algorithms and good pro-
gramming, but it also requires a language that offers the right facilities.

 8.1 DICTIONARIES
A Python dictionary is an important structure for dealing with data. One 

reason is that a dictionary is more properly an advanced structure that is imple-
mented in terms of more basic ones. A list, for example, is a collection of things 
(integers, reals, or strings) that is accessed by using an index, where the index is 
an integer. If the integer is given, the contents of the list at that location can be 
retrieved or modified.



 Chapter  8  ·  Manipulat ing Data   ■ 297

A dictionary allows a more complex, expensive, and useful indexing scheme: 
it is accessed by content (or rather, a description of content). A dictionary can be 
indexed by a string, which in general would be referred to as a key, and the infor-
mation at that location in the dictionary is said to be associated with that key. For 
example, let’s assume we have a dictionary that returns the value of a color given 
the name. A color, as described in Chapter 7, is specified by a red, green, and blue 
component. A tuple such as (100,200,100) can be used to represent a color. In a 
dictionary named colors, the value of colors[‘red’] is (255,0,0) and colors[‘blue’] 
is (0,0,255). Naturally, it is important to know what names are possible or the 
index used will not be legal and will cause an error. colors[‘copper’] may result 
in an index error, which is called a KeyError for a dictionary.

The Python syntax for setting up a dictionary differs from anything that has 
been seen before. The dictionary colors could be created in this way:
colors = { 'red':(255, 0, 0), 'blue':(0,0,255), 

'green':(0,255,0)}

The braces { … } enclose all of the things being defined as part of the dic-
tionary. Each entry is a pair, with a key followed by a “:” followed by a data ele-
ment. The pair red:(255,0,0) means that the key “red” is associated with the value 
(255,0,0) in this dictionary. 

Now, the name colors looks like a list, but it is indexed by a string: 
print (colors['blue'])

The index is called a key when referring to a dictionary. That’s because it is 
not really an index, in that the string cannot directly address a location. Instead, 
the key is searched for, and if it is a legal key (i.e., it has been defined), the cor-
responding data element is selected. The definition of colors creates a list of keys 
and a list of data.  
Table 8.1
List of keys and data for colors

Location Keys Data
0 “red” (255, 0, 0)
1 “blue” (0, 0, 255)
2 “green” (0, 255, 0)



298  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

When the expression colors[‘blue’] is seen, the key “blue” is searched for in 
the list of all keys. It is found at location 1, so the result of the expression is the 
data element at 1, which is (0,0,255).  

New associations can be made in assignment statements: 
colors['khaki'] = (240,230,140)

A dictionary can be created with an empty pair of braces and then have val-
ues given using assignments:

colors = {}
colors['red'] = (255, 0, 0)
      .   .   .

As with other variables, the value of an element in a dictionary can be 
changed. This changes the association with the key; there can only be one item 
associated with a key. The assignment

colors['red'] = (200.,0,0)

re-assigns the value associated with the key “red.” To delete it altogether, use the 
del() function:

del(colors['blue'])

Other types can be used as keys in a dictionary. In fact, any immutable type 
can be used. Hence, it is possible to create a dictionary that reverses the associa-
tion of name to its RGB color, allowing the color to be used as the key and the 
name to be retrieved. For example,

names = {}
names[(255,0,0)] = 'red'
names[(0,255,0)] = 'green'

This dictionary uses tuples as keys. Lists cannot be used because they are not 
immutable.

 8.1.1 Example: A Naïve Latin – English Translation

A successful language translation program is difficult to implement. Human 
languages are unlike computer languages in that they have nuances. Words have 
more than one meaning, and many words mean essentially the same thing. Some 
words mean one thing in a particular context and a different thing in another 



 Chapter  8  ·  Manipulat ing Data   ■ 299

context. Sometimes a word can be a noun and a verb. What this program will do 
is substitute English words for Latin ones, using a Python dictionary as the basis.

A collection of Latin words with their English counterparts has been placed 
into a text file named “latin.txt.” The file has the Latin word, a space, and the 
English equivalent on a single line in the file. The program accepts text from the 
keyboard and translates it into English, word by word, assuming that it originally 
consisted of Latin words. The file of Latin words has 3,129 items, but it should be 
understood that one word in any language has many forms depending on how it 
is used. Many words are missing in one form or another.

The program is simple. The file of words is read in and converted into a 
dictionary. The file has a Latin word, a comma, and an English word, so a line 
is read, converted to a tuple using split(), and the Latin word is used as a key to 
store the English word into the dictionary.

Next, the program asks the user for a phrase in Latin, and the user types it in. 
The phrase is split into individual words. Each word is looked up in the diction-
ary, and the English version is printed. This is the first step in creating a transla-
tion program. The code looks like this:
def load_words (name, dict):  # Read the file of words
  f = open (name, "r")
  s = f.readline()            # Read one word pair
  while s != "":              # exit when the file has been
                              # read
        c = s.split (",")     # Split at the comma
        if len(c)<2:          # Possible error: no words?
            s = f.readline()  # Read next and continue
            continue
        sw = c[0].strip()     # Get the latin and 
                              # English words.
        ew = c[1].strip()
        if len(ew) <=0:       # OK?
            s = f.readline()  # Nope. Just skip it.
            continue
        if ew[-1] == "\n":    # Get ride of the endline
            ew = ew[0:-2]
        dict[sw] = ew         # Place in dictionary
        s = f.readline()      # Next word pair from the
                              # file



300  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    f.close()                 # Always close when done

dict = {}
load_words("latin.txt", dict)  # Read all of the word pairs

inp = input("Enter a latin phrase ") # Get the Latin text
while inp != "":                     # Done?
    book = inp.split(" ")            # Split at words
    for i in range(0,len(book)):     # For each word this 
                                     # line
        sword = book[i].lower()      # Lower case
        try:
            enword = dict[sword]     # Look up Latin word
            print (enword, end="")   # Print English 
                                     # version
        except:
            print (sword, end="")    # Latin not in 
                                     # dictionary
        print (" ", end="")          # Print the Latin
    print (".")
    inp = input("Enter a latin phrase ") # Do it again

Translation is more complex than just changing words, and that’s all this 
program does. Still, it is an important step. A favorite Latin phrase from the TV 
program The West Wing is “Post hoc, ergo propter hoc.” Given this phrase, the 
program produced

after this therefore because of this.

which is a good translation. The phrase “All dogs go to heaven” was sent to an 
online translation program, which produced

omnes canes ad caelum ire conspexerit
This program here translates it back into English as:

all dogs to sky go conspexerit 
The word “conspexerit” was not successfully translated, so it was left as it was 
(the online program translates that word as “glance”). 

However, the program does not perform well on the Lord’s Prayer:
Pater noster qui es in caelis sanctificetur nomen tuum.



 Chapter  8  ·  Manipulat ing Data   ■ 301

Adveniat regnum tuum.
Fiat voluntas tua sicut in caelo et in terra.
 Panem nostrum quotidianum da nobis hodie et dimitte nobis debita nostra 
sicut et nos dimittimus debitoribus.
Fiat voluntas tua sicut in caelo et in terra.
Amen

The above Latin version was turned into the following English translation:

father our that you are against heavens holy name your
down rule your
becomes last your as against heaven and against earth
bread our daily da us day and dimitte us debita our as and us forgive debtors
becomes last your as in heaven and in earth
amen
A useful addition to the code would be to permit the user to add new words 

into the dictionary. In particular, it could prompt the user for words that it could 
not find, and perhaps even ask whether similar words were related to the un-
known one, such as “dimittimus” and “dimitte.” (Being able to have a basic un-
derstanding of the grammar would be better still.)

 8.1.2 Functions for Dictionaries

The power of the store-fetch scheme in the dictionary is impressive. There 
are some methods that apply mainly to dictionaries and that can be useful in more 
complex programs. The method keys() returns the collection of all of the keys 
that can be used with a dictionary. So

list(dict.keys()) 

is a list of all of the keys, and this can be searched before doing any complex 
operations on the dictionary. The list of keys is not in any specific order, and if 
they need to be sorted then 

sorted(dict.keys())

will do the job. The del() method has been used to remove specific keys, but dict.
clear() removes all of them. 



302  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The method setdefault() can establish a default value for a key that has not 
been defined. When an attempt is made to access a dictionary using a key, an 
error occurs if the key has not been defined for that dictionary. This method 
makes the key known so that no error will occur and a value can be returned for 
it (None, perhaps).  

dict.setdefault(key, default=None)

Other useful functions include:

dict.copy()   returns a (shallow) copy of the dictionary
dict.fromkeys()  creates a new dictionary setting keys and values; e.g.,  

dict.fromkeys( (“one,” “two”), 3) creates {(“one,” 3), 
(“two,” 3)}

dict.items()  returns a list of dict’s (key, value) tuple pairs
dict.values() returns list of dictionary dict’s values
dict.update(dict2) adds the key-value pairs from dictionary dict2 to dict

The expression key in dict is True if the key specified exists in the diction-
ary dict.

 8.1.3  Dictionaries and Loops

Dictionaries are intended for random access, but on occasion, it is necessary 
to scan through parts or all of one. We need to create a list from the pairs in the 
dictionary and then loop through the list. For example, 

for (key,value) in dict.items():
    print (key, " has the value ", value)
The keys are given in an internal order, which is not alphabetical. It is a 

simple matter to sort them, though: 
for (key,value) in sorted(dict.items()):
    print (key, " has the value ", value)

By converting the dictionary pairs in a list, any of the operations on lists can 
be applied to a dictionary as well. It is even possible to use comprehensions to 
initialize a dictionary. For example 
d = { angle:sin(radians(angle)) for angle in (0,45.,90., 

135., 180.)}

creates a dictionary of the sines of some angles indexed by the angle.



 Chapter  8  ·  Manipulat ing Data   ■ 303

 8.2 ARRAYS
For programmers who have used other languages, Python lists have many 

of the properties of an array, which in C++ or Java is a collection of consecutive 
memory locations that contain the same type of value. Lists may be designed to 
make operations such as concatenation efficient, which means that a list may not 
be the most efficient way to store things. A Python array is a class that mimics 
the array type of other languages and offers efficiency in storage, exchanging that 
for flexibility.

Only certain types can be stored in an array, and the type of the array is 
specified when it is created. For example,

data = array('f', [12.8, 5.4, 8.0, 8.0, 9.21, 3.14])

creates an array of 6 floating point numbers; the type is indicated by the “f” as 
the first parameter to the constructor. This concept is unlike the Python norm of 
types being dynamic and malleable. An array is an array of one kind of thing, 
and an array can only hold a restricted set of types.

The type code, the first parameter to the constructor, can have one of 13 val-
ues, but the most commonly used ones are as follows:

‘b’  C++  char type
‘B’  C++ unsigned char type
‘i’:  C++ int type
‘l’:  C++ long type
‘f’:  C++ float type
‘d’:  C++ double type 

Arrays are class objects and are provided in the built-in module array, which 
must be imported: 

from array import array

An array is a sequence type, and it has the basic properties and operations that 
Python provides for all the sequence types. Array elements can be assigned to 
and can be used in expressions, and arrays can be searched and extended like 
other sequences. There are some features of arrays that are unique:

frombytes (s)  The string argument s is converted into byte sequences 
and appended to the array.



304  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

fromfile(f, num)  Read num items from the file object f and append them. 
An integer, for example, is one item.

fromlist (x) Append the elements from the list x to the array.
tobytes()  Convert the array into a sequence of bytes in machine rep-

resentation.
tofile(f)  Write the array as a sequence of bytes to the file f.

In most cases, arrays are used to speed up numerical operations, but they can also 
be used to access the underlying representations of numbers.

 8.3 FORMATTED TEXT, FORMATTED I/O
There is a generally believed theory that if numbers line up in nice columns, 

then they must be correct. This is obviously not true, but appearances can mat-
ter a great deal, and numbers that do not line up properly for easy reading look 
sloppy and give people the impression that they may not be as carefully prepared 
as they should have been. The Python print() function as used so far prints a col-
lection of variables and constants with no real attention to a format. Each item is 
printed in the order specified with a space between the items. Sometimes that’s 
good enough.

The Python versions since 2.7 have incorporated a string format() method 
that allows a programmer to specify how values should be placed within a string. 
The idea is to create a string that contains the formatted output, and then print the 
string. A simple example is as follows:

s = "x={} y={}"
fs = s.format (121.2, 6)

The string fs now contains “x=121.2 y=6.” The braces within the format 
string s hold the place for a value. The format() method lists values to be placed 
into the string, and with no other information given, it does so in order of appear-
ance (in this case, 121.2 followed by 6). The first pair of braces is replaced by the 
first value, 121.2, and the second pair of braces is replaced by the second value, 
which is 6. Now the string fs can be printed.

This is not how it is usually done, though. Because this is usually part of the 
output process, it is often placed within the print() call: 

print ("x={} y={}".format(121.2, 6) )



 Chapter  8  ·  Manipulat ing Data   ■ 305

where the format() method is referenced from the string constant. No actual 
formatting is done by this particular call, merely a conversion to string and a 
substitution of values. The way formatting is done depends on the type of the 
value being formatted, the most common types being strings, integers, and floats.  

 8.3.1 Example: NASA Meteorite Landing Data

NASA publishes a large amount of data on its websites, and one of these is a 
collection of meteorite landings. It covers many years and has over 4,800 entries. 
The task assigned here is to print a nicely formatted report on selected parts of the 
data. The data on the file has its fields separated by commas, and there are ten of 
them: name, id, nametype, recclass, mass, Fall, year, reclat, reclong, and GeoLo-
cation. The report requires that the name, recclass, mass, reclat, and reclong be 
arranged in a nicely formatted set of columns.

Reading the data involves opening the file, which is named “met.txt,” calling 
readline(), and then creating a list of the fields using split(“,”). If this is done and 
the fields are printed using print(), the result is messy. An abbreviated example 
is as follows (simulated data here):
infile = open ("met.txt", "r")
inline = infile.readline()

while inline !="":
    inlist = inline.split(",")
    mass = float(inlist[4])
    lat =  float(inlist[7])
    long = float(inlist[8])
    print ( inlist[0], inlist[3], inlist[4], inlist[7],  

inlist[8])
    inline = infile.readline()
infile.close()

The result is, as predicted, messy:
Ashdon  H5 121.13519985254874 89.85924301385958 

-126.27404435776049
Arbol Solo  H6 66.94777134343516 25.567048824444797 

160.58088365396014
Baldwyn  L6 47.6388587105465 -7.708508536783924 

-81.22266156597777



306  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Ankober  L6 15.265523451122064 -32.01862330869428 
102.31244557598723

Ankober  LL6 57.584802700693885 -84.85880091616322 
106.31130649523368

Ash Creek  L6 62.130089525516155 76.02832670618457 
-140.03422105516938

Almahata Sitta  LL5 30.476879105555653 -12.906745404586 
47.411816322674

Nothing lines up in columns, and the numbers show an impossible degree of 
precision. There are also no headings.

The first field printed is called name, and is a string; it is the name of the lo-
cation where the observation was made. The print statement simply adds a space 
after printing it, and so the next thing is printed immediately following it. Things 
do not line up. Formatting a string for output involves specifying how much space 
to allow and whether the string should be centered or aligned to the left or right 
side of the area where it will be printed. Applying a left alignment to the string 
variable named placename in a field of 16 characters would be done as follows:

ꞌ{:16s}ꞌ.format(placename)

The braces, which have previously been empty, contain formatting direc-
tives. Empty braces mean no formatting, and simply hold the place for a value. A 
full format could contain a name, a conversion part, and a specification:

{   [name]     [‘!’ conversion]   [‘:’ specification]  }

where optional parts are in square brackets. Thus, the minimal format specifica-
tion is ‘{}.’ In the example “{:16s},” there is no name and no conversion parts, only 
a specification. After the “:” is “16s,” meaning that the data to be placed here is 
a string, and that 16 characters should be allowed for it. It will be left aligned by 
default, so if placename was “Atlanta,” the result of the formatting would be the 
string “Atlanta         ,” left aligned in a 16-character string. Unfortunately, if the 
original string is longer than 16 characters, it will not be truncated, and all of the 
characters will be placed in the resulting string, even if it makes it too long.

To right align a string, place a “>” character immediately following the “:”.  
So

"{:>16s}".format("Atlanta") 



 Chapter  8  ·  Manipulat ing Data   ■ 307

results in “         Atlanta.” Placing a “<” character there does a left alignment (the 
default) and “^” means to center it in the available space. The alignment specifi-
cations apply to numbers as well as strings.

The first two values to be printed in the example are the city name, which is 
in inlist[0], and the meteorite class, which is inlist[3]. Formatting these is done 
as follows: 

s = '{:16s} {:10s}'.format(inlist[0], inlist[3])

Both strings are left aligned.

Numeric formats are more complicated. For integers, there is the total space 
to allow, and also how to align it and what to do with the sign and leading zeros. 
The formatting letter for an integer is “d,” so Table 8.2 shows the legal directives 
and their meanings.
Table 8.2
Numeric formats

Format Explanation Result for value 1234
‘{:5d}’ An integer in a 5-character space, right aligned " 1234"

‘{:>5d}’ An integer in a 5-character space, right aligned " 1234"

‘{:<7d}” An integer in a 7-character space, left aligned "1234   "

‘{:07d}’ An integer right aligned in a 7-character 
space filled on the left with zeros.

"0001234"

‘{:,7d}’ A right aligned integer in a 7-character space 
with a ‘,’ every 3 digits

"  1,234"

‘{:7x}’ A right aligned integer in hexadecimal. "    4D2"

Floating point numbers have the extra issue of the decimal place. The format 
character is often “f,” but it can be “e” for exponential format or “g” for general 
format, meaning the system decides whether to use “f” or “e.” Otherwise, the 
formatting of a floating point number is like that of previous versions of Python 
and like that of C and C++.



308  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Table 8.2
Floating point number formats

Format Explanation Result for value 12.321
‘{:.3f}’ 3 digits right of the decimal ꞌ12.321ꞌ

‘{:6.2f}’ 6 digits, 3 to the right of the decimal ꞌ 12.32ꞌ

‘{:>8.1}’ 5 digits, 1 to the right, left adjusted ꞌ    12.3ꞌ

‘{:8e}’ 8 places, exponential form '1.232100e+01'

‘{:8g}’ 8 places, system decides '  12.321'

The next three values that are printed are floating points: the mass of the me-
teorite and the location, as the latitude and longitude. We print each of these as 7 
places, 2 to the right of the decimal (‘{:7.2f}’).

The solution to the problem is as follows. The data is read line by line, con-
verted into a list, and then the fields are formatted and printed in two steps: 
infile = open ("met.txt", "r")
inline = infile.readline()
print ( "    Place     Class    Mass   Latitude  Longitude")
while inline !="":
    inlist = inline.split(",")
    mass = float(inlist[4])
    lat =  float(inlist[7])
    long = float(inlist[8])
    print('{:16s} {:14s} {:7.2f}'.format(inlist[0],
                                  inlist[3],mass),end="")
    print ('  {:7.2f}     {:7.2f}'.format(lat, long))
    inline = infile.readline()
infile.close()

The results are as follows:
Place Class Mass Latitude Longitude
Bloomington L5 13.58 9.53 -150.85
Bogou LL6 121.09 -66.28 -53.08
Alessandria L4 106.11 63.68 10.96
Bo Xian L5 85.92 0.33 -50.28
Ashdon Eucrite-mmict 6.59 -88.22 -178.84
Berduc L6 111.76 -64.20 107.10
. . .

There are many more formatting directives and a large number of combinations.



 Chapter  8  ·  Manipulat ing Data   ■ 309

 8.4 ADVANCED DATA FILES
File operations were discussed Chapter 5, but the discussion was limited 

to files containing text. Text is crucial because it is how humans communicate 
with the computer. However, text files take up more space than needed to hold 
the information they do. Each character requires at least one byte. The number 
3.1415926535 thus takes up 12 bytes, but if it is stored as a floating point number, 
it needs only 4 or 8, depending on the precision.

The file system on most computers also permits a variety of operations that 
have not been discussed. This includes reading from any point in a file, append-
ing data to files, and modifying data. The need for processing data effectively is 
a main reason for computers to exist at all, so it is important to know as much as 
possible about how to program a computer for these purposes. 

 8.4.1 Binary Files

A binary file is one that does not contain text, but instead holds the raw, in-
ternal representation of its data. Of course, all files on a computer disk are binary 
in a sense, because they all contain numbers in binary form, but a binary file in 
this discussion does not contain information that can be read by a human. Binary 
files can be more efficient that other kinds, both in file size (smaller) and the time 
it takes to read and write them (less). Many standard files types, such as MP3, 
exist as binary files, so it is important to understand how to manipulate them.

Example: Create a File of Integers

The array type holds data in a form that is more natural for most computers 
than a list, and also has the tofile() method built in. If a collection of integers is 
written as a binary file, the first step is to place them into an array. If a set of 
10,000 consecutive integers are to be written to a file named “ints,” the first step 
is to import the array class and open the output file. Notice that the file is open in 
“wb” mode, which means “write binary:” 

from array import array
output_file = open('ints', 'wb')

Now create an array to hold the elements and fill the array with the consecu-
tive integers: 



310  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

arr = array('i')
for k in range (10000, 20000):
    arr.append(k)

Finally, write the data in the array to the file:
arr.tofile(out)
out.close()

This file has a size of 40 kb on a PC. A file with the same integers written as 
text is 49 kb. This is not exactly a large space savings, but it does add up.

Reading these values back is simple: 
inf = open ('ints', 'rb')
arrin = array('i')
for k in range (0, 10001):
    try:
        arrin.fromfile(inf, 1)
    except:
        break
    print (arrin[k])
inf.close()

The try is used to catch an end of file error in cases where the number of 
items on the file is not known in advance.  

Sometimes a binary file contains data that is all of the same type, but that 
situation is not very common. It is more likely that the file has strings, integers, 
and floats intermixed. Imagine a file of data for bank accounts or magazine sub-
scriptions; the information includes names and addresses, dates, financial values, 
and optional data, depending on the situation (some customers have multiple ac-
counts). By using structs, we can create binary files that contain more than one 
kind of information. 

 8.4.2 The Struct Module

The struct module permits variables and objects of various types to be con-
verted into what amounts to a sequence of bytes. It is a common claim that this 
is in order to convert between Python forms and C forms, because C has a struct 
type (short for structure). However, many files exist that consist of mixed-type 
data in raw (i.e., machine compatible) form that have been created by many pro-



 Chapter  8  ·  Manipulat ing Data   ■ 311

grams in many languages. It is possible that C is singled out because the name 
struct was used.

Example: A Video Game High Score File

Video game players need little incentive to try hard to win a game, but for 
many years, a special reward used to be given to the better players. The game 
“remembered” the best players and listed them at the beginning and end of the 
game. This kind of ego boost is a part of the reward system of the game. The 
game program stores the information on a file in descending order of score. The 
data that was saved was usually the player’s name or initials, the score, and the 
date. This mixes string with numeric data.

Consider that the player’s name is held in a variable name, the score is an 
integer score, and the date is a set of three strings year, month, and day. In this 
situation, the size of each value needs to be fixed, so allow 32 characters for the 
name, 4 for year, 2 for month, and 2 for day. The file was created with the name 
first, then the score, then the year, month, and day. The order matters because it 
will be read in the same order that it was written. In the file, the data appears as 
follows:
cccccccccccccccccccccccccccccccc iiii   cccc   cc    cc   
Player's name                    Score  Year  Month  Day

Each letter in the first string represents a byte in the data for this entry. “C” 
represents characters; “i” represents bytes that are part of an integer. There are 44 
bytes in all, which is the size of one data record, which is what one set of related 
data is generally called. A file contains the records for all of the elements in the 
data set, and in this case, a record is the data for one player, or at least one time 
that the player played the game. There can be multiple entries for a player.

One way to convert mixed data like this into a struct is to use the pack() 
method. It takes a format parameter first, which indicates what the struct will 
consist of in terms of bytes. Then the values are passed that will be converted 
into components of the final struct. For the example here, the call to pack() is as 
follows:

s = pack ("32si4s2s2s", name, score, year, month, day)

The format string is 32si4s2s2s; there are 5 parts to this, one for each of the 
values to be packed:



312  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

32s is a 32-character long string. It should be of type bytes.
i is one integer. However, 2i would be two integers, and 12i is 12 integers.
4s is a 4-character long string.
2s is a 2-character long string.

Other important format items are as follows:

c is a character
f is a float
d is a double precision float

The value returned from pack() has the type bytes, and in this case, it is 44 
bytes long. The high score file consists of many of these records, all of which are 
the same size. A record can be written to a file using write(). A program that 
writes just one such record is as follows:
from struct import *

f = open ("hiscores", "wb")
name = bytes("Jim Parker", 'UTF-8')
score = 109800
year = b"2015"
month = b"12"
day = b"26"
s = pack ("32si4s2s2s", name, score, year, month, day)
f.write(s)

Reading this file involves first reading the string of bytes that represents a 
data record. Then it is unpacked, which is the reverse of what pack() does, and 
the variables are passed to the unpack() function to be filled with data. The 
unpack() method takes a format string as the first parameter, the same kind of 
format string as pack() uses. It returns a tuple. An example that reads the record 
in the above code is as follows:

from struct import *

f = open("hiscores", "rb")
s = f.read(44)
name,score,year,month,day = unpack("32si4s2s2s", s)
name = name.decode("UTF-8")



 Chapter  8  ·  Manipulat ing Data   ■ 313

year = year.decode("UTF-8")
month = month.decode("UTF-8")
day = day.decode("UTF-8")

The data returned by unpack are bytes, and need to be converted into strings 
before being used in most cases. Note the input mode on the open() call is “rb,” 
or “read binary.”

A file in this format has been provided, named “hiscore.” When a player 
plays the game, they will enter their name; the computer knows their score and 
the date. A new entry must be made in the “hiscore” file with this new score in 
it. How is that done?

Start with the new player data for Karl Holter, with a score of 100,000. To 
update the file, it is opened and records are read and written to a new temporary 
file (named “tmp”) until one is found that has a smaller score than the 100,000 
that Karl achieved. Then Karl’s record is written to the temporary file, and the 
remainder of “hiscores” is copied there. This creates a new file named “tmp” 
that has Karl’s data added to it in the correct place. Now that file can be copied 
to “hiscores” replacing the old file, or the file named “tmp” can be renamed as 
“hiscores.” This is called a sequential file update.

Renaming the file requires access to some of the operating system functions 
in the module os, in particular,  

os.rename ("tmp", "hiscores")

 8.4.3 Random Access

It seems natural to begin reading a file from the beginning, but that is not 
always necessary. If the data that is desired is located at a known place in the 
file, then the location being read from can be set to that point. This is a natural 
consequence of the fact that disk devices can be positioned at any location at any 
time. Why not files too?

The function that positions the file at a specific byte location is seek():  
f.seek(44)   # Position the file at byte 44, 
             # which is the second record in the 
             # hiscores file.



314  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

It’s also possible to position the file relative to the current location:  
f.seek(44, 1)   # Position the file 44 bytes from 
                # this location, 
                # which skips over the next 
                # record in hiscores.

A file can be re-wound so that it can be read over again by calling f.seek(0), 
and it positions the file at the beginning. It is otherwise difficult to make use of 
this feature, unless the records on the file are of a fixed size, as they are in the 
file “hiscores,” or the information on record sizes is saved in the file. Some files 
are intended from the outset to be used as random access files. Those files have 
an index that allows specific records to be read on demand. This is very much 
like a dictionary, but on a file. Assuming that the score for player Arlen Franks 
is needed, the name is searched for in the index. The result is the byte offset for 
Arlen’s high score entry in the file.

Arlen’s record starts at byte 352 (8th record multiplied by 44 bytes). He just 
played the game again and improved his score. Why not update his record on the 
file? The file needs to be open for input and output, so we use mode “rb+,” mean-
ing open a binary file for input and output. Then we position the file to Arlen’s 
record, create a new record, and write that one record. This is a new approach, 
being able to both read and write the same file. However, if the data being written 
is exactly the same size as the record on the file, then no harm should come from 
it. The program is as follows:  
# read and print hiscore file
from struct import *

f = open ("hiscores", "r+b") # Open binary file,input 
                             # and output
pos = 44*8                   # Desired record is 8, 
                             # 44 bytes per
f.seek(pos)                  # Seek to that position 
                             # one the file
s = f.read(44)               # Read the target record
name = b'Arlen Franks'       # Make a new one with a 
                             # new score
score = 100300
year = b'2015'
month = b'12'



 Chapter  8  ·  Manipulat ing Data   ■ 315

day = b'26'                  # Pack the new data
ss = pack("32si4s2s2s", name,score, year,month,day)
f.seek (44*8)                # Seek the original 
                             # position again!
f.write(ss)                  # Write the new data over 
                             # the old
f.close ()                   # Close the file

This works fine, provided that the position of Arlen’s data in the file is known. 
It does not maintain the file in descending order, though.

Example: Maintaining the High Score File in Order

The circumstances of the new problem are that a player only appears in the 
high score file once and the file is maintained in descending order of score. If a 
player improves their score, then their entry should move closer to the beginning 
of the file. This is a more difficult problem than before, but one that is still prac-
tical. Let’s presume that a player has achieved a new score. The entire process 
should be as follows:

Get the player’s old score. Read the file, get the player’s record, 
unpack it.

Is the new score larger? If not, close the file. Done.
Yes, so find out where the score  
belongs, in the file.

Look at successively preceding records 
until one is found that has a larger score.

Place the new record where it belongs. Copy the records from the new position 
for the record ahead one position until 
the old position is reached.

The process is like moving a playing card closer to the top of the deck while 
leaving the other cards in the same order. It’s probably more efficient to move the 
record while searching for the correct position, though. Each time the previous 
record is examined, if it does not have a larger score then the record being placed 
is copied ahead one position. This results in a pretty compact program, given the 
nature of the problem, but it is a bit tricky to get right. For example, what if the 
new score is the highest? What if the current high score gets a higher score? (see  
Exercise 11)



316  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 8.5 STANDARD FILE TYPES
Everyone’s computer has files on it that the owner did not create. Some have 

been downloaded; some merely came with the machine. It is common practice to 
associate specific kinds of files, as indicated initially by some letters at the end of 
the file name, with certain applications. A file that ends in “.doc,” for example, is 
usually a file created by Microsoft Word, and a file ending in “.mp3” is usually 
a sound file, often music. Such files have a format that is understood by existing 
software packages, and some of them (.gif) have been around for thirty years. 

Each file type has been designed to make certain operations easy, and to pass 
certain information to the application. A set of de facto standards have evolved 
for how these files are laid out, and for what data are provided for what kinds of 
files.  

 8.5.1 Image Files

Images have been processed using computers since the 1960s, when NASA 
started processing images at the Jet Propulsion Laboratory. Scientists decided 
that having standards for computer images would be useful. The first formats 
were ad hoc, and based essentially on raw pixel data. Raw data means knowing 
what the image size is in advance, so headers were introduced providing at least 
that information, leading to the TARGA format (.tga) and tiff (Tagged Image File 
Format) in the mid-1980s. When the Internet and the World Wide Web became 
popular, the GIF was invented, which compressed the image data. This was fol-
lowed by JPEG and other formats that could be used by Web designers and ren-
dered by browsers, and each had a specific advantage. After all, reducing size 
meant reducing the time it took to download an image.

Many of the image file formats created in the 1980s are still being used. 
Some formats, like PNG (Portable Network Graphics), have been specifically de-
signed for the Internet. Older ones (like JPEG) have found common uses in new 
technologies, like digital cameras.  

 8.5.2 GIF

The Graphics Interchange Format (GIF) is interesting. First, it uses com-
pression to reduce the size of the file, but the compression method is not lossy, 



 Chapter  8  ·  Manipulat ing Data   ■ 317

meaning that the image does not change after being compressed and then decom-
pressed. The compression algorithm used is called LZW, which is discussed in 
Chapter 10. GIF uses a color map representation, so an element in the image is 
not a color, but instead is an index into an array that holds the color. That is, if  
v = image[row][column] then the color of that pixel is (red[v], green[v], blue[v]). 
The color itself could be a full 24 bits, but the value v is a byte, and so in a GIF 
there can only be 256 distinct colors. GIF uses a little-endian representation, 
meaning that the least significant byte of multi-byte objects comes first on the 
file.

One advantage of the GIF is that one of the colors can be made transparent. 
This means that when this color is drawn over another, the color below shows 
through. It is essentially a “do not draw this pixel” value. It is important for things 
like sprites in computer games. Another advantage of GIF is that multiple images 
can be stored in a single file, allowing an animation to be saved in a single file. 
GIF animations have been common on the Internet for many years, and while 
they usually represent small, brief animations such as Christmas trees with flash-
ing lights, they can be as long and complex as television programs. Still, the fact 
that there can only be 256 different colors can be a problem.

A GIF is a binary file, but the first six characters are a header block contain-
ing what is called a magic number, or an identifying label. For a GIF file the three 
characters are always “GIF” and the next three represent the version; for the 1989 
standard the first six characters are “GIF89a.” Magic numbers are common in 
binary files, and are used to identify the file type. The file name suffix does not 
always tell the truth.

Following the header is the logical screen descriptor, which explains how 
much screen space the image requires. This is seven bytes:

Canvas width 2 bytes
Canvas height 2 bytes
Packed byte  1 byte



318  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A set of flags and small values

Bit 8  7   6   5 4 3   2   1
 Global color sort  size of
 Color resolution flag global color
 Table?   table

Background color index 1 byte

Pixel aspect ratio  1 byte

This is followed by the global color table, other descriptors, and the image 
data. The details can be found in manuals and online. The information in the first 
few bytes is critical, though, and the knowledge that LZW compression is used 
means that the pixels are not immediately available. Decompression is done to 
the image as a whole.  

from struct import *
f = open ("test.gif", "rb")
s = f.read (13)               # Read the header
id,  ht, wd, flags, bci,par = unpack('6shhBBB', s)
#6s  h   h     B     B   B
f.close()
id = id.decode("utf-8")
print (id)
print ("Height", ht, "Width", wd)
print("Flags:", flags)
print ("Background color index: ", bci)
print ("Pixel aspect ratio:", par)

 8.5.3 JPEG

A JPEG image uses a lossy compression scheme, and so the image is not the 
same after compression as it was before compression. For this reason, it should 
never be used for scientific or forensic purposes when measurements will be 
made using the image. It should never be used for astronomy, for example, al-
though it is perfectly fine for portraits and landscape photographs.

The name JPEG is an acronym for the Joint Photographic Experts Group, and 
this refers to the nature of the compression algorithm. The file format is an enve-
lope that contains the image, and it is referred to as JFIF (JPEG File Interchange 



 Chapter  8  ·  Manipulat ing Data   ■ 319

Format). The file header contains 20 bytes. The first 4 bytes are hex FF, D8, FF, 
and E0. Bytes 6–10 are “JFIF\0,” and this is followed by a revision number. A 
short program that decodes the header is as follows:  
from struct import *

f = open ("test.jpg", "rb")
s = f.read (20)               # Read the header
b1, b2,a1,a2,sz,id,v1, v2,unit,xd,yd, xt,yt = 
unpack('BBBBh5sBBBhhBB', s)
#B  B   B  B  h 5s  B   B   B   h  h  B  B
f.close()
id = id.decode("utf-8")
print (id, "revision", v1, v2)
if b1==0xff and b2==0xd8:
    print ("SOI checks.")
else:
    print ("SOI fails.")
if a1==0xff and a2==0xe0:
    print ("Application marker checks.")
else:
    print("Application marker fails.")
print ("App 0 segment is", sz, "bytes long.")
if unit == 0:
    print ("No units given.")
elif unit == 1:
    print ("Units are dots per inch.")
elif unit == 2:
    print ("Units are dots per centimeter.")
if unit==0:
    print ("Aspect ratio is ", xd, ":", yd)
else:
    print ("Xdensity: ", xd, " Ydensity: ", yd)
if xt==0 and yt==0:
    print ("No thumbnail")
else:
    print ("Thumbnail image is ", xt, "x", yt)

The compression scheme used in JPEG is very involved, but it does cause 
certain identifiable artifacts in an image. In particular, pixels near edges and 
boundaries are smeared, essentially averaging the values across small regions 
(Figure 8.1). This can cause problems if a JPEG image is to be edited in Photo-
shop or Paint.



320  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Figure 8.1
JPEG images tend to show artifacts at places where pixels change rapidly, like corners and edges.

 8.5.4 TIFF

The Tagged Image File Format has a potentially large amount of metadata 
associated with it, and that is all in text form in the file. The device used to cap-
ture the image, the focal length of the lens, time, subject, and scores of other 
information can accompany the image. In fact, the TIFF has been seconded for 
use with numeric non-image data, as well. The other reason it is popular is that is 
can be used with uncompressed (raw) data.

The word Tagged comes from the fact that information is stored in the file 
using tags, such as might be found in an HTML file—except that the tags in a 
TIFF are not in text form. A tag has four components: an ID (2 bytes, what tag is 
this?), a data type (2 bytes, what type are the items in this tag?), a data count (4 
bytes, how many items?), and a byte offset (4 bytes, where are these items?). Tags 
are identified by number, and each tag has a specific meaning. Tag 257 means 
Image Height and 256 is Image Width; 315 is the code meaning Artist, 306 means 
Date/Time, and 270 is the Image Description. They can be in any order. In fact, 
the whole file structure is flexible because all components are referenced using a 
byte offset into the file.

A TIFF begins with an 8-byte Image File Header (IFH):

Byte order:  This is 2 bytes, and is “II” if data is in little-endian form and 
“MM” if it is big-endian.
Version Number: Always 42.
First Image File Directory offset: 4 bytes, the offset in the file of the first image.



 Chapter  8  ·  Manipulat ing Data   ■ 321

The other important part of a TIFF is the Image File Directory (IFD), which 
contains information about the specific image, including the descriptive tags and 
data. The IFH is always 8 bytes long and is at the beginning of the file. An IFD 
can be almost any size and can be anywhere in the file; there can be more than 
one, as well. The first IFD is found by positioning the file to the offset found in 
the IFH. Subsequent ones are indicated in the IFD. The IFD stricture is as fol-
lows:

Number of tags: 2 bytes
Tags: Array of tags, size unknown
Next IFD offset: 4 bytes. File offset of the next IFD. If there are no more, then =0.

The structure of a tag was given previously, so a TIF is now defined. The 
image data can be, and frequently is, raw pixels, but can also be compressed in 
many ways as defined by the tags.

The program below reads the IFH and the first IFD, dumping the information 
to the screen:  
# TIFF
from struct import *

f = open ("test.tif", "rb")
s = f.read (8)                    # Read the IFH
id,  ver, off = unpack('2shL', s)
#2s   h    L

id = id.decode("utf-8")
print ("TIFF ID is ", id, end="")
if id == "II":
    print ("which means little-endian.")
elif id == "mm":
    print ("which means big-endian")
else:
    print ("which means this is not a TIFF.")
print ("Version", ver)
print("Offset", off)

f.seek(off)                     # Get the first IFD
n = 0
b = f.read (2)                  # Number of tags



322  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

n = b[0] + b[1]*256
#n = int(s.decode("utf-8"))
for i in range(0,n):
    s = f.read (12)             # Read a tag
   id,dt,dc,do = unpack ("hhLL", s)
   print ("Tag ", id, "type", dt, "count", dc, "Offset", do)
f.close()

When this program executes using “test.tif” as the input file, the first two 
tags in the IFD are 256 and 257 (width and height), which are correct.

 8.5.5 PNG

A PNG (Portable Network Graphics) file consists of a signature and consists 
of 8 bytes, and a collection of chunks, which resemble TIFF tags. There are 18 
different kinds of chunk, the first of which is an image header. The signature is 
always 137 80 78 71 13 10 26 10. The bytes 80 78 71 are the letters “PNG.”

A chunk has either 3 or 4 fields: a length field, a chunk type, an optional 
chunk data field, and a check code based on all previous bytes in the chunk that 
is used to detect errors (called a cyclic redundancy check, or CRC).

The image header chink (IHDR) has the following structure:

Image width: 4 bytes
Image height: 4 bytes
Bit depth: 1 byte. Number of bits per sample (1,2,4,8, or 16).
Color type:  1 byte. 0 (grey), 2 (RGB), 3 (color map), 4 (greyscale 

with transparency) or 6 (RGB with transparency)
Compression method: 1 byte. Always 0.
Filter method: 1 byte. Always 0.
Interlace method:  1 byte. 0=no interlace. 1=Adam7 interlace  

(see the references)
This file has compression, but it is non-lossy. It also, like GIF, allows trans-

parency, but also allows full RGB color. It does not have an option for animations, 
though. Reading the signature and the first (IHDR) chunk is done in the follow-
ing way: 



 Chapter  8  ·  Manipulat ing Data   ■ 323

# PNG
from struct import *
b2 = (137, 80, 78, 71, 13, 10, 26, 10) # Correct header
types = ("Grey", "", "RGB", "Color map", 
         "Grey with alpha", "", "RGBA") # Color types
f = open ("test.png", "rb")
s = f.read (8)               # Read the header
b1 = unpack('8B', s)
if b1 == b2:
    print ("Header OK")
else:
    print ("Bad header")

s = f.read(8)  # The next chunk must be the IHDR
length, type = unpack (">I4s", s)  # Unpack the first 8 bytes 
print ("First chunk: Length is", length, "Type:", type)

s = f.read (length)  # We know the length, read the chunk
wd,ht,dep,ctype,compress, filter, interlace = unpack(">ii5B", 
s)
#I   I   B   B       B        B      B
print ("PNG Image width=", wd, "Height=", ht)
print ("Image has ", dep, "bytes per sample.")
print ("Color type is ", types[ctype])
if compress == 0:
    print ("Compression OK")
else:
    print ("Compression should be 0 but is", compress)
if filter==0:
    print ("Filter is OK")
else:
    print ("Filter should be 0 but is", filter)
if interlace==0:
    print ("No interlace")
elif interlace == 1:
    print ("Adam7 interlace")
else:
    print ("Bad interlace specified: ", interlace)
f.close()



324  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 8.5.6 Sound Files

A sound file can be more complex than an image file and substantially larger. 
To properly play back a sound, it is critical to know how it was sampled: how 
many bits per sample, how many channels, how many samples per second, com-
pression schemes, and so on. The file must be readable in real time or the sound 
cannot be played without a separate decoding step. All that is really needed to 
display an image is its size pixel format and compression.

There are, once again, many existing audio file formats. MP3 is quite com-
plex, too much so to discuss here. The usual option on a PC would be “.wav” and, 
as it happens, that format is not especially complicated.

 8.5.7 WAV

A WAV file has three parts: the initial header, used to identify the file type; 
the format sub-chunk, which specifies the parameters of the sound file; and the 
data sub-chunk, which holds the sound data.

The initial header should contain the string “RIFF” followed by the size 
of the file minus 8 bytes (i.e., the size from this point forward), and the string 
“WAVE.” This is 12 bytes in size.

The next sub-chunk has the following form:

ID: = “fmt”
Size1: Size of the rest of the sub-chunk
Format: 1 if PCM, another number if compressed
No. of Channels: mono=1, stereo=2, etc.
Sample rate: Sound samples per second. CD rate is 44100
Alignment:  Should be the number of channels multiplied by the sample 

rate multiplied by bits per sample divided by 8
Bits per sample: AKA quantization. Bits in each sample: 8 and 12 are usual.

The final section contains the following:  
ID: = “data”
Size: Number of bytes in the data
Data: The actual sound data, as a large block of Size bytes.



 Chapter  8  ·  Manipulat ing Data   ■ 325

A program that reads the first two sub-chunks is as follows: 
# WAV
from struct import *

f = open("test.wav", "rb")
s = f.read (12)
riff,sz,fmt = unpack ("4si4s", s)
riff = riff.decode("utf-8")
fmt = fmt.decode("utf-8")
print (riff, sz, "bytes ", fmt)

s = f.read (24)
id, sz1, fmt,nchan,rate,bytes,algn, bps = unpack 
  ("4sihhiihh", s)
#4s  i    h    h    i    i     h    h
id = id.decode ("utf-8)")
print ( "ID is", id, "Channels ", nchan,  

"Sample rate is ", rate)
print ("Bits per sample is ", bps)
if fmt==1:
    print ("File is PCM")
else:
    print ("File is compressed ", fmt)
print ("Byterate was ", bytes, "should be ", rate*nchan*bps/8)

 8.5.8 Other Files

Every type of file has a specific purpose and a format that is appropriate for 
that purpose. For that reason, the nature of the headers and the file contents dif-
fer. When a program is asked to open a file, there should be some way to confirm 
that the contents of the file can be read by the program. The code that has been 
presented so far is only sufficient to determine the file type and some of its basic 
parameters. The code needed to read and display a GIF, for example, would likely 
be over 1,000 lines long. It is important to see how to construct a file so that it can 
be used effectively by others and so that other programmers can create code that 
can identify that file and use it.



326  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 8.5.9 HTML

An HTML (HyperText Markup Language) file is one that is recognized by a 
browser and can be displayed as a Web page. It is a text file, and can be edited, 
saved, and redisplayed using simple tools.

The first line of text in an HTML file should be either    
<!DOCTYPE html>

or  
<html>

The problem is that these are text files, so spaces and tabs and newlines can 
appear without affecting the meaning. Browsers are also supposed to be some-
what forgiving about errors, displaying the page if at all possible. A simple ex-
ample that shows some of the problems while being largely correct is as follows:  
import webbrowser
f = open ("other.html")
html = False
while True:                  # Look at many lines
    s = f.readline()         # Read
    s = s.strip()            # Remove white space 
                             #(blanks, tabs)
    s = s.lower()            # Convert to lower 
                             # case for compare
    k = (s.find("doctype"))  # doctype found?
    if k>0:                  # Yes
        kk = s.find("html")  # Look also for 'html'
        if kk >= k+7:        # Found it, after DOCTYPE
            html = True      # Close enough
            break
    else:
        k = s.find("html")         # No 'doctype'. 'html'?
        if k>0 and s[k-1] == "<":  # Yes. Preceded by '<'?
            html = True            # Yes, Close enough.
            break
    if len(s) > 0:           # is the string non-blank?
        html = False         # Yes. So it is not 
                             # HTML probably
        break



 Chapter  8  ·  Manipulat ing Data   ■ 327

if html:
    webbrowser.open_new_tab('other.html')
else:
    print ("This is not an HTML file.")

This program uses the webbrowser module of Python to display the web 
page if it is one. The call webbrowser.open _ new _ tab('other.html') 
opens the page in a new tab, if the browser is open. This module is not a browser 
itself. It simply opens an existing installed browser to do the work of displaying 
the page.

 8.5.10 EXE

This is a Microsoft executable file. The details of the format are challenging 
to understand, and require a knowledge of computers and formats beyond a first-
year level, but detecting one is relatively simple. The first two bytes that identify 
an EXE file are as follows:

Byte 0: 0x4D
Byte 1: 0x5a
It is always possible that the first two bytes of a file will be these two by ac-

cident, but it is unlikely. If the file being examined is, in fact, an EXE file, then a 
Python program can execute it. This uses the operating system interface module 
os:  

import os
os.system ("program.exe")

 8.6  SUMMARY
Computer science is a discipline that concerns itself with information. Com-

puters can only operate on numbers, so an important aspect of using data is the 
representation of complex things as numbers. Most data consist of measurements 
of something, and as such are fundamentally numeric.

A dictionary allows for a complex indexing scheme: it is accessed by content. 
A dictionary can be indexed by a string or tuple, which in general would be re-
ferred to as a key, and the information at that location in the dictionary is said to 
be associated with that key.



328  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A Python array is a class that mimics the array type of other languages and 
offers efficiency in storage, exchanging that for flexibility. The struct module 
permits variables and objects of various types to be converted into what amounts 
to a sequence of bytes. It has the pack() and unpack() methods for converting 
Python variables into sequences of bytes.

The string format() method allows a programmer to specify how values 
should be placed within a string. The idea is to create a string that contains the 
formatted output, and then print the string.

Python data can be written to files in raw, binary form. It is also possible to 
position the file at any byte in a binary file, allowing the file to be read or written 
at any location.

Exercises

 1.  Ask the user for a file name. Extract the suffix and use it to look up the type 
of the file in a dictionary and print a short description of it. Recognized types 
include image files (jpg, gif, tiff, and png), sound files (wav), and others (dll 
and exe).

 2.  Modify the Latin translation program so that it asks the user for a translation 
of any word it cannot find and adds that word to the dictionary.

 3.  Write a program that reads keys and values (strings) from the console and 
creates a dictionary from those data. When the user types the word “done,” 
then the input is complete. City names are good examples of values, and 
could represent the city where the person named in the key lives.

 4.  Modify the answer to Exercise 3 so that after the data entry is complete, the 
user can enter a value and the program will print all of the keys associated 
with that value.

 5.  Given a dictionary, write a function writedict() that writes that dictionary 
to a file, and another function readdict() that will read that file and recreate 
the dictionary. For simplicity, assume that the keys are simple numbers or 
strings. 

 6.  The PNM file format for images has three types of image in two forms: 
monochrome, grey, and color, saved as text or in binary form. A binary 
grey level image is called a PGM (Pixel Grey Map) and has a short header 



 Chapter  8  ·  Manipulat ing Data   ■ 329

followed by pixels. The header is text and consists of the identifying code 
“P5” followed by the width of the image in pixels (NC), followed by the 
height (NR), followed by the maximum value for a grey level (NGL) followed 
by an end of line. Now the data follows as rows of NC bytes:
P5
nc  nr  ngl
<image pixels, 1 byte each>

 Write a program that reads an image file in this format and displays it on the 
screen as an image.
http://netpbm.sourceforge.net/doc/pgm.html

 7.  Assume that the following variables exist and have the obvious meanings: 
year, month, day, hour, minute, and second. All are integers, except second, 
which is a float. The ISO 8601 standard for displaying dates uses the format

YYYY-MM-DDThh:mm:ss.s
 where the letter “T” ends the date portion and begins the time. An example 
is as follows:
2015-12-27T10:38:12.3
 Write a function that takes the given variables as parameters and prints the 
date in this format.
http://www.w3.org/TR/NOTE-datetime

 8.  Write a Python program that opens a file named by the user from the 
keyboard; the file has the suffix .jpg, .gif, or .png. Determine whether the file 
contents agree with the suffix, and print a message indicating the result.

 9.  A concordance is a list of words found in a text. Build a concordance using 
a dictionary that keeps track of the number of times that a word is used, in 
addition to its mere presence. Print the resulting list in alphabetical order.

 10.  Write a program that prints out checks. The date and the payee are entered as 
strings and the amount is entered as a floating point number, the maximum 
amount being $1,000. The FOR field is always “Books.” The program formats 
the check according to the following image (Figure 8.2), where



330  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The date is on line 3, starting at character 58.
The PAY TO field is on line 6, starting at character 20.
The numeric amount is on line 6, starting at character 57.
The text amount is on line 8, character 10.
The FOR field is on line 12, character 15.

Figure 8.2 
Check format.

Notes and Other Resources

List of free datasets to download: https://r-dir.com/reference/datasets.html
NASA Meteorite Landing Database: https://data.nasa.gov/view/ak9y-cwf9
String Formatting: https://infohost.nmt.edu/tcc/help/pubs/python/web/format-
spec.html
The Array type: https://docs.python.org/3/library/array.html
Image file formats: https://www.library.cornell.edu/preservation/tutorial/presen-
tation/table7-1.html
http://www.scantips.com/basics09.html
Home page for MPEG: http://mpeg.chiariglione.org/
GIF 1989 specification: http://www.w3.org/Graphics/GIF/spec-gif89a.txt
Byte by byte GIF: http://www.matthewflickinger.com/lab/whatsinagif/bits_and_
bytes.asp



 Chapter  8  ·  Manipulat ing Data   ■ 331

TIFF description: http://www.fileformat.info/format/tiff/egff.htm#TIFF.FO
PNG specification: http://www.w3.org/TR/PNG/
Adam7 interlacing: http://www.libpng.org/pub/png/pngpics.html
EXE file format: http://www.delorie.com/djgpp/doc/exe/
File signatures: http://www.garykessler.net/library/file_sigs.html
Sample PGM images: http://people.sc.fsu.edu/~jburkardt/data/pgmb/pgmb.html

 1. Gunter Born. (1995). The File Formats Handbook, Cengage Learning EMEA, 
ISBN-13: 978-1850321170.

 2. David Kay. (1994). Graphics File Formats, Windcrest, ISBN-13: 978-
0070340251.

 3. Dr. Charles R. Severance. (2013). Python for Informatics: Exploring 
Information, CreateSpace Independent Publishing Platform, ISBN-13: 978-
1492339243.

 4. Alan Tharp. (1988). File Organization and Processing, 1st edition, John 
Wiley & Sons, ISBN-13: 978-0471605218.

 5. John Watkinson. (2001). MPEG Handbook, Focal Press, ISBN-13: 978-
0240516561.





■ ■ ■ ■ ■

In this chapter

For many people, computers have become the platform of choice for the de-
livery of entertainment, education, and information. Part of the reason for this 
is the ubiquity and speed of the Internet, but the main reason is that computers 
can deliver media in almost any form: text, images, sound, video, animation, and 
mixtures of all of these. If someone has something to say, the computer can pres-
ent it to the world in full color and 5.1 channel sound. Moreover, the availability 
of free and inexpensive tools for content creation allows almost anyone to be a 
music producer or film director.

Python can be used to process and display most forms of media through 
packages that can be downloaded and installed. There are many of these and 
multiple versions in an array of combinations. It is not possible to discuss all of 
the ways that Python can be used to do multimedia, and all of the packages and 
libraries that help programmers implement these things. A tool has already been 
described for displaying images and graphics (Pygame). Why not simply add 
more media capability to it and build on what has already been discussed? 

9chaPter

MuLtiMedia

9.1 Mouse Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
9.2 The Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
9.3 Animation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.4 RGBA Colors – Transparency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.5 Sound  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360



334  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Many of the graphics aspects of Pygame were discussed in Chapter 7, and so 
the modules have probably been installed in your computer.  

It is essential to install a version of Pygame that works with Python 3.

What is discussed in this chapter are extensions of simple computer graphics 
into a dynamic feature set that is called digital media.  This includes using in-
terface devices, such as the mouse and touch screens, displaying animations and 
videos, and playing sound.

 9.1 MOUSE INTERACTIONS
Using mouse position and button presses is a basic form of communication 

with a computer.  The use of the mouse position to activate some visual device on 
the screen like a button is familiar to everyone who uses a computer, although it 
is being gradually replaced by touch screens. When the user moves the mouse, a 
cursor or indicator moves correspondingly. The position of this cursor indicates a 
point on the screen that is active in some way, and if a graphical device is there, 
then it can be manipulated using the mouse buttons. The problem is that a mouse 
button press can occur at any time; it is unpredictable. This is what programmers 
call an event: something that happens at an unpredictable moment that must be 
dealt with. Some software someplace must be watching the mouse at all times, 
determining the x and y coordinates of the cursor on the screen and drawing the 
cursor in the correct place.

Pygame continually updates the position of the mouse, which means the loca-
tion of the mouse cursor on the computer screen in x,y coordinates. which can be 
accessed using function getpos:

pygame.mouse.get_pos()

which returns a tuple (mx, my) with the mouse coordinates. This is perfectly 
fine, but can be a bit awkward. The x position of the mouse is pygame.mouse.
get_pos()[0], for example. It reads poorly. One suggestion would be to have func-
tions mouseX() and mouseY(), which return the most recent x and y coordinates. 
It costs some execution time, but often looks better in the code. 

def getX():
  return pygame.mouse.get_pos()[0]

def getY():
  return pygame.mouse.get_pos()[1]



 Chapter  9  ·  Mult imedia   ■ 335

Another suggestion is to place the following code at the beginning of the 
event loop:

mouseX, mouseY = pygame.mouse.get_pos()

This would mean that the variables mouseX and mouseY would always hold 
the current mouse position.

Example: Draw a Circle at the Mouse Cursor

Drawing a circle at the current mouse position involves repeatedly determin-
ing the mouse position and then drawing a circle at that set of coordinates. This 
should be done within a draw() function or the main loop. An example imple-
mentation is as follows:
import pygame

FPS = 30
screen = pygame.display.set_mode((400, 400))
clock = pygame.time.Clock()

while True:
    clock.tick(FPS)
    mouseX, mouseY = pygame.mouse.get_pos()
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
    screen.fill((200,200,200))
    pygame.draw.circle (screen, (200,0,0), (
                        mouseX, mouseY), 20, 2)
    pygame.display.update()

The result is a red circle that follows the mouse. The screen.fill function sets 
the background color to a grey level of 200.  The circle call draws the circle 30 
times per second, every time the event loop executes. The most recent mouse po-
sition is always found using the functions variables mouseX and mouseY, set at 
the top of the loop. It is necessary to call screen.fill() each time the loop executes 
because it erases the previous screen, drawing over it. If this were not done, then 
multiple circles would appear on the screen, one for each time the event loop 
executed (Figure 9.1).



336  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Example: Change Background Color Using the Mouse

The idea here is to change the background color based on the mouse position. 
There are only two directions to move, horizontally or vertically, so one of the 
three colors remains constant; let that color be blue. The horizontal mouse posi-
tion controls the red value, with the leftmost position representing no red and the 
rightmost representing full red (255). Similarly, the mouse at the bottom of the 
image represents no green, and at the top it represents full green. The background 
color will be changed during the event loop (using screen.fill).

 

Figure 9.1
Using the mouse to control elements of a display.

Given that the position of the mouse on the screen is given by mouseX, the 
value of the red coordinate will be (mouseX/width*255). It may require a change 
in x coordinate of multiple pixels to shift the color by one unit. A similar expres-
sion is used to change the green value.

The program is as follows:
import pygame
FPS = 30
width = 400
height = 400
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()

while True:
    clock.tick(FPS)
    mouseX, mouseY = pygame.mouse.get_pos()
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()



 Chapter  9  ·  Mult imedia   ■ 337

    r = (mouseX/width) *255.0
    g = (mouseY/height)*255.0
    screen.fill ((r, g, 128))
    pygame.display.update()

From now on only the key parts of the program will be shown, and not the 
entire initialization and event loop.

 9.1.1 Mouse Buttons

Mouse button clicks, as they are called, can be retrieved by writing a func-
tion that handles them. Each time a mouse button is pressed Pygame indicates 
an event that can be identified in the main event loop. Events can be ignored, of 
course. 

All Pygame code so far contains the statements:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()

The variable event is set by Pygame to some thing that happened. The pyg-
ame.QUIT event refers to the end of the program, perhaps by the user clicking 
the “X” in the upper right corner or some other way. Mouse actions are also 
events. A mouse button can be pressed or released, and when both happens, we 
call that a mouse click. The mouse button pressed event is an event type named 
pygame.MOUSEBUTTONDOWN and can be handled in the same way as the 
QUIT event is handled:

if event.type == pygame.MOUSEBUTTONDOWN:
         do something …

Similarly, when the mouse button is released, we can capture that event, too:
if event.type == pygame.MOUSEBUTTONUP:
         do something …

If we write a function named mousePressed() that is called within the event 
loop when the mouse button is depressed and a corresponding function mouseRe-
leased for when the mouse button is released, than the event loop does not get 
cluttered with the details of what the specific mouse operation is doing, only that 
it has happened. The details are left to the two functions. If the mouse button is 
pressed, then the mouse is moved, and then it is released, the coordinates of the 
press and the release point will be different, and both can be retrieved. For ex-



338  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

ample, when the mouse button is pressed, the mouse coordinates could be saved 
as the beginning of a line, and when released, the coordinates could be the end of 
the line. Multiple lines could be drawn in this way.

Example: Draw Lines Using the Mouse

Using the scheme described above, the function mousePressed() will store 
the mouse position in global variables x0 and y0, and mouseReleased() will store 
the release coordinates at x1 and y1. mouseReleased() will also draw the line 
from (x0,y0) to (x1, y1):
def mousePressed ():
    global x0, y0
    x0 = mouseX
    y0 = mouseY

def mouseReleased ():
    global x1, y1
    x1 = mouseX
    y1 = mouseY
    pygame.draw.line(screen, (0,0,0), (x0, y0), (x1,y1), 2)

Drawing is performed inside of mouseReleased(). Within the event loop, 
these functions are called when the mouse events occur:

for event in pygame.event.get():
     . . .
     if event.type == pygame.MOUSEBUTTONDOWN:
         mousePressed()
     if event.type == pygame.MOUSEBUTTONUP:
         mouseReleased()
A mouse usually has more than one button. We’ll modify these functions 

later to accept a parameter, which will be an indicator of what button was pressed.

Example: A Button

This example program changes the background color of the drawing window 
when a graphical button is pressed. A button, in the user interface sense, is a 
rectangular region on the computer screen that responds to a mouse click with a 
specific action. It is a two-part process: when the mouse cursor enters the rect-
angular region, the button is said to be activated. Sometimes it will be caused to 
change color at this point, or some other action will be performed that indicates 
that it is ready to function. When a mouse button is pressed while the button is 



 Chapter  9  ·  Mult imedia   ■ 339

activated, then some action occurs, usually as defined by a function being called. 
The basic idea is simple enough to implement, although some buttons can have 
complex actions such as sounds, images, and irregular shapes.

The cursor is within a rectangular region when its coordinates are greater 
than the upper left coordinate of the rectangle and smaller than the lower right co-
ordinates. When that occurs, the button is ready to be pressed, and should change 
color. This does not require anything but knowledge of the mouse coordinates. 
It the left button is pressed in this state (activated) then the action defined by the 
button will occur; the background color will change, in this case. The program 
begins as normal, with imports and initialization. Here is a program that does this 
for a button at (100, 100) that is 60x20 pixels in size:

def draw ():
     global bc, w, h, x0, x1, y0, 

y1, active
    screen.fill (bc)# Fill with 
                    # color bc
    x = mouseX # Is the mouse 
               # in the rect
    y = mouseY
    if x>x0 and x<x0+w and 
       y>y0 and y<y0+h:    # Yes.
#  Button is active. Green
        c =  (50, 200, 50)        
        active = True
    else:
        c = (200, 50, 50)
# NO. Button is inactive. Red
        active = False
    pygame.draw.rect(screen, c, 
     (x0, y0, w, h))  # Draw the 
                      # button

def mouseReleased ():
    global active, bc
    if active:  
# Button active? Left button 
# released?
# If so generate a random color.
       bc = (randrange(100, 200), 
              randrange(100, 200), 
              randrange(100, 200))

x0 = 100  # upper left button 
          # position
y0 = 100
w = 60      # Button size
h = 20
bc = (200,200,200) # Initial 
                   # color
active = False  # Is the 
                   # button active?
while True:
    clock.tick(FPS)
    mouseX, mouseY = 
       pygame.mouse.get_pos()
    for event in pygame.event.
                         get():
         if event.type == pygame.
                           QUIT:
             quit()
         if event.type == 
pygame.MOUSEBUTTONDOWN:
             mousePressed()
         if event.type == 
pygame.MOUSEBUTTONUP:
             mouseReleased()
    draw()
    pygame.display.update()

All of the software buttons everywhere work in basically this way.



340  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 9.2 THE KEYBOARD
Like the mouse motions and button presses, pressing a key on the keyboard is 

an event. Like button presses, a key press is a single event with multiple options. 
The fact that a key has been pressed is an event, and exactly which key it was is 
a detail, just as it was when a mouse button was pressed. It is important to under-
stand that using a standard Python function such as input() will not be successful 
when trying to read from the keyboard with an event-driven system, although 
knowing about events can be valuable in understanding how input() could be 
implemented. When input() is called, it does not return until a line has been read; 
the keyboard events capture the key press when it occurs. It appears that a call to 
input() may involve many key press events. What software receives them? That 
is the important question. The situation is too confusing to be resolved sensibly, 
so the rule is: never use input() and related functions when handling key presses. 
It is acceptable to call print() because it is printing to a console device for which 
no conflict exists.

Every key press will eventually correspond to a key release, so there are 
again two events for handling them:
    if event.type == pygame.KEYDOWN:
#           A key was depressed.

    if event.type == pygame.KEYUP:
#           A key was released.

Which key was it? That’s stored in the variable event.key, but not as a char-
acter proper, but as a code. The character “a” is coded as pygame.K_a, and “+” 
is pygame.K_PLUS. The left arrow key is pygame.K_LEFT. A list of all keys 
can be found at 

https://www.pygame.org/docs/ref/key.html?highlight=keyboard

Code presented here often calls functions keyPressed(k) and keyReleased(k) 
when the keyboard events occur. The parameter k is the value of the key that was 
pressed or released.

keyPressed(k):  called when a key is pressed. Parameter k is the key that was 
pressed.

keyReleased(k):  called when a key is released. Parameter k is the key that was 
released.



 Chapter  9  ·  Mult imedia   ■ 341

In an event-driven program, it is unusual for key presses to be converted into 
strings, as they normally would be in a typical console-style program. That’s be-
cause it is expected that the interface to the event-driven program will be through 
mouse gestures (movements) and using single key commands from the keyboard, 
like “up arrow” meaning “move forward.”

Example: Pressing a “q” Creates a Random Circle

This program draws a circle at a random location when the “q” key is pressed. 
The old circles will remain.  This illustrates the use of the keyboard in an obvious 
way. The initialization is to clear the screen and set the background color and fill 
color. The keyPressed() function generates random x,y coordinates and draws a 
circle there:
def keyPressed (k):
    if k.key == pygame.K_q:
        pygame.draw.circle( screen, c, (randrange(0,width), 

randrange(0,height)),30, 3)

The key value is passed as an event rather than the key for a simple reason: 
Pygame does not decode all keys, but provides an indication of what keys have 
been pressed. What this means is that there is no uppercase “A;” instead, the sys-
tem returns an event that tells us that the “a” key has been pressed and so has a 
SHIFT key. It is the programmer’s job to determine what this means. That might 
seem odd, but remember that Pygame was developed for building games. Keys 
being pressed can mean quite different things within a game than they do in a 
word processing programs.

So, in the event loop, we do this:
if event.type == pygame.KEYDOWN:
    keyPressed(event)

Within the keyPressed function, we can decode this to mean what we wish. 
Let’s draw a circle when the “+” key is pressed instead of “q.”  The “+” key is the 
“=” key AND a shift, so the function is as follows:
def keyPressed (k):
    if k.key == pygame.K_EQUALS and k.mod&pygame.KMOD_SHIFT:
        pygame.draw.circle( screen, c, (randrange(0,width),
                           randrange(0,height)),30, 3)



342  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The keys that can modify the value of another key are referred to as modifiers 
and are available as a variable event.mod. More than one modifier can be applied 
at a time: a common example on a PC is CONTROL-ALT-DELETE. All modi-
fiers need to be obtainable, so they are specified as specific bits within the mod 
variable, and bits for all of the applicable modifiers are set. That’s why the expres-
sion k.mod&pygame.KMOD_SHIFT was used in the code above. It checks to 
see if the shift key was depressed, as indicated by the KMOD_SHIFT bit, at the 
same time as the “=” key was depressed.  The result, in this case at least, is “+.”  

Example: Reading a Character String

There are some reasons why an event-driven program might wish to read 
data from the user as a string. Perhaps a name is required, or a key value to ac-
cess a database, or a password. Whatever the reason, it should be possible to read 
a string using the keyboard events passed to keyPressed(). The way it would 
normally be done is to read one character at a time, and construct a string by 
concatenation. That’s how this program works:
def keyPressed(k):
    global s, t
    if k.key == pygame.K_RETURN:
        t = s
        s = ""
        return
    if k.key == pygame.K_BACKSPACE and len(s)>0:
        s = s[:-1]
    else:
        s = s + chr(k.key)

def draw ():
    global s, t
    screen.fill((200,200,200))
    text ("Enter a string: ", 10, 100, 24, f)
    text (s, 20, 130, 24, f)
    print("   ", len(s), s)
    if (t != ""):
        text ("Completed string is "+t, 20, 150, 24, f)

The global variable s holds the string being built, and the string t holds the 
final string. Characters are captured from the keyboard by keyPressed() and fall 
into one of three categories:



 Chapter  9  ·  Mult imedia   ■ 343

 1. Most characters are added to the global string s through concatenation. 
The character passed to keyPressed() is through the event. The chr() 
function converts it to a character, which is added to the end of s.

 2. A BACKSPACE deletes the last character typed from the string.  This is 
done using a substring from 0 to the second last character.

 3. A RETURN ends the string. The current string in s is assigned to t, and 
s is reset to an empty string.

This kind of string data entry is especially useful when entering file names 
and numeric parameters. There are frequently special interface objects (widgets) 
that perform these tasks, such as text boxes. Pygame could be used to implement 
such a widget (see Exercise 6).

 9.3 ANIMATION
Making graphical objects change position is simple, but making them seem 

to move is more difficult. Animation is something of an optical illusion; images 
are drawn in succession so quickly that the human eye cannot detect that they are 
distinct images.  Small changes in position in a sequence of these images are seen 
as motion rather than as a set of still pictures. A typical animation draws a new 
image ( frame) between 24 and 30 times per second to make the illusion work.

There are two kinds of animation that can be done using Pygame. The first 
involves objects that consist of primitives that are drawn by the library. A circle 
can represent a ball, for instance, of a set of rectangles and curves could be a car. 
The second kind of animation uses images, where each image is one frame in 
the sequence. These images are displayed entirely in rapid succession to create 
the animation. In the first case, the animation is being created as the program 
executes, whereas in the second, the animation is complete before the program 
runs, and the program really just puts it on the screen.

 9.3.1 Object Animation

Animating an object involves updating its position, speed, and orientation at 
small time intervals, so all of these aspects of the object must be kept in variables. 
If there are many objects being animated, then all of these variables must exist 
for each object, and are updated at the end of each time interval. If the anima-
tion is displaying 30 frames per second then a new frame is drawn every 0.03  



344  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

seconds. In Pygame, we control the frame rate using clock.tick(FPS), which does 
not return until a duration of 1/FPS  seconds has passed.  We control the rate by 
changing the value of FPS.

Example:  A Ball in a Box

Imagine a ball bouncing in a square box. A box has three dimensions, of 
course, but for this example, it is restricted to two, so it looks like a circle within 
a square. The ball is moving, and when it strikes one of the sides of the square, it 
bounces, thus changing direction. There is one moving object: the ball. Graphi-
cally, it is simply a circle, with position x,y and speed dx in the x direction and 
dy in the y direction. It will have size 30 pixels. The box is the window the circle 
is drawn in.

During each frame, the ball moves dx pixels in the x direction and dy pixels 
in the y direction, so within the draw() function the position is updated as

x = x + dx
y = y + dy

This new position is where to draw the circle. However, if the ball is outside 
of the box after it is moved, then a bounce has to be performed. That is, if the new 
position of x is, for instance, less than 0, then it would have struck the left side of 
the square and then changed to the x direction (bounced). In this case, and also if 
x>width, the bounce is implemented by

dx = -dx

Similarly, if the y coordinate of the ball becomes less than 0 or greater than 
the height, then it bounces vertically:

dy = -dy

This would all be true if the ball were very tiny, a single point, but it has a 
size of 30 pixels, and the coordinates of the circle are the coordinates of its center. 
This means that the method described above will bounce the circle only after the 
center coordinate passes the boundary, meaning that half of the circle is already 
on the other side. It’s easy to fix: the ball is 30 pixels in size, so it should bounce 
when it gets within 15 pixels of any boundary. For example, the x bounce should 
occur when x<=15 or x>=width-15. The entire solution is as follows:



 Chapter  9  ·  Mult imedia   ■ 345

def draw ():
    global dx, dy, x, y
    screen.fill( (200, 200, 200) ) # Erase the prior frame
    x = x + dx                     # Change ball position
    y = y + dy
    if x<=15 or x>=width-15:        # Bounce in X direction?
        dx = -dx
    if y<=15 or y>=height-15:       # Bounce in Y direction?
        dy = -dy
    pygame.draw.circle(screen, fill, (x, y), 15)
 # Draw the ball

width = 300
height = 300
x = 100                        # Initial x position of the ball
y = 100                     # Initial y position
dx = 3                      # Speed in x
dy = 2                      # Speed in y
fill = (30, 200, 20)        # Fill with green
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 30
while True:
    clock.tick(FPS)
    mouseX, mouseY = pygame.mouse.get_pos()
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
    draw()
    pygame.display.update()

Eight frames from this animation showing the ball bouncing in a corner of 
the box are shown in Figure 9.2. An entire second’s worth of frames (30) are 
given on the accompanying disk.

If there are many objects, then all of the positions and speeds, and perhaps 
even shape, size, and color would have to be kept and updated during each frame. 
There are two usual ways to do this. In the first case, the parameters are kept in 
arrays (lists). There would be an array of x coordinates, an array of y coordinates, 
of speeds, and so on. Each frame could involve an update to all elements of the 
arrays. Updating the position can be done using the following code:

ON THE CD



346  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

for i in range(0,Nobjects):
    x[i] = x[i] + dx[i]
    y[i] = y[i] + dy[i]
The other usual method for handling multiple objects is to create an object 

class that contains all of the parameters needed to display the object. There is still 
an array, but it is an array of object instances, and if it is cleverly programmed the 
class can be updated by calling an update() method:

for i in range(0,Nobjects):
    ball[i].update()

Example: Many Balls in a Box

This example uses the same premise as the previous one, but will draw many 
balls in the window, all of them bouncing. Both methods for keeping track of 
objects, arrays, and classes,  are illustrated. The many arrays solution has lists 
for x and y, for dx and dy, for color and for size. All parameters are initialized at 
random when the program begins.

Figure 9.2
Bouncing ball in a box

The solution that uses classes defines a class ball within which the position, 
speed, color, and size are defined. The constructor initializes the values and the 
update method changes the ball’s position and performs any needed bounces. The 
two solutions are as follows:

Arrays  Class
# Bouncing ball animation.
import pygame
from random import *
def draw ():
    global dx, dy, x, y

import pygame
from random import *
class Ball:
    def __init__ ( self, width, 

height):



 Chapter  9  ·  Mult imedia   ■ 347

    screen.fill( (200, 200, 200) )  
# Erase the prior frame

    for i in range(0,n):
        x[i] = x[i] + dx[i] 

# Change position
        y[i] = y[i] + dy[i]
        if x[i]<=sizes[i]/2 or 
x[i]>=width-sizes[i]/2: # Bounce X?
            dx[i] = -dx[i]
        if y[i]<=sizes[i]/2 or 
y[i]>=height-sizes[i]/2:# Bounce Y?
            dy[i] = -dy[i]
         pygame.draw.circle(screen, 

colors[i], (x[i], y[i]), 
int(sizes[i]/2))

n = 50
x = [] # Initial x position of the 
       # balls
y = [] # Initial y position
dx = []# Speed in x
dy = [] # Speed in y
colors = []
sizes = []
width = 400
height = 400
for i in range (0,n):
    x = x + [randrange(15,width-15)]
    y = y + [randrange(15,height-15)]
    dx = dx + [randrange (-2, 2)]
    dy = dy + [randrange (-2, 2)]
    sizes = sizes + [ randrange 

(2,30)]
    colors = colors +

[(randrange(100, 200),
randrange(100, 200), 

randrange(100, 200)),]

screen = pygame.display.
set_mode((width, height))

clock = pygame.time.Clock()
pygame.init()
FPS = 30
while True:
    clock.tick(FPS)
    mouseX, mouseY =  pygame.mouse.

get_pos()
    for event in pygame.event.get():
        if event.type == pygame.

        self.x = randrange 
(15, width-15)
        self.y = randrange 
(15, height-15)
        self.dx = randrange (-2, 2)
        self.dy = randrange (-2, 2)
        self.size = randrange (2, 30)
        self.color = (randrange 

(100, 200),
        randrange (100, 200),randrange 

(100, 200),randrange (100, 200))

    def draw (self):
        self.x = self.x + self.dx 

# Change position
        self.y = self.y + self.dy
        if self.x<=self.size/2 or 
self.x>=width-self.size/2:  

# Bounce X?
            self.dx = -self.dx
        if self.y<=self.size/2 or 
self.y>=height-self.size/2: 

# Bounce Y?
             self.dy = -self.dy
        fill = (self.color[0], 

self.color[1], 
self.color[2], 
self.color[3])

        pygame.draw.circle(screen, 
fill, (self.x, self.y), 

int(self.size/ 2))  
# Draw the ball

def draw ():
    global dx, dy, x, y
    screen.fill((200, 200, 200)) 
# Erase the prior frame
    for i in range(0,n):
        balls[i].draw()

width = 400
height = 400
n = 50
balls = []
for i in range (0,n):
    balls = balls + [Ball(width, 

height)]
screen = pygame.display.set_

mode((width, height))



348  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

QUIT:
            quit()
    draw()
    pygame.display.update()

clock = pygame.time.Clock()
pygame.init()
FPS = 30
while True:
    clock.tick(FPS)
    mouseX, mouseY = 

pygame.mouse.get_pos()
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
    draw()
    pygame.display.update()

These two solutions illustrate how classes work very neatly. The class con-
tains individual properties of a ball and many are created; the arrays contain 
many instances of each property. So x[i] and ball[i].x represent the same thing. 
In this case, the two programs are about the same size, but the class-based 
implementation encapsulates the details of the ball and what can be done with 
it. The class-based draw() function only says “draw each ball,” but in the ar-
ray implementation, the draw() function looks at all of the details of all balls 
to draw them. One of the implications is that it would be possible to divide the 
labor between two persons, one who wrote the class and another who wrote the 
rest of the code.  

 9.3.2 Frame Animation

The hard work in frame animation is done before the computer program is 
written. An animator has created drawings of an object in various stages of move-
ment. All the program does is display frames one after the other, often looping 
them to create the desired effect. A common example of this is the animation of 
gait, walking or running. An artist draws multiple stages of a single step, being 
careful to ensure that timing is correct: how long does it take for a normal person 
to stake a pair of steps (left, right)? This time should agree with the frames the 
artist creates. If it takes one second to make the step, then it should be drawn as 
30 frames.

Other kinds of animation are performed, too. A fire can be animated as a 
very few frames, as can smoke and water. The program that draws the animation 
reads all of the image files into a collection. When the animation is played, the 
program displays one image after another within the draw function. This can be 



 Chapter  9  ·  Mult imedia   ■ 349

complicated by the fact that there may be multiple animations playing at the same 
time, possibly of different lengths and frame sizes.

Example: Read Frames and Play Them Back as an Animation.

In this example, there are 10 drawn animation frames of a cartoon character 
walking. These frames are intended to represent a single gait cycle, and so should 
be repeated. The program does the following: when the “up arrow” key is pressed 
and held down, the character drawn in the window “walks;” otherwise, a still 
image is displayed.

First, the images should be read in and stored in a list so that they can be 
played repeatedly. Then the draw function should be written so that when called 
it displays the next frame, which is one of the images in the list, and increments 
the frame count. A list named frames is initialized with all of the images in the 
sequence. 

def draw ():
    global f
    screen.blit (frames[f], (0, 0))
    f = f + 1
    if (f > 10):
        f = 1

Figure 9.3
Many bouncing balls in a box.



350  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

It cycles through the frames and repeats when all have been displayed.

The initialization can be a simple matter of reading ten images into variables 
and creating a list. This code does it in a loop, using a number in the name and 
incrementing it:

frames = []
for i in range (1, 10):
    s = "images/a00"+str(i) +".bmp"
    x = pygame.image.load (s)
    frames = frames + [x,]
x = pygame.image.load ("images/a010.bmp")
frames = frames + [x,]
x = pygame.image.load ("images/a011.bmp")
frames = frames + [x,]

The variable frames is a list holding all of the images, and frames[i] is the ith 
image in the sequence. 

The building of the file name is interesting. It is common to use numbered 
names for animation frames (for example, frame01 or frame02). In this case, the 
sequence is a***.bmp, where the *** represents a three-digit number. If the vari-
able i is an integer, then str(i) is a string containing that integer, but the leading 
zeros are not present. Thus, for values of i between 0 and 9 (one digit) the string 
will be “a00”+str(i)+”.bmp”; for values of i between 10 and 99 (two digits), the 
string is “a0”+str(i)++”.bmp”; finally, for numbers between 100 and 999, the 
string will be “a”+str(i)+”.bmp” (three digits). The leading zeros are manually 
inserted into the string.

The animation frames for the gait sequence are on the disk along with this 
code.

Example: Simulation of the Space Shuttle Control Console (A Class 
That Will Draw an Animation at a Specific Location)

Animations can sometimes be used to decorate a scene in interesting ways. 
A control panel showing video screens and data displays could use animations to 
fill the screens, giving the illusion of real things being monitored. A class that can 
play a frame-by-frame animation at any location on the screen could be instanti-
ated many times, once for each display.



 Chapter  9  ·  Mult imedia   ■ 351

The class would have to read the frames it was to play and store them, play 
back the frames in a loop when requested, and place them within the window 
at any location. None of these tasks is especially hard. Code for reading frames 
from a file was written for the previous example, as was code for displaying the 
frames. Each class instance would need a frame count so that the loop could 
start over at the right place, and each class instance could have an animation 
with a different number of frames. Finally, placing at the right location is a mat-
ter of passing the correct parameters to the image() function. The class would 
be instantiated given the position as x and y coordinates of the upper left corner.

Sometimes, especially when multiple animations are playing, it will be nec-
essary to slow down some animations so that they look right. The code calls 
draw() a fixed number of times each second, but that may not always be the cor-
rect speed for an animation. A count can be introduced so that the fame advances 
to the next only when a count exceeds a fixed delay value. If the count is 2, for 
example, then 2 calls to draw() are required before a new frame is chosen, mean-
ing that the frame rate has been decreased by 50%.

This example implements a simulation of a space shuttle control console. 
This is a visual simulation, not one that allows interaction at any level, and we 
insert animations into a still photo of a real shuttle console and make it look 
more active. Figure 4a shows the static image that is used. There are many video 
screens visible, and the program being developed will replace the still image on 
some of those screens with moving, animated images. 

Three of the screens are selected for animation. The image was displayed 
using Paint and the coordinates of the upper left corner of each of these screens 
was determined, as were the sizes. Figure 9.4b shows the location of these regions 
on the image.



352  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Figure 9.4 
Images used for animation, from 
https://commons.wikimedia.org/wiki/File:STSCPanel.jpg

The code for the class starts like this:
class Anim:
    def __init__ (self, x, y):
        self.frames = []
        self.xpos = x
        self.ypos = y
        self.n = 0
        self.f = 0
        self.active = False
        self.delay = 1
        self.count = 100000

    def draw (self):
        if self.active:
            screen.blit (self.frames[self.f], 
                         (self.xpos, self.ypos))
            self.count = self.count + 1
            if self.count >= self.delay:
                self.f = self.f + 1
                self.count = 0



 Chapter  9  ·  Mult imedia   ■ 353

            if (self.f >= self.n):
                self.f = 0
The part of the class that reads the frames as images is taken from the previ-

ous example:
    def getframes (self, s1, s2):
    self.frames = []
    for i in range (0, 100):
        if i<10:
            s = s1 + "0"+str(i) + s2
            print ("Reading ", s)
        elif i<100:
            s = s1 + str(i) + s2
        try:
            x = pygame.image.load (s)
        except:
            self.n = i
            print ("Saw ", self.n, " frames.")
            break
        self.frames = self.frames + [x,]

There is a flag named active that determines whether the animations are cur-
rently running. The methods start() and stop() turn the animation on and off by 
toggling this variable.

    def start(self):
         self.active = True

    def stop (self):
           self.active = False

Finally, for this class, the delay can be set using a call to the setdelay() meth-
od, which simply changes the value of a class local variable delay.
    def setdelay (self, d):
        self.delay = d
The draw() method of the program simply draws the animations 
by calling their respective draw() methods:

def draw ():
    a.draw()
    b.draw()
    c.draw()



354  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The main program opens the window and loads and draws the background 
image:
background = pygame.image.load ("images/800px-STSCPanel.jpg")
screen.blit (background, (0,0))

The first animation, at x=239 and y=284, shows some television static, seven 
frames of which were created for this purpose using another program. A class 
instance is created to draw at (239,284) and getFrames() is called to load the im-
ages (the file names are “g100.gif” through “g106.gif”):

a = Anim(239, 284)
   a.getframes ("images/g1", ".gif")

The second animation is at x=319 and y=258 and will display some exterior 
shots of the space shuttle. The process is the same as before, but the file names are 
“g200.jpg” through “g204.jpg.” In addition, a delay of 100 is set, because these 
images are to be displayed for multiple seconds each to simulate a display scan-
ning a set of cameras:

b = Anim (319, 258)
b.getframes ("images/g2", ".jpg")
b.setdelay(100)

Finally, the third animation, at x=319 and y=322, consists of a computer dis-
play showing Python code (this class, in fact). It was created by another program 
and consists of nine frames named “g300.gif” through “g308.gif.” This anima-
tion is delayed a little as well so that it appears as if the text is scrolling properly:

c = Anim (319, 322)
c.getframes ("images/g3", ".gif")
c.setdelay(10)
The last step in the program is to start all of the animations playing:
a.start()
b.start()
c.start()

The example is complete on the disk and needs to be executed with the im-
ages directory, which contains the animation frames.



 Chapter  9  ·  Mult imedia   ■ 355

 9.4 RGBA COLORS – TRANSPARENCY
In Chapter 7, we used transparency in an image to allow the visualization 

to “see through” to an image in the background. As it happens, any pixel can be 
assigned a degree of transparency that permits the same visual character. A color 
can be assigned a value that dictates how opaque or transparent it is, allowing 
colors behind it to influence how that pixel is seen. One can think of this as a 
fourth color value, in addition to red, green, and blue. It is referred to as alpha, 
and a color with four color parameters is said to be in the RGBA color space, for 
Red, Green, Blue, and Alpha.

If the value of Alpha is 255, then the color is opaque; as it decreases in value, 
the transparency increases until at Alpha=0, the pixel or object cannot be seen. 
A program that draws three overlapping circles using colors with an Alpha value 
of 60 shows the visual effect of using transparency (Figure 9.5a). Unfortunately, 
transparency cannot be specified simply by providing the Alpha value as a fourth 
value to the color tuple.

Transparency is partly a property of the surface on which the pixels are 
drawn. What we must do is create a new surface for the transparent item, set the 
transparency of that surface to the desired value, draw the item on that surface, 
and then blit it to the display surface. To draw three overlapping circles with dif-
ferent, transparent colors, this must be done three times, once for each circle. A 
draw function that does this is as follows:

def draw():
    s = pygame.Surface((300,300))
    s.set_alpha(50)
    s.fill((255,255,255))
    fill = (255, 0, 0)
    pygame.draw.circle (s, fill, (100, 100), 75)
    screen.blit(s, (0,0))

    s.set_alpha(50)
    s.fill((255,255,255))
    fill  = (0, 255, 0)
    pygame.draw.circle (s, fill, (200, 100), 75)
    screen.blit(s, (0,0))

    s.set_alpha(50)
    s.fill((255,255,255))



356  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    fill = (0, 0, 255)
    pygame.draw.circle (s, fill, (150, 200), 75)
    screen.blit(s, (0, 0))

 

 (a) (b)
Figure 9.5 
(a) Overlapping circles filled with transparent versions of red, green, and blue create new colors in 
the overlapping regions. (b) Stroke colors can have transparency, too. Where the red and blue lines 
intersect the red under the blue, it is seen as purple.

 9.5 SOUND
Sound is an essential component of digital media. Proof? Almost nobody 

watches silent films anymore, and nobody makes them. Video games are rarely 
played with the sound turned off. There are a few important reasons for this.

 1. Much human communication is through sound. Speech is the best ex-
ample, but non-speech sounds, clapping, or stamping of feet are ways 
that people make their feelings and intentions known.

 2. Sounds are associated with events. When an object falls to the floor, a 
sound occurs with the impact. A button is pressed and a doorbell rings. 
These sounds are important indicators.

 3. Sounds cause emotional reactions in people. Music can do this; it can 
convey a mood better than almost anything else. But sound can also 
indicate things unseen: a growling in the dark; a screech in the sky; and 
the sound of an approaching vehicle around a curve in the road.



 Chapter  9  ·  Mult imedia   ■ 357

In Pygame, a sound is much like an image in terms of how it is used. A sound 
file is loaded and assigned to a variable, then that variable can be used to play, 
stop, rewind, and perform all audio operations on that sound. Each sound must be 
loaded into a distinct variable and has its own controls. The paradigm for sounds 
should therefore seem familiar.

The main sub-system in Pygame that deals with sound is named mixer. The 
first step in playing a sound is to create a mixer object and then use it to load the 
file. The function pygame.mixer.Sound(s) is used for this, passing the name of 
the sound file:

m = pygame.mixer.Sound("song.wav")

Playing the sound is done using the mixer method play:
m.play()

Example: Play a Sound

It’s simple. A program that loads and plays a sound file is only 10 lines long:
import pygame
screen = pygame.display.set_mode((300, 300))
pygame.init()
FPS = 10
m = pygame.mixer.Sound("song.wav")
m.play()
while True:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()

Stopping a sound from playing is a matter of calling m.stop(). Setting the 
volume means calling m .set_volume (v) where the volume parameter v is be-
tween 0.0 and 1.0, where 0.0 is no sound and 1.0 is maximum volume. That’s 
pretty much it for the basics.

Example: Control Volume Using the Keyboard

This example adds a volume control. The function keypressed() modifies 
the volume of the audio playback using the set_volume function. It changes the 
volume level by an increment each time the key “w” is pressed, and decreases it 
when the “s” key is pressed.  The new program is as follows:



358  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

def keyPressed(k):
    global volume, m
    if k.key == pygame.K_w:
        volume = volume+.1
    elif k.key == pygame.K_s:
        volume = volume-.1
    if volume<0: volume = 0
    if volume>1: volume = 1
    m.set_volume(volume)
    print (volume)

screen = pygame.display.set_mode((300, 300))
pygame.init()
FPS = 10
m = pygame.mixer.Sound("song.wav")
m.play()
volume = 1.0
m.set_volume(volume)

while True:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
        if event.type == pygame.KEYDOWN:
            keyPressed (event)

Example: Play a Sound Effect at the Right Moment: Bounces

A sound effect represents some event, and needs to be played at the moment 
the event happens. Synchronizing the two things is as simple as playing a sound 
when the event is detected.  This example program plays a sound representing 
a ball hitting something when a simulated ball hits the side of the window and 
bounces. The bouncing ball animation program provides the impact event: when 
the ball hits the side of the window, the sound of an impact is played.

The sound effect is a file, and was recorded using an inexpensive micro-
phone, a computer with a sound card, and the Audacity software, which is free 
and downloadable (see the end-of-chapter resources). The sound of a glass hitting 
a desk was recorded, edited, and saved as a “.wav” file named “bounce.wav.” The 
program was modified to read that file, and then play it back whenever a collision 
with the window was detected. The program has three new lines of code, includ-
ing the reading of the file:



 Chapter  9  ·  Mult imedia   ■ 359

m = pygame.mixer.Sound("bounce.wav")
.  .  . 
def draw ():
    global dx, dy, x, y
    screen.fill( (200, 200, 200) ) # Erase the prior frame
    x = x + dx                     # Change ball position
    y = y + dy
    if x<=15 or x>=width-15:        # Bounce in X direction?
        dx = -dx
        m.play()
    if y<=15 or y>=height-15:       # Bounce in Y direction?
        dy = -dy
        m.play()
    pygame.draw.circle(screen, fill, (x, y), 15)
     # Draw the ball

In many situations, there can be a small delay between the event and the 
sound being played. A sound can rarely be played instantaneously.

Music

The mixer.Sound module is fine for many purposes, including playing mu-
sic, but sometimes music has special needs and properties. Normally, only one 
music selection is played at a time. Sometimes, music needs to be paused and 
later restarted. For playing music, Pygame has a special module named pygame.
mixer.music that has a different interface. First, there are no instances that are 
returned. Playing a song means loading it and then playing it like this:

pygame.mixer.music.load("song.wav")
pygame.mixer.music.play()
From this point on, references through pygame.mixer.music will affect the 

song that is playing. As before, the volume can be changed between 0 and 1:
pygame.mixer.music.set_volume(volume)
However, now the song can be paused and restarted:
    pygame.mixer.music.pause()
    pygame.mixer.music.unpause()
We can determine where the is playing at the moment, in milliseconds from 

the start, or set the posit at which it is to play:
pygame.mixer.music.get_pos()
pygame.mixer.music.set_pos(i)



360  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

There are other features documented at the Pygame website  (https://www.
pygame.org/docs/ref/music.html). A simple keyPressed function that allows the 
volume to be changed (“w” and “s”) and the music to be paused and resumed (“p” 
and “r”) is as follows:

def keyPressed(k):
    global volume
    if k.key == pygame.K_w:
        volume = volume+.1
        pygame.mixer.music.set_volume(volume)
    elif k.key == pygame.K_s:
        volume = volume-.1
        pygame.mixer.music.set_volume(volume)
    elif k.key == pygame.K_p:
        pygame.mixer.music.pause()
    elif k.key == pygame.K_r:
        pygame.mixer.music.unpause()

 9.6 SUMMARY
Pygame can be used for displaying images and graphics. More media ca-

pabilities were explained, building on what has already been discussed, and we 
talked about sound and animations. 

Using mouse position and button presses is a basic form of communication 
with a computer.  The Pygame module keeps track of the mouse and continually 
updates the position available as the function call mouse.get_pos(), returning 
a tuple (mouseX,mouseY).  If the user checks for the MOUSEPRESSED and 
MOUSERELEASED events in the main loop, mouse button presses can also be 
captured. A software graphical button is a rectangle or other area which, if the 
mouse button is clicked while the mouse cursor is within that area, will perform 
a task; in other words, the click while the cursor is in that area calls a function.

The keyboard is similarly dealt with by having the user check the KEY-
DOWN and KEYUP events in the main loop. The event contains a variable key 
gives the value of the key that was pressed as the parameter.

Animation is performed by rapidly displaying drawn images, or frames, one 
after the other, or by creating and drawing graphical objects and then changing 
their positions. A function named draw() can be written by the programmer to 
draw the frames many times each second.



 Chapter  9  ·  Mult imedia   ■ 361

Sounds are displayed by reading them from a file and calling a play() func-
tion when the sound is needed, using the mixer module. Sounds can be music, 
voice, ambiance, or sound effects.

Exercises

 1.  Write a program that determines how fast the mouse is moving (pixels per 
second assuming 30 frames per second) and displays that value.

 2.  Consider the example that prints a circle at a random position when a “+” key 
is pressed. Modify it so that when the “-“ key is pressed the previous circle is 
deleted (no longer appears on the screen). 

 3.  Write a program that reads lines from a file as pairs of x,y coordinates on a 
single line and draws them all. Each line would have four integers:

100   100   200   200

 which are the (x,y) coordinates of the start and end  points of the line.  In the 
example above, the line would be drawn between (100, 100) and (200, 200).

 4.  Implement a circular button. It is represented on the screen as a circle at (100, 
100) with the size of 30 pixels. Normally it is red, but it turns green when 
activated. When a mouse button is pressed while the button is activated, a 
rectangle is drawn somewhere (random) in the window.

 5.  Implement a button that normally has the text “Yes” drawn within it, but 
that changes that text to “No” when the button is activated. Pressing it does 
nothing.

 6.  Use Pygame to implement a text box that permits a file name or other text to 
be entered when the mouse cursor is within that region defined by the box. 
Use this to create a program that allows the user to enter a file name of an 
image and have the program display this image in the window.

 7.  Modify the program from Exercise 5 so that a sound is made when the button 
is pressed. A clicking sound would be most appropriate, but whatever it is, it 
must be of a short duration.

 8.  Floating point values, such as the current time of a song in seconds, are often 
converted into strings and require ten or more digits to be displayed. Write 
a function that changes a floating-point number so that it will display in five 



362  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

digits, and modify the music display program so that all floats are displayed 
with only two digits to the right of the decimal.

Notes and Other Resources

Thanks to the estate of composer, musician, and friend Michael Becker for the use 
of the song Holding On and for the use of the .wav file.
Download for the Pygame module: http://www.pygame.org/download.shtml
An excellent sound editor for .wav and .mp3 files: http://www.goldwave.ca/
Another excellent sound file editor: http://sourceforge.net/projects/audacity/
Complete Pygame documentation: https://media.readthedocs.org/pdf/pygame/
latest/pygame.pdf

 1. Al Sweigart. (2012) Making Games with Python & Pygame, CreateSpace 
Independent Publishing Platform, ISBN-13: 978-1469901732.

 2. Sean Riley. (2003) Game Programming with Python, Charles River Media.

 3. Vic Costello (2016) Multimedia Foundations, second edition, Focal Press, 
ISBN-13: 978-0415740036.

 4. Richard Boulanger and Victor Lazzarini (Eds) (2010). The Audio Programming 
Book, The MIT Press; Har/DVD edition. ISBN-13: 978-0262014465.

 5.  Sendpoints (2015). GUI: Graphical User Interface Design, ISBN-13: 978-
9881383495.

 6.  Mahesh Venkitachalam (2015). Python Playground: Geeky Projects for the 
Curious Programmer, No Starch Press, ISBN-13: 978-1593276041.



■ ■ ■ ■ ■

In this chapter

An algorithm, as discussed in previous chapters, is a step-by-step description 
of a means to solve a problem. As someone who is learning to program, what 
are the most important algorithms? That rather depends on how “important” is 
defined. Does it reflect commercial value? Number of times it is used? Pedagogi-
cal uses? Since there are many ways an algorithm can be important, this chapter 
deals with the most common algorithms discussed on programming Web pages 
and in introductory computing texts. None of these methods require a knowledge 
of advanced mathematics or data structures.

10chaPter

Basic aLgorithMs

10.1 Sorting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

10.2 Searching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

10.3 Random Number Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

10.4 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

10.5 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

10.6 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

10.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400



364  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 10.1 SORTING
Most people know what sorting is and can sort a small sequence of numbers 

in a few seconds. Each may have a distinct strategy for doing it, but few can ex-
plain to someone else how to sort an arbitrary set of numbers. They themselves 
may not know how they do it; they can simply tell when something is sorted, and 
have some process for sorting in mind. In short, the process of sorting is one of 
the simplest things that is hard to describe.

Because sorting is so important in computer science, it has been studied at 
great length. Sorting involves placing things in an order defined by a function 
that ranks them somehow. For numbers, ranking means using the numerical val-
ue. The sequence 1, 3, 2 is not in proper order, but 1, 2, 3 is in ascending (get-
ting larger) order and 3, 2, 1 is in descending (getting smaller) order. Formally, 
a sequence s is in ascending order if si <= si-1 for all i. The act of sorting means 
arranging the values in a sequence so that this is true. It is clear that it can be 
decided when a sequence is sorted.

How can a sequence be placed in sorted order? By using a sorting algorithm, 
of course. For all of the following discussion on sorting, assume that the problem 
is to sort into ascending order.

 10.1.1 Selection Sort

Small sequences are easier to sort than longer ones, and may provide some 
insight into the process. The sequence

8   4
is not sorted in ascending order, but testing this is easy and fixing it is trivial: 
simply swap the two values. The longer sequence

8    4    9
is also not sorted but is more difficult to sort because it is longer and there are 
more combinations of the numbers that are unsorted. How can this sequence be 
placed in order? Here’s one idea:

 1. Find the smallest element in the list.
 2. Swap that element for the element at the beginning of the list.



 Chapter  10 ·  Basic  Algori thms  ■ 365

 3. Find the smallest element in the rest of the list.
 4. Swap that element for the second element in the list.
  … and so on until the list is sorted.

This is called the selection sort algorithm, because at each stage, it selects the 
smallest of the unsorted items in the list and places it where it belongs. Consider 
the following list:

[12, 18, 5, 21, 9]
   0    1   2   3    4   -   index
The smallest element in this list is 5, at index 2. Swap element 2 for element 0:

[5, 18, 12, 21, 9]

The bold elements above are in sorted order, which here is only the one at 
location 0. For the remainder of the elements, repeat the process of finding the 
smallest element and placing it at the beginning of the unsorted list (element 1). 
That means swapping 9 for 18, element 4 for element 1:

[5, 9, 12, 21, 18]

Repeating, it turns out that element 2, value 12, is now the smallest, and it is 
in the correct place.

[5, 9, 12, 21, 18]

Now the value 18 is smallest and should be placed at location 3.

[ 5, 9, 12, 18, 21]

Now the sort is complete. When only one remains, it must be in the correct place.

Finding the smallest element in a list involves three things. First, begin with 
the initial element and assume that is it the smallest. Identify it using its index 
imin. Next, check the value of all successive elements in the list (from imin to 
the end of the list) against the value at imin. Finally, in the case where one of the 
successive values at index k is smaller than the one at index imin, set imin to k 
to indicate where a new smallest value was found. In simple, imprecise English, 
scan all of the elements above imin and remember the location of the smallest 



366  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

one. Presuming that the list to be sorted is named data, the code for finding the 
smallest element from imin to the end of the list is as follows:

for i in range (imin, len(data)):
    if data[i] < data[imin]:
        imin = i

This code does work, but it modifies imin, which is used to determine the 
loop bounds, within the loop itself. This can be confusing. It is better to code this 
loop as:  

imin = istart
for i in range (iend, len(data)):
    if data[i] < data[imin]:
        imin = i

What happens after this is to swap the smallest value found for the one at lo-
cation istart. In most programming languages, this would take three statements, 
which would look something like this:

temp = data[imin]
data[imin] = data[istart]
data[istart] = temp

In Python, this swap can be performed using a different syntax:  
(data[istart], data[imin]) = (data[imin], data[istart])

This is the core of the algorithm, and needs to be done for all values of imin; that 
is, from 0 to len(data)-1. This is another for loop within which this code is placed. 
The outer loop would be coded as follows:  

for istart in range (0, len(data)-1):

This is all that is needed for the sort. Writing it as a function, it looks like this:  
def selection (data):
    for istart in range (0, len(data)-1):
        imin = istart
        for i in range(istart,len(data)):
            if data[i] < data[imin]:
                imin = i
        (data[istart], data[imin]) = (data[imin], data[istart])

This sorting method appears to be natural to humans. It is the one most often 
described by students when asked how they sort numbers. It is not the fastest in 



 Chapter  10 ·  Basic  Algori thms  ■ 367

many cases, but does a small number of swaps. If the data is already sorted, it 
does no swaps; if it is in reverse order, it does len(data)-1 swaps, the smallest that 
can be done and still sort the list. When looking at algorithms, it is common to de-
fine a worst case and a best case, and to define performance not in seconds, but in 
terms of one of the operations performed. In that way the nature of the computer, 
whether it is fast or slow, does not affect the analysis. For sorting, it is common to 
select the operation to be used as a basis for comparison to be the compare opera-
tion: data[i]<data[imin]. How many of these are done?

The best case for the selection sort occurs when the list is already sorted. In 
that case, it will perform close to N2 comparisons, where N = len(data). This is 
the same number of comparisons needed for the worst case, in which the list is in 
reverse order. At least it is consistent. However, it minimizes the number of times 
swaps occur, and if swapping is expensive, then this could be the sorting method 
to choose.

The selection sort is unstable. If there are repeated values in the data, then 
they will be together in the final, sorted list. However, if a sort is stable, they will 
remain in the same order they were originally. The selection sort does not guar-
antee this. It seems as if this is a minor thing, but it does matter in some cases. 
Consider a list of names in a list that are given, in order of some sort of score, on 
a Web page. Names for tie scores should always be in the same order on the page, 
so that if the page is refreshed or a link is followed, the page looks the same.

It should be said here that generally there is no best sorting method. The 
properties of such a method are as follows:

 1. Fast. Selection sort is N2 in terms of comparisons. The best one can nor-
mally expect from any sort would be N*log(N) in the worst case.

 2. Does not need extra space. This means that the array can be sorted in 
place, with perhaps a temporary variable for performing swaps.

 3. Performs no more than N swaps in the worst case. 
 4. Adaptive. The method detects when it is finished instead of looping 

through unproductive iterations. If, for example, such a method is given 
an already sorted list, it will finish in a single pass through the data.

 5. Stable.

No method has all of these characteristics.



368  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 10.1.2 Merge Sort

Let’s look at an algorithm that is different from the selection sort, and that has 
properties that it does not have. The method named merge sort fits that descrip-
tion nicely: it is an N*log(N) sort, it does need extra space, and it uses more than 
N swaps, but it is stable.

Merge sort is an example of a divide and conquer style of algorithm, in which 
a problem is repeatedly broken up into sub-problems, often using recursion, until 
they are small enough to solve; the solutions are combined to solve the larger 
problem. A merge sort breaks the data into parts that can be sorted trivially, then 
combines those parts knowing that they are sorted. Using the sample data from 
the selection sort example, the first step in the merge sort is to split the data into 
two parts. There are 5 elements in this list, and the middle element would be at 
5//2, or 2, so the two parts are:

[12, 18]    [5, 21, 9]

Splitting again, the first set has 2 elements, the middle being at 0; the second 
set has 3 elements, so split at 1:

[12]    [18]   [5]    [21,1]

The final split breaks the data into individual components:

[12]   [18]    [5]   [21]   [1]

The splitting is done in such a way that the original locations are remem-
bered. This happens in the recursive solution, but could be done in other ways. 
One way to visualize this is as a tree structure.

                        [12, 18, 5, 21, 9]
                        /                      \
                [12, 18]                 [5, 21, 9]
                  /      \                   /          \
          [12]        [18]             [5]       [21, 9]
                                                        /      \
                                                     [21]    [9]

This completes the divide portion of the divide and conquer. Now that the 
individual elements are available, it is easy to sort them, as pairs. On the lower 
right the pair, [21] and [9] are out of order, so they must be swapped with each 



 Chapter  10 ·  Basic  Algori thms  ■ 369

other. Now they are sorted. On the next level upwards, looking from left to right, 
the elements are sorted, although most are single elements:

                        [12, 18, 5, 21, 9]
                    /                              \
        [12, 18]                            [5, 21, 9]
     /               \                         /                \
[12]             [18]                  [5]              [9, 21]

Moving up again, [12] and [18] are combined to make [12,18], a sorted pair. 
On the right, the singleton [5] is merged with the pair [9,21] by looking at the be-
ginning of each list and copying the smallest element of the pair into a new list:

Step List 1 List 2 Merged list
1 [5] [9, 21]  [5] 5 is smaller than 9
2 [] [9, 21]  [5, 9] first list is empty, copy 9
3 [] [21]  [5,9,21] first list is empty, copy 21
4 [] [] Final list: [5,9,21]

The result is

                   [12, 18, 5, 21, 9]
                    /                      \
        [12, 18]                    [5, 9, 21

At each stage, the lists contain more elements and they are sorted internally, 
the smallest element at the beginning. Combining a pair of these is simply a mat-
ter of looking at the element at the beginning of each and copying the smallest 
one to the result until the lists are empty. The next, and final, merge in this set of 
data is as follows:

Step List 1 List 2 Merged list
1 [12, 18] [5, 9, 21]  [5] 5 is smaller than 12, copy 5
2 [12, 18] [9, 21]  [5, 9] 9 is smaller than 12, copy 9
3 [12, 18] [21]  [5,9,12] 12 is smaller than 21, copy 12
4 [18] [21]  [5,9,12,18] 18 is smaller than 21, copy 18
5 [] [21]  [5,9,12,18,21] First list is empty, copy 21

The final list is [5, 9, 12, 18, 21], which is sorted, as promised.



370  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Once the data has been split into individual components, the merge stage 
creates sorted pairs, the next merge creates sets of 4 sorted numbers, the next 8, 
and so on, doubling each time until they are all sorted. A logical way to write the 
program is to use recursion, where each recursive call splits the data in two more 
parts until there is only one element. The lowest level of recursion combines the 
individuals into sorted pairs, and returns to the next level where the pairs are 
combined into fours, then eights, and so on, until at the highest level the list is 
completely sorted. Written as a recursive function this is  
data = [12, 18, 5, 21, 9]
def mergesort (data):
    n = len(data)      # For this call there are n elements
                       # to be sorted
    if n <= 1:         # Divide the data into two parts
        return         # unless n-1, which means sorting 
                       # is complete
    middle = n//2      # Index of the element in the middle
    lower = data[:middle]  # Lower indexes, or the left 
       # sublist
    upper = data[middle:]  # Larger indices, or the 
                           # right sublist
    mergesort(upper)   # Sort the left sublist
    mergesort(lower)   # Sort the right sublist

# There are now two sorted sublists of length N//2.
# Merge them into one list of length N
    (i,j,k) = (0,0,0)
    while i < len(lower) and j < len(upper):  
 # One sublist may be shorter …
        if lower[i] <= upper[j]:# If the element at index 
                                # i of the
            data[k]=lower[i]    # left list is smaller, 
                                # copy it to the result
            i=i+1
        else:
            data[k]=upper[j]    # Otherwise copy the 
                                # element at index j
            j=j+1               # of the right sublist 
                                # to the result
        k=k+1              # Result gets longer by 1 element



 Chapter  10 ·  Basic  Algori thms  ■ 371

    for i in range (i,len(lower)): # If the left list 
                                   # was longer, copy
        data[k] = lower[i]         # the remaining items 
                                   # to the result
        k = k + 1
    for j in range (j, len(upper)): # If the right list 
                                    # was longer, copy
        data[k] = upper[j]          # the remaining 
                                    # items to the result
        k = k + 1

The merge sort is not as obvious as was selection sort, but is faster in most 
cases. It has another interesting application: it can be used to sort files. If a file 
contains, for example, a billion data samples that need to be sorted it is unlikely 
that they can be read into memory and sorted with a selection sort. How then can 
we sort them?

 10.2 SEARCHING
Searching is the act of determining whether some specific data item appears 

in a list and, if so, at which index. It seems like an odd thing to do; what can be 
done knowing this information? It is especially useful when multiple lists hold 
different data concerning the same items. An employee, as one example, might 
have their data saved as a name list, an employee ID list, phone number, office 
number, and home address. The same index gives information of the same indi-
vidual for each list. Thus, search the employee ID list for 18762; if that index is 
32, then the employee’s name can be found at name[32].

Of course, Python has built-in operations on a list that will do this:  
if 18762 in employeeID:        # Is this ID a member of 
                               # the list?
   k = employeeID.index(18762)  # What is the index of 18762?

A reason to examine searching algorithms is that not all languages possess 
these specific features and not all programs are written in Python. Another is that 
someone had to implement the operations for the Python system itself, and they 
had to know how. Are the built-in operations as fast as ones that a programmer 
could code for themselves?  



372  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 10.2.1 Timings

Any section of code in Python requires some amount of time to execute. 
The specific amount depends on many things: the computer being used, the Py-
thon compiler, the specific statements, the data, and random events, such as what 
other programs are executing on that computer at the same time. However, if it 
is important to know whether a section of code is faster than another, there are 
timing functions that can provide a pretty good idea. The time module includes a 
function named clock() that returns (on Windows) the elapsed time expressed in 
seconds elapsed since the first call to this function. On Linux it behaves differ-
ently, and time.time() may be a better choice.  

Timing a section of code is done by calling time.clock() before and after the 
code executes and subtracting the two times. For example, timing a search of a 
list using the in operator could be done in the following way:  
import time

list = [ 19872,87656,10982,18756,56344,29765,12856,12534,
        88768,90012]
t0 = time.clock()
if 90012 in list:
    found = True
t1 = time.clock()
print ("Time was ", t1-t0)

This prints the message:

Time was 2.062843880463903e-05

That’s a pretty small time, as is to be expected. When run again, the result 
was 3.07232e-06; running again gets 2.194514766e-06 and again 7.9002531e-06. 
These numbers are all small but very different. Since that is true, it is better to 
time many executions of the code and divide by the number of times it ran:  

t0 = time.clock()
for i in range (0,10000):
    if 90012 in list:
        found = True
t1 = time.clock()
print ("Time was ", (t1-t0)/10000)



 Chapter  10 ·  Basic  Algori thms  ■ 373

This yields more consistent results: 5.5284e-07, 5.5951e-07, and 5.415e-07 in 
three different trials. Averaging the result of multiple trials gives even better re-
sults, because spurious times on any one run will be averaged out.

 10.2.2 Linear Search

Consider the list that was used in the timing example:  
list = [ 19872,87656,10982,18756,56344,29765,12856,12534, 

88768,90012]

Finding whether the target number 90012 appears in this list is a matter of 
looking at each element to see if it is equal to the target. If so, the answer is “yes,” 
and the index at which it was found is also known. This can be done using a basic 
for statement: 

index = -1
for i in range(0,len(list)):
    if  list[i] == target:
        index = i
        break
# If the value of index is >= 0 then it was found.

This algorithm looks at each element asking “Is this equal to the target?” 
When/if the target is located, the loop ends and the answer is known. If the target 
is not a member of the list, then the algorithm has to examine all members of the 
list to determine that fact. Thus, the worst case is when the element is not in the 
list, and it requires N comparisons to find that out. If the element is a part of the 
list then, on the average, it will require N/2 comparisons to find it. It could be the 
first element, or the last, or any of the others, which averages out to N/2.

If the list is in sorted order, then the loop can be exited as soon as it is known 
whether the element is in the list. That is, as soon as the target is smaller than the 
element it is being compared against in the list, it is clear that it can’t be a member 
of the list, and the loop can be exited. This normally speeds up the execution, but 
the penalty is that the list has to be sorted, and the time needed to do this (only 
once, of course) has to be taken into account.



374  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 10.2.3 Binary Search

If the list has been sorted then there is a faster way to search for an element. 
The list can be divided into two parts by looking at the value in the middle of the 
list and comparing it to the target. If the target is smaller than the middle element, 
then it would have to be in the lower indices (left), otherwise it would have to ex-
ist in a higher valued index (to the right). What this means for performance is that 
the search area is cut in half each time a comparison is done.

This idea seems simple, but is actually difficult to get right in an implemen-
tation. At conferences where many PhDs in computer science are presenting pa-
pers, it has been found that fewer than 10% of the participants can code a binary 
search that works the first time. The terminal conditions are tricky: in particular, 
how can it be determined that the target is not in the list? The details are crucial. 
At the beginning there is a list, and its length is known. The index of the middle 
element is known too, and the list is sorted. Find the index of the middle element:  

istart = 0
iend = len(list)

m = (iend+istart)//2

If the target is in the list, is it at a smaller index than m (i.e., is list[m]>target):  
if list[m]>target:

If so, don’t bother looking at any index bigger than m. In other words, the 
largest index to look at would be m-1:  

iend = m-1

If the target is in the list, is it at a larger index (i.e., is list[m]<target)? If so, 
don’t look at any locations with an index less than m; in other words,  

elif list[m]<target:
    istart = m+1

If target = list[m], then it has been found and the algorithm terminates.  
else:
    return m

This code has to be repeated until the target has been found, or it has been de-
termined that it is not in the list. The loop condition is critical. The loop continues 
so long as istart <= iend, so that if the final step finds the target in the list, then it 



 Chapter  10 ·  Basic  Algori thms  ■ 375

will return the index. If the loop exits without finding the element, then the index 
value is -1. The final code, as a function, is  
def search (list, target):
    istart = 0
    iend = len(list)
    while istart<=iend:
        m = (iend+istart)//2
        if list[m]>target:
            iend = m-1
        elif list[m]<target:
            istart = m+1
        else:
            return m
    return None

The speed of the binary search depends on the fact that it is searching a 
randomly accessible data set like a Python list or a Java array, and not a file. It 
takes on the order of log(n) probes into the list to find what it is looking for or to 
determine that it is not there.

Timing the binary search gave an execution time of 3.305e-06 seconds, still 
slower than the built-in operation.

 10.3 RANDOM NUMBER GENERATION
Python offers a random number module named random that offers a broad 

collection of random number generation facilities. How is it possible to generate 
a random number using software? Shouldn’t a computer program execute consis-
tently and always produce the same answer each time? Yes, it should. The resolu-
tion of this apparent problem lies is the definition of random.

First, randomness is defined only for collections of events or numbers. One 
number, or even a small collection, cannot be said to be random. Randomness re-
flects the lack of a pattern, and only one or two events don’t really display a pattern. 
Randomness is more of a statistical property of a sequence and is not necessarily 
related strictly to unpredictability. After all, if a computer program can generate 
random numbers, then it should be possible to predict the next one it will generate.

A random number generator (RNG) on a computer is referred to as pseudo-
random; it is not truly random, but exhibits properties of randomness. These  



376  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

properties can be tested statistically. A typical RNG returns a floating point number 
between 0.0 and 1.0. This value can easily be transformed into a random number, 
either real or integer, in any desired range. A die roll is an integer between 1 and 
6 inclusive. An RNG function named rand01() can be converted into a die roll as

int(rand01()*6 + 1)

If the numbers generated by rand01() are random, then it should produce die 
rolls that each have a probability of 1/6. If not, then there is a bias.

If a coin is flipped many times and the sequence HTHTHTHTHTHTHT re-
sults, the probability of H or T (heads or tails) is 0.5, or 50%, which is what would 
be expected. If a sequence has the correct percentages for each outcome, then it 
passes the frequency test. Yet this sequence is probably not random because of the 
obvious pattern in the results. The frequency test is not enough.

A second test would consider pairs in the sequence and compare the prob-
ability of occurrence of each pair against the theoretical. In the coin toss, there 
are four possible pairs: HH, HT, TH, and TT. Each pair should appear with equal 
probability, and yet the string above shows only HT instances. It is not random. 
A standard suite of randomness tests called Diehard includes a more complex 
version of this test, involving groups of five elements in the sequence, each one 
having a theoretical probability of 1 in 120. This kind of test can be called the 
serial test or overlapping permutations.

A third test involves using the RNG to generate poker hands. The probability 
of specific hands is well-known, and any consistent variation from these prob-
abilities would imply a flaw in the RNG. This is the poker test. Any complex 
random game could be used, and the Diehard suite uses the game of craps.

There are many other tests that could be applied, and all are based on gener-
ating complex situations and comparing the theoretical distribution of properties 
generated against what the RNG creates. So, now that there are ways of testing 
an RNG, can one be written in Python and tested?

 10.3.1 Linear Congruential Method

Pseudo-random number generators basically shuffle the bits around in a 
number in complex and non-repeating ways; at least, they don’t repeat for a large 
number of trials. A common method for doing this is to calculate a value that is 



 Chapter  10 ·  Basic  Algori thms  ■ 377

bound to be larger than the place where it is to be stored and keep only the re-
mainder each time. The value of this remainder is pseudo-random under certain 
conditions. A linear equation can be used and is fast to calculate:  

Xi+1 = ( aXi + b) mod m

where Xi is the previous random number in the sequence and Xi+1 is the next one. 
The value of m should be quite large and it should be a prime number. Many 
computers have used a 32-bit integer size, and as it happens 232 – 1 is a good value 
for m ( = 2147483647). Python integers can be as large as desired, so larger values 
could be used. Keeping then to 32 bits is accomplished using an and operation 
and masking the result with a 32-bit constant: 0xFFFFFFFF.

Values for a and b are more flexible, but large values are a good idea, and 
too many factors can cause problems. One good set of values is a=69069 and 
b=362437. This method uses a previous value to calculate the next one, so an 
initial value is required. This is called the seed, and it must be possible for a user/
programmer to be able to set this seed value to whatever they choose. If not, then 
the RNG will generate the same set of values each time it is used. That’s good 
for debugging, because when tracking down a problem, it is important that the 
program behave consistently.

The basic RNG described above is as follows:  
_xseed = 76951

def irand01 ():
    global _xseed
    _xseed = (69069*_xseed+362437) & 0xFFFFFFFF
    return _xseed

This function returns a number between 0 and 2147483647, and resets the 
seed (_xseed, a global) each time. However, we need a function that returns a 
number between 0 and 1;  a second function does this simply by dividing the 
above result by 2147483647:  

def rand01():
    return irand01()/0xFFFFFFFF

A function that can set the seed is needed, too:  
def setseed (x):
      global _xseed
      _xseed = x



378  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A commonly used function in the Python random package is randrange(a, 
b), which returns a random integer between a and b. The code for a die has al-
ready been written, and so the math is known. Using the tools just written, this 
is coded as 

def randrange (n1, n2):
    x = (int) (rand01()*(n2-n1+1)) + n1
    return x

How can a random number generator be made to generate a different set of 
numbers every time a program starts using it? Simply by setting the seed to a 
number that is hard to predict. Such a number is found in the low bits (millisec-
onds and microseconds) of the system clock. It is impossible to predict what these 
will be. Randomizing the RNG can be accomplished like this:  

def randomize ():
    global _xseed
    _xseed = int(time.time ()) & 0xFF

The time.time() function returns the number of seconds since a fixed date in 
the past, called the epoch. This date is usually January 1st, 1970, midnight.

Other methods for generating random numbers exist and are commonly used. 
Python’s random class uses the Mersenne Twister algorithm, which is often seen 
as a default in programming languages, but is slow. The Blum-Blum-Shub algo-
rithm resembles the linear congruential, but uses the relation xi+1 = xi2 mod m 
where m is the product of two prime numbers. Dozens more methods exist. There 
are also practical methods for generating true random numbers, and these are 
based on specific hardware that captures a truly random process such as radioac-
tive decay, the photoelectric effect, or random electromagnetic noise.

Finally, there are websites that offer random numbers and sequences on re-
quest. Random.org serves up true random numbers, for example, and there are 
dozens of other such sites. The time needed to connect to a server and upload a 
random number is considerable, so they should be used knowing the tradeoff of 
time for the random number quality.

 10.4 CRYPTOGRAPHY
Cryptography involves sending messages that only certain intended people 

can receive and understand. This involves codes and ciphers. A code substitutes 



 Chapter  10 ·  Basic  Algori thms  ■ 379

one string for a longer message; there is a code book in which the code strings are 
associated with their relevant message. The string “A76” could mean “retreat 100 
meters.” Code books had to be changed regularly because eventually one would 
fall into the hands of someone who was not supposed to have one.

A cipher is an algorithm that converts one string of characters into another 
one of generally the same length. It can operate on bits, on characters, or on 
blocks of characters. A cipher does not have a code book but does have a key, 
which is a string of numbers or characters, that the algorithm uses to transform 
the original string (called the plaintext) into the encrypted string (called the ci-
phertext). The ciphertext can be transmitted safely because it cannot be under-
stood without the key.

Cryptography has become much more important in the last 30 years or so. It’s 
not just that the world is an uncertain place. It is more that people wish to share 
private information across the Internet. If a purchase is made with a credit card, 
then the card number should be encrypted before sending it to the seller. Access 
to certain sites that have valuable services or information requires a password. 
Installing new software requires an access key. These are all examples where 
encryption is required.

It should be mentioned that the secure transfer of information depends on op-
erational security as well as on encryption. Someone with a password can access 
all services and data associated with that password, so keys and passwords must 
be protected. This aspect is beyond the ability of a programmer to control, and is 
often the way security systems are broken.

There is some terminology that needs to be understood. A symmetric key sys-
tem uses one key to encode and the same key to decode. Asymmetric systems like 
public key systems use one key to encrypt the message, a key that anyone can know, 
and a second, private key that only the recipient knows and is used to decrypt. A 
block cipher applies a key to a collection (block) of data, often a size of 64, 128, or 
256 bits at a time. A stream cipher is usually a symmetric key cipher that encrypts 
a plain text character with a character from the key. It’s also called a state cipher 
because the encryption of the next character depends on what has happened before.

Knowing a little about encryption is important, but it is also important to un-
derstand that it is a very complex and highly mathematical subject, and requires 
a significant amount of study to become an expert.



380  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 10.4.1 One-Time Pad

Having just said how complex the field of cryptography is, the first algorithm 
to be examined is, in fact, rather old and perfectly secure, if difficult to use in 
practice. Suppose person A wishes to send person B the message “Meet you at 
nine pm at location alpha.” Encoding this requires a sequence of random char-
acters at least as long as the message. In actual use, this cipher often used pages 
from books as keys, books that were easily accessible by both parties. In this case 
the following text is used as the key: “it was the best of times, it was the worst of 
times.” The encryption process, known to both, and in fact not really a secret, is 
to apply the exclusive OR operation to corresponding characters in the message 
and the key to produce the ciphertext:  

m e e t y o u a t n i n e p m a t l … Message

i t w a s t h e b e s t o f t i m e … Key

4 17 18 21 10 27 29 4 22 11 26 26 10 22 25 8 25 9 … Encrypted

The exclusive OR operation is a bit-by-bit logical operator that is 0 if the two 
bits are equal and is 1 otherwise. It is applied to the numerical representations of 
the characters. This is quite handy because it is very fast and can easily be ac-
complished using simple hardware. Consider the first character in the message 
“m.” The first character in the key is “i.” The ASCII codes are the numbers 109 
and 105, respectively, or in binary, this is 

0 1 1 0 1 1 0 1     109   “m”
0 1 1 0 1 0 0 1     105   “i”
0 0 0 0 0 1 0 0        4    Exclusive OR

One interesting observation here is that different characters can be encrypted 
to the same cipher text byte, as in the above string where “s” and “t” both encrypt 
to 26. Now, this ciphertext is transmitted to B and is decoded in exactly the same 
way that it was encoded: apply the exclusive OR between the ciphertext and the 
same key (symmetric key):  

4 17 18 21 10 27 29 4 22 11 26 26 10 22 25 8 encrypted

i t w a s t h e b  e s t o f t i Key

105 116 119 97 115 116 104 101 98 101 115 116 111 102 116 105 Key ints

109 101 101 116 121 111 117 97 116 110 105 110 101 112 109 97 XOR

M e e t y o u a t n i n e p m a Decrypted



 Chapter  10 ·  Basic  Algori thms  ■ 381

The Python code that can do the basic encryption is as follows:  
pt = "meetyouatninepmatlocationalpha"
key = "itwasthebestoftimesitwastheworstoftimes"
ct = ""
xt = ""

for i in range(0,len(pt)):
    v = ord(pt[i])^ord(key[i])
    print(v)
    ct = ct + chr(v)
print (ct)

The exclusive-OR operator is “^,” and the expression ord(pt[i])^ord(key[i]) 
performs the XOR on the message and the key bytes, as numbers. Doing it again 
with the same key gets the message back.

The reason that this is called a one-time pad is that the key can only be used 
once, otherwise the cipher is not secure. The security lies in the randomness of 
the key, and reusing it reduces the randomness. Eventually, if the same key is 
used often enough, an observer, someone who can intercept all of the messages, 
can extract the pattern and determine the key. In practice, the keys were written 
on pads of paper and, once used, were destroyed. Keeping the pads synchronized 
between the sender and receiver can be a problem, especially if there are many of 
each. Hence, although the system is secure, it is not used very often.

 10.4.2 Public Key Encryption (RSA)

A public key system is commonly used for secure communication across 
computer networks, and involves one key for encryption and another for decryp-
tion. There are many variations on the basic idea, some being much too complex 
to discuss in a few pages, but the RSA algorithm is relatively simple, quite popu-
lar, and very secure. It is named for its inventors Rivest, Shamir, and Adleman.

The mathematical idea that underlies RSA is that one can find three very 
large integers e, d, and n:

 ( )  mod  
dem n m=

for any m, and that even knowing e and n or even m, it can be extremely difficult 
to find d. The values d and e are the keys, and m is the message.



382  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Encrypting a message would work as follows: A sends message m to B using 
B’s publicly known encryption key e:

   mod  ec m n=

The value of c is the ciphertext and can be transmitted to B. When B receives 
the message, it is decrypted using their private key d:

   mod  dm c n=

where n > m. This works because of the original assertion that (me)d mod n = 
m. The success of this method depends on a few other things: can cd mod n be 
calculated quickly enough for large numbers (i.e., 500 bits), and can the numbers 
d, e, and n be found to make this work?

The first step in determining the keys is to select two very large prime num-
bers, p and q. Let n = p*q. A large number in this context has hundreds of bits, 
but that creates a cumbersome example, so smaller numbers are used in this dis-
cussion.

Now calculate j(n) = (p-1)*(q-1) and find an integer e so that e and n are co-
prime; that is, the greatest common divisor between e and n is 1.

Let d = (e-1) mod φ(n) so that d*e mod n = 1. This can be found using a search, 
which may be infeasible due to the size of the numbers: 

for i in range (e, n):
    if (i*e)%j == 1:
        d = i
        break

A mathematical process that uses Euler’s theorem can give the answer faster, 
and code has been provided for this on the accompanying disk.

 10.4.3  Example: Encrypt the Message “Depart at Dawn” Using RSA

The first step is to determine some keys to use and to distribute the public 
key. Using the prime numbers 73 and 83 (far too small for a real situation), the 
determination of the keys is as follows:

n is 6059 and j(n) is 5904

ON THE CD



 Chapter  10 ·  Basic  Algori thms  ■ 383

e is 17, chosen because it is prime. Now find d such that d*e mod n = 1. Searching 
for it is practical for numbers this size and one gets the following result:

d = 3473

The public key is ( 17 , 6059 ), and the private key is ( 3473 ).

The message is 14 characters long and is 112 bits; n is only 10 bits long, and 
the message has to be shorter than this. In this instance, the message can be 
sent one character at a time, but this is generally poor practice. Normally, larger 
blocks of data are encrypted at one time. The plaintext string is converted into 
integers using ord(), and each one is encrypted using the formula 

   mod  ec m n=

An example is 
message = "Depart at dawn"
imessage = ()
cmessage = ()
for i in range (0, len(message)):
    m = ord(message[i])
    imessage = imessage +(ord(message[i]),)
    c = (m**e) % n
    cmessage = cmessage + (c,)

Now the message consists of 14 blocks of 1 character each. It can be transmit-
ted to the recipient, who is normally named B or Bob, in this form. The sender, 
named A or Alice, had access to the public key only, which is all that is needed to 
encrypt the message. It cannot be decrypted using the public key.

d given d⋅e ≡ 1 (mod φ(n))

Bob receives the ciphertext message, which is

(4652, 3518, 4274, 5770, 1663, 344, 2498, 5770, 344, 2498, 2144, 5770, 1725, 4601)

He takes each block and decrypts it using the following formula:

   mod  dm c n=

The Python code for this is
dmessage = ()
for i in range (0, len(cmessage)):
    c = cmessage[i]



384  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    m = (c ** d) % n
    dmessage = dmessage + (m, )

The resulting decrypted message is

(68, 101, 112, 97, 114, 116, 32, 97, 116, 32, 100, 97, 119, 110)

which is the original message. Notice that because only one block per character 
was encrypted, the effect is that of a substitution cipher, in which each letter 
has been replaced by another. This is very easy to decrypt by noting patterns 
of letters and frequencies of letters in the language; the letter “e” is usually the 
most commonly used letter in an English message. That is why the message is 
encrypted as blocks of characters. It is highly unlikely that a large block would be 
repeated exactly, and if it were it would be difficult to guess what it was anyway.

 10.5 COMPRESSION
Let’s use a little arithmetic to start this discussion. The song “Blackbird” by 

The Beatles is almost exactly 4 minutes long. This is 240 seconds, and if it was 
converted into digital form, it would be sampled at a rate of 44,100 samples each 
second. This means that the song has 240*44100 = 10.6 million samples. But 
wait—it’s stereo, so double that number to 21.2 million samples. A typical sample 
is 16 bits, so this works out to 42.4 million bytes: 42 megabytes. The MP3 file for 
this song is typically 1.9 megabytes. How is that possible? By using a compres-
sion algorithm.

Data compression is all about ways to take, 
for example, 100 bytes of information and turn it 
into 10 bytes while losing none of the essential 
message. Of course, compressed data is incom-
prehensible just to look at and must be decom-
pressed in order for it to be used. Data is often 
compressed before storing it in a file to reduce its 
footprint on the storage device, or before trans-
mitting it along a communications channel to 
take better advantage of limited bandwidth.

The question of how a string of data bytes 
can be made shorter while losing no important 
information remains, and a simple example may 

Figure 10.1 
Sample image for compression.



 Chapter  10 ·  Basic  Algori thms  ■ 385

be in order. Consider a cartoon image. These have a relatively small number of 
distinct but vivid colors, usually less than 10 colors and the color variation within 
any region is small. The example image in Figure 10.1 is in PNG form and is 23.2 
Kbytes in size at 400 x 456 (= 182400) pixels. As raw data it would be a little over 
182 Kbytes in size, and it would be 547 Kbytes if RGB color was used.

A simple compression technique that works is called run-length encoding. In 
its simplest form, data bytes are preceded by a count indicating how many repeti-
tions of that value were encountered in the data. If there was a section of data as 
follows:

1 1 0 0 0 0 0 0 2 2 2 1 2 1 2 0 0 0 0 0 0 2 2 2 2 2

This section of data would be encoded as

2 1 6 0 3 2 1 1 1 2 1 1 1 2 5 0 5 2
Two 
ones

six  
zeros

three 
twos

a  
one

a  
two

a  
one

a  
two 

five 
zeros

five 
twos

In this case, the original data required 26 bytes and the compressed data re-
quired 17 bytes. The new data takes 65% of the space that the original does. This 
is not a large savings, but is probably worth the effort. It does depend heavily on 
the nature of the data.

Consider the image of Figure 10.1. The color areas are uniform and rather 
large, so this image would be an ideal candidate for run-length encoding. When 
writing the program, it is important to use a binary file and convert the value and 
count into unsigned bytes before writing them to the file. This is a new data type 
called an unsigned byte that was not discussed in Chapter 8, and it has the code 
“B.” Writing the count and value could be done in the following way:

s = pack("BB", n, v[1])
     f.write(s)

The entire program run-length encodes the image, reads the image file, and 
collects identical pixels, counting them as they are collected, until a change in the 
pixel value occurs. Then the (count, value) pair is written to the file. The pair is 
written if 255 pixels have been collected, since that is the biggest number that can 
be counted in 8 bits. The result is a binary file of pairs of numbers (count, value) 
that represent the pixels in the image. As there are only two colors, the value can 
be 0 or 1, 0 being white and 1 being green; in general, there can be 256 distinct 
values. The encoding program looks like this:



386  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

from struct import *
import pygame

def emit(v, n, f):
    s = pack("BB", n, v[1])
    f.write(s)
b1 = pygame.image.load ("b1.png")
sz = b1.get_size()
width = sz[0]
height = sz[1]
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 10

outf = open ("b1.txt", "wb")
count = 0
value = b1.get_at((0,0))
for j in range (0, height):
    for i in range (0, width):
        if count ==255:              # Largest possible count.
            emit (value, count, outf)
            count = 0
        c = b1.get_at((i, j))
        if c == value:             # Same as before
            count = count + 1
        else:
            emit(value, count, outf)
            count = 1
            value = c
if count>0:
    emit (value, count, outf)
outf.close()

while True:
    clock.tick(FPS)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()

    screen.fill((180, 180, 180))
    screen.blit(b1, (0,0))
    pygame.display.update()



 Chapter  10 ·  Basic  Algori thms  ■ 387

The decoding program reads pairs of unsigned bytes from the binary file, 
and creates pixels. A pair (12, 0) would be 12 white pixels, for instance. A pair 
(12, 1) could be 12 pixels of some other color, and this program writes the pixels 
so it decides what color that will be. It will read pairs and draw pixels, into an 
image of 400 columns and 456 rows, until all are accounted for. A program that 
does this (not the only one possible) is  
inf = open ("b1.txt", "rb")
i = 0
j = 0
cols = 400
rows = 456
screen = pygame.display.set_mode((cols, rows))
clock = pygame.time.Clock()
pygame.init()
FPS = 10

while True:
    s = inf.read(2)
    if len(s) <= 0:
        break

    c,v = unpack("BB", s)
    print (c, v)
    if v == 255:
        clr = (255, 255, 255)
    else:
        clr = (123, 210, 0)

    for k in range (0, c):
        if i >= cols:
            i = 0
            j = j + 1
        screen.set_at ((i,j), clr)
        i = i + 1
    if j>= 456:
        break

while True:
    clock.tick(FPS)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
    pygame.display.update()



388  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The more complex the data is, meaning the more distinct values the data can 
take, the less useful this encoding method is. In some cases, it can make the file 
size larger that the raw data would have been. In the case of this particular image, 
the run-length encoded file is about 6 K bytes, as opposed to half a million bytes 
that would have been needed for the raw image, saved as pixels. Still, this serves 
as proof that it is possible to compress a data file without losing any information. 
There are, of course, many more algorithms that compress data to a greater extent 
and with fewer constraints.

 10.5.1 Huffman Encoding

If a typical text file is examined carefully, the vast majority of the file con-
sists of relatively few characters. As a general estimate, over 95% of the charac-
ters can be accounted for by between 25–30 distinct values. A coding scheme that 
took this into account would reduce the size of a text file, and perhaps it would 
generalize to other kinds of file. For example, in many files, the value 0 is the 
most common, and giving it a smaller representation than, say, 9 may reduce the 
overall file size.

This is not really a novel idea. The international Morse code is based on this 
idea and has been around for a long time, beginning in 1836. The most commonly 
used letters in English are shown in Table 10.1. In the Morse code, the letter “E” 
is represented by a single dot, the letter “T” is a single dash, and “A” is a dot fol-
lowed by a dash. The most common letters have the smallest code representation, 
as a general rule. This is how the Huffman code is organized, too.
Table 10.1 
Frequency of Letters in English text

Letter Frequency % Letter Frequency % Letter Frequency % Letter Frequency %
E 12.5 R 6.1 F 2.3 K 0.7
T 9.3 H 5.4 P 2.0 X 0.19
A 8 L 4.1 G 2.0 J 0.16
O 7.6 D 4.0 W 1.9 Q 0.11
I 7.3 C 3.1 Y 1.7 Z 0.09
N 7.1 U 2.7 B 1.5
S 6.5 M 2.5 V 1.0

A Huffman code is constructed from the ground up, like a wall. The lower 
levels of the wall represent the least frequently used symbols, and have the greatest  



 Chapter  10 ·  Basic  Algori thms  ■ 389

number of bricks above them. The final code includes binary numbers, and the 
length of the code in bits for a symbol is related to the number of bricks above it. 
The wall is shaped like a pyramid, and is called a binary tree. It’s a very useful 
structure in general, but the description is restricted here to its use in Huffman 
codes.

As an example, consider the English text:

I think that at that time none of us quite believed in the Time Machine11

The characters occur in this particular text with the following frequencies:

t  10 a    4 q    1 k    1
e   9 m    3 c    1 s    1
i    8 o    2 d    1 l    1
n    5 u    2 v    1
 h    5 b    1 f    1

The “leaves” (or nodes) at the bottom of the tree (it is drawn upside-down) 
contain the lowest frequency items, and so are placed first. Each two nodes in 
the tree have one node above them, straddling them, containing the sum of the 
frequencies of all nodes below. All characters are turned into nodes, and each 
also contains the number of occurrences of that letter. This collection of nodes is 
called a heap. Initially, all have only one character, but this changes.

The rule in building the tree is to pick the pair of nodes (initially characters) 
that sum to the smallest number and connect them using another node, one above 
them that has a left and right node. The first bricks, alphabetically, are “b” and 
“c,” both with a frequency of 1.  

2

B1 C1

Figure 10.2 
A step in the Huffman algorithm, lowest level

The bottom nodes have characters and counts. The one above has only a 
count, and it is the sum of the counts of the two nodes it is connected to. This new 
node, with a count of 2, is placed back in the heap and the nodes for B and C are 
removed. The heap always gets smaller.

Repeating this process with the others, the smallest pair we can make is with 
“d” and “f,” then “k” and “l,” and then “q” and “s.” At that point, the smallest 



390  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

node is “v” with a count of 1, but there are no more nodes with a count of 1. The 
smallest sum is 2, which uses “v” and “o.”

2

B1 C1

2

K1 L1

2

D1 F1

2

Q1 S1

3

V1 O2

Figure 10.3 
The complete Huffman bottom level 

All of these are in the heap, and a search is done for the smallest sum of 
nodes. The character “u” has a count of 2 and so do any of the nodes above that 
link to two other characters. These are nodes too, so link “u” with the leftmost 
node above to get a bigger grouping—this is called a subtree, because it is a tree, 
but it is also part of a bigger tree. 

B1 C1

4

U2 2

Figure 10.4 
The first 3 deep tree section: U B C

The “u” node and the others give a sum of 4.

The tree that is being built has the least commonly used characters placed at 
a greater distance from the top of the tree than are the frequently used characters. 
This distance is used to construct the codes, smaller for common characters.

The smallest sum of two nodes in the tree is 4, the nodes connecting “d,” “f,” 
“k,” and “l.”

2

K1 L1

2

D1 F1

4

Figure 10.5 
The next step in the Huffman algorithm: D F K F  

The method takes the smallest two nodes, which are going to create the small-
est sum, and connects them, removing the original nodes and replacing them with 



 Chapter  10 ·  Basic  Algori thms  ■ 391

the new one. The smallest nodes now are the node connecting “q” and “2” (value 
2), the node with “m” (value 3), and the node connecting “v” and “o” (value 3). 
The node with “m” will be selected to link to the 2-valued node. The tree is a 
disconnected collection of nodes.

So, what’s next? The smallest valued character remaining is “a” at 4. That 
would make the smallest sum 7 after connecting it with the subtree on the right 
(“v” and “o”). Next in the heap are the two 4-nodes above to create an 8, and link-
ing “h” (5) and “n” (also 5) to get a 10.

2

K1 L1

2

D1 F1

2

B1 C1

4

U2 2 3

V1 O2

M3

Q1 S1

5

2

Figure 10.6 
Three lower levels complete

2

K1 L1

2

D1 F1

4

B1 C1

4

U2 2 M3

Q1 S1

5

2

8 10

H5 N5

A4

V1 O2

7

3

Figure 10.7
The next level of the Huffman tree complete.

The pattern should be clear by now. Notice that the nodes with nothing below 
them always consist of characters, and the nodes above have only numbers. How-
ever, the space characters were not counted, and they must be for the message to 
make any sense. There are 14 spaces in the message. The final sum is 14+9 for 
the space. A node for a space has to be added to the heap.

The last two steps don’t involve any new characters, but they will link all of 
the nodes together and make them accessible from one single node at the top. The 
final (top) node should have a value that is the length of the original string.

The tree that has been constructed will be used to construct the codes for 
each letter, and the length of each code is the number of nodes between the 



392  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

characters and the top (root) of the tree. The path to each left node is labeled 
with a digit, in this case a 0, and the path to the right nodes is labelled with a 1, 
as in the tree above. The code for any character is read off of the links that were 
followed to get from the top of the tree to the node containing the character. The 
space character, the most common one, is reached by going left two times; its 
code is 00. The “t” is the second most frequent character, and is reached from 
the top node by going right, then left, then right; the code is 101. The complete 
set of codes is as follows:

‘ ‘ 00 A 11111 D 011100 V 111100
T 101 M 11101 F 011101
E 100 U 01100 K 011110
I 010 O 111101 L 011111
H 1100 B 011010 Q 111000
N 1101 C 011011 S 111001

The coded message is the concatenation of all of the codes for the characters 
in the order they appear in the message. The encoded message is as follows:
i            t     h       i      n         k                t     h         a      t            a         t
010 00 101 1100 010 1101 011110 00 101 1100 11111 101 00 11111 101 00

71

30

B14 16

18 8

4

10

F1

U2

B1 C1

2

22

75

19

4

2 2 2

D1 K1 L1

E9

Q1 S1 V1

1
H5 N5

A4

O1

M3

T10

1

1

1

1

1

1

1

1

1

1

1 11 1

1

1

0

0

0

0

0

0 0 0 0 0

0

0

0

0

0

0

0

41

12

3

Figure 10.8
The final tree



 Chapter  10 ·  Basic  Algori thms  ■ 393

  t     h        a         t           t      i     m        e             n       o        n         e
101 1100 11111 101 00 101 010 11101 100 00 1101 111101 1101 100 00
    o           f               u           s                    q      u       i       t      e              b
111101 011101 00 01100 111001 00 111000 01100 010 101 100 00 011010
  e         l       i       e         v       e         d             i     n            t      h        e
100 011111 010 100 111100 100 011100 00 010 1101 00 101 1100 100 00
  t       i       m      e            m       a          c        h      i        n      e
101 010 11101 100 00 11101 11111 011011 1100 010 1101 100

This amounts to 259 bits = 33 bytes. The original string is 71 bytes long, so 
the compressed data is 46% of the size of the original data. The Huffman coded 
string is broken into 8-bit bytes and transmitted that way:
01000101 11000101 10101111 00010111 00111111 01001111
11010010 11100111 11101001 01010111 01100001 10111110
11101100 00111101 01110100 01100111 00100111 00001100
01010110 00001101 01000111 11010100 11110010 00111000
00101101 00101110 01000010 10101110 11000011 10111111
01101 110 0 010 1101 100

Decoding requires the table or the tree. If a known table is used, such as the 
natural frequencies of English letters, then it would not have to be transmitted 
along with the message. The use of a Python dictionary type makes the program 
for decoding very elegant indeed. Given the table and the message, bits are re-
moved from the beginning of the message and placed into code string until they 
match one of the codes in the table. The Huffman code has the property that 
the bit sequences are unique when appended as a long message. The first bit se-
quence that matches a code is the code for the first letter in the message.  
# Huffman decode
# This is the coded message:
bitstring = "01000101110001011010111100010111001111110100111111"+\
"0100101110011111101001010101110110000110111110111011000011110"+\
"1011101000110011100100111000011000101011000001101010001111101"+\
"0100111100100011100000101101001011100100001010101110110000111"+\
"011111101101111000101101100"
table = {}                    # This is the table of codes
table['00']     = " "
table["11111"]  = "A"
table["011100"] = "D"
table["111100"] = "V"
table["101"]    = "T"
table["11101"]  = "M"
table["011101"] = "F"
table["100"]    = "E"



394  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

table["01100"]  = "U"
table["011110"] = "K"
table["010"]    = "I"
table["111101"] = "O"
table["011111"] = "L"
table["1100"]   = "H"
table["011010"] = "B"
table["111000"] = "Q"
table["1101"]   = "N"
table["011011"] = "C"
table["111001"] = "S"

# Pull bits from the string making a substring until the 
# substring is found in the dictionary. Then emit the 
# character indexed.

# Loop until all bits are used
while len(bitstring) > 0: 
    code = ""                        # Clear the current code
                           # While code NOT in the dictionary …
    while not (code in table): 
                           # Add the next bit from the message    
        code = code + bitstring[0]  
                            # Remove that bit from the message
        bitstring = bitstring[1:]   
# When the code matches, print the character corresponding to the 
code
    print (table[code], end="")  

 10.5.2 LZW Compression

Like many algorithms, LZW compression is named after the people who de-
vised it: A. Lempel, J. Ziv, and Terry Welch. It has been the standard for data 
compression for many years, it was the method used in the GIF file format, and it 
was used in many versions of PDF. It is not the most effective method of compres-
sion, but it is lossless and efficient. Like the Huffman code, LZW creates a table 
from the original text and uses the codes in the table to perform the compression. 
Unlike the Huffman code, the decompression stage does not require that the table 
be known in advance; it builds the table as it decompresses the file. The LZW 
algorithm also replaces multiple characters with single codes, thus increasing the 
compression rate.

LZW compression usually begins with a known code table, most often the 
256 ASCII characters, but any table known by the compressor and decompressor 



 Chapter  10 ·  Basic  Algori thms  ■ 395

will work. As an example, another short section of text from The Time Machine 
will be compressed.

The Time Traveller for so it will be convenient to speak of him was ex-
pounding a recondite matter to us His grey eyes shone and twinkled and 
his usually pale face was flushed and animated The fire burned brightly  
and the soft radiance of the incandescent lights in the lilies of silver 
caught the bubbles that flashed and passed in our glasses.
Punctuation has been removed for simplicity. The algorithm begins with a 

table of characters, in this instance, the ones that appear in the quote, but in 
general, the table can contain any starting set of symbols. This is called the code 
table, and associates a numerical code with a string. The code table in this case 
consists of the letters (uppercase) and their values starting with 0: A=0, B=1, and 
so on. The space has to be included as well. The code sequence 024 is the string 
“ACE” using this scheme. 

Naturally, there has to be more to this if it is to be a viable compression meth-
od. When encoding, the characters are examined one at a time and appended to 
an input string, and looked up in the table. If the string is found in the table, then 
the next character is read and appended to the string and it is looked up again. 
This repeats until the string is not found, at which point a few things happen: the 
code for the last string that was found is written to the output, the new string that 
was encountered in the string but not found in the table is added to the tables, and 
the process continues using the last character read in. This means that not only 
characters, but also short strings that occur in the text have numeric codes, and 
that the table will be created from the text that was given.

Consider the text in the example: The first character seen is “T.”

 1. “T” exists in the table already, so a new character is read in and ap-
pended to the “T” to create the pair “TH.” 

 2. “TH” is not in the table. The character “T” has the code 19, so 19 is writ-
ten to the output file.

 3. The string “TH” is added to the table. It will be code 27.
 4. The input string is now “H.”
 5. The character “H” is in the table and has code 7. The next character 

is read in and appended to “H,” creating “HE.”



396  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 6. “HE” is not in the table, so the code for character “H,” which is 7, 
is written to the output file.

 7. The string “HE” is added to the table, code 28.
 8. The input string is now “E.”

The process repeats. If a multiple-character string is found in the table, then 
the steps are basically the same. Hypothetically,

 1. The character “T” is next and is in the table. Read the next character “H” 
and append to “T” to get “TH.”

 2. “TH” is in the table. Read the next character “E” and append to “T” to 
get “THE.”

 3. “THE” is not in the table to emit the code for “TH,” which is 27.
 4. Input string is now “E.”

Step 1 repeats until a string is obtained that has not been seen before. In the 
example here, the first 27 codes are letters and the space character. The next few 
codes are as follows:

TH 27 HE 28 E  29
T 30 TI 31 IM 32
ME 33 E T 34 TR 35

The first 3-character string (trigram) in the table is “E T.”

Python’s dictionary type is especially valuable for coding the LZW algo-
rithm. The facility for looking up a string in a table is exactly what is required 
here. The critical part of the program could be written as follows:  
# count is the next unassigned symbol
# ch is the last character read in
# s is the current character string 
# inf is the input file (text)
s = ""                    # Initial string is empty.
ch = inf.read(1).upper()  # Read the first character, 
                          # upper case.
while len(ch) > 0:        # While the file still has data …
    if s+ch in dict:      # Is string concatenated with 
                          # ch in the table?
        s = s + ch        # Yes. Concatenate and repeat
    else:                 # No.
        print (dict[s]," ", end="")  # Print the code 



 Chapter  10 ·  Basic  Algori thms  ■ 397

                                     # for the string s
        dict[s+ch] = count      # Put the new string into 
                                # the dictionary
        count = count + 1       # New code is next integer.
        s = ch                  # String is now the last 
                                # character read.
    ch = inf.read(1).upper()    # Read a new character

When decoding the LZW file, the initial table is known. Again, this is often 
just the ASCII characters, but can be something else, and in this case is the letters 
plus the space. The file contains codes, not characters, but the codes are in the 
table, right? No, only the starting codes are in the table. Decoding the message 
in the example starts easily. The first few codes in the message are as follows:

19  7  4  26  19  8  12  29  19  17  0  21 …

The first code is read in and is the code for the letter “T.” This is followed by 7 
(H) and 4 (E) and so on until the code 29 is reached. There is no entry for the code 
29 in the table. This is where the really clever part of the LZW algorithm happens.

When decoding, the program builds the table again. After all, the characters 
are in the same order in the encoded data, so it should be possible to reproduce the 
process that was used to build the code table in the first place. When the first code 
is read in, the code is expected to be in the table, and the corresponding letter “T” 
is written and placed into a string. The next code is read and corresponds to “H.” 
Now “TH” is added to the dictionary, and “H” is written and becomes the current 
string. Now “E” is seen, “HE” is added to the table, and “E” is written, and so 
on. Again, a dictionary can be used to store the codes, but a list is more efficient. 
The indices are codes, which are numbers, so a list is fine here. The central part 
of the process is as follows:
code1 = int(inf.readline())       # CODE1 is the first code 
                                  # on the file
print (dict[code1], end="")       # Output the string for 
                                  # CODE1
while True:                       # While mode codes on the 
                                  # file ...
    code0 = int(inf.readline())   # CODE0 is the next code 
                                  # on the file
    if code0 < len(dict):         # Is CODE0 in the table?
        s = dict[code0]              # YES. S is the string for 
                                  # CODE0
    else:



398  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

        s = dict[code1]           # NO. S is the string for 
                                  # CODE1
        s = s + ch                # Append CH to S.
    print (s, end="")             # IN EITHER CASE emit S
    ch = s[0]                     # CH becomes the first 
                                  # character of S
    dict = dict + [dict[code1]+ch,] # Add new string to the 
                                    # table
    count = count + 1
    code1 = code0

A pseudocode summary of both the encoding and decoding processes is giv-
en in Figure 10.9, and working programs are provided on the disk (lzwe.py and 
lzwd.py). If punctuation is to be added, then a different conversion to uppercase 
would have to be done. For practical applications, the entire ASCII character set 
would be used at the outset.

Figure 10.9 
The LZW encode and decode algorithms.

ON THE CD



 Chapter  10 ·  Basic  Algori thms  ■ 399

 10.6 HASHING
A hashing algorithm characterizes a complex piece of data with something 

simpler, and preferably unique. The most common example is to find a number 
that could represent a character string. A hashing algorithm has to be fast, be-
cause it often needs to convert a string into an index to a list or tuple. Consider 
the string “while.” There are five characters (bytes) here. How can this string be 
used as an index into a tuple?

Any numerical operation on the codes used to represent the character might 
work, but some result in codes that are too large. Simply adding the codes would 
give a value of 537, which could work, but also might be too large. Imagine the 
application is to look up Python key words; there are 33 of them. The value result-
ing from the hash should be an index between 0 and 32, so take the hash mod 33. 
If that is tried, the result is that half of the 33 entries will be empty, and half will 
have two or more strings that have the same index. The results are as follows:

4: “None” 12: “return” 21: “try” 31: “global”
6: “class” 13: “global” 22: “is”
7: “from” 14: “as” 25: “finally”
9: “while” 15: “lambda” 27: “or”
10: “and” 17: “in” 29: “False”
11: “continue” 20: “True” 30: “for”

When two items hash to the same value, it is said to be a collision. In this 
case, the collisions are as follows:

(class,  def) (False, nonlocal) (return, del) (from, not) (lambda, with)
(True, elif) (while, if) (from, yield) (global, assert) (False, else)
(from, import) (and, pass) (is, break) (is, except) (None, raise)

Two values cannot occupy the same location in a tuple, so something must be 
done. The simplest way to deal with collisions is to have extra space in the list or 
tuple. If the size of the tuple is specified as 145, then all strings hash to distinct 
values. Of course, now 112 tuple entries are empty, but does that really matter? 
The alternative to a table indexed by hashing (a hash table) would be a list that has 
to be searched, and hashing is much faster.



400  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

10.6.1 DJB2

This algorithm starts with a predefined seed for a hash value, multiplies it by 
33 and adds the next character from the string, multiplies that by 33, adds the next 
character, and so on. The code is  

def djb2 (s, size):
        sum = 5381
        for i in range (0, len(s)):
            sum = sum*33 + ord(s[i])
        sum = sum%size
        return sum

Why multiply by 33? It works well, and nobody knows why. The seed of 5381 
can be changed to see how different values work. With the configuration given 
here, there will need to be 112 elements in the tuple to avoid collisions. If the 
program is changed slightly so that an exclusive OR replaces the sum, the size 
decreases to 105. That is 

sum = sum*33 ^ ord(s[i])

10.6.2 SDBM

This is a method devised for scrambling bits, but makes for a good hashing 
function. The iteration is hash(i) = hash(i - 1) * 65599 + str[i]. The number 65599 
is arbitrary, but it happens to be prime. A function to implement this is  

def sdbm (s, size):
    hash = 0
    for i in range (0, len(s)):
        hash = ord(s[i]) * 65599 + hash
    return hash%size

There are many other hashing methods (see Knuth). The idea is an important 
one. It is, for example, a way to implement Python dictionaries: hash the key to 
an integer and use that to access the value.

 10.7 SUMMARY
The goal of this chapter was to introduce important algorithms or general 

techniques used in computer science. Sorting is a traditional programming prob-
lem for undergraduates and is essential in many data-handling applications. The 
selection sort and the merge sort were discussed at length.



 Chapter  10 ·  Basic  Algori thms  ■ 401

Searching involves finding a piece of data within a larger collection. A linear 
search starts at the beginning and looks at consecutive elements until the target is 
found. A binary search splits the data into two halves each time an element in the 
set is examined and so is faster, but it depends on the data being sorted.

Random number generation creates a sequence of numbers that satisfies a 
statistical test for randomness. Such numbers are crucial in computer simulations 
and games, and in some numerical algorithms.

Cryptography involves sending messages that only certain intended people 
can receive and understand. A cipher is an algorithm that converts one string 
of characters into another one of generally the same length. The one-time pad 
method was examined, followed by the very popular RSA algorithm.

Data compression is about ways to take many bytes of information and turn 
them into fewer bytes while losing none of the essential message. Of course, 
compressed data is incomprehensible: it must be decompressed for it to be used. 
This section demonstrated run length encoding, Huffman codes, and the LZW 
algorithm.

The final section was a brief discussion of hashing, a way to convert strings 
or other complex data types and reduce them to simpler forms such as integers. 
The djb2 and the sdbm methods were singled out as being typical of the way that 
such algorithms work.

Exercises

 1. Hashing algorithms must be fast. Use the timing schemes discussed in this 
chapter to determine which of the three hashing algorithms presented is the 
fastest.

 2. When a sequence of numbers is sorted into ascending order, then element 
i-1 is always smaller than or equal to element i. Here is a description of a 
sorting algorithm: scan the data set S to find any pairs of adjacent locations 
where S[i-1] > S[i], and when any are found, swap the two values. Repeat the 
process until the array is sorted. Does it ever get sorted? What is the best case 
and what is the worst case? Implement the method in Python.

 3. Compare the linear congruential random number generator described in this 
chapter against the random() function in Python. Implement a die roll using 



402  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

each method, and roll a die 1,000 times. Which method is nearest to the 
expected frequency distribution (equal for all values)? Repeat the process 
1,000 times and score Python one point when its random number generator 
wins by this measure, and score the book’s generator one point when it wins. 
Which is the overall winner?

 4. The quality of a hashing algorithm is measured by how random the hash 
codes are when given a sample set of strings. One estimate of randomness 
is the number of cells with more than one value hashed to it (the best here 
would be 0), and the average number of values hashed to occupied cells—this 
should be close to 1. Measure these for the three hashing methods presented 
for a size of 60 cells.

 5. Data for registrants in a swimming competition consist of the swimmer’s 
name, number, national ranking, and time in the 200-meter freestyle 
competition. These data are located in four lists: name, number, rank, and 
t200. In all cases, the same index is used to access all of the data for the same 
person. Sort these data in descending order on time and identify the persons 
in the top three spots and their times. 

 6. Steganography works by concealing a message, rather than making it 
unreadable, as is done when using encryption. In the ideal situation, nobody 
will even suspect that there is a second message hidden within the first. 
Consider a scheme that uses the spaces in a message: a single space is a 0 and 
a double space is a 1. The letters are coded as 5-bit codes starting with A = 
00000, B = 00001, and so on. Write programs that encode and decode such 
messages.

Notes and Other Resources

Random.org random number server: https://www.random.org/
A pretty good description of RSA: https://en.wikipedia.org/wiki/
RSA_%28cryptosystem%29
Encode/decode stenographic messages disguised as spam:  http://www.spam-
mimic.com/

 1. Donald Knuth. (1997). The Art of Computer Programming, Volume 3: Sorting 
and Searching, 3rd Edition, Addison-Wesley, 138–141, ISBN 0-201-89685-0. 



 Chapter  10 ·  Basic  Algori thms  ■ 403

 2. Anany Levitin. Introduction to the Design & Analysis of Algorithms, 2nd 
Edition, 98–100, ISBN 0-321-35828-7.

 3. Robert Sedgewick. (1998). Algorithms in C++, Parts 1–4: Fundamentals, 
Data Structure, Sorting, Searching, 2nd Edition, Addison-Wesley Longman, 
273–274, ISBN 0-201-35088-2.

 4. G. Marsaglia. (2003). http://www.csis.hku.hk/~diehard

 5. Makato Matsumoto and Takuji Nishimura. (January 1998). Mersenne twister: 
A 623-dimensionally equi-distributed uniform pseudo-random number 
generator, ACM Trans. Model. Comput. Simul. 8(1), 3–30, DOI = http://
dx.doi.org/10.1145/272991.272995

 6. Lenore Blum, Manuel Blum, and Mike Shub. (1982). Comparison of two 
pseudo-random number generators, Advances in Cryptology: Proceedings 
of CRYPTO ’82, Plenum, 61–78.

 7. Claude E. Shannon. (October 1949). Communication theory of secrecy 
systems (PDF), Bell System Technical Journal, 28(4), 656–715, retrieved 
2011-12-21, doi:10.1002/j.1538-7305.1949.tb00928.x

 8. The Only Unbreakable Cryptosystem Known—The Vernam Cipher, retrieved 
2014-03-17, Pro-technix.com

 9. B. Schneier. (1994). Description of a new variable-length key, 64-bit block 
cipher (Blowfish), in Fast Software Encryption, edited by Ross Anderson, 
Cambridge Security Workshop Proceedings (December 1993), Springer-
Verlag, 191–204.

 10. Steven W. Smith. (2007). Data Compression Tutorial: Part 1, http://www.
eetimes.com/document.asp?doc_id=1275417&page_number=2

 11. H. G. Wells. (1895). The Time Machine, William Heinemann, http://www.
gutenberg.org/cache/epub/35/pg35.txt





■ ■ ■ ■ ■

In this chapter

It is true that the earliest calculating devices were created to help with com-
mercial concerns, like payments, credit, and inventory. The abacus is an excellent 
example – it does basic arithmetic and was likely an early cash register. Much 
older devices do exist, such as the Lebombo bone that helped ancient African 
bushmen do simple calculations and keep track of time. However, the electronic 
computer was designed to carry out scientific calculations, in particular those 
related to decrypting military messages and building the atom bomb. Computers 
are used for those things still, but there is now a vast array of computations in the 
scientific domain that could not be carried out without the help of a computer.

Scientists from different disciplines would disagree about what the most im-
portant algorithms and techniques for science were. That’s because of the widely 
disparate things that they study. There are a few recurring problems that occur 
in almost all science domains, and some important techniques that generalize to 
both scientific and non-scientific areas.

11chaPter

PrograMMing for the sciences

11.1 Finding Roots of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

11.2 Differentiation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

11.3 Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

11.4  Optimization: Finding Maxima and Minima . . . . . . . . . . . . . . . . . . . . . . . . . . 412

11.5  Longest Common Subsequence (Edit Distance)  . . . . . . . . . . . . . . . . . . . . . . . 423

11.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436



406  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 11.1 FINDING ROOTS OF EQUATIONS
The root of an equation is where its value is zero. This may not be the small-

est or the largest value, but the place where a function equals zero is often im-
portant. For example, if a function for the error in a calculation can be found then 
finding the place where the error is zero would be important. In one dimension, 
the problem being solved is as follows:

 x: f (x) = 0 (11.1)

or in other words, find the value of x that results in f(x) being equal to zero. The 
function could be quite complicated, but for the technique to work, it should have 
a derivative.

The basis of many root finding procedures is Newton’s method. The proce-
dure begins with a guess at the right answer. The guess in many cases does not 
have to be very accurate, but is simply a starting point. If a range of values is 
given within which to find the solution, the center of that range may be a good 
starting guess. Here is a problem to start with:

 f (x) = (x-1)3 between x = -2 and x = 12 (11.2)

the center of the range is x = 5.

The initial guess is called x0, and here x0 = 5. The function value there, f(x0), is 
64. The algorithm now says that the next guess for x, x1, will be as follows:

 x0 – f (x0)/f’(x0) (11.3)

where f’(x0) is the derivative of f at the point x= x0. This is a problem: the deriva-
tive of f has to be calculated. A numerical method is examined a little later in this 
chapter, so let’s code a function that gives the derivative, having done the calculus 
on paper and then written the function based on that. The derivative of (x-1)3 is 
3x2 - 6x + 3.
# Roots of a function
def objective (x):
    return (x-1)*(x-1)*(x-1)

def deriv (x):
    return 3*x*x - 6*x+3



 Chapter  11 ·  Programming for  the Sciences   ■ 407

# Range is -2 to +12
x = 5.
fx = 1000.
delta = 0.000001
print ("Step 0: x=", x, " obj = ", objective(x))
i = 1
while abs(fx) > delta:
    f = objective(x)
    ff = f/deriv(x)
    x = x - ff
    fx = objective(x)
    print ("Step ",i,": x=", x, " obj = ", fx)
    i = i + 1

Step 0: x= 5.0  obj =  64.0
Step  1 : x= 3.666666666666667  obj =  18.96296296296297
Step  2 : x= 2.7777777777777777  obj =  5.618655692729766
Step  3 : x= 2.185185185185185  obj =  1.6647868719199308
                      .   .   .
Step  14 : x= 1.0137019495631274  obj =  2.5724508967303e-06
Step  15 : x= 1.0091346330420865  obj =  7.622076731056633e-07

The correct answer in this case is x=1.0, so the method gets to within 0.009 
of the correct root in 15 steps. Depending on the application, this could be fine. 
What if the initial guess was terrible? If the process starts at x = 500, then it takes 
27 steps, but gets just a little closer to the right answer (x=1.0087). Starting at -500 
also takes 27 steps.

It’s possible that there is no root. What happens in that case? The program 
keeps looking. It overshoots, and then goes back, and forth, and back again. To 
prevent this from happening, it is common to place a limit of the number of times 
the program will try. When this limit is exceeded, an error occurs indicating that 
there is no solution.

This first example has illustrated some common concepts that are used in nu-
merical analysis, which is the mathematical discipline encompassing the compu-
tation of mathematical functions and operations. The common concepts include 
the following:



408  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 The initial guess: It is relatively common to have a numerical algorithm be-
gin at a guessed value.
 The delta: It is also common to have an algorithm step when the change in 
the result or some mathematical feature becomes smaller than a specified 
threshold, called delta.
 Iteration: Numerical methods frequently repeat a calculation, expecting it to 
converge on the correct result, using the previously calculated value as the 
new starting point.
 Maximum iterations: A user of a numerical method can assume that the 
method will not converge (get close enough to the right answer) if a specified 
number of attempts have been made.

 11.2 DIFFERENTIATION
Determining the derivative of a function is something that is often thought of 

as a symbolic operation, and the result is valid for any value of the function. This 
may not always be true, and it may not be easy to do in the general case. Think 
about what the previous algorithm does. It needs the derivative of a function at 
one specific point.  Can that be determined if the algebraic form of the function 
is not known? Yes, it can, to within some degree of accuracy.

The derivative of a function at a point x is the slope of the curve defined by 
that function at that point. The definition of the derivative of f at the point x is as 
follows:
 f ’(x) = ( f (x + h) – f (x - h))/(2h) (11.4)

h gets smaller and smaller, reaching what is called a limit in calculus. This for-
mula is essentially the mathematical definition of a derivative. On a computer, h 
can be made quite small, but can never be zero. If the expression above is used as 
an estimate of the derivative it will work in many cases. It is based on sampling 
two points of the function each time. An improvement can be made by using 
more points. For example,

 ( ) ( ) ( )2 8 8 ( 2 )
( ) 12

f x h f x h f x h f x h
f x h

− + + + − − + −
=  (11.5)

uses four points and often produces better results.



 Chapter  11 ·  Programming for  the Sciences   ■ 409

Coding this uses a function passed as a parameter. It makes sense that the 
function to be differentiated would be a parameter to the function that differenti-
ates it; other parameters will be x, the point at which it will be evaluated, delta, 
the accuracy desired, and niter, the maximum number of iterations. The calcu-
lation should take place in a try-except block so that numerical errors will be 
caught. The two-point and the four-point versions of the function that performs 
numerical differentiation are as follows:

def deriv1 (f, x, delta=0.0001, 
niter=20):  # Two point 
            # derivative
    global n0
    h = 0.001
    n = 0
    dx = f(x)
    while n<niter:
        try:
            old_dx = dx
            dx = (f(x+h)-f(x-h))/
                           (2*h)
            n = n + 1
            if abs(dx-old_dx) < 
                          delta:
                n0 = n
                return dx
        except:
            print ( "Exception 

deriv1")
            return 0

def deriv2 (f, x, delta=0.0001, 
niter=20):  # Four point 
            # derivative
    global n1
    h = 0.001
    n = 0
    dx = f(x)
    while n<20:
        try:
            old_dx = dx
            dx =(-f(x+2*h)+
                     8*f(x+h)- \
             8*f(x-h)+
                  f(x-2*h))/(12*h)
            n = n + 1
            if abs(dx-old_dx) < 
                          delta:
                n1 = n
                return dx
        except:
            print ("Exception 
                    deriv2")
            return 0

Testing these functions is an excellent demonstration. First, a function to be 
differentiated is written. The previous example on finding roots has a simple one 
(renamed as f1):

def f1 (x):
    return (x-1)*(x-1)*(x-1)

That example also has a function that represents the derivative of f1 at the 
point x (renamed df1):

def df1 (x):
    return 3*x*x - 6*x+3



410  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The function df1() should return the exact derivative of f1(), and can be used 
to check the value returned by deriv1() or deriv2(). Create a loop that runs over 
a range of x values and compare the value returned from df1() to that returned by 
derive1() and/or deriv2():

for i in range (1,20):
    x = i*1.0
    f = f1(x)
    df = df1(x)
    mydf = deriv1 (f1, x)
    mydf2 = deriv2(f1, x)
    print (f, df, mydf, n0, "   ", mydf2, n1)

The result looks something like this:

f(x) df(x) result from deriv1 Niter result from derive2 Niter
0.0 0.0 9.999999e-07 1 -2.2209799e-19 1
1.0 3.0 3.0000009999 2 2.999999999999 2
8.0 12.0 12.00000099999 2 11.999999999999 2

.   .   .
4913.0 867.0 867.0000010015 2 867.0000000024 2
5832.0 972.0 972.000001001 2 972.0000000021 2

Both functions give excellent results in a very few iterations in this case. Of 
course, some functions present more difficulties than do simple polynomials (See 
Press et al. in the References).

 11.3 INTEGRATION
An integral is most often thought of as the area under a curve, where the 

curve is a function (Figure 11.1a). Numerical integration amounts calculating that 
area using an algorithm. The area of a rectangle is easy to calculate, so if the re-
gion under a curve could be reasonably approximated by a bunch of rectangles, 
then the problem would be solved. This is the idea behind the trapezoidal rule. 
The integral from x0 to x1 of a function f(x) can be approximated by the width 
(x1-x0) multiplied by the height (the average value of the function in that range), 
which is just a rectangle that approximates the area under the curve (Figure 11.1b). 
In mathematical notation, this is

 ( )
1

0 1
1 0

0

( ( ) ( ))( ) 2

x

x

f x f xf x x x += −∫  (11.6)



 Chapter  11 ·  Programming for  the Sciences   ■ 411

This would generally be a pretty poor approximation of a curve, and would 
yield correspondingly bad approximations of the integral.  However, the smaller 
the width x1-x0, the more accurate the approximation can be, and so using a great 
many small trapezoids would be much better than using only one (Figure 11.1c). 
How many?  That is not known at the outset, but could be increased from an ini-
tial guess until a desired accuracy was achieved.

A function that performs integration using this method would accept a func-
tion, the starting x0 and the ending x1 for the integral. The function would break 
the interval between x0 and x1 into n parts, when n is an initial guess. The func-
tion is evaluated for all n parts, the area of each trapezoid is computed, and they 
are summed to get the final result.  Now increase n and do it again. If the two 
values are close enough (delta), then the process is complete.

This is done in two steps, first using a function trap0() that computes and 
returns the sum of N trapezoids. The obvious but slow way to do this is shown in 
the following code.
def trap0 (f, x0, x1, n):  # Slow method

  
 (a) (b)

 (c)

Figure 11.1
Numerical integration by summing many small areas under a curve.



412  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    dx = (x1-x0)/n         # Divide range into N parts
    xa = x0                # Start at x0
    xb = x0+dx             # Current trapezoid is xa to xb
    sum = 0                # Sum of areas starts at 0.0
    for i in range(0, n):  # Add up N trapezoids
        f0 = f(xa)         # Compute function at xa and xb
        f1 = f(xb)
        sum = sum + dx*(f1+f0)/2  # Area of the trapezoid
        xa = xa + dx       # Next xa and xb are dx from 
        xb = xb + dx       # the current ones
    return sum             # The sum is the integral.

The integration function trapezoid() calls this function with increasing val-
ues of n until two consecutive results show a small enough difference (i.e., it is 
smaller than a provided delta value):
def trapezoid (f, x0, x1, delta=0.0001, niter=1024): 
    n = 4
    resold = trap0(f, x0, x1, 2)
    resnew = trap0(f, x0, x1, 4)
    while abs(resnew-resold) > delta:
        if n>niter: break
        resold = resnew
        n = n * 2
        resnew = trap0 (f, x0, x1, n)
    return resnew

The function trap0() can be sped up significantly by not re-computing the 
function twice each time through the loop, but remembering the previous value 
instead (Exercise 2). A more popular algorithm for integration is Simpson’s Rule, 
which tries to minimize the error even more by using a quadratic approximation 
to the curve at the top of the trapezoid, instead of a straight line.

 11.4  OPTIMIZATION: FINDING 
MAXIMA AND MINIMA

Finding extreme values, either the maximum or minimum, is a very common 
problem in computing, not just in science but in many disciplines. It is sometimes 
referred to as optimization. Naturally finding a best (in some sense) value would 
be appealing. What is the least amount of fuel needed to travel from Chicago to 
Atlanta? What route between those two cities requires the least amount of driving 



 Chapter  11 ·  Programming for  the Sciences   ■ 413

time? What route is shortest in terms of distance? There are many reasons to want 
an optimum and many ways to define what an optimum is.

In the following discussion, the function to be optimized is provided. The 
problem is how to find the location (parameters) where the minimum or maxi-
mum occurs.

 11.4.1 Newton Again

Figure 11.2 shows an example of a function to be maximized. There is a 
maximum of zz at the point x= x. How can this be found? If the nature of the 
function is known, for instance that it is a quadratic polynomial, then the op-
timum can be found immediately. It will be at the point where the derivative is 
zero. The problem of optimization is that one does not know much, if anything, 
about the function. It can only be evaluated, and perhaps the derivatives can be 
found numerically. Given that, how can the min or max be found?

If the derivative can be found, then it may be possible to search for an opti-
mum point. At a value x, if the derivative is negative, then the slope of the curve 
is negative at that point; if the derivative is positive, then the slope is positive. If 
an x value can be found where the slope is negative (call this point x0) and another 
where it is positive (call this x1), then the optimum (slope = 0) must be between 
these two points. Finding that point can be done as follows:

 1. Select the point between these two (x = (x0+ x1)/2).
 2. If the derivative is negative at this point, let x0 = x. If positive, let x1 = x.
 3. Repeat from Step 1 until the derivative is close enough to 0.

This process is almost random. Finding the two starting points is a matter of 
guessing until they are found. The search range gets smaller by a factor of 2 each 
iteration. The fact that the function can be evaluated at any point means that it 
is possible to make better guesses. In particular, it’s possible to assume that the 
function is approximately quadratic at each step. Quadratics have an optimum at 
a predictable place. The method called Newton’s Method fits a quadratic at each 
point and moves towards its optimal point. 

The method is iterative, and without doing the math, the iteration is

 1
( )  ( )n n

f xx x f x−
′

= − ′′  (11.7)



414  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A function to calculate the first and second derivative is needed. The formula 
for the second derivative is based on the definition of differentiation, as was the 
formula for the first. It is

 2
( ) 2 ( ) ( )( )  f x h f x f x hf x

h
+ − + −′′ =  (11.8)

The program should be straightforward. Repeat the calculation of  xn–1 - f ′(x)/
f ″(x) until it converges to the answer. This will be the location of the optimum. 
An example function is as follows:
def newtonopt (f, x0, x1, delta=0.0001, niter=20):
    x = (x0+x1)/2
    fa = 1000.0
    fb = f(x)
    i = 0
    print ("Iteration 0: x=", x, " f=", fb)
    while (abs(fa-fb) > delta):
        fa = fb
        x = x - deriv(f, x)/derivsecond(f, x)
        fb = f(x)
        i = i + 1
        print ("Iteration ", i, ": x=", x, " f=", fb)
        if i>niter:
            return 0

This finds a local optimum between the values of x0 and x1. A local optimum 
may not be the largest or smallest function value that the function can produce, 
but may be the optimum in a local range of values.

Figure 11.2a shows a typical quadratic function. It is f(x) = x2 - 2x + 8, and 
has an optimum at x=1. Because it is quadratic, the Newton optimization function 
above finds the result in a single step. Figure 11.2b is a sine function, and can be 
seen to have many minima and maxima. Any one of them might be found by the 
Newton method, which is why a range of values is provided to the function.

The newtonopt() function successfully finds the optimum in Figure 11.2a 
at x = 1, and finds one in Figure 11.2b at x = 90 degrees (p/2 radians). If there is 
no optimum the iteration limit will be reached. If either derivative does not exist, 
then an exception occurs.



 Chapter  11 ·  Programming for  the Sciences   ■ 415

 
 (a) (b)

Figure 11.2 
(a) Analytical function with a minimum. (b) A sine function has many minima and maxima.

 11.4.2 Fitting Data to Curves – Regression

Scientists collect data on nearly everything. Data are really numerical values 
that represent some process, whether it be physical, chemical, biological, or so-
ciological. The numbers are measurements, and scientists model processes using 
these measurements to further understand them. One of the first things that is 
usually done is to try to find a pattern in the data that may give some insight into 
the underlying process, or at least allow predictions for situations not measured. 
One of the common methods in data analysis is to fit a curve to the data; that 
is, to determine whether a strong mathematical relationship exists between the 
measurements.

As an example, a set of measurements of tree heights will be used. The height 
of a set of a specific variety of trees is made over a period of ten years, and the 
data resides in a file named “treedata.txt.” Is there a linear relationship (i.e., does 
a tree grow generally the same amount each year)? Specifically, what is that re-
lationship (i.e., how much can we expect a tree to grow)? Figure 11.3 shows a 
visualization of these data in the form of a scattergram or scatter plot, in which 
the data are displayed as points in their (x,y) position on a grid.



416  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Figure 11.3 
A scattergram of a typical set of measurements.

The “curve” to be fit in this case is a line. What is the equation of the line that 
best represents the data in the Figure? If that were known, then it would be pos-
sible to predict the height of a tree with some degree of confidence or to estimate 
a tree’s age from its height.

One form of the equation of a line is the point-slope form:

 y = mx + b

where m is the slope (angle) of the line and b is the intercept, the place where the 
line crosses the Y axis. The goal of the regression process, in which the best line 
is found, is to identify the values of m and b. A simple observation is needed first. 
The equation of a line can be written as

 mx + b - y = 0 (11.9)

If a point actually sits on this line, then plugging its x and y values into the 
equation results in a 0 value. If a point is not on the line, then mx + b - y results in 
a number that amounts to an error; its magnitude indicates how far away the point 
is from the line. Fitting a line to the data can be expressed as an optimization 
problem: find a line that minimizes the total error over all sample data points. If 
(xi, yi) is data point I, then the goal is to minimize

 2

0

( )
n

i i
i

mx b y
=

+ −∑  (11.10)



 Chapter  11 ·  Programming for  the Sciences   ■ 417

by finding the best values of m and b. The expression is squared so that it will 
always be positive, which simplifies the math. It may be possible to do this opti-
mization using a general optimization process such as Newton’s, but fortunately, 
the math has been done in advance for a straight line. Other situations are more 
complicated, depending on the function being fit and the number of dimensions

A simple linear regression is done by looking at the data and calculating the 
following:

meanX = mean value of 
x

x n= ∑

MeanY = mean value of 
y

y n= ∑

stdX = standard deviation of 
 2( mean )

1
x

nx
x−

= −
∑  

stdY = standard deviation of 
 2( mean )

1
y y

y n
−

= −
∑

r = correlation between x and 
2 2

( mean )( mean )x x y y
y

x y

− −
= ∑

∑ ∑
Each of these can be calculated using a separate function.  Then the slope of 

the best line through the data would be:

 std std
ym r x=  (11.11)

And the intercept is:

 b = meany – m*meanx (11.12)

The function regress() that does the regression accepts a tuple of X values 
and a corresponding tuple of Y values, and returns a tuple (m, b) containing the 
parameters of the line that fits the data. It depends on other functions to calculate 
the mean, standard deviation, and correlation; these functions could generally be 
more useful in other applications. The entire collection of code is:



418  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

from math import *

def mean (x):
    sum = 0.0
    for i in range (0, len(x)):
        sum = sum + x[i]
    sum = sum/len(x)
    return sum

def sdev (x, meanx):
    sum = 0
    for i in range(0,len(x)):
        sum = sum + 
              (x[i]-meanx)*
               (x[i]-meanx)
    sum = sum/(len(x)-1)
    return sqrt (sum)

def correlate (x, y, meanx, 
               meany):
    sum1 = 0
    sumx2 = 0
    sumy2 = 0
    for i in range(0,len(x)):
        z = (x[i]-meanx)*
                 (y[i]-meany)
        sum1 = sum1 + z
        sumx2 = sumx2 + \
           (x[i]-meanx)*

(x[i]-meanx)
        sumy2 = sumy2 + \
           (y[i]-meany)*

(y[i]-meany)
    return sum1/

sqrt(sumx2*sumy2)

def regress (x, y):
    mx = mean(xdata)
    my = mean(ydata)
    sdx = sdev (xdata, mx)
    sdy = sdev (ydata, my)
    if sdx == 0: return
    r = correlate 

(xdata,ydata,mx,my)
    m = r * sdy/sdx
    b = my - m * mx
    return (m, b)

f = open ("treedata.txt", 
"r")

s = f.readline ()
xdata = ()
ydata = ()

# Main program: test regress
# Read each lines as a string
# and split at the comma; 
# 2 reals
while s != "":
    for i in range (1,len(s)):
        if s[i] == ",": break
    x = float(s[0:i-1])
    y = float(s[i+1:])
    xdata = xdata + (x,)
    ydata = ydata + (y,)
    s = f.readline()

line = regress(x, y)

 11.4.3 Evolutionary Methods

A genetic algorithm (GA) or an evolutionary algorithm (EA) is an optimiza-
tion technique that uses natural selection as a metaphor to optimize a function or 
process. The idea is to create a collection of many possible solutions (a popula-
tion), which are really just sets of parameters to the objective function. These are 



 Chapter  11 ·  Programming for  the Sciences   ■ 419

evaluated (by calling the function) and the best of them are kept in the popula-
tion; the remainder are discarded. The population is refilled by combining the re-
maining parameter sets with each other in various ways in a process that mimics 
reproduction, and then this new population is evaluated and the process repeats.

The population contains the best solutions that have been seen so far, and by 
recombining them, a new, better set of solutions can be created, just as nature se-
lects plants and animals to suit their environment. This method does not require 
the calculation of a derivative, so it can be used to optimize functions that cannot 
be handled in other ways. It can also deal with large dimensions, that is, functions 
that take a large number of parameters.

Consider the problem of finding the minimum of a function of two variables. 
This is an attempt to find values for x and y that result in the smallest function 
result. Evolutionary algorithms are often tested on difficult functions with nu-
merous local minima or large flat regions. Two such functions are used here: the 
Goldstein-Price function,

(1 + (x + y + 1)2 (19 - 14x + 3x2 - 14y + 6xy + 3y2) 
 (30 + (2x +3y)2 (18 - 32x + 12x2 + 48y - 36xy + 27y2)) (11.13)

and Bohachevsky’s function,

 x2 + y2 – 0.3 cos(3px) – 0.4 cos(4py) + 0.7 (11.14)

Graphs of these functions are shown in Figure 11.4.

The first step in the evolutionary algorithm is to create a population of poten-
tial solutions. This is a collection of parameter pairs (x,y) created at random. The 
population size for this example is 100, and is a parameter of the EA process. This 
is done in the following way:
def genpop (population_size):
    pop = ()
    for i in range(0, population_size):
        p = (randrange(-10, 10),  randrange(-100, 100))
        pop = pop + (p,)
    return pop

The population is a tuple of a hundred (x, y) parameter pairs. These need to 
be evaluated, and so the objective function must be written. This differs for each 



420  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

optimization problem. In this case, it is the sum of the errors between a given line 
(one of the parameters) and the data points. One way to calculate this is:
def objective (x, y):        # One of many possiblke
                             # objective functions    
    return goldsteinprice (x, y)
#   return boha (x, y)

def goldsteinprice (x, y):  # Goldstein-Price function 
                            # f(0, -1) = 3
    return (1+(x+y+1)**2 * (19-14*x+3*x*x - 14*y +6*x*y + 
                            3*y*y)) * \ (30+(2*x-3*y)**2 * 
 (18-32*x+12*x*x+48*y-36*x*y+27*y*y))

def boha (x, y):
    z = x*x + y*y -0.3*cos(3*pi*x) - 0.4*cos(4*pi*y) + 0.7
    return z

All members of the population are evaluated, and the best ones (in this case, 
the ones with the smallest objective function value) are kept. A good way to do 
this is to have the values in a tuple E, where E[i] is the result of evaluating param-
eters P[i], and sorting the collection is the descending order on E. Since there are 
100 entries in E, this means that E[0:n] contains the best n% of the population. 
The function eval()creates a tuple of the function evaluations for the whole popu-
lation, and sort() organizes these and the corresponding parameters. These con-
tain nothing new, and are not be shown here. The program here selects the best 
10% and discards the remainder, replacing them with copies of the good ones.

The key issue is one of introducing variety in the population. This means 
changing the values of the parameters while, one would hope, improving the overall  

 

Figure11.4 
Two dimensional functions to be optimized.



 Chapter  11 ·  Programming for  the Sciences   ■ 421

performance of the group. Using the metaphor of natural selection and genetics, 
there are two ways to introduce change into the population: mutation and crossover. 
Mutation involves making a small change in a parameter. In real DNA, a muta-
tion changes one of the base pairs in the sequence which would usually amount to 
a rather small change, but which would be fatal in some cases. In the EA we are 
writing, a mutation is a random amount added to or subtracted from a parameter. 
Mutations occur randomly and with a small probability, which is named pmut in 
the program. Values between 0.015 and 0.2 are typical for pmut, but the best value 
cannot be determined, and it is problem specific. A value of 0.02 is used here.

The function mutate() examines all elements in the global population, mu-
tating them at random (i.e., adding random values).
def mutate (m):
    global pmut, population
    for i in range (int(m), len(population)):
        c = population[i]
        if random () < pmut:         # Mutate the x parameter
            c[0] = c[0] + random()*10.0-5
        if random () < pmut:        # Mutate the y parameter
            c[1] = c[1] + random()*10.0-5
        population[i] = c

A crossover is more complex, involving two sets of parameters.  It involves 
swapping parts of the parameters sets from two “parents.” Some parameters 
could be swapped entirely, in this case meaning that (x0, y0) and (x1, y1) become 
(x0, y1) and (x1, y0). Other times, parts of one parameter would be combined with 
parts of another. There are implementations involving bit strings that make this 
easier, but when using floating point values as is being done here, a good way to 
do a crossover is to select two parents and replace one of the parameters in each 
with a random value that lies between the original two.
def crossover (m):
    global population, pcross
    for i in range (m, len(population)):  # Keep the best 
                                          # ones unchanged
        if random () < pcross:            # Crossover at  
                                          # the given rate
            k = randrange(m, len(population)) # Pick a 
                                              # random mate
            w = randrange (0, 1)         # Change X or Y?
            c = population[i]            # Get individual 1



422  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

            g1 = c[w]                    # Get X or Y for 
                                         # this guy
            cc = population[k]           # get individual 2
            g2 = cc[w]                   # Get X or Y
            if (g1>g2): t = g1; g1 = g2; g2 = t 
 # swap so g1 is smallest
            c[w] = random()*(g2-g1) + g1  # Generate new 
                                          # parameter for 1
            cc[w] =random()*(g2-g1) + g1  # Generate new 
                                          # parameter for 2    

Sample output from three attempts to find the optimal value of Bohachevsky’s 
function is as follows:

Iterations x y Result
5 [0.002528698, 0.0] at  9.158793881192118e-05
173 [5.38185770e-10, -0.0006229] at  1.2643415301605287e-05
4 [-0.0007491, 0.0] at  8.0394329584621e-06

Figure 11.5 
The evolutionary algorithm process.



 Chapter  11 ·  Programming for  the Sciences   ■ 423

These results show that sometimes the process takes much more time to ar-
rive at a solution than others. It depends on the initial population, as well as on the 
parameters of the program: the mutation and crossover probabilities, the percent-
age of the top individuals to retain, and the nature of the mutation and crossover 
operators themselves.

Figure 11.5 outlines the overall process involved in the optimization. Details 
on specific techniques can be found in the references.

 11.5  LONGEST COMMON SUBSEQUENCE 
(EDIT DISTANCE)

So far in this chapter, the methods being discussed are numerical ones. There 
are, however, many algorithms that are not numeric in nature, but are more sym-
bolic, involving patterns, pictures, sounds, or other more complex data forms. It 
is true that at some level all problems to be solved on a computer must be formu-
lated using numbers, but in the examples so far, the numbers are the subject of the 
problem, and the problem would be solved numerically even if done with a pencil 
and paper.  In other cases, this is not so.

As a major example, consider the problem of comparing two sequences of 
DNA. A sequence in this instance consists of a string of letters, each one referred 
to as a base in the sequence. DNA consists of a long sequence of base pairs involv-
ing four molecules: Adenine (A), Guanine (G), Thymine (T), and Cytosine (C), 
linked together chemically. These ultimately define the structure of a protein, and 
it is the sequence that is important. A common problem in computational biology 
is to find the longest sequence in common between two DNA strands, where the 
samples may be from different individuals or even different species. Methods for 
doing this tend to involve the edit distance or Levenshtein distance.

The edit distance is a way of specifying how similar or dissimilar two strings 
are to one another by finding the minimum number of editing operations required 
to transform one string into the other. An editing operation can be a change in a 
character, a deletion, or an insertion. For example, what is the edit distance be-
tween the word “planning” and the word “pruning”? It is 3:

p l a n n i n g
p r a n n i n g     change “l” to “r”
p r u n n i n g     change “a” to “u”
p r u    n i n g     delete “n”



424  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

How is this used when looking at DNA? A DNA sequence is a set of the codes 
read from a piece of DNA, and it is a string containing only the letters G,A,T, and 
C. Comparing two pieces of DNA is a matter of comparing the two strings.  The 
two strings AGGACAT and ATTACGAT are distance 3 from each other. The 
longest common sub-sequence has 5 characters in it:

AGGAC AT
ATTACGAT

 11.5.1 Determining Longest Common Subsequence (LCS)

Exhaustive searching the two strings S1 and S2 for the longest common sub-
sequence is simply be too slow for any practical purpose.  Fortunately, we now 
have the Smith-Waterman method. It builds a matrix (two-dimensional array) 
where each character of the first string represents a column of the matrix, and 
each character in the other string forms a row, in order of appearance. The matrix 
is filled with numbers using the following relation:

 
1 2( 1, 1)  ( ( ), ( ))

( , )  max ( 1, ) gap penalty
( , 1) gap penalty

0

T i j S i S j
T i j T i j

T i j

σ− − + 
 = − + 
 − +
 
 

 (11.15)

The function s(a,b) gives a penalty for a match/mismatch between two char-
acters a and b. Here, it is 2 for a match and -2 for a miss. The gap penalty is the 
value assigned to leaving a gap in the sequence to perform a better match. Usu-
ally, this is -1. The scheme offers a degree of flexibility, so that different penalties 
(and rewards) can be applied in different circumstances. 

The first step in the Smith-Waterman method is to create a matrix (a table) 
T in which there are len(S1+1) columns and len(S2+1) rows.  The first index in 
T(i,j) refers to the column, and the second index is the row. The values in the cur-
rent row are a function of those in the previous one. Place a 0 in each element of 
the first row and the first column. For the two strings used previously, this would 
look like Table 11.1.



 Chapter  11 ·  Programming for  the Sciences   ■ 425

Table 11.1
First step in the Smith-Waterman method

S2 \ S1  A G G A C A T
0 0 0 0 0 0 0 0

A 0 *
T 0
T 0
A 0
C 0
G 0
A 0
T 0

Now, for any element T(i,j) the neighboring elements are as follows:
 T(i - 1, j-1) T(i, j-1) T(i+1, j-1)
 T(i-1, j) T(i, j) T(i+1, j)

The first cell to fill in the table T is T(1,1), marked with a * character in Table 
11.1. The relation used to fill this cell has four parts: 
  1. ( ) 1 21,  1  ( ( ), ( ))T i j S i S jσ− − +
  The characters in the row and column match, so ( )1 2( ), ( )  ( , )S i S j A Aσ σ= =

1 + T(0,0) = 2
 2. Gap penalty is -1, T(i -1, j) = 0, T(0,1) = 0. Result is -1
 3. Gap penalty is -1, T(i, j-1) = T(1, 1) = 0. Result is -1
 4.  Result is 0

The maximum value of these four calculations is 1, so T(1, 1) = 2.
Table 11.2
The next step in the Smith-Waterman method

S2 \ S1  A G G A C A T
0 0 0 0 0 0 0

A 0 2 *
T 0
T 0
A 0
C 0
G 0
A 0
T 0



426  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The next cell to compute is T(2,1). This time, the two characters are not the 
same, so 

 1. ( ) 1 21,  1  ( (( ))),T i j S i S jσ− − +  where ( ) ( )1 2( ) ,),   ( jS i S G Aσ σ= =  -1 + 
T(1, 0) = -2

 2. Gap penalty is -1, T(i-1, j) = T(1, 1) = 2. 
  Result is 2 - 1 = 1
 3. Gap penalty is -1, T(i, j-1) = T(2, 1) = 0. Result is -1
 4. Result is 0
  and so T(2, 1) = 1
For T(3, 1),
 1. G and A are not the same, s(G,T) = -2:
 2. T(i-1.j) = T(2,1) = 1 so 1-1 = 0
 3. T(i, j-1) = T(3,0) = 0 so 0 – 1 = -1
 4. 0
  Result is 0
For T(4, 1),
 1.  s(A, A) = 2, 
 2. T(i-1, j) = T(3, 1) = 0, 0-gap = -1
 3. T(i, j-1) = T(4, 0) =0, 0-gap = -1
 4. 0
  Result is 2
For T(5,1),
 1. s(C, A) = -2, 
 2. T(i-1, j) = T(4, 1) = 2, 2-gap = 1
 3. T(i, j-1) = T(5, 0) =0, 0-gap = -1
 4. 0
  Result is 1</NL>
For T(6,1), 
 1. s(A, A) = 2, 
 2. T(i-1, j) = T(5, 1) = 1, 1-gap = 0



 Chapter  11 ·  Programming for  the Sciences   ■ 427

 3. T(i, j-1) = T(6 0) =0, 0-gap = -1
 4. 0
  Result is 2
Finally for T(7,1),
 1. s(T, A) = -2, 
 2. T(i-1,j) = T(6, 1) = 2, 2-gap = 1
 3. T(i, j-1) = T(7 0) =0, 0-gap = -1
 4. 0
  Result is 1
The result after row 2 is complete is shown in Table 11.3.
Table 11.3
Results after row 2 is completed

S2 \ S1  A G G A C A T
0 0 0 0 0 0 0 0

A 0 2 1 0 2 1 2 1
T 0
T 0

Now, move to the next row.  The process repeats until all cells have been 
examined and assigned values. For this example, the final matrix is shown in 
Table 11.4.
Table 11.4
Final matrix result using the Smith-Waterman method

S2 \ S1  A G G A C A T
0 0 0 0 0 0 0 0

A 0 2 1 0 2 1 2 1
T 0 1 0 0 1 0 1 4
T 0 0 0 0 0 0 0 3
A 0 2 1 0 2 1 2 2
C 0 0 1 0 0 4 3 2
G 0 0 3 2 1 3 2 1
A 0 2 2 1 4 3 5 4
T 0 1 1 0 3 2 4 7

The lower right entry is column 7, row 8, or (7,8).

This matrix indicates the degree of match at points in the string. To determine 
the actual match between the strings, begin with the largest value in the matrix. 



428  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

In this case, it is in the lower right corner, but that’s not always true. Wherever 
the maximum is, start at that point in the matrix and trace left and upwards; this 
is essentially moving from the end of each string back to the beginning. At each 
step the move is left, up, or diagonally.

The process builds two ways to match the string. One indicates how to change 
s1 into s2 (call this M1), and the other indicates how to turn s2 into s1 (call this 
M2). Both strings are constructed from, in this case, (7,9) back to (0,0). 

def backtrack():
    global s1, s2
    mi = 0
    mj = 0
    m1 = ""
    m2 = ""
    maxv = T[mi][mj]
     for j in range (1, len(s2)+1):
       for i in range 
                 (1, len(s1)+1):
           if T[i][j] >= maxv:
               maxv = T[i][j]
               mi = i
               mj = j

This backtracking stage is chal-
lenging. Begin with two empty 
strings, M1 and M2. Locate the 
largest value in the matrix (there 
may be more than one) and begin 
at that set of i,j coordinates: call 
this point (mi,mj)

while mi>0 or mj>0:
  t11 = T[mi-1][mj-1]   # Diagonal
  t01 = T[mi][mj-1]    # Up
  t10 = T[mi-1][mj]    # Left

A step to the left from this point 
is to (mi-1, mj); upwards is (mi, 
mj-1); diagonally up-left is (mi-
1,mj-1). The direction to be se-
lected is the one that has the 
largest value of T, with a bias to-
wards the diagonal if there is no 
specific maximum (i.e., all three 
are equal). 

# Diagonal is best 
  if t11>=t01 and t11 >= t10:      
    m1 = s1[mi-1] + m1
    m2 = s2[mj-1] + m2
    mi = mi - 1
    mj = mj - 1

A movement in the diagonal di-
rection implies a simple match or 
mismatch. The action should be 
to copy the corresponding char-
acter from s1 into M1 and the 
character from s2 into M2, then 
set mi = mi – 1 and mj = mj – 1.



 Chapter  11 ·  Programming for  the Sciences   ■ 429

# UP is best
  elif t01>t11 and t01 > t10:    
      m1 = s1[mi-1] + m1
      m2 = "_" + m2
      mj = mj - 1

A movement upwards implies 
that there is to be a gap insert-
ed into M2, and so s1 matches. 
Place a “_” character into M2 and 
place the current (mi) character 
into M1.  Leave mi alone but let 
mj = mj – 1, thus moving up in 
the matrix.

# Left is best 
  elif t10>t11 and t10>t01: 
      m1 = "_"+m1
      m2 = s2[mj-1]+m
      mi = mi - 1

A movement left implies that a 
gap is to be inserted into M1, and 
so M2 matches. Place a “_” char-
acter into M1 and s1[mj] into 
M2. Leave mj alone, but set mi = 
mi – 1, thus moving left.

# End of WHILE Loop This process continues until ei-
ther mi or mj becomes smaller 
than 0.

if mi>0:
    m1 = s1[0:mi] + m1
if mj > 0:
    m2 = s2[0:mj] + m2

If mi or mj is not zero, it means 
there are some characters left 
over in one of the two strings. 
Copy them into the correspond-
ing match string M1 or M2.

If there is more than one cell in T with a maximum value, then a route should 
be traced back from each maximum.

For the example string, the result is

M1 =  AGGACCAT
M2  = ATTAC_AT

There is a mismatch at the GG/TT pair and an inserted gap in M2.

 11.5.2 NumPy

Let us now discuss the numerical Python package, NumPy. Python executes 
slowly by standards of languages like C and Julia because it is interpreted, not 
compiled into machine code. It also provides high level data structures like lists 
and dictionaries, and these involve a certain amount of computational overhead 
(they can be slow).



430  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

NumPy tries to get past this by using a new data structure that has much less 
overhead than does a list: the ndarray. It is a homogeneous (all elements have the 
same type) multi-dimensional (vectors, matrices, and more) table of the same 
kind as a C or Java array. An ndarray is indexed by unsigned integers beginning 
at 0. NumPy offers other features, but let’s start here.

 11.5.3 One Dimensional Arrays (Vectors)

A one-dimensional array is usually used to represent a mathematical vector 
in scientific programming. A common use of a vector is to represent a direction. 
Let’s have an object at a location P = (x,y) on the screen, and give it a velocity of 
4.5 in the x direction and 3 in the y direction. The velocity vector is V = (4.5, 3) as 
a tuple. Each iteration, the object will move by this amount, so in the first itera-
tion x = x + 4.5 and y = y+3 will give the new position of the object. As vectors, 
we say that P = P + V.

There are four ways to create a vector like this in NumPy. First, we can use 
the built-in function array and pass it the tuple or list:
V = array((4.5, 3))              # from numpy import *
or 
V = numpy.array((4.5, 3))       # import numpy

depending on how NumPy was imported. The variable V is now a NumPy array. 
Another way to create an array is by using the arange function:
V = arange(start, end, inc)

This initializes the array as numbers from start to end in increments of inc. 
The statement
V = arange(0, 10, 1)

gives V the value [0 1 2 3 4 5 6 7 8 9]. Starting at value 0 for 10 values, add 1 each 
time. A vector of length 2 could be created for V and then the values we want 
could be assigned:

V = arange(1., 2., 1)
V[0] = 4.5
V[1] = 3



 Chapter  11 ·  Programming for  the Sciences   ■ 431

Unlike other parts of Python, NumPy pays some attention to types. Notice 
that the call to arange use floating point numbers as start and end values. This 
creates a floating point nparray. If the statement had been V = arange(1, 2, 1) 
then the array V would contain integers.

The linspace function also creates an array, and is used when floating point 
arguments are used as parameters. It can be difficult to predict how the arange 
function will work sometimes. How many elements are created by the call 
arange(1,3,0.3)? The answer is 7:

[1.  1.3  1.6  1.9  2.2  2.5  2.8]

What linspace does is divide a range equally into N parts. So
linspace(1, 3, 9)

divides the range between 2 and 3 into 9 divisions:
[1.   1.25 1.5  1.75 2.   2.25 2.5  2.75 3.  ]

Finally, an array full of zeros is created:
z = zeros((3))

This creates an 1D array with 3 zero values: 
[0. 0. 0.]

We can do basic arithmetic on arrays. If V = array((4.0, 3.0)) and W = ar-
ray((5.0, 7.0)) then, 

V+W is [ 9. 10.]
V-W = [-1. -4.]
V*W = [20. 21.]
V/W = [0.8    0.42857143]

We can do arithmetic with simple numbers (scalars), too:
2*W = [10. 14.]

The vector dot product is 
V.dot(W) = 41.0.

Relational operators can be applied. So,
V<W = [ True  True]



432  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

We can apply NumPy mathematics functions (not standard math library 
ones):

log(W) = [1.60943791 1.94591015]

The power of this new type is better illustrated in two dimensions as matrix 
operations.

 11.5.4 Two Dimensional Arrays (Matrices)

Creating a matrix is done by passing the array function a list of lists, one for 
each row of the matrix. Consider the 3x3 matrix,

A = array( [[1, 0, 2], [0, 1, 1] [0, 2, 1] )

which is written in mathematical form as

 
1 0 3
0 1 1
0 2 1

 
 
 
  

 (11.16)

All of the operators that have been described so far apply to these too, but also 
matrix multiplication. Multiplying A*A is simply done by using the @ operator:

A@A = [[1 4 4]
               [0 3 2]
               [0 4 3]]
Another convenient aspect of nparray is upcasting, meaning that the type 

of the array can change depending on the type of the operands. Multiplying an 
integer array by a floating point one gives a floating-point result.

Want a matrix of random numbers? First we create an instance of the NumPy 
random number generator, because the usual one does not know about NumPy 
types:

r = random.default_rng(1)

Now, call random with the size of the matrix:
x = r.random((3,3))

which gives the result
[[0.51182162 0.9504637  0.14415961]
[0.94864945 0.31183145 0.42332645]
[0.82770259 0.40919914 0.54959369]]



 Chapter  11 ·  Programming for  the Sciences   ■ 433

 11.5.5 Sample Problem: Finding Paths

We are going to solve a very prac-
tical problem: Is there a way to get 
from point A to point B, and how many 
steps will it take? Admittedly, a step 
could be arbitrary, but this problem 
can be re-coded to find that answer, 
too. Consider the map in Figure 11.6. 
This is a simplified version of part 
of the New York subway system. Ten 
points have been identified here, and 
each point has a way to get to some 
other nearby points directly. An adja-
cency matrix for this map has a row 
and a column for each point, and has a 
1 if the two points are adjacent and a 0 
otherwise. Adjacency here means con-
nected with no nodes in between. For 
example, point 6 is adjacent to points 
7 and 5 here. The points represent the 
following places:

 1.  Marble Hill
 2.  Pelham Bay Park
 3.  Columbia University
 4.  Lincoln Center
 5.  Times Square
 6.  Chambers Street
 7.  Wall Street
 8.  City Hall
 9.  Grand central
 10.  Queens Plaza

Is City Hall reachable from Wall Street? Using this map, how many stops are 
required for the journey?

Figure 11.6
Part of the New York subway system.



434  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

In the adjacency matrix, we place a 1 if the row and column locations are im-
mediately adjacent and a 0 otherwise. The matrix looks like this:

1  0  1  0  0  0  0  0  0  0
0  1  0  0  0  0  0  0  1  0
1  0  1  1  0  0  0  0  0  0
0  0  1  1  1  0  0  0  0  0
0  0  0  1  1  1  0  0  1  0
0  0  0  0  1  1  1  0  0  0
0  0  0  0  0  1  1  0  0  0
0  0  0  0  0  0  0  1  1  0
0  1  0  0  1  0  0  1  1  1
0  0  0  0  0  0  0  0  1  1

The algorithm for finding whether paths exist is not intuitive, but easy to 
implement using NumPy. When the adjacency matrix is multiplied by itself, the 
result has non-zero values in locations that represent points that are two steps 
apart. Multiply it again, and we can find points that are three steps apart, and so 
on. Using NumPy, this matrix could be initialized as follows:

from numpy import *
adj = array( [[1,0,1,0,0,0,0,0,0,0],
         [0,1,0,0,0,0,0,0,1,0],
         [1,0,1,1,0,0,0,0,0,0],
         [0,0,1,1,1,0,0,0,0,0],
         [0,0,0,1,1,1,0,0,1,0],
         [0,0,0,0,1,1,1,0,0,0],
         [0,0,0,0,0,1,1,0,0,0],
         [0,0,0,0,0,0,0,1,1,0],
         [0,1,0,0,1,0,0,1,1,1],
         [0,0,0,0,0,0,0,0,1,1]])

Indexing a value in a two-dimensional array requires two indices. The first 
index references the row desired, and the second references the column.  Numpy 
gives us the matrix multiply operations, so the program is as follows:

count = 1
b = adj*adj
while b[6][7] == 0:
    b = adj@b
    count = count + 1
    print (count, b)
    if count > 10:



 Chapter  11 ·  Programming for  the Sciences   ■ 435

        break
print ("steps: ", count)

As usual, the indices are always at 0, so adj[6][7] refers to a connection be-
tween points 7 and 8, which means  Wall Street and City Hall.

 11.5.6 Linear Regression Again

The linear regression program that was written earlier can be written with 
fewer lines of code, and it will be faster too, if we use NumPy. The array opera-
tions make the code more compact.  For example, finding the means of the x and 
y data can be done in one line each if both are NumPy arrays:

    mx = x.sum()/len(x)         # Mean X
    my = y.sum()/len(y)         # Mean y

The same is true of the standard deviation:
sdx = sqrt ( sum ( (x-mx)**2 )/(len(x)-1) )
 # standard deviation X
sdy = sqrt ( sum ( (y-my)**2 )/(len(y)-1) )
     # standard deviation Y

The expression x-mx actually results in a new array in which each element 
is the corresponding value of the x array with mx, the mean, subtracted from it. 
(x-mx)**2 squares each element in this array. The code that computes the correla-
tion is also much more compact.

This NumPy implementation is about twice as fast as the original:
from numpy import *

def correlate (x, y, meanx, meany):
    a = sum ( (x-meanx)*(y-meany) )
    b = sum ((x-meanx)**2)
    c = sum ((y-meany)**2)
    v = a/sqrt(b*c)
    return v

def regress (x, y):
    mx = x.sum()/len(x)         # Mean X
    my = y.sum()/len(y)         # Mean y
    sdx = sqrt ( sum ( (x-mx)**2 )/(len(x)-1) 
 )    # standard deviation X



436  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    sdy = sqrt ( sum ( (y-my)**2 )/(len(y)-1) )
     # standard deviation y
    if sdx == 0: return
    r = correlate (x, y, mx, my)
    m = r * sdy/sdx
    b = my - m * mx
    return (m, b)

def err (x, y, m, b):
    return sum(m*x + b - y)

f = open ("treedata.txt", "r")
s = f.readline ()
x = zeros((100))
y = zeros((100))

for j in range(0,100):
    for i in range (1,len(s)):
        if s[i] == ",":
            break
    x[j] = float(s[0:i-1])
    y[j] = float(s[i+1:])
    s = f.readline()

line = regress(x, y)
print ("Equation is y = ", line[0], "*x + ", line[1])
print ("Error is ", err(x,y, line[0], line[1]))

 11.6 SUMMARY
A discussion of some of the more important problem types studied by scien-

tists was presented along with a method for their solution. The root of an equa-
tion is the place where its value is zero, and Newton’s method was described as 
a means of finding a root. Newton’s method requires that the derivative of the 
function be known, so the means of numerically determining the derivative were 
also discussed.

Since the derivatives could be calculated, we discussed the methods for per-
forming integration and wrote the functions for doing the calculation using the 
trapezoidal rule. 



 Chapter  11 ·  Programming for  the Sciences   ■ 437

One of the more common calculations in science is to find an optimum value 
for a function. Another method of Newton’s was used to find maxima or minima 
of a function.

The modeling of data is important in scientific (and other) disciplines. A 
method for finding the best straight line that passes through a set of data was il-
lustrated (linear regression) and code was designed and tested for this problem. 

Evolutionary algorithms can be used to find the optimum of a function, and 
they are especially useful when dealing with multi-dimensional functions or 
functions that have many local optima, and when no derivative of the function 
exists.

Biologists sometimes need to match sequences of DNA. A method that does 
this using bases as characters and sequences as strings was presented; this is 
the Smith-Waterman algorithm for local sequence matching, and it is commonly 
used for these problems.

NumPy is a numerical math package for Python whose main feature is a 
multi-dimensional array. This implementation has faster execution for mathe-
matical work than lists and tuples, and it implements some convenient vector and 
matrix operations.

Exercises

 1.  Modify the root finding example so that a numerical derivative is used instead 
of an analytical one (i.e., use derive1() or derive2()). This is a more practical 
situation. What is the effect?

 2.  Modify the trap0() function in the trapezoid rule example so that it never 
calls the function being evaluated more than once for any point. 

 3.  Look up Simpson’s Rule and code your own version. Compare it with the 
trapezoid rule for two functions of your choice. Which one is more accurate 
after each iteration? 

 4.  Write a function error() that accepts X and Y data tuples, and values a and b. 
It returns the total error between the data points and the curve ax2+bx. Write 
it using NumPy and without using NumPy.



438  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 5.  The (natural) logarithm of a value v is defined to be the integral of 1/x from 
1 to v. Create a function that calculates the natural log using the existing 
integration function.

 6.  Run the evolutionary algorithm to optimize the Goldstein-Price twenty times. 
Does it ever fail to approach the minimum? How often?  What can be done if 
an EA does not arrive at an optimum, and how can it be determined?

 7.  Using software developed in this chapter, find two positive numbers whose 
sum is 9 and so that the product of one number and the square of the other 
number is a maximum.   

Max P = x y2 = x ( 9-x)2

Notes and Other Resources

Online edit distance calculator: http://planetcalc.com/1721/

Smith-Waterman algorithm: 

http://www.slideshare.net/avrilcoghlan/the-smith-waterman-algorithm

https://www.youtube.com/watch?v=jrJ23aaByE8

Warshall’s algorithm: https://cs.winona.edu/lin/cs440/ch08-2.pdf

NumPy: https://numpy.org/doc/1.18/contents.html

 1. D. Levy, Lecture Notes (Ch. 5). Numerical Differentiation,  http://www2.
math.umd.edu/~dlevy/classes/amsc466/lecture-notes/differentiation-chap.
pdf

 2. William Press, Saul Teukolsky, William Vetterling, and Brian Flannery 
(2007). Numerical Recipes: The Art of Scientific Computation  (3rd edition), 
Cambridge University Press.

 3. Richard Hamming (1987).  Numerical Methods for Scientists and Engineers, 
Dover Publications.

 4. J. R. Parker (2002).  Genetic Algorithms for Continuous Problems, 15th 
Canadian Conference on Artificial Intelligence, Calgary, Alberta, May 27-29.

 5. Goldberg, D. E., Genetic Algorithms, Optimization, and Machine Learning, 
Addison-Wesley, Reading MA. 1989.



 Chapter  11 ·  Programming for  the Sciences   ■ 439

 6. vlab.amrita.edu, (2012). Global alignment of two sequences - Needleman-
Wunsch Algorithm. Retrieved 9 December 2015, from vlab.amrita.edu/?sub
=3&brch=274&sim=1431&cnt=1

 7. S. B. Needleman, C. D. Wunsch (1970). A general method applicable to the 
search for similarities in the amino acid sequence of two proteins. J. Mol. 
Biol., 48  pp. 443–453

 8. Smith, T.F. and Waterman, M.S. (1981).  Identification of common molecular 
subsequences. J Mol Biol, 147(1): p. 195-7.





■ ■ ■ ■ ■

In this chapter

There is no general agreement on how best to put together a good program. A 
good program is functionally correct, readable, modifiable, reasonably efficient, 
and solves a problem that someone needs solved. This chapter is distinct from the 
others in this book because of the more personal nature of the subject material. 
Writing code for some people is like telling a story or making a painting: it’s not 
that it is art, but it is personal. If you wish to insult a programmer, say that their 
code is poorly structured, or naïve, or in some way less than adequate.

There are many processes that have been described for programming, and the 
truth is that not only is there not one best one, but it is rarely certain than any of 
them is better than any of the others. When someone writes a program, they are 
trying to solve a problem. What they are doing is translating a loose collection of 
ideas into a form that can be represented on a computer, which is to say as num-
bers. The ideas are associated with algorithms, things that can be shown to work 
for at least a range of situations. Then that needs to be converted into a sequence 
of steps that leads to a solution to the original problem.

12chaPter

how to write  
good PrograMs

12.1  Procedural Programming – Word Processing  . . . . . . . . . . . . . . . . . . . . . . . . 442

12.2  Object Oriented Programming – Breakout . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

12.3  Describing the Problem as a Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

12.4  Rules for Programmers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

12.5   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486



442  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This is in part a problem in synthesis, the combining of separate components, 
elements, and ideas into a coherent whole. There is something called synthesis 
programming, but that’s not what we will discuss here. The parts of a program 
include decision constructs (IF statements), looping (FOR and WHILE), expres-
sions, assignment statements, and data structures (such as tuples, dictionaries, 
and strings). There is a degree of skill involved in using these units to build a 
sensible larger program. This skill is somewhat individual. No two programmers 
will create exactly the same program for a non-trivial problem.

What we’re going to do in this chapter is show the development of an entire 
computer program, with all of the intermediate steps, flaws, errors, and flashes 
of genius (if any). Why? The answer is because that is rarely done in lectures or 
in a book. When teaching mathematics, the professor often shows the proof of a 
theorem on the blackboard (or as PowerPoint) and explains the steps. What they 
never do is show how the theorem was actually proved when the original person 
proved it—dead ends, days of no progress, good ideas, and bad ideas. 

This is crucial. No theorem and no computer program flows fully formed and 
correct from someone’s head. Observing the full process is a valuable stage in the 
education of a programmer. They can see that the process is prone to error, even 
for good programmers. They can see that not all ideas that seem good are actually 
good, and that the process is not a linear one, but that it appears in some sense to 
spiral, gaining functionality at each loop. They can see that there can be a simple 
and obvious method that could be agreed upon by many different programmers 
and yet adapted for each new situation. The method that we use here is called 
iterative refinement, and it is nearly independent of language or philosophy.  

One example program is a computer game, and one that can’t be played with-
out a computer. It is a breakout style game that uses circles instead of rectangles. 
The other is a system that formats typed text.

 12.1  PROCEDURAL PROGRAMMING –  
WORD PROCESSING

In the early days of desktop publishing, the programs that writers used did 
not display the results on the screen in “what-you-see-is-what-you-get” form. 
Formatting commands were embedded within the text and were implemented by 
the program, which would create a printable version that was properly formatted. 



 Chapter  12 ·  How to Wri te  Good Programs  ■ 443

Programs like roff, nroff, and tex are still used, but most writing tools now look 
like Word or PageMaker with commands being given through a graphical user 
interface.

There is a limit to what kind of text processing can be done using simple text 
files, but when you think about it, that’s really what a typewriter produces—
simple text on paper with fixed size fonts.  

The program developed here accepts text from a file and formats it accord-
ing to a set of commands that have a specific format and are predefined by the 
system. The input resembles that accepted by nroff, an old Unix utility, but is a 
subset for simplicity. Since it uses standard text input and output, measurements 
are made in characters, not inches or points. Commands begin on a new line 
with a “.” character and are alphabetic. A line beginning with “.br,” for instance, 
results in a forced line break. Some commands take a parameter: the command 
“.ll 55” sets the line length to 55 characters.

Here is a list of all of the commands that the system recognizes:

.pl n Sets the page length to n lines

.bp n Begin page n

.br Break

.fi Fill output lines (e.g., justify)

.nf Don’t fill output lines

.na No justification

.ce n Center the next n input lines

.ls n Output n-1 line spaces after each line

.ll n Line length is n characters 

.in n Indent n characters

.ti n Temporarily indent n characters

.nh Do not hyphenate

.hy Hyphenation on

.sp n Generate n lines 

The program reads a text file and identifies the words and the commands. 
The words are written to an output file formatted as described by the commands. 
The default is to right justify the text and to use empty lines as paragraph breaks. 
The questions to be answered here are as follows:  

 1. How does one begin creating such a program?



444  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 2. Can the process of program creation be described?
  a. Is the process systematic or casual?
  b. Is there only one process?

Beginning with the last question first, there is no single process. What is 
presented here is only one, but it should be understood that there are others, and 
that some processes probably work better than others for some kinds of program. 
The program we create here does not use classes, and it involves a classical or 
traditional methodology generally referred to as top-down. Some people only use 
object-oriented code, but a problem with teaching that way is that a class contains 
traditional, procedure-oriented code. To make a class, one must first know how 
to write a program.

 12.1.1 Top-Down

In top-down programming, the higher levels of abstraction are described 
first. A description of what the entire program is to do is written in a kind of 
English/computer hybrid language (pseudocode), and this description involves 
making calls to functions that have not yet been written but whose function is 
known. When the highest level description is acceptable, then the functions used 
are described. In this way, the high-level decisions are described in terms of the 
lower levels, whose implementation is postponed until the details are appropri-
ate. The process repeats until all parts have been described, at which time the 
translation of the pseudocode into a real programming language can proceed, and 
should be straightforward. This can result in many distinct programs, but they all 
should do basically the same thing.

For the task at hand, the first step is to sketch the actions of the program as a 
whole. The program begins by opening the text file and opening an output file. 
The basic action is to copy from input to output, with certain additions to the 
output text. The data file is read in as characters or words, but output as lines and 
pages. The following is an example:

Open input file inf
Open output file outf
Read a word w from inf
While there is more text on inf:



 Chapter  12 ·  How to Wri te  Good Programs  ■ 445

    If w is a command:
        Process the command w
    Else:
        The next word is w. Process it
    Read a word from inf
Close inf
Close outf

This represents the entire program, although the code lacks much detail. As 
Python code, this would look almost the same:
filename = input ("PYROFF: Enter the name if the input 
                   file: ")
inf = open (filename, "r")
outf = open ("pyroff.txt. "w")
w = getword (inf)
while w != "":
    if iscommand(w):
        process_command (w)
    else:
        process_word (w)
    w = getword(inf)
inf.close()
outf.close()

The functions must exist for the program to compile them. They should ini-
tially be stubs, relatively non-functional, but resulting in output:  

from random import *

def getword (f):
    print ("Getword ")

def iscommand(w):
    print ("ISCOMMAND given ", w)
    if random()< 0.5:
        return False
    return True

def process_command (w):
    print ("Processing command ", w)



446  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

def process_word (w):
    print ("Processing the word ", w)

This program will run, but it never ends because it never reads the file. Still, 
we have a structure.

Now the functions need to be defined, and in the process, further design deci-
sions are made. Consider getword(): what comprises a word and how does it dif-
fer from a command? A command starts at the beginning of a line with a “.” char-
acter. It is followed by two alphabetic characters that are defined by the system. If 
the two characters do not match any combinations in the list of commands, then 
it is not a command. A word begins or ends with a white space (blank, tab, or end 
of line) and contains all of the characters between those white spaces. It may not 
be a word in the traditional sense, in that it may not be an English word; it could 
be a number or other sequence of characters. Those may cause problems, but it 
will be left up to the user to figure it out (for example, a long URL may extend 
over a line). The program has to do something, and so will probably put an end 
of line when the count of characters exceeds a maximum and leave the problem 
to the user to fix.

Let’s figure out the getword() function. It constructs a word as a character 
string from individual characters that have been read from the input file. A first 
try could be as follows:

def getword(f):
    w = ""
    while whitespace(ch(f)):
        nextch(f)
    while not whitespace(ch(f)):
        w = w + ch(f)
        nextch(f)
    print ("Getword is ", w)
    return w

The function whitespace() returns True if its parameter is a white space 
character. The function nextch() reads the next character from the specified file, 
and the function ch() returns the value of the current character. To effectively test 
getword(), we need to implement these three functions. Here’s a first attempt:  

def whitespace (c):
    if c == " ": return True
    if c == "\t": return True



 Chapter  12 ·  How to Wri te  Good Programs  ■ 447

    if c == "\n": return True
    return False

def ch(f):
    global c
    return (c)

def nextch(f):
    global c
    c = f.read(1)

This way of handling input is unusual, but there is a reason for it. We are an-
ticipating a need to buffer characters or to place them back on the input stream. It 
is similar to the input scheme used in Pascal, or the system found in early forms 
of UNIX which used getchar – putchar - ungetc. The necessity of extracting 
commands from the input stream, and that commands must begin a new line, 
might make this particular scheme useful. The initial implementation of nextch() 
simply reads a new character from the file, but it could easily be modified to 
extract a character from a buffer, and refile the buffer if it is empty. Both would 
look the same to the programmer using them.

The program runs, but has a problem: it never terminates. After the text file 
has been read, the program seems to call nextch() repeatedly. After some thought 
the reason is clear—when the input request results in an empty string (“”), the 
current character is not a white space, and the loop in getword() that is building 
a word runs forever. This is a traditional end-of-file problem and can be solved 
in a few different ways: a special character can be used for EOF, a flag can be 
set, or the empty string can be tested for in the loop explicitly. The latter solution 
was chosen, and fixes the infinite loop. The word construction loop in getword() 
becomes 

while not whitespace(ch(f)) and ch(f) !="":

A possible next step is to distinguish between commands and words. There 
are two things to do because a command starts a line and begins with a period 
(.): mark the beginning of a new line, and look up the input string in a table of 
commands. The command could be searched first, then if it matches a command 
name, we could back up the input to see if it was preceded by a newline character 
(“\n”). A newline counts as a white space, and another option would be to set a 
flag when a newline character is seen, clearing it when another character is read 



448  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

in. Now a string is a command if the flag set before it was read in and it matches 
one of the commands. Timing is important in this method, but white space sepa-
rates words, so it could work by simply remembering (saving) the last white space 
character seen before any word.  

This code has a problem. When implemented, none of the commands are 
recognized. A table of names was implemented as a tuple: 

table = (".pl",".bp",".br",".fi",".nf",".na",".ce",
         ".ls",".ll",".in",".ti",".nh",".hy",".sp")

The nextch() function was modified so 
def nextch(f):
    global c, lastws
    c = f.read(1)
    if whitespace(c):
        lastws = c

and the function iscommand() is implemented by checking for the newline and 
the match of the string in the table:  

def iscommand(w):
    global table, lastws
    if lastws == "\n":
        if w in table:
            return True
    return False

To discover the problem, some print statements were inserted that show 
the previous white space character and the match in the table for all calls to 
iscommand(). The problem, which should have been obvious, is that when the  
command is read in, the last white space seen will be the one that terminated it, 
not the one in front of it.

A solution: keeping the same theme of remembering white space characters, 
let’s save the previous two white space characters seen. The most recent white 
space is the one that terminated the word string, and the second most recent will 
always be the one before it. All of the others, if any, would have been skipped 
within getword(). The solution, as coded in the nextch() function, is as follows:  

def nextch(f):
    global c, clast, c2last
    c = f.read(1)



 Chapter  12 ·  How to Wri te  Good Programs  ■ 449

    if whitespace(c):
        c2last = clast
        clast = c

There are two variables needed, clast being the previous white space and 
c2last being the one encountered before clast. Now iscommand() is modified 
slightly to look for c2last:  

def iscommand(w):
    global table, c2last
    if c2last == "\n":
        if w in table:
            return True
    return False

This code identifies the commands in the source file, even the text that looks 
like a command but is not: “.xx.”

Notice that the development of the program consists of an initial sketch and 
then filling in the code as stubs and coding the stubs to be functional code, one 
at a time. Sometimes a stub requires further undefined functions to be used, and 
those could be coded as stubs too, or completed if they are small so as to allow 
testing to proceed. It’s a judgment call as to whether to complete the stubs down 
the chain for one part of the program or to proceed to the next one at the current 
level. For example, should we have completed the nextch() and ch() functions 
before trying to design process_command()? It does depend on how testing can 
proceed and what level we are at. The nextch() function looks like it won’t call 
other functions that have not been implemented, and it is difficult to test get-
word() without finishing nextch().

This discussion speaks to what the next step will be from here, and there 
could be many. Let’s look at commands next, because they will dictate the output, 
and then deal with formatting last. It is known that a string represents a com-
mand, and the function called as a consequence is process_command(). This 
function must determine which command string was seen and what to do about 
it. The way commands are handled and the way the output document is specified 
has to be sorted out before this function can be finished, but a set of stubs can 
hold the place of future decisions as before.

The string that was seen to be a command is stored in a tuple. The index of 
the string within the tuple tells us which command was seen, although a string 



450  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

match could be done directly. Using a tuple is better because new commands can 
always be added to the end of the tuple during future modifications and it is easier 
to modify command names. The function, which used to be a stub, is now
def process_command (w):
    global table, inf, page_length, fill, center, 
       center_count, 
    global spacing, line_length, adjust, hyphenate
    k = table.index(w)
    if k == 0:                # .PL
        s = getword(inf)
        page_length = int(s)
    elif k == 1:              # .BP
        genpage()
    elif k == 2:              # .BR
        genline()
    elif k == 3:              # .FI
        fill = True       
    elif k == 4:              # .NF
        fill == False
    elif k == 5:              # .NA
        adjust = False
    elif k == 6:              # .CE
        center = True
        s = getword(inf)
        center_count = int(s)
    elif k == 7:              # .LS
        s = getword(inf)
        spacing = int(s)
    elif k == 8:              # .LL
        s = getword(inf)
        line_length = int(s)
        print ("Line length ", line_length, "characters")
    elif k == 9:              # .IN
        s = getword(inf)
        indent (int(s))
    elif k == 10:             # .TI
        s = getword(inf)
        temp_indent (int(s))
    elif k == 11:             # .NF
        hyphenate = False
    elif k == 12:             # .HY
        hyphenate = True



 Chapter  12 ·  How to Wri te  Good Programs  ■ 451

    elif k == 13:             # .TL
        dotl ()
    elif k == 14:             # .SP
        s = getword(inf)
        space (int(k))

This completes iteration 5 of the system and generates quite a few new stubs 
and defines how some of the output functions will operate. There are some flags 
(hyphenate, center, fill, and adjust) and some parameters for the output process 
(line_length and spacing) that are set, and so will be used in sending output text 
to the file. These parameters being known, it is time to define the output process, 
which is implemented starting with the function process_word().

As mentioned earlier, the program reads data one character at a time and 
emits it as words. There is a specified line length, and words can be read and 
stored until that length is neared or exceeded. Words could be stored in a string. 
When the line length is reached, the string could be written to the file. If right 
justification is being done, spaces could be added to some other spaces in the 
string until the line length was met exactly, or the final word could be hyphenated 
to meet the line length. If right justification is not being done, then the line length 
only has to be approached, but not exceeded.

For text centering, input lines are padded with equal numbers of spaces on 
both sides. The page size is met by counting lines, and then by creating a new 
page when the page size is met, possibly by entering a form feed or perhaps by 
printing empty lines until a specified count is reached. Indenting is simple: the 
in command results in a fixed number of spaces being placed at the beginning of 
each output line; the ti command results in a specified number of spaces being 
placed at the beginning of the current line. Hyphenation is done by table lookup. 
Certain suffixes and prefixes and letter combinations are possible locations for 
a hyphen. The final word on a line can be hyphenated if a location within it is 
subject to a hyphen as indicated by the table.

The process is to read and build words and copy them to a string, the next 
output line. No action is taken until the string nears the line length, at which 
point insertion of spaces, hyphenation, or other actions may be taken to make the 
string fit the line, either closely or precisely. After a line meets the size needed, it 
is written, perhaps followed by others if the line spacing is larger than one. The 
basic action of the process_word() function is to copy the word to a string, the 



452  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

output buffer, under the control of a set of variables that are defined by the user 
through commands: 

page_length 55 Number of lines of text on a single page
fill True Controls whether the text is being formatted
adjust True Controls whether the text is right justified
center False Controls whether text is being centered
center_count 0 Number of lines still to be centered
spacing 1 Number of lines output per line of text
nindent 0 Number of spaces on the left
line_length 66 Number of characters on one line
hyphenate True Are words hyphenated by the system?

The simplest version of process_word() copies words to the buffer until the 
line is full and then writes that line to the output file.

def process_word (w):
    global buffer, line_length
    if len(buffer) + len(w) + 1 <= line_length:
        buffer = buffer + " " + w
    else:
        emit(buffer)
        buffer = w

The code above adds the given word plus a space to the buffer if there is 
room. Otherwise, it calls the emit() function to write the buffer to the output file 
and places the word at the beginning of a new line. This is nearly correct. Some 
of the output for the sample source is as follows: 

This is sample text for testing Pyroff. The default is to right
adjust continuously, but embedded commands can change this.
Now the line width should be
30 characters, and so the left
margin is pulled back. This
line is centered .xx not a
command. Indented 4

Note that the command “.ll 30” was correctly handled, but that there is an extra 
space at the beginning of the first line. That’s due to the fact that process_word() 



 Chapter  12 ·  How to Wri te  Good Programs  ■ 453

adds a space between words, and if the buffer is empty that space gets placed at 
the beginning. The solution is to check for an empty buffer:  

if len(buffer) + len(w) + 1 <= line_length:
    if len(buffer) > 0:
        buffer = buffer + " " + w
    else:
        buffer = w

This was a successful fix, and completes iteration 6 of the system, which is 
now 150 lines long.

Within process_word(), there are multiple options for how words can be 
written to the output. What has been done so far amounts to filling but no right 
justification. Other options are no filling, centering, and justification. When the 
filling is turned off, an input line becomes an output line. This is true for center-
ing as well. When justification is taking place, the program will make the output 
lines exactly line_length characters long by inserting spaces in the line to extend 
it and by hyphenation, where permitted, to shorten it. The rule is that the line 
must be the correct length and must not begin or end with a space. The implemen-
tation of this part of the program is at the heart of the overall system, but would 
not be possible without a sensible design up to this point.

 12.1.2 Centering

First, a centered line is to be written to output when an end of line is seen on 
input. This means that the clast variable is used to identify the end of line and to 
emit the text. Next, the line has spaces added to the beginning and end to center 
it. The buffer holds the line to be written and has len(buffer) characters. The 
number of spaces to be added totals line_length – len(buffer), and half are added 
to the beginning of the line and half to the end. A function that centers a given 
string would be as follows:
def do_center (s):
    global line_length
    k = len(s)            # How long is the string?
    b1 = line_length - k  # How much shorter than the line?
    b2 = b1//2            # Split that amount in two
    b1 = line_length - k - b2
    s = " "*b1 + s + " "*b2  # Add spaces to center the text
    emit(s)                  # Write to file



454  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

In the process_word() function, some code must be added to handle center-
ing. This code has to detect the end of line and pass the buffer to do_center(). It 
also counts the lines, because the “.ce” command specifies a number of lines to 
be centered. 
if center:                 # Text is being centered, no fill
    if len(buffer) > 0:            # Add this word to the line
        buffer = buffer + " " + w
    else:
        buffer = w
    if clast == "\n":       # An input line = an output line
        do_center(buffer)                # Emit the text
        center_count = center_count - 1  # Count lines
        if center_count <= 0:            # Done?
            center = False               # Yes. Stop centering.

This code is not quite enough. There are two problems observed. One prob-
lem is that the buffer could be partly full when the “.ce” command is seen, and 
must be emptied. This problem is serious, because filling may be taking place 
and the line might have to be justified. For the moment, a call to emit() happens 
when the “.ce” command is seen, but this will have to be expanded.

The other problem is simpler: the do_center() function does not empty the 
buffer, so the line being centered occurs twice in the output. For example,

Margin is pulled back.
This line is centered ← This is correct
This line is centered .xx not  ← This is wrong. Text is repeated.
a command. Indented 4

The solution is to clear the buffer after do_center() is called:
do_center(buffer)                # Emit the text
buffer = ""                      # Clear the buffer

 12.1.3 Right Justification

Centering text is a first step to understanding how to justify it. Right justi-
fied text has the sentences arranged so that the right margin is aligned to the line. 
When centering, spaces are added to the left and right ends of the string so as to 
place any text in the middle of the line. When justifying, any space in the line 



 Chapter  12 ·  How to Wri te  Good Programs  ■ 455

can be made into multiple spaces, thus extending the text until it reaches the right 
margin. Naturally it would not be acceptable to place all of the needed spaces in 
one spot. It looks best if they are distributed as evenly as possible. However, no 
matter what is done, there will be some situations that cause ugly spacing.  

The number of spaces needed to fill up a line is line_length – len(buffer), 
just as it was when centering. As words are added to the line, this value becomes 
smaller. When it is smaller than the length of the next word to be added, then the 
extra spaces must be added and a new line started. That is, when  

k = line_length - len(buffer) 
if k  <  len(word):

then adjusting is performed. First, count the spaces in the buffer and call this 
nspaces. If k>nspaces, then change each single space into k//nspaces space char-
acters and set k = k%nspaces. This will rarely happen. Now, we need to change 
some of the spaces in the buffer into double spaces. Which ones? In an attempt to 
spread them around, set xk = k + k//2. This will be used as an increment to find 
consecutive spots to put spaces. So for example, let k = 5, in which case xk = 7. 
The first space could be placed in the middle, or at space number 2. Now count 
xk positions from 2, starting over at zero when you hit the end. This will give 
4 as the next position, followed by 1, then 3, and then 0. This process seems to 
spread them out. Now the buffer is written out and the new word is placed in an 
empty buffer.

This sounds tricky, so let’s work through it. Never enter code that is not likely 
to work! Inside of the process_word() function, check to see if adjusting is going 
on. If so, check to see if the current word fits in the current line. If so, put it there 
and move on.  
elif adjust:
    k = line_length - len(buffer)   # Number of spaces 
                                    # remaining
    if k  > len(w):                 # Does the word w fit?
        if len(buffer) == 0:        # Yes. Empty buffer?
            buffer = w              # Yes. Buffer = word.
        else:                       # No. Add word to the 
                                    # buffer
            buffer = buffer + " " + w
        print ("Buffer now ", buffer, k, len(w))
    else:                           # Not enough space remains



456  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

        print (buffer, k, w, len(w))
        nspaces = buffer.count(" ") # How many spaces in 
                                    # buffer?
        xk = k + k//2 +1            # Space insert increment
        while k > 0:
            i = nth_space (buffer, xk)
            buffer = buffer[0:i] + " " + buffer[i:]
            k = k - 1
            xk = xk + 1
        emit(buffer)
        buffer = w

The function nth_space (buffer, xk) locates the nth space character in the 
string s modulo the string length. The spaces were not well distributed with this 
code in some cases. There was a suspicion that it depended on whether the num-
ber of remaining spaces was even or odd, so the code was modified to read
       .  .  .
xk = k + (k+1)//2               # Space insert increment
if k%2 == 0:
    xk = xk + 1
       .  .  .

which worked better. The output for the first part of the test data was as follows: 
This is sample text for    testing Pyroff. The default is 
to right adjust continuously, but embedded commands can 
change this.
Now the line width   should be
30 characters, and so the left
margin is pulled back.
     This line is centered    
.xx not  a command. Indented 4
characters.  The  idea  behind
top-down  programming is  that
the     higher    levels    of
abstraction are      described
           .  .  .

The short lines are right justified, but the distribution of the spaces could still 
be better.

The function nth_space() is important, and looks like this:



 Chapter  12 ·  How to Wri te  Good Programs  ■ 457

def nth_space (s, n):
    global nindent
    nn = 0      # nn is a count of spaces seen so far
    i = 0       # i is the index of the character being 
                # examined
    while True:
        if s[i] == " ":     # Is character i a space?
            nn = nn + 1     # Yes. Count it
        if nn >= n:         # Is this enough spaces?
            return i        # Yes, return the location
        i = (i + 1)%len(s)  # Next i, wrapping around the end

 12.1.4  Other Commands

The rest of the commands have to do with hyphenation, pagination, and in-
dentation, except for the “.br” command. Dealing with the indentation first, the 
command “.in” specifies a number of characters to indent, as does “.ti.” The “.in” 
command begins indenting lines from the current point on, whereas “.ti” only 
indents the next line. Since the “.ti” command only indents the next line of text, 
perhaps initializing the buffer to the correct number of spaces will be the right 
approach. The rest of the text for the line will be concatenated to the spaces, re-
sulting in an indented line.

The “.in” command currently results in the setting of a variable named nin-
dent to the number of spaces to be indented. Following the suggestion for a tem-
porary indent, why not replace all initializations of the buffer with indented ones? 
There are multiple locations within the process_word() function where the buf-
fer is set to the next word:  

buffer = w

These could be changed to  
buffer = " "*nindent +w

This sounds clean and simple, but it fails miserably. Here is what it looks like. 
For the input text, we have 
Indented    4   characters.
.in 2
The idea behind top-down programming is that the higher 
levels of abstraction are described first. A description 



458  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

of what he entire program is to do is written in a kind-of 
English/computer hybrid language (pseudocode), and this  
description involves making calls to functions that have 
not yet been written but whose function is known. 

We get the following results: 
Indented    4  characters. The
         idea  behind top-down
    programming  is that   the
  higher levels of abstraction
    are  described  first.   A
    description  of  what   he
  entire program   is to do is
      written    in  a kind-of
      English/computer  hybrid
  language (pseudocode),   and
   this description   involves
  making calls to    functions
    that  have  not yet   been

Can you figure out where the problem is by looking at the output? This is 
a skill that develops as you read more code, write more code, and design more 
code. There is a place in the program that will add spaces to the text, and clearly 
that has been done here. It is how the text is right adjusted. The spaces are count-
ed and sometimes replaced with double spaces. This happened here to some of 
the spaces used to implement the indent.

Possible solutions include the use of special characters instead of leading 
blanks, to be replaced when printed; finding another way to implement indent-
ing; modifying the way right adjusting is done. Because the number of spaces at 
the beginning of the line is known, the latter should be possible: when counting 
spaces in the adjustment process, skip the nspaces characters at the beginning of 
the line. This is a modification to the function nth_character() to position the 
count after the indent: 
def nth_space (s, n):
    global nindent
    nn = 0
    i = 0
    while True:
        print ("nn=", nn)



 Chapter  12 ·  How to Wri te  Good Programs  ■ 459

        if s[i] == " ":
            nn = nn + 1
            print ('" "')
        if nn >= n:
            return i
        i = (i + 1)%len(s)
        if i < nindent+tempindent:      ß
            i = nindent+tempindent      ß

A second problem in the indentation code is that there should be a line break 
when the command is seen. This is a matter of writing the buffer and then clear-
ing it. This should also occur when a temporary indent occurs, but before it in-
serts the spaces. The temporary indent will have the same problem as the indent 
with respect to the right adjustment, and we have not dealt with that.

The line break can be handled with a new function:  
def lbreak ():
    global buffer, tempindent, nindent
    if len(buffer) > 0:
        emit(buffer)
    buffer = " "*(nindent+tempindent)
    tempindent = 0

The break involves writing the buffer and clearing it. Clearing it also means 
setting the indentation. Because this sequence of operations happens elsewhere 
in the program, those sequences can be replaced by a call to lbreak(). Note that 
a new variable tempindent has been added; it holds the number of spaces for a 
temporary indentation, and it is added to the regular nindent value everywhere 
that a variable is used to obtain the total indentation for a line. Now the right ad-
justment of a temporarily indented line should work.

The lbreak() function is used directly to implement the “.br” command. 
A stub previously named genline() can be removed and replaced by a call to 
lbreak().

Line spacing can be handled in emit(), which is where lines are written to the 
output file. After the current buffer is written, a number of newline characters are 
written to equal the correct line spacing. The new emit() function is 

def emit (s):
    global outf, lines, tempindent, spacing, page_length



460  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    outf.write(s+"\n")
    lines = (lines + 1)%page_length
    for i in range (1, spacing):
        outf.write ("\n")
        lines = (lines + 1)%page_length
    tempindent = 0

What about pages? There is a command that deals with pages directly, and 
that is “.bp,” which starts a new page. The page length is known in terms of the 
number of lines, and emit counts the lines as it writes them. Implementing the 
“.bp” command should be a matter of emitting the number of lines needed to 
complete the current page. The code looks like this:  

def genpage():
    global page_length, lines
    lbreak()
    for i in range (lines, page_length):
        emit ("")

All that is missing is the ability to hyphenate, which is left as one of the ex-
ercises. The system appears to do what is needed using the small test file, so the 
time has come to construct more thorough tests. The file “preface.txt” holds the 
text for the preface of a book named Practical Computer Vision Using C. This 
book was written using Nroff, and the commands not available in Pyroff were 
removed from the source text so that it could be used as test data. It consists of 
over 500 lines of text. The result of the first try with this program was interesting.

Pyroff appeared to run using this input file, but never terminated. No output 
file was created. The first step was to try to see where it was having trouble, so 
a print statement was added to show what word had been processed last. That 
word was “spectrograms,” and it appears in the first paragraph of text, after 
headings and such. Now the data that caused the problem is known. What is the  
program doing? There must be an unterminated loop someplace. Putting prints in 
likely spots identifies the culprit as the loop in the nth_space() function. Tracing 
through that loop finds an odd thing: the value of nindent becomes negative, and 
that causes the loop never to terminate. The test data contained a situation that 
caused the program to fail, and that situation resulted from a difference between 
Nroff and pyroff: in Nroff the command ‘.in -4’ subtracts 4 from the current in-
dentation, whereas in pyroff it sets the current indent to -4.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 461

This kind of error is very common. All values entered by a user must be test-
ed against the legal bounds for that variable. This was not done here, and the fix is 
simple. However, it reminds us to do that for all other user input values. These are 
processed in the function process_command(), so locating those values is easy. 
Once this was done things worked pretty well. There was one problem observed, 
and that was an indentation error. Consider the input text:  

.nf
1. Introduction
.in 3
1.1 Images as digital objects
1.2 Image storage and display
1.3 Image acquisition
1.4 Image types and applications

The program formats this text as follows: 
1. Introduction
    1.1 Images as digital objects
   1.2 Image storage and display
   1.3 Image acquisition
   1.4 Image types and applications

There is an extra space in the first line after the indent. This seems like it 
should be easy to find where the problem is, but the function that implements the 
command, indent(), looks fine. However, on careful examination (and printing 
some buffer values), it can be seen that it should not call lbreak() because that 
function sets the buffer to the properly indented number of space characters. This 
means that when the later tests for an empty buffer occur, the buffer is not empty 
and text is appended to it rather than being simply assigned to it. That is, for an 
empty buffer the first word is placed into it:  

buffer = word

whereas, if text is present, the word is appended after adding a space:
buffer = buffer + " " + word

The indent function now looks like this:  
def indent (n):
    global nindent, buffer
    nindent = n



462  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    emit(buffer)
    buffer = ""

The preface is now formatted well. Other problems may exist, and these 
should be reported to the author and publisher when discovered. (The book’s 
wiki is the place for such discussions.)

 12.2  OBJECT ORIENTED PROGRAMMING –  
BREAKOUT 

The original game named Breakout was built in 1976, conceived by Nolan 
Bushnell and Steve Bristow and built by Steve Wozniak (some say aided by Steve 
Jobs). In this game, there are layers of colored rectangles in the upper part of the 
screen. A simulated ball moves around the game window, and if it hits a rect-
angle, it accumulates points and bounces. The ball also bounces off of the top 
and sides of the window, but will pass through the bottom and be lost unless the 
player moves a paddle into its path. If so, the ball will bounce back up and per-
haps score more points; if not, the ball moves out of play. After a fixed number of 
balls are lost, the game is over. 

The game being developed here uses circles, that we call tiles, rather than 
rectangles. There will be 5 rows of tiles, each of a different color and point value: 
5, 10, 15, 10, and 5 points for each row respectively. That way the most concealed 
row has the most points. The player gets three balls to try to clear all of the tiles 
away. The paddle moves left when the left arrow key is pressed and right when 
the right arrow key is pressed. The speed of the ball and of the paddle are deter-
mined when the game is tested. A sound plays when a tile is removed, when the 
ball hits the side or top of the window, when the ball hits the paddle, and when the 
ball is lost. The current score and the number of balls remaining are displayed on 
the screen someplace at all times.

Figure 12.1 shows an example of a breakout game clone on the left, with rect-
angular bricks. The picture with the circles is a possible example of how the game 
that we’re developing here might look.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 463

  

Figure 12.1
Variations on the game Breakout.

 12.3  DESCRIBING THE PROBLEM AS A PROCESS
The first step is to write down a step-by-step description of how the pro-

gram might operate. This may be changed as it is expanded, but we have to start 
someplace. A problem occurs almost immediately: is the program to be a class? 
Functions? Does it use pygame?

This decision can be postponed a little while, but in most cases, a program 
is not a class. It is more likely to be a collection of classes operated by a mail 
program. However, if object orientation is a logical structure, and it often is, it 
should evolve naturally from the way the problem is organized and not impose 
itself on the solution.

The game consists of multiple things that interact. Play is a consequence of 
the behavior of those things. For example, the ball will collide with a tile resulting 
in some points, the tile disappearing, and a bounce. The next event may be that 
the ball collides with a wall, or bounces off of the paddle. The game is a set of 
managed events and consequences. This makes it appear as if an object oriented 
design and implementation would be suitable. The ball, each time, and the paddle 
could be objects (class instances) and could interact with each other under the 
supervision of a main program which kept track of all objects, time, scores, and 
other details.



464  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Let’s just focus on the gameplay part of the game, and ignore the introduc-
tory windows and high score lists and other parts of a real game. The game starts 
with an initial set up of the objects. The tiles are placed in their start locations, 
the paddle is placed, the locations of the walls are defined, and then these will be 
drawn. The initial setup was originally drawn on paper and then a sample render-
ing was made, shown in Figure 12.1. The code that draws this is as follows:
import pygame

width = 400
height = 800
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
pygame.init()
FPS = 30

for i in range(0, 12):
    pygame.draw.circle( screen, (100, 100, 240), (i*30+15, 

30), 15)
for i in range(0, 12):
    pygame.draw.circle( screen, (220, 220, 90), (i*30+15, 

60), 15)
for i in range (0, 12):
    pygame.draw.circle( screen, (220, 0, 0), (i*30+15, 90), 

15)
for i in range(0, 12):
    pygame.draw.circle( screen, (180, 120, 30), (i*30+15, 

120), 15)
for i in range(0, 12):
    pygame.draw.circle( screen, (90, 220, 8), (i*30+15, 

150), 15)
pygame.draw.rect(screen, (0,0,0),  (180, 350,  90, 10))

while True:
    clock.tick(FPS)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            quit()
    pygame.display.update()

This code is just for a visual examination of the potential play area. The first 
one is always wrong, and this one is too, but it allows us to see why it is wrong 



 Chapter  12 ·  How to Wri te  Good Programs  ■ 465

and to define a more reasonable set of parameters. In this case, the tiles don’t 
fully occupy the horizontal region and the tile groups are too close to the top, 
because we want to allow a ball to bounce between the top row and the top of the 
play area. The play area is too large vertically. Fixing these problems is a simple 
matter of modifying the coordinates of some of the objects. This code is not a part 
of the final result. It’s common, especially in programs involving a lot of graph-
ics, to test the visual results periodically, and to write some testing programs to 
help with this.

This program already has some obvious objects: a tile is an object, and so are 
the paddle and the ball. These objects have some obvious properties too: a tile 
has a position in x,y coordinates, and it has a color and a size. It has a method to 
draw it on the screen, and a way to tell if it has been removed or if it still active. 
The paddle has a position and size, and so does the ball, although the ball has not 
been seen yet.

What does the main program look like if these are the principal objects in the 
design? The first sketch is abstract and depends on many functions that have not 
been written. This code shows the way the classes and the remainder of the code 
will interact and partly defines the methods they will implement. The initializa-
tion step involves creating rows of tiles that will appear much like those in the ini-
tial rendering above, but actually consist of five rows of tile objects. This will be 
done from the function initialize(), but each row should be created in a for loop:  

for i in range (0, 12):
    tiles = tiles + tile(i*30+15, y, thiscolor, npoints)

where the tile will be created and is passed its x,y position, color, and number of 
points. The entire collection of tiles is placed into a tuple named tiles. The ball 
will be created at a random location and with a random speed within the space 
between the paddle and the tiles, and the paddle will be created so that is initially 
is drawn in the horizontal center near the bottom of the window.  
def initialize ():
    score = 0
    nballs = 2
    b = ball ()                # Create the ball
    p = paddle ()              # create the paddle 
    thiscolor = (100,100,240)  # Blue
    npoints = 5                # Top row is 5 points each



466  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    for i in range (0, 12):
        tiles = tiles + tile(i*30+15, y, thiscolor, npoints)
    # and so on for 4 more rows

The main draw() function calls the draw() methods of each of the class in-
stances, and they draw themselves: 

def draw():
    global tiles,p,b
    screen.fill((200, 200, 200))
    # Tiles
    for k in tiles:
        k.draw()
# Paddle
    p.draw()
# Ball
    b.draw()

When this function is called (many times each second), the ball is placed in 
its new position, possibly following a bounce, and then it is drawn. The paddle 
is drawn, and if it is to be moved it will be done through the user pressing a key. 
Then the active tiles are drawn, and the messages are drawn on the screen. The 
structure of the main part of the program is defined by the organization of the 
classes.

 12.3.1  Initial Coding for a Tile

A tile has a graphical representation on the screen, but it is more complex 
than that. It can collide with a ball and has a color and a point value. All of these 
aspects of the tile have to be coded as a part of its class. In addition, a tile can 
be active, meaning that it appears on the screen and can collide with the ball, or 
inactive, meaning that the ball has hit it and it is out of play for all intents and 
purposes. Here’s an initial version:  
class tile:
    def __init__(self, x, y, color, points):
        self.x = x
        self.y = y
        self.color = color
        self.points = points
        self.active = True
        self.size = 30



 Chapter  12 ·  How to Wri te  Good Programs  ■ 467

def draw(self):
    if self.active:
        pygame.draw.circle(screen, (self.color[0], 
        self.color[1], self.color[2]), (int(self.x), 

int(self.y)), self.size // 2)  # Ball is a circle

    At the beginning of the game, every tile must be created and initialized 
with its proper position, color, and point value. Then the draw() function for the 
main program calls the draw() method of every tile during every small time in-
terval, or frame. According to the prior code, if the tile is not active, then it will 
not be drawn. Let’s test this.  

 Rule: Never write more than 20-30 lines of code without 
testing at least part of it. That way you have a clearer 
idea where any problems you introduce may be. 

A suitable test program to start with could be as follows:  
def draw():
    global tiles
    for k in tiles:
        k.draw()

tiles = ()
red = (250, 0, 0)
for i in range (0, 12):
    tiles = tiles + (tile(i*30+15, 90, red, 15),)

which places some tiles on the screen in a row, passing a color and point value. 
This almost works, but the first tile is cut in half by the left boundary. If the ini-
tialization becomes  

    tiles = tiles + (tile(i*30+15, 90, red, 15),)

then a proper row of 12 red circles is drawn. Modifications will be made to this 
class once we see more clearly how it will be used.

 12.3.2  Initial Coding for the Paddle

The paddle is represented as a rectangle on the screen, but its role in the 
game is much more profound: it is the only way the player has to participate in 
the game. The player types keys to control the position of the paddle so as to keep 
the ball from falling out of the area. The ball has to be drawn, as the tiles do, but 



468  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

it also must be moved (i.e., change the X position) in accordance with the player’s 
wishes. The paddle class initially has a few basic operations:  
class paddle:
    def __init__(self, x, y):
        self.x = x
        self.y = y
        self.speed = 3
        self.width = 90
        self.height = 10

def draw(self):
     pygame.draw.rect (screen, (self.color[0], self. 

color[1], self.color[2]), (self.x, self.y, self.width, 
self.height))

    def moveleft(self):
        if self.x <= self.speed:
           self.x = 0
        else:
            self.x = self.x – self.speed

    def moveright (self):   
        if self.x > width-self.width-self.speed:
           self.x = width-self.width
        else:
            self.x = self.x + self.speed

When the right arrow key is pressed, a flag is set to True, and the paddle 
moves to the right (i.e., its x coordinate increases) each time interval, or frame. 
When the key is released, the flag is set to False and the movement stops as a 
result. Movement is accomplished by calling moveleft() and moveright(), and 
these functions enforce a limit on motion: the paddle cannot leave the play area. 
This is done within the class so that the outside code does not need to know any-
thing about how the paddle is implemented. It is important to isolate details of the 
class implementation to the class only, so that modifications and debugging can 
be limited to the class itself.

The paddle is simply a rectangle, as far as the geometry is concerned, and 
presents a horizontal surface from which the ball will bounce. It is the only means 
by which the player can manipulate the game, so it is important to get the paddle 



 Chapter  12 ·  How to Wri te  Good Programs  ■ 469

operations and motion correct. Fortunately, moving a rectangle left and right is 
an easy thing to do.  

 12.3.3 Initial Coding for the Ball

The ball really does much of the actual work in the game. Yes, the bounces 
are controlled by the user through the paddle, but once the ball bounces off of the 
paddle, it has to behave properly and do the works of the game: destroying tiles. 
According to the standard class model of this program, the ball should have a 
draw() method that places it into its proper position on the screen. But the ball is 
moving, so its position has to be updated each frame. It also has to bounce off of 
the sides and top of the playing area, and the draw() method can make this hap-
pen. The essential code for doing this is as follows: 
class ball():
    def __init__ (self, x, y):
        self.x = x
        self.y = y
        self.dx = 3
        self.dy = -4
        self.active = True
        self.color = (230, 0, 230)
        self.size = 9

def draw(self):
    if not self.active:
        return
    pygame.draw.circle( screen, (self.color[0],  

self.color[1], self.color[2]), 
(int(self.x), int(self.y)), 
self.size // 2)

                       # Ball is a circle
    self.x = self.x + self.dx
    self.y = self.y + self.dy
    if (self.x <= self.size/2) or \
          (self.x >= width-self.size/4):
        self.dx = -self.dx
    if self.y <= self.size/2:
        self.dy = -self.dy
    elif self.dy >= height:
        self.active = False



470  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Figure 12.2
The basic elements of the game: ball, targets, and paddle.

This version only bounces off of the sides and top, and passes through the 
bottom.

 12.3.4 Collecting the Classes

A next step is to test all three classes running together. This will ensure that 
there are no problems with variable, method, and function names, and that inter-
actions between the classes are isolated. All three should work together, creat-
ing the correct visual impression on the screen. The code for the three classes 
was copied to one file for this test. The main program simply creates instances 
of each class as appropriate, really doing what the original test program did in 
each case:  

red = (250, 0, 0)
print (red)
tiles = ()
for i in range (0, 12):
    tiles = tiles + (tile(i*30+15, 90, red, 15),)
f = True
p = paddle (130)
b = ball (300, 300)

The draw() function calls the draw() methods for each class instance and 
moves the paddle randomly as before:  

def draw():    # 07-classes-01-20.py
    global tiles,p,f,b,movingleft,movingright



 Chapter  12 ·  How to Wri te  Good Programs  ■ 471

    screen.fill((200, 200, 200))
    # Tiles
    for k in tiles:
        k.draw()
# Paddle
    if movingleft:
        p.moveleft()
    elif movingright:
        p.moveright()
    p.draw()
# Ball
    b.draw()

The result was that all three classes functioned together the first time it was 
attempted. The game itself depends on collision, which will be implemented 
next, but at the very least the classes need to cooperate, or at least not interfere 
with each other. That’s true at this point in the development.

 12.3.5  Developing the Paddle

Placing the paddle under control of the user is the next step. When a key is 
pressed, then the paddle state changes, from still to moving, and vice versa when 
released. This is accomplished using the keypressed() and keyreleased() func-
tions. They set or clear a flag, respectively, that causes the paddle to move by 
calling the moveleft() and moveright() methods. The flag movingleft results in 
a decrease in the paddle’s x coordinate each time draw() is called; movingright 
does the same for the +x direction:  

def keyPressed (k):
    global movingleft, movingright
    if k.key == pygame.K_LEFT:
        movingleft = True
    elif k.key == pygame.K_RIGHT:
        movingright = True

def keyReleased (k):
    global movingleft, movingright
    if k.key == pygame.K_LEFT:
        movingleft = False
    elif k.key == pygame.K_RIGHT:
        movingright = False



472  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

From the user’s perspective, the paddle moves as long as the key is depressed. 
Inside of the global draw() function, the flags are tested at each iteration and the 
paddle is moved if necessary:  

def draw():     # 07-classes-01-20.py
    global  … movingleft,movingright
      .  .  .
    if movingleft:
        p.moveleft()
    elif movingright:
        p.moveright()
    p.draw()
      .  .  .
The other thing the paddle has to do is serve as a bounce platform for the ball. 

A question surrounds the location of collision detection; is this the job of the ball 
or the paddle? It does make sense to perform most of this task in the ball class, 
because the ball is always in motion and is the thing that bounces. However, the 
paddle class can assist by providing necessary information. Of course, the paddle 
class can allow other classes to examine and modify its position and velocity, 
and thus perform collision testing, but if those data are to be hidden, the option 
is to have a method that tests whether a moving object might have collided with 
the paddle. The y position of the paddle is fixed and is stored in a global vari-
able paddle, so that is not an issue. A method in paddle that returns True if the x 
coordinate passed to it lies between the start and end of the paddle is as follows: 

def inpaddle(self, x):
    if x < self.x:
        return False
    if x > self.x + self.width:
        return False
    return True

The ball class can now determine whether it collides with the paddle by 
checking its own y coordinate against the paddle and by calling inpaddle() to see 
if the ball’s x position lies within the paddle. If so, it should bounce. The method 
hitspaddle() in the ball class returns True if the ball hits the paddle: 

def hitspaddle (self):      # 08classes-01-21.py
    if self.y<=paddleY+2 and self.y>=paddleY-2:
        if p.inpaddle(self.x):
            return True
    return False



 Chapter  12 ·  How to Wri te  Good Programs  ■ 473

The most basic reaction to hitting the paddle is to change the direction of dy 
from down to up (dy = -dy). 

 12.3.6  Ball and Tile Collisions

The collision between a ball and a tile is more difficult to do correctly than 
any of the other collisions. Yes, determining whether a collision occurs is a similar 
process, and then points are collected and the tile is deactivated. It is the bounce of 
the ball that is hard to figure out. The ball may strike the tile at nearly any angle and 
at nearly any location on the circumference. This is not a problem in the original 
game, where the tiles were rectangular, because the ball was always bouncing off 
of a horizontal or vertical surface. Now there’s some thinking to do.

The correct collision could be calculated, but would involve a certain amount 
of math. The specification of the problem does not say that mathematically cor-
rect bounces are required. This is a game design choice, perhaps not a program-
ming choice. What does the game look like if a simple bounce is implemented? 
That could involve simply changing dy to –dy.

This version of the game turns out to be playable, but the ball always keeps 
the same x direction when it bounces. What would it look like if it bounced in 
roughly the right direction, and how difficult would that be? The direction of the 
bounce would be dictated by the impact location on the tile, as seen in Figure 12.3.  
This was determined after a few minutes with a pencil and paper, and it is intui-
tive rather than precise.

The value of Dx changes as the 
ball strikes one of the four parts or 
the circumstance.

Dx

Dx

-Dx-Dx

The value of Dy changes as the 
ball strikes one of the four parts or 
the circumstance.

-Dy

-Dy

DyDy

Figure 12.3 
Different parts of the target, when colliding with the ball, generate different bounces.



474  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

We need to find where the ball hits the tile, determine which of the four parts 
of the tile this lies in, and then create the new dx and dy values for the ball. A key 
aspect of the solution being developed is to avoid too much math that has to be 
done by the program. Is this possible? 

The first step is to find the impact point. We could use a little bit of analytic 
geometry, or we could approximate. The fact is that the ball is not moving very 
fast, and the exact coordinates of the impact point are not required. At the begin-
ning of the current frame, the ball was at (x, y) and at the beginning of the next, it 
is at (x + dx, y + dy). A good estimate of the point of impact is the mean value of 
these two points, or (x + dx/2, y + dy/2).   

Within which of the four regions defined in Figure 12.3 is the impact point? 
The regions are defined by lines at 45 degrees and -45 degrees. The atan() func-
tion will, when using screen coordinates, have the –dx points between -45 and 
+45 degrees. The –dy points, where the direction of Y motion changes, involve 
the remaining collisions. What needs to be done is to find the angle of the line 
from the center of the   to the ball and then compare that to -45 … +45.

Here is an example method named bounce() that does exactly this.  
# Return the distance squared between the two points
def distance2 (self, x0,y0, x1, y1):
    return (x0-x1)*(x0-x1) + (y0-y1)*(y0-y1)

def bounce (self, t):
    dd = t.size/2 + self.size/2    # Bounce occurs when the 
                                   # distance
    dd = dd * dd                   # Between ball and tile < 
                                   # radii squared
    collide = False
    if self.distance2 (self.x, self.y, t.x, t.y) >= dd and \
    self.distance2 (self.x+self.dx, self.y+self.dy, t.x, t.y) < dd:
        self.x = self.x + self.dx/2  # Estimated impact point on 
                                     # circle
        self.y = self.y + self.dy/2
        collide = True
    elif self.distance2 (self.x, self.y, t.x, t.y) < dd:
        collide = True         # Ball is completely inside the time
    if not collide:
        return



 Chapter  12 ·  How to Wri te  Good Programs  ■ 475

# If the ball is inside the tile, back it out.
    while self.distance2 (self.x, self.y, t.x, t.y) < dd:
        self.x = self.x - self.dx*0.5
        self.y = self.y - self.dy*0.5
    if self.x != t.x:                   # Compute the ball-tile 
                                        # angle
        a = atan ((self.y-t.x)/(self.x-t.y))
        a = a * 180./3.1415
    else:                            # If dx = 0 the tangent is 
                                     # infinite
        a = 90.0
    if a >= -45.0 and a<=45.0:       # The x speed change
        self.dx = -self.dx
    else:
        self.dy = -self.dy           # The y speed changes

After testing the code, we include
# If the ball is inside the tile, back it out.
    while self.distance2 (self.x, self.y, t.x, t.y) < dd:
        self.x = self.x - self.dx*0.5
        self.y = self.y - self.dy*0.5

It was found that if the ball was too far inside the tile, then its motion was 
very odd; as it moved through the tile, it constantly changed direction because the 
program determined that it was always colliding.

 12.3.7  Ball and Paddle Collisions

Let’s examine the collision between the ball and the paddle. The paddle 
seems to be flat, and colliding with any location on the paddle should have the 
same result. What if the ball hits the paddle very near to one end? There is a 
corner, and maybe hitting too near to the corner would yield a different bounce. 
This was the case in the original games. If the ball struck the near edge of the 
paddle on the corner, it could actually bounce back in the original direction to a 
greater or lesser degree. This gives the player a greater degree of control, once 
they understand the situation. Otherwise, the game is pre-determined if the play-
er merely places the paddle in the way of the ball. It will always bounce in exactly 
the same manner.

The proposed idea is to bounce at a different angle depending on where the 
ball strikes the paddle. We need to decide how near and how intense the effect 



476  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

will be. If the ball hits the paddle near the center, then it will bounce so that the 
incoming angle is the same as the outgoing angle. When it hits the near end of 
the paddle, it will bounce somewhat back in the incoming direction, and when it 
strikes the far end, the bounce angle will be a shallower bounce from the center. 

Let’s say that if the ball hits the first pixel on the paddle, it will bounce back 
in the original direction, meaning that dx = -dx and dy = -dy. A bounce from 
the center does not change dx but does set dy = -dy. If the relationship is linear 
across the paddle, the implication would be that striking the final pixel would set 
dx = 2*dx and dy = -dy. Striking any pixel in between would divide the change 
in dx by the number of pixels in the paddle, initially 90. If the ball hits pixel n, 
the result is as follows:

delta = 2*dx/90.0
dx = -dx + n*delta

A problem here is that the dx value decreases continuously until the ball is 
bouncing up and down. Perhaps the incoming angle should not be considered. 
The bounce angle of the ball could be completely dependent on where it hits the 
paddle and nothing else. If dx is -5 on the near end of the paddle and +5 on the 
far end, then,  
 dx = -5 + n*10.0/90.0

The code in the draw() method of the ball class is modified to read: 
if self.hitspaddle():
    self.dy = -self.dy
    self.dx = -5 + (1./9.)*(self.x-p.x)

The user now has more control. The game does appear slow, though. In addi-
tion, there is only one ball. Once that is lost, the game is over.

 12.3.8  Finishing the Game

What remains to be done is to implement multiple balls. Multiple balls are 
tricky because there are timing issues. When the ball disappears through the 
bottom of the play area, it should reappear someplace, and at a random place. It 
should not appear immediately, though, because the player needs some time to 
respond; let’s say three seconds. Meanwhile, the screen must continue to be dis-
played. It’s time to introduce states.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 477

A state is a situation that can be described by a characteristic set of param-
eters. A state can be labeled with a simple number, but represents something 
complex. In this instance, specifically there will be a play state, in which the 
paddle can be moved and the ball can score points, and a pause state, which hap-
pens after a ball is lost. The draw() function is the place where each step of the 
program is performed at a high level, and so will be responsible for the manage-
ment of states.

The current stage of the implementation has only the play state, and all of 
the code that manages that is in the draw() function already. Change the name 
of draw() to state0() and create a state variable state that can have values 0 or 1: 
play is 0, pause is 1. The new draw() function is now created:

def draw ():
    global playstate, pausestate
    if state == playstate:
        state0()
    elif state == pausestate:
        state1()

where 
playstate = 0
pausestate = 1

The program should still be playable as it was before as long as state == 
playstate. What happens in the pause state? The controls of the paddle should 
be disabled, and no ball is drawn. The goal of the pause state is to allow some 
time for the user to get ready for the next ball, so some time is allowed to pass. 
Perhaps the player should be permitted to start the game again with a new ball 
when a key is pressed. This eliminates the need for a timer, which are generally 
to be avoided. The pause state is entered when the ball departs the field of play. 
The game remains in the pause state until the player presses a key, at which point 
a new ball is created and the game enters the play state.

Entering the pause state means modifying the code in the ball class a little. 
There is a line of code at the end of the draw() method of the ball class that looks 
like this: 

elif self.dy >= height:
    self.active = False



478  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

This is where the class detects the ball leaving the play area. We need to add 
to this code:
if self.y >= height:               # LEaves the play area?
    if balls_remaining>0:          # Yes. Balls left?
        state = pausestate         # Yes. Pause
        balls_remaining = balls_remaining-1
                                   # One less ball ...
    else:

     state = gameoverstate      # No. Game over

while, of course, making certain that the variables needed are listed as global. 
This did not do as was expected until it was noted that the condition should have 
been if self.y >= height. The comparison with dy was an error in the initial cod-
ing that had not been noticed. It also seems like the active variable in the ball 
class was not useful, so it was removed.

Now, in the keyPressed() function, we allow a key press to change from the 
pause to the play state. Any key will do:  

if state = pausestate:
    resume()

The resume() function must do two things. First, it must change state back to 
play. Next it must reposition the ball to a new location.  

def resume():
    global state, playstate
    b.x = randrange (30, width-30)
    b.y = 250
    state = playstate

This works fine. The game is to only have a specified number of balls, though, 
and this number was to be displayed on the screen. When in the play state and a 
ball is lost, the count of remaining balls (balls_remaining) is decreased by one. 
If there are any balls remaining, then the pause state is entered. Otherwise, the 
game is over. Perhaps that should be a third state: game over. 

The game-over state is entered when the ball leaves the play area and no balls 
are left (in the ball class draw() method). In the global draw() function, the third 
state determines if the game is won or lost and renders an appropriate screen:  
. . .
if score >= maxscore:          # The gameover state. Win?

    screen.fill((0,230, 0))    # Yes



 Chapter  12 ·  How to Wri te  Good Programs  ■ 479

    text ("You Win", 200, 200)

else:

    screen.fill((200, 10, 10)) # Lose, there are btiles left.

    text ("You Lose", 200, 200)

    text ("Score: "+str(score), 10, 30)

Screen shots from the game in various states are shown in Figure 12.4 
(14playble3.py).

  

 (a) (b)

Figure 12.4 
Screen shots from the game. (a) While play is going on. (b) The final screen; in this case, the player 
has lost.

 12.4  RULES FOR PROGRAMMERS
The author of this book has collected a set of rules and laws that apply to 

writing code, based on his experience of having written tens of thousands of lines 
of code and 45 years as a programmer. There are over 250 of them, but not all 
apply to Python. For example, Python enforces indenting and has no begin-end 
symbols. The ones that do apply are as follows:

 1. Use four-space indents and not tabs.
 2. Place a comment in lieu of a declaration for all variables in languages 

where declarations are not permitted.
 3. Declare numeric constants and provide a comment explaining them.
 4. Rarely use a numeric constant in an expression; name and declare them.



480  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 5. Use variable names that refer to the use or meaning of the variable.
 6.  Make your code clean from the beginning, not after it works.
 7.  A non-working program is useless, no matter how well structured.
 8.  Write code that is as general as possible, even if that makes it longer.
 9.  If the code you write is general, then keep it and reuse it when appropri-

ate.
 10.  Functions longer than 12 (not including declarations) lines are suspect.
 11.  Avoid recursion wherever possible.
 12.  Every procedure and function must have comments explaining function 

and use.
 13.  Write external documentation as you code—every procedure and func-

tion must have a description in that document.
 14.  Some documentation is for programmers, and some is for users. Distin-

guish.
 15.  Documentation for users must never be in the code.
 16.  Avoid using operating system calls.
 17.  Avoid using machine-dependent techniques.
 18.  Do use the programming language library functions.
 19.  Documentation for a procedure includes what other procedures are 

called.
 20.  Documentation for a procedure includes what procedures might call it.
 21.  When doing input: assume that the input file is wrong.
 22.  Your program should accept ANY input without crashing. Feed it an 

executable as a test.
 23.  Side effects are very bad. A proper function should return a value that 

depends only on its parameters. Exceptions do exist and should be docu-
mented.

 24.  Everything not defined is undefined.
 25.  Buffers and strings have fixed sizes. Know what they are and be con-

strained by them.
 26.  A handle is a pointer to a structure for an object; make certain that han-

dles used are still valid.
 27.  Strings and buffers should not overlap in storage.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 481

 28.  Contents of strings and buffers are undefined until written to.
 29.  Every variable that is declared is to be given a value before it is used. 
 30.  Put some blank lines between method definitions.
 31.  Explain each declared variable in a comment.
 32.  Solve the problem requested, not the general case or subsets.
 33.  White space is one of the most effective comments.
 34.  Avoid global symbols where possible; use them properly where useful.
 35.  Avoid casts (type casting).
 36.  Round explicitly when rounding is needed.
 37.  Always check the error return codes.
 38.  Leave spaces around operators such as =, ==, and !=.
 39.  A method should have a clear, single, identifiable task.
 40.  A class should represent a clear, single, identifiable concept.
 41.  Do the comments first.
 42.  A function should have only one exit point.
 43.  Read the code.
 44.  Comments should be sentences.
 45.  A comment shouldn’t re-state the obvious.
 46.  Comments should align.
 47.  Don’t confuse familiarity with readability.
 48.  A function should be called more than once.
 49.  Code used more than once should be put into a function.
 50.  All code should be printable.
 51.  Don’t write very long lines (no more than 80 characters).
 52.  The function name must agree with what the function does.
 53.  Format programs in a consistent manner.
 54.  Have a log.
 55.  Document all the principal data structures.
 56.  Don’t print a message for a recoverable error—log it.
 57.  Don’t use system-dependent functions for error messages.
 58.  You must always correctly attribute all code in the module header. 



482  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 59.  Provide cross references in the code to any documents relevant to the 
understanding of the code.

 60.  All errors should be listed together with an English description of what 
they mean.

 61.  An error message should tell the user the correct way to do it. 
 62.  Comments should be clear and concise and avoid unnecessary wordi-

ness. 
 63.  Spelling counts.
 64.  Run your code through a spelling checker.
 65.  Function documentation includes the domain of valid inputs to the func-

tion.
 66.  Function documentation includes the range of valid outputs from the 

function.
 67.  Each file must start with a short description of the module contained in 

the file and a brief description of all exported functions.
 68.  Do not comment out old code—remove it.
 69.  Use a source code control system.
 70.  Comments should never be used to explain the language.
 71.  Don’t put more than one statement on a line. 
 72.  Never blindly make changes to code trying to remove an error.
 73.  Printing variable values in key places can help you find the location of a 

bug.
 74.  One compilation error can hide scores of others.
 75.  If you can’t seem to solve a problem, then do something else.
 76.  Explain it to the duck. Get an inanimate object and explain your problem 

to it. This often solves it. (Wyvill)
 77.  Don’t confuse ease of learning with ease of use.
 78.  A program should be written at least twice—throw away the first one.
 79.  Haste is not speed.
 80.  You can’t measure productivity by volume.
 81.  Expect to spend more time in design and less in development
 82.  You can’t program in isolation.
 83. If an if ends in return, don’t use else.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 483

 84.  Avoid operator overloading.
 85.  Scores of compilation errors can sometimes be fixed with one character— 

start at the first one.
 86.  Programs that compile mostly still do not work.
 87.  Incrementally refine your code. Start with BEGIN-SOLVE-END, then 

refine SOLVE.
 88.  Draw diagrams of data and algorithms.
 89.  Use a symbolic debugger wherever possible.
 90.  Make certain that files have the correct name (and suffix!) when open-

ing.
 91.  Never assign a value in a conditional expression.
 92. If you can’t say it in English, you can’t say it in any programming lan-

guage.
 93.  Don’t move language idioms from one language to another.
 94.  Do no harm.
 95.  If the program is object oriented, design the objects first.
 96.  Don’t write deeply nested code.
 97.  Multiple inheritance is evil. Avoid this sin.
 98.  Productivity can be measured in the number of keystrokes (sometimes).
 99.  Your code is not perfect. Not even close. Have no ego about it.
 100.  Variables are to be declared with the smallest possible scope. 
 101.  The names of variables and functions should begin with a lowercase letter. 
 102.  Collect your best working modules into a code library.
 103.  Isolate dirty code (e.g., code that accesses machine dependencies) into 

distinct and carefully annotated modules.
 104.  Anything you assume about the user will eventually be wrong.
 105.  Every time a rule is broken, this must be clearly documented. 
 106.  Write code for the next programmer, not for the computer.
 107.  Your program should always degrade gracefully.
 108.  Don’t surprise your user.
 109. Involve users in the development process.
 110.  Most programs should run the same way and give the same results each 

time they are executed.



484  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 111.  Most of your code will be checking for errors and potential errors.
 112.  Normal code and error handling code should be distinct.
 113.  Don’t write very large modules.
 114.  Put the shortest clause of an if/else on top.
 115.  Have a library of error-reporting code and use it (be consistent).
 116.  Report errors in a way that they make sense.
 117.  Report errors in a way that allows them to be corrected.
 118.  Only fools think they can optimize code better than a good compiler.
 119.  Change the algorithm, not the code, to make things faster. A polynomial 

is a polynomial.
 120.  Copying and pasting is only for prototypes.
 121.  It’s always your fault.
 122.  Know what the problem is before you start coding.
 123.  Don’t re-invent the wheel.
 124.  Keep things as simple as possible.
 125.  Data structures, not algorithms, are central to programming. (Pike)
 126.  Learn from your mistakes.
 127.  Learn from the mistakes of others.
 128.  First make it work, then make it work faster.
 129.  We almost never need to make it faster.
 130.  First make it work, then make it work better.
 131.  Programmers don’t get to make big design decisions—do what is asked, 

effectively.
 132.  Learn new languages and techniques when you can.
 133.  Never start a new project in a language you don’t already know.
 134.  You can learn a new language effectively by coding something signifi-

cant in it, just don’t expect to sell the result.
 135.  You will always know only a subset of any given language.
 136.  The subset you know will not be the same as the subset your co-workers 

know.
 137.  Object orientation is not the only way to do things.
 138.  Object orientation is not always the best way to do things.
 139.  To create a decent object, one first needs to be a programmer.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 485

 140.  You may be smarter than the previous programmer, but leave their code 
alone unless it is broken.

 141.  You probably are not smarter than the previous programmer, so leave 
their code alone unless it is broken.

 142.  Your program will never actually be complete. Live with it.
 143.  All functions have preconditions for their correct use.
 144.  Sometimes a function cannot tell whether its preconditions are true.
 145.  Computers have gigabytes of memory, mostly. Optimizing it is the last 

thing to do.
 146.  Compute important values in two different ways and compare them.
 147.  0.1 * 10 is not equal to 1.
 148.  Adding manpower to a late software project makes it later.
 149.  It always takes longer than you expect.
 150.  If it can be null, it will be null.
 151.  Do not use catch and throw unless you know exactly what you are doing 

(be careful with exception handling).
 152.  Be clear about your intention. i=1-i is not the same as if(i==0) then i=1 

else i=0.
 153.  Fancy algorithms are buggier than simple ones, and they’re much harder 

to implement. (Pike)
 154.  The first 90% of the code takes 10% of the time. The remaining 10% 

takes the other 90% of the time.
 155.  All messages should be tagged.
 156.  Do not use FOR loops as time delays.
 157.  A user interface should not look like a computer program.
 158.  Decompose complex problems into smaller tasks.
 159.  Use the appropriate language for the job, when given a choice.
 160.  Know the size of the standard data types.
 161.  If you simultaneously hit two keys on the keyboard, the one that you do 

not want will appear on the screen. 
 162.  Patterns are for the weak—it assumes you don’t know what you are  

doing.
 163.  Don’t assume precedence rules, especially when debugging—parenthe-

size.



486  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 164.  Do not use ++ and --. Use code like i = i + 1.
 165.  It’s hard to see where a program spends most of its time.
 166.  Fancy algorithms are slow when n is small, and n is usually small. (Pike)
 167.  Assume that things will go wrong.
 168.  Computers don’t know any math.
 169.  Expect the impossible.
 170.  Test everything. Test often. 
 171.  Do the simple bits first.
 172.  Don’t fix what is not broken.
 173.  If it is not broken, then try to break it.
 174.  Don’t draw conclusions based on names.
 175.  A carelessly planned project takes three times longer to complete than 

expected; a carefully planned project takes only twice as long. 
 176.  Any system that depends on human reliability is unreliable. 
 177.  The effort required to correct course increases geometrically with time. 
 178.  Complex problems have simple, easy to understand, and wrong answers. 
 179.  An expert is that person most surprised by the latest evidence to the con-

trary. 
 180.  One man’s error is another man’s data.
 181.  Noise is something in data that you don’t want. Someone does want it.

 12.5   SUMMARY
There is no general agreement on how best to put together a good program. 

A good program is one that is functionally correct, readable, modifiable, reason-
ably efficient, and that solves a problem that someone needs solved. No two pro-
grammers will create the same program for a non-trivial problem. The program 
development strategy discussed in this chapter is called iterative refinement, and 
it is nearly independent of language or philosophy.

There is no single process that is best for writing programs. Some people 
only use object-oriented code, but a problem with teaching that way is that a class 
contains traditional, procedure-oriented code. To make a class, one must first 
know how to write a program.



 Chapter  12 ·  How to Wri te  Good Programs  ■ 487

The idea behind top-down programming is that the higher levels of abstrac-
tion are described first. A description of what the entire program is to do is writ-
ten in a kind-of English/computer hybrid language (pseudocode), and this de-
scription involves making calls to functions that have not yet been written but 
whose function is known—these functions are called stubs. The first step is to 
sketch the actions of the program as a whole, then to expand each step that is not 
well-defined into a detailed method that has no ambiguity. Compile and test the 
program as frequently as possible so that errors can be identified while it is still 
easy to see where they are.

The key to object-oriented design is identifying the best objects to be im-
plemented. The rest of the program will take a logical shape depending on the 
classes that it uses. Try to isolate the details of the class from the outside. Always 
be willing to re-think a choice and re-write code as a consequence.

Exercises

 1.  Add sound to the game. When the ball collides with an object, a sound effect 
should play.

 2.  Consider how hyphenation might be added to Pyroff. How would it be 
decided to hyphenate a word, and where would the new code be placed? In 
other words, sketch a solution.

 3.  In some versions of Breakout-style games, certain of the tiles or targets have 
special properties. For example, sometimes hitting a special target will result 
in the ball speeding up or slowing down, will have an extra point value, 
or will change the size of the paddle. Modify the game so that some of the 
targets speed up the ball and some others slow it down.

 4.  The Pyroff system can turn the right adjustment off, but not on. This seems 
like a flaw. Add a new command, “.ra” that will turn the right adjustment on.

 5.  Most word processors allow for a header and a footer, some space and possibly 
some text at the beginning and end, respectively, of every page. Design a 
command “.he” that at the least allows for empty space at the beginning of 
a page, and a corresponding command “.fo” that allows for some lines at the 
end of a page.



488  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 6.  Which three of the Rules for Programmers do you think make the greatest 
difference in the code? Which three affect code the least? Are there any that 
you don’t understand?

Notes and Other Resources

Bouncing a ball off of a wall: https://sinepost.wordpress.com/2012/08/19/bounc-
ing-off-the-walls/

 1. Jon Bentley. (1999). Programming Pearls, 2nd ed., Addison-Wesley 
Professional, ISBN-13: 978-0201657883.

 2. Adrian Bowyer and John Woodwark. (1983). A Programmer’s Geometry, 
Butterworth-Heinemann Ltd., ISBN-13: 978-0408012423. 

 3. Frederick Brooks. (1995). The Mythical Man-Month: Essays on Software 
Engineering, Anniversary Edition, Addison-Wesley Professional.

 4. Jim Parker. (2015). 100 Cool Processing Sketches, eBook, https://leanpub.
com/100coolprocessingsketches

 5. Jim Parker. (2015). Game Development Using Processing, Mercury Learning 
and Publishing.

 6. R. Rhoad, G. Milauskas, and R. Whipple. (1984). Geometry for Enjoyment 
and Challenge, rev. ed., Evanston, IL, McDougal, Littell & Company.

 7. Gerald M. Weinberg. (1998). The Psychology of Computer Programming, 
Anl Sub ed., Dorset House, ISBN-13: 978-0932633422.



■ ■ ■ ■ ■

In this chapter

Python can read data from the keyboard and print information on the screen. 
It can display graphics, audio, and video, allow mouse (and touch) interactions, 
and read and write data to and from files. That’s a lot of communication, but it 
all happens on one computer—the one on which the program is running. In the 
age of high-speed Internet, social media, podcasts, blogs, and wikis, this is not 
enough.  

Can computers communicate with another one? Of course. Can a program 
send email? Yes, that’s what a mail program like Thunderbird or Outlook does. 
Can a program be written that reads tweets as they are sent? Yes. However, all 
these things are done according to someone else’s rules. The first email was sent 
in 1971 on a private network named Arpanet. It sent mail between distinct com-
puters, rather than sending messages between users on a specific machine. In 
1972, Unix email was made available, and it was networked in 1978. 

13chaPter

coMMunicating with the  
outside worLd

13.1 Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
13.2 FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
13.3 Communication Between Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
13.4 Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
13.5 Communicating with Other Languages  . . . . . . . . . . . . . . . . . . . . . . . . . 512
13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514



490  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The sender and receiver had to agree on how to encode and decode a mes-
sage, and how to access it from the network. To send mail between different 
computers always requires a standard, a scheme that is agreed upon by imple-
menters of the system. Otherwise, mail can only be sent between UNIX systems, 
or Windows, or iOS. email, to be practical, needs to be flexible. It needs to be 
ubiquitous, and so all need to agree on a standard for how email can be sent and 
received. A standard was eventually agreed on, called the Simple Mail Transfer 
Protocol (SMTP), and it was established in 1982.

This was seven years before the World Wide Web, so email really represents 
the first practical way to communicate between computers over a long distance. 
FTP happened at about the same time. The enabling technology for the Web, 
TCP/IP, came next. All of these developments in networking and software com-
bined to create the modern interconnected society, but all are based on a collec-
tion of rules that software must agree to (protocols) if they are to make use of 
the network infrastructure. This is an example of design by contract, in which 
designers create formal specifications for components and using those involves a 
kind-of contract or agreement between programmers developing client software 
and those who built the modules and designed the protocols.

There are high-level programs that provide a good user interface to the Inter-
net and that implement these protocols beneath their visual presentation. When 
using Python, a collection of modules is used that handles the very low-level 
details, but the interface to the programmer exposes the protocol. Some of these 
modules are provided in a standard Python installation (smtplib and email), and 
some are not (MPI and tweepy), and will have to be installed before the code in 
this chapter will run.

When communicating with another machine, a key issue is that of authenti-
cation. Almost all protocols require that a connection be formed between the two 
computers, using some kind of identification of those machines, such as their IP 
address. Then the one initializing the connection must prove that it has permis-
sion to do what it is about to do. This resembles logging in, and it involves a user 
identification and a password of some type. Once the user has been identified, 
there is an exchange of messages that tell the remote computer what is desired of 
it and that allow information to be returned to the caller. This process is nearly 
universal, but takes somewhat different forms on different systems.



 Chapter  13 ·  Communicat ing with the Outside World  ■ 491

 13.1 EMAIL
Email is a good example of a client-server system, and one that gets used 

millions of times each minute. The email program on a PC is the client, and al-
lows a user to enter text messages, specify destinations, attach images, and all of 
the features expected by such a program. This client packages the email message 
(data) according to the Simple Message Transfer Protocol (SMTP) and sends that 
to another computer on the Internet, the email server. An email user must have an 
account on the server for this to work so they can be identified and the user can 
receive replies. The process is as follows: log into the email server, then send the 
SMTP message to the email server program on that server. Thus, the client side 
of the contract is to create a properly formatted message, to log into the server 
properly, and pass the message to it.

Now the server does the work. Given the destination of the message, it 
searches for the server that is connected to that destination. For example, given 
the address xyz@gmail.com, the server for gmail.com is located. Then the email 
message is sent across the network to that server. The server software at that end 
reads the message and places it into the mailbox, which is really just a directory 
on a disk drive connected to the server, for the specified use xyz. The mail mes-
sage is essentially a text file at this point.

This description is simplified but essentially accurate, and describes what 
has to be done by a program that is supposed to send an email message. The 
Python module that permits the sending of email implements the protocol and of-
fers the programmer ways to specify the parameters, like the destination and the 
message. The interface is implemented as a set of functions. The library needed 
for this is smtplib, a part of the standard Python system.

Example: Sending an email

Sending an email message starts with establishing a connection between the 
client computer and the user’s mail server, the one on which they have an account 
(user name and password). For the purposes here, a Gmail (Google) server is 
used. The email accounts in the example are also Gmail ones, and these can be 
had for free from Google.

The program must declare smtplib as an imported module. The sending ad-
dress and the receiving address are the same in this example, but this is just a 



492  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

test. Normally, this will not be the situation. The email address is the user ID 
for Gmail authentication and the password is defined by the user. These are all 
strings. 
import smtplib

LOGIN = yourloginID     # Login User ID for Gmail, string
PASSWD = yourpassword   # Login password for Gmail, string
sndr = pythontextbook@gmail.com      # Sender's email address
rcvr = pythontextbook@gmail.com      # Receiver's email ad-
dress

Part of the SMTP scheme is a syntax for email messages. There is a header 
at the beginning that specifies the sender, receiver, and subject of the message. 
These are used to format the message, not to route it—the receiver address is 
specified later. A simple such message looks like this:  

From: user_me@gmail.com
To: user_you@gmail.com
Subject: Just a message

A string must be constructed that contains this information:  
msgt = "From: user_me@gmail.com\n"
msgt = msgt + "To: user_you@gmail.com\n"
msgt = msgt + "Subject: Just a message\n"
msgt = msgt + "\n"

Now the body of the message is attached to this string. This is the part of the 
email that is important to the sender:  
msgt = msgt + "Attention: This message was sent by Python!\n"

The string variable msgt now holds the whole message. This message is 
in the format defined by the Multipurpose Internet Mail Extensions (MIME) 
standard. The next step for the program is to try to establish a connection with 
the sender’s email server. For this, the smtp module is needed, specifically the 
SMTP() function. It is called, passing the name of the user’s email server as a 
parameter, and it returns a variable that references that server. In this example, 
that variable is named server:  

server = smtplib.SMTP('smtp.gmail.com')



 Chapter  13 ·  Communicat ing with the Outside World  ■ 493

If it is not possible to connect to the server for some reason, then an error will 
occur. It is therefore a good idea to place this in a try-except block:  

try:
    server = smtplib.SMTP('smtp.gmail.com')
except:
    print ("Error occurred. Can't connect")
else:

Now comes the complexity that Gmail and some other servers introduce. 
What happened after the call to smtplib.SMTP() is that a communications ses-
sion has been opened up. There is now an active connection between the client 
computer and the server at smtp.gmail.com. Some servers demand a level of se-
curity that ensures that other parties cannot modify or even read the message. 
This is accomplished using a protocol named Transport Layer Security (TLS), 
the details of which are not completely relevant because the modules take care 
of it. However, to send data to smtp.gmail.com, the server must be told to begin 
using TLS:  

server.starttls()

Now the user must be authenticated using their ID and password:  
server.login(LOGIN,PASSWD)

Only now can a message be sent, and only if the login ID and password are 
correct. The sender is the string sndr, the recipient is rcvr, and the message is 
msgt:  

server.sendmail(sndr, rcvr, msgt)

Now that the message has been sent, it is time to close the session. Logging 
off of the server is done as follows:  

server.quit()

This program sends one email, but it can be easily modified to send many 
emails, one after the other. It can be modified to read the message from the 
keyboard, or perform any of the functions of a typical email-sending program  
(Exercise 1).

The module email can be invoked to format the message in MIME form. 
The function MIMEText(s) converts the message string s into an internal form, 



494  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

which is a MIME message. Fields like the subject and sender can be added to the 
message, and then it is sent as was done before. For example,
import smtplib
from email.mime.text import MIMEText

LOGIN = yourloginID
PASSWD = yourpassword

fp = open ("message.txt", "r")  # Read the message 
                                # from a file
mtest = fp.read()
# Or: simply use a string
#mtest = “A message from Python: Merry Christmas.”
fp.close()

msg = MIMEText (mtest)               # Create a MIME string
sndr = pythontextbook@gmail.com      # Sender's email
rcvr = pythontextbook@gmail.com      # Recipient's email
msg['Subject'] = 'Mail from Python'  # Add Subject to the 
message
msg['From'] = sndr                  # Add sender to the message
msg['To'] = rcvr                 # Add recipent to the 
                                 # message

# Send the message using Google’s SMTP server, as before
s = smtplib.SMTP('smtp.gmail.com')  # localhost could work
s.starttls()
s.login (LOGIN, PASSWD)
s.send_message(msg)
s.quit()

Using MIMEText() to create the message avoids having to format it cor-
rectly using basic string operations.



 Chapter  13 ·  Communicat ing with the Outside World  ■ 495

Construct a MIME formatted message from the 
subject, sender, receipient, and body text.

Connect with the mail server

mbox = imaplib.IMAP4 _ SSL(imap.gmail.com)

 

Connect with the mail server.

server = smtplib.SMTP(ꞌsmtp.gmail.comꞌ)

Identify and authenticate the user on the server.

mbox = login(USER, PASSWORD)

 

Make the connection comply with TLS, if 
necessary

Select an inbox/email folder

env, data = mbox.select("Inbox")

 

Identify and authenticate the user on the server.

server.login(LOGIN, PASSWD)

Read the Mailbox

env, data = m.search(None, "ALL")

 

Send the Email message to the server, identifying 
the sender and receipient

server.sendmail(sndr, rcvr, msgt)

Fetch Messages

env, data = m.fetch(num, ꞌ(RFC822)ꞌ)

 

Close the connection Log Out/Close

Process for sending an Email Process for reading Email

Figure 13.1
The procedure for sending an email using Python.

 13.1.1 Reading email

Reading email is more complicated than writing it. The content of an email 
is often a surprise, and so a reader must be prepared to parse anything that might 
be sent. There can be multiple mailboxes: which mailbox will be looked at? There 
are usually many messages in a mailbox:  how can they be distinguished? In ad-
dition, the protocol for retrieving mail from a server is different from that used to 
send it. There are two competing protocols: POP and IMAP.

The Post Office Protocol (POP) is the older of the two schemes, although it 
has been updated a few times. It certainly allows the basic requirements of a mail 
reader, which is to download and delete a message in a remote mailbox (i.e., on 
the server). The Internet Message Access Protocol (IMAP) is intended for use by 
many email clients, and so messages tend not to be deleted until that is requested. 



496  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

When setting up an email client, one of these protocols usually has to be speci-
fied, and then it will be used from then on. The example here uses IMAP.

 13.1.2 Example: Display the Subject Headers for Emails in the Inbox

An outline for the process of reading email is sketched on the right side of 
Figure 13.1. Reading email uses a different module that was used to send email: 
imaplib, for reading from an IMAP server. The function names are different from 
those in smtplib, but the purpose of some of them is the same. The first three steps 
in reading email are as follows: 
import imaplib
server = 'imap.gmail.com'         # Gmail's IMAP server
USER = pythontextbook@gmail.com   # User ID
PASSWORD = "password"             # Mask this password
EMAIL_FOLDER = "Inbox"

mbox = imaplib.IMAP4_SSL(server)  # Connect to the server
mbox.login(USER, PASSWORD)        # Authenticate (log in)

The next step is to select a mailbox to read. Each has a name, and is really 
just a directory someplace. The variable mbox is a class instance of a class named 
imaplib.IMAP4_SSL, the details of which can be found in many places, including 
the Internet. It has a method named select() that allows the examination of a mail-
box, given its name (a string). The string is a variable named EMAIL_FOLDER, 
which contains “Inbox,” and the call to select() that essentially opens the inbox is  

z = mbox.select(EMAIL_FOLDER)

The return value is a tuple. The first element indicates success or failure, and 
if z[0] contains the string “OK,” then the mailbox is open. The usual alternative 
is “NO.” The second element of the tuple indicates how many messages there are, 
but it is in an odd format. If there are 2 messages, as in the example, this string is 
b’2’; if there were 3 messages it would be b’3’; and so on. These are called mes-
sage sequence numbers. 

Having opened the mailbox, the next step is to read it and extract the mes-
sages. The protocol requires that the mailbox be searched for the messages that 
are wanted. The imaplib.IMAP4_SSL class offers the search() method for this, 
the simplest form being  



 Chapter  13 ·  Communicat ing with the Outside World  ■ 497

mbox.search(None, "ALL")

which returns all of the messages in the mailbox. IMAP provides search func-
tionality, and all this method does is connect to it, which is why it seems awkward 
to use. The first parameter specifies a character set, and None allows it to default 
to a general value. The second parameter specifies a search criterion as a string. 
There are dozens of parameters that can be used here and the documentation for 
IMAP should be examined in detail for solutions to specific problems. However, 
some of the more useful tags include 

ANSWERED: Messages that have been answered
BCC <string>:  Messages with a specific string in the BCC field
 BEFORE <date>: Messages whose date (not time) is earlier than the speci-
fied one
 HEADER <field-name> <string>:  A specified field in the header contains 
the string
 SUBJECT <string>: Messages that contain the specified string in the SUB-
JECT field
TO <string>: Messages that contain the specified string in the TO field
UNSEEN: Messages that do not have the \Seen flag set 

A call to search() that looks for the text “Python” in the subject line is
mbox.search(None, "SUBJECT Python")

The search() function returns a tuple again, where the first component is a 
status string (i.e., “OK,” “NO,” and “BAD”) and the second is a list of messages 
satisfying the search criteria in the same format as before. If the second message 
if the only match, this string will be b’2.’ If the first three match it will be b’1 
2 3.’

Finally, the messages are read, or fetched. The imaplib.IMAP4_SSL class has 
a fetch() method to do this, and it again takes some odd parameters. What a 
programmer thinks of the interface or the API or, in other words, the contract, is 
not important. What must be done is to satisfy the requirements and accept the 
data as it is offered. The fetch() method accepts two parameters: the first is the 
indication of which message is desired. The first message is b’1’, the second is 
b’2’, and so on. The second parameter is an indicator of what it is that should be 
returned. The header? If so, pass (RFC822.HEADER) as the parameter. Why? 



498  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Because they ask for it. RFC822 is the name of a protocol. If the email body is 
wanted, then pass (RFC822.TEXT). A short list of possibilities is

RFC822 - Everything
RFC822.HEADER - No body, header only
RFC822.TEXT   - Body only
RFC822.SIZE  - Message size
UID - Message identifier

Multiple of these specifiers can be passed. For example, 
mbox.fetch(num, '(UID RFC822.TEXT RFC822.HEADER)')

returns a tuple having three parts: the ID, the body, and the header. The head-
er tends to be exceptionally long, 40 lines or so. For this example, the only part 
of the header that is interesting is the “Subject” part. Fields in the header are 
separated by the characters “\r\n,” so they are easy to extract in a call to split(). 
Eliminating the header data for a moment, the call  

(env, data) = mbox.fetch(num, '(UID RFC822.TEXT)')

results in a tuple that has an “envelope” that should indicate “OK” (the env vari-
able). The data part is a string that contains the UID and the text body of the 
message. For example,  
[(b'2 (UID 22 RFC822.TEXT {718}', b"Got a collection of old 
45's for sale. Contact me.\r\n\r\n-- \r\n"), b')']

This says that this is message 2 and shows the text of that message.

This example is supposed to print all of the subject headers in this mailbox. 
The call to fetch() should extract the header only:  

(env, data) = mbox.fetch(num, '(RFC822.HEADER)')

The details of IMAP are complex enough that it is easy to forget what the 
original task was, which was to print the subject lines from the messages in the 
mailbox. All of the relevant methods have been described and completing the 
program is possible. The entire program is as follows:
import imaplib

server = 'imap.gmail.com'          # IMAP Server
USER = "pythontextbook@gmail.com"  # USER ID



 Chapter  13 ·  Communicat ing with the Outside World  ■ 499

PASSWORD = ""                      # Mask this password
EMAIL_FOLDER = "Inbox"             # Which mailbox?

mbox = imaplib.IMAP4_SSL(server)   # Connect
mbox.login(USER, PASSWORD)         # Authenticate

env, data = mbox.select(EMAIL_FOLDER)  # Select the mailbox
if env == 'OK':                        # Did it work?
    print ("Printing subject headers: ", EMAIL_FOLDER)

    env, data = mbox.search(None, "ALL")   # Select the 
 # messages wanted.
    if env != 'OK':                      # Are there any?
        print ("No messages.", env)      # Nope.
        exit()

    for num in data[0].split():     # For each selected 
                                    # message b’1 2 3 ...’
        (env, data) = mbox.fetch(num, '(RFC822.HEADER)')
                                                 # Read it
        if env != 'OK':
            print ("ERROR getting message", num, ", ", env)
            break
        s = str(data[0][1])    # Look for the string 
                               # "Subject" in the header
        k = s.find("Subject")
        if (k>=0):             # Found it?
            s =  s[k:]         # Extract the string 
                               # to the next ‘\r’
            k = s.find('\\r')
            s = s[:k]
            print (s)          # And print it.
    mbox.close()
else:
    print ("No such mailbox as ", EMAIL_FOLDER)
mbox.logout()

The typical output would be as follows:

Printing subject headers:  Inbox
Subject: Contents of Chapter 13
Subject: 45 RPM
Subject: another email



500  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The point of this section was to demonstrate how a Python program, or any 
program for that matter, must comply with external specifications when interfac-
ing with sophisticated software systems, and to introduce the concept of a protocol, 
a contract between developers. A program that can send email is useful by itself.

 13.2 FTP
The File Transfer Protocol (FTP) is used to exchange files between comput-

ers on a network. It provides the same sort of interface to data on a distance com-
puter as would be expected from a file system on a desktop. It can copy a file in 
either direction, but can also change directories, list the directory contents, and 
perform other useful operations. This again presumes that the rules set up by the 
FTP interface are followed.

Having just seen the communication requirements for sending and receiving 
email, it should be possible to predict the way that FTP operates. A connection 
has to be made to a remote computer, and some form of authentication takes 
place. The client (the program that established the connection) now send a set of 
commands to the server, which reads and processes them. Then, finally, the client 
terminates the connection.  

The commands that can be processed by an FTP server include listing the 
contents of the directory (LIST), changing the working directory (CWD), retriev-
ing a file (RETR), and sending or storing a file (STOR). These are sent across 
the network as strings and represent raw FTP commands, and take place at a 
low level of abstraction in the system. Higher level commands are implemented 
as specific methods in the FTP class of ftplib. For example, there is a command 
named PWD that displays the name of the current remote directory. FTP offers a 
function that sends this command:  

FTP.pwd()

Doing the same thing by sending the command directly uses the sendcmd() 
method of FTP, and it passes the command as a string:  

ftp.sendcmd("PWD")

There is a difference to the programmer. The pwd() method returns the string 
that represents the directory, whereas when the text command is sent, the return 
value is the string that the FTP system returned, which is something like

257 “/” is the current directory



 Chapter  13 ·  Communicat ing with the Outside World  ■ 501

 13.2.1  Example: Download and Display the 
README File from an FTP Site

The site chosen for the example belongs to NASA, but any ftp site will work. 
The connection and authentication steps are as follows:  
from ftplib import FTP

ftp = FTP("ftp.hq.nasa.gov")  # Please don't always use NASA
ftp.login()                     # Select a different site.

The login step is interesting because there are no parameters given. This 
is an anonymous FTP connection, which is common for sites that offer things 
for download. The default login when using the login() method is a user ID of 
“anonymous” and a password, if one is requested, of “anonymous.” It is also pos-
sible to specify an ID and password if the user has them:  

ftp.login("myuserid", "mypassword")

The login() function returns the site’s welcome message, which is a string 
that can be ignored.

The example is supposed to download the file named README and display 
it. The method retrlines() can do this, because it is a text file. If it were a binary 
file, like an MP3 or JPG file, then the retrbinary() method would be used in-
stead. The first parameter to retrlines() is a command. To retrieve a file the com-
mand is the keyword RETR followed by the file name. The simplest version is  

ftp.retrlines('RETR README')

which displays the text from the file on the screen. That’s what was wanted, but 
the method can do more. If a function name is passed as the second parameter, 
then that function is called for with every line of text, and will pass that line as 
a parameter. To illustrate this, consider a simple function that takes a string and 
prints each line, looking for “\\n” characters. The function is  

def myprint (ss):
    s = str(ss)  # Sometimes the parameter ss is type byte.
    x = s.split("\\n")
    for i in range (0, len(x)):
        print (x[i])

A call to retrlines() could be as follows:  
ftp.retrlines('RETR README', myprint)



502  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

or even  
ftp.retrlines('RETR README', print)

to use the standard print() function. Of course, any function that takes a string 
parameter could be passed. To save the README file as a local file, for example,  

ftp.retrlines('RETR README', open('README', 'w').write)

writes the file to a local one named README, but it lacks the end-of-line char-
acters.

Binary files use retrbinary(), and it has the same form as retrlines(). How-
ever, the second parameter, the function, must be passed, because binary files 
cannot be sent to the screen. Downloading and saving an image file might be 
done as follows:  
ftp.retrbinary('RETR orion.jpg, open('orion.jpg, 'wb').
write)

The session would end by logging out:  
ftp.quit()

Uploading a file, that is moving a file from a desktop to a site on the Inter-
net, used the method storlines() for text and storbinary() for binary files. For 
example,  

f = open ("message.txt", "rb")
ftp.storlines ("STOR message.txt", f)

The method copies lines from the local file to the remote one. The file to be 
copied is open in “rb” mode. For a binary example, assume there is an image: 
f = open ("image.jpg", "rb")
ftp.storbinary ("STOR image.jpg", f)
session.storbinary('STOR kitten.jpg', file)  # send the file

 13.3 COMMUNICATION BETWEEN PROCESSES
Underneath the FTP and email protocols, which allow interfaces to ap-

plications, lies a communications layer, the programs that actually send bytes  
between computers or between programs on the same computer. It is conducted 
very much like a conversation. One person, the client, initiates the conversation 
(“Hi there!”). The other (the server) responds (“Hello. Nice to see you.”). Now, it 



 Chapter  13 ·  Communicat ing with the Outside World  ■ 503

is the client’s turn again. They take turns sending and accepting messages until 
one says “goodbye.” These messages might contain email, or FTP data, or TV 
programs. This layer does not care what the data is, its job is to deliver it.

Data are delivered in packets, each containing a certain amount. In order 
for the client to deliver the data, there must be a server willing to connect to it. 
The client needs to know the address of a server, just as an FTP address or email 
destination was required before, but now all that is needed is the host name and a 
port number. A port is really a logical construction, something akin to an element 
of a list. If two programs agree to share data by having one of them place it in lo-
cation 50001 of a list and the other one read it from there, it gives an approximate 
idea of what a port is. Some port numbers are assigned and should not be used for 
anything else; FTP and email have assigned ports. Others are available for use, 
and any two processes can agree to use one.

A module named socket, based on the inter-process communication scheme 
on UNIX of the same name, is used with Python to send messages back and forth. 
To create an example, two computers should be used, one being the client and one 
the server, and the IP address of the server is required, too.

 13.3.1  Example: A Server That Calculates Squares

The client opens a communications link (socket) to the server, which has a 
known IP address. The server engages in a short handshake (exchange of strings), 
and then expects to receive a number for the client. The client sends an integer, 
the server receives it, squares it, and sends back the answer. This simple exchange 
is really the basis for all communications between computers: one machine sends 
information, the other receives it, processes it, and returns a reply based on the 
data it received.

The client begins the conversation. It creates a connection, a socket, to the 
server using the socket() function of the socket module. Protocols must be speci-
fied, and the most common ones are used:  
import socket

HOST = '19*.***.*.***'   # The remote host
PORT = 50007              # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))



504  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Port 50007 is used because nothing else is using it. Now the client starts the 
conversation, just as it appears at the beginning of this section:  

s.send(b'Hi there!')

The send() function sends the message passed as a parameter. The string (as 
bytes) is transmitted to the server through the variable s, which represents the 
server. The client now waits for the confirmation string from the server, which 
should be “Hello. Nice to see you.” The client calls:  

data = s.recv(1024)

which waits for a response from the server. This response is 1024 bytes long at 
most, and it waits only for a short time, at which point it gives up and an error 
is reported. When this client gets the response, it proceeds to send numbers to 
the server. They are converted into the bytes type before transmission. In this 
example, it simply loops through 100 consecutive integers:  

for i in range (0, 100):
    data = str(i).encode()
    s.send (data)

After sending to the server, it waits for the answer. Actually, that’s a part of 
the receive function:  

data = s.recv(1024)

after 100 integers, the loop ends and the connection is closed:  
s.close()

The server is always listening. It creates a socket on a particular port so that 
the operating system knows something is possible there, but because the server 
cannot predict when a client will connect or what client it will be it simply listens 
for a connection, by calling a function named listen():  
import socket
from random import *

HOST = ''   # A null string is correct here.
PORT = 50007
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind ((HOST, PORT))
s.listen()



 Chapter  13 ·  Communicat ing with the Outside World  ■ 505

AF_INET and SOCK_STREAM are constants that tell the system which 
protocols are being used. These are the most common, but see the documentation 
for others. The bind() and the listen() functions are new. Associating this con-
nection with a specific port is done using bind(). The tuple (HOST, PORT) says 
to connect this host to this port. The empty string for HOST implies this comput-
er. The listen() call starts the server process, this program, accepting connections 
when asked. A process connecting on the port that was specified in bind() will 
now result in this process, the server, being notified. When a connection request 
occurs, the server must accept it before doing any input or output:  

conn, addr = s.accept()

In the tuple (conn, addr) that is returned, conn represents the connection, 
like a file descriptor returned from open(), and it is used to send and receive data. 
addr is the address of the sender, the client, and it is a string. If the addr were 
printed,  

print ("Connected to ", addr)

it would look like an IP address: 
Connected to 423.121.12.211

Now, the server can receive data across the connection, and does so by call-
ing recv():  

data = conn.recv(1024)
print ("Server heard '", data, "'")

The parameter 1024 specifies the size of the buffer, or the maximum number 
of bytes that can be received in one call. The variable data is of type bytes, just 
as the parameter to send() was in the client. The client was the first to send, and 
it sent the message “Hi there!” That should be the value of data now, if it has 
been received properly. The response from the server should be “Hello, nice to 
see you.”  

conn.send (b'Hello. Nice to see you.')

The same connection is used for sending and receiving.

Now the real data gets exchanged. The server accepts integers, sent as bytes. 
It squares them and transmits the answer back.  
while True:
    data = conn.recv(1024)          # Read the incoming data



506  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    if data:
        i = int(data)               # Convert it to integer
        print ("Received ", i)
        data = str(i*i).encode()    # Square it and convert 
                                    # to bytes
        conn.send (data)            # Send to the client

The server can tell when the connection is closed by the client, but it is also 
polite to say “goodbye” somehow, perhaps by sending a particular code. If the 
loop ever terminates, the server should close the connection:  

conn.close()

This is a pretty good example of a data exchange and a contract, because 
there are specified requirements for each side of this conversation that will result 
in success if done correctly and failure if messed up. Failure is sometimes indi-
cated by an error message, often a timeout, where the client or server was expect-
ing something that never arrived. In other cases, failure is not formally indicated 
at all; the program simply “hangs” there and does nothing. If at any time, both 
processes are trying to receive data, then the program will fail.

Figure 13.2 shows the communication between the client and the server as 
a diagram. If the client and the server are at any time both trying to accept data 
from the connection, then the program will fail. In the diagram, all data trans-

Figure 13.2 
Typical communication between the client and the server processes.



 Chapter  13 ·  Communicat ing with the Outside World  ■ 507

fers are transmit-accept pairs between the two processes and as read-write pairs 
within the server and write-read pairs within the client.

The FTP protocol can now be seen as a socket connection, wherein the cli-
ent sends strings (commands) to the server, which parses them, carries out the 
request, and then sends an acknowledgement back.

# The client
import socket

# The remote host
HOST = '19*.***.*.***'    
# The same port used by 
# the server
PORT = 50007 

s = socket.socket(socket.
                  AF_INET,\ 
        socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(b'Hi there!')
data = s.recv(1024)
for i in range (0, 100):
    data = str(i).encode()
    s.send (data)
    data = s.recv(1024)
s.close()

# The server
import socket

HOST = '' # A null string 
          # is ok here.
PORT = 50007
s = socket.socket(socket.
                  AF_INET, \ 
      socket.SOCK_STREAM)
s.bind ((HOST, PORT))
s.listen()
conn, addr = s.accept()
data = conn.recv(1024)
print ("Server heard 
               '", data, "'")
conn.send (b'Hello. Nice to 
             see you.')
while True:
# Read the incoming data
    data = conn.recv(1024)                     
    if data:
# Convert it to integer
        i = int(data)        
        print ("Received ", i)
# Square it and convert to 
# bytes
        data = str(i*i).en-
code() 
# Send to the client   
        conn.send (data)            
   conn.close()

 13.4 TWITTER
Twitter is a social media service that allows its users to send short (140 char-

acter) messages out to its subscribed listeners. From its beginning in 2006, Twit-



508  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

ter has grown to the point where it handles hundreds of millions of messages 
(tweets) per day from their 302 million active users. It differs from email in that 
it broadcasts messages, and the recipients are self-selected.

The messages are entered by Twitter users, each of whom has an account. 
All messages become part of a stream, and the ones that a particular user wants 
to see are pulled from that stream and placed on the user’s feed. It is, however, 
possible to see the feed and examine messages as they are sent, collecting data or 
identifying patterns. Twitter allows access to the stream, but when using Python, 
it requires the use of a module that must be downloaded and installed. That mod-
ule is called tweepy.

A warning: setting up the authentication so that the Twitter stream can be 
accessed is not simple. A Twitter account is needed, an application has to be 
registered, and the app must be specified as being able to read, write, and direct 
messages. Twitter creates a unique set of keys that must be used for the authen-
tication: the consumer key and consumer secret key, then the access token and 
access secret token.  

A tweet is limited to 140 characters, but that only considers content. The 
amount of data sent in a tweet is substantially larger than that, 6000 bytes or more. 
That’s due to the large amount of metadata, or descriptive information, in a tweet. 
Most people never see that, but a program that reads tweets and sifts them for in-
formation will have to deal with it. The twitter interface returns tweet data in JSON 
format (JavaScript Object Notation), which is a standard for exchanging data, simi-
lar in purpose to XML. This format has to be parsed, but a second Python module 
named json will do that so no further discussion of JSON will be necessary.

 13.4.1  Example: Connect to the Twitter Stream 
and Print Specific Messages

This program examines the twitter feed and prints messages that have the 
term “Star Trek” in them. It is useful to see that once again, authentication is one 
of the first things to do. In the case of tweepy, an object is created, passing the 
authentication strings.  
import tweepy
import json



 Chapter  13 ·  Communicat ing with the Outside World  ■ 509

# Authentication details from dev.twitter.com
consumer_key = 'get your own'
consumer_secret = 'get your own'
access_token = 'get your own '
access_token_secret = ''get your own '

authentication = tweepy.OAuthHandler(consumer_key, consum-
er_secret)
authentication.set_access_token(access_token, 
 access_token_secret)

Now something different is needed. Tweepy wants to have an object passed 
to it that is a subclass of one that it defines, StreamListener. As a part of the deal 
that is made with tweepy, the class must have a method named on_data() and an-
other named on_error(). The on_data() method is called by tweepy when there 
is data in the stream to be read, and the data is passed as a string in JSON format; 
the on-error() method is called when an error occurs, and is passed a string with 
the error message. Creating this subclass will be described a little later. However, 
assume that it is called tweet_listener. The next step in the process is to create an 
instance of this class:  

listener = tweet_listener()

The stream is accessed through this class instance. Now tell tweepy what this 
instance is so it can use it. Also do the authentication:  

stream = tweepy.Stream(authentication, listener)

Finally, tell tweepy what to extract from the Twitter stream. For this example, 
the call is:

stream.filter(track=['Star Trek'])

but other parts of the stream can be accessed and sent to this program, such as 
times, dates, and locations. In this case, the track argument looks into the mes-
sage text for the “Star Trek” string, case insensitive. Multiple search strings can 
be placed in the list: [‘Star Trek’, ‘casablanca’].

What about the tweet_listener class? It is a subclass of StreamListener. The 
on_data() method needs to parse the JSON-formatted string it is passed and print 
the parts of the message that are desired. Since the filter() call restricts the mes-
sages to those containing the string “Star Trek,” all that has to be done in this 



510  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

method is to print the body of the message. Here is the class showing the method; 
the explanation follows:  
class tweet_listener(tweepy.StreamListener):

    def on_data(self, data):
# Twitter returns data in JSON format - decode it first
        dict = json.loads(data)
        print (dict['user']['location'])
        print (dict['user']['screen_name'],dict['text'])
        return True

    def on_error(self, status):
        print (status)

The parameter data is in JSON format. To convert it into something useable, 
pass it to the json.loads() method. It returns a Python dictionary with the data 
available, indexed by the field name. The data structure used by Twitter is com-
plex, and is shown in small part in Table 13.1. The left side of the table shows the 
message field names, and the right lists some of the user fields; user is a field 
within the message that describes the sender. The variable dict is the resulting 
dictionary.

To simply solve the problem posed, all that would have to be done is to print 
dict[‘text’], which is the message body. The value of dict[‘user’] is the data 
for the sender of the message. There is a lot of that, mostly not useful to any-
one but an app developer (e.g., the background color of the user’s window), but 
dict[‘user’]’[‘screen_name’] is the Twitter identity of the sender, and dict[‘user’]
[‘location’] often indicates where they are. It would be possible to collect data on 
where the largest number of tweets are being sent from, what kind of information 
is being conveyed, and in this way perhaps develop an early warning system for 
events happening in the world.
Table 13.1
Fields in a Twitter message

Message fields Fields in the user structure
Coordinates (Coordinates) Represents the 
geographic location of this tweet as report-
ed by the user or client application. 

created_at (String) The UTC datetime 
that the user account was created on Twit-
ter.

created_at (String)  UTC time when this 
tweet was created.

Description (String) The user-defined 
string describing their account.



 Chapter  13 ·  Communicat ing with the Outside World  ■ 511

Message fields Fields in the user structure
favorite_count (Integer) Indicates ap-
proximately how many times this tweet 
has been “liked” by Twitter users.

geo_enabled (Boolean) When true, indi-
cates that the user has enabled the possi-
bility of geotagging their Tweets.

Id (Int64) The integer representation of the 
unique identifier for this tweet.

Id (64 bit int) The integer representation of 
the unique identifier for this User.

in_reply_to_screen_name (String) If the 
represented tweet is a reply, this field will 
contain the screen name of the original 
author.

Lang (String) The code (BCP 47) for the 
user’s declared user interface language. 

Lang (String) When present, indicates a 
language identifier corresponding to the 
machine-detected language of the tweet 
text, or “und” if no language could be de-
tected.

listed_count (Int) The number of public 
lists that this user is a member of.

Place (Places) When present, indicates 
that the tweet is associated with (but not 
necessarily originating from) a Place.

Location (String) The user-defined loca-
tion for this account’s profile. Not neces-
sarily a location. 

retweet_count (Int) Number of times this 
Tweet has been retweeted. 

name (String) The name of the user, as 
they’ve defined it. Not necessarily a real 
name. 

Source (String) Utility used to post the 
Tweet, as an HTML-formatted string. 

profile_image_url_https (String) A URL 
pointing to the user’s avatar image.

Text (String) The actual body of the mes-
sage.

screen_name (String) The screen name 
or alias that this user identifies themselves 
with. screen_names are unique but subject 
to change. 

User (Users) The user who posted this 
Tweet. (see: structure to the right) some 
attributes embedded within this object are 
unreliable.

status (Tweets) If possible, the user’s 
most recent tweet or retweet. In some cir-
cumstances, this data cannot be provided 
and this field will be omitted, null, or 
empty. 

withheld_in_countries (Array of String) 
When present, indicates a list of uppercase 
two-letter country codes this content is 
withheld from. 

statuses_count (Int) The number of tweets 
(including retweets) issued by the user.

time_zone (String) A string describing the 
Time Zone this user declares themselves 
within.



512  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 13.5 COMMUNICATING WITH OTHER LANGUAGES
Python is terrific for many things, but it can be quite slow. It is interpret-

ed and has a lot of overhead for many of its features; dynamic typing does not 
come cheap. It may be difficult to easily access operating system functions from  
Python. C, C++, and other languages do not have these problems. It’s possible to 
write a program in Python that calls, for example, a C program to do complex 
calculations of system calls.

Consider the problem of finding the greatest common divisor (GCD) between 
two integers; that is, the largest number that divides evenly into both of them. If 
the GCD between N and M is 1, then these numbers are relatively prime, and they 
could find use in a random number generator.

 13.5.1  Example: Find Two Large Relatively Prime Numbers

This problem is solved using a C program to do the GCD calculation and a 
Python program to pass it large numbers until a relatively prime par is found. 
There are many C versions of the GCD program. This is a common first-year pro-
gramming assignment. One such is gcd.c, provided on the accompanying disk:  
#include "stdafx.h"
#include <stdio.h>

int _tmain(int argc, _TCHAR* argv[])
{
 long n,m;
    scanf("%ld %ld",&n,&m);
    while(n!=m)
    {
        if(n>m)
            n-=m;
        else
            m-=n;
    }
    printf("%d",n);
    return 0;

This is written for Visual C++ 2010 Express, but very similar code will com-
pile for other compilers and systems. The basic idea is that it reads two large 
numbers, named n and m, determines their largest common divisor, and prints 



 Chapter  13 ·  Communicat ing with the Outside World  ■ 513

that number to standard output. The way that Python communicates with this C 
program is through the I/O system. C reads from the standard input and writes to 
the standard output. The Python program co-opts the input and output, pushing 
text data containing the values of n and m to the input, and capturing the standard 
output and copying it to a string. 

This requires the use of a module named subprocess that permits the pro-
gram to execute the gcd.exe program and connect to the standard I/O. A function 
named Popen() takes the name of the file to be executed as a parameter and runs 
it. It also allows the creation of pipes, which are data connections that can take the 
place of files. The Popen() call that runs the gcd program is  

p = subprocess.Popen('gcd.exe',
                     stdin=subprocess.PIPE, 
                     stdout=subprocess.PIPE)

Connecting stdin and stdout to subprocess PIPEs means that now Python 
can perform I/O with them. When GCD starts to execute, it expects two integers 
on input. These can now be sent from the Python program like this:  

p.stdin.write(data)

The expression p.stdin represents the file connection to the program, and 
writing to it does the obvious thing. The Python program writes data to the C pro-
gram, and the C program reads it from stdin. Data should be of type bytes, and 
should contain both large numbers in character form. Correspondingly, when the 
C program has found the greatest common divisor, it writes to standard output. 
This code is as follows: 

s = str(p.stdout.readline())

The C program writes, and the Python program reads. The value returned is 
of type bytes again, so it is converted into a string.  

The final Python solution calls the C program repeatedly until the GCD is 1:  
import subprocess

n = 11111122
m = 121
data = bytes (str(n)+ ' '+str(m), 'utf-8')
while True:



514  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    p = subprocess.Popen('gcd.exe',
              stdin=subprocess.PIPE, 
              stdout=subprocess.PIPE)
    p.stdin.write(data)
    p.stdin.close()
    s = str(p.stdout.readline())
    print (s)
    if s == "b'1'":
        print ("Numbers are ", n, m)
        break
    m = m + 1
    data = bytes (str(n)+ ' '+str(m), 'utf-8')

This method of communicating with other languages is universal, but slower 
than passing parameters to functions and methods directly. There are a lot of 
problems with calling functions in other languages, not the least of which con-
cerns typing. Python, which is a dynamically typed interpreted language, would 
make the programmer perform a significant amount of work to convert lists or 
dictionaries into a form that C or Java could use.

 13.6 SUMMARY
Design by contract has designers create formal specifications for compo-

nents, and using those involves a kind-of contract or agreement between pro-
grammers developing client software and those who built the modules and de-
signed the protocols. For email, as an example, the sender and receiver have to 
agree on how to encode and decode a message, and how to access it from the 
network. To send mail between different computers always requires a standard, a 
scheme that is agreed upon by implementers of the system: a protocol.

The Simple Message Transfer Protocol is a specification of the process and 
data needed to send an email message. The Python module smtplib provides the 
methods needed to interface with this system, which is to say that smtplib imple-
ments SMTP and provides a programmer access at various places. There are two 
schemes for reading email: the Post Office Protocol (POP) and the more modern 
Internet Message Access Protocol (IMAP). An email client must agree to satisfy 
one of these. They Python module for IMAP is imaplib.

The File Transfer Protocol (FTP) is used to move entire files and directories 
across networks. It provides the same sort of interface to data on a distance computer  



 Chapter  13 ·  Communicat ing with the Outside World  ■ 515

as would be expected from a file system on a desktop. The ftplib module offers 
methods for handling this protocol. After authentication, commands are sent as 
character strings, and files can be sent or received using analogues of read and 
write operations.

FTP is built on top of lower level communication primitives such as sockets, 
which create bidirectional data connections between two programs on different 
computers.

Twitter sends out a stream of data containing all of the tweets sent by users, 
and the client can scan these for tweets that are of interest (subscribed). This 
stream can be captured using Python and the tweepy module, and automatic 
scanning of the feed can be done according to the user’s program.

It is also possible for Python to communicate with other programs written in 
other languages by co-opting the input and output files for those programs and 
feeding data into and extracting results from the I/O channels.

Exercises

 1. Write a simple email sending program sendmail. It should ask for the 
destination from the keyboard and accept the message that way, too. Multiple 
destination addresses can be specified by separating them with commas. The 
sender’s email address and the server name should be built into the program.

 2. Write an application that allows a user to specify a word or words and 
examines their mailbox for any email that contains them. The corresponding 
email messages should be written to a text file named “search.txt.”

 3. Write a Python program that downloads the files named “one.txt,” “two.txt,” 
and “three.txt” from an ftp site specified by your instructor into files of the 
same name on a desktop computer.

 4. Design and code a server program that deals poker hands using the socket 
protocol. When the server is connected to by a client, the client sends a string 
“deal.” The server should generate a random poker hand and send it as text. 
The spades suit in this scheme is as follows: s1, s2, s3, s4, s5, s6, s7, s8, s9, 
s10, sj, sq,  and sk. Hearts are “h,” diamonds are “d,” and clubs are “c.” Write 
a test program that reads and prints the resulting hands.



516  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 5. DIFFICULT. Write a two-player pong game using sockets. The game should 
display a graphical version of the standard Pong screen on the local and 
remote screens. The local player can move only the local paddle, and the 
motions made by the remote player are reflected on the local screen. The 
ball is positioned at the same place, as nearly as possible, on both screens 
simultaneously.

 6. There are words and phrases that many governments use to indicate a potential 
security problem. They can examine emails and various social media outlets. 
Examine the Twitter stream for tweets containing the words “assassination,” 
“security,” “weapon,” or “hostage.” Print the tweet and location from which 
it claims to be sent.

 7. How can the IP address of a distant site be determined? Search the Internet 
for that information as it can be implemented in a Python program, and 
implement a program that asks the user for a URL and returns an IP address 
for that URL.

Notes and Other Resources

Python ftplib documentation: https://docs.python.org/3/library/ftplib.html
Search criteria in IMAP: http://tools.ietf.org/html/rfc3501#section-6.4.4
Tweep download: https://pypi.python.org/pypi/tweepy/3.4.0
Tweepy intro: http://docs.tweepy.org/en/latest/streaming_how_to.html
How to use the Twitter API to stream tweets. 
 https://www.youtube.com/watch?v=pUUxmvvl2FE
Twitter message fields: https://dev.twitter.com/overview/api/tweets
Twitter user fields: 
JSON Tutorial: http://www.w3schools.com/json/

 1. Todd Campbell. (2002). The First email Message, https://www.cs.umd.edu/
class/spring2002/cmsc434-0101/MUIseum/applications/firstemail.html

 2. Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Hendryk Nielsen, and 
Arthur Secret. (1994). The World-Wide Web, Communications of the ACM, 
37(8), 76–82.

 3. Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. (2010). Earthquake 
shakes Twitter users: Real-time event detection by social sensors, 
in Proceedings of the 19th International Conference on the World Wide 
Web (WWW ’10), ACM, New York, NY, USA, 851–860. 



■ ■ ■ ■ ■

In this chapter

Data has a structure to it. For data to be accessible to a computer, it must be 
in the form of numbers. There are no practical exceptions. The question of struc-
ture concerns the organization of these numbers: how are they ordered, how are 
they connected to each other in the sequence, what can the values be, and what 
information do they convey?  

As one example, a sound file consists of a collection of numbers that each 
represent an audio sample, which is to say sound intensity, at some moment in 
time. Sound intensity was originally measured as the voltage in an electronic de-
vice, but in the file, it has a predefined range of possible values. The time differ-
ence between the samples can vary from file to file, but is fixed within any given 
file. There is usually a set of numbers at the beginning of the file that define the 
time between samples, legal range, and many other aspects of the file. In order 
to use a sound file, for example, to play it or edit it, one needs to understand the 
way the file is organized.

14chaPter

Parsing–the structure of data

14.1 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
14.2 PYJ And Julia  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
14.3 Language Symbols and Scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
14.4 Parsing a Programming Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
14.5 WHILE Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
14.6 FOR Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
14.7 IF Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
14.8 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
14.9 Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
14.10 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536



518  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Parsing is the act of analyzing a sequence of symbols (which can be numbers) 
so as to extract information, perhaps with the goal of transforming or translating it. 

Parsing is a fundamental task of many programs. At the very least, input to 
most programs is parsed to make sure it is legitimate, and it is then converted into 
a form that the program can use. It is one of the most common things that a pro-
gram does, and yet little attention is paid to it when teaching computer science.

 14.1 GRAMMARS
A grammar is a formal specification of the structure of some data item or 

collection. For the purposes here, we’ll assume that data consists of characters, 
because in the context of parsing, that is frequently true. A grammar defines all 
possible forms that a dataset can take in a formal way. The structure of a CSV 
file has already been seen, so let’s start with something simple yet common – a 
number.

An integer or floating point number is a sequence of characters that has a 
specific structure. FA grammar can be specified in multiple ways, but here we’ll 
use a description called the Backus–Naur form (BNF). When using BNF, a sym-
bol that is on the left side of the definition is defined by or can be replaced by a 
set of symbols on the right. This is called a rule. Here’s an example:

<integer> ::= <digit> | <integer><digit>

The symbol on the left, “<integer>,” is being defined. The symbol “::=” sepa-
rates the symbol being defined from the definition. The definition here says that 
an “<integer>” can be a “<digit>” OR (the symbol “|”) an “<integer>” followed 
by a “<digit”>.

Any name enclosed in “<>” is called a non-terminal symbol, because it can-
not appear in the final result. Terminal symbols are the actual components of 
what is being defined, which we call a language. Let’s continue by defining a 
“<digit>:”
<digit> ::=  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 

"8" | "9"

This defines the abstract, non-terminal symbol “<digit>” as being any one 
of ten terminal symbols, which in this case are the characters “0” through “9.” A 
digit is one of the numerals that form our number system. If we now define



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 519

<ssnumber> ::=  <digit><digit><digit><digit><digit><digit> 
<digit><digit><digit>

we have a social security number, a nine-digit sequence. They are concatenated 
to form a long number.

Note that “<integer>” appears on the left side and the right side. This defini-
tion is recursive, but all that means is that it is defined partly in terms of itself. An 
“<integer>” can be one digit.  The rule above for “<integer>” is really two rules 
separated by the OR symbol. It could be

<integer> ::= <digit> 
<integer> ::= <integer><digit>

Let’s label the rules. <integer> ::= <digit> is Rule 1a, and <integer> ::= 
<integer><digit> is Rule 1b, because they appear in the same rule. The rule for 
the digit could be Rule 2, and Rule 2a is <digit> ::= 0, and Rule 2b is <digit> ::= 
“1” and so on.

Now, consider the input “5.” By this grammar, we can use Rule 2f to change 
the input symbol “5” into “<digit>.” By Rule 1a, we can change this to “<inte-
ger>.” This process of using rules to change the terminal symbols into target non-
terminal symbol is parsing. Defined this way, it’s pretty formal.

Now consider the input string “320.” If we are trying to read an integer, we 
use Rule 2d to get the following:

<digit>20
Rule 1a to get        <integer>20
Then Rule 2c:         <integer><digit>0
Rule 1b:              <integer>0
Rule 2a:              <integer><digit>
Rule 1b:              <integer>

And we’re done, because there is no more input.

Extended BNF offers things we can use. Items within square brackets are 
optional; they may be there or not. So
<postal code> ::= <letter><digit><letter>
                  [-]<digit><letter><digit>

could define a Canadian postal code. A code could be T2N1N4 or T2N-1N4.

Items in braces can appear zero or more times, 
<integer> ::= <digit> {<digit>}



520  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Or they can be suffixed with an asterisk (“*”), as in a regular expression:
<integer> ::= <digit><digit>*

Items that occur ONE or more times are suffixed with a “+:”
<integer> ::= <digit>+

Let’s define a floating point number. It is a sequence of digits, or an “<inte-
ger>,” possibly followed by a decimal point which is possibly followed by another 
sequence of digits. Here’s one possible rule:

<float> ::= <digit>+ "." {<digit>}

Which demands one digit at least to the left of the decimal point. In this case 
“1.0” is legal but not “.12”. Another option is

<float> ::= <digit>*  "."  <digit>+

which requires one digit at least to the right of the decimal point. In this case “.12” 
is legal, but not “0.”  What we need is one of the other. We need at least one digit 
and a decimal point. Simply combine these:
<float> ::= <digit>+ "." {<digit>} | <digit>*  "."  <digit>+

This discussion is very brief, and a full understanding of grammars and lan-
guages would take a great deal of time. What we need is an understanding of how 
to specify a language that we want to parse. The example language to parse is a 
simple programming language called PyJ.

 14.2 PYJ AND JULIA
Julia is an interesting language designed to do fast numerical computations 

while allowing the syntactic and modular flexibility of Python. The PyJ language 
is used specifically in this chapter, and it is a much-abbreviated version of Julia 
with a correspondingly simpler syntax. It is a programming language and can be 
used for calculations. PyJ produces C code, which can be compiled and executed.

Here is an example PyJ program:
function sqr (a)
  return a*a
end

b = 2



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 521

while b < 20
  b = read()
  println( sqr(b) )
  b = b + 2
end
println()

Most programmers could puzzle out the syntax quickly and figure out what 
the program should do. That’s not good enough to build a parser, though. A PyJ 
parser takes the input text and ends up at the “<program>” symbol. That’s where 
the grammar begins:

<program> ::= { <function> } {<statement>}

which says that a program is a collection of function definitions followed by a 
collection of statements.

<statement> ::=  <ifstatement> | <whilestatement> | <forstatement> |  
<assignmentstatement> |

  <callstatement> |  <printstatement> | <printlnstatement> |  
<returnstatement> |

 <breakstatement> | <readstatement>

This lists all of the statement types in the language, of which there are ten. 
There are no declarations, because, like Python and Julia both, PyJ defines vari-
ables when they are used.

The statements are best illustrated by example first. An if statement is
if a<6
  k = k + 1
  println(k)
end

All if statements have a block of statements followed by an end. Options 
include elseif and else parts:

if a<6
  k = k + 1
  println(k)
elseif a>6
  k = k – 1
  println(k)



522  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

else
  k = 0 
  a = 0
end

The indentation does not matter. A while statement is simple:
while a < b
    a = a + 1
end

A while followed by an expression followed by some statements followed by 
end. A for statement is as follows:

for i= 1:5
  print (i)
  println(i*i)
end

Here, the variable i takes on the values 1,2,3,4,5 in sequence. The for loop 
variable i is not available outside the loop. Assignment statements have already 
been used, but can assign any expression using standard operators and functions:

a = 3*5*(pi-3)/6

All variables are floating point and are defined when first used. If the user 
defines a function sqr, then it can be used in an expression, too:

dist = sqr(a-b)

The print and println statements print a value; println prints an end of line 
at the end, and print does not. The read statement prompts the user for input of a 
collection of variables:

read (x, peanut, zz)

All will be floating point numbers.

There is more to the syntax, but we have enough to begin. A systematic ap-
proach is important. When parsing any set of data, the process is first, to break 
up the input into symbols based on the original character data, and then to collect 
symbols into sets sequences that correspond to the language features.



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 523

 14.3 LANGUAGE SYMBOLS AND SCANNING
Many symbols in a language consist of multiple characters. Some don’t, like 

“>”  and “<.” However “>=” is greater than or equal to and is two characters. 
An identifier, like a variable name, can be many characters, as can numeric con-
stants. Some identifiers are special, like key words. “If” and “while” have special 
meanings and cannot be used as identifiers.

A scanner is a module that reads input characters and replaces them with 
symbols. In a parse, symbols are constants that take the place of more complex 
symbols, so the less than symbol “<” could be represented by a name lessSy that 
had the numeric al value 102. The name and value are arbitrary, but the idea is to 
simplify the input.

Consider the PyJ statement:
for control = (pi*pi):maxangle

As symbols, this could be represented as:

forsy ident eqsy lparen ident mult ident rparen colon ident

where each of those names was a number. The result could be

6 21 9 24 21 23 21 25 32 21

This is easier to handle in a parser, and the symbolic names can make the 
code easier to read. The complete list of symbols in PyJ is shown in Table 14.1.
Table 14.1
Symbols used in PyJ

numberSy 101 A float greaterSy 111 > functionSy 122 function
plusSy 102 + lparenSy 112 ( ifSy 125 if
minusSy 103 - rparenSy 113 ) whileSy 127 while
multSy 104 * readSy 114 read printlnSy 128 println
divideSy 105 / commaSy 115 , returnSy 129 return
equalSy 106 == identSy 117 A name printSy 130 print
lesseqSy 107 <= elseSy 118 else breakSy 131 break
noteqSy 108 <> elsifSy 119 elseif assignSy 133 =
lessSy 109 < endSy 120 end colonSy 134 :
greatereqSy 110 >= forSy 121 for



524  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The scanner opens the input file and reads characters, either one at a time or 
into a buffer. In either case, characters are examined one at a time and are com-
bined into symbols. At all times, there is a variable that contains the last symbol 
that was encountered: the current symbol. It is named sy. The parser makes its 
decisions based on the value of sy.

An essential function in the scanner is the one that gets the next character. It 
is named nextCh, and it looks something like this:
def nextCh ():
    global ch,eof

    if len(ch)==0:       # End of file means no more characters
        return eof
    try:
        ch = fp.read(1)  # Here we read characters one at a 
time.
    return ch[0]         # Set global var ch and return it

If all characters are read into a buffer, then this code might look like this:
def nextCh ():
    global ch,eof, indx

    if length(buffer)<=indx: # End of file means no more 
                             # characters
        return eof
    try:
        ch = buffer[indx]    # Here we read characters one 
                             # at a time.
        Indx = indx + 1
    return ch                # Set global var ch and return it

Using a buffer is faster.

The next part of the scanner consists of some code that builds numbers and 
identifiers from characters. Building a number from characters has two parts, 
though. First is “is this a legal real number?” and the second is “what number is 
it?”. Both can be done concurrently.
def scanNumber():
    global numberVal

    numberVal = 0



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 525

    fracVal = 0
    while digit(ch):                            # Integer part
        numberVal = numberVal*10 + digitVal(ch) # collect  
                                                  # value
        nextCh()                                # next digit?

    if ch == ".":            # Fractional part
        nextCh()
        fracVal = 0.0
        pten = 10.0

        while digit(ch):     # Each fractional digit has its
            fracVal = fracVal+digitVal(ch)/pten # Value 
                                                # divided
                             # by 10 and summed. 
            nextCh()         # Next digit
            pten = pten/10   # next power of 10
        numberVal = numberVal + fracVal

The scanNumber function is called when the scanner sees a digit. It accepts 
digits and accumulates a numerical value by multiplying the value of the digit by 
its appropriate power of ten. At the end of this, we have an integer value. If that 
is followed by a decimal point, then each digit that follows, if any, is part of a 
fraction. A fraction is accumulated by multiplying the digit values by a negative 
power of ten, or dividing by a power of ten, and accumulating a sum in the vari-
able fracVal. When no more digits are seen, the resulting number is numberVal 
+ fracVal.

The process for identifiers, which is to say variable and function names, is 
similar.
def scanIdent ():
    global ident
    ident = ""              # Start with empty string
    while identChar(ch):    # A letter?
        ident = ident + ch  # Add to the identifer
        nextCh()            # Get the next character

The global variable ident contains all of the characters in the identifier. Some 
identifiers are key words like “if.” We’ll work that out now. How do we know 
what an identifier means? We can look it up in a dictionary.



526  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A global dictionary is created that stores symbols indexed by their identifier 
string.  It’s probably the simplest and fastest way to see if an identifier is a key 
word:

keywords["function"] = 
functionSy

keywords["if"] = ifSy
keywords["else"] = elseSy
keywords["elseif"] = elseifSy
keywords["for"] = forSy
keywords["print"] = printSy
keywords["println"] = 
printlnSy

keywords["read"] = readSy
keywords["while"] = whileSy
keywords["return"] = returnSy
keywords["end"] = endSy
keywords["break"] = breakSy
keywords["read"] = readSy

If an identifier is found in this dictionary, then it represents the correspond-
ing key word symbol. Otherwise, it is a variable or function name.

We are now ready to build the main scanner function, called nextSy(). This 
function is 60 lines long and is not reproduced here completely, but can be found 
on the website and on the accompanying DVD. However, the main parts of it can 
be described without seeing all of it.

It uses the global variable ch to determine what the next symbol will be. 

If the character ch is a letter, then nextSy calls scanIdent to build an identi-
fier string. It looks that up in the dictionary, and if found, then it returns the key 
word symbol, otherwise it returns the identSy symbol:

if letter(ch):
    scanIdent()
    try:
        k = keywords[ident]
        return k
    except:
        return identSy

In a similar way, if ch is a digit, then it scans and creates a number by calling 
scanNumber and returns the generic symbol for a number, numberSy:

if digit(ch):
    scanNumber()
    return numberSy



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 527

If ch is one of the single character symbols, then skip the character and return 
the symbol, like this:

if ch == "+":
    nextCh()
    return plusSy
elif ch == "-":
    nextCh()
    return minusSy
. . .

Finally, if the symbol consists of two characters (called a digraph) then we 
read another character and see if it fits as the second part. If so, read another and 
return the digraph symbol, otherwise return the original single character symbol, 
like this:

elif ch == "<":      # < can start one of thee symbols: 
                     # < <= <>
    nextCh()         # Look at the next character
    if ch == "=":    # Is is '='. Then we have '<='
        nextCh()     # read another
        return lesseqSy  # Return <=
    elif ch == ">":  # OK, not '='. Is it '>'?
        nextCh()     # Yup. Skip the character
        return noteqSy  # And return <> (noteqSy)
    else:
        return lessSy   # Nope. It was just < (lessSy)

Notice that in all three case above, the value of ch is the next character in 
sequence, one that has not yet been used to build a symbol. This has to be true in 
all situations.

Now we have a scheme that will give us the next symbol in all cases. That’s 
what the parser needs. 

 14.4 PARSING A PROGRAMMING LANGUAGE
A scanner translates characters into symbols. To a small degree, it parses 

symbols like numbers and identifiers, but those are low-level objects in this 
scheme. Parsing a language involves collecting symbols into meaningful struc-
tures, like statements. Many people don’t really know how a compiler works. 
Once you understand how it works, you can never write a program again without 
that knowledge.



528  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The parser here is simply one example of a parser of a general sort. HTML 
has a parser. So does SQL. Most complex input schemes do. Knowing how to 
parse properly means being able to handle more and more complex form of input 
and to perform increasingly involved computations. In the discussion that fol-
lows, one of the most complex parsing tasks is kept for last, and restricts the dis-
cussion somewhat. Parsing expressions is complex, and the grammar that we’ll 
use is recursive. For the moment, let’s assume that an expression is simply a 
number or an identifier.

 14.5 WHILE STATEMENTS
Here is the syntax of a while statement in PyJ:
<while statement> ::= "while" <condition> <statement>+ "end"

The structure is that is starts with the while symbol whileSy, which is fol-
lowed by a <condition>, followed by a number of statements until end is seen. 
A condition is a relational expression that results in true or false, such as a < b. 
So long as the result of that condition is true, the loop will continue to repeat. A 
basic parser would be
if sy == whileSy:                 # While statement
    sy = nextSy()
    condition()                   # The condition part
    while sy != endSy:             # Statements until the END
        statement()
    sy = nextSy()

Note that the fact that a while statement is coming is indicated by the fact 
that the current symbol is whileSy. It is skipped, then a condition is parsed by 
the function condition(). Then, as long as the current symbol is not endSy, a 
statement is parsed using the statement() function. Using this particular parsing 
scheme, which is simple but not the only parsing scheme, each non-terminal sym-
bol is parsed by a function of the same name. Thus, according to the grammar, 
a while statement will call functions condition and statement, because they are 
non-terminal symbols. “While” and “end” are terminal symbols, and are skipped 
over.

One job of a compiler (not a parser) is to create a translation for the text 
being parsed. The translation is created while the text is parsed by generating 



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 529

code or some other text that allows the text that is being parsed to be executed or 
interpreted. In the case of PyJ, we will generate an equivalent C program. This 
makes it easy to test the compiler, as C can be converted by a C compiler into an 
executable file.

A PyJ while loop has correspondences to a C while loop:
while  x < 10    while (x < 10)
     {
    statement     statement;
    statement     statement;
end     }

The above parse with code translation to C included in it is as follows:
if sy == whileSy:                 # While statement
    print ("while (")
    sy = nextSy()
    condition()                   # The condition part
    print (") {")
    while sy != endSy:              # Statements until the END
        statement()
    print ("}")
    sy = nextSy()

In general, for a legal input we get the following output:
while (   <condition>
) {
    <statements>
}

This should work if the condition and statements are legal.

 14.6 FOR STATEMENTS
A for statement in PyJ has the syntax:

<for statement> ::= “for” <identifier> “=” <expression> “:”  <expression>

                                       <statement>+ “end”

Once again, we know that a for statement is coming because the current 
symbol is forSy, which is to say that we say the identifier “for.” Recall that each  



530  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

non-terminal is implemented by a function in the parser, so in this case we re-
quire the functions identifier, expression, and statement. The basic code is as 
follows:
if sy == forSy:                   # FOR statement
    sy = nextSy()
    if sy == identSy:             # Loop control variable
        sy = nextSy()             # skip it
        if sy == assignSy:        # Equals, skip
          sy = nextSy()
        expression()              # Start value
        if sy == colonSy:         #  skip the ':'
          sy = nextSy()
        expression()              # terminal value
        while sy != endSy:          # Statements until the END
            statement()
        sy = nextSy()
    else:
        println("Syntax error in FOR")

Error detection in this parser is lacking, because that takes a large amount of 
error unrelated to the basic task. If the for is not followed by an identifier, then 
an error will be indicated. There are many others that could have been tested for.

This code is only a parser, though. In the real language, there are code gen-
eration and other issues. This is a pretty simple for statement as languages go. 
There are semantic (meaning) issues that should be addressed, but that are not 
related to parsing. Here is the final code for the for loop with the code generation:
if sy == forSy:                      # FOR statement
    sy = nextSy()
    if sy == identSy:               # Loop control variable
        defineIdent(ident, FLOAT)   # define it -  symbol 
                                    # table stuff
        lcvr = ident                # remember it
        sy = nextSy()               # skip it
        if sy == assignSy:          # Equals, skip
          sy = nextSy()
        lcv = convertIdent(ident)   # symbol table stuff
        gen1n("for ("+lcv+"=")
        expression()                # Start value
        gen1n("; "+lcv+"<=")        # Terminal condition
        if sy == colonSy:           # :  skip it



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 531

          sy = nextSy()
        expression()
        gen1("; "+lcv+"="+lcv+"+1) {") # Increment
        while sy != endSy:             # Statements until 
                                       # the END
            statement()
        sy = nextSy()
        gen1("}")
        undefine(lcvr)                 # symbol table stuff
    else:
        println("Syntax error in FOR")

The PyJ for loop vs. the C for loop is as follows:
for var =  start : end   for (var=start; var end condi-

tion; var increment)
     {
    statement    statement;
    Statement    statement;
end     }

Here’s how that translates:
for var = start   for (var = start;
      : end    var <= end
      var = var + 1)
     {
    statement    statement ;
    statement    statement ;
end    }

There are places in the commentary where it references the “symbol table.”  
That is where we look up user defined symbols to see it they are defined and what 
they are. In PyJ, a symbol can be defined or not. If defined, it can be a floating 
point number or a function. A for loop control variable is defined in the for state-
ment and is undefined at the end of the loop, so that it cannot be used outside of 
the loop.

 14.7 IF STATEMENTS
If statements can have three components. First is 

if condition
    statement



532  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    statement
end

The parser gets the if symbol, skips it, and expects a <condition> to follow. 
After that comes a sequence of statements, and if at any time an end is seen, then 
the statement is complete.

However, if the parser sees an elseif symbol before it sees the end, it begins 
to parse the elseif section of the if statement. Elseif is basically the same as the 
if statement:

elseif condition
    statement
    statement
end

There could be multiple elseif parts. Again, if the parser sees an else symbol 
before it sees the end, then it starts parsing the else:

else
    statement
    statement
end

This is just the else symbol followed by some more statements. The end must 
terminate the if statement after an else.

def ifStmt():
    global sy, outf

    sy = nextSy()
    condition()
    
    while sy not in 

(endSy,elseifSy,
                       elseSy):
        statement()

    while sy == elseifSy:
      sy = nextSy()
      condition()
      while sy not in (endSy, 

elseSy, elseifSy):
        statement()

    
    
    Skip the symbol if
    parse the condition
    
     any of end, elseif, or 

else could come after the 
set of statements

    Parse a statement

    So long as we see an 
    elseif symbol
    Skip over it
    Parse a condition



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 533

    if sy == elseSy:
      sy = nextSy()
      while sy != endSy:
        statement()

    if sy == endSy:
        sy = nextSy()
    else:
        error(“Missing END 

for IF”)

      
     any of end, elseif, or 

else could come after the 
set of statements

    If the symbol is now else
    skip it
       and parse a set of 

statements until an end 
is encountered.

            
       Skip over the end, if 

there

   Or indicate an error

 14.8 EXPRESSIONS
Expressions are the hardest aspects of parsing many languages, at least for 

beginners. The complexity begins with the different precedence of operators: 
multiply and divide come before add and subtract, for example. Next, there is the 
issue of parentheses: grouping things in parentheses overcomes precedence rules, 
becoming effectively the highest precedence of all.

An expression is a hierarchy of structures based on order of evaluation. At 
the lowest level, with highest precedence, are the fundamental components which 
will be called factors. A variable (identifier) is a factor. So is a numerical con-
stant. Also, so is any expression within parentheses. The grammar could be writ-
ten as follows:
<factor> ::= <identifier>  |  <number> |  "(" expression ")"

The next lower in precedence are the multiplicative operations * and /. We’ll 
call this component a term, and the syntax could be
<term> ::= <factor> { "*" | "/" <factor> }

According to this, the following are terms:

pi

12.6

pi*2/6*100



534  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The first two are also factors, because a factor can be a term if not followed 
by an operator.

Now we have an expression, which consists of additive operators acting on 
terms.
<expression> ::=  ["+" | "-"]  <term> { "+" | "-"  <term>  }

According to this, the following are expressions:

12.5-(a – b – c)
-77.7
(a-b)*(a-b)

Basically, any numerical expression fits this grammar. Finally, we have con-
ditions, which involve a relational (comparison) operator acting on expressions. 
The syntax is

<condition> ::= <expression> <relop> <expression>
<relop> ::= "<" | "<=" | "<>" | ">" | ">=" | "=="

A condition would be found in a while or if statement. So

if x < 10                         “x < 10” is a condition
while x*x > 100           “x*x > 100” is a condition.

When generating C code for expressions, the program does the obvious 
things. The expression a*b in PyJ generates a*b in C, for example. The PyJ com-
piler always inserts parentheses to assert precedence, though. Some illustrative 
examples are shown in Table 14.2.

Table 14.2
Some PyJ and C expressions

PyJ C PyJ C
a+b (a+b) a < b (a < b)
a+(b*c) (a+(a*c)) a+3 > 0 ((a+3)>0)
12.2*c/d (12.2*c/d) a-3+c (a-3+c)

 14.9 FUNCTIONS
C has functions, so generating code is simple. On the other hand, functions in 

PyJ add complexity because there will be a function definition and also a function 
call. A function definition has the syntax:



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 535

<function> ::= "function" "(" { <identifier> 
 { "," <identifier>} } ")" <statement>+ "end"

There is the key word function, a parameter list within parentheses, a set 
of statements, and an end. The parameter list is just a comma separated set of 
identifiers, but could be empty.  There must be at least one statement in the body 
of the function.

Here is an annotation of the code that parses a function:

def functionStmt ():
    global sy, lexLevel

    sy = nextSy()  
    if sy == identSy:                      
    defineIdent (ident, FUNC)            
    sy = nextSy()               
    else:
        error("")

    if sy == lparenSy:                          
      sy = nextSy()                  
      while sy == identSy:           
            sy = nextSy()
            if sy == commaSy:         
                sy = nextSy()

        if sy == rparenSy: 
            sy = nextSy()

        while sy != endSy:            
            statement()
        sy = nextSy()                 

Skip the symbol FUNCTION
Next should be an identifier
  Define it –  it's the  

function name.
Skip the function name  
symbol.

   If no identifier, indicate 
an error.

Next should be a "("
Skip it
If parameters exist, we will 
not see ident , repeated
    Skip the ident
    Look for a comma, 
      and skip if we find one
If the next symbol is NOT an 
identifier, the list is done

The next symbol should be the 
closing parenthesis ")"
  Skip it

Now the body of the function. 
Until an end is seen
  Parse a statement
Skip the end symbol.

This code omits code generation and a couple of other things.



536  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

A function call can be a statement:
funcx( y )

or an expression
y = funcx(z)

A function returns a value, but it can be ignored. In the first case, the situa-
tion is handled by the statement function, which requires information that syntax 
does not provide – the kind of identifier seen. Here, is the syntax of an assignment 
statement and a call statement:
<assignment statement> ::= <identifier> "=" <expression>
<call statement> ::= <identifier> "("  { <expression list> ")"

Both of these begin with an identifier. How do we know what kind of state-
ment we’re looking at? The next symbol is “=” in one case and “(“ in the other, 
so we could look ahead. This compiler has a table of names and their associated 
type. A variable has type FLOAT and a function has type FUNC, and so the 
parser does something different depending on the type of the identifier.

The compiler does not check whether the number of parameters defined is the 
same as the number passed.

 14.10 EXAMPLES
The first example is simple, but will serve to introduce some aspects of the 

compiler that have been avoided until now. First is that there are some functions 
that are provided by PyJ, like reading and printing, that will be included by copy-
ing the C code into the output.

The other main new aspect here is that variable names have been changed. 
A variable named “xx” in PyJ will have a new, unique, name created for it in the 
resulting C program. The C variable var0_0 is the first variable declared as a 
global, which is level 0. The second variable is var1_0, and so on. Within a func-
tion, a new level of scope is defined, so the first variable there would be var0_1, 
for lexical or scope level 1. The following code section is a simple program show-
ing all copied library code and new names.



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 537

a = 12            # a is var0_0
x = 21           # x is var1_0
y = a+(2-x)     # y is var2_0
print(a)

// Main. 
#include <stdio.h>
int read ()
{
  int i;
  scanf("Input: ", &i);
  return i;
}
void print   (int i) {  printf 

("%d ", i); }
void println (int i) {  printf 

("%d \n ", i); }
int main()
{
var0_0 = ((12));
var1_0 = ((21));
var2_0=((var0_0)) +
      (((((2))-((var1_0)))));
ptmp = ((var0_0)))
print(ptmp)
}
//Program complete.

From this point, the common code will not appear.

a = 1
x = 2
b = 3
print(a)
if   x  > a  
  print(b)
end

var0_0  = ((12));
var1_0  = ((21));

ptmp = ((var0_0)))
print(ptmp)

  if (((var1_0))None((var0_0))) 
{
    ptmp = ((var1_0)))
    print(ptmp)
}



538  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

a = 1
x = 2
b = 3
print(a)
if   x  > a  
  print(b)
elseif b > x
  print (x)
else
  c = a+b
  print(c)
end

var0_0  = ((1));
var1_0  = ((2));
var2_0  = ((3));
ptmp = ((var0_0)))
print(ptmp)
if (((var1_0))None((var0_0))) 
{
  ptmp = ((var2_0)))
  print(ptmp)
} else
  if(((var2_0))None((var1_0))) 
  {
    ptmp = ((var1_0)))
    print(ptmp)
  }
  else 
  {
    var3_0 =((var0_0))+((var2_0));
    ptmp = ((var3_0)))
    print(ptmp)
  }   
  }

function sqr (a)
  return a*a
end

b = 2
while b < 20
  b = read()
  println( sqr(b) )
  b = b + 2
end
println()

float  var1_0 (float var2_1)
{ 
  return ((var2_1)*(var2_1));
}

int main()
{
  var3_0  = ((2));
  while (((var3_0)) < ((20))) 
  {
    ptmp = ((var3_0));
    print(ptmp);
    ptmp =(( var1_0(((var3_0)))));
    println(ptmp);
    var3_0 = ((var3_0)) + ((2));
  }
   printf ("\n ");
}



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 539

Finally, let’s look at a practical example. Here is a program that implements 
a square root function using Newton’s method, and prints roots for numbers be-
tween 10 and 20:
function sqrt (a)
  x = 1
  for i = 1:7
    x = 0.5*(x + a/x)
  end
  return x 
end

i = 10
while i<=20
  println( sqrt(i) )
  i = i + 1
end

The output is as follows:

3.16228
3.31662
3.46410
3.60555
3.74166
3.87298
4.00000
4.12311
4.24264
4.35890
4.47214

Exercises

 1.  Conditions in PyJ do not have any and, or logical operators to combine 
simple conditions into more complex ones. For example, in PyJ we would 
have to code:
if i > 0  



540  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    if i < 100
    …
    end
end
to accomplish what Python would using
if i > 0 and i  <100
Devise a syntax for adding and, or, not into a condition.

 2.  Create a parser for the following grammar:
<S> :=  'a' S 'a' | 'e' S 'e' | 'i' S 'i' | 'o' S 'o' 

| 'u' S 'u' | 'x'
What kind of language does this represent?

 3.  A grammar can be said to generate a language. If non-terminal symbols 
in a grammar are mapped on to functions that each generate legal text for 
that component, the result is a program that can create legal examples of the 
language. For example, generating a factor in PyJ could be done as follows:
def factor ():
    
    if random() < 0.5:            
         identifier()
    elif random()<0.7:
        number()
    else:
        print ("(")
        expression()
        print(")")

 where the functions identifier(), number(), and expression() each generate 
legal examples of their kind. Create a generator for floating point numbers 
that uses the grammar in this chapter.

 4.  It should be possible to scan an input text line by line and determine, according 
to what is seen there, what the structure of the data is. Assume that there are 
the same number of data items on every line of a text file. Can you extract 
the data items without knowing in advance what the precise specification is? 
Under what circumstances might this fail?

 5.  Write a program that generates 50 instances of the language defined in 
question 2 above. 

 6.  Create an extended BNF grammar for a line in a comma separated value 
(CSV) file.



 Chapter  14 ·  Pars ing The Structure  of  Data   ■ 541

Notes and Other Resources

Definition of CSV: https://tools.ietf.org/html/rfc4180
Download the Julia programming language: https://julialang.org/downloads/

References

 1. W. H. Burge. Recursive Programming Techniques, Addison-Wesley, Reading, 
1975

 2. Chip Camden (2011). What is BNF, and why should developers care? https://
www.techrepublic.com/blog/software-engineer/what-is-bnf-and-why-
should-developers-care/

 3. Dick Grune, Ceriel J. Jacobs (2008).  Parsing Techniques: A Practical Guide. 
Springer.

 4. https://julialang.org/ (2019) The Julia Programming Language. 

 5. S. G. Johnson (2015) Square Roots via Newton’s Method, https://math.mit.
edu/~stevenj/18.335/newton-sqrt.pdf

 6. Terence Parr (2013). The Definitive ANTLR 4 Reference Second Edition, 
Pragmatic Bookshelf; Second edition

 7. Gabriele Tomassetti (2017). Parsing in Python. Tools and Libraries. https://
tomassetti.me/parsing-in-python/
Grammar for Python-Julia (Pyj) – Small language for parsing practice

<program> ::= { <function> } {<statement>}
<statement> ::=  <if statement> | <while statement> 

| <for statement> | <assignment statement> 
|<callstatement> | <printstatement> | 

                 <printlnstatement> | <returnstatement> 
                |<breakstatement> | <readstatement>
    <function> ::= "function" "(" { <identifier> 
                                  { "," <identifier>} } ")" 
                                         <statement>+ "end"
    <if statement> ::=
    <while statement> ::=  "while" <condition> <statement>+ 

"end"



542  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    <for statement> ::=  "for" <identifier> "=" <expression> 
":"  <expression>

                                <statement>+ "end"
    <assignment statement> ::= <identifier> "=" <expression>
    <call statement> ::= <identifier> 
  "("  { <expression list> ")"
    <print statement> ::= "print" "(" <expression> ")"
    <println statement> ::= "println" "(" <expression> ")"
    <return statement> ::=  "return" <expression>
    <break statement> ::= "break" 
    <read statement> ::=  "read" "(" <variable list> ")"
    <identifier> ::=  <letter>+
    <variable list> ::= <identifier> { "," <identifier>
    <float> ::= <digit>+ "." {<digit>} | <digit>*  "." 
                     <digit>+
    <digit> ::= "0" | "1" | "2" | "3" | "4" | "5" 
 | "6" | "7" | "8" | "9"
    <factor> ::= <identifier>  |  <number> | 
 "(" expression ")"
    <term> ::= <factor> { "*" | "/" <factor> }
    <expression> ::=  ["+" | "-"]  <term> { "+" |
  "-"  <term>  }
    <expression list ::=  { <expression> {","  
 <expression> } }
    <condition> ::= <expression> <relop> <expression>
    <relop> ::= "<" | "<=" | "<>" | ">" | ">=" | "=="



■ ■ ■ ■ ■

In this chapter

Computers originally had very primitive means for providing input to pro-
grams. Early ones had to be rewired for each new program. Later, there were 
switches to enter binary instructions, paper tape, punched cards, and telex termi-
nals and CRT monitors. That was merely the technology, though. The medium by 
which humans communicated with computers was using characters (text).

People have always used text and language for much of their communica-
tion. Given the technical limitations of computers, speaking to computers was 
not possible, so we typed programs and data in from a keyboard. This was the 
main source of input until the windows style of operating systems were created 
in the 1980s.

With the advent of Microsoft Windows© and the Apple Macintosh©, interfaces 
with computers moved towards more graphics and use of graphical interface de-
vices like the mouse and, later, touch screens. Text still has a huge role, but mod-
ern software must take into account graphical interfaces and displays.

15chaPter

coMMunicating using graPhics:  
windows, user interfaces, 

and PygaMe

15.1 A Paint Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
15.2 Building the Mondrean Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
15.3 Selecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
15.4 The Buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
15.5 Images and Surfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
15.6 Stacks: Undraw and Redraw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
15.7 Color Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
15.8 Image File Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561



544  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

The knowledge of Pygame acquired so far is useful because of Pygame’s 
ubiquity; it also allows programmers to construct computer games and graphics 
on multiple platforms.

Most personal computers come equipped with a drawing or painting program 
that allows a general user who is not a programmer to create a picture. Perhaps 
this could be for a presentation or a book or essay, or perhaps just for enjoyment. 
Microsoft Paint© is a good example of the genre. It provides a graphical interface 
for the selection of color, shapes, and other objects. Paint can import images in 
many formats and write the resulting edited image to a file.  It can erase parts of 
a drawing and has the ability to back up some number of drawing steps so they 
can be redone. It can cut and paste parts of the drawing. Such a program would be 
a great example to illustrate the features of Pygame and the power of a graphical 
interface.

So, let’s build a paint program that has these features. Only Pygame-offered 
facilities are used in the construction, and no other package will be needed. This 
program combines interaction and graphics.

 15.1 A PAINT PROGRAM
There are many examples of a program designed for drawing or painting oth-

er than  Paint. There is the new version, Paint3D. There is Artweaver, Microsoft 
Fresh Paint, MyPaint, or Krita for the PC, or Paintbrush for the Mac, and Ink-
scape or GIMP for Linux. The visual presence of each of these can be quite dif-
ferent, but all offer similar basic feature sets and each usually has some things at 
which they excel. Things these programs tend to have in common are as follows:

Drawing lines, circles, ellipses, and rectangles
Drawing text
Selecting a color, usually a foreground and a background color
Selecting a line thickness
Erasing
Saving
Loading and displaying an image.
Cutting and pasting



 Chapter  15 ·  Communicat ing Using Graphics    ■ 545

These features are selected using the mouse. Drawing options are chosen by 
clicking the mouse in a box, which places the program in the specific mode. Thus, 
clicking the mouse in the draw line box allows lines to be drawn with mouse 
clicks. Other options, such as color, are also selected by clicking in a box and set-
ting a global parameter.

Interface

When designing the interface, simplicity is key. We need a drawing area 
within which all painting/drawing is done and an area of the screen where the op-
tions can be selected. Keeping the design simple, the drawing area will be on the 
top portion of the window that the program creates as the interface. It will have 
a fixed size of 800 x 600 pixels. Beneath the drawing area, which we’ll call the 
canvas, in the same window, will be a set of boxes or buttons that will implement 
the options. Figure 15.1 shows a draft of this visual design.

The program is named Mondrean after the artist Piet Mondrean.

The x,y coordinate system of the window starts in the upper left at (0,0). At 
the lower right of the drawing area are the coordinates (799, 599). The parameter 
selection area starts at (0,600) and in this design covers the area to (650, 699). 

Someone drawing using a mouse needs to know where, within the drawing 
area, the mouse cursor is. The X,Y coordinates of the mouse are drawn immedi-
ately below the canvas, and there is a set of calibration marks, one the right and 
bottom of the canvas, to help the artist determine exactly where they are. If the 
mouse is outside of the canvas, the X,Y position will not be given.

To draw something, the user depresses a mouse button and, possibly, moves 
the mouse elsewhere before releasing it. We can determine the location of the 
press and release easily through Pygame, and the action that will be taken de-
pends on the current mode of the program. Is it drawing a line? A circle? And so 
on.



546  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Figure 15.1
The Mondrean program interface.

This kind of analysis of how the program will be used allows us to decide 
what information we need from Pygame. We’ll need to know is the location of the 
mouse and whether the mouse button has been pressed or released.  For drawing 
text we’ll need to accept text from the keyboard. That’s really all that we need.

Drawing is done by noting the coordinates at which the mouse was pressed 
and released within the drawing area. A press starts the drawing, and a release 
ends it. For example, press the mouse button down for the start of a line, drag the 
mouse to the position that is desired to be the end of the line, and then release the 
button. An exception is text, where a click of the mouse indicates the beginning 
of the text.

Not only do we need access to the location of the mouse, but we need it fre-
quently, often many times each second. Imagine that we’re drawing a rectangle; 



 Chapter  15 ·  Communicat ing Using Graphics    ■ 547

place the mouse cursor at the upper right corner of the rectangle we want, press 
the mouse button down and hold it, and move the mouse cursor to the lower right 
corner and let go of the button. This draws a rectangle. The program must check 
the mouse button many times each second to see if it has been pressed or released 
so that an accurate mouse location at the time can be gathered.

Now let’s see how to do some basic drawing. To accomplish this, we once 
again use Pygame.

 15.2 BUILDING THE MONDREAN INTERFACE
There are many aspects to the interface for this program, but there are two 

main ones: selecting and drawing. They are largely controlled by the mouse using 
positions and clicks, like most interfaces. 

 15.3 SELECTING 
Selecting involves choosing a mode, action, or a parameter using the mouse. 

A mode is a way of doing something. We could be in circle, line, rectangle, or 
point mode, for example, in which the relevant object would be drawn using the 
mouse. One selects such a mode by clicking the mouse button while the mouse 
cursor is positioned within a box in the interface: clicking while the cursor in the 
circle box puts the program in draw circle mode.

Figure 15-2
Various examples of setting pixels.

We can also select a parameter. Lines have three thicknesses that can be 
chosen, and a dashed line can be selected, too. We can choose a color with which 
to draw things.

We can also select actions. We can select that the program back up to the pre-
vious state or advance to a previously deleted one, we can save the current image, 
and we can load an image.



548  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

At this point in the design, there are 12 button type items on the screen 5 
text boxes for output of position and color, and a color wheel for color selection.  
Unmentioned so far is a column of the right of the window for image file names. 
Images in the directory are listed here so that they can be placed into the canvas 
with a single click.

 15.4 THE BUTTONS
We first discussed buttons and their implementation in Chapter 9. Recall that 

they work by detecting whether the mouse cursor lies within a specific rectangu-
lar region when a mouse button is clicked, and if so, then a specific action will 
be instigated.

Let’s think of a button as a graphical interface object, which is best imple-
mented as a class. Then we can create many instances of buttons anywhere we 
like while a degree of consistency in how they are handled. What we can do to a 
generic button is to

Draw it at a specific location.
Label it so the user knows what it will do.
Determine whether the mouse coordinates are within the button.

We therefore need to provide a button with a position, a pair of (x,y) coordi-
nates at which it will be drawn, a size, which can be given as a width and height, 
a text label that can be empty, a color, and an image that can be drawn within the 
window (an icon). In Python, it might be valuable to specify a surface on which 
the button is drawn, which is usually (but not always) the monitor’s screen.

Operations on a button will be implemented as methods. What is needed? We 
need to be able to set and get the label, color, and image. We need to know if the 
button is armed (the cursor is within the button area). We need to draw the button.

The following code is one implementation of a button.



 Chapter  15 ·  Communicat ing Using Graphics    ■ 549

import pygame

# A basic screen button 
# widget
class Button:  
  def __init__(self,scr,

xx,yy,w,h):
      self.x = xx  # Location: 

(x,y)
      self.y = yy
      self.width = w  
        # Size: width, height
      self.height = h
      self.label = “”   
       # Text label
      self.scr = scr   
       # Destination screen
# Button color
        self.color = (200, 
                     200, 200)
        self.image = None

  def set_image(self, im):
    self.image = im

  def get_image(self):
    return self.image

  def set_label(self, s):
        self.label = s

  def get_label(self):
        return s

  def set_color(self, c):
        self.color = c

  def get_color(self):
        return self.color

The two most important functions need some annotation. First is armed, 
which determines whether the button can be turned on with a mouse click (is the 
cursor in the button):
def armed(self):
    m = pygame.mouse.get_pos()
# The pygame.mouse.get_pos() function returns a tuple (x,y)
# that tells us where the mouse is. Here, m[0] is the mouse X
# position and m[1] is the mouse Y position

    if self.x <= m[0] <= self.x+self.width and  
                            # Is mouse X within the button?
       m[1]>=self.y and m[1]<=self.y+self.height : 
                            # Is mouse Y within the button?
        return True         # Then the button is armed.
    return False            # No? Button not armed.



550  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Finally, each button has a draw method that renders it to the screen. Here’s 
what they look like:

The armed button is outlined in green. All buttons have a double outline and 
possibly an image indicating their function.
def draw(self):
    if self.armed():  # An ARMED button is drawn in green
        pygame.draw.rect(self.scr, (120, 220, 100), 
            pygame.Rect(self.x, self.y, self.width, 
                        self.height))

    else:             # Unarmed button is drawn in black.
        pygame.draw.rect(self.scr, (0, 0, 0), 
        pygame.Rect(self.x, self.y, self.width, 
        self.height), 1)

# The second, inner, rectangle in the outline.
    pygame.draw.rect(self.scr, (0, 0, 0), 
    pygame.Rect(self.x+3, self.y+3, 
                self.width-6, self.height-6), 1)
# Grey fill
    pygame.draw.rect(self.scr, self.color, 
                  pygame.Rect(self.x+4, self.y+4, self.width-8, 
                           self.height-8))

# If there is an image specified then render it in the button.
    if self.image is not None:
        self.scr.blit(self.image, (self.x+4, self.y+4))

The entire Button class is only about 40 lines of code. Each one is given a 
destination Surface, a position, and a size then it is first created.  Images and 
colors can be modified after instantiation. The setup for the circle but, as one 
example, is as follows:

# Create a surface for the button image
imageCircle = pygame.Surface((42, 42))



 Chapter  15 ·  Communicat ing Using Graphics    ■ 551

# Make the background of the button grey.
imageCircle.fill((200, 200, 200))

# Draw a circle
pygame.draw.circle(imageCircle, BLACK, (20, 20), 10, 2)

# Instantiate the button.
circleButton = Button(screen, 80, 750, 50, 50)

# Place the image into the button
circleButton.set_image(imageCircle)

Each button has to be drawn every time the screen is refreshed.
circleButton.draw()

And, finally, each button needs to be tested every time a mouse button is 
depressed to see if it has been invoked. We have written a function that checks 
all of the buttons:

def checkbuttons():

and to check the circleButton:
    .   .   .
if circleButton.armed():
    mode = CIRCLE
    .   .   .

When circleButton is pressed, it sets a global mode variable to CIRCLE, and 
that indicates what is to be drawn from now on.

Drawing

Whenever the mouse is positioned within the drawing area, drawing can be 
activated by pressing the mouse button. Whatever drawing state the program is 
in – line, circle, rectangle, text, or point – dictates what can be drawn. If the pro-
gram is in LINE mode and the mouse is depressed, the mouse can be moved to a 
new position. Wherever the mouse button is released is the end point of the line. 
As the mouse is moved, a line is drawn temporarily on the screen to show what 
the like would look like. When the button is released, the line is drawn.

If the line is in circle mode, then when the mouse is depressed it defines the 
center of a circle. As the mouse is move, the radius of the circle changes and the 



552  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

circle is drawn temporarily on the screen and changes radius with the mouse po-
sition. When the mouse button is released, the circle becomes permanent.

The main loop of the Pygame program tests for events like the mouse button 
and key presses and releases. In this program, the mouse press usually establishes 
a starting point for an object, like a line or a circle. The user drags the mouse to 
another location and releases it, indicating a terminal position on the screen for 
the object being drawn. Doing the drawing is not difficult given the two mouse 
positions specified by the user. In the main loop, one must recall the point at 
which the mouse button was pressed and then when it is released the item can be 
drawn. 

This is the obvious way to structure the program, but if it were done, it would 
be hard to remove items that have been drawn.  Each line or rectangle is a differ-
ent object on the screen. If the last item draw is to be erased, all of the other ob-
jects should be drawn except the last one. We have to remember all of the objects 
and their parameters. Moreover, if you think about it, they have to be redrawn 
whenever the screen is updated. Instead of drawing each item as the user defines 
them, we should save all of the user’s drawing instructions someplace and then 
use them to draw the entire image each screen update. This is more complicated 
at the outset in the design phase, but later simplifies implementation.

Let’s look at the main drawing operations and construct a data structure that 
can store them.

For a rectangle, the mouse button is depressed at the upper left (or perhaps 
lower right) corner of the polygon. When the mouse is released, the cursor posi-
tion defines the opposite corner. Other factors that influence the drawing are the 
current color and the line thickness. All of these items must be saved. A possible 
structure is as follows:

[102, [x0,y0], [x1,y1], [r,g,b], t]]

This is a list, and the first element, in this case 102, is a code that indicates 
what is being drawn. 102 is the code for a rectangle. This is followed by the start 
point, the end point the color, and the line thickness. This list, which we’ll call a 
drawing directive or DD, has the following structure:

[Integer List List List Integer] = [code, start point, size, color, line thickness]



 Chapter  15 ·  Communicat ing Using Graphics    ■ 553

The drawing directive for a line is much the same, but the third component 
is not a size but an endpoint for the line. The user presses the mouse button to 
define the start point and releases it to define the end point. These two points 
define the line.

[100 [x0,y0] [x1,y1] [r,g,b] [t]]

The DD for a circle has the same structure.  The point where the mouse but-
ton is pressed defines the center of the circle. When the button is released, that 
point is used to calculate the radius, because that’s how Pygame specifies a circle. 
The radius is the distance between the points where the button was pressed and 
where it was released. That point is stored as the second coordinate and will be 
used to calculate the radius, which is a floating point number. So for a circle, we 
have

[101, [x0,y0], [x1,y1] ,[r,g,b], t]

For text, a mouse click (a press and a release) defines the starting point for the 
text. The user then types text from the keyboard, which is saved as a string to be 
drawn at that point. This string can be stored in the DD:

 [103, [x0,y0], “String”, [r,g,b], t]

Erasing is like defining a rectangle. Mouse button down to begin defining 
a rectangular area to be erased, button up to finish the definition. Everything in 
that region will be set to the background color.

 [104, [x0,y0], [x1,y1], [r,g,b], t]

This defines what can draw at this stage of the design. When the user draws 
something, the program creates the drawing direction for that and places it at the 
end of a list, which is named backstack. The entire drawing can be created by 
starting at element 0 of backstack and drawing each of the items through to the 
end of the list. This is actually done by the program. Each time though the main 
Pygame look the screen is cleared and all of the items are redrawn.

The backstack is a list of instances of a class named Mode, which imple-
ments the drawing directive. Assuming that backstack contains all of the items 
drawn, in proper order, then redrawing them can be done as follows:
def draw():
    for i in range(0, backstack.N):   # For each DD
        op = backstack.get(i)         # Get the item



554  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

        if op is None:
            return

        k = op.getkind()       # The operation (code)
        a = op.getstart()      # Start coordinats (x,y)  
        b = op.getend()        # End coordinates x,y)
        c = op.getcolor()      # Color value (r,g,b)
        t = op.getthickness()  # tline thickness (real)
        s = op.getstring()     # Text string 
                               # (for TEXT command)

        if k == LINE:    # If the code is dfor drawing a 
                         # line, do it
            pygame.draw.line(screen, c, (a[0], a[1]), (b[0], 
                             b[1]), t)
        elif k == CIRCLE: # if the code is for a circle, 
                          # draw it.
            r = round(distance(a, b)) # a is center, 
                                      # b is release point
            if r > t:                 # Radius is distance 
                                      # between the two
                pygame.draw.circle( screen, c, (a[0], a[1]), 

r, t)
        elif k == RECTANGLE:  # If the code is for a 
                              # rectangle, draw it
            pygame.draw.rect( screen, c, (a[0], a[1], b[0]-

a[0], b[1]-a[1]), t)
        elif k == TEXT:  # If code is for TEXT
                       . . .
        elif k == ERASE: # If code is for erasing, draw a 
                         # filled box
            pygame.draw.rect(screen, (255, 255, 255), 
                    (a[0], a[1], b[0]-a[0], b[1]-a[1]), 0)

We’ve left the drawing of text until last. Drawing text requires a font and a 
known size. In Pygame, text uses a font that has been initialized by the program-
mer. We could use the text() function invented in Chapter 7. A different font vari-
able would be used for each font in cases where many sizes are needed. We could, 
for example, use the following:

times20 = pygame.font.SysFont('Times Roman', 20)
times30 = pygame.font.SysFont('Times Roman', 30)
              .     .     .



 Chapter  15 ·  Communicat ing Using Graphics    ■ 555

 15.5 IMAGES AND SURFACES
A Pygame Surface type represents an image. Images saved as files can be 

read in to a Pygame surface using the function pygame.image.load.
S = pygame.image.load("image.png")

There are other important functions to know about for images. There are 
others:

S.get _ size()  –  gets the image size, as a tuple (x,y)
S.copy() –  Returns a copy of S
S.fill(color) –  Fills the entire image with pixels of the specified color.
S.subsurface(r) –  Return a part of a bigger surface. The pixels are shared, 

so changes in one will be seen immediately in the other. 
The variable r is a tuple (x, y, width, height) that defines 
a rectangular region in S to return.

There is a module named transform that contains methods for modifying 
surfaces. The most important methods are

pygame.transform.scale( Surface, (width, height) )
pygame.transform.rotate(Surface, angle) 

Let’s take a break from the paint program and do a quick example with im-
ages. There is a file named “impression.jpg” that holds an impressionist image 
of a sunflower. It can be read into a Surface in a few lines of code and displayed 
within a short event loop. The image, named img1, can be resized to be 100 x 
100 pixels and drawn in a different location. Resizing is done as suggested above, 
using

img2 = pygame.transform.scale( img1, (100, 100) )

Finally, for this example, we’ll take a sub-image of img1and display it under 
the rescaled version:

img3 = img1.subsurface((200,200,200,200))

Each of these images can be displayed on the main Surface by blitting them 
to it as described above. The resulting canvas is shown in Figure 15.3.
import pygame

screen = pygame.display.set_mode((1100, 900))  



556  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

clock = pygame.time.Clock()
pygame.font.init()

img1 = pygame.image.load("impression.jpg")
img2 = pygame.transform.scale( img1, (100, 100) )
img3 = img1.subsurface((200,200,200,200))
while True:
  clock.tick(10)
  screen.fill((255,255,255))
  screen.blit(img1, (0,0))
  screen.blit(img2, (730, 100))
  screen.blit(img3, (730, 300))
  pygame.display.update()  
# redraw the screen

Figure 15.3
Output from the example image program.

 15.6 STACKS: UNDRAW AND REDRAW
The mechanism for undrawing things should be pretty clear now, but to sum-

marize: when something is drawn by the user, it is saved in a list, and not drawn 
immediately. Every 1/30 of a second, the event loop calls the draw function, 
which scans all the drawn items and redraws them.

When the undraw button is pressed using the mouse, it moves the last item 
from the backstack list to the end of a second list called forestack. Since that 



 Chapter  15 ·  Communicat ing Using Graphics    ■ 557

element is now not in the backstack list, it will not be drawn. Each time the un-
draw button is used, another item is moved from the end of backstack to the end 
of forestack, effectively undrawing it. If the redraw button is pressed, the item at 
the end of forestack is moved back to the end of backstack, meaning that it will 
reappear in the drawing.

Whenever the user draws something new, whatever it may be, the forestack 
list is emptied.

The names backstack and forestack refer to the fact that these lists are being 
used as stack data structures. A stack is organized so that the last thing saved will 
be the first thing seen, as would be the case in a pile of books, for example. If a 
math book is placed on a table, then a history book and then a novel, we have a 
stack of books. On the top of the stack is the last thing I put there – the novel. If 
I remove that from the stack, I uncover the next-to-last book I placed there, the 
history book. Items are removed from the stack – popped, it is called - in reverse 
order from the way they were put there. This is also called a first-in-last-out 
(FILO) structure.

Figure 15.4 details how this works using a simple example.

The backstack is not only used as a stack. It is, as has been described, also 
used as a simple list when redrawing the screen. When used as a stack, it is ac-
cessed from the end; when used to redraw, the items are accessed from the start 
(element 0) through to the last one. 

A stack should be implemented as a class. The stack uses a list, so when add-
ing a new element to the end (called pushing), we append a new item to the end 
of the list (top of the stack) and when an item is popped, it is removed from the 
end. However, when drawing, we can scan the list from element 0 through to the 
top and redraw everything in the order it was drawn originally.



558  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

Figure 15.4
Use of a stack to save drawing operations.



 Chapter  15 ·  Communicat ing Using Graphics    ■ 559

An example stack that does what we want is given in the following code:

# Stack class for the 
# Paint program
class Stack:
    
    def __init__(self):
        self.elements = []
        self.N = 0

    def pop(self):
        if self.N == 0:
            return None
        x = self.elements[-1]
        self.elements = self.
elements[0:self.N-1]
        self.N = self.N - 1
        return x

   
 def push(self, x):
     self.elements.append(x)
     self.N = self.N + 1

 def top(self):
     if self.N <= 0:
         return None
     return self.

elements[self.N-1]

  def get(self, i):
      if i >= self.N:
          return
       return self.elements[i]

 def getsize(self):
     return self.N

Because python is so flexible about types, this stack can be used for floats 
or integers, or anything really. In the case of the paint program, it will be used to 
push and pop drawing instructions, which will be instances of the class named 
Mode, which is an implementation of a drawing directive.

# Data structure for 
# PAINT modes

class Mode:
    def __init__(self, kind, 
                 a, b, c, d):
        self.md = kind
        self.start = a
        self.end = b
        self.LINE = 100
        self.CIRCLE = 101
        self.RECTANGLE = 102
        self.TEXT = 103
        self.erase = 104
        self.color = c
        self.thickness = d

    def getend(self):
        return self.end

    def setkind(self, k):
        self.md = k

    def getkind(self):
        return self.md

    def setcolor(self, c):
        self.color = c

    def getcolor(self):
        return self.color

    def setthickness(self, t):
        self.thickness = t



560  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

    def setstart(self, a):
        self.start = a

    def setend(self, a):
        self.end = a

    def getstart(self):
        return self.start

    def getthickness(self):
        return self.thickness

    def setstring (self, s):
        self.end = s

    def getstring(self):
        return self.end

 15.7 COLOR SELECTION
Choosing a color could be done using buttons, as it done in the Paint pro-

gram, but that limits the number of colors significantly. How many buttons can be 
provided? Instead, Mondrean provides a color wheel that shows a large number 
of distinct colors. When the user clicks on a pixel in this wheel, that color is used 
as the current color. Simple for the user.

Figure 15.5 shows the color wheel, which is drawn at (500,680) in the display. 
That’s the upper left coordinate of the image, which is 200 × 200 pixels in size. 
This means that the center of the circle is at 500+100, 680+100, or 600, 780. The 
radius is 100. Thus, if the distance from the mouse position to (600,780) is less 
than 100 when the mouse button is clicked, then the user is selecting a color. 
What color? The one right beneath the mouse cursor, of course. This is acquired 
using the call

currentColor = screen.get_at((mouseX, mouseY))

where the variables mouseX and mouseY hold the current mouse position as 
returned by the call

pygame.mouse.get_pos()

in the event loop. The variable currentColor always contains the color being 
used to draw with.

After this was implemented, it was discovered that there was no way to select 
any shade of grey, including the very popular colors white and black. A second 
selector was added to the color disk, in this case, a rectangular one that has a 
color range from black through grey values to white. When the mouse button is 
released in this region, it sets the color to the grey level that is under the mouse 
cursor.



 Chapter  15 ·  Communicat ing Using Graphics    ■ 561

 15.8 IMAGE FILE SELECTION
On the right side of the Mondrean screen is a list of file names that the pro-

gram has decided are images based on the file suffix. It only recognizes jpg and 
png right now. If the user clicks on one of these names, then the corresponding 
image should be displayed in the drawing area; if the image is too large, it will 
be cropped.

Figure 15.5
The color wheel used to select drawing colors.

This has four parts to the implementation: the image files have to be recog-
nized in the working directory and their names copied to a list; we have to deter-
mine when a mouse button is clicked while the cursor is over one of the names; 
that image file must be read in to a Surface; and the resulting Surface must be 
blitted to the drawing area.

A problem is that, because of the way things are drawn, the image will not 
appear on the screen unless placed there by the backstack scanning function. In 
other words, we have to add a new drawing directive for images. This is instruc-
tive, because adding any new drawing feature would have to do the same.

Looking in the current working directory for image files is a new kind of 
task. It involves the use of an of operating system related function named listdir, 
which examines the directory passed as a parameter and returns all of the file 
names as a list. For example, on a PC,

names = listdir("C:\Program Files")



562  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

results in a list of file names from the “Program Files” directory being assigned 
to the variable names. Printing this out could result in

               [‘7-Zip’, ‘Android’, ‘Application Verifier’, …..

In particular, listdir(“.”) gives a list of the files in the current directory. Im-
age files end in “.jpg” or “.png,” so we need the following code:

allFiles = listdir(".")      # Create a list of image files
fileList = []
for i in allFiles:
    if i[-3:]=="jpg" or i[-3:]=="png":
        fileList.append(i)

This creates a list in fileList that contains only image files.

Determining which name the mouse is pointing to is simple, and we’ve done 
it many times before:
def filenameScan():
    k = (trunc(mouseY)//30)
    y = k * 30
    pygame.draw.rect(screen, (255, 0, 0), 
 (800, y, 100, y), 1)
    return k

This is based on a text height of 30 pixels, a location of (800,0) for the upper 
left corner of the file name list, and w width of 100 pixels. This function returns 
with the 30-pixel-high rectangles the mouse is in, which is the index for the file 
name list of the file selected.

When the mouse button is pressed while the cursor indicates a name, we load 
that file into a Surface.

k = filenameScan()
imag = pygame.image.load(fileList[k])

Now, we have to create a new drawing descriptor. Let’s define mode 105 as 
IMAGE mode, and create a new DD as follows:
thisdraw = Mode(IMAGE, [0,0], [imag], currentColor,  
 thickness)

Parameter [0,0] is where the image will be drawn; [imag] is the actual sur-
face that was just created with the image in it. None of the rest matters in this 



 Chapter  15 ·  Communicat ing Using Graphics    ■ 563

case. Finally, in order that this be visible on the canvas, we must place it in the 
backstack:

backstack.push(thisdraw)

After adding code to draw that will draw an image DD, we’re done:
if k == IMAGE:
    imag = b[0]
    xx,yy = imag.get_size()
    if xx > 800:
        xx = 800
    if yy > 600:
        yy = 600
    screen.blit(imag.subsurface(0,0,xx,yy), (2, 2))

Now we can select and draw an image, and even undo it if we like.

The source code for Mondrean is available online and on the DVD. It is under 
400 lines long, and reading through it could complete your understanding of the 
methods used to create a graphical interface.

Exercises

 1. Some paint programs use different cursors depending on what operation is 
being performed. Pygame has a facility for switching cursors. 
Do some research on how to do this, and use a different cursor 
when the CONTROL key is depressed than otherwise. 

 2.  Create a cursor that looks like crosshairs, and show that it 
works in a simple program.

 3.  An interactive graphics program can be made to draw arbitrary 
polygons. Devise such a program that uses the mouse to identify consecutive 
points and then draws the polygon when a point is selected very close to the 
initial point.

 4.  Create a program that loads an image file and uses the mouse to select a part 
of it, crop it, and save it. (Resizing the display window is possible, but not 
required: try it.)

 5. Sometimes it can be useful to magnify a part of an image. Create a program 
that loads and displays an image, and that magnifies the portion of the image 
that is under the mouse cursor by a factor of 2.



564  ■ Python:  An Introduct ion to  Programming-Second Edi t ion

 6. Lines are drawn as sets of pixels that are next to each other so that they seem 
to create a line. There is an algorithm that does this: it takes a start and end 
point, and sets pixels in between to create a line. This algorithm is generally 
called a DDA (digital differential analyzer). Locate such an algorithm in the 
literature and implement it using Pygame. Compare lines drawn with it and 
those drawn by pygame.draw.line.

 7. The clone tool in Photoshop copies pixels from one 
portion of the image to another. This is used to remove 
unwanted elements from a photograph. To use it, 
hold down the ALT key while depressing a mouse button on a location in 
the image (location A), then, keeping ALT depressed, move the mouse and 
release the button again elsewhere (location B).  The relative location of these 
two positions (a vector AB) is used now as the way to define the source of 
pixels to be copied – when the mouse is clicked from now on, pixels in that 
location will be replaced by a copy of those in the same distance and Then 
release the ALT key. When the mouse is clicked from now on, the region 
under the mouse cursor will be replaced with pixels from a part of the image 
found in the AB direction. (There could be a bug in Pygame.)

Notes and Other Resources

PyGame Tutorial – Game Development Using PyGame In Python https://www.
edureka.co/blog/pygame-tutorialSearch criteria in IMAP: http://tools.ietf.org/
html/rfc3501#section-6.4.4
Graphics using Python 3: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHt-
ml/graphics.html
Graphic Design in Python using Pygame and turtle:  https://freshlybuilt.com/
graphic-design-in-python-using-pygame-and-turtle/

References

 1. https://www.tutorialspoint.com/computer_ graphics/line_ generation_
algorithm.htm 

 2. James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes (1990). 
Computer Graphics: Principles and Practice. Addison-Wesley Professional.

 3. James R. Parker (2019) Game Development Using Python. Mercury Learning.

 4. Al Sweigart (2012). Making Games with Python & Pygame. http://
inventwithpython.com/makinggames.pdf



A

Accessor, 227, 228, 230
Accumulator, 14, 15, 16

Load Accumulator, 14
Actions, 547
Acoustic delay lines, 11
Addresses, 12, 14, 18, 196, 310, 515
Advanced data files, 309–315

Binary files, 309–310
EXE, 327
GIF, 316–318
HyperText Markup Language 

(HTML), 326–327
Image files, 316
JPEG, 318–320
Maintaining the high score file in 

order, 315
Other files, 325
PNG, 322–323
Random access, 313–315
Sound files, 324
Standard file types, 316–327
Struct module, 310–313
Tagged Image File Format (TIFF), 

320–322
WAV file, 324–325

Aliasing, 161
Alohanet, 22
American Standard Code for 

Information Interchange 
(ASCII), 27

Analytical engine, 3
Arcs and Curves, 268–291

Generative, 289–291
Histogram, 274–278
Identifying, 285–286
Images, 283–284
Pie Chart, 278
Pixels 284–285
Polygons, 271–272
Text, 273–274
Thresholding, 286–287
Transparency, 287–288

Assignment statements,  
298, 442, 522

B

Babbage, Charles, 3
Backus-Naur form (BNF), 518
Basic algorithms, 363–403
Bernoulli numbers, 4
Binary numbers, 6

Arithmetic in, 9–11
Convert to decimal, 8

Bit, 8
Boot loader, 17
Branch if Accumulator is Zero  

(BAZ), 17
Bristow, Steve, 462
Buffering, 200
Bushnell, Nolan, 462

index



566  ■ Index

Button, 20, 21, 25, 252, 334, 337, 338, 
339, 356, 360 

C

Calculations by machine, 2–3
Change the working directory  

(CWD), 500
Check box, 20
Cipher, 378, 379, 380, 381,  

384, 401
Class, 217–254

A bouncing ball, 234–240
A deck of cards, 232–234
A really simple, 226–230
Basic design, 240–241
Cat-a-pult, 240–246
Data types and, 231–246
Detailed design, 241–246
Duck typing, 250–251
Encapsulation, 230–231
Introduction, 218–220
Objects in a video game, 247–249
Sub and inheritance, 246–249
Types and, 220–224

Clear Accumulator (CLA), 16
Client-server system, 25
Code, 378
Code table, 394
Collision, 22
Color selection, 560
Compression, 384–398

Huffman algorithm, 389, 390
Huffman encoding, 388–394
LZW, 317, 394–398
Run length encoding, 385

Computer networks, 21–25
Internet, 23–24
World Wide Web, 24–25

Computer system layers, 17–21
Assemblers and compilers, 18–19
Graphical user interfaces (GUIs), 

19–21
Concatenate, 107
Constructor, 221, 223, 225, 231, 235, 

248, 251, 303, 346
Core, 12
Core dump, 12
Crossover, 421, 423
Cryptography, 378–384

One-time pad, 380–381
Plaintext and ciphertext, 379
Public Key Encryption (RSA), 

381–382
State cipher, 379
Stream cipher, 379
Symmetric key, 379

D

Data structures, 163, 183, 184, 223, 
363, 429, 442, 557

Data files, 190
Decimal numbers, 8

Convert to binary, 8–11
Delta, 236, 408, 409, 411
Definition, 534
Design by contract, 490, 514
Dictionary (Python), 296–302, 314, 

327, 329, 393, 396, 397, 510, 
525, 526

A naive Latin-English translation, 
298–301

Functions for, 301–302
Loops and, 302

Differentiation, 408–410
two-point and four-point  

versions, 409



 Index  ■ 567

Drawing, 261–268
Color Gradient, 265–266
Lines and Curves, 267–268
Note Paper, 264–265, 267

Documentation, 55–57
Docstring, 56, 57
Drop-down list, 21

E

Email, 489, 490, 491–500
Communication between processes, 

502–507
Communication between the  

client and the server 
processes, 506

Packets and port number, 503
File Transfer Protocol  

(FTP), 500
Ftplib, 500
Reading, 495–496
Procedure for sending, 495
Useful tags, 497
README File, 501–502
Send an, 491
Smtplib, 493

End of file condition, 197
Epoch, 378
Equation roots, 406–408

Common concepts, 407
Event, 2, 51, 75, 168, 193, 200, 213, 

227, 334
Event Loop, 257, 260–261, 335, 555, 

560,
Exception, 24, 47, 90–96, 133–135, 

154, 199
Executable files, 190
Expressions, 533–534

F

Fetch, 12
Fetch-execute cycle, 13, 16
First-in-last-out (FILO), 557
File (s), 189–215

A little theory, 191–195
Appending data to a, 212–213
Common things in, 190–191
File storage on disk, 194–195
Keyboard and input, 195–197
List of, 190
Slow file access, 195
Writing to, 211–213

File descriptor or handle, 198
Formatted text and I/O, 304–308

NASA meteorite landing data, 
305–308

FOR statements, 529–531
Frequency, 258
Function(s), 144–149, 534–536

Avoiding infinite, 175–176
Default parameters, 156–158
Definition, 144–149
Development process exposed, 

182–184
Execution, 150–170
Functions as return values,  

168–170
Game of sticks, 159–161
Generalize the histogram code for 

other years, 147–149
None, 158
Parameter or argument, 146
Parameters, 153–156
Program design (Nim game), 

178–184
Recursion, 170–176
Returning a value, 150–153



568  ■ Index

Scope, 161–163
Syntax of a, 145 
Use poundn to draw a histogram, 

146–147
Variable parameter lists,  

163–165
Variables as functions, 165–168 

G

Grammars, 518–520
Graphics, 255–294

Arcs and Curves, 268–291
Colors, 258–259
Drawing, 261–268
Generative Art, 289–290
Graphic programming, 256–257
Graphics in Python–Pygame, 257
green car, 285–286
Histogram, 274–278
Images, 283–289
Initializing Pygame, 258
Lines and Curves, 267–268
Pixels, Again, 284–285
Polygons, 271–272
Text, 273–274
The Event LOOP, 260–261
Thresholding, 286–287
Transparency, 287–288

Guess a number, 37, 39–41, 50–51, 
54, 56, 57, 62, 71–72, 

Final look, 40–41, 94–96

H

Hashing, 399–400
DJB2, 400
SDBM, 400

Head crash, 193

I

Icon, 21
If Statements, 51–55, 58, 144, 442, 

531–533
Else, 54–55

Image files, 190
Images and Surfaces, 555–556
Infinite loop, 70, 73, 89, 260, 447
Infinite recursion, 175–176
Initial guess, 408
Interface, 545
Interpreter, 19
Integration, 410–412
Instruction register, 13
Internet Message Access Protocol 

(IMAP), 495
Internet Protocol (IP), 24
Iteration, 70, 74, 78, 82, 83, 96, 98, 

101, 109, 116, 148, 184, 277, 
367, 400, 408

Maximum, 408
Iterative refinement, 184, 442, 486

J

Julia, 520–522

L

Language Symbols and Scanning 
523–527

Linear programming, 167
List(s), 125–135

Append, 126
Count, 130–131
Editing, 125–126
Exceptions, 133–135
Extend, 126
Index, 128



 Index  ■ 569

Insert, 126
List comprehension, 131–132
Pop, 128
Remove, 127
Reverse, 130
Sort, 129–130
Tuples and, 132

Loading, 16, 273, 359, 544
Longest common subsequence (edit 

distance), 423–436
Determining Longest Common 

Subsequence (LCS),  
424–429

Edit distance or Levenshtein 
distance, 423

Smith–Waterman method, 424
Loops, 67, 442

Counting, 78–79
For loop, 78, 101, 113–114
General, 89–90
Nested, 84–86

M

Memory, 11–13
Mersenne Twister algorithm, 378
Method, 220
Mondrean, 547, 560
Multimedia, 333–362

A ball in a box, 344–346
Animation, 343–354
Button, 338–339
Change Background Color Using 

the Mouse, 336–337
Controlling volume, 357–358
Draw a Circle at the Mouse  

Cursor, 335
Draw Lines Using the Mouse, 338
Keyboard, 340–343

Many balls in a box, 346–348
Mouse buttons, 337–339
Mouse interaction, 334–339
Music, 359–360
Object, 343–344
Play a sound, 357
Play a sound effect, 358–359
Pressing a “q” Creates a Random 

Circle, 341–342
Reading a Character String,  

342–343
RGBA colors, 355–356
Sound, 356–360

Multipurpose Internet Mail Extensions 
(MIME) standard, 492

Mutation, 421
Mutators or setters, 228

N

Network Access Point (NAP), 24
Newline, 200
Newton’s method, 406
NumPy, 429

O

Object oriented programming–
breakout, 462–463

One dimensional arrays (Vectors), 
430–432

One time pad, 380–381
Optimization: maxima and minima, 

412–423
Evolutionary or genetic algorithm, 

418–423
Fitting data to curves-regression, 

415–418
Goldstein–Price function, 419



570  ■ Index

Newton’s method, 413–415

P

Paint Program, 544–547
Interface, 545–547

Parameter or argument, 146, 547
Parsing, 517–542
PDP–8, 14
Predefined names or system  

variables, 39
Plain text, 379
Point, 136
Point of Presence (POP), 24
Post Office Protocol (POP), 495
Prime or non-prime number, 79–84

Else, 83–84
Exiting from a loop, 82–83

Problem as process, 463–479
Ball and paddle collusions,  

475–476
Ball and tile collusions, 473–475
Collecting the classes, 470–471
Developing the paddle, 471–473
Finishing the game, 476–479
Initial coding for a tile, 466–467
Initial coding for the ball, 469–470
Initial coding for the paddle,  

467–469
Procedural programming, 442–462

Centering, 453–454
Commands, 452
Filling, 453
List of system commands, 443
Other commands, 457–462
Pseudocode, 444
Right justification, 454–457
Top-down, 444–453

Program, 4

Program counter, 13
Programmability, 4
Programming language 

communication (other 
languages), 512–514

Greatest common divisor  
(GCD), 512 

Prompt, 37
Public variables, 251,
Puzzles, 74
PyCharm, 38
Pygame, 257, 333
PyJ, 520–522
Python, 19, 36–62, 69, 72, 75, 76, 

78, 83, 89, 90, 92, 93, 96, 98, 
101–110, 113, 116, 121, 123, 
125, 129, 131–133, 135, 136, 
138, 140, 143, 149, 150, 153, 
155, 158, 159, 162, 163, 165, 
169, 170, 172, 176–178, 183, 
189, 190, 191, 197–211, 220, 
221, 223, 224, 225–231, 233, 
244, 250, 257, 283, 286–288, 
290, 291, 295, 296, 297, 299, 
303, 304, 307, 310, 327, 333, 
334, 340, 354, 366, 371, 372, 
375, 376, 377, 378, 381, 383, 
393, 396, 399, 400, 429, 431, 
445, 479, 489, 490, 491, 497, 
500, 503, 508, 510, 512, 513, 
520, 521, 540, 548, 559

Arrays, 303–304
Class-Syntax and Semantics,  

225–231
Comma Separated Variable  

(CSV), 205–208
Common file input operations, 

202–205
Creating modules, 176–178



 Index  ■ 571

Dictionaries, 296–302
End of file, 201–202
Executing, 37–39
File not found exceptions, 199–200
List, 123–135
Open a file, 198–200
Play jeopardy, 208–210
Print the planet name, 206
Python GUI, 37
Reading from files, 200–211
The width statement, 210–211
Using files in, 197–211

Q

Quantization, 29, 30, 324

R

Radio button, 20
Random number(s), 74–78

Built-in function, 75
Function call, 76
Generation, 375–378
Linear congruential method,  

376–378
Registers, 12
Repetition, 67–100

Drawing a histogram, 86–88
Exceptions and errors, 90–96
Loops in general, 89–90

Representation, 25–30
Reserved words, 39
Retrieve a file (RETR), 500
Rock-paper-scissors, 37, 40, 41–51, 

57–60, 73–78
Exchanging information with 

computers, 44–45
Number bases, 47–48

Solving problem, 41–51
Strings, integers, and real numbers, 

46–47
Types are dynamic (advanced), 

60–61
Variables and vales with GUI, 

42–44
Rules for programmers, 479–486

S

Sampling, 28
Script, source code or computer 

program, 36
Searching, 371–375

Binary search, 374–375
Linear search, 372
Timings, 372–373

Secondary storage, 191
Send or store a file  

(STOR), 500
Sequence, 101–141
Set types, 135–138

Crap, 136–138
Simple Mail Transfer Protocol 

(SMTP), 490
Simpson’s Rule, 412
Slice, 106
Slider, 21
Sorting, 364–371

Merge sort, 368–371
Selection sort, 364–367

Sound files, 190
Square root, 75 
Statements, 44
Stored programs, 13–17
String(s), 102–114

Comparing, 103–105
Editing, 107–110



572  ■ Index

For loops, 113–114
Methods, 110–112
Slicing, 105–107
Spanning multiple lines, 112–113

Stubs, 182, 185, 455, 487
Surface, 262
Synthesis programming, 442

T

Terminal, 518
Text files, 190
The buttons, 548–554
The While Statements, 69–73,  

528–529
Modifying the game, 72–73

Tkinter, 257
Tracks, 194
Transport Layer Security (TLS), 483
Transistor, 7
Tuple(s), 78, 115–123

Assignment, 121–122
Built–in functions for, 122–123
Delete, 119–120
In for loops, 116–118
Membership, 118–119
Update, 120–121

Turing, Alan, 13
Twitter, 507–511

Fields in a message, 508
StreamListener, 509
Tweepy, 508

Type bytes, 114–115

U

Undraw and Redraw, 556–560
Universal Resource Locator  

(URL), 25

V

Variable, 42
Video, 190

W

Web pages, 190
Westworld, 255
Widget, 20, 257, 343
Wozniak, Steve, 462


	Cover
	Title
	Copyright
	Contents
	Preface
	Chapter 0 Modern Computers
	0.1 Calculations by Machine
	0.2 How Computers Work and Why We Made Them
	0.2.1 Numbers
	Example: Base 4
	Convert Binary Numbers to Decimal
	Convert Decimal Numbers to Binary
	Arithmetic in Binary

	0.2.2	Memory
	0.2.3	Stored Programs

	0.3	Computer Systems Are Built in Layers
	0.3.1	Assemblers and Compilers
	0.3.2 Graphical User Interfaces (GUIs)
	Widgets


	0.4 Computer Networks
	0.4.1 Internet
	0.4.2 World Wide Web

	0.5 Representation
	0.6 Summary

	Chapter 1 Computers and Programming
	1.1 Solving a Problem Using a Computer
	1.2 Executing Python
	1.3 Guess A Number 
	1.4 Rock-Paper-Scissors
	1.5 Solving the Guess a Number Problem
	1.6 Solving the Rock-Paper-Scissors Problem
	1.6.1 Variables and Values – Experimenting with theGraphical User Interface
	1.6.2 Exchanging Information with the Computer
	1.6.3 Example 1: Draw a Circle Using Characters
	1.6.4 Strings, Integers, and Real Numbers
	1.6.5 Number Bases	
	1.6.6 Example 2: Compute the Circumference of any Circle
	1.6.7 Guess a Number Again	

	1.7 IF Statements
	1.7.1 Else

	1.8 Documentation
	1.9Rock-Paper-Scissors Again
	1.10 Types Are Dynamic (Advanced)
	1.11 Summary

	Chapter 2 Repetition
	2.1 The WHILE Statement
	2.1.1 The Guess-A-Number Program Yet Again
	2.1.2 Modifying the Game

	2.2 Rock-Paper-Scissors Yet Again
	2.2.1 Random Numbers

	2.3 Counting Loops
	2.4 Prime or Non-Prime
	2.4.1 Exiting from a Loop
	2.4.2 Else

	2.5 Loops That are Nested
	2.6 Draw a Histogram
	2.7 Loops in General
	2.8 Exceptions and Errors
	2.8.1 Problem: A Final Look at Guess a Number

	2.9 Summary

	Chapter 3 Sequences: Strings, Tuples, and Lists
	3.1 Strings
	3.1.1 Comparing Strings
	3.1.2 Slicing – Extracting Parts of Strings
	3.1.3 Editing Strings
	3.1.4 String Methods
	3.1.5 Spanning Multiple Lines
	3.1.6 For Loops Again

	3.2 The Type Bytes 
	3.3 Tuples
	3.3.1 Tuples in For Loops
	3.3.2 Membership
	3.3 Delete
	3.3.4 Update
	3.3.5 Tuple Assignment
	3.3.6 Built-In Functions for Tuples

	3.4 Lists
	3.4.1 Editing Lists
	3.4.2 Insert
	3.4.3 Append
	3.4.4 Extend
	3.4.5 Remove
	3.4.6 Index
	3.4.7 Pop
	3.4.8 Sort
	3.4.9 Reverse
	3.4.10 Count
	3.4.11 List Comprehension
	3.4.12 Lists and Tuples
	3.4.13 Exceptions

	3.5 Set Types
	3.5.1 Example: Craps

	3.6 Summary

	Chapter 4 Functions
	4.1 Function Definition: Syntax and Semantics
	4.1.1	Problem: Use poundn to Draw a Histogram
	4.1.2	Problem: Generalize the Histogram Code for Other Years

	4.2 Function Execution
	4.2.1 Returning a Value
	4.2.2 Parameters
	4.2.3 Default Parameters
	4.2.4 None
	4.2.5 Example: The Game of Sticks
	4.2.6 Scope 
	4.2.7 Variable Parameter Lists
	4.2.8 Variables as Functions
	Example: Find the maximum value of a function

	4.2.9 Functions as Return Values

	4.3 Recursion
	4.3.1	Avoiding Infinite Recursion

	4.4	Creating Python Modules
	4.5 Program Design Using Functions – Example: The Game of Nim
	4.5.1 The Development Process Exposed

	4.6 Summary

	Chapter 5 Files: Input and Output
	5.1 What Is a File? A Little “Theory”
	5.1.1 How Are Files Stored on a Disk?
	5.1.2 File Access is Slow

	5.2 Keyboard Input
	5.2.1 Problem: Read a Number from the Keyboard and Divide It by 2 

	5.3 Using Files in Python: Less Theory, More Practice
	5.3.1 Open a File
	File Not Found Exceptions

	5.3.2 Reading from Files
	End of File
	Common File Input Operations
	CSV Files
	The With Statement


	5.4 Writing to Files
	Example: Write a Table of Squares to a File
	5.4.1 Appending Data to a File
	Example: Append another 20 squares to the table of squares file

	5.5 Summary

	Chapter 6 Classes
	6.1 A Casual Introduction to Classes
	6.2 Classes and Data Types
	6.3 Classes as Encapsulated Modules
	6.4 Classes as Data Abstractions
	6.5 The Python Class – Syntax and Semantics
	6.5.1 A Really Simple Class
	6.5.2 Encapsulation

	6.6 Classes and Data Types Again
	6.6.1 Example: A Deck of Cards
	6.6.2 A Bouncing Ball
	6.6.3 Cat-A-Pult
	Basic Design
	Detailed Design


	6.7 Subclasses and Inheritance
	6.7.1 Non-Trivial Example: Objects in a Video Game

	6.8 Duck Typing
	6.5 Summary

	Chapter 7 Graphics
	7.1 Introduction to Graphics Programming
	7.2 Graphics in Python–Pygame
	7.3 Initializing Pygame
	7.3.1 Colors

	7.4 The Event LOOP
	7.5 Drawing
	Example: Create a Page of Note Paper
	Example: Creating a Color Gradient
	7.5.1 Lines and Curves
	Example: Note Paper Again


	7.6 Acrs and Curves
	7.6.1 Polygons
	7.6.2 Text
	7.6.3 Example: A Histogram
	7.6.4 Example: A Pie Chart
	7.6.5 Images
	Pixles, Again
	Example: Identifying a green car
	Example: Thresholding
	Transparency

	7.6.6 Generative Art

	7.7 Summary

	Chaper 8 Manipulating Data
	8.1 Dictionaries
	8.1.1 Example: A Naive Latin – English Translation
	8.1.2 Functions for Dictionaries
	8.1.3 Dictionaries and Loops

	8.2 Arrays
	8.3 Formatted Text, Formatted I/O
	8.3.1 Example: NASA Meteorite Landing Data

	8.4	Advanced Data Files
	8.4.1 Binary Files
	Example: Create a File of Integers

	8.4.2The Struct Module
	Example: A Video Game High Score File

	8.4.3 Random Access
	Example: Maintaining the High Score File in Order


	8.5 Standard File Types
	8.5.1 Image Files
	8.5.2 GIF
	8.5.3 JPEG
	8.5.4 TIFF
	8.5.5 PNG
	8.5.6 Sound Files
	8.5.7 WAV
	8.5.8 Other Files
	8.5.9 HTML
	8.5.10 EXE

	8.6 Summary

	Chapter 9 Multimedia
	9.1 Mouse Interaction
	Example: Draw a Circle at the Mouse Cursor
	Example: Change Background Color Using the Mouse
	9.1.1 Mouse Buttons
	Example: Draw Lines Using the Mouse
	Example: A Button


	9.2 The Keyboard
	Example: Pressing a “q” Creates a Random Circle
	Example: Reading a Character String

	9.3 Animaiton
	9.3.1 Object Animation
	Example: A Ball in a Box
	Example: Many Balls in a Box

	9.3.2 Frame Animation
	Example: Read Frames and Play Them Back as an Animation
	Example: Simulation of the Space Shuttle Control Console (A Class That Will Draw an Animation at a Specific Location)


	9.4 RGBA Colors – Transparency
	9.5 Sound
	Example: Play a Sound
	Example: Control Volume Using the Keyboard
	Example: Play a Sound Effect at the Right Moment: Bounces
	Music

	9.7 Summary

	Chapter 10 Basic Algorithms
	10.1 Sorting
	10.1.1 Selection Sort	
	10.1.2 Merge Sort

	10.2 Searching
	10.2.1 Timings
	10.2.2 Linear Search
	10.2.3 Binary Search

	10.3 Random Number Generation
	10.3.1 Linear Congruential Method

	10.4 Cryptography
	10.4.1 One-Time Pad
	10.4.2 Public Key Encryption (RSA)
	10.4.3 Example: Encrypt the Message “Depart at Dawn” Using RSA

	10.5 Compression
	10.5.1 Huffman Encoding
	10.5.2 LZW Compression

	10.6 Hashing
	10.6.1 DJB2 
	10.6.2 SDBM

	10.7 Summary 

	Chapter 11  Programming for the Sciences
	11.1 Finding Roots of Equations
	11.2 Differentiation
	11.3 Integration
	11.4 Optimization: Finding Maxima and Minima
	11.4.1 Newton Again	
	11.4.2 Fitting Data to Curves – Regression
	11.4.3 Evolutionary Methods

	11.5 Longest Common Subsequence (Edit Distance)
	11.5.1	Determining Longest Common Subsequence (LCS)
	11.5.2 NumPy
	11.5.3 One Dimensional Arrays (Vectors)
	11.5.4 Two Dimensional Arrays (Matrices)
	11.5.5 Sample Problem: Finding Paths
	11.5.6 Linear Regression Again

	11.6 Summary

	Chapter 12 How to Write Good Programs
	12.1 Procedural Programming – Word Processing
	12.1.1 Top-Down
	12.1.2 Centering
	12.1.3 Right Justification
	12.1.4 Other Commands

	12.2 Object Oriented Programming – Breakout
	12.3 Describing the Problem as a Process
	12.3.1	Initial Coding for a Tile
	12.3.2	Initial Coding for the Paddle
	12.3.3	Initial Coding for the Ball
	12.3.4	Collecting the Classes
	12.3.5	Developing the Paddle
	12.3.6 Ball and Tile Collisions
	12.3.7 Ball and Paddle Collisions
	12.3.8 Finishing the Game

	12.4 Rules for Programmers
	12.5 Summary

	Chapter 13 Communicating with the Outside World
	13.1 EMail
	Example: Send an email
	13.1.1 Reading email 
	13.1.2 Example: Display the Subject Headers for Emails in Inbox

	13.2 FTP
	13.2.1 Example: Download and Display the README File from an FTP Site

	13.3 Communication Between Processes
	13.3.1 Example: A Server That Calculates Squares

	13.4 Twitter
	Example: Connect to the Twitter Stream and Print Specific Messages

	13.5	Communicating with Other Languages
	13.5.1 Example: Find Two Large Relatively Prime Numbers

	13.6 Summary

	Chaper 14 Parsing–The Structure of Data 
	14.1 Grammars 
	14.2 PyJ and Julia 
	14.3 Language Symbols and Scanning
	14.4 Parsing a Programming Language
	14.5 WHILE Statements
	14.6 FOR Statements
	14.7 IF Statements
	14.8 Expressions
	14.9 Functions
	14.10 Examples

	Chatper 15 Communicating Using Graphics: Windows, User Interfaces, and Pygame
	15.1 A Paint Program
	Interface

	15.2 Building the Mondrean Interface
	15.3 Selecting
	15.4 The Buttons
	Drawing

	15.5 Images and Surfaces
	15.6 Stacks: Undraw and Redraw
	15.7 Color Selection
	15.8 Image File Selection

	Index



