PYTHON

An Introduction
To Programming

Ul

Latd
[(1+x+y + 2a)-(32
Senill

- :
*“ cie
:::‘.:[llk_lqy AFH P
Sextke :'l
_-__ - s s
P s W
R . '- R
2. ;i
o,

.
O JamEs R. PARKER

PYyTHON

Second Edition

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work™), you agree that this li-
cense grants permission to use the contents contained herein, including the disc,
but does not give you the right of ownership to any of the textual content in the
book / disc or ownership to any of the information or products contained in it.
This license does not permit uploading of the Work onto the Internet or on a net-
work (of any kind) without the written consent of the Publisher. Duplication or
dissemination of any text, code, simulations, images, etc. contained herein is lim-
ited to and subject to licensing terms for the respective products, and permission
must be obtained from the Publisher or the owner of the content, etc., in order to
reproduce or network any portion of the textual material (in any media) that is
contained in the Work.

Mercury Learning Anp Inrormation (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, or production of the companion disc, accompanying al-
gorithms, code, or computer programs (“the software”), and any accompanying
Web site or software of the Work, cannot and do not warrant the performance
or results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to ensure the accuracy
and functionality of the textual material and/or programs contained in this pack-
age; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due
to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and any-
one involved in the composition, production, and manufacturing of this work will
not be liable for damages of any kind arising out of the use of (or the inability to
use) the algorithms, source code, computer programs, or textual material con-
tained in this publication. This includes, but is not limited to, loss of revenue or
profit, or other incidental, physical, or consequential damages arising out of the
use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to re-
placement of the book and/or disc, and only at the discretion of the Publisher. The
use of “implied warranty” and certain “exclusions” varies from state to state, and
might not apply to the purchaser of this product.

(Companion files are also available for downloading by writing to the publisher
at info@merclearning.com.)

PyTHON

An Introduction to Programming
Second Edition

James R. Parker
University of Calgary

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2021 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display, or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com

(800) 232-0223

James R. Parker. PYTHON: An Introduction to Programming, Second Edition.
ISBN: 978-1-683926-24-5

The publisher recognizes and respects all marks used by companies, manufacturers, and devel-
opers as a means to distinguish their products. All brand names and product names mentioned
in this book are trademarks or service marks of their respective companies. Any omission or
misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the
property of others.

Library of Congress Control Number: 2020952465

212223321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.

For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).
Digital versions of our titles are available at: www.academiccourseware.com and other e-vendors.
All companion files are available by writing to the publisher at info@merclearning.com.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book
and/or disc, based on defective materials or faulty workmanship, but not based on the operation
or functionality of the product.

Contents

Preface

Chapter 0: Modern Computers

0.1
0.2

0.3

0.4

0.5
0.6

Calculations by Machine

How Computers Work and Why We Made Them

0.2.1 Numbers
Example: Base 4
Convert Binary Numbers to Decimal
Convert Decimal Numbers to Binary
Arithmetic in Binary

0.2.2 Memory

0.2.3 Stored Programs

Computer Systems Are Built in Layers

0.3.1 Assemblers and Compilers

0.3.2 Graphical User Interfaces (GUIs)
Widgets

Computer Networks

0.4.1 Internet

0.4.2 World Wide Web

Representation

Summary

XV

— O 00 00 N O\ W N =

W NN NN = ===
S D A W = O O 0 0 W

vi l Contents

Chapter 1: Computers and Programming

1.1
1.2
1.3
1.4
1.5
1.6

1.7

1.8
1.9

Solving a Problem Using a Computer

Executing Python

Guess a Number

Rock—Paper—Scissors

Solving the Guess a Number Problem

Solving the Rock-Paper-Scissors Problem

1.6.1 Variables and Values—Experimenting with the
Graphical User Interface

1.6.2 Exchanging Information with the Computer

1.6.3 Example 1: Draw a Circle Using Characters

1.6.4 Strings, Integers, and Real Numbers

1.6.5 Number Bases

1.6.6 Example 2: Compute the Circumference of Any Circle

1.6.7 Guess a Number Again

IF Statements

1.7.1 Else

Documentation

Rock-Paper-Scissors Again

1.10 Types Are Dynamic (Advanced)

1.11

Summary

Chapter 2: Repetition

2.1

2.2

23
24

2.5
2.6
2.7

The WHILE Statement

2.1.1 The Guess-A-Number Program Revisited
2.1.2 Modifying the Game
Rock—Paper—Scissors Revisited
2.2.1 Random Numbers
Counting Loops

Prime or Non-Prime

2.4.1 Exiting from a Loop
2.4.2 Else

Loops That Are Nested

Draw a Histogram

Loops in General

35

36
37
39
40
40
41

42
44
46
46
47
49
50
51
54
55
57
60
62

67

69
71
72
73
74
78
79
82
83
84
86
89

Contents [vii

2.8 Exceptions and Errors 90
2.8.1 Problem: A Final Look at Guess a Number 94

2.9 Summary 96
Chapter 3: Sequences: Strings, Tuples, and Lists 101
3.1 Strings 102
3.1.1 Comparing Strings 103

3.1.2 Slicing — Extracting Parts of Strings 105

3.1.3 Editing Strings 107

3.1.4 String Methods 110

3.1.5 Spanning Multiple Lines 112

3.1.6 For Loops Again 113

3.2 The Type Bytes 114
3.3 Tuples 115
3.3.1 Tuples in For Loops 116

3.3.2 Membership 118

3.3.3 Delete 119

3.3.4 Update 120

3.3.5 Tuple Assignment 121

3.3.6 Built-in Functions for Tuples 122

34 Lists 123
3.4.1 Editing Lists 125

342 Insert 126

343 Append 126

344 Extend 126

345 Remove 127

3.4.6 Index 128

347 Pop 128

3.4.8 Sort 129

3.49 Reverse 130

3.4.10 Count 130

3.4.11 List Comprehension 131

3.4.12 Lists and Tuples 132

3.4.13 Exceptions 133

3.5 Set Types 135
3.5.1 Example: Craps 136

3.6 Summary 138

viii Il Contents

Chapter 4: Functions

4.1

4.2

43

4.4
45

4.6

Function Definition: Syntax and Semantics
4.1.1 Problem: Use the function poundn to Draw a Histogram
4.1.2 Problem: Generalize the Histogram Code for Other Years
Function Execution
4.2.1 Returning a Value
4.2.2 Parameters
4.2.3 Default Parameters
4.2.4 None
4.2.5 Example: The Game of Sticks
4.2.6 Scope
4.2.7 Variable Parameter Lists
4.2.8 Variables as Functions
Example: Find the maximum value of a function
4.2.9 Functions as Return Values
Recursion
4.3.1 Avoiding Infinite Recursion
Creating a Python Module
Program Design Using Functions—The Game of Nim
4.5.1 The Development Process Exposed
Summary

Chapter 5: Files: Input and Output

5.1

52

5.3

What Is a File? A Little Theory
5.1.1 How Are Files Stored on a Disk?
5.1.2 File Access is Slow
Keyboard Input
5.2.1 Problem: Read a number from the keyboard
and divide it by 2
Using Files in Python: Less Theory, More Practice
5.3.1 Open a File
File Not Found Exceptions
5.3.2 Reading from Files
End of File
Common File Input Operations
CSV Files
The With Statement

143

144
146
147
150
150
153
156
158
159
161
163
165
167
168
170
175
176
178
182
184

189

191
194
195
195

196
197
198
199
200
201
202
205
210

5.4

5.5

Writing to Files
Example: Write a table of squares to a file.
5.4.1 Appending Data to a File
Example: Append another 20 squares to the
table of squares file.
Summary

Chapter 6: Classes

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8
6.9

A Casual Introduction to Classes
Classes and Types
Classes as Encapsulated Modules
Classes as Data Abstractions
The Python Class — Syntax and Semantics
6.5.1 A Really Simple Class
6.5.2 Encapsulation
Classes and Data Types Again
6.6.1 Example: A Deck of Cards
6.6.2 A Bouncing Ball
6.6.3 Cat-A-Pult
Basic Design
Detailed Design
Subclasses and Inheritance
6.7.1 Non-Trivial Example: Objects in a Video Game
Duck Typing
Summary

Chapter 7: Graphics

7.1
7.2
7.3

7.4
7.5

Introduction to Graphics Programming

Graphics in Python—Pygame

Initializing Pygame

7.3.1 Colors

The Event LOOP

Drawing
Example: Create a Page of Note Paper
Example: Creating a Color Gradient

Contents [ix

211
212
212

213
213

217

218
220
221
223
225
226
230
231
232
234
240
240
241
246
246
250
251

255

256
257
258
258
260
261
264
265

x I Contents

7.6

7.7

7.5.1

Lines and Curves
Example: Note Paper Again

Arcs and Curves

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

7.6.6

Polygons

Text

Example: A Histogram

Example: A Pie Chart

Images

Pixels, Again

Example: Identifying a green car
Example: Thresholding
Transparency

Generative Art

Summary

Chapter 8: Manipulating Data

8.1

8.2
8.3

8.4

8.5

Dictionaries

8.1.1
8.1.2
8.1.3

Arrays

Example: A Naive Latin — English Translation
Functions for Dictionaries
Dictionaries and Loops

Formatted Text, Formatted 1/0O

8.3.1

Example: NASA Meteorite Landing Data

Advanced Data Files

8.4.1

8.4.2

8.4.3

Binary Files

Example: Create a File of Integers

The Struct Module

Example: A Video Game High Score File

Random Access

Example: Maintaining the High Score File in Order

Standard File Types

8.5.1
852
853
8.5.4
855

Image Files
GIF

JPEG

TIFF

PNG

267
267
268
271
273
274
278
283
284
285
286
287
289
291

295

296
298
301
302
303
304
305
309
309
309
310
311
313
315
316
316
316
318
320
322

8.6

8.5.6
8.5.7
8.5.8
8.5.9
8.5.10

Contents W xi

Sound Files
WAV

Other Files
HTML
EXE

Summary

Chapter 9: Multimedia

9.1

9.2

9.3

9.4
9.5

9.6

Mouse Interactions

Example: Draw a Circle at the Mouse Cursor
Example: Change Background Color Using the Mouse

9.1.1 Mouse Buttons
Example: Draw Lines Using the Mouse
Example: A Button
The Keyboard
Example: Pressing a “q” Creates a Random Circle
Example: Reading a Character String
Animation
9.3.1 Object Animation
Example: A Ball in a Box
Example: Many Balls in a Box
9.3.2 Frame Animation

Example: Read Frames and Play Them Back
as an Animation

Example: Simulation of the Space Shuttle
Control Console (A Class That Will Draw an
Animation at a Specific Location)

RGBA Colors — Transparency

Sound

Example: Play a Sound

Example: Control Volume Using the Keyboard
Example: Play a Sound Effect at the Right Moment:
Bounces

Music

Summary

324
324
325
326
327
327

333

334
335
336
337
338
338
340
341
342
343
343
344
346
348

349

350
355
356
357
357

358
359
360

xii [Contents

Chapter 10: Basic Algorithms

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Sorting

10.1.1 Selection Sort

10.1.2 Merge Sort

Searching

10.2.1 Timings

10.2.2 Linear Search

10.2.3 Binary Search

Random Number Generation

10.3.1 Linear Congruential Method

Cryptography

10.4.1 One-Time Pad

10.4.2 Public Key Encryption (RSA)

10.4.3 Example: Encrypt the Message “Depart at Dawn”
Using RSA

Compression

10.5.1 Huffman Encoding

10.5.2 LZW Compression

Hashing

10.6.1 DJB2

10.6.2 SDBM

Summary

Chapter 11: Programming for the Sciences

11.1
11.2
11.3
11.4

Finding Roots of Equations

Differentiation

Integration

Optimization: Finding Maxima and Minima
11.4.1 Newton Again

11.4.2 Fitting Data to Curves — Regression
11.4.3 Evolutionary Methods

Longest Common Subsequence (Edit Distance)
11.5.1 Determining Longest Common Subsequence (LCS)
11.5.2 NumPy

11.5.3 One Dimensional Arrays (Vectors)
11.5.4 Two Dimensional Arrays (Matrices)

363

364
364
368
371
372
373
374
375
376
378
380
381

382
384
388
394
399
400
400
400

405

406
408
410
412
413
415
418
423
424
429
430
432

Contents W xiii

11.5.5 Sample Problem: Finding Paths 433
11.5.6 Linear Regression Again 435
11.6 Summary 436
Chapter 12: How To Write Good Programs 441
12.1 Procedural Programming — Word Processing 442
12.1.1 Top-Down 444
12.1.2 Centering 453
12.1.3 Right Justification 454
12.1.4 Other Commands 457
12.2 Object Oriented Programming — Breakout 462
12.3 Describing the Problem as a Process 463
12.3.1 Initial Coding for a Tile 466
12.3.2 Initial Coding for the Paddle 467
12.3.3 Initial Coding for the Ball 469
12.3.4 Collecting the Classes 470
12.3.5 Developing the Paddle 471
12.3.6 Ball and Tile Collisions 473
12.3.7 Ball and Paddle Collisions 475
12.3.8 Finishing the Game 476
12.4 Rules for Programmers 479
12.5 Summary 486
Chapter 13: Communicating with the Outside World 489
13.1 Email 491
Example: Sending an email 491
13.1.1 Reading email 495
13.1.2 Example: Display the Subject Headers for

Emails in the Inbox 496
13.2 FTP 500

13.2.1 Example: Download and Display the README
File from an FTP Site 501
13.3 Communication Between Processes 502
13.3.1 Example: A Server That Calculates Squares 503

13.4 Twitter 507

xiv Il Contents

13.5

13.6

13.4.1 Example: Connect to the Twitter Stream and Print
Specific Messages

Communicating with Other Languages

13.5.1 Example: Find Two Large Relatively Prime Numbers

Summary

Chapter 14: Parsing-The Structure of Data

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Grammars

PYJ and JULIA

Language Symbols and Scanning
Parsing a Programming Language
WHILE Statements

FOR Statements

IF Statements

Expressions

Functions

14.10 Examples

Chapter 15: Communicating Using Graphics: Windows,

15.1

15.2
15.3
15.4

15.5
15.6
15.7
15.8

Index

User Interfaces, and Pygame

A Paint Program
Interface
Building the Mondrean Interface
Selecting
The Buttons
Drawing
Images and Surfaces
Stacks: Undraw and Redraw
Color Selection
Image File Selection

508
512
512
514

517

518
520
523
527
528
529
531
533
534
536

543

544
545
547
547
548
551
555
556
560
561

565

Preface

Welcome to the second edition! This is a book that is intended to be used to teach
programming to introductory students. There is material here for intro CS, but
also for Science and other disciplines. I still believe that programming is an es-
sential skill for all professionals and especially academics in the 21 century and
I have tried to make that clear in the contents of this book.

There are two new chapters and some seriously revised ones. First, the book
exclusively uses the Pygame library. The Glib module has been updated but is no
longer used in this book. This means that Chapters 7, 9, and 12 are quite different
from those in the previous edition. Also, Pygame no longer supports video, so
rather than build a new module from scratch, video is not discussed.

The new Chapter 14 concerns parsing. This can be a more advanced topic,
but parsing is a good thing to know about for many reasons, not the least of
which is to deal with user input effectively. The main example is a programming
language for which a parser (and compiler) will be written. The language was de-
veloped for this book and is called PyJ: it is a small subset of the Julia language,
which in turn is a variation on Python designed for efficiency.

The new Chapter 15 involves graphical input. Here a paint-type program will
be developed, so as to clarify ideas in mouse input and graphical output. The re-
sulting program (Mondrean) is actually usable for making drawings.

Tuse a “just-in-time” approach, meaning that I try to present new information
just before or just after the reader needs it. As a result, there are a lot of examples,

xvi @ Preface

and those examples were carefully selected to fit into the place they reside in the
text. Not too soon, and not too late.

I believe in object-oriented programming. My master’s thesis in the late
1970s was on that subject, and I cut my teeth on Simula, was there when C++
was created, and knew the creator of Java. I do not believe that object-oriented
programming is the only solution, though, and realized early that good objects
can only be devised by someone who can already program. I am therefore not an
“objects first” teacher. I am a “whatever works best” teacher.

A lot of my examples involve games. That’s because undergraduate students
play games. They understand them better than, say, accounting or inventory sys-
tems, which have been typical early assignments. I believe in presenting students’
assignments that are interesting. Not all students like games, and certainly not
computer games, but a large number do. And they come to a game assignment
with prior knowledge of the genre.

I have taught computer science for 26 years, and then moved to the arts.
That’s because of many things, but my experience teaching in a Drama depart-
ment and more recently in the Art department has helped me immensely in un-
derstanding the role of computing and programming in general. | strongly feel
that every student in a university should know how to write, and know how to
program a computer. If you can’t understand the computer, you are at the whim
of programmers who, unseen in downtown high-rises and basements, who dic-
tate how the world will work by default. The (sometimes poor) design decisions
made, and the lack of attention paid to human needs results in actual policy being
formed, and that is simply wrong. It’s not always true that the code is bad, but
when it is, it can have far reaching consequences.

Here is a truth: nobody wants to run your program. What they want is to
get their work done, or play their game, or send their email. If you are an excel-
lent programmer then you will enable that, and nobody will know your name.
But nobody will curse your code either. The truth is that good code is invisible.
It simply allows things to flow smoothly. Bad code is memorable. It interferes,
makes people frustrated and angry. If you believe in karma, then I know what
you would prefer.

You see, software (any computer program) is ubiquitous. Cars, phones, fridg-
es, television, and almost everything in our society is computerized. Decisions

Preface W xvii

made about how a program is to be built tend to live on, and even after many
modifications can affect how people use that device or system. Creating good
software means making a productive and happy civilization. It sounds trite, but if
you think about it I'm sure you will agree.

Python is a great language for beginning programmers. It is easy to write
the first programs, because the conceptual overhead is small. That is, there’s no
need to understand what ‘void’ or ‘public’ means at the outset. Python does a
lot of things for a programmer. Do you want something sorted? It’s a part of the
language. Lists and hash tables (dictionaries) are a part of the language. You can
write classes, but do not have to, so it can be taught objects first or not. The re-
quired indentation means that it is much harder to place code incorrectly in loops
or if statements. There are hundreds of reasons why Python is a great idea.

And it is free. This book was written using Python version 3.4, and with the
PyCharm APIL. The modules used that require download are few, but include
PyGame and tweepy. All free.

Overview of Chapters

Here’s a breakdown of the book, for instructors. It can be used to teach computer
science majors or science students who wish to have a competency in program-
ming.

Chapter 0: Historical and technological material on computers. Binary num-
bers, the fetch-execute cycle. This chapter can be skipped in some syllabi.

Chapter 1: Problem solving with a computer; breaking a problem down so it
can be solved. The Python system. Some simple programs involving games that
introduce variables, expressions, print, types, and the if statement.

Chapter 2: Repetition in programming: while and for statements. Random
numbers. Counting loops, nested loops. Drawing a histogram. Exceptions (try-
except)

Chapter 3: Strings and string operations. Tuples, their definition, and use.
Lists and list comprehension. Editing, slices. The bytes type. And set types. Ex-
ample: the game of craps.

Chapter 4: Functions: modular programming. Defining a function, calling
a function. Parameters, including default parameters, and scope. Return values.

xviii I Preface

Recursion. The Game of Sticks. Variable parameter lists, assigning a function to a
variable. Find the maximum of a mathematical function. Modules. Game of Nim.

Chapter 5: Files. What is a file and how are they represented? Properties of
files. File exceptions. Input, output, append, open, close. Comma separated value
(CSV) files. Game of Jeopardy. The with statement.

Chapter 6: Classes and object orientation. What is an object and what is a
class? Types and classes. Python class structure. Creating instances, __init__
and self. Encapsulation. Examples: deck of playing cards; a bouncing ball; Cat-
a-pult. Designing with classes. Subclasses and inheritance. Video game objects.
Duck typing.

Chapter 7: Graphics. The Pygame module. Drawing window; color repre-
sentation, pixels. Drawing lines, curves, and polygons. Filling. Drawing text.
Example: Histogram, Pie chart. Images and image display, getting and setting
pixels. Thresholding. Generative art.

Chapter 8: Data and information. Python dictionaries. Latin to English
translator. Arrays, formatted text, formatted input/output. Meteorite landing
data. Non-text files and the struct module. High score file example. Random ac-
cess. Image and sound file types.

Chapter 9: Digital media: Using the mouse and the keyboard. Animation.
Space shuttle control console example. Transparent colors. Sound: playing sound
files, volume, pause. Pygame module for sound.

Chapter 10: Basic algorithms in computer science. Sorting (selection,
merge) and searching (linear, binary). Timing code execution. Generating ran-
dom numbers; cryptography; data compression (including Huffman codes and
RLE); hashing.

Chapter 11: Programming for Science. Roots of equations; differentiation
and integration. Optimization (minimum and maximum) and curve fitting (re-
gression). Evolutionary algorithms. Longest common subsequence or edit dis-
tance.

Chapter 12: Writing good code. A walk through two major projects: a word
processor written as procedural code and a breakout game written as object-
oriented code. A collection of effective rules for writing good code.

Preface [xix

Chapter 13: Dealing with real world interfaces, which tend to be defined for
you. Examples are Email (send and receive), FTP, inter-process communication
(client-server), Twitter, calling other languages like C++.

Chapter 14: Parsing. Introduction to grammars and BNF. Parsing data. A
small compiler for a small language.

Chapter 15: Graphical Interaction. Using the mouse in complicated ways.
Drawing, erasing, modifying images.

Chapter Coverage for Different Majors
A computer science introduction could use most chapters, depending on the
background of the students, but Chapters 0, 7, 9, and / or 11 could be omitted.

An introduction to programming for science could omit Chapters 0, 10,
and 12.

Chapter 13 is always optional, but is interesting as it explains how social me-
dia software works under the interface.

Basic introduction to programming for non-science should include Chap-
ters 0, 1,2, 3,4, 5, and 7.

Companion Files (4 disc is included in the physical book or
files are available for downloading from the publisher by writ-
ing to info@merclearning.com.)

The accompanying disc contains useful material for each chapter.

e Selected exercises are solved, including working code when that is a part of
the solution.

e All significant examples are provided as Python code files, which can be
compiled and executed, and can be modified as exercises or class projects.
This includes sample data files when appropriate.

e All figures are available as images, in full color.

Instructor Ancillaries
e Solutions to almost all of the programming exercises given in the text.

e MS PowerPoint lectures provided for an entire semester (35 files) including
some new examples and short videos.

xXx I Preface

All of the Python code that appears in the books has been executed, and
all complete programs are provided as .py files. Some of the numerous pro-
gramming examples (over 100) that are explored in the book and for which
working code is included:

o An interactive breakout game

o The Game of Nim

o A text formatting system

o Plotting histograms and pie charts

o Reading Twitter feeds

o Play Jeopardy Using a CSV Data Set
o Sending and receiving Email

o A simple Latin to English translator
o Cryptography

o Rock-Paper-Scissors

Hundreds of answered multiple choice quiz and sample examination ques-
tions in MS Word files that can be edited and used in various ways.

Dedicated Website

Please consider contributing material to the on-line community at A#tps./sites.
google.com/site/pythonparker/ and do have fun. If you don’t then you’re doing it
wrong.

J. Parker
February 2021

CHAPTER O

MODERN
COMPUTERS

0.1 Calculations by Machine. i iiiiiieeiaeiiiii. 2
0.2 How Computers Work and Why We Made Them 3
0.3 Computer Systems Arve Builtin Layers 17
0.4 Computer Networks o 21
0.5 Representationueeiioiuiiiiae 25
0.6 Summary. 30

In this chapter

Humans are tool makers and tool users. This is not unique in the animal king-
dom, but the facility that humans have with tools and the variety of applications
we have for them does make us unique. Starting with mechanical tools (machines)
like levers and wheels that could lighten the physical effort of everyday life, more
and more complex and specific devices have been created to assist with all facets
of our lives. This was extended in the twentieth century to assisting with mental
efforts, specifically calculation.

Computers are devices that humans have built to facilitate complex calcula-
tions. Early computers were used to do some of the computations needed to design
the first nuclear bombs, but now computers seem to be everywhere, embedded
within cars and kitchen appliances, and even with our own bodies. The success of
these devices in such a wide range of application areas is a result of their ability
to be programmed — that is, the device itself is only a potential when first built
and has no specific function. It is designed to be configured to do any task that
requires calculations, and the configuring process is what we call programming.

2 B Python: An Introduction to Programming-Second Edition

To some extent, this has taken the place of a lot of other tool development
that used to be done by engineers. When designing a complex machine like an
automobile, for example, there used to be a lot of mechanical work involved.
The careful timing of the current to the spark plug was accomplished by rotating
shafts with sensors, and resulted in the firing of each cylinder at the correct mo-
ment. The air to gasoline mixture fed into the engine was controlled by tubes and
cables and springs. Now all of these things are done using computers that sense
electric and magnetic events, do calculations, and send electrical control signals
to actuators in the engine. The same computer can be used to control a refrigera-
tor, make telephone calls on a cellular phone, change channels on a television,
and wake you up in the morning. It is the flexibility of the computer that has led
to them becoming a dominant technology in human society, and the flexibility
comes largely from their ability to be programmed.

CALCULATIONS BY MACHINE

People have been calculating things for thousands of years and have always
had mechanical aids to help.

When someone programs a computer, they are really communicating with it.
Itis an imperative and precise communication. /mperative, because the computer
has no choice; it is being told what to do and will do exactly that. Precise, because
a computer does not apply any interpretation to what it is being told. Human lan-
guages are vague and subject to interpretation and ambiguity. There are sentences
that are legal in terms of syntax, but have no real meaning: “Which is faster, to
Boston or by bus?” is a legal sentence in English that has no meaning. Such vaga-
ries are not possible in a computer language. Computers do not think and so can’t
evaluate a command that would amount to “expose the patient to a fatal dose of
radiation” with any skepticism. As a result, we, as programmers, must be careful
and precise in what we instruct the machine to do.

When humans communicate with each other, we use a language. Similarly,
humans use languages to communicate with computers. Such languages are ar-
tificial (humans invented them for this purpose, all at once), terse (there are few,
if any modifiers, and no way to express emotions or graduations of any feeling),
precise (each item in the language means one thing), and written (we do not speak
to the computer in a programming language).

Chapter 0 - Modern Computers Il 3

Computer languages operate at a high level and do not represent the way
the computer actually works. There are a few fundamental things that need to be
known about computers. It’s not required to know how they operate electroni-
cally, but there are basic principles that should be understood to put the process

of using computers in a practical context.

HOW COMPUTERS WORK AND

WHY WE MADE THEM

The reason people use computers is different depending on the point in his-
tory in which one looks, but the military always seems to be involved. There have
been many calculating devices built and used throughout history, but the first

one that would have been programmable
was designed by Charles Babbage. The
military, as well as the mathematicians
of the day, were interested in more ac-
curate mathematical tables, such as those
for logarithms. At the time, these were
calculated by hand, but the idea that a
machine could be built to compute more
digits of accuracy was appealing. This
would have been a mechanical device of
gears and shafts, but it was not completed
due to budget and contracting issues.

Babbage continued his work
in design and created, on paper, a
programmable mechanical device called
the analytical engine in 1837. What does
programmable mean? A calculation
device is manipulated by the operator
to perform a sequence of operations:
add this to that, then subtract this and
divide by something else. On a modern
calculator, this would be done using a
sequence of key presses, but on older

Figure 0.1
Punched cards for the Analytical Engine.

4 M Python: An Introduction to Programming-Second Edition

| devices, it may involve moving beads
along wires or rotating gears along shafts.
Now imagine that the sequence of key
- presses can be encoded on some other
media: a set of cams, or plugs into sockets,
or holes punched into cards. This is a
program.

Such a set of punched cards or cams
would be similar to a set of instructions
written in English and given to a human
to calculate, but would instead be coded
in a form (language) that the computing
Figure 0.2 device could use immediately. The direc-
A portion of Babbage’s Analytical Engine tions on the cards could be changed so
that something new could be computed as needed. The difference engine only
found logarithms and trigonometric functions, but a device that could be pro-
grammed in this way could, in theory, calculate anything. The analytical engine
was programmed by punching holes in stiff cards, an idea that was derived from
the Jacquard loom of the day. The location of holes indicated either an opera-
tion (e.g., add or subtract) or data (a number). A sequence of such cards was
executed one at a time and yielded a value at the end.

Although the analytical engine was never completed, a program was writ-
ten for it, but not by Babbage. The world’s first programmer may have been a
woman, Augusta Ada King, Countess of Lovelace. She worked with Babbage
for a few years and wrote a program to compute Bernoulli numbers. This was the
first algorithm ever designed for a computer and is often claimed to be the first
computer program ever written, although it was never executed.

The concept of programmability is a more important development than is the
development of analytical engines. The idea that a machine can be made to do
different things depending on a user-defined set of instructions is the basis of all
modern computers, while the use of mechanical calculation has become obsolete;
it is too slow, expensive, and cumbersome. This is where it began, though, and the
concept of programming is the same today.

Chapter 0 - Modern Computers 5

Diagram for the computation by the Engine of the Numbers of Demoulli. - Sce Note G. (page 722 el scz.)

Woerking Varistles

} ololo|o fo) o) o
o o o | o o o °
¥ o o |0 o 0 o
5 ofolo ‘ 0 0 | 0 o
HE 0 |OjI==E= C
! Dlojo|of =] [
1 v, IV, Y, .\‘_.\‘11; | |
N S LA o | |
! | |
3 AV, iy, |
a1 |
‘ F¥ v Tal
A) a-l 1}
3 ~\..--\."\..» ER T
. 1 2u-1
¢ T it 7 b
7 -1
L 2
B A’
| 2 | T
2a 2
" - TN Y 5
1 1 2a-1 . 2a
: R = R
s
" 3
15 2n—
2 Bl
4 o SRR
7
i '
e 2n Fu=l 2u=2
1 4 ’—-—. 2 { S *F}
-5
bo ol Vo el |
0 . ° nA, | X
2 Vord VBV, ol o Ny 1y 31 4 By A, oo 23 | o {A, +B0 4 I,a;}
by -2 =3 (=) errree |- -3
2 sl | (e | ot H e | el | SR P | et g fo o o B,
1 o o
25 I

Figure 0.3

Possibly the word’s first program: The calculation of Bernoulli numbers on the analytical engine.

During World War II, computers were run using electricity. Work on break-

ing codes and building the atomic
bomb required large amounts of
computing. Initially, some of this
was provided by rooms full of hu-
mans operating mechanical cal-
culators, but they could not keep
up with the demand, so electronic
computers were designed and
built. The first was Colossus, de-
signed and built by Tommy Flow-
ers in 1943. It was created to help
break German military codes,
and an updated version (Mark II)
was built in 1944.

Figure 0.4
The Colossus computer breaking a code during World
War Il with the help of Dorothy Du Boisson (left) and
Elsie Booker

6 H Python: An Introduction to Programming-Second Edition

In the United States, there was a need for computational power in Los
Alamos when the first nuclear weapons were being built. Electro-mechanical
calculators were replaced by IBM punched-card calculators, originally designed
for accounting. These were only a little faster than the humans using calculators,
but could run twenty-four hours a day and made fewer errors. The punch-
card computer was programmed by plugging wires into sockets to create new
connections between components.

[*XW Numbers

The electronic computers described so far, and those of the 1940s generally,
had almost no storage for numbers. Input was through devices like cards, and they
had numbers on them. They were transferred to the computation unit, then moved
ahead or back, and perhaps read again. Memory was a primitive thing, and vari-
ous methods were devised to store just a few digits. A significant advance came
when engineers decided to use binary numbers.

Electronic devices use current and voltage to represent information, such as
sounds or pictures (radio and television). One of the simplest devices is a switch,
which can open and close a circuit and turn things like lights on and off. Electric-
ity needs a complete circuit or route from the source of electrons, the negative
pole of a battery perhaps, to the sink, which could be the positive pole. Electrons,
which is what electricity is, in a simple sense, flow from the negative to the posi-

tive poles of a battery. Electricity can be made

Battery Switch to do work by putting devices in the way of the
flow of electrons. Putting a lamp in the circuit
can cause the lamp to light up, for example.

i
A switch makes a break in the circuit,
which stops the electrons from flowing; they
cannot jump the gap. This causes the lamp to
go dark. This seems obvious to anyone with
Lamp electric lights in their house, but what may
. not be so obvious is that this creates two states
Figure 0.5 ..
The switch is closed and the current is ©F the circuit, on and off. These states can be
flowing, turning the lamp on. This is a assigned numbers. Off is 0, for example, and
“. on is 1. This is how most computers represent

Chapter 0 - Modern Computers Il 7

numbers: as on/off or 1/0 states. Let’s consider Battery Switch

this in regards to the usual way we represent _+i | ‘ |—_./ -—
numbers, which is called positional numbering.

Most human societies now use a system with
ten digits: 0, 1,2, 3,4, 5,6, 7, 8,and 9. The num-
ber 123 is a combination of digits and powers of
ten. It is a shorthand notation for 100 + 20 + 3, or
1 x 102+ 2*10" + 3*10°. Each digit is multiplied Lamp
by a power of ten and summed to get the value of Figure 0.6
the number. Anyone who has been to school ac- The switch is off (open) and the lamp
cepts this and does not think about the value used s off, indicating a “0."
as the basis of the system: ten. It simply happens
to be the number of digits humans have on their hands. Any base would work
almost as well.

Example: Base 4

Numbers that use 4 as a base can only have the digits 0, 1, 2, and 3. Each
position in the number represents a power of 4. Thus, the number 123 is, in base
4,1 x 42+ 2*4'+ 3*%4°% whichis 1 x 16 + 2*4 + 3 =16 + 8 + 3 = 27 in traditional
base 10 representation.

This could get confusing, what with various bases and such, so the numbers
here are considered to be in base 10 unless specifically indicated otherwise by a
suffix. For example, 123,is 123 in base 4, whereas 123, is 123 in base 8.

Binary numbers can have digits that are 1 or 0. The numbers are in base 2,
and can therefore only have the digits 0 and 1. These numbers can be represented
by the on/off state of a switch or transistor, an electronic switch, which why they
are used in electronic computers. Modern computers represent all data as binary
numbers because it is easy to represent those numbers in electronic form; a volt-
age is arbitrarily assigned to “0” and to “1.” When a device detects a particular
voltage, it can then be converted into a digit, and vice-versa. If 2 volts is assigned
to a 0, and 5 volts is assigned to a 1, then the circuit shown in Figure 0.7 could
signal a 0 or 1, depending on what switch was selected.

8 M Python: An Introduction to Programming-Second Edition

e S
)

@)
Figure 0.7
(@) A configuration giving a 2-volt value, or a zero.
(b) A configuration giving a 5-volt value, or a one.

Convert Binary Numbers to Decimal

Consider the binary number 11011,. The subscript “2” here means “base 2.”
It can be converted into base 10 by multiplying each digit by its corresponding
power of two and then summing the results.

Digit 1 1 0 1 1
g g s Sl
Powerof2 ©20=16 . 2=8 | 2=4 . 21=2 . 2= |

Digit*power 16 8 0

Some observations:

* Terminology: A digit in a binary number is called a bit (for binary digit)

* Any even number has 0 as the low digit, which means that odd numbers
have 1 as the low digit.

* Any exact power of two, such as 16, 32, 64, and so on, will have exactly
one digit that is a 1, and all others will be 0.

* Terminology: A binary digit or bit that is 1 is said to be set. A bit that is
0 is said to be clear.

Convert Decimal Numbers to Binary

Going from base 10 to base 2 is more complicated than the reverse. There
are a few ways to do the calculation, but here’s one that many people find easy to

Chapter 0 - Modern Computers Il 9

understand. If the lowest digit (rightmost) is 1, then the number is odd, and other-
wise it is even. If the number 73 is converted into binary, the rightmost digit is
1, because the number is odd.

The next step is to divide the number by 2, eliminating the rightmost binary
digit, the one that was just identified, from the number. 73 /2, =36, , and there
can be no fractional part so any such part is to be discarded. Now the problem is
to convert = 36, to binary and then append the part already converted to that. Is
36,, even or 0dd? It is even, so the next digit is 0. The final two digits of 73, in
binary are 01.

The process is repeated:

Divide 36 by 2 to get 18, which is even, so the next digit is 0.
Divide 18 by 2 to get 9, which is odd, so the next digit is 1.
Divide 9 by 2 to get 4, which is even, so the next digit is 0.
Divide 4 by 2 to get 2, which is even, so the next digit is 0.
Divide 2 by 2 to get 1, which is odd, so the next digit is 1.

Divide 1 by 2 to get 0. When the number becomes 0, the process is complete.

The conversion process gives the binary numbers in reverse order (right to
left) so the result is that 73, = 1001001,.

Is this correct? Convert this binary number into decimal again:
1001001, =1x2°+ 1*23 + 1*2° =1 + 8 + 64 =73 .
A summary of the process for converting x into binary for is as follows:

Start at digit n=0 (rightmost)
repeat
If x is even, the current digit n is 0 otherwise it is 1.
Divide x by 2
Add 1 ton
If x is zero then end the repetition

Arithmetic in Binary

Computers do all operations on data as binary numbers, so when two num-
bers are added, for example, the calculation is performed in base 2. Base 2 is
casier than base 10 for some things, and adding is one of those things. It’s done

10 M Python: An Introduction to Programming-Second Edition

in the same way as in base 10, but there are only 2 digits, and twos are carried
instead of tens. For example, let’s add 01011, to 01110,

01011,
01110,

Starting the sum on the right as usual, there is a 0 added to a 1 and the sum is
1, just as in base 10.

The next column in the sum contains two 1s. 1 + 1 is two, but in binary that is
represented as 10,. So, the result of 1+1 is 0 with a carry of 1 is as follows:

The next column has 1 + 0, but there is a carry of 1 soitis 1 + 0+ 1. That’s 0
with a 1 carried again:

of 1:

Finally, the leading digits are 0+0 with a carry of 1, or 0 + 0 + 1. The an-
swer is 11001,. Is this correct? Well, 01011, is 11 and 01110, is 14,, and
11, + 14, =25 . The answer 11001, is, in fact, 25 .

Chapter 0 - Modern Computers Il 11

Binary numbers can be subjected to the same operations as any other form of
number (i.e., multiplication, subtraction, division). In addition, these operations
can be performed by electronic circuits operating on voltages that represent the
digits 1 and 0.

[X¥A Memory

Adding memory to computers was another important advancement. A com-
puter memory must hold steady a collection of voltages that represent digits, and
the digits are collected into sets, each of which is a number. A switch can hold a
binary digit, but switches are activated by people. Computer memory must store
and recall (retrieve) numbers when they are required by a calculation without hu-
man intervention.

The first memories were rather odd things: acoustic delay lines stored num-
bers as a sound passing through mercury in a tube. The speed of sound allows a
small number of digits, around 500, to be stored in transit from a speaker on one
end to a receiver on the other. A phosphor screen can be built that is activated
by an electric pulse and draws a bright spot on a screen that needs no power to
maintain it. Numbers can be saved as bright and dark spots (1 and 0) and retrieved
using light sensitive devices.

Other devices were used in the early years, such as relays and vacuum tubes,
but in 1947 the magnetic core memory was patented, in which bits were stored as
magnetic fields in small donut-shaped elements. This kind of memory was faster
and more reliable than anything used before, and even held the data in memory
without power being applied, a handy thing in a power failure. It was also expen-
sive, of course.

Figure 0.8
(a) A diagram of core memory showing six bits.
(b) Actual core memory magnified to show the individual bits.

12 B Python: An Introduction to Programming-Second Edition

This kind of memory is almost never used anymore, but its legacy remains in
the terminology: memory is still frequently referred to as core, and a core dump is
still what many people call a listing of the contents of a computer memory.

Current computers use transistors to store bits and solid state memories that
can hold billions of bits (Gigabits), but the way they are used in the computer is
still the same as it was. Bits are collected into groups of 8 (a byte) and then groups
of multiple bytes to for a word. Words are collected into a linear sequence, each
numbered starting at 0. These numbers are called addresses, and each word, and
sometimes each byte, can be accessed by specifying the address of the data that is
wanted. Acquiring the data element at a particular location is called a fetch, and
placing a number into a particular location is a store. A computer program to add
two numbers might be specified as follows:

* Fetch the number at location 21.
* Fetch the number at location 433.
* Add those two numbers.

» Store the result in location 22.

This may seem like a verbose way to add two numbers, but remember that
this can be accomplished in a tiny fraction of a second.

Memory is often presented to beginning programmers as a collection of mail-
boxes. The address is a number identifying the mailbox, which also contains a
number. There is some special memory in the computer that has no specific ad-
dress, and is referred to in various ways. When
a fetch is performed there is a question concern-
ing where the value that was fetched goes. It can
go to another memory location, which is a move
operation, or it can go into one of these special

Store into location 3

locations, called registers.

A computer can have many registers or very
few, but they are very fast memory units that are
used to keep intermediate results of computa-
tions. The simple program above would normal-
ly have to be modified to give registers that are
involved in the operations:

Figure 0.9
Memory as a set of cubbyholes or
mailboxes, each with a unique address.

Chapter 0 - Modern Computers [l 13

* Fetch the number at location 21 into register RO.
* Fetch the number at location 433 into register R1.
* AddRI1 and RO and put the result into R3.

» Store R3 (the result) in location 22.

This is still verbose, but more correct.

[¥X1 Stored Programs

The final critical step in creating the modern computer occurred in 1936 with
Alan Turing’s theoretical paper on the subject, but an actual computer to employ
the concept was not built until 1948 when the Manchester Small-Scale Experimental
Machine ran what is considered to be the first stored program. It has been the basic
method by which computers operate ever since.

The idea is to store a computer program in memory locations instead of on
cards or in some other way. Programs and data now co-exist in memory, and this
also means that computer programs have to be encoded as numbers; everything
in a computer is a number. There are many different ways to do this, and many
possible different instruction sets that have been implemented and various differ-
ent configurations of registers, memory, and instructions. The computer hardware
always does the same basic thing: first, it fetches the next instruction to be ex-
ecuted, and then it decodes it and executes it.

Executing an instruction could involve more Memory
accesses to memory or registers.

Program
Counter

|

Instruction Register

This repeated fetch then executes a pro-
cess called the fetch-execute cycle, which is
at the heart of all computers. The location or
address of the next instruction resides in a
register called the program counter, and this
register is incremented every time an instruc-
tion is executed, meaning that instructions
will be placed in consecutive memory loca-
tions and will be fetched and executed natu-

i

Accumulator

Math
Unit

— O © 0 N O~ wnNn = o

—_

'rally in tha‘F order. Sorr}etime's the instruction Figure 0.10
is fetched into a special register too, called A simple fictional computer used to explain
the instruction register, so that it can be stored programs

14 M Python: An Introduction to Programming-Second Edition

examined quickly for important components like data values or addresses. Finally, a
computer will need at least one register to store data; this is called the accumulator.

The stored program concept is difficult to understand. Imagine a computer
that has 12-bit words as memory locations and that possesses the registers de-
scribed above. This is a fictional machine, but it has some of the properties of an
old computer from the 1960s called the PDP/S.

To demonstrate the execution of a program on a stored program computer,
let’s use a very simple program: add 21 and 433, and place the answer in location
11. As an initial assumption, assume that the value 21 is in location 9 and 433 is
in location 10. The program itself resides in consecutive memory locations begin-
ning at address 0.

Note that this example is very much like the previous two examples, but in
this case, there is only one register to put data into, the accumulator. The program
could perhaps look like this:

* Fetch the contents of memory location 9 into the accumulator.
* Add the contents of memory location 10 to the accumulator.
» Store the contents of the accumulator into memory location 11.

The program is now complete, and the result 21 + 433 is in location 11.
Computer programs are normally expressed in terms that the computer can im-
mediately use, normally as terse and precise commands. The next stage in the
development of this program is to use a symbolic form of the actual instructions
that the computer will use.

The first step is to move the contents of location 9 to the accumulator. The
instruction that does this kind of thing is called Load Accumulator, shorted as the
mnemonic LDA. The instruction is in location 0:

0: LDA 9 # Load accumulator with location 9

The text following the “#” character is ignored by the computer, and is really
a comment to remind the programmer what is happening. The next instruction is
to add the contents of location 10 to the accumulator; the instruction is ADD and
it is placed in address 1:

1: ADD 10 # Add contents of address 10 to the accumulator

The result in the accumulator register is saved into the memory location at
address 11. This is a Store instruction:

Chapter 0 - Modern Computers [l 15

2: STO 11 # Answer into location 11

The program is complete. There is a Halt in-
struction:

3: HLT # End of program</NL>

If this program starts executing at address 0, and
if the correct data is in the correct locations, then
the result 454 should be in location 11. But these in-
structions are not yet in a form the computer can use.
They are characters, text that a human can read. In a
stored program computer, these instructions must be
encoded as numbers, and those numbers must agree
with the ones the computer was built to implement.

An instruction must be a binary number, so all
of the possible instructions have numeric codes. An
instruction can also contain a memory address; the
LDA instruction specifies a memory location from
which to load the accumulator. Both the instruction

Figure 0.11

An actual PDP-8 computer.
Programs were entered as binary
numbers using the switches on
the front console. This was the
smallest computer of its time.

code and the address have to be placed into one computer word. The designers of

the computer decide how that is done.

This computer has 12-bit words. Imagine that the upper 3 bits indicate what
the instruction is. That is, a typical instruction is formatted as shown in Figure 0.12.

11 10 9 876543210

code address

Figure 0.12

The format of a binary instruction.

There are 9 bits at the lower (right) end of the instruction for an address, and
3 at the top end for the code that represents the instruction. The code for LDA is
3; the code for ADD is 5, and the code for STO is 6. The HLT on most computers
is code 0. Here is what the program looks like as numbers:

Code 3 Address 9

Code 5 Address 10
Code © Address 11
Code O Address 0

16 M Python: An Introduction to Programming-Second Edition

These have to be made into binary numbers to be stored in memory. For the
LDA instruction, the code 3, is 011, and the address is 9,, = 000001001, so the
instruction as a binary number is 011 000001001, where the space between the
code and the address is only present to make it obvious to a person reading it.

The ADD instruction has code 5, , which is 101, and the address is 10, which
in binary is 0001010,. The instruction is 101 000001010,.

The STO instruction has code 6, which is 110, and the address is 11, which is
001011, The instruction is 110 000001011.,.

The HLT instruction is code 0, or in 12-bit binary, 000 000000000,.

The codes are made up by the designers of the computer. Figure 0.13 shows
an example of when memory is set up to contain this program.

Memory
011000001001
101000001010
110000001011
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000010101
000110110001
000000000000

— O © 0 N O~ wnNn = O

—_

Figure 0.13
The simple example program as it looks in memory.

This is how memory looks when the program begins. The act of setting up the
memory like this so that the program can execute is called /oading. The binary
numbers in memory locations 9 and 10 are 21 and 433, respectively, which are
the numbers to be summed.

Of course, there are more instructions than these in a useful computer. There
is not always a subtract instruction, but subtraction can be done by making a num-
ber negative and then adding, so there is often a NEGate instruction. Setting the
accumulator to zero is a common thing to do so there is a CLA (Clear Accumula-
tor) instruction; and there are many more.

The fetch-execute cycle involves fetching the memory location addressed
by the program counter into the instruction register, incrementing the program

Chapter 0 - Modern Computers Il 17

counter, and then executing the instruction. Execution involves figuring out what
instruction is represented by the code and then sending the address or data through
the correct electronic circuits.

A very important instruction that this program does not use is a branch. The
instruction BRA 0 causes the next instruction to be executed starting at memory
location 0. This allows a program to skip over some instructions or to repeat some
many times. A conditional branch changes the current instruction if a certain con-
dition is true. An example would be “Branch if Accumulator is Zero (BAZ).”
which is only performed if, as the instruction indicates, there is a value of zero in
the accumulator. The combination of arithmetic and control instructions makes
it possible for a programmer to describe a calculation to be performed very pre-
cisely.

COMPUTER SYSTEMS ARE BUILT IN LAYERS

Entering a program as binary numbers using switches is a very tedious, time-
consuming process. Lacking a disk drive, the early computers depended on other
kinds of storage: punch cards or paper tape. It should be understood that because
there was no permanent storage, booting one of these machines often meant tog-
gling a small “boot loader” program, then reading a paper tape. Now the computer
would respond sensibly to its peripheral devices, like a printer or card reader.
The paper tape contained a primitive ‘operating system’ that would control the
few devices available. That’s what operating systems do: allocate resources and
control devices.

The boot loader (bootstrap program) is the lowest layer of software. It was
provided by the computer manufacturer but had to be entered by the user. The
paper tape system was the second layer, and the user did not have to write this
program. Gradually, more and more layers were written to provide the user with
a high level of abstraction rather than having to understand the entire machine.

When disk drives became available, the operating system was stored on them,
and a bootstrap loader was saved in a special section of memory that could not
be erased (read only memory) so that when the computer was turned on, it would
run the loader, which would load the operating system. This is essentially what
happens today on Windows.

18 M Python: An Introduction to Programming-Second Edition

This operating system on the disk drive is a third layer of software. It provides
basic hardware allocation functionality and also gives the user access to some
programs to use for printing and saving things on disk — a file system.

Assemblers and Compilers

Programming a computer could still be a daunting task if done in binary, so
the first thing that was provided was an assembler. This was a program that per-
mitted a programmer to enter a text program that could be converted into a binary
executable. It allowed memory locations to be named instead of using an absolute
number as an address, and would convert text operation codes and addresses into
a binary program. The addition program from the previous section could be writ-
ten in assembler as follows:

LDA Datal
ADD DataZz
STO Res
HLT

Datal: 21

Dataz: 433:

Res: 0

Usually, one line of text in an assembler corresponds to a single instruction or
memory location. It’s the same program, but is easier for a programmer to under-
stand because of the named memory locations and mnemonic instruction names.

It is much harder to describe how a compiler works, but relatively easy to
explain what it does. A compiler translates high level language statements into
assembler, which in turn converts it into binary code. Compilers translate state-
ments like

A =21
B = 433
C = A+B

into executable code. It is a very complex process, but essentially it allows the
programmer to declare that certain names represent integers, that values are to
be assigned, and that arithmetic can be done. There are also more complex state-
ments, like the conditional execution of code and function calls with parameters,
as will be seen in later chapters.

Compilers also implement input and output from the user (reading from
a keyboard and writing to the video screen), sophisticated data types, and

Chapter 0 - Modern Computers Il 19

mathematical functions. An interpreter, which is what the language Python is,
does a part of the compilation process but does not produce executable code. In-
stead it simulates the execution of the code, doing most of the work in software.
The Java language does a similar thing in many cases.

The programs that someone writes (software) creates another layer for some-
one to use. An example might be a database management system that gives a user
access to a computer that can query data for certain kinds of values. A graphics
system gives a programmer access to a set of operations that can draw pictures.

Graphical User Interfaces (GUISs)

Most users now interface with their computers through a keyboard, one of the
first devices to be interfaced to a computer, a mouse, the first device to permit 2D
navigation on a screen, and Windows, a graphical construction that allows many
independent connections to a computer to share a single video screen. GUIs are
popular because they improve the user’s perception of what is happening on a
computer. Previous computer interfaces were completely text based, so if there
was a problem that the user could not see, it would go unnoticed.

GUIs, however, are difficult to program. Just opening a new window in a Mi-
crosoft-based operating system can require scores
of lines of C++ code that would take a great deal of
time to understand. Naturally, it is the job of a pro-
grammer to be able to do this, but it means that the
average user could not create their own software

R
P’
G

that manipulated the interface in any reasonable £ s g
way. So, what is a window and what’s involved Figure 0.14
in a GUI? The first computer mouse.

_))) https.//commons.wikimedia.
A window, in the operating system sense, is a org/wiki/File: Telefunken_

rectangle on the computer screen within which an Rollkugel RKS_100-86.jog
exchange of information takes place between the
user and the system. The rectangle can generally
be resized, removed from the screen temporarily
(minimized), moved, and closed. It can be thought
of as a virtual computer terminal in that each one Figure 0.15

can do what the entire video screen was needed to Englebart's computer mouse.

20 M Python: An Introduction to Programming-Second Edition

do in early systems. When the window is active, a user can type information to
be received by the program controlling it, and can manipulate graphical objects
within the window using a mouse, or more recently by using their fingers on a
touch screen.

The mouse is a variation on the tracker ball, the German engineering com-
pany Telefunken devised a working version and was the first to sell it. A mouse
is linked through software to a cursor on the screen, and left-right motions of the
mouse cause left-right motions of the cursor; forward and backward motions of
the mouse cause the cursor to move up and down the screen. When the cursor is
inside of a window then that window is active. A mouse has buttons, and pressing
a mouse button activates whatever software object is related to the cursor position
on the screen.

Widgets

A widget is a graphical object drawn in a window or otherwise on a computer
screen that can be selected and/or operated using the mouse and mouse buttons. It
is connected to a software element that is sent a control

signal or numerical parameter by virtue of the wid-
Play get being manipulated. A widget is exemplified by the

button, a very commonly used widget on Web pages

Figure 0.16 and interfaces. Buttons can be used to display infor-

A button. mation as well as to control a program. Some popular

(o) Easy widgets are as follows:

(%) Average Button: When the mouse cursor is within the boundaries of the
i button on the screen, the button is said to be activated. Pressing

(©) Hard a mouse button when the button widget is activated causes the

software connected to the button to perform its function.
Figure 0.17

Aradio button. Radio Button: A set of two or more buttons used to select from
a set of discrete options. Only one of the buttons can be selected

—=mss) at a time, meaning that the options are mutually exclusive.
Options
B A1 ryims Check Box: A way to select a set of options from a larger set.
7 2.sided
7 Saped This widget consists of a collection of boxes or buttons that can

be chosen by clicking on them. When chosen, they indicate that
Figure 0.18 fact by using a graphical change, sometimes a check mark but
A check box. sometimes a color or other visual effect.

Chapter 0 - Modern Computers Il 21

Slider: A horizontal or vertical control with a selec- sicer

tion tool that can be slide along the control. The rela- 3
tive position of the control dictates the value that the

widget provides. This value is often displayed in a text Figure 0.19
box, and the range is also commonly displayed. Slider.

Drop-down List: A box containing text that displays a complete set of options
that can be displayed when the mouse button is clicked within it. Then any one of

the options can be selected using the mouse [sssmm -
and the mouse button. i =

Icon: An icon is a small graphical rep-
resentation (pictogram) that represents the
function of a program or file. When sel'ected Figure 0.20 Figure 0.21
the program will execute or the file will be pron gown ist. con.

opened.

OK 4

There are many other widgets and variations on the ones shown here. There
are two basic principles at play:

1. The widget represents an activity using a commonly understood symbol,
and performs that activity, or one related to the symbol, when selected
using the mouse. This is a graphical and tactile operation that replaces
the typing of a command in previous computer systems.

2. The software that implements the widget is a module, software that can
be reused and reconfigured for various circumstances. A button can be
quickly created to perform any number of tasks because the program that
implements it is designed for that degree of flexibility.

KXl COMPUTER NETWORKS

Schools, offices, and some homes are equipped with computer networks,
which are wires that connect computers together and software and special hard-
ware that allows the computers to communicate with each other. This allows
people to send information to each other through their computers. But how does
this really work?

Computers use electricity to perform calculations on binary numbers. Ar-
bitrary voltages represent 0 and 1, and those voltages are sent along a wire no

22 B Python: An Introduction to Programming-Second Edition

matter how long it is and still be numbers at the receiving end. As long as two
computers are connected, this works well, but if two wires are needed to connect
any two computers, then six wires are needed to fully connect three computers to
each other and twelve to connect four computers. A room with thirty networked
computers would be full of wires (870 to each computer)!

Hawaii has an unusual problem when it comes to computer network com-
munication. It is a collection of islands. Linking them by cables is an expensive
proposition. In the early 1970s, the technicians at the University of Hawaii de-

. cided to link the computers using radio. Radio
CIengransmlssmn R . o
Collision transmission is similar to wire transmission in

Computer A _ [Bl many practical ways, and allocating 35 radio

Computer [N (O (N frequencies to connect one computer on each

Computer C : N BN island to all of the others would have been
Time ——> . ..

possible, but their idea was better. They used

Figure 0.22 a single radio link for all computers. When a

Packets transmitted on a network. Red computer wanted to send information along
ones are collisions. the network, it would listen to see if another
computer was already doing so. If so, it would wait. If not, it would begin to send
data to all of the other computers and would include in the transmission a code
for which computer was supposed to receive it. All could hear it, but all would
know which computer was the correct destination so the others would ignore it.
This system was called Alohanet.

There is a problem with this scheme. Two or more computers could try to
send at almost the same time, having noted that no other computer was sending
when they checked. This is called a collision, and is relatively easy to detect; the
data received is nonsense. When that happens, each computer waits for a random
time, checks again, and tries again to send the data. An analogy would be a meet-
ing where many people are trying speak at once.

Obviously, the busier the network is, the more likely a collision will be, and
the re-transmissions will make things worse. Still, this scheme works very well
and is functioning today in the form of the most common networking system in
earth — Ethernet.

Ethernet is essentially Alohanet along a wire. Each computer has one con-
nection to it, rather than connections to each of the possible destinations, and col-
lisions are possible. There is another consideration that makes this scheme work

Chapter 0 - Modern Computers [l 23

better, and that it is use of packets. Information along these networks is sent in
fixed-size packages of a few thousand bytes. In this way, the time needed to send
a packet should be more or less constant, and it’s more efficient than sending a
bit or a byte at a time.

Each packet contains a set of data bytes intended for another computer, so
within that packet should be some information about the destination, the sender,
and other important data. For instance, if a data file is bigger than a packet, then
it is split up into parts to be sent. Thus, a part of the packet is a sequence number
indicating which packet it is (e.g., number 3 of 5). If a particular packet never gets
received, then the missing one is known, and the receiver can ask the sender for
that packet to be resent. There are also codes to determine whether an error has
occurred.

[X%W Internet

The Internet is a computer network designed to communicate reliably over
long distances. It was originally created to be a reliable communications system
that could survive a nuclear attack, and was funded by the military. It is distrib-
uted, in that data can be sent from one computer to another in a chain until it
reaches its destination.

Imagine a collection of a few dozen computers, and that each one is connect-
ed to multiple others, but not directly to all others. Computer A wishes to send a
message to computer B, and does so using a packet that includes the destination.
Computer A sends the message to all computers that it is connected to. Each of
those computers sends it to all of the computers that they are connected to, and
so on until the destination is reached. All of the computers will receive every
message, which is inefficient, but so long as there
exists some path from A to B, the message will = @&
be delivered.

It would be hard to tell when to stop sending a \ .\

message in this scheme. Another way to do it is to
have a table in each computer saying which com-
puters in the network are connected to which oth-
ers. A message can be sent to a computer known
to be a short path to the destination, one computer

5

&
&
&

Figure 0.23
The organization of the Internet.

24 W Python: An Introduction to Programming-Second Edition

at a time, and in this case not all computers see the message, only the ones along
the route do. A new computer added to the network must send a special message
to all of the others telling them which of the existing computers it is directly
connected to, and this message will propagate to all machines, allowing them to
update their map. This is essentially the scheme used today.

The Internet has a hierarchy of communication links and processors. First, all
computers on the Internet have a unique IP (/nternet Protocol) address through
which they are reached. Because there are many computers in the world, an IP
address is a large number. An example is 172.16.254.1 (obtained from Wikipe-
dia). When a computer in, say, Portland want to send a message to, for example,
London, the Portland computer composes a packet that contains the message, its
address, and the recipient’s address in London. This message is sent along the
connection to its Internet service provider, which is a local computer, at a rela-
tively low speed, perhaps 10 megabits per second. The service provider operates a
collection of computers designed to handle network traffic. This is called a Point
of Presence (POP), and it collects messages from a local area and concentrates
them for transmission further down the line.

Multiple POP sites connect to a Network Access Point (NAP) using much
faster connections than users have to connect with the POP. The NAP concen-
trates even more users, and provides a layer of addressing that can be used to send
the data to the destination. The NAP for the Portland user delivers the message to
a relatively local NAP, which sends it to the next NAP along a path to the desti-
nation in London using an exceptionally fast (high bandwidth) data connection.
The London NAP sends the message to the appropriate local POP, which in turn
sends it to the correct user.

An important consideration is that the message can be read by any POP nor
NAP server along the route. Data sent along the Internet is public unless it is
properly encrypted by the users.

[X¥A World Wide Web

The World Wide Web, or simply the Web, is a layer of software above the
Internet protocols. It is a way to access files and data remotely through a visual in-
terface provided by a program that runs on the user’s computer, a browser. When
someone accesses a Web page, a file that describes that page is downloaded to

Chapter 0 - Modern Computers [l 25

the user’s browser and displayed. That file is text in a particular format, and the
file name usually ends in .html or .htm. The file holds a description of how to
display the page: what text to display, where images can be found that are part of
the page, how the page is formatted, and where other connected pages (links) are
found on the Internet. Once the file is downloaded, the local (receiving) computer
performs the work concerned with the display of the file, such as playing sounds
and videos, and drawing graphics and text.

The Web is the basis for most of the modern advances in social network-
ing and public data access. The Internet provides the underlying network com-
munications facility, while the Web uses that to fetch and display information
requested by the user in a visual and auditory fashion. Podcasts, blogs, and wikis
are simple extensions of the basic functionality.

The Web demands the ability for a user in Portland to request a file from a
user in London and to have that file delivered and made into a graphical display,
all with a single click of a mouse button. Web pages are files that reside on a com-
puter that has an IP address, but the IP address is often hidden by a symbolic name
called the Universal Resource Locator (URL). Almost everyone has seen one of
these (http://www.facebook.com is one example). Web pages have a unique path or
address based on a URL. Anyone can create a new web page that uses its very own
unambiguous URL at any time, and most of the world would be able to view it.

The Web is an example of what programmers call a client-server system. The
client is where the person requesting the Web page lives, and is making a request.
The server is where the Web page itself exists, and it satisfies the request. Other
examples of such systems would be online computer games, Email, Skype, and
Second Life.

KXl REPRESENTATION

When applying a computer to a task or writing a program to deal with a type
of data that seems to be non-numeric, the issue of how to represent the data on the
computer invariably arises. Everything stored and manipulated on a computer has
to be a number. What if the data is not numeric?

A fundamental example of this is character data. When a user types at the
computer keyboard, what actually happens? Each key, and some key combina-
tions (e.g., the shift key and “1” held down at the same time), when pressed result

26 W Python: An Introduction to Programming-Second Edition

in electrical signals being sent along a set of wires that connect to an input device
on the computer, a USB port perhaps. Pressing a key results in an identifiable
combination of wires being given a voltage. This is, in fact, a representation of
the character, and one that underlies the one that will be used on the computer
itself. As described previously, voltages can be used to represent binary numbers.

The representation of characters on a computer amounts to an assignment of
a number to each possible character. This assignment could be arbitrary, and for
some data it is. The value of the letter “a” could be 1, “b” could be 12, and “c”
could be 6. This would work, but it would be a poor representation because char-
acters are not in an arbitrary order. The letter “b” should be between “a” and “c”
in value because it is positioned there in the data set, the set of characters. In any
case, when creating a numeric representation the first rule is as follows:

1. If there are a relatively small number of individual data items, assign
them consecutive values starting at 0. If there is a practical reason to start
at some other number, then do so.

The second rule considers the existing ordering of the elements:

2. In cases where data items are assigned consecutive values, assign them
in a manner that maintains any pre-defined order of the elements.

This means that in a definition of characters the letter ‘a’, ‘b’, and ‘¢’
should appear in that order.

3. In cases where data items are assigned consecutive values, assign them
in a manner that maintains any pre-existing distance between the ele-
ments.

This means that the letters “a,” “b,” and “c” would be adjacent to each
other in the numeric representation because they are next to each other
in the alphabet. The character classes also have consecutive codes so that
the code for “0” is adjacent to, and smaller than, the code for “1,” and
so on. This set of three rules creates a reliable mapping of characters to
numbers. However, there are more rules for making representations.

4. In cases where the data items are assigned consecutive values, assign
them in a manner that simplifies the operations that are likely to be per-
formed on the data.

In the present example of character data, there are relatively few places
where this rule can be invoked, but one would be when comparing char-
acters to each other. A character “A” is usually thought to come before

Chapter 0 - Modern Computers [l 27

“a,” so this means that all of the uppercase letters come before all lower-
case ones, in a numerical sense. Similarly, “0” comes before “A,” so all
digits come before all letters in the representation. A space would come
before (i.e., have a smaller value) than any character that prints.

One of the most common character representations, named the American
Standard Code for Information Interchange or ASCII has all of these
properties, and a few others. The standard ASCII character set lists 128
characters with numerical codes from 0 to 127. In the table below, each
character is listed with the code that represents it. They appear in nu-
merical order. The characters in orange are telecommunications charac-
ters that are never used by a typical computer user; green characters are
non-printing characters that are used for formatting text on a page; letters
and numbers for English are red; special characters, like punctuation, are
blue. The space character is in some sense unique, and it is black.

Table 0.01
American Standard Code for Information Interchange

Code Char Code Char Code Char Code Char Code Char Code Char Code Char Code Char

: : 16 :DLE: 32 :Space: 48 : 0 : 64 : @ : 80 : P : 96 : D112 0 p
e mmmm i IR e s S S L SRR R SHis DU DI SHS SRS
o 18D(23450266B82R e é..g..l.l.‘i.g...r....
i T I HPIS Sin S UL L S S NS SR S0 S

D X

E

F

If there is a very large number of possible data values, then enumerating
them would be unreasonable. There are other ways to solve that sort of
problem.

28 M Python: An Introduction to Programming-Second Edition

5. Try to break the data into enumerable parts.

Dates can be an example of this kind of data. There are too many dates to
store as discrete values, as there is no actual day 0, and there is no practi-
cal final day in the general case. However, a common way to state a date
is to give a year, a month, and a day. This is awkward from a computer’s
perspective because of the variable number of days in each month, but
it works well for humans. Each component is enumerable, so a possible
representation for a date would be as three numbers: year, month, day.
It would be YYYYMMDD, where YYYY is a four-digit year, MM is a
number between 0 (January) and 11 (December), and DD is a number
between 0 and 30, which is the day of the month.
This representation should keep the dates in the correct sequence, so
December 9, 1957, (19571108) comes after Aug 24, 1955 (19550723).
However, another common operation on dates is to find the number of
days between two specified dates. This is difficult, and the only repre-
sentation that would simplify it would be to start counting days at a zero
point. If that zero point is Jan 1, 1900 then the representation for the
date October 31, 2017 is 43037. The number of days between two dates
is then found by subtraction. However, printing the date in a form for
humans to read is difficult. When selecting a representation, the most
common operations on the data should be the easiest ones to perform.
Another example of this sort or representation is color, which will be
discussed in detail in a later chapter.

6. When the data is part of a continuous stream of real values, then it may
be possible to sample them and/or quantize them.

Sampling means to represent a sequence by using a subset of the values.
Imagine a set of numbers coming from a seismometer. The number sequence
represents measurements of the motion of

the ground captured continuously by a me-

chanical device. It is normally acceptable

to ignore some of these values, knowing

that between a value of 5.1 (whatever that

means) and a value of 6.3, the numbers

would have taken on all possible values

Figure 0.24 between those two; that’s what continuous

A continuous set of data has a measurable means.
value between any other two.

Chapter 0 - Modern Computers [l 29

Instead of capturing an infinite num-
ber of values, which is not possible, why
not capture a value every second, or tenth
of a second, or at whatever interval makes
sense for the data concerned? Some data
will be lost. The important thing is not to

lose anything valuable. Figure 0.25

The same thing can be done spatially. Sampling means picking an interval and.only
If someone is building a road, then it must keeplng.the.data values at tholse Iocgt!ons.
be surveyed. A set of height values for The vertical lines here are sampling positions.
points along the area to be occupied by the
road is collected so that a model of the 3D
region can be built. But between any two
points that can be sampled there is another
point that could be sampled, on to infinity.
Again, a decision is made to limit the num-
ber of samples so that the measurements . gure 0.26
are made every few yards. This limits the The resulting signal is not as smooth as the
accuracy, but not in a practical way. The original (lower resolution).
height at some specific point may not have been measured, but it can be estimated
from the numbers around it.

The distance between two sample points is referred to as the resolution. In
spatial sampling, it is expressed in distance units, and says something about the
smallest thing that can be precisely known. In time sampling, it is expressed in
seconds.

Quantization means how accurately each measurement is known. In high
school science, numbers that are measurements are given to some number of sig-
nificant figures. Measuring a weight as 110.9881 pounds would seem impossibly
accurate, and 111 would be a more reasonable number. Quantization in computer
terms would be restricting the number of bits used to represent the value. Some-
thing that is stored as an 8-bit number can have 256 distinct values, for example. If
the world’s tallest person is under 8 feet tall, then using 8 bits to represent height
would mean that 8 feet would be broken up into 256 parts, which is 0.375 inches;
that is 8 feet x 12 inches/foot = 96 inches, and dividing this into 256 parts =
0.375. The smallest difference in height that could be expressed would be this
value, a little over a third of an inch.

30 M Python: An Introduction to Programming-Second Edition

Quantization is reflected in the representation as a possible error in each val-
ue. The greater the number of bits per sample, the more accurately each one is
represented. The use of sampling and quantization is very common, and is used
when saving sounds (MP3), images (JPEG), and videos (AVI).

There are other possible options for creating a representation for data, but the
six basic ideas here will work most of the time, alone or in combination. A pro-
grammer must understand that she or he will need to wisely choose the represen-
tations for the data. A poor choice will result in more complex code, which gen-
erates more errors and less overall satisfaction with the result. Spending a little
extra time at the beginning analyzing the possibilities can save a lot of effort later.

X3 SUMMARY

Computers are devices that humans built to facilitate complex calculations
and are tools for rapidly and accurately manipulating numbers. When humans
communicate with each other, we use a language. Similarly, humans use languag-
es to communicate with computers. A computer program can be thought of as a
sequence of operations that a computer can perform to accomplish a calculation.
The program must be expressed in terms that the computer can do.

Early computers were mechanical, using gears to represent numbers. Elec-
tronic computers usually use two electrical states or voltages to represent num-
bers, and those numbers are in binary or base-2 form. Electronic computers have
memories that can store numbers, and everything stored in memory must be in
numeric form. That includes the instructions that the computer can execute.

Computers have been around long enough to provide many layers of com-
puter programs that can assist in their effective use: graphical user interfaces, as-
semblers, compilers for programming languages, Web browsers, and accounting
packages provide a user with a different view of a computer and a different way
to use it. Computers can exchange data between each other using wires over short
distances (computer network) and long ones (Internet). The World Wide Web sits
atop the Internet and provides an easy and effective way for computers all over
the world to exchange information in any form.

Everything stored and manipulated on a computer has to be a number. What
if the data is not numeric? In that case a numeric representation has to be devised
that effectively characterizes the information while permitting its efficient ma-
nipulation.

Chapter 0 - Modern Computers Il 31

Exercises

1. Convert the following binary numbers into decimal:

a) 0100000

b) 0000100

¢) 0000111

d) 0101010

e) 0110100101

f) 0111111

g) 110110110

2. Convert the following decimal numbers into binary:

a) 10

b) 100

¢) 64

d) 128

e) 254

f)5

g) 999

3. Core memory would not erase itself when its power source was removed.
Give reasons why this is a valuable property.

4. Specify a device that is used for:
a) Output only
b) Input only
¢) Both input and output
5. Ada, Countess of Lovelace, is generally considered to be the first programmer,

but some contrary information has come to light recently. Search the literature
for two articles on each side of the argument and formulate a conclusion.

32 B Python: An Introduction to Programming-Second Edition

6.

10.

What is the difference between a compiler and an interpreter? Give an
example of each.

. Identify a GUI widget that was not discussed in this chapter. Sketch its

appearance and describe its operation. Give an example of a situation where
it might be used.

. Give the ASCII codes for the following characters:

a) 'p'
b) l;l
c) 'r'
d) 'I'
e) 1—1

. What is the value of the ASCII code for the character “1”” minus the code for

the character “0”? What is 2-0? What does this say about converting from the
character form of a number into its numeric value in general?

Consider the imaginary computer devised in this chapter. It has a memory
in which each location has 12 binary digits (bits) to store a number. In one of
the memory locations the value 101000000000 is seen. What is this? Is it an
instruction, a number, a character, an address, or something else? How can
this be determined?

Notes and Other Resources

http://'www.vandermark.ch/pdp8/index.php?n=PDPS8. Emulator

1.
2.

3.

4.

L. Carlitz (1968), Bernoulli Numbers, Fibonacci Quarterly 6: 71-85.

Digital Equipment Corporation (1972) Introduction to Programming, PDP-8
handbook series. (Online version http:/www.mirrorservice.org/sites/www.
bitsavers.org/pdf/dec/pdp8/handbooks/IntroToProgramming1969.pdf)

James Essinger (2004). Jacquard’s web. Oxford University Press,
Oxford. ISBN 978-0-19-280578-2.

Tony Sale, The Colossus Computer 1943—1996: How It Helped to Break
the German Lorenz Cipher in WWII, M.&M. Baldwin, Kidderminster,
2004; ISBN 0-947712-36-4.

Chapter 0 - Modern Computers [l 33

5. Stephen Stephenson (2013), Ancient Computers, Part I - Rediscovery, Edition
2, ISBN 1-4909-6437-1.

6. A. M. Turing (1936). On Computable Numbers, with an Application to the
Entscheidungsproblem.

7. Michael R. Williams (1998). The “Last Word *“ on Charles Babbage. IEEE
Annals of the History of Computing 20 (4): 10—4. doi:10.1109/85.728225.

8. Javier Yanes (2015) Ada Lovelace: Original and Visionary, but No
Programmer, OpenMind, 09 December 2015. https:/www.bbvaopenmind.
com/en/ada-lovelace-original-and-visionary-but-no-programmer/

CHAPTER 1

COMPUTERS AND
PROGRAMMING

1.1 Solving a Problem Using a Computerccccouuueeeeo... 36
1.2 Executing Python i 37
1.3 GuessaNumber. i 39
1.4 Rock—Paper—SCiSSOTS 40
1.5 Solving the Guess a Number Problem 40
1.6 Solving the Rock-Paper-Scissors Problem. 41
17 IFStatements o i 51
1.8 Documentation. i 55
1.9 Rock-Paper-Scissors AGain.uiiiiinnnnnnnn .. 57
1.10 Dypes Are Dynamic (Advanced) cccciiiieeeo. .. 60
LAL Summary.o 62

In this chapter

The vast majority of computers fthat most people encounter are digi-
tal computers. This refers to the fact that the computer works on num-
bers. Other kinds of computer do exist but are not as common. Analog
computers operate in a number of other ways, but are usually electrical
(they manipulate electrical voltages and currents). They may be mechanical and
use gears and shafts to calculate a mechanical response.

36 M Python: An Introduction to Programming-Second Edition

The fact that any problem must be expressed in numerical form can be chal-
lenging. I'm not good at math is a common complaint, and the belief that com-
puter programming requires a knowledge of advanced mathematics is used as a
reason to not study programming. The kind of math commonly needed for pro-
gramming would more properly be called arithmetic, not math.

In order for a problem to be solved using a computer, the problem must be
expressed in a way that manipulates numbers and the data involved must be nu-
meric. This is often accomplished by some kind of encoding of the data. It is so
common that the process is invisible on modern computers. Most data have a
variety of encodings that have been used for years and are taken for granted: im-
ages in JPEG format or sounds in MP3 are examples of commonly used encoding
of data into numbers.

What can computers do with numbers? Addition, subtraction, multiplication,
and division are the basic operations, but computers can compare the value of
numbers, too.

SOLVING A PROBLEM USING A COMPUTER

The process of solving a problem using a computer begins with a detailed
specification of the problem to be solved. Unless the problem is completely un-
derstood, its solution on a computer is impossible. Then we examine the problem
to see what methods that we know about and what programs we already have
could be used in its solution. At this stage we’re diving the problem in to the part
that we know how to solve right away, and the part that we do not. The latter
part has to be examined in more detail until a solution can be proposed. Then
we create an outline of the solution, often on paper using human language; this
is pseudocode, and differs in style from person to person. This is translated into
computer language and then typed into computer form using a keyboard. The
resulting text file is called a script, source code, or more commonly just the com-
puter program.

A program called a compiler takes this program and converts it into a form
that can be executed on the computer. Basically, all programs are converted into
a set of numbers called machine code which the computer can execute.

We are going to learn a language called Python. It was developed as a gener-
al-purpose programming language and is a good language for teaching because

Chapter 1 - Computers and Programming [l 37

it makes a lot of things easy. Quite a few applications are built using Python, such
as the games Eve Online and Civilization 1V, BitTorrent, and Dropbox. It is a bit
like a lot of other languages in use these days in terms of structure (syntax) but
has some simplifying ideas that will be discussed in later chapters.

In order to use a programming language there are some basic concepts and
structures that need to be understood at a basic level. Some of these concepts
are introduced in this chapter and the rest of the book teaches you to program
by example; in all cases, coding examples are introduced by stating a problem
to be solved. The problems to be solved in this chapter include a simple guess-
a-number game and the game of rock-paper-scissors. These problems serve as
the motivation for learning more about either the Python language itself or about
methods of solving problems. Any computer programs in this book will execute
on a computer running any major operating system once the free Python lan-
guage download has been installed.

EXECUTING PYTHON

Installing Python is not too difficult, and involves downloading the installer,
running it, and perhaps configuring a few specific details. This process can be
found in Appendix 1. Once installed, there are a few variations that can be used
with it, the simplest probably being the Python Graphical User Interface or GUL.
If you are running Python on a Windows PC, look at the Start menu for Python
and click a link named “IDLE (Python GUI),” as shown in Figure 1.1. Click on
this and the user interface will open. Click the mouse in the GUI window so that
you can start typing characters there.

Python can be run interactively in the GUI window. The characters “>>>" are
called a prompt, and indicate that Python is waiting for something to be typed at
the keyboard. Anything typed here will be presumed to be a Python program, or
at least part of one. As a demonstration, type “1” followed by pressing the Enter
key. Python responds by printing “1.” Why? When “1” was typed, it was a Py-
thon expression, something to be evaluated. The value of “1” is simply “1,” so that
was the answer Python computed.

Now type “1+1.” Python responds with “2.” Python inputs what the user/pro-
grammer types, evaluates it as a mathematical (in Python form) expression, and

38 M Python: An Introduction to Programming-Second Edition

| -

—
Notepad++ -
NVIDIA Corporation = 5
NVIDIA Demos
0B) Viewer
OpenCV
OpenNI2
Orbiter 2010 Pictures
Origin —
Oxelon Media Converter M File Edit Shell Debug Options Windows Help
Parachute Game Python 3.4.2 (v3.4.2:ab2c02329432, Oct 6 2014, 22:15:05) [MSC v.1600 32 bit (In -
Parhelia Tools Compoter tel)] on win32
Type "copyright”,
Control Panel >>>

"credits” or "license()" for more information.

Participatory Culture Foundation
Pazera Free Audio Extractor
PDF Image Extraction Wizard
PDF Reverser
PDFCreator
Prism Video Converter

+ Python2.7 Help and Support
Python 3.4 =

Devices and Printers |

Defauit Programs

. IDLE (Python 3.4 GUI - 32 bit)
. Python 34 (command line - 32 bit)
Python 34 Docs Server (pydoc - 32t
[Python 3.4 Manuals
) Uninstall Python 3.4 (32 bit)

Back

Figure 1.1
Running the Python GUI.

prints the answer. This is not really programming yet, because a basic two-dollar
calculator can do this, but it is certainly a start.

IDLE is good for many things, but eventually a more sophisticated environ-
ment is needed, one that can indent automatically, detect some kinds of errors,
and allow programs to be run and debugged and saved as projects. This kind
of system is called an integrated development environment, or IDE. There are
many of these available for Python, some that are expensive and some that are
freely downloadable. The code in this book has been compiled and tested using
PyCharm, but most IDEs are acceptable. It is largely a matter of personal prefer-
ence. Basic PyCharm is free, but there is a more advanced version that costs a
small amount of money.

An advantage of an IDE is that it is easy to type in a whole program, run
it, find the errors, fix them, and run it again. This process is repeated until the
program works as desired. Multiple parts of a large program can be saved as
separate files and collected together by the IDE, and they can be worked on in-
dividually and tested together. A good IDE uses color to indicate syntax features
that Python understands and can show some kinds of error while the code is
being entered.

Chapter 1 - Computers and Programming [l 39

A program, just like any sentence or paragraph in English, consists of sym-
bols, and order matters. Some symbols are special characters with a defined
meaning. For example, “+” usually means add, and “-” usually means subtract.
Some symbols are words. Words defined by the language, like if, while, and true,
cannot also be also defined by a programmer — they mean what the language says
they mean, and are called reserved words. Some names have a definition given
by the system but can be reused by a programmer as needed. These are called
predefined names or system variables. However, some words can be defined by
the programmer, and are the names for things the programmer wants to use in the
program: variables and functions are examples.

GUESS A NUMBER

Games that involve guessing are common, and are sometimes used to resolve
minor conflicts, such as who gets the next piece of cake or who gets the first kick
at a football. It’s also sometimes a way to occupy time, and can simply be fun.
How can we write a program to have the user guess a number that the program
has chosen?

There are many variations on this simple game. In one version, the number
is to be guessed precisely. One person (the chooser) selects a number, an integer,
in a specified range. “Pick a number between one and ten” is a typical expression
of this kind of problem. The other person, the guesser, must choose a number in
that range. If the guesser selects the correct number, then the guesser wins. This
is a boring game and is biased in favor of the chooser.

A more interesting variation is to start with one guess and have the chooser
then say whether the target number is greater than or less than the guessed num-
ber. The guesser then guesses again, and the process continues until the number
is guessed correctly. The roles of guesser and chooser can now switch and the
game starts again. The best guesser is the one who uses the fewest guesses.

A third alternative is to have multiple guessers. All guessers make their
selection and the one who has chosen a number nearest the correct number is
the winner. This is the best game for solving disputes, because it involves one
guess from each person. Ties are possible, in which case the game can be played
again.

40 M Python: An Introduction to Programming-Second Edition

ROCK-PAPER-SCISSORS

This game is used to settle disputes and make random decisions. There are
actually competitions where money is at stake. A televised contest in Las Vegas
had a prize of $50,000.

In this game, each of two players selects one item from the list (rock, paper,
or scissors) in secret, and then both display their choice simultaneously. If both
players selected the same item, then they try again. Otherwise, rock beats scis-
sors, scissors beat paper, and paper beats rock. This contest can be repeated for a
“best out of N”” competition.

Both of these games form the first problem set, and serve as the motivation
for learning the elements of the Python language.

SOLVING THE GUESS A NUMBER PROBLEM

The simple version of the guessing program has two versions depending
on who is guessing. The computer should pick the number and the human user
should guess, because the other way around involves some complex program-
ming. Here’s what has to happen for this game to be successful:

1. The computer selects a number.

2. The computer asks the player to guess.

3. The player types a number on the keyboard and the computer reads it in.

4. The computer compares the input number against the one that it selected
and if the two agree, then the player wins. Otherwise, the computer wins.

The Python features needed to do this include printing a message, reading
in a number, having a place to store a number (a variable), having a way to select
a number, and having a way to compare the two numbers and act differently de-
pending on the result.

The second version requires the above, plus a way to repeat the process in
cases when the guess is wrong and until it is correct. In this case the method
becomes:

1. The computer selects a number.

2. The computer asks the player to guess.

3. The player types a number on the keyboard and the computer reads it in.

6.
7.

Chapter 1 - Computers and Programming Il 41

The computer compares the input number against the one that it selected
and if the two agree, then the player has guessed correctly. Exit to Step 7.

The computer determines whether the guess is higher or lower than the
actual number and prints an appropriate message.

Repeat from Step 2.

Game over.

The repetition mechanism is the only new aspect to this solution, but is an
essential component of Python and every other programming language.

SOLVING THE ROCK-PAPER-
SCISSORS PROBLEM

The solution to this problem has no new requirements, but re-enforces the
language features of the previous solutions. One solution to this problem is as

follows:

1.

00 NN kW

10.

12.
13.
14.
15.
16.

Select a random choice form the three items rock, paper, or scissors.
Save this choice in a variable named choice.

Ask the player for their choice. Use an integer value, where 1 = rock,
2 = paper, and 3 = scissors.
Read the player’s selection into a variable named player.
If player is equal to choice:
Print the message “Tie. We'll try again.”
Repeat from Step 1
If player is equal to rock
If choice is equal to scissors go to Step 17
Else go to Step 18
If player is equal to paper
If choice is equal to scissors go to Step 17
Else go to step 18
If player is equal to scissors
If choice is equal to rock go to Step 17
Else go to Step 18

Print error message and terminate.

42 W Python: An Introduction to Programming-Second Edition

17. Print “Computer wins” and terminate
18. Print “You win” and terminate

For each player selection, one of the alternate items will beat it and one will
lose to it. Each choice is checked and the win/lose decision is made based on the
known outcomes.

The solutions to both problems require similar language elements: a way to
store a value (a variable), a way to execute specific parts of the program depend-
ing on the value of a variable or expression (an if statement), a way to read a value
from the keyboard, a way to print a message on the screen, and a way to execute
code repeatedly (a loop).

Variables and Values—Experimenting with
the Graphical User Interface

A variable is a name the programmer defines to represent a value, usually
a number or a text string. It represents the place where the computer stores that
value; it is a symbol in text form, representing a value. Everything that a com-
puter does is ultimately done with numbers, so the location of any thing is a num-
ber that represents the place in computer memory where that thing is stored. It’s
like offices in building. Each office has a number (its address) and usually has a
name, too (the occupant or business found there). Additionally, the office has con-
tents, and those contents are often described by the name given. Figure 1.2 shows
a collection of offices in a building. In this metaphor, the office number corre-
sponds to the address and the name (variable name), being more human friendly,
is how it is often referred to by a person (programmer). In all cases, though, it is
the contents of the office (location) that are important. The number and name are
ways to access it. So, someone might say “Bring me the Python manual from the
Server Room” or “Bring me the Python manual from 607" and both would mean
the same thing. The Python manual is the content of location 607. Now, some-
one could say “Put this Python manual in the Digital Media Lab”, which would
change the content of location 611. In actual Python, the act of retrieving a value
from a location does not change the content of that location, but instead makes a
copy, but the basic metaphor is sound.

Not all strings or characters can be variable names. A variable cannot begin
with a digit, for example, or with most non-alphabetic characters like “&” or *“!,”
although in some cases beginning with ““ * is acceptable. A variable name can

Chapter 1 - Computers and Programming [l 43

contain upper- or lowercase letters, digits, and “ . Uppercase and lowercase let-
ters are not considered the same, so the variables Hello and hello are different.

M 605

IAML
Small Lab

Figure 1.2
Variables are names that represent addresses, like offices in a building. The name is used in
programming to represent the value found inside. These door signs are from the author’s workplace.

A variable can change values but, unlike a real office, a simple variable can
hold only one value at a time. The name chosen does not have to be significant.
Programs often have variables named i or x. However, it is a good idea to select
names that represent the kind of value that the variable contains so as to commu-
nicate that meaning to another person. For example, the value 3.1415926 should
be stored in a variable named pi, because that’s the name everyone else gives to
this value.

In the GUI, type pi = 3.1415926. Python responds with a prompt, and that it
has no value to print. If you now type pi, the response is 3.1415926; the variable
named pi that was just created now has a value.

In the syntax of Python, the name pi is a variable, the number 3.1415926 is
a constant, but is also an expression, and the symbol = means assign fo. In the
precise domain of computer language, pi = 3.1415926 is an assignment statement
and gives the variable named pi the specified value.

Continuing with this example, define a new variable named radius to be 10.0
using an assignment statement radius = 10.0. If you type radius and press the
“Enter” key, Python responds with 10.0. Finally, we know that the circumference
of a circle is 2ar in math terms, or 2 times pi times the radius in English. Type
2*pi*radius into the Python GUI, and it responds with 62.831852, which is the
correct answer. Now type circumference = 2*pi*radius and Python assigns the
value of the computation to the variable circumference.

Python defines a variable when it is given a value for the first time. The type
of the variable is defined at that moment too; that is, if a number is assigned to a

44 W Python: An Introduction to Programming-Second Edition

name, then that name is expected to represent a number from then on. If a string
is assigned to a name, then that name is expected to be a string from then on.
Trying to use a variable before it has been given a value and a type is an error.
Attempting the calculation

area = side*side

is not allowed unless there is a variable named side already defined at this
point. The following is acceptable because it defines side first, and then in turn
is used to define area:

side = 12.0
area = side*side

The two lines above are called statements in a programming language, and
in Python, a statement usually ends at the end of the line (the “Enter” key was
pressed). This is a bit unusual in a computer language, and people who already
know Java or C++ have some difficulty with this idea at first. In other computer
languages, statements are separated by semicolons, not by the end of the line. In
fact, in most languages the indenting of lines in the program does not have any
meaning except to the programmer. In Python, that’s not the case either, as will
be seen shortly.

The expressions we use in assignments can be pretty complicated, but are
really only things that we learned in high school (add, subtract, multiply, and
divide). Multiplication and division are performed before addition and subtrac-
tion, which is called a precedence rule, so 3*2+1 is 7, not 9; otherwise evaluation
is done left to right, so 6/3*2 is 4 (do the division first) as opposed to 1 (if the
multiplication was done first). These are rules that should be familiar because it
is how people are taught to do arithmetic. The symbol ** means exponent or fo
the power of, so 2**3 is 23 which is 8, and this operator has a higher precedence
(i.e., is done before) than the others. Parentheses can be used to specify the order
of things. So, for example, (2+3)**2 is 25, because the expression within the pa-
rentheses is done first, then the exponent.

Exchanging Information with the Computer

When using most programming languages, it is necessary to carefully de-
sign the communication with the computer program. This goes two ways: the
program informs the user of information, such as the circumference of a circle

Chapter 1 - Computers and Programming [l 45

given a specific radius, and the user may want to tell the program certain things,
like the value of the radius with which to computer the circumference. We com-
municate with a program using fext, characters typed into a keyboard. When a
computer is presenting results, that text is often in the form of human language.
“The circumference is 62.831852” could be such a message. The sentence is ac-
tually composed by a programmer and has a number or collection of numbers
embedded within it.

Python allows a programmer to send a message to the screen, and hence to
the user, using a print directive. This is the word print followed by a character
string, which is often a set of characters in quotes. An example is as follows:

print ("The answer is yes.")

The parentheses are used to enclose everything that is to be printed; such a
statement can print many strings if they are separated by commas. Numbers will
be converted into strings for printing. So the following is correct:

print ("The circumference is ", 62.831852)

File Edit Shell Debug Options Windows Help

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 6 2014, 22:15:05) [MSC v.1600 32 bit (In |
tel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>> 1

>>> 141

2

>>> pi = 3.1415926
>>> pi

3.1415926

>>> radius = 10.0
>>> 2*pi*radius
62.831852

>>> circumference = 2*pi*radius
>>> circumference
62.831852

>>> 2%+3

S>> (243) **2
25

2
>>> |

Ln: 20/ Col: 4

Figure 1.3
The Python GUI window with an example.

If a variable appears in the list following print then the value of that variable
will be printed, not the name of the variable. Therefore, the following is also cor-
rect:

print ("The circumference is", circumference)

46 M Python: An Introduction to Programming-Second Edition

Example 1: Draw a Circle Using Characters

Let’s print a circle with a constant predefined radius. This can be done with
a few print statements. The planning of the graphic itself (the circle) can be done
using graph paper. Assuming that each character uses the same amount of space,
a circle can be approximated using some skillfully placed * characters. Then, we
print each row of characters using a print statement. A sample solution is shown
in Figure 1.4.

prlnt " KAk kkkkkhk "

" * % % "

print (" * Kk ")
print (" * Kk Kok Kok kK "
print (" KFERFERRKKA XK "
Print (" KREFEEFAAKA KK AR "
print (" KEFERERRAKXKAKK "
Print (" KRERFRRKA XK A KKK K "
print (" KFERFERKA KA XK ")

()

()

print

Figure 1.4
Drawing a circle using print statements.

Strings, Integers, and Real Numbers

Computer programs deal mainly with numbers. Integers, or whole numbers,
and real number (reals) or floating-point numbers, which represent fractions, are
represented differently and arithmetic works differently on the two types of num-
bers. A Python variable can hold either type, but if a variable contains an integer,
then it is treated as an integer, and if it’s holding a floating-point number, then it
is treated as one of those. What’s the difference? First, there’s a difference in how
they are printed out. If we make the assignment var = 1 and then print the value of
var, it prints simply as 1. If we make the assignment var = 1.0 and then print var,
it prints as 1.0. In both cases var is a real or floating-point number and is treated
as such. Numeric constants are considered real numbers. However, a variable can
be first one thing and then another. It will be the last thing it was assigned.

Arithmetic differs between integers and reals, but the only time that differ-
ence is really apparent is when doing division. Integers are always whole, non-
fractional numbers. If we divide 3 by 2, both 3 and 2 are integers and so the

Chapter 1 - Computers and Programming Wl 47

division must result in an integer: the result is 1. This is because there is exactly
asingle 2 in 3, or if you like, 2 goes into 3 just once, with a remainder of 1. There
is a specific operator for doing integer division: /.. So, 3//2 is equal to 1. The
remainder part can’t be handled and is discarded, but can be found separately
using the % operator. For example, 8//5 is 1, and 8%?5 is the remainder, 3. This
explanation is an approximation to the truth, and one that can be cleared up later,
but works perfectly well for positive numbers.

Of course, fractions work fine for real numbers, and are printed as deci-
mal fractions: 8.0/5.0 is 1.6, for example. What happens if we mix real numbers
and integers? In those cases, numbers get converted into real numbers, but now
things get more complicated because order can matter a great deal. The expres-
sion 7//2*%2.0 does the division 7//2 first, which is 3, and then multiplies that by
2.0, yielding the result 6.0; the result of 8/3*3.0 is 5.333. Mixing integers and real
numbers is not a good idea, but if done, then the expressions should use parenthe-
ses to specify how the expression should be evaluated.

A real number can be used in place of an integer in most places, but the
result is a real number. Thus, 2.0 * 3 = 6.0, not 6, and 6.0//2 is 3.0, not 3. There
are some exceptions. To convert an integer to a real number, there is a special
operation named float: float(3) yields 3.0. Of course, it’s possible to simply
multiply by 1.0, and the result is a floating value, too. Converting float values
to integers is more complicated because of the fraction issue: what happens to
the digits to the right of the decimal? The operation int takes a floating-point
value and throws away the fraction. The value of int (3.5) is 3, as a result. We
can round this to the nearest integer, and the operation round (3.5) does that,
resulting in 4.

XX Number Bases

In elementary school, the idea of positional number systems is taught. The
number 216 is a way to write the value of 6 + 1*¥10 + 2*100. Not all civilizations
use such a scheme; Roman numerals are not positional, for example. Still, most
people are comfortable with the idea. What people are not as comfortable with is
changing the number base away from 10. In Chapter 0, the binary system, or base
2, was discussed, but any base that is a power of 2 is of some interest, especially
base 8 and base 16.

48 W Python: An Introduction to Programming-Second Edition

Humans use a base 10 scheme (probably because we have 10 fingers). We have
a symbol for each of the 10 digits, 0 through 9, and each digit position to the left
of the first digit is multiplied by the next power of 10. The number 216 is 2¥10* +
1*10" + 6*10°. The base is 10, and each digit represents a power of the base multi-
plied by a digit. What if the base is 8? In that case, 216 is really 2*8* +1*8' + 6. If
the arithmetic is carried out, this number is 128+8+6 = 142.

If multiple number bases are used, it is common to give the base as a sub-
script. The number 216 in base 8 is written as 216,. The default would be base 10.
In base 8§, there are only 8 digits, 0 through 7. The digits 8 and 9 cannot appear. In
bases larger than 10, more symbols are needed. A common base used on comput-
ers is 16, or hexadecimal (hex for short). In a hex number, 16 digits are needed, so
the regular ones are used and then “A” represents 10, “B” is 11, “C” is 12, “D” is
13, “E” is 14, and “F” is 15. The hex number 12, is 1*16 + 2, or 18 . The number
1A is 1%16 + 10 = 26,

In Python, numbers are given in decimal (base 10) by default. However, if a
number constant begins with “00” (zero followed by the letter “0”), Python as-
sumes it is base 8 (octal). The number 0021, for example, is 21, = 17, . A number
that begins with “0x” is hexadecimal. 0x21 is 21 , = 33, . This applies only to
integers.

Base 2 is the most important number base because it underlies all of the num-
bers on a computer. All numbers on a modern digital computer are represented
in base 2, or binary, in their internal representation. A binary number has only
two digits, 0 and 1, and each represents a power of 2. Thus, 1101, is 1¥2° + 1¥2* +
0*%2+ 1 =8 +4 + 1= 13,,. In Python, a binary number begins with “0b,” so the
number 0b10101 represents 21 .

These number bases are important for many reasons, but base 2 is fundamen-
tal, and bases 8 and 16 are important because they are powers of 2 and so convert
very easily to binary but have fewer digits. One example of the use of hex is for
colors. In Python, they can represent a color, and on Web pages they are certainly
used that way. The number OxFF000O is the color red, for example, if used on a
Web page.

Chapter 1 - Computers and Programming [l 49

XX Example 2: Compute the Circumference of Any Circle

When humans input information into a computer program, the text tends
to be in the form of numbers. The Python code that was written to calculate the
radius of a circle only did the calculation for a single radius: 10. That’s not as use-
ful as a program that computes the circumference of any circle, and that would
mean allowing the user to tell the program what radius to use. This should be easy
to do, because it is something that is needed frequently. In the case of sending
a number into a program in Python, the word input can used within a program.
For example,

radius = input ()

accepts a number from the keyboard, typed by the user, and returns it as a string
of characters. This makes sense because the user typed it as a string of characters,
but it can’t be used in a calculation in this form. To convert it into the internal
form of a number, we must specifically ask for this to be done:

radius = input ()
radius = float (radius)

reads a string into radius, then converts it into a floating point (real) number and
assigns it to the variable radius again. This can be done all in one statement:

radius = float (input())

Now the variable radius can be used to calculate a circumference. If the value
of radius is an integer, the code is as follows:

radius = int (input())

If the conversion to a number is not done then Python will give an error mes-
sage when the calculation is performed, like:

Traceback (most recent call last):
File "<pyshell#13>", line 1, in <module>
circumference = 2*pi*radius
TypeError: can't multiply sequence by non-int of
type 'float'

The line of code at which the error occurs is given and the term TypeError is
descriptive. This error means that something that can’t be multiplied (a string) was
used in an expression involving multiplication. That thing is the variable radius
in this instance because it was and text string and was not converted to a number.

50 M Python: An Introduction to Programming-Second Edition

Note that int(input()) can present problems when the input string is not an
integer. If it is a floating-point number, this results in an error. The expression int
(“3.14159”) is interpreted as an attempt convert pi into an integer, and so has the
value 3 (which is erroneous). The function int was passed a string and the string
contained a float, not an integer. This is something of a quirk of Python. It is bet-
ter to convert input numbers into floats.

Guess a Number Again

The simple version of the guessing program can now nearly be written in Py-
thon. Examining the method of solution, here’s what can be coded so far; versions
depend on who is guessing. The computer should pick the number and the human
user should guess, because the other way around can involve some complex pro-
gramming. In that case, here’s what has to happen:

1. The computer selects a number.
choice =7
2. The computer asks the player to guess.
print ("Please guess a number between 1 and 10: ")
3. The player types a number on the keyboard and the computer reads it in.
playerchoice = input ()
4. The computer compares the input number against the one that it selected
and if the two agree, then the player wins. Otherwise the computer wins.

It is the final step that is still not possible with what is known. It is necessary
in this program, as it is in most computer programs, to make a decision and to
execute certain code (i.e., do specific things) conditionally based on the outcome
of that decision. People do that sort of thing all of the time in real life. Examples
include the following:

“If the light is red, then stop; otherwise continue through the intersection.”

“If all tellers are busy when you arrive at the bank, then stand in line and wait
for the next one to become available.”

“If you need bread or milk, then stop at the grocery store on the way home.”

“If it rains, the picnic will be cancelled.”

Chapter 1 - Computers and Programming [l 51

Notice that all of these examples use the word “if.”” This word indicates a
standard conditional sentence in English. The condition in the first case is the
phrase “if the light is red” (called in English the protasis or antecedent) and the
consequence to that is the phrase “then stop” (the apodosis or consequent). Ter-
minology aside, the intent is clear to an English speaker: on the condition that
or in the event that the light is red, then the necessary action is that the driver is
to stop their car. The action is conditional on the antecedent, which in Python is
called an expression or more precisely a logical expression, which has the value
True or False.

The structure or syntax of this sort of thing in Python is as follows:

if the light is red:
stop

or more exactly,

if light == red:
execute whatever code makes the car stop

This is called an if statement.

IF STATEMENTS

An if statement begins with the word if, followed by an expression that evalu-
ates to True or False, followed by a colon (:), then a series of statements that are
executed if the expression is true. The names True and False are constants having
the obvious meaning, and a variable that can take on these values is a logical or
Boolean (named after the man who invented two state or logical algebra) variable.
The expression is the only tricky part. It can be a constant like True, or a variable
that has a True or False value, or a relational expression (one that compares two
things) or a logical combination of any of these — anything that has a result that
is true or false.

if True: # Constant

if flag: # Logical variable

if a < b: # relational expression
if a<b and c>d: # logical combination

A logical expression can be any arithmetic expressions being compared using
any of the following operators:

52 M Python: An Introduction to Programming-Second Edition

< Less than
> Qreater than

Less than or equal to

VoA
I

Greater than or equal to
== Equal to
= Not equal to

Logical combinations can be:

and EG: a==b and b==
or EG: a==b or a==
not EG: not(a==Db) # same as |=

The syntax is simple and yet allows a huge number of combinations. For
example,

if p == g and not p ==z and not z == p:

if pi**2 < 12:

if (a**b)**(c-d)/3 <= z**3:

The consequent, or the actions to be taken if the logical expression is true,
follows the colon on the following lines. The next statement is indented more than
the if, and all statements that follow immediately that have the same indentation
are a part of the consequent and are executed if the condition is true, otherwise
none of them are. As an example, consider the following:

if a < b:
a=a+ 1
b=Db -1
c=a->b
H L]
if a<b ,
The key word, known by An expression that The colon indicates the end of
Python, that indicates this evaluates to True or the first part of the statement.
is an IF statement. False Think of it as meaning THEN, as
in IF expression THEN
Figure 1.5

Syntax of an IF statement.

[T}

In this case, the two statements following the *“:” are indented by 4 more spac-
es than is the if. This tells Python that they are both a part of the if statement, and
that if the value of a is smaller than the value of b, then both of those statements

Chapter 1 - Computers and Programming [l 53

will be executed. Python calls such a group of statements a suite. The assignment
to the variable ¢ is indented to the same level as the if, so it will be executed in
any case and is not conditional.

The use of indentation to connect statements into groups is unusual in pro-
gramming languages. Most languages in use ignore spaces and line breaks alto-
gether, and use a statement separator, such as a semicolon, to demark statements.
So, in the Java language, the above code is as follows:

if (a<b) {
a=a+ 1;
b=Db-1;

}

c =a - b;

The braces { ... } enclose the suite, which would probably be called a block in
Java or C++. Notice that this code is also indented, but in Java this means nothing
to the computer. Indentation is used for clarity, so that someone reading the code
later can see more clearly what is happening.

Semicolons are used in Python too. If it is desired to place more than one
statement on a single line, then semicolons can be used to separate them. The
Python if statement under consideration here could be written as follows:

if a < b: a=a + 1; b =Db -1
c=a->b

This is harder to comprehend quickly and is therefore less desirable. There
are too many symbols all grouped together. A program that is easy to read is also
easier to modify and maintain. Code is written for computers to execute, but is
also for humans to read.

There are some special assignment operators that can be used for increment-
ing and decrementing variables. In the above code, the statement a =a + 1 could
be written as a += 1, and b = b — 1 can be written as b -= 1. There is no real
advantage to doing this, but other languages permit it, so Python adopted it too.
There is another syntax that can be used to simplify certain code in languages
like Java and C, and that is the increment operator “++" and the decrement opera-
tor “—”. Python does not have these. However, an effect of the way that Python
deals with variables and expressions is that ++x is legal; so is ++++x. The value
is simply x. The expression x++ is not correct.

54 M Python: An Introduction to Programming-Second Edition

Else

An if statement is a two-way or binary decision. If the expression is true, then
the indicated statements are executed. If it is not true, then it is possible to execute
a distinct set of statements. This is needed for the pick a number program. In one
case, the computer wins, and in the other, the human wins. An else clause is what
will allow this.

The else is not really a statement on its own, because it has to be preceded by
an if, so it’s part of the if statement. It marks the part of the statement that is ex-
ecuted only when the condition in the if statement is false. It consists of the word
else followed by a colon, followed by a suite (sequence of indented statements). A
trivial example is as follows:

if True:

print ("The condition was true")
else:

print ("the condition was false")

The else as a clause is not required to accomplish any specific programming
goals, and can be implemented using another if. The code
if a < b:
print ("a < b")
else:
print ("a >= b")

could also be written as

if a < b:
print ("a < b")
if not (a<b):
print ("a >= b")

The else is expressive, efficient, and syntactically convenient. It is expressive
because it represents a way that humans actually communicate. The word else
means pretty much the same thing in Python as it does in English. It is efficient
because it avoids evaluating the same expression twice, which costs something
in terms of execution speed. It is syntactically convenient because it expresses an
important element of the language in fewer symbols than when two ifs are used.

The final Python code for the simple solution of the guess a number program
can now be written.

Chapter 1 - Computers and Programming [l 55

choice =7
print ("Please guess a number between 1 and 10: ")
playerchoice = int (input())

if choice == playerchoice:
print ("You win!")

else:
print ("Sorry, you lose.")

DOCUMENTATION

There are some problems with this program, but is does work. A large prob-
lem is that it always choses the same number every time it is executed (that num-
ber is 7). We will fix this issue later on. A less critical problem is that the program
is undocumented; that is, there are no instructions to a player concerning how to
use the program, and there is no description of how the program works that an-
other programmer might use if modifying this code. This can be fixed by provid-
ing internal and external documentation.

External documentation is like a manual for the user. Most programs have
such a thing, and even though this program is quite simple, some degree of docu-
mentation can be provided. In fact, it is brief enough that it could be printed
whenever the program starts to run.

print ("Pick-a-number is a simple guessing game. The")
print ("computer will select a number between 1 and 10").
print ("and you are expected to guess what it is.")

(
(
(
print ("When the program displays 'Please guess")
(
(
(
(

print ("a number between 1 and 10: ' you type in")

print ("your guess followed by the <enter> key. Your ")
print ("guess must be an integer in the range 1 to 10.")
print ("The computer will tell you if you win or lose.)

For many more sophisticated programs, such as PowerPoint, the documenta-
tion is many pages and forms a small book. It is distributed as a booklet along
with the software or provided as a website.

Internal documentation is intended for programmers who have access to the
source code of the program. It can take the form of written documents, too, but is
commonly a set of comments that appears along with the code itself. High-level
languages like Python allow the programmer to add human language text to the

56 M Python: An Introduction to Programming-Second Edition

code that will be completely ignored by the computer, but that can be read by
anyone looking at the code. These comments describe the action of the program,
the meaning of the variables, details of computational methods used, and many
other items of interest.

A comment begins with the character # and ends at the end of the line.

There are no rules for what can appear typed in a comment, but there are
some guidelines developed through years of programming practice. A comment
should not simply repeat what appears in the code, a comment explain an aspect
of the program that might not be clear to a person looking at it, and it should be
written in plain language. As an example, here is the guess-a-number program
with comments included:

This program selects a number between 1 and

10 and allows a user (player) to guess what

it is.

choice =7 # The number selected by the computer

Prompt the user, indicating what is expected
print ("Please guess a number between 1 and 10: ")

Read the player's input from the keyboard
playerchoice = int(input()) # convert from string

Print the outcome of the game.

if choice == playerchoice: # Is the player's guess
print ("You win!"™) # correct? Player wins!

else: # Otherwise the computer wins
print ("Sorry, you lose.")

All programs should be documented as they are being written because rela-
tively few programs are written all in one sitting. The comments in the code
serve as reminders to the programmer about what the variables represent and why
particular code segments read the way they do. It also indicates the current state
of thinking about the design of the code. When the program is looked at again at
the beginning of a new working (or school) day, the comments can be essential
in resuming the work.

There is also something called a docstring that seems to do the same things
as a comment, but covers multiple lines and is not really a comment. A docstring
begins and ends with a triple quote:

Chapter 1 - Computers and Programming [l 57

print ("This code will execute")

wn

print ("This code is within a docstring™)

wn

A docstring is actually a string, not a comment, but behaves like a comment
and can be used in that way. It can be especially useful for temporarily comment-
ing out small sections of code while trying to find out where errors are. There
are also programs that collect the docstrings into a separate document that can be
used as a description of the program. Their intended use is to allow the program-
mer to explain the purpose of certain sections of code.

ROCK-PAPER-SCISSORS AGAIN

It is time to look at the rock-paper-scissors problem and see if it can be coded.
It takes more steps, but it is no more complicated than the guess-a-number pro-
gram. The code is the same.

1.

Select a choice from the three items rock, paper, or scissors. Save this
choice in a variable named choice.

A representation for the three items was when the solution was first de-
scribed, where each choice was an integer. However, input reads strings
so it should be possible to avoid the conversion to numbers and use the
strings directly.

choice = "paper" # Computer chooses paper.

Ask the player for their choice.

Print as prompt message.

print ("Rock-paper-scissors: type in your choice: ")
Read the player’s selection into a variable named player.

Use input as we did before, but this time read a string and keep it that
way. The player must type one of “rock,” “paper,” or “scissors,” or else
an error is reported.

player = input ()
If player is equal to choice:
Print the message “Tie. We’ll try again.”

Strings can be compared against each other for equality, so this step is
quite simple:
if player == choice:

print ("Game is a tie. Please try again.")

58 M Python: An Introduction to Programming-Second Edition

5. [If player is equal to rock
If choice is equal to scissors, go to Step 17.

7. There is no “go to Step 17,” but that step simply says that the player
wins. Just print that message here.

if player == "rock":
if choice == "scissors":
print ("Congratulations. You win.")
else:
print ("Sorry - computer wins.")

8. If player is equal to paper
If choice is equal to scissors, go to Step 17.

if player == "paper":
if choice == "scissors":
print ("Sorry - computer wins.")
else:
print ("Congratulations. You win.")

10. If player is equal to scissors
11. If choice is equal to rock, go to Step 17.

if player == "scissors":
if choice == "rock":
print ("Sorry - computer wins.")
else:
print ("Congratulations. You win.")

This code illustrates a new concept, if not a new language feature. It has if
statements that are nested one within the other. Again, it’s not necessary to do this
because non-nested statements can implement the same decision. For example,

Nested IFs Non-nested IFs
if player == "scissors": if player == "scissors and
choice == "rock"
if choice == "rock": print ("Computer wins")
print ("Computer wins.")if player == "scissors" and
choice != "rock"
else: print ("You win")

print ("You win.")

Chapter 1 - Computers and Programming [l 59

Nested if statements seem more express ive and communicate the flow of the
program better to a human programmer than does the non-nested code.

There is another Python language element that can be used here. Looking at
the code, there is no indication when the user makes an error. For example, if the
user enters “ROCK?” (i.e., all in uppercase letters), then it will not match any of
the choices and the program will not indicate this. In fact, it won’t print anything
at all. What is really wanted is a sequence of if-else-if-else statements such as

if player == "scissors":

if choice == "rock":
else:
if player == "rock":
if choice == paper:
else:
if player == "scissors":
and so on ..

Python has a special feature that implements this nesting of if and else: the
elif. The elif construct combines an else and an if, and this reduces the amount
of indenting that has to be done. The following code snippets do the same thing:

if a<b: if a<b:
print ("a<b") print ("a<b")

elif a>b: else:
print ("a>b") if (a>b):

else: print ("a>b")
print ("a=b") else:

print ("a=b")

If too many nested if-else statements exist, then the indenting becomes too
challenging, whereas the elif allows the same indent level and has the same
meaning. In some programs, this is essential, and in general, it is easy to read.
Using the elif statement the program for the rock-paper-scissors problem looks
like this:

choice = "paper" # Computer chooses paper.
print ("Rock-paper-scissors: type in your choice: ")
player = input ()
if player == choice:
print ("Game is a tie. Please try again.")
if player == "rock":

if choice == "scissors":

60 M Python: An Introduction to Programming-Second Edition

print ("Congratulations. You win.")
else:
print ("Sorry - computer wins.")
elif player == "paper":
if choice == "scissors":
print ("Sorry - computer wins.")
else:
print ("Congratulations. You win.")
elif player == "scissors":
if choice == "rock":
print ("Sorry - computer wins.")
else:
print ("Congratulations. You win.")
else:

print ("Error: Select one of: rock, paper, scissors")

Now all of the possible outcomes are handled by the code.

TYPES ARE DYNAMIC (ADVANCED)

To programmers who only program using Python, it would seem odd that a
particular variable could have only one type and that it would have to be initially
defined to have that type, but it is true. In Python, the type associated with a vari-
able can change. For example, consider the statements:

x = 10 # X is an integer
x = x*0.1 # X is floating point now
x = (x*10 == 10) # X 1is Boolean

Some find this perfectly logical, and others find it confusing. As the variable
is used according to its current type, all will be well.

Even simple Python types can be complex in terms of their implementation.
A programmer rarely needs to know about the underlying details of types like
integers. In many programming languages, an integer is simply a one- or two-
word number, and the languages build operations like + from the instruction set
of the computer. If, for example, a one-word integer A is added to another one B,
it can be done using a single computer instruction like ADD A, B. This is very
fast at execution time.

Python was designed to be convenient for the programmer, not fast. An in-
teger is actually a complex object that has attributes and operations. This will

Chapter 1 - Computers and Programming [l 61

become clearer as more Python examples are written and understood, but as a
simple case, think about the way that C++ represents an integer. It is a 32-bit (4
byte) memory location, which is a fixed size space in memory. The largest num-
ber that can be stored there is 2°2-1. Is that true in Python?

Here’s a program that will answer that question, although it uses more ad-
vanced features:

for i in range (0,65):

print (i, 2**i)

Even an especially long integer is less than 65 bits. This program runs suc-
cessfully and quickly. Integers in Python have an arbitrarily large size. Calculat-
ing 2% * 2% is possible and results in 340282366920938463463374607431768211
456. This is very handy indeed from a programmer’s perspective.

The type of a variable can be determined by the programmer as the program
executes. The function type () returns the type of its parameter as a string, and it
can be printed or tested. So, the code

z =1
print (type(z))
z =1.0

print (type(z))
will result in

<class 'int'>
<class 'float'>

If one needed to know if z was a float at a particular moment, then
if type(z)is float:

would do the trick. Type(z) does not return a string, it returns a ¢type. The print ()
function recognizes that and prints a string, just as it does for True and False. So

if type(z) == "<class 'float'>":
would be incorrect.

In future chapters, this malleability of types will be further described, and
practical methods for taking advantage of it in Python will be examined.

62 M Python: An Introduction to Programming-Second Edition

SUMMARY

A computer is a tool for rapidly and accurately manipulating numbers. It can
perform tedious repetitive tasks accurately and quickly, but must be told what
to do and follows its instructions very literally. A computer program is a set of
instructions for performing a task using a computer, and Python is one language
that can be used for this purpose. Python allows a programmer to define variables
by simply using them, and associates a type with a variable based on what it is
given. An if statement allows parts of a program to be executed when a certain
condition becomes true, and it can have an else part that is executed when the
condition is false. If statements can be nested, and sometimes the elif structure is
a good way to express a set of nested conditional code.

In this chapter, the main examples were two programs, one of which allowed
a user to guess a number, while the other was the well-known game of rock-
paper-scissors.

Chapter 1 - Computers and Programming [l 63

Exercises

In the following exercises, some of the expressions may result in an error. If so,
explain why the error occurs. The code should be Python 3.

1. Evaluate the following expressions:
a) 3*3/2
b) 3*3//2
¢) 3%3%2
d) (3*3)%2
€) 3**3/3
f) (3+2)-(2-4)
g) (3+2)/(2-4)
2. If the statements:
x = 3
y =9
z = "D 4"
have been executed, then evaluate the following expressions. If an error
occurs, state why:
x/y
x//y
X3y
y/x*2
float(x)/float(z)
(

float(x)//float(z)
int(x)//int(z)

3. Given the variable definitions presented, evaluate the following expressions
as being True or False.
x = 12
y = 14
a) x>3
b) x >=12
¢) x<y
d) x<y and y>14

64 M Python: An Introduction to Programming-Second Edition

e) x<y or y>l4
f) not (x == y)334
g) not (x<y) and not(y>14)

4. What is printed with the following statements?

a) print (int("23M))
b) if 3**¥244*%*2 == 5**);
print ("345")
elif 3**2 < 4**2:
print ("34")
else:
print ("5")
¢) if "toast" < "jam":
print ("toast")
else:
print ("jam")
d)yif "12" < "5";
print ("12")

else:
print ("5M)
ea = 12.3
b = 100
c =0
if a <b: a=a+ 1; b =D0b -1
c=c¢c-b
print (a)
print (c)
f)a = 100
b = 200
c = 300
ab = a<b

cd = (c == atb)
if ab and cd:
print ("AB and CD")
elif ab:
print ("AB")
else:
print ("Nope")

Chapter 1 - Computers and Programming [l 65

5. The United States measures temperature in Fahrenheit degrees, whereas
Canada uses Celsius. A company is developing an app to convert between the
two for people wanting to ski in Banff or Whistler. The formula to convert
from Celsius degrees C to Fahrenheit degrees F is

F = C*9/5 + 32

Write a program that will be the basis of this app: it will read a temperature
in Celsius, convert it to Fahrenheit, and print the result.

6. The numerical values of coins have been arranged so that the greedy algorithm
will result in the smallest number of coins when making change. This means
that the largest valued coin is tried first, and as many of those coins are used
as possible. Then the next smaller denomination coin is used, and so on until
the pennies are dealt out. For 84 cents in change, a half-dollar could be used
(leaving 34 cents), then a quarter (leaving 9 cents), a nickel (leaving 4 cents),
and 4 pennies. If no half-dollar coin was available, then quarters would be
used in its place: 3 quarters, followed by a nickel and four pennies. Write a
program that reads a number between 1 and 99 that is an amount of change
to be given, and prints the coin values that would be used.

a) Three floating point variables a, b, and ¢ have been read in from the
console. Write a set of if statements that prints these in descending order.

b) If the value of 1.0/7.0 is printed, there are many numbers to the right of
the decimal place. Devise a way to print only three places and write some
Python code to test the idea.

¢) Calculate an approximation to pi. There is an infinite series called the
Gregory-Leibniz series that sums to pi. The series is

[I=4/1-4/3+4/5-4/7+4/9-4/11 ...

Write a program that calculates the result of the first 15 terms of this series.
How many digits of pi are correct? Add six more terms. How many digits are
correct now?

d) Another series that can calculate pi is the Nilakantha series. It is a little
more complicated to calculate, but gets close to pi much faster than does
the Gregory-Leibniz series of Exercise 9. The Nilakantha series is

I1= 3 + 4/(2%3%4) — 4/4*5%6) + 4/(6*7*8) — 4/(8%9*10) ...

Calculate the first 15 terms of this series. How many digits of PI are correct?

66

1.

Bl Python: An Introduction to Programming-Second Edition

Notes and Other Resources

Many teaching resources for Python exist, both in print and on the Internet.
Here is the development environment used to test the code for this book,

PyCharm: https://www.jetbrains.com/pycharm/

David Beazley and Brian K. Jones, Python Cookbook, 3rd Edition: Recipes
for Mastering Python 3, http://www.onlineprogrammingbooks.com/python-
cookbook-third-edition/

. Cody Jackson, Learning to Program Using Python, http://www.
onlineprogrammingbooks.com/learning-program-using-python/

. Brad Miller, Problem Solving with Algorithms and Data Structures Using
Python, http://www.onlineprogrammingbooks.com/problem-solving-with-
algorithms-and-data-structures/

4. Harry Percival, Test-Driven Development with Python, http://www.

onlineprogrammingbooks.com/test-driven-development-with-python/

5. Lennart Regebro, Porting to Python 3: An in-depth guide, http:/www.

onlineprogrammingbooks.com/porting-to-python-3-an-in-depth-guide/

6. Zed A. Shaw, Learn Python the Hard Way. http://learnpythonthehardway.

org/book/

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

CHAPTER 2

REPETITION

The WHILE Statement e, 69
Rock—Paper—Scissors Revisitedcccoiiuuieeeiiiinin. 73
Counting LOOPS e e 78
Prime or Non-Prime 79
Loops That Are Nested. i, 84
Drawa Histogram i, 86
Loopsin General iiiiiiiei ., 89
Exceptions and Errors. 90
SUMMATY. ... 96\

In this chapter

One of the things that makes computers attractive to humans is their ability

to do tedious, repetitive tasks accurately and at high speed without getting bored.
In programming terms, these actions are referred to as loops.

Consider a factory job on an assembly line. According to Henry Ford, made

famous by his assembly line concept, it is more efficient to have each worker do
one job well and repeat it many times a day than to teach workers how to build
entire things (in his case, automobiles). Each worker does one relatively short job,
and then the piece they are working on goes to the next station, where the next

68 M Python: An Introduction to Programming-Second Edition

person does their relatively short job. One such job could be the installation of the
electronic ignition module bracket. The instructions might be like this:

1.

Acquire a bracket and place over attachment holes with the wide end
below the smaller end.

Place a two-inch bolt in the upper-left bolt hole and screw in to two
pounds of torque.

Place a four-inch bolt in the upper-right bolt hole and screw in to two
pounds of torque.

Place a two-inch bolt in the lower-left bolt hole and screw in to two
pounds of torque.

Place a ten-millimeter nut over the bolt at the lower right and tighten to
ten pounds.

Re-tighten the bolts to ten pounds in the following order: upper left, up-
per right, and lower left.

Before Step 1 above, a new work piece (an engine, probably) is placed in front
of the worker, and after Step 6, the piece is moved to the next station. From the
worker’s perspective, so long as or while there is an engine at their station that
needs a bracket, they repeat the steps. In a form that a computer might be able to
understand, this might be written as:

while there is an engine at their station that needs a bracket,

Acquire a bracket and place it over the attachment holes with the wide end
below the smaller end.

Place a two-inch bolt in the upper-left bolt hole and screw in to two pounds
of torque.

Place a four-inch bolt in the upper-right bolt hole and screw in to two pounds
of torque.

Place a two-inch bolt in the lower-left bolt hole and screw in to two pounds
of torque.

Place a ten-millimeter nut over the bolt at the lower right and tighten it to ten
pounds of torque.

Re-tighten the bolts to ten pounds of torque in the following order: upper left,
upper right, and lower left.

Chapter 2 - Repetition I 69

All of the actions that follow the while are indented to indicate that they are
a part of the activities to be repeated, just as was done in a Python if statement to
mark the things that were to be done if the condition was true. This example il-
lustrates one of the Python repetition structures quite accurately: the while state-
ment.

The key word, known by An expression that The colon indicates the end of
Python, that indicates that evaluates to True or the first part of the statement.
this is a WHILE statement. False Think of it as meaning DO as in

WHILE expression DO
Figure 2.1
Essential syntax of the WHILE statement.

THE WHILE STATEMENT

When using this repetition statement, the condition is tested at the top or be-
ginning of the loop. If, upon that initial test, the condition is true, then the body
of the loop is executed; otherwise, it is not, and the statement following the loop is
executed. This means that it is possible that the code in the loop is not executed at
all. The condition tested is the same kind of expression that is evaluated in an if
statement: one that evaluates to True or False. It could be, and often is, a compar-
ison between two numeric or string values, as it is in the example of Figure 2.1.

When the code in the body of the while statement has been executed, then the
condition is tested again. If it is still true, then the body of the loop is executed
again, otherwise the loop is exited and the statement following the loop is ex-
ecuted. There is an implication in this description that the body of the loop must
change something that is used in the evaluation of the loop condition, otherwise
the condition will always be the same and the loop will never terminate. Here is
an example of a loop that is entered and terminates:

a =20

b =0

while a < 10:

a=a+1
print (a)

The condition a<10 is true at the outset because a has the value 0, so the code
in the loop is executed. The lone statement in this loop increments a, so that after

70 B Python: An Introduction to Programming-Second Edition

the first time the loop is executed the value of a is 1. Now the condition is tested
and, again, a<10, so the loop executes again. In the final iteration of the loop, the
value of a starts out as 9, is incremented, and becomes 10. When the condition is
tested it fails, because a is no longer less than 10 (it is equal) and so the loop ends.
The statement following the loop is print (a) and the value printed is 10. This
loop explicitly modifies one of the variables in the loop condition, and it is easy
to see that the loop will end and what the value of a will be at that time.

Here is an example of a loop that is entered and does not terminate:
a =20
b =20
while b < 10:
a=a+1
print (a)

In this case, the value of b is less than 10 at the outset, so the loop is entered.
The body of the loop increments a as before, but does not change b. The loop con-
dition does not depend on a, only on b, so when the loop condition is tested again,
the value of b is still 0, and the loop executes again. The value of b will always
be 0 each time it is tested, so the loop condition will always be true and the loop
will never end. The print statement will never be executed.

When this program is executed, the computer will seem to become unrespon-
sive. As long as the loop is executing the program can do nothing else, and so the
only indication that something is wrong is that nothing is happening. There are
many reasons why a program can appear to be doing nothing: when waiting for
the user to type some input, for instance, or when performing an especially dif-
ficult calculation. However, in this case, which is called an infinite loop, the only
thing to do is to terminate the program and fix the loop.

Here is an example of a loop that is not entered:
a = 100
b =20
while a < 10:
a=a+1
print (a)

The condition a<10 is false at the outset because a has the value 100, so the
code in the loop is not executed. The statement following the loop is executed
next, which is the print statement, and the value printed is 100.

Chapter 2 - Repetition H 71

These loops are examples that illustrate the three possibilities for a while
loop and do not calculate anything useful. The two examples from the previous
chapter can make practical use of a while loop, and it would be useful to look at
those again.

The Guess-A-Number Program Revisited

The program as it was written in Chapter 1 is as follows:

choice =7
print ("Please guess a number between 1 and 10: ")
playerchoice = int (input())
if choice == playerchoice:
print ("You win!")
else:
print ("Sorry, You lose.")

The game would be better if it allowed the player to guess again, perhaps un-
til a correct guess was achieved. A while loop could be used to accomplish this.
Think about what the condition might be. The loop should end when the player
guesses the answer. Another way to say this is that the loop should continue so
long as the player has not guessed the answer. The condition is one for continu-
ation of the loop, not termination, so the loop must be constructed in such a way
that it continues when the condition is true. The loop will begin with this:

while choice != playerchoice:
At the beginning of the loop, the variables choice and playerchoice must be

defined. This means that before the while statement there must be code that does
this. The program now looks like this:

choice =7

print ("Please guess a number between 1 and 10: ")
playerchoice = int (input())

while choice != playerchoice:

If the player has guessed incorrectly, then the body of the loop will execute.
What should be done? One of the variables in the condition has to be changed,
and the goal of the program must be kept in mind. In this case, because the player
has guessed incorrectly, two things should happen. First, the player must be told
that they are wrong and to make another guess. Next, the new guess must be read

72 B Python: An Introduction to Programming-Second Edition

into the variable playerchoice, thus satisfying the rule that the loop condition
must possibly have an opportunity to become False. The program is now

choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int (input())
while choice != playerchoice:
print ("Sorry, not correct. Guess again: ")
playerchoice = int (input())

When the player finally guesses the number, the loop will exit; if the first
guess is correct, then the condition fails at the beginning, and this amounts to the
same thing in this case. The last thing to do is to print a message to the player:

choice =7

print ("Please guess a number between 1 and 10: ")

playerchoice = int (input())

while choice != playerchoice:

print ("Sorry, not correct. Guess again: ")
playerchoice = int (input())

print ("You have guessed correctly.")

Note that, as was true with the if statement and as is always true in Python,
the indentation indicates which statements are a part of the loop (the suite) and
which are outside.

Modifying the Game

A simple modification of the game involves telling the player whether their
guess was too large or too small. This will help them shrink the possible range of
values and thus guess the right answer more quickly. A modification to the body
of the loop will accomplish this. If the value that the player guessed is smaller
than the target, then a message to that effect is printed, and similarly if the player
guesses a value larger than the target. The use of an if statement here is appropri-
ate, and that if statement is nested inside of the while loop:

choice =7
print ("Please guess a number between 1 and 10: ")
playerchoice = int (input())
while choice != playerchoice:
if (playerchoice < choice):
print ("Sorry, your guess was too small.

Guess again: ")

Chapter 2 - Repetition 73

else:
print ("Sorry, your guess was too large.
Guess again.")
playerchoice = int (input())

print ("You have guessed correctly.")

This program illustrates a second level of indentation. The if-else are in-
dented to indicate they are part of the while statement. The print statements are
indented further, to show that they are also part of the if statement.

Doing some printing inside of the loop is useful because an infinite loop will
be obvious. It will print many lines and never stop. It’s not always practical to do
that, so a degree of careful analysis should always be done to ensure that the loop
can and will terminate.

ROCK-PAPER-SCISSORS REVISITED

This game needs a loop, and the previous implementation was not complete.
If there is a tie, then the game has to be repeated, and a winner must be deter-
mined. This means that the loop in this case is as follows:

while there is no winner:

This happens only when the player and the computer select the same object,
and in the original code, it was handled by the statements:

if player == choice:
print ("Game is a tie. Please try again.")

The condition “no winner” becomes player == choice. The complete solu-
tion involves the while loop and another input from the user within the loop. Here
is one possible answer:
choice = "paper" # Computer chooses paper.

print ("Rock-paper-scissors: type in your choice: ")
player = input ()

- The new section of code -—-—-——--——----———————-—-
while player == choice: # Repeat input until there is a
winner
print ("Game is a tie. Please try again.")

player = input ()

74 B Python: An Introduction to Programming-Second Edition

if player == "rock":
if choice == "scissors":
print ("Congratulations. You win.")
else:
print ("Sorry - computer wins.")
elif player == "paper":
if choice == "scissors":
print ("Sorry - computer wins.")
else:
print ("Congratulations. You win.")
elif player == "scissors":
if choice == "rock":
print ("Sorry - computer wins.")
else:
print ("Congratulations. You win.")
else:

print ("Error: Select one of: rock, paper, scissors")

The termination of the loop depends on the user’s input, and on the value of
the computer’s choice, which could also (and should) change inside the loop. The
probability of the loop continuing after one iteration is 1 in 3, and the probabil-
ity that it will still be looping after N iterations is (1/3)N, so there is a very small
chance of the loop repeating more than 2 or 3 times.

Random Numbers

Most games depend on an element of unpredictability or chance. Those that
do not might be more properly called puzzies. Given that computers do calcula-
tions, and that calculations should have the same result every time, how does one
produce anything that is random using a computer? The answer is partly in how
the term random is defined. The discussion involves some mathematics or at least
some basic ideas in probability and statistics.

If integers in the range 1 through 10 inclusive are considered, what is the
likelihood (chance, probability) that the number 5 will be selected at random? The
answer is 1 in 10, or 0.1. This is true each time the question is asked. If the num-
ber 5 has just been chosen and another number is to be chosen, what is the chance
that it will be a 57 Same answer: 1 in 10. The principle is that the next choice does
not depend on the previous one.

Chapter 2 - Repetition 75

Perhaps the wrong question is being asked. What is the likelihood that the
number 5 will be selected twice in a row at random? The answer is 1 in 100, or
0.01. Why? Because it depends on the question asked. To get two in a row, the
first one must be a 5 (1 in 10) and the second one must also be a 5 (also 1 in 10),
so the resulting likelihood is 1 in 10*10 or 1 in 100. But each time a number
is chosen, the number 5 has a 1 in 10 chance of being selected. A mathemati-
cal discussion of randomness depends on the asking the right question, and on
probabilities. If some event is completely random, then it should have the same
probability of happening as the other possible events, but events can be collected
to form more complex events. Each card in a deck of playing cards should have
the same probability of turning up, but if the question is “What’s the chance of
a flush?,” then the different ways that a flush can be comprised have to be taken
into account.

Numbers, in particular, are random only with respect to each other. Is the
number 6 random? That’s not really a good question. Is the sequence 87394 ran-
dom? Perhaps a test could be devised to answer that. Is the sequence 66666 ran-
dom? Most would say not, but it has the same probability of being generated at
random as does 87354. To create good games and simulations, it is necessary to
devise ways to generate a random number using a computer and to test numbers
to see if they are in fact random. Then it would be possible to simulate the flip-
ping of a coin or the rolling of a die.

What is the 100™ digit of pi? It can be found easily. Are consecutive digits of
pi effectively random? As it happens, the answer is not known, but it is a good
question. What is 108763 is divided by 98581? What is the remainder? Call the re-
mainder x: what is 108763 divided by x? Are these numbers random? The search
for a method for generating really good random numbers continues, but there are
some pretty good methods (See Chapter 10). In Python, a random number created
by a computer algorithm can be requested by using a built-in function.

A built-in function is like a mathematical function, and it is provided by the
language itself. The language element print is a built-in function, as are int () and
float (). The functions sine and square root are also built-in functions. Such func-
tions belong to modules in Python and have to be requested by the program so
that they can be used. This means that the name of the module has to be known as
well as the names of the built-in functions within it. The common mathematical

76 M Python: An Introduction to Programming-Second Edition

functions are located within the module math and can be used by requesting the
math module with the statement:

import math

Using a function in the math module involves using the name math followed
by a period (.) followed by the name of the function. The “” opens the module so
that the names within can be used, because there may be other built-in functions
or even variables that have the same name. If the statements

x = math.sqrt (64)

print (x)

are executed, the program prints the number 8, which is the square root of 64.
The expression sqrt (64) is called a function call, and executes the code needed to
calculate the square root of 64. The name sqrt is the name of the function, which
is code provided by the Python language. This particular call always returns the
value 8, because 8 is always the square root of 64. A module can be thought of as
a bag of programs. Each bag contains a set of programs that do a particular class
of things, like mathematics or drawing. By specifying the name of the module,
access to all of the functions within is granted, and by specifying the specific
name of a function, the code that we want is specifically made available.

The import statement should be at the very beginning of the program.

Imagine that it is possible to have a function that produces a random number
as a value. It is in the module named random, and the function is called random,
too. For example,

import random
print (random.random())

Every time the function is used, it gives a different value, a random value.
This value can be used to make games more realistic, because games have a ran-
dom aspect.

This code prints the value 0.07229650795715237. Why? Because random.
random () produces a random number between 0.0 and 1.0. This is the most com-
mon example of a random number function, and is really very general. Increasing
the range is done simply by multiplying by the maximum value desired; random.
random ()*100 gives a random number between 0 and 100, for instance.

Chapter 2 - Repetition W 77

What if the problem is to simulate the roll of a die? The bag of code that is
the random module contains other functions related to the generation of random
numbers, and one of them is especially suited to this problem. A die roll would
be implemented as follows:

random.randint (1, 6)

The randint function accepts two numbers, called parameters. The first is
the lower limit of the range of random integers to be produced and the second is
the upper limit. Specifying 1 as the lower limit and 6 as the upper limit, as in the
example above, means that it will generate numbers between 1 and 6 inclusive,
which is what would be expected from rolling a die. The result of rolling two dice
would be a number between 2 and 12, found by random.randint (2,12).

Flipping a coin is a two-level choice, and could be done with random.rand-
int (1,2).

if (random.randint (1,2) == 1):
print ("Heads")

else:
print ("Tails")

Going back again to the number guessing game, a random choice for the
computer’s number is now possible. Instead of the first line of code being

choice =7

it should now be

choice = random.randint(1,10)

Every time the program executes the program, it will select a new random
number, as opposed to the choice always being 7.

The introduction of a random choice is a little more complicated for the rock-
paper-scissors program because the variable holding the player’s choice is a string.
There are three possible choices, so to select one at random might look like this:

i = random.randint (1, 3)
if i ==

choice = "rock"
elif 1 ==

choice = "paper"
else:

choice = "scissors"

78 B Python: An Introduction to Programming-Second Edition

Many of the examples in this book involve a game or puzzle of some kind, so
the use of random numbers will be a consistent feature of the code shown.

COUNTING LOOPS

Features of programming languages are provided because the designers
know they are useful. The while loop is obviously useful, and is the only kind of
loop required to implement a program. However, loops that involve counting a
certain number of iterations are common, and adding syntax is valuable. Some-
times a loop that executes, for example, ten times, or a loop that iterates N times
for some variable N, is needed. In Python, this is called a for loop.

In some languages, a for loop involves a special syntax, but in Python, it
involves a new type (a class of types, really): a fuple. Here is an example of a for
loop:

for i in (1,2,3,4,5):
print i

This code prints the numbers 1 2 3 4 5 each on a separate line. The variable i
takes on each of the values in the collection provided in parentheses and the loop
executes once for each value of i. The collection (1,2,3,4,5) is called a tuple, and
can contain any Python objects in any order. It’s basically just a set of objects.
The following are legal tuples:

3,6, 9, 12)
2.1, 3.5, 9.1, 0, 12)
"green", "yellow", "red")
"red", 3, 4.5, 2, "blue", 1) #where i is a variable
with a value

The for loop has the loop control variable (in the case above it is i) take on
each of the values in the tuple, in left to right order, then executes the connected
suite. The loop therefore executes the same number of times as there are elements
in the tuple.

(
(
(
(

Sometimes it may be necessary to have the loop execute a great many times.
If the loop was to execute a million times, it would be difficult to require a pro-
gram to list a million integers in a tuple. Python provides a function to make this
more convenient: range(). It returns a tuple that consists of all of the integers
between the two parameters it is given, including the lower end point.

Chapter 2 - Repetition 79

range (1,10) is (1,2,3,4,5,6,7,8,9)

range (-1, 2) is (-1, 0, 1)

range (-1, -3) 1is not a proper range.

range (1, 1000000) if the set of all integers

from 1 to 9999999
Ranges involving strings are not allowed, although tuples with strings in
them are allowed. The original example for loop can now be written:
for i in range(1l,6):
print i
and the loop that is to execute a million times could be specified as
for i in (0, 1000000) :

print 1

This code prints the integers from 0 to 999999. If range() is passed only a
single argument, then the range is assumed to start at 0; this means that range
(0,10) and range (10) are the same.

EX1 PRIME OR NON-PRIME

Here’s a game that can illustrate the use of a for loop, and some other ideas
as well. The computer presents the player with large numbers, one at a time. The
player has to guess whether each number is prime or non-prime. A prime number
does not have any divisors except 1 and

for i in 2,7,8 ;

The key word, known by A variable, the loop The key word in, Atuple (or other The colon indicates the
Python, that indicates that control variable, that which is basically a sequence type) end of the first part of the
this is a for statement. will take on values in placeholder that enumerates statement. Think of it as
a given sequence the values the meaning do, as in for i in
variable will take (2,7,8) do
Figure 2.2

The structure of a FOR statement

itself. 3, 5, 11, and 17 are prime numbers. The game ends either when a specific
number of guesses have been made, or when the player makes a specific number
of mistakes.

A key problem to solve in this game is to determine when a number is prime.
The computer must be able to determine whether the player is correct, and so for

80 M Python: An Introduction to Programming-Second Edition

any given number there must be a way to figure out whether it is prime. Other-
wise, the program for this game is not complicated:

while game is not over:
select a random integer k
print k and ask the player if it is prime
read the player's answer
if player's answer is correct:
print "You are right"
else:
print "You are wrong."

The mysterious portion of this program is the if statement that asks if the
player’s answer is correct. This means that the program must determine whether
the number K is prime and then see if the player agrees. How can it be determined
that a number is prime? A prime number has no divisors, so if one can be found,
then the number is not prime. The modulo operator % can be used to tell if a
division has a remainder: if k % n = 0, then the number n divides evenly into k,
and k is not prime.

To find out whether a number is prime, try dividing it by all numbers smaller
than it and if any of them have a zero remainder, then the number is not prime.
We need to use a for loop.

isprime = True
for n in range (1, K):
if k%n ==
isprime = False

After the loop has completed, the variable isprime indicates whether K is
prime. This seems simple, if tedious. It does perform a lot of divisions. Too many,
in fact, because it is not possible for any number larger than K/2 to divide evenly
into K. A slightly better program is as follows:

isprime = True # Is the number K prime?
for n in range (1, int(k/2)) # Divide K by all numbers < K/2
if k%n == 0: # If the remainder is 0 then n
isprime = False # divides evenly into K: not
prime

If isprime is still true here, then the number is prime.

Chapter 2 - Repetition I 81

Next, this section of program should be incorporated into a complete pro-
gram that plays the game. If the game is supposed to allow 10 guesses, then the
first step is to repeat the whole thing 10 times:

import random
correct = 0 # The number of correct guesses
for iteration in range (0, 10): # 10 guesses

Now, select a number at random. It should be large enough so that it is hard to
see immediately if it is prime, although even numbers are a giveaway:

K = random.randint (10000, 1000000) # Generate a new number

Next, print a message to the user asking for their guess, and read it:

print ("Prime or Not: Is the number ",K," prime? (yes or
HO) n)
answer = input () # Read the user’s choice

The user types in a string, “yes” or “no,” as their response. The variable
isprime was used in the program that determines whether K is prime is logical,
being True or False. It could be made into a string, so that it is the same as what
the user typed, and then it could be compared directly against the user’s input:

isprime = "yes"

Now comes the code for determining primality as coded above, except with
isprime as a string:

isprime = True # Is the number K prime?
for n in range (1, int(k/2)) # Divide K by all numbers < K/2
if k%n == # If the remainder is 0 then n
isprime = "no" # divides evenly into K: not

prime
If isprime is still true here then the number is prime.

At this point the variable isprime is either “yes” or “no,” depending on
whether K is actually prime. The user’s guess is also “yes” or “no.” If they are
equal, then the user guessed correctly.

if isprime==answer:
print ("You are correct!"™)
correct = correct + 1

else:
print ("You are incorrect.")

82 M Python: An Introduction to Programming-Second Edition

Finally, the outer loop ends, and the result is printed. The value of the vari-
able correct is the number of correct guesses the user made, because it was incre-
mented every time a correct answer was detected. The last statement is

print ("You gave ",correct," right answers out of 10.")

This program can be found on the CD in the directory “primegame.”

XM Exiting from a Loop

A clever programmer would notice a serious inefficiency with the prime
number program. When it has been determined that the number is not prime, the
loop continues to divide more numbers into k until k/2 of them have been tried. If
k=999992, then it is known after the first iteration that the number if not prime;
it is even, so can’t be prime. But the program continues to try nearly another half
million numbers anyway. What is needed is a way to tell the program that the
loop is over. There is a way to do this.

A loop can be exited using the break statement. It is simply the word break
by itself. The correct way to use this in the program above is as follows:

for n in range (1, int(k/2)) # Divide K by all numbers < K/2

if k%n == 0: # If the remainder is 0 then n
isprime = "no" # divides evenly into K: not
prime
break

This loop terminates when the number k is known to be not prime. The state-
ment following the loop is executed next. This can save a lot of computer cycles,
but does not make the program more correct — just faster.

A variation on this is the continue statement. This statement results in the
next iteration of the loop being started without executing any more statements in
the current iteration. This avoids doing a lot of work in a loop after it is known it’s
not necessary. For example, doing some task for a list of names, except for people
named “Smith,” could use a continue statement:

for name in ('Jones', 'Smith', 'Peters','Sinatra', 'Bohr’',
'Conrad') :
print (name);
if name == 'Smith':
continue
Now do a bunch of stuff ..

Chapter 2 - Repetition Il 83

Both the break and continue do the same thing in while and for loops.

Modifying the loop variable does not change the number of iterations the
loop will execute. In fact, it has no effect. This loop demonstrates that:
for i in range (0, 10):
print ("Before ",1i)
i =1+ 1000
print ("After ",1i)

It prints

Before O
After 1000
Before 1
After 1001

and so on. It seems that the value of i changes after the assignment for the re-
mainder of the loop and then is set to what it should be for the next iteration.
This makes sense if Python is treating the range as a set of elements (it is), and it
assigns the next one to i at the beginning of each iteration. Unlike a while loop,
there is no test for continuation. In any case, changing i here does not alter the
number of iterations and can’t be used in place of a break.

PX¥A Else

The idea that the loop can be exited explicitly makes the normal termination
of the loop something that should be detectable, too. When a while or for loop ex-
its normally by exhausting the iterations or having the expression become False,
it is said to have fallen through. When the for loop in the prime number program
detects a factor, it executes a break statement, thus exiting the loop. What if it
never does that? In that case, no factor exists, and the number is prime. The pro-
gram as it stands has a flag that indicates this, but it could be done with an else
clause on the loop.

The else part of a while or for loop is executed only if the loop falls through;
that is, when it is not exited through a break. This can be quite useful, especially
when the loop is involved in a search, as will be discussed later. In the case of
the prime number program, an else could be used when the number is prime, as
follows:

84 M Python: An Introduction to Programming-Second Edition

for n in range (1, int(k/2))# Divide K by all numbers < K/2

if k%n == 0: # If the remainder is 0, then n
isprime = "no" # divides evenly into K: not
prime
break
else:
isprime = "yes" # Loop not exited: it is prime

An else in a while loop occurs when the condition becomes false. Consider
a loop that reads from input until the user types “end” and is searching for the
name “Smith:”
inp = input ()
while (inp != "Smith"):
s = input ()
if s == "end":
break
else:
print ("Smith was found")
When the program reaches this point it is no
longer known whether Smith was found.

Of course, the else is not required, and some programmers believe it is even
harmful. There are always other ways to accomplish the same thing.

LOOPS THAT ARE NESTED

Just as it is possible to have if statements nested within other if statements,
it is possible, and even likely, to have a loop nested within another loop. An ex-
ample of nested for loops is as follows:

for i in range (0, 10)

for j in range (0, 10)
print (i,3)

The print statement in this example executes 100 times. Each time the outer
loop executes once, the inner one is executed 10 times, for a total of 10 * 10 or 100
iterations. Loops can be nested to a greater depth if necessary, and while and for
loops can be nested interchangeably.

Since there was a discussion of prime numbers and factoring, consider the
problem of finding the number within a given range that has the greatest number

Chapter 2 - Repetition Il 85

of different factors. Leaving out 1 and the number itself, 2 has no factors, nor
does 3; 4 has one (=2), 5 has none, and 6 has two (2 and 3). Which number be-
tween 0 and 1000 has the most?

From the prime number game, it is clear that the factors can be found using a
loop. If the loop is not exited when one is found, all of them can be identified and,
more importantly for this problem, counted. For a given number k, the factors can
be identified using the following loop:

count = 0;
for n in range (1, int(k/2)): # Divide K by all numbers < K/2
if k%n == 0: # If the remainder is 0 then n
count = count + 1

The number k has count numbers that divide evenly into it.

The statement count = count + 1 has replaced the isprime = “no” statement
from the prime number game. When the loop ends, the value of count is the
number of divisors it has. If this number is 0, then the number k is prime. The
problem has been solved for any number k. Now solve it for all numbers between
1 and1000 and identify the number with the largest value of count (i.e., the larg-
est number of divisors). This involves another loop enclosing this one that counts
from 1 to 1000.

Define a variable maxv which is, at any given moment, the number that has
the greatest number of divisors, and another variable maxcount, which is the
number of divisors that maxv has. Initially maxv is 1 and maxcount is 0 (i.e., the
number 1 has no divisors). Now loop between 1 and 1000 and replace maxv and
maxcount whenever a new number is found for which the number of divisors is
greater than maxcount. Specifically,

maxv = 1
maxcount = 0
for k in range(l, 1000): # Count the divisors for a range
count = 0;
for n in range (2, int(k/2)): # Divide K by all numbers
< K/2
if k%n == # If the remainder is 0
then n
count = count + 1 # Count this divisor
if count > maxcount: # A new maximum
maxcount = count # Save the count

86 M Python: An Introduction to Programming-Second Edition

maxv = k # and the value itself
print ("The most divisors is ",maxv," with ",maxcount)

The result for 1 to 1000 is as follows:

The most divisors is 840 with 30

The result for 1 to 10000 is as follows:

The most divisors is 7560 with 62

This last version needs 10 seconds to execute.

EX3A DRAW A HISTOGRAM

A histogram is a kind of graph. It usually represents the frequency of the oc-
currence of certain discrete values. Common examples include temperature as a
function of the month, or histograms of income as a function of year, age, race, or
gender. Drawing one involves knowing how many categories there are and what
the numerical values are for each category. Then the numbers are scaled so they
fit in a particular area and the rectangles are drawn so that the heights reflect the
relative numerical values. Figure 2.3 shows some typical examples.

A company wishes to plot a histogram of their income for each quarter of
2016. The numerical values are stored in variables Q1, Q2, Q3, and Q4, and range
between 0 and 1 million. We can draw simple histograms by using text. If the
histogram is drawn so that the bars are horizontal instead of vertical, then the
number of characters drawn in a row can be used to represent the “height” of the
histogram bar. Using the # character, a value of 20 could be drawn as follows:

Ql: H#HHHHHHHIHHIHIH IR 20
This is another situation where a loop is necessary.

There are three parts to the histogram bar above: the label, the bar, and the
data value. The label is easy to print, and in the example there are four possibili-
ties; these are simply printed at the beginning of each line being drawn. The data
value is not necessary, but it is useful for people looking at the graph to know
what the exact number is. Each # character drawn could represent a range of
values. The histogram bar is the trick. If numbers up to a million must be rep-
resented, then the bar must be scaled so that it fits on a line. If 50 characters fit
on a line, then each # printed needs to represent 1000000/50, or 20,000 dollars.

Chapter 2 - Repetition I 87

Another way to say this is that every $20,000 of income results in one # character
being printed. How many # are printed for the first quarter? Q1/20000 of them.

The print function prints out a line every time it is called. How can multiple
things be printed on a line? The print statement has a special parameter to allow
that. The call

print (i, end='!")

[k&

will print the variable i and then print the string following that, every
time. Normally, the print statement places an end of line character (represented
as “\n”) at the end of every line, but the end= clause allows the programmer to
change this to whatever they like. If the string provided is empty (contains no
characters), then nothing extra will be printed after each call, meaning specifi-
cally that no end of line will be printed. Thus, the statement

print ("#", end="")

prints one # character, but no end of line. If another # is printed, then it will
come right after the one just printed. This is exactly what is needed for the histo-
gram program. A loop that prints ten # characters on one line can now be written
as:

for i in range(0,10):
print (n#n, end:"")

Given that the value of the variable Q1 is between 0 and 1000000, and each
20000 should result in a single # character being printed, the first quarter histo-
gram bar could be drawn by the following:

print ("Ql: ", end="")

for k in range (0, int(Q1/20000)) :

print ('#', end='")

print (" ", gl)

This includes all of the labels, and the output looks like this:

Ql: #H##HH# 190000

A complete solution to the problem would draw the histogram all four quar-
ters, along with a heading for the graph. The output might look like this:

88 M Python: An Introduction to Programming-Second Edition

Earnings for WidgetCorp for 2016

900
800
700
X
g 600
< 500
=
5 400 .
@ 300 .
200 .
100 .
1980 1985 1990 1995 2000 2005 2010
. Women . Men
@
40 40
30 30
20 20
10 10
0 Temperature
(Degrees C)
-10 -10
-20 -20
-30 -30

-40 -40
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Average Temperature in Bermuda

(b)
Figure 2.3
Examples of histograms.

Dollars for each quarter

Q1: ######### 190000

Q2: ##HH#H#HHHH##E 340000

Q3: HHHAHBHHHHB B 873000
Q4: #iHBHHHH R 439833

Exercise 5 at the end of the chapter involves finishing this program.

Chapter 2 - Repetition I 89

LOOPS IN GENERAL

The concept of a loop in a programming language has been discussed for
many years and has a large degree of both theory and practice underlying it. The
original loop was a branch or goto, where the top of the loop was identified with
an address or label and at the bottom there was a statement that said to “go to” or
transfer control to that location. Examples of this are as follows:

labell: add 1 to x 12 x =x + 1
subtract 2 from min min = min - 2
branch to labell go to 12

Branches were typical of assembly language programming, where each line
of code was one actual computer instruction. The goto statement was introduced
in the first real programming language FORTRAN, but was quickly supplement-
ed by a more structured loop construct, the do statement. Both branch and goto
statements can be conditional.

Various kinds of loop have been developed over the years, and the most com-
monly used variation is the while loop. Theory says that the only kind that is
needed, and probably the most general, is the loop statement as defined in the
Ada language. It is essentially an infinite loop that allows escapes at multiple and
various points on specified conditions. The basic syntax is as follows:

loop
exit when conditionl;
Statements ..
exit when condition2;
end loop;

An exit at the top of the loop is a while loop. An exit at the end could be a re-
peat ... until as in Pascal or C++, and it is a simple matter to declare and initial-
ize a control variable and test the condition to implement a for loop. Everything
is possible with this loop syntax.

When specifically using Python, a while loop is all that is needed. If the
range is an integer one, then the loop is as follows:

for i in range (a .. b):

is the same as the loop

90 M Python: An Introduction to Programming-Second Edition

i = a
while i < Db:

i=1+1

This loop has an initialization, a condition, and an increment. As individual
entities these are somewhat hidden in Python, being masked by the syntax, but
the loop control variable takes on the first value the first time the loop is executed
(initialization), iterates through the selections (increment), and terminates after it
selects the final one (condition). The loop control variable is not really what gets
incremented; what is incremented is a count that indicates which of the items in
the tuple is currently being used. In the loop:

for i in ("red", "yellow", "green"):

the variable i takes on the values “red”, “yellow”, and “green”, but what gets
incremented each time through the loop is an indication of which position in the
tuple is represented by i. The value “red” is 0, “yellow” is 1, and “green” is 2 and
a count implicitly starts at 0 and steps until 2 assigning values to i. This kind of
loop is similar to that found in the language PHP, and is a level of abstraction
above those in Java and C++.

EXCEPTIONS AND ERRORS

Computers do not, as a general rule, make mistakes. Like other human-de-
signed and constructed devices such as cars and stoves, computers can be awk-
ward to use, can have design features that don’t turn out as expected, and can even
break down too quickly. But they do not make mistakes. A computer program, on
the other hand, almost certainly has mistakes or bugs coded within it. Consumers
don’t usually make a distinction between the computer and the software that runs
on it, but programmers and engineers must. When a computer program does not
work properly, a programmer must exhaust all ways the program could be wrong
before looking at an error in the computer itself.

Creating a correct program is difficult for many reasons. First, before any
code is written, the problem to be solved must be clearly understood, and it must
be the correct problem. Solving the wrong problem is a common error, but can’t
be detected or corrected by the computer. Common examples of this sort of error
come from stating the problem in English (or a human language of any description)

Chapter 2 - Repetition I 91

where errors in understanding occur. “Find the average of the first ten integers,”
for example, is a little ambiguous. Is the first integer 0 or 1?7 What is meant by
average, the mean or the median? Computer programmers tend to be quite literal,
and so what they think is the answer will be written into the code, and then they
will argue for that answer as being correct. It is very important to realize that,
whatever the literally correct answer is, the real correct answer is based on the
correct understanding of the problem. Sometimes it is stated badly, but no matter
whose fault the problem is, the job of fixing it lies with the programmer. Some-
times a little time at the beginning clarifying the question can save more time
later, and sticking with an overly pedantic interpretation will cause problems in
the long run.

A correct program also depends on the programmer being able to identify
all possible circumstances that can occur and knowing how to deal with each of
them. Failing to handle one possible situation is an error, and the program will
behave unpredictably if that situation occurs in practice. Statements that handle
errors appear in real (in the field or commercial) code. In fact, it is common that
there are more statements that detect and deal with errors than code that actually
computes an answer. One thing that should be remembered: all lines of the code
need to be tested. In very large programs this may be impossible, but every line
of code that has never been executed is a potential error. Test as many as possible,
including the error detection code.

User input is a frequent cause of mistakes in programs. It’s not that the user
is the problem; the programmer must anticipate all possible ways that a user can
enter data. There is usually one correct way but many erroneous ones, and it is
impossible to predict what a user will enter from a keyboard in response to any
request. Similarly, the contents of a file may not be what the programmer expects.
File formats are standard, but sometimes there are variations and at other times a
user may have entered the data improperly. While the mistake is on the part of the
user, it is also a programming mistake if the error is not detected and is allowed
to have an impact of the execution of the program.

Programmers tend to make assumptions about the problem. It is a common
mistake to think “this situation can never happen” and then ignore it, however
unlikely the situation seems. Testing every statement for everything that could
possibly go wrong may be impossible, but testing for the general situation may
be possible. It would be great to be able to say “if any statement in this section of

92 M Python: An Introduction to Programming-Second Edition

code divides by zero,” or “if any variables in this code have the wrong type,” then
do some particular thing.

Since it is impossible to write a program of any length without there being
coding errors of some kind included, a step towards a solution may be to check
all data before it is operated on to ensure the pending operation is going to suc-
ceed. For instance, before performing the division a/b, test to make sure that b is
not zero. This depends on the error being at least in principle predictable. Most
modern languages, Python included, have implemented a way to catch errors and
permit the programmer to handle them without having tests before each state-
ment or expression. This facility is called the exception.

The word exception communicates a way to think about how errors will be
handled. Some code is legal and calculates a desired value except under certain
circumstances or unless some particular thing happens. The way it works is that
the program tries to perform some operation and errors are allowed to occur. If
one does, the computer hardware or operating system detects it and tells Python.
The program cannot continue in the way that was planned, which is why this is
called an exception. The programmer can tell Python what to do if specific errors
occur by writing some code that deals with the problem. If the programmer did
not do this, then the default is for Python to print an error message that describes
the error and then stop executing the program. Error messages can be seen as a
failure on the part of the programmer to handle errors correctly.

A simple example is the divide by zero error mentioned previously. If the
expression a/b is to be evaluated, the value of b can be checked to make sure it is
not zero before the division is done:

if b !'= 0:
c = a/b

This can be tedious for the programmer if a lot of calculations are being done
and can be error prone. The programmer may forget to test one or two expres-
sions, especially if engaged in modifications or testing. Using exceptions is a
matter of allowing the error to happen and letting the system test for the problem.
The syntax is as follows:

try:

c = a/b
except:

c 1000000

Chapter 2 - Repetition I 93

The try statement begins a section of code within which certain errors are
being handled by the programmer’s code. After that statement, the code is in-
dented to show that it is part of the try region. Nearly any code can appear here,
but the try statement must be ended before the program ends.

The except statement consists of the key word except and, optionally, the
name of an error. The errors are named by the Python system, and the correct
name has to be used, but if no error name is given as in this example then any
error will cause the code in the except statement to be executed. Not specifying
a name here is an implicit assumption that either only one kind of error could
possibly occur or that no matter what error happens, the same code will be used
to deal with it. Specifying an unrecognized name is itself an error. The name can
be a variable, but that variable must have been assigned a recognized error name
before the error occurs. The code following the except keyword is indented too,
to show that it is part of the except statement. This is referred to by programmers
as an error handler, and is executed only if the specified error occurs.

This appears to be even more verbose than testing b, but any number of state-
ments can appear between the try and the except. This section of code is now
protected from divide by zero errors. If any occur, then the code following the
except statement is executed, otherwise that code does not execute. If other errors
occur, then the default action takes place — an error message is printed.

Testing specifically for the divide by zero error can be done by specifying the
correct error name in the except statement:

try:
c = a/b

except ZeroDivisionError:
c = 1000000

More than one specific error can be caught in one except statement:

try:
c = a/b

except (ValueError, ZeroDivisionError):
c = 1000000

Clearly (ValueError, ZeroDivisionError) is a tuple, and could be made
longer and assigned to a variable.

94 M Python: An Introduction to Programming-Second Edition

There can be many except statements associated with a single try:

try:
c = a/b
except ValueError:
c =20
exceptZeroDivisionError:
c = 1000000

As was mentioned earlier, a variable can hold the value of the error to be
caught:

k = ZeroDivisionError
try:

c = a/b
except k:

c = 1000000

Finally, the exception name can be left out altogether. In that case, any excep-
tion that occurs will be caught and the exception code will be executed:

try:
c = a/b
except:
c =20

EXXH Problem: A Final Look at Guess a Number

The final version of the program involving guessing a number looks like this:

choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int (input())
if choice == playerchoice:
print ("You win!")
else:
print ("Sorry, you lose.")

Using exceptions and what has been discussed about error checking, this
program can be improved. First, if the user enters something that is not an integer,
it is an error. This should be caught using an exception. Rather than forcing the
player to run the program again, a loop can be used to ask for another guess. The
input should be within the try statement. The except statement should print an

Chapter 2 - Repetition Il 95

error message, and the entire collection should be within a loop that continues to
ask the user to guess a number. Here is a better version:

choice =7
guessed = False # Has the user guessed a reasonable num-
ber?
while not guessed: # Keep trying until they have
print ("Please guess a number between 1 and 10: ")
try: # Catch potential input errors
playerchoice = int (input())
guessed = True # Success so far
except: # An error occurred.
print ("Sorry, your guess must be an integer.")
if choice == playerchoice: # Correct guess?
print ("You win!")
else:
print ("Sorry, you lose.")

The variable guessed is set to True when a successful guess is made, and
this stops the loop from repeating. If the user enters a real number or a string, the
exception is caught before that happens, the error message is printed, and the user
is asked to enter another guess.

What else is wrong with this code? The user is asked to enter a number be-
tween 1 and 10, but that value is never checked to see if it is valid. If it falls out-
side the range, then it will always be an incorrect guess and the player will lose.
It’s a penalty for not paying attention to the rules. A program should give the user
as much information as is reasonable, so it would be better to check the value of
the variable playerchoice and give an error message if it is out of range. The best
way to do this is to place the check after the except statement at the bottom of the
loop, and set the variable guessed to False if the guess is an improper one. Then
the loop will repeat and the player will get another guess.

This version of the program is as follows:

choice =7
guessed = False
while not guessed:
print ("Please guess a number between 1 and 10: ")
try:
playerchoice = int (input())
guessed = True

96 M Python: An Introduction to Programming-Second Edition

except:
print ("Sorry, your guess must be an integer.")
if playerchoice<10 or playerchoice>10: # Is the guess
in 1..107
print ("Your guess was",playerchoice,
"which is out of range.")
guessed = False # Nope. Guess again
if choice == playerchoice:
print ("You win!")
else:
print ("Sorry, you lose.")

FX] SUMMARY

The ability to repeat a collection of operations is an essential part of any
programming language. The while loop has a condition at the beginning, and so
long as that condition is true, the statements comprising the loop will be executed
repeatedly. The for loop has an explicit list of items for which the loop will be
executed or a range of numerical values that define how many times the code will
be repeated.

Most problems solved using a computer program have some degree of rep-
etition implicit in the implementation, and some computer algorithms are quite
explicit about how the iterations are to be used and how many are needed to solve
the problem (See Exercises 3 and 4)

Certain errors that can occur in programs can be detected automatically by
Python. If the programmer does not address these errors, they result in a mes-
sage and premature program termination. The try-except statement allows the
programmer to handle errors without ending the program, and permits better
communication of the kind of error that occurred, in the context of the program,
to the programmer or user.

Exercises

1.

e

Given the following definitions

varl = 12
var2 = 100
var3 = -2
vard = 0

What is printed by the following while loops?

a.while varl < var2:
print (varl)
varl = varl + 30
b.while varl < var2:
print (varl)
varl = varl * 2
C.while varl > O0:
vard = vard + 1
varl = varl - 1
print (varl, var2)
d. while varl > O:
vard = vard + 1
varl = varl - vard
print (varl, var2)
3.while varl < var3:
print ("*"’ end:"")
var3 = var3 + 2
f.while var2 > varl*vard:
varl = varl + 1
vard = vard + 1
print (varl, var2)

What is printed by the following for loops?

a. for i in range (1, 10):
print (i)

b. for i in (1, 10):
print (i)

c. for i in ("red", "green", "blue"):
print (i)

d. for i in range(0, 10):

Chapter 2 - Repetition I 97

98 M Python: An Introduction to Programming-Second Edition

for j in range(1l, 10):
if 1 == 7J:
print (i)
e. for i in range(0, 10):
for j in range (0, 50):

if i*1 == 7J:
print (i)
d. for i in (0, 10):
i=1*2

print (i)
e. for i in range (1, 10):
for j in range (1, 1i):
print (j, end="")
print ()
f. for i in range(0, 10):
i=1+1
for j in range (1, 1i):
print (j, end="")
print ()

3. The Greek mathematician Zeno (c. 450 BCE) is credited with creating the
paradox of the Tortoise and Achilles. A tortoise challenged the great hero and
athlete Achilles to a footrace. All the tortoise asked was a ten-yard head start.
The idea was that once the race began, Achilles could run the ten-yard head
start in a small time; however, in that same time, the tortoise would move
forward a small amount, perhaps a yard. When Achilles made up that yard,
the tortoise would have moved ahead again a small distance; and so on. The
logic was that Achilles could never catch up. The misunderstanding here is
that an infinitely long series of numbers can add up to a finite value. Write a
small Python program that sums the numbers %2, Y4, ‘/8,]/1 . and so on for 20
iterations and suggest what the sum would be if it were carried to an infinite
number of iterations.

4. One way to calculate the square root of a number is to use Newton’s method.
This starts with an initial guess: if the square root of x is being computed,
then a fair initial guess g would be x/2. Successive estimates are given by the
expression:

newg = (g + x/g9)/2

Chapter 2 - Repetition Il 99

Successive estimates are nearer to the actual square root. Write a program
to computer the square root of a number that is entered from the keyboard.

. Complete the program that draws a histogram for the earnings of WidgetCorp
for four quarters of 2016. Earnings are as follows:

a. 190000
b. 340000
c. 873000
d. 439833

. Modify the program in Exercise 5 above so that the data for the four quarters
is read from the terminal (i.c., entered by the user from the keyboard). Test it
for the following values:

a. 900000
b. 874000
¢. 200000
d. 439000

. Modify the solution to Exercise 6 in Chapter 1 (making change) so that it
makes effective use of a for loop. The program should still read a number
between 1 and 99, which is an amount of change to be given, and print the
coin values that would be used. Modify it to not use a half-dollar coin, because
nobody has those anymore.

. Convert the following for loops into the equivalent while loop:

a. for i in range (1, 10):
print (i, i*i)

b. sum = 0
for i in (range (10, 0, -1):
sum = sum + i
print (i, sum)

. A good solution to Exercise 4 above (square root) would detect negative
numbers and print a message to the effect that square roots of negative
numbers do not exist (not as real numbers, anyway). Modify the solution to
Exercise 4 to use an exception to deal with that situation, and handle other
potential errors.

100 M Python: An Introduction to Programming-Second Edition

Notes and Other Resources

Online tutorial on Python loops: http./www.tutorialspoint.com/python/python
loops.htm

Cornell University summary of if statements and loops: http:/www.cs.cornell.
edu/courses/cs1130/2012sp/1130selfpaced/module2/module2partl/ifloop.html

Sthurlow.com: Attp:/sthurlow.com/python/lesson04/
1. Henry Ford and Samuel Crowther (1922). My Life and Work, Garden City
Publishing, Garden City, N.Y. http.//www.gutenberg.org/ebooks/7213

2. David Beazley and Brian K. Jones, Python Cookbook, 3rd Edition: Recipes
for Mastering Python 3, hitp://www.onlineprogrammingbooks.com/python-
cookbook-third-edition/

CHAPTER 3

SEQUENCES: STRINGS,
TUPLES, AND LISTS

30 SIFINGs . ..o 102
32 TheBPe BYes 114
33 Tuples ... 115
Bud LiSIS o 123
35 SetDIPeso 135
3.6 Summary. 138

In this chapter

In Chapter 2, we noted that for loops in Python are different from those
found in many other languages. In Java and C++, a for loop has a very explicit
increment; a for statement looks like this in Java:

for (i=0; i<10; i=i+1)

From this, it can be inferred that the variable i starts out as 0, and so long as i
is less than 10, the loop continues. After each iteration, the value of i is increased
by 1, and then the condition is tested again.

In Python, the iteration is more implicit, with the loop control variable taking
on one of a set of values in turn. There is an implication here, too, that there is a
kind of thing, a type that a variable can have, that amounts to a list or sequence of
other, simpler things. This is true, and using variables having these types are an
essential part of writing useful and effective code. Python offers strings, tuples,
and lists as objects that consist of multiple parts. They are called sequence types.
An integer or a float is a single number, whereas a sequence type consists of a

102 M Python: An Introduction to Programming-Second Edition

collection of items, each of which is a number or a character. Each member of
a sequence is given a number based on its position: the first element in the se-
quence is given 0, the second is 1, and so on. This is a fundamental data structure
in Python and has influenced the syntax of the language.

Strings are familiar objects and have been used in programs already, so our
discussion begins there.

STRINGS

A string is a sequence of characters. The word sequence implies that the or-
der of the characters within the string matters, and that is certainly true. Strings
most often represent the way that communication between a computer and a hu-
man takes place. Human language consists of words and phrases, and each word
or phrase is a string within a program. The order of the characters within a word
matters a great deal to a human because some sequences are words and others
are not. The string “last” is a word, but “astl” is not. The strings “salt” and “slat”
are words and use exactly the same characters as “last,” but these characters are
arranged in a different order.

Because order matters, the representation of a string on a computer imposes
an order on the characters within, and so there is a first character, a second, and
so on, and it should be possible to access each character individually. A string
also has a length, which is the number of characters within it. A computer lan-
guage provides specific actions that can be done to a string: these are called op-
erations, and a type is defined at least partly by what operations can be done to
something of that type. Because a string represents text in the human sense, the
operations on strings should represent the kinds of things that would be done to
text. This includes printing and reading, accessing any character, linking strings
into longer strings, and searching a string for a particular word.

The examples of code written so far use only string constants. These are
simply characters enclosed in either single or double quotes. Assigning a string
constant to a variable causes that variable to have the string type and gives it a
value. The statements

name = "John Doe"
address = '1l21 Second Street'

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 103

cause the variables named name and address to be strings with the assigned
value. Note that either type of quote can be used, but a string that begins with a
double quote must end with one.

A string behaves as if its characters are stored as consecutive characters in
memory. The first character in a string is at location or index 0, and can be ac-
cessed using square brackets after the string name. Using the definitions above,
name[0] is “J” and name[5] = “D.” If an index is specified that is too large, it
results in an error because it amounts to an attempt to look past the end of the
string.

How many characters are there in the string name? The built-in function
len() returns the length of the string. The largest legal index is one less than this
value: the first character of a string name has index 0, and the final one has index
7; the length is 8. Thus, any index between 0 and len(name)-1 is legal. The fol-
lowing code prints all of the characters of name and can be thought of as the basic
pattern for code that scans through the characters in strings:

for i in range (0, len(name)):
print (name[i], end="")

This may be a little confusing, but remember that the range(0,n) does not
include n. This loop runs through values of i from 0 to len(name)-1.

Some languages have a character type, but Python does not. A string of
length one is what Python uses instead. A component of a string is therefore an-
other string. The first character of the string name, which is name|0], is “J,” the
string containing only one character.

Comparing Strings

Two strings can be compared in the same manner as are two integers or real
numbers, by using one of the relational operators ==, |=, <, >, <= or >=. What it
means for two strings to be equal is simple and reasonable: if each corresponding
character in two strings is the same, then the strings are equal. That is, for strings
a and b, if a]0] == b[0], and a[1]==b][1], and so on to the final character n, and
a[n] == b[n], then the two strings a and b are equal and a==b. Otherwise a!=b.
By the way, this implies that equal strings have the same length.

104 M Python: An Introduction to Programming-Second Edition

What about inequalities? Strings in real life are often sorted in alphabetical
order. Names in a telephone book, files in a doctor’s office, and books in a store
tend to appear in a logical order based on the alphabet. This is also true in Python.
The string “abc” is less than the string “def,” for example. Why? Because the first
letter in “abc” comes before the first letter in “def;” in other words, “abc[0] <
“def™[0]. Yes, characters in string constants can be accessed using their index.

A string sl is less than string s2 and all characters from 0 through k in the
two strings are equal, so s1[k+1]<s2|k+1]. Therefore, the following statements
are true:

"abcd" < "abce"
"123" < "345"
"ab " < "abc"

In the last example, the space character " " is smaller than (i.e., comes be-
fore) the letter “c.” What if the strings are not the same length? The string "ab"
< M"abc", so if two strings are equal to the end of one of them, then the shorter
one is considered to be smaller. These rules are consistent so far with those taught
in grade school for alphabetization. Trailing spaces do not matter. Leading spaces
can matter, because a space comes before any alphabetic character; that is, " "
<"a." Thus "ab" > " z."

Digits come before lowercase letters. "1" < "a," and "1la" < "al."
Most importantly, uppercase letters come before lowercase letters, so "John" <
"John." All of these rules are consistent with those that secretaries understand
when filing paper documents. As an example that compares strings, consider the
following;:

a = "Jg"
b ="j"
c ="i"
if b<c:

print ("Lcase < numbers")
else:

print ("Lcase > numbers")
if a<c:

print ("Ucase < numbers")
else:

print ("Ucase > numbers")

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 105

This results in the following output:

Lcase > numbers
Ucase > numbers

Problem: Does a city name, entered at the console, come before or after the name
Denver?

This involves reading a string and comparing it against the constant string
“Denver.” Let the input string be read into a variable named city. Then the answer
is as follows:

city = input ()

if city < "Denver":

print ("The name given comes before Denver in an
alphabetic list™)

elif city > "Denver":

print ("The name given comes after Denver in an
alphabetic list™)

else:

print ("The name given was Denver")

If “Chicago” is typed at the console as input, the result is as follows:
Chicago
The name given comes before Denver in an alphabetic list

However, if case is ignored and “chicago” is typed instead, then the result is
as follows:
chicago
The name given comes after Denver in an alphabetic list

6 9

because, of course, the lower case “c”” comes (as do all lowercase letters) after the
uppercase “D” at the beginning of “Denver.”

Slicing — Extracting Parts of Strings

To a person, a string usually contains words and phrases, which are smaller
parts of a string. Identifying individual words is important. To Python, this is true
also. A Python program consists of statements that contain individual words and
character sequences that each have a particular meaning. The words “if,” “while,”
and “for” are good examples. Individual characters can be referenced through

106 M Python: An Introduction to Programming-Second Edition

indexing, but can words or collections of characters be accessed? Yes, they can
be accessed if the location (index) or the word is known.

Problem: Identify a “print” statement in a string.

The statement

print ("Lcase < numbers")

appears in the example program above. This can be thought of as a string and
assigned to a variable:

statement = 'print ("Lcase < numbers")'

Is this a print statement? It is if the first five characters are the word “print.”
Each of those characters could be tested individually using the following code:

if statement[0] == 'p':
if statement[l] == 'r':
if statement[2] == '1i
if statement[3]=='n"':
if statement[4]=="t':
if statement[5]==' "':
This is a print statement.

LI

This is not an attractive format, and since this is something that is needed
often enough, Python offers a better way to write it. A slice is a set of continuous
characters within a string. This means their indices are consecutive, and they can
be access as a sequence by specifying the range of indices within brackets. The
situation above concerning the print statement could be written like this:

if statement[0:5] == "print":

The slice here does not include character 5, but is 5 characters long, includ-
ing the characters 0 through 4, inclusive. A slice from i to j (i.e., x[izj]) does not
include character j. This means that the following statements produce the same
result:

fname [0]
fname[0:1]

If the first index is omitted, then the start index is assumed, so the statement

if statement[0:5] == "print":

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 107

is the same as
if statement[:5] == "print":
If the second index is omitted, then the last legal index is assumed, which is
to say the index of the final character. The assignment
str = statement[6:]
results in the value of str being (“Lcase < numbers”). Both indices can be omit-

ted, which means we use everything from the first to the last character, or the
entire string.

Editing Strings
Python does not allow the modification of individual parts of a string. That
18, statements like

str[3] = "#"
str[2:3] = ".."

are not allowed. How can strings be modified? For example, consider the string
variable

fname = "image"

If this is supposed to be the name of a JPG image file, then it must end with
the suffix “jpg.”

Problem: Create a JPEG file name from a basic string

The string fname can be edited to end with “jpg” in a few ways, but the easi-
est one to use is the concatenation operator, +.

To concatenate means “to link or join together.” If the variables a and b are
strings, then a+b is the string consisting of all characters in a followed by all
characters in b; the operator + in this context means to concatenate, rather than to
add numerically. The designers of Python and many other languages that imple-
ment this operator think of concatenation as string addition.

To use this to create the image file name, simply concatenate “jpg” to the
string fname:

fname = fname + ".jpg"

108 M Python: An Introduction to Programming-Second Edition

The result is that fname contains “image.jpg.”

File suffixes are very often the subject of string manipulations and provide a
good example of string editing. For instance, given a file name stored as a string
variable fname, is the suffix .jpg? Based on the preceding discussion, the ques-
tion can be answered using a simple if statement:

if fname[len (fname)-4:1len(fname)] == '.Jjpg':
Using a slice, it could also take the form
if fname[len (fname)-4:] == ".jpg"

A valuable thing to know is that negative indices index from the right side of
the string, that is, from the end. Therefore, fname|-1] is the final character in the
string, fname[-2] is the one previous to that, and so on. The last 4 characters, the
suffix, are captured by using filename[-4:].

Problem: Change the suffix of a file name

Some individuals use the suffix .jpeg instead of .jpg. Some programs allow
this, others do not. Some code that would detect and change this suffix is as fol-
lows:

if fname[len (fname)-5:] == ".jpeg": # identfy the jpeg
suffix
fname = fname[0O:len (fname)-5] # remove the last five
characters
fname = fname + ".jpg" # append the correct
suffix

Problem: Reverse the order of characters in a string

There are things about any programming language that could be considered
idioms. These are things that a programmer experienced in the use of that lan-
guage would consider normal use, but that others might consider odd. This prob-
lem exposes a Python idiom. Given what is known so far about Python, the logi-
cal approach to string reversal might be as follows:

city has a legal value at this point
k = len(city)
for i in range(0,len(city)):
city = city + citylk-1i-1]
city = cityl[len(city)//2:]

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 109

This reverses the string named city that exists prior to the loop and creates
the reversed string. It does so in the following way:

1. Letibe an index into the string city, starting at 0 and running to the final
character.

2. Index a character from the end of the string, starting at the final character
and stepping backwards to 0. Since the last character is len(city) and the
current index is i, the character to be used in the current iteration would
be k-i-1, where k is the length of the original string.

3. Append city[k-i-1] to the end of the string. Alternatively, a new string rs
could be created and this character appended to it during each iteration.

4. After all the characters have been examined, the string city contains the
original string at the beginning and the reversed string at the end. The
first characters can be removed, leaving the reversed string only.

An experienced Python programmer would do this differently. The syntax
for taking a slice has a variation that has not been discussed; a third parameter
exists. A string slice can be expressed as

myStringla:b:c]
where a is the starting index, b is the final index+1, and ¢ is the increment. If

str = "This string has 30 characters."

then str[0:30:2] is “Ti tighs3 hrces,” which is every second character. The incre-
ment represents the way the string is sampled, that is, every increment’s charac-
ters is copied into the result. Most relevant to the current example, the increment
can be negative. The idiom for reversing a string is as follows:

print (str[::-1])

As has been explained, the value of str[;] is the whole string. Specifying an
increment of -1 implies that the string is scanned from 0 to the end, but in reverse
order. This is far from intuitive, but is probably the way that an experienced Py-
thon programmer would reverse a string. Any programmer should use the parts
of any language that they comprehend very well, and should keep in mind the
likely skill set of the people likely to read the code.

Problem: Is a given file name that of a Python program?

110 M Python: An Introduction to Programming-Second Edition

A Python program terminates with the suffix .py. An obvious solution to
this problem is to simply look at the last 3 characters in the string s to see if they
match that suffix:

if s[len(s)-3:1len(s)] == '.py':
print ("This is a Python program.")

But is PROGRAM.PY a legal Python program? It happens that it is, and so is
program.Py and program.pY. What can be done here?

String Methods

A good way to do the test in this case is to convert the suffix to all uppercase
or all lowercase letters before doing the comparison. Comparing the name against
.py means it should be converted to lowercase, which is done by using a built-in
method named lower:

sl = s[len(s)-3:1len(s)]
if sl.lower()== '.py':
print ("This is a Python program.")

The variable sl is a string that contains the final 3 characters of s. The ex-
pression sl.lower() creates a copy of s1 in which all characters are lowercase. It’s
called a method to distinguish it from a function, but they are very similar things.
You should recall that a method is simply a function that belongs to one type or
class of objects. In this case, lower() belongs to the type (or class) string. There
could be another method named lower() that belongs to another class and that did
a completely different action. The dot notation indicates that it is a method, and
what class it belongs to: the same class of things that the variable belongs to. In
addition, the variable itself is really the first parameter; if lower were a function,
then it might be called by lower(s1) instead of sl.lower(). In the latter case, the

(Y52

. is preceded by the first parameter.

Strings all have many methods. In Table 3.1, the variable s is the farget string,
the one being operated upon. This means that the method names below appear
following s., as in s.lower(). Let the value of s be given by s = “hello to you all.”
These methods are intended to provide the operations needed to make the string
type in Python function as a major communication device from humans to a
program.

Chapter 3 - Sequences: Strings, Tuples, and Lists Il 111

Table 3.1

String Methods and their explanations

Method

Explanation

Example

capitalize ()

:count (str,beg=0,
‘end=len(s))

(What is returned?)

: Returns the target string but
: with the first letter capitalized. :

: Returns a count of how many
 times the string str occurs in
: the target. If values for beg

“and end are given, then the ~ :
: count is performed using only :
character indices between beg
:and end. :

fs.capitalize() ==
"Hello to you all."

endswith (suffix,
:beg=0, end=len(s))

: Returns True if the target
: string ends with the given suf- :
: fix and return False otherwise.
:If beg and end are given, then
i do the test on the substring

: between beg and end.

‘s.endswith ('11.")
5::True

:find(str,
§beg=0end=len (string))

: If the string str appears with
: the target string, then return

 the index at which it occurs;
‘return -1 if it does not occur.
:If beg and end are provided,
: then use the substring from

: beg to end.

index (str,beg=0,
‘end=len (string))

- Index is the same as find
S except that it will raise an :
: exception if the string str does :
:nor occur in the target

Returns True if the target
: string contains only digits and
: False otherwise.

gislower ()

: Returns True if the target :
 string has at least 1 alphabetic :
: character and all alphabetic
characters are lowercase.
: Returns False otherwise.

(continued)

112 M Python: An Introduction to Programming-Second Edition

Method Explanation Example

(What is returned?)
:isspace () : Returns True if the target is.isspace() == False':
: * string contains only : :
whitespace characters and
‘ returns False otherwise.

isupper () Returns True if s has at least :
] : one alphabetic character and @ s.isupper () == False:
- all alphabetic characters are :
uppercase. Returns False
: otherwise.

lower () Converts all uppercase letters s.lower () == s

: *in string to lowercase. H

replace (old, new gReplaces all occurrences of s.replace("you all",

‘[, max]) : the string old in the target i"ylall") == ;

: - with the string new. If max is : "hello to y'all.":
specified, replace at most max]
: instances. :

‘split(str="", : Returns a list of substrings ‘s.split(" ") ==

‘num=string. obtained from the target using : ["hello", "to",

count (str)) : str as a delimiter. Space is the "you","all"]

: default for str. Subdivide

: at most num times if that is
: specified (see: Chapter 3,

- section 3).

‘splitlines (

: Splits the target string at all (or

‘num=string. :num, if it is specified) NEW- :s.splitlines() ==
‘count('\n')) : LINEs and returns a list of i"hello to you all."
3 : each line with the NEWLINEs :

- removed. :
:upper () : Converts the lowercase letters :s.upper () == "HELLO
3 “in string to uppercase. :TO YOU ALL."

Spanning Multiple Lines

Text as seen in human documents may contain many characters, even mul-
tiple lines and paragraphs. A special delimiter, the triple quote, is used when a
string constant is to span many lines. This has been mentioned previously in the
context of multi-line comments. The regular string delimiters will terminate the
string at the end of the line. The triple quote consists of either of the two existing

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 113

delimiters repeated three times. For example, to assign the first stanza of Byron’s
poem “She Walks in Beauty” to the string variable poem, we would write the
following code:

poem = '''She walks in beauty like the night

Of cloudless climes and starry skies,

And all that's best of dark and bright

Meets in her aspect and her eyes;

Thus mellow'd to that tender light
Which Heaven to gaudy day denies.'''

When poem is printed, the line endings appear where they were placed in the
constant. This example is a particularly good one in that most poems require that
lines end precisely where the poet intended.

Another example of a string that must be presented just as typed is a Python
program. A program can be placed in a string variable using a triple quote:

program = """list = [1,2,4,7,12,15,21]
for 1 in list:
print (i, i*2)"""

When printed, this string has the correct form to be executed by Python. In
fact, the following statement executes the code in the string:

exec (program)

For Loops Again

Earlier in this section, a for loop was written to print each character in the
string. That loop was as follows:

for i in range (0, len(name)) :
print (name[i], end="")

Obviously, the string could have been printed using
print (name)

but it was being used as an example of indexing individual components within
the string. The characters do not need to be indexed explicitly in Python; the loop
variable can be assigned the value of each component:

for 1 in name:
print (i, end="")

114 M Python: An Introduction to Programming-Second Edition

In this case, the value of i is the value of the component, not its index. Each
component of the string is assigned to i in turn, and there is no need to test for the
end of the string or to know its length. This is a better way to access components
in a string and can be used with all sequence types. Whether an index is used or
the components are pulled out one at a time depends on the problem being solved;
sometimes the index is needed, other times it is not.

THE TYPE BYTES

A string is a sequence of characters, a sequence being defined as a collection
within which order matters. Strings are commonly used for communication be-
tween computers and humans: to print headings and values on the screen, and to
read objects in character string form. Humans deal with characters very well. The
type bytes represents a sequence of integers, albeit small ones. A bytes object of
length 1 is an 8-bit integer, or a value between 0 and 255. A bytes object of length
greater than 1 is a sequence of small integers. To be clear, if s is a string and b is
a bytes object, then

s[i] is a character
bli] is a small integer

A string constant (literal) is a sequence of characters enclosed in quotes. A
bytes literal is a sequence of character enclosed in quotes and preceded by the
letter “b.” Thus

'this is a string’
is a string, whereas

b'this is a string'
has type bytes. Any method that applies to a string also applies to a bytes object,
but bytes objects have some new ones. In particular, to convert a bytes object to
a string, the decode() method is used, and a character encoding should be given
as the parameter. If no parameter is given, then the decoding method is the one

currently being used. There are a few possible decoding methods (e.g., utf-8). To
convert a bytes object b to a character string s, the following would work:

s = b.decode ("utf-8")

A question remains: why is the bytes type needed? The bytes type imple-
ments the buffer interface. Certain file operations require a buffer interface to

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 115

accomplish their tasks. Anything read from some specific types of files will be of
the type bytes, for example, as it has that interface. This will be discussed further
in Chapters 5 and 8. Other than the buffer interface, the bytes type is very much
like a string, and can be converted back and forth.

TUPLES

A tuple is almost identical to a string in basic structure, except that it is com-
posed of arbitrary components instead of characters. The quotes cannot be used
to delimit a tuple because a string can be a component, so a tuple is generally
enclosed in parentheses. The following are tuples:

tupl = (2, 3, 5, 7, 11, 13, 17, 19) # Prime numbers under 20

tup2 = ("Hydrogen","Helium","Lithium","Beryllium","Boron",
"Carbon")
tup3 = "hi", "ohio", "salut"

If there is only one element in a tuple, there should be a comma at the end:

tup4 = ("one",)
tupb = "two",

That’s because it would not be possible otherwise to tell the difference be-
tween a tuple and a string enclosed in parentheses. Is (1) a tuple? Or is it simply
the number 1?

A tuple can be empty:

tup = ()

Because they are like strings, each element in a tuple has an index, and they
begin at 0. Tuples can be indexed and sliced, just like strings.

tupl[2:4] is (5, 7)

Concatenation is like that of strings, too:

tupd = tupd + tupb # yields tup4 = ('one', 'two')

As is the case with strings, the index -1 gives the last value in the tuple, -2
gives the second last, and so on. In the example above, tup2[-1] is “Carbon.”

Also, like strings, the tuple type is immutable; this means that elements in the
tuple cannot be altered. Thus, statements such as

116 M Python: An Introduction to Programming-Second Edition

tupl[2] = 6
tup3[1l:] "bonjour"

are not allowed and will generate an error.

Tuples are an intermediate form between strings and lists. They are simpler
to implement than /ist (which is lightweight) and are more general than strings.

Are tuples useful? Yes, it turns out, and part of their use is that they underlie
other aspects of Python.

Tuples in For Loops

Sequences can be used in a for loop to control the iteration and assign the
loop control variable. Tuples are interesting in this context because they can con-
sist of strings, integers, or floats. The loop

for i in ("Hydrogen","Helium","Lithium","Beryllium",
"Boron", "Carbon") :

will iterate 6 times, and the variable i takes on the values in the tuple in the order
specified. The variable i is a string in this case. In cases where the types in the
tuple are mixed, the situation becomes more complicated.

Problem: Print the number of neutrons in an atomic nucleus.

Consider the tuple:

atoms= ("Hydrogen", 1, "Helium",2,"Lithium",3,"Beryllium", 4,
"Boron", 5, "Carbon", 6)

and the loop

for 1 in atoms:
print (i)

This prints the following:

Hydrogen
1

Helium

2

Lithium

3
Beryllium
4

Chapter 3 - Sequences: Strings, Tuples, and Lists Il 117

Boron
5
Carbon
6

The number following the name of the element is the atomic number of that
element, the number of protons in the nucleus. In this case, the type of the vari-
able i alternates between string and integer. For elements with a low atomic num-
ber (less than 21), a good guess for the number of neutrons in the nucleus is twice
the number of protons. The problem is that some of the components are strings
and some are integers. The program should only do the calculation when it is in
an iteration having an integer value for the loop variable, because a string cannot
be multiplied by two.

A built-in function that can be of assistance is isinstance. It takes a variable
and a type name and returns True if the variable is of that type and False other-
wise. Using this function, here is a program that makes the neutron guess:
atoms=("Hydrogen",1l,"Helium",2,"Lithium", 3, "Beryllium", 4, "B
oron",5,"Carbon", 6)
for 1 in atoms:

if isinstance (i, int):

J o= i*2

print ("has ", i, "protons and ", J, " neutrons.")
else:

print ("Element ", 1)

In other words, in iterations where i is an integer as determined by isinstance,
then i can legally be multiplied by 2 and the guess about the number of neutrons
can be printed.

Another way to solve the same problem is to index the elements of the tuple.
Elements 0, 2, and 4 (even indices) refer to element names, while the others refer
to atomic numbers. This code is as follows:
atoms= ("Hydrogen", 1, "Helium",2,"Lithium",3,"Berylliumn", 4,

"Boron", 5, "Carbon", 6)
for i in range(0,len(atoms)):

if i%2 ==
J = atoms[i]*2
print ("has ", atoms[i], "protons and ", 7,
" neutrons.")
else:

print ("Element ", atoms[i])

118 M Python: An Introduction to Programming-Second Edition

Note that in this case, the loop variable is always integer, and is not an ele-
ment of the tuple but is an index at which to find an element. That’s why the ex-
pression atoms|i] is used inside the loop instead of simply i as before.

Membership

Tuples are not sets in the mathematical sense, because an element can belong
to a tuple more than once, and there is an order to the elements. However, some
set operations could be implemented using tuples by looking at individual ele-
ments (set union and intersection, for example). The intersection of two sets A
and B is the set of elements that are members of A and also members of B. The
membership operator for tuples is the key word in:

If 1 is in tuplel, the intersection of A and B, where A and B are tuples, is
found using the following code:
for 1 in A:
if 1 in B:
cC=0C+ i
The tuple C is the intersection of A and B. It works by taking each known
element of A and testing to see if it is a member of B; if so, it is added to C.

Problem: What even numbers less than or equal to 100 are also perfect squares?

This could be expressed as a set intersection problem. The set of even num-
bers less than 100 could be enumerated (this is not actual code):

A=24,6,810 ... and so on

Or could be generated within a loop:

A= () # Start with an empty tuple
for i in range(0,51): # for appropriate integers
A=A+ (i*2,) # add the next even number

to the tuple
Can't simply use A+i because i is integer, not a tuple.

Similarly, the perfect squares could be enumerated,
B = (4,9,16,25,36,49,64,81,100)

or, again, created in a loop:

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 119

B = ()
for i in range(0,11):
B =B + ((i*1i),)

Now set A can be examined, element by element, to see which members also
belong to B:
cC=100
for i in A:
if i in B:
C=cC+ (i,)
The result is (0, 4, 16, 36, 64, 100).

Two important lessons are learned from this example. First, when construct-
ing a new tuple from components, one can begin with an empty tuple. Second,
individual components can be added to a tuple using the concatenation operator
+, but the element should be made into a tuple with one component before doing
the concatenation.

Delete

A tuple is immutable, meaning that it cannot be altered. Individual elements
can be indexed but not changed or deleted. What can be done is to create a new
tuple that has new elements; in particular, deleting an element means creating a
new tuple that has all of the other elements except the one being deleted.

Problem: Delete the element lithium from the tuple atoms, along with its
atomic number.

Going back to the tuple atoms, deleting one of the components — in particu-
lar, Lithium — begins with determining which component Lithium is; that is, what
is its index? Start at the first element of the tuple and look for the string Lithium,
stopping when it is found.

for i in range (0, len(atoms)) :

if atoms[i] == "Lithium": # Found it at location i
break;

else:
i = -1 # not found

Knowing the index of the element to be deleted, it is also known that all ele-
ments before that one belong to the new tuple and all elements after it do, too. The

120 M Python: An Introduction to Programming-Second Edition

elements before element i can be written as atoms[0:i]. Each element consists of
a string and an integer, and assuming that both are to be deleted means that the
elements following element i are atoms][i+2:]. In general, to delete one element,
the second half would be atoms][i+1:]. The end of the code snippet for deleting
Lithium is as follows:

if i>=0:

atoms = atoms[0:1] + atoms[i+2:]

The tuple atoms has not been altered so much as it has been replaced com-

pletely with a new tuple that has no Lithium component.

Update

Again, because a tuple is immutable, individual elements cannot be changed.
A new tuple can be created that has new elements; in particular, updating an ele-
ment means creating a new tuple that has all of the other elements except the one
being updated, and that includes the new value in the correct position.

Problem: Change the entry for Lithium to an entry for Oxygen.

An update is usually a deletion followed by the insertion or addition of a
new component. A deletion was done in the previous section, so what remains
is to add a new component where the old one was deleted. Inserting the element
Oxygen in place of Lithium would begin in the same way as the simple deletion
already implemented:

for i in range (0, len(atoms)):

if atoms[i] == "Lithium": # Found it at location i
break;
else:
i=-1 # not found

Next, a new tuple for Oxygen is created:
newtuple = ("Oxygen", 8)
And finally, this new tuple is placed at location i while Lithium is removed:
if i>=0:
atoms = atoms[0:1] + newtuple + atoms[i+2:]

However, an update may not always involve a deletion. If Lithium is not a
component of the tuple atoms, then perhaps Oxygen should be added to atoms
anyway. Where? How about at the end?

Chapter 3 - Sequences: Strings, Tuples, and Lists Il 121

else: # If 1 is -1 then the new tuple goes at the end
atoms = atoms + newtuple

Tuple Assignment

One of the unique aspects of Python is the tuple assignment. When a tuple is
assigned to a variable, the components are converted into an internal form (that
is, the one tuples always use). This is called tuple packing:
atoms=("Hydrogen", 1, "Helium",2,"Lithium", 3, "Beryllium", 4,

"Boron", 5, "Carbon", 6)

What is really interesting is that tuple unpacking can also be used. Consider
the tuple:
srec = ('Parker', 'Jim', 1980, 'Math 550', 'C+', 'Cpsc 302',

\J A+ \J)
which is a tuple packing of a student record. It can be unpacked into individual
variables in the following way:

(fname, lname, year, cmin, gmin, cmax, gmax) = srec

Which is the same as

fname = srec[0]
lname = srec[1l]
year = srecl2]
cmin = srec[4]
gmin = srec|[5]
cmax = srec|6]
gmax = srecl[7]

Of course, the implication is that N variables can be assigned the value of N
expressions or variables simultaneously if both are written as tuples. Examples
are as follows:

(a, b, ¢, d, e) = (1,2,3,4,5)
(£, g, h, 1, J) = (a, b, ¢, d, e)

The expression
(£, 9, h, i, J) =2 ** (a,b,c,d,e)

is invalid because the left side of ** is not a tuple, and Python won’t convert 2
into a tuple. Also,

(fl gl hl il j) = (2I2I2I2I2) **x (alblcldle)

122 W Python: An Introduction to Programming-Second Edition

is invalid because ** is not defined on tuples, nor are other arithmetic opera-
tions. As with strings, + means concatenation, though, so (1,2,3) + (4,5,6) yields
(1,2,3,4,5,6).

Exchanging values between two variables is a common thing to do. It’s an es-
sential part of a sorting program, for example. The exchange in many languages
requires three statements because a temporary copy of one of the variables has to
be made during the swap:

temp = a
a=>
b = temp

Because of the way that tuples are implemented, this can be performed in one
tuple assignment:

(a,b) = (b,a)
This is a little obscure, even to experienced programmers. A Java program-
mer could see what was meant, but initially, the rationale would not be obvious.

This statement deserves a comment such as “perform an exchange of values us-
ing a tuple assignment.”

Built-in Functions for Tuples

As examples for the table below, use the following:

TL = (1,2,3,4,5)
T2 = (_1121415!7)

Table 3.2
Tuple Methods and their explanations

Function Explanation Example
(What Is Returned?)
len(T1) Gives the number of compo- len(T1l) == 5
] : nents that are members of T1. :
max(Tl) Returnsthelargestelementmax Gy
that is a component of T1. max (T2) == 7

imin(Tl) iReturns the smallest element min(T1l) == 1
3 : that is a component of T1. :min(T2) == -1

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 123

In addition, tuples can be compared using the same operators as for integers
and strings. The comparison is done on an element-by-element basis, just as it
is with strings. In the example above, T1>T2 because at the first location where
the two tuples differ (the initial component) in the element in T1 is greater than
the corresponding element in T2. It is necessary for the corresponding elements
of the tuple to be comparable; that is, they need to be of the same type. So if the
tuples t1 and t2 are defined as

tl = (1, 2, 3, "4", "5")

t2 = (-1,2,4,5,7)

then the expression t1>t2 is not allowed. A string cannot be compared against
an integer, and element 3 of t1 is a string, whereas element 3 of t2 is an integer.

LISTS

One way to think of a Python /ist is that it is a tuple in which the components
can be modified. They have many properties of an array of the sort one might
find in Java or C, in that they can be used as a place to store things and have ran-
dom access to them; any element can be read or written. They are often used as
one might use an array, but have a greater natural functionality.

Initially a list looks like a tuple, but uses square brackets to delimit it.

listl = [2, 3, 5, 7, 11, 13, 17, 19] # Prime numbers under 20

list2 = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",
"Carbon"]
list3 = ["hi", "ohio", "salut"]

A list can be empty:
listd = []

and because they are like tuples and strings, each element in a list has an index,
and they begin (as usual) at 0. Lists can be indexed and sliced, as before:

listl[2:4] is [5, 7]
The concatenation is like that of strings, too:
liste = listl + [23, 31]

yields [2, 3,5, 7, 11, 13, 17, 19, 23, 31]

124 W Python: An Introduction to Programming-Second Edition

Negative values index from the end of the string. However, unlike strings and
tuples, individual elements can be modified. So

listl[2] = 6
results in listl being [2, 3, 6, 7, 11, 13, 17, 19]. Also,
1ist3[1:] = "bonjour"
results in list3 taking the value oops; it becomes
['hi', 'b', 'o', 'n', 'j', 'o', 'u', 'r'l.
That’s because a string is a sequence, too, and this string consists of seven
components. Each component of the string becomes a component of the list. If

the string “bonjour” is supposed to become a single component of the list, then it
needs to be done this way:

1ist3[1:] = ["bonjour"]

The other components of list3 are sequences, and now so is the new one.
However, integers are not sequences, and the assignment

listl[2] = [6,8,9]
results in the value of list2 being

(2, 3, 16, 8, 91, 7, 11, 13, 17, 19]

There is a list within this list; that is, the third component of listl is not an

integer, but is a list of integers. That’s legitimate, and works for tuples as well, but
may not be what is intended.

Problem: Compute the average (mean) of a list of numbers.

The mean is the sum of all numbers in a collection divided by the number of
numbers. If a set of numbers already exists as a list, calculating the mean might
involve a loop that sums them followed by a division. For example, assuming that
listl =[2, 3, 5,7, 11, 13, 17, 19]:

mean = 0.0

for i in 1listl:

mean = mean + i
mean = mean/len(listl)

A list can be used in a loop to define the values that the loop variable i takes on,
a similar situation to that of a tuple. A second way to do the same thing would be

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 125

mean = 0.0
for i in range(0,len(listl)):
mean = mean + listl[i]

mean = mean/len(listl)

In this case, the loop variable i is an index into the list and not a list element,
but the result is the same. Python lists are more powerful than this, and making
use of the extensive power of the list simplifies the calculation:

mean = sum(listl) / len(listl)

The built-in function sum calculates and returns the sum of all of the ele-
ments in the list. That was the purpose of the loop, so the loop is not needed at all.
The functions that work for tuples also work for lists (min, max, len), but some
of the power of lists is in the methods it provides.

Editing Lists

Editing a list means to change the values within it, usually to reflect a new
situation to be handled by the program. The most obvious way to edit a list is to
simply assign a new value to one of the components. For example,

list2 = ["Hydrogen","Helium","Lithium", "Beryllium", "Boron",
"Carbon"]
1ist2[0] = "Nitrogen"

print (list2)
results in the following output:

[‘Nitrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

This substitution of a component is not possible with strings or tuples. It is
possible to replace a single component with another list:

list2 = ["Hydrogen","Helium","Lithium","Beryllium",
"Boron", "Carbon"]
1ist2[0] = ["Hydrogen", "Nitrogen"]

results in

list2 = [['Hydrogen',6 'Nitrogen'], 'Helium', 'Lithium’,
'Beryllium', '"Boron', '"Carbon']

126 M Python: An Introduction to Programming-Second Edition

Insert

The insert method is not normally what is thought of as an insertion. We use
the insert method to place new components within a list. This method places a
component at a specified index; that is, the index of the new element will be the
one given. To place “Nitrogen” at the beginning of list2, which is index 0,

list2.insert (0, "Nitrogen")

The first value given to insert, 0 in this case, is the index at which to place the
component, and the second value is the thing to be inserted. Inserting “Nitrogen”
at the end of the list would be accomplished by

list2.insert (len(list2), "Nitrogen)
However, consider this:
list2.insert (-1, "Nitrogen)

Will this insert “Nitrogen” at the end? No. At the beginning of the statement,
the value of list2[-1] is “Carbon.” This is the value at index 5. Therefore, the in-
sert of “Nitrogen” will be at index 5, resulting in

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Nitrogen’, ‘Carbon’]

Append

Another way to add something to the end of a list is to use the append method:

list2.append ("Nitrogen")
Results in

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’, ‘Nitrogen’]
Remember, the + operation only concatenates a list to a list, so the equivalent
expression involving + is

list2 = 1list2 + ["Nitrogen"]

Extend

The extend method does almost the same things as the + operator. With the
definitions

a = [1,2,3/4/5]
b=16,7,8,9,10]

4

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 127

print (a+tb)
a.extend (b)
print (a)

The output is

[1, 2’ 3, 4’ 5, 65 75 8, 9’ 10]
[1,2,3,4,5,6,7,8,9, 10]
However, if append has been used instead of extend above,
a=11,2,3,4,5]
b = [6171 8! 9110]
print (a+b)

a.append (b)
print (a)

The result would have been

[1,2,3,4,5,6,7,8,9, 10]
[1,2,3,4,5,[6,78,9,10]]

Remove

The remove method does what is expected: it removes an element from the
list. But unlike insert, for example, it does not do it using an index; the value to
be remove is specified.
listl = ["Hydrogen","Helium","Lithium", "Beryllium", "Boron",

"Carbon"]
listl.remove ("Helium")

results in the listl being [‘Hydrogen’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’].
Unfortunately, if the component being deleted is not a member of the list, then an
error occurs. There are ways to deal with that, or a test can be made for trying to
delete an item:
if "Nitrogen" in listl:

listl.remove ("Nitrogen")

If there is more than a single instance of the item being removed, then only
the first one is removed.

128 M Python: An Introduction to Programming-Second Edition

Index

When discussing tuples, we noted that the index method looked through the
tuple and found the index at which a specified item occurred. The index method
for lists works in the same way.
listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",

"Carbon"]
print (listl.index ("Boron"))

prints “4,” because the string “Boron” appears at index 4 in this list (starting from
0, of course). If there is more than one occurrence of “Boron” in the list, then the
index of the first one (i.e., the smallest index) is returned. If the value is not found
in the string, then an error occurs. It might be appropriate to check:

if "Boron" in listl:
print (listl.index ("Boron"))

Pop

The pop method is effectively the reverse or inverse of append. It removes
the last item (i.e., the one with the largest index) from the list. If the list is empty,
then an error occurs. For example,
listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",

"Carbon"]

listl.pop ()
print (listl)

prints the result

[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’]

To avoid the error that can occur if the list is empty, simply check to see that
the length of the list is greater than zero before using pop:

if len(listl) > O:
listl.pop ()

The method is called pop because it represents a way to implement the opera-
tion of the same name on a data structure called a stack.

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 129

Sort

This method places the components of a list into ascending order. We use the
listl variable that has been used so often for the following code:
listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",
"Carbon"]

listl.sort ()
print (listl)

The result is

[‘Beryllium’, ‘Boron’, ‘Carbon’, ‘Helium’, ‘Hydrogen’, ‘Lithium’]
which is in alphabetic order. The method sorts integers and floating point num-
bers, as well. Strings and numbers cannot be mixed, though, because they cannot
be compared. So
list2 = ["Hydrogen",1l,"Helium",2,"Lithium",3,"Beryllium", 4,

"Boron", 5]
list2.sort ()

results in an error that is something like

list2.sort ()
TypeError: unorderable types: int () < str()

The meaning of this error should be clear. Things of type int (integer) and
things of type str (string) cannot be compared against each other and so cannot
be placed in a sensible order if mixed. For sort to work properly, all of the ele-
ments of the list must be of the same type. It is always possible to convert one
type of thing into another, and in Python converting an integer to a string is ac-
complished with the str() function; a string is converted into an integer using
int(). str(3) would result in “3,” and int(“12”) is 12. An error will occur if it is
not possible, so int(12.2) will fail.

If each element of a list is itself a list, it can still be sorted. Consider the fol-
lowing list:

z = [["Hydrogen", 3], ["Hydrogen",2], ["Lithium", 3],
["Beryllium",4], ["Boron",5]]

When sorted this becomes:

[['Beryllium',4],['Boron',5], ['Hydrogen',2], ['Hydrogen', 3],
["Lithium', 31]

130 M Python: An Introduction to Programming-Second Edition

Each component of this list is compatible with the others, consisting of a
string and an integer. Thus, they can be compared against each other. Notice that
there are two entries for hydrogen: one with a number 2 and one with a number 3.
The sort method arranges them correctly. A list is sorted by individual elements
in sequence order, so the first thing tested would be the string. If those are the
same, then the next element is checked. That’s an integer, so the component with
the smallest integer component will come first.

Reverse

In any sequence, the order of the components within it is important. Revers-
ing that order is a logical operation to provide, but may not be used very often.
One instance where it can be important is after a sort. The sort method always
places components into ascending order. If they are supposed to be in descend-
ing order, then the reverse method becomes valuable. As an example, consider
sorting the list q:

q = [5, 6, 1, 5, 4, 9, 9, 1, 6, 3]
g.sort ()

The value of q at this point is
[1,1,3,4,5,5,6,6,9,9]

To place this list in descending order, the reverse method is used:
g.reverse ()

and the result is
[9,9,6,6,5,5,4,3, 1, 1]

It is hard to say whether ascending order is needed more often than descend-
ing order. Names are often sorted smallest first (ascending), but dates are more
likely to require more recent dates before later ones (descending).

<RI Count

The count method is used to determine how many times a potential compo-
nent of a list actually occurs. It does not return the number of elements in the list
— that job is done by the len function. We use the list q as an example:

Chapter 3 - Sequences: Strings, Tuples, and Lists Il 131

q =[5 6, 1, 5, 4, 9, 9, 1, 6, 3]
print (l1,g.count(l), 2, g.count(2), 3, g.count(3), 99,
g.count (99))

This code results in the output
12 20 31 990

where the spacing is enhanced for emphasis. This says that there are 2 instances
of the number 1 (1,2) in the list, zero instances of 2 (2,0), one instance of the num-
ber 3 (3,1), and none of 99 (99,0).

List Comprehension

Two mechanisms were discussed for creating a list of items. The first is to use
constants, as in the list q in the previous section. The second appends items to a
list, and this could be done within a loop. Making a list of perfect squares could
be done like this:

t=1]

for i in range (0,10):

t =t + [i*i]

which creates the list [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]. This kind of approach is

common enough that a special syntax has been created for it in Python — the /ist
comprehension.

The basic idea is simple enough, although some specific cases are compli-
cated. In the situation above involving perfect squares, the elements in the list are
some function of the index. When that is true, the loop, index, and function can
be given within the square brackets as a definition of the list. The list t could be
defined as

tt = [1i**2 for 1 in range(10)]

The for loop is within the square brackets, indicating that the purpose is to
define components of the list. The variable i here is the loop variable, and i**2 is
the function that creates the elements from the index. This is a simple example of
a list comprehension.

We create random integer values with the following code:

tt = [random.randint (0,100) for i in range(10)]

132 M Python: An Introduction to Programming-Second Edition

We can put the first six elements in all uppercase letters, as well:

listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",
"Carbon"]
ss = [i.upper() for i in listl]

This is a very effective way to create lists, but it does depend on having a
known connection between the index and the element.

S¥BP Lists and Tuples

A tuple can be converted into a list. Lists have a greater functionality than
tuples; that is, they provide more operations and greater ability to represent data.
However, they are more complicated and require more computer resources. If
something can be represented as a tuple, then it is likely best to do so. A tuple is
designed to be a collection of elements that as a whole represent some more com-
plicated object, but that individually are perhaps of different types. This is rather
like a C struct or Pascal record. A list is more often used to hold a set of elements
that all have the same type, more like an array. This is a good way to think of the
two types when deciding what to use to solve a specific problem.

Python provides tools for conversion. The built-in function list takes a tuple
and converts it into a list; the function tuple does the reverse, taking a list and
turning it into a tuple. For example, converting listl into a tuple involves the fol-
lowing code:

tuplel = tuple(listl)
print (tuplel)

This code yields

(‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’)

This is seen to be a tuple because of the “(* and “)” delimiters. The reverse
operation

v = list (tuplel)
print (v)

prints the text line
[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

and the square brackets indicate this is a list.

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 133

Exceptions

Exceptions are the usual way to check for errors of indexing and membership
in lists. The error is allowed to occur, but an exception is tested and handled in the
case where, for example, an item being deleted is not in the list.

Problem: Delete the element Helium from a list.

Earlier, as an example of the remove method, a program snippet was written
to delete the element Helium from a list of elements.
listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",

"Carbon™"]
if "Helium" in listl:
listl.remove ("Helium")

Because the list list] may not have Helium as one of the components a check
was made before an attempt to delete it. An attempt to delete an element from a
list where the element does not appear in that list results in an AttributeError.
Rather than perform an explicit test, a Python programmer would more likely use
an exception here. The error can be caught as follows:

listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",
"Carbon"]
try:
listl.remove ("Helium")
except:

print ('Can't find Helium')

The advantage of this over allowing the error to occur is that the program can
continue to execute.

Problem: Delete a specified element from a list.

Given the same list, read an element from the keyboard and delete that ele-
ment from the list. The basic code is the same, but now the string is entered and
could be anything at all. It’s easier to test a program when it can be made to fail on
purpose. The name is entered using the input function and is used as the param-
eter to remove. Now it is possible to test all of the code in this program without
changing it. First, here is the program:
listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",

"Carbon"]

134 M Python: An Introduction to Programming-Second Edition

s = input ("Enter:")
try:

listl.remove (s)
except:

print ('Can't find ', s)
print (listl)

Properly testing a program means executing all of the statements that com-
prise it and ensuring that the answer given is correct. In this case, first delete an
element that is a part of the list. Try Lithium. Here is the output:

Enter: Lithium
[‘Hydrogen’, ‘Helium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

This is correct. These are the statements that were executed in this instance:

listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",
"Carbon"]
s = input ("Enter:")
try:
listl.remove(s) # This was successful

print (listl)
Now try to delete “Oxygen.” The output is
Enter: Oxygen
Can’t find Oxygen
[‘Hydrogen’, ‘Helium’, ‘Lithium’, ‘Beryllium’, ‘Boron’, ‘Carbon’]

This is correct. These statements were executed:

listl = ["Hydrogen","Helium","Lithium","Beryllium", "Boron",
"Carbon"]
s = input ("Enter:")
try:
listl.remove (s) # this was not successful
except:

print ('Can't find ', s)
print (listl)

All of the code in the program has been executed and the results checked
for both major situations. For any major piece of software this kind of testing is

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 135

exhausting, but it is really the only way to minimize the errors that remain in the
final program.

SET TYPES

Something of type set is an unordered collection of objects. An element can
only be a member of a given sef once, so in that sense it is much like a mathemati-
cal set. In fact, that’s the point. Because a set is unordered operations, indexing
and slicing are not provided. Python does support membership (is), size (len()),
and looping on membership (for i in set).

Mathematical sets have certain specific, well-defined operations, and those
are available on a Python set also.

Subset setl < set2 means setl is a true subset of s2.

Intersection setl & set2 creates a new set containing members in common with
both.

Union setl | set2 creates a new set with all elements of both.

Difference setl-set2 creates a new set with members that are not in both.
Equality setl==set2 is true if both sets contain only the same elements.

Creating a new object of type sef is a matter of specifying either that it is a set
or what the elements are. One way is to use the {} syntax:

setl = {1,3,5,7,9}
or to use the constructor
set2 = set(range(l, 10))
which gives the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. Therefore,
setl<set2 is True
setl & set2is {9, 1,3,5,7} (Note: Order does not matter to a set.)
setl |set2is {1,2,3,4,5,6,7,8,9}
set2 —setl is {8, 2, 4, 6}
A new element can be added to a set using add():

setl.add(11)

136 M Python: An Introduction to Programming-Second Edition

and removed using remove():

setl.remove (11)

or discard():

setl.discard(11l)

If the element being removed is not in the set, then an error will occur (Key-
Error) when remove() is called, but not with discard(). This should be tested
first or be placed in an except statement.

All of the examples so far involve integers belonging to a set, but other types
can belong as well: floating point numbers, strings, and even tuples (not /ists). For
example, the following are legal sets:

{ "a" ’ e ’ min ’ "o" ’ " }

{"cyan", "yellow", "magenta"}

{(2,4), (3,9), (4,16), (5,25), (6,36), (7,49)}

Example: Craps

Craps is a dice game, and it commonly involves betting on the outcome. The
player (shooter) rolls two dice. If, on the first roll (pass), a total of 7 or 11 is ob-
tained, then the shooter wins. An initial roll of 2, 3, or 12 loses immediately. Any
other roll is called the point. In that case, the shooter continues to roll the dice. If
a 7 is obtained, then the shooter loses, and if the point number is rolled, then the
shooter wins. The shooter continues to roll until on or the other occurs. One way
to implement this game in Python is to use sets.

Elements of the sets are the values on each die, which is to say one roll. There
are two dice, so a total of 36 combinations exist. A single roll is a tuple, such as
(1,1) or (3,4). There are only 12 distinct sums of two dice, and multiple ways to
achieve them. A sequence named roll is created that contains a set for each pos-
sible value, and that set contains all of the ways that the value can be obtained.
For instance, there are two ways to roll a 3, so

roll[3] = {(1,2), (2,1)}

Initially, a set is created for each possible roll of a pair of dice and then is
initialized as described:

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 137

from random import *

roll = list(range(0,13)) # Create the empty list
for i in range(1,13): # and fill with empty sets.
roll[i] = set|()

for i in range (1,7):
for j in range (1,7):
k = i+3
roll(k].add((i,3))

Now for each possible roll
of two dice, add that roll
to the element of roll for
that value (sum of the
dice)

Now roll[i] contains all of the ways to roll a value of i. In particular, roll[7]
contains all ways to roll a 7 and roll[11] contains all ways to roll an 11. Thus, all
of the rolls that win on the first pass can be placed in a single set, the union of
roll[7] and roll[11]:

winner = roll[7] | roll[1l1l]

R

Similarly, the rolls that will lose for the shooter on the first pass are as fol-
lows:

loser = roll[2] | roll[3] | roll[l2]

If any other roll is thrown, then that becomes the point. Roll the die amount
to get a random number between 1 and 6, inclusive, or

diel = randrange(1l,7)
die2 = randrange(1l,7)

Remember that randrange() produces a number /ess than the second param-
eter. Given this roll, the point is the set roll[diel+die2]. Continuing the program
from the die rolls:

val = (diel,die?2) # A tuple, the current roll
print ("Shooter rolls ", wval)
if val in winner: # Is this tuple a winner?
print ("The shooter wins!")
elif val in loser: # Is it a loser?
print ("The shooter loses")
else:
point = roll[diel+die?] # Define the point set

print (diel+die2, " is your point.")

138 M Python: An Introduction to Programming-Second Edition

Now the dice are rolled repeatedly. If the roll is in the point set, then the
shooter wins. If the roll is a 7 (in the set roll[7]), then the player loses. Otherwise
the shooter rolls again.

while True: # Repeat until a win or
#loss happens

diel = randrange(1l,7) # Roll the dice

die2 = randrange(1l,7)

val = (diel, die2) # val is a tuple

print ("Rolls ", wval)

if val in roll[7]: # Any 7 roll loses
print ("The shooter loses!")
break

if val in point: # Rolling the 'point' wins.
print ("The shooter makes the point. A winner!")
break

In a real craps game, this entire process is repeated, and bets are placed on
each individual game as to whether the player will win or lose.

SUMMARY

A variable can have a type, which could be a list or sequence of other, simpler
things. Using variables having these types is an essential part of writing useful
and effective code. Python offers strings, tuples, and lists as objects that consist
of multiple parts. They are called sequence types.

A string is a sequence of characters. The word sequence implies that the or-
der of the characters within the string matters, and that is true of a string. Strings
most often represent the way that communication between a computer and a hu-
man takes place. A string can be indexed to see what character is in any position
(e.g., s[i]), can be searched for a string that occurs with it, can have characters
concatenated to it, and can be used in many other useful operations. If a string s
contains an integer, then int(s) yields that integer, and str(i) creates a string from
an integer, i.

A tuple is almost identical to a string in basic structure, except that it is com-
posed of arbitrary components instead of characters. Examples are tupl = (2, 3,
5) and tup2 = (“Hydrogen”,“Helium”,“Carbon”). A tuple can contain mixed
type, such as integers and strings: tup3 = (“star”, 1, “planet”, 2). An element of

Chapter 3 - Sequences: Strings, Tuples, and Lists [l 139

a tuple cannot be altered, so it is said to be immutable, although concatenation is
possible.

A list is like a tuple but is not immutable, so individual elements can be modi-
fied. A list uses square brackets as a delimiter, instead of parentheses as used for a
tuple. Changing an element involves indexing it, so if listl is a list then list1|2] =
6 modifies element 2 of that list.

A set is an unordered collection of objects. An element can be almost any
type, but can only occur in a set once. This mimics a mathematical set. Elements
can be added and removed, and the set operations union, intersection, and differ-
ence can be performed.

Exercises

For the exercises below, assume the following definitions:

strl = "okra is the closest thing to nylon i've ever eaten."

str2 = "pull the string, and it will follow wherever you
wish."

str3 = "let out a little more string on your kite."

strd = "every string is a different color, a different
voice."

vowels = 'aeiou'

atoms=("Hydrogen", 1, "Helium",2,"Lithium", 3, "Boron", 5,

"Carbon", 6, "Oxygen", 8)

1. What is printed by the following code snippets?
a.for i in range(0,len(str3)):
print (str3[i], end="")
b. for for i in range(0,len(str3)):
print (i, end='")
c.for i in range(0,len(str3)):
print (str2[i], end='")
d.for i in str3:
print (i, end='")
e.for 1 in str3:
if i in vowels:
print (i, end=’")

140 M Python: An Introduction to Programming-Second Edition

f.for 1 instrl:
if not(i in vowels):
print (i, end=’")

2. Construct a loop that prints out all characters of str4 that correspond to a
vowel in str3. Note: the two strings are different lengths.

3. A Caesar cypher is a way to transmit a secret message. When encoding a
message, each character is replaced by one that is a fixed distance further
along the alphabet. If that distance is 6, for example, the letter “a” would be

e 9

replaced by “g,” which is 6 positions further along. The characters at the end
wrap around to the beginning, so “z” is “f.” Write some Python code that
encodes strl in this way. Ensure that it works by decrypting the following
string:

“varr znk yzxotm, gtj oz corr lurruc cnkxkbkx eua coyn.”
Ans: ugxg oy znk iruykyz znotm zu terut o’bk kbkx kgzkt.

4. Write a Python snippet that creates two tuples from the single tuple atoms: one
named elements, which contains only the names, and one called numbers,
which contains the atomic numbers of the elements in the tuple atoms.

5. Write a Python program that reads numbers from the keyboard and appends
them to a tuple. Stop the process when a negative number is entered and then
print the tuple that was created.

6. A deck of playing cards consists of 52 items: each one has one of four suits
(clubs, diamonds, hearts, and spades) and within each suit values from 1-10,
and the jack, queen, and king. Write a Python program that creates a deck of
cards, shuffles them, and prints out the result.

7. Write a Python program that reads names (single words) one at a time from a
keyboard and deletes them from a list named names where they are already
elements of that list. If the name is not already a member of the list, then add
it. Typing the word “quit” terminates the program.

8. Assume that a string named temp exists and has a value. Write Python code
that prints temp backwards.

9. A palindrome is a phrase (a string) that reads the same forwards and
backwards. The name Hannah is a palindrome; so is Ogopogo, the name of a
monster that lives in lake Okanogan. Write a Python program that determines
whether a given string is a palindrome.

Chapter 3 - Sequences: Strings, Tuples, and Lists Il 141

10. Most examples of palindromes contain spaces and punctuation, and these
characters are ignored when deciding whether the phrase is palindromic.
So is case. Thus, the phrase “I prefer pi” is a palindrome. With these
considerations in mind, write a Python program that determines whether a
string is a palindrome.

Notes and Other Resources

Built-intypes: https.//docs.python.org/3.4/library/stdtypes. html?highlight=set#set
Python strings: https./docs.python.org/3/library/string.html
Rules of Craps: http.//’www.bigmcasino.com/learn-more/learn-to-play-craps/
what-are-the-basic-rules-of-craps/
1. David Mertz (2003). Text Processing in Python, Addison Wesley Professional,
ISBN-13: 978-0321112545.

2. David Makinson (2012). Sets, Logic and Maths for Computing, Springer;
2nd ed. ISBN-13: 978-1447124993.

3. J. D. Oldham (2005). “What happens after Python in CS1?” Journal of
Computing Sciences in Colleges, 20(6), 7-13.

CHAPTER 4

FUNCTIONS

4.1 Function Definition: Syntax and Semantics. 144
4.2 Function EXeCUtioncccuuuuiiinniiiiiieeo . 150
4.3 ReCUTSIONooiiiii i 170
4.4 Creatinga Python Module 176
4.5 Program Design Using Functions—The Game of Nim 178
4.6 SUMMAry. 184

In this chapter

There is a large and useful set of functions built in to Python. These are
sometimes simply there for the using, like print and input, and sometimes are
part of a module that must be imported, and like random. However large this col-
lection of functions is, it is impossible that it will include everything that every
programmer needs. At some point, there will be a need to create a function that
does something new, and Python should permit this.

Why would a programmer want to create a function of their own? It is partly
a principle of “reduce, re-use, or recycle.” Functions are all about code re-use. If
some section of code can be invoked as a function instead of being repeated many
times, then there will be less typing involved. It is also to support more correct
programs: a small code unit like a function can be very thoroughly tested and
nearly guaranteed to be correct. It is also to promote the use of working code:
once a function is tested, it can be placed in a collection of code (module) and
used again instead of being re-written many times.

144 W Python: An Introduction to Programming-Second Edition

A function is really just some code that has a name, and can be executed
simply by invoking that name. It usually represents some task that has to be done
fairly frequently, but that’s not a requirement. Some functions are invoked (or
called) only once. In this context a function is a way to break up a long piece of
code into many shorter pieces which, as has been pointed out, are easier to test
and maintain.

A function should also have one single task, or at least one main task. That
task should be represented in the function name. A function named maximum
should have the task of locating the maximum of something; a function named
cosine should calculate the cosine of an angle. A function named wilma tells
another programmer who is reading the code nothing about what the program is
doing, and if a function named cosine computes the square root of a number, then
it is not just uninformative, but misleading. There is a social compact between
programmers that says that you should be as clear as possible about what your
code is doing.

The fact that many functions return a value has been skipped over, but it is a
key part of the function construct. The code within the function has a purpose,
and often that purpose is concentrated in the return value. However it works,
and whatever the code looks like, the purpose of the cosine function is to return
a single value that is the mathematical cosine of a given angle. The nature of the
function is encapsulated in that value. There are some functions that do not ex-
plicitly return a value; such a function might be called to print an error message
or draw a graphical object in a window. Even if it is not specifically declared in
the definition, all functions return something. If that something is not defined,
then the function returns a value called None.

How can functions be declared and used in Python?

FUNCTION DEFINITION:
SYNTAX AND SEMANTICS

Unlike in the cases of if statements or for statements, a function definition
does not involve the word “function.” As an example of a simple definition in
Python, imagine a program that needs a function to print twenty # characters on
a line. It could be defined as follows:

Chapter 4 - Functions Il 145

def pound20 ():
for i in range(0,20):
print (n#n’ end:nn)

The word def always begins the definition of a function. This is followed by
the name of the function, in this case, pound20, because the function prints 20
pound characters (also known as a hash character or octothorpe). Then comes the
list of parameters, which can be thought of as a tuple of variable names. In this
case, the tuple is empty, meaning that nothing is passed to the function. Finally,
we use the : character that defines a new suite that comprises the code belonging
to the function. Now, the code is indented one more level, and when the indenta-
tion reverts to the original level, the function definition is complete.

Calling this function is a matter of using its name as a statement or in an ex-
pression, being careful to always include the tuple of the parameters. Even when
the tuple is empty, it helps distinguish a function from a variable. A call to this
function would be as follows:

pound20 ()

poundn is the name of
Keyword def means that this function. It will be
a function definition how it is called.
will follow.

ncharacters is a value (parameter)
being given to this function. There
does not have to be one.

def poundn (ncharacters)O\The : means the

function's code
follows.

=>|for i1 in range (0,ncharacters):
print ("#", end="")

Indent at least 4 more characters
for the duration of the function.

Figure 4.1
The syntax of a function definition.

The result is that 20 # characters are printed on one line of the output console.

A function can be given or pass one or more values that will determine the
result of the function. A function cosine, for example, would be passed an angle,
and that angle would be used to compute the cosine. Each call to cosine passing
a different value can yield a different result. In the case of the function that prints
pound characters it might be useful to pass it the number of pound characters to

146 M Python: An Introduction to Programming-Second Edition

print. It should not be called pound20 anymore because it does not always print
20 characters. It is called poundn this time:

def poundn (ncharacters):
for i in range(0,ncharacters):
print ("#", end="")

The variable ncharacters that is given in parentheses after the function name
is called a parameter or an argument, and indicates the name by which the func-
tion refers to the value passed to it. This name is known only inside of the func-
tion, and while it can be modified within the function, this modification does not
have any bearing on anything outside. The call to poundn must now include a
value to be passed to the function:

poundn (3)

When this call is performed, the code within poundn begins executing, and
the value of ncharacters is 3, the value that was passed. It prints 3 characters and
returns. A subsequent call to poundn could be passed a different number, perhaps
8, and then ncharacters would take on the value 8 and the function would print
8 characters. It will print as many characters as requested through the parameter

INKH Problem: Use the function poundn to Draw a Histogram

In Chapter 2, a simple histogram was created from some print statements and
loops. The same code was repeated many times, one for each histogram bar. As it
happens, the character used to draw the histogram bars was the pound character,
so the function poundn could be used as a basis for a histogram program. Here
is the output that is desired:

Earnings for WidgetCorp for 2016
Dollars for each quarter

Q1: #####H## - 190000

Q2: #HH#HIHHEHHAHH - 340000

Q3: HHHH A A AR 873000
Q4: HH#HHHEHHHIHHHE - 439833

Each pound character represents $20,000, and there are four variables that
hold the profit for each of the four quarters: ql, g2, q3, and g4. Given these

Chapter 4 - Functions Il 147

criteria, a solution using poundn would call the function four times, once for
each quarter:

print ("Earnings for WidgetCorp for 2016")

print (" Dollars for each quarter ")

print (" ")

gl = 190000 # The dollar amounts for profits

g2 = 340000 # in each of the four quarters of 2016
a3 873000

g4 = 439833

print ("Ql: ", end="")
poundn (int (g1/20000)) # Raw dollar amount is divided by
20000 to yield the number of
characters.
print (" ", gl)

print ("Q2: ", end="")
poundn (int(g2/20000))
print (" ", q2)

print ("Q3: ", end="")
poundn (int (g3/20000))
print (" ", g3)

print ("Q4: ", end="")
poundn (int(g4/20000))
print (" ", qd)

Each profit value must be scaled by dividing by 20,000, just as happened be-
fore. In this case, the resulting value is passed to poundn, indicting the number
of #s to draw.

Problem: Generalize the Histogram Code for Other Years

Any company will need to do financial reports every year at least. Hiring a
programmer to do this task on a computer is not a reasonable thing to do, because
computers can be made to do this job in a very general way. For example, given
that each year will have four quarters and each quarter will have a profit, why not

148 M Python: An Introduction to Programming-Second Edition

store these data as a list? Each year will have one list containing four items, and
the name of the variable could initially be related to the year:

profit2016 = [190000, 340000, 873000, 439833]

The profit for the first quarter is profit2016[0], the second quarter is prof-
it2016[1], and so on. Using this variable means passing one of the elements of the
list to poundn instead of a simple variable, but that is fine, it’s a legal expression.
So drawing the characters for the first quarter would be done with the following
code:

poundn (int (profit2016[0]/20000))

Now consider what else gets printed. To print everything for the first quarter
the code was:

print ("Ql: ", end="")
poundn (int (profit2016[0]1/20000))

print (" , 9l)

This means that the label on the left, Q1, the parameters to poundn, and the
actual value of the profit are needed. All of these are available and can be pro-
vided within a simple loop. Assuming that the loop variable i runs from 0 to 3,
the code within that loop that duplicates the previous example can be constructed
one line at a time. In each iteration, the quarter is i+1 because i starts at 0; convert
that to a string and build the label “Q1 :” from it:

print (Ql: ", end="")
print ("Q"+str(i+l)+": ", end="")

This is probably the trickiest part. The label string is constructed from the
letter “Q,” a number between 1 and 4 indicating the quarter, and for the terminal

€,

string “” . These are simply concatenated together in the print statement.

Now call poundn as before:

poundn (int (profit2016[i]/20000))
poundn (int (profit2016[i]/20000))

Finally, print the raw dollar value on the right:

print (" ", gql)
print (" ", profit2016([i])

Chapter 4 - Functions Il 149

Using this plan, the entire histogram can be drawn using only four state-
ments:

for i in range(0,4):

print ("Q"+str (i+1)+": ", end="")
poundn (int (profit2016[1]1/20000))
print (" ", profit2016([i])

There is another step. Since this will be done every year, create a function
that takes the data and the year as parameters. This function is called pqhisto-
gram:

def pghistogram (profit, year):
print ("Earnings for WidgetCorp for "+str (year))

print (" Dollars for each quarter ")
print (" ")
for i in range(0,4):

print ("Q"+str (i+1)+": ", end="")

poundn (int (profit[i]/20000))

print (" ", profitl[i])

The function pghistogram produces the same output as did the original pro-
gram, and does so more generally and concisely. This function also brings to
light two new ideas. One is that it is possible to pass more than one parameter to
a function. The second is that it is possible to call a function from within another
function; in this case, poundn is called from inside of pghistogram. The call is
made after defining the list that contains the profit values:

profit2016 = [190000, 340000, 873000, 439833]
pghistogram (profit2016, 2016)

These parameters are positional; that is, the first value passed will corre-
spond to the first name in the parameter list, and the second to the second. This
is the default for functions with any number of parameters.

A def statement is not a declaration. Such things are foreign to Python.
NOTE A def statement executes, and it creates a new function each time it is
executed.

150 M Python: An Introduction to Programming-Second Edition

FUNCTION EXECUTION

When a function is called, the first statement of that function starts to ex-
ecute, and it continues, statement by statement, through the code until the last
statement of that function or until it returns prematurely. When that last state-
ment executes, then the execution continues from the place where it was called.
As a function can be called from many places, Python has to remember where
the function was called so that it can return. Parameters can be expressions or
variables, and normally differ each time the function is called. Functions can also
access variables defined elsewhere.

Most importantly, functions return values.

F®NU Returning a Value

All functions return a value, and as such can be treated within expressions
as if they were variables having that value. Assuming the existence of a cosine
function, it could be used in an expression in the usual ways. For example,

X = cosine (x)*r

if cosine(x) < 0.5:

print (cosine(x) *cosine (x))

In these cases, the value returned by the function is used by the code to cal-
culate a further value or to create output. The expression “cosine(x)” resolves to
a value of some Python type. The most common purpose of a function is to cal-
culate a value, which is then returned to the calling part of the program and can
possibly be used in a further calculation. But how does a function get its value?
In a return statement.

The return statement assigns a value and a type to the object returned by the
function. It also stops executing the function and resumes execution at the loca-
tion where the function was called. A simple example would be to return a single
value, such as an integer or floating-point number:

return 0
returns the value 0 from a function. The return value could be an expression:

return x*x + y*y

Chapter 4 - Functions [l 151

A function has only one return value, but it can be of any type, so could be a
list or tuple that contains multiple components:
return (2,3,5,7,11)

return ["fluorine","chlorine","bromine","iodine",
"astatine"]

Expressions can include function calls, so a return value can be defined in
this way as well; for example

return cosine (x)

One of the simplest functions that can be used as an example is one that cal-
culates the square of its parameter.

def square (x):
return x*x

The print statement
print (square(12))
prints
144
Interestingly, the statement
print (square (12.0))
prints
144.0

The same function returns an integer in one case and a float in the other.
Why? Because the function returns the result of an expression involving its pa-
rameter, which in one case was integer and in the other was real. This implies
that a function has no fixed type and can return any type at all. Indeed, the same
function can have return statements that return an integer, a float, a string, and a
list independent of type of the parameter passed:

def test (x): # Return one of four types depending on x
if x<1:
return 1
if x<2:
return 2.0
if x<3:
return "3"

152 M Python: An Introduction to Programming-Second Edition

return [1,2,3,4]

print (test(0))
print (test(l))
print (test(2))
print (test(3))

The output is as follows:

1
2.0

3

(1, 2, 3, 4]

Problem: Write a function to calculate the square root of its parameter.

Two thousand years ago, the Babylonians had a way to calculate the square
root of a number. They understood the definition of a square root: that if y*y = x,
then y is the square root of x. They figured out that if y was an over-estimate to
the true value of the square root of x, then x/y would be an underestimate. In that
case, a better guess would be to average those two values: the next guess would
be yl = (y + x/y)/2. The guess after that would be y2 = (yl+x/y1)/2, and so on.
At any point in the calculation, the error (difference between the correct answer
and the estimate) can be found by squaring the guess yi and subtracting x from it,
knowing that yi*yi is supposed to equal x.

The function therefore starts by guessing what the square root might be. It
cannot be 0, because then x/y would be undefined. x is a good guess. Then, we
construct a loop based on the expression y2 = (yl+x/y1)/2, or more generally, yi+1
= (yitx/yi)/2 for iteration i. At first, run this loop a fixed number of times (here,
we use 20 times).

def root (x):
y = X

Compute the square root of x
First guess: too big,
probably

Iterate20 times

Average the prior guess

and x/y

Return the last guess

for i in range (1, 20):
y = (y + x/y)/2.0

H= FH= = H S

return y

This correctly computes the square root of 2 to 15 decimal places. This is
probably more than is necessary, meaning that the loop is executing more times
than it needs to. In fact, changing the 20 iterations to only 6 still gives 15 correct

Chapter 4 - Functions Il 153

places. This is exceptional accuracy: if the distance between the Earth and the
sun were known this accurately, it would be within 0.006 inches of the correct
value. The Babylonians were very clever.

What’s the square root of 10000? If the number of iterations is kept at 6, then
the answer is a very poor one indeed: 323.1. Why? Some numbers (large ones)
need more iterations than others. To guarantee that a good estimate of the square
root is returned, an estimate of the error should be used. When the error is small
enough, then the value is good enough. The error is x-yi*yi. The function should
not loop a fixed number of times, but instead should repeat until the error is less
than, say, 0.0000001. This function is named roote, where the “¢” is for “error.”

Computer the square root of X to 7 decimal places
def roote (x):

y = X # v 1s supposed to be the square
root of x, so
e = abs (x-y*y) # the error is x — y*y
while e > 0.0000001: # repeat while the error is bigger
than 0.0000001
y = (y + x/y)/2.0 # New estimate for square root
e = abs (x-y*y) New error value

return y

This function will return the square root of any positive value of x to within
7 decimal places. It should check for negative values, though.

Y%A Parameters

A parameter can be either a name, meaning that it is a Python variable (ob-
ject) of some kind, or an expression, meaning it has a value but no permanence in
that it can’t be accessed later on — it has no name. Both are passed to a function as
an object reference. The expression is evaluated before being given to the func-
tion and its type does not matter in so far as Python will always know what it is;
its value is assigned a name when it is passed. Consider, for example, the function
square in the following context:

pi = 3.14159

r = 2.54

c = square (2*pi*r)

print ("Circumference is ", c)

154 M Python: An Introduction to Programming-Second Edition

The assignments to pi and r are performed, and when the call to square oc-
curs, the expression 2*pi*r is evaluated first. Its value is assigned to a temporary
variable, which is passed as the parameter to square. Inside the function, this
parameter is named x, and the function calculates x squared and returns it as a
value. Itis as if the following code executes:

pi = 3.14159

r = 2.54
call square (2*pi*r)
parameterl = 2*pi*r set the parameter value

X = parameterl First parameter is named x

#
#
inside SQUARE
#
#
i

returnvalue = xX*x Code within SQUARE, return x*x
c = returnvalue assign result of function call to c
print ("Circumference is ", ¢)

This is not how a function is implemented, but shows how the parameter is
effectively passed; a copy is made of the parameters and those are passed. If the
expression 2¥pi*r was changed to a simple variable, then the internal location of
that variable would be passed.

Passing more structured objects works the same way, but they can behave
differently. If a list is passed to a function, then the list itself cannot be modified,
but the contents of the list can be. The list is assigned another name, but it is the
same list. To be clear, consider a simple function that edits a list by adding a new
element to the end:

def addend (arg) :
arg.append ("End")

z = ["Start", "Add", "Multiply"]
print (1, z)
addend (z)

print (1, z)
The list associated with the variable z is changed by this function call. It now
ends with the string “End.” The output from this is

1 ['Start', 'Add', 'Multiply']
2 ['Start', 'Add', 'Multiply', 'End']

This is the resulting output because the name z refers to a thing that consists
of many other parts. The name z is used to access them, and the function cannot

Chapter 4 - Functions Il 155

modify the value of z itself. It can modify what z indicates; that is, the compo-
nents. Think of it, if it makes it simpler, as a level of indirection. A book can be
exchanged between two people. The receiver writes a not in it and gives it back.
It’s the same book, but the contents are now different.

A small modification to addend() illustrates some confusing behavior. In-
stead of using append to add “End” to the list, use the concatenation operator, +:

def addend (arqg):
arg = arg + ["End"]

z = ["Start"™, "Add", "Multiply"]
print (1, z)
addend (z)

print (2, z)
The output is as follows:
1 ['Start', 'Add', 'Multiply']
2 ['Start', 'Add', 'Multiply']
The component “End” is not a part of the list z anymore. It was made a com-

ponent inside of the function, but it’s not present after the function returns. This
is because the statement

arg = arg + ["End"]

creates a new list with “End” as the final component, and then assigns that new
list as a value to arg. This represents an attempt to change the value that was
passed, which cannot happen: changing the value of arg will not change the value
of the passed variable z. Within the function arg, there is a new list with “End”
as the final component. Outside, the list z has not changed.

The way that Python passes parameters is the subject of a lot of discussion
on Internet blogs and lists. There are many names given for the method used,
and while the technique is understood, it does differ from the way parameters
are passed in other languages and is confusing to people who learned another
language like Java or C before Python. It is important to remember that the actual
value of an object reference being passed cannot be assigned a new value inside
the function, but the things that it references or points to can be modified.

Multiple parameters are passed by position; the first parameter passed is
given to the first one listed in the function declaration, the second one passed to

156 M Python: An Introduction to Programming-Second Edition

given to the second one listed in the declaration, and so on. They are all passed in
the same manner: as object references.

Default Parameters

It is possible to specify a value for a parameter in the instance that it is not
given one by the caller. That may not seem to make sense, but the implication is
that it will sometimes be passed explicitly and sometimes not. When debugging
code it is common to embed print statements in specific places to show that the
program has reached that point. Sometimes it is important to print out a variable
or value there, other times, it is just to show that the program got to that statement
safely. Consider a function named gothere:

def gothere (count, value):
print ("Got Here: ",count, " value is ", wvalue)

then throughout the program, calls to gothere would be sprinkled with a different
value for count every time; the value of count indicates the statement that has
been reached. This is a way of instrumenting the program, and can be very useful
for finding errors. The code being debugged may look like the following:

year = 2015 # The code below is not especially
meaningful
a = year $ 19 # and is an example only.

gothere (1, 0)
b = year // 100

c = year $ 100
gothere (2, 0)

d=(19*a+b-b// 4~ (b-(b+28) // 25+ 1)
// 3) + 15) % 30
e = (32 + 2 * (b 4) + 2 * (¢ // 4) - d - (¢c % 4)) %7

f=d+e - 7%* ((
gothere (3, f)
month = £ // 31
day = £ % 31 + 1
gothere (4, day)
return date (year, month, day)

a + 11 * d + 22 * e) // 451) + 114

The output is as follows:

Got Here: 1 valueis 0

Chapter 4 - Functions I 157

Got Here: 2 valueis 0
Got Here: 3 valueis 128
Got Here: 4 valueis 5
201545

The program reaches each of the four checkpoints and prints a proper mes-
sage. The first two calls to gothere did not need to print a value, only the count
number. The second parameter could be given a default value, perhaps None, and
then it would not have to be passed. The definition of the function would now be
as follows:

def gothere (count, value=None) :

if value:

print ("Got Here: ",count, " value is ", value)
else:

print (Got Here: ", count)

The output this time is

Got Here: 1

Got Here: 2

Got Here: 3 valueis 128
Got Here: 4 valueis 5
201545

The assignment within the parameter list gives the name value a special
property. It has a default value. If the parameter is not passed, then it takes that
value; otherwise it behaves normally. This also means that gothere can be called
with one or two parameters, which can be very handy. It is important to note that
the parameters that are given a default value must be defined after the ones that
are not. That’s because otherwise it would not be clear what was being passed.
Consider the (illegal) definition:

def wrong (a=1l, b, c=12):

Now call wrong with two parameters:

wrong (2,5)

158 M Python: An Introduction to Programming-Second Edition

What parameters are being passed? Are they a and b? Are they a and ¢? It is
impossible to tell. A legal definition would be

def right (b, a=1l, c=12)
This function can be called as
right (19)
in which case b=19, a=1, and ¢=12. It can be called as
right (19, 20)
in which case b=19, a=19, and c=12. It can be called as
right (19, 19, 19)
in which case b=19, a=19, and c=19. But how can it be called passing b and ¢ but
not a?
right (19, c=19)

In this case, a has been allowed to default. The only way to pass ¢ without
also passing a is to give its name explicitly so that the call is not ambiguous.

E%XA None

Mistakes happen when writing code. They are unavoidable, and much time
is spent getting rid of them. One common kind of mistake is to forget to assign a
return value when one is needed. This is especially likely when there are multiple
points in the function where a return can occur. In many programming languag-
es, this will be caught as an error, but in Python it is not. Instead, a function that
is not explicitly assigned a return value will return a special value called None.

None has its own type (NoneType), and is used to indicate something that has
no defined value or the absence of a value. It can be explicitly assigned to vari-
ables, printed, returned from a function, and tested. Testing for this value can be
done using the following:

if x == None:
or with

if x is None:

Chapter 4 - Functions Il 159

E®XE] Example: The Game of Sticks

This is a relatively simple combinatorial game that involves removing sticks
or chips from a pile. There are two players, and the game begins with a pile of
21 sticks. The first player begins by removing 1, 2, or 3 sticks from the pile. Then
the next player removes some sticks, again 1, 2, or 3 of them. Players alternate in
this way. The player who removes the last stick wins the game; in other words, if
you can’t move, you lose.

Functions are useful in the implementation of this game because both play-
ers do similar things. The action connected with making a move, displaying the
current position, and so on are the same for the human player and the computer
opponent. The current status or state of the game is simply a number, the number
of sticks remaining in the pile. When that number is zero, then the game is over,
and the loser is whichever player is supposed to move next. The code for a pair
of moves, one from the human and one from the computer, might be coded in
Python as follows:

displayState (val) # Show the game board
userMove = getMove () # Ask user for their move
val = val - userMove # Make the move

print ("You took ", userMove, " sticks leaving ", val)

if gameOver (val) :
print ("You win!")
else:
move = makeComputerMove (val) # Calculate the
computer's move
print ("Computer took ", move, " sticks leaving ", val)
if gameOver (val) :
print ("Computer wins!")

The current state of the game is displayed first, and then the human player is
asked for their move. The move is simply the number of sticks to remove. When
the move has been made, if there are no sticks left, then the human wins. Other-
wise, the computer calculates and makes a move; again, if no sticks remain then
the game is over, in this case the computer being the winner. This entire section
of code needs to be repeated until the game is over, of course.

There are four functions that must be written for this version: displayState(),
getMove(), gameOver(), and makeComputerMove().

160 M Python: An Introduction to Programming-Second Edition

The function displayState() prints the current situation in the game. Specifi-
cally, it prints one “O” character for each stick still in the pile, and does so in rows
of 6. At the beginning of the game, this function would print the following:

0O 0O0OO0O0O0
0O 0O0OO0O0O0
0O 0O0OO0O0O0
00O

which is 21 sticks. The code is as follows:

def displayState(val):

k = val # K represents the number of
sticks not printed
while k > 0: # So long as some are not printed ..

if k >=6: # If there is a whole row, print it.
print ("O O O O O O ", end="")

k = k - 6 # Six fewer sticks are unprinted
else:
for 3 in range(0,k): # Print the remainder
print ("O ", end="")
k=20 # None remain
print ("")

Note that the function is named for what it does. It does only one thing, it
modifies no values outside of the function, and it serves a purpose that is needed
multiple times. These are all good properties of a function.

The function getMove() prints a prompt to the user/player asking for the
number of sticks they wish to remove and reads that value from the keyboard,
returning it as the function value. Again, this function is named for what it does
and performs a single, simple task. One possibility for the code is as follows:

def getMove ():

n = int (input ("Your move: Take away how many? "))
while n<=0 or n>3:

print ("Sorry, you must take 1, 2, or 3 sticks.")

n = int (input ("Your move: Take away how many? "))

return n

The function gameOver() is trivial, but lends structure to the program. All it
does is test whether the value of val, the game state variable, is zero. There may
be other end-of-game indicators that could be tested here.

Chapter 4 - Functions Il 161

def gameOver (state):
if state ==
return True
return False

Finally, the most complicated function, getComputerMove(), can be at-
tempted. Naturally, a good game presents a challenge to the player, and so the
computer should win the game it if can. It should not play randomly if that is
possible. In the case of this particular game, the winning strategy is easy to code.
The player to make the final move wins, so if there are 1, 2, or 3 sticks left at the
end, the computer would take them all and win. Forcing the human player to have
4 sticks makes this happen. The same is true if the computer can give the human
player (i.e., leave the game in the state of having 8, 12, or 16 sticks). If the human
moves first (as it does in this implementation), the computer tries to leave the
game in a state where there are 16, 12, 8, or 4 sticks left after its move. The code
could be written as follows:

def getComputerMove (val):

n=val % 4
if n<=0:

return 1
else:

return n

There some of the details needed to finish this game properly are left as an
exercise.

E®XA Scope

A variable that is defined (first used) in the main program is called a global
variable and can be accessed by all functions if they ask for it. A variable that
is used in a function can be accessed by that function and is not available in the
main program. It’s called a local variable. This scheme is called scoping: the
locations in a program where a variable can be accessed is called its scope. It’s is
easy to understand unless a global variable has the same name as a local one, in
which case the question is: “what value is represented by this name?” If a vari-
able named “x” is global and a function also declares a variable having the same
name, this is called aliasing, and it can be a problem.

162 M Python: An Introduction to Programming-Second Edition

In Python, a variable is assumed to be local unless the programmer specifi-
cally says it is global. This is done in a statement. For example,

global a, b, ¢

tells Python that the variables named a, b, and ¢ are global variables, and are
defined outside of the function. This means that after the function has completed
execution, those variables can still be accessed by the main program and by any
other functions that declare them to be global.

Global variables are thought by some programmers to be a bad thing, but in
fact they can be quite useful and can assist in the generality of the functions that
are a part of the program. A global variable should represent something that is
known to the whole program. For instance, if the program is one that plays check-
ers or chess, then the board can be global. There is only one board, and it is es-
sential to the whole program. The same applies to any program that has a central
set of data that many of the functions need to modify.

An example of central data is the game state in a video game. In the Sticks
game program, the function getComputerMove() takes a parameter — the game
state. There is only one game state, and although for some games it can involve
many values, in this case, there is only one value: the number of sticks remaining.
The function can be re-written to use the game state variable val as a global in
the following way:

def getComputerMove () :
global val

n=val % 4
if n<=0:

return 1
else:

return n

Similarly, the function that determines whether the game is over could use
val as a global variable. It would be poor stylistic form to have getMove() use a
global variable for the user’s move. The name does imply that the function will
get a move, and so that value should be returned as an explicit function return
value.

If a variable is named as global, then that name cannot be used in the func-
tion as a local variable, as well. It would be impossible to access it, and it would
be confusing. It is a common programming error to forget to declare a variable

Chapter 4 - Functions Il 163

as global. When this happens, the variable is a new one local to the function, and
starts out with a value of 0. Thus, no syntax error is detected, but the calculation
will almost certainly be incorrect. It is a good idea to identify global variables
in their names. For example, place the string “ g” at the end of the names of all
global variables. The game state above would be named val_g, for example. This
would be a reminder to declare them properly within functions.

Other kinds of data that could be kept globally would include lists of names,
environment or configuration variables, complex data structures that represent a
single underlying process, and other programming objects that are referred to as
singletons in software engineering. In Python, because they have to be explicitly
named in a declaration there is a constant reminder of the variable’s scope.

Variable Parameter Lists
The print() function is interesting because it seems to be able to accept any
number of parameters and deal with them. The statement
print (i)
prints the value of the variable i, and
print (i,7,k)
prints the value of all three variables i, j, and k. Is this some sort of special thing

reserved for print() because Python knows about it? No. Any function can do
this. Consider a function,

fprint ("format string", variable 1ist)

73T
1

where the format string can contain the characters “f”” or “1” in any combination.
Each instance of a letter should correspond to a variable passed to the function
in the variable list, and it will be printed as a floating point if the corresponding
character in the format string is “f”” and as an integer if it is “i.” The call

fprint ("£i", 12, 13)

prints the values 12 and 13 as a float and an integer, respectively. How can this be
written as a Python function?

The function starts with the following definition:

def fprint (fstring, *vlist)

164 M Python: An Introduction to Programming-Second Edition

The expression *vlist represents a set of positional parameters, any number
of them. This is preceded by a specific parameter fstring, which is the format
string. A simple test of this would be to just print the variables in the list to see
if it works:

def fprint (fstring, *vlist)
for v in vlist:

print v
When called as fprint(“”, 12, 13, 14,15), this prints
12
13
14
15

The list of variables after the * character is turned into a tuple, which is
passed as the parameter, so the *vlist counts as a single parameter with many
components.

To finish the original function, we have to remove characters from the front
of the format string, match them against a variable, and print the result as the
format character dictates. We need the same loop as above, but we also need an
index for the format string that increases each time through and is used to indi-
cate the format. It is also important that the number of format items equals the
number of variables:
def fprint (s, *vlist):

i=20
if len(s) != len(vlist): # Format string and variable
list agree?
print ("There must be the same number of variables
as format items.")

return
for v in vlist: # For each variable
if s[i] == "f": # Is the corresponding
format 'f'?
fv = float (v) # Yes. Make it a float
print (fv, " ", end="") # .. and print it
elif s[i] == "i": # Is the corresponding
format 'i'?
iv = int (v) # Yes. Make it an
integer

Chapter 4 - Functions Il 165

print(iv, " ", end="") # .. and print it
else:
print ("?", end="") # Don't know what this
is. Print it
i=1i+1
All of the known positional parameters must come before the variable list;

otherwise the end of the variable list cannot be determined. There is a second
complication, that being the existence of named parameters. Those are indicated
by a parameter such as **nlist. The two * characters indicate a list of named
variables.

E®X] Variables as Functions

Because Python is effectively untyped and variables can represent any kind
of thing at all, a variable can be made to refer to a function; not the function name
itself, which always refers to a specific function, but a variable that can be made
to refer to any function. Consider the following functions, each of which does one
trivial thing:

def print0
print
def printl

():
(l
(
print (
(
(
(

'Zero")
)t
"One")
def print2():
print ('
def print3():

print ("Three")

'TWO")

Now make a variable reference one of these functions by means of an assign-
ment statement:

printNum = printl # Note that there is no parameter
list given

The variable printNum now represents a function, and when invoked, the
function it represents will be invoked. So

printNum()
will result in the output

One

166 M Python: An Introduction to Programming-Second Edition

Why did the statement printNum = printl not resultin the function
printl being called? Because the parameter list was absent. The statement

printNum = printl ()

results in a call to printl at that moment, and the value of the variable printNum is
the return value of the function. This is the essential syntactic difference: printl
is a function value, and printl() is a call to the function. To emphasize this point,
here is some code that allows the English name of a number between 1 and 3 to
be printed:

if a ==
printNum = printl # Assign the function printl
to printNum
elif a ==
printNum = print2 # Assign the function print2
to printNum
else:
printNum = print3 # Assign the function print3
to printNum
printNum () # Call the function represented

by printNum

There are more subtle uses in this case. Consider this use of a list

a =1

printlList = [print0, printl, print2, print3]
printNum = printList[al]

printNum ()

that results in the output
One

The final iteration of this is call the function directly from the list:
printList[1] ()

This works because printList[1] is a function, and a function call is a function
followed by (). This is overly complicated, and so it is rarely used.

For those with an interest or need for mathematics, consider a function that
computes the derivative or integral of another function. Passing the function to
be differentiated or integrated as a parameter may be the best way to proceed in
these cases.

Chapter 4 - Functions Il 167

Example: Find the maximum value of a function

Maximizing a function can have important consequences in real life. The
function may represent how much money will be made by manufacturing vari-
ous objects, how many patients can get through an emergency ward in an hour, or
how much food will be grown with particular crops. If the function is easy to use,
then there are many mathematically sound ways to find a maximum or minimum
value, but if a function is hard to work with, then less analytical methods may
have to be used. This problem proposes a search for the best pair of parameters to
a problem that could be solved using a method called linear programming.

The problem goes like this:

A calculator company produces a scientific calculator and a graphing
calculator. Long-term projections indicate an expected demand of at
least 100 scientific and 80 graphing calculators each day. Because of
the limitations on the production capacity, no more than 200 scientific
and 170 graphing calculators can be made daily. To satisfy a shipping
contract, a total of at least 200 calculators much be shipped each day.
If each scientific calculator sold results in a $2 loss, but each graphing
calculator produces a $5 profit, how many of each type should be made
daily to maximize net profits?

Let s be the number of scientific calculators manufactured and g be the num-
ber of graphing calculators. From the problem statement,

100 <=s<=200
80 <=g<=170
Also,

s+g >200, or g>200-s

Finally, the profit, which is to be maximized, is as follows:
P=-2s+5g

First, code the profit as a function:

def profit (s, g):
return -2*s + 5*g

168 M Python: An Introduction to Programming-Second Edition

A search through the range of possibilities will run through all possible val-
ues of s and all possible values of g; that is, s from 100 to 200 and g from 80 to
170. The function is evaluated at each point and the maximum is remembered:

Range for s is x0 .. x1

Range for g is y0 .. vyl

s+g must be >= sum

def searchmax (f, x0, y0, x1, yl, sum):

pmax = -1.0el2
ps = -100
pg = -100

for s in range (x0, x1+1): # For all possible s
for g in range (y0, yl+1l): # For all possible g
if s+g >= sum: # Condition is ok?
p=f (s, 9) # Calculate the
profit.
if p>=pmax: # Best so far?
pmax = p # Yes.
ps = s # Save it and
Pg =g # the parameters
return ((ps, pg))

Finally, the call that does the optimization calls the search function, passing
the profit function as a parameter:

¢ = searchmax (profit, 100, 80, 200, 170, 200)
print (c)

The answer found is the tuple (100, 170), or s=100 and g = 170, which agrees
with the correct answer as found by other methods. This is only one example of
the value of being able to pass functions as parameters. Most of the code that does
this is mathematical, but may accomplish practical tasks like optimizing perfor-
mance, drawing graphs and charts, and simulating real world events.

EEXA Functions as Return Values

Just as any value, including a function, can be stored in a variable, any value,
including a function, can be returned by a function. If a function that prints the
English name of a number is desired, it could be returned by a function:
def print0():

print ("Zero")
def printl():

print ("One")
def print2():

print ("Two")
def print3():

print ("Three")

Chapter 4 - Functions Il 169

def getPrintFun (a): # Return a function to print
numeric value 0..3
if a ==
return print0 # Return the function printO
as the result
elif a == 1:
return printl # Return the function printl
as the result
elif == 2:
return print2 # Return the function print?2
as the result
else:
return print3 # Return the function print3
as the result

Calling this function and assigning it to a variable means returning a func-
tion that can print a numerical value:

printNum = getPrintFun(2) # Assign a function to printNum

and then

printNum () # Call the function represented by printNum

results in the output

Two

The function printFun returns, as a value, the function to be called to print
that particular number. Returning the name of the function returns something
that can be called.

Why would any of these seeming odd aspects of Python be useful? Allowing
a general case, permitting the most liberal interpretation of the language, would
permit unanticipated applications, of course. The ability to use a function as a
variable value and a return result are a natural consequence of Python having no
specific type connected with a variable at compilation time. There are many spe-
cific reasons to use functions in this way. Imagine a function that plots a graph.

170 M Python: An Introduction to Programming-Second Edition

Being able to pass this function another function to be plotted is surely the most
general way to accomplish its task.

RECURSION

Recursion refers to a way of defining things and a programming technique,
not a language feature. Something that is recursive is defined at least partly in
terms of itself. This seems impossible at first, but consider the case of a grocery
list (not a Python /is?) of items:

milk, bread, coffee, sugar, peanut butter, cheese, jam

Each element in the list can be called an item, and represents something to be
purchased at a grocery store. The smallest list is one having only a single element:

milk
Thus, a list can be simply an item. What else can it be? It appears to be several
items separated by commas. One way to describe this is to say it can be an item

followed by a comma followed by a list. The complete definition is, presuming
that the symbol -> means “can be defined as,” is as follows:

list -> item # list can be defined as an item
list -> item, list # list can be defined as an item, a comma, and a list

In this way the list milk is defined as a list by the first rule. The list milk,
bread is a list because it is an item (milk) followed by a comma followed by a list
(bread). It is plain that a list is defined here in terms of itself, or at least in terms
of a previous partial definition of itself.

When talking about functions, a function is recursive if it contains within
it a call to itself. This is normally done only when the thing that it is attempting
to accomplish has a definition that is recursive. Recursion as a programming
technique is an attempt to make the solution simpler. If it does not, then it is inap-
propriate to use recursion. A problem some beginning programmers have with
the ideas of a recursive function is that it appears that it does not terminate. Of
course, it is essential that a function does return, and a program that never ends
is almost always in error. The problem really is how to make certain that a chain
of function calls terminates eventually.

Chapter 4 - Functions Il 171

The following function will never return once called:

def recurl (1)
recurl (i+1)
print (i)

It will not result in any output, either. Why not? Because the first thing it
does is call itself, and always does so. When it does, the next thing is does is call
itself again, and then again, and so on. The following function, on the other hand,
does terminate:

def recur2 (1)
if 1i>0:
recur?2 (i-1)
print (1)

When called, it checks its parameter i. If that parameter is greater than zero,
then it calls itself with a smaller value of i, meaning that eventually i will become
smaller than 0 and the chain of calls will stop. What will be printed? The first
call to recur2 that does not end up calling itself is when i==0, so the first thing
printed is 0. Then the function returns to the previous recursive call, which had
to be where i == 1. The second thing printed will be 1, and so on, until it returns
to the original call to the function with the original value of i, at which point it
prints i. This is a trivial example of a recursive function, but it illustrates how to
exit from the chain of calls: there must be a condition that defines the recursion.
When that condition fails, the recursion ceases.

Each call to the function can be thought of as an instance of that function, and
it will create all of the local variables that are declared within it. Each instance
has its own copy of these, including its parameters, and each call returns to the
caller as occurs with any other function call. When the recursive call to recur2()
returns, the next thing to be done is (in this case) to print the parameter value. A
call to recur2() passing the parameter 4 results in the following instances of that
function being created:

recur2 (4) 1 = 4 # This is the function state, with parameter i
given for this instance
i>0 so call recur2(i-1) = recur2(3) # This is the code
executed
recur2 (3) 1 = 3 # State
i>0 so call recur2(i-1) = recur2(2) # Code executed
recur2(2) i = 2 # State

172 B Python: An Introduction to Programming-Second Edition

i>0 so call recur2(i-1) = recur2(l) Code executed
recur2(1l) i =1 State

i>0 so call recur2(i-1) = recur2(0) Code executed
recur2(0) 1 = 0 State

i== 0 so recur2 is NOT called Code executed

print (i) -> print(0) Code executed ,
prints O

Code executed
Code executed ,
prints 1

Code executed
Code executed ,
prints 2

Code executed
Code executed ,
prints 3
Code executed
Code executed ,
prints 4
Code executed

return
print (i) -> print (1)

return
print (i) -> print(2)

return
print (i) -> print(3)

return
print (i) -> print (4)

SHE S S S S S S o e o S b e o 3 o 3 o 3= o

return

By tracing through the statements that are executed in this way, it can be seen
that the recursion does end, and the output or result can be verified.

One important use of recursion is in reducing a problem into smaller parts,
each of which has a simpler solution than does the whole problem. An example of
this is searching a list for an item. If names = [Adams, Alira, Attenbourough,
...] is a Python list of names in alphabetical order, answer the question: “Does
the name Parker appear in this list?”” There is a built-in function that does this,
but this example is a good teaching tool. The built-in function may also be slower
than the solution that is devised here.

The function will return True or False when passed a list and a name. The
obvious way to solve the problem is to iterate through the list, looking at all of the
elements until the name being searched for is either found or it is not possible to
find it any more (i.e., the current name in the list is larger than the target name).
Another, less obvious way to conduct the search is to divide the list in half, and
only search the half that has the target name in it. Consider the following names
in the list:

... Broadbent Butterworth Cait Cara Carling Devers Dillan Eberly
Foxworthy ...

Chapter 4 - Functions Il 173

The name in the middle if this list is Carling. If the name being searched for
is lexicographically smaller than Carling, then it must appear in the first half;
otherwise it must appear in the second half. That is, if it is there at all. A recursive
example of an implementation of this is as follows:

Search the list for the given name, recursively.
def searchr (name, namelList):

n = len(namelList) # How many elements in this
list?
m = n/2
if name < nameList[m]: # target name is in the first
half
return searchr (name, nameList[0O:m]) # Search the
first half
elif name > namelList[m]: # target must be in the
second half
return searchr (name, namelList[m:n] # Search the

second half
else:

return True

If the name is in the list, this works fine. One way to think of this is that the
function searchr() takes a string and a list as parameters and finds the name in
the list if it’s there. The way it works is not clear from outside the function (with-
out being able to see the source) and should not matter. If the target is to be found
in the first half of the list, for example, then call searchr() with the first half of
the list.

searchr (name, nameList[0:m])

The fact that the call is recursive is not really concerning. How can the prob-
lem of a name not being in the list be solved?

When the name is not in the list, the program will continue until there is but
one item in the list. If that item is not the target, then it is not to be found. If n=1
(only one item in the list) and nameList[0] is not equal to the target, then the
target is not found in the list and the return value is False. The final program is
as follows:
def searchr (name, nameList):

n = len(namelist) # How many elements in this 1ist?
m = int(n/2)

174 W Python: An Introduction to Programming-Second Edition

if n==1 and namelList[0] !=name: # End of the recursive
calls
return False # It's not in this
list.
if name < namelList[m]: # target name is in the first
half
return searchr (name, nameList[0O:m]) # Search the
first half
elif name > namelist[m]: # target must be in the
second half
return searchr (name, nameList[m:n]) # Search the

second half
else:
return True

Many algorithms have fundamentally recursive implementations, meaning
that the effective solution in the code involves a recursive function call. Many
standard examples in beginning programming are not properly implemented
recursively. Commonly encountered samples with a recursive solution include
the factorial, which has a recursive definition but is not best implemented that
manner, and any other basically linear technique (linear search, counting, and
min/max finding) that does not do a reasonable subdivision. Testing the first
component, for example, and then recursively looking at the remaining elements
is a poor way to use recursion. It would be much better to use a loop. Let’s write
an example: find the maximum value in a given list. The non-recursive method
(reasonable) is as follows:

def max (myList):

max = myList [0]
for I in range(l, len(myList)):
if myList[i] > max:
max = myList[i]
return max

This is an effective way to find the largest value in a list and is easily under-
stood by a programmer reading the code. Here is a recursive solution:

def maxr (myList):
ml = myList[0]
if len(myList)>1:
m2 = maxr (myList[1l:])
else:

Chapter 4 - Functions Il 175

return ml
if ml > m2:

return ml
else:

return m2

This function works by subdividing the list into two parts, as is often done
with a recursive solution. The idea is to compare the first element in the list with
the maximum of the remainder of the list to see which is bigger. For this particu-
lar problem, this is not an obvious approach. It is less efficient and less obvious
than the iterative version that preceded it. The use of recursion simplifies some
problems, but it is not a universally applicable technique. Examples of useful
recursive functions will be examined in later chapters.

Avoiding Infinite Recursion

There is a limit to how many times a function can call itself without return-
ing, because each call uses up some amount of memory and memory is a finite
resource. Usually, when this happens, a programming error has occurred and the
function has slipped into an infinite recursion, in which it will continue to call it-
self without end. Recursion can be confusing to visualize and this sort of problem
occurs frequently. How can it be avoided?

Programming the function correctly eliminates the problem, of course, but
there are some basic rules that will avoid the problem at the early stages. Assum-
ing that global variables are not being referenced:

1. A function that begins with a call to itself is always infinitely recursive.
The first thing the function does is call itself, and no matter what the
parameters are, it can never end.

2. Every recursive call within a function must have a condition upon which
that call will be avoided. The function may return sometime before the
call is made, or perhaps the call happens within an if statement, but there
must be such a condition. If it exists, it is expressible as a Boolean ex-
pression, and this should be placed in a comment near the recursive call.
The call is suspect until this happens.

3. Avoid passing a function to itself. The call to a parameter hides the fact
that recursion is taking place.

176 M Python: An Introduction to Programming-Second Edition

4. 1t is possible to have a global variable that is a count of the depth of
recursion. The function will increment this count whenever a recursive
call is made and decrease it just before returning. If the count ever gets
larger than a reasonable estimate of the maximum depth then the func-
tion could stop any more calls and back out, or an error message could
be printed.

EZA CREATING A PYTHON MODULE

In some of the examples given so far there is a statement at the beginning that
looks like “import name.” The implication is that there are some functions that
are needed by the program that are provided elsewhere, possibly by the Python
system itself or perhaps by some other software developer. The idea of writing
functions that can be re-used in a straightforward way is very important to the
software development process. It means that no programmer is really alone; that
code is available for doing things like generating random numbers or interfacing
with the operating system or the Internet, and that it does not to be created each
time. In addition, there is an assumption that a module works correctly. When a
programmer builds a collection of code for their own use, it needs to be tested
as thoroughly as possible, and from that time on it can be used in a package with
confidence. If a program has errors in it, then look in the code for that program
first and not in the modules. This makes debugging code faster.

What is a module? It is simply a function or collection of functions that reside
in a file whose name ends in .py. Technically, all of the code developed so far
qualifies as modules. Consider as an example the function from the previous sec-
tion that finds the maximum value in a list. Save the functions max() and maxr()
in a file named max.py. Now create a new Python program named usemax.py
and place it in the same directory as max.py. If the two files are in the same direc-
tory then they can “see” each other in some sense.

Here is some code to place in the file usemax.py:

import max
d = [12,32,76,45,9,26,84,25,61, 66, 1,2]
print ""MAX is"", max.max(d),"" MAXR is"", max.maxr (d))
if max.maxr (d) != max.max(d):
print ""*** NOT EQUAL **x"'")

Chapter 4 - Functions W 177

This program is just a test of the two functions to make certain that they re-
turn the same value for the same list, the variable d. Note two things:

1. The statement import max occurs at the beginning of the program,
meaning that the code inside this file is available to this program. Python
looks inside this file for the function and variable names.

2. When the function max() or maxr() is called, the function name is pre-
ceded by the module name (max) and a period. This syntax informs the
Python system that the name maxr() (for example) is found in the mod-
ule max and not elsewhere.

The first time that the module is loaded into the Python program, the code in
the module is executed. This allows any variable initializations to be performed.
Henceforth, that code is not executed again, and functions within the module can
be called knowing that the initializations have been performed.

The module could reside in the same directory as the program that uses it,
but does not have to. The Python system recognizes a set of directories and paths
and modules can be placed in some of those locations as well, making it easier
for other programs on the same computer to take advantage of them. On the
computer used to create the examples in this book, the directory C:\Python34\Lib
can be used to store modules, and they will be recognized by import statements.

Finally, if the syntax max.maxr(list) seems a bit cumbersome, then it is pos-
sible to import specific names from the module into the program. Consider the
following rewrite of usemax.py:

from max import max, maxr

d = [12,32,76,45,9,26,84,25,61, 66, 1,2]
print ("MAX is ", max(d), " MAXR is ", maxr(d))
if maxr(d) != max(d):

print ("*** NOT EQUAL ****'")

The statement from max import max, maxr instructs Python to recognize
the names max and maxr as belonging to the module named max (i.e., as resid-
ing in the file named max.py). In that case, the function can be called by simply
referencing its name.

There appears to be a name conflict with the package named max and the
function named max, but in fact, there is no problem. It is not uncommon to find
this sort of naming relationship (example: random.random()). The module name

178 M Python: An Introduction to Programming-Second Edition

max refers to a file name, max.py. The function name max refers to a function
within that file.

EX] PROGRAM DESIGN USING
FUNCTIONS-THE GAME OF NIM

Nim is a game so old that its origins have been lost. It was likely invented in
China, and it is one of the oldest games known. It was also one of the first games
to have a computer or electronic implementation and has been the frequent sub-
ject of assignments in computer programming classes. This program will imple-
ment the game and play one side. The code serves as an example of how to design
a computer program using functions and modularity - it is an example of a top-
down design.

The game starts with three rows of objects, such as sticks or coins, and there
are a different number of objects in each row. In this version, there are 9, 7, and
5 sticks, which are represented by the | character. A player may remove as many
objects from one row as they choose, but they must remove at least one and must
take them only from one row. Players take turns removing objects, and the player
taking the final one is the winner.

Playing this game involves asking the user for two numbers: the row from
which to remove sticks, and how many to remove. The human player is prompted
for the row, then the number. Then the computer removes some sticks (take its
turn) and prints the new state.

A list named val contains the number of sticks in each row. Initially,
val = [5, 7, 9]

This is the game state, and is critical to the game as it defines what moves are
possible. Also, when the state is [0,0,0] then the game is over.

When the user choses to remove N sticks from row M, the action is
val[M] = val[M] - N

Of course, N and M must be tested to make certain that M is between 0 and
2, and M is as large as val[M]. M defines the row chosen to remove sticks from,
and N is the number of sticks to remove. A move can therefore be defined as a
list [row, sticks].

Chapter 4 - Functions Il 179

A program that uses functions should be built from the highest level of ab-
straction downwards. That is, the main program should be developed first, and
should be expressed in terms of functions that do logical things, but that may not
be designed or coded yet. The main program could look something like this:

val = [5, 7, 9] # the game state: 5, 7, and 9 sticks
done = False # Is the game over?
userMove = [-1, -1] # A move 1s a row and a number of
sticks.
print ("The game of Nim.")
rules () # Print the rules for the game
while not done: # Run until the game is over
displayState (val) # Show the game board
prompt (userMove) # Ask user for their move
ok = legalMove (userMove, val) # Was the player's move
OK?
while not ok:
print ("This move is not legal.")
displayState (val)
prompt (userMove) # Ask user for their move
ok = legalMove (userMove, val)
makeMove (userMove) # Make it
if gameOver (val) :
print ("You win!")
break;
print ("State after your move is ") # display it.
displayState (val)

This program is built using components (modules) that are not written yet,
but that have a purpose that is defined by what the program needs. Those mod-
ules/functions are as follows:

rules() - Print out the rules of the game.

displayState(v) - Print the game state (how many sticks in each row).
prompt() - Ask the user for their move.

legalMove(r,n) - Is the move legal?

makeMove(r,n) - Make this move.

Using functions, the first thing that is needed is to display the game state.
The program prints the number of sticks in each of the three rows, and does so
in a graphical way, rather than just displaying the numbers on a console. Given

180 M Python: An Introduction to Programming-Second Edition

the situation as described so far, the non-trivial function is displayState(), which
prints the current state of the game — how many sticks in each row. It will be
passed a list representing the current state.

def displayState(val): # val is the list with
the state
for 3 in range(0,3): # there are 3 rows;
print each one
print (j+1, ": ", end="") # Print the row number
for i in range(0,val[j]): # vall[j] is the
current row
print ("| ",end="") # print a '|' for each
stick
print ("") # print an end of line

When called at the beginning of the game, here’s what the result of a call to
this function would be:

This function does a single task, uses a parameter to guide it and make it
more general, and is named for what it does. These are signs of a good function.
Note that the first row is labeled “1,” but it is element O of the list. It is common
in user interfaces to adapt to the standard human numbering scheme that begins
with 1 instead of 0. When the user enters a row number, care must be taken to
subtract 1 from it before using it as an index.

There is no required order for writing these functions, but the next one used
in the program is prompt(). This asks the user to input a row and then reads a
row number, then prompts the user to enter a number of sticks to remove and then
reads that value, too. The two numbers are placed into a list that was passed so
that the values can be returned to the caller.

def prompt (move):

row = input ("Your move: which row? ") # Prompt for row &
read it
sticks = input (" how many sticks?") # Prompt for

sticks & read
Convert row to integer and decrement to be from 0 to 2.
move [0] = int (row)-1 # Assign to the 1list[0]
move[l] = int(sticks) # Assign value to list[1]

Chapter 4 - Functions [l 181

This function again does a simple task, uses a parameter, and is named ap-
propriately.

Next is the question “Is this move legal?” A move is legal if the row is be-
tween 0 and 2 inclusive, and if the number of sticks in that row is greater than or
equal to the number of sticks to be removed. The function returns True or False.

def legalMove (move, state):
row = move[0]
sticks = move[l]
if row<0 or row>2:

Which row was requested?
How many sticks
Legal number of rows?

— e o S e

return False No
if sticks<=0 or sticks>vall[row]: # Legal number of
sticks?
return False # No
return True # Both were ok, so the

move is OK.

Making a move involves decreasing the specified row by the specified num-
ber of sticks. This could have been done in legalMove() if it was acceptable to
do multiple things in a function. Eventually, that will be necessary, but for now,
a new function will be written, named makeMove(), that implements a specified
play in the game.

def makeMove (move, state):

row = move [0] # Subtract move[l] sticks from
sticks = move[l] # those that are in row
move[0].
Place the new number of sticks in the state list
state[row] = state[row]-sticks

There is a strategy that permits a player to always win. It involves computing
what amounts to a parity value and making a move to ensure that parity is main-
tained. Consider the initial state and the state after taking two sticks from row 1:

Row1=5=0101 rowl=3=0011
Row2=7=0111 row2=7 =0111
Row3=9=1001 row3=9=1001

Parity 1011 1101

The parity is determined by looking at each digit in the binary representation
of the values. In each column (digit position), the parity bit for that column is 1 if

182 M Python: An Introduction to Programming-Second Edition

the number of 1 bit in the column is odd and 0 if it is even. This can be calculated
using the exclusive-OR operator, which is *. The strategy in Nim is to make a
move that makes the parity value 0. This is always possible if parity is not 0; in
the situation above, the computer might remove 5 sticks from row 3 giving the
following state:

rowl=3=0011
row2=7 =0111
row3=4=0100

Parity 0000

This is what the sketch does after every move the player makes: it makes all
possible moves, computing the parity after each one. When the one with zero par-
ity is found, it makes that move. The function eval() calculates the current parity
value as val[0]*val[1]*val|2].

NOTE The computer always wins because the user always makes the first move.
—_— Alternating who moves first would make the gameplay fairer.

F®NE The Development Process Exposed

In the introduction to the Nim program, we said that this was an example of
top-down design. This means that the larger program, or the main program, is
designed first. The question should be what are the steps involved in solving this
problem? The answer to that question is written down in terms of functions that
have not been written yet, but that have a known and required purpose within
the solution. In the Nim game, it is known that the user’s move will have to be
read from the keyboard and that the current state of the game will have to be dis-
played, so those two functions can be presumed to be important to the solution
when sketching the main program.

Once the high-level part of the program has been devised, it can be typed in
and tested. The functions that are needed but are not yet written can be coded as
stubs: functions that do not implement their task but that are present and prevent
syntax errors. The first try at a solution of this sort does not solve the problem,
but is simply a step towards the solution. In the case of Nim, the very first step
could be written as follows:

Chapter 4 - Functions Il 183

Repeat
Display the game
Ask user for their move
Make user's move
Generate computer's move
Make computer's move
Until someone wins
Display the winner

None of these steps are written as proper Python code, but that is acceptable
for a first step. Translating this into Python comes next.

Done = false
while not done: # Run until the game is over
displayState () # Show the game board
prompt () # Ask user for their move
makeMove () # Make it
if not gameOver () : # Computer move?
makeComputerMove () # Determine computer's move
done = gameOver () # Is the game over?
printWinner ()

At this point in the design, neither the data structures nor algorithms used in
the solution have been devised. This is merely a sequence of steps that could lead
to a program that works. The functions can now be written as stubs:

def displayState() : def prompt () :
print ("Display state") print ("Enter move")
def makeMove () : def gameOver () :
print ("Make move") if random.random()<0.2:

return False
return True

def makeComputerMove () : def printWinner() :
print ("compute a move") print ("The winner is:")

The output from this program might be as follows:

Display state
Enter move
Make move
Display state
Enter move

184 M Python: An Introduction to Programming-Second Edition

Make move
compute a move
The winner is:

The exact output will be random, depending on what the return value of
gameQOver() is. This code can be thought of as one iteration of the solution or
as a prototype. The next step is to refine the solution by implementing one of the
stubs. Each time that happens, a set of decisions is made concerning the nature
of the data structures used to implement the solution: the use of a list for the
game state, for instance. Three integers could have been used instead, but once
the decision is made about the approach, it should be used consistently unless it
becomes infeasible.

Repeatedly implementing the stubs creates new prototypes, each one more
functional than the one before. Some of the functions may require an application
of this same process. Complex functions can be coded in terms of other stubs,
and so on. The simpler functions, such as those that calculate based only on their
parameter, should be completed first and should not involve permanent design
choices.

A programming process of this kind can be thought of as iterative refine-
ment. After the first step, a complete program that compiles and runs should be
refined. This can be very useful, especially when dealing with graphical user
interfaces and games. The interface might well be complete before any real func-
tionality is present, and this permits a demonstration of the concept before the
program is done.

EX31 SUMMARY

Python allows a programmer to create a function that does something new.
A function is code that has a name and can be executed simply by invoking that
name. It usually represents some task that has to be done frequently. A function
should also have one main task and that task should be represented in the func-
tion name (for example, maximum, square, or search). Many functions return a
value, and finding that value is frequently the purpose of the function (e.g., sine
or cosine).

The name of a function can be used to call that function, but it can also be
assigned to a variable, passed as a parameter to another function, or returned as

Chapter 4 - Functions Il 185

avalue. A function can have variables that belong to it; they are called local vari-
ables and vanish after the function returns. They can also use variables defined
outside of the function if they appear in a global statement.

A special value named None is used to represent no value, and it is returned
by a function that does not explicitly return some other value. A module is a func-
tion or collection of functions that reside in a file whose name ends in .py.

The use of functions can organize a computer program in a logical way. A
program can be defined in terms of functions that are desired but not yet written,
and then those functions can be defined as code or in terms of other functions.
Functions are often named but are incomplete, and are called stubs — they permit
the program to be compiled while still under development.

A function that calls itself is said to be recursive. Such functions can be very
valuable in simplifying the code for some algorithms, especially ones in which
some thing is actually defined in terms of itself, but care must be taken when
programming to ensure that a recursive function always ultimately returns.

Exercises

1. Write a Python function that takes a tuple of numbers as a parameter and
returns the location (index) of the maximum value found in that tuple.

2. Word processing systems sometimes need to shorten a word to make it fit
on a line. Write a function that takes a string containing a single word and
decides where to hyphenate it. A hyphen can occur before the endings -ing,
-ed, -ate, -tion, or -ment. It could also occur after a prefix: pre-, post-, para-,
pro-, con-, or com-. Otherwise, place a hyphen somewhere in the middle of
the word. The function should return a tuple containing the first and second
half of the word split at the hyphen.

3. Pascal’s triangle is an arrangement of numbers in rows and columns such that
each number in a row is the sum of the two numbers above it. An example is
as follows:

186 M Python: An Introduction to Programming-Second Edition

Write a function triangle(n) that prints the first n rows of such a triangle.
Extra marks will be given for proper indentation so it looks like a triangle.

4. Write a function that returns the value of a quadratic function at a particular
x value. A quadratic is a polynomial of the form

ax’*+bx+c

The function quad() is passed values for a, b, ¢, and x and returns the value
of the polynomial.

5. A quadratic polynomial has a root at any value x for which the value of the
polynomial is zero; that is, any x such that

ax*+bx+c=0

There can only be at most two such values (a tuple), and the expression for
finding these values of x is

b+ b* —4ac
a 2a
Write a function (root(a,b,c))that returns the two roots of a quadratic equa-

tion having been passed a, b, and c. The result is a tuple or if there is no
solution (i.e., square root of a negative number, or a=0), then it returns None.

X

6. Write a function (inputfloat(s)) that takes a single parameter, a string to be
used as a prompt, and returns a number read from the console. The function
must prompt the user for the number using the given string, read the input,
and return the result as a floating point number. If an error occurs, return
None.

7. The game of table tennis is called ping-pong. Write functions ping() and
pong() that each take, as a parameter, a probability of hitting the ball. A
probability is between 0.0 and 1.0. The function returns True if the ball is
returns and False otherwise. There are two sides to the game, and each side
serves (plays first) twice, then the other side serves twice. It will be assumed
here that the server always succeeds. If ping is serving then pong() gets called
first, then if pong succeeded then ping() gets called, and so on. The side that
made the last successful hit wins a point. The game goes to 11 points, but
must be won by a 2-point margin. Write a program that simulates ping-pong
using two functions named ping() and pong().

Chapter 4 - Functions Il 187

8. In mutual recursion, two functions call each other, usually repeatedly to
some depth. A calls B, which calls A again, which calls B again, and so on.
Recode the ping-pong exercise (Number 7 above) so that ping() calls pong()
and pong() calls ping(). The functions return a string, that of the winner of
the exchange.

9. Write a function prime(n) that returns True if the number n is prime, and
False otherwise. How many prime numbers are there between 1 and 1000?

Notes and Other Resources

Tutorial on Python Functions: http:/www.tutorialspoint.com/python/python
functions.htm

Also: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/functions.html
1. Thomas S. Ferguson, Game Theory. https://www.math.ucla.edu/~tom/Game

Theory/comb.pdf

2. D. G. Luenberger, (1973). Introduction to linear and nonlinear programming
(Vol. 28). Reading, MA: Addison-Wesley.

3. Mitchell Wand (1980). Induction, Recursion, and Programming. North
Holland, New York. Attp://tocs.ulb.tu-darmstadt.de/82570701. pdf

CHAPTER 5

F1LEs: INPUT AND OUTPUT

51 Whatls aFile? A Little Theory. i, 191
52 KeyboardInput............. 195
5.3 Using Files in Python: Less Theory, More Practice 197
54 WritingtoFiles......... o 211
55 Summary...... ... 213

In this chapter

In the early days of computing, when computers used to fill an entire
room, the file was invented. A file is a collection of bytes stored on a disk
or similar device. Storage that was not memory was called secondary stor-
age and was slow compared to how fast a computer could execute instruc-
tions (which is very slow compared to how fast a modern computer can
execute instructions).

A typical PC has hundreds of thousands of files. The details of how files are
implemented is interesting, but unimportant to the discussion of how to use them
in Python. The focus is on how and why to use them.

One set of bytes in a file can look very much like another, and unless the
format of the file (i.e., the way the bytes are ordered) and its basic contents (i.e.,
what kind of thing the bytes represent) are known ahead of time, the information
stored there is unusable. Computer programs are written assuming that the files
they will read have a particular nature; if a file does not have that nature, then the
program will not function properly.

190 M Python: An Introduction to Programming-Second Edition

What kinds of files are there? Here is a short list:

Text files. These contain characters that a person can read and can be thought
of as documents.

Executable files. These hold instructions that a computer can execute. Such
a file is a program or an app.

Data files. It could also be a text file if it is stored as characters, but it could
be a set of bytes that represent integers or real numbers.

Image files. There are many types of image files, and they contain pictures
in digital format. Many digital cameras use a format called JPEG, but GIF or
PNG are two of many others. Not only are images stored in such a file, but
also data about how large the image is, when it was taken, and other details.

Sound files. The more common sound file is the MP3, but there are many
others.

Video. MPEG and AVI are standard formats for video, and there are a many
files of this sort available on the Internet.

Web pages. These are a special kind of text file. They can be examined and
modified using basic text editors, but cannot be viewed properly (i.e., as a
web page) except through a browser, which is really a special kind of display
utility that can both draw images and connect to the Internet to download
more information.

All of these files, and indeed all files, have certain things in common. Some
of these things can be ignored when writing Python programs, but others cannot.

Files have names. The first way to access a file is usually by specifying its
name. In folklore, knowledge of a true name allows one to affect another
person or being; knowing something’s true name gives the person power over
that thing, and so it is with files. Knowing the name of a file is the way to ac-
cess the information within.

Files have a size. It is usually expressed in bytes, which is to say, simple
characters. One byte is one traditional alphabetic character, although there are
now many standards for characters in German and Swedish and Chinese that
break that rule. Knowing how large a file is helps when using it as input, and
when writing a file, its size grows.

Chapter 5 - Files: Input and Output I 191

Basic operations on a file are read and write. To read from a file means to
examine a byte (at least); usually bytes are read in large blocks for efficiency.
This means moving a copy of the bytes from the disk into memory, because
a program can only examine data that is in memory. Writing is the reverse
process: a byte or bytes are copied from memory onto disk.

Files must be open before they can be used. To open a file, a program must
know its name, and then invoke the open function or program. If the true
name of the file gives you power over it, then open is the spell used to wield
that power. Whether a file will be read or written is normally decided at the
time the file is opened. The open function and many other file-related opera-
tions belong to the operating system of the computer, and not normally to the
language. It’s one reason why so much software is not portable.

Only one program at a time can write to a file. Many programs can read a
file simultaneously, but only one can write to it, and not while anyone else is
reading it. Many computers can have more than one user accessing a file at
a time, and the Internet allows many users to access a Web page at one time,
and a Web page is a file. However, chaos ensues if more than one user can
change a file at the same moment.

Another thing to consider is that text (and therefore text files) is a principal
means for communication between humans and computers. It is critical that any
scheme for writing text to a file takes into account the human aspects of text:
sentences, lines, paragraphs, special characters, and numbers. This chapter is
concerned with the way in which Python can use files, with files as a concept in
general, and with how humans think of data and files.

WHAT IS A FILE? A LITTLE THEORY

A file is a collection of bytes stored on a disk or similar device, but we need
an understanding of the devices that contain files and their advantages and limi-
tations. This information will begin to explain the traditional mechanisms that
have evolved for using files from programming languages generally and Python
in particular.

The file as a data structure was devised for storing information on tapes and
disks. Together with some other devices that are used rarely (e.g., cram files), these
are referred to as secondary storage, where primary storage is the computer’s

192 M Python: An Introduction to Programming-Second Edition

memory. Memory was (and still is) too expensive to store everything that is need-
ed on a computer, so secondary storage has the advantages of being cheaper than
memory and can contain a much larger amount of data. Modern disks can contain
terabytes of data, where one terabyte (Tb) is 10'? bytes. It has been estimated that
a human being’s functional memory is about 1.25 Tb. A terabyte is a lot of stor-
age.

Most secondary storage devices store data magnetically. Since tapes are rare-
ly seen anymore, the example presented here is that of a disk. A disk is a circular
platter made of glass or ceramic material and coated with a thin layer of magnetic
material, often a compound of iron. That’s why they look brown: iron oxide (or
rust) is that color. The disk is mounted on a spindle that is connected to a motor,
which spins it at a high rate of speed.

A device called a read/write head sits above the moving disk, but very near
to it. This device is a small piece of magnetizable metal wrapped in a fine wire,
not unlike the read/write heads in an old video tape recorder (VCR) or cassette
machine. It is a property of magnets and coils that a moving magnet creates
(induces) an electric current in a nearby coil, and a coil with a current flowing
through it can create a magnetic field.

To write data to the moving disk, a current is sent to the read/write head,
which creates a small magnetic mark on the disk below the head. Magnets have
two orientations; they have a north pole and a south pole. Current flowing one
way creates a magnet in the disk that has a north pole appearing before the south
pole, or an N-S mark. Current flowing the other direction through the head cre-
ates a magnet on the disk that has the south pole appearing before the north pole,
or an S-N mark. One orientation, say N-S, will represent a binary number 1, and
the other (S-N) will represent a 0. In this way, binary numbers can be written to
the surface of the moving disk.

Reading numbers involves the magnetic regions of the disk passing quickly
past the read/write head and inducing small currents in the coil. These are ampli-
fied and classified by a simple electronic circuit that detects the current flow one
way as N-S and another way as S-N, thus allowing binary numbers to be read
from the disk.

Chapter 5 - Files: Input and Output [l 193

Actuator apm : Magnetic

I¥sk head

Figure 5.1
A disk drive with the cover removed show the key parts.

There are some very complicated physics involved in a disk drive. The read/
write head must be very close to the surface of a rapidly rotating disk, as close as
3 nanometers. To accomplish this, the head is aecrodynamically flying above the
disk. If it ever touches the disk’s surface, the result is catastrophic. At the speeds
involved, a large section of the magnetic material on the disk’s surface would be
scraped away, and all data there would be lost. In addition, the read/write head
would almost certainly be damaged. This event is called a head crash, and nor-
mally results in the entire disk drive being ruined. It’s one reason that frequent
backup copies of all data should be made.

Figure 5.2

A track is the set of data from one circle on the disk. Inner tracks are smaller, but contain the same
amount of data. (b) A sector is a wedge-shaped portion of the disk. The combination (track, sector)
gives an address for a block of data.

194 M Python: An Introduction to Programming-Second Edition

The picture that is developing is that of a device that returns data as a stream
of bits. To make the best use of the area of the disk, the read/write head can move
from the outer edge of the disk to nearly the center. Imagine a set of concentric
circles on the disk’s surface: the moving read head can position itself over any of
them and read the data that had been written there.

The disk 1s divided into a set of concentric circles called tracks, each of which
corresponds to one position of the read/write head (Figure 5.2a). The head can
move across the disk surface, but the positions are quantized: position 0-N__ .
can be reached through commands to a controller that change the head position.
The outermost track is numbered 0, and the numbers increase as the head moves
inward to the center. The disk is also divided into sectors, each of which is a
wedge-shaped portion of the disk (Figure 5.2b). These are again numbered 0 to
N._..... and create an address for a set of bits. Data can be read from sector 3 track
12 by positioning the read head over track 12 and waiting for sector 3 to rotate
into position under the head. The data takes as long to read as the sector takes to
pass under the read head.

This description answers two important questions. First, data can be accessed
by using the <track, sector> address. The data in a single track and sector is a
block, and all blocks are the same size in terms of bits for the sake of convenience,
traditionally 512 bytes (4096 bytes for AF drives). Second, it explains why ac-
cessing data takes so long when reading from a disk. Disks rotate at 7200 RPM or
120 revolutions per second; this is one rotation every 8.3 milliseconds.

EE®E How Are Files Stored on a Disk?

A file can be thought of as a set of blocks. If blocks are 512 bytes in size and
some data to be stored in a file consists of N bytes, then that file will need [N/512]
blocks, the next larger integer than N/512; it’s not possible to have two files share
a single block.

It gets more complicated, though, because it will not always be possible to
have all of the blocks that belong to a file lie next to each other. A file might con-
sist of many blocks, all of which are some distance apart in terms of their track
and sector. There is a need for a data structure to connect these blocks in the
correct order to make a file. It’s not very hard to do but is another step. This data
structure is written to the disk also. The result is that reading a file means finding

Chapter 5 - Files: Input and Output [l 195

the location of this data structure on the disk, getting the track and sector values,
and then reading the data from those and copying it into memory. The data struc-
ture containing the sectors is usually found through a file name that the user has
provided. There is a list of file names and the track/sector address of their index
sectors in a special file someplace on the drive, or in many places. File systems
tend to be organized hierarchically, so that one main name is accessed to find the
files within that part of the disk (directory), and within that directory are names
of more files and directories. It is a significant part of the function of an operating
system like Linux or Windows to provide a convenient way to access files.

File Access is Slow

How long does it take to access a block of data on the disk? It depends on
where the disk head is and where the disk rotation has placed the target block
at the time the request is made. There will be only a statistical answer, but for a
random block, it could take an average of 10 mS to move the head to the correct
track (seek time), and will take half of a rotation (4.15 mS). Add to this the time
needed to read the block, which is 8.3*1/N__ mS, or about 0.008 mS for a disk
with 1024 sectors. This can be ignored, and the time to access a random block can
be estimated as 14.15 milliseconds.

As a comparison, fast computer memory can access data within 8 nanosec-
onds. If a person could write the word “Gigabyte” on a whiteboard in 8 nano-
seconds, then what could they do in 14 milliseconds? They could copy the entire
Bible onto the board over 16 times. Disks are vastly slower than memory, and to
use the data, it must be copied into memory. This is a bottleneck in many com-
puter systems.

¥ KEYBOARD INPUT

Reading data from the keyboard is very different from reading data from a
file. Files exist before being read, and normally have a fixed size that is known in
advance. It is common to know the format of a file, so that the fact that the next
datum is an integer and the one following that is a float is often known. When
a user is entering data at a keyboard, there is no such information available. In
fact, the user may be making up the data as they go along. Before getting too far
into file input, it is important to understand the kind of errors that can happen
interactively.

196 M Python: An Introduction to Programming-Second Edition

These are using type errors, where the user enters data that is the wrong type
for the programmer to use: a string instead of an integer, for example. This kind
of error can arise in file input if the format is not known in advance.

EFXU Problem: Read a number from the keyboard and divide it by 2

This problem addresses how to treat integers like integers and floats like
floats. When the string s is read in, it is just a string, and it is supposed to contain
an integer. However, users will be users, and some may type in a float by mistake.
The program should not crash just because of a simple input mistake. How is this
situation handled?

The problem is that when the string is converted into an integer, if there is a
decimal point or other non-digit character that does not belong then an error will
occur. It seems that an answer would be to put the conversion into a try state-
ment block and if the string has a decimal point, then convert the string to a float
within the except part. The code looks like this:

s = input ("Input an integer: ")
try:

k = int (s)

ks = k//2
except:

z = float (s)
k = int(z/2)
print (k)

If the user types “12” in response to the prompt “Input an integer:,” then the
program prints “6.” If the user types “12.5,” then the program catches a ValueEr-
ror, because 12.5 is not a legal integer. The except part is executed, converting
the number to floating point, dividing by 2, then finally converting to an integer.

One problem is that the except part is not part of the try, so errors that hap-
pen there will not be caught. Imagine that the user types “one” in response to the
prompt. The call to int(s) results in a ValueError, and the except part is executed.
The statement

z = float(s)

results in another ValueError. This one will not be caught and the program will
stop executing, giving a message like:

Chapter 5 - Files: Input and Output W 197

ValueError: could not convert string to float: 'one'
s = input ("Input an integer: ")
try:

k = int (s)

k =k//2

except ValueError:
try:

z = float(s)
k = int(z/2)

except ValueError:

print

k=20

(s, k)

USING FILES IN PYTHON: LESS

THEORY, MORE PRACTICE

The general paradigm for reading and writing files is the same in Python as it
is in most other languages. The steps for reading or writing a file are these:

1.

Open the file. This involves calling a function, usually named open, and
passing the name of the file to be used. Sometimes the mode for open-
ing is passed; that is, a file can be opened for input, output, update (both
input and output), and in binary modes. The function locates the file us-
ing the name and returns a variable that keeps track of the current state
of input from the file. A special case exists if there is no file having the
given name.

Read data from the file. Using the variable returned by open, a func-
tion is called to read the data. The function might read a character, num-
ber, line, or the whole file. The function is often called read, and can be
called multiple times. The next call to read will read from where the last
call ended. A special case exists when all of the data has been read from
the file (called the end of file condition)

OR

Write data to the file. Using the variable returned by open, a function
is called to write data to the file. The function might write a character,
number, line, or many lines. The function is often called write, and can
be called multiple times. The next call to write will continue writing data
from where the last call ended. Writing data most frequently appends
data to the end of the file.

198 M Python: An Introduction to Programming-Second Edition

3. Close the file. Closing a file is also accomplished using a call to a func-
tion (usually named close). This function frees storage associated with
the input process and in some cases unlocks the file so it can be used
by other programs. A variable returned by open is passed to close, and
afterwards that variable cannot be used for input anymore. The file is no
longer open.

Open a File

Python provides a function named open that opens a file and returns a value
that can be used to read from or write to the file. That value refers to a complex
collection of values that refers to the file status and is called a handle or a file
descriptor. It can be thought of as having the type file, and must be assigned to a
variable or the file cannot be accessed. The open function is given the name of
the file to be opened, and a flag that indicates whether the file is to be read from
or written to. Both of these are strings. A simple example of a call to open is as
follows:

infile = open ("datafile.txt", "zr")

This opens a file named “datafile.txt” that resides in the same directory as
does the Python program, and opens it for input: the “r” flag means read. It re-
turns the handle to the variable infile, which can now be used to read data from
the file.

There are some details that are crucial. The name of the file on most comput-
er systems can be a path name, which is to say, the name including all directory
names that are used to find it on your computer. For example, on some computers,
the name “datafile.txt” might have the complete path name C:/parker/introPro-
gramming/chapter05/datafile.txt. 1f path names are used, the file can be opened
from any directory on the computer. This is handy for large data sets that are used
by multiple programs, such as names of customers or suppliers.

The read flag “r” that is the second parameter is what was called the mode in
the previous discussion. The “r” flag means that the file will be open for reading
only, and starts reading at the beginning of the file. The default is to read char-
acters from the file, which is presumed to be a text file. Opening with the mode
“rb” opens the file in binary format and allows reading non-text files, such as
MP3 and video files.

Chapter 5 - Files: Input and Output [l 199

Passing the mode “w” means that the file is to be written to. If the file exists,
then it will be overwritten; if not, the file will be created. Using “wb” means that
a binary file is to be written.

Append mode is indicated by the mode parameter “a,” and it means that the
file will be opened for writing and if the file exists then writing will begin at
the end of the existing file. In other words, the file will not start over as being
empty, but will be added to, at the end of the file. The mode “ab” appends data
to a binary file.

If the file does not exist and it is being opened for input, there is a problem.
It’s an error, of course; a non-existent file cannot be read from. There are ways to
tell whether a file exists, and the error caused by a non-existent file can be caught
and handled from within Python. This involves an exception. It is always a bad
idea to assume that everything works properly, and when dealing with files it is
especially important to check for all likely problems.

File Not Found Exceptions

The proper way to open a file is within a try-except pair of statements. This
ensures that nonexistent files or permission errors are caught rather than causing
the program to terminate. The basic scheme is simple:

try:
infile = open ("datafile.txt"™, "r")
except FileNotFoundError:
print ("There is no file named 'datafile.txt'.
Please try again")
return # end program or abort this section
of code

The exception FileNotFoundError occurs if the file name cannot be found.
What to do in that case depends on the program: if the file name was typed in by
the user, then perhaps they should get another chance. In any case, the file is not
open and data cannot be read.

There are multiple versions of Python on computers around the world, and
some versions have different names for things. The examples here all use Python
3.4. In other versions, the FileNotFoundError exception has another name; it
may be IOError or even OSError. The documentation for the version being

200 M Python: An Introduction to Programming-Second Edition

used should be consulted if a compilation error occurs when using exceptions
and some built-in functions. For the 3.4 compiler version, all three seem to work
with a missing file.

All attempts to open a file should take place while catching the FileNot-
FoundError exception.

Reading from Files

After a file is opened with a read mode, the file descriptor returned can be
used to read data from the file. Using the variable infile returned from the call to
open() above, a call to the method read() can get a character from the file:

s = infile.read (1)

Reading one character at a time is always good enough, but is inefficient. If
a block on disk is 512 characters (bytes), then that should be a good number of
bytes to read at one time or a multiple of that. Reading more data than you need
and saving it is called buffering, and buffers are used in many instances: live
video and audio streaming, audio players, and even in programming language
compilers. The idea is to read a larger block of data than is needed at the moment
and to hand it out as needed. Reading a buffer could be done as follows:

s = infile.read(512)

and then dealing characters from the strings one at a time as needed. A buffer
is a collection of memory locations that is temporary storage for data that was
recently on secondary storage.

Text files, those that contain printable characters that humans can read, are
normally arranged as lines separated by a carriage return or a linefeed character,
called a newline. An entire line can be read using the readline() function:

s = infile.readline ()

A line is not usually a sentence, so many lines might be needed to read one
sentence, or perhaps only half of a line. Computer text files are structured so that
humans can read them, but the structure of human language and convention is
not understood by the computer nor it is built into the file structure. However, it
is normal for people to make data files that contain data for a particular item or
event on one line, followed by data for the next item. If this is true, then one call
to readline() will return all of the information for a particular thing.

Chapter 5 - Files: Input and Output I 201

End of File

When there are no more characters in the file, read() will return the empty
string: “”. This is called the end of file condition, and it is important that it be
detected. There are many ways to open and read files, but for reading characters
in this way, the end of file is checked as follows:

infile = open("data.txt", "r")
while True:
c = infile.read (1)
if ¢ == "":
print ("End of file")
exit ()
else:
c = infile.read (1)

When reading a file in a for statement, the end of file is handled automati-
cally. In this case, the loop runs from the first line to the final line and then stops.

for ¢ in f:
prlnt ("l"’ c’ "l")

An exception cannot be used in an obvious way for handling the end of file
on file input. However, when reading from the console using the input() function,
the exception EOFError can be caught:

while True:
try:
c = input ()
print (c)
except EOFError:
print ("Endfile")
break

There are many errors that could occur for any set of statements. It is possible
to determine what specific exception has occurred in the following manner:

while True:
try:
c = input()
print (c)
except Exception as x:
print (x)
break

202 W Python: An Introduction to Programming-Second Edition

This code prints “EOF when reading a line” when the end of file is encoun-
tered.

Common File Input Operations

There are a few common ways to use files that should be mentioned as pat-
terns. Although one should never use a pattern if it is not understood, it’s some-
times handy to have a few simple snippets of code that are known to perform
basic tasks correctly. For example, on common operation to use with files is to
read each line from a file, followed by some processing step. This looks like

f = open ("data.txt", "r")

for ¢ in f:

print ("l", C, "l")
f.close ()

The expression ¢ in f results in consecutive lines being read from the files
into a string variable ¢, and this stops when no more data can be read from the
file.

Another way to do the same thing would be to use the readline() function:

f = open ("data.txt", "r")
c = f.readline()
while ¢ != ""':

print ("'", c, "'M)

c = f.readline()
f.close()

In this case, the end of file has to be determined explicitly by checking the
string value that was read to see if it is null.

Another common file operation is to copy a file to another, character by
character. A file is opened for input and another for output. The basic “read a
file” pattern is used, with the addition of a file output after each character is read:

f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read(l)
while c != "':

g.write(c)

c = f.readline (1)
f.close ()

g.close ()

Chapter 5 - Files: Input and Output [l 203

A filter is a program that reads data from a file and converts it to some other
form, then writes it out. This is often done from standard input and output, but
can be done in the middle of a file copy. For example, to convert a text file to all
lower case, the pattern above is used with a small modification:

1]

f = open ("data.txt", r")
g = open ("copy.txt", "w")
c = f.read(1l)
while ¢ != "':
g.write(c.lower())
c = f.readline (1)
f.close()
g.close ()

This filter can be done using less code if the entire file can be read in at once.
The read() function can read all data into a string.

f = open ("data.txt"™, "r")
g = open ("copy.txt", "w")
c = f.read()
g.write(c.lower())
f.close()

g.close()

Two files can be merged into a single file in many ways: one file after anoth-
er, a line from one file followed by a line from another, or character by character.
A simple merging of two files where one is copied first followed by the other is
as follows:

f = open ("datal.txt", "r")
outfile = open ("copy.txt", "w")
c = f.read()

outfile.write(c)

f.close()

g = open ("data2.txt", "r")

c g.read()

outfile.write(c)

g.close ()

outfile.close()

A more complex problem occurs when both files are sorted and are to re-
main sorted after the merge. If each line is in alphabetical order in each file,
then merging them means reading a line from each and writing the one that is

204 M Python: An Introduction to Programming-Second Edition

smallest. When one file is complete, the remainder of the second file is written
and all files are closed.

f = open ("datal.txt", "r")
g = open ("data2.txt", "zr")
outfile = open ("copy.txt", "w")
cf = f.readline ()
cg = g.readline ()
while cf!="" and cg!="":
if cf<cg:
outfile.write(cf)
cf = f.readline ()
else:

outfile.write (cqg)
cg = g.readline ()
if cf == "":
outfile.write (cqg)
cg = g.read()
outfile.write (cqg)
else:
outfile.write (cf)
cf = f.read()
outfile.write (cf)
f.close ()
g.close ()
outfile.close()

Copying the input from the console to a file means reading each line using
input() and writing it to the file. This code assumes that an empty input line im-
plies that the copying is complete.

outfile = open ("copy.txt", "w")

line = input ("! ")

while len(line)>1 or line[O]!="!":

outfile.write(line)

outfile.write ("\n")

line = input("! ")
outfile.close()

The end of the line is indicated by a character, which is represented by the
string “\n”. Reading characters from a file will read the end of line character also,
and detecting it can be very important.

f = open ("data.txt", "r")

Chapter 5 - Files: Input and Output [l 205

c = f.read(1l)
while ¢ != '':
print ("'", c, "'"M)
c = f.read(1l)
if ¢ == '"\n':
print ("Newline")
CSV Files

A very common format for storing data is called Comma Separated Variable
(CSV) format, named for the fact that each pair of data items have a comma be-
tween them. CSV files can be used directly by spreadsheets such as Excel and by
a large collection of data analysis tools, so it is important to be able to read them
correctly.

A simple CSV file named planets.txt is provided for experimenting with
reading CSV files. It contains some basic data for the planets in Earth’s solar sys-
tem, and while there is no actual standard for how CSV files must look, this one
is typical of what is usually seen. The first line in the file contains headings for
each of the variables or columns, separated by commas. This is followed by nine
lines of data, one for each planet. It’s a small data file, as these things are counted,
but illustrative for the purpose.

Table 5.1
CSV data for the planets

Diam, Density, Grav, Escape, Rotation, Day, Dis- Period, Moons, Temp

Problem: Print the names of planets having fewer than ten moons.

This is not a very profound problem, and uses the raw data as it appears
on the file. The file must be opened and then each line of data is read, and the
value of the 11" data element (i.e., index 10) retrieved and compared against 10. If
larger, the name of the planet (index 0) is printed. The plan is as follows:

206 M Python: An Introduction to Programming-Second Edition

Open the file

Read (skip over) the header line

For each planet
Read a line as string s
Break s into components based on commas giving list P
If P[10] < 10, print the planet name, which is P[0]

It is all something that has been done before except for breaking the string
into parts based on the comma. Fortunately, the designers of Python anticipated
this kind of problem and have provided a very useful function: split(). This func-
tion breaks up a string into parts using a specified delimiter character or string
and returns a list in which each component if one section of the fractured string.
For example,

"This is a string"
s.split ("™ ™)

Z

yields the list z = [“This”, “is”, “a”, “string”]. It splits the string s into sub-
strings at each space character. A call like s.split(*,”) should give substrings that
are separated by a comma. Given the above outline and the split() function, the
code is as follows.

try:
Open the file
infile = open ("planets.txt", "r")
Read (skip over) the header line
s =infile.readline()
For each planet
for i in range (0, 8):
Read a line as string s
s = infile.readline ()
Break s into components based on commas giving list P
P = s.split (",")
If P[10] < 10 print the planet name, which is P[O0]
if int(P[10])<10:

print (P[0], " has fewer than 10 moons.")
except FileNotFoundError:
print ("There is no file named 'planets.txt'.

Please try again")

Chapter 5 - Files: Input and Output [l 207

Almost the entire program resides within a try statement, so that if the file
does not exist, then a message is printed and the program ends normally. Note
that P[10] has to be converted into an integer, because all components of the list
P are strings. Strings are what has been read from the file.

CSV files are common enough so that Python provides a module for ma-
nipulating them. The module contains quite a large collection of material, and for
the purposes of the planets.py program, only the basics are needed. To avoid the
details of a general package, a simpler version is included with this book: sim-
pleCSV has the essentials needed to read most CSV files while being written in
such a way that a beginning programmer should be able to read and understand it.

To use it, the simpleCSV module is first imported. This makes two impor-
tant functions available: nextRecord() and getData(). The nextRecord() func-
tion reads one entire line of CSV data. It allows skipping lines without examining
them in detail (like headers). The function getData() will parse one line of data,
the last one read, into a tuple, each element of which is one of the comma-sepa-
rated fields.

The simpleCSV library needs to be in the same directory as the program that
uses it or be in the standard Python directory for installed modules. The source
code resides on the accompanying disk and is called simpleCSV.py. The program
can be re-written to use the simpleCSV module as follows:

import simpleCSV

try: # Read (skip over) the header line
infile = open ("planets.txt", "r") # Open the file
simpleCSV.nextRecord(infile) # Read the header

for i in range (0, 8): # For each planet

simpleCSV.nextRecord(infile) # Read a line and
collect substrings
in a list

p = simpleCSV.getData (infile)

if int (P[10])<10: # If number of moons

less than 10
print (P[0], " has fewer than 10 moons.")

print the planet name
except FileNotFoundError:
print ("There is no file named 'planets.txt'.
Please try again'")

208 M Python: An Introduction to Programming-Second Edition

Problem: Play Jeopardy using a CSV data set.

The television game show Jeopardy has been on the air for 35 years in one of
its two incarnations, and is perhaps the best known such program on television.
Players select a topic and a point value and are asked a trivia question that they
must answer in the form of a question. There are sets of questions that have been
used in Jeopardy over the years, some in CSV form, and so it should be possible
to stage a simulated game using Python as the moderator.

A simple version of the game could work like this: read the questions and
answers, and select the questions at random. Questions that have single-word
unambiguous answers would be best. The player types in an answer, and wins if
they answer ten correctly before getting three wrong.

A single line of data from the file might look like this:

5957,2010-07-06, Jeopardy!,"LET'S BOUNCE", "$600", "In this
kid's game, you bounce a small rubber ball while picking up
6-pronged metal objects","jacks"

There are 7 different data fields here separated by commas. They are: Show
Number, Air Date, Round, Category, Value, Question, and Answer; all are strings,
but some questions may contain commas. The CSV module can manage that.

There are many ways that a random question can be chosen. One would be to
read all of the data into a list, but that would require a lot of memory. Another way
would be to randomly read a question from the file, but that would be difficult to
do because each line has a different length. What could be done relatively easily
would be to pick a random number of questions to skip over before reading one to
use. We therefore select a random number K between N and M, read K questions,
and then read the next one and ask the user that question. When the end of the file
is reached, it can be read again from the beginning. If the file is large enough, it
would be unlikely to ask the same question twice in a short time period.

Here is an outline of how this might work:

Open infile as the file of questions to be used
While game continues:
Select a random number K between N and M
For I = N to M:
Read a line from the file
If no more lines:

Chapter 5 - Files: Input and Output [l 209

Close infile and reopen
Read a question and print it, ask the user for an answer
Read the user’s answer from the keyboard
If the user’s answer 1is correct:
Count right answers
Else:
Count wrong answers

If the CSV module is used the parsing the input file is dealt with. What is new
about his? When all of the data in the file has been used the program may not be
complete. What is done then is new: close the file, reopen it, and start again from
the beginning. This is an unusual action for a Python program but illustrates the
flexibility of the file system. There is a nested try-except pair, the outer one that
checks the existence of the file of questions and the inner one that checks for the
end of the file. When the file is re-opened, a new reader has to be created, be-
cause the old one is connected to a closed file. The file on the disk is the same,
but when it is opened again, a new handle is built; the old CSV reader is linked
to the old handle.

The program counts the number of right answers (CORRECT) and the num-
ber of wrong ones (INCORRECT). When there are 10 correct answers or 3 in-
correct ones, the game is over; a variable again is set to False and the main while
loop exits. A break could have been used, but having the condition become False
is the polite way to exit from a while loop.

The entire program looks like this:

Jeopardy!
import simpleCSV, random

try:
infile = open ("g.txt", "r") # Open the file
simpleCSV.nextRecord (infile) # Read (skip over) the
header line

CORRECT
INCORRECT
again = True

0
=0

while again:
k = random.randint (5, 10) # How many questions
to skip?

210 M Python: An Introduction to Programming-Second Edition

for I in range (0, k):
if not simpleCSV.nextRecord(infile):
Skip this question

infile.close()
print ""Reopenin"")
infile = open ""JEOPARDY small.tx"","""™")
simpleCSV.nextRecord (infile)

s = simpleCSV.getData (infile) # Read the question

to be asked.
print (s[5]) # Print the question
a = input () # Read the answer
if a.lower() == s[6].lower(): # Does player answer
agree?
CORRECT = CORRECT + 1 # Yes. count to 10.
if CORRECT >= 10:
print ""You win"")
again = False
else:
INCORRECT = INCORRECT + 1 # No. Count to 3
print ""Sorry. The answer is"", s[6])
if INCORRECT > 12:
print ""You lose"")
again = False

except FileNotFoundError:
print ""There is no question file. We can't play"")

The With Statement

A difficulty with the code presented so far is that it does not clean up after
itself. A file should be closed after input from it or output to it is finished; none of
the programs written so far do that, at least not after the file operations are com-
plete. There has been no significant discussion of the close() operation, but what
it does has been described. Normally, when a program terminates, its resources
are returned to the system, including the closing of any open files. Intention-
ally closing a file is important for three reasons: first, if the program aborts for
some reason, open files should be closed by the system but may not be, and file
problems can be the result. Second, as in the Jeopardy program, closing a file
can be used as a step in re-using it. Opening it again starts reading it at the begin-
ning. Third, closing a file frees its resources. Programs that use many files and/
or many resources will profit from freeing them when they are no longer needed.

Chapter 5 - Files: Input and Output H 211

The Python with statement, in its simplest form, takes care of many of the
details surrounding file access. An example of its use is as follows:

try:
with open ("planets.txt") as infile: # Open the file
simpleCSV.nextRecord(infile) # Read the header
for i in range (0, 9): # For each planet
simpleCSV.nextRecord(infile) # Read a line,
make a list
P = simpleCSV.getData(infile)
if int(P[10]1)<10: # If number of moons
less than 10
print (P[0], " has fewer than 10 moons.")

print the name
except FileNotFoundError:
print ("There is no file named 'planets.txt'.
Please try again")

Once the file is open, the with statement guarantees that certain errors will be
dealt with and the file will be closed. The problem is that the file has to be open
first, so the FileNotFound error should still be caught as an exception.

X1 WRITING TO FILES

The first step in writing to a file is opening it, but this time for output:

outfile = open ("out.txt", "w")

The “w” as the second parameter to open() means to open the file for writ-
ing. When writing to a file, it is important to note that opening it will create a new
file by default. If a file with the given name already exists, it will be re-written,
and the previous contents will be deleted.

The basic file output function is write(); it takes a parameter, a string to be
written to the file. It only writes strings, so numbers and other types have to be
converted into strings before being written. Also, there is no concept of a line.
This function simply moves characters to a file, one at a time, in the order given.
In order to write a line, an end of line character has to be written. This is usually
specified in a string as \n, spoken as “backslash n.” The “n” stands for newline.

212 W Python: An Introduction to Programming-Second Edition

Example: Write a table of squares to a file.

This example illustrates the typical code involved in writing to a file. The
file must be opened, then a loop from 0 to 25 is constructed. Each number in that
range is written to the file, as is that number multiplied by itself. Each output
string represents a line, and so must have a newline character added to the end.

outfile = open ("out.txt", "w")
outfile.write (" X X squared \n")
for i in range (0, 25):

sout = " "+str(i)+" "+str(i*i)+"\n"

outfile.write (sout)
outfile.close()

Note that the integers are explicitly converted into strings and concatenated
into a line to be written. The elements of the line could be written in separate
calls:

outfile = open ("out.txt", "w")

outfile.write (" X X squared \n")

for i in range (0, 25):

outfile.write

(
outfile.write (str(i))
outfile.write (" ")
outfile.write (str(i*i))
outfile.write ("\n")

outfile.close()

The output file is closed after all data has been written.

XX Appending Data to a File

Opening the file in “w” mode starts writing at the beginning of the file, and
will result in existing data being lost. This is not always desirable. For example,
what if a log file is being created? The log should contain a record of everything
that has happened, not just the most recent action.

Opening the file in append mode, signified by the parameter “a,” opens the
file for output and starts writing at the end of the file if it already exists. This
means that data can be added to the end of an existing file.

Chapter 5 - Files: Input and Output [l 213

Example: Append another 20 squares to the table of squares file.

The previous example created a file named “out.txt” and wrote 26 lines to it.
It was a table of squares, and the final one was 24. This example will therefore
begin at 25 and add 20 more values to the table.

The main difference is the opening of the output file in append mode, and
starting the loop at 25 instead of at 0:

outfile = open ("out.txt", "a")
for i in range (25, 45):
sout = " "tstr(i)+" "+str(i*i)+"\n"

outfile.write (sout)
outfile.close()

The file “out.txt” will contain the squares of the integers between 0 and
44, inclusive, after this program runs.

EX SUMMARY

Files are computer structures within which data are stored, and almost al-
ways reside on disk devices, tape devices, or other secondary storage. Files have
some common properties: files have names; files have a size; basic operations on
a file are read and write; files must be open before they can be used; and only
one program at a time can write to a file. Access to data on a file is much slower
than access to data in memory, but file data has to be moved into memory before
it can be manipulated.

Exceptions are events that occur while a program is executing, such as divid-
ing by zero. Rather than check for all possible exceptions every time a statement
is executed, Python provides a try-except statement that allows the programmer
to provide code to run when an error occurs. Specific named exceptions exist in
Python that can be specifically caught, like ValueError, or all exceptions can be
caught by not specifying a particular one.

Files are opened using a call to open passing a file name and a mode. If the
mode is “r,” then the file will be read from; if it is “w,” it will be written to (for
example, x = open(“input.txt”, “r”)). Reading from a file x is accomplished by a

read call: x.read(n) will return a string of n characters; x.readline() will return

214 W Python: An Introduction to Programming-Second Edition

one line from the file x. When there are no more characters in the file, read() will
return the empty string: “”. This is called the end of file condition.

A CSV (comma separated values) file is a specific format that is common for
some kinds of data, including spreadsheets. The simpleCSV package provided on
the accompanying disk can be helpful in reading these files.

Output to a file x is done with a call to write: x.write(s) writes the string s to
the file represented by x. The string “\n” represents the end of a line.

Note: This chapter will be extended in Chapter 8 to expand the kind of file
operations and data that can be read from and written to a file.

Exercises

1. Write a program that reads a file name from the user (console) and prints out
how many characters belong to that file.

2. Write a program that opens a file containing a list of file names. For each one
print the file name followed by YES if that file exists in the current directory
and NO if it does not.

3. Create a file copy facility. The program should read the name of a file from
the user’s console and create another file with the same contents. If the
original file is named “xx.txt,” then the new file will be named “xx-copy.txt.”
The original file will always have a name ending in .txt, and so will the copy.

4. The CSV file “avatardata.csv” contains saved information concerning the
preferred avatars for players of a video game. The fields are the player code
(integer), avatar type (string, no quotes), number of times this avatar was
played at this level (integer), a game level reached (integer, out of 12), and the
highest score achieved on this level(integer); there is no header. Read this file
and determine and print which player/avatar has the highest score on each
level.

5. Using a Python program, create a CSV file from “avatardata.csv” that
contains only information for level 10.

6. In an HTML file (i.e., a Web page), an image to be displayed is usually
identified in a source tag of the form: sre=*name.jpg”. The quotes are a part
of the tag, and the text between them is an image file name. Write a program

Chapter 5 - Files: Input and Output [l 215

that reads an HTML file and prints the names of all of the images files that it
references.

7. A user will specify the name of an image file, such as a file having a name

that ends in .jpg, .gif, or .png, from the console. Your program will read this
name and create “disp.html,” an html file that, when opened by a browser,
will display this image. (This exercise requires a knowledge of basic HTML.)

8. Two files, named sortedl.txt and sorted?.txt, contain numeric data that appear

in the file in sorted ascending order (when looked at as a string). Merge these
two files to create a single file having the data of both, also in sorted order.

Notes and Other Resources

Python CSV Library: https://docs.python.org/3/library/csv.html

1.

Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau (2015). Operating
Systems.: Three Easy Pieces. Amazon Digital Services, Inc.

. Marco Cesati and Marco Cesati (2005) Understanding the Linux Kernel,
O’Reilly Media.

. Dominic Giampaolo (1999). Practical Filesystem Design, Morgan Kaufmann
Publishers, Inc. Attp://www.nobius.org/~dbg/practical-file-system-design.pdf
www.nobius.org/~dbg/practical-file-system-design.pdf

. Robert Stetson (2013). How Disk Drives Work. CreateSpace Independent
Publishing Platform.

. Jeopardy questions: https:/docs.google.com/uc?id=0BwT5wj P7BKXUI9tO
UJWYzVvUjA&export=download

CHAPTER 6

CLASSES
6.1 A Casual Introduction to Classesc..cccoiiiiiiiii.. 218
6.2 Classes and Types. 220
6.3 Classes as Encapsulated Modules 221
6.4 Classes as Data Abstractionsccccciiiiiiiii.. 223
6.5 The Python Class — Syntax and Semantics 225
6.6 Classes and Data Types AZaincccoiuieiieiiiiiinn. 231
6.7 Subclasses and Inheritance. i .. 246
6.8 DuckTyping 250
6.9 Summary...... ... 251

In this chapter

Classes, as a programming language feature, have been around since the
1960s. Design concepts in object-oriented programming and related subjects
have been around nearly as long: since the 1970s. There are still arguments about
how to teach about objects, and whether to teach them early in a programming
course or later. Rather than try to solve this impossible problem, why not try mul-
tiple ways? Then people can choose which way they like best.

218 M Python: An Introduction to Programming-Second Edition

A CASUAL INTRODUCTION TO CLASSES

How many jokes begin with a phrase like “A man walks into a bar?” So many
jokes begin with this line that when someone hears that phrase, they will assume
whatever comes next is a joke. But what is a man, what is a bar, and what does
walking entail? Walking seems to be something that a man can do, an action he
can perform. A bar is a place where a man can walk. Can a man do anything else
but walk? Is a bar the only place a man can walk to?

It seems silly to examine a sentence in that way, but in the context of a com-
puter program, it is more meaningful. Imagine that this discussion involves a
computer game or simulation. A man now represents some kind of thing or object
that is manipulated by the program. A man has properties and things it can do,
which is to say operations it can perform. What properties does a man object
have? See Table 6.1 for a small subset of the possibilities.

Table 6.1
Properties of the “man” object

Property Type

Ao LSIINg
Sex : Boolean

Phonenumber | Ioeger
Height L0 A
Weight Float
S £
Home (location, address) String?

ome Gomnom At e
S £
aossesslensi(Cihenilnco /IR Eaa v Hebicct NN
AR 1. S
Children Array of person

A man would appear to be a complex data type having a number of prop-
erties. Note especially that a man can have a property or characteristic called
spouse. A spouse is something called a person; so is a man, really. This is ab-
stract, but consider that a man is a person, and perhaps some of the characteristics

Chapter 6 - Classes H 219

of a man are really those of (i.e., inherited from) a person. In fact, it would appear
that most of them are. The only thing that distinguishes a man from other persons
would (from the list above) be sex, which would be (perhaps) false for a man and
true for a woman, another kind of person.

Imagine that there is a whole class of things called person that have most
of these properties. A man could be derived from this, since man has many of
these properties in common. A woman could be another class, perhaps having a
few different properties. A man could have, for example, a “date of last prostate
exam” as a property, but a woman could not. A woman could have a “date of last
pap smear,” but a man could not. At some point, person has many common char-
acteristics, but man has some that woman does not and vice versa.

Let us consider the original proposition: what is a bar? It is clearly a thing
(object) that can hold (contain) a man. Perhaps it can contain many men. Can it
contain women? Why not? If a person has to be either a man or a woman, then a
bar can contain some number of persons. A bar is a class of objects that can hold
or contain some number of persons. It would be a container class or a holder of
some kind.

The phrase “A man walks into a bar” might be expressed as follows:

aMan.walksInto (aBar)

where aMan is a particular man (a specific instance of a man class) and aBar is a
specific instance of a class of objects known as bar. This man has a Name, which
is to say that one of the properties that a man has is a Name, and this is really just
a variable. Since each individual man has a Name there has to be a way of getting
at (accessing) each one. It is done through each instance:

print (aMan.Name) # Accessing /printing the name.
aMan.Name = "Ted Smith" # Assigning to the name.

Using this syntax, the dot () is placed after the name of the instance. The
syntax aMan.Name means “look at the variable aMan, which is an instance of
man, for a property called Name.”

What is the meaning of walksInto in the above expression aMan.
walksInto(aBar)? Considering the syntax just described, it would appear to be a
function that was a part of the definition of man. It takes one parameter, which is
something having the type bar.

220 WM Python: An Introduction to Programming-Second Edition

This way of looking at the “man walks into a bar” scenario seems sensible in
that it organizes information and provides a clear and formal way to access it and
manipulate it. This discussion has been a metaphor for the concept of a class and
the ideas behind object orientation, two key elements of modern programming
structures. Python permits the programmer to define classes like the man or bar
objects previously described, and to use them to encapsulate variables and func-
tions and create convenient modular constructions.

K¥A CLASSES AND TYPES

A class, in the general sense, is a template for something that involves data
and operations (functions). An object is an instance of a class, a specific instan-
tiation of the template. Defining a class in Python involves specifying a class
name and a collection of variables and functions that belong to that class. The
man class that has been referred to so far has only a few characteristics that we
know about for certain. It does have a function called walksInto, as one example.
A first draft of the man class could be as follows:

class man:
def walksInto (aBar):
code goes here

A function that belongs to a class is generally referred to as a method. This
terminology likely refers back to a language devised in the 1970s named Small-
talk. According to the standard for that language, “4 method consists of a se-
quence of expressions. Program execution proceeds by sequentially evaluating
the expressions in one or more methods.”’[5] In the above example, walksInto is a
method; essentially, a method is any function that is part of a class.

Classes can have their own data too, which would be variables that belong to
the class in that they exist inside it. Such variables can be used inside the class but
should not be accessed from outside.

Looking closely at the simple class man above, notice that it is actually still
an abstract thing. In the narrative about a man walking into a bar it was a specific
man, as indicated by a variable aMan. A class is really a description of some-
thing, in that examples or instances should be created in order to make use of that
description. This is correct. In fact, many individual instances of any class can be

Chapter 6 - Classes H 221

created (instantiated) and assigned to variables. To create a new instance of the
class man, the following syntax could be used:

aMan = man ()

When this is done, all of the variables used in the definition of man are al-
located. In fact, whenever a new man class is created, a special method that is
local to man is called to initialize variables. This method is the constructor, and
can take parameters that help in the initialization. Creating a man might involve
giving him a name, so the instantiation may be

aMan = man ("Jim Parker")

In this case, the constructor accepts a parameter, a string, and probably as-
signs it to a variable local to the class (Name, most likely). The constructor is
always named _ init :

def init (self, parameterl, parameter2, ..):

The initial parameter named self is a reference to the class being defined.
Any variable that is a part of this class is referred to by prefixing the variable
name with “self.” To make a constructor for man that accepted a name, it would
look like this:

def init (self, name):
self.Name = name

When a man is created, the statement would be as follows:

aMan = man ("Jim Parker")

CLASSES AS ENCAPSULATED MODULES

We have been exposed to Python modules or packages already: math and
random are two examples. These are really a collection of variables and func-
tions with a common theme or purpose that we can access when we need them.
We don’t have to create a random number function whenever we need one, we can
just use the one within random. A class than be thought of as a module.

Within the module there are functions which, because they are part of a class,
are called methods. Variables can be defined within a class and have a scope all
their own. A variable named x can be declared within a class and also within
other classes and the main program without any confusion.

222 W Python: An Introduction to Programming-Second Edition

A class can be instantiated, which means an instance or version of it is cre-
ated. When we say from random import * at the beginning of a program, we are
effectively creating an instance of random. That’s how we get access to most of
the variables and methods within it. We can instantiate random as

import random
s = random

As an instance of random, the methods can be accessed through s using the
dot notation. For example,

print (s.random())

with print a random number. There can be multiple instances of a class, and each
is created by referencing the class name.
s = random

t = random
print (s.random (), t.random())

This is not always useful, as in this case, but can be when the class contains
data important to the programmer.

Variables declared inside of a class should only be accessed by using meth-
ods. If there is a variable named name within a class named client, then the vari-
able can normally be accessed directly:

a = client # Create an instance of client.
print (a.name)

This is considered poor form in general. We should have a get method for
each variable we wish to use, and this method only returns the value of the vari-
able:

print (a.get name())

Similarly, we will have a set method to assign values to variables within a
class:

a.set name ("Parker")
This protocol makes the class a relatively safe place. Variables can only be

accessed and changed through one single method, making it correct if those
methods are correct, and making all such accesses easy to locate in the code. For

Chapter 6 - Classes H 223

small programs, this matters a lot less than for larger ones, but it is always a good
idea to follow this scheme.

A very important method is the constructor, which is called automatically
by the system when an instance is created. This method is used to set up vari-
ables and data structures and perhaps read data at the beginning of some process.
Constructors can accept parameters and then save these as local within-class
variables. If a class named client has a constructor, then it is called whenever an
instance is created, and the syntax of the instantiation includes a parameter list
even if it is empty:

a = client () # Create an instance of client.

The idea is to provide a barrier around the methods and variables in the class.
Accesses are controlled, and if the methods in the class are correct and the correct
protocol is followed for using get and set methods, then it will be easier to find
problems in the class, and the resulting code should be more reliable and easier
to modify.

KZA CLASSES AS DATA ABSTRACTIONS

We can define a type as a data structure and a set of operations that we com-
monly perform on that structure. This defines what is called an abstract data type
(ADT). This is a formal abstraction for data types, but a class structure can be
used as a beginning of practical implementations of types using the model. The
underlying variables and data types used in the implementation should only be
important to the person implementing the class, and all the user can do is instanti-
ate it and use the operations.

Consider a simple type like Boolean. A Boolean variable can have one of
two values, True or False. These are constants, and their actual values are not
important, only that they exist and are always the same. In Python, we could have
a statement

flag = True

and this gives the Boolean variable the value True. Using a class to represent a
type, we could do the following:

flag = Boolean()
flag.set true()

224 W Python: An Introduction to Programming-Second Edition

This is more complicated, but shows what is going on. The Boolean construc-
tor establishes an instance of the class Boolean, which is assigned to the variable
flag. We now assign a value to flag by calling its set_true method; there should
also be a set_false. Now flag is a Boolean variable with the value True. We can
use this in a loop by getting its value through the get method:

while flag.get():

Boolean values can have and, or, and not operations applied to them. If we
have two Boolean variables, a and b, then a and b is True only when both a is
True and b is True. When implementing a Boolean class we would use a method
named and to implement this operator:

result = a.and (b)

The operation or would be implemented as a method as well. The not opera-
tion is unary, meaning it operates on only one value. It reverses the truth value.
We would not require a parameter for not:

result.not ()

A class can have variables inside them, and one special kind is a value that
a class defines for programmers to use specifically with that class, usually as a
constant. An example could be the values TRUE and FALSE defined as

TRUE = 1000
FALSE = 2000

These could be used outside the class as

Boolean.TRUE
Boolean.FALSE

where the name of the class is Boolean. They must, of course, not be modified
after being defined inside the class. Python has not implemented constant vari-
ables, but that’s what these variables should be.

This implementation is the basis for a Boolean type. Python already has a
Boolean type, but the generality of the class construct means we can create our
own more complicated types.

Chapter 6 - Classes H 225

KXl THE PYTHON CLASS — SYNTAX
AND SEMANTICS

The “man walks into a bar” example illustrates many aspects of the Python
class structure, but obviously omits many details, especially formal ones that can
be so important to a programmer. A class looks like a function in that there is a
keyword, class, and a name and a colon, followed by and indented region of code.
Everything in that indented region belongs to the class, and cannot be used from
outside without using the class name or the name of a variable that is an instance
of the class.

The method __init__ is used to initialize any variables that belong to the
class. It is what we called a constructor above. Any variables that belong to the
class must be accessed through either an instance (from outside of the class) or
by using the name self (from within the class). self.name refers to a variable that
was defined inside of the class, whereas simply using name refers to a variable
local to a method. When __init__ is called, a set of parameters can be passed
and used to initialize variables in the class. If the first parameter is self, it means
that the method can access class-local variables, otherwise it cannot. Normally,
self is passed to __init__ or it cannot initialize things. Any variable initialized
within __init__ and prefixed by self is a class-local variable. Any method that
is passed self as a parameter can define a new class-local variable, but it makes
sense to initialize all of them in one place it that’s possible.

A simple example of a class, initialization, and a method is as follows:
class person:

def init (self, name):
self.name = name

def introduce (self):
print ("Hi, my name is ", self.name)

me = person("Jim")
me.introduce ()

This class has two methods, __init__() and introduce(). After the class is
defined, a variable named me is defined and is given a new instance of the person
class having the name “Jim.” Then this variable is used to access the introduce

226 W Python: An Introduction to Programming-Second Edition

method, which prints the introduction message “Hi, my name is Jim.” A second
instance could be created and assigned to a second variable named you using

you = person ("Mike")
and the method call

you.introduce ()

would result in the message “Hi, my name is Mike.” Any number of instances can
be created, and some many have the same name as others — they are still distinct
instances.

A new class-local variable can be created by any method. In introduce(), for
example, a new local named introductions can be created simply by assigning a
value to it.

def introduce (self):
print ("Hi, my name is ", self.name)
self.introductions = True

This variable is True if the method introductions has been called. The main
program can access this variable directly. If the main program becomes

me = person ("Jim")
me.introduce ()
print (me.introductions)

then the program will generate the output

Hi, my name is Jim
True

This is the essential information needed to define and use a class in Python.

A Really Simple Class

A common example of a basic class is a point, a place on a plane specified by
x and y coordinate. The beginning of this class is

class point:
def init (
self.x = x
self.y = vy

self, x, vy):

Chapter 6 - Classes W 227

This simply represents the data associated with a mathematical point. What
more does it need? Well, two points have a distance between them. A distance
method could be added to the point:

def distance (self, p):
d = (self.x-p.x)*(self.x-p.x) + (self.y-p.y)*
(self.y-p.vy)
return sqgrt (d)

If a traditional function were to be used to compute distance, it would be
written similarly but not identically. It would take two points as parameters:

def distance (pl, p2):
d = (pl.x-p2.x)*(pl.x-p2.x) + (pl.y-p2.y)* (pl.y-p2.vy)
return sqgrt (d)
The distance method uses one of the points as a preferred parameter, in a
sense. The distance between points pl and p2 would be calculated as

d = pl.distance(p2) or d = p2.distance(pl)

using the distance method, but as
d = distance (pl, p2)

if the function was used. To a degree, the difference is a philosophical one. Is
distance some property that a point has from another point (the method), or is
it something that is a thing that is calculated for two things (the function). After
a while, it is possible to see the methods and data of a class as belonging to the
object, and as somehow being properties of it. That’s what makes a class a type
definition.

Many object-oriented languages offer the concept of accessor methods.
Some languages do not allow variables that belong to a class to be used directly,
or allow specific controls on access to them. The truth is that having the ability to
find the value of variables and to modify them is generally a bad idea. If the only
place that a class local variable can be modified is within the class then that limits
the places where that can occur, and allows more control over what is possible.
Preventing errors in programs is partly a matter of restricting actions to a small
region and of knowing exactly what is going on at all times.

Similarly, if some object outside of a class has access to the local variables of
that class, then it promotes a dependency on a specific implementation. One of

228 M Python: An Introduction to Programming-Second Edition

the advantages of an object-oriented implementation is that the interface to the
class is fixed and independent of the way that class is implemented. It may seem
obvious that a point object has an x, y position and that those would be real num-
bers, but the point class is the simplest class, and taking advantage of how a class
is coded it not always beneficial.

All that an accessor method does is return a value of important to a user of a
class. The x and y positions are variables local to the class, and many would agree
that they should have an accessor method:

def getx (self):
return self.x

def gety (self):
return self.y

Rewriting the distance() method to use accessor methods changes it only
slightly:
def distance (self, p):
d = (self.x-p.getx())*
)

(self.y-p.gety ()
return sqgrt (d)

Methods called mutators or setters are used to modify the value of a variable
in a class. They may do more than that, such as checking ranges and types, and
tracking modifications.

(self.x-p.getx()) +
* (self.y-p.gety())

def setx (self, x):
self.x = x

def sety (self, vy):
self.y = vy

There are other methods that could be added to even this simple class just in
case they were needed, such as to draw the point, to return a string that describes
the object, to rotate about the origin or some other point, or to call a destructor
method when the object is no longer needed. Until it is known what the class
will be used for, there may not be any value for this effort, but if a class is being
provided for general utility, like the Python string, as much functionality would
be provided as the programmer’s imagination could invent. A draw method could
simply print the coordinates, and could be useful for debugging:

def draw (self):
print (" (", self.x, ",", self.y, ") ")

Chapter 6 - Classes H 229

Using this class involves creating instances and using the provided methods,
and that should be all. A triangle consists of three points. A triangle c/ass could
be defined as follows:

class triangle:

def init (self, pO, pl, p2):
self.v0 = p0
self.vl = pl
self.v2 = p2

self.x = (pO0.getx()+pl.getx()+p2.getx())/3
self.y = (pO.gety()+pl.gety()+p2.gety())/3

def set vertices (self, p0O, pl, p2):
self.v0 = p0
self.vl = pl
self.v2 = p2

def get vertices (self):
return ((self.v0, self.vl, self.v2))

def getx (self):
return self.x

def gety (self):
return self.y

The (x, y) value of a triangle is its center, or the average value of the x and the
y coordinates of the vertices. These are the basic methods. A triangle is likely to
be drawn somehow, and the next chapter will explain how to do that. However,
without knowing the details, a triangle is a set of lines drawn between the vertices
and so might be done that way. As it is, using text only, it will print its vertices:

def draw (self):
print ("Triangle:")
self.v0.draw()
self.vl.draw()
self.v2.draw()

The triangle can be moved to a new position. A change in the x and y loca-
tion specifies the change, and it is done by changing the coordinates of each of
the vertices:

def move (self, dx, dy)
coord = pO0.getx ()

230 M Python: An Introduction to Programming-Second Edition

p0.setx (coord+dx)
coord = p0.gety ()
p0.sety (coord+dy)
coord = pl.getx()
pl.setx (coord+dx)
coord = p0.gety ()
pl.sety (coord+dy)
coord = p2.getx()
p2.setx (coord+dx)
coord = p2.gety ()
p2.sety (coord+dy)

self.x = self.x + dx
self.y = self.y + dy

In this way of expressing things, it is clear that moving the triangle is a matter
of changing the coordinates of the vertices. If each point had a move() method,
then it would be clearer: moving a triangle is a matter of moving each of the
vertices:

def move (self, dx, dy):
p0.move (dx, dy)
pl.move (dx, dy)
p2.move (dx, dy)
self.x = self.x + dx
self.y = self.y + dy

Which of these two move() methods seems the best description of what is
happening? The more complex are the classes, the more value there is in making
an effort to design them to effectively communicate their behaviors and to make
things easier to expand and modify. It is also plain that the move() method for
a point is simpler than that for a triangle. That fact is invisible from outside the
class, and it is not relevant.

[E¥A Encapsulation

In the example of the point class, there is no need for an accessor method
because the variables can be accessed from outside the class, in spite of the argu-
ments that have been given for more controlled use of these variables. A careful
programmer would want to ensure the integrity of classes by forcing the variables
to remain protected in some way, and Python allows this while not requiring it.

Chapter 6 - Classes H 231

The variables x and y are accessible and modifiable from outside because of
how they are named. Any variable name in a class that begins with an underscore
character (‘") cannot be modified by code that does not belong to the class. Such
a variable is said to be protected. A variable name that begins with two under-
score characters cannot be modified or even examined from outside of the class,
and is said to be private. All other variables are public. This applies to method
names too, so the method __init__ () that is the usually constructor is private.

Rewriting the point class to make the internal variables private would be
done like this:

class point:
def init (self, x, y):
self. x = x
self. y =y
def getx (self):
return self. x
def gety (self):
return self. vy
def setx (self, x):
self. x = x
def sety (self, y):
self. yy =y
def distance (self, p):
d = (self. x-p.getx())*(self. x-p.getx()) +
(self. y-p.gety())* (self. y-p.gety())
return sqgrt (d)
def move(self, dx, dy):
self. x = self. x + dx
self. y = self. vy + dy
def draw (self):
print (" (", self. x, ",", self. vy, ") ")

Now the internal variables x and y cannot be modified or even have their
values examined unless explicitly allowed by a method.

KX3A CLASSES AND DATA TYPES AGAIN

Consider an integer. How can it be described so that a person who has not
used one before can implement something that looks and acts like an integer?
This is a specific case of the general problem faced when using computers — to

232 W Python: An Introduction to Programming-Second Edition

describe a problem in enough detail so that a machine can solve it. The definition
could start with the idea that integers can be used for counting things. They are
numbers that have no fractional part, and that have been extended so that they
can be positive or negative.

When designing programs that use classes, it is likely that the classes rep-
resent types, although they may not be completely implemented. The design
scheme is to sketch a high-level solution and observe what components of that
solution behave like types. Those components can be implemented as classes.
The remainder of the solution has a structure imposed on it by virtue of the fact
that these other types exist and are defined to be used in specific ways. Types can
hide their implementation, for example. The underlying nature of an integer does
not matter much to a programmer most times, and so it can be hidden behind the
class boundary. This has the added feature that it encourages portability: if the
implementation has to change, the class can be re-written while providing the
same interface to the programmer.

As noted previously, the operations on the type are implemented as methods.
The methods can access the internal structure of the class while providing the
desired view of the data and ways of manipulating it. The underlying representa-
tion of an integer can be unknown to a user of this class. All that is known is the
interface, described as methods. If the interface is well documented, then that’s
all a programmer needs to know. In fact, exposing too much of the class to a pro-
grammer can compromise it.

[XFW Example: A Deck of Cards

Traditional playing cards have red and black colors, four suits, and a total of
52 cards, 13 in each suit. Individual cards are components of a deck, and can be
sorted: a 2 is less than a 3, and a jack less than a king. The ace is a problem: some-
times it is the high card, and sometimes it is the low card. A card possesses the
characteristics suit and value. When playing card games, the cards are dealt from
the deck into hands of some number of cards (for example, 13 cards for bridge
and 5 for most poker games). The value of a card usually matters. Sometimes
cards are compared against each other (poker), sometimes the sum of the values
is important (as in blackjack or cribbage), and sometimes the suit matters. These

Chapter 6 - Classes H 233

uses of a deck of cards can be used to define how classes are created to implement
card games on a computer.

Operations on a card could include to view it (it could be face up or face
down) and to compare it against another card. Comparison operations could in-
clude a set of complex specifications to allow for aces being high or low and for
some cards having special values (as in spades or baccarat), so a definition step
might be very important.

A deck is a collection of cards. There are usually one of each card in a deck,
but in some places, such as Las Vegas, there could be four or more complete decks
used when playing blackjack. Operations on a deck would include to shuffle, to
replace the entire deck, and to deal a card or a hand. With these things in mind, a
draft of some Python classes for implementing a card deck can be created:

class card: class deck:
def init (self, face, def init (self):
suit) : def deal card ():
def value(): def deal hand (ncards):
def suit(): def shuffle():
def facevalue(): def replace():
def view ():
def compare() :
def initialize()

The way that the methods are implemented depends on the underlying repre-
sentation. When the programmer calls deal(), they expect the method to return a
card, which is an instance of the card class. How that happens is not relevant to
them, but it is relevant to the person who implements the class. In addition, how it
happens may be different on different computers, and as long as the result is the
same, it does not matter.

For example, a card could be a constant value r that represented one of the
52 cards in the deck. The class could contain a set of values for these cards and
provide them to programmers as a reference:

class card:

CLUBS 1 = 1
DIAMONDS 1 = 2

234 W Python: An Introduction to Programming-Second Edition

HEARTS ACE = 51
SPADES ACE = 52
def init (self, face, suit):

The variables for the cards, such as CLUBS 1 and DIAMONDS 1, are ac-
cessible in all instances of the card class and have the appropriate value. Variables
defined in this way have one instance only and are shared by all instances.

A second implementation could be as a tuple. The ace of clubs would be
(Clubs, 1), for instance. Each has advantages, but these will not be apparent to
the user of the class. For example, the tuple implementation makes it easier to
determine the suit of a card. This matters to games that have trump suits. The
integer value implementation makes it easier to determine values and do specific
comparisons. The value of a card could be stored in a tuple named ranks, for
example, and ranks[r] would be a numerical value associated with the specific
card.

A Bouncing Ball

Animations and computer simulations see the world as a set of samples cap-
tured at discrete times. An animation, for example, is a set of images of some
scene taken at fixed time intervals, generally 1/24™ of a second or 1/30"™ of a
second. Simulations use time intervals that are appropriate to the thing being
simulated. This example is a simulation and animation of a bouncing ball, first in
one dimension and then in two dimensions.

A ball dropped from a height h falls to the ground when released. Its speed
increases as it falls, because it is being pulled downwards by gravity. The basic
equation governing its movement is as follows:

s=12at’+ vt 6.1)

where s is the distance fallen at time t, v0 is the velocity the object had at time
t=0, and a is the value of the acceleration. For an object at the Earth’s surface, the
value of a is 32 feet/second? = 9.8 meters/second?. For a ball being dropped, v0 is
0, since it is stationary initially. The distances at successive time intervals of 0.5
seconds are shown in Table 6.2:

Chapter 6 - Classes H 235

Table 6.2
Distances at successive time intervals

S (feet) S (meters)
= 16*t*t = 4.9*t*t

A class could be made that would represent a ball. It would have a position
and a speed at any given time, and could even be drawn on a computer screen.
Making it bounce would be a matter of giving the ball a value that indicated how
much of its energy would be lost each time it bounced, meaning that it would
eventually stop moving. Writing the code for the class Ball could begin with the
initialization (the constructor):

class Ball:
def init (self, height, elasticity):
self.height = height
self.e = e
self.speed = 0.0
self.a = 32.0

This creates and initializes four variables named height, e, a, and speed that
are local to the class. Remember, the parameter self refers to the class itself, and
any variable that begins with “self.” is a part of the class. A variable within the
function __init__ that did not begin with “self.”” and was not global would belong
to the function, and would be created and destroyed each time that function was
called.

A method (function) that calculates the height of the ball at a specific time is
something else that the Ball class should provide. This is simply the value of the
class local variable height:

def height (self):
return self.height

236 W Python: An Introduction to Programming-Second Edition

The self parameter has to be passed, otherwise the function cannot access
the local variable height. The simulation needs values of height as a function of
time, and time increases in discrete chunks. This could be implemented in sev-
eral ways: the class could keep track of the time since it was dropped or it could
use the time increment to determine the next speed and position. If the former,
then a new class variable must be used to store the time; if the latter, then it means
it has to be found to increment the speed rather than using total duration. This
second idea is simpler than it sounds. The equation of motion s = 1/2at2 + v0t
can use a time increment in place of t, and vO is the velocity at the start of the
time interval; this yields the new position. The new velocity can be found from a
related equation of motion, which is

v=at+v, 6.2)

where t is again the time increment and vO is the speed at the beginning of the
interval.

The function that updates the speed and position in this manner is called
delta:

def delta (self, dt):
s = 0.5*self.a*dt*dt + self.speed*dt
height = height - s
self.speed = self.speed + self.a*dt

Here, the parameter dt is the time interval, and so it can be varied to get the
position values at various resolutions.

For now, this is the Ball class. Some code is needed to test this class and show
how well (or whether) it works, and this is the main part of the program. An in-
stance of Ball has to be created and then the delta method is called repeatedly at
time increments of, for an example, 0.1 seconds. A table of height and time can
be constructed in this way, and it is a simple matter to see whether the numbers
correct. The main program is as follows:

b = Ball (12.0, 0.5)
for 1 in range (0, 20):
b.delta (0.1)
print ("At time ", 1*0.1, " the ball has fallen to",
b.height (), " Feet")

Chapter 6 - Classes H 237

The results are what should be expected, showing that this class functions
correctly:

At time 0.0 the ball has fallen to 12.0 Feet

.Z;\.t time 0.5 the ball has fallen to 7.999999999999997 Feet
.Z;\.t time 1.0 the ball has fallen to -4.0000000000000036 Feet
.Z;\.t time 1.5 the ball has fallen to -24.000000000000004 Feet
.Z;\.t time 2.0 the ball has fallen to -52.000000000000014 Feet

At time 2.5 the ball has fallen to -88.00000000000003 Feet

Because the initial height was 12 feet, the distance fallen is 12 minus the
value given above (4, 16, 36, 64, and 100 feet), which is in agreement with the
initial table for the times listed. It appears to work correctly.

This code does not yet do the bounce, though. When the height reaches 0, the
ball is at ground level. It should then bounce, begin moving in the reverse direc-
tion, with a speed equal to its former downward speed multiplied by the elasticity
value. This does not seem challenging until it is realized that the ball is not likely
to reach a height of 0 exactly at a time increment’s boundary. At one point, the
ball will be above 0 and then after the next time unit, the ball will be below 0.
When does it actually hit the ground, and where will be the ball actually be at
the end of the time increment? This is not a programming issue so much as an
algorithmic or mathematical one, but it is a detail that is important to the correct-
ness of the results.

It seems clear that the bounce computation should be performed in the meth-
od delta(). The height value in the class begins at a positive value and decreases
towards O as the ball falls. During some specific call to delta(), the ball has a
positive height at the beginning of the call and a negative one at the end; this
means a bounce happened. At that time, the height of the ball is negative. The
height of the bounced ball at the end of the time interval is the negated value of
the height, so it is positive again, multiplied by the elasticity.

238 W Python: An Introduction to Programming-Second Edition

The speed that should be used in the bounce is based not the final speed, but
the speed the ball was traveling at the time when the height was 0. This happens
when self.height-s is zero, or when

self.height - s = 0.5*self.a*dt*dt + self.speed*dt

Solve this for the time xt that makes the equation work out, which is the stan-
dard solution to a quadratic equation that is taught in high school:

_ —self.speed £ Jself.speed” + 2a * self.height
a

6.3)

The value of xt is between 0 and dt, and is the time within the increment at
which the ball struck the ground. At this time the ball will be moving with speed
(self.speed + self.a*xt) instead of (self.speed + self.a*dt) for a normal time inter-
val. The ball will reverse direction and reduce speed by the value of elasticity.
Now the ball is moving upwards.

The ball is slowed by gravity until it stops on its upward path and drops down
again. At the top of the path, its speed is 0; at the beginning of the time interval,
the speed is negative, and at the end, it is positive, and that’s how the peak is de-
tected. This situation is much simpler than the bounce.

The annotated program is as follows:

Ball.py
import math
class Ball:
Constructor/initializer
def init (self, height, elasticity):
self.height = height # Current height of the ball
self.e = elasticity # How much energy 1s retained each
bounce
self.speed = 0.0 # Current speed of the ball,
initially 0, down +
self.a = 32.0 # Acceleration: G= 32 ft/sec”2
What Java would call an accessor: not really needed.
def getHeight (self):
return self.height

Calculate the new height and speed for a change in time
of dt seconds.
def delta (self, dt):

Chapter 6 - Classes H 239

startHeight = self.height # Remember the state before dt
startSpeed = self.speed
s = 0.5*self.a*xdt*dt + self.speed*dt # Equation 1:

position update
self.height = self.height - s
self.speed = self.speed + self.a*dt # Equation 2:

Speed update
if self.height < 0: # The sign changed; bounce, when?

Equation 3: Solve the quadratic equation to find the
time of bounce

xt = (-startSpeed - math.sgrt (startSpeed*startSpeed
+2*self.a*startHeight)) /self.a
if xt < 0:
xt = (-startSpeed +math.sqgrt (startSpeed*startSpeed

+2*self.a*startHeight)) /self.a
print ("Bounces at time ", xt)

Equation 2 with elasticity
self.speed = —(self.speed + self.a*xt)*self.e
self.height = -self.height * self.e # Correct
the height
if self.e <0.03: self.e = 0.0
else: self.e = self.e - 0.03

Peak of the upward bounce, velocity changes sign from + to -
If sign differs then the product is -ve
elif startSpeed*self.speed < O:
self.speed = 0 # Speed is 0 at the top of the bounce
print ("Peak")
print ("New speed is ",self.speed," and height starts at ",
self.height)
if self.height<0.:
self.height = 0.

b = Ball (12.0, 0.5) # Initial height 12 feet, elasticity is 0.5
= Screen (20, 40)

[0)]
|

for i in range (0, 50):
b.delta (0.1) # Time increment 1is 0.1 seconds

How can this program be effectively tested? The computed values could be
compared against hand calculations, but this is time consuming. It was done for
a few cases and the simulation was accurate. For this example, another program
was written in a different programming language to calculate the same values

240 W Python: An Introduction to Programming-Second Edition

and the result from the two programs was compared — they were nearly exactly
the same. This is not definitive, but is certainly a good indication that this simula-
tion is working properly. In both programs, similar approximations were made,
and the numbers agreed to seven decimal places.

Cat-A-Pult

Early in the development of personal computers, a simple game was created
that involved shooting cannons. The player would set an angle and a power level
and a cannonball would be fired towards the opposing cannon. If the ball struck
the cannon, then it would be destroyed, but if not, then the opposing player (or the
computer) would fire back at the player’s cannon. This process would continue
until one or the other cannon was destroyed. This game evolved with time, with
more complex graphics, mountainous terrain, and complexity. Its influence can
be seen in modern games like Angry Birds.

A variation of this game is proposed as an example of how classes can be
used. The basic idea is to eliminate a mouse that is eating your garden by firing
cats at it; hence the name cat-a-pult. The game uses text as input and output, be-
cause no graphics facility is available yet. A player types the angle and the power
level and the computer fires a cat at the mouse. The location where the cat lands
is marked on a simple character display and the player can try again. The goal is
to hit the mouse with as few tries as possible.

Angle: 25 degrees

Figure 6.1
Typical configuration of a dueling cannons game.

Basic Design

Before writing any code, one needs to consider the items in this game and the
actions they can take. The items are classes, and the actions are methods. There

Chapter 6 - Classes I 241

seem to be two items: a cannonball (a cat) and a cannon. The target (the mouse)
could be a class, too. The cannon has a location, an angle, and a power or force
with which the cannonball will be ejected. Both of the last two factors affect the
distance the ball travels. The cannon is given a target as a parameter — in this
example, the target is another cannon, basically to avoid making yet another class
definition.

The action a cannon can perform is to be fired. This involves releasing a
cannonball with a particular speed and direction from the location of the cannon.
In this implementation, an instance of the cannonball class is created when the
cannon is fired and is given the angle and velocity as initial parameters; the ball
is independent from then on. As a class, the ball has a position (x,y) and a speed
(dx, dy). The action that it can perform is to move, which is accomplished us-
ing a method named step(), and to collide with something, accomplished by the
method testCollision().

Detailed Design

In the metaphor of this game, the cannonball is a cat and the target is a mouse,
but to the program, these details are not important. Here’s what is important:

Class Cannon Class Ball
Has: position X, y position X, y

angle (when fired) speed dx, dy

power (when fired) name (text)

target (another cannon) target (a Cannon class instance)

ball gravity (force changing the height)
Does: fire step

step test for collision

All of the Has aspects are class local variables, and in this design, they are
initialized within the __init__ method of each class. This would entail the fol-
lowing:

self.x = x self.x = x

self.y =y self.y =y
self.power = 0 self.dx = dx
self.angle = 0 self.dy = dy
self.target = target self.target = target
self.ball = None self.gravity = 1.0

self.name = ""

242 W Python: An Introduction to Programming-Second Edition

The game is essentially one-dimensional. The cannonball lands at a specific
x coordinate, and if that is near enough to the x coordinate of the target, then the
target is destroyed and the game is over. Without a way to draw proper graphics,
this can be imagined as a simple text display with the cannon on one side of the
screen and the target on the other, something like that seen in Figure 6.1.

The slash character (/) on the left represents the cannon, and the “Y” repre-
sents the mouse, which is the target. The cannon is at horizontal coordinate 12,
and the mouse is at 60; both vertical coordinates are 0.

All of the Does aspects represent actions, or things the class object can do.
When the cannon is fired, the ball is created at the cannon coordinates (12, 0) and
is given a speed that is related to the angle and power level using trigonometric
calculations (Figure 6.2).

9 :

8 :

7 :

6 :

5 :

4 :

3:

2

1:

0 : / Y

01234567890123456789012345678901234567890123456789012345678901234567890

Figure 6.2

ASCII (text) video of the game at the beginning.

| The sine of an angle in a right triangle is the | |
| length of the opposite side divided by the 1
: length of the hypot: : dx

hypoteneuse speed
opposite : ‘
angle side |

| j angle

adjacent side }

sin(angle) = dy/speed

| The cosine of an angle in a right triangle is . speed*sin(angle) = dy
| the length of the adj t side divided by the | | cos(angl’) = dx,";pged
| hypoteneuse. [| speed*cos(angle) =dx
(@ (b)
Figure 6.3

(@ A review of how sines and cosines are computed. (b) Using the definition of sine and cosine to
calculate the speed of the ball (or any object) in the x and y directions.

Chapter 6 - Classes I 243

dy = sin(angle * 3.1415/180.0)
dx = cos(angle * 3.1415/180.0)

The angles passed to sin and cos must be in radians, so the value PI/180 is
used to convert degrees into radians. The coordinates in this case have y increas-
ing as the ball moves upwards. When the cannon is fired, a ball is created that
has the x and y coordinates of the cannon and the dx and dy values determined
as above. This is accomplished by a method named fire():

Fire: takes an angle and a power
Angle is in degrees, between 0 and 360

Power is between 0 and 100 (a percentage)

1. Compute values for dx and dy from angle and power, where max power
is 0.1.

2. Create an instance of Ball giving it x, y, dx, dy, a name (“cat”), and a
target (the mouse)

The simulation makes time steps of a fixed duration and calculates positions
of objects at the end of that step. Each object should have a method that updates
the time by one interval, and it will be named step(). The cannon does not move,
but sometimes has a cannonball that it has fired, so updating the status of the can-
non should update the status of the ball as well:

Step 1: Make one-time step for this object in the simulation. No parameters.

1. If a ball has been fired, then update its position. This is done by calling
the step() method of the ball.

This defines the cannon.

The ball must also possess a step() method, and it will update the ball’s posi-
tion based on its current speed and location. The x position is increased by dx,
and the y is increased by dy. Gravity pulls down on the ball, effectively decreas-
ing the vertical speed of the ball during each interval. After some trials, it was
determined that the value of dy should be decreased by the value of gravity dur-
ing each interval. If the ball strikes the ground, it should stop moving. When does
this happen? When y becomes smaller than 0. When this occurs, set dx and dy to
0, and check to see if the impact location is near to the target.

244 W Python: An Introduction to Programming-Second Edition

Step 2: Make one-time step for this object in the simulation. No parameters.
Let x = x + dx, changing the x position.

Let y =y + dy, changing the y position.

Decrease dy by gravity (dy = dy - gravity)

If the ball has struck the ground

Let dx = dy = gravity =0

SANRANIE I A

Check for collision with target

Checking to see if the ball hit the target is a matter of looking at the x value
of the ball and the x value of the target. If the difference is smaller than some
predefined value, say 1.0, then the target was hit. This is determined by a method
called testCollision(). If the collision occurred, then success has been achieved
by the player, so set a flag that ends the game.

testCollision: Check to see if the ball has hit the target, and if so, set a flag to
True.

1. Subtract the x position of the ball from the x position of the target. Call
this d.

2. Ifd <= 1.0, then set a flag done to True.
This defines the class Ball and completes the two major classes.

The main program that uses these classes could look something like this:

mouse = Cannon (60, 0, None) # Create the target
player = Cannon (12, 0, mouse) # create the cannon
player.fire (42, 65) # Example: fire cannon at
42 degrees 65% power
done = False # initialize variable 'done'
while not done: # so long as the simulation
is not over
Update the position of
the ball

player.step ()

Actual code for most of this example is shown in Figure 6.4, and the entire
program is on the accompanying disk. Included in the disk version is an extra
class that draws each state of the game as character graphics that can be dis-
played in the Python output window; the example in the figure does not include
any output, and is unsatisfying to execute The program on the disk generates a
numeric and graphical representation of the state, showing the axes, the cannon,

Chapter 6 - Classes I 245

the ball, and the target after each step. These can be made into distinct text files
and can be made into an animation using MovieMaker on a Windows computer
or Final Cut on a Mac. Such an animation is also included on the disk, and is
named catapult.mp4.

ON THE CD

The process above loosely defines a way to design and code a program that

uses classes.

from math import *

class Ball:
def init = (self, x,

vy, dx, dy,
name,
other):

self.xPos = x

self.yPos = vy

self.xSpeed = dx

self.ySpeed = dy
self.gravity = 1.0

self.name = name
self.other = other
def step (self): # One time

step
self.xPos +
self.xSpeed
self.yPos +
self.ySpeed
self.ySpeed = self.ySpeed

- self.
gravity
if self.yPos < O0O:
self.xSpeed = 0
self.xSpeed = 0
self.gravity = 0
self.yPos = 0
self.testCollision()

self.xPos =

self.yPos =

def testCollision
global done

(self) :

d = self.xPos-self.
other.x
if d<0: d = -d
if d < 1.0:
done = True
class Cannon:
def init (self, X, Y,
other) :
self.x = x
self.y =y
self.other = other
self.ball = None
def fire (self, angle, pow-
er) :
dy = sin(angle *

3.1415/180.0)
dx = cos(angle *
3.1415/180.0)

self.ball = Ball(self.x,
self.y,
dx*power/10.0,
dy*power/10.0,
"Cat", self.other)
def step (self):

if self.ball != None:
(self.ball).stepl)

Figure 6.4

The Ball and the Cannon classes from the Cat-a-pult simulation.

246 W Python: An Introduction to Programming-Second Edition

Player at 12, 0 and cat at 60 , 0 8all is at 26 , 10 Speed is 4.8305353937925 , 1.34924451017¢ » Player at 12, 0 and cat at 60 , 0 8all is at 31 , 11 Speed is 4.8305353937925 , 0.34924451017¢ »
20 20

13 g 13

5901234557 8901. 234567 5501234567590 g 112325575901234 5578901234 567 8301 234567 5501234567590

Lnss, Colst Lnss, Colst

Player at 12, 0 and cat at 60 , 0 8all is at 21 , 7 Speed is 4.8305333937925 , 2.349244510178° » Player at 12, 0 and cat at 60 , 0 8all is at 16 , 4 Speed is 4.8305333937925 , 3.349244510178° »
20 2
19 19 |

% g %

5901234 5573901 2345675501234567890 g 12325575901234 5578901234 567 8301 2345675501234567890

233, ColT6 233, ColT6

Figure 6.5
Frames from the text animation of the game.

SUBCLASSES AND INHERITANCE

Classes are designed as language features that can represent a hierarchy of
information or structure. A class can be used to define another, and properties
from the first class are passed on (inherited) by the other. A class that is based
on another in this way is called a subclass, and there are many types: a pet class
with dogs and cats as special cases; a polygon having triangles and rectangles as
subclasses; a dessert class, having subclasses pie, cake, and cookie; and even the
initial example in this chapter of a man and a woman class and the person class
that they can be derived from. A subclass is a more specific case of the superclass
(or parent class) on which it is based.

The examples above are for explanation, and are not really useful as software
components, which begs a question about whether subclasses are really useful
things. They are, but it requires non-trivial examples to demonstrate this.

Non-Trivial Example: Objects in a Video Game

To some degree, all objects in a game have some things in common. They are
things that can interact with other game objects; they have a position within the

Chapter 6 - Classes I 247

volume of space defined by the game and they have a visual appearance. Thus, a
description of a class that could implement a game object would include:

class gobject:

position = (0, 0, O0) # Object position in 3D

visual = None # Graphics that represent
the object

def init (self, pos, vis)

def getPosition (self):
def setPosition(self, p):
def setVisual (self, v):
def draw (self):

Anyone who has played a video game knows that some of the objects can
move while others cannot. Objects that move can have their position change, and
the position has to be updated regularly. An object that can move can have a speed
and a method that updates their position; otherwise it is like a gobject. This is a
good case for a subclass:

class mobject (gobject):
speed = (0, 0, 0) # Speed in pixels per frame
the x,y,z directions
def init (self, s)
def getSpeed(self):
def setSpeed(self, s):
def move (self):
def collision(self, gobject):

The syntax of this has the superclass gobject as a parameter (apparently)
of the subclass mobject being defined. If an instance of a gobject is created,
its __init__ method is called and the resulting reference has access to all of the
methods in the gobject definition, just as one would expect. If an instance of
mobject is created, the __init method of mobject is called, but not that of
gobject. Nonetheless, all properties and methods of both classes are available
through the mobject reference. The following is legal:

m = mobject ((12, 0, 0)) # Create mboject with
speed (12,0,0)
m.draw () # Draw this object

This code is acceptable even though an mobject does not possess a method
draw(); the method defined in the parent class is accessible and will be used.

248 W Python: An Introduction to Programming-Second Edition

When the mobject is created, it is also a gobject, and all of the variables and
methods belonging to a gobject are defined also. However, the __init__() meth-
od for gobject is not called unless the mobject __init () method does so. This
means that, for the mobject, the values of position and visual are not specified
by the constructor and will take the default values they were given in the gobject
class. If no such value was given, they will be undefined, and an error will occur
if they are referenced.

Calling the __init__() method of the parent class can be done as follows:

super (). init ((10,10,10), None)
In this instance, the constructor for gobject is called, passing a position and a
visual. This would normally be done only in the __init__ () of the subclass.

Now consider the following code. The methods are mainly stubs that print a
message, but the output of the program is instructive:

class gobject: class mobject (gobject):
Object position in 3D # Speed in pixels per frame the
position = (0, 0, O0) # x,v,z directions
Graphics that represent speed = (0, 0, 0)
the def init (self, s):
object self.speed = s
visual = None super (). init
def init (self,pos,vis): ((10,10,10), None)
self.position = pos print ("mobject init")
self.visual = vis def getSpeed(self):
print ("gobject init") print ("getSpeed")
def getPosition (self): return self.speed
return self.position def setSpeed(self, s):
print ("getPosition") print ("setSpeed")
def setPosition(self, p): self.speed = s
self.position = p def move (self):
print ("setPosition") print ("Move")
def setVisual (self, v): def collision(self,
self.visual = v gobject) :
print ("setVisual") print ("collision")
def draw (self): .
print ("Draw") g = gobqect ((12, 12,12), None)
m = mobject ((13,13,13))
print (m.getPosition())
m.move ()
m.draw ()

Chapter 6 - Classes I 249

The output from this is

gobject init from the creation of the gobject instance g

gobject init when m is created it calls the parent _ init
mobject init from the mobject _init when m is created

(10, 10, 10) m.getPosition, showing access to parent methods
Move m.move call

Draw m.draw call, again showing access to parent method

Attempting to call g.move() would fail because there is no move() method
within the gobject class. Hence, if an object was passed to a function that would
attempt to move it, it would be critical to know whether the parameter passed was
a gobject or an mobject. Consider a method that moves an object x out of the path
of an mobject instance if it can, or changes the path of the mobject if it cannot.
This method, named dodge(), might do the following:

def dodge self, (x):
c = x.getPosition()
c =c + (dx, dy, 0)
x.setPosition (c)

However, if the parameter is an instance of a gobject, then it should not be
moved. The function isinstance() can be used to determine this. The result of

isinstance (x, gobject)

is True if x is a gobject and False otherwise. If False, then it cannot be moved
and the dodge() method will have to move the current mobject out of the way
instead:

def dodge self, (x):
if isinstance (x, gobject) :
self.position = self.position + (dx, dy, 0)
else:
c = x.getPosition/()
c c + (dx, dy, 0)
x.setPosition (c)

250 M Python: An Introduction to Programming-Second Edition

X3 DUCK TYPING

In many programming languages, types are immutable and compatibility is
enforced. This is not generally true in Python, but still there are operations that
require specific types. Indexing into a string or tuple must be done using some-
thing much like an integer, and not by using a float. Now that classes can be used
to build what amounts to new types, more attention should be paid to the things
a type should offer and the requirements this puts on a programmer. The fewer
restrictions the better, and this is a principle of duck typing as well.

It should not really matter what the exact type of the object is that is be-
ing manipulated, only that it possesses the properties that are needed. In a very
simple case, consider the classes point and triangle that were discussed at the
beginning of this chapter. It was proposed that both could have a draw() method
that would create a graphical representation of these on the screen, and both have
a move() method, as well. We write a function that moves a triangle away from
a point and draws them both:

def moveaway (a, b)
dx = a.getx()-b.getx()
dy = a.gety()-d.gety()
a.move (dx/10, dy/10)
b.move (-dx/10, -dy/10)

Which of the parameters, a or b, is the triangle, and which is the point? It
does not matter. Both classes have the methods needed by this function, namely
getx(), gety(), and move(). Because of this, the calls are symmetrical, and both
of the following are the same:

moveaway (a, b)
moveaway (b, a)

A class that possesses these three methods can be passed to moveaway(), and
a result will be calculated without error. The essence of duck typing is that, so
long as an object offers the service needed (i.e., a method of the correct name and
parameter set) to another function or method, then the call is acceptable. There is
a way to tell whether the class instance a has a getx() method: the built-in func-
tion hasattr().

if hasattr (vl, "getx"):
x = vl.getx()

Chapter 6 - Classes H 251

The first argument is a class instance and the second is the name of the meth-
od that is needed, as a string. It returns True if the method exists.

(The name duck typing comes from the old saying that “if something walks
like a duck and quacks like a duck, then it is a duck.” As long as a class offers the
things asked for, then it can be used in that context.)

X1 SUMMARY

A class, in the general sense, is a template for something that involves data
and operations (functions). An object is an instance of a class, a specific instan-
tiation of the template. Defining a class in Python involves specifying a class
name and a collection of variables and functions that will belong to that class. A
method is a function that belongs to a class, and so can have easy access to its
internal data. As a first parameter, a method can be passed the self variable by
default, which can be thought of as a reference to the object currently executing.
Thus, within a method, the expression self.x refers to a variable x defined in the
class. An object is created using the name of the class: for a class named thing,
an instance x is created using x = thing(). When this occurs, if there is a method
in thing named __init__, then that method is called. This is referred to as an
initializer or a constructor.

Accessing methods in an object is done using dot notation: obj.method().
Variables can be accessed in this way, too.

A subclass is a class that possesses all of the properties of some other class,
the parent class or superclass, plus some new ones. The data and methods of the
parent class can be accessed from the subclass (or c/ild class). A subclass of thing
named something would be defined using the syntax:

class something(thing):
A class can represent a new type, where methods represent operations.

Public variables can be accessed and modified from outside of a class; pro-
tected variables can be accessed but not modified from outside of a class, and
must begin with an underscore character (e.g., variable); private variables can
neither be accessed nor modified from outside of the class, and must begin with
two underscore characters (e.g., _ variable).

252 W Python: An Introduction to Programming-Second Edition

The principle of duck typing is that should not really matter what the exact
type of the object is that is being manipulated, only that it possesses the proper-
ties that are needed.

Exercises

1. Define a class named square in which the construct takes the length of the
side as a parameter. This class should have a method area() that computes
and returns the area of the square.

2. Define a subclass of square named button that also has a location, passed as
X and Y parameters to the constructor. A button always has a width of 10.
The button class has the following methods:
center() Return the coordinates of the center of the button
label(s) Set the value of a text label to be drawn to s

3. Create a class client. A client is a data-only class that has no methods other
than __init__ (), but that holds data. In this case the client class holds a name,
a category (retail or commercial), a time value (integer) and a service value
(integer). All values are established when the instance is created by passing
parameters to __init__(). Now create two subclasses of client, one for each
category, retail and commercial.

4. Define a class named fraction that implements fractional numbers. The
constructor takes the numerator and denominator as parameters, and the
class provides methods to add, multiply, negate (make negative), print, and
find the reciprocal of a fraction. Test this class by calculating the following:

14/16 * 3/4
1/2-1/4

Bonus: Reduce the results to the smallest possible denominator.

5. Given the following class
class value:
def init (self)
self.val = randrange (0,100)
and the initialization

t = ()
for i in range(0,100):

Chapter 6 - Classes H 253

v = value()

t =t + (v,)
write the code that scans the tuple t and locates the smallest integer saved in
any of the class instances.

. Create a class that simulates a NAND logic gate with three inputs. The output
will be 1 unless all three inputs are 1, in which case the output is 0. Every
time an input is changed, the output is changed to reflect the new state;
thus, methods to set each input and to calculate the result will be needed, in
addition to a method that returns the output.

Input1 Input?2 Input3 Output

0 : 0 0 : 1
....... 0011
....... 01 e
....... 01 |
....... 1001 o
....... 1011
o 1 i R
e oo G

Truth table for the 3 input NAND gate and the symbolic representation used
in a circuit.

. A queue is a data structure that accepts new (incoming) data at one end (the
back) and stores it in the order of arrival, giving the data at the front of the
queue when requested. It’s like a line at a cashier in a store: customers wait for
the cashier in order of arrival. Implement a queue as a class; it has operations
into() and out() to add items and remove items from the queue, and empty()
which returns True if the queue has no data in it. What is added to the queue
are objects of a class client, as seen in Exercise 6.3 above.

. Simulation: The gestation period for a rabbit is 28-32 days, and they will
breed a week after having a litter. A female rabbit (a doe) will breed for the
first time at about 100 days old. Create a class that represents a rabbit and

254 W Python: An Introduction to Programming-Second Edition

simulate the growth of a rabbit population that starts with three does at day 0.
Assume a litter size of between 3 and 8, and that half of the offspring will be
male. Increase time by 1 day at a time and answer the question: “How many
rabbits will there be after 1 year?” if the initial population is three females
and one male.

Notes and Other Resources

http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheri-
tance-in-python/

August 12, 2015. http://componentsprogramming.com/using-the-right-terms-
method/

Duck typing in Python: http:/www.voidspace.org.uk/python/articles/duck_typ-
ing.shtml

1. R. Chugh, P. Rondon, & R. Jhala (2012, January). Nested refinements: a logic
for duck typing. In ACM SIGPLAN Notices (Vol. 47, No. 1, pp. 231-244).
ACM.

2. Ole-Johan Dahl(2002). The Birth of Object Orientation: the Simula Languages
in Software Pioneers: Contributions to Software Engineering, Programming,
Software Engineering and Operating Systems Series, Springer. Pp. 79—-80.

3. O.-J. Dahl, K. Nygaard: Class and Subclass Declarations. In J. Buxton, ed.:
Simulation Programming Languages. Proceedings from the IFIP Working
Conference in Oslo, May 1967. North Holland, 1968.

4. Adele Goldberg and Alan Kay, Smalltalk-72 Instruction Manual [page 44|

5. ANSI Smalltalk Standard v1.9 199712 NCITS X3J20 draft, Section 3.1
[page 9].

6. B. Liskov, A Snyder, R. Atkinson, and C. Schaffert (1977). Abstraction
Mechanisms in CLU. Communications of the ACM 20:8. Pp. 564-576.

CHAPTER 7

GRAPHICS
7.1 Introduction to Graphics Programming. 256
7.2 Graphics in Python—Pygameccccuuiiiuiiiiiiiinn. 257
7.3 Initializing Pygame. 258
74 TheEvent LOOP i 260
TS Drawing 261
7.6 Arcsand Curves................. oo 268
TT SUmMmMary. 291

In this chapter

Since the advent of Microsoft Windows, computer graphics have been feature
of computers. Before that, graphics were a relatively rare thing, relegated to some
research, to a few expensive Hollywood movies, and to science fiction. The first
use of 3D computer graphics in a commercial motion picture was in the film 7he
Andromeda Strain (1971) (Figure 7.1) in which it was used to show a rotating 3D
map (they called it an electronic diagram) of the underground installation where
the action mainly takes place. A few years later, the film Westworld (1973) used
2 % minutes of digitally processed video to show the visual perspective of an an-
droid. It was a very time-consuming and expensive task at that time; it took about
8 hours to process 10 seconds of film, or about 120 hours in all.

Modern computers all possess fast graphics cards that perform most of the
rendering tasks, and these allow for a sophisticated yet simple-to-use graphical/
windows interface to desktop computers. Graphics software is hierarchical; the
screen itself is merely an array of picture elements (pixels) that can be set to any
color. It has reached the point where everything seen on a computer screen is
actually drawn — icons, windows, backgrounds, and even text.

256 M Python: An Introduction to Programming-Second Edition

What this means is that interacting with a computer is now done with
graphics, not characters and text. Since that is the situation, it makes sense
to permit a beginning programmer to experiment with programming graphics
applications.

Figure 7.1
A still from the first computer graphic sequence in a major motion picture, The Andromeda Strain
(used with permission of the rights holder, MGM).

INTRODUCTION TO GRAPHICS
PROGRAMMING

The most basic aspect of graphics software is the ability to set individual pix-
els. It is difficult to use this capability to create complex pictures. How is a dog
drawn, or a building, or even just a straight line? Those things have been figured
out, fortunately.

At the bottom layer of software are functions that manipulate pixels. At the
next level are /ines and curves; these are the basic components of drawings and
sketches. An artist with a pencil uses lines and curves to represent scenes. At
the level above lines are functions that use lines to create other objects, such as
rectangles, circles, and ellipses. These can be line drawings or can be filled with
colors. The next higher levels can be argued about, but text is probably in the

Chapter 7 - Graphics W 257

next software layer and then shading and images, followed by 3D objects, which
includes perspective transformation and textures.

Python does not itself have graphics tools, but various modules that are asso-
ciated with Python do. The standard graphical user interface library for use with
Python is tkinter. There are many features of this module, including the creation
of windows, drawing, user interface widgets such as buttons, and a host of other
features. It is free and is normally included in the Python distribution, but it can
easily be downloaded and used with any Python version. Because there are many
ways that Python can be configured on various different systems, the installation
process will not be described in detail here. A graphics module is included on the
disk that accompanies this book; it requires tkinter. To build real, complex graph-
ics, we use another module — Pygame.

It is essential to install a version of Pygame that works with Python 3.

GRAPHICS IN PYTHON-PYGAME

Using any modern graphics library is a useful exercise in coding. The library
provides facilities that the programmer needs, but there is an implicit contract —
the programmer has to use the library according to rules devised by its creator. In
the case of Pygame, a set of initializations is needed, and it asks that you create an
event loop that repeatedly looks for key presses and mouse clicks (events) many
times per second. A program cannot predict when a mouse click will happen, so
it must be ready at all times to receive one. In the case of Pygame, it breaks up
every second into many parts (30 by default) and checks during each interval
whether a mouse or keyboard action has taken place. If so, it attempts to alert the
programmer by setting a flag that is related to the event. This has consequenc-
es for the main program, mainly that it be a loop that repeatedly handles these
events. In computer science, this action is called polling.

An important aspect of Pygame is that it creates a window and manages it.
In C++, this can be a complicated proposition, because the operating system does
not generally do this for you. Each window on the screen is something managed
by a program, which has to figure out how much of the window is visible based
on everything else that is on the screen.

258 M Python: An Introduction to Programming-Second Edition

INITIALIZING PYGAME

When using Pygame, we first import it as a module:
import pygame

Then Pygame should set up a drawing area in a window. This can be done
as follows:

screen = pygame.display.set mode ((700, 1000))

This code specifically creates a window that is 700 x 1000 pixels and returns
a handle to it as the variable screen. A handle is a variable that is used to access
the drawing area. In other words, it is the connection to the drawing operations.
To draw, we call a Pygame function And pass it the drawing area as a parameter,
such as pygame.draw.line(screen,).

Now we can draw things onto the window display surface. They don’t show
up on the screen right away, though. The system collects the changes to the draw-
ing surface and draws them all at once when the programmer tells it to.

pygame.display.update ()

Now everything that has been drawn to screen, it should be displayed. Noth-
ing will be drawn until update() is called. The variable screen refers to what
Pygame calls a Surface, and is a lot like an image in that it is a collection of rows
and columns of pixels. The upper left pixel is the pair of coordinates (0,0), and the
first coordinate represents the X or horizontal position.

Colors

To start creating computer graphics, it is necessary to understand how colors
and images are represented. When using a computer, everything must be repre-
sented as numbers. A pixel is the color of a picture at a particular location, and so
there must be a way to describe a color at that place. In physics, frequency is used:
each color has a specific frequency of electromagnetic radiation. Unfortunately,
this does not map very well onto a computer display, because monitors are based
on television technology. On a TV, there are three colors, red, green, and blue,
and these are used in various proportions to represent every color. There are red,
green, and blue dots on the TV screen that are lit up to various degrees to create
the colors that are seen. This is based on the way a human eye sees color; there

Chapter 7 - Graphics I 259

are red, green, and blue sensors in the eye that in combination create our color
perception. Another reason that frequency is not used is that there are colors that
are not accurately represented as frequencies; they do not appear in the rainbow.
The colors pink and brown are two examples.

Each color in the graphics system is represented as the degree of red, green,
and blue that combine to create that color. In that sense, it is a bit like mixing
paint. Yellow, on a computer, is a mixture of red and green. Each pixel has three
components: a red, green, and blue component. These could be expressed as per-
centages, but when using a computer, it is better to select numbers between 0 and
255 (8 bits or one byte) for each color. Each pixel requires 3 bytes of storage or 4
bytes in some cases, as will be seen shortly. If an image contains 100 rows of 100
pixels, then it has 10,000 pixels and is 10000*3=30000 bytes in size.

To humans, colors have names. Here’s a list of some named colors and their
RGB equivalents:

Color Red Green Blue Color Red Green Blue
Black : 0 : 0 : 0 :Olive : 128 : 128 0 :
White © 255 255 1 255 Khaki i 240 © 230 © 140
:Red 0. 255 G 0 .. 0 :Teal i 0 .:.128 - 128 :
AGrcen 0 5.2 . . 0 ;Siemma : 160 83 i a3
:Blue 1o L 0 :.2% :Tan :.: 210 : 180 : 140
 Yellow : 255 1 255 © 0 ilndigo i 75 : . 0 . 130 :
‘Magenta : 255 0 255 :Orange 255 165 0

There are, of course, a great many more named colors, and even more colors
that can be represented with RGB values in this way (16,777,202 of them, in fact).
Each pixel is a color value. All grey values have the special situation R=G=B, so
there are 256 distinct values of grey ranging from black to white.

In summary, each pixel represents the color of the image or graphic at that
point. A color is represented by the three color components (red, green, and blue),
each having a value between 0 and 255. A color is a tuple. Thus, (0,0,0) is black,
(255,255,255) is white, and (255, 0, 0) is red.

260 M Python: An Introduction to Programming-Second Edition

THE EVENT LOOP

Here is a simple program that displays a drawing created by Pygame. Don’t
worry about the details just now. This program draws a straight line:

import pygame

screen = pygame.display.set mode ((1000, 700))

pygame.draw.line (screen, (0,0,0), (10,10), (200,200), 2)
pygame.display.update ()

The variable screen is initialized, and the line is drawn using the method py-
game.draw.line. This works, but the program terminates after update is called,
which closes the window. The line is only on the screen for a tiny fraction of a
second. There needs to be a time delay that permits the user to see the result. One
way is to place the code inside an infinite loop, and that the program never ends.
For example,
import pygame
screen = pygame.display.set mode ((1000, 700))
while True:

pygame.draw.line (screen, (0,0,0), (10,10), (200,200), 2)
pygame.display.update ()

Here, the line is drawn and then update is repeatedly called within the loop.
This means that the line is drawn and the screen is updated many times a sec-
ond. That’s because the program does not end and the window stays open. This
solution is unsatisfactory, as it uses CPU cycles for no productive reason, which
can slow down the entire computer system. Fortunately, there is a better option.
Pygame gives us the ability to wait, that is, to give up the CPU to other processes,
using the time class.

Time consists of a set of time related functions, the most useful of which for
the purposes here is probably Clock.tick. It waits until a specific time interval
has passed since the last time tick has been called. It has one parameter, which
is the number of times per second a tick can occur. Here, the parameter is 1/sec,
where sec is the minimum number of seconds of delay is wanted. As a practical
example, the loop above could be rewritten to use tick as follows:

import pygame
import pygame.time

Chapter 7 - Graphics H 261

clock = pygame.time.Clock ()

screen = pygame.display.set mode ((1000, 700))

while True:
clock.tick(10)
pygame.draw.line (screen, (0,0,0), (10,10), (200,200), 2)
pygame.display.update ()

This is very typical of the main loop in a Pygame program. An instance of
Clock is created (named clock) so that tick can be called, and it allows the loop
to execute 10 times per second. Each call to tick ensures that no less than 1/10 of
a second has passed since the previous call. We can think of it as meaning “wait
until the next clock tick.” The behavior is critical for the functioning of a game,
which updates the screen every fraction of a second. It is also what will allow the
paint program to operate interactively.

To be clear, the use of tick allows us to release the CPU and allow other pro-
cesses on the computer to use it. After at least the period specified has passed,
but not necessarily exactly that time, the CPU will be given back to the program
and it will resume executing.

DRAWING

Drawing operations that Pygame provides are at an intermediate level of
complexity. A canvas or Pygame Surface can draw only pixels. Thus, anything
more complicated has to be implemented in terms of the drawing of pixels. Lines,
for example, are drawn by drawing pixels that lie on or near to the specified line.
The method is referred to as, variously, Digital Differential Analyzer (DDA),
scan conversion, or (usually) Bresenham’s algorithm. It will draw a line between
two discrete points by setting pixels between them. While Pygame does allow us
to set individual pixels, it is not convenient to only use that facility.

So, drawing a line is done using the line function in the draw package as
follows:

pygame.draw.line (screen, color, start, end, thick)

This draws a line on the Surface named screen using the specific color, from
the start point, a tuple that gives the x and y coordinates of the start point, to the
specified end point, specified also as a tuple, with a line thickness of thick pixels.
Four examples of the use of the line function are shown in Figure 7.2.

262 W Python: An Introduction to Programming-Second Edition

Drawing a circle is done using the circle function in the draw package as
follows:

pygame.draw.circle (screen, color, center, radius, thick)

100, 100 100,100
pygame.draw line(screen, (0,0,0)
(160,100), (420,400), 2) pygame|.draw.line(screen,
(0,0,0), (100,100), (100,400),
2)
400, 400 100,400
100,100 400,100 400, 100
pygame.draw.line(screen, (0,0,0)
(100,100), (400,400), 2) pygame.draw.linefScreen,
(0,0,0), (400,160), (100,400),
2)
100, 400

Figure 7.2
Parameters for drawing a line

This draws a circle on the Surface named screen using the specific color,
using the tuple center = (X, y) as the coordinates of the center point, and uses
the floating point value radius as the radius of the circle with a line thickness of
thick pixels. Color is as before.

Chapter 7 - Graphics [263

pygame.draw.circle(screen, (0,0,0), (400, 100), 20, 2)
pygame.draw.circle(screen, (0,0,0), (200, 100), 50, 4) pygame.draw.circle(screen, (0,0,0). (400, 100), 30, 2)

pygame.draw.circle(screen, (0.0.0). (100, 100), 40.2) Fygame.draw.circle(screen, (0,0,0), (300, 100), 30, 2)

Figure 7.3

Drawing circles.

pygame.draw.circle(screen, (0,0,0), (100, 100), 40, 2)
pygame.draw.circle (screen, (0,0,0), (200, 100), 50, 4)
pygame.draw.circle(screen, (0,0,0), (300, 100), 30, 2)
pygame.draw.circle(screen, (0,0,0), (400, 100), 20, 2)
pygame.draw.circle(screen, (0,0,0), (400, 100), 30, 2)
pygame.draw.circle(screen, (0,0,0), (500, 100), 30, 2)
pygame.draw.circle(screen, (0,0,0), (100, 210), 40, 0)
pygame.draw.circle(screen, (0,0,0), (200, 210), 50, 0)
pygame.draw.circle(screen, (0,0,0), (300, 210), 30, 0)
pygame.draw.circle(screen, (0,0,0), (400, 210), 20, 0)
pygame.draw.circle(screen, (0,0,0), (400, 210), 30, 0)
pygame.draw.circle(screen, (0,0,0), (500, 210), 30, 0)

This draws the circles seen in Figure 7.3. An important thing to notice is that
the second set of six circles is drawn using a thickness of 0. This tells the draw-
ing program to fil/ the circles with the specified fill color. That is also seen in the
figure.

Drawing a rectangle is done using the rect function in the draw package as
follows:

pygame.draw.rect (screen, color, rectangle, thick)
This draws a rectangle on the Surface named screen using the specific color,

using the tuple rectangle = (x, y, w, h) as the coordinates of the upper left point (x,
y) and the width and height of the rectangle, in pixels (w,h). The circle with a line

264 W Python: An Introduction to Programming-Second Edition

thickness is thick pixels. Again, a thickness of 0 will fill the rectangle. Examples
are shown in Figure 7.4.

pygame.draw.rect(screen, (2,0,0), (200, 100, 30, 50), 4) pygame.draw.rect(screen, (0,0,0), (400, 100, 60, 20), 2)
pygame.draw.rect(screen, (0,0,0), (409, 100, 30, 10), 2)

(/4 50 // 40
I
Em I 20
50

40

pygame.draw.rect(screen, (0,0,0), (509, 100, 40, 40), 2)
pygame.draw.rect(screen, (0,0,0), (100, 100, 10, 20), 2)

pygame..draw.rect(screen, (0,0,0), (360, 100, 50, 50), 2)

Figure 7.4
Drawing rectangles using Pygame.

Drawing a single pixel is done using the set_at function in the surface pack-
age as follows:

screen.set _at((x, y), color)

This draws a single pixel on the screen surface at the location (x,y) with the
color specified by the tuple color.

Example: Create a Page of Note Paper

Note paper has blue lines separated by enough space to write or print text
between them. It often has a red vertical line indicating an indentation level, and
it serves as a place to begin writing. Drawing this is a matter of drawing a set of
connected blue pixels in vertically separated rows, and then making a vertical
column of red pixels. Here is one way to code this:

import pygame

width = 400

height = 600

screen = pygame.display.set mode ((width, height))
clock = pygame.time.Clock ()

pygame.init ()

FPS = 10

while True:
clock.tick (FPS)

Chapter 7 - Graphics I 265

mouseX, mouseY = pygame.mouse.get pos|()
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit ()

screen.fill ((255, 255, 255))

is 20 pixels down
Draw connected
vertical pixels
Draw a red pixel

for y in range (0, height):

y = 60 # Height at which to
start
for n in range (0, 27): # Draw 27 horizontal
blue lines
for x in range (0, width): # Draw all pixels in
one line
screen.set at((x, y), (0, 0, 255)) # Draw a blue pixel
y =y + 20 # The next line
#
#
#
#

screen.set at ((25, y), (255, 0, 0))
pygame.display.update ()

The output of this program is shown in Figure 7.5a. When the pixels are
drawn immediately next to each other, they appear to be connected, and so in
this case, they form horizontal and vertical lines. This does not easy to do for ar-
bitrary lines; it is not obvious exactly which pixels to fill for a line between, say,
(10, 20) and (99, 17). That’s why the line drawing functions exist.

Example: Creating a Color Gradient

When creating a visual on a computer, the first step is to have a clear picture
of what it will look like. For this example, imagine the sky on a clear day. The
horizon shows a lighter blue than the sky directly above, and the color changes
continuously all of the way from the horizon to the zenith. If a realistic sky back-
ground were needed, then it would be necessary to draw this using the tools avail-
able. What would the method be?

First, decide on what the color is at the horizon (y=ymax) and at the highest
point in the scene (y=ymin). Now ask: “how many pixels between those points?”
The change in pixel color will be the color difference from ymax to ymin divided
by the number of pixels. Now simply draw rows of pixels beginning with the
horizon and moving up the image (i.e. decreasing Y value) changing the color by
this amount each time.

266 M Python: An Introduction to Programming-Second Edition

Let’s assume that the color at the horizon is blue (40, 40, 255) and the top of
the image is a darker blue (40, 40, 128). The height of the image is 400 pixels;
the change in blue over that range is 127 units. Thus, the color change over each
pixel is going to be 127.0/400, or about 0.32. A color cannot change a fractional
amount, of course, but what this means is that the blue value decreases by ap-
proximately 1 unit for every 3-pixel-increase in height. Do not forget that the
horizon is at the bottom of the image, which has the greatest Y coordinate value,

so that an increase in Y means a decrease in height and vice-versa.

()

Figure 7.5
(@) A graphic of a sheet of lined paper; (b) a color gradient.

The example program that implements this is as follows:

import pygame

width = 400

height 400

screen pygame.display.set mode ((width, height))
clock = pygame.time.Clock ()

pygame.init ()

FPS = 10

delta = 127.0/height

while True:
clock.tick (FPS)
mouseX, mouseY = pygame.mouse.get pos()
for event in pygame.event.get():
if event.type == pygame.QUIT:

Chapter 7 - Graphics I 267

quit ()

screen.fill ((255, 255, 255))
blue = 255
for y in range (0, height):
yy = height - vy
for x in range (0, width):
screen.set at((x, yy), (100, 100, blue))
blue = blue - delta
pygame.display.update ()

The gradient image looks like that in 7.5B (a full-color version of this and all .
images is on the accompanying disk).)

Lines and Curves

Straight lines and curves are more complex objects than pixels, consisting of
many pixels in an organized arrangement. A line is drawn by setting pixels. The
fact that a line() function exists means that programmers do not have to figure
out what pixels to draw and can focus on the higher level construct: the line or
curve.

Example: Note Paper Again

The example of drawing a piece of note paper can be done using lines instead
of pixels, and will be a little faster. Set the stroke color to blue and draw a col-
lection of horizontal lines (i.e., that have the same Y coordinate at the endpoints)
separated by 20 pixels, as before. Then draw a vertical red line for the margin.
The program is a variation on the previous version (only the drawing portion of
the code):

screen.fill ((255, 255, 255))

y = 60 # Height at which
to start
for n in range (0, 27): # Draw 27 horizontal
blue lines
for x in range (0, width): # Draw a blue line

pygame.draw.line (screen, (0, 0, 255), (0, v),
(width, vy), 1)
y =y + 20 # The next line is 20
pixels down
for y in range (0, height): # Draw vertical red line

268 M Python: An Introduction to Programming-Second Edition

pygame.draw.line (screen, (255, 0, 0), (25, 0), (25,
height), 1)
pygame.display.update ()

The output from this program is the same as that for the version that drew
pixels, which is shown in Figure 7.5a.

ARCS AND CURVES

A curve is trickier than a line, in that it is harder to specify. The method used
in Pygame is like that seen in other common graphics systems: a curve or arc is
defined as a portion of an ellipse from a starting angle for a specified number
of degrees, as referenced from the center of the ellipse. The angle 0 degrees is
horizontal and to the right; 90 degrees is upwards (decreasing Y value). The el-
lipse is defined by a bounding rectangle, specifying the upper left and lower right
coordinates of a box that just holds the ellipse. In Figure 7.6, the rectangle defined
by the upper left corner at (100, 50) and the lower right at (300, 200) has a center
at (200, 125) and contains an ellipse slightly longer than it is high (upper left of
the figure). The function that draws a curve is named are(), and it takes the up-
per left and lower right coordinates and a starting angle. The size of the arc also
expressed as an angle.

In the upper right of the figure, the arc is drawn by the call

pygame.draw.arc (screen, (255,0,0), (100,50,300,200),
math.radians (0), math.radians(90), 2)

which means that the part of the ellipse from the 0-degree point counter clock-
wise for 90 degrees will be drawn. The example at the lower left of the figure
draws the curve from the 45-degree point for 90 degrees, resulting in the upper
section of the ellipse being drawn. The final arc, at the lower right, uses a nega-
tive angle. The call

pygame.draw.arc (screen, (255,0,0), (100,300,300,200),
math.radians (-60), math.radians (45), 2)

starts at -60 degrees or 300 degrees.

Chapter 7 - Graphics Il 269

(100,50)

a5 «_\\
IQD
=~

(100, 200)

(300,200)

pygame.draw.arc (screen, (255,0,0),
(100,50,300,200),

math.radians (0) ,
math.radians (90), 2)

o~
135 45
45
_y

pygame.draw.arc(screen, (255,0,0), pygame.draw.arc (screen, (255,0,0),
(100,50,300,200), (100,300,300,200),

math.radians (45), math.radians (-60) ,

math.radians (135), 2) math.radians (45), 2)
Figure 7.6

The result of calls to the arc function with various parameters. This illustrates how the function can
be used.

This way of specifying arcs is fine for simple examples and single curves, but
makes combining many arcs into a more complex curve rather difficult. Joining
the ends together smoothly is challenging.

The arc function has two variations that are important in practice. These
possibilities are chord and pieslice. A chord connects the starting end points of
the arc. The call

pygame.draw.arc (screen, (255,0,0), (100,300,300,200),
math.radians (-60), math.radians (45), 2)

has a known bounding box and center, but the actual starting and ending points
of the arc are not known. Those points are needed to draw both the pieslice and
chord. The equation of an ellipse centered at the point (h,k) is

(=’ -k’ _,
a’ b*
A better equation for the purposes here is the parametric equation, which
gives the same curve. It is

x=h+acost
y=k+ bsint

270 M Python: An Introduction to Programming-Second Edition

for all values of t from 0 degrees to 360 degrees (0 radians to 2p radians).

In the arc call, the enclosing rectangle is (100,300,300,200), meaning that
(100,300) is the upper left corner and (400,500) is the lower right. The center of
the ellipse is the center of the bounding box, which is (250,400), so h=250 and
k=400 in the ellipse equation.

The value of a in the equation is %2 of the width of the bounding box, and b is
Y% of the height. In this case, a = width/2 = 150 and b = height/2 = 100. We now
know the equation of this ellipse:

x =250+ 150 cos ¢
y =400+ 100 sin ¢

The parameter t is not the angle from the center to a point on the ellipse,
though. It is an angle within a 360-degree circle that defines all points on the el-
lipse. We can find the start and end points on the ellipse section and either join
them with a line (chord) or draw lines from each to the ellipse center (pieslice)

def chord (cx, cy, w, h, al, a2):|def pieslice (cx, cy, w, h,
pygame.draw.arc (screen, al, a2):
(255, 0, 0), pygame.draw.arc (screen,
(cx-w/2, cy-h/2, w, h), al, (255, 0, 0),
a2, 13) (cx-w/2, cy-h/2, w, h), al,
XS cX + a*math.cos (-al) a2, 13)
V& cy + b*math.sin(-al) xXs = ¢cx + a*math.cos(-al)
xe cx + a*math.cos (-a2) vs cy + b*math.sin(-al)
ye = cy + b*math.sin(-a2) xe = cx + a*math.cos (-a2)
pygame.draw.line (screen, ye = cy + b*math.sin(-a2)
(255, 0, 0), pygame.draw.line (screen,
(xs, ys), (xe, ye), 3) (255, 0, 0),
(xs, ys), (cx, cy), 3)
pygame.draw.line (screen,
(255, 0, 0),
(xe, ye), (cx, cy), 3)

These functions work a bit differently from are, in that they accept the center
coordinates of the ellipse instead of the upper left. Figure 7.4 shows sample out-
put from these functions, and notes a problem. The arc function was called speci-
fying a thickness of 4 pixels. The result is not adequate. There are pixels missing
within the lines, as if four arcs had been drawn and each was a bit different. This
is a minor problem in Pygame.

Chapter 7 - Graphics W 271

There is a Pygame function that draws complete ellipses. The code

pygame.draw.ellipse (canvas, col, (x, y, w, h), t)

draws an ellipse that fits into the bounding box specified using color col and line
thickness t.

Polygons

For the purposes of discussion, a polygon includes all
closed regions, including ellipses and circles. In that context,
the rect() function draws axis-oriented rectangular polygons
as a special case. A triangle can be drawn using the polygon
function:

pygame.draw.polygon (screen, (200,100,200),
((350, 350, (50,50), (100,300)))

The vertices of the polygon are passed to the function as a tuple (or list) in the
third parameter. There is no line thickness given, so the polygon is filled. Any
number of vertices can be passed, meaning that we can draw any polygon we like.

Regular polygons are special in that each side of a regular polygon is the
same size. Specifying such as thing as a sequence of numerical coordinates can
mean a certain amount of time spent with a pencil and graph paper, but it can
be done in a general sense. Specify the polygon by giving the coordinates of its
center. Specify the size as the distance from the center the center to any vertex,
and give the number of sides desired.

pieslice (250, 100, 300, 200, -60, 45)

H—

chord (250, 100, 300, 200,-60, 45)

Figure 7.7
A chord (left) and a pie-slice shape (right) drawn using the respective functions.

272 W Python: An Introduction to Programming-Second Edition

To draw an arbitrary polygon, split the 360-degree circle into N equal angles,
where N is the number of sides. Find points at a distance R from the center of the
circle at each of those angles, where R is the side specified. Now simply connect
those points. Basic trigonometry results in the following code:

def regular polygon (xc, yc, r, n):

pi = 3.1415926

pi2 = pi/2

x0 = xc + r

y0 = yc

verts = []

a = 2*pi/n

for i in range(0,n):
x0 = xc + math.cos(pi2+a*i) * r
y0 = yc + math.sin(pi2+a*i) * r
verts.append([x0,y0])

pygame.draw.polygon (screen, (0,0,0), verts, 2)

Figure 7.8 shows some examples of this function in action, drawing regular
polygons and a hexagonal grid.

OO

@ (b)
Figure 7.8
(@) Regular 3-, 5-, 7-, and 9-sided polygons. (b) A hexagonal grid.

Chapter 7 - Graphics W 273

Text

Drawing text more complicated than drawing simpler objects. We need to
think about fonts. A font is saved on a file and has to be installed on the computer
system. If a font is specified by a program but does not exist, then an error will
occur, and either the finished image will look different from what was anticipated
or an error will occur.

Drawing text is a very specialized operation and consist of three parts:

A graphics rendering class is instantiated and is assigned a font and size.
The text is drawn into a small surface.

The small surface, which is really an image containing the rendered text, is
copied to the main display surface at the correct location.

Within Pygame, the module font does the loading and rendering of fonts.
Specifically, the method Font (pygame.font.SysFont) creates a new Font object
from a font file on the host computer and provides the needed instance for ren-
dering text. The first parameter is the name of a font as a string, like “Arial” or
“Times.” If it is None, then the default font is used. The second parameter is the
size of the font, in pixels. The Times font at size 14 is specified by the following
code:

f = pygame.font.SysFont ("Times", 14)

Now f can be used for rendering this specific font and size only. The object
returned by pygame.font.SysFont has a method named render that will return
a small image (surface) that has some specified text drawn on it based on the
defined font. Rendering the text “Warning” using the variable f above is done by
the following:

text = f.render ("Warning", False, (0,0,0))

where the second argument defines whether the text is antialiased, and the third
argument is the color to be used. The variable text is a Pygame surface that con-
tains the image of the text. This surface is exactly the right size for the text.

Finally, this text image needs to be copied into the main display surface at
the proper location. This introduces a new idea, called blitting. Blitting is basi-
cally copying one image into another, a pixel by pixel copy from a source to a
destination. It is accomplished using a method within the Surface named blit. In
this precise situation, we want to copy the pixels in the image text into the main

274 W Python: An Introduction to Programming-Second Edition

display surface, which has been named screen. So, screen is the destination and
text is the source, and the call is as follows:

screen.blit (text, (x, Vy))

where (x,y) specifies where the source image text will be drawn within the des-
tination. The tuple (x,y) defines the upper left coordinates in screen where the
image text will be placed.

A simple function that does all of the text drawing stuff is as follows:

Draw a text string at the given point. xx
def text (s, x, y, size=14, f=None):

global screen

if £ == None: # Create a font if needed

f = pygame.font.SysFont (None, size)
text = f.render(s, 1, (0,0,0)) # Render the
string in black
screen.blit (text, (x, y))

This draws the string s at location (x,y) of the display Surface named screen,
in black. If a font is passed, then it will be used, otherwise it will create a default
font instance, and the size can be specified, or will default to 14 pixels.

Example: A Histogram

A histogram is a way to visualize numerical data. It is especially useful for
discrete data like colors or political parties or choices of some kind, but can also
be used for continuous data. It displays the counts of something against some
other value, such as a category, a percentage of people voting for specific parties,
or the heights of grade six girls. It draws bars of various heights each representing
the number of entries in each category. In this example the only problem is the
plotting of the histogram, but the more general programming problem would in-
clude collecting and organizing the data. In this case, the program will read a data
file named “histogram.txt” that contains a few key values. The program variable
names and the corresponding data file values are as follows:

Variable Contents
 title : Title to be drawn at the top of the graph

Chapter 7 - Graphics W 275

Variable Contents

: Horizontal label

You should design graphical objects carefully. In this case, the histogram has
the general appearance shown in Figure 7.9. This visual layout helps with the de-
tails of the code, especially if the design has been drawn on graph paper, so that
the coordinates can easily be determined.

Assume that the variables needed have been read from the file (see Exercise 2).
Here’s what the program must do:

Create a window about 600 x 600 pixels in size.
Draw the horizontal and vertical axes (120, 80).
Draw the title and axis labels.

100790 Title goes here (Large font)
ncategories = 7
rectangle width = (400-10)/7 = 55 pixels
val[2]
Vertical
label val[i]
here val[3]
(medicum
font) val[5]
val[4]
val[6] val[7]

10 pixels left
at the end

100, 500 lab[1]

Figure 7.9
The visual design of a histogram before it is coded.

lab[2] lab[3] lab[4] lab[5] lab[6] lab[7]
Horizontal label here (medicum font)

500, 500

276 W Python: An Introduction to Programming-Second Edition

Determine the width and height of each rectangle.

For i in range (0, ncategories)
Draw rectangle i
Draw label i

Development can now proceed according to the plan. Create a window, and
set the background. Draw the title and the axes.

pygame.draw.line (screen, (0,0,0), (100,100), (100,500), 4)

Y Axis
pygame.draw.line (screen, (0,0,0), (100,500), (500,500), 4)
X axis

text ("Title goes here (large font)", 150, 80, 24, fontt24)
Title

The horizontal axis label is in a smaller font (14 pixels) at the bottom of the
canvas (y-580). It looks nicer if the text is centered. It’s challenging to do this ex-
actly without actually drawing the