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Preface



Welcome to Functional Programming for Java Developers



Why
    should a Java developer learn about functional programming (FP)? After
    all, hasn’t functional programming been safely hidden in academia for
    decades? Isn’t object-oriented
    programming (OOP) all we really need? This book explains why functional
    programming has become an important tool for the challenges of our time
    and how you, a Java developer, can use it to your advantage.
The recent interest in
    functional programming started as a response to the growing pervasiveness
    of concurrency as a way of scaling horizontally,
    through parallelism. Multithreaded programming (see,
    e.g., [Goetz2006]) is
    difficult to do well and few developers are good at it. As we’ll see,
    functional programming offers better strategies for writing robust,
    concurrent software.
An example of the greater
    need for horizontal scalability is the growth of massive data sets
    requiring management and analysis, the so-called big
    data trend. These are data sets that are too large for
    traditional database management systems. They require clusters of
    computers to store and process the data. Today, it’s not just Google,
    Yahoo!, Facebook, and Twitter who work with big data. Many organizations
    face this challenge.
Once you learn the benefits
    of functional programming, you find that it improves all the code you
    write. When I learned functional programming a few years ago, it
    re-energized my enthusiasm for programming. I saw new, exciting ways to
    approach old problems. The rigor of functional programming complemented
    the design and testing benefits of test-driven
    development, giving me greater confidence in my work. I learned
    functional programming using the Scala programming language [Scala] and co-wrote a book on
    Scala with Alex Payne, called Programming
    Scala (O’Reilly). Scala is a JVM language, a potential
    successor to Java, with the goal of bringing object-oriented and
    functional programming into one coherent whole. Clojure is the other
    well-known functional language on the JVM. It is a Lisp dialect that
    minimizes the use of OOP in favor of functional programming. Clojure
    embodies a powerful vision for how programming should be done.
Fortunately, you don’t have
    to adopt a new language to enjoy many of the benefits of functional
    programming. Back in early 1990s, I used an object-oriented approach in
    the C software I wrote, until I could use C++. Similarly, if you’re
    working with an object-oriented language, like Java, you can still apply
    many of the ideas from functional programming.
Unfortunately, much of the
    literature on functional programming is difficult to understand for people
    who are new to it. This short book offers a pragmatic, approachable
    introduction to functional programming. While aimed at the Java developer,
    the principles are general and will benefit anyone familiar with an
    object-oriented language.
I assume that you are well
    versed in object-oriented programming and you can read Java code. You’ll
    find some exercises at the end of each chapter to help you practice and
    expand on what you’ve learned.
Because this is a short
    introduction and because it is difficult to represent some functional
    concepts in Java, there will be several topics that I won’t discuss in the
    text, although I have added glossary entries, for completeness. These
    topics include currying, partial
    application, and comprehensions. I’ll
    briefly discuss several other topics, such as
    combinators, laziness, and
    monads, to give you a taste of their importance.
    However, fully understanding these topics isn’t necessary when you’re new
    to functional programming.
I hope you find functional
    programming as seductive as I did. Let me know how it goes!
You can learn more at the
    book’s catalog page (http://oreilly.com/catalog/9781449311032/).


Conventions Used in This Book



The following typographical
    conventions are used in this book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions. Many italicized terms are defined in the Glossary.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using the Code Examples



This book is here to help
    you get your job done. In general, you may use the code in this book in
    your programs and documentation. You do not need to contact us for
    permission unless you’re reproducing a significant portion of the code.
    For example, writing a program that uses several chunks of code from this
    book does not require permission. Selling or distributing a CD-ROM of
    examples from O’Reilly books does require permission. Answering a question
    by citing this book and quoting example code does not require permission.
    Incorporating a significant amount of example code from this book into
    your product’s documentation does require permission.
We appreciate, but do not
    require, attribution. An attribution usually includes the title, author,
    publisher, and ISBN. For example: “Functional Programming for
    Java Developers, by Dean
    Wampler (O’Reilly). Copyright 2011 Dean Wampler,
    978-1-449-31103-2.”
If you feel your use of
    code examples falls outside fair use or the permission given above, feel
    free to contact us at permissions@oreilly.com.
Some of the code examples
    were adapted from examples provided with the Akka distribution, copyright
    © 2009-2011 Scalable Solutions AB. The Akka code base is covered by the
    Apache 2 License.
Getting the Code Examples



You can download the code
      examples from http://examples.oreilly.com/9781449311032/. Unzip the
      files to a convenient location. See the README file in the distribution for
      instructions on building and using the examples.
Note that some of the
      files won’t actually compile, because they introduce speculative
      concepts that aren’t supported by current compilers or libraries. Those
      files end with the extension .javax.
      (The build process skips them.)


Safari® Books Online



Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920021667/

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Why Functional Programming?



A few years ago, when many
  developers started talking about functional programming (FP) as the best way
  to approach concurrency, I decided it was time to learn
  more and judge for myself. I expected to learn some new ideas, but I assumed
  I would still use object-oriented programming (OOP) as my primary approach
  to software development. I was wrong.
As I learned about functional
  programming, I found good ideas for implementing concurrency, as I expected,
  but I also found that it brought new clarity to my
  thinking about the design of types[1] and functions. It also allowed me to write more
  concise code. Functional programming made me rethink
  where module boundaries should go and how to make those modules better for
  reuse. I found that the functional programming community was building
  innovative and more powerful type systems that help enforce correctness. I
  also concluded that functional programming is a better fit for many of the
  unique challenges of our time, like working with massive data sets and
  remaining agile as requirements change ever more
  rapidly and schedules grow ever shorter.
Instead of remaining an OOP
  developer who tosses in some FP for seasoning, today I write functional
  programs that use objects judiciously. You could say that I came to FP for
  the concurrency, but I stayed for the “paradigm shift.”
The funny thing is, we’ve been
  here before. A very similar phenomenon occurred in the 80s when OOP began to
  go mainstream. Objects are an ideal way of representing graphical widgets,
  so OOP was a natural fit for developing Graphical User Interfaces (GUIs).
  However, once people started using objects, they found them to be an
  intuitive way to represent many “domains.” You could model the problem
  domain in objects, then put the same object model in
  the code! Even implementation details, like various forms of input and
  output, seemed ideal for object modeling.
But let’s be clear, both FP
  and OOP are tools, not panaceas. Each has advantages and disadvantages. It’s
  easy to stick with the tried and true, even when there might be a better way
  available. Even so, it’s hard to believe that objects, which have worked so
  well in the past, could be any less valuable today, isn’t it? For me, my
  growing interest in functional programming isn’t a repudiation of objects,
  which have proven benefits. Rather, it’s a recognition that the drawbacks of
  objects are harder to ignore when faced with the programming challenges of
  today. The times are different than they were when objects were ascendant
  several decades ago.
Here, in brief, is why I became
  a functional programmer and why I believe you should learn about it, too.
  For me, functional programming offers the best approach to meet the
  following challenges, which I face every day.
I Have to Be Good at Writing Concurrent Programs



It used to be that a few of
    the “smart guys” on the team wrote most of the concurrent code, using
    multithreaded concurrency, which requires carefully synchronized access to
    shared, mutable state. Occasionally everyone would get a midnight call to
    debug some nasty concurrency bug that appeared in production. But most of
    the time, most of the developers could ignore concurrency.
Today, even your phone has
    several CPU cores (or your next one will). Learning how to write robust
    concurrent software is no longer optional. Fortunately, functional
    programming gives you the right principles to think about concurrency and
    it has spawned several higher-level concurrency abstractions that make the
    job far easier.
Warning
Multithreaded programming, requiring synchronized access to
      shared, mutable state, is the assembly
      language of concurrency.




[1] I’ll occasionally use type and
      class interchangeably, but they aren’t synonyms.
      See the definitions in Glossary.



Most Programs Are Just Data Management Problems



I work a lot with
    big data these days, mostly using the Apache Hadoop
    ecosystem of tools, built around MapReduce [Hadoop]. When you are
    ingesting terabytes of new data each
    day, when you need to cleanse and store that data, then do
    analysis on the petabytes of accumulated data, you
    simply can’t afford the overhead of objects. You want very efficient data
    structures and operations on that data, with minimal overhead. The old
    agile catch phrase, What’s the simplest
    thing that could possibly work?, takes on new meaning.
I started thinking about
    how we manage smaller data sets, say in a typical IT application backed by
    a database. If objects add overhead for big data problems, what about the
    overhead for smaller data problems? Performance and storage size are less
    likely to be issues in this case, but team agility is
    a pervasive issue. How does a small team remain nimble when enhancing an
    IT application, year after year? How does the team keep the code base as
    concise as possible?
I’ve come to believe that
    faithfully representing the domain object model in code should be
    questioned. Object-relational mapping (ORM) and
    similar forms of object middleware add overhead for transforming
    relational data into objects, moving those objects around the application,
    then ultimately transforming them back to relational data for updates. Of
    course, all this extra code has to be tested and maintained.
I know this practice arose
    in part because we love objects and we often hate relational data, or
    maybe we just hate working with relational databases. (I speak from
    personal experience.) However, relational data, such as the result sets
    for queries, are really just collections that can be manipulated in a
    functional way. Would it be better to work directly with that data?
I’ll show you how working
    directly with more fundamental collections of data minimizes the overhead
    of working with object models, while still avoiding duplication and
    promoting reuse.

Functional Programming Is More Modular



Years ago, I had a large
    client that struggled to get work done with their bloated code base. Their
    competition was running circles around them. One day I saw something that
    captured their problems in a nutshell. I walked by a five-foot partition
    wall with a UML diagram that covered the wall. I remember one class in
    particular, a Customer class. It
    stretched the whole five feet. This was a failure of modularity,
    specifically in finding the correct levels of abstraction and
    decomposition. The Customer class had
    become a grab bag of everything anyone might associate with one of their
    customers.
In the late 1980s, when
    object-oriented programming was on the rise, many people hoped that
    objects would finally solve the problem of building reusable components
    that you plug together to build applications, greatly reducing costs and
    development times. This vision seems so reasonable that it is easy to
    overlook the fact that it didn’t turn out as well as we hoped. Most of the
    successful examples of reusable libraries are platforms that defined their
    own standards that everyone had to follow. Examples include the JDK, the
    Spring Framework, and the Eclipse plugin API. Even most of the third-party
    “component libraries” we might use (for example, Apache Commons) have
    their own custom APIs that we must conform to. For the rest of the code we
    need, we still rewrite a lot of it project after project. Hence,
    object-oriented software development isn’t the “component assembly” we
    hoped would emerge.
The nearly limitless
    flexibility of objects actually undermines the potential for reuse,
    because there are few standards for how objects should interconnect and we
    can’t agree on even basic names of things! Systems with greater
    constraints are actually more modular, which is a paradox. The book
    Design Rules: The Power of Modularity [Baldwin2000] demonstrates
    that the explosive growth of the PC industry was made possible when IBM
    created a de facto standard for the personal computer hardware
    architecture. Because of standardized buses for peripherals and
    connectors, it enabled innovators to create new, better, and cheaper
    drives, mice, monitors, motherboards, etc. Digital electronics is itself a
    great example of a modular system. Each wire carries only a 0 or 1 signal,
    yet when you join them together in groups of 8, 16, 32, and 64, you can
    build up protocol layers that make possible all the wonderful things that
    we’ve come to do with computers.
There are no
    similar standards for object-based components. Various attempts
    like CORBA and COM had modest success, but ultimately failed for the same
    basic reasons, that objects are at the wrong level of abstraction.
    Concepts like “customer” are rarely new, yet we can’t find a way to stop
    inventing a new representation for them in every new project, because each
    project brings its own context and requirements.
However, if we notice that
    an object is fundamentally just an aggregation of data, then we can see a
    way to define better standardized abstractions at lower levels than
    objects, analogous to digit circuits. These standards are the fundamental
    collections like list, map, and
    set, along with “primitive” types like numbers and
    few well-defined domain concepts (e.g., Money in a financial
    application).
A further aid to modularity
    is the nature of functions in functional programming,
    which avoid side effects, making them free of dependencies on other
    objects and therefore easier to reuse in many contexts.
The net result is that a
    functional program defines abstractions where they are more useful, easier
    to reuse, compose, and also test.
Tip
Any arbitrarily complex object can be decomposed into “atomic”
      values (like primitives) and collections containing those values and
      other collections.


I Have to Work Faster and Faster



Development cycles are
    going asymptotically to zero length. That sounds crazy, especially if you
    started professional programming when I did, when projects typically
    lasted months, even years. However, today there are plenty of Internet
    sites that deploy new code several times a day and
    all of us are feeling the pressure to get work done more quickly, without
    sacrificing quality, of course.
When schedules were longer,
    it made more sense to model your domain carefully and to
    implement that domain in code. If you made a mistake,
    it would take months to correct with a new release. Today, for most
    projects, understanding the domain precisely is less important than
    delivering some value quickly. Our understanding of the domain will change
    rapidly anyway, as we and our customers discover new insights with each
    deployment. If we misunderstand some aspect of the domain, we can fix
    those mistakes quickly when we do frequent deployments.
If careful modeling seems
    less important, faithfully implementing the object
    model is even more suspect today than before. While Agile Software
    Development has greatly improved our quality and our ability to respond to
    change, we need to rethink ways to keep our code “minimally sufficient”
    for the requirements today, yet flexible for change. Functional
    programming helps us do just that.

Functional Programming Is a Return to Simplicity



Finally, building on the
    previous points, I see functional programming as a reaction against
    accidental complexity, the kind we add ourselves by our implementation
    choices, as opposed to the inherent complexity of the problem
    domain.[2] So, for example, much of the object-oriented middleware in
    our applications today is unnecessary and wasteful, in my opinion.
I know that some of these
    claims are provocative. I’m not trying to convince you to abandon objects
    altogether or to become an FP zealot. I’m trying to give you a bigger
    toolbox and a broadened perspective, so you can make more informed design
    choices and maybe refresh your enthusiasm for the art and science of
    software development. I hope this short introduction will show you why my
    thinking changed. Maybe your thinking will change, too.
Let’s begin!


[2] I don’t mean that functional programming is
        simple. Becoming an expert in functional
        programming requires mastery of many advanced, yet powerful
        concepts.



Chapter 2. What Is Functional Programming?



Functional programming, in
  its “purest” sense, is rooted in how functions, variables, and values
  actually work in mathematics, which is different from how they typically
  work in most programming languages.
Functional programming got
  its start before digital computers even existed. Many of the theoretical
  underpinnings of computation were developed in the 1930s by mathematicians
  like Alonzo Church and Haskell Curry.
In the 1930s, Alonzo Church
  developed the Lambda Calculus, which is a formalism for defining and
  invoking functions (called applying them). Today, the
  syntax and behavior of most programming languages reflect this model.
Haskell Curry (for whom the
  Haskell language is named) helped develop Combinatory Logic, which provides
  an alternative theoretical basis for computation. Combinatory Logic examines
  how combinators, which are essentially functions,
  combine to represent a computation. One practical application of combinators
  is to use them as building blocks for constructing parsers. They are also
  useful for representing the steps in a planned computation, which can be
  analyzed for possible bugs and optimization opportunities.
More recently, Category Theory
  has been a fruitful source of ideas for functional programming, such as ways
  to structure computations so that side effects like IO (input and output),
  which change the state of the “world,” are cleanly separated from code with
  no side effects.
A lot of the literature on
  functional programming reflects its mathematical roots, which can be
  overwhelming if you don’t have a strong math background. In contrast,
  object-oriented programming seems more intuitive and approachable.
  Fortunately, you can learn and use the principles of functional programming
  without a thorough grounding in mathematics.
The first language to
  incorporate functional programming ideas was Lisp,[3] which was developed in the late 1950s and is the second-oldest
  high-level programming language, after Fortran. The ML family of programming
  languages started in the 1970s, including Caml, OCaml (a hybrid
  object-functional language), and Microsoft’s F#. Perhaps the best known
  functional language that comes closest to functional “purity” is Haskell,
  which was started in the early 1990s. Other recent functional languages
  include Clojure and Scala, both of which run on the JVM but are being ported
  to the .NET environment. Today, many other languages are incorporating ideas
  from functional programming.
The Basic Principles of Functional Programming



Don’t all programming
    languages have functions? If so, why aren’t all
    programming languages considered functional
    languages? Functional languages share a few basic principles.
Avoiding Mutable State



The first principle is
      the use of immutable values. You might recall the
      famous Pythagorean equation from school, which
      relates the lengths of the sides of a triangle:
x2 +
      y2 = z2
If I give you
      values for the variables
      x and y, say x=3
      and y=4, you can compute the value
      for z (5 in this case). The key idea here is that
      values are never modified. It would be crazy to say
      3++, but you could start over by
      assigning new values to the
      same variables.
Most programming languages
      don’t make a clear distinction between a value (i.e., the contents of
      memory) and a variable that refers to it. In Java, we’ll use final to prohibit
      variable reassignment, so we get objects that are
      immutable values.
Why should we avoid
      mutating values? First, allowing mutable values is what makes
      multithreaded programming so difficult. If multiple threads can modify
      the same shared value, you have to synchronize access to that value.
      This is quite tedious and error-prone programming that even the experts
      find challenging [Goetz2006]. If you make a value immutable, the
      synchronization problem disappears. Concurrent reading is harmless, so
      multithreaded programming becomes far easier.
A second benefit of
      immutable values relates to program correctness in other ways. It is
      harder to understand and exhaustively test code with mutable values,
      particularly if mutations aren’t localized to one place. Some of the
      most difficult bugs to find in large systems occur when state is
      modified non-locally, by client code that is located elsewhere in the
      program.
Consider the following
      example, where a mutable List is used
      to hold a customer’s orders:
public class Customer {
  // No setter method
  private final List<Order> orders;
  public List<Order> getOrders() { return orders; }
  public Customer(...) {...}
}
It’s reasonable that
      clients of Customer will want to view
      the list of Orders. Unfortunately, by
      exposing the list through the getter method, getOrders, we’ve lost control over them! A
      client could modify the list without our knowledge. We didn’t provide a
      setter for orders and it is declared
      final, but these protections only
      prevent assigning a new list to orders. The list itself can still be
      modified.
We could work around this
      problem by having getOrders return a
      copy of the list or by adding special accessor methods to Customer that provide controlled access to
      orders. However, copying the list is
      expensive, especially for large lists. Adding ad-hoc accessor methods
      increases the complexity of the object, the testing burden, and the
      effort required of other programmers to comprehend and use the
      class.
However, if the list of
      orders is immutable and the list elements are immutable, these worries
      are gone. Clients can call the getter method to read the orders, but
      they can’t modify the orders, so we retain control over the state of the
      object.
What happens when the
      list of orders is supposed to change, but it has become huge? Should we
      relent and make it mutable to avoid the overhead of making big copies?
      Fortunately, we have an efficient way to copy large data structures;
      we’ll reuse the parts that aren’t changing! When we add a new order to
      our list of orders, we can reuse the rest of the list. We’ll explore how
      in Chapter 3.
Some mutability is
      unavoidable. All programs have to do IO. Otherwise, they could do
      nothing but heat up the CPU, as a joke goes. However, functional
      programming encourages us to think strategically about when and where
      mutability is necessary. If we encapsulate mutations in well-defined
      areas and keep the rest of the code free of mutation, we improve the
      robustness and modularity of our code.
We still need to handle
      mutations in a thread-safe way. Software Transactional Memory and the
      Actor Model give us this safety. We’ll explore both in Chapter 4.
Tip
Make your objects immutable. Declare fields final. Only provide getters for fields and
        then only when necessary. Be careful that mutable final objects can still be modified. Use
        mutable collections carefully. See “Minimize Mutability” in [Bloch2008] for more
        tips.


Functions as First-Class Values



In Java, we are accustomed
      to passing objects and primitive values to methods, returning them from
      methods, and assigning them to variables. This means that objects and
      primitives are first-class values in Java. Note
      that classes themselves aren’t first-class values, although the
      reflection API offers information about classes.
Functions are not
      first-class values in Java. Let’s clarify the difference between a
      method and a function.
Tip
A method is a block of code attached to a
        particular class. It can only be called in the context of the class,
        if it’s defined to be static, or in
        the context of an instance of the class. A
        function is more general. It is not attached to
        any particular class or object. Therefore, all instance
        methods are functions where
        one of the arguments is the object.

Java only has methods and
      methods aren’t first-class in Java. You can’t pass
      a method as an argument to another method, return a method from a
      method, or assign a method as a value to a variable.
However, most
      anonymous inner classes are effectively function
      “wrappers.” Many Java methods take an instance of an interface that
      declares one method. Here’s a common example, specifying an ActionListener for an AWT/Swing application
      (see the Preface for details on obtaining and using
      all the source code examples in this book):
package functions;
import java.awt.*;
import java.awt.event.*;

class HelloButtonApp2 {
        private final Button button = new Button();

  public HelloButtonApp2() {
    button.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        System.out.println("Hello There: event received: " + e);
      }
    });
  }
}
If we want the button to
      do something, we have to specify an ActionListener object, which has a single
      method: actionPerformed. We used an
      anonymous inner class to implement the interface
      and the method.
It is very common in Java
      APIs to define custom interfaces like this that declare a single
      abstract method. They are often labelled “callback methods,” because
      they are typically used to enable registration of client code that will
      be called for particular events.
The world’s Java APIs
      must have hundreds of one-off, special-purpose interfaces like ActionListener. It greatly increases the
      cognitive load on the developer to learn all of them. You spend a lot of
      time reading Javadocs or letting your IDE remember for you. We’ve been
      told that abstraction is a good thing, right? Well, let’s introduce
      abstractions for all these “function objects”!
First, here is an
      interface that defines a “function” that takes one argument of type
      parameter A and returns void:
package functions;

public interface Function1Void<A> {
  void apply(A a);
}
You could call the
      generic method name anything you want, but I chose apply because it is a common name in
      functional programming, derived from the convention of saying that you
      “apply” a function to its arguments when you call it.
Now, let’s pretend that
      there is a “functional” version of the Abstract Window Toolkit (AWT),
      java.fawt.Component, with a method
      addActionListener that takes a
      Function1Void object instead of
      ActionListener:
package functions;
import java.fawt.*;
import java.fawt.event.*;

class FunctionalHelloButtonApp {
  private final Button button = new Button();

  public FunctionalHelloButtonApp() {
    button.addActionListener(new Function1Void<ActionEvent>() {  // 1
      public void apply(ActionEvent e) {                         // 2
        System.out.println("Hello There: event received: "+e);
      }
    });
  }
}
I have indicated the
      changes with the two comments 1 and
      2. Otherwise, the code is identical
      to the previous example.
You might argue that
      having a custom type for the argument to addActionListener prevents a user from passing
      an arbitrary and inappropriate object to it. You might also claim that
      the custom name of the interface and the custom method name help
      document the API for the reader. Neither argument really holds
      up.
First, giving abstractions
      special names does nothing to prevent the user from implementing the
      wrong thing. As far as documentation is concerned, addActionListener must document its
      expectations (as we’ll discuss in The Liskov Substitution Principle). The type
      parameter for Function1Void<ActionEvent> must still
      appear in addActionListener signature. That’s another
      bit of essential documentation for the user.
Once the developer is
      accustomed to using Function1Void<A> all over the JDK (in
      our more perfect world…), it’s no longer necessary to learn all the
      one-off interfaces defined in the library. They are all effectively the
      same thing; a function wrapper.
So, we have introduced a
      new, highly reusable abstraction. You no longer need to remember the
      name of the special type you pass to addActionListener. It’s just the same Function1Void that you use “everywhere.” You
      don’t need to remember the special name of its method. It’s always just
      apply.
It was a revelation for
      me when I realized how much less I have to learn when I can reuse the
      same function abstractions in a wide variety of contexts. I no longer
      care about trivial details like one-off interface names. I only care
      about what a particular function is supposed to do.

Lambdas and Closures



While we’ve reduced some
      of the unnecessary complexity in the JDK (or pretended to do so), the
      syntax is still very verbose, as we still have to say things like
      new Function1Void<ActionEvent>()
      {…}. Wouldn’t it be great if we could just write an
      anonymous function with just the argument list and
      the body?
Most programming
      languages now support this. After years of debate, JDK 8 will introduce
      a syntax for defining anonymous functions, also
      called lambdas (see [Project Lambda] and [Goetz2010]). Here is what the planned syntax
      looks like:
public FunctionalHelloButtonApp() {
  button.addActionListener(
    #{ ActionEvent e -> System.out.println("Hello There: event received: "+e) }
  );
}
The #{…} expression is the
      literal syntax for lambda expressions. The argument
      list is to the left of the “arrow” (->) and the body of the function is to the
      right of the arrow. Notice how much boilerplate code this syntax
      removes!
Tip
The term lambda is another term for
        anonymous function. It comes from the use of the
        Greek lambda symbol λ to represent functions in lambda
        calculus.

For completeness, here is
      another example function type, one that takes two arguments of types
      A1 and A2, respectively, and returns a non-void value
      of type R. This example is inspired
      by the Scala types for anonymous functions:
package functions;

public interface Function2<A1, A2, R> {
  R apply(A1 a1, A2 a2);
}
Unfortunately, you would
      need a separate interface for every function “arity” you want (arity is
      the number of arguments). Actually, it’s that number times two; one for
      the void return case and one for the non-void return case. However, the
      effort is justified for a widely used concept. Actually, the [Functional Java] project has
      already done this work for you.
Closures
A
        closure is formed when the body of a function
        refers to one or more free variables, variables
        that aren’t passed in as arguments or defined locally, but are defined
        in the enclosing scope where the function is defined. The runtime has
        to “close over” those variables so they are available when the
        function is actually executed, which could happen long after the
        original variables have gone out of scope! Java has limited support
        for closures in inner classes; they can only refer to final variables
        in the enclosing scope.


Higher-Order Functions



There is a special term
      for functions that take other functions as arguments or return them as
      results: higher-order functions. Java methods are
      limited to primitives and objects as arguments and return values, but we
      can mimic this feature with our Function interfaces.
Higher-order functions
      are a powerful tool for building abstractions and composing behavior. In
      Chapter 3, we’ll show how
      higher-order functions allow nearly limitless customization of standard
      library types, like Lists and
      Maps, and also promote reusability.
      In fact, the combinators we mentioned at the
      beginning of this chapter are higher-order functions.

Side-Effect-Free Functions



Another source of
      complexity, which leads to bugs, are functions that mutate state, e.g.,
      setting values of an object’s field or global variables.
In mathematics, functions
      never have side effects, meaning they are
      side-effect-free. For example, no matter how much
      work sin(x) has to do, its entire
      result is returned to the caller. No external state is changed. Note
      that a real implementation might cache previously calculated values, for
      efficiency, which would require changing the state of a cache. It’s up
      to the implementer to preserve the side-effect-free external behavior
      (including thread safety), as seen by users of the function.
Being able to replace a
      function call for a particular set of parameters with the value it
      returns is called referential transparency. It has
      a fundamental implication for functions with no side effects; the
      function and the corresponding return values are really synonymous, as
      far as the computation is concerned. You can represent the result of
      calling any such function with a value. Conversely, you can represent
      any value with a function call!
Side-effect-free
      functions make excellent building blocks for reuse, since they don’t
      depend on the context in which they run. Compared to functions with side
      effects, they are also easier to design, comprehend, optimize, and test.
      Hence, they are less likely to have bugs.

Recursion



Recall that functional
      programming in its purest form doesn’t allow mutable values. That means
      we can’t use mutable loop counters to iterate through a collection! Of
      course, Java already solves this problem for us with the foreach loop:
for (String str: myListOfStrings) {...}
which encapsulates the
      required loop counting. We’ll see other iteration approaches in the next
      chapter, when we discuss operations on functional collections.
The classic functional
      alternative to an iterative loop is to use
      recursion, where each pass through the function
      operates on the next item in the collection until a termination point is
      reached. Recursion is also a natural fit for certain algorithms, such as
      traversing a tree where each branch is itself a tree.
Consider the following
      example, where a unit test defines a simple tree type, with a value at
      each node, and left and right subtrees. The Tree type defines a recursive toString method that walks the tree and builds
      up a string from each node. After the definition, the unit test declares
      an instance of the tree and tests that toString works as expected:
package functions;
import static org.junit.Assert.*;
import org.junit.Test;

public class RecursionTest {

  static class Tree {
    // public fields for simplicity
    public final Tree left;   // left subtree
    public final Tree right;  // right subtree
    public final int  value;  // value at this node

    public Tree(Tree left, int value, Tree right) {
      this.left  = left;
      this.value = value;
      this.right = right;
    }

    public final String toString() {
      String leftStr  = left  == null ? "^" : left.toString();
      String rightStr = right == null ? "^" : right.toString();
      return "(" + leftStr + "-" + value + "-" + rightStr + ")";
    }
  }

  @Test
  public void walkATree() {
    Tree root = new Tree(
      new Tree(
        new Tree(null, 3, null), 2, new Tree(new Tree(null, 5, null), 4, null)),
      1,
      new Tree(
        new Tree(null, 7, null), 6, new Tree(null, 8, null)));

    String expected = "(((^-3-^)-2-((^-5-^)-4-^))-1-((^-7-^)-6-(^-8-^)))";
    assertEquals(expected, root.toString());
  }
}
However, each recursion
      adds a new frame to the stack, which can exceed the stack size for deep
      recursions. Tail-call recursions can be converted
      to loops, eliminating the extra function call overhead. Unfortunately,
      the JVM and the Java compiler do not currently perform this
      optimization.

Lazy vs. Eager Evaluation



Mathematics defines some
      infinite sets, such as the natural
      numbers (all positive integers). They are represented
      symbolically. Any particular finite subset of values is evaluated only
      on demand. We call this lazy evaluation.
      Eager evaluation would force us to represent all of
      the infinite values, which is clearly impossible.
Some languages are lazy
      by default, while others provide lazy data structures that can be used
      to represent infinite collections and only compute a subset of values on
      demand. Here is an example that represents the natural
      numbers:
package math;
import static datastructures2.ListModule.*;

public class NaturalNumbers {
  public static final int ZERO = 0;

  public static int next(int previous) { return previous + 1; }

  public static List<Integer> take(int count) {
    return doTake(emptyList(), count);
  }

  private static List<Integer> doTake(List<Integer> accumulator, int count) {
    if (count == ZERO)
      return accumulator;
    else
      return doTake(list(next(count - 1), accumulator), count - 1);
  }
}
We start with a
      definition of zero, then use next to
      compute each natural number from its predecessor. The take(n) method is a pragmatic tool for
      extracting a fixed subset of the integers. It returns a List of the integers from 1 to n. (The List type shown will be discussed in Chapter 3. It isn’t java.util.List.) Note that the helper method
      doTake is tail-call
      recursive.
We have replaced values,
      integers in this case, with functions that compute them on demand, an
      example of the referential transparency we
      discussed earlier. Lazy representation of infinite data structures
      wouldn’t be possible without this feature! Both referential transparency and lazy
      evaluation require side-effect-free functions and immutable
      values.
Finally, lazy evaluation
      is useful for deferring expensive operations until needed or never
      executing them at all.

Declarative vs. Imperative Programming



Finally, functional
      programming is declarative, like mathematics, where
      properties and relationships are defined. The runtime figures out how to
      compute final values. The definition of the factorial function provides
      an example:
factorial(n) = 1                   if n = 1
               n * factorial(n-1)  if n > 1
The definition relates
      the value of factorial(n) to factorial(n-1), a recursive definition. The
      special case of factorial(1)
      terminates the recursion.
Object-oriented
      programming is primarily imperative, where we
      tell the computer what specific steps to do.
To better understand the
      differences, consider this example, which provides a declarative and an
      imperative implementation of the factorial function:
package math;

public class Factorial {

  public static long declarativeFactorial(int n) {
    assert n > 0 : "Argument must be greater than 0";
    if (n == 1) return 1;
    else return n * declarativeFactorial(n-1);
  }

  public static long imperativeFactorial(int n) {
    assert n > 0 : "Argument must be greater than 0";
    long result = 1;
    for (int i = 2; i<= n; i++) {
      result *= i;
    }
    return result;
  }
}
The declarativeFactorial method might look
      “imperative,” in the sense that it implements a calculation of
      factorials, but its structure is more declarative than imperative. I
      formatted the method to look similar to the definition of
      factorial.
The imperativeFactorial method uses mutable
      values, the loop counter and the result that accumulates the calculated value.
      The method explicitly implements a particular algorithm. Unlike the
      declarative version, this method has lots of little mutation steps,
      making it harder to understand and keep bug free.
Declarative programming
      is made easier by lazy evaluation, because laziness
      gives the runtime the opportunity to “understand” all the properties and
      relations, then determine the optimal way to compute values on demand.
      Like lazy evaluation, declarative programming is
      largely incompatible with mutability and functions with side
      effects.




[3] See the References for links to information about the languages
      mentioned here.



Designing Types



Whether you prefer
    static or dynamic typing,
    functional programming has some useful lessons to teach us about good type
    design. First, all functional languages emphasize the use of core
    container types, like lists,
    maps, trees, and
    sets for capturing and transforming data, which we’ll
    explore in Chapter 3. Here, I want to
    discuss two other benefits of functional thinking about types, enforcing
    valid values for variables and applying rigor to type design.
What About Nulls?



In a
      pure functional language where values are
      immutable, each variable must be initialized to a value that can be
      checked to make sure it is valid. This suggests that we should never
      allow a variable to reference our old friend, null. Null values are a common source of bugs.
      Tony Hoare, who invented the concept of null, has recently called it The
      Billion Dollar Mistake [Hoare2009].
Java’s model is to
      “pretend” there is a Null type that
      is the subtype of all other types in the system. Suppose you have a
      variable of type String. If the value
      can be null, you could also think of
      the type as actually StringOrNull.
      However, we never think in either terms and that’s why we often forget
      to check for null. What’s really
      going on is that we have a variable that can “optionally” hold a value.
      So, why not explicitly represent this idea in the type system? Consider
      the following abstract class:
package option;

public abstract class Option<T> {
  public abstract boolean hasValue();

  public abstract T get();

  public T getOrElse(T alternative) {
    return hasValue() == true ? get() : alternative;
  }
}
Option defines a “container” that may have one
      item of type T or not. The hasValue method returns true if the container has an item or false if it doesn’t. Subclasses will define
      this method appropriately. Similarly, the get method returns the item, if there is one.
      A variation of this method is the getOrElse method, which will return the
      alternative value if the Option doesn’t have a value. This is the one
      method that can be implemented in this class.
Here is the first subtype,
      Some:
package option;

public final class Some<T> extends Option<T> {
  private final T value;

  public Some(T value) { this.value = value; }

  public boolean hasValue() { return true; }

  public T get() { return value; }

  @Override
  public String toString() { return "Some("+value+")"; }

  @Override
  public boolean equals(Object other) {
    if (other == null || other.getClass() != Some.class)
      return false;
    Some<?> that = (Some<?>) other;
    Object thatValue = that.get();
    return value.equals(thatValue);
  }

  @Override
  public int hashCode() { return 37 * value.hashCode(); }
}
A Some instance is used when the Option has a value. So, its hasValue always returns true and its get method simply returns the value. It also
      provides conventional toString,
      equals, and hashCode methods. I’ll explain why Some is declared final in the next section.
Finally, here is None, the only other valid
      subtype of Option:
package option;

public final class None<T> extends Option<T> {
  public static class NoneHasNoValue extends RuntimeException {}

  public None() {}

  public boolean hasValue() { return false; }

  public T get() { throw new NoneHasNoValue(); }

  @Override
  public String toString() { return "None"; }

  @Override
  public boolean equals(Object other) {
    return (other == null || other.getClass() != None.class) ? false : true;
  }

  @Override
  public int hashCode() { return -1; }
}
A None instance is used when the Option has no value. So, its hasValue always returns false and its get method throws an exception, because there
      is nothing to get! It also provides toString, equals, and hashCode methods. Since
      None has no value, all instances are
      considered equal! None is
      also final.
The following unit test
      exercises Option, Some, and None:
package  option;

import java.util.*;
import org.junit.*;
import static org.junit.Assert.*;

public class OptionTest {
  private List<Option<String>> names = null;

  @Before
  public void setup() {
    names = new ArrayList<Option<String>>();
    names.add(new Some<String>("Dean"));
    names.add(new None<String>());
    names.add(new Some<String>("Wampler"));
  }

  @Test
  public void getOrElseUsesValueForSomeAndAlternativeForNone() {
    String[] expected = { "Dean", "Unknown!", "Wampler"};;

    System.out.println("*** Using getOrElse:");
    for (int i = 0; i < names.size(); i++) {
      Option<String> name = names.get(i);
      String value = name.getOrElse("Unknown!");
      System.out.println(name + ": " + value);
      assertEquals(expected[i], value);
    }
  }

  @Test
  public void hasNextWithGetUsesOnlyValuesForSomes() {
    String[] expected = { "Dean", null, "Wampler"};;

    System.out.println("*** Using hasValue:");
    for (int i = 0; i < names.size(); i++) {
      Option<String> name = names.get(i);
      if (name.hasValue()) {
        String value = name.get();
        System.out.println(name + ": " + value);
        assertEquals(expected[i], value);
      }
    }
  }

  static Option<String> wrap(String s) {
    if (s == null)
      return new None<String>();
    else
      return new Some<String>(s);
  }

  @Test
  public void exampleMethodReturningOption() {
    System.out.println("*** Method that Returns an Option:");
    Option<String> opt1 = wrap("hello!");
    System.out.println("hello! -> "+opt1);
    assertEquals(Some.class, opt1.getClass());
    assertEquals("hello!", opt1.get());

    Option<String> opt2 = wrap(null);
    System.out.println("null -> "+opt2);
    assertEquals(None.class, opt2.getClass());
    assertEquals("str", opt2.getOrElse("str"));
  }
}
After creating an array of
      Some and None instances in the setup method, the first test uses getOrElse to extract the value for Some instances, or the “alternative” for
      None instances. Print statements
      output each case before the assertion verifies the expected
      behavior.
The second test shows an
      alternative way to work with the Options. The hasValue method is called to determine if the
      Option has a value (that is, if it is
      a Some instance). Only then is the
      get method called and the value is
      output and tested with an assertion.
The final test
      demonstrates the wrap method defined
      in the test, which demonstrates how an arbitrary method might return an
      Option instead of returning another
      type when the value could be null. In
      this case, if the input String is
      null, then a None is returned. Otherwise, the input
      String is wrapped in a Some.
Here is the output from
      running the test. The following listing shows just the output from the
      println calls:
*** Using getOrElse:
Some(Dean): Dean
None: Unknown!
Some(Wampler): Wampler
*** Using hasValue:
Some(Dean): Dean
Some(Wampler): Wampler
*** Method that Returns an Option:
hello! -> Some(hello!)
null -> None
Look at the method
      signature for the test’s wrap method
      again:
static Option<String> wrap(String s) ...
What’s most interesting
      about this signature is the return value. The type tells you
      that a value may or may not be available. That is, a value is
      optional. Furthermore, Java’s type safety won’t let you “forget” that an
      option is returned. You must determine if a Some was returned and extract the value before
      calling methods with it, or handle the None case. Using Option as a return type improves the
      robustness of your code compared to allowing nulls and it provides better documentation for
      users of the code. We are expressing and enforcing the optional
      availability of a value through the type system.

Algebraic Data Types and Abstract Data Types



In the previous discussion
      the Option interface has only two
      valid implementing types: Some and
      None. Mathematically, Option is an algebraic data
      type, which for our purposes means that there can be only a
      few well-defined types that implement the abstraction [AlgebraicDT]. It also means
      that there are well-defined rules for transitioning from an instance of
      one type to another. We’ll see a good example of these transitions when
      we discuss lists in Chapter 3.
A similar-sounding (and
      easy to confuse) concept is the abstract data type.
      This is already familiar from object-oriented programming, where you
      define an interface for an abstraction and give it well-defined
      semantics. The abstraction is implemented by one or more types. Usually,
      abstract data types have relatively little
      polymorphic behavior. Instead, the subtypes
      optimize for different performance criteria, like search speed vs.
      update speed. Unlike algebraic data types, you might make these concrete
      classes private and hide them behind a factory,
      which could decide which class to instantiate based on the input
      arguments, for example.
A good example of an
      abstract data type is a map of key-value pairs. The
      abstraction tells us how to put new pairs in the map, query for existing
      pairs, remove pairs, etc.
To compare these two
      concepts, an algebraic data type like Option constrains the number of possible
      subtypes that implement the abstraction. Usually these subtypes are
      visible to users. In contrast, an abstract data
      type imposes no limit on the possible subtypes, but often
      those subtypes exist only to support different implementation goals and
      they may be hidden behind a factory.
One final point on
      algebraic data types. Recall that Some and None are final and can’t be subtyped. Final
      types are often considered bad in Java, because you can’t subclass them
      to create special versions for testing. That’s really only a problem for
      types with strong dependencies on other objects that would make testing
      difficult, like networked services. Well-designed algebraic
      data types should never have such connections, so there is
      really nothing that would need to be replaced by a test-only
      derivative.


Exercises



Note: Some of these
    exercises are difficult.
	Write unit tests for Function1Void and Function2.

	Write a method that uses recursion to add a list of
        numbers.

	Find some Java code you wrote before that does null checks. Try modifying it to use
        Option instead.

	Explore the typing of functions under inheritance. Hint: this
        exercise anticipates The Liskov Substitution Principle. If you get stuck, see
        the unit tests for the functions
        package that is part of the code distribution.
	Suppose some method m1
            takes a Function1<String,Object> argument.
            What would happen if you
            passed an instance f1 of type
            Function1<Object,Object>
            to m1? In Java, how could you
            change the declaration of m1 so
            that the compiler would allow you to pass f1 to it? Why would that be a valid
            thing to do, at least from the perspective of “safe
            typing”?

	Considering the same method m1, suppose you wanted to pass a
            function f2 of type Function1<String,String> to
            m1? How could you change the
            declaration of m1 so that the
            compiler would allows you to pass f2 to it? Why would that be a valid
            thing to do from the safe typing perspective?







Chapter 3. Data Structures and Algorithms



This chapter looks at how the
  principles of functional programming influence the design of data structures
  and algorithms. We won’t have the space to study either in depth, but we’ll
  learn some universal principles by studying a few important examples.
Functional languages provide
  a core set of common data structures with combinator
  operations that are very powerful for working with data. Functional
  algorithms emphasize declarative structure, immutable values, and
  side-effect-free functions.
This chapter is dense with
  details and it might be hard to digest on a first reading. However, the
  ideas discussed here are the basis for functional programming’s elegance,
  conciseness, and composability.
Let’s start with an in-depth
  discussion of lists, followed by a brief discussion of maps.
Lists



The linked list has been
    the central data structure in functional languages since the days of Lisp
    (as its name suggests). Don’t confuse the following classic definition
    with Java’s built-in List type.
As you read this code, keep
    a few things in mind. First, List is an
    Algebraic Data Type with structural similarities to Option<T>. In both cases, a common
    interface defines the protocol of the type, and there
    are two concrete subtypes, one that represents “empty” and one that
    represents “non-empty.”
Second, despite the
    similarities of structure, we’ll introduce a few more implementation
    idioms that get us closer to the requirements of a true algebraic data
    type, such as preventing undesired subtypes:
package datastructures;

public class ListModule {
  public static interface List<T> {

    public abstract T       head();
    public abstract List<T> tail();
    public abstract boolean isEmpty();
  }

  public static final class NonEmptyList<T> implements List<T> {

    public T       head()    { return _head; }
    public List<T> tail()    { return _tail; }
    public boolean isEmpty() { return false; }

    protected NonEmptyList(T head, List<T> tail) {
      this._head = head;
      this._tail = tail;
    }

    private final T _head;
    private final List<T> _tail;

    @Override
    public boolean equals(Object other) {
      if (other == null || getClass() != other.getClass())
        return false;
      List<?> that = (List<?>) other;
      return head().equals(that.head()) && tail().equals(that.tail());
    }

    @Override
    public int hashCode() { return 37*(head().hashCode()+tail().hashCode()); }

    @Override
    public String toString() { return "(" + head() + ", " + tail() + ")"; }
  }

  public static class EmptyListHasNoHead extends RuntimeException {}

  public static class EmptyListHasNoTail extends RuntimeException {}

  public static final List<? extends Object> EMPTY = new List<Object>() {

    public Object       head()    { throw new EmptyListHasNoHead(); }
    public List<Object> tail()    { throw new EmptyListHasNoTail(); }
    public boolean      isEmpty() { return true; }

    @Override
    public String toString() { return "()"; }
  };

  /* See the text for an explanation of this code */
  @SuppressWarnings(value = "unchecked")
  public static <T> List<T> emptyList() {
    return (List<T>) EMPTY; // Dangerous!?
  }

  public static <T> List<T> list(T head, List<T> tail) {
    return new NonEmptyList<T>(head, tail);
  }
}
First, we surround
    everything with a “module”, a class named ListModule. This is not strictly necessary, but
    it provides a place for us to define Factory methods that we’ll use as
    part of the public interface, rather than public constructors. Also, it’s
    convenient to define everything in one file. I’ll discuss some other
    benefits of ListModule below.
Next, we define an
    interface List<T> that holds
    items of type T (or subtypes of
    T). Following convention, a linked list
    is represented by a head, the left-most
    element, and a tail, the rest of the
    list. That is, the tail is itself a List, so the data structure is
    recursive. We’ll exploit this feature when
    implementing methods.
Member functions provide
    read-only access to the head and tail of the list.
    Hence, Lists will be
    immutable, although we can’t prevent the user from
    modifying the state within a particular list element itself. The isEmpty method is a convenience method to
    determine if the list has elements or not.
Next we have the class
    NonEmptyList that represents a list
    with one or more elements. Because a list is an algebraic data type, we
    need to control the allowed subtypes of List. Therefore, NonEmptyList is declared final.
Now the head and tail
    methods are getters for the corresponding fields, which are declared
    final so they are
    immutable.[4] We’ll retain control over the structure of the list.
    Hopefully, the user will make the list elements immutable, too.
Because NonEmptyList never represents empty lists,
    isEmpty always returns false.
Why is the constructor
    protected? We want to control how lists
    are constructed, too. We will use static factory
    methods that are defined at the end of ListModule. This is not required, but it lets us
    use a construction “style” that is similar to the idioms used in
    functional languages.
The equals and hashCode method are somewhat conventional, but
    notice that both exploit the recursive structure of Lists. For equals, we compare the heads and then call List.equals on the tails. Similarly, hashCode effectively calls itself on the
    tail.
Recursion is also used in
    toString. It calls List.toString again when it formats the
    tail.
Now let’s discuss the
    representation of empty lists. What should happen if you call head or tail
    on an empty list? Neither method can return valid values, so we declare
    two exceptions that will be thrown if head or tail
    is called on an empty list.
Before we continue, those
    of you who know the Liskov Substitution Principle (which we’ll discuss in
    Chapter 5) might be crying,
    “foul!” Our List
    abstraction says that implementers should return
    valid objects, not throw exceptions. Isn’t this a violation of LSP?
After our discussion of the
    Option type in Chapter 2, we better not
    return null! We could change head to return Option<T> and tail to return Option<List<T>>. You should try this
    yourself (see the Exercises for this chapter).
Another approach, however, is
    to say that the list type specifies a protocol that
    you should never call head or tail on an empty list. To do so is an
    “exceptional” condition. If you think about it, you will have to check any
    list to see if it’s empty, one way or the other. You can either call
    isEmpty first and only call head or tail
    if it is not empty, or you can use Option as the return type and test for when
    None is returned, meaning the list is
    empty.
This checking may sound
    tedious, but it sure beats debugging NullPointerExceptions in production.
    Fortunately, you don’t need to do these checks very often, as we’ll see
    when we add combinator methods to List later on.
Back to the implementation.
    Recall that we defined None with a
    conventional class, even though all instances of None<T>
    for all types T are equivalent, because None carries no state information. It is
    effectively just a “marker” object. Empty lists are the same, stateless
    and used as list terminators and occasionally on their own. Now, however,
    we’ll really use just one instance, a Singleton object, to represent all
    empty lists.
ListModule declares a static final List<? extends Object> named EMPTY, an instance of an anonymous inner class.
    Its head and tail methods throw the exceptions we described
    above and its isEmpty method always
    returns true. Note the type parameter, ? extends
    Object, which means you could assign any List<X> for some X to EMPTY.
    This is needed for how we use EMPTY,
    which we’ll discuss in a moment. The following sidebar discusses what this
    type expression means.
No equals and hashCode methods are required, since there is
    only one empty list object, the default implementations for Object are sufficient. Also, toString returns empty parentheses to represent
    a list of zero elements.
Now we come to the public static Factory methods that clients use
    to instantiate lists, rather than calling constructors directly. Just as
    there are two concrete types, there are two factory methods, one for each
    type.
The first static method,
    emptyList “creates” an empty list. In
    fact, it returns EMPTY, but it appears
    to do something unspeakably evil; it downcasts from
    List<Object> to the correct
    List<T> type!
Well, this actually isn’t
    evil, because EMPTY carries no state,
    just like None. No ClassCastExceptions will ever occur when you use it.
    So, in practical terms, we are safe and our factory method hides our hack
    from users. We added the annotation to suppress warnings from the
    compiler.
Type parameters for generic
    methods like this are one of the few places where Java uses type inference
    when you call the method. Java will figure out the appropriate value for
    T from the type of the variable to which you assign the
    returned value.
One Subtype to Rule Them All?
Having to downcast
      EMPTY like this reflects a few
      limitations in Java’s type system that some other languages don’t have.
      Some languages define a special type that is the subtype of
      all other types, e.g., Nothing in Scala, where List<Nothing> would be a proper subtype
      of List<T> for all <T>. However, this feature wouldn’t be
      quite enough, due to another Java limitation. You can’t declare in the
      implementation of List<T> that any List<T2> is a subtype of List<T> if T2 is a subtype of T (called covariant
      subtyping). You can only make these declarations when
      List<T> is
      used to declare an instance, which is what we did
      for EMPTY. Here’s another example
      that demonstrates covariant subtyping:
List<? extends Object> EMPTY = new List<String>();
So, we are stuck with our
      hack if we want to use a Singleton for all empty lists.

The second factory method
    creates a non-empty list. We call it list to look similar to a constructor. Really,
    it’s effectively just a shorthand way of saying new NonEmptyList<T>(…) with less noise.
    Even the type parameter is inferred, as you’ll see when we discuss the
    test.
The primary benefit of
    factories is the way they create an abstraction for construction. Calling
    new is a form a strong
    coupling and prevents the substitution of instances of
    different concrete types, depending on the context. As a simple example,
    the list factory method could determine
    if an identical list already exists and return it instead. This would be
    safe since the lists are immutable (ignoring the possibility of mutable
    list elements).
We can see all this in
    action by looking at a test, ListTest.
    It’s long, so I’ll just show excerpts. For example, we’ll omit the
    equality tests[5]:
package datastructures;
import static datastructures.ListModule.*;
...
public class ListTest {
  List<String> EMPTYLS = emptyList(); // The String parameter is inferred!
  List<Long>   EMPTYLL = emptyList();

  @Test(expected = EmptyListHasNoHead.class)
  public void callingHeadOnAnEmptyListRaises() {
    EMPTYLS.head();
  }

  @Test(expected = EmptyListHasNoTail.class)
  public void callingTailOnAnEmptyListRaises() {
    EMPTYLS.tail();
  }

  @Test
  public void callingTailOnAListWithMultiplElementsReturnsANonEmptyList() {
    List<String> tail = list("one", list("two", EMPTYLS)).tail();
    assertEquals(list("two", EMPTYLS), tail);
  }

  @Test
  public void callingHeadOnANonEmptyListReturnsTheHead() {
    String head = list("one", EMPTYLS).head();
    assertEquals("one", head);
  }

  @Test
  public void AllEmptyListsAreEqual() {
    assertEquals(EMPTYLS, EMPTYLL);
  }

  @Test
  public void ListsAreRecursiveStructures() {
    List<String> list1 = list("one", list("two", list("three", EMPTYLS)));
    assertEquals("(one, (two, (three, ())))", list1.toString());
  }
  ...
}
The test makes two
    “different” empty lists, one of type List<String> and one of type List<Long>, using the emptyList factory methods. However, the second
    to last test verifies that they are actually equal.
The first two tests verify
    that the appropriate exceptions are thrown if head and tail
    are called on empty lists. The next two tests verify that the head and
    tail of non-empty lists can be extracted.
The last test shows the
    nice recursive-looking representation that toString returns:
(one, (two, (three, ())))
Recursion is used in
    ListModule. A successful recursion must
    eventually terminate. You would have an infinite recursion if loops in a
    list were possible. The factory methods prevent this as they can only
    create lists terminated by EMPTY.
    Hence, the API enforces good behavior.
Tip
Pure functional programming uses recursion
      instead of loops, since a loop counter would have to be mutable.

We used a few idioms to enforce
    the algebraic data type constraint that the type hierarchy must be closed,
    with only two concrete types to represent all lists. The final keyword prevents subclassing NonEmptyList and using an anonymous class for
    EMPTY accomplishes the same goal.
    However, Java doesn’t give us a way to prevent other implementations of
    the List<T> interface itself, if
    we want to keep it public.
We are accustomed to saying
    that instances of a class can only have certain valid states and state
    transitions. Notice that algebraic data types are making the same kinds of
    assertions about types themselves, imposing a rigor that helps us think
    about allowed representations of state and transitions from an instance
    representing one state to an instance representing another state.



[4] We don’t care about using JavaBeans conventions for accessors in
        this case, because that convention doesn’t serve a useful purpose
        here.

[5] The full listing is in the downloadable code examples, test/datastructures/ListTest.java.



Maps



Let’s talk briefly about
    maps, which associate keys with values, as in this familiar Java
    example:
Map<String,String> languageToType = new HashMap<String,String>();
languageToType.put("Java",    "Object Oriented");
languageToType.put("Ruby",    "Object Oriented");
languageToType.put("Clojure", "Functional");
languageToType.put("Scala" ,  "Hybrid Object-Functional");
Maps don’t make good
    algebraic data types, because the value of defining
    an “empty” vs. a “non-empty” type (or similar decomposition) is less
    useful. In part, this reflects the fact that the “obvious” implementation
    of List is strongly implied by the
    head and tail design.
There is no such obvious
    implementation of Map. In fact, we need
    flexibility to provide different implementations for different performance
    goals. Instead, Map is a good example
    of an abstract data type (see Algebraic Data Types and Abstract Data Types).
I’ll leave it as an
    exercise for you to implement a functional-style map (see Exercises).
    Instead, let’s look at operations that work for lists, maps, and other
    collections.

Combinator Functions: The Collection Power Tools



You already think of
    lists, maps, etc. as “collections,” all with a set of common methods. Most
    collections support Java Iterators,
    too. In functional programming, there are three core operations that are
    the basis of almost all work you do with collections:
	Filter
	Create a new collection, keeping only the elements for which a
          filter method returns true. The
          size of the new collection will be less than or equal to the size of
          the original collection.

	Map
	Create a new collection where each element from the original
          collection is transformed into a new value. Both the original
          collection and the new collection will have the same size. (Not to
          be confused with the Map data
          structure.)

	Fold
	Starting with a “seed” value, traverse through the collection
          and use each element to build up a new final value where each
          element from the original collection “contributes” to the final
          value. An example is summing a list of integers.



Many other common
    operations can be built on top of these three. Together they are the basis
    for implementing concise and composable behaviors.
    Let’s see how.
Returning to our ListModule implementation, let’s add these
    methods (plus one other). Here is version 2 of ListModule, where I’ll only show what’s new to
    save space[6]:
package datastructures2;
...
public class ListModule {
  public static interface List<T> {
    ...
    public      List<T>  filter    (Function1<T,Boolean> f);
    public <T2> List<T2> map       (Function1<T,T2> f);
    public <T2> T2       foldLeft  (T2 seed, Function2<T2,T,T2> f);
    public <T2> T2       foldRight (T2 seed, Function2<T,T2,T2> f);
    public      void     foreach   (Function1Void<T> f);
  }
  
  public static final class NonEmptyList<T> implements List<T> {
    ...
    public List<T> filter (Function1<T,Boolean> f) {
       if (f.apply(head())) {
        return list(head(), tail().filter(f));
      } else {
        return tail().filter(f);
      }
    }
    
    public <T2> List<T2> map (Function1<T,T2> f) {
      return list(f.apply(head()), tail().map(f));
    }
    
    public <T2> T2 foldLeft (T2 seed, Function2<T2,T,T2> f) {
      return tail().foldLeft(f.apply(seed, head()), f);
    }
 
    public <T2> T2 foldRight (T2 seed, Function2<T,T2,T2> f) {
      return f.apply(head(), tail().foldRight(seed, f));
    }
 
    public void foreach (Function1Void<T> f) {
      f.apply(head()); 
      tail().foreach(f);
    }
  }

  public static final List<? extends Object> EMPTY = new List<Object>() {
    ...
    public      List<Object> filter (Function1<Object,Boolean> f) { return this; }
    public <T2> List<T2>  map (Function1<Object,T2> f) { return emptyList(); }

    public <T2> T2 foldLeft  (T2 seed, Function2<T2,Object,T2> f) { return seed; }
    public <T2> T2 foldRight (T2 seed, Function2<Object,T2,T2> f) { return seed; }

    public void foreach (Function1Void<Object> f) {}
  };
}
There are five new methods
    declared in the List interface. We need
    two versions of fold, foldLeft and foldRight, for reasons we’ll discuss in a
    moment. Also, I’ve added a foreach
    method for convenience.
Each implementation for the
    five new methods in NonEmptyList is recursive, yet
    there are no checks for the end of the recursion! The corresponding
    implementation in EMPTY terminates the recursion. This
    means we have eliminated the need for conditional tests, replacing them
    with object-oriented polymorphism!
Recall that the filter method will return a new List. It takes a Function1<T,Boolean> f and applies
    f to each element. In
    Empty, filter just
    returns EMPTY. In NonEmptyList, if
    the result of applying f to head (f.apply(head())) is true, then filter constructs a new list with head and the result of calling filter on the tail. Otherwise, filter just returns the result of applying
    filter to the tail, thereby discarding head. So, filter is recursive and it terminates when it is
    called on an empty list.
The map method is slightly simpler, since it never
    discards an element. It also uses recursion to traverse the list, applying
    f to each element and building up a new
    list with the results. Note that f is
    now of type Function1<T,T2>,
    because the goal is to allow the original elements of type T to be transformed into instances of the new
    type, T2. This time, EMPTY’s
    map method calls emptyList, because
    it must return an object of type List<T2>,
    instead of an object of the original type.
The foldLeft and the foldRight methods are the hardest to understand,
    but they are actually the most important, as all other methods could be
    implemented using them! We’ll start with a general discussion of how these
    methods work, then return to the implementation details.
The reason there are two
    versions is because they traverse the collection and apply the function in
    different orders. In some cases, the ordering doesn’t matter. In others,
    the results will be different. There are other important differences we’ll
    see in a moment.
In a nutshell, foldLeft groups the elements from left to right,
    while foldRight groups them from right
    to left. It might help to start with an illustration of how these two
    methods work. Suppose I have a list of the integers 1 through 4. I want to
    add them using fold. Consider the following example:
List<Integer> listI =
  list(1, list(2, list(3, list(4, emptyList()))));
listI.foldLeft(0, new Function2<Integer, Integer, Integer>() {
  public Integer apply(Integer seed, Integer item) { return seed + item; }
});
Here is how foldLeft would add these numbers
    together:
((((0 + 1) + 2) + 3) + 4) == 10
The seed of 0 is first added to 1, then the result
    is added to 2, etc.
Now, here is the foldRight version:
List<Integer> listI =
  list(1, list(2, list(3, list(4, emptyList()))));
listI.foldRight(0, new Function2<Integer, Integer, Integer>() {
  public Integer apply(Integer item, Integer seed) { return item + seed; }
});
Here is how foldRight would add these numbers together. The
    result is:
(1 + (2 + (3 + (4 + 0)))) == 10
In this case, I exchanged
    item and seed in the body of apply to be consistent with the output and
    functional programming conventions.
Notice the similarity
    between the appearance of how listI is
    declared and how the foldRight
    algorithm is written in the comment. In fact, repeated application of our
    factory method list builds lists in a
    right-recursive way.
Since addition is
    associative, the answer is the same in both cases. You would get different
    answers if you did subtraction, for example.
So, we need two versions of
    fold because the order matters for non-associative operations. There are
    two other important differences.
First, imagine that listI is actually all positive integers, the
    natural numbers. We showed a simple representation in
    Lazy vs. Eager Evaluation. The NaturalNumbers class has a static value
    representing zero and the next method
    computes a value from the previous value you pass in.
Now look at the foldRight example again. Let’s rewrite our
    previous expression to make it infinite and let’s replace the literal
    numbers with calls to next (assuming we
    did a static import of everything in NaturalNumbers). For clarity, I’ll first show
    the expression with the literal numbers:
(1          + (2                + (3                      + (...))))
(next(ZERO) + (next(next(ZERO)) + (next(next(next(ZERO))) + (...))))
Of course, ZERO and 0
    are actually equal. NaturalNumbers also
    defines take(n), which returns a
    List of the first n positive integers.
    Effectively, the recursion in foldRight
    will now terminate when it hits the end of this List, as if nested calls to next stop after n. If we call take(3), our expression reduces to the
    following:
(1          + (2                + (3                      + 0)))
(next(ZERO) + (next(next(ZERO)) + (next(next(next(ZERO))) + 0)))
When the recursion
    terminates in foldRight, it just
    returns the original seed value of 0.
So, we can see that foldRight can be used with infinite data
    structures, if only the first n
    elements will be evaluated.
However, foldRight has a drawback; it is not
    tail recursive. Why? Notice that we do an addition
    after the recursive call returns. The recursive call
    isn’t the last thing done, the
    tail of the algorithm. The tail-call
    optimization can’t be applied to foldRight.
However, foldLeft is tail recursive.
    Let’s write the left-recursive version of our last next example:
(((0 + 1         ) + 2               ) + 3)
(((0 + next(ZERO)) + next(next(ZERO))) + next(next(next(ZERO))))
Recall that (0 + next(ZERO)), etc. are recursive calls to
    foldLeft, but the addition now happens
    before the call, to construct the argument passed to
    the next invocation of foldLeft. Hence
    the recursion is a tail call, the last calculation done.
However, foldLeft can’t be used for infinite data
    structures. There is no place where we can replace a call to next with the seed, as for foldRight. So, foldLeft will eagerly evaluate the expression,
    blowing up on an infinite data structure.
Now let’s return to the
    implementations, starting with foldLeft. First, the function f is of type Function2<T2,T,T2>. The first T2 type parameter represents the seed. Recall that we are building up a new value
    that could be just about anything; a new list, a String, an Integer (for
    sums), etc. So, we have to pass a starter or “seed” value. Another
    conventional name for this argument is accumulator, since it will contain the
    “accumulation” of the work done up to a given point.
The second type parameter
    T for f is the type of the elements in the original
    list. The last type parameter T2 is the
    final return type of the call to foldLeft. Note that it must be the same as the
    seed type parameter.
Empty’s
    version of foldLeft simply returns the
    seed, terminating the recursion. In
    NonEmptyList’s foldLeft, foldLeft is called on the tail, passing as the
    new seed the result of applying
    f to the input seed and head.
The implementation of
    foldRight is similar. The seed is returned by Empty’s
    version of foldRight. However, the version in
    NonEmptyList has key differences compared to its
    version of foldLeft. Note that f is applied to the head and the result of the
    recursive call to tail().foldRight
    after the latter has returned. As we discussed above,
    this is why foldRight is not tail
    recursive.
Tip
Consider these concise and precise definitions: foldLeft “is the fundamental list iterator”
      and foldRight “is the fundamental
      list recursion operator” [Shivers].

To end our discussion of
    fold, note that there is a similar
    operation called reduce, which is like
    fold, but the initial value of the
    collection is used as the seed. Hence,
    fold is more general, because the type
    of the result doesn’t have to be the same as the type of the collection
    elements. Also, unlike fold, reduce will fail if used on an empty collection,
    since there is no “first” value!
Finally, we have foreach, the simplest of all these methods.
    Technically, foreach would be
    disallowed in “pure” functional programming, because it performs only side
    effects, as it returns void! The only
    useful work that can be done is for the input function f to do I/O or other state modifications. For
    example, you might use foreach in a
    main method as the outer loop for all
    other computations. Here is a contrived example that converts the input
    String[] args to a List<String> and then uses foreach to print out the list of
    arguments:
package datastructures2;
import datastructures2.ListModule.List;
import static datastructures2.ListModule.*;
import functions.Function1Void;

public class ForeachExample {
  public static void main(String[] args) {
    argsToList(args).foreach(new Function1Void<String>() {
      public void apply(String arg) {
        System.out.println("You entered: "+arg);
      }
    });
  }

  private static List<String> argsToList(String[] args) {
    List<String> result = emptyList();
    for (String arg: args) {
      result = list(arg, result);
    }
    return result;
  }
}
Actually, there’s a bug
    here; it prints the arguments in reverse order! (See Exercises).
I said that filter, map
    and fold are
    composable. All three are methods on List, of course. Two of them, filter and map, return a new List, while fold can return anything we want. One of our
    oldest problem-solving techniques is divide and
    conquer, where we decompose a hard problem into smaller, easier
    problems. We can divide complex computations into pieces using filter, map,
    and fold, then compose the results
    together to get the final result.
The following JUnit test
    shows how we can start with a list of integers, filter them to keep only
    the even values, multiple each of those by 2, then add them up:
package datastructures2;
import org.junit.Test;
import static org.junit.Assert.*;
import functions.*;
import static datastructures2.ListModule.*;

public class FunctionCombinatorTest {
 @Test
 public void higherOrderFunctionCombinatorExample() {
  List<Integer> listI =
    list(1, list(2, list(3, list(4, list(5, list(6, emptyList()))))));
  Integer sum = listI.filter(new Function1<Integer,Boolean>() {
     public Boolean apply(Integer i) { return i % 2 == 0; }
   })
   .map(new Function1<Integer, Integer>() {
    public Integer apply(Integer i) { return i * 2; }
   })
   .foldLeft(0, new Function2<Integer, Integer, Integer>() {
     public Integer apply(Integer seed, Integer item) { return seed + item; }
   });
  assertEquals(new Integer(24), sum);
 }
}
In fact, we call filter, map,
    and fold
    combinators, because they “combine” with their
    function arguments and they combine with each other to build more complex
    computations from simpler pieces. Combinators are arguably the
    most reusable constructs we have in programming.
Tip
The filter, map, and fold functions are
      combinators, composable building blocks that let us
      construct complex computations from simpler pieces. They are highly
      reusable. The combination of map
      and reduce was the inspiration for the
      MapReduce approach to processing massive data sets
      [Hadoop].

Finally, recall that I
    implemented these functions using recursion, but code that uses them
    avoids recursion, as in our FunctionCombinatorTest example. That means users
    of filter, map, and fold
    don’t have the drawbacks of recursion, namely the inefficient stack usage
    and the potential complexity that can arise in non-trivial recursive
    functions. We could even reimplement filter, map,
    and fold to eliminate recursion for
    better performance. Because these functions are used heavily, we would
    gain significant performance
    benefits at the expense of a less elegant implementation, but one that
    remains hidden behind the abstraction.
That’s a lot to digest! Once
    you’re ready for more, see [Bird2010] and [Hutton1999] for more on what these powerful
    operations can do.
Why Languages Matter
If you venture on to a
      functional language, like Haskell, Scala, Clojure, or F#, you’ll notice
      that having an anonymous function syntax removes some of the clutter we
      had to use here. That ease of expression makes it easier to understand
      the concepts, too.



[6] The full listing is in the downloadable code examples, src/datastructures2/ListModule.java.



Persistent Data Structures



It seems that if we want
    immutable values, we have to make a copy whenever we change a value. While
    this may be fine for small objects, it will be too expensive for large
    objects, like long lists and large maps.
Fortunately, we can have
    both immutability and acceptable performance if we only allocate memory
    for what is actually changing and we share the unchanged parts with the
    original object. This approach is called structure
    sharing. Tree data structures provide the balance of
    performance and space efficiency required to do this. The public
    abstraction might still be a List, a
    Map, or another data structure. The
    tree is only used for the internal storage. Note that the trees themselves
    and their nodes must be immutable. Otherwise, structure sharing will be
    dangerous, as mutations through one object will be seen by others that
    share the same substructure!
To simplify the discussion,
    let’s use unbalanced binary trees. They provide average
    O(log2(N)) search times (unless the tree is
    really unbalanced). Real persistent data structures
    often use one of several 16- or 32-way balanced tree variants to further
    reduce search times and to optimize other performance goals. We’ll skip
    over these details and we won’t cover how you might implement a List, Map, or
    other object using a tree. However, [Spiewak2011] is an excellent presentation on
    several widely used persistent data structures (warning: Scala syntax).
    More technical details can be found in [Okasaki1998] and [Rabhi1999].
Figure 3-1 shows a tree at time “0” referenced as an
    object named value1.
[image: Time 0, One Value]

Figure 3-1. Time 0, One Value


Now imagine a user wants to
    create a new tree that prunes off nodes a1 and its left branch, node a2, but keep node a3 and its right branch, node a4. All we have to do is create a new root node
    that points to a3 as its left branch
    and b1 as its right branch, as shown in
    Figure 3-2.
[image: Time 1, Two Values, with Shared Substructures]

Figure 3-2. Time 1, Two Values, with Shared Substructures


Six of the original 8 nodes
    are shared by both trees. Only one new node allocation was required, the
    root node, value2.
Note that a
    history of the evolving values is being maintained.
    We still have value1 and as long as
    some code has a reference to it, it won’t be garbage collected. This is
    why these data structures are called persistent, not
    in the database sense (they aren’t normally saved to disk), but in the
    sense that old versions of an evolving structure will remain available as
    long as needed. We will exploit this feature in Software Transactional Memory.

Some Final Thoughts on Data Structures and Algorithms



From these examples, we can
    see how immutable values lead us to structure sharing as a way of making
    new values efficiently, where we share data that isn’t changing, rather
    than make full copies. This can only work if all the data elements are
    immutable. Different kinds of trees are the most
    useful data structures for implementing immutable
    collection types, because they can be chosen for optimizing various
    operations, like fast searching for values vs. fast updates.
The use of recursion is also
    universal, instead of looping. Recursion avoids mutable loop counters and
    it’s a natural fit for recursive data structures, like lists and
    trees.
However, we can avoid many
    uses of recursion by using our combinators, filter, map,
    and fold. We can do anything we want
    with collections using these modular, reusable, and composable
    functions.
Consider another example, a
    List of email addresses for our
    customers. We can filter for just the gmail addresses. We can map each address in the
    list to an appropriate anchor tag for displaying in a web page. We can
    fold over the list to group the users by domain. That is, we can build a
    map where each domain name is a key and the list of users at that domain
    is the corresponding value.
In contrast, now imagine
    that we wrote our own custom EmailAddresses class, for example, with one-off
    methods to do the filtering, mapping, and grouping I just described. We
    would write a lot more code (and tests) and the special-purpose nature of
    that code would make the class less attractive for reuse. If we follow
    this approach with our other domain concepts, we end up with far more code
    than we really need, with a relatively low density of value per line of
    code. There would be lots of little ad-hoc types and methods, most of
    which are seldom invoked and rarely reused.
You might argue that these
    custom types and methods provide a self-documentation feature. For
    example, EmailAddresses.groupUsersByDomain tells the
    reader exactly what’s going on. That’s useful, but there is a better
    way.
Interest in Domain-Specific
    Languages is another recent, popular trend (see, for example, [Ghosh2011a] and [Ghosh2011b]). DSLs try to
    capture the idiomatic language used by domain experts directly in the
    code. You can implement DSLs in both object-oriented and functional languages. Some
    languages provide better support for custom DSL syntax than others.
Back to our example, it can
    be useful to represent a domain with a DSL at the upper levels of
    abstraction, but questionable to create explicit
    object representations under this surface. We can have a DSL that says,
    for example groupUsersByDomain in emailAddresses, but implement it with List<EmailAddresses>.foldLeft(new
    HashMap<…>(), groupingFunction);, where groupingFunction does the “group by” magic on
    the users and domains.
In Functional Programming Is More Modular, I argued that objects
    operate at the wrong level of abstraction and they lack a standard set of
    protocols that are essential for the kind of reuse we want. The core data
    structures of functional programming and the combinators like filter, map,
    and fold bring us closer to that
    ideal.

Exercises



	Add a factory method to ListModule that takes a variable argument
        list of elements and returns a properly constructed list.

	Implement a new ListModule
        where head and tail return Options. This eliminates the slight smell of
        throwing exceptions for the empty list case. However, using Options makes some other code more awkward,
        as a unit test will show.

	Re-implement the Option
        hierarchy following the idioms used for List; e.g., make None a static constant.

	Implement a MapModule with an
        abstract data type Map. The implementation classes should use
        side-effect-free functions and immutability. How can you enable the
        use of alternative implementations that optimize performance and
        memory usage? What implementations would optimize the
        following:
	A map that contains just a few key-value pairs.

	A map that contains a few million key-value pairs.

	A map that optimizes insertion performance.

	A map that optimizes search performance.

	A map that retains the order of insertion (e.g., for
            subsequent traversal).




	ForeachExample prints the
        arguments in reverse order. Determine the cause and implement a fix.
        Hint: consider adding a useful method to ListHelper that is commonly found in
        List classes.

	Reimplement the equals and
        toString methods in NonEmptyList using foldLeft or foldRight. Does the choice of fold method affect the results?

	Reimplement the filter and
        map methods for Lists using foldLeft or foldRight.

	Reimplement foldLeft and
        foldRight so they don’t use
        recursion. If you use mutable values, preserve thread safety.




Chapter 4. Functional Concurrency



Now that we have discussed
  functional data structures and algorithms, let’s return to the topic that
  has sparked widespread interest in functional programming in the first
  place: concurrency. Recall this warning from Chapter 1:
Warning
Multithreaded programming, requiring synchronized access to shared,
    mutable state, is the assembly language of
    concurrency.

We’ve already discussed how
  immutable values make synchronization unnecessary. Yet, mutating state is
  never completely avoidable. Let’s examine two higher-level abstractions that
  provide “principled” ways to manage mutable state in thread-safe ways:
  Actors and Software Transactional Memory.
The Actor Model



The Actor model isn’t
    really a functional approach to concurrency, but it fits our general goal
    of managing state mutation in principled ways. In the Actor model of
    concurrency, work is coordinated by message passing between “actors.” Each
    actor has a queue, sometimes called a mailbox, for incoming messages. The
    actor processes each message, one at a time. Carl Hewitt and collaborators
    developed the actor model almost 40 years ago [Hewitt1973]. [Agha1987] provides a complete description of the
    theory of actors. Perhaps the best known implementation of actors is found
    in Erlang, where actors are the core of everything you do in the
    language.
It’s interesting to note
    that Alan Kay’s original vision for objects in Smalltalk is much closer to
    the actor model than it is to the objects found in most languages [Kay1998]. For Kay, “The big
    idea is messaging.” He also believed that state changes should be
    encapsulated and not done in an unconstrained way.
This metaphor of passing
    messages between objects is not only intuitive, it helps clarify
    boundaries between objects. Have you seen code where one object makes lots
    of little calls to other objects to get bits of information? How would you
    change that code if you thought in terms of message passing,
    instead?
In an actor system, state
    mutation is handled one of several ways. For some state, it can be the
    responsibility of one actor to mutate that state. No other code is
    permitted to do so. When a mutation is required, a message is sent to the
    actor, which performs all such changes sequentially, thereby avoiding
    synchronization problems.
A similar model is to allow
    multiple actors to modify the same state, but only one at a time. A
    special “semaphore” message is exchanged that tells the receiver that it
    is safe to modify the state. When finished, the semaphore is sent to
    another actor.
Both cases run the risk of
    creating a bottleneck if the scope of responsibility is too large. It
    might be necessary to break it down into smaller, “isolated”
    sections.
Fortunately, good actor
    libraries are available for most languages. Perhaps the best option for
    Java is the Akka Java API [Akka]. An alternative is also available in
    [Functional Java].
Here is a simple
    actor-based program that remembers every string passed to it, keeping the
    string and the time it was seen in a map:
package actors;
import akka.actor.*;
import static akka.actor.Actors.*;
import java.util.*;

public class AkkaActorExample {
  // server code
  static class MemoryActor extends UntypedActor {
    final Map<String,Date> seen = new HashMap<String,Date>();

    public void onReceive(Object messageObject) {
      String message = messageObject.toString(); // simplifying assumption
      if (message.equals("DUMP")) {
        getContext().replySafe(seen.toString());
      } else {
        Date date = new Date();
        seen.put(message.toString(), date);
        getContext().replySafe("'" + message + "' recorded at " + date);
      }
    }
  }

  public static void main(String[] args) {
    ActorRef remActor = actorOf(MemoryActor.class).start();
    for (String arg: args) {
      // client code
      Object response = remActor.sendRequestReply(arg);
      System.out.println("Reply received: "+response);
    }
    Object response = remActor.sendRequestReply("DUMP");
    System.out.println("Dump of remembered strings: "+response);
    System.exit(0);
  }
}
For convenience, everything
    is wrapped in a class, AkkaActorExample, which also defines the
    main method. The MemoryActor extends Akka’s UntypedActor, so named because the messages are
    of type Object.
MemoryActor implements an onReceive method, declared abstract by UntypedActor, which is called whenever a new
    message is received by the actor. This handler stores the input message
    (basically assuming it is a string, for simplicity) and the current time
    in a mutable map. It replies to the caller that the
    message was recorded.
However, if a special
    message DUMP is received, the actor
    replies with a “dump” of the current state of the map. Note that the actor
    manages the mutable state and prevents any other code
    from accessing it. Even the DUMP
    message returns a string, rather than the map itself.
The main method uses the Akka idiom for
    instantiating an actor of instance MemoryActor and wrapping it in an ActorRef, which is returned to main. Akka separates the actor instance from
    references to it, an example of the Bridge design pattern [GOF1995]. Akka does this so
    that if an actor instance fails for some reason, it can be restarted
    without requiring clients to acquire a new reference to the new actor.
    This is an example of the extensive robustness and error recovery features
    in Akka’s Actor library, which were inspired by similar capabilities in
    Erlang.
Once main has an actor reference, it loops through
    the input arguments and sends each word, one at a time, to the actor. It
    then prints the response received. At the end, it sends the DUMP message.
To keep the example simple,
    synchronous calls and responses are used, where the
    code waits for a reply after each message is sent. Normally, you would use
    asynchronous messages for better scalability, which Akka supports.
If you download the code
    examples and build the actor.example
    make target, it runs this code with the arguments
    I am a Master Thespian!. Here is the
    output (omitting some Akka informational messages):
Reply received: 'I' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'am' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'a' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'Master' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'Thespian!' recorded at Sat Jun 25 16:14:43 CDT 2011
Dump of remembered strings: {
  am=Sat Jun 25 16:14:43 CDT 2011,
  a=Sat Jun 25 16:14:43 CDT 2011,
  Master=Sat Jun 25 16:14:43 CDT 2011,
  Thespian!=Sat Jun 25 16:14:43 CDT 2011,
  I=Sat Jun 25 16:14:43 CDT 2011}
I wrapped the long line for
    the “Dump” output. Note that creating the string for the map required
    iterating through it, which doesn’t preserve insertion order, as you would
    expect.
This example just scratches
    the surface of what you can do with Akka Actors (as well as other Actor
    libraries), including distributing actors remotely, managing their life
    cycles, handling crash recovery, etc. See [Akka] for more details.


Software Transactional Memory



Chances are you’ve worked
    on an application with a database backend. A key feature of most
    relational databases is support for ACID
    transactions, an acronym for atomicity,
    consistency, isolation, and
    durability.[7] The goal of ACID transactions is to avoid logical
    inconsistencies in a given set of related records, for example where two
    simultaneous updates leave the set of records in an inconsistent state, or
    updates are made that are based on stale data, which could effectively
    erase more recent updates.
Software Transactional
    Memory (STM) brings transactions to locations in
    memory that are referenced by variables [STM] (see also [PeytonJones2007]). STM can’t
    provide durability, because memory isn’t durable
    (e.g., if the power is lost), but STM can provide the ACI,
    atomicity, consistency, and
    isolation in ACID.
The model in STM is to
    separate references to values from the values themselves. We saw this
    principle at work in Akka actors. In STM, a program has a reference to a
    value of interest. The STM framework provides a protocol for changing the
    value to which the reference “points.”
However, values themselves
    are not changed. They remain immutable. Only the
    references change to point to new values. We saw in Persistent Data Structures how the appropriate choice of
    implementation can provide an efficient way to make a new value from a
    large object without copying the parts of it that aren’t changing. Rather,
    those parts are shared between the old and new version of the object.
    Persistent Data Structures are exactly what STM needs.
Figure 4-1
    shows the state at time “0.” There are two references pointing the same
    value1 of a persistent data structure,
    adapted from Figure 3-1 in the previous
    chapter.
[image: Time 0, one value with two references to it]

Figure 4-1. Time 0, one value with two references to it

Now let’s change ref2 to point to a new, updated value, as shown
    in Figure 4-2.
[image: Time 1, two values, with one reference to each]

Figure 4-2. Time 1, two values, with one reference to each

By time “1,” an STM transaction
    in the context of ref2 has been used to
    move its reference to value2, which was
    created from value1, as indicated by
    the dotted line. Creating value2 does
    not necessary have to occur within the transaction, just the reassignment
    of ref2 (but see the example below).
    Note that ref1 still points to the old
    value, value1.
This behavior allows
    different clients to acquire references to the same value at a particular
    time, but each can work with the value without fear that it will change
    unexpectedly, due to the actions of one of the other clients. Recall that
    a history of the evolving values is effectively
    maintained, as long as there are references pointing to multiple versions.
    A version with no references will be garbage collected.
So that’s how STM works
    behind the scenes. What’s it like for a client to use STM?
There are several STM
    libraries for Java, many of which are inspired by Clojure’s
    implementation. Akka integrates with the [Multiverse STM]. Below is a simple example adapted
    from the Akka documentation [Akka]. A reference to an Integer value is managed using the techniques
    described above:
// Adapted from Akka example source code.
// Copyright (C) 2009-2011 Scalable Solutions AB <http://scalablesolutions.se>
package stm;
import akka.stm.*;

public class AkkaSTMIntegerCounter {

  private final Ref<Integer> ref = new Ref<Integer>(0);

  public int counter() {
    return new Atomic<Integer>() {
      public Integer atomically() {
        int inc = ref.get() + 1;
        ref.set(inc);
        return inc;
      }
    }.execute();
  }

  public static void main(String[] args) {
    AkkaSTMIntegerCounter counterRef = new AkkaSTMIntegerCounter();
    System.out.println(counterRef.counter());   // -> 1
    System.out.println(counterRef.counter());   // -> 2
  }
}
First, a typed reference,
    Ref<Integer>, is created with the
    initial value of zero. Then, a helper method counter handles incrementing the value and
    returning the new value. The mutation and update of the reference must be
    enclosed in an Atomic<Integer>
    object (analogous to synchronizing a method). The Ref.get method retrieves the
    current value and the Ref.set method sets a new value. Note that
    wrapping these steps in Atomic prevents
    updates using potentially stale values from calls to get.
The main method instantiates an AkkaSTMIntegerCounter object, then calls
    counter twice and prints the results.
    The numbers 1 and 2 will be printed on separate lines.
For a beautiful exposition
    on STM, see [PeytonJones2007].


[7] One of the big data trends is to use new
        kinds of databases that relax this constraint in order to improve
        throughput and availability.



Exercises



	Using the [Akka] documentation for actors, modify
        the Actor example to make calls asynchronously. For example, create
        several actors that send messages to MemoryActor and add an actor that main uses to receive the replies.

	Use the Akka/Multiverse API to manage a more complex object,
        like a collection.




Chapter 5. Better Object-Oriented Programming



Now that we have learned
  about functional programming and its benefits, let’s revisit object-oriented
  programming and see how we can do better with functional ideas.
Imperative, Mutable Code



Recall from Declarative vs. Imperative Programming that object-oriented programming is
    primarily imperative, where we tell the computer what
    to do, while functional programming is primarily
    declarative, where we define properties and
    relations, and let the runtime figure out how to compute what we want. We
    demonstrated the differences with two versions of the factorial function.
    The declarative version was clean and simple, while the imperative version
    was “busy” with mutations, making it harder to understand and prevent
    bugs. Those problems multiply if your whole code base is like that.
We’ve seen other reasons to
    avoid mutability. Mutable objects are not thread-safe by default and it’s
    easy for clients to change their state outside our control. Hence, we
    should make our objects immutable by removing setter methods and by
    declaring fields final. We should
    create new instances when the state changes and we should rely on
    persistent data structures for making efficient
    copies of large collections. We should avoid representing elaborate domain
    model object “graphs” in memory by limiting the parts of our domain models
    that we actually implement.
Sometimes we can’t avoid
    mutation. Since Java doesn’t perform tail-call optimization, declarativeFactorial won’t perform as well as
    imperativeFactorial. However, we should
    choose the desirable approach first, then optimize
    only where actual performance data says we should
    (since our intuitions are seldom correct). If at all possible, we should
    keep all public abstractions pure, even when the
    internals aren’t pure.
Tip
Make your objects behave to the outside world as if they are
      side-effect-free and immutable.



The Liskov Substitution Principle



The Liskov Substitution
    Principle (LSP; see [LSP] and [Martin2003]) provides the correct way to think
    about subtyping. Paraphrasing, LSP says that if you have an object of type
    T1 with a set of
    properties, you can only substitute an object of type
    T2 if it also conforms to those
    properties. We say that T2 is a
    subtype of T1. In
    Java, a child class that derives from a
    parent class is considered a subtype.
Subtyping, Inheritance, and Polymorphism
We sometimes think of
      subtyping and inheritance as the same thing. Inheritance is used for
      subtype polymorphism, where we define type
      hierarchies with polymorphic behavior. Inheritance is also sometimes
      used for implementation inheritance, a form of
      reuse, which can cause problems with Liskov substitutability. For
      completeness, note that Java’s generics are an example of
      parametric polymorphism. For example, a List<T> should behave the same whether
      T is String, Float, etc.

A practical way to ensure
    that LSP is satisfied is to use Design by Contract [Meyer1997], where you specify
    allowed properties as one of three kinds of constraints at the level of
    individual functions or whole types:
	Precondition: A condition
        that must be true when entering the function (or all functions for a
        type-level precondition). Example: Input parameter x can’t be null.

	Postcondition: A condition
        that must be true when leaving the function (or all functions for a
        type-level postcondition). Example: The return value will never be
        null.

	Invariant: A condition that
        must be true both before and after the function call (or all
        functions). Example: Field f will
        never be null.



If you think carefully
    about these descriptions, you’ll notice that preconditions are
    requirements on users of the functions, while postconditions are
    requirements on the functions themselves.
With a Design by Contract
    tool, these conditions are expressed as executable code. The tool enforces
    correctness at runtime, such as during testing (see [Meyer1997] and [Contract4J]). These days,
    Test-Driven Development [TDD] performs a similar role, although it
    is a less formal approach.
Back to LSP, it can be hard
    to define properties well. The freedom and
    flexibility of inheritance doesn’t provide much guidance, but
    design patterns can help.
Template Method is a
    pattern that provides a useful constraint on subtype
    polymorphism [GOF1995]. It is error-prone to override
    concrete methods; it’s easy to forget to call the parent method when you
    should; it’s hard to avoid duplication, etc. In Template Method, instead
    of overriding a concrete method, we implement the method once in the base
    class as a template that defines the protocol of the behavior. This method
    calls abstract methods to provide specific pieces of
    the overall computation. Those abstract methods are implemented in each
    subclass, giving you a constrained form of
    polymorphic behavior that is easier to keep LSP compliant.
Functional programming
    gives us a similar tool, higher-order functions.
    Recall that filter, map, and fold
    implement specific operations, but the details are customizable by the
    function argument.
Tip
Use Template Method and higher-order
      functions as an aid to conform to the Liskov Substitution
      Principle.


More on Design Patterns



Some people have claimed
    that FP makes design patterns obsolete, relics of
    flawed object-oriented languages where missing features
    had to be retrofitted by coding idioms. This view confuses the concept of
    patterns with particular example patterns themselves, which may or may not
    be relevant in different languages. It is true that some of the famous
    “Gang of Four” patterns [GOF1995] are a standard part of many functional
    languages. Singleton, Composite, Command, and Iterator might be built into
    a language or replaced by similar constructs. We just discussed how
    higher-order functions accomplish the same basic
    goals as Template Method.
At the same time, functional
    programming has its own set of patterns. One is fold and its variants. We’ll discuss another one
    shortly, pattern matching.
Many of the functional
    patterns are named after the concepts from Category Theory that inspired
    them. You might have heard the word Monad, for example. For our purposes
    we can say that a Monad is a container with a specific protocol for
    constructing a new instance of the container using the value in an old
    instance of the container. Monads have been used to sequence expressions.
    For example, Haskell code is normally side-effect-free and lazily
    evaluated. The runtime can defer execution of an expression until needed
    or never execute it. However, that would not work for IO. So, the “IO
    Monad” is used to isolate IO actions, maintain their order, and assure
    that they get executed, while maintaining a clean separation from the rest
    of the “pure” code.
An ugly pattern that won’t
    be missed is Visitor. It’s invasive, it’s confusing, and it exposes too
    many internal implementation details to “visitors.” Functional programming
    gives us other features that are far more elegant for accomplishing the
    same goals. Let’s discuss one of them, pattern
    matching.
Pattern Matching



A goal of Visitor is to
      replace the need for public getter methods, which expose implementation
      details. Instead, the visitor is allowed to “go inside the object.” A
      better approach that preserves modularity is to provide a protocol where
      objects can expose internal values while retaining control over what is
      exposed and how.
This is one use for
      pattern matching in functional languages (where the
      word “pattern” is not being used in the design pattern sense). In part,
      pattern matching is like switch
      statements on steroids, where you aren’t limited to checking just for
      integer or enum values (or booleans if you use if statements).
Functional pattern
      matching lets you ask questions like “Is this object of type List?”, “Is this object a list that
      starts with 1 and 2?”, etc. For each match, you can
      specify what action to take.
While you can partially
      simulate pattern matching with if
      statements in Java, you lose much of the power of the idea without
      better support. So, I’ll use an example written with extensions to Java
      that are loosely inspired by Scala’s syntax, to provide a sense of
      what’s possible. This example matches on an Object and looks for Lists:
package datastructures;
// Possible syntax extensions; won't compile for any version of Java.
public class PatternMatchExample {
  public static String match(Object obj) {
    switch (obj) {
      case EMPTY:               // Is it an empty list?
        return "()";
      case NonEmptyList(1, 2):  // A list with 1 and 2?
        return "(1,(2,())";
      case List<?> list(head,tail):  // Any other List? Create head, tail variables
        return "("+head+","+match(tail)+")";
      default:                  // Not a List!!
        return "unrecognized object!";
    }
  }
}
The switch first tests the object to see if it is
      an empty list. Next, it looks for a two-element list with the literal
      values 1 and 2. After that, it determines if the object is any List at all. Note that if a match occurs in
      the last case, two variables, head
      and tail, are automatically created
      that reference the extracted head and tail of the
      matched list. Finally, the default clause handles the case of
      unrecognized types.
Looking at this code, it
      appears that I broke a cardinal rule of switch statements in
      object-oriented programming: Never switch on types in a type
      hierarchy! Use polymorphism instead!
I didn’t do the wrong
      thing for two reasons. First, List is
      an algebraic data type that will only ever have two
      concrete classes. So, this switch statement won’t break in the future,
      because we won’t modify the class hierarchy. (However, it probably would
      break if we were using Maps instead, which don’t constrain the allowed
      subtypes.)
The second reason takes
      us back to Visitor and its primary purpose: to “fake” adding new methods
      to existing types, where internal access to the implementation is
      required. I glossed over the bodies of the clauses just now, but
      actually, the match method is really
      a toString implementation (with some
      odd parts).
Earlier in the book, I
      complained about a gigantic Customer
      class that had every possible field and method anyone could want. The
      better alternative is to limit the methods on any class and to provide a
      way to implement new behaviors in a modular,
      separable way.
Here’s what I mean by
      separable: why do we have Object.toString in the first place? It’s
      occasionally useful for debugging, but often we really need XML, JSON
      (JavaScript Object Notation), or another consistent format. However, it
      would be crazy to embed XML or JSON dependencies in every object in the
      system. A better way is to have a module that understands XML
      serialization and knows how to serialize all the common types to and
      from XML. It would also need to provide a mechanism for us to specify
      how to serialize our own types.
The match (a.k.a. toString) method described above pulls
      together everything there is to know about converting a List to a particular String format. We could write similar modules
      for XML and JSON serialization. We can use the same approach for any
      behavior that is only needed by some clients, some of the time. When
      clients need XML serialization, for example, they can import our module
      for it. When they don’t need it, it’s not a burden on them.
Pattern matching gives us
      a new tool for modularity, where we can do data extraction in a way that
      is controlled by the types themselves. We can use pattern matching to
      implement new features, yet never pollute the original types with those
      features. We can localize feature development in one place, rather than
      spreading it over all the files for a type hierarchy.
Tip
Just because you can join behaviors with state in the same class
        doesn’t mean that you should.



What Makes a Good Type?



When you approach design
    with a sense of functional rigor, any imprecise type definition becomes
    suspect. Consider a typical object model that you might see in an IT
    application, a part of which is shown in the UML diagram in Figure 5-1.
[image: UML for an American payroll application.]

Figure 5-1. UML for an American payroll application.

What are the
    properties of the classes in this diagram? How do you
    ensure that Manager is substitutable
    for Employee, and 401K (an American tax-deferred retirement
    savings plan), Insurance, and Tax are substitutable for Deduction?
An object representation of
    these concepts makes sense conceptually and there is nothing wrong with
    modeling your domain in objects. However, in software, the imprecision and
    the fluid nature of real-world objects collides with the precision the
    machine demands. Worse, even if you find a snapshot
    today of what these concepts mean to you, they will surely change with
    tomorrow’s requirements.
Fortunately, not all domain
    concepts have this problem. Those that are relatively stable and have
    well-defined properties and operations fit the objectives for types in
    functional programming.
I think the domain concepts
    shown in Figure 5-1 don’t make good types. Their
    particular details are fluid, likely to change from one scenario to the
    next, from one development cycle to the next, even from one team to the
    next. For these concepts, slice what parts you need into maps of key-value
    pairs, then implement your scenarios with filter, map,
    and fold.
However, some of the domain
    concepts not shown will possess the stable, precise quality that makes
    them good types. Money in the financial world has
    precise rules for arithmetic and rounding. Post offices have standard
    formats for Street Addresses and there exist
    databases to verify whether an address is known to exist or not.
    Zip Codes have a standard format and criteria for
    validity. What examples come to mind from your domain?
In fact, any data that fits
    in a collection probably should not have its own
    dedicated type. The power of filter,
    map, and fold compel you! A type wrapper may not justify
    the cost of developing it.
Tip
Use types to represent domain concepts with stable, clear
      properties. Consider using maps, lists, trees, and sets to represent
      other domain concepts that are more fluid and imprecise.


Rethinking Object-Oriented Middleware



In Chapter 1, I discussed my skepticism about
    Object-Relational Mapping (ORM) and other object-based middleware. They
    can add needless complexity.
The power of the combinator
    functions, filter, map, and fold, make a compelling case for keeping data in
    collections. You can read the data from a database or other service into a
    collection, transform it as necessary, then send it back to the database,
    to another service, or to the UI (usually as JSON for web UIs). You avoid
    the overhead of converting data collections to objects and keep your code
    simpler. (The Anorm API, part of the Play Web
    Framework’s Scala Module, is a good example of this approach to
    persistence [Anorm].)
    Having domain objects in your code is nice for understanding the scenario
    being implemented, but the benefits don’t always justify the costs of
    using them.
Finally, reduction of
    middleware will increase your team’s agility, as more code in a mature
    application inevitably slows you down.

Exercises



	Look at a Java application you’ve worked on recently.
	How many classes could be made immutable without much
            difficulty? How many classes look like feature “kitchen sinks”?
            How many classes define methods that reinvent operations that
            would be easy to implement with filter, map, and fold, instead?

	How many polymorphic methods don’t obey the LSP?




	Look at the design patterns you use frequently. How might you
        change or replace them with functional patterns and idioms?

	Exercise 2 in Chapter 2
        explored how functions of different types can be substituted for each
        other. Can you explain those behaviors using the Liskov Substitution
        Principle?




Chapter 6. Where to Go From Here



Hopefully I’ve convinced you
  why functional programming is important for the challenges of our time. We
  only scratched the surface of this rich field. I hope you’ll continue
  learning and applying functional programming on your own.
So, where should you go next? I
  find it easier to learn abstract principles by writing real code. You could
  start by learning one of the scripting languages on the JVM, such as Groovy,
  JRuby, or Jython. While none of these languages is a functional language,
  per se, all have many functional features missing in Java, such as anonymous
  functions, collections with filter,
  map, fold, and other higher-order
  functions. (The names used by these languages may be different.) Along the
  way, you’ll find these languages useful for general development
  needs.
However, consider learning a
  real functional language, where you can see functional programming fully
  realized. In a few examples in this book we labored to represent some ideas
  in Java. Functional languages make them much easier to use.
Scala is my personal favorite,
  because it strives to unify both object-oriented and functional programming.
  Scala’s object-oriented support will let you continue to use familiar
  object-oriented concepts while you learn and start using functional
  concepts. Just be careful to avoid the trap of staying in familiar
  territory! [Wampler2011]
  provides a brief overview of the language and its compelling features. [Eckel2011] discusses how Scala
  has the succinct feel of a dynamically-typed language, like Python. For a
  more in-depth introduction, see Programming
  Scala [Wampler2009], the book I cowrote with Alex Payne. We
  tried hard to provide a pragmatic, developer-oriented introduction.
Clojure is the other
  well-known functional language on the JVM. It is a Lisp dialect that offers
  a powerful vision of how programming should be done, especially the
  management of state and mutability. In Clojure, all mutations of state are
  done through specific mechanisms, such as software transactional
  memory. Simple variable assignment is not supported. The greater
  discipline prevents many bugs and encourages you to think carefully about
  state and state transformations. Even if you don’t like Lisp syntax, it’s
  well worth learning Clojure, as the vision it presents is becoming a major
  influence on other languages. You can bet that whatever language you are
  using in 10 years will be heavily
  influenced by Clojure. Programming Clojure [Halloway2009] is an excellent
  introduction.
Finally, if you’re willing to
  go beyond the JVM, consider learning Haskell, which has been the incubator
  of many of the leading ideas in functional programming. Real World
  Haskell [O'Sullivan2009] and the whimsically named
  Learn You a Haskell for Great Good! [Lipovaca2011] are great
  introductions. Haskell is very different than most languages, so patience is
  required to learn it, but the profound insights it offers reward the
  effort.
If you are a Windows user,
  consider learning F#, Microsoft’s dialect of OCaml. F# is the first
  commercially-supported functional programming language
  available. OCaml itself has been used in projects on Wall Street, for
  example.
There are other great
  resources for further investigation, many of which are listed in the
  References. The videos on MSDN’s Channel 9, especially those by Erik Meijer,
  introduce basic and advanced functional topics [Channel 9]. The Structure and
  Interpretation of Computer Programs [Abelson1996] is a classic textbook for computer
  science. It’s not a book on functional programming, per se, but it walks the
  reader through a logical progression of computing principles, starting with
  functional programming concepts. Neal Ford’s “Functional Thinking” articles
  provide more examples of using functional concepts in several common
  languages [Ford2011].
  Finally, Why Functional Programming Matters [Hughes1990] is a more advanced,
  yet approachable discussion on the benefits of functional
  programming.
Functional Tools for Java



There are also good options
    targeted at the Java programmer. The [Functional Java] APIs define anonymous function types,
    similar to those we defined in Chapter 2. You can also find various
    functional data structures, parser combinators, and an Actor library.
    Similarly, the [Totally Lazy] library offers lots of useful
    features.
The [Akka] Framework is a powerful, emerging
    suite of tools for building robust, concurrent applications. Akka includes
    one of the most performant and feature-complete Actor APIs available. Akka
    also integrates with many other third-party APIs to provide support for
    software transactional memory, web services,
    persistence stores, etc. Akka provides both Java and Scala versions of its
    APIs. I fully expect that Akka will become a widely used tool for
    JVM-based applications in the next several years, much as the Spring
    Framework became ubiquitous in the past decade [Spring].


A Recap



In the introduction, I
    discussed these factors that make me emphasize functional programming over
    object-oriented programming in my work.
	I Have to Be Good at Writing Concurrent Programs
	All of us must know how to write robust code that scales
          horizontally to multiple CPU cores and servers.

	Most Programs Are Just Data Management Problems
	Big data requires very efficient
          management of resources. Those efficiencies also benefit “small
          data” and “no data” projects. Overreliance on object-relational
          mapping and other forms of object middleware lead to code bloat,
          poor performance, and lower agility. We should remember,
          What’s the simplest thing that could possibly
          work? and stay focused on the minimal implementation
          required. We can express the problem domain through DSLs when
          appropriate, but we shouldn’t assume that our domain object models
          should be implemented in code.

	Functional Programming Is More Modular
	Functional programming moves the abstraction layers lower, to
          core data structures and combinator functions.
          Combined with immutable values and side-effect-free functions, the
          modularity and reusability of functional code is usually better than
          similar object-oriented code. Because objects are so free to expose
          abstractions any way they want, they are less reusable and
          composable, which is a paradox.

	I Have to Work Faster and Faster
	Functional programming keeps my code concise, by minimizing
          unnecessary and “one-off” implementation constructs, and it keeps my
          code logically correct. These qualities, in turn, keep me more agile
          over the life of the project as requirements change and features
          evolve.

	Functional Programming Is a Return to Simplicity
	Functional programming isn’t simple, but
          it represents a return to simplicity: the goal
          of minimizing implementation size and complexity by rethinking our
          ideas of appropriate design patterns and implementation
          idioms.



We learned several tools to
    improve modularity and reuse.
	Custom classes aren’t always justified
	If data fits in a collection, it probably shouldn’t have its
          own class.

	Put your domain in domain-specific languages
	Resist the temptation to faithfully capture your domain model
          in code. Instead, express your domain in domain-specific languages
          (DSLs), when useful, and use the most straightforward, concise
          implementation you can behind the DSL.

	Function combinators
	The combinators filter,
          map, and fold are flexible and composable tools
          because they are higher-order functions. We can
          exploit that in Java, too, if we standardize on generic Function types, rather than rely on
          one-off, special interface types for callbacks.

	Use more generic types, like Function
	Find ways to replace special purpose types with more general
          replacements. Really, just be more aggressive about applying the
          tools you already use to find abstractions that eliminate
          duplication in your code.



I hope you have found
    Functional Programming for Java Developers
    stimulating and informative. I hope you are motivated to learn and embrace
    this exciting trend in software development.

Exercises



	Look at the [Ninety Nine Problems], originally written for Prolog,
        and try working out the solutions in Java. It might be easier to use
        the ListModule we discussed in
        Chapter 3 or the [Functional Java] or [Totally Lazy] libraries.
        Note that you can find solutions for other languages, too.
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Glossary



	Abstract Data Type
	A more formal definition of the familiar idea that types should be
      defined by abstractions with hidden implementations. An abstract data
      type is defined only in terms of allowed operations, i.e., without
      specifying fields, since they are part of the implementation. Abstract
      data types may or may not be immutable. Representative examples include
      maps, queues, and stacks, where multiple implementations are possible
      (including mutable and immutable, as long as all state-changing
      operations are defined to return a reference to the possibly new
      instance). Contrast with algebraic data type, where
      only a well-defined set of public subtypes are allowed.

	Abstraction
	The outwardly visible state, state transformations, and other
      operations supported by a type. This is separate from the
      encapsulated implementation (fields and methods) of
      the abstraction. Scala traits and
      abstract classes are often used to define
      abstractions and optionally implement them. Concrete
      types provide complete implementations.

	ACID
	A desired property of database transactions. They should support
      atomicity, consistency, isolation, and durability. See [ACID] for more
      details.

	Actor
	An autonomous sender and receiver of messages in the
      actor model of concurrency.

	Actor Model of Concurrency
	A concurrency model where autonomous actors
      coordinate work by exchanging messages. An actor’s messages are stored
      in a mailbox until the actor processes them.

	Agile and Agile Methods
	An umbrella term for several lightweight development processes and
      specific practices that are designed to minimize process waste, while
      improving code quality and communications with project
      stakeholders.

	Algebraic Data Type
	A special kind of data type that is defined in Java by an
      interface and a fixed set of possible implementing classes, representing
      all possible instances of the data type. There may be a well-defined set
      of operations that maps instances of one type to new instances of the
      same type or one of the other types. Algebraic data types are always
      containers for other types (e.g., list and
      option). Contrast with abstract data
      type, where the implementing subtypes are not limited and are
      often hidden from the user of the type.

	Anonymous Function
	A value that is a
      function (as opposed to a class instance or a
      primitive value) without a name in the usual way that methods are named.
      Languages that support anonymous functions have a special syntax for
      defining the value. For example, using the planned
      lambda syntax in Java 8, addCallback(#{Event e -> log(INFO, e)})
      passes an anonymous function to some addCallback method. The anonymous function
      takes a single argument of type Event
      and logs it. Anonymous functions are sometimes called
      lambdas (for historical reasons) or
      function literals. See also
      closure.

	Associative Arrays
	Another common name for the map data structure, i.e., a collection
      of key-value pairs.

	Base Type
	A synonym for parent type or
      supertype.

	Big Data
	A buzzword for the challenges of and approaches to working with
      data sets that are too big to manage with traditional tools, such as
      relational databases. So called NoSQL databases,
      clustered data processing tools like MapReduce, and
      other tools are used to gather, store, and analyze such data
      sets.

	Bound Variable
	A variable that is declared as an argument to
      an anonymous function or is a local variable
      declared within the function. It is “bound” to a value when the function
      is invoked.

	Bridge
	A design pattern where a reference to an
      object is separated from the instance itself, allowing both to vary
      independently. Also known as “handle/body.” Bridge is used in
      Software Transactional Memory to allow references
      to values to be changed in a controlled way. It is also used in some
      Actor libraries, like the [Akka] library, to allow clients to
      keep the same reference to an actor, even if the actual instance has
      been replaced with a new one.

	Category Theory
	A branch of mathematics that studies collections of “objects”
      (used more generally than in object-oriented programming) and “arrows”
      or “morphisms” that connect the objects in some sense. Category theory
      has been a fruitful source of ideas for concepts in functional
      programming.

	Child Type or Child Class
	A class which is derived from another class
      and also optionally implements one or more interfaces. Also called a
      subtype or derived type. See
      inheritance.

	Class
	A template for creating instances. A class defines implementation
      of methods and fields. A class
      defines type.

	Closure
	A function with every free
      variable referenced in the function bound to variables of the
      same name in the enclosing scope where the function is defined. The free
      variables are “closed over,” hence the name. See also bound
      variable.

	Combinators
	Functions that return an instance of one of their input types,
      which can be “combined,” according to the rules of Combinatory
      Logic, to build more complex logic. The result can then be
      applied to values to perform the computation. The filter, map, and fold functions are combinators.

	Combinatory Logic
	A model of computation invented by Haskell Curry and others that
      eliminates explicit variables and instead expresses calculations as the
      combination of operators (higher-order functions)
      that will be applied to data when used.

	Composable (or Composition)
	The ability to join software “modules” together with relatively
      little effort to create new behaviors and representations of state from
      the individual behaviors and states provided by the components.

	Comprehensions
	“Comprehending” the elements of a collection or
      lazy representation of one (such as all integers),
      including filtering, mapping, and folding over them. In some languages,
      comprehensions are syntactic sugar for filter, map, and fold invocations.

	Concurrency
	A model of computation with simultaneous sequences of computation
      and unpredictable interaction between the sequences. For example, two
      threads in an application that occasionally communicate. In contrast to
      parallelism, the apparent simultaneity might be an
      illusion, for example when the program executes on a single CPU with a
      single core. An example of the unpredictability of concurrency is the
      handling of asynchronous events, such as user input or network traffic.
      The precise sequence of execution steps that will occur in the entire
      program can’t be predicted in advance. Contrast with
      parallelism.

	Contract
	The protocol and requirements that exist between a module (e.g.,
      class, object, or single method) and clients of the module. More
      specifically, see design by contract.

	Coupling
	In this context, how closely dependent one “module” is on the
      details of another. Strong coupling between two
      modules makes the reuse and evolution of either module more difficult.
      It also becomes harder to substitute one module for another, if both
      satisfy the same public abstractions. Hence weak
      coupling is generally preferred.
      Inheritance is an example of strong
      coupling.

	Currying
	Converting an N argument function into a sequence of N functions
      of one argument, where each function except for the last returns a new
      function that takes a single argument that returns a new function, etc.,
      until the last function that takes a single argument and returns a
      value.

	Declarative Programming
	The quality of many functional programs and
      domain-specific languages where the code consists
      of statements that declare relationships between values, rather than
      directing the system to take a particular sequence of actions. The
      underlying runtime can then decide how to “satisfy” the relationships.
      Contrast with imperative programming.

	Derived Type
	A synonym for sub type and child
      type.

	Design by Contract
	An approach to class and module design invented by Bertrand Meyer
      for the Eiffel language [Meyer1997]. For each entry point (e.g.,
      method call), valid inputs are specified in a programmatic way, so they
      can be validated during testing. These specifications are called
      preconditions. Similarly, assuming the
      preconditions are satisfied, specifications on the guaranteed results
      are called postconditions and are also specified in
      an executable way. Invariants can also be specified
      that should be true on entry and on exit.

	Design Pattern
	A solution to a problem in a context. A code idiom or design
      structure that satisfies the needs of a frequently occurring problem,
      constraint, requirement, etc. The “context” portion of the definition is
      important, as it specifies conditions when the pattern is an appropriate
      choice and when it isn’t.

	Domain-Specific Language
	A custom programming language that resembles the terms, idioms,
      and expressions of a particular domain. An internal
      DSL is an idiomatic form of a general-purpose programming language. That
      is, no special-purpose parser is required for the language. Instead, DSL
      code is written in the general-purpose language and parsed just like any
      other code. An external DSL is a language with its
      own grammar and parser. In Java, good examples of internal DSLs include
      most “mocking” frameworks for testing. See, for example, [Mockito].

	Eager Evaluation
	Evaluation of an expression (such as computing a value) as soon as
      the expression is encountered, rather than delaying evaluation until the
      result is actually needed, on demand, which is called lazy
      evaluation. Eager
      evaluation is sometimes called “call by name.”

	Encapsulation
	Restricting the visibility of members of a type so they are not
      visible to clients of the type when they shouldn’t be. This is a way of
      exposing only the abstraction supported by the
      type, while hiding implementation details, which prevents unwanted
      access to them from clients and keeps the
      abstraction exposed by the type consistent and
      minimal.

	Event
	The notification of a state change in event-based
      concurrency.

	Event-Based Concurrency
	A form of concurrency where events are used to signal important
      state changes and handlers are used to respond to the events.

	Factory
	A general term for several related design
      patterns that abstract the process of constructing
      objects.

	Field
	A variable in an object that holds part of the object’s
      state.

	Final
	Keyword for declarations. For types, final prevents users from subclassing the
      type. For methods, final prevents
      users from overriding the members. For variables, final prevents users from reassigning the
      values.

	First-Class Value
	An indication that the applicable “concept” is a first-class
      construct in the language, meaning you can assign instances to
      variables, pass them as function parameters, and return them from
      functions. In Java, primitives and objects are first-class values, while
      functions and classes themselves are not. Most
      other programming languages support functions as first-class values, at
      least in some form.

	Free Variable
	A variable that is referenced in an
      anonymous function, but is not passed in as an
      argument nor declared as a local variable. Therefore, it must be “bound”
      to a defined variable of the same name in the scope where the anonymous
      function is defined, to form a closure.

	Function
	Similar to a method, but not bound to a
      particular class or object. Functions are first-class
      values in functional programming languages, and they can
      usually be defined “anonymously”; see anonymous
      function. Functions also have no side effects in functional
      programming, meaning they don’t change state, but only return new
      values.

	Function Literal
	A less commonly used name for an anonymous
      function. See also lambda.

	Functional Programming
	A form of programming that follows the mathematical principles for
      function and variable behaviors. Mathematical functions are
      side-effect-free and first-class
      values. Variables are assigned once, so values are
      immutable.

	Generics
	Types that are defined with type parameters representing other
      types that they use. For example, Java’s List<T>. When an instance of a generic
      type is created, the type parameters must be specified with actual
      types. The term parameterized types is sometimes
      used instead.

	Higher-Order Functions
	Functions that take other functions as arguments or return a
      function value.

	Immutable Value
	A value that can’t be changed after it has been initialized.
      Contrast with mutable value.

	Imperative Programming
	The quality of many object-oriented and
      “procedural” programs where the code consists of statements directing
      the system to take a particular sequence of actions. Contrast with
      declarative programming.

	Infinite Data Structure
	A data structure that represents a non-terminating collection of
      values (such as the non-negative integers), but which is capable of
      doing so without exhausting system resources. The values are not
      computed until the data structure is asked to produce them. As long as
      only a finite subset of the values are requested, resource exhaustion is
      avoided.

	Inheritance
	A strong coupling between one class or
      interface and another. The inheriting (derived)
      class or interface incorporates the members of the
      parent class or interface, as if they were defined
      within the derivative. Hence, inheritance is a form of reuse. The
      derivative may override inherited members (unless declared final). For a properly defined derived type,
      instances of it are substitutable for instances of
      the parent, satisfying the Liskov Substitution
      Principle.

	Instance
	Another term for an object created by
      invoking a class constructor or a value of a
      primitive type.

	Invariance and Invariant
	In the context of design by contract, an
      assertion that should be true before and after a method is
      executed.

	Lambda
	In the days when Alonzo Church and others were developing
      lambda calculus, it got its name from the use of
      the Greek letter lambda (λ) to represent a function. As a result, the
      term is often used for anonymous functions.

	Lazy Evaluation and Laziness
	A feature of mathematics and many functional languages where
      expression evaluation is delayed until its value is needed, rather than
      doing the evaluation eagerly. This feature is
      useful for delaying or eliminating expensive evaluations, preventing
      unnecessary re-evaluations (e.g., through
      memoization), and for representing infinitely large
      data structures, where only some of the values will be needed. Compare
      with eager evaluation and contrast with
      strict reduction. Lazy evaluation is sometimes
      called “call by need.”

	List
	The fundamental data structure in functional programming,
      representing a linked list, which is implemented as a “head” element and
      a “tail” linked list that represents the rest of the list. Lists are
      algebraic data types; there are only two concrete
      types that represent all lists, a type for empty lists and a type for
      non-empty lists. There are also well-defined rules for transitioning
      from one to the other. Compare with map.

	Liskov Substitution Principle
	Named after its inventor, Barbara Liskov, it specifies that if a
      type T has certain properties P, then instances of a different type T2
      can be substituted for instances of T if and only if T2 also satisfies
      the same properties P. In object-oriented programming, inheritance is
      normally used to define these type relationships. See also [LSP].

	Map
	The common data structure in programming, representing a
      collection of key-value pairs. Maps have a well-defined abstraction that
      declares operations that can be performed on the map. A wide variety of
      implementations are possible, often based on performance and resource
      tradeoffs. Because there is no fixed set of possible implementing types
      and the focus is instead on the abstract “specification,” maps are an
      example of an abstract data type. Compare with
      list.

	MapReduce
	A divide and conquer strategy for processing large data sets in
      parallel. In the “map” phase, the data sets are subdivided. The desired
      computation is performed on each subset. The “reduce” phase combines the
      results of the subset calculations into a final result. MapReduce
      frameworks handle the details of managing the operations and the nodes
      they run on, including restarting operations that fail for some reason.
      The user of the framework only has to write the code for mapping and
      reducing the data sets.

	Member
	A generic term for a field or
      method declared in a
      class.

	Memoization
	A form of caching that optimizes function invocations. The results
      from a function’s invocations are saved so that when repeated
      invocations are made with the same inputs, the cached results can be
      returned instead of re-invoking the function. Memoization is only useful
      for functions that are side-effect-free.

	Message
	In the actor model of concurrency, messages
      are exchanged between actors to coordinate their work. In
      object-oriented programming, method invocation is sometimes referred to
      as “sending a message to an object,” especially in certain languages
      (for example, Smalltalk).

	Method
	A function that is defined by a class and can
      only be invoked in the context of the class or one of its
      instances.

	Monad
	A Category Theory concept adopted in
      functional programming. A monad is a kind of container with a protocol
      for adding elements to it. For example, Monads are used to sequence
      computations that must be evaluated in a particular order (such as IO)
      that would otherwise be lazy and evaluated in arbitrary order, if at
      all. Monads are also useful for isolating code with side effects (which
      is also incompatible with laziness).

	Mutable Value
	A value that can be changed after it has been initialized.
      Contrast with immutable value.

	NoSQL
	An umbrella term for non-relational data stores, hence the name.
      These stores sacrifice ACID transactions for
      greater scalability and availability.

	Object
	A cohesive unit with a particular state, possible state
      transitions, and behaviors. In Java, an object is an
      instance of a class.

	Object-Oriented Programming
	A form of imperative programming that
      encapsulates state values and related operations, exposing a cohesive
      abstraction to clients of the object while hiding internal
      implementation details. Java’s object model is based on
      classes; objects are instantiated from classes.
      Most class-based, object-oriented languages also support subtyping to
      define specializations and “family” relationships between types.

	Overloaded Functions
	Two or more functions defined in the same scope (e.g., as methods
      in a type or as “bare” functions) that have the same name, but different
      signatures.

	Overridden Functions
	When a function with a particular signature in a parent
      class is redefined in a child class, so
      its behavior changes. Overridden functions must obey the
      Liskov Substitution Principle.

	Parallelism
	Computation sequences that happen at the same time, because they
      are running on separate CPU cores or separate servers. Parallelism is a
      deterministic model in the sense that sequences are spawned at specific
      points in the program and the program often waits at another point until
      all the parallel sequences have finished (called “joining”). Contrast
      with concurrency.

	Parameterized Types
	An alternative term for generics.

	Parametric Polymorphism
	The property of generic types like List<T> that their behavior is
      independent of the actual type for T.

	Parent Type or Parent Class
	A class from which another class is derived.
      Also called a supertype or base
      type. See inheritance.

	Partial Application
	A feature of many languages where a function can be invoked with
      only a subset of its arguments supplied, yielding a new function that
      takes the remaining arguments. Some languages only permit “curried”
      functions to be invoked in this way (see
      currying).

	Pattern Matching
	An advanced form of switch expressions that support matching
      instances by type and extracting values from those types, e.g.,
      field values.

	Precondition
	An assertion that should be true on entry to a method or other
      entry point. See design by contract.

	Postcondition
	An assertion that should be true on exit from a method or other
      boundary point. See design by contract.

	Primitive Type
	The non-object types in Java, e.g., int, long,
      float, double, and boolean.

	Pure
	Used in the context of functions to mean that they are
      side-effect-free. See also referential
      transparency.

	Recursion
	When a function calls itself as part of its computation. A
      termination condition is required to prevent an infinite recursion. You
      can also have cycles of recursion between two or more functions. See
      also tail-call recursion.

	Referential Transparency
	The property of an expression, where it can be replaced with its
      value without changing the behavior of the code (see
      memoization). This can only be done with
      side-effect-free expressions (e.g., functions) when
      the inputs are the same.

	Scope
	A defined boundary of visibility,
      constraining what variables, types and their members are visible within
      it.

	Side-Effect-Free
	Functions or expressions that have no side effects, meaning they
      modify no global or “object” state, only return new values.

	Signature
	For a function, the name, parameter list
      types, type parameters (for generic functions), and the return value.
      For a method, the signature also includes the type
      that defines the method.

	Singleton
	A design pattern where a class is implemented
      in a special way so that only one instance of the type is ever
      instantiated.

	State
	As in, “the state of an object,” where it means the set of the
      current values of an object’s fields. The state of
      the whole program is the set of all object states and the “value” of the
      stack.

	Static Typing
	Analyzing expressions in a program to prove that certain behaviors
      won’t occur, based on an analysis of the values the expressions can
      produce.

	Strict Reduction
	A concept similar to lazy evaluation, but
      pertaining to how expressions are reduced to simpler forms. See [Lazy vs. non-strict] for
      more details.

	Strong Coupling
	See coupling.

	Structure Sharing
	A technique for efficiently copying large,
      immutable data structures, where the parts that
      aren’t changing are shared between the old and new copies.

	Subtype
	A synonym for child type or derived
      type.

	Subtype Polymorphism
	The technical term for polymorphic behavior of a type hierarchy
      implemented using inheritance.

	Supertype
	A synonym for parent type or base
      type.

	Tail-Call Recursion
	A form of recursion where a function calls itself as the
      last thing it does, i.e., it does no additional
      computations with the result of the recursive call. Tail-call recursions
      can be automatically converted to loops, eliminating the overhead of
      creating a stack frame for each invocation. However, neither the JVM nor
      the Java compiler currently performs this optimization.

	Test Double
	A generic term for a special object that substitutes for a
      “normal” object in a test, e.g., to fake network I/O or do some
      verifications during execution.

	Test-Driven Development
	A development discipline where no new functionality is implemented
      until a test has been written that will fail initially, but pass once
      the functionality is implemented.

	Type
	A categorization of allowed states and operations on those states,
      including transformations from one state to another. In Java, the type
      of an object is a primitive type or the combination of its declared
      class (explicitly named or anonymous), the specific
      types used to resolve any parameters when the class is
      generic, and finally, any overridden methods that
      are defined when the instance is defined.

	Type Erasure
	A property of the generics type model on the
      JVM. When a type is created from a generic, the information about the
      specific types substituted for the type parameters is not stored in the
      byte code and is therefore not available at run time, e.g., through
      reflection.

	Type Inference
	Inferring the type of a value based on the context in which it is
      used, rather than relying on explicit type information attached to the
      value.

	Value
	The actual state of an instance, usually in the context of a
      variable that refers to the instance.

	Variable
	A named reference to a value. If the variable is declared with the
      final keyword, a new value can’t be
      assigned to the variable. Otherwise, a new value can be assigned to the
      variable.

	Visibility
	The scope in which a declared
      type or type member is visible
      to other types and members.

	Weak Coupling
	See coupling.
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