

 [image: First Edition]

 Functional Programming for Java
 Developers

Dean Wampler

Editor
Mike Loukides

Editor
Shawn Wallace

Copyright © 2011 Dean Wampler

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Functional
 Programming for Java Developers, the image of a pronghorn
 antelope, and related trade dress are trademarks of O’Reilly Media,
 Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

Welcome to Functional Programming for Java Developers

Why
 should a Java developer learn about functional programming (FP)? After
 all, hasn’t functional programming been safely hidden in academia for
 decades? Isn’t object-oriented
 programming (OOP) all we really need? This book explains why functional
 programming has become an important tool for the challenges of our time
 and how you, a Java developer, can use it to your advantage.
The recent interest in
 functional programming started as a response to the growing pervasiveness
 of concurrency as a way of scaling horizontally,
 through parallelism. Multithreaded programming (see,
 e.g., [Goetz2006]) is
 difficult to do well and few developers are good at it. As we’ll see,
 functional programming offers better strategies for writing robust,
 concurrent software.
An example of the greater
 need for horizontal scalability is the growth of massive data sets
 requiring management and analysis, the so-called big
 data trend. These are data sets that are too large for
 traditional database management systems. They require clusters of
 computers to store and process the data. Today, it’s not just Google,
 Yahoo!, Facebook, and Twitter who work with big data. Many organizations
 face this challenge.
Once you learn the benefits
 of functional programming, you find that it improves all the code you
 write. When I learned functional programming a few years ago, it
 re-energized my enthusiasm for programming. I saw new, exciting ways to
 approach old problems. The rigor of functional programming complemented
 the design and testing benefits of test-driven
 development, giving me greater confidence in my work. I learned
 functional programming using the Scala programming language [Scala] and co-wrote a book on
 Scala with Alex Payne, called Programming
 Scala (O’Reilly). Scala is a JVM language, a potential
 successor to Java, with the goal of bringing object-oriented and
 functional programming into one coherent whole. Clojure is the other
 well-known functional language on the JVM. It is a Lisp dialect that
 minimizes the use of OOP in favor of functional programming. Clojure
 embodies a powerful vision for how programming should be done.
Fortunately, you don’t have
 to adopt a new language to enjoy many of the benefits of functional
 programming. Back in early 1990s, I used an object-oriented approach in
 the C software I wrote, until I could use C++. Similarly, if you’re
 working with an object-oriented language, like Java, you can still apply
 many of the ideas from functional programming.
Unfortunately, much of the
 literature on functional programming is difficult to understand for people
 who are new to it. This short book offers a pragmatic, approachable
 introduction to functional programming. While aimed at the Java developer,
 the principles are general and will benefit anyone familiar with an
 object-oriented language.
I assume that you are well
 versed in object-oriented programming and you can read Java code. You’ll
 find some exercises at the end of each chapter to help you practice and
 expand on what you’ve learned.
Because this is a short
 introduction and because it is difficult to represent some functional
 concepts in Java, there will be several topics that I won’t discuss in the
 text, although I have added glossary entries, for completeness. These
 topics include currying, partial
 application, and comprehensions. I’ll
 briefly discuss several other topics, such as
 combinators, laziness, and
 monads, to give you a taste of their importance.
 However, fully understanding these topics isn’t necessary when you’re new
 to functional programming.
I hope you find functional
 programming as seductive as I did. Let me know how it goes!
You can learn more at the
 book’s catalog page (http://oreilly.com/catalog/9781449311032/).

Conventions Used in This Book

The following typographical
 conventions are used in this book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions. Many italicized terms are defined in the Glossary.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using the Code Examples

This book is here to help
 you get your job done. In general, you may use the code in this book in
 your programs and documentation. You do not need to contact us for
 permission unless you’re reproducing a significant portion of the code.
 For example, writing a program that uses several chunks of code from this
 book does not require permission. Selling or distributing a CD-ROM of
 examples from O’Reilly books does require permission. Answering a question
 by citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require permission.
We appreciate, but do not
 require, attribution. An attribution usually includes the title, author,
 publisher, and ISBN. For example: “Functional Programming for
 Java Developers, by Dean
 Wampler (O’Reilly). Copyright 2011 Dean Wampler,
 978-1-449-31103-2.”
If you feel your use of
 code examples falls outside fair use or the permission given above, feel
 free to contact us at permissions@oreilly.com.
Some of the code examples
 were adapted from examples provided with the Akka distribution, copyright
 © 2009-2011 Scalable Solutions AB. The Akka code base is covered by the
 Apache 2 License.
Getting the Code Examples

You can download the code
 examples from http://examples.oreilly.com/9781449311032/. Unzip the
 files to a convenient location. See the README file in the distribution for
 instructions on building and using the examples.
Note that some of the
 files won’t actually compile, because they introduce speculative
 concepts that aren’t supported by current compilers or libraries. Those
 files end with the extension .javax.
 (The build process skips them.)

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920021667/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I want to think my editor at
 O’Reilly, Mike Loukides, who suggested that I write this book. Brendan
 McNichols and Bobby Norton provided helpful feedback on drafts of the
 book. Debasish Ghosh provided valuable comments on the Liskov Substitution
 Principle and suggested the Olin Shivers quotes on the meaning of foldLeft and foldRight [Shivers]. Daniel Spiewak provided invaluable
 feedback that helped clarify many of the concepts in the book, such as
 Monads.
I have learned a lot about
 functional programming from fellow developers around the world, many of
 whom are fellow Scala enthusiasts. Martin Odersky, Jonas Bonér, Debasish
 Ghosh, James Iry, Daniel Spiewak, Simon Peyton Jones, Rich Hickey, Conal
 Elliot, David Pollak, Paul Snively, and others have illuminated dark
 corners with their writing, speaking, personal conversations, and code!
 Finally, my fellow members of the Chicago Area Scala Enthusiasts (CASE)
 group have also been a source of valuable feedback and inspiration over
 the last several years.
Of course, any errors and omissions are mine alone.

Chapter 1. Why Functional Programming?

A few years ago, when many
 developers started talking about functional programming (FP) as the best way
 to approach concurrency, I decided it was time to learn
 more and judge for myself. I expected to learn some new ideas, but I assumed
 I would still use object-oriented programming (OOP) as my primary approach
 to software development. I was wrong.
As I learned about functional
 programming, I found good ideas for implementing concurrency, as I expected,
 but I also found that it brought new clarity to my
 thinking about the design of types[1] and functions. It also allowed me to write more
 concise code. Functional programming made me rethink
 where module boundaries should go and how to make those modules better for
 reuse. I found that the functional programming community was building
 innovative and more powerful type systems that help enforce correctness. I
 also concluded that functional programming is a better fit for many of the
 unique challenges of our time, like working with massive data sets and
 remaining agile as requirements change ever more
 rapidly and schedules grow ever shorter.
Instead of remaining an OOP
 developer who tosses in some FP for seasoning, today I write functional
 programs that use objects judiciously. You could say that I came to FP for
 the concurrency, but I stayed for the “paradigm shift.”
The funny thing is, we’ve been
 here before. A very similar phenomenon occurred in the 80s when OOP began to
 go mainstream. Objects are an ideal way of representing graphical widgets,
 so OOP was a natural fit for developing Graphical User Interfaces (GUIs).
 However, once people started using objects, they found them to be an
 intuitive way to represent many “domains.” You could model the problem
 domain in objects, then put the same object model in
 the code! Even implementation details, like various forms of input and
 output, seemed ideal for object modeling.
But let’s be clear, both FP
 and OOP are tools, not panaceas. Each has advantages and disadvantages. It’s
 easy to stick with the tried and true, even when there might be a better way
 available. Even so, it’s hard to believe that objects, which have worked so
 well in the past, could be any less valuable today, isn’t it? For me, my
 growing interest in functional programming isn’t a repudiation of objects,
 which have proven benefits. Rather, it’s a recognition that the drawbacks of
 objects are harder to ignore when faced with the programming challenges of
 today. The times are different than they were when objects were ascendant
 several decades ago.
Here, in brief, is why I became
 a functional programmer and why I believe you should learn about it, too.
 For me, functional programming offers the best approach to meet the
 following challenges, which I face every day.
I Have to Be Good at Writing Concurrent Programs

It used to be that a few of
 the “smart guys” on the team wrote most of the concurrent code, using
 multithreaded concurrency, which requires carefully synchronized access to
 shared, mutable state. Occasionally everyone would get a midnight call to
 debug some nasty concurrency bug that appeared in production. But most of
 the time, most of the developers could ignore concurrency.
Today, even your phone has
 several CPU cores (or your next one will). Learning how to write robust
 concurrent software is no longer optional. Fortunately, functional
 programming gives you the right principles to think about concurrency and
 it has spawned several higher-level concurrency abstractions that make the
 job far easier.
Warning
Multithreaded programming, requiring synchronized access to
 shared, mutable state, is the assembly
 language of concurrency.

[1] I’ll occasionally use type and
 class interchangeably, but they aren’t synonyms.
 See the definitions in Glossary.

Most Programs Are Just Data Management Problems

I work a lot with
 big data these days, mostly using the Apache Hadoop
 ecosystem of tools, built around MapReduce [Hadoop]. When you are
 ingesting terabytes of new data each
 day, when you need to cleanse and store that data, then do
 analysis on the petabytes of accumulated data, you
 simply can’t afford the overhead of objects. You want very efficient data
 structures and operations on that data, with minimal overhead. The old
 agile catch phrase, What’s the simplest
 thing that could possibly work?, takes on new meaning.
I started thinking about
 how we manage smaller data sets, say in a typical IT application backed by
 a database. If objects add overhead for big data problems, what about the
 overhead for smaller data problems? Performance and storage size are less
 likely to be issues in this case, but team agility is
 a pervasive issue. How does a small team remain nimble when enhancing an
 IT application, year after year? How does the team keep the code base as
 concise as possible?
I’ve come to believe that
 faithfully representing the domain object model in code should be
 questioned. Object-relational mapping (ORM) and
 similar forms of object middleware add overhead for transforming
 relational data into objects, moving those objects around the application,
 then ultimately transforming them back to relational data for updates. Of
 course, all this extra code has to be tested and maintained.
I know this practice arose
 in part because we love objects and we often hate relational data, or
 maybe we just hate working with relational databases. (I speak from
 personal experience.) However, relational data, such as the result sets
 for queries, are really just collections that can be manipulated in a
 functional way. Would it be better to work directly with that data?
I’ll show you how working
 directly with more fundamental collections of data minimizes the overhead
 of working with object models, while still avoiding duplication and
 promoting reuse.

Functional Programming Is More Modular

Years ago, I had a large
 client that struggled to get work done with their bloated code base. Their
 competition was running circles around them. One day I saw something that
 captured their problems in a nutshell. I walked by a five-foot partition
 wall with a UML diagram that covered the wall. I remember one class in
 particular, a Customer class. It
 stretched the whole five feet. This was a failure of modularity,
 specifically in finding the correct levels of abstraction and
 decomposition. The Customer class had
 become a grab bag of everything anyone might associate with one of their
 customers.
In the late 1980s, when
 object-oriented programming was on the rise, many people hoped that
 objects would finally solve the problem of building reusable components
 that you plug together to build applications, greatly reducing costs and
 development times. This vision seems so reasonable that it is easy to
 overlook the fact that it didn’t turn out as well as we hoped. Most of the
 successful examples of reusable libraries are platforms that defined their
 own standards that everyone had to follow. Examples include the JDK, the
 Spring Framework, and the Eclipse plugin API. Even most of the third-party
 “component libraries” we might use (for example, Apache Commons) have
 their own custom APIs that we must conform to. For the rest of the code we
 need, we still rewrite a lot of it project after project. Hence,
 object-oriented software development isn’t the “component assembly” we
 hoped would emerge.
The nearly limitless
 flexibility of objects actually undermines the potential for reuse,
 because there are few standards for how objects should interconnect and we
 can’t agree on even basic names of things! Systems with greater
 constraints are actually more modular, which is a paradox. The book
 Design Rules: The Power of Modularity [Baldwin2000] demonstrates
 that the explosive growth of the PC industry was made possible when IBM
 created a de facto standard for the personal computer hardware
 architecture. Because of standardized buses for peripherals and
 connectors, it enabled innovators to create new, better, and cheaper
 drives, mice, monitors, motherboards, etc. Digital electronics is itself a
 great example of a modular system. Each wire carries only a 0 or 1 signal,
 yet when you join them together in groups of 8, 16, 32, and 64, you can
 build up protocol layers that make possible all the wonderful things that
 we’ve come to do with computers.
There are no
 similar standards for object-based components. Various attempts
 like CORBA and COM had modest success, but ultimately failed for the same
 basic reasons, that objects are at the wrong level of abstraction.
 Concepts like “customer” are rarely new, yet we can’t find a way to stop
 inventing a new representation for them in every new project, because each
 project brings its own context and requirements.
However, if we notice that
 an object is fundamentally just an aggregation of data, then we can see a
 way to define better standardized abstractions at lower levels than
 objects, analogous to digit circuits. These standards are the fundamental
 collections like list, map, and
 set, along with “primitive” types like numbers and
 few well-defined domain concepts (e.g., Money in a financial
 application).
A further aid to modularity
 is the nature of functions in functional programming,
 which avoid side effects, making them free of dependencies on other
 objects and therefore easier to reuse in many contexts.
The net result is that a
 functional program defines abstractions where they are more useful, easier
 to reuse, compose, and also test.
Tip
Any arbitrarily complex object can be decomposed into “atomic”
 values (like primitives) and collections containing those values and
 other collections.

I Have to Work Faster and Faster

Development cycles are
 going asymptotically to zero length. That sounds crazy, especially if you
 started professional programming when I did, when projects typically
 lasted months, even years. However, today there are plenty of Internet
 sites that deploy new code several times a day and
 all of us are feeling the pressure to get work done more quickly, without
 sacrificing quality, of course.
When schedules were longer,
 it made more sense to model your domain carefully and to
 implement that domain in code. If you made a mistake,
 it would take months to correct with a new release. Today, for most
 projects, understanding the domain precisely is less important than
 delivering some value quickly. Our understanding of the domain will change
 rapidly anyway, as we and our customers discover new insights with each
 deployment. If we misunderstand some aspect of the domain, we can fix
 those mistakes quickly when we do frequent deployments.
If careful modeling seems
 less important, faithfully implementing the object
 model is even more suspect today than before. While Agile Software
 Development has greatly improved our quality and our ability to respond to
 change, we need to rethink ways to keep our code “minimally sufficient”
 for the requirements today, yet flexible for change. Functional
 programming helps us do just that.

Functional Programming Is a Return to Simplicity

Finally, building on the
 previous points, I see functional programming as a reaction against
 accidental complexity, the kind we add ourselves by our implementation
 choices, as opposed to the inherent complexity of the problem
 domain.[2] So, for example, much of the object-oriented middleware in
 our applications today is unnecessary and wasteful, in my opinion.
I know that some of these
 claims are provocative. I’m not trying to convince you to abandon objects
 altogether or to become an FP zealot. I’m trying to give you a bigger
 toolbox and a broadened perspective, so you can make more informed design
 choices and maybe refresh your enthusiasm for the art and science of
 software development. I hope this short introduction will show you why my
 thinking changed. Maybe your thinking will change, too.
Let’s begin!

[2] I don’t mean that functional programming is
 simple. Becoming an expert in functional
 programming requires mastery of many advanced, yet powerful
 concepts.

Chapter 2. What Is Functional Programming?

Functional programming, in
 its “purest” sense, is rooted in how functions, variables, and values
 actually work in mathematics, which is different from how they typically
 work in most programming languages.
Functional programming got
 its start before digital computers even existed. Many of the theoretical
 underpinnings of computation were developed in the 1930s by mathematicians
 like Alonzo Church and Haskell Curry.
In the 1930s, Alonzo Church
 developed the Lambda Calculus, which is a formalism for defining and
 invoking functions (called applying them). Today, the
 syntax and behavior of most programming languages reflect this model.
Haskell Curry (for whom the
 Haskell language is named) helped develop Combinatory Logic, which provides
 an alternative theoretical basis for computation. Combinatory Logic examines
 how combinators, which are essentially functions,
 combine to represent a computation. One practical application of combinators
 is to use them as building blocks for constructing parsers. They are also
 useful for representing the steps in a planned computation, which can be
 analyzed for possible bugs and optimization opportunities.
More recently, Category Theory
 has been a fruitful source of ideas for functional programming, such as ways
 to structure computations so that side effects like IO (input and output),
 which change the state of the “world,” are cleanly separated from code with
 no side effects.
A lot of the literature on
 functional programming reflects its mathematical roots, which can be
 overwhelming if you don’t have a strong math background. In contrast,
 object-oriented programming seems more intuitive and approachable.
 Fortunately, you can learn and use the principles of functional programming
 without a thorough grounding in mathematics.
The first language to
 incorporate functional programming ideas was Lisp,[3] which was developed in the late 1950s and is the second-oldest
 high-level programming language, after Fortran. The ML family of programming
 languages started in the 1970s, including Caml, OCaml (a hybrid
 object-functional language), and Microsoft’s F#. Perhaps the best known
 functional language that comes closest to functional “purity” is Haskell,
 which was started in the early 1990s. Other recent functional languages
 include Clojure and Scala, both of which run on the JVM but are being ported
 to the .NET environment. Today, many other languages are incorporating ideas
 from functional programming.
The Basic Principles of Functional Programming

Don’t all programming
 languages have functions? If so, why aren’t all
 programming languages considered functional
 languages? Functional languages share a few basic principles.
Avoiding Mutable State

The first principle is
 the use of immutable values. You might recall the
 famous Pythagorean equation from school, which
 relates the lengths of the sides of a triangle:
x2 +
 y2 = z2
If I give you
 values for the variables
 x and y, say x=3
 and y=4, you can compute the value
 for z (5 in this case). The key idea here is that
 values are never modified. It would be crazy to say
 3++, but you could start over by
 assigning new values to the
 same variables.
Most programming languages
 don’t make a clear distinction between a value (i.e., the contents of
 memory) and a variable that refers to it. In Java, we’ll use final to prohibit
 variable reassignment, so we get objects that are
 immutable values.
Why should we avoid
 mutating values? First, allowing mutable values is what makes
 multithreaded programming so difficult. If multiple threads can modify
 the same shared value, you have to synchronize access to that value.
 This is quite tedious and error-prone programming that even the experts
 find challenging [Goetz2006]. If you make a value immutable, the
 synchronization problem disappears. Concurrent reading is harmless, so
 multithreaded programming becomes far easier.
A second benefit of
 immutable values relates to program correctness in other ways. It is
 harder to understand and exhaustively test code with mutable values,
 particularly if mutations aren’t localized to one place. Some of the
 most difficult bugs to find in large systems occur when state is
 modified non-locally, by client code that is located elsewhere in the
 program.
Consider the following
 example, where a mutable List is used
 to hold a customer’s orders:
public class Customer {
 // No setter method
 private final List<Order> orders;
 public List<Order> getOrders() { return orders; }
 public Customer(...) {...}
}
It’s reasonable that
 clients of Customer will want to view
 the list of Orders. Unfortunately, by
 exposing the list through the getter method, getOrders, we’ve lost control over them! A
 client could modify the list without our knowledge. We didn’t provide a
 setter for orders and it is declared
 final, but these protections only
 prevent assigning a new list to orders. The list itself can still be
 modified.
We could work around this
 problem by having getOrders return a
 copy of the list or by adding special accessor methods to Customer that provide controlled access to
 orders. However, copying the list is
 expensive, especially for large lists. Adding ad-hoc accessor methods
 increases the complexity of the object, the testing burden, and the
 effort required of other programmers to comprehend and use the
 class.
However, if the list of
 orders is immutable and the list elements are immutable, these worries
 are gone. Clients can call the getter method to read the orders, but
 they can’t modify the orders, so we retain control over the state of the
 object.
What happens when the
 list of orders is supposed to change, but it has become huge? Should we
 relent and make it mutable to avoid the overhead of making big copies?
 Fortunately, we have an efficient way to copy large data structures;
 we’ll reuse the parts that aren’t changing! When we add a new order to
 our list of orders, we can reuse the rest of the list. We’ll explore how
 in Chapter 3.
Some mutability is
 unavoidable. All programs have to do IO. Otherwise, they could do
 nothing but heat up the CPU, as a joke goes. However, functional
 programming encourages us to think strategically about when and where
 mutability is necessary. If we encapsulate mutations in well-defined
 areas and keep the rest of the code free of mutation, we improve the
 robustness and modularity of our code.
We still need to handle
 mutations in a thread-safe way. Software Transactional Memory and the
 Actor Model give us this safety. We’ll explore both in Chapter 4.
Tip
Make your objects immutable. Declare fields final. Only provide getters for fields and
 then only when necessary. Be careful that mutable final objects can still be modified. Use
 mutable collections carefully. See “Minimize Mutability” in [Bloch2008] for more
 tips.

Functions as First-Class Values

In Java, we are accustomed
 to passing objects and primitive values to methods, returning them from
 methods, and assigning them to variables. This means that objects and
 primitives are first-class values in Java. Note
 that classes themselves aren’t first-class values, although the
 reflection API offers information about classes.
Functions are not
 first-class values in Java. Let’s clarify the difference between a
 method and a function.
Tip
A method is a block of code attached to a
 particular class. It can only be called in the context of the class,
 if it’s defined to be static, or in
 the context of an instance of the class. A
 function is more general. It is not attached to
 any particular class or object. Therefore, all instance
 methods are functions where
 one of the arguments is the object.

Java only has methods and
 methods aren’t first-class in Java. You can’t pass
 a method as an argument to another method, return a method from a
 method, or assign a method as a value to a variable.
However, most
 anonymous inner classes are effectively function
 “wrappers.” Many Java methods take an instance of an interface that
 declares one method. Here’s a common example, specifying an ActionListener for an AWT/Swing application
 (see the Preface for details on obtaining and using
 all the source code examples in this book):
package functions;
import java.awt.*;
import java.awt.event.*;

class HelloButtonApp2 {
 private final Button button = new Button();

 public HelloButtonApp2() {
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Hello There: event received: " + e);
 }
 });
 }
}
If we want the button to
 do something, we have to specify an ActionListener object, which has a single
 method: actionPerformed. We used an
 anonymous inner class to implement the interface
 and the method.
It is very common in Java
 APIs to define custom interfaces like this that declare a single
 abstract method. They are often labelled “callback methods,” because
 they are typically used to enable registration of client code that will
 be called for particular events.
The world’s Java APIs
 must have hundreds of one-off, special-purpose interfaces like ActionListener. It greatly increases the
 cognitive load on the developer to learn all of them. You spend a lot of
 time reading Javadocs or letting your IDE remember for you. We’ve been
 told that abstraction is a good thing, right? Well, let’s introduce
 abstractions for all these “function objects”!
First, here is an
 interface that defines a “function” that takes one argument of type
 parameter A and returns void:
package functions;

public interface Function1Void<A> {
 void apply(A a);
}
You could call the
 generic method name anything you want, but I chose apply because it is a common name in
 functional programming, derived from the convention of saying that you
 “apply” a function to its arguments when you call it.
Now, let’s pretend that
 there is a “functional” version of the Abstract Window Toolkit (AWT),
 java.fawt.Component, with a method
 addActionListener that takes a
 Function1Void object instead of
 ActionListener:
package functions;
import java.fawt.*;
import java.fawt.event.*;

class FunctionalHelloButtonApp {
 private final Button button = new Button();

 public FunctionalHelloButtonApp() {
 button.addActionListener(new Function1Void<ActionEvent>() { // 1
 public void apply(ActionEvent e) { // 2
 System.out.println("Hello There: event received: "+e);
 }
 });
 }
}
I have indicated the
 changes with the two comments 1 and
 2. Otherwise, the code is identical
 to the previous example.
You might argue that
 having a custom type for the argument to addActionListener prevents a user from passing
 an arbitrary and inappropriate object to it. You might also claim that
 the custom name of the interface and the custom method name help
 document the API for the reader. Neither argument really holds
 up.
First, giving abstractions
 special names does nothing to prevent the user from implementing the
 wrong thing. As far as documentation is concerned, addActionListener must document its
 expectations (as we’ll discuss in The Liskov Substitution Principle). The type
 parameter for Function1Void<ActionEvent> must still
 appear in addActionListener signature. That’s another
 bit of essential documentation for the user.
Once the developer is
 accustomed to using Function1Void<A> all over the JDK (in
 our more perfect world…), it’s no longer necessary to learn all the
 one-off interfaces defined in the library. They are all effectively the
 same thing; a function wrapper.
So, we have introduced a
 new, highly reusable abstraction. You no longer need to remember the
 name of the special type you pass to addActionListener. It’s just the same Function1Void that you use “everywhere.” You
 don’t need to remember the special name of its method. It’s always just
 apply.
It was a revelation for
 me when I realized how much less I have to learn when I can reuse the
 same function abstractions in a wide variety of contexts. I no longer
 care about trivial details like one-off interface names. I only care
 about what a particular function is supposed to do.

Lambdas and Closures

While we’ve reduced some
 of the unnecessary complexity in the JDK (or pretended to do so), the
 syntax is still very verbose, as we still have to say things like
 new Function1Void<ActionEvent>()
 {…}. Wouldn’t it be great if we could just write an
 anonymous function with just the argument list and
 the body?
Most programming
 languages now support this. After years of debate, JDK 8 will introduce
 a syntax for defining anonymous functions, also
 called lambdas (see [Project Lambda] and [Goetz2010]). Here is what the planned syntax
 looks like:
public FunctionalHelloButtonApp() {
 button.addActionListener(
 #{ ActionEvent e -> System.out.println("Hello There: event received: "+e) }
);
}
The #{…} expression is the
 literal syntax for lambda expressions. The argument
 list is to the left of the “arrow” (->) and the body of the function is to the
 right of the arrow. Notice how much boilerplate code this syntax
 removes!
Tip
The term lambda is another term for
 anonymous function. It comes from the use of the
 Greek lambda symbol λ to represent functions in lambda
 calculus.

For completeness, here is
 another example function type, one that takes two arguments of types
 A1 and A2, respectively, and returns a non-void value
 of type R. This example is inspired
 by the Scala types for anonymous functions:
package functions;

public interface Function2<A1, A2, R> {
 R apply(A1 a1, A2 a2);
}
Unfortunately, you would
 need a separate interface for every function “arity” you want (arity is
 the number of arguments). Actually, it’s that number times two; one for
 the void return case and one for the non-void return case. However, the
 effort is justified for a widely used concept. Actually, the [Functional Java] project has
 already done this work for you.
Closures
A
 closure is formed when the body of a function
 refers to one or more free variables, variables
 that aren’t passed in as arguments or defined locally, but are defined
 in the enclosing scope where the function is defined. The runtime has
 to “close over” those variables so they are available when the
 function is actually executed, which could happen long after the
 original variables have gone out of scope! Java has limited support
 for closures in inner classes; they can only refer to final variables
 in the enclosing scope.

Higher-Order Functions

There is a special term
 for functions that take other functions as arguments or return them as
 results: higher-order functions. Java methods are
 limited to primitives and objects as arguments and return values, but we
 can mimic this feature with our Function interfaces.
Higher-order functions
 are a powerful tool for building abstractions and composing behavior. In
 Chapter 3, we’ll show how
 higher-order functions allow nearly limitless customization of standard
 library types, like Lists and
 Maps, and also promote reusability.
 In fact, the combinators we mentioned at the
 beginning of this chapter are higher-order functions.

Side-Effect-Free Functions

Another source of
 complexity, which leads to bugs, are functions that mutate state, e.g.,
 setting values of an object’s field or global variables.
In mathematics, functions
 never have side effects, meaning they are
 side-effect-free. For example, no matter how much
 work sin(x) has to do, its entire
 result is returned to the caller. No external state is changed. Note
 that a real implementation might cache previously calculated values, for
 efficiency, which would require changing the state of a cache. It’s up
 to the implementer to preserve the side-effect-free external behavior
 (including thread safety), as seen by users of the function.
Being able to replace a
 function call for a particular set of parameters with the value it
 returns is called referential transparency. It has
 a fundamental implication for functions with no side effects; the
 function and the corresponding return values are really synonymous, as
 far as the computation is concerned. You can represent the result of
 calling any such function with a value. Conversely, you can represent
 any value with a function call!
Side-effect-free
 functions make excellent building blocks for reuse, since they don’t
 depend on the context in which they run. Compared to functions with side
 effects, they are also easier to design, comprehend, optimize, and test.
 Hence, they are less likely to have bugs.

Recursion

Recall that functional
 programming in its purest form doesn’t allow mutable values. That means
 we can’t use mutable loop counters to iterate through a collection! Of
 course, Java already solves this problem for us with the foreach loop:
for (String str: myListOfStrings) {...}
which encapsulates the
 required loop counting. We’ll see other iteration approaches in the next
 chapter, when we discuss operations on functional collections.
The classic functional
 alternative to an iterative loop is to use
 recursion, where each pass through the function
 operates on the next item in the collection until a termination point is
 reached. Recursion is also a natural fit for certain algorithms, such as
 traversing a tree where each branch is itself a tree.
Consider the following
 example, where a unit test defines a simple tree type, with a value at
 each node, and left and right subtrees. The Tree type defines a recursive toString method that walks the tree and builds
 up a string from each node. After the definition, the unit test declares
 an instance of the tree and tests that toString works as expected:
package functions;
import static org.junit.Assert.*;
import org.junit.Test;

public class RecursionTest {

 static class Tree {
 // public fields for simplicity
 public final Tree left; // left subtree
 public final Tree right; // right subtree
 public final int value; // value at this node

 public Tree(Tree left, int value, Tree right) {
 this.left = left;
 this.value = value;
 this.right = right;
 }

 public final String toString() {
 String leftStr = left == null ? "^" : left.toString();
 String rightStr = right == null ? "^" : right.toString();
 return "(" + leftStr + "-" + value + "-" + rightStr + ")";
 }
 }

 @Test
 public void walkATree() {
 Tree root = new Tree(
 new Tree(
 new Tree(null, 3, null), 2, new Tree(new Tree(null, 5, null), 4, null)),
 1,
 new Tree(
 new Tree(null, 7, null), 6, new Tree(null, 8, null)));

 String expected = "(((^-3-^)-2-((^-5-^)-4-^))-1-((^-7-^)-6-(^-8-^)))";
 assertEquals(expected, root.toString());
 }
}
However, each recursion
 adds a new frame to the stack, which can exceed the stack size for deep
 recursions. Tail-call recursions can be converted
 to loops, eliminating the extra function call overhead. Unfortunately,
 the JVM and the Java compiler do not currently perform this
 optimization.

Lazy vs. Eager Evaluation

Mathematics defines some
 infinite sets, such as the natural
 numbers (all positive integers). They are represented
 symbolically. Any particular finite subset of values is evaluated only
 on demand. We call this lazy evaluation.
 Eager evaluation would force us to represent all of
 the infinite values, which is clearly impossible.
Some languages are lazy
 by default, while others provide lazy data structures that can be used
 to represent infinite collections and only compute a subset of values on
 demand. Here is an example that represents the natural
 numbers:
package math;
import static datastructures2.ListModule.*;

public class NaturalNumbers {
 public static final int ZERO = 0;

 public static int next(int previous) { return previous + 1; }

 public static List<Integer> take(int count) {
 return doTake(emptyList(), count);
 }

 private static List<Integer> doTake(List<Integer> accumulator, int count) {
 if (count == ZERO)
 return accumulator;
 else
 return doTake(list(next(count - 1), accumulator), count - 1);
 }
}
We start with a
 definition of zero, then use next to
 compute each natural number from its predecessor. The take(n) method is a pragmatic tool for
 extracting a fixed subset of the integers. It returns a List of the integers from 1 to n. (The List type shown will be discussed in Chapter 3. It isn’t java.util.List.) Note that the helper method
 doTake is tail-call
 recursive.
We have replaced values,
 integers in this case, with functions that compute them on demand, an
 example of the referential transparency we
 discussed earlier. Lazy representation of infinite data structures
 wouldn’t be possible without this feature! Both referential transparency and lazy
 evaluation require side-effect-free functions and immutable
 values.
Finally, lazy evaluation
 is useful for deferring expensive operations until needed or never
 executing them at all.

Declarative vs. Imperative Programming

Finally, functional
 programming is declarative, like mathematics, where
 properties and relationships are defined. The runtime figures out how to
 compute final values. The definition of the factorial function provides
 an example:
factorial(n) = 1 if n = 1
 n * factorial(n-1) if n > 1
The definition relates
 the value of factorial(n) to factorial(n-1), a recursive definition. The
 special case of factorial(1)
 terminates the recursion.
Object-oriented
 programming is primarily imperative, where we
 tell the computer what specific steps to do.
To better understand the
 differences, consider this example, which provides a declarative and an
 imperative implementation of the factorial function:
package math;

public class Factorial {

 public static long declarativeFactorial(int n) {
 assert n > 0 : "Argument must be greater than 0";
 if (n == 1) return 1;
 else return n * declarativeFactorial(n-1);
 }

 public static long imperativeFactorial(int n) {
 assert n > 0 : "Argument must be greater than 0";
 long result = 1;
 for (int i = 2; i<= n; i++) {
 result *= i;
 }
 return result;
 }
}
The declarativeFactorial method might look
 “imperative,” in the sense that it implements a calculation of
 factorials, but its structure is more declarative than imperative. I
 formatted the method to look similar to the definition of
 factorial.
The imperativeFactorial method uses mutable
 values, the loop counter and the result that accumulates the calculated value.
 The method explicitly implements a particular algorithm. Unlike the
 declarative version, this method has lots of little mutation steps,
 making it harder to understand and keep bug free.
Declarative programming
 is made easier by lazy evaluation, because laziness
 gives the runtime the opportunity to “understand” all the properties and
 relations, then determine the optimal way to compute values on demand.
 Like lazy evaluation, declarative programming is
 largely incompatible with mutability and functions with side
 effects.

[3] See the References for links to information about the languages
 mentioned here.

Designing Types

Whether you prefer
 static or dynamic typing,
 functional programming has some useful lessons to teach us about good type
 design. First, all functional languages emphasize the use of core
 container types, like lists,
 maps, trees, and
 sets for capturing and transforming data, which we’ll
 explore in Chapter 3. Here, I want to
 discuss two other benefits of functional thinking about types, enforcing
 valid values for variables and applying rigor to type design.
What About Nulls?

In a
 pure functional language where values are
 immutable, each variable must be initialized to a value that can be
 checked to make sure it is valid. This suggests that we should never
 allow a variable to reference our old friend, null. Null values are a common source of bugs.
 Tony Hoare, who invented the concept of null, has recently called it The
 Billion Dollar Mistake [Hoare2009].
Java’s model is to
 “pretend” there is a Null type that
 is the subtype of all other types in the system. Suppose you have a
 variable of type String. If the value
 can be null, you could also think of
 the type as actually StringOrNull.
 However, we never think in either terms and that’s why we often forget
 to check for null. What’s really
 going on is that we have a variable that can “optionally” hold a value.
 So, why not explicitly represent this idea in the type system? Consider
 the following abstract class:
package option;

public abstract class Option<T> {
 public abstract boolean hasValue();

 public abstract T get();

 public T getOrElse(T alternative) {
 return hasValue() == true ? get() : alternative;
 }
}
Option defines a “container” that may have one
 item of type T or not. The hasValue method returns true if the container has an item or false if it doesn’t. Subclasses will define
 this method appropriately. Similarly, the get method returns the item, if there is one.
 A variation of this method is the getOrElse method, which will return the
 alternative value if the Option doesn’t have a value. This is the one
 method that can be implemented in this class.
Here is the first subtype,
 Some:
package option;

public final class Some<T> extends Option<T> {
 private final T value;

 public Some(T value) { this.value = value; }

 public boolean hasValue() { return true; }

 public T get() { return value; }

 @Override
 public String toString() { return "Some("+value+")"; }

 @Override
 public boolean equals(Object other) {
 if (other == null || other.getClass() != Some.class)
 return false;
 Some<?> that = (Some<?>) other;
 Object thatValue = that.get();
 return value.equals(thatValue);
 }

 @Override
 public int hashCode() { return 37 * value.hashCode(); }
}
A Some instance is used when the Option has a value. So, its hasValue always returns true and its get method simply returns the value. It also
 provides conventional toString,
 equals, and hashCode methods. I’ll explain why Some is declared final in the next section.
Finally, here is None, the only other valid
 subtype of Option:
package option;

public final class None<T> extends Option<T> {
 public static class NoneHasNoValue extends RuntimeException {}

 public None() {}

 public boolean hasValue() { return false; }

 public T get() { throw new NoneHasNoValue(); }

 @Override
 public String toString() { return "None"; }

 @Override
 public boolean equals(Object other) {
 return (other == null || other.getClass() != None.class) ? false : true;
 }

 @Override
 public int hashCode() { return -1; }
}
A None instance is used when the Option has no value. So, its hasValue always returns false and its get method throws an exception, because there
 is nothing to get! It also provides toString, equals, and hashCode methods. Since
 None has no value, all instances are
 considered equal! None is
 also final.
The following unit test
 exercises Option, Some, and None:
package option;

import java.util.*;
import org.junit.*;
import static org.junit.Assert.*;

public class OptionTest {
 private List<Option<String>> names = null;

 @Before
 public void setup() {
 names = new ArrayList<Option<String>>();
 names.add(new Some<String>("Dean"));
 names.add(new None<String>());
 names.add(new Some<String>("Wampler"));
 }

 @Test
 public void getOrElseUsesValueForSomeAndAlternativeForNone() {
 String[] expected = { "Dean", "Unknown!", "Wampler"};;

 System.out.println("*** Using getOrElse:");
 for (int i = 0; i < names.size(); i++) {
 Option<String> name = names.get(i);
 String value = name.getOrElse("Unknown!");
 System.out.println(name + ": " + value);
 assertEquals(expected[i], value);
 }
 }

 @Test
 public void hasNextWithGetUsesOnlyValuesForSomes() {
 String[] expected = { "Dean", null, "Wampler"};;

 System.out.println("*** Using hasValue:");
 for (int i = 0; i < names.size(); i++) {
 Option<String> name = names.get(i);
 if (name.hasValue()) {
 String value = name.get();
 System.out.println(name + ": " + value);
 assertEquals(expected[i], value);
 }
 }
 }

 static Option<String> wrap(String s) {
 if (s == null)
 return new None<String>();
 else
 return new Some<String>(s);
 }

 @Test
 public void exampleMethodReturningOption() {
 System.out.println("*** Method that Returns an Option:");
 Option<String> opt1 = wrap("hello!");
 System.out.println("hello! -> "+opt1);
 assertEquals(Some.class, opt1.getClass());
 assertEquals("hello!", opt1.get());

 Option<String> opt2 = wrap(null);
 System.out.println("null -> "+opt2);
 assertEquals(None.class, opt2.getClass());
 assertEquals("str", opt2.getOrElse("str"));
 }
}
After creating an array of
 Some and None instances in the setup method, the first test uses getOrElse to extract the value for Some instances, or the “alternative” for
 None instances. Print statements
 output each case before the assertion verifies the expected
 behavior.
The second test shows an
 alternative way to work with the Options. The hasValue method is called to determine if the
 Option has a value (that is, if it is
 a Some instance). Only then is the
 get method called and the value is
 output and tested with an assertion.
The final test
 demonstrates the wrap method defined
 in the test, which demonstrates how an arbitrary method might return an
 Option instead of returning another
 type when the value could be null. In
 this case, if the input String is
 null, then a None is returned. Otherwise, the input
 String is wrapped in a Some.
Here is the output from
 running the test. The following listing shows just the output from the
 println calls:
*** Using getOrElse:
Some(Dean): Dean
None: Unknown!
Some(Wampler): Wampler
*** Using hasValue:
Some(Dean): Dean
Some(Wampler): Wampler
*** Method that Returns an Option:
hello! -> Some(hello!)
null -> None
Look at the method
 signature for the test’s wrap method
 again:
static Option<String> wrap(String s) ...
What’s most interesting
 about this signature is the return value. The type tells you
 that a value may or may not be available. That is, a value is
 optional. Furthermore, Java’s type safety won’t let you “forget” that an
 option is returned. You must determine if a Some was returned and extract the value before
 calling methods with it, or handle the None case. Using Option as a return type improves the
 robustness of your code compared to allowing nulls and it provides better documentation for
 users of the code. We are expressing and enforcing the optional
 availability of a value through the type system.

Algebraic Data Types and Abstract Data Types

In the previous discussion
 the Option interface has only two
 valid implementing types: Some and
 None. Mathematically, Option is an algebraic data
 type, which for our purposes means that there can be only a
 few well-defined types that implement the abstraction [AlgebraicDT]. It also means
 that there are well-defined rules for transitioning from an instance of
 one type to another. We’ll see a good example of these transitions when
 we discuss lists in Chapter 3.
A similar-sounding (and
 easy to confuse) concept is the abstract data type.
 This is already familiar from object-oriented programming, where you
 define an interface for an abstraction and give it well-defined
 semantics. The abstraction is implemented by one or more types. Usually,
 abstract data types have relatively little
 polymorphic behavior. Instead, the subtypes
 optimize for different performance criteria, like search speed vs.
 update speed. Unlike algebraic data types, you might make these concrete
 classes private and hide them behind a factory,
 which could decide which class to instantiate based on the input
 arguments, for example.
A good example of an
 abstract data type is a map of key-value pairs. The
 abstraction tells us how to put new pairs in the map, query for existing
 pairs, remove pairs, etc.
To compare these two
 concepts, an algebraic data type like Option constrains the number of possible
 subtypes that implement the abstraction. Usually these subtypes are
 visible to users. In contrast, an abstract data
 type imposes no limit on the possible subtypes, but often
 those subtypes exist only to support different implementation goals and
 they may be hidden behind a factory.
One final point on
 algebraic data types. Recall that Some and None are final and can’t be subtyped. Final
 types are often considered bad in Java, because you can’t subclass them
 to create special versions for testing. That’s really only a problem for
 types with strong dependencies on other objects that would make testing
 difficult, like networked services. Well-designed algebraic
 data types should never have such connections, so there is
 really nothing that would need to be replaced by a test-only
 derivative.

Exercises

Note: Some of these
 exercises are difficult.
	Write unit tests for Function1Void and Function2.

	Write a method that uses recursion to add a list of
 numbers.

	Find some Java code you wrote before that does null checks. Try modifying it to use
 Option instead.

	Explore the typing of functions under inheritance. Hint: this
 exercise anticipates The Liskov Substitution Principle. If you get stuck, see
 the unit tests for the functions
 package that is part of the code distribution.
	Suppose some method m1
 takes a Function1<String,Object> argument.
 What would happen if you
 passed an instance f1 of type
 Function1<Object,Object>
 to m1? In Java, how could you
 change the declaration of m1 so
 that the compiler would allow you to pass f1 to it? Why would that be a valid
 thing to do, at least from the perspective of “safe
 typing”?

	Considering the same method m1, suppose you wanted to pass a
 function f2 of type Function1<String,String> to
 m1? How could you change the
 declaration of m1 so that the
 compiler would allows you to pass f2 to it? Why would that be a valid
 thing to do from the safe typing perspective?

Chapter 3. Data Structures and Algorithms

This chapter looks at how the
 principles of functional programming influence the design of data structures
 and algorithms. We won’t have the space to study either in depth, but we’ll
 learn some universal principles by studying a few important examples.
Functional languages provide
 a core set of common data structures with combinator
 operations that are very powerful for working with data. Functional
 algorithms emphasize declarative structure, immutable values, and
 side-effect-free functions.
This chapter is dense with
 details and it might be hard to digest on a first reading. However, the
 ideas discussed here are the basis for functional programming’s elegance,
 conciseness, and composability.
Let’s start with an in-depth
 discussion of lists, followed by a brief discussion of maps.
Lists

The linked list has been
 the central data structure in functional languages since the days of Lisp
 (as its name suggests). Don’t confuse the following classic definition
 with Java’s built-in List type.
As you read this code, keep
 a few things in mind. First, List is an
 Algebraic Data Type with structural similarities to Option<T>. In both cases, a common
 interface defines the protocol of the type, and there
 are two concrete subtypes, one that represents “empty” and one that
 represents “non-empty.”
Second, despite the
 similarities of structure, we’ll introduce a few more implementation
 idioms that get us closer to the requirements of a true algebraic data
 type, such as preventing undesired subtypes:
package datastructures;

public class ListModule {
 public static interface List<T> {

 public abstract T head();
 public abstract List<T> tail();
 public abstract boolean isEmpty();
 }

 public static final class NonEmptyList<T> implements List<T> {

 public T head() { return _head; }
 public List<T> tail() { return _tail; }
 public boolean isEmpty() { return false; }

 protected NonEmptyList(T head, List<T> tail) {
 this._head = head;
 this._tail = tail;
 }

 private final T _head;
 private final List<T> _tail;

 @Override
 public boolean equals(Object other) {
 if (other == null || getClass() != other.getClass())
 return false;
 List<?> that = (List<?>) other;
 return head().equals(that.head()) && tail().equals(that.tail());
 }

 @Override
 public int hashCode() { return 37*(head().hashCode()+tail().hashCode()); }

 @Override
 public String toString() { return "(" + head() + ", " + tail() + ")"; }
 }

 public static class EmptyListHasNoHead extends RuntimeException {}

 public static class EmptyListHasNoTail extends RuntimeException {}

 public static final List<? extends Object> EMPTY = new List<Object>() {

 public Object head() { throw new EmptyListHasNoHead(); }
 public List<Object> tail() { throw new EmptyListHasNoTail(); }
 public boolean isEmpty() { return true; }

 @Override
 public String toString() { return "()"; }
 };

 /* See the text for an explanation of this code */
 @SuppressWarnings(value = "unchecked")
 public static <T> List<T> emptyList() {
 return (List<T>) EMPTY; // Dangerous!?
 }

 public static <T> List<T> list(T head, List<T> tail) {
 return new NonEmptyList<T>(head, tail);
 }
}
First, we surround
 everything with a “module”, a class named ListModule. This is not strictly necessary, but
 it provides a place for us to define Factory methods that we’ll use as
 part of the public interface, rather than public constructors. Also, it’s
 convenient to define everything in one file. I’ll discuss some other
 benefits of ListModule below.
Next, we define an
 interface List<T> that holds
 items of type T (or subtypes of
 T). Following convention, a linked list
 is represented by a head, the left-most
 element, and a tail, the rest of the
 list. That is, the tail is itself a List, so the data structure is
 recursive. We’ll exploit this feature when
 implementing methods.
Member functions provide
 read-only access to the head and tail of the list.
 Hence, Lists will be
 immutable, although we can’t prevent the user from
 modifying the state within a particular list element itself. The isEmpty method is a convenience method to
 determine if the list has elements or not.
Next we have the class
 NonEmptyList that represents a list
 with one or more elements. Because a list is an algebraic data type, we
 need to control the allowed subtypes of List. Therefore, NonEmptyList is declared final.
Now the head and tail
 methods are getters for the corresponding fields, which are declared
 final so they are
 immutable.[4] We’ll retain control over the structure of the list.
 Hopefully, the user will make the list elements immutable, too.
Because NonEmptyList never represents empty lists,
 isEmpty always returns false.
Why is the constructor
 protected? We want to control how lists
 are constructed, too. We will use static factory
 methods that are defined at the end of ListModule. This is not required, but it lets us
 use a construction “style” that is similar to the idioms used in
 functional languages.
The equals and hashCode method are somewhat conventional, but
 notice that both exploit the recursive structure of Lists. For equals, we compare the heads and then call List.equals on the tails. Similarly, hashCode effectively calls itself on the
 tail.
Recursion is also used in
 toString. It calls List.toString again when it formats the
 tail.
Now let’s discuss the
 representation of empty lists. What should happen if you call head or tail
 on an empty list? Neither method can return valid values, so we declare
 two exceptions that will be thrown if head or tail
 is called on an empty list.
Before we continue, those
 of you who know the Liskov Substitution Principle (which we’ll discuss in
 Chapter 5) might be crying,
 “foul!” Our List
 abstraction says that implementers should return
 valid objects, not throw exceptions. Isn’t this a violation of LSP?
After our discussion of the
 Option type in Chapter 2, we better not
 return null! We could change head to return Option<T> and tail to return Option<List<T>>. You should try this
 yourself (see the Exercises for this chapter).
Another approach, however, is
 to say that the list type specifies a protocol that
 you should never call head or tail on an empty list. To do so is an
 “exceptional” condition. If you think about it, you will have to check any
 list to see if it’s empty, one way or the other. You can either call
 isEmpty first and only call head or tail
 if it is not empty, or you can use Option as the return type and test for when
 None is returned, meaning the list is
 empty.
This checking may sound
 tedious, but it sure beats debugging NullPointerExceptions in production.
 Fortunately, you don’t need to do these checks very often, as we’ll see
 when we add combinator methods to List later on.
Back to the implementation.
 Recall that we defined None with a
 conventional class, even though all instances of None<T>
 for all types T are equivalent, because None carries no state information. It is
 effectively just a “marker” object. Empty lists are the same, stateless
 and used as list terminators and occasionally on their own. Now, however,
 we’ll really use just one instance, a Singleton object, to represent all
 empty lists.
ListModule declares a static final List<? extends Object> named EMPTY, an instance of an anonymous inner class.
 Its head and tail methods throw the exceptions we described
 above and its isEmpty method always
 returns true. Note the type parameter, ? extends
 Object, which means you could assign any List<X> for some X to EMPTY.
 This is needed for how we use EMPTY,
 which we’ll discuss in a moment. The following sidebar discusses what this
 type expression means.
No equals and hashCode methods are required, since there is
 only one empty list object, the default implementations for Object are sufficient. Also, toString returns empty parentheses to represent
 a list of zero elements.
Now we come to the public static Factory methods that clients use
 to instantiate lists, rather than calling constructors directly. Just as
 there are two concrete types, there are two factory methods, one for each
 type.
The first static method,
 emptyList “creates” an empty list. In
 fact, it returns EMPTY, but it appears
 to do something unspeakably evil; it downcasts from
 List<Object> to the correct
 List<T> type!
Well, this actually isn’t
 evil, because EMPTY carries no state,
 just like None. No ClassCastExceptions will ever occur when you use it.
 So, in practical terms, we are safe and our factory method hides our hack
 from users. We added the annotation to suppress warnings from the
 compiler.
Type parameters for generic
 methods like this are one of the few places where Java uses type inference
 when you call the method. Java will figure out the appropriate value for
 T from the type of the variable to which you assign the
 returned value.
One Subtype to Rule Them All?
Having to downcast
 EMPTY like this reflects a few
 limitations in Java’s type system that some other languages don’t have.
 Some languages define a special type that is the subtype of
 all other types, e.g., Nothing in Scala, where List<Nothing> would be a proper subtype
 of List<T> for all <T>. However, this feature wouldn’t be
 quite enough, due to another Java limitation. You can’t declare in the
 implementation of List<T> that any List<T2> is a subtype of List<T> if T2 is a subtype of T (called covariant
 subtyping). You can only make these declarations when
 List<T> is
 used to declare an instance, which is what we did
 for EMPTY. Here’s another example
 that demonstrates covariant subtyping:
List<? extends Object> EMPTY = new List<String>();
So, we are stuck with our
 hack if we want to use a Singleton for all empty lists.

The second factory method
 creates a non-empty list. We call it list to look similar to a constructor. Really,
 it’s effectively just a shorthand way of saying new NonEmptyList<T>(…) with less noise.
 Even the type parameter is inferred, as you’ll see when we discuss the
 test.
The primary benefit of
 factories is the way they create an abstraction for construction. Calling
 new is a form a strong
 coupling and prevents the substitution of instances of
 different concrete types, depending on the context. As a simple example,
 the list factory method could determine
 if an identical list already exists and return it instead. This would be
 safe since the lists are immutable (ignoring the possibility of mutable
 list elements).
We can see all this in
 action by looking at a test, ListTest.
 It’s long, so I’ll just show excerpts. For example, we’ll omit the
 equality tests[5]:
package datastructures;
import static datastructures.ListModule.*;
...
public class ListTest {
 List<String> EMPTYLS = emptyList(); // The String parameter is inferred!
 List<Long> EMPTYLL = emptyList();

 @Test(expected = EmptyListHasNoHead.class)
 public void callingHeadOnAnEmptyListRaises() {
 EMPTYLS.head();
 }

 @Test(expected = EmptyListHasNoTail.class)
 public void callingTailOnAnEmptyListRaises() {
 EMPTYLS.tail();
 }

 @Test
 public void callingTailOnAListWithMultiplElementsReturnsANonEmptyList() {
 List<String> tail = list("one", list("two", EMPTYLS)).tail();
 assertEquals(list("two", EMPTYLS), tail);
 }

 @Test
 public void callingHeadOnANonEmptyListReturnsTheHead() {
 String head = list("one", EMPTYLS).head();
 assertEquals("one", head);
 }

 @Test
 public void AllEmptyListsAreEqual() {
 assertEquals(EMPTYLS, EMPTYLL);
 }

 @Test
 public void ListsAreRecursiveStructures() {
 List<String> list1 = list("one", list("two", list("three", EMPTYLS)));
 assertEquals("(one, (two, (three, ())))", list1.toString());
 }
 ...
}
The test makes two
 “different” empty lists, one of type List<String> and one of type List<Long>, using the emptyList factory methods. However, the second
 to last test verifies that they are actually equal.
The first two tests verify
 that the appropriate exceptions are thrown if head and tail
 are called on empty lists. The next two tests verify that the head and
 tail of non-empty lists can be extracted.
The last test shows the
 nice recursive-looking representation that toString returns:
(one, (two, (three, ())))
Recursion is used in
 ListModule. A successful recursion must
 eventually terminate. You would have an infinite recursion if loops in a
 list were possible. The factory methods prevent this as they can only
 create lists terminated by EMPTY.
 Hence, the API enforces good behavior.
Tip
Pure functional programming uses recursion
 instead of loops, since a loop counter would have to be mutable.

We used a few idioms to enforce
 the algebraic data type constraint that the type hierarchy must be closed,
 with only two concrete types to represent all lists. The final keyword prevents subclassing NonEmptyList and using an anonymous class for
 EMPTY accomplishes the same goal.
 However, Java doesn’t give us a way to prevent other implementations of
 the List<T> interface itself, if
 we want to keep it public.
We are accustomed to saying
 that instances of a class can only have certain valid states and state
 transitions. Notice that algebraic data types are making the same kinds of
 assertions about types themselves, imposing a rigor that helps us think
 about allowed representations of state and transitions from an instance
 representing one state to an instance representing another state.

[4] We don’t care about using JavaBeans conventions for accessors in
 this case, because that convention doesn’t serve a useful purpose
 here.

[5] The full listing is in the downloadable code examples, test/datastructures/ListTest.java.

Maps

Let’s talk briefly about
 maps, which associate keys with values, as in this familiar Java
 example:
Map<String,String> languageToType = new HashMap<String,String>();
languageToType.put("Java", "Object Oriented");
languageToType.put("Ruby", "Object Oriented");
languageToType.put("Clojure", "Functional");
languageToType.put("Scala" , "Hybrid Object-Functional");
Maps don’t make good
 algebraic data types, because the value of defining
 an “empty” vs. a “non-empty” type (or similar decomposition) is less
 useful. In part, this reflects the fact that the “obvious” implementation
 of List is strongly implied by the
 head and tail design.
There is no such obvious
 implementation of Map. In fact, we need
 flexibility to provide different implementations for different performance
 goals. Instead, Map is a good example
 of an abstract data type (see Algebraic Data Types and Abstract Data Types).
I’ll leave it as an
 exercise for you to implement a functional-style map (see Exercises).
 Instead, let’s look at operations that work for lists, maps, and other
 collections.

Combinator Functions: The Collection Power Tools

You already think of
 lists, maps, etc. as “collections,” all with a set of common methods. Most
 collections support Java Iterators,
 too. In functional programming, there are three core operations that are
 the basis of almost all work you do with collections:
	Filter
	Create a new collection, keeping only the elements for which a
 filter method returns true. The
 size of the new collection will be less than or equal to the size of
 the original collection.

	Map
	Create a new collection where each element from the original
 collection is transformed into a new value. Both the original
 collection and the new collection will have the same size. (Not to
 be confused with the Map data
 structure.)

	Fold
	Starting with a “seed” value, traverse through the collection
 and use each element to build up a new final value where each
 element from the original collection “contributes” to the final
 value. An example is summing a list of integers.

Many other common
 operations can be built on top of these three. Together they are the basis
 for implementing concise and composable behaviors.
 Let’s see how.
Returning to our ListModule implementation, let’s add these
 methods (plus one other). Here is version 2 of ListModule, where I’ll only show what’s new to
 save space[6]:
package datastructures2;
...
public class ListModule {
 public static interface List<T> {
 ...
 public List<T> filter (Function1<T,Boolean> f);
 public <T2> List<T2> map (Function1<T,T2> f);
 public <T2> T2 foldLeft (T2 seed, Function2<T2,T,T2> f);
 public <T2> T2 foldRight (T2 seed, Function2<T,T2,T2> f);
 public void foreach (Function1Void<T> f);
 }

 public static final class NonEmptyList<T> implements List<T> {
 ...
 public List<T> filter (Function1<T,Boolean> f) {
 if (f.apply(head())) {
 return list(head(), tail().filter(f));
 } else {
 return tail().filter(f);
 }
 }

 public <T2> List<T2> map (Function1<T,T2> f) {
 return list(f.apply(head()), tail().map(f));
 }

 public <T2> T2 foldLeft (T2 seed, Function2<T2,T,T2> f) {
 return tail().foldLeft(f.apply(seed, head()), f);
 }

 public <T2> T2 foldRight (T2 seed, Function2<T,T2,T2> f) {
 return f.apply(head(), tail().foldRight(seed, f));
 }

 public void foreach (Function1Void<T> f) {
 f.apply(head());
 tail().foreach(f);
 }
 }

 public static final List<? extends Object> EMPTY = new List<Object>() {
 ...
 public List<Object> filter (Function1<Object,Boolean> f) { return this; }
 public <T2> List<T2> map (Function1<Object,T2> f) { return emptyList(); }

 public <T2> T2 foldLeft (T2 seed, Function2<T2,Object,T2> f) { return seed; }
 public <T2> T2 foldRight (T2 seed, Function2<Object,T2,T2> f) { return seed; }

 public void foreach (Function1Void<Object> f) {}
 };
}
There are five new methods
 declared in the List interface. We need
 two versions of fold, foldLeft and foldRight, for reasons we’ll discuss in a
 moment. Also, I’ve added a foreach
 method for convenience.
Each implementation for the
 five new methods in NonEmptyList is recursive, yet
 there are no checks for the end of the recursion! The corresponding
 implementation in EMPTY terminates the recursion. This
 means we have eliminated the need for conditional tests, replacing them
 with object-oriented polymorphism!
Recall that the filter method will return a new List. It takes a Function1<T,Boolean> f and applies
 f to each element. In
 Empty, filter just
 returns EMPTY. In NonEmptyList, if
 the result of applying f to head (f.apply(head())) is true, then filter constructs a new list with head and the result of calling filter on the tail. Otherwise, filter just returns the result of applying
 filter to the tail, thereby discarding head. So, filter is recursive and it terminates when it is
 called on an empty list.
The map method is slightly simpler, since it never
 discards an element. It also uses recursion to traverse the list, applying
 f to each element and building up a new
 list with the results. Note that f is
 now of type Function1<T,T2>,
 because the goal is to allow the original elements of type T to be transformed into instances of the new
 type, T2. This time, EMPTY’s
 map method calls emptyList, because
 it must return an object of type List<T2>,
 instead of an object of the original type.
The foldLeft and the foldRight methods are the hardest to understand,
 but they are actually the most important, as all other methods could be
 implemented using them! We’ll start with a general discussion of how these
 methods work, then return to the implementation details.
The reason there are two
 versions is because they traverse the collection and apply the function in
 different orders. In some cases, the ordering doesn’t matter. In others,
 the results will be different. There are other important differences we’ll
 see in a moment.
In a nutshell, foldLeft groups the elements from left to right,
 while foldRight groups them from right
 to left. It might help to start with an illustration of how these two
 methods work. Suppose I have a list of the integers 1 through 4. I want to
 add them using fold. Consider the following example:
List<Integer> listI =
 list(1, list(2, list(3, list(4, emptyList()))));
listI.foldLeft(0, new Function2<Integer, Integer, Integer>() {
 public Integer apply(Integer seed, Integer item) { return seed + item; }
});
Here is how foldLeft would add these numbers
 together:
((((0 + 1) + 2) + 3) + 4) == 10
The seed of 0 is first added to 1, then the result
 is added to 2, etc.
Now, here is the foldRight version:
List<Integer> listI =
 list(1, list(2, list(3, list(4, emptyList()))));
listI.foldRight(0, new Function2<Integer, Integer, Integer>() {
 public Integer apply(Integer item, Integer seed) { return item + seed; }
});
Here is how foldRight would add these numbers together. The
 result is:
(1 + (2 + (3 + (4 + 0)))) == 10
In this case, I exchanged
 item and seed in the body of apply to be consistent with the output and
 functional programming conventions.
Notice the similarity
 between the appearance of how listI is
 declared and how the foldRight
 algorithm is written in the comment. In fact, repeated application of our
 factory method list builds lists in a
 right-recursive way.
Since addition is
 associative, the answer is the same in both cases. You would get different
 answers if you did subtraction, for example.
So, we need two versions of
 fold because the order matters for non-associative operations. There are
 two other important differences.
First, imagine that listI is actually all positive integers, the
 natural numbers. We showed a simple representation in
 Lazy vs. Eager Evaluation. The NaturalNumbers class has a static value
 representing zero and the next method
 computes a value from the previous value you pass in.
Now look at the foldRight example again. Let’s rewrite our
 previous expression to make it infinite and let’s replace the literal
 numbers with calls to next (assuming we
 did a static import of everything in NaturalNumbers). For clarity, I’ll first show
 the expression with the literal numbers:
(1 + (2 + (3 + (...))))
(next(ZERO) + (next(next(ZERO)) + (next(next(next(ZERO))) + (...))))
Of course, ZERO and 0
 are actually equal. NaturalNumbers also
 defines take(n), which returns a
 List of the first n positive integers.
 Effectively, the recursion in foldRight
 will now terminate when it hits the end of this List, as if nested calls to next stop after n. If we call take(3), our expression reduces to the
 following:
(1 + (2 + (3 + 0)))
(next(ZERO) + (next(next(ZERO)) + (next(next(next(ZERO))) + 0)))
When the recursion
 terminates in foldRight, it just
 returns the original seed value of 0.
So, we can see that foldRight can be used with infinite data
 structures, if only the first n
 elements will be evaluated.
However, foldRight has a drawback; it is not
 tail recursive. Why? Notice that we do an addition
 after the recursive call returns. The recursive call
 isn’t the last thing done, the
 tail of the algorithm. The tail-call
 optimization can’t be applied to foldRight.
However, foldLeft is tail recursive.
 Let’s write the left-recursive version of our last next example:
(((0 + 1) + 2) + 3)
(((0 + next(ZERO)) + next(next(ZERO))) + next(next(next(ZERO))))
Recall that (0 + next(ZERO)), etc. are recursive calls to
 foldLeft, but the addition now happens
 before the call, to construct the argument passed to
 the next invocation of foldLeft. Hence
 the recursion is a tail call, the last calculation done.
However, foldLeft can’t be used for infinite data
 structures. There is no place where we can replace a call to next with the seed, as for foldRight. So, foldLeft will eagerly evaluate the expression,
 blowing up on an infinite data structure.
Now let’s return to the
 implementations, starting with foldLeft. First, the function f is of type Function2<T2,T,T2>. The first T2 type parameter represents the seed. Recall that we are building up a new value
 that could be just about anything; a new list, a String, an Integer (for
 sums), etc. So, we have to pass a starter or “seed” value. Another
 conventional name for this argument is accumulator, since it will contain the
 “accumulation” of the work done up to a given point.
The second type parameter
 T for f is the type of the elements in the original
 list. The last type parameter T2 is the
 final return type of the call to foldLeft. Note that it must be the same as the
 seed type parameter.
Empty’s
 version of foldLeft simply returns the
 seed, terminating the recursion. In
 NonEmptyList’s foldLeft, foldLeft is called on the tail, passing as the
 new seed the result of applying
 f to the input seed and head.
The implementation of
 foldRight is similar. The seed is returned by Empty’s
 version of foldRight. However, the version in
 NonEmptyList has key differences compared to its
 version of foldLeft. Note that f is applied to the head and the result of the
 recursive call to tail().foldRight
 after the latter has returned. As we discussed above,
 this is why foldRight is not tail
 recursive.
Tip
Consider these concise and precise definitions: foldLeft “is the fundamental list iterator”
 and foldRight “is the fundamental
 list recursion operator” [Shivers].

To end our discussion of
 fold, note that there is a similar
 operation called reduce, which is like
 fold, but the initial value of the
 collection is used as the seed. Hence,
 fold is more general, because the type
 of the result doesn’t have to be the same as the type of the collection
 elements. Also, unlike fold, reduce will fail if used on an empty collection,
 since there is no “first” value!
Finally, we have foreach, the simplest of all these methods.
 Technically, foreach would be
 disallowed in “pure” functional programming, because it performs only side
 effects, as it returns void! The only
 useful work that can be done is for the input function f to do I/O or other state modifications. For
 example, you might use foreach in a
 main method as the outer loop for all
 other computations. Here is a contrived example that converts the input
 String[] args to a List<String> and then uses foreach to print out the list of
 arguments:
package datastructures2;
import datastructures2.ListModule.List;
import static datastructures2.ListModule.*;
import functions.Function1Void;

public class ForeachExample {
 public static void main(String[] args) {
 argsToList(args).foreach(new Function1Void<String>() {
 public void apply(String arg) {
 System.out.println("You entered: "+arg);
 }
 });
 }

 private static List<String> argsToList(String[] args) {
 List<String> result = emptyList();
 for (String arg: args) {
 result = list(arg, result);
 }
 return result;
 }
}
Actually, there’s a bug
 here; it prints the arguments in reverse order! (See Exercises).
I said that filter, map
 and fold are
 composable. All three are methods on List, of course. Two of them, filter and map, return a new List, while fold can return anything we want. One of our
 oldest problem-solving techniques is divide and
 conquer, where we decompose a hard problem into smaller, easier
 problems. We can divide complex computations into pieces using filter, map,
 and fold, then compose the results
 together to get the final result.
The following JUnit test
 shows how we can start with a list of integers, filter them to keep only
 the even values, multiple each of those by 2, then add them up:
package datastructures2;
import org.junit.Test;
import static org.junit.Assert.*;
import functions.*;
import static datastructures2.ListModule.*;

public class FunctionCombinatorTest {
 @Test
 public void higherOrderFunctionCombinatorExample() {
 List<Integer> listI =
 list(1, list(2, list(3, list(4, list(5, list(6, emptyList()))))));
 Integer sum = listI.filter(new Function1<Integer,Boolean>() {
 public Boolean apply(Integer i) { return i % 2 == 0; }
 })
 .map(new Function1<Integer, Integer>() {
 public Integer apply(Integer i) { return i * 2; }
 })
 .foldLeft(0, new Function2<Integer, Integer, Integer>() {
 public Integer apply(Integer seed, Integer item) { return seed + item; }
 });
 assertEquals(new Integer(24), sum);
 }
}
In fact, we call filter, map,
 and fold
 combinators, because they “combine” with their
 function arguments and they combine with each other to build more complex
 computations from simpler pieces. Combinators are arguably the
 most reusable constructs we have in programming.
Tip
The filter, map, and fold functions are
 combinators, composable building blocks that let us
 construct complex computations from simpler pieces. They are highly
 reusable. The combination of map
 and reduce was the inspiration for the
 MapReduce approach to processing massive data sets
 [Hadoop].

Finally, recall that I
 implemented these functions using recursion, but code that uses them
 avoids recursion, as in our FunctionCombinatorTest example. That means users
 of filter, map, and fold
 don’t have the drawbacks of recursion, namely the inefficient stack usage
 and the potential complexity that can arise in non-trivial recursive
 functions. We could even reimplement filter, map,
 and fold to eliminate recursion for
 better performance. Because these functions are used heavily, we would
 gain significant performance
 benefits at the expense of a less elegant implementation, but one that
 remains hidden behind the abstraction.
That’s a lot to digest! Once
 you’re ready for more, see [Bird2010] and [Hutton1999] for more on what these powerful
 operations can do.
Why Languages Matter
If you venture on to a
 functional language, like Haskell, Scala, Clojure, or F#, you’ll notice
 that having an anonymous function syntax removes some of the clutter we
 had to use here. That ease of expression makes it easier to understand
 the concepts, too.

[6] The full listing is in the downloadable code examples, src/datastructures2/ListModule.java.

Persistent Data Structures

It seems that if we want
 immutable values, we have to make a copy whenever we change a value. While
 this may be fine for small objects, it will be too expensive for large
 objects, like long lists and large maps.
Fortunately, we can have
 both immutability and acceptable performance if we only allocate memory
 for what is actually changing and we share the unchanged parts with the
 original object. This approach is called structure
 sharing. Tree data structures provide the balance of
 performance and space efficiency required to do this. The public
 abstraction might still be a List, a
 Map, or another data structure. The
 tree is only used for the internal storage. Note that the trees themselves
 and their nodes must be immutable. Otherwise, structure sharing will be
 dangerous, as mutations through one object will be seen by others that
 share the same substructure!
To simplify the discussion,
 let’s use unbalanced binary trees. They provide average
 O(log2(N)) search times (unless the tree is
 really unbalanced). Real persistent data structures
 often use one of several 16- or 32-way balanced tree variants to further
 reduce search times and to optimize other performance goals. We’ll skip
 over these details and we won’t cover how you might implement a List, Map, or
 other object using a tree. However, [Spiewak2011] is an excellent presentation on
 several widely used persistent data structures (warning: Scala syntax).
 More technical details can be found in [Okasaki1998] and [Rabhi1999].
Figure 3-1 shows a tree at time “0” referenced as an
 object named value1.
[image: Time 0, One Value]

Figure 3-1. Time 0, One Value

Now imagine a user wants to
 create a new tree that prunes off nodes a1 and its left branch, node a2, but keep node a3 and its right branch, node a4. All we have to do is create a new root node
 that points to a3 as its left branch
 and b1 as its right branch, as shown in
 Figure 3-2.
[image: Time 1, Two Values, with Shared Substructures]

Figure 3-2. Time 1, Two Values, with Shared Substructures

Six of the original 8 nodes
 are shared by both trees. Only one new node allocation was required, the
 root node, value2.
Note that a
 history of the evolving values is being maintained.
 We still have value1 and as long as
 some code has a reference to it, it won’t be garbage collected. This is
 why these data structures are called persistent, not
 in the database sense (they aren’t normally saved to disk), but in the
 sense that old versions of an evolving structure will remain available as
 long as needed. We will exploit this feature in Software Transactional Memory.

Some Final Thoughts on Data Structures and Algorithms

From these examples, we can
 see how immutable values lead us to structure sharing as a way of making
 new values efficiently, where we share data that isn’t changing, rather
 than make full copies. This can only work if all the data elements are
 immutable. Different kinds of trees are the most
 useful data structures for implementing immutable
 collection types, because they can be chosen for optimizing various
 operations, like fast searching for values vs. fast updates.
The use of recursion is also
 universal, instead of looping. Recursion avoids mutable loop counters and
 it’s a natural fit for recursive data structures, like lists and
 trees.
However, we can avoid many
 uses of recursion by using our combinators, filter, map,
 and fold. We can do anything we want
 with collections using these modular, reusable, and composable
 functions.
Consider another example, a
 List of email addresses for our
 customers. We can filter for just the gmail addresses. We can map each address in the
 list to an appropriate anchor tag for displaying in a web page. We can
 fold over the list to group the users by domain. That is, we can build a
 map where each domain name is a key and the list of users at that domain
 is the corresponding value.
In contrast, now imagine
 that we wrote our own custom EmailAddresses class, for example, with one-off
 methods to do the filtering, mapping, and grouping I just described. We
 would write a lot more code (and tests) and the special-purpose nature of
 that code would make the class less attractive for reuse. If we follow
 this approach with our other domain concepts, we end up with far more code
 than we really need, with a relatively low density of value per line of
 code. There would be lots of little ad-hoc types and methods, most of
 which are seldom invoked and rarely reused.
You might argue that these
 custom types and methods provide a self-documentation feature. For
 example, EmailAddresses.groupUsersByDomain tells the
 reader exactly what’s going on. That’s useful, but there is a better
 way.
Interest in Domain-Specific
 Languages is another recent, popular trend (see, for example, [Ghosh2011a] and [Ghosh2011b]). DSLs try to
 capture the idiomatic language used by domain experts directly in the
 code. You can implement DSLs in both object-oriented and functional languages. Some
 languages provide better support for custom DSL syntax than others.
Back to our example, it can
 be useful to represent a domain with a DSL at the upper levels of
 abstraction, but questionable to create explicit
 object representations under this surface. We can have a DSL that says,
 for example groupUsersByDomain in emailAddresses, but implement it with List<EmailAddresses>.foldLeft(new
 HashMap<…>(), groupingFunction);, where groupingFunction does the “group by” magic on
 the users and domains.
In Functional Programming Is More Modular, I argued that objects
 operate at the wrong level of abstraction and they lack a standard set of
 protocols that are essential for the kind of reuse we want. The core data
 structures of functional programming and the combinators like filter, map,
 and fold bring us closer to that
 ideal.

Exercises

	Add a factory method to ListModule that takes a variable argument
 list of elements and returns a properly constructed list.

	Implement a new ListModule
 where head and tail return Options. This eliminates the slight smell of
 throwing exceptions for the empty list case. However, using Options makes some other code more awkward,
 as a unit test will show.

	Re-implement the Option
 hierarchy following the idioms used for List; e.g., make None a static constant.

	Implement a MapModule with an
 abstract data type Map. The implementation classes should use
 side-effect-free functions and immutability. How can you enable the
 use of alternative implementations that optimize performance and
 memory usage? What implementations would optimize the
 following:
	A map that contains just a few key-value pairs.

	A map that contains a few million key-value pairs.

	A map that optimizes insertion performance.

	A map that optimizes search performance.

	A map that retains the order of insertion (e.g., for
 subsequent traversal).

	ForeachExample prints the
 arguments in reverse order. Determine the cause and implement a fix.
 Hint: consider adding a useful method to ListHelper that is commonly found in
 List classes.

	Reimplement the equals and
 toString methods in NonEmptyList using foldLeft or foldRight. Does the choice of fold method affect the results?

	Reimplement the filter and
 map methods for Lists using foldLeft or foldRight.

	Reimplement foldLeft and
 foldRight so they don’t use
 recursion. If you use mutable values, preserve thread safety.

Chapter 4. Functional Concurrency

Now that we have discussed
 functional data structures and algorithms, let’s return to the topic that
 has sparked widespread interest in functional programming in the first
 place: concurrency. Recall this warning from Chapter 1:
Warning
Multithreaded programming, requiring synchronized access to shared,
 mutable state, is the assembly language of
 concurrency.

We’ve already discussed how
 immutable values make synchronization unnecessary. Yet, mutating state is
 never completely avoidable. Let’s examine two higher-level abstractions that
 provide “principled” ways to manage mutable state in thread-safe ways:
 Actors and Software Transactional Memory.
The Actor Model

The Actor model isn’t
 really a functional approach to concurrency, but it fits our general goal
 of managing state mutation in principled ways. In the Actor model of
 concurrency, work is coordinated by message passing between “actors.” Each
 actor has a queue, sometimes called a mailbox, for incoming messages. The
 actor processes each message, one at a time. Carl Hewitt and collaborators
 developed the actor model almost 40 years ago [Hewitt1973]. [Agha1987] provides a complete description of the
 theory of actors. Perhaps the best known implementation of actors is found
 in Erlang, where actors are the core of everything you do in the
 language.
It’s interesting to note
 that Alan Kay’s original vision for objects in Smalltalk is much closer to
 the actor model than it is to the objects found in most languages [Kay1998]. For Kay, “The big
 idea is messaging.” He also believed that state changes should be
 encapsulated and not done in an unconstrained way.
This metaphor of passing
 messages between objects is not only intuitive, it helps clarify
 boundaries between objects. Have you seen code where one object makes lots
 of little calls to other objects to get bits of information? How would you
 change that code if you thought in terms of message passing,
 instead?
In an actor system, state
 mutation is handled one of several ways. For some state, it can be the
 responsibility of one actor to mutate that state. No other code is
 permitted to do so. When a mutation is required, a message is sent to the
 actor, which performs all such changes sequentially, thereby avoiding
 synchronization problems.
A similar model is to allow
 multiple actors to modify the same state, but only one at a time. A
 special “semaphore” message is exchanged that tells the receiver that it
 is safe to modify the state. When finished, the semaphore is sent to
 another actor.
Both cases run the risk of
 creating a bottleneck if the scope of responsibility is too large. It
 might be necessary to break it down into smaller, “isolated”
 sections.
Fortunately, good actor
 libraries are available for most languages. Perhaps the best option for
 Java is the Akka Java API [Akka]. An alternative is also available in
 [Functional Java].
Here is a simple
 actor-based program that remembers every string passed to it, keeping the
 string and the time it was seen in a map:
package actors;
import akka.actor.*;
import static akka.actor.Actors.*;
import java.util.*;

public class AkkaActorExample {
 // server code
 static class MemoryActor extends UntypedActor {
 final Map<String,Date> seen = new HashMap<String,Date>();

 public void onReceive(Object messageObject) {
 String message = messageObject.toString(); // simplifying assumption
 if (message.equals("DUMP")) {
 getContext().replySafe(seen.toString());
 } else {
 Date date = new Date();
 seen.put(message.toString(), date);
 getContext().replySafe("'" + message + "' recorded at " + date);
 }
 }
 }

 public static void main(String[] args) {
 ActorRef remActor = actorOf(MemoryActor.class).start();
 for (String arg: args) {
 // client code
 Object response = remActor.sendRequestReply(arg);
 System.out.println("Reply received: "+response);
 }
 Object response = remActor.sendRequestReply("DUMP");
 System.out.println("Dump of remembered strings: "+response);
 System.exit(0);
 }
}
For convenience, everything
 is wrapped in a class, AkkaActorExample, which also defines the
 main method. The MemoryActor extends Akka’s UntypedActor, so named because the messages are
 of type Object.
MemoryActor implements an onReceive method, declared abstract by UntypedActor, which is called whenever a new
 message is received by the actor. This handler stores the input message
 (basically assuming it is a string, for simplicity) and the current time
 in a mutable map. It replies to the caller that the
 message was recorded.
However, if a special
 message DUMP is received, the actor
 replies with a “dump” of the current state of the map. Note that the actor
 manages the mutable state and prevents any other code
 from accessing it. Even the DUMP
 message returns a string, rather than the map itself.
The main method uses the Akka idiom for
 instantiating an actor of instance MemoryActor and wrapping it in an ActorRef, which is returned to main. Akka separates the actor instance from
 references to it, an example of the Bridge design pattern [GOF1995]. Akka does this so
 that if an actor instance fails for some reason, it can be restarted
 without requiring clients to acquire a new reference to the new actor.
 This is an example of the extensive robustness and error recovery features
 in Akka’s Actor library, which were inspired by similar capabilities in
 Erlang.
Once main has an actor reference, it loops through
 the input arguments and sends each word, one at a time, to the actor. It
 then prints the response received. At the end, it sends the DUMP message.
To keep the example simple,
 synchronous calls and responses are used, where the
 code waits for a reply after each message is sent. Normally, you would use
 asynchronous messages for better scalability, which Akka supports.
If you download the code
 examples and build the actor.example
 make target, it runs this code with the arguments
 I am a Master Thespian!. Here is the
 output (omitting some Akka informational messages):
Reply received: 'I' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'am' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'a' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'Master' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'Thespian!' recorded at Sat Jun 25 16:14:43 CDT 2011
Dump of remembered strings: {
 am=Sat Jun 25 16:14:43 CDT 2011,
 a=Sat Jun 25 16:14:43 CDT 2011,
 Master=Sat Jun 25 16:14:43 CDT 2011,
 Thespian!=Sat Jun 25 16:14:43 CDT 2011,
 I=Sat Jun 25 16:14:43 CDT 2011}
I wrapped the long line for
 the “Dump” output. Note that creating the string for the map required
 iterating through it, which doesn’t preserve insertion order, as you would
 expect.
This example just scratches
 the surface of what you can do with Akka Actors (as well as other Actor
 libraries), including distributing actors remotely, managing their life
 cycles, handling crash recovery, etc. See [Akka] for more details.

Software Transactional Memory

Chances are you’ve worked
 on an application with a database backend. A key feature of most
 relational databases is support for ACID
 transactions, an acronym for atomicity,
 consistency, isolation, and
 durability.[7] The goal of ACID transactions is to avoid logical
 inconsistencies in a given set of related records, for example where two
 simultaneous updates leave the set of records in an inconsistent state, or
 updates are made that are based on stale data, which could effectively
 erase more recent updates.
Software Transactional
 Memory (STM) brings transactions to locations in
 memory that are referenced by variables [STM] (see also [PeytonJones2007]). STM can’t
 provide durability, because memory isn’t durable
 (e.g., if the power is lost), but STM can provide the ACI,
 atomicity, consistency, and
 isolation in ACID.
The model in STM is to
 separate references to values from the values themselves. We saw this
 principle at work in Akka actors. In STM, a program has a reference to a
 value of interest. The STM framework provides a protocol for changing the
 value to which the reference “points.”
However, values themselves
 are not changed. They remain immutable. Only the
 references change to point to new values. We saw in Persistent Data Structures how the appropriate choice of
 implementation can provide an efficient way to make a new value from a
 large object without copying the parts of it that aren’t changing. Rather,
 those parts are shared between the old and new version of the object.
 Persistent Data Structures are exactly what STM needs.
Figure 4-1
 shows the state at time “0.” There are two references pointing the same
 value1 of a persistent data structure,
 adapted from Figure 3-1 in the previous
 chapter.
[image: Time 0, one value with two references to it]

Figure 4-1. Time 0, one value with two references to it

Now let’s change ref2 to point to a new, updated value, as shown
 in Figure 4-2.
[image: Time 1, two values, with one reference to each]

Figure 4-2. Time 1, two values, with one reference to each

By time “1,” an STM transaction
 in the context of ref2 has been used to
 move its reference to value2, which was
 created from value1, as indicated by
 the dotted line. Creating value2 does
 not necessary have to occur within the transaction, just the reassignment
 of ref2 (but see the example below).
 Note that ref1 still points to the old
 value, value1.
This behavior allows
 different clients to acquire references to the same value at a particular
 time, but each can work with the value without fear that it will change
 unexpectedly, due to the actions of one of the other clients. Recall that
 a history of the evolving values is effectively
 maintained, as long as there are references pointing to multiple versions.
 A version with no references will be garbage collected.
So that’s how STM works
 behind the scenes. What’s it like for a client to use STM?
There are several STM
 libraries for Java, many of which are inspired by Clojure’s
 implementation. Akka integrates with the [Multiverse STM]. Below is a simple example adapted
 from the Akka documentation [Akka]. A reference to an Integer value is managed using the techniques
 described above:
// Adapted from Akka example source code.
// Copyright (C) 2009-2011 Scalable Solutions AB <http://scalablesolutions.se>
package stm;
import akka.stm.*;

public class AkkaSTMIntegerCounter {

 private final Ref<Integer> ref = new Ref<Integer>(0);

 public int counter() {
 return new Atomic<Integer>() {
 public Integer atomically() {
 int inc = ref.get() + 1;
 ref.set(inc);
 return inc;
 }
 }.execute();
 }

 public static void main(String[] args) {
 AkkaSTMIntegerCounter counterRef = new AkkaSTMIntegerCounter();
 System.out.println(counterRef.counter()); // -> 1
 System.out.println(counterRef.counter()); // -> 2
 }
}
First, a typed reference,
 Ref<Integer>, is created with the
 initial value of zero. Then, a helper method counter handles incrementing the value and
 returning the new value. The mutation and update of the reference must be
 enclosed in an Atomic<Integer>
 object (analogous to synchronizing a method). The Ref.get method retrieves the
 current value and the Ref.set method sets a new value. Note that
 wrapping these steps in Atomic prevents
 updates using potentially stale values from calls to get.
The main method instantiates an AkkaSTMIntegerCounter object, then calls
 counter twice and prints the results.
 The numbers 1 and 2 will be printed on separate lines.
For a beautiful exposition
 on STM, see [PeytonJones2007].

[7] One of the big data trends is to use new
 kinds of databases that relax this constraint in order to improve
 throughput and availability.

Exercises

	Using the [Akka] documentation for actors, modify
 the Actor example to make calls asynchronously. For example, create
 several actors that send messages to MemoryActor and add an actor that main uses to receive the replies.

	Use the Akka/Multiverse API to manage a more complex object,
 like a collection.

Chapter 5. Better Object-Oriented Programming

Now that we have learned
 about functional programming and its benefits, let’s revisit object-oriented
 programming and see how we can do better with functional ideas.
Imperative, Mutable Code

Recall from Declarative vs. Imperative Programming that object-oriented programming is
 primarily imperative, where we tell the computer what
 to do, while functional programming is primarily
 declarative, where we define properties and
 relations, and let the runtime figure out how to compute what we want. We
 demonstrated the differences with two versions of the factorial function.
 The declarative version was clean and simple, while the imperative version
 was “busy” with mutations, making it harder to understand and prevent
 bugs. Those problems multiply if your whole code base is like that.
We’ve seen other reasons to
 avoid mutability. Mutable objects are not thread-safe by default and it’s
 easy for clients to change their state outside our control. Hence, we
 should make our objects immutable by removing setter methods and by
 declaring fields final. We should
 create new instances when the state changes and we should rely on
 persistent data structures for making efficient
 copies of large collections. We should avoid representing elaborate domain
 model object “graphs” in memory by limiting the parts of our domain models
 that we actually implement.
Sometimes we can’t avoid
 mutation. Since Java doesn’t perform tail-call optimization, declarativeFactorial won’t perform as well as
 imperativeFactorial. However, we should
 choose the desirable approach first, then optimize
 only where actual performance data says we should
 (since our intuitions are seldom correct). If at all possible, we should
 keep all public abstractions pure, even when the
 internals aren’t pure.
Tip
Make your objects behave to the outside world as if they are
 side-effect-free and immutable.

The Liskov Substitution Principle

The Liskov Substitution
 Principle (LSP; see [LSP] and [Martin2003]) provides the correct way to think
 about subtyping. Paraphrasing, LSP says that if you have an object of type
 T1 with a set of
 properties, you can only substitute an object of type
 T2 if it also conforms to those
 properties. We say that T2 is a
 subtype of T1. In
 Java, a child class that derives from a
 parent class is considered a subtype.
Subtyping, Inheritance, and Polymorphism
We sometimes think of
 subtyping and inheritance as the same thing. Inheritance is used for
 subtype polymorphism, where we define type
 hierarchies with polymorphic behavior. Inheritance is also sometimes
 used for implementation inheritance, a form of
 reuse, which can cause problems with Liskov substitutability. For
 completeness, note that Java’s generics are an example of
 parametric polymorphism. For example, a List<T> should behave the same whether
 T is String, Float, etc.

A practical way to ensure
 that LSP is satisfied is to use Design by Contract [Meyer1997], where you specify
 allowed properties as one of three kinds of constraints at the level of
 individual functions or whole types:
	Precondition: A condition
 that must be true when entering the function (or all functions for a
 type-level precondition). Example: Input parameter x can’t be null.

	Postcondition: A condition
 that must be true when leaving the function (or all functions for a
 type-level postcondition). Example: The return value will never be
 null.

	Invariant: A condition that
 must be true both before and after the function call (or all
 functions). Example: Field f will
 never be null.

If you think carefully
 about these descriptions, you’ll notice that preconditions are
 requirements on users of the functions, while postconditions are
 requirements on the functions themselves.
With a Design by Contract
 tool, these conditions are expressed as executable code. The tool enforces
 correctness at runtime, such as during testing (see [Meyer1997] and [Contract4J]). These days,
 Test-Driven Development [TDD] performs a similar role, although it
 is a less formal approach.
Back to LSP, it can be hard
 to define properties well. The freedom and
 flexibility of inheritance doesn’t provide much guidance, but
 design patterns can help.
Template Method is a
 pattern that provides a useful constraint on subtype
 polymorphism [GOF1995]. It is error-prone to override
 concrete methods; it’s easy to forget to call the parent method when you
 should; it’s hard to avoid duplication, etc. In Template Method, instead
 of overriding a concrete method, we implement the method once in the base
 class as a template that defines the protocol of the behavior. This method
 calls abstract methods to provide specific pieces of
 the overall computation. Those abstract methods are implemented in each
 subclass, giving you a constrained form of
 polymorphic behavior that is easier to keep LSP compliant.
Functional programming
 gives us a similar tool, higher-order functions.
 Recall that filter, map, and fold
 implement specific operations, but the details are customizable by the
 function argument.
Tip
Use Template Method and higher-order
 functions as an aid to conform to the Liskov Substitution
 Principle.

More on Design Patterns

Some people have claimed
 that FP makes design patterns obsolete, relics of
 flawed object-oriented languages where missing features
 had to be retrofitted by coding idioms. This view confuses the concept of
 patterns with particular example patterns themselves, which may or may not
 be relevant in different languages. It is true that some of the famous
 “Gang of Four” patterns [GOF1995] are a standard part of many functional
 languages. Singleton, Composite, Command, and Iterator might be built into
 a language or replaced by similar constructs. We just discussed how
 higher-order functions accomplish the same basic
 goals as Template Method.
At the same time, functional
 programming has its own set of patterns. One is fold and its variants. We’ll discuss another one
 shortly, pattern matching.
Many of the functional
 patterns are named after the concepts from Category Theory that inspired
 them. You might have heard the word Monad, for example. For our purposes
 we can say that a Monad is a container with a specific protocol for
 constructing a new instance of the container using the value in an old
 instance of the container. Monads have been used to sequence expressions.
 For example, Haskell code is normally side-effect-free and lazily
 evaluated. The runtime can defer execution of an expression until needed
 or never execute it. However, that would not work for IO. So, the “IO
 Monad” is used to isolate IO actions, maintain their order, and assure
 that they get executed, while maintaining a clean separation from the rest
 of the “pure” code.
An ugly pattern that won’t
 be missed is Visitor. It’s invasive, it’s confusing, and it exposes too
 many internal implementation details to “visitors.” Functional programming
 gives us other features that are far more elegant for accomplishing the
 same goals. Let’s discuss one of them, pattern
 matching.
Pattern Matching

A goal of Visitor is to
 replace the need for public getter methods, which expose implementation
 details. Instead, the visitor is allowed to “go inside the object.” A
 better approach that preserves modularity is to provide a protocol where
 objects can expose internal values while retaining control over what is
 exposed and how.
This is one use for
 pattern matching in functional languages (where the
 word “pattern” is not being used in the design pattern sense). In part,
 pattern matching is like switch
 statements on steroids, where you aren’t limited to checking just for
 integer or enum values (or booleans if you use if statements).
Functional pattern
 matching lets you ask questions like “Is this object of type List?”, “Is this object a list that
 starts with 1 and 2?”, etc. For each match, you can
 specify what action to take.
While you can partially
 simulate pattern matching with if
 statements in Java, you lose much of the power of the idea without
 better support. So, I’ll use an example written with extensions to Java
 that are loosely inspired by Scala’s syntax, to provide a sense of
 what’s possible. This example matches on an Object and looks for Lists:
package datastructures;
// Possible syntax extensions; won't compile for any version of Java.
public class PatternMatchExample {
 public static String match(Object obj) {
 switch (obj) {
 case EMPTY: // Is it an empty list?
 return "()";
 case NonEmptyList(1, 2): // A list with 1 and 2?
 return "(1,(2,())";
 case List<?> list(head,tail): // Any other List? Create head, tail variables
 return "("+head+","+match(tail)+")";
 default: // Not a List!!
 return "unrecognized object!";
 }
 }
}
The switch first tests the object to see if it is
 an empty list. Next, it looks for a two-element list with the literal
 values 1 and 2. After that, it determines if the object is any List at all. Note that if a match occurs in
 the last case, two variables, head
 and tail, are automatically created
 that reference the extracted head and tail of the
 matched list. Finally, the default clause handles the case of
 unrecognized types.
Looking at this code, it
 appears that I broke a cardinal rule of switch statements in
 object-oriented programming: Never switch on types in a type
 hierarchy! Use polymorphism instead!
I didn’t do the wrong
 thing for two reasons. First, List is
 an algebraic data type that will only ever have two
 concrete classes. So, this switch statement won’t break in the future,
 because we won’t modify the class hierarchy. (However, it probably would
 break if we were using Maps instead, which don’t constrain the allowed
 subtypes.)
The second reason takes
 us back to Visitor and its primary purpose: to “fake” adding new methods
 to existing types, where internal access to the implementation is
 required. I glossed over the bodies of the clauses just now, but
 actually, the match method is really
 a toString implementation (with some
 odd parts).
Earlier in the book, I
 complained about a gigantic Customer
 class that had every possible field and method anyone could want. The
 better alternative is to limit the methods on any class and to provide a
 way to implement new behaviors in a modular,
 separable way.
Here’s what I mean by
 separable: why do we have Object.toString in the first place? It’s
 occasionally useful for debugging, but often we really need XML, JSON
 (JavaScript Object Notation), or another consistent format. However, it
 would be crazy to embed XML or JSON dependencies in every object in the
 system. A better way is to have a module that understands XML
 serialization and knows how to serialize all the common types to and
 from XML. It would also need to provide a mechanism for us to specify
 how to serialize our own types.
The match (a.k.a. toString) method described above pulls
 together everything there is to know about converting a List to a particular String format. We could write similar modules
 for XML and JSON serialization. We can use the same approach for any
 behavior that is only needed by some clients, some of the time. When
 clients need XML serialization, for example, they can import our module
 for it. When they don’t need it, it’s not a burden on them.
Pattern matching gives us
 a new tool for modularity, where we can do data extraction in a way that
 is controlled by the types themselves. We can use pattern matching to
 implement new features, yet never pollute the original types with those
 features. We can localize feature development in one place, rather than
 spreading it over all the files for a type hierarchy.
Tip
Just because you can join behaviors with state in the same class
 doesn’t mean that you should.

What Makes a Good Type?

When you approach design
 with a sense of functional rigor, any imprecise type definition becomes
 suspect. Consider a typical object model that you might see in an IT
 application, a part of which is shown in the UML diagram in Figure 5-1.
[image: UML for an American payroll application.]

Figure 5-1. UML for an American payroll application.

What are the
 properties of the classes in this diagram? How do you
 ensure that Manager is substitutable
 for Employee, and 401K (an American tax-deferred retirement
 savings plan), Insurance, and Tax are substitutable for Deduction?
An object representation of
 these concepts makes sense conceptually and there is nothing wrong with
 modeling your domain in objects. However, in software, the imprecision and
 the fluid nature of real-world objects collides with the precision the
 machine demands. Worse, even if you find a snapshot
 today of what these concepts mean to you, they will surely change with
 tomorrow’s requirements.
Fortunately, not all domain
 concepts have this problem. Those that are relatively stable and have
 well-defined properties and operations fit the objectives for types in
 functional programming.
I think the domain concepts
 shown in Figure 5-1 don’t make good types. Their
 particular details are fluid, likely to change from one scenario to the
 next, from one development cycle to the next, even from one team to the
 next. For these concepts, slice what parts you need into maps of key-value
 pairs, then implement your scenarios with filter, map,
 and fold.
However, some of the domain
 concepts not shown will possess the stable, precise quality that makes
 them good types. Money in the financial world has
 precise rules for arithmetic and rounding. Post offices have standard
 formats for Street Addresses and there exist
 databases to verify whether an address is known to exist or not.
 Zip Codes have a standard format and criteria for
 validity. What examples come to mind from your domain?
In fact, any data that fits
 in a collection probably should not have its own
 dedicated type. The power of filter,
 map, and fold compel you! A type wrapper may not justify
 the cost of developing it.
Tip
Use types to represent domain concepts with stable, clear
 properties. Consider using maps, lists, trees, and sets to represent
 other domain concepts that are more fluid and imprecise.

Rethinking Object-Oriented Middleware

In Chapter 1, I discussed my skepticism about
 Object-Relational Mapping (ORM) and other object-based middleware. They
 can add needless complexity.
The power of the combinator
 functions, filter, map, and fold, make a compelling case for keeping data in
 collections. You can read the data from a database or other service into a
 collection, transform it as necessary, then send it back to the database,
 to another service, or to the UI (usually as JSON for web UIs). You avoid
 the overhead of converting data collections to objects and keep your code
 simpler. (The Anorm API, part of the Play Web
 Framework’s Scala Module, is a good example of this approach to
 persistence [Anorm].)
 Having domain objects in your code is nice for understanding the scenario
 being implemented, but the benefits don’t always justify the costs of
 using them.
Finally, reduction of
 middleware will increase your team’s agility, as more code in a mature
 application inevitably slows you down.

Exercises

	Look at a Java application you’ve worked on recently.
	How many classes could be made immutable without much
 difficulty? How many classes look like feature “kitchen sinks”?
 How many classes define methods that reinvent operations that
 would be easy to implement with filter, map, and fold, instead?

	How many polymorphic methods don’t obey the LSP?

	Look at the design patterns you use frequently. How might you
 change or replace them with functional patterns and idioms?

	Exercise 2 in Chapter 2
 explored how functions of different types can be substituted for each
 other. Can you explain those behaviors using the Liskov Substitution
 Principle?

Chapter 6. Where to Go From Here

Hopefully I’ve convinced you
 why functional programming is important for the challenges of our time. We
 only scratched the surface of this rich field. I hope you’ll continue
 learning and applying functional programming on your own.
So, where should you go next? I
 find it easier to learn abstract principles by writing real code. You could
 start by learning one of the scripting languages on the JVM, such as Groovy,
 JRuby, or Jython. While none of these languages is a functional language,
 per se, all have many functional features missing in Java, such as anonymous
 functions, collections with filter,
 map, fold, and other higher-order
 functions. (The names used by these languages may be different.) Along the
 way, you’ll find these languages useful for general development
 needs.
However, consider learning a
 real functional language, where you can see functional programming fully
 realized. In a few examples in this book we labored to represent some ideas
 in Java. Functional languages make them much easier to use.
Scala is my personal favorite,
 because it strives to unify both object-oriented and functional programming.
 Scala’s object-oriented support will let you continue to use familiar
 object-oriented concepts while you learn and start using functional
 concepts. Just be careful to avoid the trap of staying in familiar
 territory! [Wampler2011]
 provides a brief overview of the language and its compelling features. [Eckel2011] discusses how Scala
 has the succinct feel of a dynamically-typed language, like Python. For a
 more in-depth introduction, see Programming
 Scala [Wampler2009], the book I cowrote with Alex Payne. We
 tried hard to provide a pragmatic, developer-oriented introduction.
Clojure is the other
 well-known functional language on the JVM. It is a Lisp dialect that offers
 a powerful vision of how programming should be done, especially the
 management of state and mutability. In Clojure, all mutations of state are
 done through specific mechanisms, such as software transactional
 memory. Simple variable assignment is not supported. The greater
 discipline prevents many bugs and encourages you to think carefully about
 state and state transformations. Even if you don’t like Lisp syntax, it’s
 well worth learning Clojure, as the vision it presents is becoming a major
 influence on other languages. You can bet that whatever language you are
 using in 10 years will be heavily
 influenced by Clojure. Programming Clojure [Halloway2009] is an excellent
 introduction.
Finally, if you’re willing to
 go beyond the JVM, consider learning Haskell, which has been the incubator
 of many of the leading ideas in functional programming. Real World
 Haskell [O'Sullivan2009] and the whimsically named
 Learn You a Haskell for Great Good! [Lipovaca2011] are great
 introductions. Haskell is very different than most languages, so patience is
 required to learn it, but the profound insights it offers reward the
 effort.
If you are a Windows user,
 consider learning F#, Microsoft’s dialect of OCaml. F# is the first
 commercially-supported functional programming language
 available. OCaml itself has been used in projects on Wall Street, for
 example.
There are other great
 resources for further investigation, many of which are listed in the
 References. The videos on MSDN’s Channel 9, especially those by Erik Meijer,
 introduce basic and advanced functional topics [Channel 9]. The Structure and
 Interpretation of Computer Programs [Abelson1996] is a classic textbook for computer
 science. It’s not a book on functional programming, per se, but it walks the
 reader through a logical progression of computing principles, starting with
 functional programming concepts. Neal Ford’s “Functional Thinking” articles
 provide more examples of using functional concepts in several common
 languages [Ford2011].
 Finally, Why Functional Programming Matters [Hughes1990] is a more advanced,
 yet approachable discussion on the benefits of functional
 programming.
Functional Tools for Java

There are also good options
 targeted at the Java programmer. The [Functional Java] APIs define anonymous function types,
 similar to those we defined in Chapter 2. You can also find various
 functional data structures, parser combinators, and an Actor library.
 Similarly, the [Totally Lazy] library offers lots of useful
 features.
The [Akka] Framework is a powerful, emerging
 suite of tools for building robust, concurrent applications. Akka includes
 one of the most performant and feature-complete Actor APIs available. Akka
 also integrates with many other third-party APIs to provide support for
 software transactional memory, web services,
 persistence stores, etc. Akka provides both Java and Scala versions of its
 APIs. I fully expect that Akka will become a widely used tool for
 JVM-based applications in the next several years, much as the Spring
 Framework became ubiquitous in the past decade [Spring].

A Recap

In the introduction, I
 discussed these factors that make me emphasize functional programming over
 object-oriented programming in my work.
	I Have to Be Good at Writing Concurrent Programs
	All of us must know how to write robust code that scales
 horizontally to multiple CPU cores and servers.

	Most Programs Are Just Data Management Problems
	Big data requires very efficient
 management of resources. Those efficiencies also benefit “small
 data” and “no data” projects. Overreliance on object-relational
 mapping and other forms of object middleware lead to code bloat,
 poor performance, and lower agility. We should remember,
 What’s the simplest thing that could possibly
 work? and stay focused on the minimal implementation
 required. We can express the problem domain through DSLs when
 appropriate, but we shouldn’t assume that our domain object models
 should be implemented in code.

	Functional Programming Is More Modular
	Functional programming moves the abstraction layers lower, to
 core data structures and combinator functions.
 Combined with immutable values and side-effect-free functions, the
 modularity and reusability of functional code is usually better than
 similar object-oriented code. Because objects are so free to expose
 abstractions any way they want, they are less reusable and
 composable, which is a paradox.

	I Have to Work Faster and Faster
	Functional programming keeps my code concise, by minimizing
 unnecessary and “one-off” implementation constructs, and it keeps my
 code logically correct. These qualities, in turn, keep me more agile
 over the life of the project as requirements change and features
 evolve.

	Functional Programming Is a Return to Simplicity
	Functional programming isn’t simple, but
 it represents a return to simplicity: the goal
 of minimizing implementation size and complexity by rethinking our
 ideas of appropriate design patterns and implementation
 idioms.

We learned several tools to
 improve modularity and reuse.
	Custom classes aren’t always justified
	If data fits in a collection, it probably shouldn’t have its
 own class.

	Put your domain in domain-specific languages
	Resist the temptation to faithfully capture your domain model
 in code. Instead, express your domain in domain-specific languages
 (DSLs), when useful, and use the most straightforward, concise
 implementation you can behind the DSL.

	Function combinators
	The combinators filter,
 map, and fold are flexible and composable tools
 because they are higher-order functions. We can
 exploit that in Java, too, if we standardize on generic Function types, rather than rely on
 one-off, special interface types for callbacks.

	Use more generic types, like Function
	Find ways to replace special purpose types with more general
 replacements. Really, just be more aggressive about applying the
 tools you already use to find abstractions that eliminate
 duplication in your code.

I hope you have found
 Functional Programming for Java Developers
 stimulating and informative. I hope you are motivated to learn and embrace
 this exciting trend in software development.

Exercises

	Look at the [Ninety Nine Problems], originally written for Prolog,
 and try working out the solutions in Java. It might be easier to use
 the ListModule we discussed in
 Chapter 3 or the [Functional Java] or [Totally Lazy] libraries.
 Note that you can find solutions for other languages, too.

Appendix A. References

[Abelson1996] Harold
 Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and
 Interpretation of Computer Programs, MIT Press, 1996
[AbstractDT]
 Abstract Data Types, http://en.wikipedia.org/wiki/Abstract_data_type
[ACID] ACID,
 http://en.wikipedia.org/wiki/ACID
[Agha1987] Gul Agha,
 Actors, MIT Press, 1987
[Akka] Akka,
 http://akka.io/
[AlgebraicDT]
 Algebraic Data Types, http://en.wikipedia.org/wiki/Algebraic_data_type
[Anorm] Anorm, SQL Data
 Access with Play Scala, http://scala.playframework.org/documentation/scala-0.9.1/anorm
[Baldwin2000] Carliss
 Baldwin and Kim B. Clark, Design Rules: The Power of Modularity,
 Vol. 1, MIT Press, 2000
[Bird2010] Richard Bird,
 Pearls of Functional Algorithm Design, Cambridge
 University Press, 2010
[Bloch2008] Joshua Bloch,
 Effective Java Second Edition, Addison-Wesley,
 2008
[Caml] The Caml
 Language, http://ocaml.inria.fr
[CategoryTheory]
 Category Theory, http://en.wikipedia.org/wiki/Category_theory
[Channel9] Channel
 9, http://http://channel9.msdn.com/
[ChurchEncoding]
 Church Encoding, http://en.wikipedia.org/wiki/Church_numeral
[Clojure]
 Clojure, http://clojure.org
[CombinatoryLogic]
 CombinatoryLogic, http://en.wikipedia.org/wiki/Combinatory_logic
[Contract4J]
 Contract4J: Design by Contract for Java, http://polyglotprogramming.com/contract4j
[Eckel2011] Bruce Eckel,
 Scala: The Static Language That Feels Dynamic, http://www.artima.com/weblogs/viewpost.jsp?thread=328540
[Erlang] Erlang
 Programming Language, http://www.erlang.org/
[Ford2011] Neal Ford,
 Functional thinking: Thinking functionally, Part 1,
 http://www.ibm.com/developerworks/java/library/j-ft1/index.html
 (first in a series of articles)
[FSharp] Microsoft F#
 Developer Center, http://msdn.microsoft.com/en-us/fsharp
[FunctionalJava]
 Functional Java, http://functionaljava.org
[Ghosh2011a] Debasish Ghosh,
 DSL for the Uninitiated, Communications of
 the ACM, Vol. 54, No. 7, pages 44–50
[Ghosh2011b] Debasish Ghosh,
 DSLs in Action, Manning Publications, 2011
[Goetz2006] Brian Goetz, et
 al., Java Concurrency in Practice, Pearson Education,
 2006
[Goetz2010] Brian Goetz,
 State of the Lambda, http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-3.html
[GOF1995] Erich Gamma, Richard
 Helm, Ralph Johnson, and John Vlissides (“Gang of Four”), Design
 Patterns: Elements of Reusable Object-Oriented Software,
 Addison-Wesley, 1995
[Groovy] Groovy: An agile
 dynamic language for the Java Platform, http://groovy.codehaus.org
[Hadoop]
 Hadoop, http://hadoop.apache.org
[Halloway2009] Stuart
 Halloway, Programming Clojure, Pragmatic Programmers,
 2009
[Haskell] The Haskell
 Programming Language, http://haskell.org
[Hewitt1973] Carl Hewitt,
 Peter Bishop, and Richard Steiger, A Universal Modular Actor
 Formalism for Artificial Intelligence, http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B.pdf,
 1973
[Hoare2009] Tony Hoare,
 Null References: The Billion Dollar Mistake, http://qconlondon.com/london-2009/speaker/Tony+Hoare
[Hughes1990] John Hughes,
 Why Functional Programming Matters, http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
[Hutton1999] Graham Hutton,
 A tutorial on the universality and expressiveness of
 fold, Journal of Functional Programming 9 (4), Cambridge
 University Press, July 1999, pages 355–372
[Java6API] Java
 Platform SE 6 API, http://java.sun.com/javase/6/docs/api/
[JRuby] JRuby: 100%
 Pure-Java Implementation of the Ruby Programming Language,
 http://jruby.org/
[JUnit] JUnit,
 http://junit.org
[Jython] The Jython
 Project, http://jython.org
[Kay1998] Alan Kay, message on the
 “squeak-dev” mailing list, http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
[LazyVsNonStrict] Lazy vs.
 non-strict (Haskell.org), http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
[Lipovaca2011] Miran
 Lipovaca, Learn You a Haskell for Great Good!, http://learnyouahaskell.com/
[Lisp] Lisp (Programming
 Language), http://en.wikipedia.org/wiki/Lisp_(programming_language)
[LSP] Liskov Substitution
 Principle, http://en.wikipedia.org/wiki/Liskov_substitution_principle
[MapReduce]
 MapReduce, http://labs.google.com/papers/mapreduce.html
[Martin2003] Robert C.
 Martin, Agile Software Development: Principles, Patterns, and
 Practices, Prentice-Hall, 2003
[Mazzola2005] Guerino
 Mazzola, Gérard Milmeister, and Jody Weissman, Comprehensive
 Mathematics for Computer Scientists 2, Springer, 2005
[Meyer1997] Bertrand Meyer,
 Object-Oriented Software Construction (2nd Edition),
 Prentice-Hall, 1997
[Mockito]
 Mockito, http://mockito.org/
[Monad] Monad (Functional
 Programming), http://en.wikipedia.org/wiki/Monad_(functional_programming)
[MultiverseSTM]
 Multiverse STM, http://multiverse.codehaus.org/overview.html
[NinetyNine]
 P-99: Ninety-Nine Prolog Problems, https://sites.google.com/site/prologsite/prolog-problems/
[OCaml] Objective
 Caml, http://en.wikipedia.org/wiki/OCaml
[Odersky2008] Martin
 Odersky, Lex Spoon, and Bill Venners, Programming in
 Scala, Artima Press, 2008
[Odersky2009] Martin
 Odersky, Lex Spoon, and Bill Venners, How to Write an Equality
 Method in Java, http://www.artima.com/lejava/articles/equality.html
[Okasaki1998] Chris
 Okasaki, Purely Functional Data Structures, Cambridge
 University Press, 1998
[OSullivan2009] Bryan
 O’Sullivan, John Goerzen, and Don Steward, Real World
 Haskell, O’Reilly Media, 2009
[PeytonJones2007]
 Simon Peyton Jones, “Beautiful Concurrency,” in Beautiful
 Code, Andy Oram and Greg Wilson, editors, O’Reilly Media,
 2007
[Pierce1991] Benjamin C.
 Pierce, Basic Category Theory for Computer
 Scientists, MIT Press, 1991
[ProjectLambda]
 Project Lambda: JSR 335 (Lambda Expressions for the Java™
 Programming Language), http://openjdk.java.net/projects/lambda/
[QuickCheck]
 Introduction to QuickCheck, http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck
[Rabhi1999] Fethi Rabhi and Guy
 Lapalme, Algorithms: A Functional Programming
 Approach, Addison-Wesley, 1999
[Scala] The Scala
 Programming Language, http://www.scala-lang.org/
[Shivers] Olin Shivers,
 List Library (for Scheme), http://srfi.schemers.org/srfi-1/srfi-1.html#FoldUnfoldMap
[Smullyan1982] Raymond
 Smullyan, To Mock a Mockingbird, Oxford, 1982
[Spiewak2008] Daniel
 Spiewak, What is Hindley-Milner? (and why is it
 cool?), http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
[Spiewak2011] Daniel
 Spiewak, Extreme Cleverness, https://github.com/djspiewak/extreme-cleverness
[Spring] The Spring
 Framework, http://www.springsource.org/
[STM] Software Transactional
 Memory, http://en.wikipedia.org/wiki/Software_transactional_memory
[TDD] Test-Driven
 Development, http://en.wikipedia.org/wiki/Test-driven_development
[TotallyLazy]
 Totally Lazy, http://code.google.com/p/totallylazy/
[TypeInference]
 Type inference, http://en.wikipedia.org/wiki/Type_inference
[Wadler1992] Philip Wadler,
 The essence of functional programming, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9516
[Wadler1995] Philip Wadler,
 Monads for functional programming, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.9674
[Wampler2009] Dean Wampler
 and Alex Payne, Programming Scala, O’Reilly Media,
 2009
[Wampler2011] Dean Wampler,
 The Seductions of Scala, http://polyglotprogramming.com/papers/SeductionsOfScala.pdf

Glossary

	Abstract Data Type
	A more formal definition of the familiar idea that types should be
 defined by abstractions with hidden implementations. An abstract data
 type is defined only in terms of allowed operations, i.e., without
 specifying fields, since they are part of the implementation. Abstract
 data types may or may not be immutable. Representative examples include
 maps, queues, and stacks, where multiple implementations are possible
 (including mutable and immutable, as long as all state-changing
 operations are defined to return a reference to the possibly new
 instance). Contrast with algebraic data type, where
 only a well-defined set of public subtypes are allowed.

	Abstraction
	The outwardly visible state, state transformations, and other
 operations supported by a type. This is separate from the
 encapsulated implementation (fields and methods) of
 the abstraction. Scala traits and
 abstract classes are often used to define
 abstractions and optionally implement them. Concrete
 types provide complete implementations.

	ACID
	A desired property of database transactions. They should support
 atomicity, consistency, isolation, and durability. See [ACID] for more
 details.

	Actor
	An autonomous sender and receiver of messages in the
 actor model of concurrency.

	Actor Model of Concurrency
	A concurrency model where autonomous actors
 coordinate work by exchanging messages. An actor’s messages are stored
 in a mailbox until the actor processes them.

	Agile and Agile Methods
	An umbrella term for several lightweight development processes and
 specific practices that are designed to minimize process waste, while
 improving code quality and communications with project
 stakeholders.

	Algebraic Data Type
	A special kind of data type that is defined in Java by an
 interface and a fixed set of possible implementing classes, representing
 all possible instances of the data type. There may be a well-defined set
 of operations that maps instances of one type to new instances of the
 same type or one of the other types. Algebraic data types are always
 containers for other types (e.g., list and
 option). Contrast with abstract data
 type, where the implementing subtypes are not limited and are
 often hidden from the user of the type.

	Anonymous Function
	A value that is a
 function (as opposed to a class instance or a
 primitive value) without a name in the usual way that methods are named.
 Languages that support anonymous functions have a special syntax for
 defining the value. For example, using the planned
 lambda syntax in Java 8, addCallback(#{Event e -> log(INFO, e)})
 passes an anonymous function to some addCallback method. The anonymous function
 takes a single argument of type Event
 and logs it. Anonymous functions are sometimes called
 lambdas (for historical reasons) or
 function literals. See also
 closure.

	Associative Arrays
	Another common name for the map data structure, i.e., a collection
 of key-value pairs.

	Base Type
	A synonym for parent type or
 supertype.

	Big Data
	A buzzword for the challenges of and approaches to working with
 data sets that are too big to manage with traditional tools, such as
 relational databases. So called NoSQL databases,
 clustered data processing tools like MapReduce, and
 other tools are used to gather, store, and analyze such data
 sets.

	Bound Variable
	A variable that is declared as an argument to
 an anonymous function or is a local variable
 declared within the function. It is “bound” to a value when the function
 is invoked.

	Bridge
	A design pattern where a reference to an
 object is separated from the instance itself, allowing both to vary
 independently. Also known as “handle/body.” Bridge is used in
 Software Transactional Memory to allow references
 to values to be changed in a controlled way. It is also used in some
 Actor libraries, like the [Akka] library, to allow clients to
 keep the same reference to an actor, even if the actual instance has
 been replaced with a new one.

	Category Theory
	A branch of mathematics that studies collections of “objects”
 (used more generally than in object-oriented programming) and “arrows”
 or “morphisms” that connect the objects in some sense. Category theory
 has been a fruitful source of ideas for concepts in functional
 programming.

	Child Type or Child Class
	A class which is derived from another class
 and also optionally implements one or more interfaces. Also called a
 subtype or derived type. See
 inheritance.

	Class
	A template for creating instances. A class defines implementation
 of methods and fields. A class
 defines type.

	Closure
	A function with every free
 variable referenced in the function bound to variables of the
 same name in the enclosing scope where the function is defined. The free
 variables are “closed over,” hence the name. See also bound
 variable.

	Combinators
	Functions that return an instance of one of their input types,
 which can be “combined,” according to the rules of Combinatory
 Logic, to build more complex logic. The result can then be
 applied to values to perform the computation. The filter, map, and fold functions are combinators.

	Combinatory Logic
	A model of computation invented by Haskell Curry and others that
 eliminates explicit variables and instead expresses calculations as the
 combination of operators (higher-order functions)
 that will be applied to data when used.

	Composable (or Composition)
	The ability to join software “modules” together with relatively
 little effort to create new behaviors and representations of state from
 the individual behaviors and states provided by the components.

	Comprehensions
	“Comprehending” the elements of a collection or
 lazy representation of one (such as all integers),
 including filtering, mapping, and folding over them. In some languages,
 comprehensions are syntactic sugar for filter, map, and fold invocations.

	Concurrency
	A model of computation with simultaneous sequences of computation
 and unpredictable interaction between the sequences. For example, two
 threads in an application that occasionally communicate. In contrast to
 parallelism, the apparent simultaneity might be an
 illusion, for example when the program executes on a single CPU with a
 single core. An example of the unpredictability of concurrency is the
 handling of asynchronous events, such as user input or network traffic.
 The precise sequence of execution steps that will occur in the entire
 program can’t be predicted in advance. Contrast with
 parallelism.

	Contract
	The protocol and requirements that exist between a module (e.g.,
 class, object, or single method) and clients of the module. More
 specifically, see design by contract.

	Coupling
	In this context, how closely dependent one “module” is on the
 details of another. Strong coupling between two
 modules makes the reuse and evolution of either module more difficult.
 It also becomes harder to substitute one module for another, if both
 satisfy the same public abstractions. Hence weak
 coupling is generally preferred.
 Inheritance is an example of strong
 coupling.

	Currying
	Converting an N argument function into a sequence of N functions
 of one argument, where each function except for the last returns a new
 function that takes a single argument that returns a new function, etc.,
 until the last function that takes a single argument and returns a
 value.

	Declarative Programming
	The quality of many functional programs and
 domain-specific languages where the code consists
 of statements that declare relationships between values, rather than
 directing the system to take a particular sequence of actions. The
 underlying runtime can then decide how to “satisfy” the relationships.
 Contrast with imperative programming.

	Derived Type
	A synonym for sub type and child
 type.

	Design by Contract
	An approach to class and module design invented by Bertrand Meyer
 for the Eiffel language [Meyer1997]. For each entry point (e.g.,
 method call), valid inputs are specified in a programmatic way, so they
 can be validated during testing. These specifications are called
 preconditions. Similarly, assuming the
 preconditions are satisfied, specifications on the guaranteed results
 are called postconditions and are also specified in
 an executable way. Invariants can also be specified
 that should be true on entry and on exit.

	Design Pattern
	A solution to a problem in a context. A code idiom or design
 structure that satisfies the needs of a frequently occurring problem,
 constraint, requirement, etc. The “context” portion of the definition is
 important, as it specifies conditions when the pattern is an appropriate
 choice and when it isn’t.

	Domain-Specific Language
	A custom programming language that resembles the terms, idioms,
 and expressions of a particular domain. An internal
 DSL is an idiomatic form of a general-purpose programming language. That
 is, no special-purpose parser is required for the language. Instead, DSL
 code is written in the general-purpose language and parsed just like any
 other code. An external DSL is a language with its
 own grammar and parser. In Java, good examples of internal DSLs include
 most “mocking” frameworks for testing. See, for example, [Mockito].

	Eager Evaluation
	Evaluation of an expression (such as computing a value) as soon as
 the expression is encountered, rather than delaying evaluation until the
 result is actually needed, on demand, which is called lazy
 evaluation. Eager
 evaluation is sometimes called “call by name.”

	Encapsulation
	Restricting the visibility of members of a type so they are not
 visible to clients of the type when they shouldn’t be. This is a way of
 exposing only the abstraction supported by the
 type, while hiding implementation details, which prevents unwanted
 access to them from clients and keeps the
 abstraction exposed by the type consistent and
 minimal.

	Event
	The notification of a state change in event-based
 concurrency.

	Event-Based Concurrency
	A form of concurrency where events are used to signal important
 state changes and handlers are used to respond to the events.

	Factory
	A general term for several related design
 patterns that abstract the process of constructing
 objects.

	Field
	A variable in an object that holds part of the object’s
 state.

	Final
	Keyword for declarations. For types, final prevents users from subclassing the
 type. For methods, final prevents
 users from overriding the members. For variables, final prevents users from reassigning the
 values.

	First-Class Value
	An indication that the applicable “concept” is a first-class
 construct in the language, meaning you can assign instances to
 variables, pass them as function parameters, and return them from
 functions. In Java, primitives and objects are first-class values, while
 functions and classes themselves are not. Most
 other programming languages support functions as first-class values, at
 least in some form.

	Free Variable
	A variable that is referenced in an
 anonymous function, but is not passed in as an
 argument nor declared as a local variable. Therefore, it must be “bound”
 to a defined variable of the same name in the scope where the anonymous
 function is defined, to form a closure.

	Function
	Similar to a method, but not bound to a
 particular class or object. Functions are first-class
 values in functional programming languages, and they can
 usually be defined “anonymously”; see anonymous
 function. Functions also have no side effects in functional
 programming, meaning they don’t change state, but only return new
 values.

	Function Literal
	A less commonly used name for an anonymous
 function. See also lambda.

	Functional Programming
	A form of programming that follows the mathematical principles for
 function and variable behaviors. Mathematical functions are
 side-effect-free and first-class
 values. Variables are assigned once, so values are
 immutable.

	Generics
	Types that are defined with type parameters representing other
 types that they use. For example, Java’s List<T>. When an instance of a generic
 type is created, the type parameters must be specified with actual
 types. The term parameterized types is sometimes
 used instead.

	Higher-Order Functions
	Functions that take other functions as arguments or return a
 function value.

	Immutable Value
	A value that can’t be changed after it has been initialized.
 Contrast with mutable value.

	Imperative Programming
	The quality of many object-oriented and
 “procedural” programs where the code consists of statements directing
 the system to take a particular sequence of actions. Contrast with
 declarative programming.

	Infinite Data Structure
	A data structure that represents a non-terminating collection of
 values (such as the non-negative integers), but which is capable of
 doing so without exhausting system resources. The values are not
 computed until the data structure is asked to produce them. As long as
 only a finite subset of the values are requested, resource exhaustion is
 avoided.

	Inheritance
	A strong coupling between one class or
 interface and another. The inheriting (derived)
 class or interface incorporates the members of the
 parent class or interface, as if they were defined
 within the derivative. Hence, inheritance is a form of reuse. The
 derivative may override inherited members (unless declared final). For a properly defined derived type,
 instances of it are substitutable for instances of
 the parent, satisfying the Liskov Substitution
 Principle.

	Instance
	Another term for an object created by
 invoking a class constructor or a value of a
 primitive type.

	Invariance and Invariant
	In the context of design by contract, an
 assertion that should be true before and after a method is
 executed.

	Lambda
	In the days when Alonzo Church and others were developing
 lambda calculus, it got its name from the use of
 the Greek letter lambda (λ) to represent a function. As a result, the
 term is often used for anonymous functions.

	Lazy Evaluation and Laziness
	A feature of mathematics and many functional languages where
 expression evaluation is delayed until its value is needed, rather than
 doing the evaluation eagerly. This feature is
 useful for delaying or eliminating expensive evaluations, preventing
 unnecessary re-evaluations (e.g., through
 memoization), and for representing infinitely large
 data structures, where only some of the values will be needed. Compare
 with eager evaluation and contrast with
 strict reduction. Lazy evaluation is sometimes
 called “call by need.”

	List
	The fundamental data structure in functional programming,
 representing a linked list, which is implemented as a “head” element and
 a “tail” linked list that represents the rest of the list. Lists are
 algebraic data types; there are only two concrete
 types that represent all lists, a type for empty lists and a type for
 non-empty lists. There are also well-defined rules for transitioning
 from one to the other. Compare with map.

	Liskov Substitution Principle
	Named after its inventor, Barbara Liskov, it specifies that if a
 type T has certain properties P, then instances of a different type T2
 can be substituted for instances of T if and only if T2 also satisfies
 the same properties P. In object-oriented programming, inheritance is
 normally used to define these type relationships. See also [LSP].

	Map
	The common data structure in programming, representing a
 collection of key-value pairs. Maps have a well-defined abstraction that
 declares operations that can be performed on the map. A wide variety of
 implementations are possible, often based on performance and resource
 tradeoffs. Because there is no fixed set of possible implementing types
 and the focus is instead on the abstract “specification,” maps are an
 example of an abstract data type. Compare with
 list.

	MapReduce
	A divide and conquer strategy for processing large data sets in
 parallel. In the “map” phase, the data sets are subdivided. The desired
 computation is performed on each subset. The “reduce” phase combines the
 results of the subset calculations into a final result. MapReduce
 frameworks handle the details of managing the operations and the nodes
 they run on, including restarting operations that fail for some reason.
 The user of the framework only has to write the code for mapping and
 reducing the data sets.

	Member
	A generic term for a field or
 method declared in a
 class.

	Memoization
	A form of caching that optimizes function invocations. The results
 from a function’s invocations are saved so that when repeated
 invocations are made with the same inputs, the cached results can be
 returned instead of re-invoking the function. Memoization is only useful
 for functions that are side-effect-free.

	Message
	In the actor model of concurrency, messages
 are exchanged between actors to coordinate their work. In
 object-oriented programming, method invocation is sometimes referred to
 as “sending a message to an object,” especially in certain languages
 (for example, Smalltalk).

	Method
	A function that is defined by a class and can
 only be invoked in the context of the class or one of its
 instances.

	Monad
	A Category Theory concept adopted in
 functional programming. A monad is a kind of container with a protocol
 for adding elements to it. For example, Monads are used to sequence
 computations that must be evaluated in a particular order (such as IO)
 that would otherwise be lazy and evaluated in arbitrary order, if at
 all. Monads are also useful for isolating code with side effects (which
 is also incompatible with laziness).

	Mutable Value
	A value that can be changed after it has been initialized.
 Contrast with immutable value.

	NoSQL
	An umbrella term for non-relational data stores, hence the name.
 These stores sacrifice ACID transactions for
 greater scalability and availability.

	Object
	A cohesive unit with a particular state, possible state
 transitions, and behaviors. In Java, an object is an
 instance of a class.

	Object-Oriented Programming
	A form of imperative programming that
 encapsulates state values and related operations, exposing a cohesive
 abstraction to clients of the object while hiding internal
 implementation details. Java’s object model is based on
 classes; objects are instantiated from classes.
 Most class-based, object-oriented languages also support subtyping to
 define specializations and “family” relationships between types.

	Overloaded Functions
	Two or more functions defined in the same scope (e.g., as methods
 in a type or as “bare” functions) that have the same name, but different
 signatures.

	Overridden Functions
	When a function with a particular signature in a parent
 class is redefined in a child class, so
 its behavior changes. Overridden functions must obey the
 Liskov Substitution Principle.

	Parallelism
	Computation sequences that happen at the same time, because they
 are running on separate CPU cores or separate servers. Parallelism is a
 deterministic model in the sense that sequences are spawned at specific
 points in the program and the program often waits at another point until
 all the parallel sequences have finished (called “joining”). Contrast
 with concurrency.

	Parameterized Types
	An alternative term for generics.

	Parametric Polymorphism
	The property of generic types like List<T> that their behavior is
 independent of the actual type for T.

	Parent Type or Parent Class
	A class from which another class is derived.
 Also called a supertype or base
 type. See inheritance.

	Partial Application
	A feature of many languages where a function can be invoked with
 only a subset of its arguments supplied, yielding a new function that
 takes the remaining arguments. Some languages only permit “curried”
 functions to be invoked in this way (see
 currying).

	Pattern Matching
	An advanced form of switch expressions that support matching
 instances by type and extracting values from those types, e.g.,
 field values.

	Precondition
	An assertion that should be true on entry to a method or other
 entry point. See design by contract.

	Postcondition
	An assertion that should be true on exit from a method or other
 boundary point. See design by contract.

	Primitive Type
	The non-object types in Java, e.g., int, long,
 float, double, and boolean.

	Pure
	Used in the context of functions to mean that they are
 side-effect-free. See also referential
 transparency.

	Recursion
	When a function calls itself as part of its computation. A
 termination condition is required to prevent an infinite recursion. You
 can also have cycles of recursion between two or more functions. See
 also tail-call recursion.

	Referential Transparency
	The property of an expression, where it can be replaced with its
 value without changing the behavior of the code (see
 memoization). This can only be done with
 side-effect-free expressions (e.g., functions) when
 the inputs are the same.

	Scope
	A defined boundary of visibility,
 constraining what variables, types and their members are visible within
 it.

	Side-Effect-Free
	Functions or expressions that have no side effects, meaning they
 modify no global or “object” state, only return new values.

	Signature
	For a function, the name, parameter list
 types, type parameters (for generic functions), and the return value.
 For a method, the signature also includes the type
 that defines the method.

	Singleton
	A design pattern where a class is implemented
 in a special way so that only one instance of the type is ever
 instantiated.

	State
	As in, “the state of an object,” where it means the set of the
 current values of an object’s fields. The state of
 the whole program is the set of all object states and the “value” of the
 stack.

	Static Typing
	Analyzing expressions in a program to prove that certain behaviors
 won’t occur, based on an analysis of the values the expressions can
 produce.

	Strict Reduction
	A concept similar to lazy evaluation, but
 pertaining to how expressions are reduced to simpler forms. See [Lazy vs. non-strict] for
 more details.

	Strong Coupling
	See coupling.

	Structure Sharing
	A technique for efficiently copying large,
 immutable data structures, where the parts that
 aren’t changing are shared between the old and new copies.

	Subtype
	A synonym for child type or derived
 type.

	Subtype Polymorphism
	The technical term for polymorphic behavior of a type hierarchy
 implemented using inheritance.

	Supertype
	A synonym for parent type or base
 type.

	Tail-Call Recursion
	A form of recursion where a function calls itself as the
 last thing it does, i.e., it does no additional
 computations with the result of the recursive call. Tail-call recursions
 can be automatically converted to loops, eliminating the overhead of
 creating a stack frame for each invocation. However, neither the JVM nor
 the Java compiler currently performs this optimization.

	Test Double
	A generic term for a special object that substitutes for a
 “normal” object in a test, e.g., to fake network I/O or do some
 verifications during execution.

	Test-Driven Development
	A development discipline where no new functionality is implemented
 until a test has been written that will fail initially, but pass once
 the functionality is implemented.

	Type
	A categorization of allowed states and operations on those states,
 including transformations from one state to another. In Java, the type
 of an object is a primitive type or the combination of its declared
 class (explicitly named or anonymous), the specific
 types used to resolve any parameters when the class is
 generic, and finally, any overridden methods that
 are defined when the instance is defined.

	Type Erasure
	A property of the generics type model on the
 JVM. When a type is created from a generic, the information about the
 specific types substituted for the type parameters is not stored in the
 byte code and is therefore not available at run time, e.g., through
 reflection.

	Type Inference
	Inferring the type of a value based on the context in which it is
 used, rather than relying on explicit type information attached to the
 value.

	Value
	The actual state of an instance, usually in the context of a
 variable that refers to the instance.

	Variable
	A named reference to a value. If the variable is declared with the
 final keyword, a new value can’t be
 assigned to the variable. Otherwise, a new value can be assigned to the
 variable.

	Visibility
	The scope in which a declared
 type or type member is visible
 to other types and members.

	Weak Coupling
	See coupling.

About the Author
Dean Wampler is a Principal Consultant at Think Big Analytics, where he specializes in "Big Data" problems and tools like Hadoop and Machine Learning. Besides Big Data, he specializes in Scala, the JVM ecosystem, JavaScript, Ruby, functional and object-oriented programming, and Agile methods. Dean is a frequent speaker at industry and academic conferences on these topics. He has a Ph.D. in Physics from the University of Washington.

Colophon
The animal on the cover of Functional Programming for Java
 Developers is a pronghorn antelope.
The cover image is from Johnson’s Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages875220.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages875218.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages875213.jpg
Functional
Programming

JorJous Dercipers

OEBPS/httpatomoreillycomsourceoreillyimages875226.png
—]

Manager

—)

Employee

Deduction

Paycheck

Pay

1

401K

Insurance

Tax

OEBPS/httpatomoreillycomsourceoreillyimages875222.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages875224.png.jpg

OEBPS/oreilly_large.gif
O’REILLY

