CRACKING CODES
WITH PYTHON







PRAISE FOR
CRACKING CODES WITH PYTHON

“Definitely worth the read even as an experienced Python developer.
I learned more about cryptography and even a few new Python tricks.”

—RAyY DoyLE, THE ETHICAL
HACKER NETWORK

“I recommend this book for anyone who wants to learn Python/
programming and is interested in security or puzzles.”

—JEANNE BovARsKYy, CODE RANCH

“A fantastic programming and cryptography course for any high
school-aged child.”

—KIRSTEN WEST, THE OLD SCHOOLHOUSE
MAGAZINE

“This book is an excellent resource for the complete beginner who
wants to learn something about programming and wants to learn
something about ciphers.”

—Davibp LowRry-DubDA, SENIOR
RESEARCH SCIENTIST AT ICERM

“If learning Python while studying basic cryptography is of interest, you
will find this book useful and well worth your time.”
—MATTHEW HELMKE, SENTOR
TecHNICAL CONTENT DEVELOPER
AT GRAFANA






CRACKING
CODES WITH
PYTHON

An Introduction to Building
and Breaking Ciphera

by Al Sweigart

¢

nho starch
press



CRACKING CODES WITH PYTHON. Copyright © 2018 by Al Sweigart.

Some rights reserved. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-sa/3.0/us/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Sixth printing
26 25 24 23 22 678910

ISBN-10: 1-59327-822-5
ISBN-13: 978-1-59327-822-9

Publisher: William Pollock

Production Editor: Riley Hoffman

Cover Illustration: Josh Ellingson

Interior Design: Octopod Studios

Developmental Editors: Jan Cash and Annie Choi

Technical Reviewers: Ari Lacenski and Jean-Philippe Aumasson
Copyeditor: Anne Marie Walker

Compositors: Riley Hoffman and Meg Sneeringer

Proofreader: Paula L. Fleming

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch Press,
Inc. directly at info@nostarch.com or:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Sweigart, Al, author.

Title: Cracking codes with Python : an introduction to building and breaking
ciphers / Al Sweigart.

Description: San Francisco : No Starch Press,Inc., [2018]

Identifiers: LCCN 2017035704 (print) | LCCN 2017047589 (ebook) | ISBN
9781593278694 (epub) | ISBN 1593278691 (epub) | ISBN 9781593278229 (pbk.)
| ISBN 1593278225 (pbk.)

Subjects: LCSH: Data encryption (Computer science) | Python (Computer program
language) | Computer security. | Hacking.

Classification: LCC QA76.9.A25 (ebook) | LCC QA76.9.A25 S9317 2018 (print) |
DDC 005.8/7--dc23

LC record available at https://lccn.loc.gov/2017035704

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.


http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Dedicated to Aaron Swartz, 1986-2013

“Aaron was part of an army of citizens that believes democracy only
works when the citizenry are informed, when we know about our
rights—and our obligations. An army that believes we must make
Justice and knowledge available to all—not just the well born or
those that have grabbed the reins of power—so that we may govern
ourselves more wisely. When I see our army, I see Aaron Swartz and
my heart is broken. We have truly lost one of our better angels.”

—Carl Malamud



About the Author

Al Sweigart is a software developer and tech book author living in San
Francisco. Python is his favorite programming language, and he is the
developer of several open source modules for it. His other books are
freely available under a Creative Commons license on his website hAttps://
inventwithpython.com/. His cat weighs 12 pounds.

About the Technical Reviewers

Ari Lacenski creates mobile apps and Python software. She lives in Seattle.

Jean-Philippe Aumasson (Chapters 22—-24) is Principal Research Engineer at
Kudelski Security, Switzerland. He speaks regularly at information security
conferences such as Black Hat, DEF CON, Troopers, and Infiltrate. He is
the author of Serious Cryptography (No Starch Press, 2017).



BRIEF CONTENTS

Acknowledgments . . .. ... Xix
Introduchion . . . ..o XXi
Chapter 1: Making Paper Cryptography Tools. . . .. ... ... ... .. ... . . . ... 1
Chapter 2: Programming in the Interactive Shell. . . ... ... ... ... ... ... ... 11
Chapter 3: Strings and Writing Programs . . . ... ... .. 21
Chapter 4: The Reverse Cipher . ... ... .. .. 39
Chapter 5: The Caesar Cipher. . ... ... .. .. 53
Chapter 6: Hacking the Caesar Cipher with Brute-Force . . ... ......... ... ... ...... 69
Chapter 7: Encrypting with the Transposition Cipher .. ....... ... .. ... ... ... ... 77
Chapter 8: Decrypting with the Transposition Cipher .. ............ ... ... ....... 99
Chapter 9: Programming a Program to Test Your Program ... .................... 113
Chapter 10: Encrypting and Decrypting Files. . . . ... ... ... ... ... . ... ... ... ... 127
Chapter 11: Detecting English Programmatically . ... ... ... ... ... ... ... ... 141
Chapter 12: Hacking the Transposition Cipher .. ... ... ... ... ... ... ... ... ... 161
Chapter 13: A Modular Arithmetic Module for the Affine Cipher . . .. ............ ... 171
Chapter 14: Programming the Affine Cipher. . . ... ... ... ... .. ... .. ... ... 185
Chapter 15: Hacking the Affine Cipher .. ....... ... ... ... ... ... ... ........ 197
Chapter 16: Programming the Simple Substitution Cipher. ... .................... 207
Chapter 17: Hacking the Simple Substitution Cipher . ... ......... ... ... .. ... ... 221
Chapter 18: Programming the Vigenére Cipher. . ... ...... ... ... . ... ... ...... 247
Chapter 19: Frequency Analysis ... ... .. 259

Chapter 20: Hacking the Vigenére Cipher . . ... ... ... ... ... ... ... ........ 279



Chapter 21: The One-Time Pad Cipher. . . ... ... ... ... .. .. 315

Chapter 22: Finding and Generating Prime Numbers. . . ......... ... ... ... .. .. 321
Chapter 23: Generating Keys for the Public Key Cipher . . ... ...... ... ... ... .. 335
Chapter 24: Programming the Public Key Cipher. . ... ... ... ... ... ... ... .... 349
Appendix: Debugging Python Code. . ... ... .. 375
INeX . .o 381

viii Brief Contents



CONTENTS IN DETAIL

ACKNOWLEDGMENTS xix
INTRODUCTION xXi
Who Should Read This Book® . ... ... ... . xxii
What's in This Book2 . . .. ... .. . .. e xxiii
How to Use This Book. . . . ... ... XXiv
Typing Source Code . ... ..ot XXiv
Checking for Typos . . . . .o oo XXV
Coding Conventions in ThisBook ... ............................. XXV
Online ReSOUrCes . . . ..ot XXV
Downloading and Installing Python ... ... ..o o XXV
Windows Instructions. . . ... ..o XXVi
macOS Instructions . ... ... XXVi
Ubuntu Instructions . .. ..ot XXVi
Downloading pyperclip.py . . . oo XXVi
Starting IDLE . . ..o XXVii
SUMMAIY . . Xxviii
1
MAKING PAPER CRYPTOGRAPHY TOOLS 1
What Is Cryptography? . .. ... . 2
Codes vs. Ciphers . . ... oo 3
The Caesar Cipher. . .. ... . . 4
The Cipher Wheel. . . . ... . . 4
Encrypting with the Cipher Wheel. . .. ... ... ... oo oo 5
Decrypting with the Cipher Wheel . ... ... ... ... . ... ... ... .. ... ..., 6
Encrypting and Decrypting with Arithmetic. . ............ ... .. ... ..... 7
Why Double Encryption Doesn't Work . .. ... ... .. 8
SUMMAIY . . oo 8
Practice QUESHONS . . . . . o 9
2
PROGRAMMING IN THE INTERACTIVE SHELL 11
Some Simple Math Expressions . ... ... ... . .. ... 12
Integers and Floating-Point Values . . ... ...... ... ... ... ... ....... 13
EXPressions . ... ... 13
Orderof Operations . . . ... ... .. . 14
Evaluating Expressions. . . . ... .. . 14
Storing Values with Variables . . ... ... .. .. . 15
Overwriting Variables . . .. .. ... . . . 17
Varigble Names . . .. ... o 18
SUMMAIY . o oo 18

Practice Questions . . . . . . ... 19



3
STRINGS AND WRITING PROGRAMS

Working with Text Using String Values . . . ... .. ... . i
String Concatenation with the + Operator ... ........ ... ... ... ......
String Replication with the * Operator. . . ......... ... ... ... ... .. ...
Getting Characters from Strings Using Indexes . . .. ...................
Printing Values with the print() Function. . . . ... ... ... ... . .
Printing Escape Characters . . .. .. ..
Quotes and Double Quotes. . . . ... ... .
Writing Programs in IDLEs File Editor. . ... ... ... .. .
Source Code for the “Hello, World!” Program. . . ...........................
Checking Your Source Code with the Online Diff Tool .. ......... ... ... ... ..
Using IDLE to Access Your Program Later .. ........ ... .. ... .. .. ... .. . . ...
Saving Your Program. . . . ... ..
Running Your Program. . . . . ...
Opening the Programs You've Saved ... ... ... ... ... .. ... ... ...
How the “Hello, World!” Program Works . . . ........ ... ... ... ... ... ... ....
Comments . .. ... ...
Printing Directionstothe User. . ... ......... ... ... ... ... .........
Taking a User's Input. ... ..o o
Endingthe Program. . . ... ... ... . .
SUMMATY .« oot
Practice Questions . . .. .. ... .. L

4
THE REVERSE CIPHER

Source Code for the Reverse Cipher Program ... ......... ... ... ............
Sample Run of the Reverse Cipher Program. . ... ......... ... .. .. ... ... ....
Setting Up Comments and Variables. .. .. ... ... ... . . o
Finding the Lengthof a String . . ......... ... .. ... ... ... ..
Introducing the while Loop . ... ... ... .. .
The Boolean Data Type . . ... .o oot
Comparison Operators . .. ...
Blocks . . .o o
The while Loop Statement. . .. ... ... .. ...
“Growing” a String . . . o
Improving the Program with an input() Prompt . . ... ... ... ..
SUMMAIY o oo
Practice Questions . . . . . ...

S
THE CAESAR CIPHER

Source Code for the Caesar Cipher Program. . .. .. ....... .. ... .. .. ... .....
Sample Run of the Caesar Cipher Program . . ... ...........................
Importing Modules and Setting Up Variables. . .. ............ ... ... ... ....
Constants and Variables . . ... .. .. .
The for Loop Statement . . .. .. ..

An Example forloop. .. ..o

A while Loop Equivalentof aforloop ... .......... ... ... ... .. .....

X Contents in Detail

21

22
23
24
24
27
28
29
30
31

32
32
33
34
34
34
34
35
35
36
37

39

40
40
41
41

43
43
45
46
47
50
50
51



The if Statement . . . . .. 59

An Example if Statement . ... ... 60
The else Statement. . . ... ... .. 60
The elif Statement . . ... .. . 61
The in and notin Operators . ... ... ... ... 61
The find() String Method . . . ... ... .. . 62
Encrypting and Decrypting Symbols . . .. ... .. ... 63
Handling Wraparound ... ... ... .. . . 64
Handling Symbols Outside of the Symbol Set . . . .. ................... 65
Displaying and Copying the Translated String . . . .. ... .. ... ... ... ... ... .... 65
Encrypting Other Symbols. . .. ... ... .. .. . 66
SUMMAIY .« o 66
Practice Questions . . . . ... . 67
6
HACKING THE CAESAR CIPHER WITH BRUTE-FORCE 69
Source Code for the Caesar Cipher Hacker Program . ... ........ ... ... ... .... 70
Sample Run of the Caesar Cipher Hacker Program .. ........... ... ... ... .... 71
Setting Up Variables. . .. ... . 72
Looping with the range() Function. . . ... ... .. ... .. ... 72
Decrypting the Message . . . ... ... 73
Using String Formatting to Display the Key and Decrypted Messages . . . . .. .. ... ... 75
SUMMAIY . oo 76
Practice Question. . . .. ... . 76
7
ENCRYPTING WITH THE TRANSPOSITION CIPHER 77
How the Transposition Cipher Works . . . ... ... ... ... ... ... .. ... ... .... 78
Encrypting a Message by Hand . ... ... .. ... . L o 79
Creating the Encryption Program. . . . ... ... ... ... ... ... ... ... ... .. 80
Source Code for the Transposition Cipher Encryption Program. . . .. .............. 81
Sample Run of the Transposition Cipher Encryption Program . ... ................ 82
Creating Your Own Functions with def Statements . .. .................. ... ... 82
Defining a Function that Takes Arguments with Parameters. . .. ........... 83
Changes to Parameters Exist Only Inside the Function . ... ...... ... ... .. 84
Defining the main() Function. . .. .. ... ... .. . . . 85
Passing the Key and Message As Arguments. ... ... .. ... it 86
The List DAta Type . . .o oottt e e 86
Reassigning the ltems in Lists. . . ... ... . .. . . . 87
Lists of Lists. . . ..o 88
Using len() and the in Operator with Lists. . . .. ...................... 89
List Concatenation and Replication with the + and * Operators . ... ... .. .. 89
The Transposition Encryption Algorithm. . . ... ... . ... ... ... ... ... ..... 90
Augmented Assignment Operators . . . ......... ..t 91
Moving currentindex Through the Message . . . ... ......... ... ... ... ... ..... 92
The join() String Method . . . .. .. L 93
Return Values and return Statements. . .. .. ... ... . L 94
A return Statement Example . . ... ... 94
Returning the Encrypted Cipherfext . .. .......... .. .. ... ... .. ..... 95
The _name__ Variable . .. ... . 95
SUMMAIY . o oo 96
Practice Questions . . . . ... . 97

Contents in Detail

xi



8

DECRYPTING WITH THE TRANSPOSITION CIPHER 99
How to Decrypt with the Transposition Cipher on Paper . ... ..... ... ... .. .. .. 100
Source Code for the Transposition Cipher Decryption Program .. ............... 101
Sample Run of the Transposition Cipher Decryption Program. . .. ............... 102
Importing Modules and Setfting Up the main() Function . .. ......... ... .. ...... 102
Decrypting the Message withthe Key . . . ....... .. .. ... .. ... ... ... ... 103
The round(), math.ceil(), and math.floor() Functions . . . ... ...... ... .... 103
The decryptMessage() Function. . . ... ... .. ... ... .. ... . ..., 104
Boolean Operators . . . ... .. 106
Adjusting the column and row Variables . . ........ ... .. ... ... . ... 109
Calling the main() Function . . ... ... ... . 110
SUMMAIY . o oo 110
Practice Questions . . . . . ... 111
9
PROGRAMMING A PROGRAM TO TEST YOUR PROGRAM 113
Source Code for the Transposition Cipher Tester Program . . . ... ......... ... ... 114
Sample Run of the Transposition Cipher Tester Program . ... ......... ... ... ... 115
Importingthe Modules . ... ... ... . . 116
Creating Pseudorandom Numbers . . .. ......... ... .. ... .. ... .. ... ... .. 116
Creating a Random String. . . ... .. .t 118
Duplicating a String a Random Number of Times . ... .......... ... .. 118
List Variables Use References . . ... ... . ... ... ... ... . .. ... 119
Passing References . .. ... ... ... . .. ... 121
Using copy.deepcopy() to Duplicate a List . . ....................... 122
The random.shuffle() Function . . . ... .. ... ... .. ... ... ... ... .... 122
Randomly Scramblinga String . ... ... ... ... 123
Testing Each Message . . ... ... .. . 123
Checking Whether the Cipher Worked and Ending the Program . .. ............. 124
Calling the main() Function . . ... ... . 124
Testing the Test Program . . . . ... ... . 125
SUMMAIY .« 125
Practice Questions . . . . ... ... 126
10
ENCRYPTING AND DECRYPTING FILES 127
Plain Text Files. . . ..o oo 128
Source Code for the Transposition File Cipher Program ... ................... 128
Sample Run of the Transposition File Cipher Program .. . ......... .. ... ...... 130
Working with Files. . . .. ... 130
Opening Files. . ... .. 131
Writingto and Closing Files. . ... ... ... .. .. ... .. ... .. .. ..... 131
Reading fromaFile. .. ... ... .. . . . . 132
Sefting Up the main() Function. . ... ... ... ... ... . ... .. .. 132
Checking Whether a File Exists . . ... ... ... 133
The os.path.exists() Function. . ... ... ... ... ... ... . ... ... ... . ... 133
Checking Whether the Input File Exists with the os.path.exists() Function . ... 134
Using String Methods to Make User Input More Flexible . . .. ......... ... ... ... 134
The upper(), lower(), and title() String Methods . . . ... ......... ... .... 134
The startswith() and endswith() String Methods . .. ......... ... ... .... 135
Using These String Methods inthe Program . . .. .. ...... ... ... ... ... 135

xii Contents in Detail



Reading the Input File. . ... .. ... . . 136

Measuring the Time It Took to Encryptor Decrypt. . ... ... ... oL 136
The time Module and time.time() Function. . .. ............. ... ..... 136
Using the time.time() Function in the Program . . ... ...... ... ... ... ... 137
Writing the Output File . . ... .. o 137
Calling the main() Function . . ... ... ... .. . 138
SUMMArY .« . 138
Practice Questions . . . . ... .. 139
11
DETECTING ENGLISH PROGRAMMATICALLY 141
How Can a Computer Understand Engllishe. . .. ... ... .. ... ... ... ... 142
Source Code for the Detect English Module. . . ......................... ... 143
Sample Run of the Detect English Module . . .. ....... ... ... ... ... ...... 145
Instructions and Setting Up Constants . . ... ... .. i 145
The Dictionary Data Type . . . ... oot 146
The Difference Between Dictionaries and Lists. . .. .. ................. 147
Adding or Changing ltems in a Dictionary . . . ...................... 147
Using the len() Function with Dictionaries . . ... ..................... 148
Using the in Operator with Dictionaries . . ... ....... ... ... .. ...... 148
Finding ltems Is Faster with Dictionaries than with Lists. .. .............. 149
Using for Loops with Dictionaries .. ............ ... ... ... ... 149
Implementing the Dictionary File. . .. .. ... ... .. ... ... 150
The split() Method . . . . ... ... . 150
Splitting the Dictionary File into Individual Words . . ... ....... ... ... 151
Returning the Dictionary Data. . . .. .. .. oo 151
Counting the Number of English Words in message. . .. ..................... 152
Divide-by-Zero Errors. . ... ... 152
Counting the English Word Matches . . . ....... ... . ... ... ..... 153
The float(), int(), and str() Functions and Integer Division. . . ............. 154
Finding the Ratio of English Words in the Message . . . . ............... 154
Removing Non-letter Characters ... ......... ... ... ... ... ... ... 155
The append() List Method. . . . ... ... ... ... . . 155
Creating a Stringof Lefters. . . ... ... ... .. . 156
Defecting English Words. . ... ... ... . . 156
Using Default Arguments . ... ... ... ... . ... ... 157
Calculating Percentages. . ... .. ... 157
SUMMAIY .« o oo 159
Practice Questions . . .. . ... 160
12
HACKING THE TRANSPOSITION CIPHER 161
Source Code of the Transposition Cipher Hacker Program ... .. ............... 162
Sample Run of the Transposition Cipher Hacker Program ... ... ............... 163
Importingthe Modules . ... ... . ... . .. .. 164
Multiline Strings with Triple Quotes. . .. ... ... ... . 164
Displaying the Results of Hacking the Message . .. ............ .. ... .. ...... 165
Getting the Hacked Message. . . . ... ... ... . 166
The strip() String Method . ... ... ... 167
Applying the strip() String Method. . . ... ... ... 168
Failing to Hack the Message . . ............ ... ... ... ... ... ..... 168

Contents in Detail xiii



Calling the main() Function . . ... ... ... .. 169

SUMMAIY o oo 169
Practice Questions . . .. . ... 169
13
A MODULAR ARITHMETIC MODULE FOR THE AFFINE CIPHER 171
Modular Arithmetic. . ... .. 172
The Modulo Operator. . . ... .. 173
Finding Factors to Calculate the Greatest Common Divisor .. .. ................ 173
Multiple Assignment . . .. ... 175
Euclid's Algorithm for Findingthe GCD. . . .. ... ... ... .. ... .. ... .. ...... 176
Understanding How the Multiplicative and Affine Ciphers Work .. .. .......... .. 177
Choosing Valid Multiplicative Keys . . .. ... .. .. ... .. .. 178
Encrypting with the Affine Cipher .. .. ... ... .. ... ... ... . 179
Decrypting with the Affine Cipher . . ... ... . ... ... ... ... ... 179
Finding Modular Inverses. . . ... ... ... . . . . 181
The Integer Division Operator. ... ... ... .. 181
Source Code for the Cryptomath Module . ... ....... ... ... .. ... ... ..... 182
SUMMAIY .« 183
Practice Questions . . . . ... .. 183
14
PROGRAMMING THE AFFINE CIPHER 185
Source Code for the Affine Cipher Program. . . .. ....... .. ... ... .. ... ..... 186
Sample Run of the Affine Cipher Program . . .. .. ... ... .. ... ... .. ..... 188
Setting Up Modules, Constants, and the main() Function. . .................... 188
Calculating and Validatingthe Keys. . .. ... ... ... .. .. ... ... ... 189
The Tuple Data Type . .. . oo oo 190
Checking for Weak Keys . . .. ... ... 190
How Many Keys Can the Affine Cipher Have? . . . ................. .. 191
Writing the Encryption Function. . ... ... ... .. 193
Writing the Decryption Function. . ... ... . ... ... ... . ... .. ... ... 194
Generating Random Keys . . . ... ... .. . 195
Calling the main() Function . . .. ... ... . 196
SUMMAIY . o oo 196
Practice Questions . . . . ... .. 196
15
HACKING THE AFFINE CIPHER 197
Source Code for the Affine Cipher Hacker Program . ... ............ ... ... ... 198
Sample Run of the Affine Cipher Hacker Program .. ............... ... ... ... 199
Setting Up Modules, Constants, and the main() Function. . ........... ... ... ... 200
The Affine Cipher Hacking Function . .. ... ... ... . . . 201
The Exponent Operator . . ... ...t 201
Calculating the Total Number of Possible Keys . .. ................... 201
The continue Statement . .. ... ... 202
Using continueto Skip Code . . ... ... ... . ... ... 203
Calling the main() Function . . ... ... ... 204
SUMMATY . o oo 205
Practice Questions . . .. ... .. 205

xiv Contents in Detail



16
PROGRAMMING THE SIMPLE SUBSTITUTION CIPHER

How the Simple Substitution Cipher Works . . .. ... ... ... . o .
Source Code for the Simple Substitution Cipher Program . ... .................
Sample Run of the Simple Substitution Cipher Program . .. ... ......... ... .....
Setting Up Modules, Constants, and the main() Function. . ... .................
The sort() List Method . . . .. ... ... . . . .. .
Wrapper Functions. . .. ...
The translateMessage() Function. . ... ... ... .. . .

The isupper() and islower() String Methods. . . ... ...... ... ... ... ....

Preserving Cases with isupper(). . ... ... .. .
GeneratingaRandomKey .. ... ... ... . .. ...
Calling the main() Function . . ... ... ... .
SUMMArY . oo
Practice Questions . . .. . ...

17
HACKING THE SIMPLE SUBSTITUTION CIPHER

Using Word Patterns to Decrypt. . . . ... oot
FindingWord Patterns. ... ... ... ... . ... ..
Finding Potential Decryption Lefters . . ... ........ ... .. ... .. .. ....
Overview of the Hacking Process. . . . ... ... ... .. . i
The Word Pattern Modules . . ... ... .. .
Source Code for the Simple Substitution Hacking Program .. ... ....... ... .....
Sample Run of the Simple Substitution Hacking Program. . ... .. ....... ... .....
Sefting Up Modules and Constants. . ... ... ...
Finding Characters with Regular Expressions. ... ......... ... .. ... .. ... ..
Setting Up the main() Function. . ... ... ... ... . .. . . .
Displaying Hacking Results tothe User . . .. .. ... ... .. .. . . . . .. ...
Creating a Cipherletter Mapping . . . . ... ..o
Creating a Blank Mapping. . . ......... ... ...
Adding lefterstoaMapping . ... ...
Intersecting Two Mappings. . . . ... . ... .
How the Letter-Mapping Helper Functions Work . .. ...... ... ... ..
Identifying Solved Lefters in Mappings. . . ... ..o
Testing the removeSolvedLetterFromMapping() Function. .. .............
The hackSimpleSub() Function . . . ... ... ... . ... . .
The replace() String Method . . ... ... ... ... ...
Decrypting the Message. . . .. .. ... o
Decrypting in the Interactive Shell . . ... ... ... ... ... ... .. ...
Calling the main() Function . . ... ... ..
SUMMAIY .«
Practice Questions . . . . ... .

18
PROGRAMMING THE VIGENERE CIPHER

Using Multiple Letter Keys in the Vigenére Cipher. . ... ....... ... ... .. ... ..
Longer Vigeneére Keys Are More Secure. . . .......... ... ... . .....
Choosing a Key That Prevents Dictionary Attacks ... .................

Source Code for the Vigenére Cipher Program . . ..........................

Sample Run of the Vigenére Cipher Program. .. . ........... ... ... ... ... ...

Contents in Detail

207

208
209
210
211
212
213
215
216
217
218
219
219
219

221

222
222
223
225
225
226
229
230
230
231
232
232
232
233
234
235
238
240
241
243
243
244
245
246
246

Xv



Setting Up Modules, Constants, and the main() Function. . ... ....... .. ... ..... 252

Building Strings with the ListAppend-Join Process. . ... ....... ... ... .. ... .. 253
Encrypting and Decrypting the Message . . .. .. .. ..o 255
Calling the main() Function . . ... .. .. 257
SUMMATY . o oo 257
Practice Questions . . . . . ... ... L 258
19
FREQUENCY ANALYSIS 259
Analyzing the Frequency of Letters in Text. . .. ... . ... ... . . ... 260
Matching Letter Frequencies . ... ... ... . . .. . 262
Calculating the Frequency Match Score for the Simple Substitution Cipher . . . 262
Calculating the Frequency Match Score for the Transposition Cipher. . . . . . . 263
Using Frequency Analysis on the Vigenére Cipher. . .. ................ 264
Source Code for Matching Letter Frequencies ... .......................... 265
Storing the Letters in ETAOIN Order. ... ... ... . i 266
Counting the LeftersinaMessage . .. ... ...t 267
Getting the First Memberof aTuple . .. ... .. ... ... . . L 268
Ordering the Letters in the Message by Frequency . . . .............. ... ... ... 268
Counting the Letters with getletterCount() . . ... ........ ... ... ... .... 269
Creating a Dictionary of Frequency Counts and Letter Lists . . .. ... ....... 269
Sorting the Letter Lists in Reverse ETAOIN Order. . .. ................. 270
Sorting the Dictionary Lists by Frequency . .. ......... ... ... ... ... ... 274
Creating a List of the Sorted Letters . . ... ......................... 276
Calculating the Frequency Match Score of the Message . . ... ................. 276
SUMMAIY . oo 277
Practice Questions . . . . ... .. 278
20 .
HACKING THE VIGENERE CIPHER 279
Using a Dictionary Attack to Brute-Force the Vigenére Cipher ... ......... ... ... 280
Source Code for the Vigenére Dictionary Hacker Program ... ................. 280
Sample Run of the Vigenére Dictionary Hacker Program. . ... .. ... ... .. .... 281
About the Vigenére Dictionary Hacker Program . . . .. ......... ... ... ... ..... 281
Using Kasiski Examination to Find the Key's length ... ....... ... ... .. ... .. 282
Finding Repeated Sequences . . ......... ... . ... .. ... ... ... 282
Getting Factors of Spacings . . . .. .. ... 283
Getting Every Nth Letters froma String. ... ........ ... ... ... ... .... 284
Using Frequency Analysis to Break Each Subkey. .. .................. 285
Brute-Forcing Through the Possible Keys. . .. ........ ... ... .. ... .. 287
Source Code for the Vigenére Hacking Program ... ...... ... ... ... ... ... 287
Sample Run of the Vigenére Hacking Program. . ... ... .. .. ... .. .. ... .... 293
Importing Modules and Setting Up the main() Function . . ............ ... ... ... 294
Finding Repeated Sequences. . . ... ... .. ... ... ... 294
Calculating the Factors of the Spacings. . . ............ ... ... ... ... .. ..... 297
Removing Duplicates with the sef() Function .. ......... ... ... ... .. 298
Removing Duplicate Factors and Sorting the List . .. ............ ... .. 298
Finding the Most Common Factors . ... ......... ... ... ... ... ..... 298
Finding the Most Likely Key Lengths . .. .. ... ... .. .. .. . .. 300
The extend() List Method . . ... ... ... .. ... ... .. .. .. ... ... ... 301
Extending the repeatedSeqSpacings Dictionary ... ......... ... ... ... 301
Getting the Factors from factorsByCount. .. ... ... ... ... ... ... 302

Xvi Contents in Detail



Getting Letters Encrypted with the Same Subkey. . .. ... ... ... ... ... .. ...
Attempting Decryption with a Likely Key Length . . .. ... ... ... ... .. ...
The end Keyword Argument forprint() . .. ........ .. ... ... ... ....
Running the Program in Silent Mode or Printing Information to the User . . . . .
Finding Possible Combinations of Subkeys. . . ......... ... ... ... ..
Printing the Decrypted Text with the Correct Casing. . . .. ..............
Returning the Hacked Message . .. ... ... .. .. . . .
Breaking Out of the Loop When a Potential Key Is Found. . .. ...........
Brute-Forcing All Other Key Lengths. ... ......... ... .. ... ... ... ...
Calling the main() Function . . ... ... . .
Modifying the Constants of the Hacking Program. . .. ......... ... ... ... .....
SUMMAIY .« o
Practice Questions . . .. ... ... .. L

21
THE ONE-TIME PAD CIPHER

The Unbreakable One-Time Pad Cipher .. ... ... .. ... ... ... ... ... .....
Making Key Length Equal Message length. . . ... ... .. .. ... ... ....
Making the Key Truly Random . .. ........ .. ... ... ... ... ... ....
Avoiding the Two-TimePad . . ......... ... ... ... .. ... ... ... ....
Why the Two-Time Pad Is the Vigenére Cipher . .. ... ...... ... ... ....
SUMMAIY . o oo
Practice Questions . . ... ...

22
FINDING AND GENERATING PRIME NUMBERS

Sample Run of the Prime Numbers Module . .. .. ... ... ... ... ... ... ...
How the Trial Division Algorithm Works . ... .. ... o oo
Implementing the Trial Division Algorithm Test . . ... ... ... ... ... ... ... ...
The Sieve of Eratosthenes . .. ... .. .. . .
Generating Prime Numbers with the Sieve of Eratosthenes ... .. ...............
The Rabin-Miller Primality Algorithm .. ... ... ... .
Finding Large Prime Numbers . . ... ... ... .
Generating Large Prime Numbers ... ... ... ... ... ...
SUMMAIY
Practice Questions . . .. ... ... ...

23
GENERATING KEYS FOR THE PUBLIC KEY CIPHER

Public Key Cryptography .. ... ... . .. . .
The Problem with Authentication . ... ... .. ... ... ... ... ...

Digital Signatures . . . .. ..o

Beware the MITM Attack . .. ... ...
Steps for Generating Public and Private Keys. . .. ........ ... ... ... ... ....
Source Code for the Public Key Generation Program . ... .............. ... ...
Sample Run of the Public Key Generation Program. . .. ......................
Creating the main() Function . ... ... .. ...

Contents in Detail

315

316
316
318
319
319
320
320

321

322
324
326
326
328
328
330
331
332
333
334
334

xvii



Generating Keys with the generateKey() Function. .. .......... ... .. ... ..... 343

CaleulatinganeValue .. ... ... 344
CaleulatingadValue .. ... 344
Returning the Keys. . . . ... .. . 345
Creating Key Files with the makeKeyFiles() Function . . ... ....... ... ... ... . ... 345
Calling the main() Function . . ... ... ... .. . 347
Hybrid Cryptosystems. . ... ... ... .. . 347
SUMMAIY . oot 348
Practice Questions . . .. . ... 348
24
PROGRAMMING THE PUBLIC KEY CIPHER 349
How the Public Key Cipher Works . . . ... ... ... ... . .. . . . ... 350
Creating Blocks. . ... ... . . 350
Converting a StringinfoaBlock . . ......... ... ... . .. . L. 350
The Mathematics of Public Key Cipher Encryption and Decryption. . .. ... .. 353
Converting aBlocktoa String ... ... . ... 354
Why We Can’t Hack the Public Key Cipher. .. ....... ... ... ... ... 355
Source Code for the Public Key Cipher Program ... ............. ... .. ... ... 357
Sample Run of the Public Key Cipher Program. .. ............ ... ... ... ... 360
Sefting Upthe Program. . . . ... ... . . . . . . 362
How the Program Determines Whether to Encrypt or Decrypt. .. .. .............. 362
Converting Strings to Blocks with getBlocksFromText(). ... ......... ... ... ... ... 363
The min() and max() Functions . .. ....... ... ... ... ... .......... 364
Storing Blocks in blockInt . .. ... ... ... . 364
Using getTextFromBlocks() fo Decrypt . . . ... ..o 366
Using the insert() List Method . . .. ... ... ... ... ... ... ... ... .. ... 367
Merging the Message Listinto One String . .. . ........ ... ... ... .... 367
Writing the encryptMessage() Function. . . ... ... ... . oo 367
Writing the decryptMessage() Function. . . ... ... ... ... . ... 368
Reading in the Public and Private Keys from Their Key Files. . ... ......... ... ... 369
Writing the EncryptiontoaFile . . ... ... .. ... . .. . . . 369
Decrypting fromaFile . ... ... . .. . .. . 371
Calling the main() Function . . ... .. .. 373
SUMMATY oot 373
APPENDIX
DEBUGGING PYTHON CODE 375
How the Debugger Works. . ... ... ... ... . . . . . . 375
Debugging the Reverse Cipher Program . . . ... ... ... ... ... ... ... ...... 377
Setting Breakpoints. . .. ..o 379
SUMMAIY . o oo 380
INDEX 381

xviii Contents in Detail



ACKNOWLEDGMENTS

This book would not have been possible without the exceptional work of
the No Starch Press team. Thanks to my publisher, Bill Pollock; thanks

to my editors, Riley Hoffman, Jan Cash, Annie Choi, Anne Marie Walker,
and Laurel Chun, for their incredible help throughout the process; thanks
to my technical editor, Ari Lacenski, for her help in this edition and back
when it was just a stack of printouts I showed her at Shotwell’s; thanks to
JP Aumasson for lending his expertise in the public key chapters; and
thanks to Josh Ellingson for a great cover.






INTRODUCTION

“I couldn’t help but overhear,
probably because I was eavesdropping.”
—Anonymous

If you could travel back to the early 1990s
with this book, the contents of Chapter 23
that implement part of the RSA cipher would

be illegal to export out of the United States.
Because messages encrypted with RSA are impossible
to hack, the export of encryption software like RSA

was deemed a matter of national security and required State Department
approval. In fact, strong cryptography was regulated at the same level
as tanks, missiles, and flamethrowers.

In 1990, Daniel J. Bernstein, a student at the University of California,
Berkeley, wanted to publish an academic paper that featured source code
of his Snuffle encryption system. The US government informed him that
he would need to become a licensed arms dealer before he could post his
source code on the internet. The government also told him that it would
deny him an export license if he applied for one because his technology
was too secure.



xxii

The Electronic Frontier Foundation, a young digital civil liberties orga-
nization, represented Bernstein in Bernstein v. United States. For the first
time ever, the courts ruled that written software code was speech protected
by the First Amendment and that the export control laws on encryption vio-
lated Bernstein’s First Amendment rights.

Now, strong cryptography is at the foundation of a large part of the
global economy, safeguarding businesses and e-commerce sites used by
millions of internet shoppers every day. The intelligence community’s pre-
dictions that encryption software would become a grave national security
threat were unfounded.

But as recently as the 1990s, spreading this knowledge freely (as this
book does) would have landed you in prison for arms trafficking. For a
more detailed history of the legal battle for freedom of cryptography,
read Steven Levy’s book Crypto: How the Code Rebels Beat the Government,
Saving Privacy in the Digital Age (Penguin, 2001).

Who Should Read This Book?

Introduction

Many books teach beginners how to write secret messages using ciphers.
A couple of books teach beginners how to hack ciphers. But no books
teach beginners how to program computers to hack ciphers. This book
fills that gap.

This book is for those who are curious about encryption, hacking, or
cryptography. The ciphers in this book (except for the public key cipher in
Chapters 23 and 24) are all centuries old, but any laptop has the compu-
tational power to hack them. No modern organizations or individuals use
these ciphers anymore, but by learning them, you’ll learn the foundations
cryptography was built on and how hackers can break weak encryption.

The ciphers yow'll learn in this book are fun to play with, but they don’t provide true
security. Don’t use any of the encryption programs in this book to secure your actual
files. As a general rule, you shouldn’t trust the ciphers that you create. Real-world
ciphers are subject to years of analysis by professional cryptographers before being put
mito use.

This book is also for people who have never programmed before. It
teaches basic programming concepts using the Python programming lan-
guage, which is one of the best languages for beginners. It has a gentle
learning curve that novices of all ages can master, yet it’s also a power-
ful language used by professional software developers. Python runs on
Windows, macOS, Linux, and even the Raspberry Pi, and it’s free to down-
load and use. (See “Downloading and Installing Python” on page xxv for
instructions.)

In this book, I'll use the term hacker often. The word has two defini-
tions. A hacker can be a person who studies a system (such as the rules of
a cipher or a piece of software) to understand it so well that they’re not
limited by that system’s original rules and can modify it in creative ways.



A hacker can also be a criminal who breaks into computer systems, violates
people’s privacy, and causes damage. This book uses the term in the first
sense. Hackers are cool. Criminals are just people who think they’re being
clever by breaking stuff.

What’s in This Book?

The first few chapters introduce basic Python and cryptography concepts.

Thereafter, chapters generally alternate between explaining a program for
a cipher and then explaining a program that hacks that cipher. Each chap-
ter also includes practice questions to help you review what you've learned.

Chapter 1: Making Paper Cryptography Tools covers some simple
paper tools, showing how encryption was done before computers.

Chapter 2: Programming in the Interactive Shell explains how to use
Python’s interactive shell to play around with code one line at a time.
Chapter 3: Strings and Writing Programs covers writing full programs
and introduces the string data type used in all programs in this book.
Chapter 4: The Reverse Cipher explains how to write a simple pro-
gram for your first cipher.

Chapter 5: The Caesar Cipher covers a basic cipher first invented thou-
sands of years ago.

Chapter 6: Hacking the Caesar Cipher with Brute-Force explains the
brute-force hacking technique and how to use it to decrypt messages
without the encryption key.

Chapter 7: Encrypting with the Transposition Cipher introduces the
transposition cipher and a program that encrypts messages with it.
Chapter 8: Decrypting with the Transposition Cipher covers the sec-
ond half of the transposition cipher: being able to decrypt messages
with a key.

Chapter 9: Programming a Program to Test Your Program introduces
the programming technique of testing programs with other programs.

Chapter 10: Encrypting and Decrypting Files explains how to write
programs that read files from and write files to the hard drive.

Chapter 11: Detecting English Programmatically describes how to
make the computer detect English sentences.

Chapter 12: Hacking the Transposition Cipher combines the concepts
from previous chapters to hack the transposition cipher.

Chapter 13: A Modular Arithmetic Module for the Affine Cipher
explains the math concepts behind the affine cipher.

Chapter 14: Programming the Affine Cipher covers writing an affine
cipher encryption program.

Chapter 15: Hacking the Affine Cipher explains how to write a pro-
gram to hack the affine cipher.

Introduction xxiii



XXiv

¢ Chapter 16: Programming the Simple Substitution Cipher covers writ-
ing a simple substitution cipher encryption program.

e Chapter 17: Hacking the Simple Substitution Cipher explains how to
write a program to hack the simple substitution cipher.

¢ Chapter 18: Programming the Vigenere Cipher explains a program for
the Vigenere cipher, a more complex substitution cipher.

e Chapter 19: Frequency Analysis explores the structure of English
words and how to use it to hack the Vigenere cipher.

¢  Chapter 20: Hacking the Vigenere Cipher covers a program for hack-
ing the Vigenére cipher.

e  Chapter 21: The One-Time Pad Cipher explains the one-time pad
cipher and why it’s mathematically impossible to hack.

e  Chapter 22: Finding and Generating Prime Numbers covers how to
write a program that quickly determines whether a number is prime.

e Chapter 23: Generating Keys for the Public Key Cipher describes pub-
lic key cryptography and how to write a program that generates public
and private keys.

¢ Chapter 24: Programming the Public Key Cipher explains how to write
a program for a public key cipher, which you can’t hack using a mere
laptop.

e The appendix, Debugging Python Code, shows you how to use IDLE’s
debugger to find and fix bugs in your programs.

How to Use This Book

Introduction

Cracking Codes with Python is different from other programming books
because it focuses on the source code of complete programs. Instead of
teaching you programming concepts and leaving it up to you to figure out
how to make your own programs, this book shows you complete programs
and explains how they work.

In general, you should read the chapters in this book in order. The
programming concepts build on those in the previous chapters. However,
Python is such a readable language that after the first few chapters, you can
probably jump ahead to later chapters and piece together what the code
does. If you jump ahead and feel lost, return to earlier chapters.

Typing Source Code

As you read through this book, I encourage you to manually type the source
code _from this book into Python. Doing so will definitely help you understand
the code better.

When typing the source code, don’t include the line numbers that
appear at the beginning of each line. These numbers are not part of the
actual programs, and we use them only to refer to specific lines in the code.
But aside from the line numbers, be sure to enter the code exactly as it
appears, including the uppercase and lowercase letters.



You’ll also notice that some of the lines don’t begin at the leftmost edge
of the page but are indented by four, eight, or more spaces. Be sure to enter
the correct number of spaces at the beginning of each line to avoid errors.

But if you would rather not type the code, you can download the source
code files from this book’s website at https://www.nostarch.com/crackingcodes/.

Checking for Typos

Although manually entering the source code for the programs is helpful
for learning Python, you might occasionally make typos that cause errors.
These typos can be difficult to spot, especially when your source code is
very long.

To quickly and easily check for mistakes in your typed source code, you
can copy and paste the text into the online diff tool on the book’s website
at https://www.nostarch.com/crackingcodes/. The ditf tool shows any differences
between the source code in the book and yours.

Coding Conventions in This Book

This book is not designed to be a reference manual; it’s a hands-on guide
for beginners. For this reason, the coding style sometimes goes against best
practices, but that’s a conscious decision to make the code easier to learn.
This book also skips theoretical computer science concepts.

Veteran programmers may point out ways the code in this book could
be changed to improve efficiency, but this book is mostly concerned with
getting programs to work with the least amount of effort.

Online Resources

This book’s website (https://www.nostarch.com/crackingcodes/) includes many
useful resources, including downloadable files of the programs and sample
solutions to the practice questions. This book covers classical ciphers thor-
oughly, but because there is always more to learn, I've also included sugges-
tions for further reading on many of the topics introduced in this book.

Downloading and Installing Python

Before you can begin programming, you’ll need to install the Python inter-
preter, which is software that executes the instructions you’ll write in the
Python language. I’ll refer to “the Python interpreter” as “Python” from
now on.

Download Python for Windows, macOS, and Ubuntu for free from
hitps://www.python.org/downloads/. If you download the latest version, all of
the programs in this book should work.

Be sure to download a version of Python 3 (such as 3.6). The programs in this book
are written to run on Python 3 and may not run correctly, if at all, on Python 2.

Introduction XXV


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.python.org/downloads/

xxvi

Windows Instructions

On Windows, download the Python installer, which should have a filename
ending with .msi, and double-click it. Follow the instructions the installer
displays on the screen to install Python, as listed here:

1. Select Install Now to begin the installation.
2. When the installation is finished, click Close.

macOS Instructions

On macOS, download the .dmg file for your version of macOS from the web-
site and double-click it. Follow the instructions the installer displays on the
screen to install Python, as listed here:

1. When the DMG package opens in a new window, double-click the
Python.mpkg file. You may have to enter your computer’s administrator
password.

2. Click Continue through the Welcome section and click Agree to accept
the license.

3. Select HD Macintosh (or the name of your hard drive) and click Install.

Ubuntu Instructions

If youre running Ubuntu, install Python from the Ubuntu Software Center
by following these steps:

Open the Ubuntu Software Center.

Type Python in the search box in the top-right corner of the window.
Select IDLE (using Python 3.6), or whatever is the latest version.
Click Install.

Ll

You may have to enter the administrator password to complete the
installation.

Downloading pyperclip.py

Introduction

Almost every program in this book uses a custom module I wrote called
pyperclip.py. This module provides functions that let your programs copy
and paste text to the clipboard. It doesn’t come with Python, so you’ll need
to download it from https://www.nostarch.com/crackingcodes/.

This file must be in the same folder (also called directory) as the Python
program files you write. Otherwise you’ll see the following error message
when you try to run your programs:

ImportError: No module named pyperclip

Now that you've downloaded and installed the Python interpreter and
the pyperclip.py module, let’s look at where you’ll be writing your programs.


https://www.nostarch.com/crackingcodes/

Starting IDLE

While the Python interpreter is the software that runs your Python pro-
grams, the interactive development environment (IDLE) software is where you’ll
write your programs, much like a word processor. IDLE is installed when
you install Python. To start IDLE, follow these steps:

e  On Windows 7 or newer, click the Start icon in the lower-left corner of
your screen, enter IDLE in the search box, and select IDLE (Python 3.6
64-bit).

e On macOS, open Finder, click Applications, click Python 3.6, and then
click the IDLE icon.

e On Ubuntu, select Applications » Accessories » Terminal and then
enter idle3. (You may also be able to click Applications at the top of the
screen, select Programming, and then click IDLE 3.)

No matter which operating system you're running, the IDLE window
should look something like Figure 1. The header text may be slightly differ-
ent depending on your specific version of Python.

| & Python 3.6.2 Shell - | X

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul & 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright™, "credits"™ or "license ()" for more information.

g0 3

Ln:3 Cok 4

Figure 1: The IDLE window

This window is called the interactive shell. A shell is a program that lets
you type instructions into the computer, much like the Terminal on macOS
or the Windows Command Prompt. Sometimes you’ll want to run short
snippets of code instead of writing a full program. Python’s interactive shell
lets you enter instructions for the Python interpreter software, which the
computer reads and runs immediately.

For example, type the following into the interactive shell next to the >>>
prompt:

>>> print('Hello, world!')

Press ENTER, and the interactive shell should display this in response:

Hello, world!

Introduction Xxvii



xxviii

Summary

Introduction

Before the introduction of computers ushered in modern cryptography,
breaking many codes was impossible using just pencil and paper. Although
computing made many of the old, classical ciphers vulnerable to attack,
they’re still fun to learn about. Writing cryptanalysis programs that crack
these ciphers is a great way to learn how to program.

In Chapter 1, we’ll start with some basic cryptography tools to encrypt
and decrypt messages without the aid of computers.

Let’s get hacking.



MAKING PAPER
CRYPTOGRAPHY TOOLS

“The encryption genie is out of the bottle.”
—Jan Koum, WhatsApp founder

let’s look at the process of encrypting and
decrypting with just pencil and paper. This will
help you understand how ciphers work and the math
that goes into producing their secret messages. In
this chapter, you’ll learn what we mean by cryptog-
raphy and how codes are different from ciphers. Then
you’ll use a simple cipher called the Caesar cipher to
encrypt and decrypt messages using paper and pencil.



TOPICS COVERED IN THIS CHAPTER

*  What is cryptography?

e Codes and ciphers

e  The Caesar cipher

e  Cipher wheels

*  Doing cryptography with arithmetic

*  Double encryption

What Is Cryptography?

Historically, anyone who has needed to share secrets with others, such

as spies, soldiers, hackers, pirates, merchants, tyrants, and political activ-
ists, has relied on cryptography to make sure their secrets stay secret.
Cryptography is the science of using secret codes. To understand what cryp-
tography looks like, look at the following two pieces of text:

nyr N.vNwz5uNz5Ns6620Nz0N3z2v INN2 Nuwyv,N9vyNNIVNrBN3zyN4vN

N yvNwzPvNz5N6I9NyvrQ Né Qvv0zénvN.7NOyv4AN 4 zzvNN
yOQNnvNwv tyNz vyN,NN99z0zz6wz0y3vv26 9
Nw964N6I9NSvzxysé690,N.vN2z5u- w296vyNNrriNyQst. 560N94Nub5y
3vNz Nr Ny64v,N.vNt64415ztr vNz rNSnz5vv5t6v63zNr5.

N 6N6 yv?0,Nr5uNz Nsvt64vON N755z6966NNvwé zu0 wiNxsébt

yvN7967v9 BN6wWNr33Q N-mé3 rz9v 49NrN3Ny9Nvzy!

The text on the left is a secret message that has been encrypted, or
turned into a secret code. It’s completely unreadable to anyone who doesn’t
know how to decrypt it, or turn it back into the original English message.
The message on the right is random gibberish with no hidden meaning.
Encryption keeps a message secret from other people who can’t decipher it,
even if they get their hands on the encrypted message. An encrypted message
looks exactly like random nonsense.

A cryptographer uses and studies secret codes. Of course, these secret
messages don’t always remain secret. A cryptanalyst, also called a code breaker
or hacker, can hack secret codes and read other people’s encrypted mes-
sages. This book teaches you how to encrypt and decrypt messages using
various techniques. But unfortunately (or fortunately), the type of hacking
you’ll learn in this book isn’t dangerous enough to get you in trouble with
the law.

2 Chapter 1



Codes vs. Ciphers

Unlike ciphers, codes are made to be understandable and publicly available.
Codes substitute messages with symbols that anyone should be able to look
up to translate into a message.

In the early 19th century, one well-known code came from the develop-
ment of the electric telegraph, which allowed for near-instant communica-
tion across continents through wires. Sending messages by telegraph was
much faster than the previous alternative of sending a horseback rider
carrying a bag of letters. However, the telegraph couldn’t directly send writ-
ten letters drawn on paper. Instead, it could send only two types of electric
pulses: a short pulse called a “dot” and a long pulse called a “dash.”

To convert letters of the alphabet into these dots and dashes, you need
an encoding system to translate English to electric pulses. The process of
converting English into dots and dashes to send over a telegraph is called
encoding, and the process of translating electric pulses to English when a
message is received is called decoding. The code used to encode and decode
messages over telegraphs (and later, radio) was called Morse code, as shown
in Table 1-1. Morse code was developed by Samuel Morse and Alfred Vail.

Table 1-1: International Morse Code Encoding

Letter  Encoding Letter  Encoding Number Encoding

A o — N — 1 [
B —coe ) —_— 2 co———
C —e—o P o——o 3 coo——
D —e Q —_ 4 cooe—

E . R o—e 5 XXX

F ce—eo S oo 6 —eoee
G —_— T - 7 ——cee
H ceee U oo — 8 —_—oe
| .o vV coe— o —_—
J ¢ —— W o —— 0 @ ————
K —— X —co—

L e—oe Y —_———

M - z ——e

Making Paper Cryptography Tools 3



4

By tapping dots and dashes with a one-button telegraph, a telegraph
operator could communicate an English message to someone on the other
side of the world almost instantly! (To learn more about Morse code, visit
https://www.nostarch.com/crackingcodes/.)

In contrast with codes, a cipheris a specific type of code meant to keep
messages secret. You can use a cipher to turn understandable English text,
called plaintext, into gibberish that hides a secret message, called the cipher-
text. A cipher is a set of rules for converting between plaintext and cipher-
text. These rules often use a secret key to encrypt or decrypt that only the
communicators know. In this book, you’ll learn several ciphers and write
programs to use these ciphers to encrypt and decrypt text. But first, let’s
encrypt messages by hand using simple paper tools.

The Caesar Cipher

Chapter 1

The first cipher you’ll learn is the Caesar cipher, which is named after Julius
Caesar who used it 2000 years ago. The good news is that it’s simple and
easy to learn. The bad news is that because it’s so simple, it’s also easy for a
cryptanalyst to break. However, it’s still a useful learning exercise.

The Caesar cipher works by substituting each letter of a message with
a new letter after shifting the alphabet over. For example, Julius Caesar
substituted letters in his messages by shifting the letters in the alphabet
down by three, and then replacing every letter with the letters in his shifted
alphabet.

For example, every A in the message would be replaced by a D, every B
would be an E, and so on. When Caesar needed to shift letters at the end
of the alphabet, such as Y, he would wrap around to the beginning of the
alphabet and shift three places to B. In this section, we’ll encrypt a message
by hand using the Caesar cipher.

The Cipher Wheel

To make converting plaintext to ciphertext using the Caesar cipher easier,
we’ll use a cipher wheel, also called a cipher disk. The cipher wheel consists of
two rings of letters; each ring is split up into 26 slots (for a 26-letter alpha-
bet). The outer ring represents the plaintext alphabet, and the inner ring
represents the corresponding letters in the ciphertext. The inner ring also
numbers the letters from 0 to 25. These numbers represent the encryption
key, which in this case is the number of letters required to shift from A to the
corresponding letter on the inner ring. Because the shift is circular, shifting
with a key greater than 25 makes the alphabets wrap around, so shifting
by 26 would be the same as shifting by 0, shifting by 27 would be the same
as shifting by 1, and so on.

You can access a virtual cipher wheel online at hAttps://www.nostarch.com/
crackingcodes/. Figure 1-1 shows what it looks like. To spin the wheel, click it
and then move the mouse cursor around until the configuration you want
is in place. Then click the mouse again to stop the wheel from spinning.


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

Click wheel to rotate.

s T UV w X Y Z A B CDUEF GHTI JKULMNUOPAOQR
A°B CDEF GHTI J KILMNOWPOQRSTUV WX Y Z
01 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1-1: The online cipher wheel

A printable paper cipher wheel is also available from the book’s web-
site. Cut out the two circles and lay them on top of each other, placing the
smaller one in the middle of the larger one. Insert a pin or brad through
the center of both circles so you can spin them around in place.

Using either the paper or the virtual wheel, you can encrypt secret
messages by hand.

Encrypting with the Cipher Wheel

To begin encrypting, write your message in English on a piece of paper.
For this example, we’ll encrypt the message THE SECRET PASSWORD IS
ROSEBUD. Next, spin the inner wheel of the cipher wheel until its slots
match up with slots in the outer wheel. Notice the dot next to the letter A
in the outer wheel. Take note of the number in the inner wheel next to this
dot. This is the encryption key.

For example, in Figure 1-1, the outer circle’s A is over the inner circle’s
number 8. We’ll use this encryption key to encrypt the message in our
example, as shown in Figure 1-2.

T|H|E SIE|C{RIE|T PIA|S|S|W[O[R|D I|S RIO|S|E|[B|U|D

BIP[M A|M{K|Z|M|B X|I{A[A|E|W|Z|L Q| A ZIW|A|M[I|C|L

Figure 1-2: Encrypting a message with a Caesar cipher key of 8
For each letter in the message, find it in the outer circle and replace it

with the corresponding letter in the inner circle. In this example, the first
letter in the message is T (the first T in “THE SECRET...”), so find the

Making Paper Cryptography Tools

5



6

Chapter 1

letter T in the outer circle and then find the corresponding letter in the
inner circle, which is the letter B. So the secret message always replaces a
T with a B. (If you were using a different encryption key, each T in the
plaintext would be replaced with a different letter.) The next letter in the
message is H, which turns into P. The letter E turns into M. Each letter on
the outer wheel always encrypts to the same letter on the inner wheel. To
save time, after you look up the first T in “THE SECRET...” and see that it
encrypts to B, you can replace every T in the message with B, so you only
need to look up a letter once.

After you encrypt the entire message, the original message, THE
SECRET PASSWORD IS ROSEBUD, becomes BPM AMKZMB XIAAEWZL
QA ZWAM]JCL. Notice that non-letter characters, such as the spaces, are
not changed.

Now you can send this encrypted message to someone (or keep it for
yourself), and nobody will be able to read it unless you tell them the secret
encryption key. Be sure to keep the encryption key a secret; the ciphertext
can be read by anyone who knows that the message was encrypted with
key 8.

Decrypting with the Gipher Wheel

To decrypt a ciphertext, start from the
inner circle of the cipher wheel and then
move to the outer circle. For example, let’s
say you receive the ciphertext IWT CTL
EPHHLDGS XH HLDGSUXHW. You
wouldn’t be able to decrypt the message
unless you knew the key (or unless you were
a clever hacker). Luckily, your friend has
already told you that they use the key 15 for
their messages. The cipher wheel for this key
is shown in Figure 1-3.

Now you can line up the letter A on the Figure 1-3: A cipher wheel set
outer circle (the one with the dot below it) fo key 15
over the letter on the inner circle that has
the number 15 (which is the letter P). Then,
find the first letter in the secret message on the inner circle, which is I, and
look at the corresponding letter on the outer circle, which is T. The second
letter in the ciphertext, W, decrypts to the letter H. Decrypt the rest of the
letters in the ciphertext back to the plaintext, and you’ll get the message
THE NEW PASSWORD IS SWORDFISH, as shown in Figure 1-4.

IIW|T CIT|L E|P[H[H|L|ID|G|S X|H HIL|D|G|S|U[X|H|W

T|H|E N[E|W PIA|S|S|W|O[R|D IS S|W{O|R|D|F|I|S|H

Figure 1-4: Decrypting a message with a Caesar cipher key of 15



If you used an incorrect key, like 16, the decrypted message would be
SGD MDV OZRRVNQC HR RVNQCEHRG, which is unreadable. Unless
the correct key is used, the decrypted message won’t be understandable.

Encrypting and Decrypting with Arithmetic

The cipher wheel is a convenient tool for encrypting and decrypting with
the Caesar cipher, but you can also encrypt and decrypt using arithmetic.
To do so, write the letters of the alphabet from A to Z with the numbers
from 0 to 25 under each letter. Begin with 0 under the A, 1 under the B,
and so on until 25 is under the Z. Figure 1-5 shows what it should look like.

B(CID|E|F|G|H|I|J|K|L|[M[N[O|P|Q|R|S|[T|U|V|W|X|Y|Z
0[1(2(3|4|5]|6|7|8|9|10|11|12|13|14(15(16|17|18|19|20(21|22|23|24|25

Figure 1-5: Numbering the alphabet from O to 25

You can use this letters-to-numbers code to represent letters. This is a
powerful concept, because it allows you to do math on letters. For example,
if you represent the letters CAT as the numbers 2, 0, and 19, you can add 3
to get the numbers 5, 3, and 22. These new numbers represent the letters
FDW, as shown in Figure 1-5. You have just “added” 3 to the word cat! Later,
we’ll be able to program a computer to do this math for us.

To use arithmetic to encrypt with the Caesar cipher, find the number
under the letter you want to encrypt and add the key number to it. The
resulting sum is the number under the encrypted letter. For example, let’s
encrypt HELLO. HOW ARE YOU? using the key 13. (You can use any num-
ber from 1 to 25 for the key.) First, find the number under H, which is 7.
Then add 13 to this number: 7 + 13 = 20. Because the number 20 is under
the letter U, the letter H encrypts to U.

Similarly, to encrypt the letter E (4), add 4 + 13 = 17. The number
above 17 is R, so E gets encrypted to R, and so on.

This process works fine until the letter O. The number under O is 14.
But 14 plus 13 is 27, and the list of numbers only goes up to 25. If the sum
of the letter’s number and the key is 26 or more, you need to subtract 26
from it. In this case, 27 — 26 = 1. The letter above the number 1 is B, so O
encrypts to B using the key 13. When you encrypt each letter in the mes-
sage, the ciphertext will be URYYB. UB] NER LBH?

To decrypt the ciphertext, subtract the key instead of adding it. The
number of the ciphertext letter B is 1. Subtract 13 from 1 to get -12. Like
our “subtract 26” rule for encrypting, when the result is less than 0 when
decrypting, we need to add 26. Because —12 + 26 = 14, the ciphertext letter
B decrypts to O.

If you don’t know how to add and subtract with negative numbers, you can read
about it at https://www.nostarch.com/crackingcodes/.

As you can see, you don’t need a cipher wheel to use the Caesar cipher.
All you need is a pencil, a piece of paper, and some simple arithmetic!

Making Paper Cryptography Tools 7


https://www.nostarch.com/crackingcodes/

Why Double Encryption Doesn’t Work

You might think encrypting a message twice using two different keys would
double the strength of the encryption. But this isn’t the case with the Caesar
cipher (and most other ciphers). In fact, the result of double encryption

is the same as what you would get after one normal encryption. Let’s try
double encrypting a message to see why.

For example, if you encrypt the word KITTEN using the key 3, you're
adding 3 to the plaintext letter’s number, and the resulting ciphertext
would be NLWWHQ. If you then encrypt NLWWHQ, this time using the
key 4, the resulting ciphertext would be RPAALU because you're adding 4
to the plaintext letter’s number. But this is the same as encrypting the word
KITTEN once with a key of 7.

For most ciphers, encrypting more than once doesn’t provide addi-
tional strength. In fact, if you encrypt some plaintext with two keys that add
up to 26, the resulting ciphertext will be the same as the original plaintext!

Summary

Chapter 1

The Caesar cipher and other ciphers like it were used to encrypt secret
information for several centuries. But if you wanted to encrypt a long
message—say, an entire book—it could take days or weeks to encrypt it all
by hand. This is where programming can help. A computer can encrypt
and decrypt a large amount of text in less than a second!

To use a computer for encryption, you need to learn how to program,
or instruct, the computer to do the same steps we just did using a language
the computer can understand. Fortunately, learning a programming lan-
guage like Python isn’t nearly as difficult as learning a foreign language
like Japanese or Spanish. You also don’t need to know much math besides
addition, subtraction, and multiplication. All you need is a computer and
this book!

Let’s move on to Chapter 2, where we’ll learn how to use Python’s inter-
active shell to explore code one line at a time.



PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1.

Encrypt the following entries from Ambrose Bierce’s The Devil’s Dictionary
with the given keys:

a.  With key 4: “AMBIDEXTROUS: Able to pick with equal skill a right-
hand pocket or a left.”

b.  With key 17: “GUILLOTINE: A machine which makes a Frenchman
shrug his shoulders with good reason.”

c.  With key 21: “IMPIETY: Your irreverence foward my deity.”
Decrypt the following ciphertexts with the given keys:

a.  With key 15: “ZXAl: P RDHIJBT HDBTIXBTH LDGC QN HRDIRWBTC
XC PBTGXRP PCS PBTGXRPCH XC HRDIAPCS.”

b. With key 4: “MQTSWXSV: E VMZEP EWTMVERX XS TYFPMG
LSRSYW.”

Encrypt the following sentence with the key O: “This is a silly example.”

Here are some words and their encryptions. Which key was used for
each word?

a. ROSEBUD - LIMYVOX
b. YAMAMOTO - PRDRDFKF
c. ASTRONOMY - HZAYVUVTF

What does this sentence encrypted with key 8 decrypt to with key 92
"UMMSVMAA: Cvkwuuwyv xibgmvkm qv xtivvgqvo i zmdmvom bpib qa
ewzbp epgtm.”

Making Paper Cryptography Tools

9


https://www.nostarch.com/crackingcodes/




PROGRAMMING IN THE
INTERACTIVE SHELL

“The Analytical Engine has no pretensions
whatever to originate anything. It can do whatever
we know how to order it to perform.”
—Ada Lovelace, October 1842

Before you can write encryption programs,

you need to learn some basic programming
concepts. These concepts include values,
operators, expressions, and variables.

TOPICS COVERED IN THIS CHAPTER

e  Operators

*  Values

® Integers and floating-point numbers
e Expressions

e Evaluating expressions

e Storing values in variables

e Overwriting variables




12

Let’s start by exploring how to do some simple math in Python’s inter-
active shell. Be sure to read this book next to your computer so you can
enter the short code examples and see what they do. Developing muscle
memory from typing programs will help you remember how Python code
is constructed.

Some Simple Math Expressions

Chapter 2

Start by opening IDLE (see “Starting IDLE” on page xxvii). You'll see the
interactive shell and the cursor blinking next to the >>> prompt. The inter-
active shell can work just like a calculator. Type 2 + 2 into the shell and
press ENTER on your keyboard. (On some keyboards, this is the RETURN key.)
The computer should respond by displaying the number 4, as shown in
Figure 2-1.

FITETRTES) e S =T

File Edit Shell Debug Options Window Help

Python 3.6.0al (v3.6.0al:58%6eda372fb0, May 17 2016, 16:21:39) [MSC v.1900 €4 hit;l
(AMD64)] on win32

Type "copyright", "credits" or "license ()" for more information.

>>> 2 + 2

4

>>>

-
Ln:5 Col:4

Figure 2-1: Type 2 + 2 into the shell.

In the example in Figure 2-1, the + sign tells the computer to add
the numbers 2 and 2, but Python can do other calculations as well, such
as subtract numbers using the minus sign (-), multiply numbers with an
asterisk (*), or divide numbers with a forward slash (/). When used in
this way, +, -, *, and / are called operators because they tell the computer to
perform an operation on the numbers surrounding them. Table 2-1 sum-
marizes the Python math operators. The 2s (or other numbers) are called
values.

Table 2-1: Math Operators in Python

Operator Operation

+ Addition

- Subtraction

* Multiplication
/ Division




By itself, 2 + 2 isn’t a program; it’s just a single instruction. Programs
are made of many of these instructions.

Integers and Floating-Point Valves

In programming, whole numbers, such as 4, 0, and 99, are called integers.
Numbers with decimal points (3.5, 42.1, and 5.0) are called floating-point
numbers. In Python, the number 5 is an integer, but if you wrote it as 5.0, it
would be a floating-point number.

Integers and floating points are data types. The value 42 is a value of the
integer, or int, data type. The value 7.5 is a value of the floating point, or
float, data type.

Every value has a data type. You’ll learn about a few other data types
(such as strings in Chapter 3), but for now just remember that any time we
talk about a value, that value is of a certain data type. It’s usually easy to
identify the data type just by looking at how the value is written. Ints are
numbers without decimal points. Floats are numbers with decimal points.
So 42 is an int, but 42.0 is a float.

Expressions

You've already seen Python solve one math problem, but Python can do a
lot more. Try typing the following math problems into the shell, pressing
the ENTER key after each one:

>>> 242424242

10

>>> 8%6

48

>>> 10-5+6

11

> 2 + 2
4

These math problems are called expressions. Computers can solve millions

of these problems in seconds. Expressions are made up of values (the num-
bers) connected by operators (the math signs), as shown in Figure 2-2. You
can have as many numbers in an expression

as you want @, as long as theyre connected Operator

by operators; you can even use multiple types

of operators in a single expression @. You can Valve— ) 4 ) <a— Vadl
also enter any number of spaces between the —
integers and these operators ©. But be sure Expression

to always start an expression at the beginning
of the line, with no spaces in front, because
spaces at the beginning of a line change how
Python interprets instructions. You’ll learn
more about spaces at the beginning of a line
in “Blocks” on page 45.

Figure 2-2: An expression is

operators (like +).

Programming in the Interactive Shell

ve

made up of values (like 2) and

13



14

Chapter 2

Order of Operations

You might remember the phrase “order of operations” from your math class.
For example, multiplication is done before addition. The expression 2 + 4 * 3
evaluates to 14 because multiplication is done first to evaluate 4 * 3, and then
2 is added. Parentheses can make different operators go first. In the expres-
sion (2 + 4) * 3, the addition is done first to evaluate (2 + 4), and then that
sum is multiplied by 3. The parentheses make the expression evaluate to 18
instead of 14. The order of operations (also called precedence) of Python math
operators is similar to that of mathematics. Operations inside parentheses
are evaluated first; next the * and / operators are evaluated from left to right;
and then the + and - operators are evaluated from left to right.

Evalvating Expressions

When a computer solves the expression 10 + 5 and gets the value 15, we say
it has evaluated the expression. Evaluating an expression reduces the expres-
sion to a single value, just like solving a math problem reduces the problem
to a single number: the answer.

The expressions 10 + 5and 10 + 3 + 2 have the same value, because
they both evaluate to 15. Even single values are considered expressions: the
expression 15 evaluates to the value 15.

Python continues to evaluate an expression until it becomes a single
value, as in the following:

(5-1)* ((7+1)/ (3-1))

45 ((1+1) /7 (3-1)

v

4% (8 )/ @B-1)

4* (8 )/7(2))
.ﬁ—.

4 * 4.0

1

16.0

Python evaluates an expression starting with the innermost, left-
most parentheses. Even when parentheses are nested in each other, the
parts of expressions inside them are evaluated with the same rules as
any other expression. So when Python encounters ((7 + 1) / (3 - 1)), it
first solves the expression in the leftmost inner parentheses, (7 + 1), and
then solves the expression on the right, (3 - 1). When each expression
in the inner parentheses is reduced to a single value, the expressions in
the outer parentheses are then evaluated. Notice that division evaluates
to a floating-point value. Finally, when there are no more expressions in
parentheses, Python performs any remaining calculations in the order of
operations.



In an expression, you can have two or more values connected by opera-
tors, or you can have just one value, but if you enter one value and an opera-
tor into the interactive shell, you’ll get an error message:

>»> 5 +
SyntaxError: invalid syntax

This error happens because 5 + is not an expression. Expressions with
multiple values need operators to connect those values, and in the Python
language, the + operator expects to connect two values. A syntax error means
that the computer doesn’t understand the instruction you gave it because you
typed it incorrectly. This may not seem important, but computer program-
ming isn’t just about telling the computer what to do—it’s also about knowing
the correct way to give the computer instructions that it can follow.

ERRORS ARE OKAY!

It's perfectly fine to make errors! You won't break your computer by entering
code that causes errors. Python will simply tell you an error has occurred and
then display the >>> prompt again. You can continue entering new code into
the interactive shell.

Until you gain more programming experience, error messages might
not make a lot of sense to you. However, you can always google the error
message text to find web pages that explain that specific error. You can also
go to https:;//www.nostarch.com/crackingcodes/ to see a list of common
Python error messages and their meanings.

Storing Values with Variables

Programs often need to save values to use later in the program. You can
store values in variables by using the = sign (called the assignment operator).
For example, to store the value 15 in a variable named spam, enter spam = 15
into the shell:

>>> spam = 15

You can think of the variable like a box with the value 15 inside it (as
shown in Figure 2-3). The variable name spam is the label on the box (so we
can tell one variable from another), and the value stored in it is like a note
inside the box.

When you press ENTER, you won’t see anything except a blank line in
response. Unless you see an error message, you can assume that the instruc-
tion executed successfully. The next >>> prompt appears so you can enter
the next instruction.

Programming in the Interactive Shell 15


https://www.nostarch.com/crackingcodes

16

Chapter 2

This instruction with the = assignment A—
operator (called an assignment statement) .
creates the variable spam and stores the value
15 in it. Unlike expressions, statements are \
instructions that don’t evaluate to any value;
instead, they just perform an action. This is
why no value is displayed on the next line in
the shell.

Figuring out which instructions are
expressions and which are statements might Figure 2-3: Variables are like
be confusing. Just remember that if a Python boxes with names that can
instruction evaluates to a single value, it’s an hold value.
expression. If it doesn’t, it’s a statement.

An assignment statement is written as a variable, followed by the = oper-
ator, followed by an expression, as shown in Figure 2-4. The value that the
expression evaluates to is stored inside the variable.

Assignment operator

Expression

Variable name —» Spam =10 + §
1 ]

Assignment statement

Figure 2-4: The parts of an assignment statement

Keep in mind that variables store single values, not the expressions
they are assigned. For example, if you enter the statement spam = 10 + 5,
the expression 10 + 5 is first evaluated to 15 and then the value 15 is stored
in the variable spam, as we can see by entering the variable name into the
shell:

>>> spam = 10 + 5
>>> spam
15

A variable by itself is an expression that evaluates to the value stored in
the variable. A value by itself is also an expression that evaluates to itself:

>>> 15
15

And here’s an interesting twist. If you now enter spam + 5 into the shell,
you’ll get the integer 20:

>>> spam = 15
>>> spam + 5
20




As you can see, variables can be used in expressions the same way

values can. Because the value of spamis 15, the expression spam + 5 evaluates

to the expression 15 + 5, which then evaluates to 20.

Overwriting Variables

You can change the value stored in a variable by entering another assign-
ment statement. For example, enter the following:

>>> spam = 15
>>> spam + 5
20

>>> spam = 3
>>> spam + 5
8

000 eC

The first time you enter spam + 5 @, the expression evaluates to 20 @
because you stored the value 15 inside the variable spam. But when you enter
spam = 3 @, the value 15 is overwritten (that is, replaced) with the value 3,
as shown in Figure 2-5. Now when you enter spam + 5 @, the expression
evaluates to 8 ©® because spam + 5 evaluates to 3 + 5. The old value in spam is
forgotten.

Figure 2-5: The value 15 in spam is over-
written by the value 3.

You can even use the value in the spam variable to assign spam a new value:

>>> spam = 15

>>> spam = spam + 5
>>> spam

20

Programming in the Interactive Shell

17



18

The assignment statement spam = spam + 5 tells the computer that “the
new value of the spam variable is the current value of spam plus five.” The vari-
able on the left side of the = sign is assigned the value of the expression on
the right side. You can keep increasing the value in spam by 5 several times:

>>> spam = 15

>>> spam = spam + 5
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam

30

The value in spam is changed each time spam = spam + 5 is executed.
The value stored in spam ends up being 30.

Variable Names

Although the computer doesn’t care what you name your variables, you
should. Giving variables names that reflect what type of data they contain
makes it easier to understand what a program does. You could give your
variables names like abrahamLincoln or monkey even if your program had
nothing to do with Abraham Lincoln or monkeys—the computer would
still run the program (as long as you consistently used abrahamLincoln or
monkey). But when you return to a program after not seeing it for a long
time, you might not remember what each variable does.

A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes Stuff. You’d never
find anything! The variable names spam, eggs, bacon, and so on (inspired by the
Monty Python “Spam” sketch) are used as generic names for the examples in
this book and in much of Python’s documentation, but in your programs, a
descriptive name helps make your code more readable.

Variable names (as well as everything else in Python) are case sensitive.
Case sensitive means the same variable name in a different case is considered
an entirely different variable. For example, spam, SPAM, Spam, and sPAM are con-
sidered four different variables in Python. They each can contain their own
separate values and can’t be used interchangeably.

Summary

Chapter 2

So when are we going to start making encryption programs? Soon. But before
you can hack ciphers, you need to learn just a few more basic programming
concepts so there’s one more programming chapter you need to read.

In this chapter, you learned the basics of writing Python instructions in
the interactive shell. Python needs you to tell it exactly what to do in a way it
expects, because computers only understand very simple instructions. You
learned that Python can evaluate expressions (that is, reduce the expres-
sion to a single value) and that expressions are values (such as 2 or 5) com-
bined with operators (such as + or -). You also learned that you can store
values inside variables so your program can remember them to use later on.



The interactive shell is a useful tool for learning what Python instruc-
tions do because it lets you enter them one at a time and see the results.
In Chapter 3, you'll create programs that contain many instructions that
are executed in sequence rather than one at a time. We’ll discuss some

more basic concepts, and you’ll write your first program!

1.
2.

o

(2]

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

Which is the operator for division, / or \ 2

Which of the following is an integer value, and which is a floating-point
value?

42
3.141592

Which of the following lines are not expressions?2

4 X 10 + 2
3¥7+1
2 +
42
2 + 2
spam = 42

If you enter the following lines of code into the interactive shell, what do
lines ® and @ print2

spam = 20
spam + 20
SPAM = 30
spam

Programming in the Interactive Shell

19






STRINGS AND WRITING
PROGRAMS

“The only way to learn a new programming
language is by writing programs in it.”
—DBrian Kernighan and Dennis Rilchie,
The C Programming Language

Chapter 2 gave you enough integers and

math for now. Python is more than just a
calculator. Because cryptography is all about

dealing with text values by turning plaintext
into ciphertext and back again, you’ll learn how to
store, combine, and display text on the screen in this
chapter. You'll also make your first program, which
greets the user with the text “Hello, world!” and lets
the user input their name.



22

TOPICS COVERED IN THIS CHAPTER

e  Strings

e  String concatenation and replication
* Indexes and slices

e The print() function

®  Writing source code with IDLE

e  Saving and running programs in IDLE
e Comments

e The input() function

Working with Text Using String Values

Chapter 3

In Python, we work with little chunks of text called string values (or simply
strings). All of our cipher and hacking programs deal with string values

to turn plaintext like 'One if by land, two if by space' into ciphertext like
'barJvsJo!Jyniq,J702]vsJo!163nprM'. The plaintext and ciphertext are repre-
sented in our program as string values, and there are many ways in which
Python code can manipulate these values.

You can store string values inside variables just as you can with integer
and floating-point values. When you type a string, put it between two single
quotes (') to show where the string starts and ends. Enter the following into
the interactive shell:

>>> spam = ‘hello’

The single quotes are not part of the string value. Python knows that
"hello' is a string and spam is a variable because strings are surrounded by
quotes and variable names are not.

If you enter spam into the shell, you will see the contents of the spam
variable (the 'hello' string):

>>> spam = ‘hello’
>>> spam
'hello’

This is because Python evaluates a variable to the value stored inside it:
in this case, the string 'hello'. Strings can have almost any keyboard charac-
ter in them. These are all examples of strings:

>>> 'hello’
"hello’



>>> 'KITTENS'

"KITTENS'

»>

>>> '7 apples, 14 oranges, 3 lemons’

'7 apples, 14 oranges, 3 lemons'

>>> "Anything not pertaining to elephants is irrelephant.'
'Anything not pertaining to elephants is irrelephant.’

>>> "0*&HwY%*&0cfsdYO*&gfCXY0*8%3yc8r2"

' 0*BitwY%*80c FsdYO*&gFCRY0* 8%3yc8r2'"

Notice that the "' string has zero characters in it; there is nothing
between the single quotes. This is known as a blank string or empty string.

String Concatenation with the + Operator

You can add two string values to create one new string by using the + opera-
tor. Doing so is called string concatenation. Enter 'Hello,' + 'world!' into the
shell:

>>> 'Hello,' + 'world!'
'Hello,world!"

Python concatenates exactly the strings you tell it to concatenate, so it
won'’t put a space between strings when you concatenate them. If you want a
space in the resulting string, there must be a space in one of the two original
strings. To put a space between 'Hello, ' and 'world!"', you can put a space at
the end of the 'Hello, ' string and before the second single quote, like this:

>>> 'Hello, ' + 'world!'
'Hello, world!’

The + operator can concatenate two string values into a new string
value ('Hello, ' + 'world!' to 'Hello, world!"), just like it can add two inte-
ger values to result in a new integer value (2 + 2 to 4). Python knows what
the + operator should do because of the data types of the values. As you
learned in Chapter 2, the data type of a value tells us (and the computer)
what kind of data the value is.

You can use the + operator in an expression with two or more strings
or integers as long as the data types match. If you try to use the operator
with one string and one integer, you’ll get an error. Enter this code into the
interactive shell:

>>> 'Hello' + 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: must be str, not int

>>> 'Hello' + '42'

'Hello42'

Strings and Writing Programs 23



2

Chapter 3

The first line of code causes an error because 'Hello' is a string and 42
is an integer. But in the second line of code, '42' is a string, so Python con-
catenates it.

String Replication with the * Operator

You can also use the * operator on a string and an integer to do string repli-
cation. This replicates (that is, repeats) a string by however many times the
integer value is. Enter the following into the interactive shell:

>>> 'Hello' * 3
'"HelloHelloHello'
>>> spam = 'Abcdef’
>>> spam = spam * 3
>>> spam
"AbcdefAbcdefAbcdef’

To replicate a string, type the string, then the * operator, and then
the number of times you want the string to repeat @. You can also store a
string, like we’ve done with the spam variable, and then replicate the vari-
able instead @. You can even store a replicated string back into the same
variable or a new variable.

As you saw in Chapter 2, the * operator can work with two integer values
to multiply them. But it can’t work with two string values, which would cause
an error, like this:

>>> 'Hello' * 'world!'
Traceback (most recent call last):
File "<stdin»", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'

String concatenation and string replication show that operators in
Python can do different tasks based on the data types of the values they
operate on. The + operator can do addition or string concatenation. The
* operator can do multiplication or string replication.

Getting Characters from Strings Using Indexes

Your encryption programs often need to get a single character from a string,
which you can accomplish through indexing. With indexing, you add square
brackets [ and ] to the end of a string value (or a variable containing a string)
with a number between them to access one character. This number is called
the index, and it tells Python which position in the string has the character
you want. Python indexes start at 0, so the index of the first character in a
string is 0. The index 1 is for the second character, the index 2 is for the third
character, and so on.

Enter the following into the interactive shell:

>>> spam = 'Hello'
>>> spam[0]
Y



>>> spam[1]
e
>>> spam[2]

"

Notice that the expression spam[0] evalu-
ates to the. string Vglue H', becaus'e His the first string: mﬂu '
character in the string 'Hello' and indexes start )
. indexes: 0 1 2 3 4
at 0, not 1 (see Figure 3-1).
. You can use indexing w1th a V.arlable con- Figure 3-1: The string
taining a string value, as we did with the previ- 'Hello' and its indexes
ous example, or a string value by itself, like this:

>>> 'Zophie'[2]
o

The expression 'Zophie'[2] evaluates to the third string value, which is
a 'p'. This 'p' string is just like any other string value and can be stored in a
variable. Enter the following into the interactive shell:

>>> eggs = 'Zophie'[2]
>>> eggs
!

If you enter an index that is too large for the string, Python displays an
"index out of range" error message, as you can see in the following code:

>>> 'Hello'[10]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

There are five characters in the string 'Hello', so if you try to use the
index 10, Python displays an error.

Negative Indexes

Negative indexes start at the end of a string and string: nnn -

go backward. The negative index -1 is the index .
) : . . indexes: -5 -4 -3 -2 -1
of the last character in a string. The index -2 is

the index of the second to last character, and so Figure 3-2: The string

on, as shown in Figure 3-2. 'Hello' and its negative
Enter the following into the interactive indexes

shell:

>>> "Hello'[-1]
o
>>> 'Hello'[-2]
L
>>> "Hello'[-3]
L

Strings and Writing Programs 25



26

Chapter 3

>>> 'Hello'[-4]
>>> 'Hello'[-5]
Y
>>> 'Hello'[0]
e

Notice that -5 and 0 are the indexes for the same character. Most of the
time, your code will use positive indexes, but sometimes it’s easier to use
negative ones.

Getting Multiple Characters from Strings Using Slices

If you want to get more than one character from a string, you can use slic-
ing instead of indexing. A slice also uses the [ and ] square brackets but
has two integer indexes instead of one. The two indexes are separated by
a colon (:) and tell Python the index of the first and last characters in the
slice. Enter the following into the interactive shell:

>>> 'Howdy'[0:3]
"How'

The string that the slice evaluates to begins at the first index value and
goes up to, but does not include, the second index value. Index 0 of the
string value 'Howdy' is H and index 3 is d. Because a slice goes up to but does
not include the second index, the slice 'Howdy'[0:3] evaluates to the string
value 'How'.

Enter the following into the interactive shell:

>>> 'Hello, world!'[0:5]
'Hello'

>>> 'Hello, world!'[7:13]
'world!"

>>> 'Hello, world!'[-6:-1]
'world'

>>> 'Hello, world!'[7:13][2]

T

Notice that the expression 'Hello, world!'[7:13][2] first evaluates the list
slice to 'world!'[2] and then further evaluates to 'r'.

Unlike indexes, slicing never gives you an error if you give too large an
index for the string. It'll just return the widest matching slice it can:

>>> 'Hello'[0:999]
'Hello'

>>> 'Hello'[2:999]
'110'

>>> 'Hello'[1000:2000]




The expression 'Hello'[1000:2000] returns a blank string because the
index 1000 is after the end of the string, so there are no possible characters
this slice could include. Although our examples don’t show this, you can
also slice strings stored in variables.

Blank Slice Indexes

If you omit the first index of a slice, Python will automatically use index 0
for the first index. The expressions "Howdy'[0:3] and 'Howdy'[:3] evaluate to
the same string:

>>> "Howdy'[:3]
"How'
>>> "Howdy'[0:3]
"How'

If you omit the second index, Python will automatically use the rest of
the string starting from the first index:

>>> "Howdy'[2:]
'wdy'

You can use blank indexes in many different ways. Enter the following
into the shell:

>>> myName = 'Zophie the Fat Cat'
>>> myName[-7:]

'Fat Cat'

>>> myName[ :10]

'Zophie the'

>>> myName[7:]

"the Fat Cat'

As you can see, you can even use negative indexes with a blank index.
Because -7 is the starting index in the first example, Python counts back-
ward seven characters from the end and uses that as its starting index.
Then it returns everything from that index to the end of the string because
of the second blank index.

Printing Values with the print() Function

Let’s try another type of Python instruction: a print() function call. Enter
the following into the interactive shell:

>>> print('Hello!")
Hello!

>>> print(42)

42

Strings and Writing Programs 27



28

A function (like print() in this example) has code inside it that performs a
task, such as printing values onscreen. Many different functions come with
Python and can perform useful tasks for you. To call a function means to
execute the code inside the function.

The instructions in this example pass a value to print() between the
parentheses, and the print() function prints the value to the screen. The
values that are passed when a function is called are arguments. When you
write programs, you'll use print() to make text appear on the screen.

You can pass an expression to print() instead of a single value. This is
because the value that is actually passed to print() is the evaluated value of
that expression. Enter this string concatenation expression into the inter-
active shell:

>>> spam = 'Al’
>>> print('Hello,
Hello, Al

+ spam)

The 'Hello, ' + spam expression evaluates to 'Hello, ' + 'Al', which
then evaluates to the string value 'Hello, Al'. This string value is what is
passed to the print() call.

Printing Escape Characters

Chapter 3

You might want to use a character in a string value that would confuse
Python. For example, you might want to use a single quote character as
part of a string. But you’d get an error message because Python thinks that
single quote is the quote ending the string value and the text after it is bad
Python code, instead of the rest of the string. Enter the following into the
interactive shell to see the error in action:

>>> print('Al's cat is named Zophie.')
SyntaxError: invalid syntax

To use a single quote in a string, you need to use an escape character. An
escape character is a backslash character followed by another character—
for example, \t, \n, or \". The slash tells Python that the character after the
slash has a special meaning. Enter the following into the interactive shell.

>>> print('Al\'s cat is named Zophie.')
Al's cat is named Zophie.

Now Python will know the apostrophe is a character in the string value,
not Python code marking the end of the string.
Table 3-1 shows some escape characters you can use in Python.



Table 3-1: Escape Characters

Escape character Printed result
\\ Backslash (\)

\' Single quote (')
\" Double quote (")
\n Newline

\t Tab

The backslash always precedes an escape character. Even if you just want
a backslash in your string, you can’t add a backslash alone because Python
will interpret the next character as an escape character. For example, this
line of code wouldn’t work correctly:

>>> print('It is a green\teal color.')
It is a green eal color.

The 't' in 'teal' is identified as an escape character because it comes
after a backslash. The escape character \t simulates pushing the TAB key on
your keyboard.

Instead, enter this code:

>>> print('It is a green\\teal color.')
It is a green\teal color.

This time the string will print as you intended, because putting a
second backslash in the string makes the backslash the escape character.

Quotes and Double Quotes

Strings don’t always have to be between two single quotes in Python. You
can use double quotes instead. These two lines print the same thing:

>>> print('Hello, world!")
Hello, world!
>>> print("Hello, world!")
Hello, world!

But you can’t mix single and double quotes. This line gives you an error:

>>> print('Hello, world!")
SyntaxError: EOL while scanning string literal

I prefer to use single quotes because they’re a bit easier to type than
double quotes and Python doesn’t care either way.

Strings and Writing Programs 29



30

But just like you have to use the escape character \' to have a single quote
in a string surrounded by single quotes, you need the escape character \" to
have a double quote in a string surrounded by double quotes. For example,
look at these two lines:

>>> print('Al\'s cat is Zophie. She says, "Meow."')

Al's cat is Zophie. She says, "Meow."

>>> print("Zophie said, \"I can say things other than 'Meow' you know.\"")
Zophie said, "I can say things other than 'Meow' you know."

You don’t need to escape double quotes in single-quote strings, and you
don’t need to escape single quotes in double-quote strings. The Python inter-
preter is smart enough to know that if a string starts with one kind of quote,
the other kind of quote doesn’t mean the string is ending.

Writing Programs in IDLE’s File Editor

Chapter 3

Until now, you’ve been entering instructions one at a time into the inter-
active shell. But when you write programs, you’ll enter several instructions
and have them run without waiting on you for the next one. It’s time to
write your first program!

The name of the software program that provides the interactive shell
is called IDLE (Integrated DeveLopment Environment). In addition to the
interactive shell, IDLE also has a file editor, which we’ll open now.

At the top of the Python shell window, select File » New Window. A
new blank window, the file editor, will appear for you to enter a program,
as shown in Figure 3-3. The bottom-right corner of the file editor window
shows you what line and column the cursor currently is on.

Cile Edit Format Run Options Window Help

| =]

Lln:1 CokO

Figure 3-3: The file editor window with the cursor at line 1, column O

You can tell the difference between the file editor window and the
interactive shell window by looking for the >>> prompt. The interactive shell
always displays the prompt, and the file editor doesn’t.



Source Code for the “Hello, World!” Program

hello.py

Traditionally, programmers who are learning a new language make their
first program display the text "Hello, world!" on the screen. We’ll create our
own “Hello, world!” program next by entering text into the new file editor
window. We call this text the program’s source code because it contains the
instructions that Python will follow to determine exactly how the program
should behave.

You can download the “Hello, world!” source code from Attps://www
.nostarch.com/crackingcodes/. If you get errors after entering this code, com-
pare it to the book’s code using the online diff tool (see “Checking Your
Source Code with the Online Diff Tool” next). Remember that you don’t
type the line numbers; they only appear in this book to aid explanation.

1. # This program says hello and asks for my name.
2. print('Hello, world!")

3. print('What is your name?')

4. myName = input()

5. print('It is good to meet you,

+ myName)

The IDLE program will display different types of instructions in differ-
ent colors. When you’re done entering this code, the window should look
like Figure 3-4.

& hello.py - C:\Users\ANAppData\Local\Programs\Pytho... |.E@ﬁ

File Edit Format Run Options Window Help

# This program says hello and asks for my name.
D ('H ;W "3

print('v your name?')

myName = input()

print(’ 1 you, + myName)

Ln: 6 Col:0

Figure 3-4: The file editor window will look like this after you
enter the code.

Checking Your Source Code with the Online Diff Tool

Even though you could copy and paste or download the hello.py code from
this book’s website, you should still type this program manually. Doing so
will give you more familiarity with the code in the program. However, you
might make some mistakes while typing it into the file editor.

To compare the code you typed to the code in this book, use the online
diff tool shown in Figure 3-5. Copy the text of your code and then navigate
to the diff tool on the book’s website at https://www.nostarch.com/crackingcodes/.
Select the #ello.py program from the drop-down menu. Paste your code into
the text field on this web page and click the Compare button. The diff tool
shows any differences between your code and the code in this book. This is
an easy way to find any typos causing errors in your program.

Strings and Writing Programs 31


https://www.nostarch.com/crackingcodes
https://www.nostarch.com/crackingcodes
https://www.nostarch.com/crackingcodes/

32

Diff Tool

Select program:

hafio py

roverseCipher py

consarCiphes py

password py

passwondl py

elifeggs py

caesarCghen? py

cousarHackie py

transpostionEncrypt py
21

SCOp. Y

addNumbers. py
transpestionDecrypt py
transpostion Test py
ranspostionFileCipherpy =

The Book's Program

The dif toal can help you find typos in your code by showing you the differences between your program and the programs in the book.

Copy and paste your code here:

= input()
print('It is good to meet you, °

+ mylame)

Your Program

Comgiare

1 by Jedifflit

Figure 3-5: The online diff tool

Using IDLE to Access Your Program Later

Chapter 3

When you write programs, you might want to save them and come back

to them later, especially after you've typed a very long program. IDLE has
features for saving and opening programs just like a word processer has fea-
tures to save and reopen your documents.

Saving Your Program

After you've entered your source code, save it so you won’t have to retype it
each time you want to run it. Choose File » Save As from the menu at the
top of the file editor window. The Save As dialog should open, as shown in
Figure 3-6. Enter hello.py in the File Name field and click Save.

A Save As
Uu L. » Al » AppData » Local » Programs * Python » Python3f - |by
Organize = New foider - @
L Programs = Hame = Date modified Type Size =
b Commaon
L. Dils
L. Pythen
Python3s L. Doc
[ n35
b incluge
| Python3é |
L lib 5
L Dils
£ L libs
b Dec
). Scripts
nclude
J. selenium
L Ll
L tel
L libs
- L Tools -
Crvirue
File pame: -
Save a3 [ype: -Pyman 188 7Py Pyw) ;':
= Hide Folders Save Cancel

Figure 3-6: Saving the program



You should save your programs often as you type them so you won'’t lose
your work if the computer crashes or if you accidentally exit from IDLE. As
a shortcut, you can press CTRL-S on Windows and Linux or 38-S on macOS
to save your file.

Running Your Program

Now it’s time to run your program. Select Run » Run Module or just press
the F5 key on your keyboard. Your program should run in the shell window
that appeared when you first started IDLE. Remember that you must press
F5 from the file editor’s window, not the interactive shell’s window.

When the program asks for your name, enter it, as shown in Figure 3-7.

2 Python 3.6.0 Shell [T 5|
File Edit Shell Debug Options Window Help

", "credits" or "license()" for more information.

RESTART: C:\Users\Al\RppData‘\Locall\Programs\Python\Python3é\hello. py ====
Hello, world

What is your r

Albert

it is good to meet you, Albert

E

Ln: 9 Col: 4

Figure 3-7: The interactive shell looks like this when running the “Hello,
world!” program.

Now when you press ENTER, the program should greet you (the user, that
is, the one using the program) by name. Congratulations! You've written
your first program. You are now a beginning computer programmer. (If you
like, you can run this program again by pressing F5 again.)

If instead you get an error that looks like this, it means you are running
the program with Python 2 instead of Python 3:

Hello, world!
What is your name?
Albert
Traceback (most recent call last):
File "C:/Python27/hello.py", line 4, in <module>
myName = input()
File "<string>", line 1, in <module>
NameError: name 'Albert' is not defined

The error is caused by the input() function call, which behaves differ-
ently in Python 2 and 3. Before continuing, install Python 3 by following
the instructions in “Downloading and Installing Python” on page xxv.

Strings and Writing Programs 33



34

Opening the Programs You've Saved

Close the file editor by clicking the X in the top corner. To reload a saved
program, choose File » Open from the menu. Do that now, and in the
window that appears, choose hello.py. Then click the Open button. Your
saved hello.py program should open in the file editor window.

How the “Hello, World!” Program Works

Chapter 3

Each line in the “Hello, world!” program is an instruction that tells Python
exactly what to do. A computer program is a lot like a recipe. Do the first
step first, then the second, and so on until you reach the end. When the
program follows instructions step-by-step, we call it the program execution, or
just the execution.

Each instruction is followed in sequence, beginning from the top of the
program and working down the list of instructions. The execution starts at
the first line of code and then moves downward. But the execution can also
skip around instead of just going from top to bottom; you’ll find out how to
do this in Chapter 4.

Let’s look at the “Hello, world!” program one line at a time to see what
it’s doing, beginning with line 1.

Comments

Any text following a hash mark (#) is a comment:

1. # This program says hello and asks for my name.

Comments are not for the computer but instead are for you, the pro-
grammer. The computer ignores them. They’re used to remind you what
the program does or to tell others who might look at your code what your
code does.

Programmers usually put a comment at the top of their code to give
the program a title. The IDLE program displays comments in red text to
help them stand out. Sometimes, programmers will put a # in front of a
line of code to temporarily skip it while testing a program. This is called
commenting out code, and it can be useful when you're trying to figure out
why a program doesn’t work. You can remove the # later when you’re ready
to put the line back in.

Printing Directions to the User

The next two lines display directions to the user with the print() function.
A function is like a mini-program inside your program. The great benefit of
using functions is that we only need to know what the function does, not how
it does it. For instance, you need to know that print() displays text onscreen,
but you don't need to know the exact code inside the function that does this.



A function call is a piece of code that tells the program to run the code inside
a function.

Line 2 of hello.py is a call to print() (with the string to be printed inside
the parentheses). Line 3 is another print() call. This time the program dis-
plays 'What is your name?'

2. print('Hello, world!")
3. print('What is your name?')

We add parentheses to the end of function names to make it clear that
we’re referring to a function named print(), not a variable named print.
The parentheses at the end of the function tell Python we’re using a func-
tion, much as the quotes around the number '42' tell Python that we're
using the string '42', not the integer 42.

Taking a User’s Input

Line 4 has an assignment statement with a variable (myName) and the new
function call input():

4. myName = input()

When input() is called, the program waits for the user to type in some
text and press ENTER. The text string that the user enters (their name)
becomes the string value that is stored in myName.

Like expressions, function calls evaluate to a single value. The value
that the call evaluates to is called the return value. (In fact, we can also
use the word “returns” to mean the same thing as “evaluates” for function
calls.) In this case, the return value of input() is the string that the user
entered, which should be their name. If the user entered Albert, the input()
call evaluates to (that is, returns) the string 'Albert’.

Unlike print(), the input() function doesn’t need any arguments, which is
why there is nothing between the parentheses.

The last line of the code in hello.py is another print() call:

5. print('It is good to meet you, ' + myName)

For line 5’s print() call, we use the plus operator (+) to concatenate the
string 'It is good to meet you, 'and the string stored in the myName variable,
which is the name that the user input into the program. This is how we get
the program to greet the user by name.

Ending the Program

When the program executes the last line, it stops. At this point it has termi-
nated or exited, and all the variables are forgotten by the computer, includ-
ing the string stored in myName. If you try running the program again and
entering a different name, it will print that name.

Strings and Writing Programs 35



36

Hello, world!

What is your name?

Zophie

It is good to meet you, Zophie

Remember that the computer only does exactly what you program it to
do. In this program, it asks you for your name, lets you enter a string, and
then says hello and displays the string you entered.

But computers are dumb. The program doesn’t care if you enter your
name, someone else’s name, or just something silly. You can type in any-
thing you want, and the computer will treat it the same way:

Hello, world!

What is your name?

poop

It is good to meet you, poop

Summary

Chapter 3

Writing programs is just about knowing how to speak the computer’s lan-
guage. You learned a bit about how to do this in Chapter 2, and now you've
put together several Python instructions to make a complete program that
asks for the user’s name and greets that user.

In this chapter, you learned several new techniques to manipulate
strings, like using the + operator to concatenate strings. You can also use
indexing and slicing to create a new string from part of a different string.

The rest of the programs in this book will be more complex and sophis-
ticated, but they’ll all be explained line by line. You can always enter instruc-
tions into the interactive shell to see what they do before you put them into a
complete program.

Next, we’ll start writing our first encryption program: the reverse cipher.



PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. If you assign spam = 'Cats', what do the following lines printe

spam + spam + spam
spam * 3

2. What do the following lines print2

print("Dear Alice,\nHow are you?\nSincerely,\nBob")
print('Hello' + 'Hello')

3. Ifyou assign spam = 'Four score and seven years is eighty seven
years.', what would each of the following lines print?

print(spam[5])
print(spam[-3])
print(spam[0:4] + spam[5])
print(spam[-3:-1])
print(spam[:10])
print(spam[-5:])
print(spam[:])

4.  Which window displays the >>> prompt, the interactive shell or the file
editor?

5. What does the following line print2

#print('Hello, world!")

Strings and Writing Programs 37






THE REVERSE CIPHER

“Every man is surrounded by a
neighborhood of voluntary spies.”
—/Jane Austen, Northanger Abbey

The reverse cipher encrypts a message
by printing it in reverse order. So “Hello,

world!” encrypts to “!dlrow ,olleH”. To
decrypt, or get the original message, you simply
reverse the encrypted message. The encryption and

decryption steps are the same.

However, this reverse cipher is weak, making it easy to figure out the
plaintext. Just by looking at the ciphertext, you can figure out the message
is in reverse order.

.syas ti tahw tuo erugif llits ylbaborp nac uoy ,detpyrcne si siht hguoht

neve ,elpmaxe rol’

But the code for the reverse cipher program is easy to explain, so we’ll
use it as our first encryption program.



TOPICS COVERED IN THIS CHAPTER

e The len() function

® while loops

® Boolean data type

e Comparison operators
e  Conditions

e  Blocks

Source Code for the Reverse Cipher Program

In IDLE, click File » New Window to create a new file editor window. Enter
the following code, save it as reverseCipher.py, and press Fb to run it, but
remember not to type the numbers before each line:

reverseCipher.py ~ 1. # Reverse Cipher
2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)
3
4. message = 'Three can keep a secret, if two of them are dead.'
5. translated = "'
6.
7. i = len(message) - 1
8. while i >= 0:
9 translated = translated + message[i]
10. i=1i-1
11.

12. print(translated)

Sample Run of the Reverse Cipher Program

When you run the reverseCipher.py program, the output looks like this:

.daed era meht fo owt fi ,terces a peek nac eerhT

To decrypt this message, copy the .daed era meht fo owt fi ,terces a
peek nac eerhT text to the clipboard by highlighting the message and press-
ing CTRL-C on Windows and Linux or 8-C on macOS. Then paste it (using
CTRL-V on Windows and Linux or #-V on macOS) as the string value stored
in message on line 4. Be sure to retain the single quotes at the beginning and
end of the string. The new line 4 looks like this (with the change in bold):

4. message = '.daed era meht fo owt fi ,terces a peek nac eerhT'

40 Chapter 4


https://www.nostarch.com/crackingcodes/

Now when you run the reverseCipher.py program, the output decrypts to
the original message:

Three can keep a secret, if two of them are dead.

Setting Up Comments and Variables

The first two lines in reverseCipher.py are comments explaining what the pro-
gram is and the website where you can find it.

1. # Reverse Cipher
2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

The BSD Licensed part means this program is free to copy and modify by
anyone as long as the program retains the credits to the original author (in
this case, the book’s website at https://www.nostarch.com/crackingcodes/ in the
second line). I like to have this info in the file so if it gets copied around
the internet, a person who downloads it always knows where to look for the
original source. They’ll also know this program is open source software and
free to distribute to others.

Line 3 is just a blank line, and Python skips it. Line 4 stores the string
we want to encrypt in a variable named message:

4. message = 'Three can keep a secret, if two of them are dead.’

Whenever we want to encrypt or decrypt a new string, we just type the
string directly into the code on line 4.

The translated variable on line 5 is where our program will store the
reversed string:

5. translated = ''

At the start of the program, the translated variable contains this blank
string. (Remember that the blank string is two single quote characters, not
one double quote character.)

Finding the Length of a String

Line 7 is an assignment statement storing a value in a variable named i:

7. i = len(message) - 1

The expression evaluated and stored in the variable is len(message) - 1.
The first part of this expression, len(message), is a function call to the len()
function, which accepts a string argument, just like print(), and returns an

The Reverse Cipher 41


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

2

integer value of how many characters are in the string (that is, the length of
the string). In this case, we pass the message variable to len(), so len(message)
returns how many characters are in the string value stored in message.

Let’s experiment with the len() function in the interactive shell. Enter
the following into the interactive shell:

>>> len('Hello')

5

>>> len('")

0

>>> spam = 'Al’

>>> len(spam)

2

>>> len('Hello,' + ' ' + 'world!')
13

From the return value of len(), we know the string 'Hello' has five char-
acters in it and the blank string has zero characters in it. If we store the
string 'Al' in a variable and then pass the variable to len(), the function
returns 2. If we pass the expression 'Hello,' + ' ' + 'world!' to the len()
function, it returns 13. The reason is that 'Hello,' + ' ' + 'world!' evaluates
to the string value 'Hello, world!', which has 13 characters in it. (The space
and the exclamation point count as characters.)

Now that you understand how the len() function works, let’s return
to line 7 of the reverseCipher.py program. Line 7 finds the index of the last
character in message by subtracting 1 from len(message). It has to subtract 1
because the indexes of, for example, a 5-character length string like 'Hello'
are from 0 to 4. This integer is then stored in the i variable.

Introducing the while Loop

Chapter 4

Line 8 is a type of Python instruction called a while loop or while statement:

8. while i »>= 0:

A while loop is made up of four parts (as shown in Figure 4-1).

The while keyword
A condition
A colon
while i >= 0:

translated = translated + message[i]
i=1i-1

A block of code

Figure 4-1: The parts of a while loop



A condition is an expression used in a while statement. The block of code
in the while statement will execute as long as the condition is true.

To understand while loops, you first need to learn about Booleans, com-
parison operators, and blocks.

The Boolean Data Type

The Boolean data type has only two values: True or False. These Boolean
values, or bools, are case sensitive (you always need to capitalize the T'and F,
while leaving the rest in lowercase). They are not string values, so you don’t
put quotes around True or False.

Try out some bools by entering the following into the interactive shell:

>>> spam = True
>>> spam

True

>>> spam = False
>>> spam

False

Like a value of any other data type, bools can be stored in variables.

Comparison Operators

In line 8 of the reverseCipher.py program, look at the expression after the
while keyword:

8. while i >= 0:

The expression that follows the while keyword (the i >= 0 part) contains
two values (the value in the variable i and the integer value 0) connected by
the >= sign, called the “greater than or equal” operator. The >= operator is a
comparison operator.

We use comparison operators to compare two values and evaluate to a
True or False Boolean value. Table 4-1 lists the comparison operators.

Table 4-1: Comparison Operators

Operator sign Operator name

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
== Equal to

I= Not equal to

The Reverse Cipher 43



44

Chapter 4

Enter the following expressions in the interactive shell to see the
Boolean value they evaluate to:

>»> 0< 6

True

>»> 6<0

False

>>> 50 < 10.5
False

>>> 10.5 < 11.3
True

>> 10 < 10
False

The expression 0 < 6 returns the Boolean value True because the num-
ber o0 is less than the number 6. But because 6 is not less than o, the expres-
sion 6 < 0 evaluates to False. The expression 50 < 10.5 is False because 50
isn’t less than 10.5. The expression 10 < 11.3 evaluates to True because 10.5
is less than 11.3.

Look again at 10 < 10. It’s False because the number 10 isn’t less than
the number 10. They are exactly the same. (If Alice were the same height
as Bob, you wouldn’t say that Alice was shorter than Bob. That statement
would be false.)

Enter some expressions using the <= (less than or equal to) and >=
(greater than or equal to) operators:

>>> 10 <= 20
True
>>> 10 <= 10
True
>>> 10 >= 20
False
>>> 20 >= 20
True

Notice that 10 <= 10 is True because the operator checks if 10 is less than
or equal to 10. Remember that for the “less than or equal to” and “greater
than or equal to” operators, the < or > sign always comes before the = sign.

Now enter some expressions that use the == (equal to) and != (not equal
to) operators into the shell to see how they work:

>>> 10 == 10
True

>> 10 == 11
False

>> 11 == 10
False

>>> 10 = 10
False

>>> 10 = 11
True




These operators work as you would expect for integers. Comparing
integers that are equal to each other with the == operator evaluates as True
and unequal values as False. When you compare with the != operator, it’s
the opposite.

String comparisons work similarly:

>>> 'Hello' == 'Hello'
True

>>> 'Hello' == 'Goodbye'
False

>>> 'Hello' == 'HELLO'
False

>>> 'Goodbye' != 'Hello'
True

Capitalization matters to Python, so string values that don’t match
capitalization exactly are not the same string. For example, the strings
‘Hello' and 'HELLO' are not equal to each other, so comparing them with
== evaluates to False.

Notice the difference between the assignment operator (=) and the
“equal to” comparison operator (==). The single equal sign (=) is used to
assign a value to a variable, and the double equal sign (==) is used in expres-
sions to check whether two values are the same. If you're asking Python
whether two things are equal, use ==. If you’re telling Python to set a vari-
able to a value, use =.

In Python, string and integer values are always considered different
values and will never be equal to each other. For example, enter the follow-
ing into the interactive shell:

>>> 42 == "Hello'

False
>>> 42 == '42'
False
>>> 10 == 10.0
True

Even though they look alike, the integer 42 and the string '42"' aren’t
considered equal because a string isn’t the same as a number. Integers and
floating-point numbers can be equal to each other because they’re both
numbers.

When you’re working with comparison operators, just remember that
every expression always evaluates to a True or False value.

Blocks

A block is one or more lines of code grouped together with the same
minimum amount of indentation (that is, the number of spaces in front
of the line).

A block begins when a line is indented by four spaces. Any following
line that is also indented by at least four spaces is part of the block. When

The Reverse Cipher 45



46

Chapter 4

a line is indented with another four spaces (for a total of eight spaces in
front of the line), a new block begins inside the first block. A block ends
when there is a line of code with the same indentation as before the block
started.

Let’s look at some imaginary code (it doesn’t matter what the code is,
because we’re only going to focus on the indentation of each line). The
indented spaces are replaced with gray dots here to make them easier to
count.

1. codecodecode # 0 spaces of indentation
2. eeeecodecodecode # 4 spaces of indentation
3. eeeecodecodecode # 4 spaces of indentation
4. eeeecssecodecodecode # 8 spaces of indentation
5. eeeecodecodecode # 4 spaces of indentation
6.

7. eeeescodecodecode # 4 spaces of indentation
8. codecodecode # 0 spaces of indentation

You can see that line 1 has no indentation; that is, there are zero spaces
in front of the line of code. But line 2 has four spaces of indentation. Because
this is a larger amount of indentation than the previous line, we know a new
block has begun. Line 3 also has four spaces of indentation, so we know
the block continues on line 3.

Line 4 has even more indentation (eight spaces), so a new block has
begun. This block is inside the other block. In Python, you can have blocks
within blocks.

On line 5, the amount of indentation has decreased to four, so we know
that the block on the previous line has ended. Line 4 is the only line in that
block. Because line 5 has the same amount of indentation as the block in
lines 2 and 3, it’s still part of the original outer block, even though it’s not
part of the block on line 4.

Line 6 is a blank line, so we just skip it; it doesn’t affect the blocks.

Line 7 has four spaces of indentation, so we know that the block that
started on line 2 has continued to line 7.

Line 8 has zero spaces of indentation, which is less indentation than the
previous line. This decrease in indentation tells us that the previous block,
the block that started on line 2, has ended.

This code shows two blocks. The first block goes from line 2 to line 7.
The second block just consists of line 4 (and is inside the other block).

Blocks don’t always have to be delineated by four spaces. Blocks can use any number
of spaces, but the convention is to use four per indentation.

The while Loop Statement

Let’s look at the full while statement starting on line 8 of reverseCipher.py:

8. while i >= 0:
9. translated = translated + message[i]



10. i=1i-1
11.
12. print(translated)

A while statement tells Python to first check what the condition evaluates
to, which on line 8 is i »= 0. You can think of the while statement while i >= 0:
as meaning “While the variable i is greater than or equal to zero, keep exe-
cuting the code in the following block.” If the condition evaluates to True, the
program execution enters the block following the while statement. By looking
at the indentation, you can see that this block is made up of lines 9 and 10.
When it reaches the bottom of the block, the program execution jumps back
to the while statement on line 8 and checks the condition again. If it’s still
True, the execution jumps into the start of the block and runs the code in the
block again.

If the while statement’s condition evaluates to False, the program execu-
tion skips the code inside the following block and jumps down to the first
line after the block (which is line 12).

“Growing” a String

Keep in mind that on line 7, the i variable is first set to the length of the
message minus 1, and the while loop on line 8 keeps executing the lines
inside the following block until the condition i >= 0 is False:

7. i = len(message) - 1
8. while i >= 0:

9. translated = translated + message[i]
10. i=1i-1
11.

12. print(translated)

Line 9 is an assignment statement that stores a value in the translated
variable. The value that is stored is the current value of translated concat-
enated with the character at the index i in message. As a result, the string
value stored in translated “grows” one character at a time until it becomes
the fully encrypted string.

Line 10 is also an assignment statement. It takes the current integer
value in i and subtracts 1 from it (this is called decrementing the variable).
Then it stores this value as the new value of i.

The next line is 12, but because this line has less indentation, Python
knows that the while statement’s block has ended. So rather than mov-
ing on to line 12, the program execution jumps back to line 8 where the
while loop’s condition is checked again. If the condition is True, the lines
inside the block (lines 9 and 10) are executed again. This keeps happening
until the condition is False (that is, when i is less than 0), in which case the
program execution goes to the first line after the block (line 12).

Let’s think about the behavior of this loop to understand how many
times it runs the code in the block. The variable i starts with the value
of the last index of message, and the translated variable starts as a blank

The Reverse Cipher 47



string. Then inside the loop, the value of message[i] (which is the last char-
acter in the message string, because i will have the value of the last index)
is added to the end of the translated string.

Then the value in i is decremented (that is, reduced) by 1, meaning
that message[i] will be the second to last character. So while i as an index
keeps moving from the back of the string in message to the front, the string
message[1] is added to the end of translated. This is how translated ends up
holding the reverse of the string in the message. When 1i is finally set to -1,
which happens when we reach index 0 of the message, the while loop’s con-
dition is False, and the execution jumps to line 12:

12. print(translated)

At the end of the program on line 12, we print the contents of the
translated variable (thatis, the string '.daed era meht fo owt fi ,terces a
peek nac eerhT') to the screen. This shows the user what the reversed string
looks like.

If you're still having trouble understanding how the code in the while
loop reverses the string, try adding the new line (shown in bold) to the
loop’s block:

8. while i »= 0:

9. translated = translated + message[i]

10. print('i is', i, ', message[i] is', message[i], ', translated is’',
translated)

11. i=1i-1

12.

13. print(translated)

Line 10 prints the values of i, message[i], and translated along with
string labels each time the execution goes through the loop (that is, on
each iteration of the loop). This time, we aren’t using string concatenation
but something new. The commas tell the print() function that we’re print-
ing six separate things, so the function adds a space between them. Now
when you run the program, you can see how the translated variable “grows.”
The output looks like this:

He He He He He He He He He e He He e

=
(-]

is
is
is
is
is
is
is
is
is
is
is
is
is

48
47
46
45
44
43
42
M
40

. v e .

. v e .

38
37

message[i] is . , translated is .
message[i] is
message[i] is
message[i] is
message[i] is
message[i] is , translated is .daed
message[i] is
message[i] is r , translated is .daed er
, message[i] is a , translated is .daed era
39 , message[i] is , translated is .daed era

)

)

translated is .d
translated is .da
translated is .dae
, translated is .daed

.- e e .

Q DT v Q

translated is .daed e

(]
-

message[i] is m , translated is .daed era m
message[i] is

translated is .daed era me

[}
-

36 , message[i] is h , translated is .daed era meh

Chapter 4



e e e e e e e e e e e e e e e e e e e pe e e e pe e e e pe e e e e e e e e

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

message[i] is t , translated is .daed era meht
message[i] is , translated is .daed era meht
message[i] is f , translated is .daed era meht f
message[i] is o , translated is .daed era meht fo
message[i] is , translated is .daed era meht fo
message[i] is o , translated is .daed era meht fo o
message[i] is w , translated is .daed era meht fo ow
message[i] is t , translated is .daed era meht fo owt
message[i] is , translated is .daed era meht fo owt
message[i] is f , translated is .daed era meht fo owt f
message[i] is i , translated is .daed era meht fo owt fi
message[i] is , translated is .daed era meht fo owt fi

message[i] is
message[i] is
message[i] is
message[i] is
message[i] is
message[i] is
message[i] is

, translated is .daed era meht fo owt fi ,

, translated is .daed era meht fo owt fi ,t

, translated is .daed era meht fo owt fi ,te
translated is .daed era meht fo owt fi ,ter

, translated is .daed era meht fo owt fi ,terc

, translated is .daed era meht fo owt fi ,terce
, translated is .daed era meht fo owt fi ,terces

w N = O -
-

, message[i] is , translated is .daed era meht fo owt fi ,terces
, message[i] is a , translated is .daed era meht fo owt fi ,terces a
, message[i] is , translated is .daed era meht fo owt fi ,terces a
, message[i] is p , translated is .daed era meht fo owt fi ,terces a p
, message[i] is e , translated is .daed era meht fo owt fi ,terces a pe
, message[i] is e , translated is .daed era meht fo owt fi ,terces a pee
, message[i] is k , translated is .daed era meht fo owt fi ,terces a peek
, message[i] is , translated is .daed era meht fo owt fi ,terces a peek
, message[i] is n , translated is .daed era meht fo owt fi ,terces a peek n
, message[i] is a , translated is .daed era meht fo owt fi ,terces a peek na
, message[i] is c¢ , translated is .daed era meht fo owt fi ,terces a peek nac
, message[i] is , translated is .daed era meht fo owt fi ,terces a peek nac
, message[i] is e , translated is .daed era meht fo owt fi ,terces a peek nac e
, message[i] is e , translated is .daed era meht fo owt fi ,terces a peek nac ee
, message[i] is r , translated is .daed era meht fo owt fi ,terces a peek nac eer
, message[i] is h , translated is .daed era meht fo owt fi ,terces a peek nac eerh
, message[i] is T , translated is .daed era meht fo owt fi ,terces a peek nac eerhT

The line of output, "i is 48 , message[i] is . , translated is .", shows
what the expressions i, message[i], and translated evaluate to after the
string message[i] has been added to the end of translated but before i is
decremented. You can see that the first time the program execution goes
through the loop, i is set to 48, so message[1] (that is, message[48]) is the string
'.". The translated variable started as a blank string, but when message[i] was
added to the end of it on line 9, it became the string value '.".

On the next iteration of the loop, the outputis "i is 47 , message[i] is
d , translated is .d". You can see that i has been decremented from 48 to
47, so now message[i] is message[47], which is the 'd" string. (That’s the second
'd" in 'dead'.) This 'd' gets added to the end of translated, so translated is now
the value '.d".

Now you can see how the translated variable’s string is slowly “grown”
from a blank string to the reversed message.

The Reverse Cipher 49



50

Improving the Program with an input() Prompt

The programs in this book are all designed so the strings that are being
encrypted or decrypted are typed directly into the source code as assign-
ment statements. This is convenient while we’re developing the programs,
but you shouldn’t expect users to be comfortable modifying the source
code themselves. To make the programs easier to use and share, you can
modify the assignment statements so they call the input() function. You
can also pass a string to input() so it will display a prompt for the user to
enter a string to encrypt. For example, change line 4 in reverseCipher.py

to this:

4. message = input('Enter message: ')

When you run the program, it prints the prompt to the screen and
waits for the user to enter a message. The message that the user enters will
be the string value that is stored in the message variable. When you run the
program now, you can put in any string you’d like and get output like this:

Enter message: Hello, world!
ldlrow ,o0lleH

Summary

Chapter 4

We've just completed our second program, which manipulates a string into a
new string using techniques from Chapter 3, such as indexing and concatena-
tion. A key part of the program was the len() function, which takes a string
argument and returns an integer of how many characters are in the string.

You also learned about the Boolean data type, which has only two values,
True and False. Comparison operators ==, !=, <, >, <=, and >= can compare two
values and evaluate to a Boolean value.

Conditions are expressions that use comparison operators and evaluate
to a Boolean data type. They are used in while loops, which will execute code
in the block following the while statement until the condition evaluates as
False. A block is made up of lines with the same level of indentation, includ-
ing any blocks inside them.

Now that you've learned how to manipulate text, you can start making
programs that the user can run and interact with. This is important because
text is the main way the user and the computer communicate with each
other.



PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. What does the following piece of code print o the screen?

print(len('Hello') + len('Hello'))

2. What does this code print2

i=o0

while i < 3:
print('Hello")
i=1i+1

3. How about this code?

i=o0
spam = 'Hello'
while i < 5:
spam = spam + spam[i]

i=1+1
print(spam)
4. And thise
i=o0
while i < 4:
while i < 6:
i=1+2
print(i)

The Reverse Cipher 51







THE CAESAR CIPHER

“BIG BROTHER IS WATCHING YOU.”
—George Orwell, Nineteen Eighty-Four

In Chapter 1, we used a cipher wheel and

a chart of letters and numbers to imple-
ment the Caesar cipher. In this chapter,

we’ll implement the Caesar cipher in a com-
puter program.

The reverse cipher we made in Chapter 4 always encrypts the same
way. But the Caesar cipher uses keys, which encrypt the message differently
depending on which key is used. The keys for the Caesar cipher are the
integers from 0 to 25. Even if a cryptanalyst knows the Caesar cipher was
used, that alone doesn’t give them enough information to break the cipher.
They must also know the key.



TOPICS COVERED IN THIS CHAPTER

e The import statement

e  Constants

e for loops

e if, else, and elif statements
e The in and not in operators

e The find() string method

Source Code for the Caesar Cipher Program

Enter the following code into the file editor and save it as caesarCipher.py.
Then download the pyperclip.py module from https://www.nostarch.com/
crackingcodes/ and place it in the same directory (that is, the same folder)
as the file caesarCipher.py. This module will be imported by caesarCipher
.py; we’ll discuss this in more detail in “Importing Modules and Setting Up
Variables” on page 56.

When you’re finished setting up the files, press F5 to run the program.
If you run into any errors or problems with your code, you can compare it
to the code in the book using the online diff tool at Attps://www.nostarch
.com/crackingcodes/.

. # Caesar Cipher
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

caesarCipher.py
. import pyperclip

. message = 'This is my secret message.'

. # The encryption/decryption key:
. key = 13
11.
12. # Whether the program encrypts or decrypts:
13. mode = ‘encrypt' # Set to either 'encrypt' or 'decrypt'.
14.
15. # Every possible symbol that can be encrypted:
16. SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz12345
67890 12.'

1
2
3
4
5.
6. # The string to be encrypted/decrypted:
7
8
9
10

17.

18. # Store the encrypted/decrypted form of the message:
19. translated = "'

20.

54 Chapter 5


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

21. for symbol in message:

22. # Note: Only symbols in the SYMBOLS string can be
encrypted/decrypted.

23. if symbol in SYMBOLS:

24. symbolIndex = SYMBOLS.find(symbol)

25.

26. # Perform encryption/decryption:

27. if mode == 'encrypt':

28. translatedIndex = symbolIndex + key

29. elif mode == 'decrypt':

30. translatedIndex = symbolIndex - key

31.

32. # Handle wraparound, if needed:

33. if translatedIndex >= len(SYMBOLS):

34. translatedIndex = translatedIndex - len(SYMBOLS)

35. elif translatedIndex < 0:

36. translatedIndex = translatedIndex + len(SYMBOLS)

37.

38. translated = translated + SYMBOLS[translatedIndex]

39. else:

40. # Append the symbol without encrypting/decrypting:

41. translated = translated + symbol

42.

43. # Output the translated string:
44. print(translated)
45. pyperclip.copy(translated)

Sample Run of the Caesar Cipher Program

When you run the caesarCipher.py program, the output looks like this:

guv6Jv6]z!J6rp5r7]zr66ntrM

The output is the string 'This is my secret message.' encrypted with the
Caesar cipher using a key of 13. The Caesar cipher program you just ran
automatically copies this encrypted string to the clipboard so you can paste
it in an email or text file. As a result, you can easily send the encrypted out-
put from the program to another person.

You might see the following error message when you run the program:

Traceback (most recent call last):
File "C:\caesarCipher.py", line 4, in <module>
import pyperclip
ImportError: No module named pyperclip

If so, you probably haven’t downloaded the pyperclip.py module into the
right folder. If you confirm that pyperclip.py is in the folder with caesarCipher
.py but still can’t get the module to work, just comment out the code on
lines 4 and 45 (which have the text pyperclip in them) from the caesarCipher.py
program by placing a # in front of them. This makes Python ignore the code

The Caesar Cipher 55



56

that depends on the pyperclip.py module and should allow the program to
run successfully. Note that if you comment out that code, the encrypted or
decrypted text won’t be copied to the clipboard at the end of the program.
You can also comment out the pyperclip code from the programs in future
chapters, which will remove the copy-to-clipboard functionality from those
programs, too.

To decrypt the message, just paste the output text as the new value stored
in the message variable on line 7. Then change the assignment statement on
line 13 to store the string 'decrypt’ in the variable mode:

# The string to be encrypted/decrypted:
message = 'guv6Iv6]z!J6rp5r7Izr66ntxM'’

# The encryption/decryption key:
key = 13

12. # Whether the program encrypts or decrypts:
13. mode = 'decrypt’ # Set to either 'encrypt' or 'decrypt'.

When you run the program now, the output looks like this:

This is my secret message.

Importing Modules and Setting Up Variables

Chapter 5

Although Python includes many built-in functions, some functions exist in
separate programs called modules. Modules are Python programs that con-
tain additional functions that your program can use. We import modules
with the appropriately named import statement, which consists of the import
keyword followed by the module name.

Line 4 contains an import statement:

# Caesar Cipher
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

AW N R

import pyperclip

In this case, we’re importing a module named pyperclip so we can call
the pyperclip.copy() function later in this program. The pyperclip.copy()
function will automatically copy strings to your computer’s clipboard so
you can conveniently paste them into other programs.

The next few lines in caesarCipher.py set three variables:

# The string to be encrypted/decrypted:
message = 'This is my secret message.'

# The encryption/decryption key:
key = 13

O VW oOo~N O


https://www.nostarch.com/crackingcodes/

11.
12. # Whether the program encrypts or decrypts:
13. mode = 'encrypt' # Set to either 'encrypt' or 'decrypt'.

The message variable stores the string to be encrypted or decrypted, and
the key variable stores the integer of the encryption key. The mode variable
stores either the string 'encrypt’, which makes code later in the program
encrypt the string in message, or 'decrypt’, which makes the program decrypt
rather than encrypt.

Constants and Variables

Constants are variables whose values shouldn’t be changed when the pro-
gram runs. For example, the Caesar cipher program needs a string that

contains every possible character that can be encrypted with this Caesar
cipher. Because that string shouldn’t change, we store it in the constant

variable named SYMBOLS in line 16:

15. # Every possible symbol that can be encrypted:
16. SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz12345
67890 !?.'

Symbolis a common term used in cryptography for a single character that
a cipher can encrypt or decrypt. A symbol set is every possible symbol a cipher
is set up to encrypt or decrypt. Because we’ll use the symbol set many times
in this program, and because we don’t want to type the full string value each
time it appears in the program (we might make typos, which would cause
errors), we use a constant variable to store the symbol set. We enter the code
for the string value once and place it in the SYMBOLS constant.

Note that SYMBOLS is in all uppercase letters, which is the naming conven-
tion for constants. Although we could change SYMBOLS just like any other vari-
able, the all uppercase name reminds the programmer not to write code
that does so.

As with all conventions, we don’t have to follow this one. But doing so
makes it easier for other programmers to understand how these variables
are used. (It can even help you when you’re looking at your own code later.)

On line 19, the program stores a blank string in a variable named
translated that will later store the encrypted or decrypted message:

18. # Store the encrypted/decrypted form of the message:
19. translated = "'

Just as in the reverse cipher in Chapter 5, by the end of the program,
the translated variable will contain the completely encrypted (or decrypted)
message. But for now it starts as a blank string.

The Caesar Cipher 57



58

The for Loop Statement

Chapter 5

Atline 21, we use a type of loop called a for loop:

21. for symbol in message:

Recall that a while loop will loop as long as a certain condition is True.
The for loop has a slightly different purpose and doesn’t have a condi-
tion like the while loop. Instead, it loops over a string or a group of values.
Figure 5-1 shows the six parts of a for loop.

A variable name The in keyword

The for keyword A string or variable
containing a string

for symbol in message:

[some code here|] \\
A colon

A block of code

Figure 5-1: The six parts of a for loop statement

Each time the program execution goes through the loop (thatis, on
each iteration through the loop) the variable in the for statement (which
in line 21 is symbol) takes on the value of the next character in the variable
containing a string (which in this case is message). The for statement is simi-
lar to an assignment statement because the variable is created and assigned
a value except the for statement cycles through different values to assign
the variable.

An Example for Loop

For example, type the following into the interactive shell. Note that after
you type the first line, the >>> prompt will disappear (represented in our
code as ...) because the shell is expecting a block of code after the for
statement’s colon. In the interactive shell, the block will end when you
enter a blank line:

>>> for letter in 'Howdy':
print('The letter is ' + letter)

The letter is
The letter is
The letter is
The letter is
The letter is

< as o=




This code loops over each character in the string "Howdy'. When it does,
the variable letter takes on the value of each character in 'Howdy' one at
a time in order. To see this in action, we’ve written code in the loop that
prints the value of letter for each iteration.

A while Loop Equivalent of a for Loop

The for loop is very similar to the while loop, but when you only need to
iterate over characters in a string, using a for loop is more efficient. You
could make a while loop act like a for loop by writing a bit more code:

»>i=0

>>> while i < len('Howdy'):

letter = 'Howdy'[i]

print('The letter is ' + letter)
i=i+1

00O Q

The letter is
The letter is
The letter is
The letter is
The letter is

< Q= o T

Notice that this while loop works the same as the for loop but is not as
short and simple as the for loop. First, we set a new variable i to 0 before
the while statement @. This statement has a condition that will evaluate to
True as long as the variable 1 is less than the length of the string 'Howdy' @.
Because i is an integer and only keeps track of the current position in the
string, we need to declare a separate letter variable to hold the character
in the string at the i position ®. Then we can print the current value of
letter to get the same output as the for loop @. When the code is finished
executing, we need to increment i by adding 1 to it to move to the next
position ©.

To understand lines 23 and 24 in caesarCipher.py, you need to learn
about the if, elif, and else statements, the in and not in operators, and the
find() string method. We’ll look at these in the following sections.

The if Statement

Line 23 in the Caesar cipher has another kind of Python instruction—the
if statement:

23. if symbol in SYMBOLS:

You can read an if statement as, “If this condition is True, execute the
code in the following block. Otherwise, if it is False, skip the block.” An if
statement is formatted using the keyword if followed by a condition, followed
by a colon (:). The code to execute is indented in a block just as with loops.

The Caesar Cipher 59



60

checkPw.py

checkPw.py

Chapter 5

[~

An Example if Statement

Let’s try an example of an if statement. Open a new file editor window,
enter the following code, and save it as checkPw.py:

print('Enter your password.')

typedPassword = input()

if typedPassword == 'swordfish':
print('Access Granted')

print('Done")

When you run this program, it displays the text Enter your password. and
lets the user type in a password. The password is then stored in the vari-
able typedPassword @. Next, the if statement checks whether the password
is equal to the string 'swordfish' @. If it is, the execution moves inside the
block following the if statement to display the text Access Granted to the
user ©; otherwise, if typedPassword isn’t equal to 'swordfish', the execution
skips the if statement’s block. Either way, the execution continues on to the
code after the if block to display Done @.

The else Statement

Often, we want to test a condition and execute one block of code if the
condition is True and another block of code if it’s False. We can use an else
statement after an if statement’s block, and the else statement’s block of
code will be executed if the if statement’s condition is False. For an else
statement, you just write the keyword else and a colon (:). It doesn’t need
a condition because it will be run if the if statement’s condition isn’t true.
You can read the code as, “If this condition is True, execute this block, or
else, if it is False, execute this other block.”

Modify the checkPw.py program to look like the following (the new lines
are in bold):

print('Enter your password."')
typedPassword = input()
if typedPassword == 'swordfish':
print('Access Granted')
else:
print('Access Denied')
print('Done")

This version of the program works almost the same as the previous ver-
sion. The text Access Granted will still display if the if statement’s condition
is True @. But now if the user types something other than swordfish, the if
statement’s condition will be False, causing the execution to enter the else
statement’s block and display Access Denied . Either way, the execution will
still continue and display Done ©.



checkPw.py

© o0

The elif Statement

Another statement, called the elif statement, can also be paired with if.
Like an if statement, it has a condition. Like an else statement, it follows

an if (or another elif) statement and executes if the previous if (or elif)
statement’s condition is False. You can read if, elif, and else statements as,
“If this condition is True, run this block. Or else, check if this next condition
is True. Or else, just run this last block.” Any number of elif statements can
follow an if statement. Modify the checkPw.py program again to make it look
like the following:

print('Enter your password.')
typedPassword = input()
if typedPassword == 'swordfish':
print('Access Granted')
elif typedPassword == "mary':
print('Hint: the password is a fish.")
elif typedPassword == '12345"':
print('That is a really obvious password.')
else:
print('Access Denied")
print('Done")

This code contains four blocks for the if, elif, and else statements. If
the user enters 12345, then typedPassword == 'swordfish' evaluates to False @,
so the first block with print('Access Granted') @ is skipped. The execution
next checks the typedPassword == 'mary' condition, which also evaluates to
False @, so the second block is also skipped. The typedPassword == '12345'
condition is True @, so the execution enters the block following this elif
statement to run the code print('That is a really obvious password.') and
skips any remaining elif and else statements. Notice that one and only one of
these blocks will be executed.

You can have zero or more elif statements following an if statement. You
can have zero or one but not multiple else statements, and the else statement
always comes last because it only executes if none of the conditions evaluate
to True. The first statement with a True condition has its block executed. The
rest of the conditions (even if they’re also True) aren’t checked.

The in and not in Operators

Line 23 in caesarCipher.py also uses the in operator:

23. if symbol in SYMBOLS:

An in operator can connect two strings, and it will evaluate to True if
the first string is inside the second string or evaluate to False if not. The in

The Caesar Cipher 61



62

operator can also be paired with not, which will do the opposite. Enter the
following into the interactive shell:

>>> 'hello' in 'hello world!'

True

>>> 'hello' not in 'hello world!'
False

>>> 'ello' in 'hello world!'

True

>>> "HELLO' in '"hello world!'
False

>>> "' in 'Hello'

True

Notice that the in and not in operators are case sensitive @. Also, a
blank string is always considered to be in any other string @.

Expressions using the in and not in operators are handy to use as
conditions of if statements to execute some code if a string exists inside
another string.

Returning to caesarCipher.py, line 23 checks whether the string in
symbol (which the for loop on line 21 set to a single character from the
message string) is in the SYMBOLS string (the symbol set of all characters that
can be encrypted or decrypted by this cipher program). If symbol is in
SYMBOLS, the execution enters the block that follows starting on line 24.
If it isn’t, the execution skips this block and instead enters the block
following line 39’s else statement. The cipher program needs to run
different code depending on whether the symbol is in the symbol set.

The find() String Method

Chapter 5

Line 24 finds the index in the SYMBOLS string where symbol is:

24. symbolIndex = SYMBOLS.find(symbol)

This code includes a method call. Methods are just like functions except
they’re attached to a value with a period (or in line 24, a variable containing
avalue). The name of this method is find(), and it’s being called on the
string value stored in SYMBOLS.

Most data types (such as strings) have methods. The find() method takes
one string argument and returns the integer index of where the argument
appears in the method’s string. Enter the following into the interactive shell:

>>> 'hello'.find('e")
1

>>> 'hello'.find('o0")
4

>>> spam = "hello’
>>> spam.find('h")

(1 J0]




You can use the find() method on either a string or a variable contain-
ing a string value. Remember that indexing in Python starts with 0, so when
the index returned by find() is for the first character in the string, a 0 is
returned @.

If the string argument can’t be found, the find() method returns the
integer -1. Enter the following into the interactive shell:

>>> "hello'.find('x")
-1

© >>> 'hello'.find('H')
-1

Notice that the find() method is also case sensitive @.

The string you pass as an argument to find() can be more than one char-
acter. The integer that find() returns will be the index of the first character
where the argument is found. Enter the following into the interactive shell:

>>> 'hello'.find('ello’)

1

>>> 'hello’.find('lo")

3

>>> "hello hello'.find('e')
1

The find() string method is like a more specific version of using the in
operator. It not only tells you whether a string exists in another string but
also tells you where.

Encrypting and Decrypting Symbols

Now that you understand if, elif, and else statements; the in operator; and
the find() string method, it will be easier to understand how the rest of the
Caesar cipher program works.

The cipher program can only encrypt or decrypt symbols that are in
the symbol set:

23. if symbol in SYMBOLS:
24. symbolIndex = SYMBOLS.find(symbol)

So before running the code on line 24, the program must figure out
whether symbol is in the symbol set. Then it can find the index in SYMBOLS
where symbol is located. The index returned by the find() call is stored in
symbolIndex.

Now that we have the current symbol’s index stored in symbolIndex, we
can do the encryption or decryption math on it. The Caesar cipher adds the
key number to the symbol’s index to encrypt it or subtracts the key number

The Caesar Cipher 63



caesarCipher.py

64

Chapter 5

from the symbol’s index to decrypt it. This value is stored in translatedIndex
because it will be the index in SYMBOLS of the translated symbol.

26. # Perform encryption/decryption:

27. if mode == 'encrypt':

28. translatedIndex = symbolIndex + key
29. elif mode == 'decrypt':

30. translatedIndex = symbolIndex - key

The mode variable contains a string that tells the program whether it
should be encrypting or decrypting. If this string is 'encrypt’, then the con-
dition for line 27’s if statement will be True, and line 28 will be executed
to add the key to symbolIndex (and the block after the elif statement will be
skipped). Otherwise, if mode is 'decrypt’, then line 30 is executed to subtract
the key.

Handling Wraparound

When we were implementing the Caesar cipher with paper and pencil in
Chapter 1, sometimes adding or subtracting the key would result in a num-
ber greater than or equal to the size of the symbol set or less than zero. In
those cases, we have to add or subtract the length of the symbol set so that
it will “wrap around,” or return to the beginning or end of the symbol set. We
can use the code len(SYMBOLS) to do this, which returns 66, the length of the
SYMBOLS string. Lines 33 to 36 handle this wraparound in the cipher program.

32. # Handle wraparound, if needed:

33. if translatedIndex »>= len(SYMBOLS):

34. translatedIndex = translatedIndex - len(SYMBOLS)
35. elif translatedIndex < O:

36. translatedIndex = translatedIndex + len(SYMBOLS)

If translatedIndex is greater than or equal to 66, the condition on line 33
is True and line 34 is executed (and the elif statement on line 35 is skipped).
Subtracting the length of SYMBOLS from translatedIndex points the index of the
variable back to the beginning of the SYMBOLS string. Otherwise, Python will
check whether translatedIndex is less than o. If that condition is True, line 36 is
executed, and translatedIndex wraps around to the end of the SYMBOLS string.

You might be wondering why we didn’t just use the integer value 66
directly instead of 1en(SYMBOLS). By using len(SYMBOLS) instead of 66, we can add
to or remove symbols from SYMBOLS and the rest of the code will still work.

Now that you have the index of the translated symbol in translatedIndex,
SYMBOLS[translatedIndex] will evaluate to the translated symbol. Line 38 adds
this encrypted/decrypted symbol to the end of the translated string using
string concatenation:

38. translated = translated + SYMBOLS[translatedIndex]

Eventually, the translated string will be the whole encoded or decoded
message.



Handling Symbols Outside of the Symbol Set

The message string might contain characters that are not in the SYMBOLS
string. These characters are outside of the cipher program’s symbol set and
can’t be encrypted or decrypted. Instead, they will just be appended to the
translated string as is, which happens in lines 39 to 41:

39. else:
40. # Append the symbol without encrypting/decrypting:
41. translated = translated + symbol

The else statement on line 39 has four spaces of indentation. If you
look at the indentation of the lines above, you’ll see that it’s paired with the
if statement on line 23. Although there’s a lot of code in between this if
and else statement, it all belongs in the same block of code.

If line 23’s if statement’s condition were False, the block would be
skipped, and the program execution would enter the else statement’s
block starting at line 41. This else block has just one line in it. It adds the
unchanged symbol string to the end of translated. As a result, symbols out-
side of the symbol set, such as '%"' or '(', are added to the translated string
without being encrypted or decrypted.

Displaying and Copying the Translated String

Line 43 has no indentation, which means it’s the first line after the block
that started on line 21 (the for loop’s block). By the time the program
execution reaches line 44, it has looped through each character in the
message string, encrypted (or decrypted) the characters, and added them
to translated:

43. # Output the translated string:
44. print(translated)
45. pyperclip.copy(translated)

Line 44 calls the print() function to display the translated string on the
screen. Notice that this is the only print() call in the entire program. The
computer does a lot of work encrypting every letter in message, handling
wraparound, and handling non-letter characters. But the user doesn’t
need to see this. The user just needs to see the final string in translated.

Line 45 calls copy(), which takes one string argument and copies it to
the clipboard. Because copy() is a function in the pyperclip module, we must
tell Python this by putting pyperclip. in front of the function name. If we
type copy(translated) instead of pyperclip.copy(translated), Python will give
us an error message because it won’t be able to find the function.

Python will also give an error message if you forget the import pyperclip
line (line 4) before trying to call pyperclip.copy().

That'’s the entire Caesar cipher program. When you run it, notice how
your computer can execute the entire program and encrypt the string in
less than a second. Even if you enter a very long string to store in the message

The Caesar Cipher 65



66

variable, your computer can encrypt or decrypt the message within a second
or two. Compare this to the several minutes it would take to do this with a
cipher wheel. The program even automatically copies the encrypted text
to the clipboard so the user can simply paste it into an email to send to
someone.

Encrypting Other Symbols

One problem with the Caesar cipher that we’ve implemented is that it
can’t encrypt characters outside its symbol set. For example, if you encrypt
the string 'Be sure to bring the $$$."' with the key 20, the message will
encrypt to 'VyQ?AlyQ.90v!3810.2y0$$$T'. This encrypted message doesn’t
hide that you are referring to $$$. However, we can modify the program
to encrypt other symbols.

By changing the string that is stored in SYMBOLS to include more charac-
ters, the program will encrypt them as well, because on line 23, the condi-
tion symbol in SYMBOLS will be True. The value of symbolIndex will be the index
of symbol in this new, larger SYMBOLS constant variable. The “wraparound”
will need to add or subtract the number of characters in this new string,
but that’s already handled because we use len(SYMBOLS) instead of typing 66
directly into the code (which is why we programmed it this way).

For example, you could expand line 16 to be:

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz12345
67890 1?2.7~@#$%°8* () _+-=[]{}|;:<>,/"

Keep in mind that a message must be encrypted and decrypted with
the same symbol set to work.

Summary

Chapter 5

You've learned several programming concepts and read through quite a few
chapters to get to this point, but now you have a program that implements a
secret cipher. And more important, you understand how this code works.

Modules are Python programs that contain useful functions. To use
these functions, you must first import them using an import statement. To
call functions in an imported module, put the module name and a period
before the function name, like so: module. function().

Constant variables are written in uppercase letters by convention. These
variables are not meant to have their values changed (although nothing
prevents the programmer from writing code that does so). Constants are
helpful because they give a “name” to specific values in your program.

Methods are functions that are attached to a value of a certain data
type. The find() string method returns an integer of the position of the
string argument passed to it inside the string it is called on.



You learned about several new ways to manipulate which lines of code
run and how many times each line runs. A for loop iterates over all the
characters in a string value, setting a variable to each character on each
iteration. The if, elif, and else statements execute blocks of code based on
whether a condition is True or False.

The in and not in operators check whether one string is or isn’t in
another string and evaluate to True or False accordingly.

Knowing how to program gives you the ability to write down a process
like encrypting or decrypting with the Caesar cipher in a language that
a computer can understand. And once the computer understands how to
execute the process, it can do it much faster than any human can and with
no mistakes (unless mistakes are in your programming). Although this is
an incredibly useful skill, it turns out the Caesar cipher can easily be bro-
ken by someone who knows how to program. In Chapter 6, you’ll use the
skills you've learned to write a Caesar cipher hacker so you can read cipher-
text that other people have encrypted. Let’s move on and learn how to hack
encryption.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. Using caesarCipher.py, encrypt the following sentences with the
given keys:
a. '""You can show black is white by argument," said Filby, "but
you will never convince me."' with key 8
b.  '1234567890" with key 21

2. Using caesarCipher.py, decrypt the following ciphertexts with the
given keys:
a. 'Kv?ugwpfu?rncwukdng?gpqwijB' with key 2
b.  'XCBSw88S18A1S 2SB41SE .8zSEwAS50D5A5x81V' with key 22
3. Which Python instruction would import a module named watermelon.py?
What do the following pieces of code display on the screen?

a.

spam = 'foo’
for i in spam:

spam = spam + i
print(spam)

(continued)

The Caesar Cipher 67



68

Chapter 5

if 10 < 5:
print('Hello")
elif False:
print('Alice")
elif 5 I= 5:
print('Bob")
else:
print('Goodbye")

print('f' not in 'foo')

d.

print('foo' in 'f')

print('hello'.find('00"))




HACKING THE CAESAR CIPHER
WITH BRUTE-FORCE

“Arab scholars . . . invented cryptanalysis, the
science of unscrambling a message without
knowledge of the key.”

—Simon Singh, The Code Book

We can hack the Caesar cipher by using a

cryptanalytic technique called brute-force. A
brute-force attack tries every possible decryp-

tion key for a cipher. Nothing stops a cryptana-
lyst from guessing one key, decrypting the ciphertext
with that key, looking at the output, and then moving
on to the next key if they didn’t find the secret mes-
sage. Because the brute-force technique is so effective
against the Caesar cipher, you shouldn’t actually use
the Caesar cipher to encrypt secret information.



caesarHacker.py

70

Ideally, the ciphertext would never fall into anyone’s hands. But
Kerckhoffs’s principle (named after the 19th-century cryptographer Auguste
Kerckhoffs) states that a cipher should still be secure even if everyone
knows how the cipher works and someone else has the ciphertext. This
principle was restated by the 20th-century mathematician Claude Shannon
as Shannon’s maxim: “The enemy knows the system.” The part of the cipher
that keeps the message secret is the key, and for the Caesar cipher this
information is very easy to find.

TOPICS COVERED IN THIS CHAPTER

e Kerckhoffs's principle and Shannon’s maxim
e The brute-force technique
® The range() function

e String formatting (string interpolation)

Source Code for the Caesar Cipher Hacker Program

Chapter 6

Open a new file editor window by selecting File » New File. Enter the fol-
lowing code into the file editor and save it as caesarHacker.py. Then down-
load the pyperclip.py module if you haven’t already (https://www.nostarch.com/
crackingcodes/) and place it in the same directory (that is, the same folder)
as the caesarCipher.py file. This module will be imported by caesarCipher.py.

When you’re finished setting up the files, press F5 to run the program.
If you run into any errors or problems with your code, you can compare it
to the code in the book using the online diff tool at Attps://www.nostarch
.com/crackingcodes/.

# Caesar Cipher Hacker
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

message = 'guv6Iv6]z!J6rp5r7]zr66ntrM'
SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz12345
67890 !?.'

6.

7. # Loop through every possible key:

8. for key in range(len(SYMBOLS)):

9 # It is important to set translated to the blank string so that the
0. # previous iteration's value for translated is cleared:

11. translated = '’

13. # The rest of the program is almost the same as the Caesar program:


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

# Loop through each symbol in message:
for symbol in message:
if symbol in SYMBOLS:
symbolIndex = SYMBOLS.find(symbol)
translatedIndex = symbolIndex - key

# Handle the wraparound:
if translatedIndex < 0:
translatedIndex = translatedIndex + len(SYMBOLS)

# Append the decrypted symbol:
translated = translated + SYMBOLS[translatedIndex]

else:
# Append the symbol without encrypting/decrypting:
translated = translated + symbol

# Display every possible decryption:
print('Key #%s: %s' % (key, translated))

Notice that much of this code is the same as the code in the original
Caesar cipher program. This is because the Caesar cipher hacker program
uses the same steps to decrypt the message.

Sample Run of the Caesar Cipher Hacker Program

The Caesar cipher hacker program prints the following output when you
run it. It breaks the ciphertext guv6Jv6Jz!J6rp5r7Jzr66ntiM by decrypting the
ciphertext with all 66 possible keys:

Key #0:

Key #1:

Key #2:

Key #3:

Key #4:

--snip--
Key #11:
Key #12:
Key #13:
Key #14:
Key #15:
--snip--
Key #61:
Key #62:
Key #63:
Key #64:
Key #65:

guvbJv6]z!J6rp5r7Jzr66ntrM
ftusIusIy I5qo4q6Iyq55msql
est4Ht4Hx0H4pn3p5Hxp441lrpK
drs3Gs3Gw9G3om204Gwo33kqo]
cqr2Fr2Fv8F2nlin3Fvn22jpnl

Vjku?ku?o01?ugetgv?oguucigB
Uijt!jt!nz!tfdsfulnfttbhfA
This is my secret message.
Sghrohrolxordbqdsoldrrzfd?
Rfgq9gqokwaqcapcrokcqqYec!

1z1 01 05CO wuow!O5w sywR
kyzONzON4BNOvt9v N4v0OrxvQ
Jxy9My9M3AMIus8uoM3u99qwuP
iwx8Lx8L2.L8tr7t9L2t88pvt0
hvw7Kw7K1?K759658K1s770usN

Because the decrypted output for key 13 is plain English, we know the
original encryption key must have been 13.

Hacking the Caesar Cipher with Brute-Force 71



72

Setting Up Variables

The hacker program will create a message variable that stores the ciphertext
string the program tries to decrypt. The SYMBOLS constant variable contains
every character that the cipher can encrypt:

# Caesar Cipher Hacker
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

message = 'guv6Iv6]z!J6rp5r7Jzr66ntrM’
SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz12345
67890 12.'

uvi b W N R

The value for SYMBOLS needs to be the same as the value for SYMBOLS used
in the Caesar cipher program that encrypted the ciphertext we’re trying to
hack; otherwise, the hacker program won’t work. Note that there is a single
space between the 0 and ! in the string value.

Looping with the range() Function

Chapter 6

Line 8 is a for loop that doesn’t iterate over a string value but instead iter-
ates over the return value from a call to the range() function:

7. # Loop through every possible key:
8. for key in range(len(SYMBOLS)):

The range() function takes one integer argument and returns a value of
the range data type. Range values can be used in for loops to loop a specific
number of times according to the integer you give the function. Let’s try an
example. Enter the following into the interactive shell:

>>> for i in range(3):
print('Hello")

Hello

Hello

Hello

The for loop will loop three times because we passed the integer 3 to
range().

More specifically, the range value returned from the range() function
call will set the for loop’s variable to the integers from 0 to (but not includ-
ing) the argument passed to range(). For example, enter the following into
the interactive shell:

>>> for i in range(6):
print(i)


https://www.nostarch.com/crackingcodes/

viph wnN

This code sets the variable i to the values from 0 to (but not including)
6, which is similar to what line 8 in caesarHacker.py does. Line 8 sets the key
variable with the values from 0 to (but not including) 66. Instead of hard-
coding the value 66 directly into our program, we use the return value from
len(SYMBOLS) so the program will still work if we modify SYMBOLS.

The first time the program execution goes through this loop, key is set
to 0, and the ciphertext in message is decrypted with key 0. (Of course, if 0 is
not the real key, message just “decrypts” to nonsense.) The code inside the
for loop from lines 9 through 31, which we’ll explain next, are similar to the
original Caesar cipher program and do the decrypting. On the next iteration
of line 8’s for loop, key is set to 1 for the decryption.

Although we won’t use it in this program, you can also pass two integer
arguments to the range() function instead of just one. The first argument is
where the range should start, and the second argument is where the range
should stop (up to but not including the second argument). The arguments
are separated by a comma:

>>> for i in range(2, 6):
print(i)

Ui W N e

The variable i will take the value from 2 (including 2) up to the value 6
(but not including 6).

Decrypting the Message

The decryption code in the next few lines adds the decrypted text to
the end of the string in translated. On line 11, translated is set to a blank
string:

7. # Loop through every possible key:
8. for key in range(len(SYMBOLS)):

9. # It is important to set translated to the blank string so that the
10. # previous iteration's value for translated is cleared:
11. translated = "'

It’s important that we reset translated to a blank string at the begin-
ning of this for loop; otherwise, the text that was decrypted with the

Hacking the Caesar Cipher with Brute-Force 73



74

Chapter 6

current key will be added to the decrypted text in translated from the last
iteration in the loop.

Lines 16 to 30 are almost the same as the code in the Caesar cipher
program in Chapter 5 but are slightly simpler because this code only has to
decrypt:

13. # The rest of the program is almost the same as the Caesar program:
14.

15. # Loop through each symbol in message:

16. for symbol in message:

17. if symbol in SYMBOLS:

18. symbolIndex = SYMBOLS.find(symbol)

In line 16, we loop through every symbol in the ciphertext string stored
in message. On each iteration of this loop, line 17 checks whether symbol
exists in the SYMBOLS constant variable and, if so, decrypts it. Line 18’s find()
method call locates the index where symbol is in SYMBOLS and stores it in a
variable called symbolIndex.

Then we subtract the key from symbolIndex on line 19 to decrypt:

19. translatedIndex = symbolIndex - key

20.

21. # Handle the wraparound:

22. if translatedIndex < O:

23. translatedIndex = translatedIndex + len(SYMBOLS)

This subtraction operation may cause translatedIndex to become less
than zero and require us to “wrap around” the SYMBOLS constant when we
find the position of the character in SYMBOLS to decrypt to. Line 22 checks
for this case, and line 23 adds 66 (which is what 1len(SYMBOLS) returns) if
translatedIndex is less than o.

Now that translatedIndex has been modified, SYMBOLS[translatedIndex]
will evaluate to the decrypted symbol. Line 26 adds this symbol to the end
of the string stored in translated:

25. # Append the decrypted symbol:

26. translated = translated + SYMBOLS[translatedIndex]
27.

28. else:

29. # Append the symbol without encrypting/decrypting:
30. translated = translated + symbol

Line 30 just adds the unmodified symbol to the end of translated if the
value was not found in the SYMBOL set.



Using String Formatting to Display the Key and
Decrypted Messages
Although line 33 is the only print() function call in our Caesar cipher

hacker program, it will execute several lines because it gets called once
per iteration of the for loop in line 8:

32. # Display every possible decryption:
33. print('Key #%s: %s' % (key, translated))

The argument for the print() function call is a string value that uses
string formatting (also called string interpolation). String formatting with the
%s text places one string inside another one. The first %s in the string gets
replaced by the first value in the parentheses at the end of the string.

Enter the following into the interactive shell:

>>> "Hello %s!' % ('world')

'Hello world!"'

>>> 'Hello ' + 'world' + '!'

'Hello world!"

>>> 'The %s ate the %s that ate the %s.' % ('dog', 'cat', 'rat')
'The dog ate the cat that ate the rat.'

In this example, first the string 'world' is inserted into the string 'Hello
%s!" in place of the %s. It works as though you had concatenated the part
of the string before the %s with the interpolated string and the part of the
string after the %s. When you interpolate multiple strings, they replace each
%s in order.

String formatting is often easier to type than string concatenation
using the + operator, especially for large strings. And, unlike with string
concatenation, you can insert non-string values such as integers into the
string. Enter the following into the interactive shell:

>>> '%s had %s pies.' % ('Alice', 42)
'Alice had 42 pies.'
>>> "Alice' + ' had ' + 42 + ' pies.’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

The integer 42 is inserted into the string without any issues when you use
interpolation, but when you try to concatenate the integer, it causes an error.

Line 33 of caesarHacker.py uses string formatting to create a string that
has the values in both the key and translated variables. Because key stores
an integer value, we use string formatting to put it in a string value that is
passed to print().

Hacking the Caesar Cipher with Brute-Force 75



Summary

The critical weakness of the Caesar cipher is that there aren’t many pos-

sible keys that can be used to encrypt. Any computer can easily decrypt with
all 66 possible keys, and it takes a cryptanalyst only a few seconds to look
through the decrypted messages to find the one in English. To make our
messages more secure, we need a cipher that has more potential keys. The
transposition cipher discussed in Chapter 7 can provide this security for us.

PRACTICE QUESTION

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. Break the following ciphertext, decrypting one line at a time because each
line has a different key. Remember to escape any quote characters:

qeFIP?eGSeECNNS,
5co0MXXcoPSZIWo0I,
avnliolyD4l'ylDohww6DhzDjhuDil,

z.GM?.cEQc. 70c.7KcKMKHA9AGFK,
2MFYp2pPIIUpZSIIWpRApMFY,
ZqH8s15HtqHTH4s31yvH5zH5spHAt pHzqH1H315K

Zfbi, !'tif!xpvme!qgspcbcmz!fbu!nfA

76 Chapter 6




ENCRYPTING WITH THE
TRANSPOSITION CIPHER

“Arguing that you don’t care about the right to
privacy because you have nothing to hide is no
different than saying you don’t care about free
speech because you have nothing to say.”
—Edward Snowden, 2015

The Caesar cipher isn’t secure; it doesn’t

take much for a computer to brute-force
through all 66 possible keys. The transposi-
tion cipher, on the other hand, is more difficult
to brute-force because the number of possible keys
depends on the message’s length. There are many

different types of transposition ciphers, including the rail fence cipher,
route cipher, Myszkowski transposition cipher, and disrupted transposi-
tion cipher. This chapter covers a simple transposition cipher called the
columnar transposition cipher.



78

TOPICS COVERED IN THIS CHAPTER

e  Creating functions with def statements

e Arguments and parameters

e Variables in global and local scopes

® main() functions

e The list data type

e Similarities in lists and strings

e Lists of lists

®  Augmented assignment operators (+=, -=, *=, /=)
®  The join() string method

e Return values and the return statement

e The _name__variable

How the Transposition Cipher Works

Chapter 7

Instead of substituting characters with other characters, the transposition
cipher rearranges the message’s symbols into an order that makes the origi-
nal message unreadable. Because each key creates a different ordering, or
permutation, of the characters, a cryptanalyst doesn’t know how to rearrange
the ciphertext back into the original message.

The steps for encrypting with the transposition cipher are as follows:

Count the number of characters in the message and the key.

Draw a row of a number of boxes equal to the key (for example, 8 boxes
for a key of 8).

Start filling in the boxes from left to right, entering one character
per box.

When you run out of boxes but still have more characters, add another
row of boxes.

When you reach the last character, shade in the unused boxes in the
last row.

Starting from the top left and going down each column, write out the
characters. When you get to the bottom of a column, move to the next
column to the right. Skip any shaded boxes. This will be the ciphertext.

To see how these steps work in practice, we’ll encrypt a message by

hand and then translate the process into a program.




Encrypting a Message by Hand

Before we start writing code, let’s encrypt the message “Common sense is
not so common.” using pencil and paper. Including the spaces and punctua-
tion, this message has 30 characters. For this example, you’ll use the num-
ber 8 as the key. The range for possible keys for this cipher type is from 2
to half the message size, which is 15. But the longer the message, the more
keys are possible. Encrypting an entire book using the columnar transposi-
tion cipher would allow for thousands of possible keys.

The first step is to draw eight boxes in a row to match the key number,
as shown in Figure 7-1.

Figure 7-1: The number of boxes in the first row should match the key number.

The second step is to start writing the message you want to encrypt into
the boxes, placing one character into each box, as shown in Figure 7-2.
Remember that spaces are also characters (indicated here with ®).

C o m m o n L] s

Figure 7-2: Fill in one character per box, including spaces.

You have only eight boxes, but there are 30 characters in the message.
When you run out of boxes, draw another row of eight boxes under the first
row. Continue creating new rows until you’ve written the entire message, as
shown in Figure 7-3.

Tst 2nd 3rd 4th 5th 6th 7th 8th
C o m m o n . s
e n s e L] i s n
n o t L] s o n c
o m m o n

Figure 7-3: Add more rows until the entire message is filled in.

Shade in the two boxes in the last row as a reminder to ignore them. The
ciphertext consists of the letters read from the top-left box going down the
column. C, ¢, n, and o are from the 1lst column, as labeled in the diagram.
When you get to the last row of a column, move to the top row of the next col-
umn to the right. The next characters are o, n, o, m. Ignore the shaded boxes.

Encrypting with the Transposition Cipher 79



80

Chapter 7

The ciphertext is “Cenoonommstmme oo snnio. s s ¢”, which is suffi-
ciently scrambled to prevent someone from figuring out the original mes-
sage by looking at it.

Creating the Encryption Program

To make a program for encrypting, you need to translate these paper-and-
pencil steps into Python code. Let’s look again at how to encrypt the string
"Common sense is not so common.' using the key 8. To Python, a character’s
position inside a string is its numbered index, so add the index of each
letter in the string to the boxes in your original encrypting diagram, as
shown in Figure 7-4. (Remember that indexes begin with 0, not 1.)

Tst 2nd 3rd 4th 5th 6th 7th 8th
C o m m o n . s

0 1 2 3 4 5 7

e n S e u i s ]

8 9 10 11 12 13 14 15
n o t L] s o) = c

16 17 18 19 20 21 22 23
o m m o n .

24 25 26 27 28 29

Figure 7-4: Add the index number to each box, starting with O.

These boxes show that the first column has the characters at indexes

0, 8, 16, and 24 (which are 'C', 'e', 'n', and '0'). The next column has the
characters at indexes 1, 9, 17, and 25 (which are 'o', 'n', 'o', and 'm"). Notice
the pattern emerging: the nth column has all the characters in the string
atindexes 0+ (n—1),8+ (n—-1),16 + (n—1), and 24 + (n— 1), as shown in

Figure 7-b.
1st 2nd 3rd 4th 5th 6th 7th 8th

C o m m o n L] s
0+0=0 1+0=1 2+0=2 3+0=3 4+0=4 5+0=5 6+0=6 7+0=7

e S e u S L

n i
0+8=8 1+8=9 | 2+8=10 | 3+8=11 | 4+8=12 | 5+8=13 | 6+8=14 | 7+8=15

n o t L] o u [9

s
0+16=16|1+16=17|2+16=18|3+16=19|4+16=20|5+16=21]6+16=22|7+16=23

o m m o n .
0+24=24 | 1+424=25|2+24=26 | 3+24=27 | 4+24=28 | 5+24=29

Figure 7-5: The index of each box follows a predictable pattern.



There is an exception for the last row in the 7th and 8th columns,
because 24 + (7 — 1) and 24 + (8 — 1) would be greater than 29, which is
the largest index in the string. In those cases, you only add 0, 8, and 16
to n (and skip 24).

What’s so special about the numbers 0, 8, 16, and 24? These are the
numbers you get when, starting from 0, you add the key (which in this
example is 8). So, 0 + 81is 8, 8 + 8is 16, 16 + 8 is 24. The result of 24 + 8
would be 32, but because 32 is larger than the length of the message, you'll
stop at 24.

For the nth column’s string, start at index (n— 1) and continue adding
8 (the key) to get the next index. Keep adding 8 as long as the index is less
than 30 (the message length), at which point move to the next column.

If you imagine each column is a string, the result would be a list of eight
strings, like this: 'Ceno’, 'onom', 'mstm’, 'me o', 'o sn', 'nio."', ' s ', 's c".

If you concatenated the strings together in order, the result would be the
ciphertext: 'Cenoonommstmme oo snnio. s s c¢'. You'll learn about a concept
called Zists later in the chapter that will let you do exactly this.

Source Code for the Transposition Cipher Encryption Program

fransposition
Encrypt.py

Open a new file editor window by selecting File » New File. Enter the fol-
lowing code into the file editor and then save it as transpositionEncrypt.py.
Remember to place the pyperclip.py module in the same directory as the
transpositionEncrypt.py file. Then press F5 to run the program.

1. # Transposition Cipher Encryption
2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

3.

4. import pyperclip

5.

6. def main():

7. myMessage = 'Common sense is not so common.'

8. myKey = 8

9.

10. ciphertext = encryptMessage(myKey, myMessage)

11.

12. # Print the encrypted string in ciphertext to the screen, with
13. # a | ("pipe" character) after it in case there are spaces at
14. # the end of the encrypted message:

15. print(ciphertext + '|")

16.

17. # Copy the encrypted string in ciphertext to the clipboard:
18. pyperclip.copy(ciphertext)

19.

20.

21. def encryptMessage(key, message):

22. # Each string in ciphertext represents a column in the grid:
23. ciphertext = [''] * key

24.

Encrypting with the Transposition Cipher 81


https://www.nostarch.com/crackingcodes/

25. # Loop through each column in ciphertext:

26. for column in range(key):

27. currentIndex = column

28.

29. # Keep looping until currentIndex goes past the message length:
30. while currentIndex < len(message):

31. # Place the character at currentIndex in message at the

32. # end of the current column in the ciphertext list:

33. ciphertext[column] += message[currentIndex]

34.

35. # Move currentIndex over:

36. currentIndex += key

37.

38. # Convert the ciphertext list into a single string value and return it:
39. return ''.join(ciphertext)

40.

41.

42. # If transpositionEncrypt.py is run (instead of imported as a module) call
43. # the main() function:

44. if _name__ == '_main__':
45. main()

Sample Run of the Transposition Cipher Encryption Program

When you run the transpositionEncrypt.py program, it produces this output:

Cenoonommstmme oo snnio. s s c|

The vertical pipe character (|) marks the end of the ciphertext in case
there are spaces at the end. This ciphertext (without the pipe character at
the end) is also copied to the clipboard, so you can paste it into an email to
someone. If you want to encrypt a different message or use a different key,
change the value assigned to the myMessage and myKey variables on lines 7
and 8. Then run the program again.

Creating Your Own Functions with def Statements

After importing the pyperclip module, you’ll use a def statement to create a
custom function, main(), on line 6.

. # Transposition Cipher Encryption
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

import pyperclip

. def main():

myMessage = 'Common sense is not so common.'
myKey = 8

o ~N O WN PR

The def statement means you're creating, or defining, a new function
that you can call later in the program. The block of code after the def

82 Chapter 7


https://www.nostarch.com/crackingcodes/

hello ®
Function.py @

o000

statement is the code that will run when the function is called. When you
call this function, the execution moves inside the block of code following
the function’s def statement.

As you learned in Chapter 3, in some cases, functions will accept argu-
ments, which are values that the function can use with its code. For example,
print() can take a string value as an argument between its parentheses.
When you define a function that takes arguments, you put a variable name
between its parentheses in its def statement. These variables are called
parameters. The main() function defined here has no parameters, so it takes
no arguments when it’s called. If you try to call a function with too many or
too few arguments for the number of parameters the function has, Python
will raise an error message.

Defining a Function that Takes Arguments with Parameters

Let’s create a function with a parameter and then call it with an argument.
Open a new file editor window and enter the following code into it:

def hello(name):

print('Hello, ' + name)
print('Start.")
hello('Alice")
print('Call the function again:')
hello('Bob")
print('Done.")

Save this program as helloFunction.py and run it by pressing F5. The out-
put looks like this:

Start.

Hello, Alice

Call the function again:
Hello, Bob

Done.

When the helloFunction.py program runs, the execution starts at the top.
The def statement @ defines the hello() function with one parameter, which
is the variable name. The execution skips the block after the def statement @
because the block is only run when the function is called. Next, it executes
print('Start.') ©, which is why 'Start." is the first string printed when you
run the program.

The next line after print('Start.") is the first function call to hello(). The
program execution jumps to the first line in the hello() function’s block @.
The string 'Alice’ is passed as the argument and is assigned to the parameter
name. This function call prints the string 'Hello, Alice' to the screen.

When the program execution reaches the bottom of the def statement’s
block, the execution jumps back to the line with the function call @ and
continues executing the code from there, so 'Call the function again:' is
printed ©.

Encrypting with the Transposition Cipher 83



84

Chapter 7

Next is a second call to hello() ®. The program execution jumps back
to the hello() function’s definition @® and executes the code there again,
displaying 'Hello, Bob' on the screen. Then the function returns and the
execution goes to the next line, which is the print('Done.") statement @,
and executes it. This is the last line in the program, so the program exits.

Changes to Parameters Exist Only Inside the Function

Enter the following code into the interactive shell. This code defines and
then calls a function named func(). Note that the interactive shell requires
you to enter a blank line after param = 42 to close the def statement’s block:

>>> def func(param):
param = 42

>>> spam = 'Hello'
>>> func(spam)

>>> print(spam)
Hello

The func() function takes a parameter called param and sets its value
to 42. The code outside the function creates a spam variable and sets it to a
string value, and then the function is called on spam and spam is printed.

When you run this program, the print() call on the last line will print
'Hello', not 42. When func() is called with spam as the argument, only the
value inside spam is being copied and assigned to param. Any changes made
to param inside the function will not change the value in the spam variable.
(There is an exception to this rule when you are passing a list or dictionary
value, but this is explained in “List Variables Use References” on page 119.)

Every time a function is called, a local scopeis created. Variables created
during a function call exist in this local scope and are called local variables.
Parameters always exist in a local scope (they are created and assigned a
value when the function is called). Think of a scope as a container the vari-
ables exist inside. When the function returns, the local scope is destroyed,
and the local variables that were contained in the scope are forgotten.

Variables created outside of every function exist in the global scope and are
called global variables. When the program exits, the global scope is destroyed,
and all the variables in the program are forgotten. (All the variables in the
reverse cipher and Caesar cipher programs in Chapters 5 and 6, respectively,
were global.)

A variable must be local or global; it cannot be both. Two different vari-
ables can have the same name as long as they’re in different scopes. They’re
still considered two different variables, similar to how Main Street in San
Francisco is a different street from Main Street in Birmingham.

The important idea to understand is that the argument value that
is “passed” into a function call is copied to the parameter. So even if the
parameter is changed, the variable that provided the argument value is
not changed.



Defining the main() Function

In lines 6 through 8 in transpositionEncrypt.py, you can see that we’ve defined
amain() function that will set values for the variables myMessage and myKey
when called:

6. def main():
7. myMessage = 'Common sense is not so common.'
8. myKey = 8

The rest of the programs in this book will also have a function named
main() thatis called at the start of each program. The reason we have a main()
function is explained at the end of this chapter, but for now just know that
main() is always called soon after the programs in this book are run.

Lines 7 and 8 are the first two lines in the block of code defining main().
In these lines, the variables myMessage and myKey store the plaintext message
to encrypt and the key used to do the encryption. Line 9 is a blank line but
is still part of the block and separates lines 7 and 8 from line 10 to make the
code more readable. Line 10 assigns the variable ciphertext as the encrypted
message by calling a function that takes two arguments:

10. ciphertext = encryptMessage(myKey, myMessage)

The code that does the actual encrypting is in the encryptMessage() func-
tion defined later on line 21. This function takes two arguments: an integer
value for the key and a string value for the message to encrypt. In this case,
we pass the variables myMessage and myKey, which we just defined in lines 7
and 8. When passing multiple arguments to a function call, separate the
arguments with a comma.

The return value of encryptMessage() is a string value of the encrypted
ciphertext. This string is stored in ciphertext.

The ciphertext message is printed to the screen on line 15 and copied
to the clipboard on line 18:

12. # Print the encrypted string in ciphertext to the screen, with
13. # a | ("pipe" character) after it in case there are spaces at
14. # the end of the encrypted message:

15. print(ciphertext + '|")

16.

17. # Copy the encrypted string in ciphertext to the clipboard:
18. pyperclip.copy(ciphertext)

The program prints a pipe character (|) at the end of the message so
the user can see any empty space characters at the end of the ciphertext.

Line 18 is the last line of the main() function. After it executes, the pro-
gram execution returns to the line after the line that called it.

Encrypting with the Transposition Cipher 85



Passing the Key and Message As Arguments

The key and message variables between the parentheses on line 21 are
parameters:

21. def encryptMessage(key, message):

When the encryptMessage() function is called in line 10, two argument
values are passed (the values in mykKey and myMessage). These values get
assigned to the parameters key and message when the execution moves to
the top of the function.

You might wonder why you even have the key and message parameters,
since you already have the variables mykey and myMessage in the main() func-
tion. We need different variables because myKey and myMessage are in the
main() function’s local scope and can’t be used outside of main().

The List Data Type

Line 23 in the transpositionEncrypt.py program uses a data type called a list:

22. # Each string in ciphertext represents a column in the grid:
23. ciphertext = [''] * key

Before we can move on, you need to understand how lists work and
what you can do with them. A list value can contain other values. Similar
to how strings begin and end with quotes, a list value begins with an open
bracket, [, and ends with a closed bracket, ]. The values stored inside the
list are between the brackets. If more than one value is in the list, the values
are separated by commas.

To see a list in action, enter the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals
['aardvark', 'anteater', 'antelope', 'albert']

The animals variable stores a list value, and in this list value are four string
values. The individual values inside a list are also called items or elements. Lists
are ideal to use when you have to store multiple values in one variable.

Many of the operations you can do with strings also work with lists. For
example, indexing and slicing work on list values the same way they work on
string values. Instead of individual characters in a string, the index refers to
an item in a list. Enter the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'albert']
® >>> animals[0]

"aardvark’

>>> animals[1]

'anteater’

86 Chapter 7



>>> animals[2]
'albert’

® >>> animals[1:3]
['anteater', 'albert']

Keep in mind that the first index is 0, not 1 @. Similar to how using
slices with a string gives you a new string that is part of the original string,
using slices with a list gives you a list that is part of the original list. And
remember that if a slice has a second index, the slice only goes up to but
doesn’t include the item at the second index @.

A for loop can also iterate over the values in a list, just like it can iterate
over the characters in a string. The value stored in the for loop’s variable is
a single value from the list. Enter the following into the interactive shell:

>>> for spam in ['aardvark', 'anteater', 'albert']:
print('For dinner we are cooking ' + spam)

For dinner we are cooking aardvark
For dinner we are cooking anteater
For dinner we are cooking albert

Each time the loop iterates, the spam variable is assigned a new value
from the list starting with the list’s 0 index until the end of the list.

Reassigning the Items in Lists

You can also modify the items inside a list by using the list’s index with a
normal assignment statement. Enter the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'albert']
® >>> animals[2] = 9999

>>> animals
@® ['aardvark', 'anteater', 9999]

To modify the third member of the animals list, we use the index to get
the third value with animals[2] and then use an assignment statement to
change its value from 'albert' to the value 9999 @. When we check the con-
tents of the list again, 'albert’ is no longer contained in the list @.

REASSIGNING CHARACTERS IN STRINGS

Although you can reassign items in a list, you can't reassign a character in a
string value. Enter the following code into the interactive shell:

>>> 'Hello world!'[6] = 'X'

(continued)

Encrypting with the Transposition Cipher 87



You'll see the following error:

Traceback (most recent call last):
File <pyshell#0>, line 1, in <module>
'Hello world!'[6] = 'X'
TypeError: 'str' object does not support item assignment

The reason you see this error is that Python doesn't let you use assignment
statements on a string’s index value. Instead, to change a character in a string,
you need to create a new string using slices. Enter the following into the inter-
active shell:

>>> spam = 'Hello world!'

>>> spam = spam[:6] + 'X' + spam[7:]
>>> spam

'Hello Xorld!'

You would first take a slice that starts at the beginning of the string and
goes up to the character to change. Then you could concatenate that to the
string of the new character and a slice from the character after the new char-
acter to the end of the string. This results in the original string with just one
changed character.

Lists of Lists

List values can even contain other lists. Enter the following into the inter-
active shell:

>>> spam = [['dog', 'cat'], [1, 2, 3]]
>>> spam[0]

['dog', 'cat']

>>> spam[0][0]

' dog’

>>> spam[0][1]

'‘cat
>>> spam[1][0]
1

>>> spam[1][1]
2

The value of spam[0] evaluates to the list [ 'dog’, 'cat'], which has its own
indexes. The double index brackets used for spam[0][0] indicates that we're
taking the first item from the first list: spam[0] evaluates to ['dog', 'cat'] and
['dog', 'cat'][0] evaluates to 'dog'.

88 Chapter 7



Using len() and the in Operator with Lists

You've used len() to indicate the number of characters in a string (that is,
the length of the string). The len() function also works on list values and
returns an integer of the number of items in a list.

Enter the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> len(animals)
4

Similarly, you've used the in and not in operators to indicate whether a
string exists inside another string value. The in operator also works for check-
ing whether a value exists in a list, and the not in operator checks whether a
value does not exist in a list. Enter the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> 'anteater' in animals

True

>>> 'anteater' not in animals
False

>>> 'anteat' in animals

False

>>> 'anteat' in animals[1]

True

>>> 'delicious spam' in animals
False

Why does the expression at @ return False while the expression at @
returns True? Remember that animals is a list value, while animals[1] evalu-
ates to the string value 'anteater'. The expression at @ evaluates to False
because the string 'anteat' does not exist in the animals list. However, the
expression at @ evaluates to True because animals[1] is the string 'anteater’
and 'anteat' exists within that string.

Similar to how a set of empty quotes represents a blank string value, a
set of empty brackets represents a blank list. Enter the following into the
interactive shell:

>>> animals = []
>>> len(animals)
0

The animals list is empty, so its length is o.

List Concatenation and Replication with the + and * Operators

You know that the + and * operators can concatenate and replicate strings;
the same operators can also concatenate and replicate lists. Enter the fol-
lowing into the interactive shell.

Encrypting with the Transposition Cipher 89



>>> ['hello'] + ['world']

[*hello', 'world']

>>> ['hello'] * 5

['hello', 'hello', 'hello', 'hello', ‘'hello']

That’s enough about the similarities between strings and lists. Just
remember that most operations you can do with string values also work with
list values.

The Transposition Encryption Algorithm

We’ll use lists in our encryption algorithm to create our ciphertext. Let’s
return to the code in the transpositionEncrypt.py program. In line 23, which
we saw earlier, the ciphertext variable is a list of empty string values:

22. # Each string in ciphertext represents a column in the grid:
23. ciphertext = [""] * key

Each string in the ciphertext variable represents a column of the trans-
position cipher’s grid. Because the number of columns is equal to the key,
you can use list replication to multiply a list with one blank string value in
it by the value in key. This is how line 23 evaluates to a list with the correct
number of blank strings. The string values will be assigned all the charac-
ters that go into one column of the grid. The result will be a list of string
values that represent each column, as discussed earlier in the chapter.
Because list indexes start with 0, you’ll need to also label each column start-
ing at 0. So ciphertext[0] is the leftmost column, ciphertext[1] is the column
to the right of that, and so on.

To see how this would work, let’s again look at the grid from the
“Common sense is not so common.” example from earlier in this chapter
(with column numbers corresponding to the list indexes added to the top),
as shown in Figure 7-6.

0 1 2 3 4 5 6 7
C o m m o n . s
e n s e . i s .
n o t . s o " c
o m m o n

Figure 7-6: The example message grid with list indexes for each column

920 Chapter 7



If we manually assigned the string values to the ciphertext variable for
this grid, it would look like this:

>>> ciphertext = ['Ceno', 'onom', 'mstm', 'me o', 'o sn', 'nio.', 's ', 's c']
>>> ciphertext[o0]
'Ceno’

The next step adds text to each string in ciphertext, as we just did in the
manual example, except this time we added some code to make the com-
puter do it programmatically:

25. # Loop through each column in ciphertext:
26. for column in range(key):
27. currentIndex = column

The for loop on line 26 iterates once for each column, and the column
variable has the integer value to use for the index to ciphertext. On the
first iteration through the for loop, the column variable is set to 0; on
the second iteration, it’s set to 1; then 2; and so on. We have the index
for the string values in ciphertext that we want to access later using the
expression ciphertext[column].

Meanwhile, the currentIndex variable holds the index for the message
string the program looks at on each iteration of the for loop. On each itera-
tion through the loop, line 27 sets currentIndex to the same value as column.
Next, we’ll create the ciphertext by concatenating the scrambled message
together one character at a time.

Augmented Assignment Operators

So far, when we’ve concatenated or added values to each other, we’ve used
the + operator to add the new value to the variable. Often, when you're
assigning a new value to a variable, you want it to be based on the vari-
able’s current value, so you use the variable as the part of the expression
that is evaluated and assigned to the variable, as in this example in the
interactive shell:

>>> spam = 40

>>> spam = spam + 2
>>> print(spam)

42

There are other ways to manipulate values in variables based on the
variable’s current value. For example, you can do this by using augmented
assignment operators. The statement spam += 2, which uses the += augmented
assignment operator, does the same thing as spam = spam + 2. It’s just a little
shorter to type. The += operator works with integers to do addition, strings
to do string concatenation, and lists to do list concatenation. Table 7-1
shows the augmented assignment operators and their equivalent assign-
ment statements.

Encrypting with the Transposition Cipher 91



92

Table 7-1: Augmented Assignment Operators

Augmented assignment Equivalent normal assignment
spam += 42 spam = spam + 42
spam -= 42 spam = spam - 42
spam *= 42 spam = spam * 42
spam /= 42 spam = spam / 42

We’ll use augmented assignment operators to concatenate characters to
our ciphertext.

Moving currentindex Through the Message

Chapter 7

The currentIndex variable holds the index of the next character in the
message string that will be concatenated to the ciphertext lists. The key is
added to currentIndex on each iteration of line 30’s while loop to point to
different characters in message and, at each iteration of line 26’s for loop,
currentIndex is set to the value in the column variable.

To scramble the string in the message variable, we need to take the first
character of message, which is 'C', and put it into the first string of ciphertext.
Then, we would skip eight characters into message (because key is equal to 8)
and concatenate that character, which is 'e', to the first string of the cipher-
text. We would continue to skip characters according to the key and concat-
enate each character until we reach the end of the message. Doing so would
create the string 'Ceno’, which is the first column of the ciphertext. Then we
would do this again but start at the second character in message to make the
second column.

Inside the for loop that starts on line 26 is a while loop that starts on
line 30. This while loop finds and concatenates the right character in message
to make each column. It loops while currentIndex is less than the length of
message:

29. # Keep looping until currentIndex goes past the message length:
30. while currentIndex < len(message):

31. # Place the character at currentIndex in message at the

32. # end of the current column in the ciphertext list:

33. ciphertext[column] += message[currentIndex]

34.

35. # Move currentIndex over:

36. currentIndex += key

For each column, the while loop iterates through the original message vari-
able and picks out characters in intervals of key by adding key to currentIndex.
On line 27 for the first iteration of the for loop, currentIndex was set to the
value of column, which starts at 0.

As you can see in Figure 7-7, message[ currentIndex] is the first charac-
ter of message on its first iteration. The character at message[currentIndex]



is concatenated to ciphertext[column] to start the first column at line 33.
Line 36 adds the value in key (which is 8) to currentIndex each time through
the loop. The first time it is message[0], the second time message[8], the third
time message[16], and the fourth time message[24].

—_
%)
-

2nd 3rd 4

l

=
0o

olmimjpoj|n s|jle|n s|e i S nj|o t s|O C

o | 0 jle—

T[2)13(4|516|78)Q|1 (111 fT]1]1
O[1]12[3|4]|5]6|7]8]92|0]1

N
N

AN 0 |=.——

NN
w N

Figure 7-7: Arrows pointing to what message[currentIndex] refers to during the first iteration of the for loop
when column is set to 0

Although the value in currentIndex is less than the length of the
message string, you want to continue concatenating the character at
message[ currentIndex] to the end of the string at the column index in
ciphertext. When currentIndex is greater than the length of message,
the execution exits the while loop and goes back to the for loop. Because
there isn’t code in the for block after the while loop, the for loop iterates,
column is set to 1, and currentIndex starts at the same value as column.

Now when line 36 adds 8 to currentIndex on each iteration of line 30’s
while loop, the indexes will be 1, 9, 17, and 25, as shown in Figure 7-8.

5th 6th 7th

i i i

Clo|m|m|o|n sleln]|s|e i|s nlo|t s|o clo

©
=
=

Of112)3[|4|5]|6]7]|8]¢9

—_
—_

1
O[1]12[3|4]|5]6|78]2|0]1

N
N

anN | 3 fe—

NN
w N
N

Figure 7-8: Arrows pointing to what message[currentIndex] refers to during the second iteration of the for
loop when column is set to 1

As message[1], message[9], message[17], and message[25] are concatenated
to the end of ciphertext[1], they form the string 'onom'. This is the second
column of the grid.

When the for loop has finished looping through the rest of the columns,
the value in ciphertext is [ 'Ceno’, 'onom', 'mstm’, 'me o', ‘o sn', 'nio.", ' s ', 's
c']. After we have the list of string columns, we need to join them together to
make one string that is the whole ciphertext: 'Cenoonommstmme oo snnio. s s c'.

The join() String Method

The join() method is used on line 39 to join the individual column strings
of ciphertext into one string. The join() method is called on a string value
and takes a list of strings. It returns one string that has all of the members

Encrypting with the Transposition Cipher 93




addNumbers.py

94

in the list joined by the string that join() is called on. (This is a blank string
if you just want to join the strings together.) Enter the following into the
interactive shell:

>>> eggs = ['dogs', 'cats', 'moose’]
>>> ''.join(eggs)

"dogscatsmoose’

>>> ', '.join(eggs)

'dogs, cats, moose'

>>> 'XYZ'.join(eggs)
"dogsXYZcatsXYZmoose'

When you call join() on an empty string and join the list eggs @, you get
the list’s strings concatenated with no string between them. In some cases,
you might want to separate each member in a list to make it more readable,
which we’ve done at @ by calling join() on the string ', '. This inserts the
string ', ' between each member of the list. You can insert any string you
want between list members, as you can see at ©.

Return Values and return Statements

Chapter 7

A function (or method) call always evaluates to a value. This is the value
returned by the function or method call, also called the return value of the
function. When you create your own functions using a def statement, a
return statement tells Python what the return value for the function is.
Line 39 is a return statement:

38. # Convert the ciphertext 1list into a single string value and return it:
39. return ''.join(ciphertext)

Line 39 calls join() on the blank string and passes ciphertext as the
argument so the strings in the ciphertext list are joined into a single string.

A return Statement Example

A return statement is the return keyword followed by the value to be returned.
You can use an expression instead of a value, as in line 39. When you do so,
the return value is whatever that expression evaluates to. Open a new file
editor window, enter the following program, save it as addNumbers.py, and
then press F5 to run it:

1. def addNumbers(a, b):

2 return a + b

3.

4. print(addNumbers(2, 40))

When you run the addNumbers.py program, this is the output:

42




That’s because the function call addNumbers(2, 40) at line 4 evaluates to 42.
The return statement in addNumbers() at line 2 evaluates the expression a + b
and then returns the evaluated value.

Returning the Encrypted Ciphertext

In the transpositionEncrypt.py program, the encryptMessage() function’s return
statement returns a string value that is created by joining all of the strings in

the ciphertext list. If the list in ciphertextis [ 'Ceno’, 'onom', 'mstm', 'me o', 'o
sn', 'nio.", ' s ', 's c'], the join() method call will return 'Cenoonommstmme oo
snnio. s s c'. This final string, the result of the encryption code, is returned
by our encryptMessage() function.

The great advantage of using functions is that a programmer has
to know what the function does but doesn’t need to know how the func-
tion’s code works. A programmer can understand that when they call the
encryptMessage() function and pass it an integer as well as a string for the key
and message parameters, the function call evaluates to an encrypted string.
They don’t need to know anything about how the code in encryptMessage()
actually does this, which is similar to how you know that when you pass a
string to print(), it will print the string even though you’ve never seen the
print() function’s code.

The __name__ Variable

You can turn the transposition encryption program into a module using a
special trick involving the main() function and a variable named __name__.

When you run a Python program, _ name__ (that’s two underscores before
name and two underscores after) is assigned the string value '__main__' (again,
two underscores before and after main) even before the first line of your pro-
gram runs. The double underscore is often referred to as dunderin Python,
and _ main__is called dunder main dunder.

At the end of the script file (and, more important, after all of the def
statements), you want to have some code that checks whether the _ name__
variable has the '__main__' string assigned to it. If so, you want to call the
main() function.

The if statement on line 44 is actually one of the first lines of code exe-
cuted when you run the program (after the import statement on line 4 and
the def statements on lines 6 and 21).

42. # If transpositionEncrypt.py is run (instead of imported as a module) call
43. # the main() function:

44, if __name__ == '_main_ ":
45. main()

The reason the code is set up this way is that although Python sets
__name__to '__main__' when the program is run, it sets it to the string
"transpositionEncrypt’ if the program is imported by another Python pro-

gram. Similar to how the program imports the pyperclip module to call the

Encrypting with the Transposition Cipher 95



96

functions in it, other programs might want to import transpositionEncrypt.py
to call its encryptMessage() function without the main() function running.
When an import statement is executed, Python looks for the module’s file by
adding .py to the end of the filename (which is why import pyperclip imports
the pyperclip.py file). This is how our program knows whether it’s being run
as the main program or imported by a different program as a module.
(You’ll import transpositionEncrypt.py as a module in Chapter 9.)

When you import a Python program and before the program is exe-
cuted, the _ name__ variable is set to the filename part before .py. When the
transpositionEncrypt.py program is imported, all the def statements are run
(to define the encryptMessage() function that the importing program wants
to use), but the main() function isn’t called, so the encryption code for
'Common sense is not so common.' with key 8 isn’t executed.

That’s why the code that encrypts the myMessage string with the myKey key
is inside a function (which by convention is named main()). This code inside
main() won’t run when transpositionEncrypt.py is imported by other programs,
but these other programs can still call its encryptMessage() function. This is
how the function’s code can be reused by other programs.

One useful way of learning how a program works is by following its execution
step-by-step as it runs. You can use an online program-tracing tool to view traces of
the Hello Function and Transposition Cipher Encryption programs at https://www
.nostarch.com/crackingcodes/. The tracing tool will give you a visual representa-
tion of what the programs are doing as each line of code is executed.

Summary

Chapter 7

Whew! You learned several new programming concepts in this chapter.
The transposition cipher program is more complicated (but much more
secure) than the Caesar cipher program in Chapter 6. The new concepts,
functions, data types, and operators you've learned in this chapter let you
manipulate data in more sophisticated ways. Just remember that much of
what goes into understanding a line of code is evaluating it step-by-step in
the same way Python will.

You can organize code into groups called functions, which you create
with def statements. Argument values can be passed to functions as the
function’s parameters. Parameters are local variables. Variables outside of
all functions are global variables. Local variables are different from global
variables, even if they have the same name as the global variable. Local vari-
ables in one function are also separate from local variables in another func-
tion, even if they have the same name.

List values can store multiple other values, including other list values.
Many of the operations you can use on strings (such as indexing, slicing, and
using the len() function) can be used on lists. And augmented assignment
operators provide a nice shortcut to regular assignment operators. The join()
method can join a list that contains multiple strings to return a single string.


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

It might be best to review this chapter if you're not yet comfortable with
these programming concepts. In Chapter 8, you’ll learn how to decrypt
using the transposition cipher.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. With paper and pencil, encrypt the following messages with the key 9
using the transposition cipher. The number of characters has been pro-
vided for your convenience.
¢ Underneath a huge oak tree there was of swine a huge company,
(61 characters)

e That grunted as they crunched the mast: For that was ripe and fell full
fast. (77 characters)

e Then they trotted away for the wind grew high: One acorn they left,
and no more might you spy. (94 characters)

2. In the following program, is each spam a global or local variable?

spam = 42

def foo():
global spam
spam = 99
print(spam)

3.  What value does each of the following expressions evaluate to?

[0, 1, 2, 3, 4][2]
[[1, 2], [3, 4]][0]
[[1, 2], [3, 4]1[0][1]
['hello'][0][1]

[2, 4, 6, 8, 10][1:3]
list('Hello world!")
list(range(10))[2]

4.  What value does each of the following expressions evaluate to?

len([2, 4])

len([1)

len(['", "', "'])

[4, 5, 6] + [1, 2, 3]
3 *[1, 2, 3] +[9]
42 in [41, 42, 42, 42]

5. What are the four augmented assignment operators?

Encrypting with the Transposition Cipher 97






DECRYPTING WITH THE
TRANSPOSITION CIPHER

“Weakening encryption or creating backdoors to
encrypted devices and data for use by the good guys
would actually create vulnerabilities to be exploited

by the bad guys.”
—Tim Cook, CEO of Apple, 2015

Unlike the Caesar cipher, the decryption
process for the transposition cipher is dif-

ferent from the encryption process. In this
chapter, you'll create a separate program named
transpositionDecrypt.py to handle decryption.

TOPICS COVERED IN THIS CHAPTER

e Decrypting with the transposition cipher
e The round(), math.ceil(), and math.floor() functions
e The and and or Boolean operators

e Truth tables




100

How to Decrypt with the Transposition Cipher on Paper

Chapter 8

Pretend you've sent the ciphertext “Cenoonommstmme 00 snnio. ssc” to a
friend (and they already know that the secret key is 8). The first step for them
to decrypt the ciphertext is to calculate the number of boxes they need to
draw. To determine this number, they must divide the length of the cipher-
text message by the key and round up to the nearest whole number if the
result isn’t already a whole number. The length of the ciphertext is 30 char-
acters (the same as the plaintext) and the key is 8, so 30 divided by 8 is 3.75.
Rounding up 3.75 to 4, your friend will draw a grid of boxes with four
columns (the number they just calculated) and eight rows (the key).

Your friend also needs to
calculate the number of boxes to
shade in. Using the total number
of boxes (32), they subtract the
length of the ciphertext (which
is 30): 32 — 30 = 2. They shade in
the bottom two boxes in the right-
most column.

Then they start filling in
the boxes, placing one character
of the ciphertext in each box.
Starting at the top left, they fill in
toward the right, as you did when
you were encrypting. The cipher-
text is “Cenoonommstmme 00
snnio. s s ¢”, so “Ceno” goes in the
first row, “onom” goes in the second
row, and so on. When they’re done,
the boxes will look like Figure 8-1
(a ® represents a space).

Your friend who received the
ciphertext notices that when they
read the text going down the col-
umns, the original plaintext is
restored: “Common sense is not so
common.”

C e n o
o n o m
m S t m
m e L o
o u S n
n i o
] S [ ]
s L c

Figure 8-1: Decrypting the message by
reversing the grid

To recap, the steps for decrypting are as follows:

1. Calculate the number of columns you need by dividing the length of
the message by the key and then rounding up.

2. Draw boxes in columns and rows. Use the number of columns you cal-
culated in step 1. The number of rows is the same as the key.

3. Calculate the number of boxes to shade in by taking the total number
of boxes (the number of rows multiplied by the number of columns)
and subtracting the length of the ciphertext message.

4. Shade in the number of boxes you calculated in step 3 at the bottom of

the rightmost column.




5. Fill in the characters of the ciphertext starting at the top row and going
from left to right. Skip any of the shaded boxes.

6. Get the plaintext by reading the leftmost column from top to bottom,
and continuing to do the same in each column.

Note that if you used a different key, you’d draw the wrong number of
rows. Even if you followed the other steps in the decryption process cor-
rectly, the plaintext would be random garbage (similar to if you used the
wrong key with the Caesar cipher).

Source Code for the Transposition Cipher Decryption Program

fransposition
Decrypt.py

Open a new file editor window by clicking File » New File. Enter the fol-
lowing code into the file editor and then save it as transpositionDecrypt.py.
Remember to place pyperclip.py in the same directory. Press Fb to run the
program.

Transposition Cipher Decryption

. H
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

. import math, pyperclip

'Cenoonommstmme oo snnio. s s c

myMessage

1

2

3

4

5.

6. def main():
7.

8 myKey = 8
9
10

plaintext = decryptMessage(myKey, myMessage)

12. # Print with a | (called "pipe" character) after it in case

13. # there are spaces at the end of the decrypted message:

14. print(plaintext + '|")

15.

16. pyperclip.copy(plaintext)

17.

18.

19. def decryptMessage(key, message):

20. # The transposition decrypt function will simulate the "columns" and
21. # "rows" of the grid that the plaintext is written on by using a list
22. # of strings. First, we need to calculate a few values.

23.

24. # The number of "columns" in our transposition grid:

25. numOfColumns = int(math.ceil(len(message) / float(key)))

26. # The number of "rows" in our grid:

27. numOfRows = key

28. # The number of "shaded boxes" in the last "column" of the grid:
29. numOfShadedBoxes = (numOfColumns * numOfRows) - len(message)

30.

31. # Each string in plaintext represents a column in the grid:

32. plaintext = [''] * numOfColumns

33.

Decrypting with the Transposition Cipher 101


https://www.nostarch.com/crackingcodes/

34. # The column and row variables point to where in the grid the next

35. # character in the encrypted message will go:

36. column = 0

37. Tow = 0

38.

39. for symbol in message:

40. plaintext[column] += symbol

41. column += 1 # Point to the next column.

42.

43. # If there are no more columns OR we're at a shaded box, go back

44. # to the first column and the next row:

45. if (column == numOfColumns) or (column == numOfColumns - 1 and
row >= numOfRows - numOfShadedBoxes):

46. column = 0

47. row += 1

48.

49. return ''.join(plaintext)

50.

51.

52. # If transpositionDecrypt.py is run (instead of imported as a module),
53. # call the main() function:

54. if _name__ == '__main_ ":
55. main()

Sample Run of the Transposition Cipher Decryption Program

When you run the transpositionDecrypt.py program, it produces this output:

Common sense is not so common. |

If you want to decrypt a different message or use a different key, change
the value assigned to the myMessage and myKey variables on lines 7 and 8.

Importing Modules and Setting Up the main() Function

The first part of the transpositionDecrypt.py program is similar to the first
part of transpositionEncrypt.py:

. # Transposition Cipher Decryption
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

. import math, pyperclip

myMessage = 'Cenoonommstmme oo snnio. s s c'

1

2

3

4

5.

6. def main():
7

8 myKey = 8
9

0

10.
11.

plaintext = decryptMessage(myKey, myMessage)

102 Chapter 8


https://www.nostarch.com/crackingcodes/

12. # Print with a | (called "pipe" character) after it in case

13. # there are spaces at the end of the decrypted message:
14. print(plaintext + '|")

15.

16. pyperclip.copy(plaintext)

The pyperclip module is imported along with another module named
math on line 4. If you separate the module names with commas, you can
import multiple modules with one import statement.

The main() function, which we start defining on line 6, creates vari-
ables named myMessage and myKey and then calls the decryption function
decryptMessage(). The return value of decryptMessage() is the decrypted plain-
text of the ciphertext and key. This is stored in a variable named plaintext,
which is printed to the screen (with a pipe character at the end in case there
are spaces at the end of the message) and then copied to the clipboard.

Decrypting the Message with the Key

The decryptMessage() function follows the six decrypting steps described
on page 100 and then returns the results of decryption as a string. To
make decryption easier, we’ll use functions from the math module, which
we imported earlier in the program.

The round(), math.ceil(), and math.floor() Functions

Python’s round() function will round a floating-point number (a number
with a decimal point) to the closest integer. The math.ceil() and math.floox()
functions (in Python’s math module) will round a number up and down,
respectively.

When you divide numbers using the / operator, the expression returns
a floating-point number (a number with a decimal point). This happens
even if the number divides evenly. For example, enter the following into the
interactive shell:

>»> 21/ 17
3.0
>»> 22 /5
4.4

If you want to round a number to the nearest integer, you can use the
round() function. To see how the function works, enter the following:

>>> round(4.2)

4

>>> round(4.9)

5

>>> round(5.0)

5

>>> round(22 / 5)
4

Decrypting with the Transposition Cipher 103



104

Chapter 8

If you only want to round up, you need to use the math.ceil() function,
which represents “ceiling.” If you only want to round down, use math.floor().
These functions exist in the math module, which you need to import before
calling them. Enter the following into the interactive shell:

>>> import math

>>> math.floor(4.0)
j>> math.floor(4.2)
§>> math.floor(4.9)
j>> math.ceil(4.0)
§>> math.ceil(4.2)
§>> math.ceil(4.9)
5

The math.flooxr() function will always remove the decimal point from
the float and convert it to an integer to round down, and math.ceil() will
instead increment the ones place of the float and convert it to an integer to
round up.

The decryptMessage() Function

The decryptMessage() function implements each of the decryption steps
as Python code. It takes an integer key and a message string as arguments.
The math.ceil() function is used for the transposition decryption in
decryptMessage() when the columns are calculated to determine the
number of boxes that need to be made:

19. def decryptMessage(key, message):

20. # The transposition decrypt function will simulate the "columns" and
21. # "rows" of the grid that the plaintext is written on by using a list
22. # of strings. First, we need to calculate a few values.

23.

24. # The number of "columns" in our transposition grid:

25. numOfColumns = int(math.ceil(len(message) / float(key)))

26. # The number of "rows" in our grid:

27. numOfRows = key

28. # The number of "shaded boxes" in the last "column" of the grid:

29. numOfShadedBoxes = (numOfColumns * numOfRows) - len(message)

Line 25 calculates the number of columns by dividing len(message)
by the integer in key. This value is passed to the math.ceil() function, and
that return value is stored in num0fColumns. To make this program compatible
with Python 2, we call float() so the key becomes a floating-point value.
In Python 2, the result of dividing two integers is automatically rounded
down. Calling float() avoids this behavior without affecting the behavior
under Python 3.



Line 27 calculates the number of rows, which is the integer stored in
key. This value gets stored in the variable numOfRows.

Line 29 calculates the number of shaded boxes in the grid, which is the
number of columns times rows, minus the length of the message.

If you're decrypting “Cenoonommstmme oo snnio. s s ¢’ with a key of 8,
numOfColumns is set to 4, numOfRows is set to 8, and numOfShadedBoxes is set to 2.

Just like the encryption program had a variable named ciphertext that
was a list of strings to represent the grid of ciphertext, decryptMessage() also
has a list-of-strings variable named plaintext:

31. # Each string in plaintext represents a column in the grid:
32. plaintext = [''] * numOfColumns

These strings are blank at first, with one string for each column of the
grid. Using list replication, you can multiply a list of one blank string by
numOfColumns to make a list of several blank strings equal to the number of
columns needed.

Keep in mind that this plaintext is different from the plaintext in the
main() function. Because the decryptMessage() function and the main() func-
tion each has its own local scope, the functions’ plaintext variables are dif-
ferent and just happen to have the same name.

Remember that the grid for the 'Cenoonommstmme oo snnio. s s ¢' example
looks like Figure 8-1 on page 100.

The plaintext variable will have a list of strings, and each string in
the list will be a single column of this grid. For this decryption, you want
plaintext to end up with the following value:

['Common s', 'ense is ', 'not so c', 'ommon.']

That way, you can join all the list’s strings together to return the 'Common
sense is not so common."' string value.

To make the list, we first need to place each symbol in message in the
correct string inside the plaintext list one at a time. We’ll create two vari-
ables named column and row to track the column and row where the next
character in message should go; these variables should start at 0 to begin at
the first column and first row. Lines 36 and 37 do this:

34. # The column and row variables point to where in the grid the next
35. # character in the encrypted message will go:

36. column = 0

37. Tow = 0

Line 39 starts a for loop that iterates over the characters in the message
string. Inside this loop, the code will adjust the column and row variables so it
concatenates symbol to the correct string in the plaintext list:

39. for symbol in message:
40. plaintext[column] += symbol
41. column += 1 # Point to the next column.

Decrypting with the Transposition Cipher 105



Line 40 concatenates symbol to the string at index column in the plaintext
list, because each string in plaintext represents a column. Then line 41 adds
1 to column (that is, it increments column) so that on the next iteration of the
loop, symbol will be concatenated to the next string in the plaintext list.

We’ve handled incrementing column and row, but we’ll also need to reset
the variables to 0 in some cases. To understand the code that does that,
you’ll need to understand Boolean operators.

Boolean Operators

Boolean operators compare Boolean values (or expressions that evaluate to a
Boolean value) and evaluate to a Boolean value. The Boolean operators and
and or can help you form more complicated conditions for if and while state-
ments. The and operator connects two expressions and evaluates to True if
both expressions evaluate to True. The or operator connects two expressions
and evaluates to True if one or both expressions evaluate to True; otherwise,
these expressions evaluate to False. Enter the following into the interactive
shell to see how the and operator works:

>>> 10 > 5 and 2 < 4
True
>>> 10 > 5and 4 !'= 4
False

The first expression evaluates to True because the expressions on either
side of the and operator both evaluate to True. In other words, the expression
10 > 5 and 2 < 4 evaluates to True and True, which in turn evaluates to True.

However, in the second expression, although 10 > 5 evaluates to True,
the expression 4 != 4 evaluates to False. This means the expression evalu-
ates to True and False. Because both expressions have to be True for the and
operator to evaluate to True, the whole expression evaluates to False.

If you ever forget how a Boolean operator works, you can look at its
truth table, which shows what different combinations of Boolean values
evaluate to based on the operator used. Table 8-1 is a truth table for the
and operator.

Table 8-1: The and Operator Truth Table

Aand B Evaluates to
True and True True
True and False False
False and True False
False and False False

106 Chapter 8



To see how the or operator works, enter the following into the interactive
shell:

>»> 10 > 50r 4 !=4
True
>>>10< 50r 4 =4
False

When you’re using the or operator, only one side of the expression must
be True for the or operator to evaluate the whole expression as True, which
iswhy 10 > 5 or 4 != 4 evaluates to True. However, because both the expres-
sion 10 < 5 and the expression 4 != 4 are False, the second expression evalu-
ates to False or False, which in turn evaluates to False.

The or operator’s truth table is shown in Table 8-2.

Table 8-2: The or Operator Truth Table

AorB Evaluates to
True or True True
True or False True
False or True True
False or False False

The third Boolean operator is not. The not operator evaluates to the
opposite Boolean value of the value it operates on. So not True is False and
not False is True. Enter the following into the interactive shell:

>>> not 10 » 5

False

>>> not 10 < 5

True

>>> not False

True

>>> not not False

False

>>> not not not not not False
True

As you can see in the last two expressions, you can even use multiple not
operators. The not operator’s truth table is shown in Table 8-3.

Table 8-3: The not Operator Truth Table

not A Evaluates to
not True False
not False True

Decrypting with the Transposition Cipher 107



108

Chapter 8

The and and or Operators Are Shortcuts

Similar to how for loops let you do the same task as while loops but with less
code, the and and or operators also let you shorten your code. Enter the fol-
lowing two pieces of code, which have the same result, into the interactive
shell:

>>> if 10 > 5:
if 2 < 4:
print('Hello!")
Hello!
>>> if 10 > 5 and 2 < 4:
print('Hello!")

Hello!

The and operator can take the place of two if statements that check
each part of the expression separately (where the second if statement is
inside the first if statement’s block).

You can also replace an if and elif statement with the or operator. To
give this a try, enter the following into the interactive shell:

>>> if 4 1= 4:
print('Hello!")
. elif 10 » 5:
print('Hello!")
Hello!
>>> if 4 1= 4 or 10 > 5:
print('Hello!")

Hello!

The if and elif statements will each check a different part of the expres-
sion, whereas the or operator can check both statements in one line.

Order of Operations for Boolean Operators

You know that math operators have an order of operations, and so do the
and, or, and not operators. First, not is evaluated, then and, and then or. Enter
the following into the interactive shell:

>>> not False and False # not False evaluates first

False

>>> not (False and False) # (False and False) evaluates first
True

In the first line of code, not False is evaluated first, so the expression
becomes True and False, which evaluates to False. In the second line, paren-
theses are evaluated first, even before the not operator, so False and False is
evaluated as False, and the expression becomes not (False), which is True.



Adjusting the column and row Variables

Now that you know how Boolean operators work, you can learn how the
column and row variables are reset in transpositionDecrypt.py.
There are two cases in

which you’ll want to reset column ! 2 3

to 0 so that on the next itera- C e n o

tion of the loop, symbol is added 0 0 1 2 3

to the first string in the list

in plaintext. In the first case, 1 ° " ° m

.. . 4 5 6 7

you want to do this if column is

incremented past the last index 2 m s t m

in plaintext. In this situation, 8 9 10 11

the value in column will be equal m e . o

to numOfColumns. (Remember 3 12 13 14 15

that the last index in plaintext

will be num0fColumns minus one. 4 °© " s n

So when column is equal to 16 17 18 19

numOfColumns, it’s already past 5 n i o .

the last index.) 20 21 22 23
The second case is if column . S .

is aF the l.ast 1n.de?( and the row 6 24 95 2%

variable is pointing to a row

that has a shaded box in the last 7 ° - ¢

column. As a visual example of 27 28 29

that, the decryption grid with
the column indexes along the Figure 8-2: Decryption grid with column and row
top and the row indexes down indlexes
the side is shown in Figure 8-2.

You can see that the shaded boxes are in the last column (whose
index will be num0fColumns - 1) in rows 6 and 7. To calculate which row
indexes potentially have shaded boxes, use the expression row >= numOfRows
- numOfShadedBoxes. In our example with eight rows (with indexes 0 to 7),
rows 6 and 7 are shaded. The number of unshaded boxes is the total num-
ber of rows (in our example, 8) minus the number of shaded boxes (in
our example, 2). If the current row is equal to or greater than this number
(8 =2 =16), we can know we have a shaded box. If this expression is True
and column is also equal to numOfColumns - 1, then Python has encountered a
shaded box; at this point, you want to reset column to 0 for the next iteration:

43. # If there are no more columns OR we're at a shaded box, go back

44. # to the first column and the next row:

45. if (column == numOfColumns) or (column == numOfColumns - 1 and
row >= numOfRows - numOfShadedBoxes):

46. column = 0

47. Tow += 1

Decrypting with the Transposition Cipher 109



10

These two cases are why the condition on line 45 is (column ==
num0fColumns) or (column == numOfColumns - 1 and row >= numOfRows -
numOfShadedBoxes). Although that looks like a big, complicated expression,
remember that you can break it down into smaller parts. The expression
(column == numOfColumns) checks whether the column variable is past the
index range, and the second part of the expression checks whether we’re
at a column and row index that is a shaded box. If either of these two expres-
sions is true, the block of code that executes will reset column to the first
column by setting it to 0. You’ll also increment the row variable.

By the time the for loop on line 39 has finished looping over every char-
acter in message, the plaintext list’s strings have been modified so they’re
now in the decrypted order (if the correct key was used). The strings in the
plaintext list are joined together (with a blank string between each string)
by the join() string method on line 49:

49. return ''.join(plaintext)

Line 49 also returns the string that the decryptMessage() function returns.
For decryption, plaintext will be ['Common s', 'ense is ', 'not so c',
‘ommon. '], so ''.join(plaintext) will evaluate to 'Common sense is not so common.'

Calling the main() Function

The first line that our program runs after importing modules and execut-
ing the def statements is the if statement on line 54.

52. # If transpositionDecrypt.py is run (instead of imported as a module),
53. # call the main() function:

54. if _name__ == "'_main__':
55. main()

As with the transposition encryption program, Python checks whether
this program has been run (instead of imported by a different program) by
checking whether the _ name__ variable is set to the string value '__main_ '. If
so, the code executes the main() function.

Summary

Chapter 8

That’s it for the decryption program. Most of the program is in the
decryptMessage() function. The programs we’ve written can encrypt and
decrypt the message “Common sense is not so common.” with the key 8;
however, you should try several other messages and keys to check that a
message that is encrypted and then decrypted results in the same original
message. If you don’t get the results you expect, you’ll know that either the
encryption code or the decryption code doesn’t work. In Chapter 9, we’ll
automate this process by writing a program to test our programs.

If you’d like to see a step-by-step trace of the transposition cipher
decryption program’s execution, visit https://www.nostarch.com/crackingcodes/.


https://www.nostarch.com/crackingcodes/

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1.

Using paper and pencil, decrypt the following messages with the key 9.

The ® marks a single space. The total number of characters has been

counted for you.

HucbumirhdeuousBdimmmprrtyevdgp®nirs meeritmeatoreechadihfapak
enugembutendihmaoa.damttsmin (89 characters)

Ambmadrottthawamnwarsecintanle/skiShwaleec,hheats.nam memsoog
mahmammateniAcgakhsdmnorsm (86 characters)

Bmmsrlmdpnaualtoeboo’kinmuknrwos. myaregonrswand, tummoiadysh
gtRwimmmAmhhanhhasthtevamentmemmeo (93 characters)

When you enter the following code into the interactive shell, what does

each line print?

>>>
>>>
>>>
>>>
>>>
>>>
>>>

math.ceil(3.0)
math.floor(3.1)
round(3.1)
round(3.5)
False and False
False or False
not not True

Draw the complete truth tables for the and, or, and not operators.

Which of the following is correct?

if _name_ =="'_ main_ ':
if main__ == "' name_ ':
.

if _
if _

== "' main_':
I_ _l

main_ == ' name_':

name

Decrypting with the Transposition Cipher

m






PROGRAMMING A PROGRAMTO
TEST YOUR PROGRAM

“It is poor civic hygiene to install technologies that
could someday facilitate a police state.”
—Bruce Schneier, Secrets and Lies

The transposition programs seem to work
pretty well at encrypting and decrypting
different messages with various keys, but how

do you know they always work? You can’t be abso-
lutely sure the programs always work unless you test
the encryptMessage() and decryptMessage() functions with

all sorts of message and key parameter values. But this would take a lot of
time because you’d have to type a message in the encryption program, set
the key, run the encryption program, paste the ciphertext into the decryp-
tion program, set the key, and then run the decryption program. You’d also
need to repeat that process with several different keys and messages, result-
ing in a lot of boring work!




transposition
Test.py

14

Instead, let’s write another program that generates a random message
and a random key to test the cipher programs. This new program will
encrypt the message with encryptMessage() from transpositionEncrypt.py and
then pass the ciphertext to decryptMessage() from transpositionDecrypt.py. If
the plaintext returned by decryptMessage() is the same as the original mes-
sage, the program will know that the encryption and decryption programs
work. The process of testing a program automatically using another pro-
gram is called automated testing.

Several different message and key combinations need to be tried, but it
takes the computer only a minute or so to test thousands of combinations.
If all of those tests pass, you can be more certain that your code works.

TOPICS COVERED IN THIS CHAPTER

e  The random.randint() function
e  The random.seed() function

e List references

¢  The copy.deepcopy() functions
e  The random.shuffle() function
®  Randomly scrambling a string

e The sys.exit() function

Source Code for the Transposition Cipher Tester Program

Chapter @

Open a new file editor window by selecting File » New File. Enter the fol-
lowing code into the file editor and save it as transpositionTest.py. Then press
F5 to run the program.

. # Transposition Cipher Test
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

. import random, sys, transpositionEncrypt, transpositionDecrypt

random.seed(42) # Set the random "seed" to a static value.

1

2

3

4

5.

6. def main():
7

8

9 for i in range(20): # Run 20 tests.
0

10. # Generate random messages to test.

11.

12. # The message will have a random length:

13. message = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' * random.randint(4, 40)
14.

15. # Convert the message string to a list to shuffle it:

16. message = list(message)



https://www.nostarch.com/crackingcodes/

17. random.shuffle(message)

18. message = ''.join(message) # Convert the list back to a string.

19.

20. print('Test #%s: "%s..."" % (i + 1, message[:50]))

21.

22. # Check all possible keys for each message:

23. for key in range(1, int(len(message)/2)):

24. encrypted = transpositionEncrypt.encryptMessage(key, message)

25. decrypted = transpositionDecrypt.decryptMessage(key, encrypted)

26.

27. # If the decryption doesn't match the original message, display

28. # an error message and quit:

29. if message != decrypted:

30. print('Mismatch with key %s and message %s.' % (key,
message))

31. print('Decrypted as: ' + decrypted)

32. sys.exit()

33.

34. print('Transposition cipher test passed.')

35.

36.

37. # If transpositionTest.py is run (instead of imported as a module) call
38. # the main() function:

39. if _name_ == '_main_":
40. main()

Sample Run of the Transposition Cipher Tester Program

When you run the transpositionTest.py program, the output should look
like this:

Test #1: "JEQLDFKIZWALCOYACUPLTRRMLWHOBXQNEAWSLGWAGQQSRSIUIQ..."
Test #2: "SWRCLUCRDOMLWZKOMAGVOTXUVVEPIOIMSBEQRQOFRGCCKENINV..."
Test #3: "BIZBPZUIWDUFXAPJTHCMDWEGHYOWKWWWSJIYKDQVSFWCINCOZZA..."
Test #4: "JEWBCEXVZAILLCHDZICUTXASSZZRKRPMYGTGHBXPQPBEBVCODM. . ."
--snip--

Test #17: "KPKHHLPUWPSSIOULGKVEFHZOKBFHXUKVSEOWOENOZSNIDELARWR. .."
Test #18: "OYLFXXZENDFGSXTEAHGHPBNORCFEPBMITILSSIRGDVMNSOMURV. . ."
Test #19: "SOCLYBRVDPLNVIKAFDGHCQMXIOPEJSXEAAXNWCCYAGZGLZGZHK. .."
Test #20: "JIXIGRBCKZXPUIEXOJUNZEYYSEAEGVOIWIRTSSGPUWPNZUBQNDA..."
Transposition cipher test passed.

The tester program works by importing the transpositionEncrypt.py and
transpositionDecrypt.py programs as modules. Then the tester program calls
encryptMessage() and decryptMessage() from the encryption and decryption
programs. The tester program creates a random message and chooses a
random key. It doesn’t matter that the message is just random letters, because
the program only needs to check that encrypting and then decrypting the
message results in the original message.

Programming a Program to Test Your Program 115



116

Using a loop, the program repeats this test 20 times. If at any point the
string returned from transpositionDecrypt() isn’t the same as the original
message, the program prints an error and exits.

Let’s explore the source code in more detail.

Importing the Modules

The program starts by importing modules, including two you've already
seen that come with Python, random and sys:

1. # Transposition Cipher Test

2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

3.

4. import random, sys, transpositionEncrypt, transpositionDecrypt

We also need to import the transposition cipher programs (that is,
transpositionEncrypt.py and transpositionDecrypt.py) by just typing their names
without the .py extension.

Creating Pseudorandom Numbers

Chapter @

To create random numbers to generate the messages and keys, we’ll use
the random module’s seed() function. Before we delve into what the seed
does, let’s look at how random numbers work in Python by trying out the
random.randint() function. The random.randint() function that we’ll use later
in the program takes two integer arguments and returns a random integer
between those two integers (including the integers). Enter the following
into the interactive shell:

>>> import random

>>> random.randint(1, 20)
20

>>> random.randint(1, 20)
18

>>> random.randint(100, 200)
107

Of course, the numbers you get will probably be different from those
shown here because they’re random numbers.

But the numbers generated by Python’s random.randint() function are not
truly random. They’re produced from a pseudorandom number generator
algorithm, which takes an initial number and produces other numbers based
on a formula.

The initial number that the pseudorandom number generator starts
with is called the seed. If you know the seed, the rest of the numbers the
generator produces are predictable, because when you set the seed to a


https://www.nostarch.com/crackingcodes/

®Q

specific number, the same numbers will be generated in the same order.
These random-looking but predictable numbers are called pseudorandom
numbers. Python programs for which you don’t set a seed use the computer’s
current clock time to set a seed. You can reset Python’s random seed by call-
ing the random.seed() function.

To see proof that the pseudorandom numbers aren’t completely
random, enter the following into the interactive shell:

>>> import random

>>> random.seed(42)

>>> numbers = []

>>> for i in range(20):
numbers.append(random.randint(1, 10))

[2, 1, 5, 4,4,3,2,9,2,10,7,1,1, 2,4, 4,9, 10, 1, 9]
>>> random.seed(42)

>>> numbers = []

>>> for i in range(20):

.. numbers.append(random.randint(1, 10))

(2, 1,5, 4,4,3,2,9,2,10, 7,1, 1, 2, 4, 4,9, 10, 1, 9]

In this code, we generate 20 numbers twice using the same seed. First,
we import random and set the seed to 42 @. Then we set up a list called
numbers @ where we’ll store our generated numbers. We use a for loop to
generate 20 numbers and append each one to the numbers list, which we
print so we can see every number that was generated ©.

When the seed for Python’s pseudorandom number generator is set to
42, the first “random” number between 1 and 10 will always be 2. The second
number will always be 1, the third number will always be 5, and so on. When
you reset the seed to 42 and generate numbers with the seed again, the same
set of pseudorandom numbers is returned from random.randint(), as you can
see by comparing the numbers list at @ and @.

Random numbers will become important for ciphers in later chapters,
because they’re used not only for testing ciphers but also for encrypting
and decrypting in more complex ciphers. Random numbers are so impor-
tant that one common security flaw in encryption software is using pre-
dictable random numbers. If the random numbers in your programs can
be predicted, a cryptanalyst can use this information to break your cipher.

Selecting encryption keys in a truly random manner is necessary for
the security of a cipher, but for other uses, such as this code test, pseudo-
random numbers are fine. We’ll use pseudorandom numbers to generate
test strings for our tester program. You can generate truly random num-
bers with Python by using the random. SystemRandom().randint() function,
which you can learn more about at https://www.nostarch.com/crackingcodes/.

Programming a Program to Test Your Program 17


https://www.nostarch.com/crackingcodes/

18

Creating a Random String

Chapter 9

Now that you've learned how to use random.randint() and random.seed() to
create random numbers, let’s return to the source code. To completely auto-
mate our encryption and decryption programs, we’ll need to automatically
generate random string messages.

To do this, we’ll take a string of characters to use in the messages,
duplicate it a random number of times, and store that as a string. Then,
we’ll take the string of the duplicated characters and scramble them to
make them more random. We’ll generate a new random string for each test
so we can try many different letter combinations.

First, let’s set up the main() function, which contains code that tests the
cipher programs. It starts by setting a seed for the pseudorandom string:

6. def main():
7. random.seed(42) # Set the random "seed" to a static value.

Setting the random seed by calling random.seed() is useful for the tester
program because you want predictable numbers so the same pseudorandom
messages and keys are chosen each time the program is run. As a result, if
you notice one message fails to encrypt and decrypt properly, you’ll be able to
reproduce this failing test case.

Next, we’ll duplicate a string using a for loop.

Duplicating a String a Random Number of Times

We’ll use a for loop to run 20 tests and to generate our random message:

9. for i in range(20): # Run 20 tests.

10. # Generate random messages to test.

11.

12. # The message will have a random length:

13. message = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' * random.randint(4, 40)

Each time the for loop iterates, the program will create and test a new
message. We want this program to run multiple tests because the more tests
we try, the more certain we’ll be that the programs work.

Line 13 is the first line of testing code and creates a message of a random
length. It takes a string of uppercase letters and uses randint() and string rep-
lication to duplicate the string a random number of times between 4 and 40.
Then it stores the new string in the message variable.

If we leave the message string as it is now, it will always just be the alphabet
string repeated a random number of times. Because we want to test differ-
ent combinations of characters, we’ll need to take things a step further and
scramble the characters in message. To do that, let’s first learn a bit more
about lists.



o000

List Variables Use References

Variables store lists differently than they store other values. A variable will
contain a reference to the list, rather than the list itself. A referenceis a value
that points to some bit of data, and a list reference is a value that points to a
list. This results in slightly different behavior for your code.

You already know that variables store strings and integer values. Enter
the following into the interactive shell:

>>> spam = 42

>>> cheese = spam
>>> spam = 100
>>> spam

100

>>> cheese

42

We assign 42 to the spam variable, and then copy the value in spam and
assign it to the variable cheese. When we later change the value in spam to
100, the new number doesn’t affect the value in cheese because spam and
cheese are different variables that store different values.

But lists don’t work this way. When we assign a list to a variable, we are
actually assigning a list reference to the variable. The following code makes
this distinction easier to understand. Enter this code into the interactive
shell:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam

>>> cheese[1] = 'Hello!'

>>> spam

[0, 'Hello!', 2, 3, 4, 5]

>>> cheese

[0, 'Hello!', 2, 3, 4, 5]

This code might look odd to you. The code changed only the cheese list,
but both the cheese and spam lists have changed.

When we create the list @, we assign a reference to it in the spam vari-
able. But the next line @ copies only the list reference in spam to cheese, not
the list value. This means the values stored in spam and cheese now both refer
to the same list. There is only one underlying list because the actual list was
never actually copied. So when we modify the first element of cheese ©, we
are modifying the same list that spam refers to.

Remember that variables are like boxes that contain values. But list vari-
ables don’t actually contain lists—they contain references to lists. (These
references will have ID numbers that Python uses internally, but you can
ignore them.) Using boxes as a metaphor for variables, Figure 9-1 shows
what happens when a list is assigned to the spam variable.

Programming a Program to Test Your Program 19



120

Chapter @

'

ID: 57207444
[0, 1, 2, 3, 4, 5]

Reference

‘ ID: 57207444

r

Figure 9-1: spam = [0, 1, 2, 3, 4, 5] stores a reference to a list,
not the actual list.

Then, in Figure 9-2, the reference in spam is copied to cheese. Only a new
reference was created and stored in cheese, not a new list. Notice that both
references refer to the same list.

B

ID: 57207444

Reference [0, 1, 2, 3, 4, 5]
1D: 57207
A
Reference
‘ID: 57207444

Figure 9-2: spam = cheese copies the reference, not the list.

When we alter the list that cheese refers to, the list that spam refers to
also changes, because both cheese and spam refer to the same list. You can
see this in Figure 9-3.

Although Python variables technically contain references to list values,
people often casually say that the variable “contains the list.”



passing
Reference.py

1

ID: 57207444

[0, 'Hello', 2, 3, 4, 5]

Figure 9-3: cheese[1] = 'Hello!' modifies the list that both variables refer to.

Passing References

References are particularly important for understanding how arguments
are passed to functions. When a function is called, the arguments’ values are
copied to the parameter variables. For lists, this means a copy of the reference
is used for the parameter. To see the consequences of this action, open a new
file editor window, enter the following code, and save it as passingReference.py.
Press F5 to run the code.

def eggs(someParameter):
someParameter.append('Hello")

spam = [1, 2, 3]

eggs(spam)

print(spam)

When you run the code, notice that when eggs() is called, a return value
isn’t used to assign a new value to spam. Instead, the list is modified directly.
When run, this program produces the following output:

[1, 2, 3, 'Hello']

Even though spam and someParameter contain separate references, they
both refer to the same list. This is why the append('Hello') method call inside
the function affects the list even after the function call has returned.

Keep this behavior in mind: forgetting that Python handles list vari-
ables this way can lead to confusing bugs.

Programming a Program to Test Your Program 121



122

Chapter @

Using copy.deepcopy() to Duplicate a List

If you want to copy a list value, you can import the copy module to call
the copy.deepcopy() function, which returns a separate copy of the list it is
passed:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> import copy

>>> cheese = copy.deepcopy(spam)
>>> cheese[1] = 'Hello!'

>>> spam

[0, 1, 2, 3, 4, 5]

>>> cheese

[0, 'Hello!', 2, 3, 4, 5]

Because the copy.deepcopy() function was used to copy the list in spam to
cheese, when an item in cheese is changed, spam is unaffected.

We’ll use this function in Chapter 17 when we hack the simple substitu-
tion cipher.

The random.shuffle() Function

With a foundation in how references work, you can now understand how
the random.shuffle() function that we’ll use next works. The random. shuffle()
function is part of the random module and accepts a list argument whose
items it randomly rearranges. Enter the following into the interactive shell
to see how random.shuffle() works:

>>> import random

>>> spam = [0, 1, 2, 3,4, 5,6, 17, 8, 9]
>>> spam

[01 1, 2, 3, 4, 5, 6) 7, 8) 9]

>>> random.shuffle(spam)

>>> spam

[3J 0,5 9, 6) 8) 2, 4, 1, 7]

>>> random.shuffle(spam)

>>> spam

[1, 2,59, 4,7,0, 3,6, 8]

An important detail to note is that shuffle() does not return a list value.
Instead, it changes the list value that is passed to it (because shuffle()
modifies the list directly from the list reference value it is passed). The
shuffle() function modifies the list in place, which is why we execute
random. shuffle(spam) instead of spam = random.shuffle(spam).



Randomly Scrambling a String

Let’s return to transpositionTest.py. To shuffle the characters in a string value,
we first need to convert the string to a list using 1list():

15. # Convert the message string to a list to shuffle it:

16. message = list(message)

17. random. shuffle(message)

18. message = ''.join(message) # Convert the list back to a string.

The return value from 1ist() is a list value with one-character strings
of each character in the string passed to it; so on line 16, we're reassigning
message to be a list of its characters. Next, shuffle() randomizes the order of
the items in message. Then the program converts the list of strings back to
a string value using the join() string method. This shuffling of the message
string allows us to test many different messages.

Testing Each Message

Now that the random message has been made, the program tests the encryp-
tion and decryption functions with it. We’ll have the program print some
feedback so we can see what it’s doing while it’s testing:

20. print('Test #%s: "%s..."" % (i + 1, message[:50]))

Line 20 has a print() call that displays which test number the program
is on (we need to add 1 to i because i starts at 0 and the test numbers should
start at 1). Because the string in message can be long, we use string slicing to
show only the first 50 characters of message.

Line 20 also uses string interpolation. The value that i + 1 evaluates
to replaces the first %s in the string, and the value that message[:50] evalu-
ates to replaces the second %s. When using string interpolation, be sure the
number of %s in the string matches the number of values that are between
the parentheses after it.

Next, we’ll test all the possible keys. Although the key for the Caesar
cipher could be an integer from 0 to 65 (the length of the symbol set), the
key for the transposition cipher can be between 1 and half the length of the
message. The for loop on line 23 runs the test code with the keys 1 up to
(but not including) the length of the message.

22. # Check all possible keys for each message:

23. for key in range(1, int(len(message)/2)):

24. encrypted = transpositionEncrypt.encryptMessage(key, message)
25. decrypted = transpositionDecrypt.decryptMessage(key, encrypted)

Line 24 encrypts the string in message using the encryptMessage() func-
tion. Because this function is inside the transpositionEncrypt.py file, we need

Programming a Program to Test Your Program 123



124

to add transpositionEncrypt. (with the period at the end) to the front of the
function name.

The encrypted string that is returned from encryptMessage() is then
passed to decryptMessage(). We need to use the same key for both function
calls. The return value from decryptMessage() is stored in a variable named
decrypted. If the functions worked, the string in message should be the same
as the string in decrypted. We’ll look at how the program checks this next.

Checking Whether the Cipher Worked and Ending the Program

After we’ve encrypted and decrypted the message, we need to check
whether both processes worked correctly. To do that, we simply need to
check whether the original message is the same as the decrypted message.

27. # If the decryption doesn't match the original message, display

28. # an error message and quit:

29. if message != decrypted:

30. print('Mismatch with key %s and message %s.' % (key,
message))

31. print('Decrypted as: ' + decrypted)

32. sys.exit()

33.

34. print('Transposition cipher test passed.')

Line 29 tests whether message and decrypted are equal. If they aren’t,
Python displays an error message on the screen. Lines 30 and 31 print the
key, message, and decrypted values as feedback to help us figure out what went
wrong. Then the program exits.

Normally, programs exit when the execution reaches the end of the
code and there are no more lines to execute. However, when sys.exit()
is called, the program ends immediately and stops testing new messages
(because you’ll want to fix your cipher programs if even one test fails!).

But if the values in message and decrypted are equal, the program execu-
tion skips the if statement’s block and the call to sys.exit(). The program
continues looping until it finishes running all of its tests. After the loop
ends, the program runs line 34, which you know is outside of line 9’s loop
because it has different indentation. Line 34 prints 'Transposition cipher
test passed.’.

Calling the main() Function

Chapter 9

As with our other programs, we want to check whether the program is
being imported as a module or being run as the main program.

37. # If transpositionTest.py is run (instead of imported as a module) call
38. # the main() function:

39. if __name__ ==
40. main()

_main__':




Lines 39 and 40 do the trick, checking whether the special variable
__name__issetto '__main__' and if so, calling the main() function.

Testing the Test Program

fransposition
Encrypt.py

We've written a program that tests the transposition cipher programs, but
how do we know that the test program works? What if the test program has
a bug, and it just indicates that the transposition cipher programs work
when they really don’t?

We can test the test program by purposely adding bugs to the encryp-
tion or decryption functions. Then, if the test program doesn’t detect a
problem, we know that it isn’t running as expected.

To add a bug to the program, we open transpositionEncrypt.py and
add + 1 to line 36:

35. # Move currentIndex over:
36. currentIndex += key + 1

Now that the encryption code is broken, when we run the test program,
it should print an error, like this:

Test #1: "JEQLDFKIZWALCOYACUPLTRRMLWHOBXQNEAWSLGWAGQQSRSIUIQ..."

Mismatch with key 1 and message
JEQLDFKIZWALCOYACUPLTRRMLWHOBXQNEAWSLGWAGQQSRSIUIQTRGIHDVCZECRESZIARAVIPFOBWZ
XXTBFOFHVSIGBWIBBHGKUWHEUUDYONYTZVKNVVTYZPDDMIDKBHTYJAHBNDVIUZDCEMFMLUXEONCZX
WAWGXZSFTMINLIOKKIIXLWAPCQNYCIQOFTEAUHRIODKLGRIZSIBXQPBMQPPFGMVUZHKFWPGNMRYXR
OMSCEEXLUSCFHNELYPYKCNYTOUQGBF SRDDMVIGXNYPHVPQISTATKVKM.

Decrypted as:
JODKZACYCPTRLHBOEWLWGORIITGHVZCEZAAIFBZXBOHSGWBHKWEUYNTVNVYPDIKHYABDIZCMMUENZ
WWXSTILOKILACNCQFEUROKGISBQBQPGVZKWGMYRMCELSFNLPKNTUGFRDVGNPVQSAKK

The test program failed at the first message after we purposely inserted
a bug, so we know that it’s working exactly as we planned!

Summary

You can use your new programming skills for more than just writing pro-
grams. You can also program the computer to test programs you write to
make sure they work for different inputs. Writing code to test code is a com-
mon practice.

In this chapter, you learned how to use the random.randint() function
to produce pseudorandom numbers and how to use random.seed() to reset
the seed to create more pseudorandom numbers. Although pseudorandom
numbers aren’t random enough to use in cryptography programs, they’re
good enough to use in this chapter’s testing program.

You also learned the difference between a list and list reference and
that the copy.deepcopy() function will create copies of list values instead of

Programming a Program to Test Your Program 125



reference values. Additionally, you learned how the random.shuffle() func-
tion can scramble the order of items in a list value by shuffling list items in
place using references.

All of the programs we’ve created so far encrypt only short messages. In
Chapter 10, you'll learn how to encrypt and decrypt entire files.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. Ifyou ran the following program and it printed the number 8, what would
it print the next time you ran it2

import random
random.seed(9)
print(random.randint(1, 10))

2. What does the following program print2

spam = [1, 2, 3]

eggs = spam
ham = eggs
ham[0] = 99

print(ham == spam)

3. Which module contains the deepcopy() function?
What does the following program print2

import copy

spam = [1, 2, 3]

eggs = copy.deepcopy(spam)
ham = copy.deepcopy(eggs)
ham[0] = 99

print(ham == spam)

126 Chapter 9



ENCRYPTING AND
DECRYPTING FILES

“Why do security police grab people and torture them?
To get their information. And hard disks put up no
resistance to torture. You need to give the hard disk

a way to resist. That’s cryptography.”

—Patrick Ball, Human Rights Data Analysis Group

In previous chapters, our programs have

only worked on small messages that we type
directly into the source code as string values.

The cipher program we’ll make in this chapter will
allow you to encrypt and decrypt entire files, which
can be millions of characters in size.



TOPICS COVERED IN THIS CHAPTER

®  The open() function

® Reading and writing files

e  The write(), close(), and read() file object methods
¢ The os.path.exists() function

e The upper(), lower(), and title() string methods

e  The startswith() and endswith() string methods

e  The time module and time.time() function

Plain Text Files

The transposition file cipher program encrypts and decrypts plain (unfor-
matted) text files. These are the kind of files that only have text data and
usually have the .ixt file extension. You can write your own text files with
programs such as Notepad on Windows, TextEdit on macOS, and gedit on
Linux. (Word processing programs can produce plain text files as well, but
keep in mind that they won’t save any font, size, color, or other formatting.)
You can even use IDLE’s file editor by saving the files with a .ixt extension
instead of the usual .py extension.

For some samples, you can download text files from https://www.nostarch
.com/crackingcodes/. These sample text files are of books that are now in the
public domain and legal to download and use. For example, Mary Shelley’s
classic novel Frankenstein has more than 78,000 words in its text file! To type
this book into an encryption program would take a lot of time, but by using
the downloaded file, the program can do the encryption in a couple of
seconds.

Source Code for the Transposition File Cipher Program

As with the transposition cipher—testing program, the transposition file
cipher program imports the transpositionEncrypt.py and transpositionDecrypt.py
files so it can call the encryptMessage() and decryptMessage() functions. As a
result, you don’t have to retype the code for these functions in the new
program.

Open a new file editor window by selecting File » New File. Enter the
following code into the file editor and save it as transpositionkileCipher.py. Then
download frankenstein.txt from hitps://www.nostarch.com/crackingcodes/ and
place this file in the same folder as the transpositionFileCipher.py file. Press F5
to run the program.

128 Chapter 10



https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

fransposition
FileCipher.py

1.
2.
3.

Transposition Cipher Encrypt/Decrypt File
https://www.nostarch.com/crackingcodes/ (BSD Licensed)

4. import time, os, sys, transpositionEncrypt, transpositionDecrypt

5.

6. def main():

7.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.
49.
50.

inputFilename = 'frankenstein.txt'

# BE CAREFUL! If a file with the outputFilename name already exists,
# this program will overwrite that file:

outputFilename = 'frankenstein.encrypted.txt'

myKey = 10

myMode = 'encrypt' # Set to 'encrypt' or 'decrypt'.

# If the input file does not exist, the program terminates early:

if not os.path.exists(inputFilename):
print('The file %s does not exist. Quitting...' % (inputFilename))
sys.exit()

# If the output file already exists, give the user a chance to quit:
if os.path.exists(outputFilename):
print('This will overwrite the file %s. (C)ontinue or (Q)uit?' %
(outputFilename))
response = input('> ')
if not response.lower().startswith('c"'):
sys.exit()

# Read in the message from the input file:
fileObj = open(inputFilename)

content = fileObj.read()

fileObj.close()

print('%sing..." % (myMode.title()))

# Measure how long the encryption/decryption takes:
startTime = time.time()
if myMode == ‘encrypt':

translated = transpositionEncrypt.encryptMessage(myKey, content)
elif myMode == 'decrypt':

translated = transpositionDecrypt.decryptMessage(myKey, content)
totalTime = round(time.time() - startTime, 2)
print('%sion time: %s seconds' % (myMode.title(), totalTime))

# Write out the translated message to the output file:
outputFileObj = open(outputFilename, 'w')
outputFileObj.write(translated)

outputFileObj.close()

print('Done %sing %s (%s characters).' % (myMode, inputFilename,

len(content)))
print('%sed file is %s.' % (myMode.title(), outputFilename))

Encrypting and Decrypting Files 129


https://www.nostarch.com/crackingcodes/

130

51. # If transpositionCipherFile.py is run (instead of imported as a module),
52. # call the main() function:

53. if _name__ == '_main_ ":
54. main()

Sample Run of the Transposition File Cipher Program

When you run the transpositionFileCipher.py program, it should produce this
output:

Encrypting...

Encryption time: 1.21 seconds

Done encrypting frankenstein.txt (441034 characters).
Encrypted file is frankenstein.encrypted.txt.

A new frankenstein.encrypted.txt file is created in the same folder as
transpositionFileCipher.py. When you open this file with IDLE’s file editor,
you’ll see the encrypted contents of frankenstein.py. It should look some-
thing like this:

PtFiyedleo a arnvmt eneeGLchongnes MmuyedlsuO#uiSHTGA r sy,n t ys
S nuaoGel

sc7s,

--snip--

Once you have an encrypted text, you can send it to someone else to
decrypt it. The recipient will also need to have the transposition file cipher
program.

To decrypt the text, make the following changes to the source code (in
bold) and run the transposition file cipher program again:

7 inputFilename = 'frankenstein.encrypted.txt’
8. # BE CAREFUL! If a file with the outputFilename name already exists,
9. # this program will overwrite that file:
10. outputFilename = 'frankenstein.decrypted.txt’
11. myKey = 10
12. myMode = 'decrypt' # Set to 'encrypt' or 'decrypt’.

This time when you run the program, a new file named frankenstein
.decrypted.txt that is identical to the original frankenstein.txt file will appear
in the folder.

Working with Files

Chapter 10

Before we dive into the code for transpositionFileCipher.py, let’s examine
how Python works with files. The three steps to reading the contents of
a file are opening the file, reading the file content into a variable, and
closing the file. Similarly, to write new content in a file, you must open
(or create) the file, write the new content, and close the file.



Opening Files

Python can open a file to read from or write to using the open() function.
The open() function’s first parameter is the name of the file to open. If the
file is in the same folder as the Python program, you can just use the file’s
name, such as 'thetimemachine.txt'. The command to open thetimemachine.ixt
if it existed in the same folder as your Python program would look like this:

fileObj = open('thetimemachine.txt")

A file object is stored in the fileObj variable, which will be used to
read from or write to the file.

You can also specify the absolute path of the file, which includes the
folders and parent folders that the file is in. For example, 'C:\\Users\\
Al\\frankenstein.txt' (on Windows) and '/Users/Al/frankenstein.txt' (on
macOS and Linux) are absolute paths. Remember that on Windows the
backslash (\) must be escaped by typing another backslash before it.

For example, if you wanted to open the frankenstein.ixt file, you would
pass the path of the file as a string for the open() function’s first parameter
(and format the absolute path according to your operating system):

fileObj = open('C:\\Users\\Al\\frankenstein.txt")

The file object has several methods for writing to, reading from, and
closing the file.

Writing to and Closing Files

For the encryption program, after reading in the text file’s content, you’ll
need to write the encrypted (or decrypted) content to a new file, which
you’ll do by using the write() method.

To use write() on a file object, you need to open the file object in write
mode, which you do by passing open() the string 'w' as a second argument.
(This second argument is an optional parameter because the open() function
can still be used without passing two arguments.) For example, enter the
following line of code into the interactive shell:

>>> fileObj = open('spam.txt', 'w')

This line creates a file named spam.txt in write mode so you can edit it. If
a file of the same name exists where the open() function creates the new file,
the old file is overwritten, so be careful when using open() in write mode.

With spam.ixt now open in write mode, you can write to the file by calling
the write() method on it. The write() method takes one argument: a string of
text to write to the file. Enter the following into the interactive shell to write
'Hello, world!' to spam.ixt:

>>> fileObj.write('Hello, world!')
13

Encrypting and Decrypting Files 131



132

Passing the string 'Hello, world!' to the write() method writes that
string to the spam.txt file and then prints 13, the number of characters in
the string written to the file.

When you’re finished working with a file, you need to tell Python you're
done with the file by calling the close() method on the file object:

>>> fileObj.close()

There is also an append mode, which is like write mode except append
mode doesn’t overwrite the file. Instead, strings are written to the end of
the content already in the file. Although we won’t use it in this program,
you can open a file in append mode by passing the string 'a’ as the second
argument to open().

If you get an io.UnsupportedOperation: not readable error message when
you try calling write() on a file object, you might not have opened the file in
write mode. When you don’t include the open() function’s optional param-
eter, it automatically opens the file object in read mode ('r") instead, which
allows you to use only the read() method on the file object.

Reading from a File

The read() method returns a string containing all the text in the file. To try
it out, we’ll read the spam.txt file we created earlier with the write() method.
Run the following code from the interactive shell:

>>> fileObj = open('spam.txt', 'r')
>>> content = fileObj.read()

>>> print(content)

Hello world!

>>> fileObj.close()

The file is opened, and the file object that is created is stored in the
fileObj variable. Once you have the file object, you can read the file using
the read() method and store it in the content variable, which you then print.
When you’re done with the file object, you need to close it with close().

If you get the error message IOError: [Errno 2] No such file or directory,
make sure the file actually is where you think it is and double-check that
you typed the filename and folder name correctly. (Directory is another word
for folder.)

We’ll use open(), read(), write(), and close() on the files that we open to
encrypt or decrypt in transpositionFileCipher.py.

Setting Up the main() Function

Chapter 10

The first part of the transpositionFileCipher.py program should look familiar.
Line 4 is an import statement for the programs transpositionEncrypt.py and
transpositionDecrypt.py as well as Python’s time, os, and sys modules. Then we
start main() by setting up some variables to use in the program.



. # Transposition Cipher Encrypt/Decrypt File
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

. import time, os, sys, transpositionEncrypt, transpositionDecrypt

1

2

3

4

5.

6. def main():
7. inputFilename = 'frankenstein.txt'

8 # BE CAREFUL! If a file with the outputFilename name already exists,
9 # this program will overwrite that file:

0. outputFilename = 'frankenstein.encrypted.txt'

11. myKey = 10

12. myMode = 'encrypt' # Set to 'encrypt' or 'decrypt'.

The inputFilename variable holds a string of the file to read, and the
encrypted (or decrypted) text is written to the file named in outputFilename.
The transposition cipher uses an integer for a key, which is stored in myKey.
The program expects myMode to store 'encrypt’ or 'decrypt’ to tell it to
encrypt or decrypt the inputFilename file. But before we can read from the
inputFilename file, we need to check that it exists using os.path.exists().

Checking Whether a File Exists

Reading files is always harmless, but you need to be careful when writing to
files. Calling the open() function in write mode on a filename that already
exists overwrites the original content. Using the os.path.exists() function,
your programs can check whether or not that file already exists.

The os.path.exists() Function

The os.path.exists() function takes a single string argument for a filename
or a path to a file and returns True if the file already exists and False if it
doesn’t. The os.path.exists() function exists inside the path module, which
exists inside the os module, so when we import the os module, the path mod-
ule is imported, too.

Enter the following into the interactive shell:

>>> import os
® >>> os.path.exists('spam.txt")
False
>>> os.path.exists('C:\\Windows\\System32\\calc.exe') # Windows
True
>>> os.path.exists('/usr/local/bin/idle3"') # macOS
False
>>> os.path.exists('/usr/bin/idle3"') # Linux
False

In this example, the os.path.exists() function confirms that the calc.exe
file exists in Windows. Of course, you’ll only get these results if you're run-
ning Python on Windows. Remember to escape the backslash in a Windows
file path by typing another backslash before it. If you're using macOS, only

Encrypting and Decrypting Files 133


https://www.nostarch.com/crackingcodes/

134

the macOS example will return True, and only the last example will return
True for Linux. If the full file path isn’t given @, Python will check the cur-
rent working directory. For IDLE’s interactive shell, this is the folder that
Python is installed in.

Checking Whether the Input File Exists with the os.path.exists() Function

We use the os.path.exists() function to check that the filename in

inputFilename exists. Otherwise, we have no file to encrypt or decrypt.
We do this in lines 14 to 17:

14. # If the input file does not exist, then the program terminates early:
15. if not os.path.exists(inputFilename):

16. print('The file %s does not exist. Quitting...' % (inputFilename))
17. sys.exit()

If the file doesn’t exist, we display a message to the user and then quit
the program.

Using String Methods to Make User Input More Flexible

Chapter 10

Next, the program checks whether a file with the same name as outputFilename
exists, and if so, it asks the user to type C if they want to continue running
the program or Q to quit the program. Because a user might type various
responses, such as 'c', 'C', or even the word 'Continue', we want to make sure
the program will accept all of these versions. To do this, we’ll use more string
methods.

The upper(), lower(), and title() String Methods

The upper() and lower() string methods will return the string they are called
on in all uppercase or all lowercase letters, respectively. Enter the following
into the interactive shell to see how the methods work on the same string:

>>> 'Hello'.upper()
"HELLO'
>>> 'Hello'.lower()
"hello’

Just as the lower() and upper() string methods return a string in lower-
case or uppercase, the title() string method returns a string in title case. Title
caseis where the first character of every word is uppercase and the rest of the
characters are lowercase. Enter the following into the interactive shell:

>>> 'hello’.title()

'Hello'

>>> "HELLO'.title()

'Hello'

>>> 'extra! extra! man bites shark!'.title()
"Extra! Extra! Man Bites Shark!'




We’ll use title() a little later in the program to format messages we
output for the user.

The startswith() and endswith() String Methods

The startswith() method returns True if its string argument is found at the
beginning of the string. Enter the following into the interactive shell:

>>> "hello'.startswith('h")
True

>>> 'hello'.startswith('H")
False

>>> spam = 'Albert’

>>> spam.startswith('Al")
True

The startswith() method is case sensitive and can also be used on
strings with multiple characters ©.

The endswith() string method is used to check whether a string value
ends with another specified string value. Enter the following into the inter-
active shell:

>>> 'Hello world!'.endswith('world!")
True

>>> "Hello world!'.endswith('world')
False

The string values must match perfectly. Notice that the lack of the
exclamation mark in 'world' @ causes endswith() to return False.

Using These String Methods in the Program

As noted, we want the program to accept any response that starts with a C
regardless of capitalization. This means that we want the file to be overwrit-
ten whether the user types c, continue, C, or another string that begins with C.
We’ll use the string methods lower() and startswith() to make the program
more flexible when taking user input:

19. # If the output file already exists, give the user a chance to quit:

20. if os.path.exists(outputFilename):

21. print('This will overwrite the file %s. (C)ontinue or (Q)uit?' %
(outputFilename))

22. response = input('> ")

23. if not response.lower().startswith('c'):

24, sys.exit()

On line 23, we take the first letter of the string and check whether it is
a Cusing the startswith() method. The startswith() method that we use is
case sensitive and checks for a lowercase 'c', so we use the lower() method
to modify the response string’s capitalization to always be lowercase. If the
user didn’t enter a response starting with a C, then startswith() returns False,

Encrypting and Decrypting Files 135



136

which makes the if statement evaluate to True (because of the not in the if
statement), and sys.exit() is called to end the program. Technically, the user
doesn’t have to enter Q to quit; any string that doesn’t begin with C causes the
sys.exit() function to be called to quit the program.

Reading the Input File

On line 27, we start using the file object methods discussed at the beginning
of this chapter.

26. # Read in the message from the input file:
27. fileObj = open(inputFilename)

28. content = fileObj.read()

29. fileObj.close()

30.

31. print('%sing..." % (myMode.title()))

Lines 27 to 29 open the file stored in inputFilename, read its contents
into the content variable, and then close the file. After reading in the file,
line 31 outputs a message for the user telling them that the encryption
or decryption has begun. Because myMode should either contain the string
‘encrypt' or 'decrypt', calling the title() string method capitalizes the first
letter of the string in myMode and splices the string into the '%sing' string, so
it displays either 'Encrypting..." or 'Decrypting...".

Measuring the Time It Took to Encrypt or Decrypt

Chapter 10

Encrypting or decrypting an entire file can take much longer than a short
string. A user might want to know how long the process takes for a file. We
can measure the length of the encryption or decryption process by using
the time module.

The time Module and time.time() Function

The time.time() function returns the current time as a float value of the
number of seconds since January 1, 1970. This moment is called the Unix
Epoch. Enter the following into the interactive shell to see how this function
works:

>>> import time
>>> time.time()
1540944000.7197928
>>> time.time()
1540944003.4817972

Because time.time() returns a float value, it can be precise to a
millisecond (that is, 1/1000 of a second). Of course, the numbers that



time.time() displays depend on the moment in time that you call this
function and may be difficult to interpret. It might not be clear that
1540944000.7197928 is Tuesday, October 30, 2018, at approximately 5 PM.
However, the time.time() function is useful for comparing the number of
seconds between calls to time.time(). We can use this function to deter-
mine how long a program has been running.

For example, if you subtract the floating-point values returned when
I called time.time() previously in the interactive shell, you would get the
amount of time in between those calls while I was typing:

>>> 1540944003.4817972 - 1540944000.7197928
2.7620043754577637

If you need to write code that handles dates and times, see Attps://www
.nostarch.com/crackingcodes/ for information on the datetime module.

Using the time.time() Function in the Program

On line 34, time.time() returns the current time to store in a variable
named startTime. Lines 35 to 38 call encryptMessage() or decryptMessage(),
depending on whether "encrypt' or 'decrypt' is stored in the myMode

variable.

33. # Measure how long the encryption/decryption takes:

34. startTime = time.time()

35. if myMode == ‘encrypt':

36. translated = transpositionEncrypt.encryptMessage(myKey, content)
37. elif myMode == 'decrypt':

38. translated = transpositionDecrypt.decryptMessage(myKey, content)
39. totalTime = round(time.time() - startTime, 2)

40. print('%sion time: %s seconds' % (myMode.title(), totalTime))

Line 39 calls time.time() again after the program decrypts or encrypts
and subtracts startTime from the current time. The result is the number of
seconds between the two calls to time.time(). The time.time() - startTime
expression evaluates to a value that is passed to the round() function, which
rounds to the nearest two decimal points, because we don’t need millisecond
precision for the program. This value is stored in totalTime. Line 40 uses
string splicing to print the program mode and displays to the user the
amount of time it took for the program to encrypt or decrypt.

Writing the Output File

The encrypted (or decrypted) file contents are now stored in the
translated variable. But this string is forgotten when the program ter-
minates, so we want to store the string in a file to have even after the
program has finished running. The code on lines 43 to 45 does this by

Encrypting and Decrypting Files 137


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

138

opening a new file (and passing 'w' to the open() function) and then call-
ing the write() file object method:

42. # Write out the translated message to the output file:
43. outputFileObj = open(outputFilename, 'w")

44. outputFileObj.write(translated)

45. outputFileObj.close()

Then, lines 47 and 48 print more messages to the user indicating that
the process is done and the name of the written file:

47. print('Done %sing %s (%s characters).' % (myMode, inputFilename,
len(content)))
48. print('%sed file is %s.' % (myMode.title(), outputFilename))

Line 48 is the last line of the main() function.

Calling the main() Function

Lines 53 and 54 (which are executed after the def statement on line 6 is
executed) call the main() function if this program is being run instead of
being imported:

51. # If transpositionCipherFile.py is run (instead of imported as a module),
52. # call the main() function:

53. if _name__ == '_main_ ':

54. main()

This is explained in detail in “The __name__ Variable” on page 95.

Summary

Chapter 10

Congratulations! There wasn’t much to the transpositionFileCipher.py pro-
gram aside from the open(), read(), write(), and close() functions, which
let us encrypt large text files on a hard drive. You learned how to use the
os.path.exists() function to check whether a file already exists. As you've
seen, we can extend our programs’ capabilities by importing their functions
for use in new programs. This greatly increases our ability to use computers
to encrypt information.

You also learned some useful string methods to make a program more
flexible when accepting user input and how to use the time module to mea-
sure how fast your program runs.

Unlike the Caesar cipher program, the transposition file cipher has too
many possible keys to attack by simply using brute force. But if we can write
a program that recognizes English (as opposed to strings of gibberish), the
computer could examine the output of thousands of decryption attempts
and determine which key can successfully decrypt a message to English.
You’ll learn how to do this in Chapter 11.



PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. Which is correct: os.exists() or os.path.exists()?
When is the Unix Epoch?

What do the following expressions evaluate to2

'Foobar'.startswith('Foo")

'Foo'.startswith('Foobar")

'Foobar'.startswith('foo")

'bar'.endswith('Foobar")

'Foobar'.endswith('bar")

'The quick brown fox jumped over the yellow lazy dog.'.title()

Encrypting and Decrypting Files 139






DETECTING ENGLISH
PROGRAMMATICALLY

The gaffer says something longer and more complicated.
After a while, Waterhouse (now wearing his cryptoanalyst hat,
searching for meaning midst apparent randomness, his newral
circuits exploiting the redundancies in the signal) realizes that

the man is speaking heavily accented English.
—Neal Stephenson, Cryptonomicon

Previously, we used the transposition file

cipher to encrypt and decrypt entire files,
but we haven’t tried writing a brute-force pro-

gram to hack the cipher yet. Messages encrypted with

the transposition file cipher can have thousands of

possible keys, which your computer can still easily brute-force, but you’d
then have to look through thousands of decryptions to find the one cor-
rect plaintext. As you can imagine, this can be a big problem, but there is
a work-around.

When the computer decrypts a message using the wrong key, the
resulting string is garbage text instead of English text. We can program the
computer to recognize when a decrypted message is English. That way, if
the computer decrypts using the wrong key, it knows to go on and try the
next possible key. Eventually, when the computer tries a key that decrypts
to English text, it can stop and bring that key to your attention, sparing you
from having to look through thousands of incorrect decryptions.



142

TOPICS COVERED IN THIS CHAPTER

e  The dictionary data type

e  The split() method

®  The None value

e Divide-by-zero errors

e The float(), int(), and stx() functions and integer division
e The append() list method

*  Default arguments

e  Calculating percentages

How Can a Computer Understand English?

Chapter 11

A computer can’t understand English, at least, not in the way that human
beings understand English. Computers don’t understand math, chess, or
human rebellions either, any more than a clock understands lunchtime.
Computers just execute instructions one after another. But these instruc-
tions can mimic complex behaviors to solve math problems, win at chess,
or hunt down the future leaders of the human resistance.

Ideally, what we need to create is a Python function (let’s call it the
isknglish() function) that we can pass a string to and get a return value
of True if the string is English text or False if it’s random gibberish. Let’s
look at some English text and some garbage text to see what patterns they
might have:

Robots are your friends. Except for RX-686. She will try to eat you.
ai-pey e. xrx ne augur iirlé Rtiyt fhubE6d hrSei t8..ow eo.telyoosEs t

Notice that the English text is made up of words that you would find in
a dictionary, but the garbage text isn’t. Because words are usually separated
by spaces, one way of checking whether a message string is English is to split
the message into smaller strings at each space and to check whether each
substring is a dictionary word. To split the message strings into substrings,
we can use the Python string method named split(), which checks where
each word begins and ends by looking for spaces between characters.
(“The split() Method” on page 150 covers this in more detail.) We can
then compare each substring to each word in the dictionary using an if
statement, as in the following code:

if word == 'aardvark' or word == 'abacus' or word == 'abandon' or word ==
"abandoned' or word == 'abbreviate' or word == 'abbreviation' or word ==
"abdomen' or ...




We could write code like that, but we probably wouldn’t because it would
be tedious to type it all out. Fortunately, we can use English dictionary files,
which are text files that contain nearly every word in English. I'll provide you
with a dictionary file to use, so we just need to write the isEnglish() function
that checks whether the substrings in the message are in the dictionary file.

Not every word exists in our dictionary file. The dictionary file might
be incomplete; for example, it might not have the word aardvark. There are
also perfectly good decryptions that might have non-English words in them,
such as RX-686 in our example English sentence. The plaintext could also
be in a different language, but we’ll assume it’s in English for now.

So the isknglish() function won’t be foolproof, but if most of the words
in the string argument are English words, it’s a good bet the string is English
text. There’s a very low probability that a ciphertext decrypted using the
wrong key will decrypt to English.

You can download the dictionary file we’ll use for this book (which
has more than 45,000 words) from https://www.nostarch.com/crackingcodes/.
The dictionary text file lists one word per line in uppercase. Open it, and
you’ll see something like this:

AARHUS
AARON
ABABA
ABACK
ABAFT
ABANDON
ABANDONED
ABANDONING
ABANDONMENT
ABANDONS
--snip--

Our isknglish() function will split a decrypted string into individual
substrings and check whether each substring exists as a word in the diction-
ary file. If a certain number of the substrings are English words, we’ll iden-
tify that text as English. And if the text is in English, there’s a good chance
that we’ll have successfully decrypted the ciphertext with the correct key.

Source Code for the Detect English Module

detectEnglish.py

Open a new file editor window by selecting File » New File. Enter the fol-
lowing code into the file editor and then save it as detectEnglish.py. Make
sure dictionary.txtis in the same directory as detectEinglish.py or this code
won’t work. Press Fb to run the program.

. # Detect English module
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

. # To use, type this code:

1
2
3
4
5. # import detectEnglish

Detecting English Programmatically 143


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

144

Chapter 11

O 00N O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

# detectEnglish.isEnglish(someString) # Returns True or False
# (There must be a "dictionary.txt" file in this directory with all
# English words in it, one word per line. You can download this from

# https://www.nostarch.com/crackingcodes/.)
UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + ' \t\n'

def

loadDictionary():

dictionaryFile = open('dictionary.txt")

englishWords = {}

for word in dictionaryFile.read().split('\n"):
englishWords[word] = None

dictionaryFile.close()

return englishWords

ENGLISH_WORDS = loadDictionary()

def

def

def

getEnglishCount(message):

message = message.upper()

message = removeNonlLetters(message)
possibleWords = message.split()

if possibleWords == []:
return 0.0 # No words at all, so return 0.0

matches = 0
for word in possibleWords:
if word in ENGLISH_WORDS:
matches += 1
return float(matches) / len(possibleWords)

removeNonLetters(message):
lettersOnly = []
for symbol in message:
if symbol in LETTERS_AND SPACE:
lettersOnly.append(symbol)

return ''.join(lettersOnly)

isEnglish(message, wordPercentage=20, letterPercentage=85):

# By default, 20% of the words must exist in the dictionary file, and
# 85% of all the characters in the message must be letters or spaces
# (not punctuation or numbers).

wordsMatch = getEnglishCount(message) * 100 >= wordPercentage
numLetters = len(removeNonLetters(message))

messagelettersPercentage = float(numLetters) / len(message) * 100
lettersMatch = messagelettersPercentage >= letterPercentage

return wordsMatch and lettersMatch



https://www.nostarch.com/crackingcodes/

Sample Run of the Detect English Module

The detectEnglish.py program we’ll write in this chapter won’t run by itself.
Instead, other encryption programs will import detectEnglish.py so they can
call the detectEnglish.isEnglish() function, which returns True when the string
is determined to be English. This is why we don’t give detectlonglish.py a main()
function. The other functions in detectEnglish.py are helper functions that
the isknglish() function will call. All the work we’ll do in this chapter will
allow any program to import the detectEnglish module with an import state-
ment and use the functions in it.

You'll also be able to use this module in the interactive shell to check
whether an individual string is in English, as shown here:

>>> import detectEnglish
>>> detectEnglish.isEnglish('Is this sentence English text?')
True

In this example, the function determined that the string 'Is this
sentence English text?' isindeed in English, so it returns True.

Instructions and Setting Up Constants

Let’s look at the first portion of the detectlonglish.py program. The first nine
lines of code are comments that give instructions on how to use this module.

1. # Detect English module

2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

3.

4. # To use, type this code:

5. # import detectEnglish

6. # detectEnglish.isEnglish(someString) # Returns True or False

7. # (There must be a "dictionary.txt" file in this directory with all
8. # English words in it, one word per line. You can download this from
9. # https://www.nostarch.com/crackingcodes/.)

10. UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

[y
[N

. LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + ' \t\n'

The first nine lines of code are comments that give instructions on how
to use this module. They remind users that this module won’t work unless a
file named dictionary.txt is in the same directory as detectEnglish.py.

Lines 10 and 11 set up a few variables as constants, which are in upper-
case. As you learned in Chapter 5, constants are variables whose values
should never be changed after they’re set. UPPERLETTERS is a constant contain-
ing the 26 uppercase letters that we set up for convenience and to save time
typing. We use the UPPERLETTERS constant to set up LETTERS_AND_SPACE, which
contains all the uppercase and lowercase letters of the alphabet as well as
the space character, the tab character, and the newline character. Instead
of typing out all the uppercase and lowercase letters, we just concatenate

Detecting English Programmatically 145


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

146

UPPERLETTERS with the lowercase letters returned by UPPERLETTERS.lower() and
the additional non-letter characters. The tab and newline characters are
represented with the escape characters \t and \n.

The Dictionary Data Type

Chapter 11

Before we continue with the rest of the detectlnglish.py code, you need to
learn more about the dictionary data type to understand how to convert
the text in the file into a string value. The dictionary data type (not to be
confused with the dictionary file) stores values, which can contain multiple
other values just as lists do. In lists, we use an integer index to retrieve items
in the list, such as spam[42]. But for each item in the dictionary value, we
instead use a key to retrieve a value. Although we can use only integers to
retrieve items from a list, the key in a dictionary value can be an integer or
a string, such as spam[ 'hello'] or spam[42]. Dictionaries let us organize our
program’s data with more flexibility than lists and don’t store items in any
particular order. Instead of using square brackets as lists do, dictionaries
use braces. For example, an empty dictionary looks like this {}.

Keep in mind that dictionary files and dictionary values are completely different con-
cepts that just happen to have similar names. A Python dictionary value can contain
multiple other values. A dictionary file is a text file containing English words.

A dictionary’s items are typed as key-value pairs, in which the keys and
values are separated by colons. Multiple key-value pairs are separated by
commas. To retrieve values from a dictionary, use square brackets with the
key between them, similar to when indexing with lists. To try retrieving
values from a dictionary using keys, enter the following into the interactive
shell:

>>> spam = {'key1': 'This is a value', 'key2': 42}
>>> spam[ "key1']
'This is a value'

First, we set up a dictionary called spam with two key-value pairs. We then
access the value associated with the 'key1' string key, which is another string.
As with lists, you can store all kinds of data types in your dictionaries.

Note that, as with lists, variables don’t store dictionary values; instead,
they store references to dictionaries. The following example code shows two
variables with references to the same dictionary:

>>> spam = {'hello': 42}
>>> eggs = spam

>>> eggs['hello'] = 99
>>> eggs

{'hello': 99}

>>> spam

{'hello': 99}




The first line of code sets up another dictionary called spam, this time
with only one key-value pair. You can see that it stores an integer value 42
associated with the "hello' string key. The second line assigns that diction-
ary key-value pair to another variable called eggs. You can then use eggs to
change the original dictionary value associated with the 'hello’ string key
to 99. Now both variables, eggs and spam, should return the same dictionary
key-value pair with the updated value.

The Difference Between Dictionaries and Lists

Dictionaries are like lists in many ways, but there are a few important
differences:

e Dictionary items are not in any order. There is no first or last item in a
dictionary as there is in a list.

¢ You can’t concatenate dictionaries with the + operator. If you want to
add a new item, use indexing with a new key. For example, foo[ 'a new
key'] = 'a string'.

e Lists only have integer index values that range from 0 to the length of
the list minus one, but dictionaries can use any key. If you have a dic-
tionary stored in a variable spam, you can store a value in spam[3] without
needing values for spam[0], spam[1], or spam[2].

Adding or Changing Items in a Dictionary

You can also add or change values in a dictionary by using the dictionary keys
as indexes. Enter the following into the interactive shell to see how this works:

>>> spam = {42: 'hello'}
>>> print(spam[42])
hello

>>> spam[42] = 'goodbye'
>>> print(spam[42])
goodbye

This dictionary has an existing dictionary string value 'hello' associ-
ated with the key 42. We can reassign a new string value 'goodbye’ to that
key using spam[42] = 'goodbye'. Assigning a new value to an existing diction-
ary key overwrites the original value associated with that key. For example,
when we try to access the dictionary with the key 42, we get the new value
associated with it.

And just as lists can contain other lists, dictionaries can also contain
other dictionaries (or lists). To see an example, enter the following into the
interactive shell:

>>> foo = {'fizz': {'name': 'Al', 'age': 144}, 'moo':['a‘, 'brown', 'cow']}
>>> foo[ 'fizz']

{'age': 144, 'name': 'Al'}

>>> foo[ 'fizz'][ 'name’']

AL

Detecting English Programmatically 147



148

Chapter 11

>>> foo[ "'moo" ]

['a', 'brown', 'cow']
>>> foo[ 'moo"'][1]
"brown’

This example code shows a dictionary (named foo) that contains two
keys 'fizz' and 'moo’, each corresponding to a different value and data
type. The 'fizz' key holds another dictionary, and the 'moo’ key holds a
list. (Remember that dictionary values don’t keep their items in order. This
is why foo[ 'fizz'] shows the key-value pairs in a different order from what
you typed.) To retrieve a value from a dictionary nested within another
dictionary, you first specify the key of the larger data set you want to access
using square brackets, which is 'fizz' in this example. Then you use square
brackets again and enter the key 'name' corresponding to the nested string
value 'Al' that you want to retrieve.

Using the len() Function with Dictionaries

The len() function shows you the number of items in a list or the number of
characters in a string. It can also show you the number of items in a diction-
ary. Enter the following code into the interactive shell to see how to use the

len() function to count items in a dictionary:

>>> spam = {}
>>> len(spam)

>>> spam['name'] = 'Al’

>>> spam['pet'] = 'Zophie the cat'
>>> spam['age'] = 89

>>> len(spam)

The first line of this example shows an empty dictionary called spam.
The len() function correctly shows the length of this empty dictionary is 0.
However, after you introduce the following three values, 'Al', 'Zophie the
cat', and 89, into the dictionary, the len() function now returns 3 for the
three key-value pairs you've just assigned to the variable.

Using the in Operator with Dictionaries

You can use the in operator to see whether a certain key exists in a diction-
ary. It’s important to remember that the in operator checks keys, not values.
To see this operator in action, enter the following into the interactive shell:

>>> eggs = {'foo': 'milk', 'bar': 'bread'}
>>> 'foo' in eggs

True

>>> 'milk' in eggs

False



>>> 'blah blah blah' in eggs
False

>>> 'blah blah blah' not in eggs
True

We set up a dictionary called eggs with some key-value pairs and then
check which keys exist in the dictionary using the in operator. The key 'foo'
is a key in eggs, so True is returned. Whereas 'milk' returns False because it is
a value, not a key, 'blah blah blah' evaluates to False because no such item
exists in this dictionary. The not in operator works with dictionary values as
well, which you can see in the last command.

Finding Items Is Faster with Dictionaries than with Lists

Imagine the following list and dictionary values in the interactive shell:

>>> listVal = ['spam', 'eggs', 'bacon']
>>> dictionaryVal = {'spam':0, 'eggs':0, 'bacon’:0}

Python can evaluate the expression 'bacon’ in dictionaryVal a bit faster
than 'bacon’ in listval. This is because for a list, Python must start at the
beginning of the list and then move through each item in order until it
finds the search item. If the list is very large, Python must search through
numerous items, a process that can take a lot of time.

But a dictionary, also called a hash table, directly translates where in
the computer’s memory the value for the key-value pair is stored, which is
why a dictionary’s items don’t have an order. No matter how large the dic-
tionary is, finding any item always takes the same amount of time.

This difference in speed is hardly noticeable when searching short lists
and dictionaries. But our detectEnglish module will have tens of thousands
of items, and the expression word in ENGLISH_WORDS, which we’ll use in our
code, will be evaluated many times when the isEnglish() function is called.
Using dictionary values speeds up this process when handling a large num-
ber of items.

Using for Loops with Dictionaries

You can also iterate over the keys in a dictionary using for loops, just as you
can iterate over the items in a list. Enter the following into the interactive
shell:

>>> spam = {'name': 'Al’, 'age': 99}
>>> for k in spam:
print(k, spam[k])
Age 99
name Al

Detecting English Programmatically 149



150

To use a for statement to iterate over the keys in a dictionary, start with
the for keyword. Set the variable k, use the in keyword to specify that you
want to loop over spam and end the statement with a colon. As you can see,
entering print(k, spam[k]) returns each key in the dictionary along with its
corresponding value.

Implementing the Dictionary File

Chapter 11

Now let’s return to detectlnglish.py and set up the dictionary file. The diction-
ary file sits on the user’s hard drive, but unless we load the text in this file as
a string value, our Python code can’t use it. We’ll create a loadDictionary()
helper function to do this:

13. def loadDictionary():
14. dictionaryFile = open('dictionary.txt")
15. englishWords = {}

First, we get the dictionary’s file object by calling open() and passing the
string of the filename 'dictionary.txt'. Then we name the dictionary vari-
able englishWords and set it to an empty dictionary.

We’ll store all the words in the dictionary file (the file that stores the
English words) in a dictionary value (the Python data type). The similar
names are unfortunate, but the two are completely different. Even though
we could have used a list to store the string values of each word in the dic-
tionary file, we’re using a dictionary instead because the in operator works
faster on dictionaries than lists.

Next, you’ll learn about the split() string method, which we’ll use to
split our dictionary file into substrings.

The split() Method

The split() string method takes one string and returns a list of several
strings by splitting the passed string at each space. To see an example of
how this works, enter the following into the interactive shell:

>>> 'My very energetic mother just served us Nutella.'.split()
['My', 'very', 'energetic', 'mother', 'just', 'served', 'us', 'Nutella.']

The result is a list of eight strings, one string for each of the words in
the original string. Spaces are dropped from the items in the list, even if
there is more than one space. You can pass an optional argument to the
split() method to tell it to split on a different string other than a space.
Enter the following into the interactive shell:

>>> "helloXXXworldXXXhowXXXareXXyou?'.split('XXX")
['hello', 'world', 'how', '"areXXyou?']




Notice that the string doesn’t have any spaces. Using split('XXX") splits
the original string wherever 'XXX' occurs, resulting in a list of four strings.
The last part of the string, 'areXXyou?', isn’t split because 'XX' isn’t the same
as 'XXX'.

Splitting the Dictionary File into Individual Words

Let’s return to our source code in detectEnglish.py to see how we split the
string in the dictionary file and store each word in a key.

16. for word in dictionaryFile.read().split('\n'):
17. englishWords[word] = None

Let’s break down line 16. The dictionaryFile variable stores the file
object of the opened file. The dictionaryFile.read() method call reads
the entire file and returns it as one large string value. We then call the
split() method on this long string and split on newline characters. Because
the dictionary file has one word per line, splitting on newline characters
returns a list value made up of each word in the dictionary file.

The for loop at the beginning of the line iterates over each word to
store each one in a key. But we don’t need values associated with the keys
since we’re using the dictionary data type, so we’ll just store the None value
for each key.

None is a type of value that you can assign to a variable to represent the
lack of a value. Whereas the Boolean data type has only two values, the
NoneType has only one value, None. It’s always written without quotes and
with a capital N.

For example, say you had a variable named quizAnswer, which holds a
user’s answer to a true-false pop quiz question. If the user skips a question
and doesn’t answer it, it makes the most sense to assign quizAnswer to None as
a default value rather than to True or False. Otherwise, it might look like the
user answered the question when they didn’t. Likewise, function calls that
exit by reaching the end of the function and not from a return statement
evaluate to None because they don’t return anything.

Line 17 uses the word that is being iterated over as a key in englishWords
and stores None as a value for that key.

Returning the Dictionary Data

After the for loop finishes, the englishiords dictionary should have tens of
thousands of keys in it. At this point, we close the file object because we’re
done reading from it, and then return englishWords:

18. dictionaryFile.close()
19. return englishWords

Detecting English Programmatically 151



152

Then we call loadDictionary() and store the dictionary value it returns in
a variable named ENGLISH_WORDS:

21. ENGLISH_WORDS = loadDictionary()

We want to call loadDictionary() before the rest of the code in the
detectEnglish module, but Python must execute the def statement for
loadDictionary() before we can call the function. This is the reason the
assignment for ENGLISH_WORDS comes after the loadDictionary() function’s code.

Counting the Number of English Words in message

Chapter 11

Lines 24 through 27 of the program’s code define the getEnglishCount() func-
tion, which takes a string argument and returns a float value indicating the
ratio of recognized English words to total words. We’ll represent the ratio as
a value between 0.0 and 1.0. A value of 0.0 means none of the words in message
are English words, and 1.0 means all of the words in message are English
words. Most likely, getEnglishCount() will return a float value between 0.0 and
1.0. The isknglish() function uses this return value to determine whether to
evaluate as True or False.

24. def getEnglishCount(message):

25. message = message.upper()
26. message = removeNonlLetters(message)
27. possibleWords = message.split()

To code this function, first we create a list of individual word strings
from the string in message. Line 25 converts the string to uppercase letters.
Then line 26 removes the non-letter characters from the string, such as
numbers and punctuation, by calling removeNonLetters(). (You’ll see how this
function works later.) Finally, the split() method on line 27 splits the string
into individual words and stores them in a variable named possibleWords.

For example, if the string 'Hello there. How are you?' is passed after
calling getEnglishCount(), the value stored in possibleWords after lines 25
to 27 execute would be ['HELLO', 'THERE', 'HOW', 'ARE', 'YOU'].

If the string in message is made up of integers, such as '12345', the call to
removeNonLetters() would return a blank string, which split() would be called
on to return an empty list. In the program, an empty list is the equivalent of
zero words being English, which could cause a divide-by-zero error.

Divide-hy-Zero Errors

To return a float value between 0.0 and 1.0, we divide the number of
words in possibleWords recognized as English by the total number of words
in possibleWords. Although this is mostly straightforward, we need to make
sure possiblelords is not an empty list. If possibleWords is empty, it means
the total number of words in possiblelWords is 0.



Because in mathematics dividing by zero has no meaning, dividing by
zero in Python results in a divide-by-zero error. To see an example of this
error, enter the following into the interactive shell:

>»> 42/ 0
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
42 /0
ZeroDivisionError: division by zero

You can see that 42 divided by 0 results in a ZeroDivisionError and a
message explaining what went wrong. To avoid a divide-by-zero error, we’ll
need to make sure the possibleliords list is never empty.

Line 29 checks whether possiblelords is an empty list, and line 30 returns
0.0 if no words are in the list.

29. if possibleWords == []:
30. return 0.0 # No words at all, so return 0.0

This check is necessary to avoid a divide-by-zero error.

Counting the English Word Matches

To produce the ratio of English words to total words, we’ll divide the
number of words in possibleWords that are recognized as English by the
total number of words in possibleWords. To do this, we need to count the
number of recognized English words in possibleWords. Line 32 sets the
variable matches to 0. Line 33 uses the for loop to iterate over each word
in possibleWords and check whether the word exists in the ENGLISH_WORDS
dictionary. If the word exists in the dictionary, the value in matches is
incremented on line 35.

32. matches = 0

33. for word in possibleWords:
34. if word in ENGLISH WORDS:
35. matches += 1

After the for loop is complete, the number of English words in the string
is stored in the matches variable. Remember that we’re relying on the diction-
ary file to be accurate and complete for the detectEnglish module to work cor-
rectly. If a word isn’t in the dictionary text file, it won’t be counted as English,
even if it’s a real word. Conversely, if a word is misspelled in the dictionary,
words that aren’t English might accidentally be counted as real words.

Right now, the number of the words in possibleWords that are recognized
as English and the total number of words in possiblelords are represented
by integers. To return a float value between 0.0 and 1.0 by dividing these
two integers, we’ll need to change one or the other into a float.

Detecting English Programmatically 153



154

Chapter 11

The float(), int(), and str() Functions and Integer Division

Let’s look at how to change an integer into a float because the two values
we’ll need to divide to find the ratio are both integers. Python 3 always does
regular division regardless of the value type, whereas Python 2 performs
integer division when both values in the division operation are integers.
Because users might use Python 2 to import detectEnglish.py, we’ll need to
pass at least one integer variable to float() to make sure a float is returned
when doing division. Doing so ensures that regular division will be per-
formed no matter which version of Python is used. This is an example of
making the code backward compatible with previous versions.

Although we won’t use them in this program, let’s review some other
functions that convert values into other data types. The int() function
returns an integer version of its argument, and the str() function returns a
string. To see how these functions work, enter the following into the inter-
active shell:

>>> float(42)
42.0

>>> int(42.0)
42

>>> int(42.7)
42

>>> int('42")
42

>>> str(42)
42"

>>> str(42.7)
'42.7'

You can see that the float() function changes the integer 42 into a float
value. The int() function can turn the floats 42.0 and 42.7 into integers by
truncating their decimal values, or it can turn a string value '42' into an
integer. The str() function changes numerical values into string values.
These functions are helpful if you need a value’s equivalent to be a different
data type.

Finding the Ratio of English Words in the Message

To find the ratio of English words to total words, we divide the number
of matches we found by the total number of possiblelords. Line 36 uses
the / operator to divide these two numbers:

36. return float(matches) / len(possibleWords)

After we pass the integer matches to the float() function, it returns a float
version of that number, which we divide by the length of the possibleWords list.

The only way return float(matches) / len(possibleWords) would lead to a
divide-by-zero error is if len(possibleWords) evaluated to 0. The only way that



would be possible is if possibleWords were an empty list. However, lines 29
and 30 specifically check for this case and return 0.0 if the list is empty.
If possibleWords were set to the empty list, the program execution would
never get past line 30, so we can be confident that line 36 won’t cause a
ZeroDivisionError.

Removing Non-Letter Characters

Certain characters, such as numbers or punctuation marks, will cause our
word detection to fail because words won'’t look exactly as they’re spelled
in our dictionary file. For example, if the last word in message is 'you.' and
we didn’t remove the period at the end of the string, it wouldn’t be counted
as an English word because 'you' wouldn’t be spelled with a period in the
dictionary file. To avoid such misinterpretation, numbers and punctuation
marks need to be removed.

The previously explained getEnglishCount() function calls the function
removeNonLetters() on a string to remove any numbers and punctuation char-
acters from it.

39. def removeNonLetters(message):

40. lettersOnly = []

41. for symbol in message:

42. if symbol in LETTERS_AND_SPACE:
43. lettersOnly.append(symbol)

Line 40 creates a blank list called lettersOnly, and line 41 uses a for
loop to loop over each character in the message argument. Next, the for loop
checks whether the character exists in the string LETTERS_AND_SPACE. If the
character is a number or punctuation mark, it won’t exist in the LETTERS
_AND_SPACE string and won’t be added to the list. If the character does exist
in the string, it’s added to the end of the list using the append() method,
which we’ll look at next.

The append|() List Method

When we add a value to the end of a list, we say we're appending the value
to the list. This is done with lists so frequently in Python that there is an
append() list method that takes a single argument to append to the end of
the list. Enter the following into the interactive shell:

>>> eggs = []
>>> eggs.append( 'hovercraft')
>>> eggs

["hovercraft']

>>> eggs.append('eels')
>>> eggs

["hovercraft', 'eels']

Detecting English Programmatically 155



156

After creating an empty list named eggs, we can enter eggs.append
("hovercraft') to add the string value 'hovercraft' to this list. Then
when we enter eggs, it returns the only value stored in this list, which is
"hovercraft'. If you use append() again to add 'eels' to the end of the list,
eggs now returns 'hovercraft' followed by 'eels'. Similarly, we can use the
append() list method to add items to the lettersOnly list we created in our
code earlier. This is what lettersOnly.append(symbol) on line 43 does in the
for loop.

Creating a String of Letters

After finishing the for loop, lettersonly should be a list of each letter

and space character from the original message string. Because a list of one-
character strings isn’t useful for finding English words, line 44 joins the char-
acter strings in the lettersOnly list into one string and returns it:

44. return ''.join(lettersOnly)

To concatenate the list elements in lettersOnly into one large string,
we call the join() string method on a blank string ''. This joins the strings
in lettersOnly with a blank string between them. This string value is then
returned as the removeNonLetters() function’s return value.

Detecting English Words

Chapter 11

When a message is decrypted with the wrong key, it will often produce

far more non-letter and non-space characters than are found in a typical
English message. Also, the words it produces will often be random and not
found in a dictionary of English words. The istnglish() function can check
for both of these issues in a given string.

47. def isEnglish(message, wordPercentage=20, letterPercentage=85):

48. # By default, 20% of the words must exist in the dictionary file, and
49. # 85% of all the characters in the message must be letters or spaces
50. # (not punctuation or numbers).

Line 47 sets up the isEnglish() function to accept a string argument and
return a Boolean value of True when the string is English text and False when
it’s not. This function has three parameters: message, wordPercentage=20, and
letterPercentage=85. The first parameter contains the string to be checked,
and the second and third parameters set default percentages for words and
letters, which the string must contain in order to be confirmed as English.
(A percentage is a number between 0 and 100 that shows how much of some-
thing is proportional to the total number of those things.) We’ll explore
how to use default arguments and calculate percentages in the following
sections.



Using Default Arguments

Sometimes a function will almost always have the same values passed to it
when called. Instead of including these for every function call, you can spec-
ify a default argument in the function’s def statement.

Line 47’s def statement has three parameters, with default arguments
of 20 and 85 provided for wordPercentage and letterPercentage, respectively.
The isEnglish() function can be called with one to three arguments. If no
arguments are passed for wordPercentage or letterPercentage, then the values
assigned to these parameters will be their default arguments.

The default arguments define what percent of the message string needs
to be made up of real English words for isEnglish() to determine that message
is an English string and what percent of the message needs to be made up of
letters or spaces instead of numbers or punctuation marks. For example, if
isEnglish() is called with only one argument, the default arguments are used
for the wordPercentage (the integer 20) and letterPercentage (the integer 85)
parameters, which means 20 percent of the string needs to be made up of
English words and 85 percent of the string needs to be made up of letters.
These percentages work for detecting English in most cases, but you might
want to try other argument combinations in specific cases when isknglish()
needs looser or more restrictive thresholds. In those situations, a program
can just pass arguments for wordPercentage and letterPercentage instead of
using the default arguments. Table 11-1 shows function calls to isEnglish()
and what they’re equivalent to.

Table 11-1: Function Calls with and without Default Arguments

Function call Equivalent to

isEnglish('Hello") isEnglish('Hello', 20, 85)
isEnglish('Hello', 50) isenglish('Hello', 50, 85)
isEnglish('Hello', 50, 60) isEnglish('Hello', 50, 60)

isEnglish('Hello', letterPercentage=60)  isEnglish('Hello', 20, 60)

For instance, the third example in Table 11-1 shows that when the func-
tion is called with the second and third parameters specified, the program
will use those arguments, not the default arguments.

Calculating Percentages

Once we know the percentages our program will use, we’ll need to calcu-
late the percentages for the message string. For example, the string value
'Hello cat MOOSE fsdkl ewpin' has five “words,” but only three are English.
To calculate the percentage of English words in this string, you divide the
number of English words by the total number of words and multiply the
result by 100. The percentage of English words in 'Hello cat MOOSE fsdkl
ewpin'is 3 / 5 * 100, which is 60 percent. Table 11-2 shows a few examples
of calculated percentages.

Detecting English Programmatically 157



158

Chapter 11

Table 11-2: Calculating Percentages of English Words

Number of Total number  Ratio of x100 = Percentage
English words  of words English words

3 5 0.6 x 100 = 60

6 10 0.6 x 100 = 60

300 500 0.6 x 100 = 60

32 87 0.3678 x 100 = 36.78

87 87 1.0 x 100 = 100

0 10 0 x 100 = 0]

The percentage will always be between 0 percent (meaning no words
are English) and 100 percent (meaning all of the words are English). Our
isenglish() function will consider a string English if at least 20 percent of
the words exist in the dictionary file and 85 percent of the characters in the
string are letters or spaces. This means the message will still be detected as
English even if the dictionary file isn’t perfect or if some words in the mes-
sage are something other than what we define as English words.

Line 51 calculates the percentage of recognized English words in message
by passing message to getEnglishCount(), which does the division and returns a
float between 0.0 and 1.0:

51. wordsMatch = getEnglishCount(message) * 100 >= wordPercentage

To get a percentage from this float, multiply it by 100. If the resulting
number is greater than or equal to the wordPercentage parameter, True is stored
in wordsMatch. (Recall that the >= comparison operator evaluates expressions
to a Boolean value.) Otherwise, False is stored in wordsMatch.

Lines 52 to 54 calculate the percentage of letter characters in the message
string by dividing the number of letter characters by the total number of
characters in message.

52. numLetters = len(removeNonLetters(message))
53. messagelettersPercentage = float(numLetters) / len(message) * 100
54. lettersMatch = messagelettersPercentage >= letterPercentage

Earlier in the code, we wrote the removeNonLetters() function to find all
the letter and space characters in a string, so we can just reuse it. Line 52 calls
removeNonLetters(message) to get a string of just the letter and space characters
in message. Passing this string to len() should return the total number of letter
and space characters in message, which we store as an integer in the numLetters
variable.

Line 53 determines the percentage of letters by getting a float version of
the integer in numLetters and dividing it by len(message). The return value of
len(message) will be the total number of characters in message. As discussed



previously, the call to float() is made to make sure that line 53 performs
regular division instead of integer division just in case the programmer who
imports the detectEnglish module is running Python 2.

Line 54 checks whether the percentage in messagelettersPercentage is
greater than or equal to the letterPercentage parameter. This expression
evaluates to a Boolean value that is stored in lettersMatch.

We want isknglish() to return True only if both the wordsMatch and
lettersMatch variables contain True. Line 55 combines these values into an
expression using the and operator:

55. return wordsMatch and lettersMatch

If both the wordsMatch and lettersMatch variables are True, isEnglish() will
declare the message is English and return True. Otherwise, isEnglish() will
return False.

Summary

The transposition file cipher is an improvement over the Caesar cipher
because it can have hundreds or thousands of possible keys for messages
instead of just 26 different keys. Even though a computer has no problem
decrypting a message with thousands of potential keys, we need to write
code that can determine whether a decrypted string is valid English and
therefore the original message.

In this chapter, we created an English-detecting program using a dic-
tionary text file to create a dictionary data type. The dictionary data type
is useful because it can contain multiple values just as a list does. However,
unlike with a list, you can index values in a dictionary using string values
as keys instead of only integers. Most of the tasks you can do with a list you
can also do with a dictionary, such as passing it to len() or using the in and
not in operators on it. However, the in operator executes on a very large dic-
tionary value much faster than on a very large list. This proved particularly
useful for us because our dictionary data contained thousands of values
that we needed to sift through quickly.

This chapter also introduced the split() method, which can split strings
into a list of strings, and the NoneType data type, which has only one value:
None. This value is useful for representing a lack of a value.

You learned how to avoid divide-by-zero errors when using the / opera-
tor; convert values into other data types using the int(), float(), and stx()
functions; and use the append() list method to add a value to the end of a list.

When you define functions, you can give some of the parameters
default arguments. If no argument is passed for these parameters when the
function is called, the program uses the default argument value, which can
be a useful shortcut in your programs. In Chapter 12, you’ll learn to hack
the transposition cipher using the English detection code!

Detecting English Programmatically 159



160

Chapter 11

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1.

What does the following code print2

spam = {'name': 'Al'}
print(spam[ ‘name'])

What does this code print2

spam = {'eggs': 'bacon'}
print('bacon’ in spam)

What for loop code would print the values in the following spam
dictionary?

spam = {'name': 'Zophie', 'species':'cat', 'age':8}

What does the following line print?

print('Hello, world!'.split())

What will the following code print2

def spam(eggs=42):
print(eggs)

spam()

spam('Hello")

What percentage of words in this sentence are valid English words?

"Whether it's flobulllar in the mind to quarfalog the slings and
arrows of outrageous guuuuuuuuur."



http://www.nostarch.com/crackingcodes/

HACKING THE
TRANSPOSITION CIPHER

“Ron Rivest, one of the inventors of RSA, thinks that
restricting cryptography would be foolhardy: It is poor policy
to clamp down indiscriminately on a technology just because

some criminals might be able to use it to their advantage.””
— Simon Singh, The Code Book

In this chapter, we’ll use a brute-force
approach to hack the transposition cipher.
Of the thousands of keys that could possibly

be associated with the transposition cipher, the cor-
rect key should be the only one that results in legible

English. Using the detectEnglish.py module we wrote in
Chapter 11, our transposition cipher hacker program
will help us find the correct key.

e A
TOPICS COVERED IN THIS CHAPTER

e Multiline strings with triple quotes

e The strip() string method




Source Code of the Transposition Cipher Hacker Program

fransposition

162

Hacker.py

Chapter 12

Open a new file editor window by selecting File » New File. Enter the follow-
ing code into the file editor and save it as transpositionHacker.py. As with previ-
ous programs, make sure the pyperclip.py module, the transpositionDecrypt.py
module (Chapter 8), and the detectEnglish.py module and dictionary.ixt file
(Chapter 11) are in the same directory as the transpositionHacker.py file. Then
press F5 to run the program.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

W ooNOUT B WN R

# Transposition Cipher Hacker
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

import pyperclip, detectEnglish, transpositionDecrypt

def

def

main():

# You might want to copy & paste this text from the source code at

# https://www.nostarch.com/crackingcodes/:

myMessage = """AaKoosoeDe5 b5sn ma reno ora'lhlrrceey e enlh
na indeit n uhoretrm au ieu v er Ne2 gmanw,forwnlbsya apor tE.no
euarisfatt e mealefedhsppmgAnlnoe(c -or)alat r 1w o eb nglom,Ain
one dtes ilhetcdba. t tg eturmudg,tfliel v nitiaicynhrCsaemie-sp
ncgHt nie cetrgmnoa yc r,ieaa toesa- e aom82eiw shcnth ekh
gaecnpeutaaieetgn iodhso d ro hAe snrsfcegrt NCsLc bi7m8aEheideikfr
aBercaeu thllnrshicwsg etriebruaisss d iorr."""

hackedMessage = hackTransposition(myMessage)

if hackedMessage == None:
print('Failed to hack encryption.")

else:
print('Copying hacked message to clipboard:")
print(hackedMessage)
pyperclip.copy(hackedMessage)

hackTransposition(message):
print('Hacking...")

# Python programs can be stopped at any time by pressing

# Ctrl-C (on Windows) or Ctrl-D (on macOS and Linux):

print('(Press Ctrl-C (on Windows) or Ctrl-D (on macOS and Linux) to
quit at any time.)')

# Brute-force by looping through every possible key:
for key in range(1, len(message)):
print('Trying key #%s..." % (key))

decryptedText = transpositionDecrypt.decryptMessage(key, message)
if detectEnglish.isEnglish(decryptedText):

# Ask user if this is the correct decryption:
print()


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

37. print('Possible encryption hack:")

38. print('Key %s: %s' % (key, decryptedText[:100]))
39. print()

40. print('Enter D if done, anything else to continue hacking:"')
41. response = input('> ")

42.

43. if response.strip().upper().startswith('D"):

44. return decryptedText

45.

46. return None

47.

48. if name_ == ' main_'

49. main()

Sample Run of the Transposition Cipher Hacker Program

When you run the transpositionHacker.py program, the output should look
like this:

Hacking. .

(Press Ctrl C (on Windows) or Ctrl-D (on macOS and Linux) to quit at any time.)
Trying key #1...

Trying key #2...

Trying key #3...

Trying key #4...

Trying key #5...

Trying key #6..

Possible encryptlon hack:

Key 6: Augusta Ada King-Noel, Countess of Lovelace (10 December 1815 - 27
November 1852) was an English mat

Enter D if done, anything else to continue hacking:

>D

Copying hacked message to clipboard:

Augusta Ada King-Noel, Countess of Lovelace (10 December 1815 - 27 November
1852) was an English mathematician and writer, chiefly known for her work on
Charles Babbage's early mechanical general-purpose computer, the Analytical
Engine. Her notes on the engine include what is recognised as the first
algorithm intended to be carried out by a machine. As a result, she is often
regarded as the first computer programmer.

After trying key #6, the program returns a snippet of the decrypted mes-
sage for the user to confirm that it has found the right key. In this example,
the message looks promising. When the user confirms the decryption is cor-
rect by entering D, the program returns the entire hacked message. You can
see it’s a biographical note about Ada Lovelace. (Her algorithm for calculat-
ing Bernoulli numbers, devised in 1842 and 1843, made her the first com-
puter programmer.) If the decryption is a false positive, the user can press
anything else, and the program will continue to try other keys.

Hacking the Transposition Cipher 163



Run the program again and skip the correct decryption by pressing
anything other than D. The program assumes that it didn’t find the cor-
rect decryption and continues its brute-force approach through the other
possible keys.

--snip--

Trying key #417...

Trying key #418...

Trying key #419...

Failed to hack encryption.

Eventually, the program runs through all the possible keys and then
gives up, informing the user that it was unable to hack the ciphertext.
Let’s take a closer look at the source code to see how the program works.

Importing the Modules

The first few lines of the code tell the user what this program will do. Line 4
imports several modules that we’ve written or seen in previous chapters:
pyperclip.py, detectEnglish.py, and transpositionDecrypt.py.

# Transposition Cipher Hacker
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

AW N R

import pyperclip, detectEnglish, transpositionDecrypt

The transposition cipher hacker program, containing approximately
50 lines of code, is fairly short because much of it exists in other programs
that we’re using as modules.

Multiline Strings with Triple Quotes

The myMessage variable stores the ciphertext we're trying to hack. Line 9 stores
a string value that begins and ends with triple quotes. Notice that it’s a very
long string.

. def main():

# You might want to copy & paste this text from the source code at

# https://www.nostarch.com/crackingcodes/:

myMessage = """AaKoosoeDe5 b5sn ma reno ora'lhlrrceey e enlh
na indeit n uhoretrm au ieu v er Ne2 gmanw,forwnlbsya apor tE.no
euarisfatt e mealefedhsppmgAnlnoe(c -or)alat r 1w o eb nglom,Ain
one dtes ilhetcdba. t tg eturmudg,tfliel v nitiaicynhrCsaemie-sp
ncgHt nie cetrgmnoa yc r,ieaa toesa- e aOm82eiw shcnth ekh
gaecnpeutaaieetgn iodhso d ro hAe snrsfcegrt NCsLc bi7m8aEheideikfr
aBercaeu thllnrshicwsg etriebruaisss d iorr."""

O 0N O

Triple quote strings are also called mulliline strings because they span
multiple lines and can contain line breaks within them. Multiline strings are

164 Chapter 12


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

useful for putting large strings into a program’s source code and because
single and double quotes don’t need to be escaped within them. To see an
example of a multiline string, enter the following into the interactive shell:

>>> spam = Dear Alice,

Why did you dress up my hamster in doll clothing?

I look at Mr. Fuzz and think, "I know this was Alice's doing."
Sincerely,

Brienne"""

>>> print(spam)

Dear Alice,

Why did you dress up my hamster in doll clothing?

I look at Mr. Fuzz and think, "I know this was Alice's doing."
Sincerely,

Brienne

Notice that this string value, like our ciphertext string, spans multiple
lines. Everything after the opening triple quotes will be interpreted as part
of the string until the program reaches the triple quotes ending it. You can
make multiline strings using either three double-quote characters or three
single-quote characters.

Displaying the Results of Hacking the Message

The ciphertext-hacking code exists inside the hackTransposition() function,
which is called on line 11 and which we’ll define on line 21. This function
takes one string argument: the encrypted ciphertext message we’re trying
to hack. If the function can hack the ciphertext, it returns a string of the
decrypted text. Otherwise, it returns the None value.

11. hackedMessage = hackTransposition(myMessage)

12.

13. if hackedMessage == None:

14. print('Failed to hack encryption.")

15. else:

16. print('Copying hacked message to clipboard:")
17. print(hackedMessage)

18. pyperclip.copy(hackedMessage)

Line 11 calls the hackTransposition() function to return the hacked
message if the attempt is successful or the None value if the attempt is
unsuccessful, and it stores the returned value in hackedMessage.

Lines 13 and 14 tell the program what to do if the function is unable
to hack the ciphertext. If None was stored in hackedMessage, the program lets
the user know by printing that it was unable to break the encryption on the
message.

The next four lines show what the program does if the function is able
to hack the ciphertext. Line 17 prints the decrypted message, and line 18
copies it to the clipboard. However, for this code to work, we also need to
define the hackTransposition() function, which we’ll do next.

Hacking the Transposition Cipher 165



166

Getting the Hacked Message

Chapter 12

The hackTransposition() function starts with a couple print() statements.

21. def hackTransposition(message):

22. print('Hacking...")

23.

24. # Python programs can be stopped at any time by pressing

25. # Ctrl-C (on Windows) or Ctrl-D (on macOS and Linux):

26. print("'(Press Ctrl-C (on Windows) or Ctrl-D (on macOS and Linux) to

quit at any time.)')

Because the program can try many keys, the program displays a mes-
sage telling the user that the hacking has started and that it might take a
moment to finish the process. The print() call on line 26 tells the user to
press CTRL-C (on Windows) or CTRL-D (on macOS and Linux) to exit the
program at any point. You can actually press these keys to exit any running
Python program.

The next couple lines tell the program which keys to loop through by
specifying the range of possible keys for the transposition cipher:

28. # Brute-force by looping through every possible key:
29. for key in range(1, len(message)):
30. print('Trying key #%s..." % (key))

The possible keys for the transposition cipher range between 1 and the
length of the message. The for loop on line 29 runs the hacking part of the
function with each of these keys. Line 30 uses string interpolation to print
the key currently being tested using string interpolation to provide feedback
to the user.

Using the decryptMessage() function in the transpositionDecrypt.py program
that we’ve already written, line 32 gets the decrypted output from the current
key being tested and stores it in the decryptedText variable:

32. decryptedText = transpositionDecrypt.decryptMessage(key, message)

The decrypted output in decryptedText will be English only if the correct
key was used. Otherwise, it will appear as garbage text.

Then the program passes the string in decryptedText to the detectEnglish
.isEnglish() function we wrote in Chapter 11 and prints part of decryptedText,
the key used, and instructions for the user:

34. if detectEnglish.isEnglish(decryptedText):

35. # Ask user if this is the correct decryption:

36. print()

37. print('Possible encryption hack:")

38. print('Key %s: %s' % (key, decryptedText[:100]))

39. print()

40. print('Enter D if done, anything else to continue hacking:")
41. response = input('> ')




But just because detectEnglish.isEnglish() returns True and moves the
execution to line 35 doesn’t mean the program has found the correct key. It
could be a false positive, meaning the program detected some text as English
that is actually garbage text. To make sure, line 38 gives a preview of the
text so the user can confirm that the text is indeed English. It uses the slice
decryptedText[:100] to print out the first 100 characters of decryptedText.

The program pauses when line 41 executes, waits for the user to enter
either D or anything else, and then stores this input as a string in response.

The strip() String Method

When a program gives a user specific instructions but the user doesn’t fol-
low them exactly, an error results. When the transpositionHacker.py program
prompts the user to enter D to confirm the hacked message, it means the
program won’t accept any input other than D. If a user enters an extra space
or character along with D, the program won’t accept it. Let’s look at how to
use the strip() string method to make the program accept other inputs as
long as they’re similar enough to D.

The strip() string method returns a version of the string with any
whitespace characters at the beginning and end of the string stripped out.
The whitespace characters are the space character, the tab character, and the
newline character. Enter the following into the interactive shell to see how
this works:

>>> ! Hello'.strip()

'Hello'

>>> 'Hello ".strip()

'Hello'

>»>> ! Hello World ".strip()

'Hello World'

In this example, strip() removes the space characters at the beginning
or the end of the first two strings. If a string like ' Hello World '
includes spaces at the beginning and end of the string, the method
removes them from both sides but doesn’t remove any spaces between
other characters.

The strip() method can also have a string argument passed to it that
tells the method to remove characters other than whitespace from the
beginning and end of the string. To see an example, enter the following
into the interactive shell:

>>> 'aaaaaHELLOaa'.strip('a')

'"HELLO'

>>> 'ababaHELLObaba'.strip('ab")

"HELLO'

>>> 'abccabcbacbXYZabcXYZacccab'.strip('abc')
'XYZabcXYZ'

Hacking the Transposition Cipher 167



168

Chapter 12

Notice that passing the string arguments 'a' and 'ab' removes these
characters when they occur at the beginning or end of the string. However,
strip() doesn’t remove characters embedded in the middle of the string. As
you can see in the third example, the string 'abc' remains in 'XYZabcXYZ'.

Applying the strip() String Method

Let’s return to the source code in transpositionHacker.py to see how to apply
strip() in the program. Line 43 sets a condition using the if statement to
give the user some input flexibility:

43. if response.strip().upper().startswith('D"):
44. return decryptedText
If the condition for the statement were simply response == 'D', the

user would have to enter D exactly and nothing else to end the program.
For example, if the user enters 'd", ' D', or 'Done', the condition would
be False and the program would continue checking other keys instead of
returning the hacked message.

To avoid this issue, the string in response removes whitespace from
the start or end of the string with the call to strip(). Then the string that
response.strip() evaluates to has the upper() method called on it. Whether
the user enters 'd' or 'D', the string returned from upper() will always be
capitalized as 'D'. Adding flexibility in the type of input the program can
accept makes it easier to use.

To make the program accept user input that starts with 'D' but is a full
word, we use startswith() to check only the first letter. For example, if the
user inputs ' done' as response, the whitespace would be stripped and
then the string 'done' would be passed to upper(). After upper() capitalizes
the whole string to 'DONE’, the string is passed to startswith(), which returns
True because the string does start with the substring 'D'.

If the user indicates that the decrypted string is correct, the function
hackTransposition() on line 44 returns the decrypted text.

Failing to Hack the Message
Line 46 is the first line after the for loop that began on line 29:

46. return None

If the program execution reaches this point, it means the program
never reached the return statement on line 44, which would happen if the
correctly decrypted text was never found for any of the keys that were tried.
In that case, line 46 returns the None value to indicate that the hacking
failed.



Calling the main() Function

Lines 48 and 49 call the main() function if this program was run by itself
rather than being imported by another program using its hackTransposition()
function:

48. if __name__ == '_main_ ":
49. main()

Remember that the __name__ variable is set by Python. The main() func-
tion will not be called if transpositionHacker.py is imported as a module.

Summary

Like Chapter 6, this chapter was short because most of the code was
already written in other programs. Our hacking program can use func-
tions from other programs by importing them as modules.

You learned how to use triple quotes to include a string value that spans
multiple lines in the source code. You also learned that the strip() string
method is useful for removing whitespace or other characters from the
beginning or end of a string.

Using the detectEnglish.py program saved us a lot of time we would have
had to spend manually inspecting every decrypted output to see if it was
English. It allowed us to use the brute-force technique to hack a cipher that
has thousands of possible keys.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. What does this expression evaluate to?

' Hello world'.strip()

2. Which characters are whitespace characters?
Why does 'Hello world'.strip('o") evaluate to a string that still has Os
in ite

4.  Why does "xxxHelloxxx'.strip('X") evaluate to a string that still has Xs
in ite

Hacking the Transposition Cipher 169


https://www.nostarch.com/crackingcodes/




A MODULAR ARITHMETIC MODULE
FOR THE AFFINE CIPHER

“People have been defending their own privacy
Jfor centuries with whispers, darkness, envelopes,
closed doors, secret handshakes, and couriers. The

technologies of the past did not allow for strong

privacy, but electronic technologies do.”
—Eric Hughes, “A Cypherpunk’s Manifesto” (1993)

In this chapter, you’ll learn about the mul-
tiplicative cipher and the affine cipher. The

multiplicative cipher is similar to the Caesar
cipher but encrypts using multiplication rather than
addition. The affine cipher combines the multiplica-
tive cipher and the Caesar cipher, resulting in a stron-
ger and more reliable encryption.

But first, you’ll learn about modular arithmetic and greatest common
divisors—two mathematical concepts that are required to understand and
implement the affine cipher. Using these concepts, we’ll create a module to
handle wraparound and find valid keys for the affine cipher. We’ll use this
module when we create a program for the affine cipher in Chapter 14.



172

TOPICS COVERED IN THIS CHAPTER

®  Modular arithmetic

®  The modulo operator (%)

®  The greatest common divisor (GCD)

*  Multiple assignment

e Euclid’s algorithm for finding the GCD
e The multiplicative and affine ciphers

e Euclid’s extended algorithm for finding modular inverses

Modular Arithmetic

Chapter 13

Modular arithmetic, or clock arithmetic, refers to
math in which numbers wrap around when they
reach a particular value. We’ll use modular arith-
metic to handle wraparound in the affine cipher.
Let’s see how it works.

Imagine a clock with just an hour hand
and the 12 replaced with a 0. (If programmers
designed clocks, the first hour would begin at 0.)
If the current time is 3 o’clock, what time will it
be in 5 hours? This is easy enough to figure out: Figure 13-1: 3/01‘:/0‘3’( *
3+5=8. Itwill be 8 o'clock in 5 hours. Think 5 hours = 8 ofclock
of the hour hand starting at 3 and then moving
5 hours clockwise, as shown in Figure 13-1.

If the current time is 10 o’clock, what time
will it be in 5 hours? Adding 5 + 10 = 15, but
15 o’clock doesn’t make sense for clocks that show
only 12 hours. To find out what time it will be,
you subtract 15 — 12 = 3, so it will be 3 o’clock.
(Normally, you would distinguish between 3 AM
and 3 PM, but that doesn’t matter in modular
arithmetic.) . ,

Double-check this math by moving the hour ?%Lgirs]i% o’,g I;acrj(lock *
hand clockwise 5 hours, starting from 10. It does
indeed land on 3, as shown in Figure 13-2.

If the current time is 10 o’clock, what time will it be in 200 hours?
Adding 200 + 10 = 210, and 210 is certainly larger than 12. Because one full
rotation brings the hour hand back to its original position, we can solve this
problem by subtracting by 12 (which is one full rotation) until the result
is a number less than 12. Subtracting 210 — 12 = 198. But 198 is still larger
than 12, so we continue to subtract 12 until the difference is less than 12;




in this case the final answer will be 6. If the cur-
rent time is 10 o’clock, the time 200 hours later
will be 6 o’clock, as shown in Figure 13-3.
If you want to double-check the 10 o’clock +

200 hours math, you can repeatedly move the
hour hand around the clock face. When you
move the hour hand for the 200th hour, it
should land on 6.

. However, it’§ easier. to have the computer do Figure 13-3: 10 o'clock +
this modular arithmetic for us with the modulo 200 hours = 6 o'clock
operator.

The Modulo Operator

You can use the modulo operator, abbreviated as mod, to write modular
expressions. In Python, the mod operator is the percent sign (%). You
can think of the mod operator as a kind of division remainder operator;
for example, 21 + 5 = 4 with a remainder of 1, and 21 % 5 = 1. Similarly,
15 % 12 is equal to 3, just as 15 o’clock would be 3 o’clock. Enter the
following into the interactive shell to see the mod operator in action:

>»> 21 %5

1

>>> (10 + 200) % 12
6

>>> 10 % 10

0

>>> 20 % 10

0

Just as 10 o’clock plus 200 hours will wrap around to 6 o’clock on a
clock with 12 hours, (10 + 200) % 12 will evaluate to 6. Notice that numbers
that divide evenly will mod to 0, such as 10 % 10 or 20 % 10.

Later, we’ll use the mod operator to handle wraparound in the affine
cipher. It’s also used in the algorithm that we’ll use to find the greatest com-
mon divisor of two numbers, which will enable us to find valid keys for the
affine cipher.

Finding Factors to Calculate the Greatest Common Divisor

Factors are the numbers that are multiplied to produce a particular number.
Consider 4 x 6 = 24. In this equation, 4 and 6 are factors of 24. Because a
number’s factors can also be used to divide that number without leaving a
remainder, factors are also called divisors.

The number 24 also has some other factors:

8x3=24
12x2=24
24x1=24

A Modular Arithmetic Module for the Affine Cipher 173



174

Chapter 13

So the factors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.
Let’s look at the factors of 30:

1x30=30
2x15=30
3x10=30

5x6=30

The factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. Note that any number
will always have 1 and itself as its factors because 1 times a number is equal
to that number. Notice too that the list of factors for 24 and 30 have 1, 2,
3, and 6 in common. The greatest of these common factors is 6, so 6 is the
greatest common factor, more commonly known as the greatest common divisor
(GCD), of 24 and 30.

It’s easiest to find a GCD of two numbers by visualizing their factors.
We’ll visualize factors and the GCD using Cuisenaire rods. A Cuisenaire rod
is made up of squares equal to the number the rod represents, and the rods
help us visualize math operations. Figure 13-4 uses Cuisenaire rods to visu-
alize 3+2=5and 5 x 3 = 15.

|5| 3.

Figure 13-4: Using Cuisenaire rods to
demonstrate addition and multiplication

A rod of 3 added to a rod of 2 is the same length as a rod of 5. You
can even use rods to find answers to multiplication problems by making a
rectangle with sides made from rods of the numbers you want to multiply.
The number of squares in the rectangle is the answer to the multiplication
problem.

If a rod 20 units long represents the number 20, a number is a factor of
20 if that number’s rods can evenly fit inside the 20-square rod. Figure 13-5
shows that 4 and 10 are factors of 20 because they fit evenly into 20.

T T JT—Tm—rTm llllll
|2o|
o~ o . &
|4:::|4:::|4:::|4:::|4:::E

Figure 13-5: Cuisenaire rods demonstrating 4 and 10 are factors of 20



But 6 and 7 are not factors of 20, because the 6-square and 7-square
rods won’t evenly fit into the 20-square rod, as shown in Figure 13-6.

[20

[ 7

|
N

Too much!

N

el = 4 S
o
o

Lo, .

N

Too little!

Figure 13-6: Cuisenaire rods demonstrating 6 and 7 are not factors of 20

The GCD of two rods, or two numbers represented by those rods, is the
longest rod that can evenly fit into both rods, as shown in Figure 13-7.

[2¢,

L2,

L,

ENENEENE DN

Figure 13-7- Cuisenaire rods demonstrating the GCD of 16 and 24

In this example, the 8-square rod is the longest rod that can fit evenly
into 24 and 16. Therefore, 8 is their GCD.

Now that you know how factors and the GCD work, let’s find the GCD
of two numbers using a function we can write in Python.

Multiple Assignment

The gcd() function we’ll write finds the GCD of two numbers. But before
you learn how to code it, let’s look at a trick in Python called multiple assign-
ment. The multiple assignment trick lets you assign values to more than one
variable at once in a single assignment statement. Enter the following into
the interactive shell to see how this works:

>>> spam, eggs = 42, 'Hello'

>>> spam

42

>>> eggs

'Hello'

>>> a, b, ¢, d = ['Alice', 'Brienne', 'Carol', 'Danielle']
>>> a

'Alice’

>>> d

'Danielle’

A Modular Arithmetic Module for the Affine Cipher 175



176

You can separate the variable names on the left side of the = operator as
well as the values on the right side of the = operator using commas. You can
also assign each of the values in a list to its own variable as long as the num-
ber of items in the list is the same as the number of variables on the left
side of the = operator. If you don’t have the same number of variables as you
have values, Python will raise an error that indicates the call needs more or
has too many values.

One of the main uses of multiple assignment is to swap the values in two
variables. Enter the following into the interactive shell to see an example:

>>> spam = ‘hello’

>>> eggs = 'goodbye’

>>> spam, eggs = eggs, spam
>>> spam

'goodbye’

>>> eggs

"hello’

After assigning 'hello' to spam and 'goodbye' to eggs, we swap those
values using multiple assignment. Let’s look at how to use this swapping
trick to implement Euclid’s algorithm for finding the GCD.

Euclid’s Algorithm for Finding the GCD

Chapter 13

Finding the GCD seems simple enough: identify all the factors of the two
numbers you’ll use and then find the largest factor they have in common.
But it isn’t so easy to find the GCD of larger numbers.

Euclid, a mathematician who lived 2000 years ago, came up with a short
algorithm for finding the GCD of two numbers using modular arithmetic.
Here’s a gcd() function that implements his algorithm in Python code,
returning the GCD of integers a and b:

def gcd(a, b):
while a != 0:
a,b=b%a, a
return b

The gcd() function takes two numbers a and b, and then uses a loop and
multiple assignment to find the GCD. Figure 13-8 shows how the gcd() func-
tion finds the GCD of 24 and 32.

Exactly how Euclid’s algorithm works is beyond the scope of this book,
but you can rely on this function to return the GCD of the two integers you
pass it. If you call this function from the interactive shell and pass it 24 and
32 for the parameters a and b, the function will return 8:

>>> ged(24, 32)
8




a,b=b%a, a

a, b = 32 % 24, 24 <-— Expression calculates b mod a.

N

a, b= 8 , 24 =— loop continues because a != 0.
o
b%a, a e Multiple assignment statement

swaps the positions of the values.

a, b

a, b=24%8,8 —e—Expression calculates b mod a.

B
o ,8

a, b= ~— loop ends because a = 0.
b=28 ~=— The final value of b is the GCD.

Figure 13-8: How the gcd() function works

The great benefit of this ged() function, though, is that it can easily
handle large numbers:

>>> gcd(409119243, 87780243)
6837

This ged() function will come in handy when choosing valid keys for the
multiplicative and affine ciphers, as you’ll learn in the next section.

Understanding How the Multiplicative and
Affine Ciphers Work

In the Caesar cipher, encrypting and decrypting symbols involved convert-
ing them to numbers, adding or subtracting the key, and then converting
the new number back to a symbol.

When encrypting with the multiplicative cipher, you’ll multiply the index
by the key. For example, if you encrypted the letter E with the key 3, you
would find E’s index (4) and multiply it by the key (3) to get the index of
the encrypted letter (4 x 3 = 12), which would be M.

When the product exceeds the total number of letters, the
multiplicative cipher has a wraparound issue similar to the Caesar
cipher, but now we can use the mod operator to solve that issue. For
example, the Caesar cipher’s SYMBOLS variable contained the string
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz1234567890 !?.'. The
following is a table of the first and last few characters of SYMBOLS along
with their indexes:

A Modular Arithmetic Module for the Affine Cipher 177



178

Chapter 13

Let’s calculate what these symbols encrypt to when the key is 17. To
encrypt the symbol F with key 17, multiply its index 5 by 17 and mod the
result by 66 to handle the wraparound of the 66-symbol set. The result of
(5 x 17) mod 66 is 19, and 19 corresponds to the symbol T. So F encrypts to
T in the multiplicative cipher with key 17. The following two strings show
all the characters in plaintext and their corresponding ciphertext symbols.
The symbol at a given index in the first string encrypts to the symbol at that
same index in the second string:

" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz1234567890 !7?."
' AR1zCTk2EVMAGX061Zq8KbsoMdu ! Ofw.QhyBSj1DUL3FWNSHYp7Jarglct Nev?Pgx'

Compare this encryption output to the one you’d get when you encrypt
using the Caesar cipher, which simply shifts the plaintext symbols over to
create the ciphertext symbols:

' ABCDEFGHIIKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz1234567890 12.°
'RSTUVWXYZabcdefghijklmnopgrstuvwxyz1234567890 !?.ABCDEFGHIJKLMNOPQ'

As you can see, the multiplicative cipher with key 17 results in cipher-
text that is more randomized and harder to crack. However, you’ll need
to be careful when choosing keys for the multiplicative ciphers. I'll discuss
why next.

Choosing Valid Multiplicative Keys

You can’t just use any number for the multiplicative cipher’s key. For
example, if you chose the key 11, here’s the mapping you would end
up with:

' ABCDEFGHI JKLMNOPQRSTUVKXYZabcdefghijklmnopqrstuvwxyz1234567890 !2."
' ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4ALWhs4 '

Notice that this key doesn’t work because the symbols A, G, and M all
encrypt to the same letter, A. When you encounter an A in the ciphertext,
you wouldn’t know which symbol it decrypts to. Using this key, you would
run into the same problem when encrypting letters A, N, F, S, and others.

In the multiplicative cipher, the key and the size of the symbol set
must be relatively prime to each other. Two numbers are relatively prime (or
coprime) if their GCD is 1. In other words, they have no factors in common
except 1. For example, the numbers num1 and num2 are relatively prime if
gcd(numi, num2) == 1, where numi is the key and num2 is the size of the symbol
set. In the previous example, because 11 (the key) and 66 (the symbol set
size) have a GCD thatisn’t 1, they are not relatively prime, which means
that the key 11 cannot be used for the multiplicative cipher. Note that num-
bers don’t actually have to be prime numbers to be relatively prime to each
other.



Knowing how to use modular arithmetic and the gcd() function is
important when using the multiplicative cipher. You can use the ged() func-
tion to figure out whether a pair of numbers is relatively prime, which you
need to know to choose valid keys for the multiplicative cipher.

The multiplicative cipher has only 20 different keys for a set of 66 sym-
bols, even fewer than the Caesar cipher! However, you can combine the
multiplicative cipher and the Caesar cipher to get the more powerful affine
cipher, which I explain next.

Encrypting with the Affine Gipher

One downside to using the multiplicative cipher is that the letter A always
maps to the letter A. The reason is that A’s number is 0, and 0 multiplied by
anything will always be 0. You can fix this issue by adding a second key to
perform a Caesar cipher encryption after the multiplicative cipher’s multi-
plication and modding is done. This extra step changes the multiplicative
cipher into the affine cipher.

The affine cipher has two keys: Key A and Key B. Key A is the integer
you use to multiply the letter’s number. After you multiply the plaintext by
Key A, you add Key B to the product. Then you mod the sum by 66, as you
did in the original Caesar cipher. This means the affine cipher has 66 times
as many possible keys as the multiplicative cipher. It also ensures that the
letter A doesn’t always encrypt to itself.

The decryption process for the affine cipher mirrors the encryption
process; both are shown in Figure 13-9.

Encryption process

Plaintext - Multiply == Add = Modby -» Ciphertext
by Key A Key B symbol
set size

Decryption process

Plaintfext < Mod by - Multiply - Subtract - Ciphertext
symbol by mod Key B
set size inverse
of Key A

Figure 13-9: The affine cipher’s encryption and decryption processes

We decrypt the affine cipher using the opposite operations used for
encryption. Let’s look at the decryption process and how to calculate the
modular inverse in more detail.

Decrypting with the Affine Gipher

In the Caesar cipher, you used addition to encrypt and subtraction to
decrypt. In the affine cipher, you use multiplication to encrypt. Naturally,
you might think you can divide to decrypt with the affine cipher. But if you

A Modular Arithmetic Module for the Affine Cipher 179



180

Chapter 13

try this, you’ll see that it doesn’t work. To decrypt with the affine cipher, you
need to multiply by the key’s modular inverse. This reverses the mod opera-
tion from the encryption process.

A modular inverse of two numbers is represented by the expression
(a * i) % m == 1, where i is the modular inverse and a and m are the two
numbers. For example, the modular inverse of 5 mod 7 would be some
number i where (5 * 1) % 7is equal to 1. You can brute-force this calcula-
tion like this:

1 isn’t the modular inverse of 5 mod 7, because (5 *1) % 7 =5.
2 isn’t the modular inverse of 5 mod 7, because (5 * 2) % 7 = 3.

3 is the modular inverse of 5 mod 7, because (5 *3) % 7 = 1.

Although the encryption and decryption keys for the Caesar cipher
part of the affine cipher are the same, the encryption key and decryption
keys for the multiplicative cipher are two different numbers. The encryp-
tion key can be anything you choose as long as it’s relatively prime to the
size of the symbol set, which in this case is 66. If you choose the key 53 for
encrypting with the affine cipher, the decryption key is the modular inverse
of 53 mod 66:

1 isn’t the modular inverse of 53 mod 66, because (53 * 1) % 66 = 53.
2 isn’t the modular inverse of 53 mod 66, because (53 * 2) % 66 = 40.
3 isn’t the modular inverse of 53 mod 66, because (53 * 3) % 66 = 27.
4 isn’t the modular inverse of 53 mod 66, because (53 * 4) % 66 = 14.
5 is the modular inverse of 53 mod 66, because (53 *5) % 66 = 1.

Because 5 is the modular inverse of 53 and 66, you know that the affine
cipher decryption key is also 5. To decrypt a ciphertext letter, multiply that
letter’s number by 5 and then mod 66. The result is the number of the orig-
inal plaintext’s letter.

Using the 66-character symbol set, let’s encrypt the word Cat using the
key 53. Cis atindex 2, and 2 * 53 is 106, which is larger than the symbol set
size, so we mod 106 by 66, and the result is 40. The character at index 40 in
the symbol setis ‘o', so the symbol Cencrypts to o.

We’ll use the same steps for the next letter, a. The string 'a’ is at index
26 in the symbol set, and 26 * 53 % 66 is 58, which is the index of '7'. So the
symbol a encrypts to 7. The string 't' is at index 45, and 45 * 53 % 66 is 9,
which is the index of 'J'. Therefore, the word Cat encrypts to 07].

To decrypt, we multiply by the modular inverse of 53 % 66, which is 5. The
symbol ois at index 40, and 40 * 5 % 66 is 2, which is the index of 'C'. The sym-
bol 7is atindex 58, and 58 * 5 % 66 is 26, which is the index of 'a'. The symbol
Jisatindex 9, and 9 * 5 % 66 is 45, which is the index of 't'. The ciphertext o7/
decrypts to Cat, which is the original plaintext, just as expected.



Finding Modular Inverses

To calculate the modular inverse to determine the decryption key, you
could take a brute-force approach and start testing the integer 1, and then
2, and then 3, and so on. But this is time-consuming for large keys such as
8,953,851.

Fortunately, you can use Euclid’s extended algorithm to find the modu-
lar inverse of a number, which in Python looks like this:

def findModInverse(a, m):
if gcd(a, m) != 1:
return None # No mod inverse if a & m aren't relatively prime.
ui, u2, u3 =1, 0, a
vli, v2, v3 =0, 1, m
while v3 != 0:
q =u3 // v3 # Note that // is the integer division operator.
vl, v2, v3, ul, u2, u3 = (Ul - q * vi), (u2 - q *v2), (u3 - q * v3),
vi, v2, v3
return ul % m

You don’t have to understand how Euclid’s extended algorithm works
to use the findModInverse() function. As long as the two arguments you
pass to the findModInverse() function are relatively prime, findModInverse()
will return the modular inverse of the a parameter.

You can learn more about how Euclid’s extended algorithm works at
https://www.nostarch.com/crackingcodes/.

The Integer Division Operator

You may have noticed the // operator used in the findModInverse() function
in the preceding section. This is the integer division operator. It divides two
numbers and rounds down to the nearest integer. Enter the following into
the interactive shell to see how the // operator works:

>»> 41/ 7
5.857142857142857
>>> 41 /17

5

>>> 10 // 5

2

Whereas 41 / 7 evaluates to 5.857142857142857, using 41 // 7 evaluates
to 5. For division expressions that do not divide evenly, the // operator is
useful for getting the whole number part of the answer (sometimes called
the quotient), while the % operator gets the remainder. An expression that
uses the // integer division operator always evaluates to an int, not a float.
As you can see when evaluating 10 // 5, the result is 2 instead of 2.0.

A Modular Arithmetic Module for the Affine Cipher 181


https://www.nostarch.com/crackingcodes/

Source Code for the Cryptomath Module

We’ll use ged() and findModInverse() in more cipher programs later in this
book, so let’s put both functions into a module. Open a new file editor
window, enter the following code, and save the file as cryptomath.py:

cryptomath.py 1. # Cryptomath Module
2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)
3.
4. def gcd(a, b):
5. # Return the GCD of a and b using Euclid's algorithm:
6. while a != 0:
7. a, b=b%a, a
8. return b
9.
10.
11. def findModInverse(a, m):
12. # Return the modular inverse of a % m, which is
13. # the number x such that a*x % m = 1.
14.
15. if gcd(a, m) != 1:
16. return None # No mod inverse if a & m aren't relatively prime.
17.
18. # Calculate using the extended Euclidean algorithm:
19. ui, u2, u3 =1, 0, a
20. vi, v2, v3 =0, 1, m
21. while v3 != 0:
22. q =u3 // v3 # Note that // is the integer division operator.
23. vi, v2, v3, ul, u2, u3 = (ul - q * v1), (u2 - q * v2),
(u3 - g *v3), vi, v2, v3
24. return ul % m

This program contains the gcd() function described earlier in this chap-
ter and the findModInverse() function that implements Euclid’s extended
algorithm.

After importing the cryptomath.py module, you can try out these functions
from the interactive shell. Enter the following into the interactive shell:

>>> import cryptomath

>>> cryptomath.gcd(24, 32)

£>;>> cryptomath.gcd(37, 41)

i» cryptomath.findModInverse(7, 26)

i§> cryptomath.findModInverse(8953851, 26)
17

As you can see, you can call the gcd() function and the findModInverse()
function to find the GCD or modular inverse of two numbers.

182 Chapter 13


https://www.nostarch.com/crackingcodes/

Summary

This chapter covered some useful math concepts. The % operator finds

the remainder after dividing one number by another. The gcd() function
returns the largest number that can evenly divide two numbers. If the GCD
of two numbers is 1, you know that those numbers are relatively prime to
each other. The most useful algorithm to find the GCD of two numbers is
Euclid’s algorithm.

Unlike the Caesar cipher, the affine cipher uses multiplication and
addition instead of just addition to encrypt letters. However, not all num-
bers work as keys for the affine cipher. The key number and the size of the
symbol set must be relatively prime to each other.

To decrypt with the affine cipher, you multiply the ciphertext’s index by
the modular inverse of the key. The modular inverse of a % mis a number i
such that (a * i) % m == 1. You can use Euclid’s extended algorithm to cal-
culate modular inverses. Chapter 23’s public key cipher also uses modular
inverses.

Using the math concepts you learned in this chapter, you’ll write a pro-
gram for the affine cipher in Chapter 14. Because the multiplicative cipher
is the same thing as the affine cipher using a Key B of 0, you won’t have a
separate multiplicative cipher program. And because the multiplicative
cipher is just a less secure version of the affine cipher, you shouldn’t use it
anyway.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. What do the following expressions evaluate to?

17 % 1000
5%5

What is the GCD of 10 and 152

What does spam contain after executing spam, eggs = 'hello', 'world'?
The GCD of 17 and 31 is 1. Are 17 and 31 relatively prime?

Why aren’t 6 and 8 relatively prime?

O ChEEE S ORI

What is the formula for the modular inverse of A mod C2

A Modular Arithmetic Module for the Affine Cipher 183


https://www.nostarch.com/crackingcodes/




PROGRAMMING THE
AFFINE CIPHER

“I should be able to whisper something in your ear,
even if your ear is 1000 miles away, and the
government disagrees with that.”
—Philip Zimmermann, creator of Pretty Good
Privacy (PGP), the most widely used email
encryption software in the world

In Chapter 13, you learned that the affine
cipher is actually the multiplicative cipher
combined with the Caesar cipher (Chapter 5),
and the multiplicative cipher is similar to the Caesar
cipher except it uses multiplication instead of addition

to encrypt messages. In this chapter, you’ll build and run programs to
implement the affine cipher. Because the affine cipher uses two different
ciphers as part of its encryption process, it needs two keys: one for the
multiplicative cipher and another for the Caesar cipher. For the affine
cipher program, we’ll split a single integer into two keys.



affineCipher.py

186

TOPICS COVERED IN THIS CHAPTER

The tuple data type
How many different keys can the affine cipher have?

Generating random keys

Source Code for the Affine Cipher Program

Chapter 14

Open a new file editor window by selecting File » New File. Enter the fol-
lowing code into the file editor and then save it as affineCipher.py. Make
sure the pyperclip.py module and the cryptomath.py module you made in
Chapter 13 are in the same folder as the affineCipher.py file.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

# Affine Cipher
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

import sys, pyperclip, cryptomath, random
SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz12345
67890 !?.'

def

def

def

main():

myMessage = A computer would deserve to be called intelligent
if it could deceive a human into believing that it was human."
-Alan Turing"""

myKey = 2894

myMode = 'encrypt' # Set to either 'encrypt' or 'decrypt'.

if myMode == 'encrypt':
translated = encryptMessage(myKey, myMessage)
elif myMode == 'decrypt':
translated = decryptMessage(myKey, myMessage)
print('Key: %s' % (myKey))
print('%sed text:' % (myMode.title()))
print(translated)
pyperclip.copy(translated)
print('Full %sed text copied to clipboard.' % (myMode))

getKeyParts(key):

keyA = key // len(SYMBOLS)
keyB = key % len(SYMBOLS)
return (keyA, keyB)

checkKeys (keyA, keyB, mode):
if keyA == 1 and mode == 'encrypt':
sys.exit('Cipher is weak if key A is 1. Choose a different key.')



https://www.nostarch.com/crackingcodes/

33.
34.
35.
36.

37.
38.

39.
40.
4.
42.
43.
44.
45.
46.
47.
48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

if keyB == 0 and mode == ‘encrypt':
sys.exit('Cipher is weak if key B is 0. Choose a different key.")
if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
sys.exit('Key A must be greater than 0 and Key B must be
between 0 and %s.' % (len(SYMBOLS) - 1))

if cryptomath.gcd(keyA, len(SYMBOLS)) != 1:

sys.exit('Key A (%s) and the symbol set size (%s) are not
relatively prime. Choose a different key.' % (keyA,
Len(SYMBOLS)))

def encryptMessage(key, message):
keyA, keyB = getKeyParts(key)
checkKeys (keyA, keyB, 'encrypt')

ciphertext =
for symbol in message:

if symbol in SYMBOLS:
# Encrypt the symbol:
symbolIndex
ciphertext += SYMBOLS[(symbolIndex * keyA + keyB) %
len(SYMBOLS)]

else:

SYMBOLS. find(symbol)

ciphertext += symbol # Append the symbol without encrypting.
return ciphertext

def decryptMessage(key, message):
keyA, keyB = getKeyParts(key)
checkKeys (keyA, keyB, 'decrypt')

plaintext =

modInverseOfKeyA = cryptomath.findModInverse(keyA, len(SYMBOLS))

for symbol in message:

if symbol in SYMBOLS:
# Decrypt the symbol:
symbolIndex
plaintext += SYMBOLS[(symbolIndex - keyB) * modInverseOfKeyA %
1len(SYMBOLS)]

else:

plaintext += symbol # Append the symbol without decrypting.

return plaintext

def getRandomKey():

while True:

SYMBOLS. find(symbol)

keyA = random.randint(2, len(SYMBOLS))
keyB = random.randint(2, len(SYMBOLS))
if cryptomath.gcd(keyA, len(SYMBOLS)) == 1:

return keyA * len(SYMBOLS) + keyB

# If affineCipher.py is run (instead of imported as a module), call
# the main() function:

if name__ ==
main()

__main__ ':

Programming the Affine Cipher

187



188

Sample Run of the Affine Cipher Program

From the file editor, press F5 to run the affineCipher.py program; the output
should look like this:

Key: 2894

Encrypted text:

"50G9013La6QI93 I xQxaiab6faQlL9QdaQG1! 'axQARLa! ' AuaRLQADQALQGI3 ! xQxaGaAfaQ10X301R
QARL9Qda!AafARUQLX1LQALQI1i0X301RN"Q-5!1RQP36ARUFUll encrypted text copied to
clipboard.

In the affine cipher program, the message, "A computer would deserve
to be called intelligent if it could deceive a human into believing that it
was human." -Alan Turing, gets encrypted with the key 2894 into ciphertext.
To decrypt this ciphertext, you can copy and paste it as the new value to
be stored in myMessage on line 9 and change myMode on line 13 to the string
"decrypt’.

Setting Up Modules, Constants, and the main() Function

Chapter 14

Lines 1 and 2 of the program are comments describing what the program
is. There’s also an import statement for the modules used in this program:

1. # Affine Cipher

2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)
3.

4. import sys, pyperclip, cryptomath, random

The four modules imported in this program serve the following
functions:

¢ The sys module is imported for the exit() function.
e The pyperclip module is imported for the copy() clipboard function.

e The cryptomath module that you created in Chapter 13 is imported for
the gcd() and findModInverse() functions.

e The random module is imported for the random.randint() function to gen-
erate random Kkeys.

The string stored in the SYMBOLS variable is the symbol set, which is the
list of all characters that can be encrypted:

5. SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz12345
67890 1?.'

Any characters in the message that don’t appear in SYMBOLS remain unen-
crypted in the ciphertext. For example, in the sample run of affineCipher.py,
the quotation marks and the hyphen (-) don’t get encrypted in the ciphertext
because they don’t belong in the symbol set.


https://www.nostarch.com/crackingcodes/

Line 8 calls the main() function, which is almost exactly the same as the
one in the transposition cipher programs. Lines 9, 10, and 11 store the mes-
sage, key, and mode in variables, respectively:

8. def main():

9. myMessage = A computer would deserve to be called intelligent
if it could deceive a human into believing that it was human."
-Alan Turing"""

10. myKey = 2894

11. myMode = 'encrypt' # Set to either 'encrypt' or 'decrypt'.

The value stored in myMode determines whether the program encrypts or
decrypts the message:

13. if myMode == ‘encrypt':

14. translated = encryptMessage(myKey, myMessage)
15. elif myMode == 'decrypt':

16. translated = decryptMessage(myKey, myMessage)

If myMode is set to 'encrypt', line 14 executes and the return value of
encryptMessage() is stored in translated. But if myMode is set to 'decrypt’,
decryptMessage() is called on line 16 and the return value is stored in
translated. I'll cover how the encryptMessage() and decryptMessage() func-
tions work when we define them later in the chapter.

After the execution passes line 16, the translated variable has the
encrypted or decrypted version of the message in myMessage.

Line 17 displays the key used for the cipher using the %s placeholder,
and line 18 tells the user whether the output is encrypted or decrypted text:

17. print('Key: %s' % (myKey))

18. print('%sed text:' % (myMode.title()))

19. print(translated)

20. pyperclip.copy(translated)

21. print('Full %sed text copied to clipboard.' % (myMode))

Line 19 prints the string in translated, which is the encrypted or
decrypted version of the string in myMessage, and line 20 copies it to the
clipboard. Line 21 notifies the user that it is on the clipboard.

Calculating and Validating the Keys

Unlike the Caesar cipher, which uses addition with only one key, the affine
cipher uses multiplication and addition with two integer keys, which we’ll
call Key A and Key B. Because it’s easier to remember just one number, we’ll
use a mathematical trick to convert two keys into one key. Let’s look at how
this works in affineCipher.py.

Programming the Affine Cipher 189



190

Chapter 14

The getKeyParts() function on line 24 splits a single integer key into two
integers for Key A and Key B:

24. def getKeyParts(key):

25. keyA = key // len(SYMBOLS)
26. keyB = key % len(SYMBOLS)
27. return (keyA, keyB)

The key to split is passed to the key parameter. On line 25, Key A is
calculated by using integer division to divide key by len(SYMBOLS), the size
of the symbol set. Integer division (//) returns the quotient without a
remainder. The mod operator (%) on line 26 calculates the remainder,
which we’ll use for Key B.

For example, with 2894 as the key parameter and a SYMBOLS string of 66
characters, Key A would be 2894 // 66 = 43 and Key B would be 2894 % 66 = 56.

To combine Key A and Key B back into a single key, multiply Key A by
the size of the symbol set and add Key B to the product: (43 * 66) + 56 eval-
uates to 2894, which is the integer key we started with.

Keep in mind that according to Shannon’s Maxim (“The enemy knows the system!”)
we must assume hackers know everything about the encryption algorithm, including
the symbol set and the size of the symbol set. We assume that the only piece a hacker
doesn’t know s the key that was used. The security of our cipher program should
depend only on the secrecy of the key, not the secrecy of the symbol set or the program’s
source code.

The Tuple Data Type

Line 27 looks like it returns a list value, except parentheses are used instead
of square brackets. This is a tuple value.

27. return (keyA, keyB)

A tuple value is similar to a list value in that it can store other values,
which can be accessed with indexes or slices. However, unlike list values, tuple
values cannot be modified. There’s no append() method for tuple values.

Because affineCipher.py doesn’t need to modify the value returned by
getKeyParts(), using a tuple is more appropriate than a list.

Checking for Weak Keys

Encrypting with the affine cipher involves a character’s index in SYMBOLS being
multiplied by Key A and added to Key B. But if keyA is 1, the encrypted text
is very weak because multiplying the index by 1 results in the same index.

In fact, as defined by the multiplicative identity property, the product of any
number and 1 is that number. Similarly, if keyB is 0, the encrypted text is weak
because adding o to the index doesn’t change it. If keyA is 1 and keyB is 0 at
the same time, the “encrypted” output would be identical to the original
message. In other words, it wouldn’t be encrypted at all!



We check for weak keys using the checkKeys() function on line 30. The
if statements on lines 31 and 33 check whether keyA is 1 or keyB is 0.

30. def checkKeys(keyA, keyB, mode):

31. if keyA == 1 and mode == ‘encrypt':
32. sys.exit('Cipher is weak if key A is 1. Choose a different key.')
33. if keyB == 0 and mode == ‘encrypt':
34. sys.exit('Cipher is weak if key B is 0. Choose a different key.')

If these conditions are met, the program exits with a message indicating
what went wrong. Lines 32 and 34 each pass a string to the sys.exit() call.
The sys.exit() function has an optional parameter that lets you print a string
to the screen before terminating the program. You can use this function to
display an error message on the screen before the program quits.

These checks prevent you from encrypting with weak keys, but if your
mode is set to 'decrypt’, the checks on lines 31 and 33 don’t apply.

The condition on line 35 checks whether keyA is a negative number
(that is, whether it’s less than 0) or whether keyB is greater than 0 orless than
the size of the symbol set minus one:

35. if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
36. sys.exit('Key A must be greater than 0 and Key B must be
between 0 and %s.' % (len(SYMBOLS) - 1))

The reason the keys are in these ranges is described in the next section.
If any of these conditions is True, the keys are invalid and the program exits.

Additionally, Key A must be relatively prime to the symbol set size. This
means that the greatest common divisor (GCD) of keyA and len(SYMBOLS) must
be equal to 1. Line 37 checks for this using an if statement, and line 38 exits
the program if the two values are not relatively prime:

37. if cryptomath.gcd(keyA, len(SYMBOLS)) != 1:

38. sys.exit('Key A (%s) and the symbol set size (%s) are not
relatively prime. Choose a different key.' % (keyA,
Len(SYMBOLS)))

If all the conditions in the checkKeys() function return False, nothing
is wrong with the key, and the program doesn’t exit. Program execution
returns to the line that originally called checkKeys().

How Many Keys Can the Affine Cipher Have?

Let’s try to calculate the number of possible keys the affine cipher has.
The affine cipher’s Key B is limited to the size of the symbol set, where
len(SYMBOLS) is 66. At first glance, it seems like Key A could be as large as you
want it to be as long as it’s relatively prime to the symbol set size. Therefore,
you might think that the affine cipher has an infinite number of keys and
cannot be brute-forced.

But this is not the case. Recall how large keys in the Caesar cipher
ended up being the same as smaller keys due to the wraparound effect.

Programming the Affine Cipher 191



affineKeyTest.py

192

Chapter 14

With a symbol set size of 66, the key 67 in the Caesar cipher would produce
the same encrypted text as the key 1. The affine cipher also wraps around
in this way.

Because the Key B part of the affine cipher is the same as the Caesar
cipher, its range is limited from 1 to the size of the symbol set. To deter-
mine whether the affine cipher’s Key A is also limited, we’ll write a short
program to encrypt a message using several different integers for Key A and
see what the ciphertext looks like.

Open a new file editor window and enter the following source code.
Save this file as affineKeylest.py in the same folder as affineCipher.py and
cryptomath.py. Then press Fb to run it.

. # This program proves that the keyspace of the affine cipher is limited
. # to less than len(SYMBOLS) * 2.

. import affineCipher, cryptomath

. for keyA in range(2, 80):

1
2
3
4
5.
6. message = 'Make things as simple as possible, but not simpler.'
7
8 key = keyA * len(affineCipher.SYMBOLS) + 1

9

10

if cryptomath.gcd(keyA, len(affineCipher.SYMBOLS)) == 1:
11. print(keyA, affineCipher.encryptMessage(key, message))

This program imports the affineCipher module for its encryptMessage()
function and the cryptomath module for its gcd() function. We’ll always
encrypt the string stored in the message variable. The for loop remains in
arange between 2 and 80, because 0 and 1 are not allowed as valid Key A
integers, as explained earlier.

On each iteration of the loop, line 8 calculates the key from the current
keyA value and always uses 1 for Key B, which is why 1 is added at the end of
line 8. Keep in mind that Key A must be relatively prime with the symbol set
size to be valid. Key A is relatively prime with the symbol set size if the GCD
of the key and the symbol set size is equal to 1. So if the GCD of the key and
the symbol set size is not equal to 1, the if statement on line 10 will skip the
call to encryptMessage() on line 11.

In short, this program prints the same message encrypted with several
different integers for Key A. The output of this program looks like this:

5 0.xTvcin?dXv.XvXn8I3Tv.XvIDXXnE3T,vEhcv?DcvXn8I3TS

7 Tz4Nn1ipKbtnztntpDY NnztnYRttp7 N,n781nKRintpDY Nm9

13 ZJHOP7ivuVtPItPtvhGUOPJtPG8ttviWUO, PWF7Pu87PtvhGUog3
17 HvTx.0izERX.vX.Xz2mkx.vX.mVXXz?kx, .?60.EVo.Xz2mkxGy
--snip--

67 Nblfluijoht!bt!tjngmf!bt!gpttjemf,!cvulopultjngmfsA
71 0.xTvcin?dXv.XvXn8I3Tv.XvIDXXnE3T,vEhcv?DcvXn8I3TS

73 Tz4Nn1ipKbtnztntpDY NnztnYRttp7 N,n781nKRintpDY Nm9
79 ZJHOP7ivuVtPJtPtvhGUOPJtPG8ttvWUO, PWF7Pu87PtvhGUog3




Look carefully at the output, and you’ll notice that the ciphertext for
Key A of 5 is the same as the ciphertext for Key A of 71! In fact, the ciphertext
from keys 7 and 73 are the same, as are the ciphertext from keys 13 and 79!

Notice also that subtracting 5 from 71 results in 66, the size of our sym-
bol set. This is why a Key A of 71 does the same thing as a Key A of 5: the
encrypted output repeats itself, or wraps around, every 66 keys. As you can
see, the affine cipher has the same wraparound effect for Key A as it does
for Key B. In sum, Key A is also limited to the symbol set size.

When you multiply 66 possible Key A keys by 66 possible Key B keys,
the result is 4356 possible combinations. Then when you subtract the
integers that can’t be used for Key A because they’re not relatively prime
with 66, the total number of possible key combinations for the affine
cipher drops to 1320.

Writing the Encryption Function

To encrypt the message in affineCipher.py, we first need the key and the message
to encrypt, which the encryptMessage() function takes as parameters:

41. def encryptMessage(key, message):
42. keyA, keyB = getKeyParts(key)
43. checkKeys (keyA, keyB, 'encrypt')

Then we need to get the integer values for Key A and Key B from the
getKeyParts() function by passing it key on line 42. Next, we check whether
these values are valid keys by passing them to the checkKeys() function. If the
checkKeys () function doesn’t cause the program to exit, the keys are valid and
the rest of the code in the encryptMessage() function after line 43 can proceed.

On line 44, the ciphertext variable starts as a blank string but will even-
tually hold the encrypted string. The for loop that begins on line 45 iter-
ates through each of the characters in message and then adds the encrypted
character to ciphertext:

44. ciphertext =
45. for symbol in message:

By the time the for loop is done looping, the ciphertext variable will
contain the complete string of the encrypted message.

On each iteration of the loop, the symbol variable is assigned a single
character from message. If this character exists in SYMBOLS, which is our sym-
bol set, the index in SYMBOLS is found and assigned to symbolIndex on line 48:

46. if symbol in SYMBOLS:

47. # Encrypt the symbol:

48. symbolIndex = SYMBOLS.find(symbol)

49. ciphertext += SYMBOLS[(symbolIndex * keyA + keyB) %
len(SYMBOLS)]

50. else:

51. ciphertext += symbol # Append the symbol without encrypting.

Programming the Affine Cipher 193



194

To encrypt the text, we need to calculate the index of the encrypted
letter. Line 49 multiplies this symbolIndex by keyA and adds keyB to the prod-
uct. Then it mods the result by the size of the symbol set, represented by the
expression len(SYMBOLS). Modding by len(SYMBOLS) handles the wraparound
by ensuring the calculated index is always between 0 and up to, but not
including, 1en(SYMBOLS). The resulting number will be the index in SYMBOLS
of the encrypted character, which is concatenated to the end of the string
in ciphertext.

Everything in the previous paragraph is done on line 49, using a single
line of code!

If symbol isn’t in our symbol set, symbol is concatenated to the end of the
ciphertext string on line 51. For example, the quotation marks and hyphen
in the original message are not in the symbol set and therefore are concat-
enated to the string.

After the code has iterated through each character in the message
string, the ciphertext variable should contain the full encrypted string.
Line 52 returns the encrypted string from encryptMessage():

52. return ciphertext

Writing the Decryption Function

Chapter 14

The decryptMessage() function that decrypts the text is almost the same as
encryptMessage(). Lines 56 to 58 are equivalent to lines 42 to 44.

55. def decryptMessage(key, message):

56. keyA, keyB = getKeyParts(key)

57. checkKeys (keyA, keyB, 'decrypt')

58. plaintext = "'

59. modInverseOfKeyA = cryptomath.findModInverse(keyA, len(SYMBOLS))

However, instead of multiplying by Key A, the decryption process multi-
plies by the modular inverse of Key A. The mod inverse is calculated by call-
ing cryptomath.findModInverse(), as explained in Chapter 13.

Lines 61 to 68 are almost identical to the encryptMessage() function’s
lines 45 to 52. The only difference is on line 65.

61. for symbol in message:

62. if symbol in SYMBOLS:

63. # Decrypt the symbol:

64. symbolIndex = SYMBOLS.find(symbol)

65. plaintext += SYMBOLS[(symbolIndex - keyB) * modInverseOfKeyA %
Len(SYMBOLS) ]

66. else:

67. plaintext += symbol # Append the symbol without decrypting.

68. return plaintext

In the encryptMessage() function, the symbol index was multiplied by
Key A and then Key B was added to it. In the decryptMessage() function’s



line 65, the symbol index first subtracts Key B from the symbol index and
then multiplies it by the modular inverse. Then it mods this number by the
size of the symbol set, 1len(SYMBOLS).

This is how the decryption process in affineCipher.py undoes the encryp-
tion. Now let’s look at how we can change affineCipher.py so that it randomly
selects valid keys for the affine cipher.

Generating Random Keys

It can be difficult to come up with a valid key for the affine cipher, so
you can instead use the getRandomKey() function to generate a random but
valid key. To do this, simply change line 10 to store the return value of
getRandomKey () in the myKey variable:

10. myKey = getRandomKey()
--snip--
17. print('Key: %s' % (myKey))

Now the program randomly selects the key and prints it to the screen
when line 17 executes. Let’s look at how the getRandomKey() function works.

The code on line 72 enters a while loop where the condition is True.
This infinite loop will loop forever until it is told to return or the user termi-
nates the program. If your program gets stuck in an infinite loop, you can
terminate the program by pressing CTRL-C (CTRL-D on Linux or macOS).
The getRandomKey () function will eventually exit the infinite loop with a
return statement.

71. def getRandomKey():

72. while True:
73. keyA = random.randint(2, len(SYMBOLS))
74. keyB = random.randint(2, len(SYMBOLS))

Lines 73 and 74 determine random numbers between 2 and the size
of the symbol set for keyA and for keyB. This code ensures that there’s no
chance that Key A or Key B will be equal to the invalid values 0 or 1.

The if statement on line 75 checks to make sure that keyA is relatively
prime with the size of the symbol set by calling the gcd() function in the
cryptomath module.

75. if cryptomath.gcd(keyA, len(SYMBOLS)) == 1:
76. return keyA * len(SYMBOLS) + keyB

If keyA is relatively prime with the size of the symbol set, these two ran-
domly selected keys are combined into a single key by multiplying keyA by
the symbol set size and adding keyB to the product. (Note that this is the
opposite of the getKeyParts() function, which splits a single integer key into
two integers.) Line 76 returns this value from the getRandomKey () function.

Programming the Affine Cipher 195



196

If the condition on line 75 returns False, the code loops back to the
start of the while loop on line 73 and picks random numbers for keyA and
keyB again. The infinite loop ensures that the program continues looping
until it finds random numbers that are valid keys.

Calling the main() Function

Lines 81 and 82 call the main() function if this program was run by itself
rather than being imported by another program:

79. # If affineCipher.py is run (instead of imported as a module), call
80. # the main() function:

81. if __name__ ==
82. main()

_main__":

This ensures that the main() function runs when the program is run but
not when the program is imported as a module.

Summary

Chapter 14

Just as we did in Chapter 9, in this chapter we wrote a program (affineKeyTest
.py) that can test our cipher program. Using this test program, you learned
that the affine cipher has approximately 1320 possible keys, which is a num-
ber you can easily hack using brute-force. This means that we’ll have to toss
the affine cipher onto the heap of easily hackable weak ciphers.

So the affine cipher isn’t much more secure than the previous ciphers
we’ve looked at. The transposition cipher can have more possible keys,
but the number of possible keys is limited to the size of the message. For a
message with only 20 characters, the transposition cipher can have at most
18 keys, with keys ranging from 2 to 19. You can use the affine cipher to
encrypt short messages with more security than the Caesar cipher provides,
because its number of possible keys is based on the symbol set.

In Chapter 15, we’ll write a brute-force program that can break affine
cipher-encrypted messages!

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. The affine cipher is the combination of which two other ciphers?

2.  What is a tuple2 How is a tuple different from a liste
3. IfKey Ais 1, why does it make the affine cipher weak?
4. IfKey B is O, why does it make the affine cipher weak?
\ J



https://www.nostarch.com/crackingcodes/

HACKING THE AFFINE CIPHER

“Cryptanalysis could not be invented until a
civilization had reached a sufficiently sophisticated
level of scholarship in several disciplines,
including mathematics, statistics, and linguistics.”
—Simon Singh, The Code Book

In Chapter 14, you learned that the affine
cipher is limited to only a few thousand
keys, which means we can easily perform

a brute-force attack against it. In this chapter,
you’ll learn how to write a program that can break
affine cipher—encrypted messages.

Vs

TOPICS COVERED IN THIS CHAPTER

e The exponent operator (*¥)

e The continue statement




Source Code for the Affine Cipher Hacker Program

Open a new file editor window by selecting File » New File. Enter the fol-
lowing code into the file editor and then save it as affineHacker.py. Entering
the string for the myMessage variable by hand might be tricky, so you can copy
and paste it from the affineHacker.py file available at https://www.nostarch
.com/crackingcodes/ to save time. Make sure dictionary.txt as well as pyperclip.py,
affineCipher.py, detectEnglish.py, and cryptomath.py are in the same directory as

affineHacker.py.
affineHacker.py 1. # Affine Cipher Hacker
2. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)
3.
4. import pyperclip, affineCipher, detectEnglish, cryptomath
5.
6. SILENT_MODE = False
7.
8. def main():
9. # You might want to copy & paste this text from the source code at

10. # https://www.nostarch.com/crackingcodes/.

11. myMessage = """50G9013La60I93!x0xaia6fa0L90daQG1! axQARLa! A
uaRLOADQALQG93 | xOxaGaAfa010X301RQARL9IOda | AaFARUQLX1LOALOI 1
10X301RN"Q-5!1RQP36ARU" ""

12.

13. hackedMessage = hackAffine(myMessage)

14.

15. if hackedMessage != None:

16. # The plaintext is displayed on the screen. For the convenience of

17. # the user, we copy the text of the code to the clipboard:

18. print('Copying hacked message to clipboard:")

19. print(hackedMessage)

20. pyperclip.copy(hackedMessage)

21. else:

22. print('Failed to hack encryption.")

23.

24.

25. def hackAffine(message):

26. print('Hacking...")

27.

28. # Python programs can be stopped at any time by pressing Ctrl-C (on
29. # Windows) or Ctrl-D (on macOS and Linux):

30. print('(Press Ctrl-C or Ctrl-D to quit at any time.)')

31.

32. # Brute-force by looping through every possible key:

33. for key in range(len(affineCipher.SYMBOLS) ** 2):

34. keyA = affineCipher.getKeyParts(key)[0]

35. if cryptomath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:
36. continue

37.

198 Chapter 15


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

38. decryptedText = affineCipher.decryptMessage(key, message)

39. if not SILENT_MODE:

40. print('Tried Key %s... (%s)' % (key, decryptedText[:40]))

41.

42. if detectEnglish.isEnglish(decryptedText):

43. # Check with the user if the decrypted key has been found:

44. print()

45. print('Possible encryption hack:")

46. print('Key: %s' % (key))

47. print('Decrypted message: ' + decryptedText[:200])

48. print()

49. print('Enter D for done, or just press Enter to continue
hacking:")

50. response = input('> ')

51.

52. if response.strip().upper().startswith('D"):

53. return decryptedText

54. return None

55.

56.

57. # If affineHacker.py is run (instead of imported as a module), call
58. # the main() function:

59. if _name_ =="'
60. main()

__main__ ':

Sample Run of the Affine Cipher Hacker Program

Press F5 from the file editor to run the affineHacker.py program; the output
should look like this:

Hacking...

(Press Ctrl-C or Ctrl-D to quit at any time.)

Tried Key 95... (U&'<3dJ*Gjx'-3"MS'Sjojxuj'G3'%j"'<mMM]S'g)

Tried Key 96... (T%8;2cI]Fiwd,2]LR8R1/iwti&F28$i8;1LLiR&F)

Tried Key 97... (S$%:1bH\EhvZ+1\KQ%Qh.hvsh%E1%#h%:kKKhQ%e)

--snip--

Tried Key 2190... (?7=!-+.32#0=5-3*"="#1#04#=2-= #=1~**{"=")

Tried Key 2191... (' “BNLOTSDQ*VNTKC~CDRDQUD*SN*AD"B@KKDC"H)

Tried Key 2192... ("A computer would deserve to be called i)

Possible encryption hack:

Key: 2192

Decrypted message: "A computer would deserve to be called intelligent if it
could deceive a human into believing that it was human." -Alan Turing

Enter D for done, or just press Enter to continue hacking:

>d

Copying hacked message to clipboard:

"A computer would deserve to be called intelligent if it could deceive a human
into believing that it was human." -Alan Turing

Let’s take a closer look at how the affine cipher hacker program works.

Hacking the Affine Cipher 199



Setting Up Modules, Constants, and the main() Function

The affine cipher hacker program is 60 lines long because we’ve already
written much of the code it uses. Line 4 imports the modules we created in
previous chapters:

. # Affine Cipher Hacker
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

import pyperclip, affineCipher, detectEnglish, cryptomath

AUV S W N

SILENT_MODE = False

When you run the affine cipher hacker program, you’ll see that it pro-
duces lots of output as it works its way through all the possible decryptions.
However, printing all this output slows down the program. If you want to
speed up the program, set the SILENT_MODE variable on line 6 to True to stop
it from printing all these messages.

Next, we set up the main() function:

8. def main():

9. # You might want to copy & paste this text from the source code at
10. # https://www.nostarch.com/crackingcodes/.
11. myMessage = """50G9013La60I93!x0xaia6faQlL90daQG1! !axQARLa! A

uaRLOADOALQGY3 ! xQxaGaAfa010X301R0ARL9I0da | AaFARUOLX1LOALOI1
10X301RN"Q-5!1ROP36ARU"""

12.

13. hackedMessage = hackAffine(myMessage)

The ciphertext to be hacked is stored as a string in myMessage on line 11,
and this string is passed to the hackAffine() function, which we’ll look at in
the next section. The return value from this call is either a string of the origi-
nal message if the ciphertext was hacked or the None value if the hack failed.

The code on lines 15 to 22 checks whether hackedMessage was set to None:

15. if hackedMessage != None:

16. # The plaintext is displayed on the screen. For the convenience of
17. # the user, we copy the text of the code to the clipboard:

18. print('Copying hacked message to clipboard:"')

19. print(hackedMessage)

20. pyperclip.copy(hackedMessage)

21. else:

22. print('Failed to hack encryption."')

If hackedMessage is not equal to None, the message is printed to the screen
on line 19 and copied to the clipboard on line 20. Otherwise, the program
simply prints feedback to the user that it was unable to hack the ciphertext.
Let’s take a closer look at how the hackAffine() function works.

200 Chapter 15


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

The Affine Cipher Hacking Function

The hackAffine() function begins on line 25 and contains the code for
decryption. It starts by printing some instructions for the user:

25. def hackAffine(message):

26. print('Hacking...")

27.

28. # Python programs can be stopped at any time by pressing Ctrl-C (on
29. # Windows) or Ctrl-D (on macOS and Linux):

30. print('(Press Ctrl-C or Ctrl-D to quit at any time.)")

The decryption process can take a while, so if the user wants to exit the
program early, they can press CTRL-C (on Windows) or CTRL-D (on macOS
and Linux).

Before we continue with the rest of the code, you need to learn about
the exponent operator.

The Exponent Operator

A useful math operator you need to know to understand the affine cipher
hacker program (besides the basic +, -, *, /, and // operators) is the exponent
operator (**). The exponent operator raises a number to the power of another
number. For example, two to the power of five would be 2 ** 5 in Python.
This is equivalent to two multiplied by itself five times: 2 * 2 * 2 * 2 * 2. Both
expressions, 2 ** 5and 2 * 2 * 2 * 2 * 2, evaluate to the integer 32.

Enter the following into the interactive shell to see how the ** operator
works:

>>> 5 *¥* 2

25

>>> 2 ¥ g

32

>>> 123 ** 10
792594609605189126649

The expression 5 ** 2 evaluates to 25 because 5 multiplied by itself is
equivalent to 25. Likewise, 2 ** 5 returns 32 because 2 multiplied by itself
five times evaluates to 32.

Let’s return to the source code to see what the ** operator does in the
program.

Calculating the Total Number of Possible Keys

Line 33 uses the ** operator to calculate the total number of possible keys:

32. # Brute-force by looping through every possible key:
33. for key in range(len(affineCipher.SYMBOLS) ** 2):
34. keyA = affineCipher.getKeyParts(key)[0]

Hacking the Affine Cipher 201



202

Chapter 15

We know there are at most len(affineCipher.SYMBOLS) possible integers
for Key A and len(affineCipher.SYMBOLS) possible integers for Key B. To get
the entire range of possible keys, we multiply these values together. Because
we’re multiplying the same value by itself, we can use the ** operator in the
expression len(affineCipher.SYMBOLS) ** 2.

Line 34 calls the getKeyParts() function that we used in affineCipher.py
to split a single integer key into two integers. In this example, we’re using
the function to get the Key A part of the key we're testing. Recall that the
return value of this function call is a tuple of two integers: one for Key A
and one for Key B. Line 34 stores the tuple’s first integer in keyA by placing
the [0] after the hackAffine() function call.

For example, affineCipher.getKeyParts(key)[0] evaluates to the tuple and
the index (42, 22)[0], which then evaluates to 42, the value at index 0 of the
tuple. This gets just the Key A part of the return value and stores it in the
variable keyA. The Key B part (the second value in the returned tuple) is
ignored because we don’t need Key B to calculate whether Key A is valid.
Lines 35 and 36 check whether keyA is a valid Key A for the affine cipher,
and if not, the program continues to the next key to try. To understand
how the execution moves back to the start of the loop, you need to learn
about the continue statement.

The continve Statement

The continue statement uses the continue keyword by itself and takes no
parameters. We use a continue statement inside a while or for loop. When
a continue statement executes, the program execution immediately jumps
to the start of the loop for the next iteration. This also happens when the
program execution reaches the end of the loop’s block. But a continue state-
ment makes the program execution jump back to the start of the loop
before it reaches the end of the loop.

Enter the following into the interactive shell:

>>> for i in range(3):
print(i)
print('Hello!")

0
Hello!
1
Hello!
2
Hello!

The for loop loops through the range object, and the value in i becomes
each integer from 0 up to, but not including, 3. On each iteration, the
print('Hello!") function call displays Hello! on the screen.

Now contrast that for loop with the next example, which is the same
as the previous example except it has a continue statement before the
print('Hello!") line.



>>> for i in range(3):
print(i)
continue
print('Hello!")

[N

Notice that Hello! never gets printed, because the continue statement
causes the program execution to jump back to the start of the for loop for
the next iteration and the execution never reaches the print('Hello!") line.

A continue statement is often placed inside an if statement’s block so
that execution continues at the beginning of the loop under certain condi-
tions. Let’s return to our code to see how it uses the continue statement to
skip execution depending on the key used.

Using continue to Skip Code

In the source code, line 35 uses the gcd() function in the cryptomath module
to determine whether Key A is relatively prime to the symbol set size:

35. if cryptomath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:
36. continue

Recall that two numbers are relatively prime if their greatest com-
mon divisor (GCD) is 1. If Key A and the symbol set size are not relatively
prime, the condition on line 35 is True and the continue statement on line 36
executes. This causes the program execution to jump back to the start of
the loop for the next iteration. As a result, the program skips the call to
decryptMessage() on line 38 if the key is invalid and continues to try other
keys until it finds the right one.

When the program finds the right key, the message is decrypted by
calling decryptMessage() with the key on line 38:

38. decryptedText = affineCipher.decryptMessage(key, message)
39. if not SILENT_MODE:
40. print('Tried Key %s... (%s)' % (key, decryptedText[:40]))

If SILENT_MODE was set to False, the Tried Key message is printed on the
screen, but if it was set to True, the print() call on line 40 is skipped.

Next, line 42 uses the isknglish() function from the detectEnglish
module to check whether the decrypted message is recognized as English:

42. if detectEnglish.isEnglish(decryptedText):

43. # Check with the user if the decrypted key has been found:
44. print()

45. print('Possible encryption hack:")

46. print('Key: %s' % (key))

Hacking the Affine Cipher 203



204

47. print('Decrypted message: ' + decryptedText[:200])
48. print()

If the wrong decryption key was used, the decrypted message would
look like random characters and isEnglish() would return False. But if the
decrypted message is recognized as readable English (by the isknglish()
function’s standards), the program displays it to the user.

We display a snippet of the decrypted message that is recognized as
English, because the isknglish() function might mistakenly identify text
as English even though it hasn’t found the correct key. If the user decides
that this is indeed the correct decryption, they can type D and then press
ENTER.

49. print('Enter D for done, or just press Enter to continue
hacking:")

50. response = input('> ')

51.

52. if response.strip().upper().startswith('D"'):

53. return decryptedText

Otherwise, the user can just press ENTER to return a blank string
from the input() call, and the hackAffine() function would continue trying
more keys.

From the indentation at the beginning of line 54, you can see that this
line executes after the for loop on line 33 has completed:

54. return None

If the for loop finishes and reaches line 54, then it has gone through
every possible decryption key without finding the correct one. At this point,
the hackAffine() function returns the None value to signal that it was unsuc-
cessful at hacking the ciphertext.

If the program had found the correct key, the execution would have
previously returned from the function on line 53 and never reached line 54.

Calling the main() Function

Chapter 15

If we run affineHacker.py as a program, the special __name__ variable will be
set to the string '__main__' instead of 'affineHacker'. In this case, we call the
main() function.

57. # If affineHacker.py is run (instead of imported as a module), call
58. # the main() function:

59. if _name__ == "'_main_ ':
60. main()

That concludes the affine cipher hacking program.



Summary

This chapter is fairly short because it doesn’t introduce any new hacking
techniques. As you've seen, as long as the number of possible keys is only a
few thousand, it won’t take long for computers to brute-force through every
possible key and use the isEnglish() function to search for the right key.

You learned about the exponent operator (**), which raises a number
to the power of another number. You also learned how to use the continue
statement to send the program execution back to the beginning of the loop
instead of waiting until the execution reaches the end of the block.

Conveniently, we already wrote much of the code used for the affine
cipher hacker in affineCipher.py, detectEnglish.py, and cryptomath.py. The main()
function trick helps us reuse the code in our programs.

In Chapter 16, you’ll learn about the simple substitution cipher, which
computers can’t brute-force. The number of possible keys for this cipher is
more than trillions of trillions! A single laptop couldn’t possibly go through a
fraction of those keys in our lifetime, which makes the cipher immune to a
brute-force attack.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1.  What does 2 ** 5 evaluate to2
2. What does 6 ** 2 evaluate to?

What does the following code print2

for i in range(5):
if Q==
continue
print(i)

4. Does the main() function of affineHacker.py get called if another program
runs import affineHacker?

Hacking the Affine Cipher 205


https://www.nostarch.com/crackingcodes/




PROGRAMMING THE SIMPLE
SUBSTITUTION CIPHER

“The internet is the most liberating tool for
humanity ever invented, and also the best for
surveillance. It’s not one or the other. It’s both.”
—John Perry Barlow, co-founder of
the Electronic Frontier Foundation

In Chapter 15, you learned that the affine
cipher has about a thousand possible keys

but that computers can still brute-force through
all of them easily. We need a cipher that has so many
possible keys that no computer can brute-force through
them all.

The simple substitution cipher is one such cipher that is effectively invul-
nerable to a brute-force attack because it has an enormous number of
possible keys. Even if your computer could try a trillion keys every second,
it would still take 12 million years for it to try every one! In this chapter,
youw’ll write a program to implement the simple substitution cipher and
learn some useful Python functions and string methods as well.



208

TOPICS COVERED IN THIS CHAPTER

e The sort() list method
®  Getting rid of duplicate characters from a string
*  Wrapper functions

e The isupper() and islower() string methods

How the Simple Substitution Cipher Works

Chapter 16

To implement the simple substitution cipher, we choose a random letter to
encrypt each letter of the alphabet, using each letter only once. The key for
the simple substitution cipher is always a string of 26 letters of the alphabet
in random order. There are 403,291,461,126,605,635,584,000,000 differ-
ent possible key orderings for the simple substitution cipher. That’s a lot of
keys! More important, this number is so large that it’s impossible to brute-
force. (To see how this number was calculated, go to https://www.nostarch
.com/crackingcodes/.)

Let’s try using the simple substitution cipher with paper and pencil
first. For this example, we’ll encrypt the message “Attack at dawn.” using
the key VJZBGNFEPLITMXDWKQUCRYAHSO. First, write out the letters
of the alphabet and the corresponding key underneath each letter, as in
Figure 16-1.

A[B|[C|D|E|F|G|H|IT[J|K[L|[M|IN[O|P|Q|R|S|T|U|VIW|X|Y]|Z
VIJ[Z|B|[G|N|F|E|P[L|I|[TI{M|X|D|W|K|[Q|U|C|R|Y[A

Figure 16-1: Encryption letters for the example key

To encrypt a message, find the letter in the plaintext in the top row and
substitute it with the letter in the bottom row. A encrypts to V, T'encrypts to
C, Cencrypts to Z, and so on. So the message “Attack at dawn.” encrypts to
“Vcevzi ve bvax.”

To decrypt the encrypted message, find the letter in the ciphertext in
the bottom row and replace it with the corresponding letter in the top row.
Vdecrypts to A, Cdecrypts to T, Zdecrypts to C, and so on.

Unlike the Caesar cipher, in which the bottom row shifts but remains in
alphabetical order, in the simple substitution cipher the bottom row is com-
pletely scrambled. This results in far more possible keys, which is a huge
advantage of using the simple substitution cipher. The disadvantage is that
the key is 26 characters long and more difficult to memorize. You may need
to write down the key, but if you do, make sure no one else ever reads it!


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

Source Code for the Simple Substitution Cipher Program

simpleSub
Cipher.py

Open a new file editor window by selecting File » New File. Enter the follow-
ing code into the file editor and save it as simpleSubCipher.py. Be sure to place
the pyperclip.py file in the same directory as the simpleSubCipher.py file. Press F5
to run the program.

1.
2.
3.
4.
5.
6.
7.
8.
9.
0

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

# Simple Substitution Cipher
# https://www.nostarch.com/crackingcodes/ (BSD Licensed)

import pyperclip, sys, random

LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def

def

def

main():

myMessage = 'If a man is offered a fact which goes against his
instincts, he will scrutinize it closely, and unless the evidence
is overwhelming, he will refuse to believe it. If, on the other
hand, he is offered something which affords a reason for acting
in accordance to his instincts, he will accept it even on the
slightest evidence. The origin of myths is explained in this way.
-Bertrand Russell’

myKey = 'LFWOAYUISVKMNXPBDCRITQEGHZ'

myMode = 'encrypt' # Set to 'encrypt' or 'decrypt'.

if not keyIsValid(myKey):

sys.exit('There is an error in the key or symbol set.')
if myMode == ‘encrypt':

translated = encryptMessage(myKey, myMessage)
elif myMode == 'decrypt':

translated = decryptMessage(myKey, myMessage)
print('Using key %s' % (myKey))
print('The %sed message is:' % (myMode))
print(translated)
pyperclip.copy(translated)
print()
print('This message has been copied to the clipboard.")

keyIsValid(key):

keyList = list(key)
letterslist = 1ist(LETTERS)
keyList.sort()
lettersList.sort()

return keylist == letterslist

encryptMessage(key, message):
return translateMessage(key, message, 'encrypt')

Programming the Simple Substitution Cipher 209


https://www.nostarch.com/crackingcodes/

41. def decryptMessage(key, message):

42. return translateMessage(key, message, 'decrypt')
43.

44.

45. def translateMessage(key, message, mode):

46. translated = "'

47. charsA = LETTERS

48. charsB = key

49. if mode == 'decrypt':

50. # For decrypting, we can use the same code as encrypting. We
51. # just need to swap where the key and LETTERS strings are used.
52. charsA, charsB = charsB, charsA

53.

54. # Loop through each symbol in the message:

55. for symbol in message:

56. if symbol.upper() in charsA:

57. # Encrypt/decrypt the symbol:

58. symIndex = charsA.find(symbol.upper())

59. if symbol.isupper():

60. translated += charsB[symIndex].upper()

61. else:

62. translated += charsB[symIndex].lower()

63. else:

64. # Symbol is not in LETTERS; just add it:

65. translated += symbol

66.

67. return translated

68.

69.

70. def getRandomKey():
71. key = list(LETTERS)
72. random. shuffle(key)

73. return ''.join(key)
74.

75.

76. if _name__ == '_main__":

77. main()

Sample Run of the Simple Substitution Cipher Program

When you run the simpleSubCipher.py program, the encrypted output should
look like this:

Using key LFWOAYUISVKMNXPBDCRITQEGHZ

The encrypted message is:

Sy 1 nlx sr pyyacao 1 ylwj eiswi upar lulsxrj isr sxrjsxwjr, ia esmm
rwctjsxsza sj wmpramh, lxo txmarr jia agsoaxwa sr pgaceiamnsxu, ia esmm caytra
jp famsaga sj. Sy, px jia pjiac ilxo, ia sr pyyacao rpnajisxu eiswi lyypcor

1 calrpx ypc lwjsxu sx lwwpcolxwa jp isr sxrjsxwjr, ia esmm lwwabj sj agax

px jia rmsuijarj agsoaxwa. Jia pcsusx py nhjir sr agbmlsxao sx jisr elh.
-Facjclxo Ctrramm

This message has been copied to the clipboard.

210 Chapter 16



Notice that if the letter in the plaintext is lowercase, it’s lowercase
in the ciphertext. Likewise, if the letter is uppercase in the plaintext, it’s
uppercase in the ciphertext. The simple substitution cipher doesn’t encrypt
spaces or punctuation marks and simply returns those characters as is.

To decrypt this ciphertext, paste it as the value for the myMessage variable
on line 10 and change myMode to the string 'decrypt’'. When you run the pro-
gram again, the decryption output should look like this:

Using key LFWOAYUISVKMNXPBDCRITQEGHZ

The decrypted message is:

If a man is offered a fact which goes against his instincts, he will
scrutinize it closely, and unless the evidence is overwhelming, he will refuse
to believe it. If, on the other hand, he is offered something which affords

a reason for acting in accordance to his instincts, he will accept it even

on the slightest evidence. The origin of myths is explained in this way.
-Bertrand Russell

This message has been copied to the clipboard.

Setting Up Modules, Constants, and the main() Function

Let’s look at the first lines of simple substitution cipher program’s source code.

. # Simple Substitution Cipher
. # https://www.nostarch.com/crackingcodes/ (BSD Licensed)

1
2
3.
4. import pyperclip, sys, random
5
6
7

. LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Line 4 imports the pyperclip, sys, and random modules. The LETTERS con-
stant variable is set to a string of all the uppercase letters, which is the symbol
set for the simple substitution cipher program.

The main() function in simpleSubCipher.py, which is similar to the main()
function of cipher programs in the previous chapters, is called when the
program is first run. It contains the variables that store the message, key, and
mode used for the program.

9. def main():

10. myMessage = 'If a man is offered a fact which goes against his
instincts, he will scrutinize it closely, and unless the evidence
is overwhelming, he will refuse to believe it. If, on the other
hand, he is offered something which affords a reason for acting
in accordance to his instincts, he will accept it even on the
slightest evidence. The origin of myths is explained in this way.
-Bertrand Russell’

11. myKey = 'LFWOAYUISVKMNXPBDCRITQEGHZ'

12. myMode = 'encrypt' # Set to 'encrypt' or 'decrypt’.

Programming the Simple Substitution Cipher m


https://www.nostarch.com/crackingcodes/

212

The keys for simple substitution ciphers are easy to get wrong because
they’re fairly long and need to have every letter in the alphabet. For example,
it’s easy to enter a key that is missing a letter or a key that has the same letter
twice. The keyIsvalid() function makes sure the key is usable by the encryp-
tion and decryption functions, and the function exits the program with an
error message if the key is not valid:

14. if not keyIsvValid(myKey):
15. sys.exit('There is an error in the key or symbol set.')

If line 14 returns False from keyIsValid(), then myKey contains an invalid
key and line 15 terminates the program.

Lines 16 through 19 check whether the myMode variable is set to 'encrypt’
or 'decrypt' and calls either encryptMessage() or decryptMessage() accordingly:

16. if myMode == ‘encrypt':

17. translated = encryptMessage(myKey, myMessage)
18. elif myMode == 'decrypt':

19. translated = decryptMessage(myKey, myMessage)

The return value of encryptMessage() and decryptMessage() is a string of
the encrypted or decrypted message that is stored in the translated variable.
Line 20 prints the key that was used to the screen. The encrypted or
decrypted message is printed to the screen and also copied to the clipboard.

20. print('Using key %s' % (myKey))

21. print('The %sed message is:' % (myMode))

22. print(translated)

23. pyperclip.copy(translated)

24. print()

25. print('This message has been copied to the clipboard.")

Line 25 is the last line of code in the main() function, so the program
execution returns after line 25. When the main() call is done on the last line
of the program, the program exits.

Next, we’ll look at how the keyIsValid() function uses the sort() method
to test whether the key is valid.

The sort() List Method

Chapter 16

Lists have a sort() method that rearranges the list’s items into numerical or
alphabetical order. This ability to sort items in a list comes in handy when
you have to check whether two lists contain the same items but don’t list
them in the same order.

In simpleSubCipher.py, a simple substitution key string value is valid
only if it has each of the characters in the symbol set with no duplicate or
missing letters. We can check whether a string value is a valid key by sort-
ing it and checking whether it’s equal to the sorted LETTERS. But because



we can sort only lists, not strings (recall that strings are immutable, mean-
ing their values cannot be changed), we’ll obtain list versions of the string
values by passing them to 1ist(). Then, after sorting these lists, we can
compare the two to see whether or not they’re equal. Although LETTERS is
already in alphabetical order, we’ll sort it because we’ll expand it to con-
tain other characters later on.

28. def keyIsValid(key):

29. keyList = list(key)

30. lettersList = list(LETTERS)
31. keyList.sort()

32. letterslList.sort()

The string in key is passed to list() on line 29. The list value returned is
stored in a variable named keyList.

On line 30, the LETTERS constant variable (which contains the string
' ABCDEFGHIJKLMNOPQRSTUVKXYZ ") is passed to list(), which returns the list in
the following format: ['A*, 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', '3, 'K',
LY, ‘MY, 'NY, '0', 'PY, 0, 'R, 'S, T, 'UY, VU, OW', X, 'Y, 'Z'].

On lines 31 and 32, the lists in keyList and lettersList are then sorted
in alphabetical order by calling the sort() list method on them. Note that
similar to the append() list method, the sort() list method modifies the list in
place and doesn’t have a return value.

When sorted, the keylList and lettersList values should be the same,
because keyList was simply the characters in LETTERS with the order scrambled.
Line 34 checks whether the values keyList and lettersList are equal:

34. return keylList == letterslist

If keyList and lettersList are equal, you can be sure that keyList and the
key parameter don’t have any duplicated characters, because LETTERS doesn’t
have duplicates in it. In that case, line 34 returns True. But if keyList and
lettersList don’t match, the key is invalid and line 34 returns False.

Wrapper Functions

The encryption code and the decryption code in the simpleSubCipher.py
program are almost identical. When you have two very similar pieces of
code, it’s best to put them into a function and call it twice rather than enter
the code twice. Not only does this save time, but more important, it avoids
introducing bugs while copying and pasting code. It’s also advantageous
because if there’s ever a bug in the code, you only have to fix the bug in one
place instead of in multiple places.

Wrapper functions help you avoid having to enter duplicate code by wrap-
ping the code of another function and returning the value the wrapped
function returns. Often, the wrapper function makes a slight change to

Programming the Simple Substitution Cipher 213



214

Chapter 16

the arguments or return value of the wrapped function. Otherwise, there
would be no need for wrapping because you could just call the function
directly.

Let’s look at an example of using wrapper functions in our code to
understand how they work. In this case, encryptMessage() and decryptMessage()
on lines 37 and 41 are the wrapper functions:

37. def encryptMessage(key, message):

38. return translateMessage(key, message, 'encrypt')
39.

40.

41. def decryptMessage(key, message):

42. return translateMessage(key, message, 'decrypt')

Each of these wrapper functions calls translateMessage(), which is the
wrapped function, and returns the value that translateMessage() returns.
(We’ll look at the translateMessage() function in the next section.) Because
both wrapper functions use the same translateMessage() function, we
need to modify only that one function instead of the encryptMessage() and
decryptMessage() functions if we need to make any changes to the cipher.

With these wrapper functions, someone who imports the program
simpleSubCipher.py can call the functions named encryptMessage() and
decryptMessage() just as they can with all the other cipher programs in
this book. The wrapper functions have clear names that tell others who
use the functions what they do without having to look at the code. As a
result, if we want to share our code, others can use it more easily.

Other programs can encrypt a message in various ciphers by import-
ing the cipher programs and calling their encryptMessage() functions, as
shown here:

import affineCipher, simpleSubCipher, transpositionCipher

--snip--

ciphertext1 = affineCipher.encryptMessage(encKey1, 'Hello!")
ciphertext2 = transpositionCipher.encryptMessage(encKey2, 'Hello!')
ciphertext3 = simpleSubCipher.encryptMessage(encKey3, 'Hello!')

Naming consistency is helpful, because it makes it easier for someone
familiar with one of the cipher programs to use the other cipher programs.
For example, you can see that the first parameter is always the key and
the second parameter is always the message, which is the convention used
for most of the cipher programs in this book. Using the translateMessage()
function instead of separate encryptMessage() and decryptMessage() functions
would be inconsistent with the other programs.

Let’s look at the translateMessage() function next.



The translateMessage() Function

The translateMessage() function is used for both encryption and decryption.

45. def translateMessage(key, message, mode):

46. translated = "'

47. charsA = LETTERS

48. charsB = key

49. if mode == 'decrypt':

50. # For decrypting, we can use the same code as encrypting. We
51. # just need to swap where the key and LETTERS strings are used.
52. charsA, charsB = charsB, charsA

Notice that translateMessage() has the parameters key and message but
also a third parameter named mode. When we call translateMessage(), the
call in the encryptMessage() function passes 'encrypt' for the mode parameter,
and the call in the decryptMessage() function passes 'decrypt’. This is how the
translateMessage() function knows whether it should encrypt or decrypt the
message passed to it.

The actual encryption process is simple: for each letter in the message
parameter, the function looks up that letter’s index in LETTERS and replaces
the character with the letter at that same index in the key parameter.
Decryption does the opposite: it looks up the index in key and replaces
the character with the letter at the same index in LETTERS.

Instead of using LETTERS and key, the program uses the variables charsA
and charsB, which allow it to replace the letter in charsA with the letter at the
same index in charsB. Being able to change which values are assigned to charsA
and charsB makes it easy for the program to switch between encrypting and
decrypting. Line 47 sets the characters in charsA to the characters in LETTERS,
and line 48 sets the characters in charsB to the characters in key.

The following figures show how the same code can be used to either
encrypt or decrypt a letter. Figure 16-2 illustrates the encryption process.
The top row in this figure shows the characters in charsA (set to LETTERS), the
middle row shows the characters in charsB (set to key), and the bottom row
shows the integer indexes corresponding to the characters.

charsA [A (B |C|D|E|[F|G|H|I|[J|K|L|M|[N|O[P|Q|R|S|T|U|V|W[X|Y]|Z
charsB [V [J |Z|B|G|N|F|E|[P|[L|[I]|T|M WI[K|[Q[U[C[R|[Y[A|H|S|O
Index [0 [1]2[3[4]|5]|6[7|8]9[10[11]12][13]14[15]16]|17]18]19|20|21[22|23]|24|25

o

Figure 16-2: Using the index to encrypt plaintext

The code in translateMessage() always looks up the message character’s
index in charsA and replaces it with the corresponding character in charsB at
that index. So to encrypt, we just leave charsA and charsB as they are. Using
the variables charsA and charsB replaces the character in LETTERS with the
character in key, because charsA is set to LETTERS and charsB is set to key.

Programming the Simple Substitution Cipher 215



To decrypt, the values in charsA and charsB are switched using charsA,
charsB = charsB, charsA on line 52. Figure 16-3 shows the decryption process.

charsA [V [ J [Z|B|G|N|F|E|P|L|I|[T|[M|[X|D|W|K|Q|U|C|R|Y|A|H]|S]|O
charsB [A|B|C[D|E|F|G|H|I [J|K|L|M|[N[O|P|Q|R|S|T|U|V|W[X|Y]|Z
Index [0 |1]2(3|4|5]|6]|7[8]9]10[11[12]13]14[15]16]|17]18]19[20|21[22[23|24|25

Figure 16-3: Using the index to decrypt ciphertext

Keep in mind that the code in translateMessage() always replaces the
character in charsA with the character at that same index in charsB. So when
line 52 swaps the values, the code in translateMessage() does the decryption
process instead of the encryption process.

The next lines of code show how the program finds the index to use for
encryption and decryption.

54. # Loop through each symbol in the message:

55. for symbol in message:

56. if symbol.upper() in charsA:

57. # Encrypt/decrypt the symbol:

58. symIndex = charsA.find(symbol.upper())

The for loop on line 55 sets the symbol variable to a character in the
message string on each iteration through the loop. If the uppercase form of
this symbol exists in charsA (recall that key and LETTERS have only uppercase
characters in them), line 58 finds the index of the uppercase form of symbol
in charsA. The symIndex variable stores this index.

We already know that the find() method would never return -1 (a -1
from the find() method means the argument could not be found in the
string) because the if statement on line 56 guarantees that symbol.upper()
exists in charsA. Otherwise, line 58 wouldn’t have been executed.

Next, we’ll use each encrypted or decrypted symbol to build the string
that is returned by the translateMessage() function. But because key and
LETTERS are both only in uppercase, we’ll need to check whether the
original symbol in message was lowercase and then adjust the decrypted or
encrypted symbol to lowercase if it was. To do this, you need to learn two
string methods: isupper() and islower().

The isupper() and islower() String Methods

The isupper() and islower() methods check whether a string is in uppercase
or lowercase.

More specifically, the isupper() string method returns True if both of
these conditions are met:

e The string has at least one uppercase letter.

e The string does not have any lowercase letters in it.

216 Chapter 16



The islower() string method returns True if both of these conditions
are met:

e The string has at least one lowercase letter.

e The string does not have any uppercase letters in it.

Non-letter characters in the string don’t affect whether these methods
return True or False, although both methods evaluate to False if only non-
letter characters exist in the string. Enter the following into the interactive
shell to see how these methods work:

>>> "HELLO'.isupper()

True

>>> "HELLO WORLD 123'.isupper()
True

>>> 'hello'.islower()

True

>>> '123".isupper()

False
>»> !
False

'.islower()

The example at @ returns True because 'HELLO WORLD 123" has at least one
uppercase letter in it and no lowercase letters. The numbers in that string
don’t affect the evaluation. At @, 'hello'.islower() returns True because the
string 'hello' has at least one lowercase letter in it and no uppercase letters.

Let’s return to our code to see how it uses the isupper() and islower()
string methods.

Preserving Cases with isupper()

The simpleSubCipher.py program uses the isupper() and islower() string
methods to help ensure that the cases of the plaintext are reflected in the
ciphertext.

59. if symbol.isupper():

60. translated += charsB[symIndex].upper()
61. else:

62. translated += charsB[symIndex].lower()

Line 59 tests whether symbol has an uppercase letter. If it does, line 60
concatenates the uppercase version of the character at charsB[ symIndex]
to translated. This results in the uppercase version of the key character
corresponding to the uppercase input. If symbol instead has a lowercase
letter, line 62 concatenates the lowercase version of the character at
charsB[symIndex] to translated.

If symbol is not a character in the symbol set, such as '5' or '?', line 59
would return False, and line 62 would execute instead of line 60. The
reason is that the conditions for isupper() wouldn’t be met because those
strings don’t have at least one uppercase letter. In this case, the lower()

Programming the Simple Substitution Cipher 217



218

method call on line 62 would have no effect on the string because it has no
letters at all. The lower() method doesn’t change non-letter characters like
's' and '?'. It simply returns the original non-letter characters.

Line 62 in the else block accounts for any lowercase characters and
non-letter characters in our symbol string.

The indentation on line 63 indicates that the else statement is paired
with the if symbol.upper() in charsA: statement on line 56, so line 63 executes
if symbol is not in LETTERS.

63. else:
64. # Symbol is not in LETTERS; just add it:
65. translated += symbol

If symbol is not in LETTERS, line 65 executes. This means we cannot
encrypt or decrypt the character in symbol, so we simply concatenate it to
the end of translated as is.

At the end of the translateMessage() function, line 67 returns the value in
the translated variable, which contains the encrypted or decrypted message:

67. return translated

Next, we’ll look at how to use the getRandomKey() function to generate a
valid key for the simple substitution cipher.

Generating a Random Key

Chapter 16

Typing a string for a key that contains each letter of the alphabet can be
difficult. To help us with this, the getRandomKey() function returns a valid
key to use. Lines 71 to 73 randomly scramble the characters in the LETTERS
constant.

70. def getRandomKey():

71. key = list(LETTERS)
72. random. shuffle(key)
73. return ''.join(key)

Read “Randomly Scrambling a String” on page 123 for an explanation of how to
scramble a string using the 1ist(), random.shuffle(), and join() methods.

To use the getRandomKey() function, we need to change line 11 from
myKey = 'LFWOAYUISVKMNXPBDCRITQEGHZ' to this:

11. myKey = getRandomKey()

Because line 20 in our simple substitution cipher program prints the key
being used, you'll be able to see the key the getRandomKey() function returned.



Calling the main() Function

Lines 76 and 77 at the end of the program call main() if simpleSubCipher.py is
being run as a program instead of being imported as a module by another
program.

76. if __name__ == "' main__":

77. main()

This concludes our study of the simple substitution cipher program.

Summary

In this chapter, you learned how to use the sort() list method to order items
in a list and how to compare two ordered lists to check for duplicate or
missing characters from a string. You also learned about the isupper() and
islower() string methods, which check whether a string value is made up
of uppercase or lowercase letters. You learned about wrapper functions,
which are functions that call other functions, usually adding only slight
changes or different arguments.

The simple substitution cipher has far too many possible keys to brute-
force through. This makes it impervious to the techniques you used to hack
previous cipher programs. You’ll have to make smarter programs to break
this code.

In Chapter 17, you’ll learn how to hack the simple substitution cipher.
Instead of brute-forcing through all the keys, you’ll use a more intelligent
and sophisticated algorithm.

PRACTICE QUESTIONS

Answers to the practice questions can be found on the book’s website at
https://www.nostarch.com/crackingcodes/.

1. Why can't a brute-force attack be used against a simple substitution
cipher, even with a powerful supercomputer?

2.  What does the spam variable contain after running this code?

spam = [4) 6, 2, 8]
spam.sort()

3. What is a wrapper function?
4. What does 'hello'.islower() evaluate to?
5. What does "HELLO 123'.isupper() evaluate to?
6. What does '123".islower() evaluate to?
\ J

Programming the Simple Substitution Cipher 219


https://www.nostarch.com/crackingcodes/




HACKING THE SIMPLE
SUBSTITUTION CIPHER

“Encryption is fundamentally a private act.
The act of encryption, in fact, removes information
from the public realm. Even laws against
cryptography reach only so far as a nation’s border
and the arm of its violence.”

—FEric Hughes, “A Cypherpunk’s Manifesto” (1993)

In Chapter 16, you learned that the simple
substitution cipher is impossible to crack

using brute force because it has too many pos-
sible keys. To hack the simple substitution cipher, we
need to create a more sophisticated program that
uses dictionary values to map the potential decryp-
tion letters of a ciphertext. In this chapter, we’ll write
such a program to narrow down the list of potential
decryption outputs to the right one.



222

TOPICS COVERED IN THIS CHAPTER

*  Word patterns, candidates, potential decryption letters, and cipherletter
mappings
®  Regular expressions

e  The sub() regex method

Using Word Patterns to Decrypt

Chapter 17

In brute-force attacks, we try each possible key to check whether it can
decrypt the ciphertext. If the key is correct, the decryption results in read-
able English. But by analyzing the ciphertext first, we can reduce the num-
ber of possible keys to try and maybe even find a full or partial key.

Let’s assume the original plaintext consists mostly of words in an English
dictionary file, like the one we used in Chapter 11. Although a ciphertext
won’t be made of real English words, it will still contain groups of letters
broken up by spaces, just like words in regular sentences. We’ll call these
cipherwords in this book. In a substitution cipher, every letter of the alphabet
has exactly one unique corresponding encryption letter. We’ll call the letters
in the ciphertext cipherletters. Because each plaintext letter can encrypt to only
one cipherletter, and we’re not encrypting spaces in this version of the cipher,
the plaintext and ciphertext will share the same word patterns.

For example, if we had the plaintext MISSISSIPPI SPILL, the corre-
sponding ciphertext might be R]BB]BBJXX] BXJHH. The number of letters
in the first word of the plaintext and the first cipherword are the same. The
same is true for the second plaintext word and the second cipherword. The
plaintext and ciphertext share the same pattern of letters and spaces. Also
notice that letters that repeat in the plaintext repeat the same number of
times and in the same places as the ciphertext.

We could therefore assume that a cipherword corresponds to a word in
the English dictionary file and that their word patterns would match. Then,
if we can find which word in the dictionary the cipherword decrypts to, we
can figure out the decryption of each cipherletter in that word. And if we
figure out enough cipherletter decryptions using this technique, we may be
able to decrypt the entire message.

Finding Word Patterns

Let’s examine the word pattern of the cipherword HGHHU. You can see
that the cipherword has certain characteristics, which the original plaintext
word must share. Both words must have the following in common.



They should be five letters long.
2. The first, third, and fourth letters should be the same.

They should have exactly three different letters; the first, second, and
fifth letters should all be different.

Let’s think of words in the English language that fit this pattern. Puppy
is one such word, which is five letters long (P, U, P, P, Y) and uses three dif-
ferent letters (P, U, Y) arranged in that same pattern (P for the first, third,
and fourth letter; U for the second letter; and Y for the fifth letter). Mommy,
bobby, lulls, and nanny fit the pattern, too. These words, along with any
other word in the English dictionary file that matches the criteria, are all
possible decryptions of HGHHU.

To represent a word pattern in a way the program can understand, we’ll
make each pattern into a set of numbers separated by periods that indicates
the pattern of letters.

Creating word patterns is easy: the first letter gets the number 0, and
the first occurrence of each different letter thereafter gets the next num-
ber. For example, the word pattern for cat is 0.1.2, and the word pattern for
classification is 0.1.2.3.3.4.5.4.0.2.6.4.7.8.

In simple substitution ciphers, no matter which key is used to encrypt,

a plaintext word and its cipherword always have the same word pattern. The
word pattern for the cipherword HGHHU is 0.1.0.0.2, which means the word
pattern of the plaintext corresponding to HGHHU is also 0.1.0.0.2.

Finding Potential Decryption Letters

To decrypt HGHHU, we need to find all the words in an English dictionary
file whose word pattern is also 0.1.0.0.2. In this book, we’ll call the plaintext
words that have the same word pattern as the cipherword the candidates for
that cipherword. Here is a list of candidates for HGHHU:

® puppy

e mommy
e bobby

o lulls

e nanny

Using word patterns, we can guess which plaintext letters cipherletters
might decrypt to, which we’ll call the cipherletter’s potential decryption letters.
To crack a message encrypted with the simple substitution cipher, we need
to find all the potential decryption letters of each word in the message and
determine the actual decryption letters through the process of elimination.
Table 17-1 lists the potential decryption letters for HGHHU.

Hacking the Simple Substitution Cipher 223



224

Chapter 17

Table 17-1: Potential Decryption Letters of the Cipherletters in HGHHU

Cipherletters H G H H U
Potential decryption letters P U P P Y
M O M M Y
B O B B Y
L u L L S
N A N N Y

The following is a cipherletter mapping created using Table 17-1:

H has the potential decryption letters P, M, B, L, and N.
G has the potential decryption letters U, O, and A.
U has the potential decryption letters Y and S.

00 o=

All of the other cipherletters besides H, G, and U have no potential
decryption letters in this example.

A cipherletter mapping shows all the letters of the alphabet and their
potential decryption letters. As we start to gather encrypted messages,
we’ll find potential decryption letters for every letter in the alphabet, but
because only the cipherletters H, G, and U were part of our example cipher-
text, we don’t have the potential decryption letters of other cipherletters.

Notice also that U has only two potential decryption letters (Y and S)
because there are overlaps between the candidates, many of which end in
the letter Y. The more overlaps there are, the fewer potential decryption letters there
will be, and the easier it will be to figure out what that cipherletter decrypts to.

To represent Table 17-1 in Python code, we’ll use a dictionary value to
represent cipherletter mappings as follows (the key-value pairs for 'H', 'G',
and 'U' are in bold):

This dictionary has 26 key-value pairs, one key for each letter of the
alphabet and a list of potential decryption letters for each letter. It shows
potential decryption letters for keys 'H', 'G', and 'U'. The other keys have
empty lists, [], for values, because they have no potential decryption letters
so far.

If we can reduce the number of potential decryption letters for a
cipherletter to just one letter by cross-referencing cipherletter mappings of
other encrypted words, we can find what that cipherletter decrypts to. Even
if we can’t solve all 26 cipherletters, we might be able to hack most of the
cipherletter mappings to decrypt most of the ciphertext.



Now that we’ve covered some of the basic concepts and terminology
we’ll be using in this chapter, let’s look at the steps involved in the hacking
process.

Overview of the Hacking Process

Hacking the simple substitution cipher is pretty easy using word patterns.
We can summarize the major steps of the hacking process as follows:

Find the word pattern for each cipherword in the ciphertext.

2. Find the English word candidates that each cipherword could
decrypt to.

3. Create a dictionary showing potential decryption letters for each
cipherletter to act as the cipherletter mapping for each cipherword.

4. Combine the cipherletter mappings into a single mapping, which we’ll
call an intersected mapping.

5. Remove any solved cipherletters from the combined mapping.

6. Decrypt the ciphertext with the solved cipherletters.

The more cipherwords in a ciphertext, the more likely it is for the map-
pings to overlap with one another and the fewer the potential decryption
letters for each cipherletter. This means that in the simple substitution
cipher, the longer the ciphertext message, the easier it is to hack.

Before diving into the source code, let’s look at how we can make the
first two steps of the hacking process easier. We’ll use the dictionary file
we used in Chapter 11 and a module called wordPatterns.py to get the word
pattern for every word in the dictionary file and sort them in a list.

The Word Pattern Modules

To calculate word patterns for every word in the dictionary.txt diction-
ary file, download makeWordPatterns.py from https://www.nostarch.com/
crackingcodes/. Make sure this program and dictionary.txt are both in the
folder where you’ll be saving this chapter’s simpleSubHacker.py program.
The makeWordPatterns.py program has a getWordPattern() function
that takes a string (such as 'puppy') and returns its word pattern (such
as '0.1.0.0.2"). When you run makeWordPatterns.py, it should create the
Python module wordPatterns.py. The module contains a single variable
assignment statement, as shown here, and is more than 43,000 lines long:

allPatterns = {'0.0.1": ['EEL'],
'0.0.1.2": ['EELS', '00ZE'],
'0.0.1.2.0": ['EERIE'],

'0.0.1.2.3": ['AARON', 'LLOYD', 'OOZED'],
--snip--

Hacking the Simple Substitution Cipher 225


https://www.nostarch.com/crackingcodes/
https://www.nostarch.com/crackingcodes/

226

The allPatterns variable contains a dictionary value with the word
pattern strings as keys and a list of English words that match the pattern
as its values. For example, to find all the English words with the pattern
0.1.2.1.3.4.5.4.6.7.8, enter the following into the interactive shell:

>>> import wordPatterns
>>> wordPatterns.allPatterns['0.1.2.1.3.4.5.4.6.7.8"]
[ "BENEFICIARY', 'HOMOGENEITY', 'MOTORCYCLES']

In the allPatterns dictionary, the key '0.1.2.1.3.4.5.4.6.7.8" has the list
value [ 'BENEFICIARY', 'HOMOGENEITY', 'MOTORCYCLES'], which contains three
English words with this particular word pattern.

Now let’s import the wordPatterns.py module to start building the simple
substitution hacking program!

If you get a ModuleNotFoundExrror error message when importing wordPatterns into the
interactive shell, enter the following into the interactive shell first:

>>> import sys
>>> sys.path.append('name_of folder')

Replace name_of fold