
D A N I E L Z I N G A R O

L E A R N T O C O D E
B Y S O L V I N G
P R O B L E M S

A P Y T H O N P R O G R A M M I N G P R I M E R

LEARN TO CODE
BY SOLVING
PROBLEMS

APythonProgrammingPrimer

by Daniel Zingaro

San Francisco

LEARN TO CODE BY SOLVING PROBLEMS. Copyright © 2021 by Daniel Zingaro.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Second printing
26 25 24 23 22 2 3 4 5 6

ISBN-13: 978-1-7185-0132-4 (print)
ISBN-13: 978-1-7185-0133-1 (ebook)

Publisher: Bill Pollock
Executive Editor: Barbara Yien
Production Manager: Rachel Monaghan
Production Editor: Kassie Andreadis
Developmental Editor: Alex Freed
Interior and Cover Design: Octopod Studios
Cover Illustrator: Rob Gale
Technical Reviewer: Luke Sawczak
Copyeditor: Kim Wimpsett
Proofreader: Emelie Battaglia
Indexer: Sanjiv Kumar Sinha

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data
Names: Zingaro, Daniel, author.

Title: Learn to code by solving problems : a Python programming primer / by

Daniel Zingaro.

Description: San Francisco, CA : No Starch Press, [2021] | Includes index.

Identifiers: LCCN 2021011082 (print) | LCCN 2021011083 (ebook) | ISBN

9781718501324 (print) | ISBN 9781718501331 (ebook)

Subjects: LCSH: Python (Computer program language) | Computer programming.

Classification: LCC QA76.73.P98 Z55 2021 (print) | LCC QA76.73.P98

(ebook) | DDC 005.13/3--dc23

LC record available at https://lccn.loc.gov/2021011082

LC ebook record available at https://lccn.loc.gov/2021011083

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

To Dad,
for the computer code

and

To Mom,
for the teacher code

About the Author
Dr. Daniel Zingaro is an associate teaching professor of computer science
and award-winning teacher at the University of Toronto. His main area of
research is computer science education, where he studies how students learn
(and sometimes don’t learn) computer science material. He is the author
of Algorithmic Thinking (No Starch Press, 2021), a book that helps learners
understand and use algorithms and data structures.

About the Technical Reviewer
Luke Sawczak is a frequent freelance editor and hobby programmer; his
favorite projects include a prose-to-poetry converter, a visual aid for cut-
ting the right number of slices of cake, and a version of Boggle that uses
numbers made for math tutors. He currently teaches French and English
on the outskirts of Toronto. He also writes poetry and composes for the
piano, which he would do for a living if he could. He can be found online
at https://sawczak.com/.

https://sawczak.com/

BRIEF CONTENTS

Acknowledgments . xix
Introduction . xxi
Chapter 1: Getting Started . 1
Chapter 2: Making Decisions . 25
Chapter 3: Repeating Code: Definite Loops . 47
Chapter 4: Repeating Code: Indefinite Loops . 69
Chapter 5: Organizing Values Using Lists . 101
Chapter 6: Designing Programs with Functions. 137
Chapter 7: Reading and Writing Files . 171
Chapter 8: Organizing Values Using Sets and Dictionaries . 203
Chapter 9: Designing Algorithms with Complete Search . 237
Chapter 10: Big O and Program Efficiency . 265
Afterword. 295
Appendix: Problem Credits . 297
Index. 299

CONTENTS IN DETA IL

ACKNOWLEDGMENTS xix

INTRODUCTION xxi
Online Resources . xxii
Who This Book Is For . xxii
Why Learn Python? . xxii
Installing Python . xxiii

Windows . xxiii
macOS . xxiii
Linux . xxiii

How to Read This Book . xxiv
Using Programming Judges . xxiv
Making Your Programming Judge Accounts . xxv

The DMOJ Judge . xxvi
The Timus Judge . xxvi
The USACO Judge . xxvi

About This Book . xxvii

1
GETTING STARTED 1
What We’ll Be Doing . 1
The Python Shell . 2

Windows . 3
macOS . 4
Linux . 4

Problem #1: Word Count . 5
The Challenge . 5
Input . 5
Output . 5

Strings . 6
Representing Strings . 6
String Operators . 7
String Methods . 8

Integer and Floating-Point Numbers . 9
Variables . 11
Assignment Statement . 11
Changing Variable Values . 13

Counting the Words Using a Variable . 14

Reading Input . 15
Writing Output . 15
Solving the Problem: A Complete Python Program . 16

Launching a Text Editor . 16
The Program . 17
Running the Program . 17
Submitting to the Judge . 18

Problem #2: Cone Volume . 18
The Challenge . 19
Input . 19
Output . 19

More Math in Python . 19
Accessing Pi . 19
Exponents . 19

Converting Between Strings and Integers . 20
Solving the Problem . 22
Summary . 23
Chapter Exercises . 23
Notes . 24

2
MAKING DECISIONS 25
Problem #3: Winning Team . 25

The Challenge . 26
Input . 26
Output . 26

Conditional Execution . 26
The Boolean Type . 27
Relational Operators . 28
The if Statement . 30

if by Itself . 31
if with elif . 32
if with else . 33

Solving the Problem . 35
Problem #4: Telemarketers . 37

The Challenge . 37
Input . 37
Output . 38

Boolean Operators . 38
or Operator . 38
and Operator . 39
not Operator . 40

Solving the Problem . 41
Comments . 42
Input and Output Redirection . 43

x Contents in Detail

Summary . 45
Chapter Exercises . 45
Notes . 45

3
REPEATING CODE: DEFINITE LOOPS 47
Problem #5: Three Cups . 47

The Challenge . 48
Input . 48
Output . 48

Why Loops? . 48
for Loops . 49
Nesting . 51
Solving the Problem . 54
Problem #6: Occupied Spaces . 56

The Challenge . 56
Input . 56
Output . 56

A New Kind of Loop . 56
Indexing . 57
Range for loops . 59
Range for Loops Through Indices . 61
Solving the Problem . 62
Problem #7: Data Plan . 63

The Challenge . 63
Input . 63
Output . 64

Looping to Read Input . 64
Solving the Problem . 64
Summary . 66
Chapter Exercises . 67
Notes . 67

4
REPEATING CODE: INDEFINITE LOOPS 69
Problem #8: Slot Machines . 69

The Challenge . 70
Input . 70
Output . 70

Exploring a Test Case . 70
A Limitation of for loops . 72
while loops . 73

Using while loops . 73
Nesting Loops in Loops . 77
Adding Boolean Operators . 78

Contents in Detail xi

Solving the Problem . 79
The Mod Operator . 82
F-Strings . 84
Problem #9: Song Playlist . 86

The Challenge . 86
Input . 86
Output . 87

String Slicing . 87
Solving the Problem . 90
Problem #10: Secret Sentence . 91

The Challenge . 91
Input . 92
Output . 92

Another Limitation of for loops . 92
while Loops Through Indices . 93
Solving the Problem . 95
break and continue . 96

break . 96
continue . 98

Summary . 99
Chapter Exercises . 99
Notes . 100

5
ORGANIZING VALUES USING LISTS 101
Problem #11: Village Neighborhood . 101

The Challenge . 102
Input . 102
Output . 102

Why Lists? . 102
Lists . 103
List Mutability . 106
Learning About Methods . 108
List Methods . 110

Adding to a List . 111
Sorting a List . 112
Removing Values from a List . 112

Solving the Problem . 114
Avoiding Code Duplication: Two More Solutions . 116

Using a Huge Size . 116
Building a List of Sizes . 117

Problem #12: School Trip . 118
The Challenge . 118
Input . 119
Output . 119
A Catch . 119

xii Contents in Detail

Splitting Strings and Joining Lists . 119
Splitting a String into a List . 120
Joining a List into a String . 120

Changing List Values . 121
Solving Most of the Problem . 122

Exploring a Test Case . 122
The Code . 123

How to Handle the Catch . 125
Exploring a Test Case . 125
More List Operations . 126
Finding the Index of the Maximum . 126
Solving the Problem . 127

Problem #13: Baker Bonus . 128
The Challenge . 128
Input . 128
Output . 129

Representing a Table . 129
Exploring a Test Case . 129
Nested Lists . 130

Solving the Problem . 132
Summary . 134
Chapter Exercises . 134
Notes . 135

6
DESIGNING PROGRAMS WITH FUNCTIONS 137
Problem #14: Card Game . 137

The Challenge . 138
Input . 138
Output . 138

Exploring a Test Case . 139
Defining and Calling Functions . 140

Functions Without Arguments . 141
Functions with Arguments . 141
Keyword Arguments . 143
Local Variables . 144
Mutable Parameters . 145
Return Values . 147

Function Documentation . 149
Solving the Problem . 150
Problem #15: Action Figures . 153

The Challenge . 153
Input . 154
Output . 154

Contents in Detail xiii

Representing the Boxes . 154
Top-Down Design . 154

Doing Top-Down Design . 155
The Top Level . 155
Task 1: Read Input . 157
Task 2: Check Whether All Boxes Are OK . 158
Task 3: Obtain a New List of Boxes with Only Left and Right Heights 160
Task 4: Sort Boxes . 162
Task 5: Determine Whether Boxes Are Organized . 163
Putting It All Together . 165

Summary . 168
Chapter Exercises . 168
Notes . 169

7
READING AND WRITING FILES 171
Problem #16: Essay Formatting . 172

The Challenge . 172
Input . 172
Output . 172

Working with Files . 172
Opening a File . 173
Reading from a File . 174
Writing to a File . 177

Solving the Problem . 179
Exploring a Test Case . 179
The Code . 180

Problem #17: Farm Seeding . 182
The Challenge . 182
Input . 183
Output . 183

Exploring a Test Case . 183
Top-Down Design . 187

The Top Level . 187
Task 1: Read Input . 188
Task 2: Identify Cows . 190
Task 3: Eliminate Grass Types . 191
Task 4: Choose Smallest-Numbered Grass Type . 193
Task 5: Write Output . 195

Summary . 200
Chapter Exercises . 200
Notes . 201

xiv Contents in Detail

8
ORGANIZING VALUES USING SETS AND DICTIONARIES 203
Problem #18: Email Addresses . 204

The Challenge . 204
Input . 204
Output . 205

Using a List . 205
Cleaning an Email Address . 205
The Main Program . 207

Efficiency of Searching a List . 208
Sets . 210
Set Methods . 212
Efficiency of Searching a Set . 213
Solving the Problem . 214
Problem #19: Common Words . 215

The Challenge . 215
Input . 216
Output . 216

Exploring a Test Case . 216
Dictionaries . 218
Indexing Dictionaries . 220
Looping Through Dictionaries . 222
Inverting a Dictionary . 225
Solving the Problem . 227

The Code . 227
Adding the Suffix . 229
Finding the kth Most Common Words . 229
The Main Program . 230

Problem #20: Cities and States . 231
The Challenge . 231
Input . 231
Output . 231

Exploring a Test Case . 232
Solving the Problem . 234
Summary . 235
Chapter Exercises . 236
Notes . 236

9
DESIGNING ALGORITHMS WITH COMPLETE SEARCH 237
Problem #21: Lifeguards . 238

The Challenge . 238
Input . 238
Output . 239

Exploring a Test Case . 239

Contents in Detail xv

Solving the Problem . 240
Firing One Lifeguard . 240
The Main Program . 241
Efficiency of Our Program . 242

Problem #22: Ski Hills . 244
The Challenge . 244
Input . 244
Output . 244

Exploring a Test Case . 244
Solving the Problem . 246

Determining the Cost of One Range . 246
The Main Program . 247

Problem #23: Cow Baseball . 249
The Challenge . 249
Input . 249
Output . 250

Using Three Nested Loops . 250
The Code . 250
Efficiency of Our Program . 252

Sorting First . 253
The Code . 253
Efficiency of Our Program . 255

Python Modules . 256
The bisect Module . 258
Solving the Problem . 261
Summary . 263
Chapter Exercises . 263
Notes . 263

10
BIG O AND PROGRAM EFFICIENCY 265
The Problem with Timing . 266
Big O . 268

Constant Time . 268
Linear Time . 269
Quadratic Time . 273
Cubic Time . 276
Multiple Variables . 277
Log Time . 279
n log n Time . 280
Handling Function Calls . 282
Summary . 284

Problem #24: Longest Scarf . 284
The Challenge . 284
Input . 284
Output . 285

xvi Contents in Detail

Exploring a Test Case . 285
Algorithm 1 . 285
Algorithm 2 . 286
Problem #25: Ribbon Painting . 288

The Challenge . 289
Input . 289
Output . 289

Exploring a Test Case . 289
Solving the Problem . 290
Summary . 293
Chapter Exercises . 293
Notes . 294

AFTERWORD 295

APPENDIX: PROBLEM CREDITS 297

INDEX 299

Contents in Detail xvii

ACKNOWLEDGMENTS

For real? I got to work with the No Starch Press people again? Barbara Yien
brought me aboard. Bill Pollock and Barbara trusted me with the pedagog-
ical approach of the book. Alex Freed, my developmental editor, was care-
ful, kind, and timely. I thank all those involved in the production of the
book, including my copyeditor Kim Wimpsett, production editor Kassie
Andreadis, and cover designer Rob Gale. I’m very lucky.

I thank the University of Toronto for offering me the time and space to
write. I thank Luke Sawczak, my technical reviewer, for his careful review of
the manuscript.

I thank everyone who contributed to the problems that I used in this
book and to competitive programming in general. I thank the DMOJ admin-
istrators for their support of my work.

I thank my parents for handling everything—everything. All they asked
me to do was learn.

I thank Doyali, my partner, for giving more of our time to a book and
for modeling the care it takes to write.

Finally, I thank all of you for reading this book and wanting to learn.

INTRODUCT ION

We use computers to accomplish tasks and
to solve problems. For example, perhaps

you’ve used a word processor to write an es-
say or letter. Perhaps you’ve used a spreadsheet

program to organize your finances. Perhaps you’ve
used an image editor to touch up a picture. It’s hard to
imagine doing these things these days without a com-
puter. We get a lot of mileage out of our word proces-
sors and spreadsheet programs and image editors.

Those programs are written as general-purpose tools to accomplish a
wide variety of tasks. Ultimately, though, they’re programs written by others,
not by us. What do we do when an off-the-shelf program doesn’t quite do
what we need?

In this book, our goal is to learn how to take control of our computer by
going beyond what can be done by an end user using preexisting programs.
We’re going to write our own programs. We won’t write a word processor
or a spreadsheet or an image editor. Those are huge tasks that, fortunately,
people have already done. Rather, we’re going to learn how to write small
programs to solve problems that we otherwise wouldn’t be able to solve. I
want to help you learn to communicate instructions to a computer; these

instructions will tell the computer how to carry out your plan for solving a
problem.

To give instructions to a computer, we write code in a programming lan-
guage. A programming language specifies the rules for the code we write
and dictates what the computer does in response to that code.

We’re going to learn to program in the Python programming language.
That’s a concrete skill that you’ll take away from this book, one that you can
put on your résumé. More than Python, though, you’ll learn the type of
thinking required to solve problems using a computer. Programming lan-
guages come and go. The way that we solve problems does not. I hope that
this book helps you on your way from end user to programmer and that you
have fun exploring what’s possible.

Online Resources
Supplementary resources for the book, including downloadable code and
additional exercises, are available at https://nostarch.com/learn-code-solving
-problems/.

Who This Book Is For
This book is for anyone who wants to learn how to write computer programs
to solve problems. I have three particular types of people in mind.

First, you may have heard about the Python programming language
and want to learn how to write code in Python. I’ll explain in the next sec-
tion why Python is a great choice as a first programming language to learn.
You’ll learn a lot about Python in this book, and you’ll be in a position to
read more advanced books on Python if that’s your next step.

Second, if you haven’t heard of Python or just want to learn what pro-
gramming is all about, don’t worry: this book is for you, too! This book will
teach you how to think about programming. Programmers have particular
ways of breaking down problems into manageable pieces and expressing so-
lutions to those pieces in code. At this level, it doesn’t matter what program-
ming language is being used, because the way that programmers think is not
tied to a particular language.

Finally, you may be interested in learning some other programming lan-
guage such as C++, Java, Go, or Rust. Much of what you learn as a byproduct
of learning Python will be useful when you study those other programming
languages. Plus, Python is certainly worth learning in its own right. Let’s
turn to why next.

Why Learn Python?
Years of teaching introductory programming have demonstrated to me that
Python is a great choice for a first programming language. Compared to
other languages, Python code is often more structured and readable. Once
you get used to it, you might agree that parts of it almost read like English!

xxii Introduction

https://nostarch.com/learn-code-solving-problems/
https://nostarch.com/learn-code-solving-problems/

Python also comes with many features that are not available in other lan-
guages, including powerful tools to manipulate and store data. We’ll use
many of these features throughout the book.

Not only is Python an excellent teaching language, but it’s also one of
the most in-demand programming languages in the world. Programmers
use it to write web applications, games, visualizations, machine learning soft-
ware, and more.

There we have it: a language well-suited for teaching that also carries a
professional advantage for you. I can’t ask for any more than that!

Installing Python
Before we can program in Python, we need to install it. Let’s do that now.

There are two major versions of Python: Python 2 and Python 3. Python
2 is an older version of Python and is no longer supported. In this book, we
use Python 3, so you’ll need to install Python 3 on your computer.

Python 3 was a major evolution from Python 2, but Python continues
to change even within version 3. The first version of Python 3 was Python
3.0. Then Python 3.1 was released, then Python 3.2, and so on. At the time
of writing, the latest version of Python 3 is Python 3.10. Versions as old as
Python 3.6 will suffice for this book, but I encourage you to install and work
with the latest version of Python.

Follow these steps for your operating system to install Python.

Windows
Windows doesn’t come with Python by default. To install it, go to https://
www.python.org/ and click Downloads. This should offer you the option of
downloading the latest version of Python for Windows. Click the link to
download Python and then run the installer. On one of the first screens
in the installation process, click either Add Python 3.10 to PATH or Add
Python to environment variables; this makes running Python much easier.
(If upgrading Python, you may need to click “Customize installation” to find
this option.)

macOS
macOS doesn’t come with Python 3 by default. To install it, go to https://
www.python.org/ and click Downloads. This should offer you the option of
downloading the latest version of Python for macOS. Click the link to down-
load Python and then run the installer.

Linux
Linux comes with Python 3, but it may be an older version of Python 3.
Installation instructions will vary depending on which Linux distribution
you’re using, but you should be able to install the newest version of Python
using your favorite package manager.

Introduction xxiii

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

How to Read This Book
Reading this book from cover to cover in one sitting is likely to teach you
very little. It would be like trying to learn piano by inviting someone into
your house to play piano for a few hours and then kicking them out, low-
ering the lights, and serenading. That’s not how a practice-based skill is
learned.

Here is my advice for making your way through the book:

Space out your work. Massing your practice into a small number of
sessions is far less effective than spacing your practice out. When you
feel tired, take a break. No one can tell you how much time to work be-
fore taking a break. No one can tell you how long it should take you to
finish the book. It’s up to your own mind and body.

Pause to test your understanding. Reading about something can give
us the illusion that we understand it better than we do. Applying the
material forces what we know and what we think we know into align-
ment. For that reason, at key points in each chapter, I’ve included
multiple-choice “concept check” questions that ask you to make a pre-
diction. Take these seriously! Read each question and commit to a re-
sponse without checking anything using your computer. Then, read my
answer and explanation. This is an opportunity to confirm that you’re
on the right track. If you answer incorrectly or answer correctly but for
the wrong reason, take time to remedy your understanding before con-
tinuing. This could involve playing around a little more with the relevant
Python feature being discussed, rereading material from the book, or
searching for additional explanations and examples online.

Practice programming. Making predictions while you read will help
solidify your understanding of key concepts. But you need more than
that to become an adept problem-solver and programmer. You need
to practice using Python to solve new problems, whose solutions you
haven’t read about in the book. Each chapter concludes with a list of
practice exercises. Please work through as many of these exercises as
you can.

Learning how to program takes time. Don’t be discouraged if you pro-
gress slowly or make a lot of mistakes. Don’t be intimidated by any bluster-
ing peacocks that you might encounter online. Surround yourself with peo-
ple and resources that can help you learn.

Using Programming Judges
I’ve decided to structure this book around problems from programming judge
websites. A programming judge website offers a repository of programming
problems that can be solved by programmers around the world. You submit
your solution—your Python code—and the site runs tests on your code. If
your code produces the correct answer for each test case, then it’s likely

xxiv Introduction

that your solution is correct. If instead your code produces the wrong an-
swer for one or more test cases, then your code is incorrect, and revisions
are required.

There are several reasons why I think programming judges are particu-
larly suitable sites for learning programming:

Rapid feedback Rapid, targeted feedback is crucial in the early stages
of learning to program. Programming judges provide feedback as soon
as you submit your code.

High-quality problems I find the problems on programming judges
to be high quality. Many problems are originally from competitive pro-
gramming contests. Other problems are written by individuals who are
associated with a programming judge or simply want to help others
learn. See the Problem Credits appendix for the source of each problem
that we’ll study.

Quantity of problems The programming judges contain hundreds of
problems. I’ve selected only a small number for this book. If you need
more practice, trust me: the programming judges can provide it.

Community features The programming judges enable users to read
and respond to comments. If you’re stuck on a problem, browse the
comments for hints dropped there by others. If you’re still stuck, con-
sider posting a comment of your own asking for help. Once you’ve suc-
cessfully solved a problem, your learning is not done! Many program-
ming judges allow you to view the code that others have submitted.
Dig through a few such submissions to see how they compare to yours.
There are always multiple ways to solve a problem. Perhaps your way is
most intuitive to you right now, but opening yourself to other possibili-
ties is an important step toward programming mastery.

Making Your Programming Judge Accounts
We’ll use several programming judge websites throughout the book. That’s
because each programming judge hosts some problems that are not found
on other programming judges; we need multiple programming judges to
cover all of the problems that I’ve chosen.

Here are the programming judges that we’ll use:

Judge URL

DMOJ https://dmoj.ca/
Timus https://acm.timus.ru/
USACO http://usaco.org/

Each programming judge requires that you create an account before
you can submit code. Let’s go through the process of creating your accounts
now and learn a little about the judges while we’re at it.

Introduction xxv

www.dmoj.ca
https://acm.timus.ru
www.usaco.org

The DMOJ Judge
The DMOJ judge is the judge we’ll use most often in the book. More than
for any other judge, it’s worth your time exploring the DMOJ website and
learning about what the judge offers.

To create an account on the DMOJ judge, go to https://dmoj.ca/ and click
Sign up. On the registration page that comes up, enter your username, pass-
word, and email address. This page also allows you to set your default pro-
gramming language. We’ll exclusively be using the Python programming
language in this book, so I suggest clicking Python 3 here. Click Register! to
create your account. Once registered, you can use your username and pass-
word to log in to DMOJ.

Each problem in the book begins by indicating the judge website where
the problem can be found and the problem code that you should use to
access it. For example, the first problem that we’ll work on in Chapter 1
is found on DMOJ and is problem dmopc15c7p2. To find this problem on
DMOJ, click Problems, type dmopc15c7p2 in the search box, and click Go.
You should see the problem as the only result. If you click the problem
title, you should see the problem itself.

When you’re ready to submit Python code for a problem, find the prob-
lem and click Submit solution. On the resulting page, paste your Python
code into the text box and click Submit!. Your code will then be judged and
the results shown.

The Timus Judge
To create an account on the Timus judge, go to https://acm.timus.ru/ and
click Register. On the registration page that comes up, enter your name,
password, email address, and other requested information. Click Register
to create your account. Then, check your email for a message from Timus
containing your judge ID. You’ll need your judge ID whenever you submit
Python code.

There’s currently no way to set your default programming language, so
be sure to choose the available version of Python 3 whenever you submit
Python code.

We use the Timus judge only once, in Chapter 6, so I won’t say any more
about it here.

The USACO Judge
To create an account on the USACO judge, go to http://usaco.org/ and click
Register for New Account. On the registration page that comes up, enter
your username, email address, and other requested information. Click
Submit to create your account. Then, check your email for a message from
USACO containing your password. Once you have your password, you can
use your username and password to log in to USACO.

xxvi Introduction

www.dmoj.ca
https://acm.timus.ru
www.usaco.org

There’s currently no way to set your default programming language,
so be sure to choose the available version of Python 3 whenever you sub-
mit Python code. You’ll also need to choose the file containing your Python
code rather than paste your code into a text box.

We won’t be using the USACO judge until Chapter 7, so I won’t say any
more about it here.

About This Book
Each chapter in the book is driven by two or three problems from a pro-
gramming judge website. In fact, I start each chapter by posing our first
problem, before teaching any new Python at all! My goal in doing this is to
motivate you to want to learn the Python features that we need to solve the
problem. Don’t worry if you’re not sure how to solve a problem after read-
ing its description. (If you can’t solve the problem yet, then you’re reading
the right book!) If you understand what the problem is asking you to do,
then you’re all set. We’re going to learn Python and solve the problem to-
gether. Subsequent problems in the chapter may introduce further Python
features or ask us to extend what we learned in the first problem. Each chap-
ter concludes with exercises that you should solve on your own to practice
what you just learned.

Here’s a rundown of what we’ll learn in each chapter:

Chapter 1: Getting Started There are quite a few introductory con-
cepts that we’ll need to learn before we can solve any problems with
Python. In this chapter, we’ll learn these concepts, including entering
Python code, working with strings and numbers, using variables, read-
ing input, and writing output.

Chapter 2: Making Decisions In this chapter, we’ll learn about if
statements, which allow our programs to decide what to do based on
whether specific conditions are true or false.

Chapter 3: Repeating Code: Definite Loops Many programs continue
running as long as there is work to do. In this chapter, we’ll learn about
the for loop, which lets our programs process each piece of input until
the job is done.

Chapter 4: Repeating Code: Indefinite Loops Sometimes we don’t
know in advance how many times our program should repeat some spec-
ified behavior. for loops are not appropriate for these kinds of prob-
lems. In this chapter, we’ll learn about the while loop, which repeats
code as long as a specific condition is true.

Chapter 5: Organizing Values Using Lists A Python list allows us to
use a single name to refer to a whole sequence of data. Using a list helps
us organize our data and leverage the powerful list operations (such as
sorting and searching) that Python provides. In this chapter, we’ll learn
all about lists.

Introduction xxvii

Chapter 6: Designing Programs with Functions A large program,
with lots of code, can become unwieldy if we don’t organize it well. In
this chapter, we’ll learn about functions, which help us design programs
composed of small, self-contained chunks of code. Using functions leads
to programs that are much easier to understand and modify. We’ll also
learn about top-down design, an approach to designing programs with
functions.

Chapter 7: Reading and Writing Files Files are convenient for provid-
ing data to our programs or obtaining data from our programs. In this
chapter, we’ll learn how to read data from and write data to files.

Chapter 8: Organizing Values Using Sets and Dictionaries As we be-
gin to solve increasingly challenging problems, it’s important that we
think about how our data is stored. In this chapter, we’ll learn about two
new ways to store data using Python: using a set and using a dictionary.

Chapter 9: Designing Algorithms with Complete Search Program-
mers don’t start from scratch for each problem they solve. Instead, they
think about whether a general solution pattern—a type of algorithm—can
be used to solve it. In this chapter, we’ll learn about complete-search
algorithms, which can be used to solve a wide range of problems.

Chapter 10: Big O and Program Efficiency Sometimes we’ll manage
to write a program that does the right thing but does so too slowly to
be useful in practice. In this chapter, we’ll learn how to communicate
about the efficiency of programs, and we’ll learn about tools we can use
to write more efficient code.

xxviii Introduction

1
GETT ING STARTED

Programming involves writing code to solve
a problem. As such, I want to solve prob-

lems with you from the outset. That is, rather
than learning Python concept by concept and

then solving a problem, we’re going to use a problem
to dictate the concepts we need to learn.

In this chapter, we’ll solve two problems: determining the number of
words in a line (like the word-count feature in a word processor) and calcu-
lating the volume of a cone. Solving these problems requires a tour of quite
a few Python concepts. You may feel that you need more details to fully un-
derstand some of what I introduce here and how it all fits together in the
design of a Python program. Don’t worry: we’ll revisit and elaborate on the
most important concepts in later chapters.

What We’ll Be Doing
As described in the introduction, we’ll be solving competitive programming
problems using the Python programming language. The competitive pro-
gramming problems can each be found on an online judge website. I assume
that you’ve followed the instructions in the introduction to install Python
and make your judge accounts.

For each problem, we’ll write a program to solve it. Each problem spec-
ifies the kind of input that our program will be provided, and the kind of
output (or result) that is expected. Our program correctly solves the problem
if it can take any valid input and produce the correct output.

In general, there will be millions or billions of possible inputs. Each
such input is referred to as a problem instance. For example, in the first prob-
lem that we’ll solve, the input is a line of text, like hello there or bbaabbb aa

abab. Our task will be to output the number of words in the line. One of
the most powerful ideas in programming is that often a small amount of
general-purpose code can solve a seemingly endless number of problem in-
stances. Whether the line has 2 words or 3 or 50, it won’t matter. Our pro-
gram will get it right every time.

Our programs will perform three tasks:

Read input We need to determine the specific instance of the problem
that we’re solving, so we first read the provided input.

Process We process the input to determine the correct output.

Write output Having solved the problem, we produce the desired
output.

The boundaries between these steps may not always be crisp—we might
have to interleave some processing with producing some output, for ex-
ample—but it will be helpful to keep these three broad steps in mind.

You likely use programs on a daily basis that follow this input-process-
output model. Consider a calculator program: you type in a formula (the
input), the program crunches your numbers (process), and the program dis-
plays the answer (output). Or consider a web search engine: you type in a
search query (input), the search engine determines the most relevant results
(process), and it displays them (output).

Contrast these kinds of programs with interactive programs, which fuse
input, processing, and output. For example, I’m typing this book using a
text editor. When I type a character, the editor responds by adding that
character to my document. It doesn’t wait for me to type the entire docu-
ment before displaying it to me; it interactively displays it as I build it. We
won’t be writing interactive programs in this book. If you’re interested in
writing such programs after studying this book, you’ll be happy to hear that
Python is certainly up for the task.

The text for each problem is found both here and on the online judge.
However, the text won’t match, because I’ve rewritten it for purposes of con-
sistency throughout the book. Don’t worry: what I’ve written conveys the
same information as the official problem statement.

The Python Shell
For each problem in the book, we want to write a program and save it in a
file. But that assumes we know what program to write! For many of the

2 Chapter 1

problems in the book, we’ll need to learn some new Python features before
we can solve the problem.

The best way to experiment with Python features is by using the Python
shell. It’s an interactive environment where you type some Python code and
press ENTER, and Python shows you the result. Once we learn enough to
solve the current problem, we’ll stop using the shell and start typing our so-
lution in a text file instead.

To begin, create a new folder on your desktop called programming. We’ll
use that folder to store all of the work that we do for this book.

Now, we’ll navigate to this programming folder and launch the Python
shell. Follow these steps for your operating system whenever you’d like to
start the Python shell.

Windows
OnWindows, do the following:

1. Hold down SHIFT and right-click your programming folder.

2. From the resulting menu, clickOpen PowerShell window here. If
that choice isn’t there, clickOpen command window here.

3. At the bottom of the resulting window, you’ll see a line that ends
with a greater-than sign (>). This is your operating system prompt,
and it’s waiting for you to type a command. You type operating
system commands here, not Python code. Be sure to press ENTER
after each command.

4. You’re now in your programming folder. You can type dir (for direc-
tory) if you’d like to see what’s there. You shouldn’t see any files yet,
because we haven’t created any.

5. Now, enter python to start the Python shell.

When you start the Python shell, you should see something like this:

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37)

[MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

What’s important here is that you see a Python version of at least 3.6 in
the first line. If you have an older version, especially 2.x, or if Python doesn’t
load at all, please install a recent version of Python following the instructions
in the introduction.

At the bottom of this window, you’ll see a >>> Python prompt. This is
where you type Python code. Never type the >>> symbols yourself. Once
you’re done programming, you can press CTRL-Z and then press ENTER
to quit.

Getting Started 3

macOS
On macOS, do the following:

1. Open Terminal. You can do that by pressing COMMAND-spacebar,
typing terminal, and then double-clicking the result.

2. In the resulting window, you’ll see a line that ends with a dollar sym-
bol ($). This is your operating system prompt, and it’s waiting for you
to type a command. You type operating system commands here, not
Python code. Be sure to press ENTER after each command.

3. You can enter the ls command to obtain a list of what’s in the cur-
rent folder. Your Desktop should be listed there.

4. Enter cd Desktop to navigate to your Desktop folder. The cd command
stands for change directory; directory is another name for folder.

5. Enter cd programming to navigate to your programming folder.

6. Now, enter python3 to start the Python shell. (You could also try en-
tering python, without the 3, but that might start up an older ver-
sion of Python 2. Python 2 is not suitable for working through this
book.)

When you start the Python shell, you should see something like this:

Python 3.10.1 (v3.10.1:2cd268a3a9, Dec 6 2021, 14:28:59)

[Clang 13.0.0 (clang-1300.0.29.3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

What’s important here is that you see a Python version of at least 3.6 in
the first line. If you have an older version, especially 2.x, or if Python doesn’t
load at all, please install a recent version of Python following the instructions
in the introduction.

At the bottom of this window, you’ll see a >>> Python prompt. This is
where you type Python code. Never type the >>> symbols yourself. Once
you’re done programming, you can press CTRL-D to quit.

Linux
On Linux, do the following:

1. Right-click your programming folder.

2. In the resulting menu, click Open in Terminal. (You can also open
the terminal and navigate to your programming folder if you’re more
comfortable with that.)

3. At the bottom of the resulting window, you’ll see a line that ends
with a dollar sign ($). This is your operating system prompt, and it’s
waiting for you to type a command. You type operating system com-
mands here, not Python code. Be sure to press ENTER after each
command.

4 Chapter 1

4. You’re now in your programming folder. You can type ls if you’d
like to see what’s there. You shouldn’t see any files yet, because we
haven’t created any.

5. Now, enter python3 to start the Python shell. (You could also try en-
tering python, without the 3, but that might start up an older ver-
sion of Python 2. Python 2 is not suitable for working through this
book.)

When you start the Python shell, you should see something like this:

Python 3.10.1 (main, Dec 21 2021, 18:59:49)

[GCC 7.5.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

What’s important here is that you see a Python version of at least 3.6 in
the first line. If you have an older version, especially 2.x, or if Python doesn’t
load at all, please install a recent version of Python following the instructions
in the introduction.

At the bottom of this window, you’ll see a >>> Python prompt. This is
where you type Python code. Never type the >>> symbols yourself. Once
you’re done programming, you can press CTRL-D to quit.

Problem #1: Word Count
Now it’s time for our first problem! We’re going to use Python to write a
little word-count program. We’ll learn how to read input from the user, pro-
cess the input to solve the problem, and output the result. We’ll also learn
how to manipulate text and numbers in our programs, make use of built-in
Python operations, and store intermediate results on our way to the solu-
tion.

This is DMOJ problem dmopc15c7p2.

The Challenge
Count the number of words provided. For this problem, a word is any se-
quence of lowercase letters. For example, hello is a word, but so are non-
English “words” like bbaabbb.

Input
The input is one line of text, consisting of lowercase letters and spaces.
There is exactly one space between each pair of words, and there are no
spaces before the first word or after the last word.

The maximum length of the line is 80 characters.

Output
Output the number of words in the input line.

Getting Started 5

Strings
Values are a fundamental building block of Python programs. Each value has
a type, and the type determines the operations that can be performed on the
value. In the Word Count problem, we’re working with a line of text. Text
is stored as a string value in Python, so we’ll need to learn about strings. To
solve the problem, we output the number of words in the text, so we also
need to learn about numeric values. Let’s begin with strings.

Representing Strings
A string is the Python type that’s used to store and manipulate text. To write
a string value, we place its characters between single quotes. Follow along in
the Python shell:

>>> 'hello'

'hello'

>>> 'a bunch of words'

'a bunch of words'

The Python shell echoes each string that I’ve typed.
What happens when our string contains a single quote as one of its char-

acters?

>>> 'don't say that'

File "<stdin>", line 1

'don't say that'

^

SyntaxError: invalid syntax

The single quote in the word don't terminates the string. The rest of the
line, t say that', therefore doesn’t make sense, and that’s what generates the
syntax error. A syntax errormeans that we have violated the rules of Python
and have not written valid Python code.

To fix this, we can take advantage of the fact that double quotes can also
be used to delimit strings:

>>> "don't say that"

"don't say that"

Unless the string in question has a single quote, I won’t use double
quotes in this book.

6 Chapter 1

String Operators
We can use a string to hold the text whose words we want to count. To count
the words—or to do anything else with strings—we need to learn how to work
with strings.

Strings come with a rich variety of operations that we can perform.
Some of them use special symbols between their operands. For example,
the + operator is used for string concatenation:

>>> 'hello' + 'there'

'hellothere'

Oops—we need a space between those two words. Let’s add one to the
end of the first string:

>>> 'hello ' + 'there'

'hello there'

There’s also the * operator, which replicates a string a specified number
of times:

>>> '-' * 30

'------------------------------'

That 30 there is an integer value. I’ll have more to say about integers
shortly.

CONCEPT CHECK

What is the output of the following code?

>>> '' * 3

A. ''''''

B. ''

C. This code produces a syntax error (invalid Python code)

Answer: B. '' is the empty string—a string of zero characters. Repeating an
empty string three times is still an empty string!

Getting Started 7

String Methods
A method is an operation specific to a type of value. Strings have a large num-
ber of methods. For example, there’s a method called upper, which produces
the uppercase version of a string:

>>> 'hello'.upper()

'HELLO'

The information we get back from a method is known as the method’s
return value. For example, we could say for the previous example that upper
returned the string 'HELLO'.

Performing a method on a value is known as calling the method. Call-
ing a method involves placing the dot operator (.) between the value and
the method name. It also requires parentheses after the method name. For
some methods, we leave those parentheses empty, as when calling upper.

For other methods, we can optionally include information there. Still
other methods require information and won’t work at all without it. Infor-
mation we include when calling a method is referred to as the method’s
arguments.

For example, strings have a strip method. If called with no arguments,
strip removes all leading and trailing spaces from a string:

>>> ' abc'.strip()

'abc'

>>> ' abc '.strip()

'abc'

>>> 'abc'.strip()

'abc'

But we can also call it with a string as the argument. If we do, that ar-
gument determines which characters are stripped from the beginning and
the end:

>>> 'abc'.strip('a')

'bc'

>>> 'abca'.strip('a')

'bc'

>>> 'abca'.strip('ac')

'b'

Let’s talk about one more string method: count. We pass it a string ar-
gument, and it tells us how many occurrences of that argument are found in
our string:

>>> 'abc'.count('a')

1

>>> 'abc'.count('q')

0

8 Chapter 1

>>> 'aaabcaa'.count('a')

5

>>> 'aaabcaa'.count('ab')

1

If occurrences of the argument overlap, only the first counts:

>>> 'ababa'.count('aba')

1

Unlike the other methods I’ve described, count is directly useful to our
Word Count problem.

Think of a string like 'this is a string with a few words'. Notice that
a space comes after each word. In fact, if you had to count the number of
words by hand, you might use the spaces to tell you where each word ends.
What if we count the number of spaces in a string? To do that, we can pass a
string consisting of a single space character to count. It looks like this:

>>> 'this is a string with a few words'.count(' ')

7

We get a value of 7. That’s not quite the number of words—the string has
eight words—but we’re close. Why are we getting 7 instead of 8?

The reason is that each word has a space after it except the last word.
Counting the spaces therefore fails to account for the final word. To remedy
that, we need to learn how to handle numbers.

Integer and Floating-Point Numbers
An expression is made up of values and operators. We’ll now see how to write
numeric values and combine them with operators.

There are two different Python types that represent numbers: integers
(with no decimal part) and floating-point numbers (with a decimal part).

We write integer values as numbers with no decimal point. Here are
some examples:

>>> 30

30

>>> 7

7

>>> 1000000

1000000

>>> -9

-9

A value on its own is the simplest kind of expression.
The familiar mathematical operators work on integers. We have + for

addition, - for subtraction, and * for multiplication. We can use these opera-
tors to write more complicated expressions.

Getting Started 9

>>> 8 + 10

18

>>> 8 - 10

-2

>>> 8 * 10

80

Notice the spaces around the operators. While 8+10 and 8 + 10 are the
same as far as Python is concerned, the latter makes the expression easier
for us humans to read.

Python has two division operators, not one! The // operator performs
integer division, which throws away any remainder and rounds the result
down:

>>> 8 // 2

4

>>> 9 // 5

1

>>> -9 // 5

-2

If you want the remainder of the division, use the mod operator, written
as %. For example, dividing 8 by 2 leaves no remainder:

>>> 8 % 2

0

Dividing 8 by 3 leaves a remainder of 2:

>>> 8 % 3

2

The / operator, in contrast to //, doesn’t do any rounding:

>>> 8 / 2

4.0

>>> 9 / 5

1.8

>>> -9 / 5

-1.8

These result values are not integers! They have a decimal point and be-
long to a different Python type called float (for “floating-point numbers”).
You can write float values by including a decimal point:

>>> 12.5 * 2

25.0

We’ll focus on integers for now and return to floating-point numbers
when we solve Cone Volume later in this chapter.

10 Chapter 1

When we use multiple operators in an expression, Python uses prece-
dence rules to determine the order that operators are applied. Each oper-
ator has a precedence. Just like when we evaluate a mathematical expres-
sion on paper, Python performs multiplications and divisions (higher prece-
dence) before additions and subtractions (lower precedence):

>>> 50 + 10 * 2

70

Again, like on paper, operations inside parentheses have the highest
precedence. We can use this to force Python to perform operations in our
desired order:

>>> (50 + 10) * 2

120

Programmers often add parentheses even when not technically required.
That’s because Python has many operators, as we’ll see, and keeping track of
their precedence is error-prone and not something that programmers typi-
cally do.

If you’re wondering whether integer values and float values have meth-
ods, just like strings, they do! But they aren’t all that useful. For example,
there’s a method that tells us how much of the computer’s memory is taken
up by an integer. The bigger the integer, the more memory it requires:

>>> (5).bit_length()

3

>>> (100).bit_length()

7

>>> (99999).bit_length()

17

We need the parentheses around the integers; otherwise, the dot opera-
tor gets confused with a decimal point, and we get a syntax error.

Variables
We now know how to write string and numeric values. We’ll also find it valu-
able to be able to store them so we can access them later. In Word Count,
it would be convenient to be able to store the line of words somewhere and
then count the number of words.

Assignment Statement
A variable is a name that refers to a value. Whenever we later use a variable’s
name, it gets substituted by what that variable refers to. To make a variable
refer to a value, we use the assignment statement. An assignment statement
consists of a variable, an equal sign (=), and an expression. Python evaluates

Getting Started 11

the expression and makes the variable refer to the result. Here’s an example
assignment statement:

>>> dollars = 250

Now, dollars is substituted by 250 whenever we use it:

>>> dollars

250

>>> dollars + 10

260

>>> dollars

250

A variable refers to only one value at a time. Once we use an assignment
statement to make a variable refer to another value, it no longer refers to the
old value:

>>> dollars = 250

>>> dollars

250

>>> dollars = 300

>>> dollars

300

We can have as many variables as we like. Large programs typically use
hundreds of variables. Here’s an example of using two variables:

>>> purchase_price1 = 58

>>> purchase_price2 = 9

>>> purchase_price1 + purchase_price2

67

Notice that I’ve chosen variable names that give some sense of what
they’re storing. These two variables, for example, have to do with the prices
of two purchases. Using variable names p1 and p2 would be easier to type,
but in a few days we’d probably forget what the names mean!

We can make variables refer to strings, too:

>>> start = 'Monday'

>>> end = 'Friday'

>>> start

'Monday'

>>> end

'Friday'

12 Chapter 1

As with variables that refer to numbers, we can use these in larger ex-
pressions:

>>> start + '-' + end

'Monday-Friday'

Python variable names should start with a lowercase letter and then can
contain additional letters, underscores to separate words, and numbers.

Changing Variable Values
Suppose we have a variable dollars that refers to value 250:

>>> dollars = 250

Now we want to increase the value so that dollars refers to 251. This
won’t work:

>>> dollars + 1

251

The result is 251, but that value is gone, not stored anywhere:

>>> dollars

250

What we need is an assignment statement that captures the result of
dollars + 1:

>>> dollars = dollars + 1

>>> dollars

251

>>> dollars = dollars + 1

>>> dollars

252

It’s common for learners to think of the assignment symbol = as equal-
ity. But don’t do that! The assignment statement is a command to make a
variable refer to the value of an expression, not a claim that two entities are
equal.

CONCEPT CHECK

What is the value of y after the execution of the following code?

(continued)

Getting Started 13

>>> x = 37
>>> y = x + 2
>>> x = 20

A. 39

B. 22

C. 35

D. 20

E. 18

Answer: A. There’s only one assignment to y, and it makes y refer to the value
39. The x = 20 assignment statement changes what x refers to, from 37 to 20, but
this has no impact on the value referred to by y.

Counting the Words Using a Variable
Let’s take stock of our progress toward solving the Word Count problem:

• We know about strings, and we can use a string to store the line of
words.

• We know about the string count method, which we can use to count
the number of spaces in the line of words. That gives us one less
than the output value that we need.

• We know about integers, whose + operator we can use to add 1 to a
number.

• We know about variables and the assignment statement, which help
us hold on to values so that we don’t lose them.

Putting all of this together, we can make a variable refer to a string and
then count the number of words:

>>> line = 'this is a string with a few words'

>>> total_words = line.count(' ') + 1

>>> total_words

8

The line and total_words variables aren’t required here; here’s how we
could do it without them:

>>> 'this is a string with a few words'.count(' ') + 1

8

14 Chapter 1

But using variables to capture intermediate results is a good practice
for keeping code readable. Once our programs get longer than a few lines,
variables will be indispensable.

Reading Input
One problem with the code that we’ve written is that it works only on the
particular string that we’ve typed in. It tells us that there are eight words
in 'this is a string with a few words', but that’s all it can do. If we want to
know how many words are in a different string, we’ll have to replace the cur-
rent string with a new one. To solve Word Count, though, we need our pro-
gram to work on any string provided as input to our program.

To read a line of input, we use the input function. A function is similar to
a method: we call it, perhaps with some arguments, and it returns a value to
us. One difference between a method and a function is that a function does
not use the dot operator. All information passed to functions is through ar-
guments.

Here’s an example of calling the input function and then typing some
input—in this case, the word testing:

>>> input()

testing

'testing'

When you type input() and press ENTER, you don’t get a >>> prompt
back. Instead, Python waits for you to type something on the keyboard and
press ENTER. The input function then returns the string you typed. As usual,
if we don’t store that string anywhere, then it’s lost. Let’s use an assignment
statement to store what we type:

>>> result = input()

testing

>>> result

'testing'

>>> result.upper()

'TESTING'

Notice in the last line that I’ve used the upper method on the value re-
turned by input. This is allowed because input returns a string, and upper is a
string method.

Writing Output
You’ve seen that typing expressions at the Python shell causes their values to
be displayed:

>>> 'abc'

'abc'

>>> 'abc'.upper()

Getting Started 15

'ABC'

>>> 45 + 9

54

That’s just a convenience provided by the Python shell. It assumes that
if you type an expression, then you probably want to see its value. But when
running a Python program outside of the Python shell, this convenience is
gone. Instead, we must explicitly use the print function whenever we want to
output something. The print function works from the shell, too:

>>> print('abc')

abc

>>> print('abc'.upper())

ABC

>>> print(45 + 9)

54

Notice that strings output by print don’t have quotes around them.
That’s good—we probably don’t want to include quotes when communicat-
ing with users of our programs anyway!

One nice feature of print is that you can supply as many arguments as
you like, and they all get output with separating spaces:

>>> print('abc', 45 + 9)

abc 54

Solving the Problem: A Complete Python Program
We’re now ready to solve Word Count by writing a complete Python pro-
gram. Exit the Python shell and you’ll be back at your operating system com-
mand prompt.

Launching a Text Editor
We’ll use a text editor to write our code. Follow the steps for your operating
system.

Windows
OnWindows, we’ll use Notepad, a bare-bones text editor. At the operating
system command prompt, navigate to your programming folder if you’re not
already there. Then type notepad word_count.py and press ENTER. Since the
word_count.py file doesn’t exist, Notepad will ask you whether you’d like to
create a new word_count.py file. Click Yes and you’ll be ready to type your
Python program.

macOS
On macOS, you can use whichever text editor you like. One editor that you
likely already have installed is TextEdit. At the operating system command

16 Chapter 1

prompt, navigate to your programming folder if you’re not already there.
Then type the following two commands, pressing ENTER after each one:

$ touch word_count.py

$ open -a TextEdit word_count.py

The touch command creates an empty file so that your text editor can
open it. Now you’re ready to type your Python program.

Linux
On Linux, you can use whichever text editor you like. One editor that you
likely already have installed is gedit. At the operating system command
prompt, navigate to your programming folder if you’re not already there.
Then type gedit word_count.py and press ENTER. Now you’re ready to type
your Python program.

The Program
With your text editor loaded, you can type the code of our Python program.
The code is in Listing 1-1.

¶ line = input()

· total_words = line.count(' ') + 1

¸ print(total_words)

Listing 1-1: Solving Word Count

When entering that code, don’t enter the ¶, ·, or ¸. Those are there to
help us walk through the code and are not part of the code itself.

We begin by acquiring the line of text from the input and assigning it to
a variable ¶. That gives us a string, on which we can use the count method.
We add 1 to the count of spaces to account for the final word in the string,
and we use the variable total_words to refer to that result ·. The last thing to
do is output the value referred to by total_words ¸.

Be sure to save the file once you’ve finished typing the code.

Running the Program
To run the program, we’ll use the python command from our operating sys-
tem command prompt. As we’ve seen, entering python by itself runs the
Python shell, but we don’t want that this time. Instead, we want to tell Python
to run the program in word_count.py. To do that, navigate to your program-
ming folder, and enter python word_count.py. Here and throughout the book,
please use the python3 command instead of the python command if needed.

Your program is now waiting at the input prompt for you to type some-
thing. Type a few words, press ENTER, and you should see our program
working correctly. For example, type the following:

this is my first python program

Getting Started 17

You should see the program produce 6 as the output.
If instead you see a Python error, go back over the code and make sure

you’ve typed it in exactly. Python requires precision. Even a missing paren-
thesis or single quote will lead to an error.

Don’t be frustrated if it takes you some time to get this program to run.
Getting a first program to run can require a lot of work. We have to be able
to type a program into a file, invoke Python to run that program, and fix any
errors resulting from an incorrect program. But the procedure for running
programs doesn’t change, no matter how complex the program, so time you
spend here will be well worth it as you work through the rest of the book.

Submitting to the Judge
Congratulations! I hope it was satisfying to run your first Python program
on your computer. But how do we know this program is correct? Does it
work for all possible strings? We can test it on a few more strings, but the
way we’ll gain even more confidence in the correctness of our code is by
submitting it to the online judge. The judge automatically runs a bunch of
tests on our code and tells us whether we passed the tests or if something is
wrong.

Go to https://dmoj.ca/ and log in. (If you don’t have a DMOJ account,
please create one following the instructions in the introduction.) Click Prob-
lems, and search for the Word Count problem code dmopc15c7p2. Click the
search result to load the problem—it’s called Not a Wall of Text rather than
Word Count.

You should then see the text of the problem, as written by the problem
author. Click Submit Solution, and paste our code into the text area. Be
sure to select Python 3 as the programming language. Finally, click the Sub-
mit button.

DMOJ runs tests on our code and shows us the results. For each test
case, you’ll see a status code. AC stands for accepted and is what you want
to see for each test case. Other codes include WA (wrong answer) and TLE
(time limit exceeded). If you see one of these, double-check the code that you
pasted, making sure it exactly matches the code from your text editor.

Assuming all test cases are accepted, we should see that our score is
100/100 and that we’ve earned 3 points for our work.

For each problem, we’ll follow the approach that we used to solve Word
Count. First, we’ll explore using the Python shell, learning new Python fea-
tures as needed. Then, we’ll write a program that solves the problem. We’ll
test that program on our computer by supplying our own test cases. Finally,
we’ll submit the code to the judge. If any test cases fail, we’ll look over our
code again and fix the problem.

Problem #2: Cone Volume
In Word Count, we needed to read a string from the input. In this problem,
we’ll need to read integers from the input. Doing so requires an extra step to

18 Chapter 1

https://dmoj.ca/

produce an integer from a string. We’ll also learn a little more about doing
math in Python.

This is DMOJ problem dmopc14c5p1.

The Challenge
Calculate the volume of a right circular cone.

Input
The input consists of two lines of text. The first line contains integer r, the
radius of the cone. The second line contains integer h, the height of the
cone. Both r and h are between 1 and 100. (That is, the minimum value for r
and h is 1, and the maximum value is 100.)

Output
Output the volume of the right circular cone with radius r and height h. The
formula to calculate the volume is (πr2h)/3.

More Math in Python
Say we have r and h variables referring to a radius and height, respectively:

>>> r = 4

>>> h = 6

Now we want to evaluate (πr2h)/3. Substituting a radius of 4 and height
of 6, we have (π ∗ 42 ∗ 6)/3. Using a value of 3.14159 for π, a calculator gives a
result of 100.531. How can we do this in Python?

Accessing Pi
To access the value of π, we’ll use a suitable variable. Here’s an assignment
statement to PI with a lot of accuracy in its value:

PI = 3.141592653589793

This is more a constant than a variable, since we’ll never want to change
the value of PI in our code. It’s Python convention to use uppercase letters
for such variables, as I’ve done here.

Exponents
Looking back at our formula, (πr2h)/3, the only thing we haven’t talked
about yet is how to perform the r2 part. Since r2 is the same as r ∗ r, we can
use multiplication rather than exponentiation.

Getting Started 19

>>> r

4

>>> r * r

16

But it’s more transparent to use exponentiation directly. We always want
to write code that’s as clear as possible. Besides, one day you might have to
calculate larger exponents, where repeated multiplication becomes increas-
ingly unwieldy. Python’s exponentiation operator is **:

>>> r ** 2

16

Here’s the complete formula:

>>> (PI * r ** 2 * h) / 3

100.53096491487338

Great—that’s close to the 100.531 result we expected!
Notice that we’re producing a floating-point number here. As we dis-

cussed in “Integer and Floating-Point Numbers” in this chapter, the / divi-
sion operator produces a floating-point result.

Converting Between Strings and Integers
We’re ultimately going to have to read the radius and height as input. We’ll
then use those values to calculate the volume. Let’s give it a try:

>>> r = input()

4

>>> h = input()

6

The input function always returns a string, even if the user types an
integer:

>>> r

'4'

>>> h

'6'

The single quotes confirm that these values are strings. Strings cannot
be used to perform mathematical calculations. If we try, we get an error:

>>> (PI * r ** 2 * h) / 3

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

20 Chapter 1

A TypeError is generated when we use values of the wrong type. Python
is objecting to us using the ** operator on the string referred to by r and the
integer 2. The ** operator is purely mathematical and has no meaning when
used with strings.

To convert our strings to integers, we can use Python’s int function:

>>> r

'4'

>>> h

'6'

>>> r = int(r)

>>> h = int(h)

>>> r

4

>>> h

6

Now we can once again use these values in our formula:

>>> (PI * r ** 2 * h) / 3

100.53096491487338

Whenever you have a string whose characters represent an integer, you
can use the int function to convert it to a value whose type is integer. It can
cope with leading and trailing spaces, but not non-numeric characters:

>>> int(' 12 ')

12

>>> int('12x')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '12x'

When converting a string returned by input to an integer, we can take it
in two steps, first assigning the return value of input to a variable and then
converting that value to an integer:

>>> num = input()

82

>>> num = int(num)

>>> num

82

Or we can combine the input and int calls:

>>> num = int(input())

82

>>> num

82

Getting Started 21

Here, the argument passed to int is the string returned by input. The int

function takes this string and returns it as an integer.
If we ever need to convert the other way, from an integer to a string, we

can do that with the str function:

>>> num = 82

>>> 'my number is ' + num

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

>>> str(num)

'82'

>>> 'my number is ' + str(num)

'my number is 82'

We can’t concatenate a string and an integer. The str function returns
'82' from 82 so that it can be used in a string concatenation.

Solving the Problem
We’re ready to solve Cone Volume. Create a text file called cone_volume.py
and type the code in Listing 1-2.

¶ PI = 3.141592653589793

· radius = int(input())

¸ height = int(input())

¹ volume = (PI * radius ** 2 * height) / 3

º print(volume)

Listing 1-2: Solving Cone Volume

I’ve included blank lines to separate the code into its logical pieces.
Python ignores these blank lines, but such blank lines can make it easier for
us to read and chunk the code.

Notice that I’ve used descriptive variable names: radius instead of r,
height instead of h, and volume. Single-letter variable names are the norm in
math formulas, but when writing code, we can use variable names that con-
vey more information.

We begin by making a variable called PI refer to an approximation of
pi ¶. We then read the radius · and height ¸ from the input, converting
both from strings to integers. We use the formula for the volume of a right
circular cone to compute the volume ¹. Lastly, we output the volume º.

Save your cone_volume.py file.

22 Chapter 1

Run your program by typing python cone_volume.py and then type a value
for the radius and a value for the height. Use a calculator to verify that your
program produces the correct output!

What happens if you type garbage for the radius or height? For exam-
ple, run your program and type the following:

xyz

You should see an error:

Traceback (most recent call last):

File "cone_volume.py", line 3, in <module>

radius = int(input())

ValueError: invalid literal for int() with base 10: 'xyz'

It is not user-friendly at all, that’s for sure. But for purposes of learning
to program, we won’t worry about this. All of the test cases on the judge will
be valid according to the problem’s input specification, so we’ll never have
to worry about what to do with invalid input.

Speaking of the judge, DMOJ owes us three points, because we’ve fin-
ished writing correct code for this problem. Go ahead and submit your
work!

Summary
And we’re off! We’ve just solved our first two problems by writing Python
code. We learned about the fundamentals of programming, including val-
ues, types, strings, integers, methods, variables, the assignment statement,
and input and output.

Once you’re comfortable with this material—perhaps by working on
some of the following exercises—it’s on to Chapter 2. There, we’ll learn how
our programs can make decisions. We’ll no longer be writing programs that
invariably run from top to bottom. They’ll be more flexible, doing what’s
needed for the specific problem instance being solved.

Chapter Exercises
Each chapter ends with some exercises for you to try. I encourage you to
complete as many exercises as you can.

Some exercises may take you a long time. You might get frustrated with
repeated Python errors. Like with any skill worth learning, focused practice
is needed. When you’re starting to work on an exercise, I recommend solv-
ing a few examples by hand. That way you know what the problem is asking
and what your program is supposed to do. Otherwise, you might be writing
code without a plan, contending both with organizing your thoughts and
with writing the program at the same time.

Getting Started 23

If your code isn’t working, ask: what, precisely, is the behavior that you
want? What are the lines of code that are likely culprits for the error that
you’re getting? Is there another, perhaps simpler, approach you could try?

I’ve included solutions to the exercises on the book website (https://
nostarch.com/learn-code-solving-problems/). But don’t peek at those until you’ve
given your chosen exercise an honest try. Or two. Or three. If you do look
at a solution and learn how one might solve the problem, take a break and
then try solving it yourself from scratch. There’s often more than one way to
solve a problem. If your solution does the right thing but is different from
mine, it doesn’t mean that one of us is wrong. Rather, it serves as an op-
portunity for you to compare your code to mine, perhaps learning alternate
techniques in the process.

1. DMOJ problem wc16c1j1, A Spooky Season

2. DMOJ problem wc15c2j1, A New Hope

3. DMOJ problem ccc13j1, Next in Line

4. DMOJ problem wc17c1j2, How’s the Weather? (Be careful with the
direction of conversion!)

5. DMOJ problem wc18c3j1, An Honest Day’s Work (Hint: how can you
determine the number of bottle caps and the total paint required by
those bottle caps?)

Notes
Word Count is originally from the DMOPC ’15 April Contest. Cone Volume
is originally from the DMOPC ’14 March Contest.

24 Chapter 1

https://nostarch.com/learn-code-solving-problems/
https://nostarch.com/learn-code-solving-problems/

2
MAKING DECIS IONS

Most programs that we use on a daily ba-
sis behave differently depending on what

happens during their execution. For exam-
ple, when a word processor asks us whether we

want to save our work, it makes a decision based on
our response: saving our work if we answer “yes” and
not saving our work if we answer “no.” In this chap-
ter, we’ll learn about if statements, which let our pro-
grams make decisions.

We’ll solve two problems: determining the result of a basketball game
and determining whether a phone number belongs to a telemarketer.

Problem #3: Winning Team
In this problem, we’ll need to output a message that depends on the out-
come of a basketball game. To do that, we’ll learn all about if statements.
We’ll also learn how we can store and manipulate true and false values in
our programs.

This is DMOJ problem ccc19j1.

The Challenge
In basketball, three plays score points: a three-point shot, a two-point shot,
and a one-point free throw.

You just watched a basketball game between the Apples and Bananas
and recorded the number of successful three-point, two-point, and one-
point plays for each team. Indicate whether the game was won by the
Apples, the game was won by the Bananas, or the game was a tie.

Input
There are six lines of input. The first three give the scoring for the Apples,
and the latter three give the scoring for the Bananas.

• The first line gives the number of successful three-point shots for
the Apples.

• The second line gives the number of successful two-point shots for
the Apples.

• The third line gives the number of successful one-point free throws
for the Apples.

• The fourth line gives the number of successful three-point shots for
the Bananas.

• The fifth line gives the number of successful two-point shots for the
Bananas.

• The sixth line gives the number of successful one-point free throws
for the Bananas.

Each number is an integer between 0 and 100.

Output
The output is a single character.

• If the Apples scored more points than the Bananas, output A (A for
Apples).

• If the Bananas scored more points than the Apples, output B (B for
Bananas).

• If the Apples and Bananas scored the same number of points, out-
put T (T for Tie).

Conditional Execution
We can make a lot of headway here by using what we learned in Chapter 1.
We can use input and int to read each of the six integers from the input. We
can use variables to hang on to those values. We can multiply the number
of successful three-point shots by 3 and the number of successful two-point
shots by 2. We can use print to output an A, B, or T.

26 Chapter 2

What we haven’t learned yet is how our programs can make a decision
about the outcome of the game. I can demonstrate why we need this through
two test cases.

First, consider this test case:

5

1

3

1

1

1

The Apples scored 5 ∗ 3 + 1 ∗ 2 + 3 = 20 points, and the Bananas scored
1 ∗ 3 + 1 ∗ 2 + 1 = 6 points. The Apples won the game, so this is the correct
output:

A

Second, consider this test case, where the Apples’ and Bananas’ scores
have been swapped:

1

1

1

5

1

3

This time, the Bananas won the game, so this is the correct output:

B

Our program must be able to compare the total points scored by the
Apples and the total points scored by the Bananas and use the result of that
comparison to choose whether to output A, B, or T.

We can use Python’s if statement to make these kinds of decisions. A
condition is an expression that’s true or false, and an if statement uses condi-
tions to determine what to do. if statements lead to conditional execution, so
named because the execution of our program is influenced by conditions.

We’ll first learn about a new type that lets us represent true or false val-
ues, and how we can build expressions of this type. Then, we’ll use such ex-
pressions to write if statements.

The Boolean Type
Pass an expression to Python’s type function, and it’ll tell you the type of the
expression’s value:

>>> type(14)

<class 'int'>

Making Decisions 27

>>> type(9.5)

<class 'float'>

>>> type('hello')

<class 'str'>

>>> type(12 + 15)

<class 'int'>

One Python type we haven’t met yet is the Boolean (bool) type. Unlike
integers, strings, and floats, which have billions of possible values, there
are only two Boolean values: True and False. These are exactly the values we
need to represent the result of a condition.

>>> True

True

>>> False

False

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

What can we do with these values? With numbers, we had mathematical
operators like + and - that let us combine values into more complex expres-
sions. We’ll need a new set of operators that work with Boolean values.

Relational Operators
Is 5 greater than 2? Is 4 less than 1? We can make such comparisons using
Python’s relational operators. They produce True or False and are therefore
used to write Boolean expressions.

The > operator takes two operands and returns True if the first is greater
than the second, and False otherwise:

>>> 5 > 2

True

>>> 9 > 10

False

Similarly, we have the < operator for less-than:

>>> 4 < 1

False

>>> -2 < 0

True

There’s >= for greater-than-or-equal-to, and <= for less-than-or-equal-to:

>>> 4 >= 2

True

>>> 4 >= 4

28 Chapter 2

True

>>> 4 >= 5

False

>>> 8 <= 6

False

To determine equality, we use the == operator. That’s two equal signs,
not one. Remember that one equal sign (=) is used in an assignment state-
ment; it has nothing to do with checking equality.

>>> 5 == 5

True

>>> 15 == 10

False

For inequality, we use the != operator. It returns True if the operands are
not equal and False if they are equal:

>>> 5 != 5

False

>>> 15 != 10

True

Real programs wouldn’t evaluate expressions whose values we already
know. We don’t need Python to tell us that 15 doesn’t equal 10. More typi-
cally, we’d use variables in these kinds of expressions. For example, number
!= 10 is an expression whose value depends on what number refers to.

The relational operators also work on strings. When checking equality,
case matters:

>>> 'hello' == 'hello'

True

>>> 'Hello' == 'hello'

False

One string is less than another if it comes first in alphabetical order:

>>> 'brave' < 'cave'

True

>>> 'cave' < 'cavern'

True

>>> 'orange' < 'apple'

False

But things can be surprising when lowercase and uppercase characters
are both involved:

>>> 'apple' < 'Banana'

False

Making Decisions 29

Weird, right? It has to do with the way that characters are stored inter-
nally in a computer. Generally, uppercase characters come alphabetically
before lowercase characters. And check this out:

>>> '10' < '4'

True

If these were numbers, then the result would be False. But strings are
compared character by character from left to right. Python compares the '1'

and '4', and because '1' is smaller, the < operator returns True. Be sure that
your values have the types you think they have!

One relational operator that works on strings but not numbers is in. It
returns True if the first string occurs at least once in the second, and False

otherwise:

>>> 'ppl' in 'apple'

True

>>> 'ale' in 'apple'

False

CONCEPT CHECK

What is the output of the following code?

a = 3
b = (a != 3)
print(b)

A. True

B. False

C. 3

D. This code produces a syntax error

Answer: B. The expression a != 3 evaluates to False; b is then made to refer to
this False value.

The if Statement
We’ll now explore several variations of Python’s if statement.

30 Chapter 2

if by Itself
Suppose we have our final scores in two variables, apple_total and banana

_total, and we want to output A if apple_total is greater than banana_total.
Here’s how we can do that:

>>> apple_total = 20

>>> banana_total = 6

>>> if apple_total > banana_total:

... print('A')

...

A

Python outputs A, as we’d expect.
An if statement starts with the keyword if. A keyword is a word that has

special meaning to Python and cannot be used as a variable name. The key-
word if is followed by a Boolean expression, followed by a colon, followed
by one or more indented statements. The indented statements are often re-
ferred to as the block of the if statement. The block executes if the Boolean
expression is True and is skipped if the Boolean expression is False.

Notice that the prompt changes from >>> to That’s a reminder that
we’re inside the block of the if statement and must indent the code. I’ve
chosen to indent by four spaces, so to indent the code, press the spacebar
four times. Some Python programmers press the TAB key to indent, but
we’ll exclusively use spaces in this book.

Once you type print('A') and hit ENTER, you should see another ...

prompt. Since we don’t have anything else to put in this if statement, press
ENTER again to dismiss this prompt and return to the >>> prompt. This
extra press of ENTER is a quirk of the Python shell; such blank lines are not
required when we write a Python program in a file.

Let’s see an example of putting two statements in the block of an if

statement:

>>> apple_total = 20

>>> banana_total = 6

>>> if apple_total > banana_total:

... print('A')

... print('Apples win!')

...

A

Apples win!

Both print calls execute, producing two lines of output.
Let’s try another if statement, this one with a Boolean expression that’s

False:

>>> apple_total = 6

>>> banana_total = 20

Making Decisions 31

>>> if apple_total > banana_total:

... print('A')

...

The print function is not called this time: apple_total > banana_total is
False, so the block of the if statement is skipped.

if with elif
Let’s use three successive if statements to print A if the Apples win, B if the
Bananas win, and T if it’s a tie:

>>> apple_total = 6

>>> banana_total = 6

>>> if apple_total > banana_total:

... print('A')

...

>>> if banana_total > apple_total:

... print('B')

...

>>> if apple_total == banana_total:

... print('T')

...

T

The blocks of the first two if statements are skipped, because their Bool-
ean expressions are False. But the block of the third if statement executes,
producing the T.

When you put one if statement after another, they’re independent.
Each Boolean expression is evaluated, regardless of whether the previous
Boolean expressions were True or False.

For any given values of apple_total and banana_total, only one of our if

statements can run. For example, if apple_total > banana_total is True, then
the first if statement will run, but the other two will not. It’s possible to
write the code to highlight that only one block of code is allowed to run.
Here’s how we can do that:

¶ >>> if apple_total > banana_total:

... print('A')

· ... elif banana_total > apple_total:

... print('B')

... elif apple_total == banana_total:

... print('T')

...

T

32 Chapter 2

This is now a single if statement, not three separate if statements. For
this reason, don’t press ENTER at the ... prompt; instead, type the elif line.

To execute this if statement, Python begins by evaluating the first Bool-
ean expression ¶. If it’s True, then A is output, and the rest of the elifs are
skipped. If it’s False, Python continues, evaluating the second Boolean ex-
pression ·. If it’s True, then B is output, and the remaining elif is skipped.
If it’s False, Python continues, evaluating the third Boolean expression ¸. If
it’s True, then T is output.

The keyword elif stands for “else-if.” Use this as a reminder that an elif

expression is checked only if nothing “else” before it in the if statement was
executed.

This version of the code is equivalent to the previous code where we
used three separate if statements. Had we wanted to allow the possibility
of executing more than one block, we’d have to use three separate if state-
ments, not a single if statement with elif blocks.

if with else
We can use the else keyword to run code if all the Boolean expressions in
the if statement are False. Here’s an example:

>>> if apple_total > banana_total:

... print('A')

... elif banana_total > apple_total:

... print('B')

... else:

... print('T')

...

T

Python evaluates the Boolean expressions from top to bottom. If any
of them is True, Python runs the associated block and skips the rest of the if

statement. If all the Boolean expressions are False, Python executes the else

block.
Notice that there is no longer a test for apple_total == banana_total. The

only way to get to the else part of the if statement is if apple_total > banana

_total is False and banana_total > apple_total is False, that is, if the values are
equal.

Should you use separate if statements? An if statement with elifs? An
if statement with an else? It often comes down to preference. Use a chain
of elifs if you want at most one block of code to execute. An else can help
make the code clearer and removes the need to write a catchall Boolean ex-
pression. What’s far more important than the precise styling of an if state-
ment is writing correct logic!

Making Decisions 33

CONCEPT CHECK

What is the value of x after the following code runs?

x = 5
if x > 2:

x = -3
if x > 1:

x = 1
else:

x = 3

A. -3

B. 1

C. 2

D. 3

E. 5

Answer: D. Because x > 2 is True, the block of the first if statement executes.
The assignment x = -3 makes x refer to -3. Now for the second if statement.
Here, x > 1 is False, so the else block runs, and x = 3 makes x refer to 3. I’d
suggest changing if x > 1 to elif x > 1 and observing how the behavior of the
program changes!

CONCEPT CHECK

Do the following two snippets of code do exactly the same thing? Assume that
temperature already refers to a number.

Snippet 1:

if temperature > 0:
print('warm')

elif temperature == 0:
print('zero')

else:
print('cold')

34 Chapter 2

Snippet 2:

if temperature > 0:
print('warm')

elif temperature == 0:
print('zero')

print('cold')

A. Yes
B. No

Answer: B. Snippet 2 always prints cold as its final line of output, because
print('cold') is not indented! It is not associated with any if statement.

Solving the Problem
It’s time to solve Winning Team. In this book, I’ll generally present the full
code and then discuss it. But as our solution here is longer than those in
Chapter 1, I’ve decided in this case to present the code in three pieces be-
fore presenting it as a whole.

First, we need to read the input. This requires six calls of input, because
we have two teams and three pieces of information for each team. We also
need to convert each piece of input to an integer. Here’s the code:

apple_three = int(input())

apple_two = int(input())

apple_one = int(input())

banana_three = int(input())

banana_two = int(input())

banana_one = int(input())

Second, we need to determine the number of points scored by the
Apples and the Bananas. For each team, we add the points from three-point,
two-point, and one-point plays. We can do that as follows:

apple_total = apple_three * 3 + apple_two * 2 + apple_one

banana_total = banana_three * 3 + banana_two * 2 + banana_one

Third, we produce the output. If the Apples win, we output A; if the
Bananas win, we output B; otherwise, we know that the game is a tie, so we
output T. We use an if statement to do this, as follows:

if apple_total > banana_total:

print('A')

Making Decisions 35

elif banana_total > apple_total:

print('B')

else:

print('T')

That’s all the code we need. See Listing 2-1 for the complete solution.

apple_three = int(input())

apple_two = int(input())

apple_one = int(input())

banana_three = int(input())

banana_two = int(input())

banana_one = int(input())

apple_total = apple_three * 3 + apple_two * 2 + apple_one

banana_total = banana_three * 3 + banana_two * 2 + banana_one

if apple_total > banana_total:

print('A')

elif banana_total > apple_total:

print('B')

else:

print('T')

Listing 2-1: Solving Winning Team

If you submit our code to the judge, you should see that all test cases
pass.

CONCEPT CHECK

Does the following version of the code correctly solve the problem?

apple_three = int(input())
apple_two = int(input())
apple_one = int(input())

banana_three = int(input())
banana_two = int(input())
banana_one = int(input())

apple_total = apple_three * 3 + apple_two * 2 + apple_one
banana_total = banana_three * 3 + banana_two * 2 + banana_one

if apple_total < banana_total:
print('B')

36 Chapter 2

elif apple_total > banana_total:
print('A')

else:
print('T')

A. Yes
B. No

Answer: A. The operators and order of the code are different, but the code is
still correct. If the Apples lose, we output B (because the Bananas win); if the
Apples win, we output A; otherwise, we know that the game is a tie, so we
output T.

Before continuing, you might like to try solving exercise 1 from “Chap-
ter Exercises” on page 45.

Problem #4: Telemarketers
Sometimes we need to encode more complex Boolean expressions than
those that we have seen so far. In this problem, we’ll learn about Boolean
operators that help us do this.

This is DMOJ problem ccc18j1.

The Challenge
In this problem, we’ll assume that phone numbers are four digits. A phone
number belongs to a telemarketer if its four digits satisfy all three of the fol-
lowing properties:

• The first digit is 8 or 9.

• The fourth digit is 8 or 9.

• The second and third digits are the same.

For example, a phone number whose four digits are 8119 belongs to a
telemarketer.

Determine whether a phone number belongs to a telemarketer, and in-
dicate whether we should answer the phone or ignore it.

Input
There are four lines of input. These lines give the first, second, third, and
fourth digits of the phone number, respectively. Each digit is an integer be-
tween 0 and 9.

Making Decisions 37

Output
If the phone number belongs to a telemarketer, output ignore; otherwise,
output answer.

Boolean Operators
What has to be true about a phone number that belongs to a telemarketer?
Its first digit has to be 8 or 9. And, its fourth digit has to be 8 or 9. And, the
second and third digits have to be the same. We can encode this “or” and
“and” logic using Python’s Boolean operators.

or Operator
The or operator takes two Boolean expressions as its operands. It returns
True if at least one operand is True, and False otherwise:

>>> True or True

True

>>> True or False

True

>>> False or True

True

>>> False or False

False

The only way to get False out of the or operator is if both of its operands
are False.

We can use or to tell us whether a digit is an 8 or a 9:

>>> digit = 8

>>> digit == 8 or digit == 9

True

>>> digit = 3

>>> digit == 8 or digit == 9

False

Remember from “Integer and Floating-Point Numbers” in Chapter 1
that Python uses operator precedence to determine the order that opera-
tors are applied. The precedence of or is lower than the precedence of rela-
tional operators, which means that we don’t often need parentheses around
operands. For example, in digit == 8 or digit == 9, the two operands to or

are digit == 8 and digit == 9. It’s the same as if we’d written it as (digit == 8)

or (digit == 9).
In English, it makes sense if someone says “if the digit is 8 or 9.” But

writing that won’t work in Python:

>>> digit = 3

>>> if digit == 8 or 9:

38 Chapter 2

... print('yes!')

...

yes!

Notice that I’ve (incorrectly!) written the second operand as 9 instead
of digit == 9. Python responds by outputting yes!, which is certainly not
what we’d want given that digit refers to 3. The reason is that Python con-
siders nonzero numbers to be True. Since 9 is considered True, this makes the
whole or expression True. Carefully double-check your Boolean expressions
to avoid these kinds of mistakes when translating from natural language to
Python.

and Operator
The and operator returns True if both of its operands are True, and returns
False otherwise:

>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

The only way to get True out of the And operator is if both of its operands
are True.

The precedence of and is higher than or. Here’s an example of why this
matters:

>>> True or True and False

True

Python interprets that expression like this, with the and happening first:

>>> True or (True and False)

True

The result is True because the first operand of or is True.
We can force the or to happen first by including parentheses:

>>> (True or True) and False

False

The result is False because the second operand of and is False.

Making Decisions 39

not Operator
Another important Boolean operator is not. Unlike or and and, not takes only
one operand (not two). If its operand is True, not returns False, and vice
versa:

>>> not True

False

>>> not False

True

The precedence of not is higher than or and and.

CONCEPT CHECK

Here’s an expression and versions of that expression with parentheses. Which
of them evaluates to True?

A. not True and False

B. (not True) and False

C. not (True and False)

D. None of the above

Answer: C. The expression (True and False) evaluates to False; the not therefore
makes the full expression True.

CONCEPT CHECK

Consider the expression not a or b.

Which of the following makes the expression False?

A. a False, b False

B. a False, b True

C. a True, b False

D. a True, b True

E. More than one of the above

Answer: C. If a is True, then not a is False. Since b is False, too, both operands
to or are False, so the whole expression evaluates to False.

40 Chapter 2

Solving the Problem
With Boolean operators at the ready, we can tackle the Telemarketers prob-
lem. Our solution is in Listing 2-2.

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

¶ if ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('ignore')

else:

print('answer')

Listing 2-2: Solving Telemarketers

As in Winning Team, we start by reading the input and converting it to
integers.

The high-level structure of our if statement ¶ is three expressions con-
nected by and operators; each of them must be True for the entire expression
to be True. We require that the first number be 8 or 9, that the fourth num-
ber be 8 or 9, and that the second and third numbers be equal. If all three
of these conditions hold, then we know that the phone number belongs to a
telemarketer, and we output ignore. Otherwise, the phone number does not
belong to a telemarketer, and we output answer.

I’ve split the Boolean expression over three lines. This requires wrap-
ping the entire expression in an additional pair of parentheses, as I have
done. (Without those parentheses, you’ll get a syntax error, because there’s
no indication to Python that the expression is continuing on the next line.)

Python style guides suggest that a line be no longer than 79 characters.
A line with the full Boolean expression would squeak in there at 76 charac-
ters. But I think the three-line version is clearer, highlighting each condition
that must be True on its own line.

We have a good solution here. To explore a little further, let’s discuss
some alternate approaches.

Our code uses a Boolean expression to detect when a phone number be-
longs to a telemarketer. We could have also chosen to write code that detects
when a phone number does not belong to a telemarketer. If the phone num-
ber doesn’t belong to a telemarketer, we should output answer; otherwise, we
should output ignore.

If the first digit isn’t 8 and isn’t 9, then the phone number doesn’t be-
long to a telemarketer. Or, if the fourth digit isn’t 8 and isn’t 9, then the
phone number doesn’t belong to a telemarketer. Or, if the second and third
digits aren’t equal, then the phone number doesn’t belong to a telemarketer.
If even one of these expressions is True, then the phone number doesn’t be-
long to a telemarketer.

Making Decisions 41

See Listing 2-3 for a version of the code that captures this logic.

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

if ((num1 != 8 and num1 != 9) or

(num4 != 8 and num4 != 9) or

(num2 != num3)):

print('answer')

else:

print('ignore')

Listing 2-3: Solving Telemarketers, alternate approach

It’s not easy getting all of those !=, or, and and operators correct! Notice,
for example, that we’ve had to change all == operators to !=, all or operators
to and, and all and operators to or.

An alternate approach is to use the not operator to negate the “is a tele-
marketer” expression in one shot. See Listing 2-4 for that code.

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

if not ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('answer')

else:

print('ignore')

Listing 2-4: Solving Telemarketers, not operator

Which of these solutions do you find most intuitive? There’s often more
than one way to structure the logic of an if statement, and we should use the
one that’s easiest to get right. To me, Listing 2-2 is the most natural, but you
may feel otherwise!

Choose your favorite version and submit it to the judge. You should see
that all test cases pass.

Comments
We should always strive to make our programs as clear as possible. This
helps to avoid introducing errors when programming and makes it easier
to fix our code when errors do slip in. Meaningful variable names, spaces

42 Chapter 2

around operators, blank lines to segment the program into its logical pieces,
simple if statement logic: all of these practices can improve the quality of
the code we write. Another good habit is adding comments to our code.

A comment is introduced by the # character and continues until the end
of the line. Python ignores comments, so they have no impact on what our
program does. We add comments to remind ourselves, or others, about de-
sign decisions that we’ve made. Assume that the person reading the code
knows Python, so avoid comments that simply restate what the code is do-
ing. Here’s code with an unnecessary comment:

>>> x = 5

>>> x = x + 1 # Increase x by 1

That comment adds nothing beyond what we already know about assign-
ment statements.

See Listing 2-5 for a version of Listing 2-2 with comments.

¶ # ccc18j1, Telemarketers

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

· # Telemarketer number: first digit 8 or 9, fourth digit 8 or 9,

second digit and third digit are same

if ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('ignore')

else:

print('answer')

Listing 2-5: Solving Telemarketers, comments added

I’ve added three comment lines: the one at the top ¶ reminds us of the
problem code and name, and the two before the if statement · remind us
of the rules for detecting a telemarketer phone number.

Don’t go overboard with comments. Whenever possible, write code that
doesn’t require comments in the first place. But for tricky code or to docu-
ment why you chose to do something in a particular way, a well-placed com-
ment now can save time and frustration later.

Input and Output Redirection
When you submit Python code to the judge, it runs many test cases to deter-
mine whether your code is correct. Is someone there, dutifully waiting for
new code and then frantically hammering test cases at it from the keyboard?

Making Decisions 43

No way! It’s all automated. There’s no one typing test cases at the key-
board. How does the judge test our code, then, if we satisfy a call to input by
typing something from the keyboard?

The truth is that input isn’t necessarily reading input from the keyboard.
It’s reading from a source of input called standard input, which, by default, is
the keyboard.

It’s possible to change standard input so that it refers to a file rather
than the keyboard. The technique is called input redirection, and it’s what the
judge uses to provide input.

We can also try input redirection ourselves. For programs whose input
is small—just a line of text or a couple of integers—input redirection may not
save us much. But for programs whose test cases can be tens or hundreds of
lines long, input redirection makes it much easier to test our work. Rather
than typing the same test case over and over, we can store it in a file and
then run our program on it as many times as we want.

Let’s try input redirection on Telemarketers. Navigate to your program-
ming folder and create a new file called telemarketers_input.txt. In that file,
type the following:

8

1

1

9

The problem specifies that we should provide one integer per line, so
we’ve written them one per line here.

Save the file. Now enter python telemarketers.py < telemarketers_input.txt

to run your program using input redirection. Your program should output
ignore, just as it would if you’d typed the test case from the keyboard.

The < symbol instructs your operating system to use a file rather than
the keyboard to provide input. After the < symbol comes the name of the
file that contains the input.

To try your program on different test cases, just modify the telemarketers
_input.txt file and run your program again.

We can also change where our output goes, though we won’t need to for
this book. The print function outputs to standard output, which, by default, is
the screen. We can change standard output so that it instead refers to a file.
We do so using output redirection, which is written as a > symbol followed by a
filename.

Enter python telemarketers.py > telemarketers_output.txt to run your
program using output redirection. Provide four integers of input, and you
should be back to your operating system prompt. But you shouldn’t see any
output from your Telemarketers program! That’s because we’ve redirected
the output to file telemarketers_output.txt. If you open telemarketers_output

.txt in your text editor, you should see the output there.
Be careful with output redirection. If you use a filename that already ex-

ists, your old file will be overwritten! Always double-check that you’re using
the filename you intended.

44 Chapter 2

Summary
In this chapter, we learned how to use if statements to direct what our pro-
grams do. The key ingredient of an if statement is a Boolean expression,
which is an expression with a True or False value. To build up Boolean ex-
pressions, we use relational operators such as == and >=, and we use Boolean
operators such as and and or.

Deciding what to do based on what is True and False makes our programs
more flexible, able to adapt to the situation at hand. But our programs are
still limited to handling small amounts of input and output—whatever we
can do with individual calls to input and print. In the next chapter, we’ll
start learning about loops, which let us repeat code so that we can process
as much input and output as we like.

Want to work with 100 values? How about 1,000? And with just a small
amount of Python code? It is a little early for me to be provoking you, I
know, because you still have the following exercises to do. But when you’re
ready, read on!

Chapter Exercises
Here are some exercises for you to try.

1. DMOJ problem ccc06j1, Canadian Calorie Counting

2. DMOJ problem ccc15j1, Special Day

3. DMOJ problem ccc15j2, Happy or Sad

4. DMOJ problem dmopc16c1p0, C.C. and Cheese-kun

5. DMOJ problem ccc07j1, Who is in the Middle

Notes
Winning Team is originally from the 2019 Canadian Computing Competi-
tion, Junior Level. Telemarketers is originally from the 2018 Canadian Com-
puting Competition, Junior Level.

Making Decisions 45

3
REPEAT ING CODE: DEF IN I TE

LOOPS

Computers shine when we have them re-
peat a process over and over. They tirelessly

do exactly what we ask, whether it involves
doing something 10, 100, or a billion times. In

this chapter, we’ll learn about loops, statements that
instruct the computer to repeat the execution of part
of our program.

We’ll use loops to solve three problems: tracking the location of a ball
under a cup, counting the number of occupied parking spaces, and deter-
mining how much data is available on a cell phone plan.

Problem #5: Three Cups
In this problem, we’ll track the location of a ball under a cup as the cups
move. But the cups can move many times, so we won’t be able to write code
for each move separately. Instead, we’ll learn about and use the for loop,
which allows us to more easily run code for each move.

This is DMOJ problem coci06c5p1.

The Challenge
Borko has a row of three opaque cups: one at the left (location 1), one at
the middle (location 2), and one at the right (location 3). There is a ball un-
der the cup at the left. It’s our job to keep track of the location of the ball as
Borko swaps the locations of the cups.

Borko can make three types of swap:

A Swap the left and middle cups

B Swap the middle and right cups

C Swap the left and right cups

For example, if Borko’s first swap is type A, then he swaps the left and
middle cups; because the ball starts at the left, this swap moves it to the mid-
dle. If instead his first swap is type B, then he swaps the middle and right
cups; the left cup stays where it is, so the ball doesn’t change locations.

Input
The input is one line of at most 50 characters. Each character specifies a
type of swap that Borko makes: A, B, or C.

Output
Output the final location of the ball:

• 1 if the ball is at the left

• 2 if the ball is at the middle

• 3 if the ball is at the right

Why Loops?
Consider this test case:

ACBA

There are four swaps here. To determine the final location of the ball,
we need to carry out each one.

The first swap is type A, which swaps the cups at the left and middle.
Since the ball starts at the left, this results in the ball moving to the middle.
The second swap is type C, which swaps the cups at the left and right. Since
the ball is currently at the middle, this has no effect on the location of the
ball. The third swap is type B, which swaps the cups at the middle and right.
This moves the ball from the middle to the right. The fourth swap is type A,
which swaps the cups at the left and middle. This has no effect on the ball.
The correct output is therefore 3, because the ball ends up at the right.

Notice that for each swap, we have to make a decision to determine
whether the ball moves and, if it does, to move the ball appropriately. Mak-
ing decisions is something we know how to do from Chapter 2. For example,

48 Chapter 3

if the swap type is A and the ball is at the left, then the ball moves to the mid-
dle. That looks like this:

if swap_type == 'A' and ball_location == 1:

ball_location = 2

We could add an elif for each other case where the ball moves: swap
type A and ball is at the middle, swap type B and ball is at the middle, swap
type B and ball is at the right, and so on. This big if statement would be
enough to handle one swap. But that’s not enough to solve the Three Cups
problem, because we could have a test case of up to 50 swaps. We’d need to
repeat the if statement logic for each swap. And we certainly wouldn’t want
to copy and paste the same code 50 times. Imagine if you had made a typo
and had to fix it 50 times. Or if you suddenly became interested in test cases
with up to a million swaps. No, what we have learned so far is not going to
cut it. We need a way to walk through the swaps, performing the same logic
for each one. We need a loop.

for Loops
Python’s for statement produces for loops. for loops allow us to process each
element of a sequence. The only sequence type we’ve seen so far is the
string. We’ll learn others as we go; for loops work on all of them.

Here’s our first example of a for loop:

>>> secret_word = 'olive'

>>> for char in secret_word:

... print('Letter: ' + char)

...

Letter: o

Letter: l

Letter: i

Letter: v

Letter: e

Following the keyword for, we write the name of a loop variable. A loop
variable is one that refers to different values as a loop progresses. In a for

loop on a string, the loop variable refers to each of the string’s characters.
I’ve chosen the variable name char (for “character”) to remind us that

the variable refers to a character from the string. Sometimes, it’s clearer if
we use a contextual variable name. For example, in Three Cups, we could
instead use the name swap_type to remind us that it refers to a type of swap.

After the variable name, we have the keyword in and then the string that
we want to loop over. In our example, we’re looping over the string referred
to by secret_word, which is 'olive'.

Like the if, elif, and else lines of an if statement, the for line ends with
a colon (:). And, also like an if statement, a for statement has an indented
block of one or more statements.

Repeating Code: Definite Loops 49

An execution of the indented statements is referred to as an iteration of
the loop. Here’s a walk-through of what our loop does on each iteration:

• On the first iteration, Python sets char to refer to 'o', the first char-
acter of 'olive'. It then runs the loop block, which consists only
of the call to print. As char refers to 'o', the output produced is
Letter: o.

• On the second iteration, Python sets char to refer to 'l', the second
character of 'olive'. It then calls print, outputting Letter: l.

• This process repeats three more times, once for each remaining
character in 'olive'.

• The loop then terminates. We have no code after the loop, so our
program has finished running. If there was additional code after the
loop, then execution would continue with that code.

You can put multiple statements in the block of a for loop. Here’s an
example:

>>> secret_word = 'olive'

>>> for char in secret_word:

... print('Letter: ' + char)

... print('*')

...

Letter: o

*

Letter: l

*

Letter: i

*

Letter: v

*

Letter: e

*

Now we have two statements executing on each iteration of the loop:
one that outputs the current letter of the string, and one that outputs a *

character.
A for loop loops through the elements of a sequence, so the sequence’s

length tells us how many iterations there will be. The len function takes a
string and returns its length:

>>> len('olive')

5

Our for loop on 'olive' will therefore consist of five iterations:

>>> secret_word = 'olive'

¶ >>> print(len(secret_word), 'iterations, coming right up!')

>>> for char in secret_word:

50 Chapter 3

... print('Letter: ' + char)

...

5 iterations, coming right up!

Letter: o

Letter: l

Letter: i

Letter: v

Letter: e

I called print with multiple arguments ¶, rather than using concatena-
tion, to avoid having to convert the length to a string.

A for loop is what’s called a definite loop, referring to the idea that the
number of iterations is predetermined. There are also indefinite loops, whose
iterations depend on the vagaries of what happens when your program runs.
We’ll study those in the next chapter.

CONCEPT CHECK

What is the output of the following code?

s = 'garage'
total = 0

for char in s:
total = total + s.count(char)

print(total)

A. 6

B. 10

C. 12

D. 36

Answer: B. For each character in 'garage', we add its count to total. There are
two g’s, two a’s, one r, two a’s (again!), two g’s (again!), and 1 e.

Nesting
The for loop block is one or more statements. Those statements can include
one-line statements such as function calls and assignment statements. But
they can also include multiline statements such as if statements and loops.

Let’s start with an example of an if statement inside a for loop. Suppose
we wanted to output only the uppercase characters from a string. Strings

Repeating Code: Definite Loops 51

have an isupper method that we can use to determine whether a character is
uppercase:

>>> 'q'.isupper()

False

>>> 'Q'.isupper()

True

We can use isupper in an if statement to control what happens on each
iteration of a for loop:

>>> title = 'The Escape'

>>> for char in title:

... if char.isupper():

... print(char)

...

T

E

Be careful with the indentation here. We need one level of indentation
for the for loop, and an extra level of indentation for the nested if state-
ment.

On the first iteration, char refers to 'T'. Since 'T' is uppercase, the
isupper test returns True, and the if statement block runs. That results in
the output of T. On the second iteration, char refers to 'h'. This time, the
isupper test returns False, so the if statement block doesn’t run. Overall, the
for loop loops through each character of the string, but the nested if state-
ment fires only twice: on the 'T' at the beginning of the string and on the
'E' at the beginning of 'Escape'.

What about a for loop nested in a for loop? We can do that! Here’s an
example:

>>> letters = 'ABC'

>>> digits = '123'

>>> for letter in letters:

... for digit in digits:

... print(letter + digit)

...

A1

A2

A3

B1

B2

B3

C1

C2

C3

52 Chapter 3

The code produces all two-character strings whose first character is from
letters and whose second character is from digits.

On the first iteration of the outer (letters) loop, letter refers to 'A'.
This iteration involves completely running the inner (digits) loop. The
whole time the inner loop runs, letter refers to 'A'. On the first iteration
of the inner loop, digit refers to 1, which explains the A1 output. On the sec-
ond iteration of the inner loop, digit refers to 2, and A2 is output. On the
third and final iteration of the inner loop, digit refers to 3, and A3 is output.

We’re not done! We’ve gone through only one iteration of the outer
loop. On the second iteration of the outer loop, letter refers to 'B'. Now the
three iterations of the inner loop run again, this time with letter referring
to 'B'. This accounts for the B1, B2, and B3 outputs. Finally, on the third iter-
ation of the outer loop, letter refers to 'C', and the inner loop produces C1,
C2, and C3.

CONCEPT CHECK

What is the output of the following code?

title = 'The Escape'
total = 0

for char1 in title:
for char2 in title:

total = total + 1

print(total)

A. 10

B. 20

C. 100

D. This code produces a syntax error because two nested loops cannot both
use title

Answer: C. total starts off as 0 and is increased by 1 on each iteration of the
inner loop. The length of 'The Escape' is 10. The outer loop therefore has 10
iterations. For each of those iterations, the inner loop has 10 iterations. The
inner loop therefore has 10*10 = 100 iterations in all.

Repeating Code: Definite Loops 53

Solving the Problem
Back to Three Cups. The structure we need is a for loop to go through each
swap, and a nested if statement to keep track of where the ball is:

for swap_type in swaps:

Big if statement to keep track of the ball

There are three types of swaps (A, B, and C) and three possible loca-
tions for the ball, so it’s tempting to conclude that we have to write an if

statement with 3 ∗ 3 = 9 Boolean expressions (one after the if and one after
each of eight elifs). In fact, we need only six Boolean expressions. Three of
the nine don’t move the ball at all: swap type A when the ball is at the right,
swap type B when the ball is at the left, and swap type C when the ball is at
the middle.

Listing 3-1 has a solution to Three Cups.

swaps = input()

ball_location = 1

¶ for swap_type in swaps:

· if swap_type == 'A' and ball_location == 1:

¸ ball_location = 2

elif swap_type == 'A' and ball_location == 2:

ball_location = 1

elif swap_type == 'B' and ball_location == 2:

ball_location = 3

elif swap_type == 'B' and ball_location == 3:

ball_location = 2

elif swap_type == 'C' and ball_location == 1:

ball_location = 3

elif swap_type == 'C' and ball_location == 3:

ball_location = 1

print(ball_location)

Listing 3-1: Solving Three Cups

I’ve used input to assign the string of swaps to the swaps variable. The for

loop ¶ loops through these swaps. Each swap is processed by the nested if

statement ·. The if and elif branches each encode what happens with a
given type of swap and a given ball location and then move the ball accord-
ingly. For example, if the swap type is A and the ball is at location 1 ·, then
the ball ends up at location 2 ¸.

This is a code example where it matters whether we use multiple elifs
(one big if statement) or multiple ifs (multiple if statements). If we change
the elifs to ifs, then our code is no longer correct. Listing 3-2 shows the
incorrect code.

54 Chapter 3

This code is incorrect

swaps = input()

ball_location = 1

for swap_type in swaps:

¶ if swap_type == 'A' and ball_location == 1:

ball_location = 2

· if swap_type == 'A' and ball_location == 2:

ball_location = 1

if swap_type == 'B' and ball_location == 2:

ball_location = 3

if swap_type == 'B' and ball_location == 3:

ball_location = 2

if swap_type == 'C' and ball_location == 1:

ball_location = 3

if swap_type == 'C' and ball_location == 3:

ball_location = 1

print(ball_location)

Listing 3-2: Solving Three Cups incorrectly

If we say that the code is incorrect, we’re claiming that it fails at least
one test case. Can you find a test case where this code produces the wrong
answer?

Here’s one such test case:

A

It may make sense to us that the ball can move at most once per swap.
But Python robotically runs the code you have written, whether it matches
what we expect or not. In this case, we have only one swap, so the ball should
move at most once. On the first and only iteration of the for loop, Python
checks the expression ¶. It’s True, so Python sets ball_location to 2. Then,
Python checks the expression ·. Because we just changed ball_location to 2,
this expression is True! Python therefore sets ball_location to 1. The output
of the program is 1 when it should be 2.

This is an example of a logic error: an error that causes a program to
follow the wrong logic and produce the wrong answer. A common term
for logic error is a bug. When programmers work through their code to fix
bugs, it’s called debugging.

It often takes only a simple test case to demonstrate when a program is
incorrect. When you’re trying to narrow down what’s going wrong with your
code, don’t start with long test cases. Such test case results are hard to verify
by hand and often set in motion complex execution paths from which we

Repeating Code: Definite Loops 55

may learn very little. A small test case, by contrast, doesn’t cause our pro-
gram to do much; if what it does is wrong, then we don’t have far to look for
the culprit. Devising small, targeted test cases is not always easy. It’s a skill
that you can hone through practice.

Submit our correct code to the judge, and then let’s move on.
Before continuing, you might like to try solving exercises 1 and 2 from

“Chapter Exercises” on page 67.

Problem #6: Occupied Spaces
We know how to loop through the characters of a string. But sometimes we
need to know where we are in the string, not just the character that’s stored
there. This problem is one such example.

This is DMOJ problem ccc18j2.

The Challenge
You supervise a parking lot with n parking spaces. Yesterday, you recorded
whether each parking space was occupied by a car or was empty. Today, you
again recorded whether each parking space was occupied by a car or was
empty. Indicate the number of parking spaces that were occupied on both
days.

Input
The input consists of three lines.

• The first line contains integer n, the number of parking spaces. n is
between 1 and 100.

• The second line contains a string of n characters for yesterday’s in-
formation, one character for each parking space. A C indicates an
occupied parking space (C for car), and a . indicates an empty park-
ing space. For example, CC. means that the first two parking spaces
were occupied and the third was empty.

• The third line contains a string of n characters for today’s informa-
tion, in the same format as the second line.

Output
Output the number of parking spaces that were occupied on both days.

A New Kind of Loop
We could have up to 100 parking spaces, so you may not be surprised that a
loop will show up here somewhere. The kind of for loop we learned when

56 Chapter 3

solving Three Cups can certainly loop through a string of parking-space in-
formation:

>>> yesterday = 'CC.'

>>> for parking_space in yesterday:

... print('The space is ' + parking_space)

...

The space is C

The space is C

The space is .

That tells us whether each space was occupied yesterday. But we also
need to know whether each space was also occupied today.

Consider this test case:

3

CC.

.C.

The first parking space was occupied yesterday. Was that parking space
occupied on both days? To answer that, we need to look at the correspond-
ing character in today’s string. It’s a . (empty), so this parking space was not
occupied on both days.

What about the second parking space? That one was also occupied yes-
terday. And, looking at the second character of today’s string, it was also
occupied today. So this is a parking space that was occupied on both days.
(This is the only such parking space; the correct output for this test case is 1.)

Looping through the characters of one string doesn’t help us find the
corresponding characters in the other string. But if we could keep track of
where we were in the string—we’re at the first parking space, we’re at the
second parking space, and so on—we could look up the corresponding char-
acter from each string. The for loops we’ve learned so far are not the way to
do this. The way to do this is using indexing and a new type of for loop.

Indexing
Each character in a string has an index, which indicates its location. The first
character is at index 0, the second character is at index 1, and so on. In natu-
ral language, we often start counting at 1. In English, no one says “the char-
acter at position 0 of hello is h.” But most programming languages, Python
included, start at 0.

To use indexing, we follow a string by an index in square brackets. Here
are some examples of indexing:

>>> word = 'splore'

>>> word[0]

's'

Repeating Code: Definite Loops 57

>>> word[3]

'o'

>>> word[5]

'e'

If we like, we can use variables in an index:

>>> where = 2

>>> word[where]

'l'

>>> word[where + 2]

'r'

The highest index that we can use on a nonempty string is its length mi-
nus 1. (There is no valid index for an empty string.) For example, 'splore' is
length 6, so index 5 is its highest index. Any bigger and we get an error:

>>> word[len(word)]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

>>> word[len(word) - 1]

'e'

How can we access the second character from the right of a string? This
will do it:

>>> word[len(word) - 2]

'r'

But there’s an easier way. Python supports negative indices as another
option for accessing characters. Index -1 is the rightmost character, index -2

is the second character from the right, and so on:

>>> word[-2]

'r'

>>> word[-1]

'e'

>>> word[-5]

'p'

>>> word[-6]

's'

>>> word[-7]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

The plan is to use indexing to access corresponding positions of yester-
day’s and today’s parking information. We can use index 0 of each string to
access information about the first parking space, index 1 to access informa-

58 Chapter 3

tion about the second parking space, and so on. But before we can carry out
that plan, we need to learn a new kind of for loop.

CONCEPT CHECK

What is the output of the following code?

s = 'abcde'
t = s[0] + s[-5] + s[len(s) - 5]

print(t)

A. aaa

B. aae

C. aee

D. This code produces an error

Answer: A. Each of the three indices refers to the first character in 'abcde'. First,
s[0] refers to 'a' because 'a' is at index 0 of the string. Second, s[-5] refers to
'a' because 'a' is the fifth character from the right. Third, s[len(s) - 5] refers to
'a' because the index evaluates to 0: 5 (the length of the string) minus 5.

Range for loops
Python’s range function generates ranges of integers, and we can use those
ranges to control for loops. Rather than looping through the characters of a
string, a range for loop loops through integers. If we provide one argument
to range, we get a range from 0 to 1 less than that argument:

>>> for num in range(5):

... print(num)

...

0

1

2

3

4

Notice that 5 is not output.
If we provide two arguments to range, we get a sequence from the first

argument up to but not including the second argument:

>>> for num in range(3, 7):

... print(num)

Repeating Code: Definite Loops 59

...

3

4

5

6

We can count up by a different step size by including a third argument.
The default step size is 1, which counts up by one. Let’s try a couple of other
step sizes:

>>> for num in range(0, 10, 2):

... print(num)

...

0

2

4

6

8

>>> for num in range(0, 10, 3):

... print(num)

...

0

3

6

9

We can count backward, too, but not like this:

>>> for num in range(6, 2):

... print(num)

...

That doesn’t work, because by default range counts up. A step size of -1
lets us go backward, one at a time:

>>> for num in range(6, 2, -1):

... print(num)

...

6

5

4

3

To count down from 6 to 0, including 0, we need a value of -1 for the
second argument:

>>> for num in range(6, -1, -1):

... print(num)

...

6

60 Chapter 3

5

4

3

2

1

0

It’s sometimes helpful to quickly look at the numbers in a range without
coding a loop. Unfortunately, the range function doesn’t directly show us
those numbers:

>>> range(3, 7)

range(3, 7)

We can pass that result to the list function to get what we want:

>>> list(range(3, 7))

[3, 4, 5, 6]

When called with a range, the list function produces a list of the range’s
integers. We’ll learn all about lists later; for now, keep list in mind as an aid
to diagnosing errors with ranges.

CONCEPT CHECK

How many iterations are performed by the following loop?

for i in range(10, 20):
Some code here

A. 9
B. 10
C. 11
D. 20

Answer: B. The range goes through the numbers 10, 11, 12, 13, 14, 15, 16,
17, 18, and 19. There are 10 numbers and hence 10 iterations.

Range for Loops Through Indices
Suppose we have strings giving yesterday’s and today’s parking-space infor-
mation:

>>> yesterday = 'CC.'

>>> today = '.C.'

Repeating Code: Definite Loops 61

Given an index, we can look at yesterday’s and today’s information for
that index:

>>> yesterday[0]

'C'

>>> today[0]

'.'

We can use a range for loop through the indices to process each pair of
corresponding characters. We know that yesterday and today are the same
length. But that length could be anything from 1 to 100, so we can’t write
something like range(3). We want to iterate with indices 0, 1, 2, and so on, all
the way up to the length of the string minus 1. We can do that by using the
length of one of the strings as the argument to range:

>>> for index in range(len(yesterday)):

... print(yesterday[index], today[index])

...

C .

C C

. .

I’ve called the loop variable index. Other popular names include i (the
first letter of index) and ind. I’ll use i from here on out.

Don’t call this loop variable status or information. Those names imply
that it takes on 'C' and '.' values, when really it takes on integers.

Solving the Problem
With our range for loops, we’re ready to solve Occupied Spaces. Our strat-
egy is to loop through each index from the beginning of the strings to the
end. We can check what’s at each index in both yesterday’s information and
today’s information. Using a nested if statement, we’ll determine whether
the parking space was occupied on both days.

Listing 3-3 has our solution.

n = int(input())

yesterday = input()

today = input()

¶ occupied = 0

· for i in range(len(yesterday)):

¸ if yesterday[i] == 'C' and today[i] == 'C':

¹ occupied = occupied + 1

print(occupied)

Listing 3-3: Solving Occupied Spaces

62 Chapter 3

The program starts by reading the three lines of input: n refers to the
number of parking spaces; and yesterday and today refer to yesterday’s and
today’s parking-space information, respectively.

Notice that we don’t refer to the number of parking spaces (n) again.
We could make use of it to tell us the length of the strings, but I’ve chosen to
ignore it because it’s often not provided in real-life scenarios.

We use the occupied variable to count the number of parking spaces that
were occupied both yesterday and today. We start that variable off at 0 ¶.

Now we reach the range for loop, which loops through the valid indices
of yesterday and today ·. For each such index, we check whether the park-
ing space was occupied yesterday and occupied today ¸. If it was, then we
include this parking space in our total by increasing occupied by 1 ¹.

When the range for loop terminates, we’ll have gone through all parking
spaces. The total number of parking spaces that were occupied yesterday
and today can be accessed through the occupied variable. All that’s left is to
output that total.

That’ll do it for this problem. Time to submit your code to the judge.

Problem #7: Data Plan
We’ve learned that for loops are useful for processing data after we’ve read
it from the input. They’re also often useful for reading the data itself. In this
problem, we’ll tackle data that’s spread over many lines and use a for loop to
help us read it all.

This is DMOJ problem coci16c1p1.

The Challenge
Pero has a data plan with his cell phone provider that offers him xmegabytes
of data per month. In addition, any data he doesn’t use in a given month
carries over to the next month. For example, if x is 10 and Pero uses only
4MB in a given month, the remaining 6MB carry over to the next month (in
which he’d now have 10 + 6 = 16MB available).

We’re given the number of megabytes of data that Pero uses in each of
the first n months. Our task is to determine the number of megabytes avail-
able for the following month.

Input
The input consists of the following lines:

• A line containing integer x, the number of megabytes given to Pero
per month. x is between 1 and 100.

• A line containing integer n, the number of months that Pero has
had the data plan. n is between 1 and 100.

Repeating Code: Definite Loops 63

• n lines, one for each month, giving the integer number of mega-
bytes that Pero uses in that month. Each number is at least 0 and
will never outstrip the number of available megabytes. (For exam-
ple, if x is 10 and Pero currently has 30MB available, the next num-
ber will be at most 30.)

Output
Output the number of megabytes available for the next month.

Looping to Read Input
In all of our problems so far, we’ve known exactly how many lines to read
from the input. For example, in Three Cups, we read one line; in Occupied
Spaces, we read three lines. Here in Data Plan, we don’t know in advance
how many lines to read, because it depends on the number that we read
from the second line.

We can read the first line of input:

monthly_mb = int(input())

(I’ve used variable name monthly_mb rather than x to imbue it with some mean-
ing.)

And we can read the second line of input:

n = int(input())

But we can’t read any more without a loop. A range for loop is perfect
here, because we can use it to loop exactly n times:

for i in range(n):

Process month

Solving the Problem
My strategy for solving the problem is to keep track of the number of mega-
bytes that are carried over from previous months. I call this the excess.

Consider this test case:

10

3

4

12

1

In each month, Pero is given 10MB of data, and we have to process the
data that he used in the provided three months. In the first month, Pero is
given 10MB and uses 4MB, so the excess that carries forward is 6MB. In the
second month, Pero is given 10MB more, so now he has 16MB total. He uses

64 Chapter 3

12MB this month, so the excess that carries forward is 16 – 12 = 4MB. In the
third month, Pero is given 10MB more, so now he has 14MB total. He uses
1MB this month, so the excess that carries forward is 14 – 1 = 13MB.

We need to know the number of megabytes that Pero has available for
the next (that is, fourth) month. He has 13MB that carry over from the first
three months, and he’s given his usual 10MB for this month, so he has a
total of 13 + 10 = 23MB to use.

When I went to write the code based on this explanation, I neglected
to add this final 10, so my output was 13 instead of 23. I was focusing exclu-
sively on the excess and forgot that what we need is not the excess going into
the next month, but the total number of megabytes available. That total is
the excess plus whatever Pero is given per month.

See Listing 3-4 for the (corrected!) code.

monthly_mb = int(input())

n = int(input())

excess = 0

¶ for i in range(n):

used = int(input())

· excess = excess + monthly_mb - used

¸ print(excess + monthly_mb)

Listing 3-4: Solving Data Plan

The excess variable begins at 0. On each iteration of the range for loop,
we assign a value to excess that considers the number of megabytes given per
month and the number of megabytes used in that month.

The range for loop loops n times, once for each month that Pero has had
the data plan ¶. The values that i takes on—0, 1, and so on—aren’t of interest
to us, because we have no reason to care about which month we’re process-
ing. For that reason, we don’t use the value of i anywhere in the program.
You can replace i with _ (an underscore) to be explicit about the variable’s
“don’t care” status, but I’ll leave it as i for consistency with other examples.

In the range for loop, we read the number of megabytes used in this
month. Then, we update the number of excess megabytes ·: it’s what it was
before, plus the number of megabytes that Pero gets per month, minus the
number of megabytes that Pero uses this month.

Having computed the excess number of megabytes after n months, we
report the number of megabytes available for the next month ¸.

There are always multiple ways to solve a problem. Programming is
creative, and I enjoy observing the range of solution strategies that people
come up with. Even if you’ve succeeded in solving a problem, you might
like to Google the problem to learn from how others have solved it. In ad-
dition, some online judges, like DMOJ, allow you to view other people’s sub-
missions once you’ve solved the problem. For submissions that pass all of
the test cases: did those programmers do things differently from you? For

Repeating Code: Definite Loops 65

submissions that fail some test cases: what’s wrong with the code? Reading
other people’s code is a great way to improve your own programming skill!

Can you think of another way to solve Data Plan?
Here’s a hint: you can start by calculating the total number of megabytes

that Pero is given and then subtracting the number of megabytes that he
uses. I encourage you to take some time to work out how to do this before
continuing!

The total number of megabytes given to Pero, including those given in
the next month, is x ∗ (n + 1), where x is the number of megabytes given
per month. To determine the number of megabytes available for the next
month, we can start with that total and subtract what Pero uses each month.
That strategy is coded in Listing 3-5.

monthly_mb = int(input())

n = int(input())

total_mb = monthly_mb * (n + 1)

for i in range(n):

used = int(input())

total_mb = total_mb - used

print(total_mb)

Listing 3-5: Solving Data Plan, alternate approach

Choose whichever solution is your favorite, and submit to the judge.
What’s intuitive to one person may not be intuitive to another. You

might read an explanation or code and not be able to make sense of it. This
doesn’t mean that you’re not smart enough. It just means you need a differ-
ent presentation, one that aligns more closely to your current thinking. You
might also flag difficult explanations and examples for later review. They
may prove to be surprisingly useful once you’ve gained further practice.

Summary
In this chapter, we learned about for loops. Standard for loops loop through
the characters of a sequence; range for loops loop through integers in a
range. Each problem that we solved required us to process many pieces of
input, and we wouldn’t have been able to manage that without a loop.

The for loop is the loop of choice whenever you need to repeat code
a specified number of times. Python has one other type of loop, and we’ll
learn how to use it in the next chapter. Why do we need anything besides for
loops? What can’t for loops do? Good questions! I’ll tell you this for now:
practicing with for loops is a wonderful way to prepare for what’s to come.

66 Chapter 3

Chapter Exercises
Here are some exercises for you to try.

1. DMOJ problem wc17c3j3, Uncrackable

2. DMOJ problem coci18c3p1, Magnus

3. DMOJ problem ccc11s1, English or French

4. DMOJ problem ccc11s2, Multiple Choice

5. DMOJ problem coci12c5p1, Ljestvica

6. DMOJ problem coci13c3p1, Rijeci

7. DMOJ problem coci18c4p1, Elder

Notes
Three Cups is originally from the 2006/2007 Croatian Open Competition
in Informatics, Contest 5. Occupied Spaces is originally from the 2018 Cana-
dian Computing Competition, Junior Level. Data Plan is originally from the
2016/2017 Croatian Open Competition in Informatics, Contest 1.

Repeating Code: Definite Loops 67

4
REPEAT ING CODE: INDEF IN I TE

LOOPS

The for loops and range for loops that you
learned in Chapter 3 are convenient for

looping through a string or range of indices.
But what do we do when we have no string or

when the indices do not follow a fixed pattern? We
use a while loop, the topic of this chapter. while loops
are more general than for loops and can handle situa-
tions that a for loop cannot.

We’ll solve three problems where for loops fall short: determining the
number of times slot machines can be played, organizing a song playlist until
the user wants to stop, and decoding an encoded message.

Problem #8: Slot Machines
How many times can slot machines be played before we run out of money?
This is a subtle question that depends not only on our starting money but
also on the pattern of winnings as we play. We’ll see that we need a while

loop, not a for loop, for this situation.
This is DMOJ problem ccc00s1.

The Challenge
Martha goes to a casino and brings n quarters. The casino has three slot ma-
chines, and she plays them in order until she has no quarters left. That is,
she plays the first slot machine, then the second, then the third, then back to
the first, then the second, and so on. Each play costs one quarter.

The slot machines operate according to the following rules:

• The first slot machine pays 30 quarters every 35th time it is played.

• The second slot machine pays 60 quarters every 100th time it is
played.

• The third slot machine pays 9 quarters every 10th time it is played.

• No other plays pay anything.

Determine the number of times Martha plays before she has no quarters
left.

Input
The input consists of four lines.

• The first line contains an integer n, the number of quarters that
Martha brings to the casino. n is between 1 and 1,000.

• The second line contains an integer indicating the number of times
that the first slot machine has been played since it last paid. These
plays occurred prior to Martha arriving, and Martha’s plays con-
tinue from there. For example, suppose that the first slot machine
has been played 34 times since it last paid. Then, Martha will win 30
quarters the first time she plays it.

• The third line contains an integer indicating the number of times
that the second slot machine has been played since it last paid.

• The fourth line contains an integer indicating the number of times
that the third slot machine has been played since it last paid.

Output
Output the following sentence, where x is the number of times Martha plays
before she has no quarters left:

Martha plays x times before going broke.

Exploring a Test Case
Let’s run through an example, just to make sure that everything in this prob-
lem is clear. Here’s the test case we’ll use:

7

28

70 Chapter 4

0

8

To carefully trace Martha’s plays, we’ll need to keep track of six pieces of
information. It’s convenient to use a table to do this, since a row can tell us
the state after each play. Here are our columns:

Plays the number of slot machines that Martha has played

Quarters the number of quarters that Martha has

Next play the slot machine that Martha would play next

First plays the number of times that the first machine has been played
since it last paid

Second plays the number of times that the second machine has been
played since it last paid

Third plays the number of times that the third machine has been
played since it last paid

To start, Martha has played zero slot machines, she has seven quarters,
and she’ll next play the first slot machine. The first slot machine has been
played 28 times since it last paid, the second has been played 0 times since it
last paid, and the third has been played 8 times since it last paid. Our state
looks like this:

Plays Quarters Next play First plays Second plays Third plays

0 7 first 28 0 8

Martha starts by playing the first slot machine. That costs one quarter.
Because this is the 29th time this machine has been played since it last paid,
not the 35th, the slot machine pays Martha nothing. Martha will play the
second slot machine next. This is our new state:

Plays Quarters Next play First plays Second plays Third plays

1 6 second 29 0 8

Playing the second slot machine costs one quarter. Because this is the
first time this machine has been played since it last paid, not the 100th, the
slot machine pays Martha nothing. Martha will play the third slot machine
next. This is our new state:

Plays Quarters Next play First plays Second plays Third plays

2 5 third 29 1 8

Repeating Code: Indefinite Loops 71

Playing the third slot machine costs one quarter. Because this is the 9th
time this machine has been played since it last paid, not the 10th, the slot
machine pays Martha nothing. Next, Martha will cycle back to the first slot
machine. This is our new state:

Plays Quarters Next play First plays Second plays Third plays

3 4 first 29 1 9

Now Martha plays the first slot machine:

Plays Quarters Next play First plays Second plays Third plays

4 3 second 30 1 9

Then Martha plays the second slot machine:

Plays Quarters Next play First plays Second plays Third plays

5 2 third 30 2 9

Martha is almost out of quarters! But there’s good news coming, be-
cause she’s next going to play the third slot machine. It has been played
nine times since it last paid. The next play is therefore its 10th, which pays
Martha nine quarters. She had two quarters, pays one to play this machine,
and then gets paid nine, so she’ll have 2 – 1 + 9 = 10 quarters after this play:

Plays Quarters Next play First plays Second plays Third plays

6 10 first 30 2 0

Notice that the third slot machine has now been played zero times since
it last paid.

That’s six plays so far. I encourage you to keep tracing. You should see
that Martha never gets paid again and that after 10 more plays (for a total of
16), Martha is broke.

A Limitation of for loops
In Chapter 3, we studied for loops. Standard for loops loop through a se-
quence, such as a string. We certainly have no string in the Slot Machines
problem.

Range for loops loop through a range of integers and can be used to
loop a specified number of times. But how many times should we loop for
Slot Machines? Ten? Fifty? Who knows. It depends on the number of plays
that Martha can make before she’s out of quarters.

72 Chapter 4

We have no string and don’t know how many iterations are required. If
all we had were for loops, we’d be stuck.

Enter the while loop, the most general looping structure that Python
offers. We can write while loops that have nothing to do with strings or se-
quences of integers. In return for this added flexibility, we’ll need to be a
little more careful and take a little more responsibility with writing our
loops. Let’s dig in!

while loops
To write a while loop, we use Python’s while statement. A while loop is con-
trolled by a Boolean expression. If the Boolean expression is True, then
Python executes one iteration of the while loop. If the expression is still True,
then Python executes another iteration of the while loop, and so on, until
the Boolean expression is False. If the Boolean expression is False at the out-
set, then the loop does not run at all.

while loops are indefinite loops: the number of iterations may not be
known in advance.

Using while loops
Let’s start with the following example of a while loop:

¶ >>> num = 0

· >>> while num < 5:

... print(num)

¸ ... num = num + 1

...

0

1

2

3

4

In a for loop, the loop variable is created for us; we don’t have to use an
assignment statement to create the variable prior to the loop. But in a while

loop, we get nothing for free. If we need a variable to loop through values in
a while loop, then we have to create that variable ourselves. We do that here
by making num refer to 0 prior to the loop ¶.

The while loop itself is controlled by the Boolean expression num < 5 ·.
If num < 5 is True, then the code in the loop block will run. Right now, num
refers to 0, so the Boolean expression is True. We therefore run the loop
block, which outputs 0 and then increases num to 1 ¸.

We jump back to the top of the loop and evaluate the num < 5 Boolean
expression again. As num refers to 1, the expression is True. We therefore run
the loop block again, which outputs 1 and then increases num to 2.

Repeating Code: Indefinite Loops 73

Back to the top of the loop: is num < 5 still True? It is, because num is only
2. That kicks off another iteration of the loop, which outputs 2 and increases
num to 3.

This pattern continues, with two more iterations of the loop: one when
num refers to 3 and one when num refers to 4. When num refers to 5, the num < 5

Boolean expression is finally False, which terminates the loop.
It’s important that we remember to increase num ¸. A for loop automat-

ically steps our loop variable through the appropriate values. But, again, we
get nothing for free in a while loop and must update variables ourselves to
bring us closer and closer to loop termination. If we forget to increase num,
this happens:

>>> num = 0

>>> while num < 5:

... print(num)

...

0

0

0

0

0

0

0

0

... forever

If you run this code on your computer, your screen will fill up with ze-
ros, and you’ll have to terminate your program. You can do that by pressing
CTRL-C or by closing the Python window.

The problem is that num < 5 stays True forever; nothing in the loop can
ever make it False. This situation, where a loop never terminates, is called
an infinite loop. It’s surprisingly easy to inadvertently produce infinite while

loops. If you see the same values repeating or your program appears to be
doing nothing at all, it’s likely that you’re stuck in an infinite loop. Carefully
check the while loop’s Boolean expression and that the loop block is making
progress toward termination.

We can do whatever we like with the num variable. Here’s a while loop
counting up by three:

>>> num = 0

>>> while num < 10:

... print(num)

... num = num + 3

...

0

3

6

9

74 Chapter 4

And here’s a while loop counting down from 4 to 0:

>>> num = 4

¶ >>> while num >= 0:

... print(num)

... num = num - 1

...

4

3

2

1

0

Notice that I’ve used >= here rather than > ¶. This way, the while loop
runs when num refers to 0, as desired.

CONCEPT CHECK

What is the output of the following code?

n = 3
while n > 0:

if n == 5:
n = -100

print(n)
n = n + 1

A.
3
4

B.
3
4
5

C.
3
4
-100

(continued)

Repeating Code: Indefinite Loops 75

D.
3
4
5
-100

Answer: C. A while loop’s Boolean expression is checked only at the start of
each iteration. Even if it becomes False at some point during the iteration, the
remainder of the iteration completes.

As 3 is greater than 0, an iteration of the loop runs. The if statement block is
skipped (because its Boolean expression is False), so this iteration outputs 3 and
sets n to 4. As 4 is greater than 0, we have another iteration of the loop, this one
outputting 4 and setting n to 5. As 5 is greater than 0, we have yet another
iteration of the loop. This time, the if statement block runs, which sets n to -100.
Next, -100 is output, and n is set to -99. And here we stop, because n > 0 is
False.

CONCEPT CHECK

What is the output of the following code?

x = 6
while x > 4:

x = x - 1
print(x)

A.
6
5

B.
6
5
4

C.
5
4

D.
5
4
3

76 Chapter 4

E.
6
5
4
3

Answer: C. Many while loops do something and then update the loop variable,
but not this one. This one first decrements the loop variable x and then outputs
it. As 6 is greater than 4, an iteration of the loop runs, which assigns 5 to x and
then outputs 5. Next, 5 is greater than 4, so we have another iteration, this one
assigning 4 to x and outputting 4. And that’s it: 4 is not greater than 4, so the
loop terminates.

Nesting Loops in Loops
We can nest loops inside of while loops, much as we can nest loops inside of
for loops. In “Nesting” in Chapter 3, I noted that the inner for loop com-
pletes all of its iterations before the next iteration of the outer loop begins.
The same holds for while loops. Here’s an example:

>>> i = 0

>>> while i < 3:

... j = 8

... while j < 11:

... print(i, j)

... j = j + 1

... i = i + 1

...

0 8

0 9

0 10

1 8

1 9

1 10

2 8

2 9

2 10

Each value of i is involved in three lines of output, one for each iteration
of the inner j loop.

Repeating Code: Indefinite Loops 77

CONCEPT CHECK

How many lines are output by the following nested loop?

x = 0
y = 1
while x < 3:

while y < 3:
print(x, y)
y = y + 1

x = x + 1

A. 2
B. 3
C. 6
D. 8
E. 9

Answer: A. The outer loop’s Boolean expression, x < 3, is True, so we perform
an iteration of the outer loop. That leads to two iterations of the inner loop: one
when y is 1 and one when y is 2, each of which prints a line of output. So that’s
two lines of output so far.

But nothing in the code resets y’s value! Therefore, y < 3 will never be True
again, and there won’t be any further iterations of the inner loop.

Forgetting to reset a loop variable is a common mistake when dealing with
nested while loops.

Adding Boolean Operators
To solve Slot Machines, we want to loop while Martha has at least one quar-
ter. That looks like this:

while quarters >= 1:

That simple Boolean expression will suffice for this problem. But just
like for if statements, the Boolean expression following the word while can
include relational or Boolean operators. Here’s an example:

>>> x = 4

>>> y = 10

>>> while x <= 10 and y <= 13:

... print(x, y)

... x = x + 1

... y = y + 1

78 Chapter 4

...

4 10

5 11

6 12

7 13

The while loop is controlled by the Boolean expression x <= 10 and y

<= 13. As with any and operator, both of its operands must be True for the
whole expression to be True. When x refers to 8 and y refers to 14, the loop
terminates because the y <= 13 operand is False.

Solving the Problem
To solve Slot Machines, we know that we need a while loop, not a for loop,
because we can’t predict the number of iterations in advance. Each iteration
of the loop will play the current slot machine. When the loop terminates,
Martha will have no quarters left, and we will output the number of times
she played.

Here’s what we need to do on each iteration:

• Decrease Martha’s quarters by one (since it costs one quarter to play
a slot machine).

• If Martha is currently on the first slot machine, play that machine.
This involves increasing the number of times this machine has been
played. If this is the 35th play, then pay Martha and reset the num-
ber of times that this machine has been played to 0.

• If Martha is currently on the second slot machine, play that machine
(similar to how we played the first machine).

• If Martha is currently on the third slot machine, play that machine
(similar to how we played the first machine).

• Increase the number of Martha’s plays (since we just played a ma-
chine).

• Move to the next machine. If Martha just played the first machine,
we want to move to the second; if she just played the second, we
want to move to the third; and if she just played the third, we want
to cycle back to the first.

Our programs are getting longer now, so outlining the plan as I just did
is a useful technique for keeping the complexity under control and guiding
us toward correct code. We can use the outline to make sure we’re following
the plan and not forgetting anything.

Our code is in Listing 4-1.

quarters = int(input())

first = int(input())

second = int(input())

third = int(input())

Repeating Code: Indefinite Loops 79

plays = 0

¶ machine = 0

· while quarters >= 1:

¸ quarters = quarters - 1

¹ if machine == 0:

first = first + 1

º if first == 35:

first = 0

quarters = quarters + 30

elif machine == 1:

second = second + 1

if second == 100:

second = 0

quarters = quarters + 60

elif machine == 2:

third = third + 1

if third == 10:

third = 0

quarters = quarters + 9

» plays = plays + 1

¼ machine = machine + 1

½ if machine == 3:

machine = 0

print('Martha plays', plays, 'times before going broke.')

Listing 4-1: Solving Slot Machines

The quarters variable tracks the number of quarters that Martha has.
The first, second, and third variables track the number of plays since the last
payment for the first, second, and third slot machines, respectively.

The machine variable tracks the slot machine that Martha will play next.
The first slot machine is referred to by the number 0, the second by the
number 1, and the third by 2. Making machine refer to 0 therefore indicates
that the first slot machine will be played next ¶.

We could have referred to the slot machines using 1, 2, and 3 instead of
0, 1, and 2. Or we could have used strings: 'first', 'second', and 'third'. But
numbering items starting from zero is customary, so that’s what I’ve done
here.

The final variable in this program is plays, which tracks the number of
slot machines that Martha has played. We’ll output this once Martha is out
of quarters.

The bulk of the program consists of a while loop that loops as long as
Martha has quarters ·.

80 Chapter 4

Each iteration of the loop plays one slot machine. As such, the first
thing we do is decrease Martha’s quarters by one ¸. Next, we play the cur-
rent slot machine.

Are we on slot machine 0? Slot machine 1? Slot machine 2? We need an
if statement to answer that.

We first check whether we’re on slot machine 0 ¹. If we are, then we
increase the number of plays since this slot machine paid by one. To deter-
mine whether Martha gets paid, we then check whether this machine has
been played exactly 35 times since it last paid º. If it has, then we reset this
machine’s plays to 0 and increase Martha’s quarters by 30.

There are several levels of nesting here, so take some time to convince
yourself that the logic of the code is correct. In particular, note that every
time we play the first machine, we increase its number of plays by one. But
we only pay Martha after every 35 plays—that’s why we have the inner if

statement º!
We handle the second and third slot machines just as we handled the

first. The only difference is that each slot machine pays Martha after its own
number of plays and pays Martha its own amount of quarters.

Having played a slot machine, we increase Martha’s number of plays by
one ». Now all that’s left is to move to the next machine so that we’ll be at
the right machine if there’s a next iteration of the loop.

To move to the next machine, we increase machine by one ¼. If we were
on machine 0, this would move us to machine 1. If we were on machine 1,
this would move us to machine 2. If we were on machine 2, this would move
us to machine 3.

. . . Machine 3? There’s no machine 3! If we just played machine 2, then
we want to start over at machine 0. To do that, we add a check: if we just
moved to machine 3 ½, then we know that we just played machine 2, so we
reset machine to machine 0.

When the loop terminates, we know that Martha has no quarters left. As
a last step, we output the required sentence, including Martha’s number of
plays.

This code has a lot going on: stopping when Martha has no quarters
left, keeping track of the current machine, paying Martha when appropriate,
and counting Martha’s plays. Feel free to submit this code now, but also to
consider whether you’d have written parts of it in a different way. What hap-
pens if you increase plays by 1 at the top of the loop instead of the bottom?
Does it matter whether you decrease quarters by 1 at the top of the loop or
the bottom? Would you have used new variables to keep track of the number
of times that Martha played each slot machine, rather than modifying first,
second, and third? I strongly encourage you to experiment with variations of
what we’ve done here. If you make changes and the code no longer passes
the tests, great! Now you have a new learning opportunity to fix the code
and learn why your changes led to undesired behavior.

The next two sections offer further refinement of the code. We’ll use
the % operator to reduce the number of variables that we need and learn
about f-strings to streamline how we build strings.

Repeating Code: Indefinite Loops 81

The Mod Operator
In “Integer and Floating-Point Numbers” in Chapter 1, I introduced the
mod (%) operator for calculating the remainder of an integer division. For
example, 16 divided by 5 has a remainder of 1:

>>> 16 % 5

1

And 15 divided by 5 has a remainder of 0 (because 5 divides 15 exactly):

>>> 15 % 5

0

The second operand dictates the range of values that % can possibly re-
turn. The possible return values are 0 up to but not including the second
operand. For example, if the second operand is 3, then the only values that
can be returned by % are 0, 1, and 2. In addition, as we increase the first
operand, we cycle through all possible return values. Here’s an example:

>>> 0 % 3

0

>>> 1 % 3

1

>>> 2 % 3

2

>>> 3 % 3

0

>>> 4 % 3

1

>>> 5 % 3

2

>>> 6 % 3

0

>>> 7 % 3

1

Notice the pattern: 0, 1, 2, 0, 1, 2, and so on.
This behavior is useful for counting up to a specified number and then

cycling back to 0. It’s exactly the behavior that we need when playing the
slot machines: we play slot machine 0, then 1, then 2, then 0, then 1, then
2, then 0, then 1, and so on. (This is another reason why I used 0, 1, and 2,
rather than other values, to refer to the slot machines.)

Suppose that variable plays refers to the number of times that Martha
has played. To determine the next machine to play (0, 1, or 2), we can use the
% operator. For example, suppose that Martha has played one slot machine

82 Chapter 4

so far, and we want to know which she will play next. She’ll play slot machine
1 next, and the % operator tells us that:

>>> plays = 1

>>> plays % 3

1

If Martha has played six times so far, then she’s played slot machines
0, 1, 2, 0, 1, 2. The next slot machine she’ll play is machine 0. And, as she’s
played all three machines twice, with no other plays beyond that, the % oper-
ator gives us 0:

>>> plays = 6

>>> plays % 3

0

As a final example, suppose that Martha has played 11 times so far.
She’s done three complete cycles: 0, 1, 2, 0, 1, 2, 0, 1, 2. That’s nine of the
plays. The remaining two plays put Martha on slot machine 2 for her next
play:

>>> plays = 11

>>> plays % 3

2

That is, we can figure out the slot machine to play without explicitly
maintaining a machine variable.

We can also use % to simplify the logic of determining whether the next
play on the current slot machine pays Martha. Consider the first slot ma-
chine. In Listing 4-1, we counted the number of plays since the slot machine
paid. If that number is 35, then we pay Martha and reset the count to 0. But
there’s no need to reset the count if we’re using the % operator. We can just
check whether the slot machine has been played a multiple of 35 times and
pay Martha if so. To test whether a number is a multiple of 35, we can use
the % operator. A number is a multiple of 35 if dividing it by 35 yields no re-
mainder:

>>> first = 35

>>> first % 35

0

>>> first = 48

>>> first % 35

13

>>> first = 70

>>> first % 35

0

>>> first = 175

>>> first % 35

0

Repeating Code: Indefinite Loops 83

We can just check first % 35 == 0 to determine whether to pay Martha.
I’ve updated Listing 4-1 to use the % operator. The new code is in

Listing 4-2.

quarters = int(input())

first = int(input())

second = int(input())

third = int(input())

plays = 0

while quarters >= 1:

¶ machine = plays % 3

quarters = quarters - 1

if machine == 0:

first = first + 1

· if first % 35 == 0:

quarters = quarters + 30

elif machine == 1:

second = second + 1

if second % 100 == 0:

quarters = quarters + 60

elif machine == 2:

third = third + 1

if third % 10 == 0:

quarters = quarters + 9

plays = plays + 1

print('Martha plays', plays, 'times before going broke.')

Listing 4-2: Solving Slot Machines using %

I’ve used % in the two ways described in this section: to determine the
current machine based on the number of plays ¶ and to determine whether
Martha gets paid on a play (for example, at ·).

Associating % with returning the remainder of a division belies its flexi-
bility. Whenever you need to count in a cycle (0, 1, 2, 0, 1, 2), consider
whether you can use % to simplify your code.

F-Strings
The final thing we do in our solution to Slot Machines is output the required
sentence, like this:

print('Martha plays', plays, 'times before going broke.')

84 Chapter 4

We have to remember to end the first string so that we can output the
number of plays and then start a new string for the second half of the sen-
tence. In addition, we’re using multiple arguments to print to avoid having
to convert plays to a string. If we were storing the resulting string rather
than printing it, we’d need the str conversion:

>>> plays = 6

>>> result = 'Martha plays ' + str(plays) + ' times before going broke.'

>>> result

'Martha plays 6 times before going broke.'

Gluing strings and integers together is fine for a simple sentence like
this, but it doesn’t scale. Here’s how it looks when we try to embed three
integers instead of one:

>>> num1 = 7

>>> num2 = 82

>>> num3 = 11

>>> 'We have ' + str(num1) + ', ' + str(num2) + ', and ' + str(num3) + '.'

'We have 7, 82, and 11.'

We don’t want to have to keep track of all of those quotes, pluses, and
spaces.

The most flexible way to build a string consisting of strings and numbers
is to use an f-string. Here’s how the previous example looks with an f-string:

>>> num1 = 7

>>> num2 = 82

>>> num3 = 11

>>> f'We have {num1}, {num2}, and {num3}.'

'We have 7, 82, and 11.'

Notice the f before the opening quote of the string. The f stands for
format, because f-strings allow you to format the contents of a string. Inside
of an f-string, we can place expressions inside curly brackets. As the string
is being built, each expression is replaced by its value and inserted into the
string. The result is just a regular old string—there’s no new type here:

>>> type(f'hello')

<class 'str'>

>>> type(f'{num1} days')

<class 'str'>

The expressions in the curly brackets can be more complex than bare
variable names:

>>> f'The sum is {num1 + num2 + num3}'

'The sum is 100'

Repeating Code: Indefinite Loops 85

We can use f-strings in the final line of Slot Machines. Here’s how that
would look:

print(f'Martha plays {plays} times before going broke.')

Even in this simplest of string-formatting contexts, I think f-strings add
clarity. Keep them in the back of your mind for whenever you catch yourself
building a string from smaller pieces.

One warning about f-strings: they were added in Python 3.6, which at
the time of writing is still a reasonably recent version of Python. In older
versions of Python, f-strings cause syntax errors.

If you use f-strings, be sure to check that the judge you’re submitting to
is using Python 3.6 or newer to test your code.

Before continuing, you might like to try solving exercise 1 from “Chap-
ter Exercises” on page 99.

Problem #9: Song Playlist
Sometimes we don’t know in advance how much input will be provided.
We’ll see in this problem that a while loop is what we need in such cases.

This is DMOJ problem ccc08j2.

The Challenge
We have five favorite songs named A, B, C, D, and E. We’ve created a playlist
of these songs and are using an app to manage the playlist. The songs start
off in the order A, B, C, D, E. The app has four buttons:

• Button 1: Moves the first song of the playlist to the end of the play-
list. For example, if the playlist is currently A, B, C, D, E, then it
changes to B, C, D, E, A.

• Button 2: Moves the last song of the playlist to the beginning of the
playlist. For example, if the playlist is currently A, B, C, D, E, then it
changes to E, A, B, C, D.

• Button 3: Swaps the first two songs of the playlist. For example,
if the playlist is currently A, B, C, D, E, then it changes to be B, A,
C, D, E.

• Button 4: Plays the playlist!

We’re provided a user’s button presses. When the user presses button 4,
output the order of songs in the playlist.

Input
The input consists of pairs of lines, where the first line of a pair gives the
number of a button (1, 2, 3, or 4), and the second gives the number of times
that the user pressed this button (between 1 and 10). That is, the first line is
the number of a button, the second line is the number of times it is pressed,

86 Chapter 4

the third line is the number of a button, the fourth line is the number of
times it is pressed, and so on. The input ends with these two lines:

4

1

indicating that the user pressed button 4 once.

Output
Output the order of songs in the playlist after all button presses. The output
must be on one line, with a space separating each pair of songs.

String Slicing
The high-level plan of our solution to Song Playlist will be a while loop that
keeps going as long as we haven’t found the press of button 4. On each it-
eration, we’ll read two lines of input and process them. That leads to this
structure:

¶ button = 0

while button != 4:

Read button

Read number of presses

Process button presses

Prior to the while loop, we create the variable button and make it refer to
the number 0 ¶. Without this, the button variable would not exist, and we’d
get a NameError in the while loop’s Boolean expression. Any number besides 4
would work here to trigger the first iteration of the loop.

Within this while loop, we’ll use a for loop to process the button presses.
For each press, we’ll use an if statement to check which button was pressed.
We’ll need four indented blocks of statements in the if statement, one for
each of the four buttons.

Let’s talk about how to handle each of the buttons. Button 1 moves the
first song of the playlist to the end of the playlist. Because we have a small,
known number of songs, we can get away with using string indexing to con-
catenate each character. Remember that the first character of a string is at
index 0, not 1. We can put that character at the end of the string like this:

>>> songs = 'ABCDE'

>>> songs = songs[1] + songs[2] + songs[3] + songs[4] + songs[0]

>>> songs

'BCDEA'

This is rather unwieldy and is specific to having exactly five songs. We
can use string slicing to write more general and less error-prone code.

Repeating Code: Indefinite Loops 87

Slicing is a Python feature that lets us refer to a substring of a string. (In
fact, it works on any sequence, as we’ll see later in the book.) It takes two
indices: the index where we want to start, and the index one to the right of
where we want to end. If we use indices 4 and 8, for example, then we get
the characters at indices 4, 5, 6, and 7. Slicing uses square brackets, with a
colon between the two indices:

>>> s = 'abcdefghijk'

>>> s[4:8]

'efgh'

The slicing doesn’t change what s refers to. We can make s refer to the
slice by using an assignment statement:

>>> s

'abcdefghijk'

>>> s = s[4:8]

>>> s

'efgh'

It’s easy to make an off-by-one error here and think that s[4:8] includes
the character at index 8. But it doesn’t, just like range(4, 8) doesn’t include
the 8. So while this behavior may be a little counterintuitive, it’s applied con-
sistently in both range and slicing.

We must always include the colon when performing string slicing, but
the start and end indices are optional. If we leave off the start index, Python
starts slicing at index 0:

>>> s = 'abcdefghijk'

>>> s[:4]

'abcd'

If we leave off the end index, Python slices until the end of the string:

>>> s[4:]

'efghijk'

And leaving out both indices? That gives us a slice consisting of the en-
tire string:

>>> s[:]

'abcdefghijk'

We can even use negative indices in a slice. Here’s an example:

>>> s[-4:]

'hijk'

The start index refers to the fourth character from the right, which is
'h', and the end index is omitted. We therefore get a slice from the 'h' to
the end of the string.

88 Chapter 4

Unlike indexing, slicing never produces an index error. If we use indices
that are outside of the string, Python slices to the appropriate end of the
string:

>>> s[8:20]

'ijk'

>>> s[-50:2]

'ab'

We’ll use string slicing to implement the behaviors of buttons 1, 2, and 3.
Here’s what the code looks like for button 1:

>>> songs = 'ABCDE'

>>> songs = songs[1:] + songs[0]

>>> songs

'BCDEA'

The slice gives us the entire string except for the character at index 0.
(There’s nothing specific to a string of length 5 here; this code would work
on a nonempty string of any length.) Appending that missing character re-
sults in the first song moving to the end of the playlist. The slicing for the
other buttons is similar; you’ll see that code next.

CONCEPT CHECK

What is the output of the following code?

game = 'Lost Vikings'

print(game[2:-6])

A. st V

B. ost V

C. iking

D. st Vi

E. Viking

Answer: A. The character at index 2 is the 's' in 'Lost'. The character at index
-6 is the first 'i' in 'Vikings'. Since we go from index 2 up to but not including
index -6, we get the slice 'st V'.

Repeating Code: Indefinite Loops 89

CONCEPT CHECK

Which password gets us out of the following loop?

valid = False

while not valid:
s = input()
valid = len(s) == 5 and s[:2] == 'xy'

A. xyz

B. xyabc

C. abcxy

D. More than one of the above passwords get us out of the loop
E. None; the loop never executes and no passwords are obtained

Answer: B. The while loop terminates when valid is True (because then not valid
is False). The only one of the given passwords whose length is 5 and whose first
two characters are 'xy' is xyabc. This is therefore the only given password that
sets valid to True and ends the loop.

Solving the Problem
Now that we have some practice using while loops to loop as long as there
are more buttons to handle, and using slicing for string manipulation, we’re
ready to solve Song Playlist. See Listing 4-3 for the code.

songs = 'ABCDE'

button = 0

¶ while button != 4:

button = int(input())

presses = int(input())

· for i in range(presses):

if button == 1:

¸ songs = songs[1:] + songs[0]

elif button == 2:

¹ songs = songs[-1] + songs[:-1]

elif button == 3:

º songs = songs[1] + songs[0] + songs[2:]

» output = ''

90 Chapter 4

for song in songs:

output = output + song + ' '

¼ print(output[:-1])

Listing 4-3: Solving Song Playlist

The while loop continues as long as button 4 hasn’t been pressed ¶. On
each iteration of the while loop, we read the button number and then read
the number of times that this button was pressed.

Now, nested in the outer while loop, we need to loop once per button
press. Keep all of the loop types in mind as you decide which to use. Here,
a range for loop is the best choice ·, since it’s the easiest way to loop exactly
the number of times we specify.

The behavior inside the range for loop depends on which button is
pressed. We therefore use an if statement to check the button number and
modify the playlist accordingly. If button 1 is pressed, we use slicing to move
the first song to the end of the playlist ¸. If button 2 is pressed, we use slic-
ing to move the last song to the beginning of the playlist ¹. To do that, we
start with the character at the right end of the string and then use slicing to
append all other characters. For button 3, we need to modify the playlist so
that the first two songs swap positions. We build a new string with the char-
acter at index 1, then the character at index 0, and then all of the characters
starting at index 2 º.

Once we escape the while loop, we need to output the songs, with a
space between each pair of songs. We can’t just output songs, because that
doesn’t have spaces. Instead, we build an output string that has the appro-
priate spaces. To do that, we start with the empty string » and then use a for

loop to concatenate each song and a space. One small annoyance is that this
adds a space to the end of the string, after the last song, and we don’t want
that. We therefore use slicing to remove that final space character ¼.

You’re now ready to submit to the judge.
Before continuing, you might like to try solving exercise 3 from “Chap-

ter Exercises” on page 99.

Problem #10: Secret Sentence
Even if we have a string and even if we know how much input will be pro-
vided, a while loop may still be the required type of loop. This problem
demonstrates why this can be the case.

This is DMOJ problem coci08c3p2.

The Challenge
Luka is writing a secret sentence in class. He doesn’t want the teacher to be
able to read it, so instead of writing down the original sentence, he writes
down an encoded version. After each vowel in the sentence (a, e, i, o, or u),

Repeating Code: Indefinite Loops 91

he adds the letter p and that vowel again. For example, rather than write
down the sentence i like you, he would write ipi lipikepe yopoupu.

The teacher acquires Luka’s encoded sentence. Recover Luka’s original
sentence for the teacher.

Input
The input is one line of text, Luka’s encoded sentence. It consists of low-
ercase letters and spaces. There is exactly one space between each pair of
words. The maximum length of the line is 100 characters.

Output
Output Luka’s original sentence.

Another Limitation of for loops
In Chapter 3, we learned how for loops can be used to process strings. A for

loop plods through the string, from beginning to end, one character at a
time. In many cases, that’s precisely what we want. In Three Cups, for exam-
ple, we needed to look at each swap from left to right, so we used a for loop
over the string of swaps.

In other cases, that’s too restrictive, and a range for loop may be more
appropriate. A range for loop gives us access to indices rather than charac-
ters. It also allows us to skip through a sequence with whatever step size we
choose. For example, we can use a range for loop to visit every third charac-
ter of a string:

>>> s = 'zephyr'

>>> for i in range(0, len(s), 3):

... print(s[i])

...

z

h

We can also use a range for loop to process a string from right to left
instead of left to right:

>>> for i in range(len(s) - 1, -1, -1):

... print(s[i])

...

r

y

h

p

e

z

92 Chapter 4

All of this assumes that we want to step by a fixed amount on each
iteration.

What if sometimes we want to move one character to the right and other
times we want to move three characters to the right? That’s not at all far-
fetched. In fact, if we could do that, then we’d be well on our way to solving
Secret Sentence.

To see why, consider this test case:

ipi lipikepe yopoupu

Imagine that we’re reconstructing Luka’s original sentence by copying
characters to it. The first character in the encoded sentence is the vowel i.
This is the first character of Luka’s original sentence, too. Based on how
Luka encodes sentences, we know that the next two characters will be p and
i. We don’t want to include those in Luka’s original sentence, so we need
to skip over them. That is, after processing index 0, we want to jump to in-
dex 3.

Index 3 is a space character. Since it isn’t a vowel, we copy this charac-
ter as is to Luka’s original sentence and then move to index 4. Index 4 is l,
another nonvowel, so we copy that too and move to index 5. Here at index 5
we have a vowel; after copying it, we want to jump to index 8.

What’s the step size here? Sometimes we jump by three, but not always.
And sometimes we jump by one, but not always. It’s a mix of threes and
ones. for loops are not designed for this kind of processing.

With a while loop, we can zip around a string however we please, unen-
cumbered by predefined step sizes.

while Loops Through Indices
Writing a while loop that loops through string indices isn’t any different
from writing any other kind of while loop. We just need to incorporate the
string’s length. Here’s how we can loop through each character of a string
from left to right:

>>> s = 'zephyr'

>>> i = 0

¶ >>> while i < len(s):

... print('We have ' + s[i])

... i = i + 1

...

We have z

We have e

We have p

We have h

We have y

We have r

The variable i allows us to access each character of the string. It begins
at 0 and increases by one each time through the loop.

Repeating Code: Indefinite Loops 93

I used < in the loop’s Boolean expression ¶ to continue as long as we
haven’t reached the length of the string. Had I used <= instead of <, we’d
have received an IndexError:

>>> i = 0

>>> while i <= len(s):

... print('We have ' + s[i])

... i = i + 1

...

We have z

We have e

We have p

We have h

We have y

We have r

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

IndexError: string index out of range

The length of the string is 6. We get this error because the loop tries to
access s[6], which is not a valid index in the string.

Want to loop through the string jumping by three characters at a time
instead of one? No problem; just increase i by 3 instead of 1:

>>> i = 0

>>> while i < len(s):

... print('We have ' + s[i])

... i = i + 3

...

We have z

We have h

We can also go from right to left instead of left to right. We have to start
at len(s) - 1 instead of 0, and we have to decrease i on each iteration rather
than increase it. We also have to change the loop’s Boolean expression to
detect when we’re at the beginning of the string rather than the end. Here’s
how we go from right to left, looping through each character:

>>> i = len(s) - 1

>>> while i >= 0:

... print('We have ' + s[i])

... i = i - 1

...

We have r

We have y

We have h

We have p

We have e

We have z

94 Chapter 4

A final use case for a while loop on a string: stopping at the first index
that meets some criterion.

The strategy is to use the Boolean and operator to continue while there
are more characters to check and we haven’t yet met our criterion. For ex-
ample, here is how we can find the index of the first 'y' in a string:

>>> i = 0

>>> while i < len(s) and s[i] != 'y':

... i = i + 1

...

>>> print(i)

4

If there’s no 'y' anywhere in the string, the loop stops when i equals the
string length:

>>> s = 'breeze'

>>> i = 0

>>> while i < len(s) and s[i] != 'y':

... i = i + 1

...

>>> print(i)

6

When i refers to 6, the first operand of and is False, so the loop termi-
nates. You might wonder why the second operand of and doesn’t cause an
error here, since index 6 is not a valid index in the string. The reason is that
the Boolean operators use short-circuiting evaluation, which means that they
stop evaluating their operands if the result of the operator is already known.
For and, if the first operand is False, then we know that, no matter what the
second operand is, and will return False; Python therefore doesn’t evaluate
the second operand. Similarly, for or, if the first operand is True, then or is
guaranteed to return True, so Python doesn’t evaluate the second operand.

Solving the Problem
Now we know how to use a while loop to loop through a string.

For Secret Sentence, we need to do something different depending on
whether we’re looking at a vowel or a nonvowel. If we’re looking at a vowel,
then we need to copy the character and jump ahead by three characters (to
skip over the p and the second occurrence of this vowel). If we’re looking at
a nonvowel, then we need to copy the character and move to the next char-
acter. So, we always copy the current character but then move by three or
one based on whether the current character is a vowel. We can use an if

statement inside the while loop to make this decision for each character that
we see.

Repeating Code: Indefinite Loops 95

A solution for Secret Sentence is in Listing 4-4.

sentence = input()

¶ result = ''

i = 0

· while i < len(sentence):

result = result + sentence[i]

¸ if sentence[i] in 'aeiou':

i = i + 3

else:

i = i + 1

print(result)

Listing 4-4: Solving Secret Sentence

The result variable ¶ is used to build the original sentence, one charac-
ter at a time.

The while loop’s Boolean expression is the standard one for looping un-
til we reach the end of a string ·. In that loop, we first concatenate the cur-
rent character to the end of the result. Then we check whether the current
character is a vowel ¸. Recall from “Relational Operators” in Chapter 2 that
the in operator can be used to check whether the first string occurs in the
second. If the current character is found in the string of vowels, we jump
ahead by three characters; if not, we move to the next character.

Once the loop terminates, we have gone through the entire encoded
sentence and copied the correct characters into result. The last thing to do
is therefore to output this variable.

You’re ready to submit our code to the judge. Grepeapat wopork!

break and continue
In this section, I’ll show you two other loop keywords that Python supports:
break and continue. It’s my experience that introducing these keywords leads
learners to overuse them to the detriment of the clarity of their loops, so I’ve
decided to avoid them elsewhere in the book. Nonetheless, they are occa-
sionally useful, and you’re likely to see them in other Python code, so let’s
have a brief discussion.

break
The break keyword immediately terminates a loop, no questions asked.

Back when we solved Song Playlist, we used a while loop that looped
while the button was not 4. We could also solve that problem using break;
see Listing 4-5 for the code.

96 Chapter 4

songs = 'ABCDE'

¶ while True:

button = int(input())

· if button == 4:

¸ break

presses = int(input())

for i in range(presses):

if button == 1:

songs = songs[1:] + songs[0]

elif button == 2:

songs = songs[-1] + songs[:-1]

elif button == 3:

songs = songs[1] + songs[0] + songs[2:]

output = ''

for song in songs:

output = output + song + ' '

print(output[:-1])

Listing 4-5: Solving Song Playlist using break

The loop’s Boolean expression ¶ looks suspicious: True is always True, so
at first glance it seems that this loop never terminates. (That’s the downside
to break. We can’t just look at the Boolean expression to understand what
must happen for the loop to terminate.) But it can terminate, because of our
use of break. If button 4 is pressed ·, then we hit a break ¸, which terminates
the loop.

Let’s see one more example of using break. In “while Loops Through
Indices” in this chapter, we wrote code to find the index of the first 'y' in a
string. Here’s how that looks using break:

>>> s = 'zephyr'

>>> i = 0

>>> while i < len(s):

... if s[i] == 'y':

... break

... i = i + 1

...

>>> print(i)

4

Again, notice that the loop’s Boolean expression is misleading: it sug-
gests that the loop always runs until the end of the string, but further scru-
tiny reveals that a break is lurking and can influence termination.

Repeating Code: Indefinite Loops 97

A break terminates only its own loop, not any outer loops. Here’s an ex-
ample:

>>> i = 0

>>> while i < 3:

... j = 10

... while j <= 50:

... print(j)

... if j == 30:

¶ ... break

... j = j + 10

... i = i + 1

...

10

20

30

10

20

30

10

20

30

Notice how the break ¶ cuts the j loop short. But it doesn’t affect the i

loop: there are three iterations of that loop, exactly as there would be with-
out the break ¶.

continue
The continue keyword ends the current iteration of the loop without running
any more of its code. Unlike break, it does not end the loop altogether. If the
loop condition is True, then further iterations of the loop occur.

Here’s an example that uses continue to print each vowel and its index in
a string:

>>> s = 'zephyr'

>>> i = 0

>>> while i < len(s):

¶ ... if not s[i] in 'aeiou':

... i = i + 1

· ... continue

¸ ... print(s[i], i)

... i = i + 1

...

e 1

If the current character is not a vowel ¶, then we don’t want to print it.
So, we increase i by 1 to take us past this character and then use continue ·
to end the current iteration. If we get below the if statement ¸, then it must

98 Chapter 4

mean that we’re looking at a vowel (otherwise continue would have prevented
us from getting here). We therefore output that character and increase i by 1

to take us past this character.
The continue keyword is enticing because it seems to give us a way to get

us out of an iteration that we don’t want to be in. “This isn’t a vowel. I’m out
of here!” But an if statement can also be used to obtain the same behavior,
and the logic is often clearer:

>>> s = 'zephyr'

>>> i = 0

>>> while i < len(s):

... if s[i] in 'aeiou':

... print(s[i], i)

... i = i + 1

...

e 1

Rather than skip the iteration when the current character is not a vowel,
the if statement processes it when it is a vowel.

Summary
The unifying feature of the problems in this chapter is that we don’t know in
advance how many iterations of a loop will be required.

Slot Machines The number of iterations depends on the initial num-
ber of quarters and the payouts of the slot machines.

Song Playlist The number of iterations depends on how many buttons
were pressed.

Secret Sentence The number of iterations, and what to do on each
iteration, depends on where vowels are located in a string.

When the number of iterations is unknown, we turn to the while loop,
which runs as long as needed. Using a while loop is more error-prone than
code that uses a for loop. It’s also more flexible, as we are freed from the for

loop constraint of systematically looping through a sequence.
In the next chapter, we’ll learn about lists, which allow us to store large

amounts of numeric or string data. And how do you suppose we’ll process
all of that data? Yes: loops! Practice the following exercises to hone your
loop skills. You’ll be using them a lot when we solve problems using lists.

Chapter Exercises
You now have three types of loops at your disposal: for loops, range for

loops, and while loops. Part of the challenge of solving problems using loops
is knowing which loop to use! For each of the following exercises, experi-
ment with using different types of loops to arrive at the solution that you like
best.

Repeating Code: Indefinite Loops 99

1. DMOJ problem ccc20j2, Epidemiology

2. DMOJ problem coci08c1p2, Ptice

3. DMOJ problem ccc02j2, AmeriCanadian

4. DMOJ problem ecoo13r1p1, Take a Number

5. DMOJ problem ecoo15r1p1, When You Eat Your Smarties

6. DMOJ problem ccc19j3, Cold Compress

Notes
Slot Machines is originally from the 2000 Canadian Computing Competi-
tion, Junior/Senior Level. Song Playlist is originally from the 2008 Canadian
Computing Competition, Junior Level. Secret Sentence is originally from
the 2008/2009 Croatian Open Competition in Informatics, Contest 3.

100 Chapter 4

5
ORGANIZ ING VALUES US ING L ISTS

We’ve seen that we can use strings to work
with a sequence of characters. In this chap-

ter, we’ll learn about lists, which help us work
with sequences of other types of values, such

as integers and floats. We’ll also learn that we can nest
lists inside of lists, which lets us work with grids of data.

We’ll solve three problems using lists: finding the smallest neighbor-
hood of a collection of villages, determining whether sufficient money has
been raised for a school trip, and calculating the number of bonuses offered
by a bakery.

Problem #11: Village Neighborhood
In this problem, we’re going to find the size of the smallest neighborhood
of a collection of villages. We’ll find it helpful to store all of the neighbor-
hood sizes. We might have as many as 100 villages, though, and using a sep-
arate variable for each village would be a nightmare. We’ll see that lists allow
us to aggregate what would otherwise be separate variables into one collec-
tion. We’ll also learn about Python’s powerful list operations for modifying,
searching, and sorting a list.

This is DMOJ problem ccc18s1.

The Challenge
There are n villages located at distinct points on a straight road. Each village
is represented by an integer that indicates its position on the road.

A village’s left neighbor is the village with the next smallest position;
a village’s right neighbor is the village with the next biggest position. The
neighborhood of a village consists of half the space between that village and its
left neighbor, plus half the space between that village and its right neighbor.
For example, if there’s a village at position 10, with its left neighbor at posi-
tion 6 and its right neighbor at position 15, then this village’s neighborhood
starts from position 8 (halfway between 6 and 10) and ends at position 12.5
(halfway between 10 and 15).

The leftmost and rightmost villages have only one neighbor, so the def-
inition of a neighborhood doesn’t make sense for them. We’ll ignore the
neighborhoods of those two villages in this problem.

The size of a neighborhood is calculated as the neighborhood’s right-
most position minus the neighborhood’s leftmost position. For example, the
neighborhood that goes from 8 to 12.5 has size 12.5 – 8 = 4.5.

Determine the size of the smallest neighborhood.

Input
The input consists of the following lines:

• A line containing integer n, the number of villages. n is between 3
and 100.

• n lines, each of which gives the position of a village. Each position
is an integer between –1,000,000,000 and 1,000,000,000. The posi-
tions need not come in order from left to right; the neighbor of a
village could be anywhere in these lines.

Output
Output the size of the smallest neighborhood. Include exactly one digit after
the decimal point.

Why Lists?
As part of reading the input, we’ll need to read n integers (the integers that
represent the positions of the villages). We dealt with this once already when
solving Data Plan in Chapter 3. There, we used a range for loop to loop ex-
actly n times. We’ll do that here, too.

There’s one crucial difference between Data Plan and Village Neigh-
borhood. In Data Plan, we read an integer, used it, and never referred to it
again. We didn’t need to keep it around. But in Village Neighborhood, it’s
not enough to see each integer just once. A village’s neighborhood depends
on its left and right neighbors. Without access to those neighbors, we can’t

102 Chapter 5

calculate the size of the village’s neighborhood. We need to store all of the
village positions for later use.

For an example of why we need to store all of the village positions, con-
sider this test case:

6

20

50

4

19

15

1

There are six villages here. To find the size of a village’s neighborhood,
we need that village’s left and right neighbors.

The first village in the input is at position 20. What’s the size of that vil-
lage’s neighborhood? To answer that, we need access to all of the village po-
sitions so that we can find its left and right neighbors. Scanning through the
positions, you can identify that the left neighbor is at position 19 and the
right neighbor is at position 50. The size of this village’s neighborhood is
therefore (20 – 19)/2 + (50 – 20)/2 = 15.5.

The second village in the input is at position 50. What’s the size of that
village’s neighborhood? Again, we need to look through the positions to
figure it out. This village happens to be the rightmost one, so we ignore this
village’s neighborhood.

The third village in the input is at position 4. The left neighbor is at po-
sition 1, and the right neighbor is at position 15, so the size of this village’s
neighborhood is (4 – 1)/2 + (15 – 4)/2 = 7.

The fourth village in the input is at position 19. The left neighbor is at
position 15, and the right neighbor is at position 20, so the size of this vil-
lage’s neighborhood is (19 – 15)/2 + (20 – 19)/2 = 2.5.

The only remaining village that we need to consider is at position 15. If
you calculate its neighborhood size, you should get an answer of 7.5.

Comparing all of the neighborhood sizes that we calculated, we see that
the minimum—and the correct answer for this test case—is 2.5.

We need a way to store all of the village positions so that we can find the
neighbors of each village. A string won’t help, because strings store charac-
ters, not integers. Python lists to the rescue!

Lists
A list is a Python type that stores a sequence of values. (You’ll sometimes
see list values referred to as elements.) We use opening and closing square
brackets to delimit the list.

We can store only characters in strings, but we can store any type of
value in lists. This list of integers holds the village positions from the prior
section.

Organizing Values Using Lists 103

>>> [20, 50, 4, 19, 15, 1]

[20, 50, 4, 19, 15, 1]

Here’s a list of strings:

>>> ['one', 'two', 'hello']

['one', 'two', 'hello']

We can even create a list whose values are of different types:

>>> ['hello', 50, 365.25]

['hello', 50, 365.25]

Much of what you learned about strings applies to lists as well. For ex-
ample, lists support the + operator for concatenation and the * operator for
replication:

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>> [1, 2, 3] * 4

[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

We even have the in operator, which tells us whether a value is in a list
or not:

>>> 'one' in ['one', 'two', 'hello']

True

>>> 'n' in ['one', 'two', 'three']

False

And we have the len function to give us the length of a list:

>>> len(['one', 'two', 'hello'])

3

A list is a sequence, and we can use a for loop to loop through its values:

>>> for value in [20, 50, 4, 19, 15, 1]:

... print(value)

...

20

50

4

19

15

1

We can make variables refer to lists, just as we make them refer to strings,
integers, and floats. Let’s make two variables refer to lists and then concate-
nate them to produce a new list.

104 Chapter 5

>>> lst1 = [1, 2, 3]

>>> lst2 = [4, 5, 6]

>>> lst1 + lst2

[1, 2, 3, 4, 5, 6]

While we displayed the concatenated list, we did not store it, as we can
see by looking at the lists again:

>>> lst1

[1, 2, 3]

>>> lst2

[4, 5, 6]

To make a variable refer to the concatenated list, we use assignment:

>>> lst3 = lst1 + lst2

>>> lst3

[1, 2, 3, 4, 5, 6]

Names like lst, lst1, and lst2 can be used when there’s no need to be
more specific about what a list contains.

But don’t use list itself as a variable name. It’s already a name that we
can use to convert a sequence to a list:

>>> list('abcde')

['a', 'b', 'c', 'd', 'e']

If you make a variable named list, you’ll lose this valuable behavior, and
you’ll confuse readers who will expect list not to be tampered with.

Finally, lists support indexing and slicing. Indexing returns a single
value, and slicing returns a list of values:

>>> lst = [50, 30, 81, 40]

>>> lst[1]

30

>>> lst[-2]

81

>>> lst[1:3]

[30, 81]

If we have a list of strings, we can access one of its string’s characters by
indexing twice, first to select a string and then to select a character:

>>> lst = ['one', 'two', 'hello']

>>> lst[2]

'hello'

>>> lst[2][1]

'e'

Organizing Values Using Lists 105

CONCEPT CHECK

What does the following code store in the total variable?

lst = [a list of numbers]
total = 0
i = 1

while i <= len(lst):
total = total + i
i = i + 1

A. The sum of the list
B. The sum of the list, not including its first value
C. The sum of the list, not including its first and last values
D. This code causes an error because it accesses an invalid index of the list
E. None of the above

Answer: E. This code adds the numbers 1, 2, 3, and so on, up to the length of
the list. It doesn’t add numbers from the list or index the list at all!

List Mutability
Strings are immutable, which means they cannot be modified. When it looks
like we’re changing a string (for example, using string concatenation), we’re
really creating a new string, not modifying one that already exists.

Lists, on the other hand, are mutable, which means they can be modified.
We can observe this difference by using indexing. If we try to change a

character of a string, we get an error:

>>> s = 'hello'

>>> s[0] = 'j'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

The error message says that strings don’t support item assignment,
which just means that we can’t change their characters.

But because lists are mutable, we can change their values:

>>> lst = ['h', 'e', 'l', 'l', 'o']

>>> lst

['h', 'e', 'l', 'l', 'o']

106 Chapter 5

>>> lst[0] = 'j'

>>> lst

['j', 'e', 'l', 'l', 'o']

>>> lst[2] = 'x'

>>> lst

['j', 'e', 'x', 'l', 'o']

Without a precise understanding of the assignment statement, mutabil-
ity can lead to seemingly bewildering behavior. Here’s an example:

>>> x = [1, 2, 3, 4, 5]

¶ >>> y = x

>>> x[0] = 99

>>> x

[99, 2, 3, 4, 5]

No surprises yet. But you might be surprised by this:

>>> y

[99, 2, 3, 4, 5]

How did the 99 get into y like that?
When we assign x to y ¶, y is set to refer to the same list as x. The assign-

ment statement doesn’t copy the list. There’s only one list, and it happens
to have two names (or aliases) that refer to it. So if we make a change to that
list, we see that change whether we refer to the list by x or y.

Mutability is useful because it directly models what we might want to
do with the values in a list. If we want to change a value, we just change it.
Without mutability, changing one value isn’t possible. We’d have to create a
new list that was the same as the old list except for the value that we wanted
to change. That would work, but it is a roundabout and less transparent way
of changing a value.

If you really do want a copy of a list, not just another name for it, you
can use slicing. Leave out both the start and end indices, which results in a
copy of the entire list:

>>> x = [1, 2, 3, 4, 5]

>>> y = x[:]

>>> x[0] = 99

>>> x

[99, 2, 3, 4, 5]

>>> y

[1, 2, 3, 4, 5]

Observe this time that the y list didn’t change when the x list changed.
They’re separate lists.

Organizing Values Using Lists 107

CONCEPT CHECK

What is the output of the following code?

lst = ['abc', 'def', 'ghi']
lst[1] = 'wxyz'

print(len(lst))

A. 3

B. 9

C. 10

D. 4

E. This code produces an error

Answer: A. Changing a list value is allowed (because lists are mutable). But
changing the value at index 1 to a longer string doesn’t change the fact that the
list has three values.

Learning About Methods
Like strings, lists have many useful methods. I’ll show you some of them in
the next section, but first I’d like to show you how you can learn about meth-
ods on your own.

You can use Python’s dir function to get a list of methods for a particu-
lar type. Just call dir with a value as the argument, and you’ll get the meth-
ods for the type of that value.

Here’s what we get when we call dir using a string value as the argu-
ment:

>>> dir('')

['__add__', '__class__', '__contains__', '__delattr__',

<more stuff with underscores>

'capitalize', 'casefold', 'center', 'count', 'encode',

'endswith', 'expandtabs', 'find', 'format',

'format_map', 'index', 'isalnum', 'isalpha', 'isascii',

'isdecimal', 'isdigit', 'isidentifier', 'islower',

'isnumeric', 'isprintable', 'isspace', 'istitle',

'isupper', 'join', 'ljust', 'lower', 'lstrip',

'maketrans', 'partition', 'replace', 'rfind', 'rindex',

'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',

'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

108 Chapter 5

Notice that we called dir with an empty string. We could have called dir

with any string value; the empty string is just fastest to type.
Ignore the names at the top with underscores; those names are for

Python’s internal use and not generally of interest to programmers. The
rest of the names are string methods that you can call. In that list, you’ll find
string methods that you already know, such as isupper and count, and many
others that we haven’t come across yet.

To learn how to use a method, you can use the name of that method in a
call to help. Here’s the help we get on the string count method:

>>> help(''.count)

Help on built-in function count:

count(...) method of builtins.str instance

¶ S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of

substring sub in string S[start:end]. Optional

arguments start and end are interpreted as in

slice notation.

The help tells us how to call the method ¶.
Square brackets identify optional arguments. You would use start and

end if you wanted to count the occurrences of sub within only a slice of the
string.

It’s worth browsing the list of methods to check whether one is avail-
able to help with your current programming task. Even if you’ve used a
method before, looking at the help can show you features that you didn’t
know existed!

To see which list methods are available, call dir([]). To learn about
them, call help([].xxx), where xxx is the name of a list method.

CONCEPT CHECK

Here is the help for the string center method:

>>> help(''.center)
Help on built-in function center:

center(width, fillchar=' ', /) method of builtins.str instance
Return a centered string of length width.

Padding is done using the specified fill character
(default is a space).

(continued)

Organizing Values Using Lists 109

What is the string produced by the following code?

'cave'.center(8, 'x')

A. 'xxcavexx'

B. ' cave '

C. 'xxxxcavexxxx'

D. ' cave '

Answer: A. We’re calling center with a width of 8 and a fillchar of 'x'. (Had
we provided only one argument, a space would have been used for fillchar.)
The resulting string will therefore be of length 8. The string 'cave' has four
characters, so we need four more characters to get us to length 8. Python
therefore adds two spaces at the beginning and two spaces at the end to center
the string.

List Methods
Time to make progress on Village Neighborhood. I can think of two opera-
tions on a list that would help us solve it.

First, adding to a list. We’ll start off with no village positions and read
them one at a time from the input. We therefore need a way to add each of
these positions to a growing list: first the list will have nothing, and then it
will have one village position in it, then two, and so on.

Second, sorting a list. Once we’ve read in the village positions, we need
to find the smallest neighborhood. This involves looking at each village po-
sition and the distance to its left and right neighbors. The village positions
could come in any order, so in general it’s not easy to find the neighbors of
a given village. Think back to the work we did in “Why Lists?” in this chap-
ter. For each village, we had to scan the entire list to find its neighbors. It’d
be so much easier if we had the villages ordered by position. Then we’d
know exactly where the neighbors were: they’d be just to the left and just
to the right of a village.

For example, here are our sample villages in the order that we read
them:

20 50 4 19 15 1

That’s a mess! On a real street, they’d come in order of position, like
this:

1 4 15 19 20 50

110 Chapter 5

Want the neighbors of the village at position 4? Just look immediately to
the left and immediately to the right: 1 and 15. The neighbors of the village
at 15? Boom, they’re right there—4 and 19. No more searching all over the
place. We’ll sort the list of village positions to simplify our code.

We can add to a list using the append method and sort a list using the sort

method. We’ll learn these two methods, and a few others that you’ll likely
find useful as you continue working with lists, and then we’ll come back to
solve Village Neighborhood.

Adding to a List
The append method appends to a list, which means that it adds a value to the
end of the values already there. Here’s append adding three village positions
to an initially empty list:

>>> positions = []

>>> positions.append(20)

>>> positions

[20]

>>> positions.append(50)

>>> positions

[20, 50]

>>> positions.append(4)

>>> positions

[20, 50, 4]

Notice that we’re using append without using an assignment statement.
The append method doesn’t return a list; it modifies an existing list.

It’s a common error to use an assignment statement with a method that
changes a list. Making this error results in the list being lost, like this:

>>> positions

[20, 50, 4]

>>> positions = positions.append(19)

>>> positions

Nothing is there! Technically, positions now refers to a None value; you
can see that using print:

>>> print(positions)

None

The None value is used to convey that no information is available. That’s
absolutely not expected here—we wanted our four village positions!—but
we’ve lost the list through an errant assignment statement.

If your list is disappearing or you’re getting error messages related to
the None value, make sure you’re not using an assignment statement with a
method that simply modifies a list.

Organizing Values Using Lists 111

The extend method is related to append. You use extend whenever you’d
like to concatenate a list (not a single value) to the end of an existing list.
Here’s an example:

>>> lst1 = [1, 2, 3]

>>> lst2 = [4, 5, 6]

>>> lst1.extend(lst2)

>>> lst1

[1, 2, 3, 4, 5, 6]

>>> lst2

[4, 5, 6]

If you want to insert into a list at a position other than its end, you can
use the insert method. It takes an index and a value and inserts the value at
the index:

>>> lst = [10, 20, 30, 40]

>>> lst.insert(1, 99)

>>> lst

[10, 99, 20, 30, 40]

Sorting a List
The sort method sorts a list, putting its values in order. If we call it with no
arguments, it sorts from smallest to largest:

>>> positions = [20, 50, 4, 19, 15, 1]

>>> positions.sort()

>>> positions

[1, 4, 15, 19, 20, 50]

If we call it with a reverse argument of value True, it sorts from largest to
smallest:

>>> positions.sort(reverse=True)

>>> positions

[50, 20, 19, 15, 4, 1]

The syntax that I’ve used, reverse=True, is new. Based on how we’ve called
methods and functions to this point in the book, you might expect that
True by itself would work. But no: sort requires the whole reverse=True to be
there, for reasons I’ll explain in Chapter 6.

Removing Values from a List
The pop method removes a value by index. If no argument is provided, pop
both removes and returns the rightmost value.

112 Chapter 5

>>> lst = [50, 30, 81, 40]

>>> lst.pop()

40

We can pass the index of the value to remove as an argument to pop.
Here, we remove and return the value at index 0:

>>> lst.pop(0)

50

Since pop returns something—unlike methods like append and sort—it
makes sense to assign its return value to a variable:

>>> lst

[30, 81]

>>> value = lst.pop()

>>> value

81

>>> lst

[30]

The remove method removes by value, not index. Pass it the value to re-
move, and it removes the leftmost occurrence of that value from the list. If
the value is not present, remove produces an error. In the following, there are
two occurrences of 50 in the list, so remove(50) works twice before producing
an error:

>>> lst = [50, 30, 81, 40, 50]

>>> lst.remove(50)

>>> lst

[30, 81, 40, 50]

>>> lst.remove(50)

>>> lst

[30, 81, 40]

>>> lst.remove(50)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

CONCEPT CHECK

What is the value of lst after the following code runs?

(continued)

Organizing Values Using Lists 113

lst = [2, 4, 6, 8]
lst.remove(4)
lst.pop(2)

A. [2, 4]

B. [6, 8]

C. [2, 6]

D. [2, 8]

E. This code produces an error

Answer: C. The remove call removes the value 4, leaving [2, 6, 8]. Now the pop
call removes the value at index 2, which is value 8. That leaves a final list of
[2, 6].

Solving the Problem
Suppose that we’ve successfully read and sorted the village positions. Here’s
what our list would look like at that point:

>>> positions = [1, 4, 15, 19, 20, 50]

>>> positions

[1, 4, 15, 19, 20, 50]

To find the size of the smallest neighborhood, we start by finding the
size of the neighborhood for the village at index 1. (Notice that we don’t
start at index 0: the village at index 0 is the leftmost one, and per the prob-
lem description, we can ignore it.) We can find that neighborhood size like
this:

>>> left = (positions[1] - positions[0]) / 2

>>> right = (positions[2] - positions[1]) / 2

>>> min_size = left + right

>>> min_size

7.0

The left variable stores the size of the left part of the neighborhood,
and right stores the size of the right part. We then add them up to obtain
the total size of the neighborhood. We get a value of 7.0.

That’s the value to beat. How do we know whether any other village has
a smaller neighborhood? We can use a loop to process those other villages.
If we find a neighborhood that’s smaller than our current smallest, we up-
date our current smallest to that smaller size.

The code for our solution is in Listing 5-1.

114 Chapter 5

n = int(input())

¶ positions = []

· for i in range(n):

¸ positions.append(int(input()))

¹ positions.sort()

º left = (positions[1] - positions[0]) / 2

right = (positions[2] - positions[1]) / 2

min_size = left + right

» for i in range(2, n - 1):

left = (positions[i] - positions[i - 1]) / 2

right = (positions[i + 1] - positions[i]) / 2

size = left + right

¼ if size < min_size:

min_size = size

print(min_size)

Listing 5-1: Solving Village Neighborhood

We begin by reading n, the number of villages, from the input. We also
set positions to refer to an empty list ¶.

Each iteration of the first range for loop · is responsible for reading
one village position and appending it to the positions list. It does that by us-
ing input to read the next village position, int to convert it to an integer, and
the list method append to append that integer to the list ¸. That one line ¸ is
equivalent to these three separate lines:

position = input()

position = int(position)

positions.append(position)

Having read the village positions, we next sort them in increasing order
¹. We then find the size of the neighborhood of the village at index 1, stor-
ing it using min_size º.

Next, in a second loop, we loop through each of the other villages whose
neighborhood sizes we need to compute ». Those villages start at index 2

and end at index n - 2. (We don’t want to consider the village at index n - 1,
because that’s the rightmost village.) We therefore use range with a first argu-
ment of 2 (thus starting at 2) and a second argument of n - 1 (thus ending at
n - 2).

Inside the loop, we calculate the size of the current village’s neighbor-
hood, exactly as we did for the first village. The size of the smallest neigh-
borhood that we’ve found so far is referred to by min_size. Is the current

Organizing Values Using Lists 115

village’s neighborhood smaller than our smallest so far? To answer that, we
use an if statement ¼. If this village’s neighborhood is smaller than min_size,
we update min_size to the size of this neighborhood. If this village’s neigh-
borhood isn’t smaller than min_size, then we do nothing, because this village
doesn’t change the size of the smallest neighborhood.

Having gone through all of the villages, min_size must be the size of the
smallest neighborhood. We therefore output the value of min_size.

The “Output” section of this problem description specified “Include ex-
actly one digit after the decimal point.” What if the smallest size was some-
thing like 6.25 or 8.33333? Shouldn’t we do something about that?

No. We’re safe with what we’ve done. The only neighborhood sizes we
can get are numbers like 3.0 (with a 0 after the decimal point) and 3.5 (with a
.5 after the decimal point). Here’s why. When we calculate the left part of a
neighborhood, we subtract two integers and divide that resulting integer by
2. If we have an even integer before dividing by 2, then dividing gives us a .0

number (no remainder). And if we have an odd integer before dividing by 2,
then dividing gives us a .5 number. The same goes for the right part of the
neighborhood: the size will be a .0 number or a .5 number. Adding the left
and right parts to get the total size is therefore guaranteed to give us another
.0 or .5 number.

Avoiding Code Duplication: Two More Solutions
It’s a little disappointing that we’re including the “compute neighborhood
size” code both prior to and in the second range for loop. In general, re-
peated code is a sign that we might be able to improve the code’s design.
We’d like to avoid repeated code because it adds to the amount of code that
we must maintain, and it makes it harder to fix problems in the code if it
turns out that the repeated code is flawed. Here, the repeated code seems
acceptable to me (it’s only three lines), but let’s talk about two ways to avoid
it. These are general approaches that you’ll be able to apply to other similar
problems.

Using a Huge Size
The only reason we’re calculating the size of a village’s neighborhood be-
fore the loop is so that the loop has something to compare the other neigh-
borhood sizes against. If we entered the loop without a value for min_size,
we’d get an error when the code tries to compare it to the size of the current
village.

If we set min_size to 0.0 before the loop, then the loop will never find a
smaller size, and we’ll incorrectly output 0.0 no matter the test case. Using
0.0 would be a bug!

But a huge value, one at least as big as every possible neighborhood size,
will work. We just need to make it so huge that the first iteration of the loop
is guaranteed to find a size that’s no bigger, ensuring that our fake huge size
never gets output.

116 Chapter 5

From the “Input” section of this problem description, we know that
each position is between –1,000,000,000 and 1,000,000,000. The biggest
neighborhood we could ever have, then, occurs when we have a village at po-
sition –1,000,000,000, another at position 1,000,000,000, and a village some-
where in between. That in-between village will have a neighborhood size of
1,000,000,000. We can therefore start min_size with a size of 1000000000.0 or
greater. This alternate approach is in Listing 5-2.

n = int(input())

positions = []

for i in range(n):

positions.append(int(input()))

positions.sort()

min_size = 1000000000.0

¶ for i in range(1, n - 1):

left = (positions[i] - positions[i - 1]) / 2

right = (positions[i + 1] - positions[i]) / 2

size = left + right

if size < min_size:

min_size = size

print(min_size)

Listing 5-2: Solving Village Neighborhood with a huge value

Careful! We need to start computing sizes at index 1 now ¶ (not 2); oth-
erwise, we’d forget to include the neighborhood of the village at index 1.

Building a List of Sizes
Another way to avoid the code duplication is to store each neighborhood
size in a list of sizes. Python has a built-in min function that takes a sequence
and returns its minimum:

>>> min('qwerty')

'e'

>>> min([15.5, 7.0, 2.5, 7.5])

2.5

(Python also has a max function that returns the maximum of a sequence.)

Organizing Values Using Lists 117

See Listing 5-3 for a solution that uses min on a list of neighborhood
sizes.

n = int(input())

positions = []

for i in range(n):

positions.append(int(input()))

positions.sort()

sizes = []

for i in range(1, n - 1):

left = (positions[i] - positions[i - 1]) / 2

right = (positions[i + 1] - positions[i]) / 2

size = left + right

sizes.append(size)

min_size = min(sizes)

print(min_size)

Listing 5-3: Solving Village Neighborhood using min

Feel free to submit any of these solutions to the judge, whichever you
like best!

Before continuing, you might like to try solving exercise 1 from “Chap-
ter Exercises” on page 134.

Problem #12: School Trip
Many problems you’ll encounter have input with multiple integers or floats
per line. We’ve avoided these problems until now, but they are everywhere!
We’ll now learn how we can use lists to process the input for these kinds of
problems.

This is DMOJ problem ecoo17r1p1.

The Challenge
Students would like to go on a school trip at the end of the year, but they
need money to pay for it. To raise money, they have organized a brunch. To
attend the brunch, a student in their first year pays $12, a student in their
second year pays $10, a student in their third year pays $7, and a student in
their fourth year pays $5.

Of all of the money raised at the brunch, 50 percent of it can be used to
pay for the school trip (the other 50 percent is used to pay for the brunch
itself).

118 Chapter 5

We are told the cost of the school trip, the proportion of students in
each year, and the total number of students. Determine whether the stu-
dents need to raise more money for the school trip.

Input
The input consists of 10 test cases, with three lines per test case (30 lines in
all). Here are the three lines for each test case:

• The first line contains the cost in dollars of the school trip; it’s an
integer between 50 and 50,000.

• The second line contains four numbers indicating the proportion of
brunching students who are in first, second, third, and fourth year,
respectively. There is a space between each pair of numbers. Each
number is between 0 and 1, and their sum is 1 (for 100 percent).

• The third line contains integer n, the number of students attending
the brunch. n is between 4 and 2,000.

Output
For each test case: if the students need to raise more money for the school
trip, output YES; otherwise, output NO.

A Catch
Suppose that there are 50 students and that 10 percent of them (a propor-
tion of 0.1) are in their fourth year. Then we can calculate that 50 ∗ 0.1 = 5
students are in their fourth year.

Now suppose that there are 50 students, but that 15 percent of them (a
proportion of 0.15) are in their fourth year. If we multiply, we get 50 ∗ 0.15 =
7.5 students in their fourth year.

Having 7.5 students doesn’t make any sense, and I haven’t told you what
we should do in such a case. The full problem description specifies that we
are to round down—so we’d round down to 7 here. This could result in the
sum of the students in first year, second year, third year, and fourth year
not equaling the total number of students. For the students who are not ac-
counted for, we are to add them to the year with the most students. It’s guar-
anteed that exactly one year will have the most students (there won’t be a tie
between multiple years).

We’ll first solve the problem ignoring this catch. Then we’ll incorporate
the catch to give us a full solution.

Splitting Strings and Joining Lists
The second line of each test case consists of four proportions, like this:

0.2 0.08 0.4 0.32

Organizing Values Using Lists 119

We need a way to extract those four numbers from a string for further
processing. We’ll learn about the string split method for splitting a string
into a list of its pieces. While we’re at it, we’ll also learn about the string join

method, which lets us go the other way and collapse a list into a single string.

Splitting a String into a List
Remember that the input function returns a string, no matter what the input
looks like. If the input should be interpreted as an integer, we need to con-
vert the string to an integer. If the input should be interpreted as a float, we
need to convert the string to a float. And if the input should be interpreted
as four floats? Well, then we had better split it up into individual floats be-
fore converting anything!

The string split method splits a string into a list of its pieces. By default,
split splits around spaces, which is exactly what we need for our four floats:

>>> s = '0.2 0.08 0.4 0.32'

>>> s.split()

['0.2', '0.08', '0.4', '0.32']

The split method returns a list of strings, at which point we can access
each one independently. Here, I save the list that split returns and then ac-
cess two of its values:

>>> proportions = s.split()

>>> proportions

['0.2', '0.08', '0.4', '0.32']

>>> proportions[1]

'0.08'

>>> proportions[2]

'0.4'

Data in the wild is often comma-separated rather than space-separated.
Piece of cake: we can call split with an argument that tells it what to use as a
separator:

>>> info = 'Toronto,Ontario,Canada'

>>> info.split(',')

['Toronto', 'Ontario', 'Canada']

Joining a List into a String
To go the other way, from a list to a string rather than a string to a list, we
can use the string join method. The string on which join is called is used as
the separator between list values. Here are two examples:

>>> lst = ['Toronto', 'Ontario', 'Canada']

>>> ','.join(lst)

120 Chapter 5

'Toronto,Ontario,Canada'

>>> '**'.join(lst)

'Toronto**Ontario**Canada'

Technically, join can join the values in any sequence, not just in a list.
Here’s an example of joining the characters from a string:

>>> '*'.join('abcd')

'a*b*c*d'

Changing List Values
When we use split on a string of four pieces, we get a list of strings:

>>> s = '0.2 0.08 0.4 0.32'

>>> proportions = s.split()

>>> proportions

['0.2', '0.08', '0.4', '0.32']

In “Converting Between Strings and Integers” in Chapter 1, we learned
that strings that look like numbers can’t be used in numerical calculations.
So, we need to convert this list of strings to a list of floats.

We can convert a string to a float using float, like this:

>>> float('45.6')

45.6

That’s just one float. How can we convert a whole list of strings to a list
of floats? It’s awfully tempting to try to make that happen using the follow-
ing loop:

>>> for value in proportions:

... value = float(value)

The logic is that this should go through each value in the list and con-
vert it to a float.

Sadly, it doesn’t work. The list still refers to strings:

>>> proportions

['0.2', '0.08', '0.4', '0.32']

What could be wrong? Is float not working? We can see that float is do-
ing just fine by looking at the type of value after conversion:

>>> for value in proportions:

... value = float(value)

... type(value)

...

<class 'float'>

Organizing Values Using Lists 121

<class 'float'>

<class 'float'>

<class 'float'>

Four floats! But the list obdurately remains one of strings.
What’s happening here is that we’re not changing the values referred to

in the list. We’re changing what the variable value refers to, but that doesn’t
change the fact that the list refers to the old string values. To actually change
the values that the list references, we need to assign new values at the list’s
indices. Here’s how to do it:

>>> proportions

['0.2', '0.08', '0.4', '0.32']

>>> for i in range(len(proportions)):

... proportions[i] = float(proportions[i])

...

>>> proportions

[0.2, 0.08, 0.4, 0.32]

The range for loop loops through each index, and an assignment state-
ment changes what’s referred to by that index.

Solving Most of the Problem
We’re now in good shape to solve the problem minus the catch.

We’ll start with an example to highlight what our code will have to do.
Then we’ll move onto the code itself.

Exploring a Test Case
The input for this problem consists of 10 test cases, but I’ll present only one
here. If you type this test case from the keyboard, you’ll see the answer. But
the program won’t terminate there, because it’s waiting for the next test
case. If you use input redirection with this test case, you’ll again see the an-
swer. But then you’ll get an EOFError. EOF stands for “end of file”; the error
is caused by the program trying to read more input than is available. Once
your code is working for one test case, you can try adding a few more to your
input to make sure that those work, too. Once you have 10, your program
should run to completion.

Here’s the test case I’d like to trace with you:

504

0.2 0.08 0.4 0.32

125

The school trip costs $504, and there are 125 students who attend the
brunch.

To determine how much money is raised at the brunch, we calculate the
money raised from each year of students. There are 125 ∗ 0.2 = 25 students

122 Chapter 5

in their first year, and each of them pays $12 for the brunch. So, the first-
year students raise 25 ∗ 12 = 300 dollars. We can similarly calculate the mon-
ey raised by the students in second, third, and fourth years. See Table 5-1 for
this work.

Table 5-1: School Trip Example

Year Students in year Cost per student Money raised

First year 25 12 300
Second year 10 10 100
Third year 50 7 350
Fourth year 40 5 200

The money raised by each year of students is calculated by multiplying
the number of students in that year by the cost per student in that year;
see the rightmost column of the table. For the total money raised by all stu-
dents, we can add the four numbers in this rightmost column. That gives us
300 + 100 + 350 + 200 = 950 dollars. Only 50 percent of that can be used for
the school trip. So we’re left with 950 / 2 = 475 dollars, not sufficient to pay
for the $504 trip. The correct output is therefore YES, because more money
must be raised.

The Code
This partial solution will correctly handle any input where multiplying a pro-
portion by the number of students gives a whole number of students (such
as the test case that we just did). See Listing 5-4 for the code.

¶ YEAR_COSTS = [12, 10, 7, 5]

· for dataset in range(10):

trip_cost = int(input())

¸ proportions = input().split()

num_students = int(input())

¹ for i in range(len(proportions)):

proportions[i] = float(proportions[i])

º students_per_year = []

for proportion in proportions:

» students = int(num_students * proportion)

students_per_year.append(students)

total_raised = 0

Organizing Values Using Lists 123

¼ for i in range(len(students_per_year)):

total_raised = total_raised + students_per_year[i] * YEAR_COSTS[i]

½ if total_raised / 2 < trip_cost:

print('YES')

else:

print('NO')

Listing 5-4: Solving most of School Trip

To begin, we use variable YEAR_COSTS to refer to a list of costs for attend-
ing the brunch: the cost for students in their first, second, third, and fourth
year ¶. Once we’ve determined the number of students in each year, we’ll
multiply by these values to determine the money raised. The costs never
change, so we’ll never change what this variable refers to. For such “con-
stant” variables, Python convention is to write their names in capital letters,
as I’ve done here.

The input contains 10 test cases, so we loop 10 times ·, once for each
test case. The rest of the program is inside this loop, because we want to re-
peat everything 10 times.

For each test case, we read the three lines of input. The second line is
the one that has the four proportions, so we use split to split it into a list of
four strings ¸. We use a range for loop to convert each of those strings to a
float ¹.

Using those proportions, our next task is to determine the number of
students in each year. We begin with an empty list º. Then, for each pro-
portion, we multiply the total number of students by that proportion » and
append it to the list. Notice at » that I’m using int to guarantee that we’re
appending only integers. When used on a float, int drops the fractional part
by rounding toward 0.

Now we have the two lists that we need to calculate how much money
has been raised. In students_per_year, we have a list of the number of stu-
dents in each year, which looks something like this:

[25, 10, 50, 40]

And in YEAR_COSTS, we have the cost of brunch for students in each year:

[12, 10, 7, 5]

Each value at index 0 in these lists tells us something about students in
their first year, each value at index 1 tells us something about students in
their second year, and so on. Such lists are called parallel lists, because they
work in parallel to tell us more than each does alone.

We use these two lists to calculate the total money raised, by multiplying
each number of students by the corresponding cost per student and adding
up all of these results ¼.

Has enough money been raised for the school trip? To find out, we use
an if statement ½. Half of the money raised by the brunch can be used for

124 Chapter 5

the school trip. If that amount is less than the cost of the school trip, then
we need to raise more money (YES); otherwise, we don’t (NO).

The code we’ve written is very general. The only clue that there are four
years of students is at ¶. If we wanted to solve a similar problem for a dif-
ferent number of years, all we’d have to do is change that line (and provide
input with the expected number of proportions). This is the power of lists:
they help us write flexible code that can accommodate changes to problems
we are solving.

How to Handle the Catch
Now let’s see why our current program does the wrong thing for some test
cases, and the Python features we’ll use to fix it.

Exploring a Test Case
Here’s a test case that our current code gets wrong:

50

0.7 0.1 0.1 0.1

9

This time, the school trip costs $50, and there are nine students that at-
tend the brunch. For the number of students in their first year, our current
program would calculate 9 ∗ 0.7 = 6.3 and then round down to 6. The fact
that we have to round down is why we have to be careful with this test case.
To see what our current program would do for all four years, see Table 5-2.

Table 5-2: An Example Case from School Trip That Our Current Program
Gets Wrong

Year Students in year Cost per student Money raised

First year 6 12 72
Second year 0 10 0
Third year 0 7 0
Fourth year 0 5 0

In each year besides the first year, there are 0 students because 9 ∗ 0.1 =
0.9 rounds down to 0. So it looks like all we raise is $72. Half of $72 is $36,
not sufficient to pay for the $50 school trip. Our current program outputs
YES. We need to raise more money.

. . .Or not. We’re supposed to have nine students here, not six! We’ve
lost three students to rounding. The problem description specifies that
we should add those students to the year with the most students, which in
this case is the first year. If we do that, we see that we actually raise 9 ∗ 12 =
108 dollars. Half of $108 is $54, so in fact we do not need to raise any more
money for the $50 school trip! The correct output is NO.

Organizing Values Using Lists 125

More List Operations
To fix our program, we need to do two things: figure out how many students
were lost to rounding, and add those students to the year with the most stu-
dents.

Summing a List
To determine the number of students lost to rounding, we can add up the
students in our students_per_year list and then subtract that from the total
number of students. Python’s sum function takes a list and returns the sum of
its values:

>>> students_per_year = [6, 0, 0, 0]

>>> sum(students_per_year)

6

>>> students_per_year = [25, 10, 50, 40]

>>> sum(students_per_year)

125

Finding the Index of the Maximum
Python’s max function takes a sequence and returns its maximum value:

>>> students_per_year = [6, 0, 0, 0]

>>> max(students_per_year)

6

>>> students_per_year = [25, 10, 50, 40]

>>> max(students_per_year)

50

We want the index of the maximum, not the maximum itself, so that
we can increase the number of students at that index. Given the maximum
value, we can find its index using the index method. It returns the leftmost
index where the provided value is found or generates an error if the value is
not in the list at all:

>>> students_per_year = [6, 0, 0, 0]

>>> students_per_year.index(6)

0

>>> students_per_year.index(0)

1

>>> students_per_year.index(50)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: 50 is not in list

We’ll be searching for a value that we know is in the list, so we won’t
have to worry about getting an error.

126 Chapter 5

Solving the Problem
We’re there! We can now update our partial solution to handle any valid test
case. The new program is in Listing 5-5.

YEAR_COSTS = [12, 10, 7, 5]

for dataset in range(10):

trip_cost = int(input())

proportions = input().split()

num_students = int(input())

for i in range(len(proportions)):

proportions[i] = float(proportions[i])

students_per_year = []

for proportion in proportions:

students = int(num_students * proportion)

students_per_year.append(students)

¶ counted = sum(students_per_year)

uncounted = num_students - counted

most = max(students_per_year)

where = students_per_year.index(most)

· students_per_year[where] = students_per_year[where] + uncounted

total_raised = 0

for i in range(len(students_per_year)):

total_raised = total_raised + students_per_year[i] * YEAR_COSTS[i]

if total_raised / 2 < trip_cost:

print('YES')

else:

print('NO')

Listing 5-5: Solving School Trip

The only new code is the five lines starting at ¶. We use sum to calculate
how many students we’ve counted so far and then subtract this from the to-
tal number of students to arrive at the number of uncounted students. We
then use max and index to identify the index of the year to which we should
add the uncounted students. Finally, we add the uncounted students to this
index ·. (Adding 0 to a number doesn’t change that number, so don’t worry
about coding special behavior for when uncounted is 0. This code is safe in
that case.)

Organizing Values Using Lists 127

That’s all for this problem. Go ahead and submit to the judge! And then
come back—we’re about to explore even more general list structures.

Before continuing, you might like to try solving exercise 5 from “Chap-
ter Exercises” on page 134.

Problem #13: Baker Bonus
In this problem, we’ll see how lists help us work with two-dimensional data.
This kind of data arises often in real-world programs. For example, data in
the form of a spreadsheet consists of rows and columns; processing such
data requires techniques like those we’re about to learn.

This is DMOJ problem ecoo17r3p1.

The Challenge
Baker Brie has a number of franchisees, each of which sells baked goods to
consumers. Having reached the milestone of being in business for 13 years,
Baker Brie will celebrate by awarding bonuses based on sales. The bonuses
depend on sales per day and sales per franchisee. Here’s how the bonuses
work:

• For every day on which the total sales across all franchisees is a mul-
tiple of 13, that multiple will be given as bonuses. For example, a
day where the franchisees sold a combined 26 baked goods will add
26 / 13 = 2 bonuses to the total.

• For every franchisee whose total sales across all days is a multiple of
13, that multiple will be given as bonuses. For example, a franchisee
that sold a total of 39 baked goods will add 39 / 13 = 3 bonuses to
the total.

Determine the total number of bonuses awarded.

Input
The input consists of 10 test cases. Each test case contains the following
lines:

• A line containing the integer number of franchisees f and integer
number of days d, separated by a space. f is between 4 and 130, and
d is between 2 and 4,745.

• d lines, one per day, containing f integers separated by spaces. Each
integer specifies a number of sales. The first of these lines gives the
sales for each franchise on the first day, the second gives the sales
for each franchise on the second day, and so on. Each integer is be-
tween 1 and 13,000.

128 Chapter 5

Output
For each test case, output the total number of bonuses awarded.

Representing a Table
The data for this problem can be visualized as a table. We’ll start with an
example and then look at how to represent a table as a list.

Exploring a Test Case
If we have d days and f franchisees, we can lay out the data as a table with d
rows and f columns.

Here’s a sample test case:

6 4

1 13 2 1 1 8

2 12 10 5 11 4

39 6 13 52 3 3

15 8 6 2 7 14

The table corresponding to this test case is in Table 5-3.

Table 5-3: Baker Bonus Table

0 1 2 3 4 5

0 1 13 2 1 1 8

1 2 12 10 5 11 4

2 39 6 13 52 3 3

3 15 8 6 2 7 14

I’ve numbered the rows and columns starting at 0 to coincide with how
we’ll shortly store this data in a list.

How many bonuses are awarded in this test case? Let’s first look at the
rows of the table, which correspond to days. The sum of the sales for row 0
is 1 + 13 + 2 + 1 + 1 + 8 = 26. As 26 is a multiple of 13, this row gives us 26 /
13 = 2 bonuses. The sum of row 1 is 44. That’s not a multiple of 13, so no
bonuses there. The sum of row 2 is 116—again, no bonuses. The sum of row
3 is 52, which gives us 52 / 13 = 4 bonuses.

Now let’s look at the columns, which correspond to franchisees. The
sum of column 0 is 1 + 2 + 39 + 15 = 57. That’s not a multiple of 13, so no
bonuses. In fact, the only column that gives us any bonuses is column 1. Its
sum is 39, giving us 39 / 13 = 3 bonuses.

The total number of bonuses awarded is 2 + 4 + 3 = 9. So, 9 is the correct
output for this test case.

Organizing Values Using Lists 129

Nested Lists
To this point, we’ve seen lists of integers, floats, and strings. We can also
create lists of lists, called nested lists. Each value of such a list is itself a list.
It’s common to use a variable name like grid or table to refer to a nested list.
Here’s a Python list corresponding to Table 5-3:

>>> grid = [[1, 13, 2, 1, 1, 8],

... [2, 12, 10, 5, 11, 4],

... [39, 6, 13, 52, 3, 3],

... [15, 8, 6, 2, 7, 14]]

Each list value corresponds to one row. If we index once, we get a row,
which is itself a list:

>>> grid[0]

[1, 13, 2, 1, 1, 8]

>>> grid[2]

[39, 6, 13, 52, 3, 3]

If we index twice, we get a single value. Here’s the value in row 1, col-
umn 2:

>>> grid[1][2]

10

Working with columns is a little trickier than working with rows, because
each column is spread over multiple lists. To access a column, we need to ag-
gregate one value from each row. We can do that with a loop, which increm-
entally builds a new list representing a column. Here, I obtain column 1:

>>> column = []

>>> for i in range(len(grid)):

¶ ... column.append(grid[i][1])

...

>>> column

[13, 12, 6, 8]

Notice how the first index (the row) varies, but the second (the column)
does not ¶. This picks out each value with the same column index.

What about summing rows and columns? To sum a row, we can use the
sum function. Here’s the sum of row 0:

>>> sum(grid[0])

26

We can also use a loop, like this:

>>> total = 0

>>> for value in grid[0]:

... total = total + value

130 Chapter 5

...

>>> total

26

Using sum is the easier option, so we’ll use that.
To sum a column, we can build a column list and use sum on that, or we

can calculate it directly without making a new list. Here’s the latter approach
for column 1:

>>> total = 0

>>> for i in range(len(grid)):

... total = total + grid[i][1]

...

>>> total

39

CONCEPT CHECK

What is the output of the following code?

lst = [[1, 1],
[2, 3, 4]]

x = 0

for i in range(len(lst)):
for j in range(len(lst[0])):

x = x + lst[i][j]

print(x)

A. 2

B. 7

C. 11

D. This code produces an error (it uses an invalid index)

Answer: B. The variable i goes through the values 0 and 1 (because the length
of lst is 2); the variable j also goes through the values 0 and 1 (because the
length of lst[0] is 2). The values in the list that are summed are therefore those
where each index is 0 or 1. In particular, this does not include the 4 at
lst[1][2].

Organizing Values Using Lists 131

CONCEPT CHECK

The following code contains two print calls. What is the output?

lst = [[5, 10], [15, 20]]
x = lst[0]
x[0] = 99
print(lst)

lst = [[5, 10], [15, 20]]
y = lst[0]
y = y + [99]
print(lst)

A.
[[99, 10], [15, 20]]
[[5, 10], [15, 20]]

B.
[[99, 10], [15, 20]]
[[5, 10, 99], [15, 20]]

C.
[[5, 10], [15, 20]]
[[5, 10], [15, 20]]

D.
[[5, 10], [15, 20]]
[[5, 10, 99], [15, 20]]

Answer: A. x refers to the first row of lst; it’s another way to reference lst[0].
Therefore, when we do x[0] = 99, that change is also reflected when looking at
the list through lst.

Next, y also refers to the first row of lst. But then we assign a new list to
y—and it’s that list, not the first row of lst, that has the 99 appended to it.

Solving the Problem
Our code to solve this problem is in Listing 5-6.

for dataset in range(10):

¶ lst = input().split()

franchisees = int(lst[0])

days = int(lst[1])

132 Chapter 5

grid = []

· for i in range(days):

row = input().split()

¸ for j in range(franchisees):

row[j] = int(row[j])

¹ grid.append(row)

bonuses = 0

º for row in grid:

» total = sum(row)

if total % 13 == 0:

bonuses = bonuses + total // 13

¼ for col_index in range(franchisees):

total = 0

½ for row_index in range(days):

total = total + grid[row_index][col_index]

if total % 13 == 0:

bonuses = bonuses + total // 13

print(bonuses)

Listing 5-6: Solving Baker Bonus

As with School Trip, the input contains 10 test cases, so we place all of
our code inside a loop that iterates 10 times.

For each test case, we read the first line of input and call split to break
it into a list ¶. That list will contain two values—the number of franchisees
and the number of days—and we convert them to integers and assign them
to appropriately named variables.

The grid variable begins as an empty list. It will ultimately refer to a list
of rows, where each row is a list of sales for a given day.

We use a range for loop to loop once for each day ·. We then read a
row from the input and call split to split it into a list of individual sales val-
ues. These values are strings right now, so we use a nested loop to convert
them all to integers ¸. Then, we add the row to our grid ¹.

We’ve now read the input and stored the grid. It’s time to add up the
number of bonuses. We take that in two steps: first for the bonuses from the
rows and second for the bonuses from the columns.

To find the bonuses from the rows, we use a for loop on grid º. As with
any for loop on a list, it gives us its values one at a time. Here, each value is a
list, so row refers to a different list on each iteration. The sum function works
on any list of numbers, so we use it here to add up the values in the current
row ». If the sum is divisible by 13, then we add the number of bonuses.

We can’t loop through columns of the list like we did rows, so we have to
resort to looping through indices. We accomplish that by using a range for

Organizing Values Using Lists 133

loop through the indices of the columns ¼. Using sum is not an option for
summing the current column, so we’ll need a nested loop. That nested loop
goes through the rows ½, adding up each value in the desired column. We
then check whether that total is divisible by 13 and add any bonuses if it is.

We finish by printing the total number of bonuses.
Judge time! If you submit our code, you should see that all test cases

pass.

Summary
In this chapter, we learned about lists, which help us work with collections
of whatever type we choose. Lists of numbers, lists of strings, lists of lists:
Python supports whatever we need. We also learned about list methods and
why sorting a list can make it easier to process the values in a list.

In contrast to strings, lists are mutable, which means that we can change
their contents. This helps us more easily manipulate lists, but we must be
careful to modify the list that we think we’re modifying.

We’re at the point in our learning where we can write programs with
many lines of code. We can direct what our programs do using if statements
and loops. We can store and manipulate information using strings and lists.
We can write programs to solve challenging problems. Such programs can
become difficult to design and read. Fortunately, there’s a tool we can use
to help us organize our programs to keep their complexity under control,
and we’ll learn that tool in the next chapter. Working through some of the
following exercises may deepen your appreciation of the difficulty in writing
larger amounts of code. Then you’ll be ready to continue!

Chapter Exercises
Here are some exercises for you to try.

1. DMOJ problem ccc07j3, Deal or No Deal Calculator

2. DMOJ problem coci17c1p1, Cezar

3. DMOJ problem coci18c2p1, Preokret

4. DMOJ problem ccc00s2, Babbling Brooks (Check out Python’s round
function.)

5. DMOJ problem ecoo18r1p1, Willow’s Wild Ride

6. DMOJ problem ecoo19r1p1, Free Shirts

7. DMOJ problem dmopc14c7p2, Tides

8. DMOJ problem wac3p3, Wesley Plays DDR

9. DMOJ problem ecoo18r1p2, Rue’s Rings (If you use f-strings here,
you’ll need a way to include the { and } symbols themselves. You can
include a { in the f-string by using {{ and a } by using }}.)

10. DMOJ problem coci19c5p1, Emacs

134 Chapter 5

11. DMOJ problem coci20c2p1, Crtanje (You’ll need to support rows
from –100 to 100. But how do we support negative-indexed rows
when Python lists start at index 0? Here’s a trick: use index x + 100

any time you need access to row x. That shifts the row numbers to
be between 0 and 200 rather than between –100 and 100. Also, one
small annoyance here with strings: \ is a special character, so you’ll
have to use '\\' rather than '\' if you want a \ character.)

12. DMOJ problem dmopc19c5p2, Charlie’s Crazy Conquest (You’ll have to
be careful with indices and the game rules for this one!)

Notes
Village Neighborhood is originally from the 2018 Canadian Computing
Competition, Senior Level. School Trip is originally from the 2017 Educa-
tional Computing Organization of Ontario Programming Contest, Round 1.
Baker Bonus is originally from the 2017 Educational Computing Organiza-
tion of Ontario Programming Contest, Round 3.

Organizing Values Using Lists 135

6
DES IGNING PROGRAMS WITH

FUNCT IONS

When writing large programs, it’s impor-
tant to organize our code into smaller logi-

cal pieces, each of which contributes to the
overall goal. That way, we’ll be able to think

about each piece on its own, without worrying about
what other pieces are doing. Then we’ll put the pieces
together. These pieces are called functions.

In this chapter, we’ll use functions to break down and solve two prob-
lems: calculating the score in a two-player card game and determining
whether boxes of action figures can be nicely organized.

Problem #14: Card Game
In this problem, we’ll implement a two-player card game. As part of thinking
through the problem, we’ll find that the same bit of logic crops up several
times. We’ll learn how to bundle this code into a Python function to avoid
code duplication and enhance code clarity.

This is DMOJ problem ccc99s1.

The Challenge
Two players, A and B, are playing a card game. (You don’t need to know
about playing cards or card games to understand this problem.)

The game starts with a deck of 52 cards. Player A takes a card from the
deck, then player B takes a card from the deck, then player A, then player B,
until there are no cards left in the deck.

There are 13 types of cards in the deck. These types are as follows: two,
three, four, five, six, seven, eight, nine, ten, jack, queen, king, ace. There are
four cards of each of these types in the deck. For example, there are four
twos, four threes, and so on, all the way up to four aces. (That’s why there
are 52 cards in the deck: 13 types times 4 cards per type.)

A high card is a card that is a jack, queen, king, or ace.
When a player takes a high card, they may score some points. Here are

the rules by which points are scored:

• If a player takes a jack, after which there is at least one card remain-
ing in the deck, and the next card in the deck is not a high card,
then the player scores 1 point.

• If a player takes a queen, after which there are at least two cards re-
maining in the deck, and neither of the next two cards in the deck is
a high card, then the player scores 2 points.

• If a player takes a king, after which there are at least three cards re-
maining in the deck, and none of the next three cards in the deck is
a high card, then the player scores 3 points.

• If a player takes an ace, after which there are at least four cards re-
maining in the deck, and none of the next four cards in the deck is a
high card, then the player scores 4 points.

We’re asked to output information each time a player scores, as well as
the total score for each player at the end of the game.

Input
The input consists of 52 lines. Each line contains the type of a card in the
deck. The lines are in the order that cards will be taken from the deck; that
is, the first line is the first card taken from the deck, the second line is the
second card taken, and so on.

Output
Whenever a player scores, output the following line:

Player p scores q point(s).

where p is A for player A or B for player B, and q is the number of points that
they just scored.

138 Chapter 6

When the game ends, output the following two lines:

Player A: m point(s).

Player B: n point(s).

where m is the total score for player A and n is the total score for player B.

Exploring a Test Case
If you think through how to solve this problem, you might be left wondering
whether we can just solve it, right now, without learning anything new. In-
deed, we can! We’re in great shape. We can use a list to represent the deck
of cards. We know how to use the list append method to add a card to the
deck. We can access values in the list to look for high cards. We’ve even got
f-strings to help us output the player and points information.

Rather than dive in, though, let’s go through a small example. Doing
so is going to highlight that we’re missing one crucial feature of Python that
will make it easier to organize our solution and solve this problem.

We’ll be here all year if we go through a 52-card example, so let’s use
a smaller one with just 10 cards. This isn’t a complete test case, so the pro-
gram we write won’t work on it, but it’s enough for us to understand the me-
chanics of the game and what our solution will have to do. Here’s the test
case:

queen

three

seven

king

nine

jack

eight

king

jack

four

Player A takes the first card, which is a queen. A queen is a high card,
and player A might score 2 points here. First, we confirm that there are
at least two cards remaining in the deck after this queen. Next, we have to
check these next two cards, hoping there is no high card among them. The
next two cards are not high cards—they are a three and a seven—so player A
gets 2 points.

Player B now takes the second card, which is a three. Three isn’t a high
card, so no points for player B.

Player A now takes the seven. No points.
Player B now takes the king, so there’s a chance for 3 points for player B.

There are at least three cards remaining in the deck after this king. We have
to check these next three cards, hoping there is no high card among them.
Sadly, there is a high card, a jack, among those three. No points for player B.

Designing Programs with Functions 139

Player A now takes the nine. No points.
Player B now takes the first jack. There is at least one card remaining

in the deck after this jack. We have to check this next card, hoping it isn’t a
high card. Good news: it’s not a high card—it’s an eight—so player B gets 1
point.

There’s only one more point scored, and it’s by player A when they take
the second-last card (the jack) from the deck.

Therefore, this is the output for this test case:

Player A scores 2 point(s).

Player B scores 1 point(s).

Player A scores 1 point(s).

Player A: 3 point(s).

Player B: 1 point(s).

Notice that each time a player takes a high card, we need to check two
things: that there are at least a certain number of cards remaining in the
deck and that there is no high card among these cards. The first we should
be able to manage by using a variable that tells us how many cards have been
taken. The second is more difficult. We’d need some code to check a given
number of cards for a high card. Worse, if we’re not careful, we’d end up
duplicating very similar code four times: once to check the card after a jack,
once to check the two cards after a queen, once to check the three cards af-
ter a king, and once to check the four cards after an ace. If we later found a
flaw in our logic, we would have to fix it in up to four different places.

Is there a Python feature that lets us package that “no high cards here”
logic, just once, and invoke it four times? There is. It’s called a function, and
it’s just a named block of code that carries out a small task. Functions are
essential to the organization and clarity of our code. All programmers use
them. Without them, writing large software systems like games and word
processors would be untenable. Let’s learn how to use functions.

Defining and Calling Functions
We’ve already learned how to call functions that come with Python. For ex-
ample, we’ve used the input function to read input. Here’s a call of input with
no arguments:

>>> s = input()

hello

>>> s

'hello'

We’ve also used Python’s print function to output text. Here’s a call of
print with one argument:

>>> print('well, well')

well, well

140 Chapter 6

The built-in Python functions are general-purpose, designed to be used
in a wide variety of settings. When we want a function to solve a problem-
specific task, we’ll have to define it ourselves.

Functions Without Arguments
To define, or create, a function, we use Python’s def keyword. Here’s the defi-
nition of a function that outputs three lines:

>>> def intro():

... print('*********')

... print('*WELCOME*')

... print('*********')

...

The structure of a function definition mirrors that of an if statement
or loop. The name after def is the name of the function that we’re defin-
ing; here, we’re defining a function named intro. Following the name of the
function, we have a pair of empty parentheses, (). We’ll see later that we can
include information in these parentheses to pass arguments to functions.
This intro function doesn’t take any arguments, which is why the parenthe-
ses are empty. Following the parentheses is a colon; as with if statements or
loops, leaving out the colon is a syntax error. On the following lines, we pro-
vide an indented block of statements that will run each time the function is
called.

When you defined the intro function, you may have expected to see this
as output:

WELCOME

But no: so far we’ve only defined the function, not called it. Defining a
function has no observable effect; it simply stores the function in the com-
puter’s memory so we can call it later. We call our own functions just like we
call any of Python’s built-in functions. Since this intro function doesn’t take
any arguments, we use an empty set of parentheses in the call:

>>> intro()

WELCOME

You can call this function as many times as you like. It’s there as often as
we need it.

Functions with Arguments
Our intro function isn’t very flexible, as it does the same thing each time it’s
called. We can change the function so that we can pass arguments to it, and

Designing Programs with Functions 141

the arguments we pass can influence what the function does. Here’s a new
version of the intro function that allows us to pass a single argument:

>>> def intro2(message):

... line_length = len(message) + 2

... print('*' * line_length)

... print(f'*{message}*')

... print('*' * line_length)

...

To call this function, we provide a string argument:

>>> intro2('HELLO')

HELLO

>>> intro2('WIN')

WIN

We can’t call this intro2 function without an argument—if we try, we get
an error:

>>> intro2()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: intro2() missing 1 required positional argument: 'message'

The error reminds us that we have not provided an argument for message.
The name message is known as a function parameter. When we call intro2,
Python first makes message refer to whatever our argument refers to; that is,
message becomes an alias for our argument.

We can create functions with more than one parameter. Here’s a func-
tion that takes two parameters, a message to print and the number of times
to print it:

>>> def intro3(message, num_times):

... for i in range(num_times):

... print(message)

...

To call this one, we provide two arguments. Python works from left to
right, assigning the first argument to the first parameter and the second ar-
gument to the second parameter. In the following call, 'high' is assigned to
the message parameter and 5 is assigned to the num_times parameter:

>>> intro3('high', 5)

high

high

142 Chapter 6

high

high

high

Be sure to provide the correct number of arguments. For intro3, we
need two arguments. Anything else is an error:

>>> intro3()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: intro3() missing 2 required positional arguments: 'message'

and 'num_times'

>>> intro3('high')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: intro3() missing 1 required positional argument: 'num_times'

We also have to be sure to provide values of the proper types. Wrong
types won’t stop us from calling the function, but they will cause an error
within the function:

>>> intro3('high', 'low')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in intro3

TypeError: 'str' object cannot be interpreted as an integer

This TypeError arises because intro3 uses a range for loop on variable
num_times. If the argument we provide for num_times is not an integer, the
range for loop fails.

Keyword Arguments
It’s possible to override the left-to-right correspondence between arguments
and parameters when calling a function. To do that, we use the names of
parameters in whatever order we like. An argument that uses the name of a
parameter is called a keyword argument. Here’s how it works:

>>> def intro3(message, num_times):

... for i in range(num_times):

... print(message)

...

>>> intro3(message='high', num_times=3)

high

high

high

>>> intro3(num_times=3, message='high')

Designing Programs with Functions 143

high

high

high

Each function call here uses two keyword arguments. A keyword ar-
gument is written as the name of a parameter, an equal sign, and its corre-
sponding argument.

You can even start with regular arguments and finish with keyword argu-
ments:

>>> intro3('high', num_times=3)

high

high

high

But once you use a keyword argument, you can’t go back to regular
ones:

>>> intro3(message='high', 3)

File "<stdin>", line 1

SyntaxError: positional argument follows keyword argument

In “Sorting a List” in Chapter 5 we used a reverse keyword argument
when calling the sort method. The Python designers decided that reverse
would be a keyword-only parameter, which means that it’s impossible to fill
in its value without using a keyword argument. Python lets us do that with
our functions, too, but we won’t need that level of control in this book.

Local Variables
Names of parameters work like regular variables, but are local to the func-
tion in which they’re defined. That is, a function parameter doesn’t exist
outside of its function:

>>> def intro2(message):

... line_length = len(message) + 2

... print('*' * line_length)

... print(f'*{message}*')

... print('*' * line_length)

...

>>> intro2('hello')

hello

>>> message

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'message' is not defined

144 Chapter 6

What about that line_length variable—is it local, too? It is:

>>> line_length

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'line_length' is not defined

What happens if you have a variable and you call a function that uses a
parameter or local variable of the same name? Is your value lost? Let’s see:

>>> line_length = 999

>>> intro2('hello')

hello

>>> line_length

999

Phew—it’s still 999, just as we left it. Local variables are created when a
function is called and destroyed when the function terminates, all without
affecting other variables with shared names.

A function can access a variable that was created outside of that func-
tion. It’s ill-advised to rely on that, though, because then that function isn’t
self-contained, instead hoping that variables it expects to be there are actu-
ally there. In this book, we’ll write functions so that they only use local vari-
ables. All information that a function needs will be provided to the function
through its parameters.

Mutable Parameters
Since a parameter is an alias for its corresponding argument, it can be used
to change a mutable value. Here’s a function that removes all occurrences of
value from a list lst:

>>> def remove_all(lst, value):

... while value in lst:

... lst.remove(value)

...

>>> lst = [5, 10, 20, 5, 45, 5, 9]

>>> remove_all(lst, 5)

>>> lst

[10, 20, 45, 9]

Notice that we passed a list to remove_all by using a variable. This func-
tion won’t accomplish anything useful if you call it with a list value directly
(rather than with a variable referring to a list):

>>> remove_all([5, 10, 20, 5, 45, 5, 9], 5)

Designing Programs with Functions 145

The function removed all the 5s from the list, but because we didn’t use
a variable, we have no way to refer to that list ever again.

CONCEPT CHECK

What is the output of the following code?

def mystery(s, lst):
s = s.upper()
lst = lst + [2]

s = 'a'
lst = [1]
mystery(s, lst)

print(s, lst)

A. a [1]

B. a [1, 2]

C. A [1]

D. A [1, 2]

Answer: A. When mystery is called, its s parameter is made to reference
whatever the s argument refers to, which is the 'a' string. Similarly, its lst
parameter is made to reference whatever the lst argument refers to, which is
the [1] list. Inside of mystery, s and lst are local variables.

Now let’s study the two statements of the function itself.

First, s = s.upper(). This makes the local variable s refer to 'A' (uppercase). But
it hasn’t changed what s refers to outside of the function. That still refers to 'a'
(lowercase).

Second, lst = lst + [2]. Using + with lists creates a new list (it doesn’t change
an existing list!), so this makes the local variable lst refer to the new list: [1, 2].
But, again, it hasn’t changed what lst refers to outside of the function; it’s still
[1].

What gives—didn’t I tell you previously that functions can change a mutable
parameter? I did; but to make that happen, you really do need to change the
value itself, not what a local variable refers to. Compare the previous program
with the next one, whose output is different:

def mystery(s, lst):
s.upper() # upper creates a new string
lst.append(2) # append changes the list

146 Chapter 6

s = 'a'
lst = [1]
mystery(s, lst)

print(s, lst)

Return Values
Let’s come back to our Card Game problem. Our goal is to define a func-
tion that tells us whether there are no high cards in a list of cards. We’ll
name that function no_high. We haven’t written no_high yet, but we can still
specify what we hope to accomplish. Here’s what we’re after:

>>> no_high(['two', 'six'])

True

>>> no_high(['eight'])

True

>>> no_high(['two', 'jack', 'four'])

False

>>> no_high(['queen', 'king', 'three', 'queen'])

False

We want the first two calls to return True, because there are no high
cards in those lists of cards. And we want the third and fourth calls to return
False, because there’s at least one high card in those lists of cards.

How can we define a function that returns these True and False values?
That’s the final piece of the function puzzle.

To return a value from a function, we use Python’s return keyword. As
soon as a return is reached, execution of the function terminates, and the
specified value is returned to the caller.

Here’s how we can write the no_high function:

>>> def no_high(lst):

... if 'jack' in lst:

... return False

... if 'queen' in lst:

... return False

... if 'king' in lst:

... return False

... if 'ace' in lst:

... return False

... return True

...

Designing Programs with Functions 147

We first check whether there are any 'jack' cards in the list. If there are,
then we know that the list contains one or more high cards, so we immedi-
ately return False.

If we’re still here, then we know that there are no jacks. But there could
be other high cards, so we need to check for them. The rest of the if state-
ments check for queens, kings, and aces, respectively, returning False if any
of them is in the list.

If we don’t hit any of those four return statements, then there are no
high cards in the list. In that case, we return True.

A return by itself, with no value given, returns the value None. That’s use-
ful if you’re writing a function that doesn’t return anything useful and you
need to terminate the function before reaching the bottom of its code.

If a return is encountered inside a loop, the function still terminates im-
mediately, regardless of how deeply nested it is. Here’s an example showing
a return getting us out of a nested loop:

>>> def func():

... for i in range(10):

... for j in range(10):

... print(i, j)

... if j == 4:

... return

...

>>> func()

0 0

0 1

0 2

0 3

0 4

A return is like a super-break! Some people don’t like using return from
within a loop for the same reason that they don’t like break: it can obscure
the purpose and logic of a loop. I’ll use return within a loop when conve-
nient. Unlike break, which can show up anywhere, a return is restricted to
showing up within a function, separated from other code. If we keep our
functions small, then using a return within a loop can help us write clear
code without interfering with the code around it.

CONCEPT CHECK

Is the following version of no_high correct? That is, does it return True if there is
at least one high card in the list, and False otherwise?

def no_high(lst):
for card in lst:

148 Chapter 6

if card in ['jack', 'queen', 'king', 'ace']:
return False

else:
return True

A. Yes
B. No; for example, it returns the wrong value for ['two', 'three']

C. No; for example, it returns the wrong value for ['jack']
D. No; for example, it returns the wrong value for ['jack', 'two']

E. No; for example, it returns the wrong value for ['two', 'jack']

Answer: E. The if-else statement causes the loop to always terminate on its first
iteration. If the first card is a high card, the function terminates and returns
False; if the first card is not a high card, the function terminates and returns True.
It doesn’t look at any of the other cards! And that’s why it fails on ['two',
'jack']: the first card is not a high card, so the function returns True. Returning
True tells us that there are no high cards in the list. But that’s wrong: there’s a
jack in there! The function did the wrong thing. It should have returned False.

Function Documentation
It’s clear to us right now what our no_high function does and how we should
call it. But what about in a few months, when the purpose of our old code
doesn’t come readily to mind? And what about once we’ve amassed a large
collection of our own functions, making it difficult to remember what each
one does?

For each function we write, we’ll add documentation that specifies the
meaning of each parameter and what the function returns. Such documen-
tation is called a docstring, for “documentation string.” The docstring should
be written starting at the first line of the function’s block. Here’s the no_high

function, this time with documentation:

>>> def no_high(lst):

... """

... lst is a list of strings representing cards.

...

... Return True if there are no high cards in lst, False otherwise.

... """

... if 'jack' in lst:

... return False

... if 'queen' in lst:

... return False

... if 'king' in lst:

Designing Programs with Functions 149

... return False

... if 'ace' in lst:

... return False

... return True

...

The docstring begins and ends with three double quotes ("""). Like a
single quote (') or double quote ("), three double quotes can be used to start
and end any string. A string created with three quotes is called a triple-quoted
string. (Three single quotes work as well, but Python convention is to use
three double quotes.) They have the bonus of letting us add multiple lines of
text to the string by just pressing ENTER after each line; strings created with
' or " can’t span lines like that. We use triple-quoted strings for docstrings so
that we can include as many lines as we like.

The docstring here tells us what lst is: it’s a list of strings representing
cards. It also tells us that the function returns a True or False value and what
each return value means. This is sufficient information to enable someone
to call the function without having to look at its code. As long as someone
knows what a function does, they can just use it. We’ve been using Python
functions all along without ever having looked at their code. How does print
work? How does input work? We don’t know! But it doesn’t matter: we know
what the functions do, so we can just focus on calling them.

For functions with multiple parameters, the docstring should name each
one and give its expected type. Here’s remove_all, from “Mutable Parame-
ters” in this chapter, with a suitable docstring:

>>> def remove_all(lst, value):

... """

... lst is a list.

... value is a value.

...

... Remove all occurrences of value from lst.

... """

... while value in lst:

... lst.remove(value)

...

Notice that this docstring doesn’t talk about returning anything. That’s
because this function doesn’t return anything useful! It removes from lst,
which is what the docstring says it does.

Solving the Problem
We’ve just learned the fundamentals of defining and calling functions. For
the rest of the book, whenever we’re faced with a large problem to solve,
we’ll be able to break down its solution into smaller tasks, each of which will
be solved by a function.

150 Chapter 6

Let’s use our no_high function in a solution to Card Game. The code is in
Listing 6-1.

¶ NUM_CARDS = 52

· def no_high(lst):

"""

lst is a list of strings representing cards.

Return True if there are no high cards in lst, False otherwise.

"""

if 'jack' in lst:

return False

if 'queen' in lst:

return False

if 'king' in lst:

return False

if 'ace' in lst:

return False

return True

¸ deck = []

¹ for i in range(NUM_CARDS):

deck.append(input())

score_a = 0

score_b = 0

player = 'A'

º for i in range(NUM_CARDS):

card = deck[i]

points = 0

» remaining = NUM_CARDS - i - 1

¼ if card == 'jack' and remaining >= 1 and no_high(deck[i+1:i+2]):

points = 1

elif card == 'queen' and remaining >= 2 and no_high(deck[i+1:i+3]):

points = 2

elif card == 'king' and remaining >= 3 and no_high(deck[i+1:i+4]):

points = 3

elif card == 'ace' and remaining >= 4 and no_high(deck[i+1:i+5]):

points = 4

½ if points > 0:

print(f'Player {player} scores {points} point(s).')

Designing Programs with Functions 151

¾ if player == 'A':

score_a = score_a + points

player = 'B'

else:

score_b = score_b + points

player = 'A'

print(f'Player A: {score_a} point(s).')

print(f'Player B: {score_b} point(s).')

Listing 6-1: Solving Card Game

I’ve introduced the constant NUM_CARDS to refer to 52 ¶. We’ll use it a cou-
ple of times in the code, and it’s easier to remember what NUM_CARDS means
than what 52 means.

Next we define the no_high function, including docstring, that we’ve dis-
cussed in depth ·. We’ll always put our functions near the top of our pro-
grams. This way, the functions are available to be called by any code that
follows them.

The main part of the program starts with creating a list that will hold the
cards in the deck ¸. We then read the cards from the input ¹, appending
each to the deck. You’ll notice that cards are never literally removed or taken
from the deck (the deck remains as is throughout program execution). We
could have done it that way. Instead, I’ve chosen to track where we are in the
deck so that we know which card would be removed next.

There are three other crucial variables that we maintain: score_a, the
current total score for player A; score_b, the current total score for player B;
and player, the name of the current player.

Our next task is to look at each card in the deck to give points to the
players. A regular for loop would let us look at the current card. But that’s
not enough: if the current card is a high card, then we have to be able to
look at later cards as well. To facilitate that, we use a range for loop º.

On each iteration of this loop, we determine the number of points
awarded to the current player based on the card that they take from the
deck. Each rule for getting points depends on the deck having some number
of remaining cards. The remaining variable » tells us the number of remain-
ing cards. When i is 0, the number of remaining cards is 51, because we’ve
just taken the first card. When i is 1, the number of remaining cards is 50,
because we’ve just taken the second card. In general, the expression for the
number of remaining cards is the total number of cards, minus i, minus 1.

And now we have four tests, one for each way to score points ¼. Each
one checks the current card and the number of cards remaining. If both of
those conditions are True, then a call is made to our no_high function with a
slice of the deck containing the appropriate number of cards. For example,
if the current card is a 'jack' and there is at least 1 card remaining, then we
pass a list of length 1 to no_high ¼. If no_high returns True, then there are no

152 Chapter 6

high cards in the slice of the list, so the current player gets points. The points

variable determines the number of points that will be awarded; it starts at 0
on each iteration of the loop and is set to 1, 2, 3, or 4 as appropriate.

If the player scored points ½, then we output a message indicating the
player who scored points and the number of points they scored.

All that’s left for the current iteration is to add the points to the current
player’s score and make it the other player’s turn. We accomplish both of
these tasks with an if-else statement ¾. (If points is 0 on this iteration, then
a harmless 0 is added to a player’s score. There’s no reason to explicitly test
for and avoid that.)

The final two print calls output the total points for each player.
There we go: a solution to the problem that uses a function to orga-

nize our code and make it easier to read. Feel free to submit our code to the
judge, and you should see that all test cases pass.

Problem #15: Action Figures
To solve Card Game, we first went through an example, and that example
highlighted where a function might be useful. Now, we’ll solve another prob-
lem using functions, but we’ll discover the needed functions using a more
systematic approach.

This is Timus problem 2144. This is the only problem in the book from
the Timus judge. To find the problem, go to https://acm.timus.ru/, click Prob-
lem set, click Volume 12, and find problem 2144 (it’s called Cleaning the
Room on the judge).

The Challenge
Lena has n unopened boxes of action figures. The boxes cannot be opened
(otherwise the action figures lose their value), so the order of action figures
in a box cannot be changed. Further, a box cannot be rotated (otherwise the
action figures will be facing the wrong way).

Each action figure is specified by its height. For example, one of the
boxes might have three action figures, from left to right, of heights 4, 5, and
7. When I talk about a box of action figures, I’ll always list the heights from
left to right.

Lena wants to organize the boxes, which means to arrange the boxes so
that heights of action figures increase or stay the same from left to right.

Whether she can organize the boxes or not depends on the heights of
action figures in the boxes. For example, if a first box has action figures of
heights 4, 5, and 7, and a second box has action figures of heights 1 and 2,
then she can organize these boxes by putting the second box first. But if we
keep the first box as is and change the second box to have action figures of
heights 6 and 8, then there’s no way to organize these boxes.

Determine whether it’s possible for Lena to organize the boxes.

Designing Programs with Functions 153

https://acm.timus.ru/

Input
The input consists of the following lines:

• A line containing integer n, the number of boxes. n is between 1
and 100.

• n lines, one for each box. Each of these lines begins with integer k,
indicating the number of action figures in this box. k is between 1
and 100. (Since k is at least 1, we don’t have to worry about empty
boxes.) Following k, there are k integers giving the heights of the ac-
tion figures from left to right in this box. Each height is an integer
between 1 and 10,000. There is a space between each pair of inte-
gers on the line.

Output
If Lena can organize the boxes, output YES; otherwise, output NO.

Representing the Boxes
This problem consists of several smaller problems, each of which we can
solve by writing a function. Let’s first see how to represent the boxes in
Python, and then we’ll design the functions that we need.

In Chapter 5, when we solved Baker Bonus, we learned that lists can
have other lists as their values. This allows us to nest lists inside of lists. We
can use such an arrangement to represent the boxes of action figures. For
example, here’s a list that represents two boxes:

>>> boxes = [[4, 5, 7], [1, 2]]

The first box has three action figures, and the second has two. We can
access each box individually:

>>> boxes[0]

[4, 5, 7]

>>> boxes[1]

[1, 2]

We’ll read the contents of the boxes from the input and put that infor-
mation into a nested list, like the one I’ve shown. Then we’ll use that nested
list to determine whether the boxes can be organized.

Top-Down Design
We’ll solve this problem using a program design approach called top-down
design. Top-down design breaks a large problem into several smaller prob-
lems. That’s useful because each of the smaller problems will be easier to
solve. We can then assemble those subproblem solutions to solve the origi-
nal problem.

154 Chapter 6

Doing Top-Down Design
Here’s how top-down design works. We start by writing an incomplete Py-
thon program that captures the main tasks in a solution. Some of these tasks
won’t require much code, so we can proceed to solve them directly. Other
tasks will require more from us, and we’ll turn each of those into a function
that we’ll call. We might also solve a task by writing a little code and calling a
function. However, those functions won’t exist yet. We’ll have to write them!

To write a needed function, we repeat this same process for that func-
tion’s task. That is, we start by writing down the tasks for that function. If we
can write code for a task outright, then we do it; otherwise, we call another
function (that we’ll write later) to handle that task.

We keep doing this until we have no more functions to write. At that
point, we’ll have a solution to our problem.

It’s called top-down design because we start at the top, or highest, level
of the problem and make our way downward, through the guts of the prob-
lem, until each task has been completely written in code. We’ll now use this
to solve Action Figures.

The Top Level
To begin our design, we focus on the main tasks that we’ll need to solve.

We’ll certainly have to read the input, so that’s our first task.
Now, assume that we’ve read the input. What should we do to deter-

mine whether the boxes can be organized? One important thing to do is
check each box on its own to make sure that its action figures have their
heights in order. For example, suppose that we had the box [18, 20, 4]. This
box, with heights out of order, means that we have no chance of organizing
all of the boxes. We can’t even organize this one!

So, that’s our second task: determine whether each box, on its own, has
its action figures in order. If any of these boxes has its action figures out of
order, then we know that the boxes can’t be organized. If all boxes are OK,
then we have more to check.

If each box on its own is OK, the next question is whether we can orga-
nize all of the boxes. One important observation we can make here is that
the only action figures we care about from now on are the ones at the left
and right sides of each box. The action figures between these don’t matter
anymore.

Consider this example where we have three boxes:

[[9, 13, 14, 17, 25],

[32, 33, 34, 36],

[1, 6]]

The first box starts with an action figure of height 9 and ends with an
action figure of height 25. Action figures placed to the left of this box must
all have height 9 or less; for example, we can place the third box to the left of
this box. Action figures placed to the right of this box must all have height
25 or more; for example, we can place the second box to the right of this

Designing Programs with Functions 155

box. The action figures of heights 13, 14, and 17 change nothing; they may
as well not be there.

That’s our third task then: ignore all action figures except those on the
ends of boxes.

Following that third task, we’ll have a list that looks like this:

[[9, 25],

[32, 36],

[1, 6]]

It’s a lot easier to tell whether we can organize these boxes if we first sort
them, like this:

[[1, 6],

[9, 25],

[32, 36]]

Now it’s easy to see what the neighboring boxes of a box must be. (We
used a similar approach when solving Village Neighborhood in Chapter 5.)
So, our fourth task is to sort the boxes.

Our fifth and final task is to determine whether these sorted boxes are
organized. They are organized if the heights of action figures are sorted
from left to right. The action figures of heights 1, 6, 9, 25, 32, and 36 are
appropriately sorted, so the previous boxes can be organized. But consider
this example:

[[1, 6],

[9, 50],

[32, 36]]

These boxes can’t be organized because of that huge action figure in the
second box. That second box takes up heights 9 to 50; the third box can’t go
on the right of the second box because its heights are too small.

We’ve now finished working through the problem and have decided on
five main tasks:

1. Read input.

2. Check whether all boxes are OK.

3. Obtain a new list of boxes with only the left and right action figure
heights from each box.

4. Sort these new boxes.

5. Determine whether these sorted boxes are organized.

You might wonder why we have a “Read input” task but not a “Write
output” task. For this problem, writing output involves just outputting YES

or NO as needed; there won’t be much to it. In addition, we’ll output YES or
NO as soon as we know the answer, so output will be interleaved with other
tasks. For those reasons, I’ve decided not to include it as a main task. When
working through top-down design on your own, don’t worry if you later re-

156 Chapter 6

alize that you’ve left out a task. You can just add it and continue with your
design.

Here’s how we can capture our required tasks in code:

¶ # Main Program

TODO: Read input

TODO: Check whether all boxes are OK

TODO: Obtain a new list of boxes with only left and right heights

TODO: Sort boxes

TODO: Determine whether boxes are organized

I’m calling this the main program ¶. Any functions we write should be
included in the program before this comment.

Each task is written as just a comment for now. The TODO markings are
there to highlight that these are tasks for us to convert from English to Py-
thon. Once we finish a task, we’ll remove its TODO. That way, we’ll be able to
track which tasks we’ve completed and which we haven’t. Let’s do this!

Task 1: Read Input
We need to read the line containing n (the number of boxes) and then read
the boxes. Reading an integer is something we can do in a single line, so let’s
read n directly. Reading the boxes, on the other hand, is a well-defined task
that will take a few lines of code, so let’s solve that one with a function; we’ll
call it read_boxes. Here’s where that leaves us in our main program:

Main Program

¶ # Read input

n = int(input())

boxes = read_boxes(n)

TODO: Check whether all boxes are OK

TODO: Obtain a new list of boxes with only left and right heights

TODO: Sort boxes

TODO: Determine whether boxes are organized

I’ve removed the TODO from the comment ¶, since from the perspec-
tive of the main program, we’ve solved that task. We do need to write the
read_boxes function, of course, so let’s do that now.

Designing Programs with Functions 157

The read_boxes function takes an integer n as a parameter and reads and
returns n boxes. Here’s the code:

def read_boxes(n):

"""

n is the number of boxes to read.

Read the boxes from the input, and return them as a

list of boxes; each box is a list of action figure heights.

"""

boxes = []

¶ for i in range(n):

box = input().split()

· box.pop(0)

for i in range(len(box)):

box[i] = int(box[i])

boxes.append(box)

return boxes

We’re asked to read n boxes, so we loop n times ¶. On each iteration of
this loop, we read the current line and split it into its individual action figure
heights. The line starts with an integer indicating the number of heights in
the line, so we remove that value from the list (it’s at index 0) before continu-
ing ·. Then we convert each height to an integer and add the current box to
the list of boxes. Finally, we return the list of boxes.

We didn’t defer any part of read_boxes to some as-yet-written function,
so we’re done with this task! We’ll include this function, along with other
functions we write, before the # Main Program comment.

Task 2: Check Whether All Boxes Are OK
Does each box, on its own, have the action figures going from shortest to
tallest? Good question, and not one we know how to answer in just a line
or two of code. Let’s rely on a new function, all_boxes_ok, to tell us. If that
function returns False, then at least one box has its heights messed up, so
we won’t be able to organize the boxes. In that case, we should output NO. If
all_boxes_ok returns True, then we should carry out our remaining tasks to
determine whether the boxes can be organized. Let’s add this bit of if-else
logic to our program, too. Here’s what we’ve got:

Main Program

Read input

n = int(input())

boxes = read_boxes(n)

Check whether all boxes are OK

¶ if not all_boxes_ok(boxes):

158 Chapter 6

print('NO')

else:

TODO: Obtain a new list of boxes with only left and right heights

TODO: Sort boxes

TODO: Determine whether boxes are organized

Now we need to write the all_boxes_ok function that we’re calling ¶. We
can check each box to determine whether it’s in order. If it isn’t, we return
False right away. If it is in order, then we check the next box. If we check
every box and they’re all in order, then we return True.

Aha, so we need to be able to check an individual box! Sounds like an-
other function to me. Let’s call that one box_ok.

Here’s what we have for all_boxes_ok:

def all_boxes_ok(boxes):

"""

boxes is a list of boxes; each box is a list of action figure heights.

Return True if each box in boxes has its action figures in

nondecreasing order of height, False otherwise.

"""

for box in boxes:

if not box_ok(box):

return False

return True

I’ve used the word nondecreasing in the comment, rather than increasing,
because heights of action figures are allowed to be equal. For example, the
box [4, 4, 4] is just fine; claiming that this box is “increasing” would be in-
correct.

We’ve pushed part of the all_boxes_ok task into box_ok, so let’s write that
function next. Here goes:

def box_ok(box):

"""

box is the list of action figure heights in a given box.

Return True if the heights in box are in nondecreasing order,

False otherwise.

"""

for i in range(len(box)):

if box[i] > box[i + 1]:

return False

return True

Designing Programs with Functions 159

If any height is greater than the height to its right, we return False since
the heights are not in order. If we get past the for loop, then there are no
height violations, so we return True.

One nice side effect of using top-down design is that we get little chunks
of code, wrapped up as functions, that we can test in isolation. For example,
enter the code for box_ok into the Python shell. Then we can test it:

>>> box_ok([4, 5, 6])

We’re hoping for True to be returned here, because the box is in order
from small heights to big heights. We certainly weren’t hoping for what we
actually get:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 9, in box_ok

IndexError: list index out of range

Errors are never fun, and they’re even less fun when we have to trawl
through pages and pages of code to find them. But here, we know that the
error is localized to this little function, so our work to find it is reduced con-
siderably. The problem here is that we’ll eventually compare the rightmost
height to the height to its right—and of course the latter doesn’t exist! So we
need to stop one iteration earlier, comparing the second-to-last height to the
last height. Here’s the updated code:

def box_ok(box):

"""

box is the list of action figure heights in a given box.

Return True if the heights in box are in nondecreasing order,

False otherwise.

"""

¶ for i in range(len(box) - 1):

if box[i] > box[i + 1]:

return False

return True

The only change is in the call to range ¶. If you test this version of the
function, you’ll see that it works as required. We’re done with Task 2!

Task 3: Obtain a New List of Boxes with Only Left and Right Heights
Now we’re getting the hang of top-down design. In this task, we need a way
to go from boxes with all of their action figures to boxes only with their left-
most and rightmost action figures. I’ll refer to the leftmost and rightmost
action figures as box endpoints.

160 Chapter 6

One approach is to create a new list of boxes with only the endpoints,
and that’s what I’ll do here. You could also think about actually removing
heights from the original boxes, though that’s a little trickier.

I’ve called the function for this task boxes_endpoints. Here’s the main
part of the program, updated with a call to that function:

Main Program

Read input

n = int(input())

boxes = read_boxes(n)

Check whether all boxes are OK

if not all_boxes_ok(boxes):

print('NO')

else:

Obtain a new list of boxes with only left and right heights

¶ endpoints = boxes_endpoints(boxes)

TODO: Sort boxes

TODO: Determine whether boxes are organized

When we call boxes_endpoints with a list of boxes ¶, we expect to get back
a new list with only the box endpoints. Here’s the boxes_endpoints code that
satisfies this description:

def boxes_endpoints(boxes):

"""

boxes is a list of boxes; each box is a list of action figure heights.

Return a list, where each value is a list of two values:

the heights of the leftmost and rightmost action figures in a box.

"""

¶ endpoints = []

for box in boxes:

· endpoints.append([box[0], box[-1]])

return endpoints

We create a new list ¶ that will hold the endpoints of each box. Then we
loop through the boxes. For each box, we use indexing to find the leftmost
and rightmost heights in the box and append them to our endpoints list ·.
Finally, we return the endpoints list.

Wait a sec: what happens if there’s a box with just one action figure in
it? What will our boxes_endpoints function do with it? According to its doc-
string, it will give us back a list of two values for any valid box. So that had
better happen here; otherwise, the function isn’t doing what it promises.
Let’s test it. Enter the boxes_endpoints function into the Python shell, and try

Designing Programs with Functions 161

it with a list of one box with one action figure:

>>> boxes_endpoints([[2]])

[[2, 2]]

Success! The leftmost height is 2, and the rightmost height is 2, so we
get a list with two occurrences of 2. Our function works correctly in this case
because box[0] and box[-1] both refer to the same value when box has only
one value. (Don’t worry about the possibility of empty boxes. The problem
description prohibits them.)

Task 4: Sort Boxes
At this point, we have a list of endpoints—something like this:

>>> endpoints = [[9, 25], [32, 36], [1, 6]]

>>> endpoints

[[9, 25], [32, 36], [1, 6]]

We want to sort them. Do we need another function for this? Some sort
of sort_endpoints function?

Not this time! The list sort method does exactly what we need:

>>> endpoints.sort()

>>> endpoints

[[1, 6], [9, 25], [32, 36]]

When called on a list of two-value lists, sort sorts using the first value. (If
there’s a tie, then it further sorts using the second value.)

We can immediately update the main part of our program with a call to
sort and knock off one more TODO. Here’s the updated code:

Main Program

Read input

n = int(input())

boxes = read_boxes(n)

Check whether all boxes are OK

if not all_boxes_ok(boxes):

print('NO')

else:

Obtain a new list of boxes with only left and right heights

endpoints = boxes_endpoints(boxes)

Sort boxes

endpoints.sort()

TODO: Determine whether boxes are organized

162 Chapter 6

We’re nearly there. Just one TODO to go.

Task 5: Determine Whether Boxes Are Organized
Our final task is to check the endpoints. They might be in order, like this:

[[1, 6],

[9, 25],

[32, 36]]

Or they might not be, like this:

[[1, 6],

[9, 50],

[32, 36]]

In the former case, we should print YES; in the latter, we should print NO.
We need a function to tell us whether the endpoints are in order. Updating
the main part of the program for the final time, we end up with this:

Main Program

Read input

n = int(input())

boxes = read_boxes(n)

Check whether all boxes are OK

if not all_boxes_ok(boxes):

print('NO')

else:

Obtain a new list of boxes with only left and right heights

endpoints = boxes_endpoints(boxes)

Sort boxes

endpoints.sort()

Determine whether boxes are organized

¶ if all_endpoints_ok(endpoints):

print('YES')

else:

print('NO')

All that stands between us and a complete solution to the problem is
that all_endpoints_ok function that we’re calling ¶. It takes a list where each
value is a list of endpoints and returns True if the endpoints are in order and
False otherwise.

Designing Programs with Functions 163

Let’s get a feel for how we can implement this function by working
through an example. Here’s the list of endpoints we’ll use:

[[1, 6],

[9, 25],

[32, 36]]

The first box has a right endpoint of height 6. So, the second box better
have a left endpoint of height 6 or more. If it doesn’t, then we return False

indicating that the endpoints are not in order. But we’re good here, because
the second box has a left endpoint of height 9.

Now we repeat that check using 25, the right endpoint of the second
box. The left endpoint of the third box is 32, so we’re good again because 32
is at least 25.

In general, if the left endpoint of a box is ever less than the right end-
point of the previous box, we return False. Otherwise, if all of these checks
pass, we return True.

Here’s the code:

def all_endpoints_ok(endpoints):

"""

endpoints is a list, where each value is a list of two values:

the heights of the leftmost and rightmost action figures in a box.

¶ Requires: endpoints is sorted by action figure heights.

Return True if the endpoints came from boxes that can be

put in order, False otherwise.

"""

· maximum = endpoints[0][1]

for i in range(1, len(endpoints)):

if endpoints[i][0] < maximum:

return False

¸ maximum = endpoints[i][1]

return True

I’ve added some information to the docstring reminding us what the
function requires when it’s called ¶. Specifically, we must remember to have
the endpoints sorted before calling this function. Otherwise, the function
could return the wrong value.

Each value of endpoints is a list with two values: index 0 is the leftmost
(minimum) height, and index 1 is the rightmost (maximum) height. The
code uses the maximum variable to track the maximum height of a box. Prior
to the for loop, it refers to the maximum height in the first box ·. The for

loop compares the minimum of the next box to that maximum. If the min-
imum of the next box is too small, we return False, because these two boxes
cannot be organized correctly. The last thing to do in each iteration is up-
date maximum so that it refers to the maximum of the next box ¸.

164 Chapter 6

Putting It All Together
Having written code for all tasks, including the functions that sprang up
as part of the design, we’re ready to put it all together into a complete so-
lution. It’s up to you whether to keep the comments in the main part of
the program. I’ve left them in, but in practice this may be a case of over-
documenting the code, since the function names on their own are chosen
to convey what the code is doing. See Listing 6-2 for the complete code.

def read_boxes(n):

"""

n is the number of boxes to read.

Read the boxes from the input, and return them as a

list of boxes; each box is a list of action figure heights.

"""

boxes = []

for i in range(n):

box = input().split()

box.pop(0)

for i in range(len(box)):

box[i] = int(box[i])

boxes.append(box)

return boxes

def box_ok(box):

"""

box is the list of action figure heights in a given box.

Return True if the heights in box are in nondecreasing order,

False otherwise.

"""

for i in range(len(box) - 1):

if box[i] > box[i + 1]:

return False

return True

def all_boxes_ok(boxes):

"""

boxes is a list of boxes; each box is a list of action figure heights.

Return True if each box in boxes has its action figures in

nondecreasing order of height, False otherwise.

"""

for box in boxes:

if not box_ok(box):

Designing Programs with Functions 165

return False

return True

def boxes_endpoints(boxes):

"""

boxes is a list of boxes; each box is a list of action figure heights.

Return a list, where each value is a list of two values:

the heights of the leftmost and rightmost action figures in a box.

"""

endpoints = []

for box in boxes:

endpoints.append([box[0], box[-1]])

return endpoints

def all_endpoints_ok(endpoints):

"""

endpoints is a list, where each value is a list of two values:

the heights of the leftmost and rightmost action figures in a box.

Requires: endpoints is sorted by action figure heights.

Return True if the endpoints came from boxes that can be

put in order, False otherwise.

"""

maximum = endpoints[0][1]

for i in range(1, len(endpoints)):

if endpoints[i][0] < maximum:

return False

maximum = endpoints[i][1]

return True

Main Program

Read input

n = int(input())

boxes = read_boxes(n)

Check whether all boxes are OK

if not all_boxes_ok(boxes):

print('NO')

else:

Obtain a new list of boxes with only left and right heights

endpoints = boxes_endpoints(boxes)

166 Chapter 6

Sort boxes

endpoints.sort()

Determine whether boxes are organized

if all_endpoints_ok(endpoints):

print('YES')

else:

print('NO')

Listing 6-2: Solving Action Figures

This is the largest program that we’ve written to this point in the book.
But look how tidy and minimal the main part of the program is: it’s mostly
calls to functions, with a little bit of if-else logic to glue them together.

We’re calling each function only once here. Compare that to the no_high

Card Game function that we called four times. Even if a function is called
only once, it still contributes to organized, readable code.

Time to submit to the Timus judge. You should see that all test cases
pass.

CONCEPT CHECK

In Task 2, we wrote function box_ok for determining whether a single box has its
heights in order. It uses a range for loop. Is the following while loop version of
box_ok correct?

def box_ok(box):
"""
box is the list of action figure heights in a given box.

Return True if the heights in box are in nondecreasing order,
False otherwise.
"""
ok = True
i = 0
while i < len(box) - 1 and ok:

if box[i] > box[i + 1]:
ok = False

i = i + 1
return ok

A. Yes
B. No; it can cause an IndexError

C. No; it doesn’t cause any errors, but it can return the wrong value

(continued)

Designing Programs with Functions 167

Answer: A. This is equivalent to our earlier version using the range for loop.
The ok variable starts off as True, meaning that all heights we have checked are
fine (because we haven’t checked any yet!). The while loop continues as long

as there are more boxes to check and there are no height violations. If an
action figure is out of order, ok is set to False, which terminates the loop. If all
action figures are in order, then the value of ok never changes from True to
False. Therefore, when we return ok at the bottom of the function, we return
True if all action figures are in order and False if not.

Summary
In this chapter, we learned about functions. A function is a self-contained
block of code that solves a small part of a larger problem. We learned how
to pass information to a function (through arguments) and get information
back (through a return value).

To determine which functions to write in the first place, we can use top-
down design. Top-down design helps us break a solution to a large problem
into a number of smaller tasks; for each task, we solve it directly if we can
or write a function for it if we can’t. If a given task is too unwieldy, we can
perform further top-down design on it.

In the next chapter, we’ll learn how to work with files of our choosing,
rather than using standard input and standard output. As we continue to
push the boundaries of what we know, we’ll find many uses for functions in
that chapter and the rest of the book. Practice with some of the following
exercises to increase your confidence using functions.

Chapter Exercises
Here are some exercises for you to try. For each, use top-down design to
identify one or more functions that help you organize your code. Include
a docstring in each function!

1. DMOJ problem ccc13s1, From 1987 to 2013

2. DMOJ problem ccc18j3, Are we there yet?

3. DMOJ problem ecoo12r1p2, Decoding DNA

4. DMOJ problem crci07p1, Platforme

5. DMOJ problem coci13c2p2, Misa

6. Revisit some of the exercises from Chapter 5 and improve your so-
lutions by using functions. I particularly suggest revisiting DMOJ
problem coci18c2p1 (Preokret) and DMOJ problem ccc00s2 (Babbling
Brooks).

168 Chapter 6

Notes
Card Game is originally from the 1999 Canadian Computing Competition.
Action Figures is originally from the 2019 Ural School Programming Con-
test.

Many modern programming languages, Python included, support two
distinct programming paradigms. One is based on functions; that’s what we
studied in this chapter. The other is based on objects and leads to a paradigm
known as object-oriented programming (OOP). OOP involves defining new
types and writing methods for those types. We use Python types (such as
integers and strings) throughout the book, but we won’t otherwise discuss
OOP. For an introduction to OOP, and case studies of OOP in practice, I
recommend Python Crash Course, 2nd edition by Eric Matthes (No Starch
Press, 2019).

Designing Programs with Functions 169

7
READING AND WRIT ING F ILES

To this point, we’ve read all input using
the input function and written all output

using the print function. These functions
read from standard input (defaulting to the

keyboard) and write to standard output (defaulting to
the screen), respectively. While we can change these
defaults using input and output redirection, some-
times a program needs more control over its files.
For example, your word processor allows you to open
whichever document file you like and save a file with
whatever name you like, without you messing around
with standard input and standard output.

In this chapter, we’ll learn how to write programs that manipulate text
files. We’ll solve two problems using files: correctly formatting an essay and
seeding a farm to feed cows.

Problem #16: Essay Formatting
There’s one important difference between this problem and all the prob-
lems we’ve solved to this point: this one requires us to read from and write
to specific files! Look out for this as you read the problem description.

This is USACO 2020 January Bronze Contest problem Word Processor.
This is the first problem in the book from the USACO (USA Computing
Olympiad) judge. To find the problem, go to http://usaco.org/, click Con-
tests, click 2020 January Contest Results, and then click View problem un-
der Word Processor.

The Challenge
Bessie the cow is writing an essay. Each word in the essay contains only low-
ercase or uppercase characters. Her teacher has specified the maximum
number of characters, not counting spaces, that can occur per line. To sat-
isfy this requirement, Bessie writes down the words of the essay using the
following rules:

• If the next word fits on the current line, add it to the current line.
Include a space between each pair of words on the line.

• Otherwise, put this word on a new line; this line becomes the new
current line.

Output the essay with the correct words on each line.

Input
Read input from the file named word.in.

The input consists of two lines.

• The first line contains two integers separated by a space. The first
integer is n, the number of words in the essay; it’s between 1 and
100. The second integer is k, the maximum number of characters
(not counting spaces) that can occur per line; it’s between 1 and 80.

• The second line contains n words, with a space between each pair of
words. Each word has at most k characters.

Output
Write output to the file named word.out.

Output the properly formatted essay.

Working with Files
The Essay Formatting problem requires that we read from file word.in and
write to file word.out. Before we can do those things, though, we need to
learn how to open files in our programs.

172 Chapter 7

http://usaco.org/

Opening a File
Using your text editor, create a new file called word.in. Put that file in the
same directory that you’ve been using for your .py Python programs.

This is the first time that we’re creating a file that doesn’t end with .py.
Instead, it ends with .in. Be sure to name the file word.in, not word.py. The
in is short for input; you’ll see it used often for files that contain input for a
program.

In that file, let’s place valid input for the Essay Formatting problem. En-
ter the following into the file:

12 13

perhaps better poetry will be written in the language of digital computers

Save the file.
To open the file in Python, we use the open function. We pass two ar-

guments: the first is the filename, and the second is the mode in which to
open the file. The mode determines how we can interact with the file.

Here’s how we can open word.in:

>>> open('word.in', 'r')

¶ <_io.TextIOWrapper name='word.in' mode='r' encoding='cp1252'>

In this function call, we’ve provided a mode of 'r'. The r stands for
“read” and opens the file so that we can read from it. The mode happens
to be an optional parameter whose default is 'r', so we can leave it out if we
like. But I’ll explicitly include the 'r' throughout the book for consistency.

When we use open, Python gives us some information about how the file
was opened ¶. For example, it confirms the filename and mode. The bit
about encoding indicates how the file was decoded from its state on disk into
a form that we can read. Files can be encoded using a variety of encodings,
but we don’t need to worry about encodings in this book.

If we try to open a file for reading that doesn’t exist, we get an error:

>>> open('blah.in', 'r')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'blah.in'

If you’re getting this error when opening word.in, double-check that the
file is named correctly and in the directory from which you started Python.

In addition to mode 'r' for reading, there’s mode 'w' for writing. If we
use 'w', then we’re opening a file so that we can put text in it.

Be careful with mode 'w'. If you use 'w' with a file that already exists,
the contents of that file will be deleted. I just accidentally did that with my
word.in file. No big deal, because it was easy to re-create. But no one would
be happy if we accidentally overwrote an important file.

If you use 'w' with a filename that doesn’t exist, it creates an empty file.

Reading and Writing Files 173

Let’s use mode 'w' to create an empty file called blah.in:

>>> open('blah.in', 'w')

<_io.TextIOWrapper name='blah.in' mode='w' encoding='cp1252'>

Now that blah.in exists, we can open it for reading without getting an
error:

>>> open('blah.in', 'r')

<_io.TextIOWrapper name='blah.in' mode='r' encoding='cp1252'>

What’s that _io.TextIOWrapper that we keep seeing? That’s the type of the
value that open returns:

>>> type(open('word.in', 'r'))

<class '_io.TextIOWrapper'>

Think of this type as a file type. Its values represent open files, and you’ll
see shortly that it has methods that we can call.

As with any function, if we don’t assign what open returns to a variable,
then its return value is lost. The way we’ve been calling open so far doesn’t
give us any way to refer to the file that we’ve opened!

Here’s how we can make a variable refer to an open file:

>>> input_file = open('word.in', 'r')

>>> input_file

<_io.TextIOWrapper name='word.in' mode='r' encoding='cp1252'>

We’ll be able to use input_file to read from 'word.in'.
When solving Essay Formatting, we’ll also need a way to write to file

'word.out'. Here’s a variable that will help us do that:

>>> output_file = open('word.out', 'w')

>>> output_file

<_io.TextIOWrapper name='word.out' mode='w' encoding='cp1252'>

Reading from a File
To read a line from an open file, we use the file’s readline method. That
method returns a string containing the contents of the next line of the file.
In that way, it’s similar to the input function. Unlike input, however, readline
reads from a file rather than from standard input.

Let’s open word.in and read its two lines:

>>> input_file = open('word.in', 'r')

>>> input_file.readline()

'12 13\n'

>>> input_file.readline()

'perhaps better poetry will be written in the language of digital computers\n'

174 Chapter 7

What’s unexpected here is the \n at the end of each string. We certainly
didn’t see that when using input to read a line. The \ symbol in a string is
an escape character. It escapes from the standard interpretation of characters
and changes their meaning. We don’t treat \n as the two separate characters
\ and n. Instead, \n is just one character: a newline character. All lines in a
file, perhaps except for the last, end with a newline character. If they didn’t,
then everything would be on a single line! The readline method is literally
giving us the entire line, including its terminating newline character.

Here’s how we can embed newlines in our own strings:

>>> 'one\ntwo\nthree'

'one\ntwo\nthree'

>>> print('one\ntwo\nthree')

one

two

three

The Python shell doesn’t process the effects of escape characters, but
print does.

The \n sequence is useful in strings because it helps us add multiple
lines. But we rarely want those newlines in the lines that we read from files.
To get rid of them, we can use the string rstrip method. This method is like
strip except that it removes whitespace only from the right of a string (not
the left). As far as it’s concerned, newlines are whitespace just like spaces:

>>> 'hello\nthere\n\n'

'hello\nthere\n\n'

>>> 'hello\nthere\n\n'.rstrip()

'hello\nthere'

Let’s try reading from the file again, this time stripping out the new-
lines:

>>> input_file = open('word.in', 'r')

>>> input_file.readline().rstrip()

'12 13'

>>> input_file.readline().rstrip()

'perhaps better poetry will be written in the language of digital computers'

At this point, we’ve read the two lines, so there’s nothing left to read
from the file. The readline method signals this by returning an empty string.

>>> input_file.readline().rstrip()

''

The empty string means that we’ve reached the end of the file. If we
want to read the lines again, we must reopen the file to start at its beginning.

Reading and Writing Files 175

Let’s do that, this time saving each line using variables:

>>> input_file = open('word.in', 'r')

>>> first = input_file.readline().rstrip()

>>> second = input_file.readline().rstrip()

>>> first

'12 13'

>>> second

'perhaps better poetry will be written in the language of digital computers'

If we need to read all of the lines from a file, no matter how many there
are, we can use a for loop. Files in Python act as sequences of lines, so we
can loop over them just like we loop over strings and lists:

>>> input_file = open('word.in', 'r')

>>> for line in input_file:

... print(line.rstrip())

...

12 13

perhaps better poetry will be written in the language of digital computers

Unlike a string or loop, though, we can’t loop over the file a second
time, because the first one takes us to its end. If we try, we get nothing:

>>> for line in input_file:

... print(line.rstrip())

...

CONCEPT CHECK

We want to use a while loop to output each line of the open file input_file. (The
file could be any file; I’m not assuming that it’s related to Essay Formatting.)
Which of the following pieces of code correctly does this?

A.
while input_file.readline() != '':

print(input_file.readline().rstrip())

B.
line = 'x'
while line != '':

line = input_file.readline()
print(line.rstrip())

176 Chapter 7

C.
line = input_file.readline()
while line != '':

line = input_file.readline()
print(line.rstrip())

D. All of the above
E. None of the above

Before looking at the answer, I encourage you to create a file with four or five
lines in it and try each piece of code on the file. You might also consider
adding a character like * to the beginning of each line that’s output so that you
can see any otherwise blank lines.

Answer: E. Each piece of code has a subtle error.

Code A outputs only every other line of the file. For example, the while loop’s
Boolean expression causes the first line to be read . . . and lost, because it isn’t
assigned to a variable. The first iteration of the loop therefore outputs the
second line of the file.

Code B comes very close to doing the right thing. It outputs all the lines of the
file, but also outputs an extraneous blank line at the end.

Code C fails to print the first line of the file. That’s because the first line is read
before the loop, but then the loop reads the second line without having printed
the first. It also produces an extraneous blank line at the end, just like code B.

Here’s correct code to read and print each line:

line = input_file.readline()
while line != '':

print(line.rstrip())
line = input_file.readline()

Writing to a File
To write a line to an open file, we use the file’s write method. We pass it a
string, and that string is added to the end of the file.

To solve Essay Formatting, we’ll write to word.out. We’re not ready to
solve that problem yet, so let’s instead write to blah.out. Here’s how we can
write one line to that file:

>>> output_file = open('blah.out', 'w')

>>> output_file.write('hello')

5

What’s that 5 doing there? The write method returns the number of
characters written. It’s good confirmation that we’ve written the quantity
of text that we expected to write.

Reading and Writing Files 177

If you open blah.out in your text editor, you should see the text hello in
there.

Let’s try writing three lines to the file. Here goes:

>>> output_file = open('blah.out', 'w')

>>> output_file.write('sq')

2

>>> output_file.write('ui')

2

>>> output_file.write('sh')

2

Based on what I’ve told you so far, you might expect blah.out to look like
this:

sq

ui

sh

But if you open blah.out in your text editor, you should instead see the
following:

squish

The characters are on a single line like that because write doesn’t add
newlines for us! If we want separate lines, we need to be explicit, like this:

>>> output_file = open('blah.out', 'w')

>>> output_file.write('sq\n')

3

>>> output_file.write('ui\n')

3

>>> output_file.write('sh\n')

3

Notice in each case that write writes three characters, not two. The new-
line counts as a character. Now if you open blah.out in your text editor, you
should see the text spread across three lines:

sq

ui

sh

Unlike print, write works only if you call it with a string. To write a num-
ber to a file, convert it to a string first:

>>> num = 7788

>>> output_file = open('blah.out', 'w')

>>> output_file.write(str(num) + '\n')

5

178 Chapter 7

Closing Files
It’s good practice to close a file once you’re done with it. It signals to readers
of your code that the file is no longer being used.

Closing files also helps your operating system manage your computer’s
resources. When you use the write method, what you write may not end up
in the file immediately. Rather, Python or your operating system might wait
until it has a bunch of write requests and then write them all at once. Clos-
ing a file that you wrote to guarantees that what you wrote to the file is safely
stored in the file.

To close a file, call its close method. Here’s an example of opening a
file, reading a line, and closing it:

>>> input_file = open('word.in', 'r')

>>> input_file.readline()

'12 13\n'

>>> input_file.close()

Once you’ve closed a file, you can no longer read from or write to the
file:

>>> input_file.readline()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: I/O operation on closed file.

Solving the Problem
Back to Essay Formatting. Now we know how to read from word.in and write
to word.out. That takes care of the input and output requirements. It’s time
to tackle the problem itself.

Let’s start by exploring a test case to make sure we know how to solve
this problem. Then we’ll see the code.

Exploring a Test Case
Here’s the word.in file I’ve been using:

12 13

perhaps better poetry will be written in the language of digital computers

There are 12 words, and the maximum number of characters on a line
(not counting spaces) is 13. We should add words to the current line as long
as they fit; once a word doesn’t fit, we’ll start a new line with that word.

The word perhaps contains seven characters, so it fits on the first line.
The word better contains six characters. We can put that on the first line,
too; with perhaps already there, we’re at a total of 13 characters (not includ-
ing the space between the two words).

Reading and Writing Files 179

The word poetry can’t go on the first line, so we start a new line with
poetry as its first word. The word will fits next to poetry on the second line.
Similarly, be fits next to will. We’re at 12 nonspace characters so far. Now we
have the word written, and with only one character of room on line 2, we’re
forced to start the next line with written as its first word.

Following this process to the end, the full essay that we need to write to
word.out is this:

perhaps better

poetry will be

written in the

language of

digital

computers

The Code
Our solution is in Listing 7-1.

¶ input_file = open('word.in', 'r')

· output_file = open('word.out', 'w')

¸ lst = input_file.readline().split()

n = int(lst[0]) # n not needed

k = int(lst[1])

words = input_file.readline().split()

¹ line = ''

chars_on_line = 0

for word in words:

º if chars_on_line + len(word) <= k:

line = line + word + ' '

chars_on_line = chars_on_line + len(word)

else:

» output_file.write(line[:-1] + '\n')

line = word + ' '

chars_on_line = len(word)

¼ output_file.write(line[:-1] + '\n')

input_file.close()

output_file.close()

Listing 7-1: Solving Essay Formatting

To begin, we open the input file ¶ and output file ·. Notice the modes:
we open the input file with mode 'r' (for reading) and open the output file

180 Chapter 7

with mode 'w' (for writing). We could have opened the output file a little
later, right before we use it, but I’ve chosen to open both files here to sim-
plify the organization of the program. Similarly, we could close a file as
soon as we no longer need it, but in this book, I’ve chosen to close all files
together at the end of the program. For long-running programs that manip-
ulate many files, you likely want to keep files open only when needed.

Next, we read the first line of the input file ¸. This line contains two
space-separated integers: n, the number of words, and k, the maximum num-
ber of allowed characters (not counting spaces) per line. As always with
space-separated values, we use split to separate them. We then read the sec-
ond line, which contains the essay words. Again we use split, this time to
split the string of words into a list of words. That takes care of the input.

Two variables drive the main portion of the program: line and chars_on

_line. The line variable refers to the current line; we start out with it refer-
ring to the empty string ¹. The chars_on_line variable refers to the number
of characters, not counting spaces, on the current line.

You may wonder why I’m maintaining chars_on_line at all. Couldn’t we
just use len(line) instead? Well, if we did that, we’d be including spaces in
our count, and spaces don’t count toward the number of characters allowed
per line. We could fix that by subtracting the count of spaces, and I encour-
age you to try that on your own if you find it more intuitive than keeping the
chars_on_line variable in there.

Now it’s time to loop through all of the words. For each word, we have
to determine whether it goes on the current line or next line.

If the number of nonspace characters on the current line plus the num-
ber of characters in the current word is at most k, then the current word fits
on the current line º. In that case, we add the word plus a space to the cur-
rent line and update the number of nonspace characters on the line.

Otherwise, the current word doesn’t fit on the current line. The current
line is done! We therefore write the line to the output file » and update the
line and chars_on_line variables to reflect that this is the only word on the
now-current line.

There are two things to note about the write call ». First, the [:-1] slice
is in there to prevent us from outputting the space that follows the last word
on the line. Second, you may have expected me to use an f-string here, like
this:

output_file.write(f'{line[:-1]}\n')

However, at the time of writing, the USACO judge is running an older
version of Python that doesn’t support f-strings.

Why are we outputting line after the loop ends ¼? The reason is that
each iteration of the for loop is guaranteed to leave line with one or more
words that we have not output yet. Consider what happens with each word
that we process. If the current word fits on the current line, we don’t output
anything. If the current word doesn’t fit on the current line, then we output
the current line, but not the word on the next line. We therefore need to

Reading and Writing Files 181

write line to the output file after the loop ¼; otherwise, the last line in the
essay will be lost.

The final thing we do is close both files.
One annoying aspect of writing to a file rather than the screen is that we

aren’t shown the output when we run the program. To see the output, we
have to open the output file in our text editor.

Here’s a tip: develop the program using print calls rather than write calls
so that all output goes to the screen. That should make it easier to find er-
rors in your program and avoid having to switch back and forth between
your code and the output file. Once you’re happy with the code, you can
change the print calls back to write calls. Then be sure to do a little more
testing, just to make sure that everything ends up in the file as it should.

We’re ready to submit to the USACO judge. Send it our code! All test
cases should pass.

Problem #17: Farm Seeding
We can use a loop to read a specified number of lines from a file. We’ll do
that in this problem, and we’ll see that it’s similar to using a loop with input

to read from standard input.
In Chapter 6, when we solved Action Figures, we learned about top-

down design using functions. It’s an important skill, composing multiple
functions to solve a problem. And since there isn’t much more to say about
files, I’ve chosen a problem that doubles as a site for top-down design.

This is a challenging problem. We’ll first need to understand exactly
what we’re being asked to do. After that, we’ll need to develop a way to solve
the problem and think carefully about why our solution is correct.

This is USACO 2019 February Bronze Contest problem The Great Re-
vegetation.

The Challenge
Farmer John has n pastures, all of which he would like to seed with grass.
The pastures are numbered 1, 2, . . ., n.

Farmer John has four different types of grass seed, numbered 1, 2, 3,
and 4. He’ll choose one of these grass types for each pasture.

Farmer John also has m cows. Each cow has two favorite pastures in
which it eats grass. Each cow cares only about its two favorite pastures, no
others. For a healthy diet, each cow requires that its two pastures have differ-
ent types of grass. For example, for some given cow, it would be okay if one
of its pastures had grass type 1 and the other had grass type 4. But it would
not be okay if both of its pastures had grass type 1.

A pasture might be the favorite of more than one cow. But it’s guaran-
teed that a pasture is the favorite of no more than three cows.

Determine the grass type to use in each pasture. Each pasture is re-
quired to use a grass type between 1 and 4, and each cow’s two favorite pas-
tures must have different grass types.

182 Chapter 7

Input
Read input from the file named revegetate.in.

The input consists of the following lines:

• A line containing two integers separated by a space. The first inte-
ger is n, the number of pastures; it’s between 2 and 100. The second
integer is m, the number of cows; it’s between 1 and 150.

• m lines, each of which gives the two favorite pasture numbers for a
cow. These pasture numbers are integers between 1 and n and are
separated by a space.

Output
Write output to the file named revegetate.out.

Output a valid way to seed the pastures. The output is a line of n char-
acters, each of which is a '1', '2', '3', or '4'. The first character is the grass
type for pasture 1, the second is the grass type for pasture 2, and so on.

We can interpret these n characters as an integer with n digits. For ex-
ample, if we have the five grass types '11123', then we can interpret this as
the integer 11123.

This integer interpretation comes into play when we have a choice of
what to output. If there are multiple valid ways to seed the pastures, we must
output the one that’s smallest when interpreted as an integer. For example,
if both '11123' and '22123' are valid, we output the string '11123' because
11123 is less than 22123.

Exploring a Test Case
We’re going to use top-down design to arrive at a solution for this problem.
Working through a test case will help us sift the tasks.

Here’s the test case:

8 6

5 4

2 4

3 5

4 1

2 1

5 2

The first line of the test case tells us that we have eight pastures. They’re
numbered from 1 to 8. The first line also tells us that we have six cows. The
problem doesn’t specify a numbering for the cows, so I’ll just number them
starting at 0. The two favorite pastures of each cow are in Table 7-1 for easy
reference.

Reading and Writing Files 183

Table 7-1: Farm Seeding Example, Cows

Cow Pasture 1 Pasture 2

0 5 4
1 2 4
2 3 5
3 4 1
4 2 1
5 5 2

In this problem, we’re being asked to make n decisions. What grass type
should we use for pasture 1? What grass type should we use for pasture 2?
Pasture 3? Pasture 4? And so on, all the way up to pasture n. One strategy
for these kinds of problems is to make one decision at a time, without mak-
ing a mistake on any of them. If we manage to finish with decision n and
haven’t made any mistakes along the way, then our solution must be correct.

Let’s go through the pastures from 1 to 8 and see if we can assign a grass
type to each of them. We need to prioritize choosing small-numbered grass
types so that we end with the smallest grass types when interpreted as a
number.

What grass type should we choose for pasture 1? The only cows that
care about pasture 1 are cows 3 and 4, so we focus only on those two. If we
had already chosen grass types for some of these cows’ pastures, then we’d
have to be careful with our choice for pasture 1. We wouldn’t want to give
some cow two pastures with the same grass type, because that would break
the rules! We haven’t chosen any grass types yet, so nothing can go wrong
no matter what we choose for pasture 1. Since we want the smallest grass
types, though, we’ll choose grass type 1.

I’ll collect our grass-type decisions in tables. Here’s the decision we just
made, grass type 1 for pasture 1:

Pasture Grass type

1 1

Let’s move on. What grass type should we choose for pasture 2? The
cows that care about pasture 2 are cows 1, 4, and 5, so we focus on those.
One of cow 4’s pastures is pasture 1, and we chose grass type 1 for that pas-
ture, so grass type 1 is eliminated as a grass type for pasture 2. If we used
grass type 1 for pasture 2, then we’d be giving cow 4 two pastures with the
same grass type, and that would break the rules. Cows 1 and 5, however,
don’t eliminate any other grass types, because we haven’t chosen grass types

184 Chapter 7

for their pastures yet. We therefore choose grass type 2, the smallest-
numbered grass type that’s available. Here’s where we stand:

Pasture Grass type

1 1
2 2

What grass type should we choose for pasture 3? The only cow that
cares about pasture 3 is cow 2. Cow 2’s pastures are pastures 3 and 5. That
cow doesn’t eliminate any grass types, however, because we haven’t assigned
a grass type to pasture 5! To get the smallest number, we’ll use grass type 1
for pasture 3. Here’s our next snapshot:

Pasture Grass type

1 1
2 2
3 1

I can see three tasks in our top-down design crystallizing here. First, we
need to obtain the cows that care about the current pasture. Second, we
need to determine which grass types those cows eliminate from considera-
tion. Third, we need to choose the smallest-numbered grass type that wasn’t
eliminated. Each of those is a prime candidate for a function.

Let’s keep going. We have three cows that care about pasture 4: cows
0, 1, and 3. Cow 0 doesn’t eliminate any grass types, because we haven’t as-
signed grass types to its pastures yet. Cow 1 eliminates grass type 2 because
we assigned grass type 2 to pasture 2 (its other pasture). And cow 3 elimi-
nates grass type 1 because we assigned grass type 1 to pasture 1 (its other
pasture). The smallest available grass type, then, is 3, so that’s what we use
for pasture 4:

Pasture Grass type

1 1
2 2
3 1
4 3

On to pasture 5. The cows that care about pasture 5 are cows 0, 2, and
5. Cow 0 eliminates grass type 3; cow 2 eliminates grass type 1; and cow 5

Reading and Writing Files 185

eliminates grass type 2. So grass types 1, 2, and 3 are out. Our only choice is
grass type 4.

That was close! We almost ran out of grass types there. Lucky for us,
there was no other cow that cared about pasture 5 and eliminated grass
type 4.

Or, wait. This wasn’t luck at all, because of this bit from the problem
description: “It’s guaranteed that a pasture is the favorite of no more than
three cows.” This means that at most three grass types can be eliminated for
each pasture. We’ll never be stuck! And we don’t even have to worry about
the ramifications of past choices on our next decision. No matter what we
did in the past, we’ll always have at least one available grass type.

Let’s add pasture 5 to our table:

Pasture Grass type

1 1
2 2
3 1
4 3
5 4

There are three pastures to go. But no cow cares about any of them, so
we can just use grass type 1 in each case. That gives us this:

Pasture Grass type

1 1
2 2
3 1
4 3
5 4
6 1
7 1
8 1

We can read the grass types from top to bottom to obtain the correct
output for this example. The output is as follows:

12134111

186 Chapter 7

Top-Down Design
With a good understanding of the tasks that we’ll need to complete, we’ll
turn to a top-down design of this problem.

The Top Level
We discovered three tasks in the previous section as we worked through a
test case. Before our program can solve any of those tasks, we need to read
the input, so that’s a fourth task. We also need to write the output. That will
take some thought and a few lines of code, so let’s call that our fifth task.

Here are our five main tasks:

1. Read input.

2. Identify cows that care about current pasture.

3. Eliminate grass types for current pasture.

4. Choose smallest-numbered grass type for current pasture.

5. Write output.

As we did when solving Action Figures in Chapter 6, we’ll start with a
framework of TODO comments and remove each TODO as we solve it.

We begin with mostly comments. Since we’ll need to open the files at
the start and close them at the end, I’ve also added that code.

Here’s where we begin:

Main Program

input_file = open('revegetate.in', 'r')

output_file = open('revegetate.out', 'w')

TODO: Read input

TODO: Identify cows that care about pasture

TODO: Eliminate grass types for pasture

TODO: Choose smallest-numbered grass type for pasture

TODO: Write output

input_file.close()

output_file.close()

Reading and Writing Files 187

Task 1: Read Input
Reading the first line of input, with the integers n and m, is something we
know how to do. It’s straightforward enough that I don’t think we need a
function for it, so let’s do it directly. Next we need to read the pasture infor-
mation for the m cows, and here a function seems warranted. Let’s remove
the TODO in the Read input comment, handle the first line of input, and call
the read_cows function, which we’ll write shortly:

Main Program

input_file = open('revegetate.in', 'r')

output_file = open('revegetate.out', 'w')

Read input

lst = input_file.readline().split()

num_pastures = int(lst[0])

num_cows = int(lst[1])

¶ favorites = read_cows(input_file, num_cows)

TODO: Identify cows that care about pasture

TODO: Eliminate grass types for pasture

TODO: Choose smallest-numbered grass type for pasture

TODO: Write output

input_file.close()

output_file.close()

The read_cows function that we’re calling ¶ will take a file that’s already
open for reading, and read the two favorite pastures for each cow. It’ll re-
turn a list of lists, where each inner list contains the two pasture numbers for
a given cow. Here’s the code:

def read_cows(input_file, num_cows):

"""

input_file is a file open for reading; cow information is next to read.

num_cows is the number of cows in the file.

Read the cows' favorite pastures from input_file.

Return a list of each cow's two favorite pastures;

each value in the list is a list of two values giving the

favorite pastures for one cow.

"""

favorites = []

for i in range(num_cows):

¶ lst = input_file.readline().split()

188 Chapter 7

lst[0] = int(lst[0])

lst[1] = int(lst[1])

· favorites.append(lst)

return favorites

This function accumulates the cows’ favorite pastures into the favorites

list. It does that using a range for loop that loops num_cows times, once for
each cow. We need the loop because the number of lines to read depends
on the number of cows in the file.

On each iteration of the loop, we read the next line and split it into its
two components ¶. We then use int to convert the components from strings
to integers. When we append this list to favorites ·, we’re therefore append-
ing a list of two integers.

The last thing we do is return the list of favorite pastures.
Before we continue, let’s make sure that we know how to call this func-

tion. We’ll practice calling it on its own, independent from the larger pro-
gram that we’re building. It’s useful to test functions like this so that we can
fix any errors that we might find along the way.

Use your text editor to create a file named revegetate.in with the follow-
ing contents (the same as the test case we studied earlier):

8 6

5 4

2 4

3 5

4 1

2 1

5 2

Now, in the Python shell, enter the code for our read_cows function.
Here’s what we do to call read_cows:

>>> input_file = open('revegetate.in', 'r')

¶ >>> input_file.readline()

'8 6\n'

· >>> read_cows(input_file, 6)

[[5, 4], [2, 4], [3, 5], [4, 1], [2, 1], [5, 2]]

The read_cows function reads only the information for the cows. Since
we’re testing this function in isolation, outside of our program, we need to
read the first line of the file ourselves before we call it ¶. When we then call
read_cows, we get back a list giving the favorite pastures for each cow. Also
notice that we’re calling read_cows with an open file, not a filename ·.

Be sure to include our read_cows function, along with the functions we’ll
write for other tasks, before our # Main Program comment. Then we can move
on to Task 2.

Reading and Writing Files 189

Task 2: Identify Cows
Our overall strategy for solving this problem is to consider each pasture in
turn, deciding which grass type to use. We’ll organize this work inside a
loop, with each iteration of the loop responsible for seeding one pasture.
For each pasture, we need to identify the cows that care about the pasture,
eliminate the used grass types, and choose the smallest-numbered available
grass type. These three tasks must run for each pasture, so we’ll indent them
inside the loop.

We’ll write a function called cows_with_favorite that tells us the cows who
care about the current pasture.

Here’s what we’ve got now for our main program:

Main Program

input_file = open('revegetate.in', 'r')

output_file = open('revegetate.out', 'w')

Read input

lst = input_file.readline().split()

num_pastures = int(lst[0])

num_cows = int(lst[1])

favorites = read_cows(input_file, num_cows)

for i in range(1, num_pastures + 1):

Identify cows that care about pasture

¶ cows = cows_with_favorite(favorites, i)

TODO: Eliminate grass types for pasture

TODO: Choose smallest-numbered grass type for pasture

TODO: Write output

input_file.close()

output_file.close()

The cows_with_favorite function that we’re calling ¶ takes a list of the
cows’ favorite pastures and a pasture number and returns the cows that care
about that pasture. Here’s the code:

def cows_with_favorite(favorites, pasture):

"""

favorites is a list of favorite pastures, as returned by read_cows.

pasture is a pasture number.

Return list of cows that care about pasture.

"""

190 Chapter 7

cows = []

for i in range(len(favorites)):

if favorites[i][0] == pasture or favorites[i][1] == pasture:

cows.append(i)

return cows

The function loops through favorites, looking for cows that care about
pasture number pasture. Each cow that cares about the pasture is added to
the cows list that is ultimately returned.

Let’s do a little test. Enter our cows_with_favorite function into the Py-
thon shell. Here’s the call that we’ll try:

>>> cows_with_favorite([[5, 4], [2, 4], [3, 5]], 5)

We have three cows here, and we’re asking which ones care about pas-
ture 5. The cows at indices 0 and 2 care about pasture 5, and that’s exactly
what the function tells us:

[0, 2]

Task 3: Eliminate Grass Types
Now we know the cows that care about the current pasture. Our next step
is to figure out which grass types these cows eliminate from consideration
for the current pasture. We eliminate the grass types that are used in a pas-
ture associated with one or more of these cows. We’ll write a function called
types_used that tells us the grass types that have already been used (and are
therefore eliminated for the current pasture).

Here is our main program, updated with a call to this function:

Main Program

input_file = open('revegetate.in', 'r')

output_file = open('revegetate.out', 'w')

Read input

lst = input_file.readline().split()

num_pastures = int(lst[0])

num_cows = int(lst[1])

favorites = read_cows(input_file, num_cows)

¶ pasture_types = [0]

for i in range(1, num_pastures + 1):

Identify cows that care about pasture

cows = cows_with_favorite(favorites, i)

Reading and Writing Files 191

Eliminate grass types for pasture

· eliminated = types_used(favorites, cows, pasture_types)

TODO: Choose smallest-numbered grass type for pasture

TODO: Write output

input_file.close()

output_file.close()

In addition to calling the types_used function ·, I’ve also added a vari-
able called pasture_types ¶. The list referred to by this variable will keep
track of the grass type for each pasture.

Recall that the pastures are numbered starting from 1. Python lists, on
the other hand, are indexed starting from 0. I don’t like this discrepancy;
if we simply started adding grass types to pasture_types, then the grass type
for pasture 1 would be at index 0, the grass type for pasture 2 would be at
index 1, and so on, always off by one. That’s why I added a bogus 0 at the
beginning of the list ¶; when we later add the grass type for pasture 1, it’ll
be placed at index 1 to match.

Suppose we’ve figured out the grass types for the first four pastures.
Here’s how pasture_types might look at that point:

[0, 1, 2, 1, 3]

If we want the grass type for pasture 1, we look at index 1; if we want the
grass type for pasture 2, we look at index 2; and so on. If we want the grass
type for pasture 5? Well, no, we can’t have that, because we haven’t figured it
out yet. If the length of pasture_types is 5, it means that we’ve figured out the
grass types for only the first four pastures. In general, the number of grass
types that we’ve figured out is one less than the list’s length.

Now we’re ready for the types_used function. It takes three parameters:
the list of favorite pastures for each cow, the cows that care about the cur-
rent pasture, and the grass types chosen for pastures so far. It returns the list
of grass types that are already used and therefore eliminated for the current
pasture. Here goes:

def types_used(favorites, cows, pasture_types):

"""

favorites is a list of favorite pastures, as returned by read_cows.

cows is a list of cows.

pasture_types is a list of grass types.

Return a list of the grass types already used by cows.

"""

used = []

for cow in cows:

pasture_a = favorites[cow][0]

pasture_b = favorites[cow][1]

192 Chapter 7

¶ if pasture_a < len(pasture_types):

used.append(pasture_types[pasture_a])

· if pasture_b < len(pasture_types):

used.append(pasture_types[pasture_b])

return used

Each cow has two favorite pastures, which I refer to by pasture_a and
pasture_b. For each of these pastures, we check whether a grass type has al-
ready been chosen for it at ¶ and ·. A grass type has already been chosen
if that pasture is already an index in pasture_types. These grass types are all
added to the used list, which the function returns after looping through all of
the relevant cows.

What if more than one cow uses the same pasture—what does our code
do then? Let’s come up with a simple test case to answer that question.

Enter our types_used function into the Python shell. Here’s a call of that
function; let’s predict what it returns:

>>> types_used([[5, 4], [2, 4], [3, 5]], [0, 1], [0, 1, 2, 1, 3])

Let’s be careful so we don’t get lost. The first argument gives the fa-
vorite pastures for three cows. The second argument gives the cows that care
about a particular pasture; these are cows 0 and 1. And the third argument
gives the grass types that we’ve decided on so far.

Now, what are the grass types already used, and therefore eliminated, by
cows 0 and 1? Cow 0 cares about pasture 4, and pasture 4 uses grass type 3,
so grass type 3 is eliminated. Cow 1 cares about pasture 2, and pasture 2 uses
grass type 2, so grass type 2 is eliminated. Cow 1 also cares about pasture 4—
but we already know, from cow 0, that pasture 4’s grass type 3 is eliminated.

The return value of our function is this:

[3, 2, 3]

Two 3s in there, one coming from cow 0 and the other from cow 1.
It may seem tidier to have just one 3 in there, but what we have—with the

duplicate—is just fine. If a grass type is in that list, then it’s eliminated, no
matter whether it’s in there once, twice, or three times.

Task 4: Choose Smallest-Numbered Grass Type
Having obtained the grass types that are eliminated, we can move onto our
next task: choosing the smallest-numbered available grass type for the cur-
rent pasture. To solve this one, we’ll call a new function, smallest_available.
It will return the grass type that we should use for the current pasture.

Here’s the main program, updated with a call to the smallest_available

function:

Main Program

input_file = open('revegetate.in', 'r')

Reading and Writing Files 193

output_file = open('revegetate.out', 'w')

Read input

lst = input_file.readline().split()

num_pastures = int(lst[0])

num_cows = int(lst[1])

favorites = read_cows(input_file, num_cows)

pasture_types = [0]

for i in range(1, num_pastures + 1):

Identify cows that care about pasture

cows = cows_with_favorite(favorites, i)

Eliminate grass types for pasture

eliminated = types_used(favorites, cows, pasture_types)

Choose smallest-numbered grass type for pasture

¶ pasture_type = smallest_available(eliminated)

· pasture_types.append(pasture_type)

TODO: Write output

input_file.close()

output_file.close()

Once we obtain the smallest-numbered grass type for the current pas-
ture ¶, we add it to our list of chosen grass types ·.

Here’s the smallest_available function itself:

def smallest_available(used):

"""

used is a list of used grass types.

Return the smallest-numbered grass type that is not in used.

"""

grass_type = 1

while grass_type in used:

grass_type = grass_type + 1

return grass_type

The function begins with grass type 1. It then loops until it finds a grass
type that isn’t already used, increasing the grass type by one on each itera-
tion. Once a free grass type is found, the function returns it. And remem-
ber, there are at most three grass types that have been used out of the four
available, so this function is guaranteed to be successful.

194 Chapter 7

Task 5: Write Output
We’ve got our answer, right there in pasture_types! Now all we have to do is
output it. Here’s the main program a final time:

Main Program

input_file = open('revegetate.in', 'r')

output_file = open('revegetate.out', 'w')

Read input

lst = input_file.readline().split()

num_pastures = int(lst[0])

num_cows = int(lst[1])

favorites = read_cows(input_file, num_cows)

pasture_types = [0]

for i in range(1, num_pastures + 1):

Identify cows that care about pasture

cows = cows_with_favorite(favorites, i)

Eliminate grass types for pasture

eliminated = types_used(favorites, cows, pasture_types)

Choose smallest-numbered grass type for pasture

pasture_type = smallest_available(eliminated)

pasture_types.append(pasture_type)

Write output

¶ pasture_types.pop(0)

· write_pastures(output_file, pasture_types)

input_file.close()

output_file.close()

Before writing the output, we remove the bogus 0 at the beginning of
pasture_types ¶. We don’t want to output that 0, as it isn’t a real grass type.
Then, we call write_pastures to actually write the output ·.

All we need now is the write_pastures function. It takes a file open for
writing, and a list of grass types, and outputs the grass types to the file.
Here’s the code:

def write_pastures(output_file, pasture_types):

"""

output_file is a file open for writing.

pasture_types is a list of integer grass types.

Reading and Writing Files 195

Output pasture_types to output_file.

"""

pasture_types_str = []

¶ for pasture_type in pasture_types:

pasture_types_str.append(str(pasture_type))

· output = ''.join(pasture_types_str)

¸ output_file.write(output + '\n')

Right now, pasture_types is a list of integers. As we’ll see in a second, it’s
more convenient to work with a list of strings here, so I create a new list with
each integer as a string ¶. I don’t modify the pasture_types list itself, because
that could shock the caller of this function. The caller calls this function ex-
pecting only that output gets written to output_file, not that its pasture_types
list is modified. The function has no business modifying its list parameter.

To produce the output, we need to call write with a string, not a list.
And we need to output the strings from the list with no spaces between
them. The string join method works wonderfully here. As we learned in
“Joining a List into a String” in Chapter 5, the string that we call join on
serves as the separator that’s placed between values in the list. Since we
don’t want any separator between the values, we use an empty string as the
separator ·. The join method works only on a list of strings, not a list of in-
tegers, which is why I converted the list of integers to a list of strings at the
start of this function ¶.

With the output as a single string, we can write it to the file ¸.

Putting It All Together
The complete program is in Listing 7-2.

def read_cows(input_file, num_cows):

"""

input_file is a file open for reading; cow information is next to read.

num_cows is the number of cows in the file.

Read the cows' favorite pastures from input_file.

Return a list of each cow's two favorite pastures;

each value in the list is a list of two values giving the

favorite pastures for one cow.

"""

favorites = []

for i in range(num_cows):

lst = input_file.readline().split()

lst[0] = int(lst[0])

lst[1] = int(lst[1])

favorites.append(lst)

return favorites

196 Chapter 7

def cows_with_favorite(favorites, pasture):

"""

favorites is a list of favorite pastures, as returned by read_cows.

pasture is a pasture number.

Return list of cows that care about pasture.

"""

cows = []

for i in range(len(favorites)):

if favorites[i][0] == pasture or favorites[i][1] == pasture:

cows.append(i)

return cows

def types_used(favorites, cows, pasture_types):

"""

favorites is a list of favorite pastures, as returned by read_cows.

cows is a list of cows.

pasture_types is a list of grass types.

Return a list of the grass types already used by cows.

"""

used = []

for cow in cows:

pasture_a = favorites[cow][0]

pasture_b = favorites[cow][1]

if pasture_a < len(pasture_types):

used.append(pasture_types[pasture_a])

if pasture_b < len(pasture_types):

used.append(pasture_types[pasture_b])

return used

def smallest_available(used):

"""

used is a list of used grass types.

Return the smallest-numbered grass type that is not in used.

"""

grass_type = 1

while grass_type in used:

grass_type = grass_type + 1

return grass_type

Reading and Writing Files 197

def write_pastures(output_file, pasture_types):

"""

output_file is a file open for writing.

pasture_types is a list of integer grass types.

Output pasture_types to output_file.

"""

pasture_types_str = []

for pasture_type in pasture_types:

pasture_types_str.append(str(pasture_type))

output = ''.join(pasture_types_str)

output_file.write(output + '\n')

Main Program

input_file = open('revegetate.in', 'r')

output_file = open('revegetate.out', 'w')

Read input

lst = input_file.readline().split()

num_pastures = int(lst[0])

num_cows = int(lst[1])

favorites = read_cows(input_file, num_cows)

pasture_types = [0]

for i in range(1, num_pastures + 1):

Identify cows that care about pasture

cows = cows_with_favorite(favorites, i)

Eliminate grass types for pasture

eliminated = types_used(favorites, cows, pasture_types)

Choose smallest-numbered grass type for pasture

pasture_type = smallest_available(eliminated)

pasture_types.append(pasture_type)

Write output

pasture_types.pop(0)

write_pastures(output_file, pasture_types)

input_file.close()

output_file.close()

Listing 7-2: Solving Farm Seeding

198 Chapter 7

We did it! An intimidating problem, made more manageable by the ap-
plication of top-down design. Feel free to submit our work to the USACO
judge.

It’s easy to be overwhelmed by a problem when you first read it. But re-
member that you don’t need to tackle it in one huge step. Break it down,
solve each task that you can solve, and you’ll be well on your way to a solu-
tion for the overall problem. You’ve made huge strides in the amount of
Python that you know and your ability to design programs and solve prob-
lems. Solving these problems is within your grasp!

CONCEPT CHECK

Let’s think about a new version of Farm Seeding where there’s no restriction on
the number of cows that care about a pasture. A pasture might be the favorite
of four cows, five cows, or even more. We’re still not allowed to give a cow
two pastures with the same grass type.

Suppose that we’re solving this new version of the problem and have a test case
where a pasture is the favorite of more than three cows. Which of the following
is true of that test case?

A. It’s guaranteed that there’s no way to solve it with only four grass types.
B. There might be a way to solve it. If there is, it’s possible that our original

solution (Listing 7-2) will do so.
C. There might be a way to solve it. If there is, it’s guaranteed that our

original solution (Listing 7-2) will do so.
D. There might be a way to solve it. If there is, it’s guaranteed that our

original solution (Listing 7-2) won’t do so.

Answer: B. We can find a test case that is correctly solved by our program,
and we can find a test case that can be solved but not by our program. The
former eliminates A and D as correct responses; the latter eliminates C as the
correct response.

Here’s a test case that is correctly solved by our program:

2 4
1 2
1 2
1 2
1 2

Each pasture is the favorite of four cows. Nevertheless, we can solve this test
case using only two grass types. Try our program, and you should see that it
correctly solves this test case.

(continued)

Reading and Writing Files 199

Now here’s a test case that can be solved, but not by our program:

6 10
2 3
2 4
3 4
2 5
3 5
4 5
1 6
3 6
4 6
5 6

The mistake that our program makes is to use grass type 1 for pasture 1. In so
doing, it’s forced to use grass type 5—which isn’t allowed!—for pasture 6. Our
program fails, but don’t conclude that there isn’t a way to solve this test case. In
particular, use grass type 2 for pasture 1, and you should be able to find a way
to solve this test case using only four grass types. It’s possible to solve these
kinds of test cases with a more sophisticated program, and I encourage you to
think about this on your own if you’re interested.

Summary
In this chapter, we learned how to open, read from, write to, and close files.
Files are useful whenever you need to store information and use it as input
later. They’re also useful for communicating information to your users. We
also learned that we process files similarly to how we process standard input
and standard output.

In the next chapter, we’ll learn how to store a collection of values in a
Python set or dictionary. Storing a collection of values—that sounds like
what a list does. We’ll see, though, that sets and dictionaries can make it eas-
ier for us to solve some kinds of problems.

Chapter Exercises
Here are some exercises for you to try. All of them are from the USACO
judge and require reading and writing files. They’ll also require you to dust
the cobwebs off material from previous chapters.

1. USACO 2018 December Bronze Contest problem Mixing Milk

2. USACO 2017 February Bronze Contest problem Why Did the Cow
Cross the Road

3. USACO 2017 US Open Bronze Contest problem The Lost Cow

4. USACO 2019 December Bronze Contest problem Cow Gymnastics

5. USACO 2017 US Open Bronze Contest problem Bovine Genomics

200 Chapter 7

6. USACO 2018 US Open Bronze Contest problem Team Tic Tac Toe

7. USACO 2019 February Bronze Contest problem Sleepy Cow
Herding

Notes
Essay Formatting is originally from the USACO 2020 January Bronze Con-
test. Farm Seeding is originally from the USACO 2019 February Bronze
Contest.

There are many types of files besides text files. You might like to work
with HTML files, Excel spreadsheets, PDF files, Word documents, or image
files. Python can help! See Automate the Boring Stuff with Python, 2nd edition
by Al Sweigart (No Starch Press, 2019) for much more information.

The “perhaps better poetry” line is from J. C. R. Licklider, as quoted in
Computers and the World of the Future, edited by Martin Greenberger (MIT
Press, 1962):

But some people write poetry in the language we speak. Per-
haps better poetry will be written in the language of digital com-
puters of the future than has ever been written in English.

Reading and Writing Files 201

8
ORGANIZ ING VALUES US ING SETS

AND DICT IONARIES

A Python list is useful whenever we need
to store a sequence of values, such as the

heights of action figures or the words in an
essay. Lists make it easy for us to keep values in

order and access a value given its index. As we’ll see in
this chapter, though, there are operations that lists are
not optimized for, including identifying whether a spe-
cific value is in a collection and making associations
between pairs of values.

In this chapter, we’ll learn about Python sets and dictionaries, two al-
ternatives to lists for storing collections of values. We’ll see that a set can be
the tool of choice when we need to search for specific values and don’t care
about their order and that a dictionary can be the tool of choice whenever
we need to work with pairs of values.

We’ll solve three problems using these new collections: determining the
number of unique email addresses, finding common words in a list of words,
and determining the number of special pairs of cities and states.

Problem #18: Email Addresses
In this problem, we’ll store a collection of email addresses. We won’t care
about the number of times that each email address shows up, and we won’t
care about maintaining the order of the email addresses. These lax storage
requirements mean that we can forgo a list for a set—a Python type whose
speed leaves lists in the dust. We’re going to learn all about sets.

This is DMOJ problem ecoo19r2p1.

The Challenge
Did you know that there are many ways to write someone’s Gmail email
address?

We can take someone’s Gmail address and add a plus (+) symbol and
a string before the @ symbol, and they’ll get any email we send to that new
address. That is, as far as Gmail addresses are concerned, all characters from
a + symbol to just before the @ symbol are ignored. For example, I tell people
that my Gmail address is daniel.zingaro@gmail.com, but that’s only one way to
write it. If you send email to daniel.zingaro+book@gmail.com or daniel.zingaro
+hi.there@gmail.com, I’ll get it. (Choose your favorite. Say hi!)

Dots before the @ symbol are also ignored in Gmail addresses. For ex-
ample, if you send email to danielzingaro@gmail.com (no dot at all), daniel.
.zingaro@gmail.com (two dots in a row), da.nielz.in.gar.o..@gmail.com (chaotic
dots), daniel.zin.garo+blah@gmail.com, and so on, I’ll get it.

Last thing: uppercase and lowercase differences throughout the address
are ignored. I hope you’re not firing a flurry at me by this point, but I’d get
anything you send to Daniel.Zingaro@gmail.com, DAnIELZIngARO+Flurry@
gmAIL.COM, and so on.

In this problem, we’re provided with email addresses, and we’re asked
to determine the number of them that are unique. The rules for email ad-
dresses in this problem are the same as those discussed for Gmail: charac-
ters from a + symbol to just before the @ symbol are ignored, dots before the
@ symbol are ignored, and case throughout the entire address is ignored.

Input
The input consists of 10 test cases. Each test case contains the following
lines:

• A line containing integer n, the number of email addresses. n is be-
tween 1 and 100,000.

• n lines, each of which gives an email address. Each email address
consists of at least one character before the @ symbol, followed by
the @ symbol itself, followed by at least one character after the @ sym-
bol. Characters before the @ symbol consist of letters, numbers,
dots, and pluses. Characters after the @ symbol consist of letters,
numbers, and dots.

204 Chapter 8

Output
For each test case, output the number of unique email addresses.

The time limit for solving the test cases is 30 seconds.

Using a List
You’ve worked through seven chapters of this book. In each one, I posed a
problem and then taught you new Python features so that you could solve
that problem. You might therefore expect me to teach you some new Python
before solving Email Addresses.

And you might object to that: don’t we already have what we need? Af-
ter all, we can write a function to take an email address and return a clean
version, with no + stuff, no dots before the @ symbol, and all in lowercase.
We can also maintain a list of clean email addresses. For each email address
that we see, we can clean it up and check whether it’s in the list of clean
email addresses. If it isn’t, then we can add it; if it is, then we do nothing
(since it’s already being counted). Once we’ve gone through all of the email
addresses, the length of the list will give us the number of unique email ad-
dresses.

Yes. We may already have what we need. Let’s try solving this thing.

Cleaning an Email Address
Consider the email address DAnIELZIngARO+Flurry@gmAIL.COM. We’re
going to clean this email address so that it becomes danielzingaro@gmail.com.
No +Flurry, no dots before the @ symbol, and all lowercase. We can think
of the clean version as the true email address. Any other email address that
represents the same true email address will also match danielzingaro@gmail
.com once it’s been cleaned.

Cleaning an email address is a small, self-contained task, so let’s write a
function for it. This clean function will take a string representing an email
address, clean it up, and return the cleaned email address. We’ll carry out
three cleaning steps: removing characters from a + symbol to just before the
@ symbol, removing dots before the @ symbol, and converting to lowercase.
The code for this function is in Listing 8-1.

def clean(address):

"""

address is a string email address.

Return cleaned address.

"""

Remove from '+' up to but not including '@'

¶ plus_index = address.find('+')

if plus_index != -1:

· at_index = address.find('@')

address = address[:plus_index] + address[at_index:]

Organizing Values Using Sets and Dictionaries 205

Remove dots before @ symbol

at_index = address.find('@')

before_at = ''

i = 0

while i < at_index:

¸ if address[i] != '.':

before_at = before_at + address[i]

i = i + 1

¹ cleaned = before_at + address[at_index:]

Convert to lowercase

º cleaned = cleaned.lower()

return cleaned

Listing 8-1: Cleaning an email address

The first step is to remove characters from a + symbol to just before the
@ symbol. The string find method is useful here. It returns the index of the
leftmost occurrence of its argument, or -1 if the argument isn’t found:

>>> 'abc+def'.find('+')

3

>>> 'abcdef'.find('+')

-1

I use find to determine the index of the leftmost + symbol ¶. If there is
no + symbol at all, then there’s nothing to do for this step. If there is one,
however, then we find the index of the @ symbol · and remove characters
from the + symbol up to but not including the @ symbol.

The second step is to remove any dots before the @ symbol. To do that,
I use a new string, before_at, to accumulate the part of the address before
the @ symbol. Each character before the @ symbol that is not a . is added to
before_at ¸.

The before_at string doesn’t include the @ symbol or any characters fol-
lowing it. We don’t want to lose that part of the email address, so I use a new
variable, cleaned, to refer to the whole email address ¹.

The third step is to convert the entire email address to lowercase º. Af-
ter that, the email address is clean, so we can return it.

Let’s test this a little. Enter the code for our clean function into the Py-
thon shell. Here’s the function cleaning a few email addresses:

>>> clean('daniel.zingaro+book@gmail.com')

'danielzingaro@gmail.com'

>>> clean('da.nielz.in.gar.o..@gmail.com')

'danielzingaro@gmail.com'

>>> clean('DAnIELZIngARO+Flurry@gmAIL.COM')

206 Chapter 8

'danielzingaro@gmail.com'

>>> clean('a.b.c@d.e.f')

'abc@d.e.f'

If the email address is already clean, clean returns it as is:

>>> clean('danielzingaro@gmail.com')

'danielzingaro@gmail.com'

The Main Program
We can use our clean function to clean any email address. The strategy now
is to maintain a list of clean email addresses. We will add a cleaned email ad-
dress to this list only if it hasn’t been added already. In that way, we’ll avoid
adding duplicates of the same clean email address.

The main part of our program is in Listing 8-2. Be sure to enter our
clean function (Listing 8-1) before this code for a complete solution to the
problem.

Main Program

for dataset in range(10):

n = int(input())

¶ addresses = []

for i in range(n):

address = input()

address = clean(address)

· if not address in addresses:

addresses.append(address)

¸ print(len(addresses))

Listing 8-2: Main program, using a list

We have 10 test cases to process, so we surround the rest of the program
with a range for loop that loops 10 times.

For each test case, we read the number of email addresses and start with
an empty list of clean email addresses ¶.

We then use an inner range for loop to loop through each email ad-
dress. We read each email address and clean it. Then, if we haven’t seen this
clean email address before ·, we add it to our list of clean email addresses.

When the inner loop finishes, we’ll have built up a list of all clean email
addresses. There are no duplicates in that list. The number of unique email
addresses, then, is the length of this list, so that’s what we output ¸.

Not bad, eh? Almost like we could have solved this problem after we
learned functions in Chapter 6. Or, really, after we learned lists in Chap-
ter 5.

Almost, but not quite. Because if you submit to the judge, you should
notice that things don’t go according to plan.

Organizing Values Using Sets and Dictionaries 207

The first sign of trouble is that the judge takes a while to show us our re-
sults. For example, I just waited one minute here for my results to show up.
Compare that to the other problems we solved earlier, where we received
feedback very quickly.

The second sign of trouble is that when our results do show up, we’re
not awarded full points for this problem! I’m being given 3.25 points out of
5. You may receive a little more or a little less, but you shouldn’t receive the
full 5 points.

The reason we’re losing points is not because our program is wrong.
Our program is fine. No matter the test case, it will output the correct num-
ber of unique email addresses.

So if our program is correct, what’s the problem?
The problem is that our program is too slow. The judge lets us know

this by putting TLE at the start of each test case. TLE stands for time limit ex-
ceeded. For this problem, the judge has allocated 30 seconds to each batch
of 10 test cases. If our program takes longer than 30 seconds, the judge ter-
minates our program, and the remaining test cases in the batch are not al-
lowed to run.

This may be the first time limit exceeded error you’ve received, though
it’s possible you’ve seen them as you completed exercises from previous
chapters.

The first thing to check when you receive this error is whether your pro-
gram is getting stuck in an infinite loop. If it is, then it’ll never finish, no
matter the time limit. The judge terminates the program when the allotted
time expires.

If there’s no infinite loop, then the likely culprit is the efficiency of our
program itself. When programmers talk about efficiency, they’re referring
to how long it takes the program to run. A program that runs faster (takes
less time) is more efficient than a program that runs slower (takes more
time). To solve the test cases within the time limit, we’re going to make our
program more efficient.

Efficiency of Searching a List
Appending to a Python list is extremely fast. It doesn’t matter whether the
list has only a few values or many thousands; appending takes the same small
amount of time.

Using the in operator, however, is a different story. Our program uses
the in operator to determine whether a clean email address is already in
our list of clean email addresses. A test case might have as many as 100,000
email addresses. In the worst case, then, our program could use in 100,000
times. It turns out that in is very slow when used on a list with many values,
and this ends up hurting our program’s efficiency. To determine whether
a value is in the list, in searches the list from beginning to end, list value by
list value. It does that until it finds the value it’s looking for, or it runs out
of list values to check. The more values that in has to look through, the
slower it is.

208 Chapter 8

Let’s get a feel for the way that in slows down as the length of a list in-
creases. We’ll use a function that takes a list and a value and uses in to search
the list for the value. It searches for the value 50,000 times; if we searched
only once, it would be too fast for us to be able to see what’s going on.

The function is in Listing 8-3. Enter its code into the Python shell.

def search(collection, value):

"""

search many times for value in collection.

"""

for i in range(50000):

found = value in collection

Listing 8-3: Searching a collection many times

Let’s create a list of the integers from 1 to 5,000 and search for 5000. By
searching for the rightmost value in the list, we make in take as much time
as possible on that list. Don’t worry that we’re exploring this using a list of
integers rather than a list of email addresses. The efficiency will be similar,
and numbers are so much easier to generate than email addresses!

Here goes:

>>> search(list(range(1, 5001)), 5000)

On my laptop, this takes about three seconds to run. We don’t need pre-
cise timing here; we’re just looking for a general picture of what happens as
we increase the length of the list.

Now let’s create a list of the integers from 1 to 10,000 and search for
10000:

>>> search(list(range(1, 10001)), 10000)

On my laptop, that takes about six seconds. As a summary so far, for a
list of length 5000, it takes three seconds; double the list length to 10000, and
the time doubles, too, to six seconds.

A list of length 20000? Give it a try:

>>> search(list(range(1, 20001)), 20000)

This takes about 12 seconds on my laptop. The time has doubled again.
Try it on a list of length 50000. You’ll be waiting a while. I just ran this on

my laptop:

>>> search(list(range(1, 50001)), 50000)

It took just over 30 seconds. Remember that our search function is searching
the list 50,000 times. So, it’s taking 30 seconds to search a list of length 50000

a total of 50,000 times.
We could have a test case that requires this much searching. For exam-

ple, suppose we add 100,000 unique email addresses to our list, one at a

Organizing Values Using Sets and Dictionaries 209

time. Halfway through, we’ll have a list of 50,000 values; from then on, the
remaining 50,000 uses of in will be on a list of at least 50,000 values.

And that’s only for one of the 10 test cases! We need to get through all
10 test cases within a total of 30 seconds. If one test case can take about 30
seconds on its own, we have no chance.

Searching a list is just too slow. The Python list is the wrong type to use.
We need a type better suited to the job. We need a Python set. You’re not
going to believe how fast it is to search a set.

Sets
A set is a Python type that stores a collection of values, where repeated values
are not allowed. We use opening and closing curly brackets to delimit the
set.

Unlike a list, a set might not maintain the values in the order you specify.
Here’s a set of integers:

>>> {13, 15, 30, 45, 61}

{45, 13, 15, 61, 30}

Notice that Python jumbled the order of the values. You may see the
values in a different order on your computer. The important point is that
you cannot rely on any particular order of the values. If order matters to
you, a set is not the type to use.

If we try to include multiple occurrences of a value, only one occurrence
is retained:

>>> {1, 1, 3, 2, 3, 1, 3, 3, 3}

{1, 2, 3}

Sets are equal if they contain exactly the same values, even if we write
them in different orders:

>>> {1, 2, 3} == {1, 2, 3}

True

>>> {1, 1, 3, 2, 3, 1, 3, 3, 3} == {1, 2, 3}

True

>>> {1, 2} == {1, 2, 3}

False

We can create a set of strings, like this:

>>> {'abc@d.e.f', 'danielzingaro@gmail.com'}

{'abc@d.e.f', 'danielzingaro@gmail.com'}

We cannot create a set of lists:

>>> {[1, 2], [3, 4]}

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

210 Chapter 8

TypeError: unhashable type: 'list'

Values in a set must be immutable, which explains why we can’t put
lists inside a set. The restriction has to do with how Python searches a set
for a value. When Python adds a value to a set, it uses the value itself to de-
termine where exactly it gets stored. Later, Python can find this value by
looking in the place where it should be located. If a value in the set could
change, then Python might look in the wrong place, failing to find the value.

While we can’t create a set of lists, there’s no problem with a list of sets:

>>> lst = [{1, 2, 3}, {4, 5, 6}]

>>> lst

[{1, 2, 3}, {4, 5, 6}]

>>> len(lst)

2

>>> lst[0]

{1, 2, 3}

You can use the len function to determine the number of values in a set:

>>> len({2, 4, 6, 8})

4

You can also loop over the values in a set:

>>> for value in {2, 4, 6, 8}:

... print('I found', value)

...

I found 8

I found 2

I found 4

I found 6

You can’t index or slice a set, though. Values in a set don’t have indices.
To create an empty set, you might expect to use an empty pair of curly

brackets, {}. In an inconsistency of Python syntax, that doesn’t work:

>>> type({2, 4, 6, 8})

<class 'set'>

>>> {}

{}

>>> type({})

<class 'dict'>

Using {} gives us the wrong type: a dict (dictionary) instead of a set.
We’ll talk about dictionaries later in this chapter.

To make an empty set, we use set(), like this:

>>> set()

set()

Organizing Values Using Sets and Dictionaries 211

>>> type(set())

<class 'set'>

Set Methods
Sets are mutable, so we can add and remove values. We can perform these
tasks by using methods.

You can get a list of set methods by using dir(set()). And you can get
help on a specific set method by using help, similar to how we use help to
learn about string or list methods. For example, to learn about the add

method, type help(set().add).
The add method is what we use to add a value to a set. It’s the analog of

append on lists:

>>> s = set()

>>> s

set()

>>> s.add(2)

>>> s

{2}

>>> s.add(4)

>>> s

{2, 4}

>>> s.add(6)

>>> s

{2, 4, 6}

>>> s.add(8)

>>> s

{8, 2, 4, 6}

>>> s.add(8)

>>> s

{8, 2, 4, 6}

To remove a value, we use the remove method:

>>> s.remove(4)

>>> s

{8, 2, 6}

>>> s.remove(8)

>>> s

{2, 6}

>>> s = {2, 6}

>>> s.remove(8)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 8

212 Chapter 8

CONCEPT CHECK

Use help to learn about the set update and intersection methods.

What is output by the call of print in the following code?

s1 = {1, 3, 5, 7, 9}
s2 = {1, 2, 4, 6, 8, 10}
s3 = {1, 4, 9, 16, 25}
s1.update(s2)
s1.intersection(s3)
print(s1)

A. {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

B. {1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

C. {1, 4, 9}

D. {1, 4, 9, 16, 25}

E. {1}

Answer: A. The update method adds whatever is in set s2 but is missing from set
s1 to set s1. After the call of update, s1 is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Now for the call of intersection. The intersection of two sets is the set consisting
of the values that are in both sets. Here, the intersection of s1 and s3 is
{1, 4, 9}. However, the intersection method does not modify a set; rather, it
produces a new set! For that reason, it has no effect on s1.

Efficiency of Searching a Set
Back to solving Email Addresses.

Do we care about the order of our cleaned email addresses? No! All we
care about is whether an email address is already in there or not.

Do we need to allow duplicates in our cleaned email addresses? No
again! In fact, we want to explicitly avoid storing duplicate email addresses.

Order doesn’t matter, and duplicates are not allowed. These are the two
ingredients that suggest that a set may be the right type to use.

We were foiled in our attempt to use a list because searching a list is too
slow. A set is going to be an improvement for us because we can search a set
faster than we can search a list.

We’ve already used the search function in Listing 8-3 to search a list. But
that function doesn’t do anything that specifically requires a list! It uses the
in operator, and in works on both lists and sets. So we can use that function,
unchanged, to search a set, too.

Organizing Values Using Sets and Dictionaries 213

Enter the search function from Listing 8-3 into the Python shell. Follow
along on your computer to get a sense of the difference between searching a
long list and a big set:

>>> search(list(range(1, 50001)), 50000)

¶ >>> search(set(range(1, 50001)), 50000)

At ¶, I’ve used set to produce a set, not a list, of the integers from the range.
On my laptop, searching the list takes about 30 seconds. Searching the

set, by comparison, is bullet fast, almost instantaneous.
Sets are unstoppable. Don’t try this on a list, but here we go, searching

for something in a set of 500,000 values:

>>> search(set(range(1, 500001)), 500000)

Boom! Piece of cake.
Python manages a list in such a way as to allow us to use any index at

any time. Python has no flexibility to mess around with the order of values:
the first value has to be at index 0, the second at index 1, and so on. But
for a set, Python can store it in whatever way it wants, because it makes no
promises of keeping things in order for us. And it’s that increased latitude
that allows Python to optimize searches in a set for speed.

For similar reasons, there are other operations that are extremely slow
on large lists but extremely fast on large sets. For example, removing a value
from a list is very slow, because Python must decrease the index of each
value that’s to the right of that value. By contrast, removing a value from a
set is very fast: there are no indices to update!

Solving the Problem
We already have a function to clean an email address (Listing 8-1), and we’ll
use it in our set-based solution. As for the main program, Listing 8-2 gets us
most of the way there. We just need to use a set instead of a list.

The new main program is in Listing 8-4. Include Listing 8-1 before this
code for a complete solution to the problem.

Main Program

for dataset in range(10):

n = int(input())

¶ addresses = set()

for i in range(n):

address = input()

address = clean(address)

· addresses.add(address)

print(len(addresses))

Listing 8-4: Main program, using a set

214 Chapter 8

Notice that we’re now using a set ¶ of email addresses rather than a
list. After cleaning each email address, we add it to the set using the set add
method ·.

In Listing 8-2, we used the in operator to check whether an email ad-
dress is already in the list so that we didn’t add duplicates. There’s no corre-
sponding in check in our set-based solution. Where did it go? It seems that
we’re adding each email address to the set without even making sure that it’s
not already there.

We can get away without the in check when using a set because a set
never contains duplicates. The add method handles the in check for us, en-
suring that a duplicate doesn’t get added. You can think of add carrying out
its own in check. There’s no timing concern there, because searching a set is
so fast.

If you submit this solution to the judge, you should pass all of the test
cases well within the time limit.

As you’ve seen here, choosing the appropriate Python type can mean
the difference between an unsatisfactory solution and a satisfactory one.
Before you start writing code, ask yourself which operations you’ll be fre-
quently performing and which Python type is ideally suited to those opera-
tions.

Before continuing, you might like to try solving exercises 1 and 2 from
“Chapter Exercises” on page 236.

Problem #19: Common Words
In this problem, we’ll need to associate words with their number of occur-
rences. This is beyond what we can do with sets, so we won’t use sets here.
Instead, we’ll learn about and use Python dictionaries.

This is DMOJ problem cco99p2.

The Challenge
We are given m words. The words are not necessarily distinct; for example,
the word brook could appear multiple times. We are also given an integer k.

Our task is to find the kth most common words. A word w is a kth most
common word if exactly k – 1 distinct words occur more often than does w.
Depending on the dataset, the kth most common words could be no words,
one word, or more than one word.

Let’s make sure we’re clear on this definition of the kth most common
words. If k = 1, then we’re being asked for the words for which exactly 0
words occur more often; that is, we’re being asked for the words that occur
most often. If k = 2, then we’re being asked for the words for which exactly
1 word occurs more often. If k = 3, then we’re being asked for the words for
which exactly two distinct words occur more often, and so on.

Organizing Values Using Sets and Dictionaries 215

Input
The input contains a line giving the number of test cases, followed by the
lines of the test cases themselves. Each test case contains the following lines:

• A line containing the integers m (the number of words in the test
case) and k separated by a space. m is between 0 and 1,000; k is at
least 1.

• m lines, each of which gives a word. Each word consists of at most 20
characters, and all characters are lowercase.

Output
For each test case, output the following lines:

• A line containing the following:

p most common word(s):

where p is 1st if k is 1, 2nd if k is 2, 3rd if k is 3, 4th if k is 4, and so on.

• One line for each of the kth most common words. If there are no
such words, there are no lines of output here.

• A blank line.

The time limit for solving the test cases is one second.

Exploring a Test Case
Let’s start by exploring a test case. It’ll boost our understanding of the prob-
lem and motivate the use of a new Python type.

Suppose that we’re interested in the most common words of all. This
means that k is 1. Here’s the test case:

1

14 1

storm

cut

magma

cut

brook

gully

gully

storm

cliff

cut

blast

brook

cut

gully

216 Chapter 8

The word that shows up most often is cut. There are four occurrences
of cut, and no other word has that many occurrences. The correct output is
therefore:

1st most common word(s):

cut

¶

Notice the required blank line at the end ¶.
Now, what do we do if k were 2? We could answer this by scanning

through the words again and counting occurrences, but there’s a different
way to organize the words that would make our task considerably easier.
Rather than a list of words, let’s look at each word associated with its num-
ber of occurrences. See Table 8-1.

Table 8-1: Words and Number
of Occurrences

Word Number of occurrences

cut 4
gully 3
storm 2
brook 2
magma 1
cliff 1
blast 1

I’ve sorted the words based on their number of occurrences. Looking at
the top row, we can reaffirm that cut is the word to output for k = 1. Looking
at the second row, we see that gully is the word to output for k = 2. The word
gully is the only word that has exactly one word with more occurrences.

Now for k = 3. This time, there are two words to output, storm and brook,
because they both have the same number of occurrences. Each of these
words has exactly two words with more occurrences. This shows that we
sometimes need to output more than one word.

It’s also possible that we need to output zero words! For example, con-
sider k = 4. There are no words that have exactly three words with more oc-
currences. Looking down the table, you might wonder why we don’t output
magma for k = 4. We don’t output magma, because magma has exactly four words
(not exactly three words) with more occurrences.

When k = 5, we have three words to output: magma, cliff, and blast. Be-
fore continuing, verify for yourself that there are no words to output for any
other value of k—no words for k = 6, k = 7, k = 8, k = 9, k = 100, and so on.

Table 8-1 simplifies the problem quite a bit for us. We’re now going to
learn how to organize information like this in Python.

Organizing Values Using Sets and Dictionaries 217

Dictionaries
A dictionary is a Python type that stores a mapping from one group of ele-
ments, called keys, to another group of elements, called values.

We use opening and closing curly brackets to delimit the dictionary.
Those are the same symbols that we use for a set, but Python can tell the
difference between a set and a dictionary because of what we put inside
the curly brackets. For a set, we list values; for a dictionary, we list key:value
pairs.

Here’s a dictionary mapping some strings to numbers:

>>> {'cut':4, 'gully':3}

{'cut': 4, 'gully': 3}

In this dictionary, the keys are 'cut' and 'gully', and the values are 4 and
3. The key 'cut' is mapped to the value 4, and the key 'gully' is mapped to
the value 3.

Based on our encounters with sets, you might wonder whether dictio-
naries maintain the pairs in the order we enter them. For example, you
might wonder whether this could happen:

>>> {'cut':4, 'gully':3}

{'gully': 3, 'cut': 4}

As of Python 3.7, the answer is no: dictionaries retain the order in which
you added pairs. In earlier versions of Python, dictionaries did not main-
tain this order, so you could add pairs in one order but get them back in
another. It’s still a good idea to write code that doesn’t rely on the Python
3.7 behavior, though, because older versions of Python are likely to be in use
for the foreseeable future.

Dictionaries are equal if they contain the same key:value pairs, even if we
write them in different orders:

>>> {'cut':4, 'gully':3} == {'cut':4, 'gully':3}

True

>>> {'cut':4, 'gully':3} == {'gully': 3, 'cut': 4}

True

>>> {'cut':4, 'gully':3} == {'gully': 3, 'cut': 10}

False

>>> {'cut':4, 'gully':3} == {'cut': 4}

False

Dictionary keys must be unique. If you try to include the same key multi-
ple times, only one pair involving that key is retained:

>>> {'storm': 1, 'storm': 2}

{'storm': 2}

218 Chapter 8

Repeated values, by contrast, are fine:

>>> {'storm': 2, 'brook': 2}

{'storm': 2, 'brook': 2}

Keys are required to be immutable values, such as numbers and strings.
Values can be immutable or mutable. This means that we can’t use a list as a
key, but we can use a list as a value:

>>> {['storm', 'brook']: 2}

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

>>> {2: ['storm', 'brook']}

{2: ['storm', 'brook']}

The len function gives us the number of key:value pairs in a dictionary:

>>> len({'cut':4, 'gully':3})

2

>>> len({2: ['storm', 'brook']})

1

To create an empty dictionary, we use {}. That’s why we’re stuck with
that second-rate set() syntax to create a set—dictionaries got the nice syntax:

>>> {}

{}

>>> type({})

<class 'dict'>

The type is called dict, not dictionary.
You’ll see “dictionary” and “dict” used interchangeably in Python re-

sources and code, but I’ll stick with “dictionary” in this book.

CONCEPT CHECK

Which of the following is best suited for a dictionary rather than a list or set?

A. The order in which people finish a race
B. The ingredients necessary for a recipe
C. The names of countries and their capital cities
D. 50 random integers

(continued)

Organizing Values Using Sets and Dictionaries 219

Answer: C. This is the only option that includes a mapping between keys and
values. Here, the keys could be the countries, and the values could be their
capital cities.

CONCEPT CHECK

What is the type of the values (ignoring the keys) in the following dictionary?

{'MLB': {'Bluejays': [1992, 1993],
'Orioles': [1966, 1970, 1983]},

'NFL': {'Patriots': ['too many']}}

A. Integer
B. String
C. List
D. Dictionary
E. More than one of the above

Answer: D. The value for each key in the dictionary is itself a dictionary. For
example, the key 'MLB' is mapped to a dictionary; that dictionary has two
key:value pairs of its own.

Indexing Dictionaries
We can use square brackets to look up the value that a key maps to. It’s simi-
lar to how we index a list, but with the keys serving as the valid “indices”:

>>> d = {'cut':4, 'gully':3}

>>> d

{'cut': 4, 'gully': 3}

>>> d['cut']

4

>>> d['gully']

3

It’s an error to use a key that doesn’t exist:

>>> d['storm']

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 'storm'

220 Chapter 8

We can protect against that error by first using in to check whether a key
is in the dictionary. When used on a dictionary, the in operator checks only
the keys, not the values. Here’s how we can check that a key exists before
trying to find its value:

>>> if 'cut' in d:

... print(d['cut'])

...

4

>>> if 'storm' in d:

... print(d['storm'])

...

Indexing and using in on a dictionary are extremely fast operations.
They don’t require searching any kind of list, no matter how many keys are
in the dictionary.

It’s sometimes more convenient to use the get method rather than in-
dexing to look up the value for a key. The get method never produces an
error, even if the key doesn’t exist:

>>> print(d.get('cut'))

4

>>> print(d.get('storm'))

None

If the key exists, get returns its value. Otherwise, it returns None to signify
that the key does not exist.

In addition to looking up the value for a key, we can use square brack-
ets to add keys to a dictionary or change the value that a key maps to. Here’s
some code that shows how to do each of these, starting with an empty dictio-
nary:

>>> d = {}

>>> d['gully'] = 1

>>> d

{'gully': 1}

>>> d['cut'] = 1

>>> d

{'gully': 1, 'cut': 1}

>>> d['cut'] = 4

>>> d

{'gully': 1, 'cut': 4}

>>> d['gully'] = d['gully'] + 1

>>> d

{'gully': 2, 'cut': 4}

>>> d['gully'] = d['gully'] + 1

>>> d

{'gully': 3, 'cut': 4}

Organizing Values Using Sets and Dictionaries 221

CONCEPT CHECK

Use help({}.get) to learn more about the dictionary get method.

What is the output of the following code?

d = {3: 4}
d[5] = d.get(4, 8)
d[4] = d.get(3, 9)
print(d)

A. {3: 4, 5: 8, 4: 9}

B. {3: 4, 5: 8, 4: 4}

C. {3: 4, 5: 4, 4: 3}

D. Error caused by get

Answer: B. The first call of get returns 8, because key 4 does not exist in the
dictionary. That line therefore adds key 5 with value 8.

The second call of get returns 4: key 3 is in the dictionary already, so the second
parameter, 9, is ignored. That line therefore adds key 4 with value 4.

Looping Through Dictionaries
If we use a for loop on a dictionary, we get the dictionary’s keys:

>>> d = {'cut': 4, 'gully': 3, 'storm': 2, 'brook': 2}

>>> for word in d:

... print('a key is', word)

...

a key is cut

a key is gully

a key is storm

a key is brook

We might also want to access the value associated with each key, and we
can do that by using each key as an index in the dictionary. Here’s a loop
that accesses both the key and its value:

>>> for word in d:

... print('key', word, 'has value', d[word])

...

key cut has value 4

222 Chapter 8

key gully has value 3

key storm has value 2

key brook has value 2

Dictionaries have methods that let us access the keys, values, or both.
The keys method gives us the keys, and the values method gives us the

values:

>>> d.keys()

dict_keys(['cut', 'gully', 'storm', 'brook'])

>>> d.values()

dict_values([4, 3, 2, 2])

These aren’t lists, but we can pass them to list to convert them:

>>> keys = list(d.keys())

>>> keys

['cut', 'gully', 'storm', 'brook']

>>> values = list(d.values())

>>> values

[4, 3, 2, 2]

With the keys available as a list, we can sort the keys and then loop
through them in sorted order:

>>> keys.sort()

>>> keys

['brook', 'cut', 'gully', 'storm']

>>> for word in keys:

... print('key', word, 'has value', d[word])

...

key brook has value 2

key cut has value 4

key gully has value 3

key storm has value 2

We can also loop through the values:

>>> for num in d.values():

... print('number', num)

...

number 4

number 3

number 2

number 2

Looping through keys is often preferred over looping through values.
It’s easy to go from a key to its value. As we’ll see in the next subsection,
though, it’s not as easy to go from a value back to its key.

Organizing Values Using Sets and Dictionaries 223

One final method that’s relevant here is items. It gives us access to both
the keys and values:

>>> pairs = list(d.items())

>>> pairs

[('cut', 4), ('gully', 3), ('storm', 2), ('brook', 2)]

This gives us another way to loop through the key:value pairs of a dictio-
nary:

>>> for pair in pairs:

... print('key', pair[0], 'has value', pair[1])

...

key cut has value 4

key gully has value 3

key storm has value 2

key brook has value 2

Look carefully at the pairs value:

>>> pairs

[('cut', 4), ('gully', 3), ('storm', 2), ('brook', 2)]

There’s something fishy here: there are parentheses around each inner
value, not square brackets. It turns out that this is not a list of lists, but a list
of tuples:

>>> type(pairs[0])

<class 'tuple'>

Tuples are similar to lists in that they store a sequence of values. The
most important difference between tuples and lists is that tuples are im-
mutable. You can loop over them, index them, and slice them, but you can’t
modify them. If you try to modify a tuple, you get an error:

>>> pairs[0][0] = 'river'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

You can create your own tuples using parentheses. For a tuple with a
single value, we need a trailing comma. For a tuple with multiple values, we
don’t:

>>> (4,)

(4,)

>>> (4, 5)

(4, 5)

>>> (4, 5, 6)

(4, 5, 6)

224 Chapter 8

Tuples have methods—but only a few, because methods that would
change a tuple are not allowed. I encourage you to learn more about
tuples if you’re interested, but we won’t use tuples any further in this book.

Inverting a Dictionary
We’re close to being able to solve Common Words using dictionaries. Here’s
the plan. We maintain a dictionary that maps from words to their number
of occurrences. Whenever we process a word, we check whether that word
is already in the dictionary. If it isn’t, then we add it with a value of 1. If it is,
then we increase its value by 1.

Here’s an example of adding two words, one that we have seen before
and one that we haven’t:

>>> d = {'storm': 1, 'cut': 1, 'magma': 1}

>>> word = 'cut' # 'cut' is already in the dictionary

>>> if not word in d:

... d[word] = 1

... else:

... d[word] = d[word] + 1

...

>>> d

{'storm': 1, 'cut': 2, 'magma': 1}

>>> word = 'brook' # 'brook' is not in the dictionary

>>> if not word in d:

... d[word] = 1

... else:

... d[word] = d[word] + 1

...

>>> d

{'storm': 1, 'cut': 2, 'magma': 1, 'brook': 1}

Dictionaries make it easy to go from a key to a value. For example, given
the key 'brook', we can easily look up the value 1:

>>> d['brook']

1

Referring to Table 8-1, that’s like going from a word in the left column
to its number of occurrences in the right column. That doesn’t directly tell
us the words that have a specified number of occurrences, though. What
we really need to be able to do is go from the right column to the left, from
number of occurrences to words. Then we’ll be able to sort the numbers of
occurrences from most to least to find the words we need.

That is, we need to go from this kind of dictionary:

{'storm': 2, 'cut': 4, 'magma': 1, 'brook': 2,

'gully': 3, 'cliff': 1, 'blast': 1}

Organizing Values Using Sets and Dictionaries 225

to this kind, the inverted dictionary:

{2: ['storm', 'brook'], 4: ['cut'], 1: ['magma', 'cliff', 'blast'],

3: ['gully']}

The original dictionary maps from strings to numbers. The inverted
dictionary maps from numbers to strings. Well, not quite: the inverted dic-
tionary maps from numbers to lists of strings. Remember that each key is al-
lowed only once in a dictionary. In the inverted dictionary, we need to map
each key to multiple values, so we store all of those values in a list.

To invert a dictionary, each key becomes a value, and each value be-
comes a key. If a key doesn’t exist yet in the inverted dictionary, we create
a list for its value. If a key is already in the inverted dictionary, then we add
its value to its list.

We can now write a function to return the inverted version of a dictio-
nary. See Listing 8-5 for the code.

def invert_dictionary(d):

"""

d is a dictionary mapping strings to numbers.

Return the inverted dictionary of d.

"""

inverted = {}

¶ for key in d:

· num = d[key]

if not num in inverted:

¸ inverted[num] = [key]

else:

¹ inverted[num].append(key)

return inverted

Listing 8-5: Inverting a dictionary

We’re using a for loop over the dictionary d ¶, which gives us each key.
We index d to obtain the value mapped to by this key ·. Then we add this
key:value pair to the inverted dictionary. If num is not yet a key in the inverted
dictionary, then we add it and make it map to the associated key in d ¸. If num
is already a key in the inverted dictionary, then its value is already a list. We
can therefore use append to add the key from d as another value ¹.

Enter the code for our invert_dictionary function into the Python shell.
Let’s give it a try:

>>> d = {'a': 1, 'b': 1, 'c': 1}

>>> invert_dictionary(d)

{1: ['a', 'b', 'c']}

>>> d = {'storm': 2, 'cut': 4, 'magma': 1, 'brook': 2,

... 'gully': 3, 'cliff': 1, 'blast': 1}

226 Chapter 8

>>> invert_dictionary(d)

{2: ['storm', 'brook'], 4: ['cut'], 1: ['magma', 'cliff', 'blast'],

3: ['gully']}

Now we’re ready to solve Common Words with an inverted dictionary.

Solving the Problem
If you’d like more practice with top-down design, you might like to solve the
problem on your own before continuing. In the interest of space, I won’t
follow the steps of top-down design here. Rather, I’ll present the solution in
its entirety, and then we’ll discuss each function and how it is used.

The Code
The solution is in Listing 8-6.

def invert_dictionary(d):

"""

d is a dictionary mapping strings to numbers.

Return the inverted dictionary of d.

"""

inverted = {}

for key in d:

num = d[key]

if not num in inverted:

inverted[num] = [key]

else:

inverted[num].append(key)

return inverted

¶ def with_suffix(num):

"""

num is an integer >= 1.

Return a string of num with its suffix added; e.g. '5th'.

"""

· s = str(num)

¸ if s[-1] == '1' and s[-2:] != '11':

return s + 'st'

elif s[-1] == '2' and s[-2:] != '12':

return s + 'nd'

elif s[-1] == '3' and s[-2:] != '13':

return s + 'rd'

else:

return s + 'th'

Organizing Values Using Sets and Dictionaries 227

¹ def most_common_words(num_to_words, k):

"""

num_to_words is a dictionary mapping number of occurrences to

lists of words.

k is an integer >= 1.

Return a list of the kth most-common words in num_to_words.

"""

nums = list(num_to_words.keys())

nums.sort(reverse=True)

total = 0

i = 0

done = False

º while i < len(nums) and not done:

num = nums[i]

» if total + len(num_to_words[num]) >= k:

done = True

else:

total = total + len(num_to_words[num])

i = i + 1

¼ if total == k - 1 and i < len(nums):

return num_to_words[nums[i]]

else:

return []

½ n = int(input())

for dataset in range(n):

lst = input().split()

m = int(lst[0])

k = int(lst[1])

word_to_num = {}

for i in range(m):

word = input()

if not word in word_to_num:

word_to_num[word] = 1

else:

word_to_num[word] = word_to_num[word] + 1

¾ num_to_words = invert_dictionary(word_to_num)

228 Chapter 8

ordinal = with_suffix(k)

words = most_common_words(num_to_words, k)

print(f'{ordinal} most common word(s):')

for word in words:

print(word)

print()

Listing 8-6: Solving Common Words

The first function is invert_dictionary. We’ve already discussed that, in
“Inverting a Dictionary” earlier in this chapter. We’ll now go through each
other piece of the program.

Adding the Suffix
The with_suffix function ¶ takes a number and returns a string with the cor-
rect suffix added to the number. We need this function because of the pesky
requirement to output k with a suffix. For example, if k = 1, then we’ll have
to produce this line as part of the output:

1st most common word(s):

If k = 2, we’ll have to produce this line as part of the output:

2nd most common word(s):

and so on. Our with_suffix function makes sure that we add the correct suf-
fix to the number. We first convert the number to a string · so that we can
easily access its digits. Then we use a series of tests to determine whether the
suffix is st, nd, rd, or th. For example, if the last digit is a 1 but the last two
digits aren’t 11 ¸, then the correct suffix is st. That gives us 1st, 21st, and
31st, but not 11st (which would be incorrect).

Finding the kth Most Common Words
The most_common_words function ¹ is the function that actually finds the words
that we need. It takes an inverted dictionary (which maps numbers of occur-
rences to lists of words) and an integer k and returns a list of the kth most
common words.

To see how it works, let’s look at a sample inverted dictionary. I’ve or-
ganized its keys in order from most occurrences to fewest occurrences, as
that’s the order that most_common_words goes through the keys. Here’s the dic-
tionary:

{4: ['cut'],

3: ['gully'],

2: ['storm', 'brook'],

1: ['magma', 'cliff', 'blast']}

Organizing Values Using Sets and Dictionaries 229

Suppose that k is 3. Therefore, exactly two words must be more com-
mon than the words that we return. The words we need are not provided
by the first dictionary key. That key gives us only one word (cut), so it can’t
be the third most common word. Similarly, the words we need are not pro-
vided by the second dictionary key. That key gives us one more word (gully).
We’ve processed a total of two words now but haven’t found the third most
common words yet. The words we need, however, are provided by the third
dictionary key. That key gives us two more words; each of these words (storm
and brook) has exactly two words with more occurrences, so these are the
words for when k is 3.

What if k were 4? This time, exactly three words must be more common
than the words that we return. The candidate words are still those from the
third key (storm and brook), but there are only two words that occur more of-
ten than each of these words. There are therefore no words for when k = 4.

In summary, we need to total up the words we see when going through
the keys until we find the key that might contain the words we need. If ex-
actly k - 1 words occur more often, then we have words for k; otherwise, we
don’t, and there are no words to output.

Now let’s walk through the code itself. We begin by obtaining a list of
the dictionary’s keys and sorting them from biggest to smallest. We then
loop through the keys in that reverse-sorted order º. The done variable tells
us whether we’ve looked at k or more words yet. As soon as we have », we
exit the loop.

When the loop is done, we check whether there are any words for k. If
there are exactly k - 1 words that occur more often, and we haven’t gone
past the end of our keys ¼, then we indeed have words to return. Otherwise,
there are no words to return, so we return the empty list.

The Main Program
Now we arrive at the main part of the program ½. We build dictionary word

_to_num, which maps each word to its number of occurrences. We then build
the inverted dictionary num_to_words ¾, which maps each number of occur-
rences to the associated list of words. Notice how the names of these dic-
tionaries convey the direction of mapping: word_to_num goes from words to
numbers, and num_to_words goes from numbers to words.

The rest of the code calls our other helper functions and outputs the
appropriate words.

With that, you’re ready to submit to the judge. Well done: that’s the first
problem that you’ve solved with dictionaries. Whenever you need to map
between two types of values, think about whether you can organize the in-
formation using a dictionary. If you can, it’s likely that you’ll be well on your
way to an efficient solution!

230 Chapter 8

Problem #20: Cities and States
Here’s another problem where we’ll be able to use a dictionary. As you read
the problem description, think about what we could use as the keys and
what we could use as the values.

This is USACO 2016 December Silver Contest problem Cities and States.

The Challenge
The United States is divided into geographical regions called states, each of
which contains one or more cities. Each state has been given a two-character
abbreviation. For example, the abbreviation for Pennsylvania is PA, and the
abbreviation for South Carolina is SC. We’ll write city names and state ab-
breviations in all uppercase.

Consider the pair of cities SCRANTON PA and PARKER SC. This pair of cities is
special because the first two characters of each city give the abbreviation for
the other city’s state. That is, the first two characters of SCRANTON give
us SC (PARKER’s state), and the first two characters of PARKER give us PA
(SCRANTON’s state).

A pair of cities is special if they meet this property and are not in the
same state.

Determine the number of special pairs of cities in the provided input.

Input
Read input from the file named citystate.in.

The input consists of the following lines:

• A line containing n, the number of cities. n is between 1 and
200,000.

• n lines, one per city. Each line gives the name of a city in uppercase,
a space, and its state’s abbreviation in uppercase. The name of each
city is between 2 and 10 characters; the abbreviation for each state
is exactly two characters. The same city name can exist in multiple
states but will not appear more than once in the same state. The
name of a city or state in this problem is any string that meets these
requirements; it might not be the name of an actual US city or state.

Output
Write output to the file named citystate.out.

Output the number of special pairs of cities.
The time limit for solving each test case is four seconds.

Organizing Values Using Sets and Dictionaries 231

Exploring a Test Case
Perhaps you’re thinking that you could solve this problem with a list. That’s
a good thought to have! If you’re interested, I suggest giving that a try before
continuing. The strategy would be to use two nested loops to consider each
pair of cities and check whether each pair is special. It’s possible to come up
with a correct solution using this approach.

A correct solution, yes, but also a slow one. The list of cities can be huge
—up to a maximum of 200,000—and any solution involving searching a list
for matching cities is doomed to be too slow. Let’s explore a test case and
work out how a dictionary can help.

Here’s our test case:

12

SCRANTON PA

MANISTEE MI

NASHUA NH

PARKER SC

LAFAYETTE CO

WASHOUGAL WA

MIDDLEBOROUGH MA

MADISON MI

MILFORD MA

MIDDLETON MA

COVINGTON LA

LAKEWOOD CO

The first city is SCRANTON PA. To find special pairs involving this city, we
need to find other cities whose name starts with PA and whose state is SC.
The only other city that meets this description is PARKER SC.

Notice that all we care about for SCRANTON PA is that its name starts with SC

and that its state is PA. It could have been called SCMERWIN PA or SCSHOCK PA or
SCHRUTE PA; it would still be a special pair with PARKER SC.

Let’s refer to the first two characters of a city name followed by the city’s
state as a combo. For example, the combo for SCRANTON PA is SCPA, and the
combo for PARKER SC is PASC.

Rather than searching for special pairs of cities, we can now look at spe-
cial pairs of combos. Let’s try this.

There are two cities with the combo MAMI. They happen to be MANISTEE MI

and MADISON MI, but all we care about is that there are two of them. The MAMI

cities start with MA and are in state MI. To count up the special pairs involv-
ing MAMI cities, we need to know the cities that start with MI and have state
MA. That is, we need to know the number of MIMA cities. There are three MIMA

cities. They happen to be MIDDLEBOROUGH MA, MILFORD MA, and MIDDLETON MA, but
all we care about is that there are three of them. Okay—so we have two MAMI

cities and three MIMA cities. The total special pairs for these combos is there-
fore 2 ∗ 3 = 6, because for each of the two MAMI cities, we have a choice of
three MIMA cities.

232 Chapter 8

If you’re not convinced, here are the six special pairs for these combos:

• MANISTEE MI and MIDDLEBOROUGH MA

• MANISTEE MI and MILFORD MA

• MANISTEE MI and MIDDLETON MA

• MADISON MI and MIDDLEBOROUGH MA

• MADISON MI and MILFORD MA

• MADISON MI and MIDDLETON MA

If we could map combos—SCPA, PASC, MAMI, MIMA, and so on—to the number
of occurrences, we could loop through the combos to find the number of
special pairs of cities. A dictionary is the perfect tool to store this mapping.

Here’s the dictionary that we’d like to create for our test case:

{'SCPA': 1, 'MAMI': 2, 'NANH': 1, 'PASC': 1, 'LACO': 2,

'MIMA': 3, 'COLA': 1}

With this dictionary, we can figure out the number of special pairs of
cities. Let’s work through the process.

The first key is 'SCPA'; its value is 1. To find special pairs of cities involv-
ing 'SCPA', we need to look up the value for 'PASC'. That value is also 1. We
multiply the two values together, yielding 1 ∗ 1 = 1 special pair of cities in-
volving these combos. We need to carry out this same procedure for each
other key in the dictionary.

The next key is 'MAMI'; its value is 2. To find special pairs of cities involv-
ing 'MAMI', we need to look up the value for 'MIMA'. That value is 3. We multi-
ply the two values together, yielding 2 ∗ 3 = 6 special pairs of cities involving
these combos. With the 1 we found previously, we now have a total of 7.

The next key is 'NANH'; its value is 1. To find special pairs of cities involv-
ing 'NANH', we need to look up the value for 'NHNA'. But 'NHNA' isn’t a key in
the dictionary! There are no special pairs of cities involving these combos.
We still have a total of 7.

Pay close attention to this next one. The next key is 'PASC'; its value is 1.
To find special pairs of cities involving 'PASC', we need to look up the value
for 'SCPA'. That value is also 1. We multiply the two values together, yielding
1 ∗ 1 = 1 special pair of cities involving these combos. But wait: we already
accounted for this pair when we processed the key 'SCPA'. If we add 1 here,
then we’ll end up double-counting this pair. In fact, by processing each key
we will double-count every special pair of cities. Not to worry, though: we’ll
make an adjustment later when we’re ready to print the final answer. Let’s
add this 1 in there. With the 7 we found previously, we now have a total of 8.

The next key is 'LACO'; its value is 2. The value for 'COLA' is 1, giving 2 ∗
1 = 2 special pairs of cities involving these combos. With the 8 we found
previously, we now have a total of 10.

There are two keys to go, 'MIMA' and 'COLA'. The first leads us to add 6 to
our total; the second leads us to add 2. With the 10 we found previously, we
now have a total of 18.

Organizing Values Using Sets and Dictionaries 233

Remember that we’ve double-counted every special pair of cities. We
don’t have 18 unique special pairs of cities, then. We have only 18 / 2 = 9
special pairs of cities. All we need to do is divide by 2 to undo the double
counting.

If you compare the dictionary we just went through to the cities in the
test case, you’ll notice that something is missing from the dictionary. It’s
that city WASHOUGAL WA! Its combo is WAWA, but there’s no 'WAWA' key in our dic-
tionary. We’re not accounting for this city, and we need to understand why.

The first two characters of WASHOUGAL WA are WA. This means that the only
way for WASHOUGAL WA to be part of a special pair of cities is to find another
city whose state is WA. Notice that WASHOUGAL WA is in state WA, too. However,
the problem specifies that the two cities in a special pair of cities must come
from different states. There’s therefore no way to find a special pair of cities
involving WASHOUGAL WA. To make sure we don’t accidentally count fake special
pairs, we don’t even include WASHOUGAL WA in the dictionary.

Solving the Problem
We’re ready to go! We can use a dictionary for a concise, rocket-fast solution
to Cities and States. The code is in Listing 8-7.

input_file = open('citystate.in', 'r')

output_file = open('citystate.out', 'w')

n = int(input_file.readline())

¶ combo_to_num = {}

for i in range(n):

lst = input_file.readline().split()

· city = lst[0][:2]

state = lst[1]

¸ if city != state:

combo = city + state

if not combo in combo_to_num:

combo_to_num[combo] = 1

else:

combo_to_num[combo] = combo_to_num[combo] + 1

total = 0

¹ for combo in combo_to_num:

º other_combo = combo[2:] + combo[:2]

if other_combo in combo_to_num:

» total = total + combo_to_num[combo] * combo_to_num[other_combo]

¼ output_file.write(str(total // 2) + '\n')

234 Chapter 8

input_file.close()

output_file.close()

Listing 8-7: Solving Cities and States

This is a USACO problem where we need to use files rather than stan-
dard input and standard output.

The dictionary that we’ll build is called combo_to_num ¶. It maps from
four-character combos, like 'SCPA', to the number of cities with that combo.

For each city from the input, we use variables to refer to the first two
characters of the name of the city · and its state. Then, if these values are
not the same ¸, we combine them and add the combo to the dictionary. If
the combo wasn’t already in the dictionary, we add it with a value of 1; if it
was already there, we increase its value by 1.

The dictionary is now built. We loop through its keys ¹. For each key,
we construct the other combo that we need to look up to find special pairs
of cities involving this key. If the key is 'SCPA', for example, then we want the
other combo to be 'PASC'. To do that, we take the rightmost two characters
of the key and follow those by the leftmost two characters º. If that other
combo is also in the dictionary, then we multiply the two key’s values and
add that to our total ».

All we need to do now is output the total number of special pairs of
cities to the output file. As explained in the previous section, we need to
divide our total by 2 ¼ to undo the double-counting that results from pro-
cessing each key in the dictionary.

There we have it: another example of solving a problem with a suitable
deployment of a dictionary. Feel free to submit our code!

Summary
In this chapter, we learned about Python sets and dictionaries. A set is a
collection of values with no order and no duplicates. A dictionary is a col-
lection of key:value pairs. As we saw in this chapter’s problems, sometimes
these collections are more appropriate than lists. For example, determining
whether a value is in a set is ridiculously fast compared to the same opera-
tion on a list. If we don’t care about the order of values or want to eliminate
duplicates, we should seriously consider using a set.

Similarly, a dictionary makes it easy to determine the value mapped to
by a key. If we’re maintaining a mapping from keys to values, then we should
seriously consider using a dictionary.

With sets and dictionaries in the mix, you now have more flexibility for
how to store your values. This flexibility, however, means that you need to
make a choice. Don’t default to using a list anymore! The difference be-
tween using one type or another might be the difference between solving
the problem or not.

We’ve reached an important milestone, as we’ve now covered most of
the Python that I’ll be teaching you in this book. This doesn’t mean that
your Python journey is complete. There’s a lot more to know about Python

Organizing Values Using Sets and Dictionaries 235

beyond what I’ve included in the book. This does mean, though, that we’ve
reached a point where we can solve a wide variety of problems—in competi-
tive programming or otherwise—with our Python skills.

In the next chapter of the book, we shift gears: from learning new Py-
thon features to sharpening our problem-solving ability. We’ll focus on one
particular type of problem that we can solve by searching through all candi-
date solutions.

Chapter Exercises
Here are some exercises for you to try. For each, use a set or dictionary.
Sometimes, a set or dictionary will help you write code that runs faster;
other times, it will help you write code that’s more organized and easier to
read.

1. DMOJ problem crci06p1, Bard

2. DMOJ problem dmopc19c5p1, Conspicuous Cryptic Checklist

3. DMOJ problem coci15c2p1, Marko

4. DMOJ problem ccc06s2, Attack of the CipherTexts

5. DMOJ problem dmopc19c3p1, Mode Finding

6. DMOJ problem coci14c2p2, Utrka (Try solving this one in three dif-
ferent ways: using a dictionary, using a set, and using lists!)

7. DMOJ problem coci17c2p2, ZigZag (Hint: maintain two dictionar-
ies. The first maps each starting letter to its list of words; the second
maps each starting letter to the index of its next word that will be
output. That way, we can cycle through the words for each letter
without having to explicitly update numbers of occurrences or mod-
ify lists.)

Notes
Email Addresses is originally from the 2019 Educational Computing Orga-
nization of Ontario Programming Contest, Round 2. Common Words is
originally from the 1999 Canadian Computing Olympiad. Cities and States
is originally from the USACO 2016 December Silver Contest.

If you’d like to learn more about Python, I recommend Python Crash
Course, 2nd edition by Eric Matthes (No Starch Press, 2019). When you’re
ready to take it to the next level, you might like to read Effective Python, 2nd
edition by Brett Slatkin (Addison-Wesley Professional, 2020), which offers a
collection of tips to help you write better Python code.

236 Chapter 8

9
DES IGNING ALGORITHMS WITH

COMPLETE SEARCH

An algorithm is a sequence of steps that
solves a problem. For each problem in this

book, we solved it by writing an algorithm
in the form of Python code. We’ll focus in this

chapter on designing algorithms. When faced with
a new problem, sometimes it’s hard to know what to
do to solve it. What algorithm should we write? Fortu-
nately, we don’t need to start from scratch each time.
Computer scientists and programmers have identified
several general types of algorithms, and it’s likely that
at least one of them can be used to solve our problem.

One type of algorithm is called a complete search algorithm; it involves
trying all candidate solutions and choosing the best one. For example, if
the problem asks us to find a maximum, we try all solutions and choose
the largest; if the problem asks us to find a minimum, we try all solutions
and choose the smallest. Complete-search algorithms are also known as
brute-force algorithms, but I’ll avoid that term. It’s true that the computer is

powering its way through, checking solution after solution, but there’s noth-
ing brute force about what we’re doing as algorithm designers.

We used a complete-search algorithm to solve Village Neighborhood in
Chapter 5. We were asked to find the smallest size of the neighborhoods,
and we did that by looking at each neighborhood and remembering the size
of the smallest one. In this chapter, we’ll use complete-search algorithms to
solve other problems. We’ll see that it can take considerable ingenuity to
determine what exactly to search.

We’ll solve two problems using complete search: determining which life-
guard to fire and identifying the minimum cost to meet ski training camp
requirements. Then we’ll see a third problem, counting triples of cows that
meet given observations, that requires we go a little further.

Problem #21: Lifeguards
In this problem, we’ll need to determine which lifeguard to fire that leaves
us with the maximum schedule coverage of a pool. We’ll try separately firing
each one and observing the results—that’s a complete-search algorithm!

This is USACO 2018 January Bronze Contest problem Lifeguards.

The Challenge
Farmer John has purchased a swimming pool for his cows. The pool is open
from time 0 to time 1000.

Farmer John hires n lifeguards to monitor the pool. Each lifeguard mon-
itors the pool for a given interval of time. For example, a lifeguard might
start at time 2 and end at time 7. I’ll denote such an interval as 2–7. The
number of units of time covered by an interval is the ending time minus the
starting time. For example, the lifeguard whose time interval is 2–7 covers
7 – 2 = 5 units of time. Those time units are from time 2 to 3, 3 to 4, 4 to 5,
5 to 6, and 6 to 7.

Unfortunately, Farmer John only has enough money to pay for n – 1 life-
guards, not n lifeguards, so he must fire one lifeguard.

Determine the maximum number of units of time that can still be cov-
ered after firing one lifeguard.

Input
Read input from the file named lifeguards.in.

The input consists of the following lines:

• A line containing n, the number of lifeguards who were hired. n is
between 1 and 100.

• n lines, one per lifeguard. Each line gives the time when the life-
guard starts, a space, and the time when the lifeguard ends. The
start and end times are all integers between 0 and 1,000 and are all
distinct.

238 Chapter 9

Output
Write output to the file named lifeguards.out.

Output the maximum number of units of time that can be covered by
n – 1 of the lifeguards.

The time limit for solving each test case is four seconds.

Exploring a Test Case
Let’s explore a test case to help justify why a complete-search algorithm
makes sense for this problem. Here’s the test case:

4

5 8

10 15

17 25

9 20

One simple rule you might try to use to solve this problem is to fire the
lifeguard with the shortest time interval. That makes some intuitive sense,
because it seems as though that lifeguard contributes the least to covering
the pool.

Does this rule give us a correct algorithm? Let’s see. It tells us to fire
the 5–8 lifeguard, since that lifeguard has the shortest time interval. That
leaves us with the three lifeguards whose time intervals are 10–15, 17–25,
and 9–20. These three remaining lifeguards cover exactly the interval 9–25,
which consists of 25 – 9 = 16 units of time. Is 16 the correct answer?

Unfortunately, no. It turns out that what we should have done is fire
the 10–15 lifeguard. If we do that, then we’re left with the three lifeguards
whose time intervals are 5–8, 17–25, and 9–20. These three remaining life-
guards cover the intervals 5–8 and 9–25. (Careful: they don’t cover the unit
of time from 8 to 9.) The first of these intervals covers 8 – 5 = 3 units of time,
and the second covers 25–9 = 16 units of time, for a total of 19 units of time.

The correct answer is 19, not 16. Firing the lifeguard with the shortest
time interval didn’t work.

It’s not easy to come up with a simple rule that always works to solve
this problem. We don’t need to worry, though: with a complete-search algo-
rithm, we dodge this requirement entirely.

Here’s what our complete-search algorithm will do to solve our test case:

1. First, it will ignore the first lifeguard and determine the number of
units of time that the three remaining lifeguards cover. It will obtain
an answer of 16. It will remember 16 as the score to beat.

2. Next, it will ignore the second lifeguard and determine the number
of units of time that the three remaining lifeguards cover. It will ob-
tain an answer of 19. Since 19 is greater than 16, it will remember
19 as the score to beat.

Designing Algorithms with Complete Search 239

3. Next, it will ignore the third lifeguard and determine the number of
units of time that the three remaining lifeguards cover. It will obtain
an answer of 14. The score to beat is still 19.

4. Finally, it will ignore the fourth lifeguard and determine the num-
ber of units of time that the three remaining lifeguards cover. It will
obtain an answer of 16. The score to beat is still 19.

Having considered the ramifications of firing each lifeguard, the algo-
rithm concludes that 19 is the correct answer. There can be no better an-
swer than this, because we tried every option! We performed a complete
search of the possible solutions.

Solving the Problem
To use complete search, it’s often helpful to begin by writing a function that
solves the problem for a particular candidate solution. We can then call that
function many times, once for each candidate solution.

Firing One Lifeguard
Let’s write a function to determine the number of time units that are cov-
ered when one particular lifeguard is fired. Listing 9-1 shows the code.

def num_covered(intervals, fired):

"""

intervals is a list of lifeguard intervals;

each interval is a [start, end] list.

fired is the index of the lifeguard to fire.

Return the number of time units covered by all lifeguards

except the one fired.

"""

¶ covered = set()

for i in range(len(intervals)):

if i != fired:

interval = intervals[i]

· for j in range(interval[0], interval[1]):

¸ covered.add(j)

return len(covered)

Listing 9-1: Solving when one particular lifeguard is fired

The first parameter is a list of lifeguard time intervals; the second is the
index of the lifeguard to fire. Enter the code into the Python shell. Here are
two sample calls of the function:

>>> num_covered([[5, 8], [10, 15], [9, 20], [17, 25]], 0)

16

240 Chapter 9

>>> num_covered([[5, 8], [10, 15], [9, 20], [17, 25]], 1)

19

These calls confirm that we can cover 16 units of time if we fire lifeguard
0 and can cover 19 units of time if we fire lifeguard 1.

Now let’s understand how the function operates. We begin by creating
a set that will hold the units of time that are covered ¶. Whenever a unit of
time is covered, the code will add the start of that unit of time to the set. For
example, if the unit of time from 0 to 1 is covered, then the code will add 0

to the set; if the unit of time from 4 to 5 is covered, it will add 4 to the set.
We loop through the lifeguard time intervals. If a lifeguard isn’t fired,

then we loop through this lifeguard’s time interval · to consider each unit
of covered time. We add each of these time units to the set ¸, as promised.
Recall that sets don’t retain duplicate values; we don’t have to worry if we try
to add the same unit of time multiple times. We’ve gone through all of the
nonfired lifeguards and added to the set all units of time that are covered.
We therefore simply return the number of values in the set.

The Main Program
The main part of our program is in Listing 9-2. It uses the num_covered func-
tion to determine the number of units of time that are covered when sepa-
rately firing each lifeguard. Be sure to enter our num_covered function (List-
ing 9-1) before this code for a complete solution to the problem.

input_file = open('lifeguards.in', 'r')

output_file = open('lifeguards.out', 'w')

n = int(input_file.readline())

intervals = []

for i in range(n):

¶ interval = input_file.readline().split()

interval[0] = int(interval[0])

interval[1] = int(interval[1])

intervals.append(interval)

max_covered = 0

· for fired in range(n):

¸ result = num_covered(intervals, fired)

if result > max_covered:

max_covered = result

output_file.write(str(max_covered) + '\n')

Designing Algorithms with Complete Search 241

input_file.close()

output_file.close()

Listing 9-2: Main program

We’re working with files here, not standard input and standard output.
The program begins by reading the number of lifeguards and then uses

a range for loop to read each lifeguard’s time interval. We read each time
interval from the input ¶, convert each of its components to an integer, and
append it as a two-value list to our list of intervals.

We use the max_covered variable to track the maximum number of time
units that can be covered.

Now we separately fire each lifeguard using a range for loop ·. We call
num_covered ¸ to determine the number of time units that are covered given
the firing of one lifeguard. We update max_covered whenever we’re able to
cover a greater number of time units.

When that loop completes, we’ll have checked the number of units of
time that can be covered by firing each lifeguard, and we’ll have remem-
bered the maximum. We output this maximum to solve the problem.

Feel free to submit our code to the USACO judge. For Python code,
this judge uses a time limit per test case of four seconds, but our solution
shouldn’t come close to that limit. For example, I just ran the code here,
and each test case finished in no more than 130 milliseconds.

Efficiency of Our Program
The reason our code is so fast is because there are so few lifeguards—only
at most 100 of them. If there were a large number of lifeguards, then our
code would no longer solve the problem within the time limit. We’d be fine
if there were a few hundred lifeguards. We might squeak through if we had
as many as 3,000 or 4,000 lifeguards. Any more than that, though, and our
code would be too slow. We probably couldn’t make it in time with 5,000
lifeguards, for example. We’d need to design a new algorithm, likely one
that uses something faster than complete search.

You might think that 5,000 is a huge number of lifeguards and that it’s
okay that our algorithm can’t go that high. But it’s not! Think back to the
Email Addresses problem in Chapter 8. There, we had to contend with up
to 100,000 email addresses. And think back to the Cities and States problem
in the same chapter. There, we had to contend with up to 200,000 cities. By
comparison, 5,000 is not a lot of lifeguards.

A complete-search solution often works fine for a small amount of in-
put. Large test cases are often where complete-search solutions break down.

The reason that our complete-search solution for Lifeguards doesn’t
work well with large test cases is because it does a lot of repeated work.
Imagine that we’re solving a test case with 5,000 lifeguards. We’ll fire life-
guard 0 and call num_covered to determine the number of units of time cov-
ered by the remaining lifeguards. Then, we’ll fire lifeguard 1 and call num
_covered again. Now, what num_covered does this time is similar to what it

242 Chapter 9

did on the previous call. After all, things haven’t changed much. The only
change is that lifeguard 0 is back and lifeguard 1 is fired. The other 4,998
lifeguards are the same as they were! But num_covered doesn’t know that. It
grinds through all of the lifeguards again. That same thing happens when
we fire lifeguard 2, then lifeguard 3, and so on. Each time, num_covered does
all of its work from scratch, without learning anything about what it did pre-
viously.

Remember that, while useful, complete-search algorithms do have lim-
itations. Given a new problem that we want to solve, a complete-search al-
gorithm is a useful starting point, even if it ultimately turns out to be too
inefficient. That’s because the act of designing that algorithm may deepen
our appreciation of the problem and lead to new ideas for solving it.

In the next section, we’ll see another problem where we’ll be able to use
complete search.

CONCEPT CHECK

Is the following version of num_covered correct?

def num_covered(intervals, fired):
"""
intervals is a list of lifeguard intervals;
each interval is a [start, end] list.
fired is the index of the lifeguard to fire.

Return the number of time units covered by all lifeguards
except the one fired.
"""
covered = set()
intervals.pop(fired)
for interval in intervals:

for j in range(interval[0], interval[1]):
covered.add(j)

return len(covered)

A. Yes
B. No

Answer: B. This function removes the fired lifeguard from the list of lifeguards.
That’s not allowed, because the docstring doesn’t say anything about the
function modifying the list. With this version of the function, our program will
fail many test cases because lifeguard information is lost over time. For
example, when we test firing lifeguard 0, lifeguard 0 is removed from the list.
When we later test firing lifeguard 1, lifeguard 0 is unfortunately still gone! If
you want to use a version of the function where the fired lifeguard is removed
from the list, you need to work with a copy of the list rather than the original.

Designing Algorithms with Complete Search 243

Problem #22: Ski Hills
Sometimes, the problem description makes it clear what we should search
through in a complete-search solution. For example, in Lifeguards, we were
asked to fire one lifeguard, so it made sense to try firing each one. Other
times, we’ll have to be more creative to determine what to search through.
As you read this next problem, think about what you would search in a
complete-search solution.

This is USACO 2014 January Bronze Contest problem Ski Course
Design.

The Challenge
Farmer John has n hills on his farm, each with a height between 0 and 100.
He would like to register his farm as a ski training camp.

A farm can be registered as a ski training camp only if the difference in
height between the highest and lowest hills is 17 or less. Farmer John may
therefore need to increase the heights of some of his hills and decrease the
heights of others. He is able to change the heights only by integer amounts.

The cost of changing a hill’s height by x units is x2. For example, chang-
ing a hill from height 1 to height 4 costs (4 – 1)2 = 9.

Determine the minimum amount that Farmer John will need to pay to
change the heights of hills so that he can register his farm as a ski training
camp.

Input
Read input from the file named skidesign.in.

The input consists of the following lines:

• A line containing integer n, the number of hills on the farm. n is
between 1 and 1,000.

• n lines, each of which gives the height of a hill. Each height is an
integer between 0 and 100.

Output
Write output to the file named skidesign.out.

Output the minimum amount that Farmer John will need to pay to
change the heights of hills.

The time limit for solving each test case is four seconds.

Exploring a Test Case
Let’s see if we can apply what we learned from Lifeguards to this problem.
To solve Lifeguards, we separately fired each lifeguard to figure out the
lifeguard that we should fire. To solve Ski Hills, perhaps there’s something

244 Chapter 9

analogous that we can do with each hill? For example, perhaps we can use
each hill’s height as the low end in an allowed height range?

We’ll give this a try using the following test case:

4

23

40

16

2

The smallest height of these four hills is 2, and the biggest height is 40.
The difference between 40 and 2 is 38, greater than 17. Farmer John is go-
ing to have to pay to fix these hills!

The first hill is height 23. If we use 23 as the low end of the range, then
the high end is 23 + 17 = 40. We need to calculate the cost to bring all hills
into the range 23–40. There are two hills that are out of this range, the ones
of heights 16 and 2. Bringing them up to height 23 costs (23 – 16)2 + (23 – 2)2

= 490. A cost of 490 is the cost to beat.
The second hill is height 40. The high end of this range is 40 + 17 = 57,

so we’re looking to get all hills into the range 40–57. The other three hills
are out of this range, so each of them contributes to the total cost. That total
is (40 – 23)2 + (40 – 16)2 + (40 – 2)2 = 2,309. This is greater than 490, our cur-
rent minimum cost, so 490 is still the cost to beat. (Remember that in this
problem we’re trying to minimize Farmer John’s cost, whereas in Lifeguards
we were trying to maximize coverage.)

The third hill is height 16, which gives us the range 16–33. There are
two hills that are out of this range, the ones of heights 40 and 2. The total
cost for this range is therefore (40 – 33)2 + (16 – 2)2 = 245. The new cost to
beat is 245!

The fourth hill is height 2, which gives us the range 2–19. If you calcu-
late the cost for this range, you should obtain a cost of 457.

The minimum cost we obtained using that algorithm is 245. Is 245 the
answer? Are we done?

No and no! It turns out that the minimum cost is 221. There are two
ranges that give us this minimum cost: 12–29 and 13–30. There is no hill
whose height is 12. Similarly, there is no hill whose height is 13. We there-
fore can’t use hill heights as the possible low ends of ranges.

Think about what a correct complete-search algorithm could look like,
one that’s guaranteed not to miss any ranges.

Here’s a plan that’s guaranteed to get us the correct answer. We start
by calculating the cost for range 0–17. Then we calculate the cost for range
1–18. Then 2–19. Then 3–20. Then 4–21, and so on. We test every possible
range, one by one, and remember the minimum cost that we obtain. The
ranges we test have nothing to do with the heights of the hills. Since we’re
testing every possible range, there’s no way we’ll miss finding the best one.

Which ranges should we test? How high should we go? Should we test
the range 50–67? Yes. How about the range 71–88? Yes again. How about
115–132? No! Not that one.

Designing Algorithms with Complete Search 245

The final range that we’ll check is 100–117. The reason has to do with
the guarantee from the problem description that the height of any hill is at
most 100.

Suppose we figure out the cost for range 101–118. Without even know-
ing the heights of the hills, we know for sure that none of the hills is in this
range. The maximum height of a hill, after all, is 100, and our range starts
at 101. Now slide our range from 101–118 down to 100–117. This 100–117
range costs less than the 101–118 range! That’s because 100 is closer to the
hills than 101 is. For example, consider a hill of height 80. This hill would
cost us 212 = 441 to raise it to height 101, but only 202 = 400 to raise
it to height 100. This shows that 101–118 cannot be the best range to use.
There’s no point trying it.

Similar logic explains why it’s pointless to try any higher range such as
102–119, 103–120, and so on. We can always slide these ranges down to
make them cost less.

In summary, we are going to test exactly 101 ranges: 0–17, 1–18, 2–19,
and so on, all the way up to 100–117. We’ll remember the cost of the best
one. Let’s do this!

Solving the Problem
We’ll take the solution in two steps, just as we did when solving Lifeguards.
We’ll start with a function to determine the cost of a single range. Then we’ll
write a main program to call this function once for each range.

Determining the Cost of One Range
Listing 9-3 gives the code for the function that determines the cost of a given
range.

MAX_DIFFERENCE = 17

MAX_HEIGHT = 100

def cost_for_range(heights, low, high):

"""

heights is a list of hill heights.

low is an integer giving the low end of the range.

high is an integer giving the high end of a range.

Return the cost of changing all heights of hills to be

between low and high.

"""

cost = 0

¶ for height in heights:

· if height < low:

¸ cost = cost + (low - height) ** 2

¹ elif height > high:

246 Chapter 9

º cost = cost + (height - high) ** 2

return cost

Listing 9-3: Solving for one particular range

I’ve included two constants that we’ll use later. The MAX_DIFFERENCE con-
stant records the maximum difference allowed between the heights of the
highest and lowest hills. The MAX_HEIGHT constant records the maximum
height of a hill.

Now let’s turn to the cost_for_range function. It takes a list of hill heights
and a desired range specified by its low end and high end. It returns the cost
of changing hill heights so that all hills are in the desired range. I encourage
you to enter the code for the function into the Python shell so that you can
try it before continuing.

The function loops through the height of each hill ¶, adding up the
cost to bring that hill into the desired range. There are two cases we need
to account for. First, the height of the current hill might be out of range by
being less than low ·. The expression low - height gives us the amount of
height that we need to add to this hill, and we square that result to get the
cost ¸. Second, the height of the current hill might be out of range by be-
ing greater than high ¹. The expression height - high gives us the amount
of height that we need to subtract from this hill, and we square that result
to get the cost º. Notice that we don’t do anything if the height is already
in the low-high range. Once we’ve gone through all of the heights, we re-
turn the total cost.

The Main Program
The main part of our program is in Listing 9-4. It uses the cost_for_range

function to determine the cost for each range. Be sure to enter our cost

_for_range function (Listing 9-3) before this code for a complete solution to
the problem.

input_file = open('skidesign.in', 'r')

output_file = open('skidesign.out', 'w')

n = int(input_file.readline())

heights = []

for i in range(n):

heights.append(int(input_file.readline()))

¶ min_cost = cost_for_range(heights, 0, MAX_DIFFERENCE)

· for low in range(1, MAX_HEIGHT + 1):

result = cost_for_range(heights, low, low + MAX_DIFFERENCE)

if result < min_cost:

min_cost = result

Designing Algorithms with Complete Search 247

output_file.write(str(min_cost) + '\n')

input_file.close()

output_file.close()

Listing 9-4: Main program

We start by reading the number of hills and then read each height into
the heights list.

We use the min_cost variable to remember the minimum cost that we’ve
discovered so far. We set min_cost to the cost for range 0–17 ¶. Then, in a
range for loop ·, we try every other range cost, updating min_cost every time
we find a smaller cost. When we’re done with this loop, we output the mini-
mum cost that we found.

It’s time to submit our code to the judge. Our complete-search solution
should solve the problem well under the time limit.

In the next problem, we’ll see an example where a straight complete-
search solution is not efficient enough.

CONCEPT CHECK

Here’s a proposed change to the code in Listing 9-4. Take this line:

for low in range(1, MAX_HEIGHT + 1):

And change it to the following:

for low in range(1, MAX_HEIGHT - MAX_DIFFERENCE + 1):

Is the code still correct?

A. Yes
B. No

Answer: A. The last range that the code now checks is 83–100, so we have to
argue that the ranges we no longer check—84–101, 85–102, and so
on—don’t matter.

Consider the range 84–101. If we can argue that the range 83–100 is at least
as good as 84–101, then we would have no reason to check range 84–101.

The range 84–101 includes height 101. But that’s pointless: the highest hill has
height 100, so height 101 may as well not even be there. We can remove 101
without making the range worse. If we remove it, we’re left with the range
84–100. Aha—but 100–84 is only 16, and we’re allowed to have a difference

248 Chapter 9

of 17. So we can extend the range by one on the left, giving us a range of
83–100. Surely, making the range bigger like this can’t make the range any
worse. It might even make the range better, since it’s now one unit closer to any
hill whose height is 83 or less.

We started with range 84–101 and showed that range 83–100 is at least as
good. We can make this same argument for range 85–102, 86–103, and so
on. There’s no point going any higher than 83–100!

Before continuing, you might like to try solving exercises 1 and 2 from
“Chapter Exercises” on page 263.

Problem #23: Cow Baseball
To end this chapter, I’ve chosen a problem where we’ll need to bump up
our algorithm design skills beyond complete search. As you read the prob-
lem, notice that there’s not all that much input. That generally signals the
effectiveness of a complete-search algorithm. But not this time, because of
the amount of searching that such an algorithm has to do through this in-
put. The difficulty boils down to having too many nested loops. Why do the
nested loops bite us here? What can we do about it? Read on!

This is USACO 2013 December Bronze Contest problem Cow Baseball.

The Challenge
Farmer John has n cows. They are standing in a row, each at a distinct inte-
ger position. They are having fun throwing a baseball around.

Farmer John is watching the antics. He observes that cow x throws the
ball to some cow y to its right, and then that cow y throws the ball to some
cow z to its right. He also knows that the distance of the second throw is at
least the distance of the first throw and at most twice the distance of the first
throw. (For example, if the first throw is distance 5, then the second throw is
at least distance 5 and at most distance 10.)

Determine the number of (x, y, z) triples of cows that satisfy Farmer
John’s observations.

Input
Read input from the file named baseball.in.

The input consists of the following lines:

• A line containing n, the number of cows. n is between 3 and 1,000.

• n lines, each of which gives the position of a cow. All positions are
unique, and each is between 1 and 100,000,000.

Designing Algorithms with Complete Search 249

Output
Write output to the file named baseball.out.

Output the number of triples of cows that satisfy Farmer John’s observa-
tions.

The time limit for solving each test case is four seconds.

Using Three Nested Loops
We can use three nested loops to consider all possible triples. We’ll start by
looking at the code and then discuss its efficiency.

The Code
In “Nesting” in Chapter 3, we learned that we can loop through all pairs of
values using two nested loops. Doing so looks like this:

>>> lst = [1, 9]

>>> for num1 in lst:

... for num2 in lst:

... print(num1, num2)

...

1 1

1 9

9 1

9 9

We can similarly loop through all triples of values using three nested
loops, like this:

>>> for num1 in lst:

... for num2 in lst:

... for num3 in lst:

... print(num1, num2, num3)

...

1 1 1

1 1 9

1 9 1

1 9 9

9 1 1

9 1 9

9 9 1

9 9 9

Using three nested loops like this gives us a starting point for solving
the Cow Baseball problem. For each triple, we can check whether it matches
Farmer John’s observations. See Listing 9-5 for the code.

250 Chapter 9

input_file = open('baseball.in', 'r')

output_file = open('baseball.out', 'w')

n = int(input_file.readline())

positions = []

for i in range(n):

¶ positions.append(int(input_file.readline()))

total = 0

· for position1 in positions:

¸ for position2 in positions:

first_two_diff = position2 - position1

¹ if first_two_diff > 0:

low = position2 + first_two_diff

high = position2 + first_two_diff * 2

º for position3 in positions:

if position3 >= low and position3 <= high:

total = total + 1

output_file.write(str(total) + '\n')

input_file.close()

output_file.close()

Listing 9-5: Using three nested for loops

We read all of the cow positions into the positions list ¶. We then loop
over all positions in the list using a for loop ·. For each of these positions,
we loop through all positions in the list using a nested for loop ¸. At this
point, position1 and position2 refer to two positions from the list. We need a
third nested loop, yes, but not yet. We first need to calculate the difference
between position1 and position2 because that tells us the range of position3s
that we’ll be looking for.

We require from the problem description that position2 be on the right
of position1. If it is ¹, then we calculate the low end and high end of the
range for position3 and store them using low and high, respectively. For ex-
ample, if position1 is 1 and position2 is 6, then we’ll calculate 6 + 5 = 11 for
low and 6 + 5 ∗ 2 = 16 for high. Then we loop through the list with a third
nested for loop º, looking for positions that are between low and high. For
each such position3, we increase our total by 1.

Following the three nested loops, we have calculated the total number of
triples. We finish up by outputting that number to the output file.

Designing Algorithms with Complete Search 251

Let’s try our program on a small test case to make sure nothing weird is
happening. Here it is:

7

16

14

23

18

1

6

11

The correct answer for this test case is 11. The 11 satisfying triples are as
follows:

• 14, 16, 18

• 14, 18, 23

• 1, 6, 16

• 1, 6, 14

• 1, 6, 11

• 1, 11, 23

• 6, 14, 23

• 6, 11, 16

• 6, 11, 18

• 11, 16, 23

• 11, 14, 18

Good news: our program outputs 11 for this test case! It does so be-
cause it eventually finds each satisfying triple. For example, at some point,
position1 will be 14, position2 will be 16, and position3 will be 18. That triple
satisfies the distance requirements, so our program will count it in our to-
tal. Don’t be worried about what will happen, later, when position1 is 18,
position2 is 16, and position3 is 14. We definitely don’t want to count that one,
because these throws are not going to the right. We’re fine, though: the if

statement ¹ prevents these triples from being processed.
Our program is correct. But as you’ll see if you submit it to the judge, it

is not efficient enough. For this problem, and many competitive program-
ming problems, the first few test cases are small—just a few cows, a few life-
guards, or a few ski hills. Our program should be able to solve those in time.
The remaining test cases test our program closer and closer to the limit of
acceptable input. Our program does not solve those in time. It’s too slow.

Efficiency of Our Program
To understand why our program is so slow, it helps to think about the num-
ber of triples that it must go through. Think back to the test case we just

252 Chapter 9

studied, which had seven cows. How many triples will our program check?
Well, for the first cow, there are seven choices: 16, 14, 23, and so on. There
are also seven choices for the second cow, and seven choices for the third
cow. Multiplying these together, we see that our program checks 7 ∗ 7 ∗ 7 =
343 triples.

What if we had eight cows instead of seven? Then our program would
check 8 ∗ 8 ∗ 8 = 512 triples.

We can give an expression for the number of triples that works for any
number of cows. Let’s use n for the number of cows; it could be 7, 8, 50,
1,000, and so on, depending on the test case. Then we can say that the num-
ber of triples our program checks is n ∗ n ∗ n, or n3.

We can substitute any number of cows for n to determine the number of
triples that we check. For example, we can verify that the number of triples
for seven cows is 73 = 343 and that the number of triples for eight cows is
83 = 512. These numbers—343 and 512—are tiny. It would take any com-
puter no more than a few milliseconds to check those many triples. As a con-
servative guide, you can think of a Python program as being able to check
or do about 5,000,000 things per second. The time limit for this problem is
four seconds per test case, so we’ll be able to check about 20,000,000 triples.

Let’s substitute larger numbers for n and see what happens. For 50 cows,
we have 503 = 125,000 triples. No big deal: checking 125,000 things is easy
for today’s computers. For 100 cows, we have 1003 = 1,000,000 triples. Again,
no problem. We can check a million things in less than a second. For 200
cows, we have 2003 = 8,000,000 triples. We’re still OK for four seconds, but I
hope you’re starting to get a little worried. The number of triples is shooting
up pretty quickly here, and we’re only at 200 cows. Remember that we need
to be able to support up to 1,000 cows.

For 400 cows, we have 4003 = 64,000,000 triples. That’s too many for us
to process in four seconds. To add insult to injury, let’s try 1,000 cows, the
maximum we’ll ever get. For 1,000 cows, we have 1,0003 = 1,000,000,000
triples. That’s one billion. Nope. There’s no way we’re ever going to be able
to check that many triples in four seconds. We’ll need to make our program
more efficient.

Sorting First
Sorting is helpful here. Let’s look at how to use sorting and then discuss the
efficiency of our resulting solution.

The Code
Our cow positions can come in any order—there’s certainly no guarantee
from the problem description that they’re sorted. Unfortunately, this leads
our program to check many triples that have no chance of satisfying the
requirements. For example, checking the triple 18, 16, 14 is pointless, be-
cause the numbers aren’t in increasing order. If we sorted the cow positions
at the outset, then we could avoid ever checking these out-of-order triples.

Designing Algorithms with Complete Search 253

There’s another benefit to sorting. Suppose that position1 refers to
some cow position and position2 refers to another. For this pair of positions,
we know the smallest value of position3 and largest value of position3 that
we care about. We can use the fact that the positions are sorted to cut down
on the number of values that we need to check for this range. Before con-
tinuing, think about why this is the case. How can we use the fact that the
positions are sorted to look at fewer values?

When you’re ready, see Listing 9-6 for our code that uses sorting.

input_file = open('baseball.in', 'r')

output_file = open('baseball.out', 'w')

n = int(input_file.readline())

positions = []

for i in range(n):

positions.append(int(input_file.readline()))

¶ positions.sort()

total = 0

· for i in range(n):

¸ for j in range(i + 1, n):

first_two_diff = positions[j] - positions[i]

low = positions[j] + first_two_diff

high = positions[j] + first_two_diff * 2

left = j + 1

¹ while left < n and positions[left] < low:

left = left + 1

right = left

º while right < n and positions[right] <= high:

right = right + 1

» total = total + right - left

output_file.write(str(total) + '\n')

input_file.close()

output_file.close()

Listing 9-6: Using sorting

Before we start looking for triples, we sort the positions ¶.
Our first loop goes through all positions using the loop variable i ·.

It’s a range for loop this time, not a for loop, so that we can keep track of

254 Chapter 9

which index we’re at. That’s useful because we can use the value of i + 1 as
the starting index for our second loop ¸. The second loop will now never
waste time looking at positions that are to the left of the first position.

We next calculate the low and high ends of the range of values for our
third position.

Rather than increase total by 1 each time we find a suitable third posi-
tion, we can instead find the left and right borders of suitable positions and
then increase total in one shot. We can only do it this way because the list of
positions is sorted. We find each of the borders using a while loop. The first
while loop finds the left border ¹. It keeps going as long as the positions are
less than low. When it’s done, left will be the leftmost index whose position
is greater than or equal to low. The second while loop finds the right bor-
der º. It keeps going as long as the positions are less than or equal to high.
When it’s done, right is the rightmost index whose position is greater than
high. Each of the positions from left up to but not including right can serve
as the third position in a triple involving the positions at indices i and j. We
add right - left to total to account for these positions ».

The two while loops in this program are quite tricky. Let’s make sure
we know exactly what they’re doing by working through an example. We’ll
use the following list of positions; they’re the same as those we used in the
previous section, but sorted:

[1, 6, 11, 14, 16, 18, 23]

Suppose that i is 1 and j is 2 so that the two positions in prospective
triples are 6 and 11. For the third position, we’re therefore looking for po-
sitions greater than or equal to 16 and less than or equal to 21. The first while
loop will set left to 4, the leftmost index whose position is greater than or
equal to 16. The second while loop will set right to 6, the leftmost index whose
position is greater than 21. Subtracting left from right, we obtain 6 – 4 = 2,
which means that there are two triples involving positions 6 and 11. Before
continuing, I encourage you to convince yourself that these while loops work
just fine in “special” cases, such as when there are no suitable third positions
or when there is one suitable third position.

We’ve made strong progress in this section. Our code here is certainly
more efficient than the code we gave in Listing 9-5. However, it still isn’t ef-
ficient enough. If you submit to the judge, you’ll see that it doesn’t get much
further than we got last time. It still times out on most of the test cases.

Efficiency of Our Program
The problem with our program is that finding the third position can still
take a long time. Those while loops still have some inefficiency. I can demon-
strate this with a new list of positions, namely, the positions from 1 to 32.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]

Designing Algorithms with Complete Search 255

Let’s focus on when i is 0 and j is 7; these are the positions 1 and 8. For
the third position, we’re looking for positions that are greater than or equal
to 15 and less than or equal to 22. To find the 15, the first while loop scans to
the right, one position at a time. It scans the 9, then the 10, then the 11, then
the 12, then the 13, then the 14, and finally the 15. Then the second while

loop takes over, doing a similarly large amount of scanning, one position
at a time, all the way until it finds the 23.

Each while loop implements what’s known as a linear search. A linear
search is a technique that searches through a collection one value at a time.
It’s a lot of work, scanning through all those values! And there are many
other values of i and j that lead to a similar amount of work. For example,
try tracing what happens when i is 0 and j is 8, or when i is 1 and j is 11.

How can we improve on this? How can we avoid scanning through a
huge chunk of the list, looking for the appropriate left and right indices?

Suppose I give you a book with a thousand sorted integers, one inte-
ger per line. I ask you to find me the first integer that’s greater or equal to
300. Are you going to look through the numbers one by one? Are you go-
ing to look at the 1, then the 3, then the 4, then the 7? Still a long way to
go—will you look at the 8, then the 12, then the 17? Probably not! It’d be
much faster if you just flipped to the middle of the book. Maybe you find
number 450 there. Since 450 is greater than 300, now you know that the
number is in the first half of the book. It can’t be in the second half, be-
cause those numbers are even bigger than 450. You’ve reduced your work
by half by checking only one number! You can now repeat this process on
the first half of the book, flipping halfway between the beginning and mid-
dle of the book. You might find the number 200 there. Now you know that
the 300 is on a later page, somewhere in the second quarter of the book.
You can repeat this process until you find 300—and it won’t take long at
all. This technique—repeatedly dividing the problem in half—is known as
binary search. It’s shockingly fast. It blows away the linear search technique
of searching one by one. Python has a binary search function that will put
the finishing touches on Cow Baseball. That function, though, is inside of
something called a module; we’ll need to discuss them first.

Python Modules
A module is a self-contained collection of Python code. A module generally
contains several functions that we can call.

Python comes with a variety of modules that we can use to add function-
ality to our programs. There are modules for working with random num-
bers, dates and times, statistics, emails, web pages, audio files, and much
more. It would take a separate book to cover them all! There are even mod-
ules that you can download should Python not come with the module that
you need.

I’ll focus in this section on one module—the random module. We’ll use it
to learn what we need to know about modules. Then we’ll be all set for the
binary search module in the next section.

256 Chapter 9

Have you ever wondered how people make computer games where
things happen at random? Maybe it’s a game where you draw cards, where
you roll dice, or where enemies spawn unpredictably. The key is the use of
random numbers. Python gives us access to random-number generation
through its random module.

Before we can use what’s in a module, we must import it. One way to do
this is to import the entire module using the import keyword, like this:

>>> import random

What’s in there? To find out, you can use dir(random):

>>> dir(random)

[stuff to ignore

'betavariate', 'choice', 'choices', 'expovariate',

'gammavariate', 'gauss', 'getrandbits', 'getstate',

'lognormvariate', 'normalvariate', 'paretovariate',

'randint', 'random', 'randrange', 'sample', 'seed',

'setstate', 'shuffle', 'triangular', 'uniform',

'vonmisesvariate', 'weibullvariate']

One function that’s offered by the random module is randint. We pass it
the low and high ends of a range, and Python gives us a random integer in
the range (including both endpoints).

We can’t just call it like a regular function, though. If we try, we get an
error:

>>> randint(2, 10)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'randint' is not defined

We need to tell Python that the randint function is housed in the random

module. To do that, we prefix randint with the name of the module and a
dot, like this:

>>> random.randint(2, 10)

7

>>> random.randint(2, 10)

10

>>> random.randint(2, 10)

6

To get help on the randint function, you can type help(random.randint):

>>> help(random.randint)

Help on method randint in module random:

randint(a, b) method of random.Random instance

Return random integer in range [a, b], including both end points.

Designing Algorithms with Complete Search 257

Another useful function in the random module is choice. We pass it a se-
quence, and it returns one of its values at random:

>>> random.choice(['win', 'lose'])

'lose'

>>> random.choice(['win', 'lose'])

'lose'

>>> random.choice(['win', 'lose'])

'win'

If we frequently use a small number of functions from a module, it can
be tedious to type the module name and a dot each time. There’s another
way to import these functions that lets us call them like any other nonmod-
ule function. Here’s how we can import only the randint function:

>>> from random import randint

Now we can call randint without the random. in front:

>>> randint(2, 10)

10

If we need randint and choice, we can import them both:

>>> from random import randint, choice

We won’t do so in this book, but we can create our own modules con-
taining whatever functions we like. For example, if we designed a few Python
functions related to playing a game, we could place them all in a file named
game_functions.py. We could then import that module using import game

_functions and then access the functions within.
The Python programs we’ve written in this book are not designed to be

imported as modules. The reason is that they all read input as soon as they
start running. A module shouldn’t do that. Rather, a module should wait
for its functions to be called before it does anything. The random module is
an example of a well-behaved module: it only starts giving us random things
when we ask for them.

The bisect Module
Now we’re ready to play around with binary search. In Listing 9-6, we had
two while loops. They’re slow, so we want to get rid of them. To do that,
we’re going to replace each one with a call to a binary search function:
bisect_left for the first while loop and bisect_right for the second.

Both of these functions are in the bisect module. Let’s import them:

>>> from bisect import bisect_left, bisect_right

258 Chapter 9

Let’s first discuss bisect_left. We call it by providing a list sorted from
smallest to largest and a value x. It returns to us the index of the leftmost
value in the list that’s greater than or equal to x.

If the value is in the list, we get the index of its leftmost occurrence:

>>> bisect_left([10, 50, 80, 80, 100], 10)

0

>>> bisect_left([10, 50, 80, 80, 100], 80)

2

If the value isn’t in the list, then we get the index of the first value that’s
greater:

>>> bisect_left([10, 50, 80, 80, 100], 15)

1

>>> bisect_left([10, 50, 80, 80, 100], 81)

4

If we search for something that’s greater than every value in the list, we
get the list’s length:

>>> bisect_left([10, 50, 80, 80, 100], 986)

5

Let’s use bisect_left on our list of seven positions from “Sorting First”
earlier in this chapter. We’ll find the index of the leftmost position that’s
greater than or equal to 16:

>>> positions = [1, 6, 11, 14, 16, 18, 23]

>>> bisect_left(positions, 16)

4

Perfect: that’s exactly what we need to replace the first while loop in
Listing 9-6.

To replace the second while loop, we’ll use bisect_right rather than bisect

_left. We call bisect_right just as we called bisect_left : with a sorted list and
a value x. Rather than returning the index of the leftmost value in the list
that’s greater than or equal to x, it returns the index of the leftmost value that’s
greater than x.

Let’s compare bisect_left and bisect_right. For a value that’s in the list,
bisect_right returns an index greater than that returned by bisect_left:

>>> bisect_left([10, 50, 80, 80, 100], 10)

0

>>> bisect_right([10, 50, 80, 80, 100], 10)

1

>>> bisect_left([10, 50, 80, 80, 100], 80)

2

Designing Algorithms with Complete Search 259

>>> bisect_right([10, 50, 80, 80, 100], 80)

4

For a value that isn’t in the list, bisect_left and bisect_right return the
same index:

>>> bisect_left([10, 50, 80, 80, 100], 15)

1

>>> bisect_right([10, 50, 80, 80, 100], 15)

1

>>> bisect_left([10, 50, 80, 80, 100], 81)

4

>>> bisect_right([10, 50, 80, 80, 100], 81)

4

>>> bisect_left([10, 50, 80, 80, 100], 986)

5

>>> bisect_right([10, 50, 80, 80, 100], 986)

5

Let’s use bisect_right on our list of seven positions from “Sorting First”
earlier in this chapter. We’ll find the index of the leftmost position that’s
greater than 21:

>>> positions = [1, 6, 11, 14, 16, 18, 23]

>>> bisect_right(positions, 21)

6

There we go: that’s what we can use to replace the second while loop in
Listing 9-6.

The stunning speed of binary search is hard to appreciate using these
tiny examples. Time to get real. We’ll search one million times for the right-
most value in a list of length 1000000. Don’t look away when you run this
code. You might miss it.

>>> lst = list(range(1, 1000001))

>>> for i in range(1000000):

... where = bisect_left(lst, 1000000)

...

On my computer, that takes about a second. You might be wondering
what would happen if you replaced the binary search with a call to the list
index method. If you try it, you’ll literally wait hours for the code to run.
That’s because index, like the in operator, does a linear search through the
list. (See “Efficiency of Searching a List” in Chapter 8 for more on this.)
It has no guarantee that the list is sorted, so it can’t perform a blazing-fast
binary search. It has to go through the values one by one, comparing each of
them to the value we’re searching for. If you have a sorted list and you want
to find values in it, binary search is unstoppable.

260 Chapter 9

Solving the Problem
We’re ready to solve Cow Baseball using binary search. See Listing 9-7 for
the code.

¶ from bisect import bisect_left, bisect_right

input_file = open('baseball.in', 'r')

output_file = open('baseball.out', 'w')

n = int(input_file.readline())

positions = []

for i in range(n):

positions.append(int(input_file.readline()))

positions.sort()

total = 0

for i in range(n):

for j in range(i + 1, n):

first_two_diff = positions[j] - positions[i]

low = positions[j] + first_two_diff

high = positions[j] + first_two_diff * 2

· left = bisect_left(positions, low)

¸ right = bisect_right(positions, high)

total = total + right - left

output_file.write(str(total) + '\n')

input_file.close()

output_file.close()

Listing 9-7: Using binary search

To begin, we import the bisect_left and bisect_right functions from the
bisect module so that we can call them ¶. The only other difference com-
pared to Listing 9-6 is that we now use bisect_left · and bisect_right ¸ in-
stead of the while loops.

If you submit our code to the judge now, you should pass all test cases
within the time limit.

The arc that we followed in this section is typical of that required to
solve hard problems. We might start with a complete-search solution that
is correct but, alas, is also too slow, not meeting the judge’s time limits. We
then make improvements, leading us away from complete search and toward
a more refined approach.

Designing Algorithms with Complete Search 261

CONCEPT CHECK

Suppose we start with Listing 9-7 and use bisect_left in place of bisect_right.
That is, we take this line:

right = bisect_right(positions, high)

And we change it to the following:

right = bisect_left(positions, high)

Does the program still produce the correct answers?

A. It always produces the correct answer, just as before.
B. It sometimes produces the correct answer; it depends on the test case.
C. It never produces the correct answer.

Answer: B. There are test cases for which the modified code does produce the
correct answer. Here’s one:

3
2
4
9

The correct answer is 0, and that’s what our program produces.

Be careful, though, because there are other test cases for which the modified
code produces the wrong answer. Here’s one:

3
2
4
8

The correct answer is 1, but our program produces 0. When i is 0 and j is 1,
the program is supposed to set left to 2 and set right to 3. Unfortunately, using
bisect_left causes right to be set to 2, because the position at index 2 is the
leftmost position that’s greater than or equal to 8.

Given this counterexample, you might be surprised to know that there is a way
to use bisect_left rather than bisect_right. To do it, we need to alter what we
search for in the call to bisect_left. If you’re curious, give it a try!

262 Chapter 9

Summary
In this chapter, we learned about complete-search algorithms, algorithms
that search through all options to find the best one. To determine the life-
guard that we should fire, we try firing each lifeguard and choose the best
one. To determine the minimum cost to fix ski hills, we try all valid ranges
and choose the best one. To determine the number of relevant triples of
cows, we check each triple and add the ones that meet the requirements.

Sometimes, complete-search algorithms are efficient enough as they are.
We solved the Lifeguards and Ski Hills problems with unadorned complete-
search code. Other times, however, we’ll need to make our complete-search
algorithm more efficient. We did that when solving Cow Baseball by replac-
ing complete-search while loops by much faster binary searches.

How do programmers and computer scientists discuss efficiency? How
do you know whether an algorithm is going to be efficient enough? And can
you avoid implementing algorithms that are simply too slow? Chapter 10
awaits.

Chapter Exercises
Here are some exercises for you to try. For each, use complete search. If
your solution is not efficient enough, think about how you can make it more
efficient while still producing the right answer.

For each exercise, double-check the judge that the problem comes from:
some are on the DMOJ judge, while others are on the USACO judge.

1. USACO 2019 January Bronze Contest problem Shell Game

2. USACO 2016 US Open Bronze Contest problem Diamond Collec-
tor

3. DMOJ problem coci20c1p1, Patkice

4. DMOJ problem ccc09j2, Old Fishin’ Hole

5. DMOJ problem ecoo16r1p2, Spindie

6. DMOJ problem cco96p2, SafeBreaker

7. USACO 2019 December Bronze Contest problem Where Am I

8. USACO 2016 January Bronze Contest problem Angry Cows

9. USACO 2016 December Silver Contest problem Counting Haybales

10. DMOJ problem crci06p3, Firefly

Notes
Lifeguards is originally from the USACO 2018 January Bronze Contest. Ski
Hills is originally from the USACO 2014 January Bronze Contest. Cow Base-
ball is originally from the USACO 2013 December Bronze Contest.

Designing Algorithms with Complete Search 263

There are other types of algorithms beyond complete search, such as
greedy algorithms and dynamic-programming algorithms. If a problem cannot be
solved by complete search, then it’s worth thinking through whether it can
be solved using one of these other types.

If you’re interested in learning more about these and other algorithms
topics using Python, I recommend Python Algorithms, 2nd edition by Magnus
Lie Hetland (Apress, 2014).

I’ve also written a book about algorithm design: Algorithmic Thinking:
A Problem-Based Introduction (No Starch Press, 2021). It follows the same
problem-based format as this book; as a result, its style and pacing will be fa-
miliar to you. However, it uses the C programming language, not the Python
programming language, so to make the most of it, you’ll want to learn some
C beforehand.

In this chapter, we called preexisting Python functions to perform bi-
nary searches. If we like, we can write our own binary-search code instead of
relying on those functions. The idea of dividing a list in half until we find
the value that we want is intuitive, but the code to implement this is sur-
prisingly tricky. Equally surprising is the vast range of problems that can
be solved using variations of binary search. My book mentioned earlier,
Algorithmic Thinking, contains an entire chapter on binary search and what
it can do.

264 Chapter 9

10
BIG O AND PROGRAM EFF IC IENCY

In the first seven chapters of this book,
we focused on writing programs that were

correct: for any valid input, we wanted our
program to produce the desired output. In ad-

dition to correct code, though, we generally want ef-
ficient code, code that runs quickly even in the face
of huge amounts of input. You may have received the
occasional time limit exceeded error when working
through the first seven chapters, but our first formal
foray into program efficiency wasn’t until Chapter 8,
when we solved Email Addresses. We saw there that
sometimes we need to make our programs more effi-
cient so that they can finish within a given time limit.

In this chapter, we’ll first learn how programmers think and communi-
cate about program efficiency. Then, we’ll study two problems where we’ll
need to write efficient code: determining the most desired piece of a scarf
and painting a ribbon.

For each problem, we’ll see that our initial ideas lead to an algorithm
that would not be efficient enough. But we’ll keep at it until we design a

faster algorithm for the same problem, one that’s dramatically more effi-
cient than before. This exemplifies a common workflow for programmers:
first, come up with a correct algorithm; then, only if needed, make it faster.

The Problem with Timing
Each competitive programming problem that we solve in this book has a
time limit on how long our program will be allowed to run. (I began includ-
ing time limits in the problem descriptions of Chapter 8, when we started
running into programming problems where efficiency is a serious concern.)
If our program exceeds the time limit, then the judge terminates our pro-
gram with a time limit exceeded error. A time limit is designed to prevent
solutions that are too slow from passing the test cases. For example, perhaps
we come up with a complete-search solution but the author of the problem
has worked out a solution that’s much faster. That faster solution may be
a variation of complete search, as it was when we solved the Cow Baseball
problem in Chapter 9, or it may be a different approach entirely. Regardless,
the time limit may be set such that our complete-search solution will not fin-
ish in time. As such, in addition to being correct, we may need our programs
to be fast.

We can run a program to explore whether it is efficient enough. For
example, think back to “Efficiency of Searching a List” in Chapter 8 when
we tried to solve Email Addresses using a list. We ran code that used bigger
and bigger lists to get a sense of the amount of time taken by list operations.
This kind of testing can give us some understanding of the efficiency of our
programs. If our program is too slow, according to the time limit for the
problem, then we know that we need to optimize the current code or find a
wholly new approach.

The amount of time taken by a program depends on the computer it is
being run on. We don’t know what kind of computer the judge is using, but
running the program on our own computer is still informative because the
judge is probably using a computer that’s at least as fast as ours. Say that we
run our program on our laptop and it takes 30 seconds on some small test
case. If the problem time limit is three seconds, we can be confident that
our program is simply not fast enough.

An exclusive focus on time limits, however, is limiting. Think about our
first solution to Cow Baseball in Chapter 9. We didn’t need to run that code
to determine how slow it would be. That’s because we were able to charac-
terize the program in terms of the amount of work that it would do if we did
run it. For example, in “Efficiency of Our Program” on page 253, we said
that for n cows, our program processes n3 triples of cows. Notice that our
focus here is not on the number of seconds our program would take to run,
but on how much work it does in terms of the amount of input n.

There are significant advantages to this kind of analysis compared to
running our programs and recording execution times. Here are five:

Execution time depends on the computer Timing our program
tells us only how long our program takes on one computer. That’s very

266 Chapter 10

specific information, and it gives us little in the way of understanding
what to expect when the program is run on other computers. When
working through the book, you may have also noticed that the time
taken by a program varies from run to run, even on the same computer.
For example, you might run a program on a test case and find that it
takes three seconds; you might then run it again, on the same test case,
and find that it takes two-and-a-half seconds or three-and-a-half seconds.
The reason for this difference is that your operating system is managing
your computing resources, shunting them around to different tasks as
needed. The decisions that your operating system makes influence the
runtime of your program.

Execution time depends on the test case Timing our program on a
test case tells us only how long our program takes on that test case. Sup-
pose that our program takes three seconds to run on a small test case.
That may seem fast, but here’s the truth about small test cases: every
reasonable solution for a problem will quickly be able to solve those. If
I ask you to tell me the number of unique email addresses among 10
email addresses, or the number of triples of cows among 10 cows, you
can quickly do it with the first correct idea that you have. What’s inter-
esting, then, are large test cases. They are the ones where algorithmic in-
genuity pays off. How long will our program take on a large test case or
on a huge test case? We don’t know. We’d have to run our program on
those test cases, too. Even if we did that, there could be specific kinds
of test cases that trigger poorer performance. We may be led to believe
that our program is faster than it is.

The program requires implementation We can’t time something that
we don’t implement. Suppose that we’re thinking about a problem and
come up with an idea for how to solve it. Is it fast? Although we could
implement it to find out, it would be nice to know, in advance, whether
or not the idea is likely to lead to a fast program. You would not im-
plement a program that you knew, at the outset, would be incorrect.
It would similarly be nice to know, at the outset, that a program would
be too slow.

Timing doesn’t explain slowness If we find that our program is too
slow, then our next task is to design a faster one. However, simply tim-
ing a program gives us no insight into why our program is slow. It just
is. Further, if we manage to think up a possible improvement to our pro-
gram, we’d need to implement it to see whether or not it helps.

Execution time is not easily communicated For many of the reasons
listed, it’s difficult to use execution time to talk to other people about
the efficiency of algorithms. Execution time is too specific: it depends
on the computer, operating system, test case, programming language,
and particular implementation that’s used. We’d have to provide all of
this information to others interested in the efficiency of our algorithm.

Not to worry: computer scientists have devised a notation that addresses
these shortcomings of timing. It’s independent of the computer, indepen-

Big O and Program Efficiency 267

dent of test case, and independent of a particular implementation. It signals
why a slow program is slow. It’s easily communicated. It’s called big O, and
it’s coming right up.

Big O
Big O is a notation that computer scientists use to concisely describe the ef-
ficiency of algorithms. The key concept here is the efficiency class, which tells
you how fast an algorithm is or, equivalently, how much work it does. The
faster an algorithm, the less work it does; the slower an algorithm, the more
work it does. Each algorithm belongs to an efficiency class; the efficiency
class tells you how much work that algorithm does relative to the amount
of input that it must process. To understand big O, we need to understand
these efficiency classes. We’re now going to study seven of the most com-
mon ones. We’ll see those that do the least amount of work, the ones you’ll
hope your algorithms fit into. We’ll also see those that do considerably more
work, the ones whose algorithms will probably give you time limit exceeded
errors.

Constant Time
The most desirable algorithms are those that don’t do more work as the
amount of input increases. No matter the problem instance, such an algo-
rithm takes about the same number of steps. These are called constant-time
algorithms.

This is hard to believe, right? An algorithm that does about the same
amount of work, no matter what? Indeed, solving a problem with such an
algorithm is rare. But when you can do it, rejoice: you can’t do any better
than that.

We’ve managed to solve a few problems in this book using constant-time
algorithms. Think back to the Telemarketers problem in Chapter 2, where
we had to determine whether the provided phone number belongs to a tele-
marketer. I’ve reproduced our solution from Listing 2-2 here:

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

if ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('ignore')

else:

print('answer')

Our solution does the same amount of work no matter what the four
digits of the phone number are. The code starts by reading the input. Then

268 Chapter 10

it makes some comparisons with num1, num2, num3, and num4. If the phone num-
ber belongs to a telemarketer, we output something; if it doesn’t belong to a
telemarketer, we output something else. There’s no input that can make our
program do more work than this.

Earlier in Chapter 2, we solved Winning Team. Did we solve that one in
constant time, too? We did! Here’s the solution from Listing 2-1:

apple_three = int(input())

apple_two = int(input())

apple_one = int(input())

banana_three = int(input())

banana_two = int(input())

banana_one = int(input())

apple_total = apple_three * 3 + apple_two * 2 + apple_one

banana_total = banana_three * 3 + banana_two * 2 + banana_one

if apple_total > banana_total:

print('A')

elif banana_total > apple_total:

print('B')

else:

print('T')

We read the input, compute the total points for the Apples, compute
the total points for the Bananas, compare those totals, and output a mes-
sage. It doesn’t matter how many points the Apples or Bananas have—our
program always does the same amount of work.

Hold on—what if the Apples scored zillions and zillions of three-point
shots? Surely, it takes longer for the computer to work with ginormous num-
bers than small numbers like 10 or 50? While that’s true, we don’t have to
worry about that here. The problem description states that each team scores
at most 100 of each type of play. We’re therefore working with small num-
bers, and it’s fair to say that the computer can read or operate on these num-
bers in a constant number of steps. In general, you can think of numbers up
to a few billion as “small.”

In big O notation, we say that a constant-time algorithm is O(1). The 1
doesn’t mean that you’re stuck performing only one step in a constant-time
algorithm. If you perform a fixed number of steps, like 10 or even 10,000,
it’s still constant time. But don’t write O(10) or O(10000)—all constant-time
algorithms are denoted O(1).

Linear Time
Most algorithms are not constant-time algorithms. Instead, they do an
amount of work that depends on the amount of input. For example, they do
more work to process 1,000 values than they do to process 10 values. What

Big O and Program Efficiency 269

distinguishes these algorithms from each other is the relationship between
the amount of input and the amount of work that the algorithm does.

A linear-time algorithm is one with a linear relationship between the
amount of input and the amount of work done. Suppose we run a linear-
time algorithm on an input with 50 values, and then we run it again on an
input with 100 values. The algorithm will do about twice as much work on
the 100 values compared with on the 50 values.

For an example, let’s look at the Three Cups problem from Chapter 3.
We solved that problem in Listing 3-1, and I’ve reproduced our solution
here:

swaps = input()

ball_location = 1

¶ for swap_type in swaps:

if swap_type == 'A' and ball_location == 1:

ball_location = 2

elif swap_type == 'A' and ball_location == 2:

ball_location = 1

elif swap_type == 'B' and ball_location == 2:

ball_location = 3

elif swap_type == 'B' and ball_location == 3:

ball_location = 2

elif swap_type == 'C' and ball_location == 1:

ball_location = 3

elif swap_type == 'C' and ball_location == 3:

ball_location = 1

print(ball_location)

There’s a for loop ¶, and the amount of work that it does depends lin-
early on the amount of input. If there are five swaps to process, then the
loop iterates five times. If there are 10 swaps to process, then the loop it-
erates 10 times. Each iteration of the loop performs a constant number
of comparisons and may change what ball_location refers to. Therefore,
the amount of work that this algorithm does is directly proportional to the
number of swaps.

We typically use n to refer to the amount of input provided to a prob-
lem. Here, n is the number of swaps. If there are 5 swaps that we need to
perform, then n is 5; if there are 10 swaps that we need to perform, then n
is 10.

If there are n swaps, then our program does about n work. That’s be-
cause the for loop performs n iterations, each of which performs a constant
number of steps. We don’t care how many steps it performs on each itera-
tion, as long as it’s a constant number. Whether the algorithm performs a
total of n steps or 10n steps or 10,000n steps, it’s a linear-time algorithm. In
big O notation, we say that this algorithm is O(n).

270 Chapter 10

When using big O notation, we don’t include numbers in front of n. For
example, an algorithm that takes 10n steps is written O(n), not O(10n). This
helps us focus on the fact that the algorithm is linear time and away from
the specifics of the linear relationship.

What if an algorithm takes 2n + 8 steps—what kind of algorithm is this?
This is still linear time! The reason is that the linear term (2n) will come to
dominate the constant term (8) as soon as n is big enough. For example, if
n is 5,000, then 8n is 40,000. The number 8 is so small compared to 40,000
that we may as well ignore it. In big O notation, we ignore everything except
the dominant terms.

Many Python operations take constant time to do their work. For exam-
ple, appending to a list, adding to a dictionary, or indexing a sequence or
dictionary all take constant time.

But some Python operations take linear time to do their work. Be care-
ful to count them as linear time and not constant time. For example, using
the Python input function to read a long string takes linear time, because
Python has to read each character on the line of input. Any operation that
examines each character of a string or value in a list takes linear time as well.

If an algorithm reads n values and processes each value in a constant
number of steps, then it is a linear-time algorithm .

We don’t need to go far to see another linear-time algorithm—our solu-
tion to Occupied Spaces in Chapter 3 is another such example. I’ve repro-
duced our solution from Listing 3-3 here:

n = int(input())

yesterday = input()

today = input()

occupied = 0

for i in range(len(yesterday)):

if yesterday[i] == 'C' and today[i] == 'C':

occupied = occupied + 1

print(occupied)

We let n be the number of parking spaces. The pattern is the same as
for Three Cups: we read the input and then perform a constant number of
steps for each parking space.

CONCEPT CHECK

In Listing 1-1, we solved the Word Count problem. Here’s the code for that
solution.

(continued)

Big O and Program Efficiency 271

line = input()
total_words = line.count(' ') + 1
print(total_words)

What is the big O efficiency of our algorithm?

A. O(1)
B. O(n)

Answer: B. It’s tempting to think that this algorithm is O(1). After all, there’s no
loop anywhere, and it looks like the algorithm is performing just three steps:
read the input, call count to count the number of words, and output the number
of words.

But this algorithm is O(n), where n is the number of characters in the input. It
takes linear time for the input function to read the input, because it has to read
the input character by character. Using the count method also takes linear time,
because it has to process each character of the string to find matches. So this
algorithm performs a linear amount of work to read the input and a linear
amount of work to count the words. That’s a linear amount of work overall.

CONCEPT CHECK

In Listing 1-2, we solved the Cone Volume problem. I’ve reproduced that
solution here:

PI = 3.141592653589793

radius = int(input())
height = int(input())

volume = (PI * radius ** 2 * height) / 3

print(volume)

What is the big O efficiency of our algorithm? (Recall that the maximum value
for the radius and height is 100.)

A. O(1)
B. O(n)

272 Chapter 10

Answer: A. We’re dealing with small numbers here, so reading them from the
input takes constant time. Calculating the volume takes constant time, too: it’s
just a few mathematical operations. All we’re doing here, then, is a few
constant-time steps. That’s a constant amount of work overall.

CONCEPT CHECK

In Listing 3-4, we solved the Data Plan problem. I’ve reproduced that solution
here:

monthly_mb = int(input())
n = int(input())

excess = 0

for i in range(n):
used = int(input())
excess = excess + monthly_mb - used

print(excess + monthly_mb)

What is the big O efficiency of our algorithm?

A. O(1)
B. O(n)

Answer: B. The pattern for this algorithm is similar to that of our solution to
Three Cups or Occupied Spaces, except that it interleaves reading the input
with processing it. We let n be the number of monthly megabyte values. The
program performs a constant number of steps for each of these n input values.
This is therefore an O(n) algorithm.

Quadratic Time
So far we’ve discussed constant-time algorithms (those that don’t do more
work as the amount of input increases) and linear-time algorithms (those
that do more work linearly as the amount of input increases). Like a linear-
time algorithm, a quadratic-time algorithm does more work as the amount
of input increases; for example, it does more work to process 1,000 values
than 10 values. Whereas we can get away with using a linear-time algorithm
on relatively large amounts of input, we’ll be restricted to much smaller
amounts of input on quadratic-time algorithms. We’ll see why next.

Big O and Program Efficiency 273

Typical Form
A typical linear-time algorithm looks like this:

for i in range(n):

<process input i in a constant number of steps>

In contrast, a typical quadratic-time algorithm looks like this:

for i in range(n):

for j in range(n):

<process inputs i and j in a constant number of steps>

For an input of n values, how many values does each algorithm process?
The linear-time algorithm processes n values, one on each iteration of the
for loop. The quadratic-time algorithm, in contrast, processes n values on
each iteration of the outer for loop.

On the first iteration of the outer for loop, n values are processed (one
on each iteration of the inner for loop); on the second iteration of the outer
for loop, nmore values are processed (one on each iteration of the inner for

loop); and so on. As the outer for loop iterates n times, the total number of
values that are processed is n ∗ n, or n2. Two nested loops, each of which
depends on n, gives rise to a quadratic-time algorithm. In big O notation, we
say that a quadratic-time algorithm is O(n2).

Let’s compare the amount of work done by linear-time and quadratic-
time algorithms. Suppose that we’re processing an input of 1,000 values,
meaning that n is 1,000. A linear-time algorithm that takes n steps would
take 1,000 steps. A quadratic-time algorithm that takes n2 steps would take
1,0002 = 1,000,000 steps. A million is way more than a thousand. But who
cares: computers are really, really fast, right? Well, yes, and for an input of
1,000 values, we’re probably okay if we use a quadratic-time algorithm. In
“Efficiency of Our Program” on page 253, I gave a conservative rule claim-
ing that we can perform about five million steps per second. A million steps,
then, should be doable in all but the strictest time limits.

But any optimism for a quadratic-time algorithm is short-lived. Watch
what happens if we crank the number of input values up from 1,000 to
10,000. The linear-time algorithm takes only 10,000 steps. The quadratic-
algorithm takes 10,0002 = 100,000,000 steps. Hmmm . . . if we’re using a
quadratic-time algorithm, now our computer isn’t looking so fast. While the
linear-time algorithm still runs in milliseconds, the quadratic-time algorithm
will take at least a few seconds. Time limit exceeded there, no question.

CONCEPT CHECK

What is the big O efficiency of the following algorithm?

274 Chapter 10

for i in range(10):
for j in range(n):

<process inputs i and j in a constant number of steps>

A. O(1)
B. O(n)

C. O(n2)

Answer: B. There are two nested loops here, so your first instinct might be to
claim that this is a quadratic-time algorithm. Be careful, though, because the
outer for loop iterates only 10 times, independent of the value of n. The total
number of steps in this algorithm, therefore, is 10n. There’s no n2 here; 10n is
linear, just like n. So, this is a linear-time algorithm, not a quadratic-time
algorithm. We’d write its efficiency as O(n).

CONCEPT CHECK

What is the big O efficiency of the following algorithm?

for i in range(n):
<process input i in a constant number of steps>

for j in range(n):
<process input j in a constant number of steps>

A. O(1)
B. O(n)

C. O(n2)

Answer: B. We have two loops here, and they both depend on n. Isn’t this
quadratic time, then?

No! These two loops are sequential, not nested. The first loop takes n steps,
and the second also takes n steps, for a total of 2n steps. This is therefore a
linear-time algorithm.

Alternate Form
When you see two nested loops where each depends on n, it’s a good bet
that you’re looking at a quadratic-time algorithm. But it’s possible for a

Big O and Program Efficiency 275

quadratic-time algorithm to arise even in the absence of such nested loops.
We can find such an example in our first solution to the Email Addresses
problem, Listing 8-2. I’ve reproduced that solution here:

clean function not shown

for dataset in range(10):

n = int(input())

addresses = []

for i in range(n):

address = input()

¶ address = clean(address)

· if not address in addresses:

addresses.append(address)

print(len(addresses))

We’ll let n be the maximum number of email addresses that we see in
our 10 test cases. The outer for loop iterates 10 times; the inner for loop
iterates at most n times. We’re therefore processing at most 10n email ad-
dresses, which is linear in n.

Cleaning an email address ¶ takes a constant number of steps, so we
don’t need to worry about that. But this is still not a linear-time algorithm,
because each iteration of the inner for loop takes more than a constant num-
ber of steps. Specifically, checking whether an email address is already in
our list · takes work proportional to the number of email addresses already
in the list, because Python has to search through the list. That’s a linear-
time operation on its own! So we’re processing 10n email addresses, each
of which requires n work, for a total of 10n2, or quadratic-time, work. This
quadratic-time performance is precisely why we received a time limit ex-
ceeded error with this code, leading us to use a set rather than a list.

Cubic Time
If one loop can lead to linear time, and two nested loops can lead to quad-
ratic time, then what about three nested loops? Three nested loops, each of
which depends on n, leads to a cubic-time algorithm. In big O notation, we
say that a cubic-time algorithm is O(n3).

If you thought quadratic-time algorithms were slow, wait till you see how
slow cubic-time algorithms are. Suppose that n is 1,000. We already know
that a linear-time algorithm will take about 1,000 steps and that a quadratic-
time algorithm will take about 1,0002 = 1,000,000 steps. A cubic-time al-
gorithm will take 1,0003 = 1,000,000,000 steps. A billion steps! But it gets
worse. For example, if n is 10,000, which is still a small amount of input,
then a cubic-time algorithm will take 1,000,000,000,000 (that’s one trillion)
steps. One trillion steps would take many minutes of computing time. No
joke: a cubic-time algorithm is almost never good enough.

276 Chapter 10

It certainly wasn’t good enough when we tried to use a cubic-time al-
gorithm to solve Cow Baseball in Listing 9-5. I’ve reproduced that solution
here:

input_file = open('baseball.in', 'r')

output_file = open('baseball.out', 'w')

n = int(input_file.readline())

positions = []

for i in range(n):

positions.append(int(input_file.readline()))

total = 0

¶ for position1 in positions:

· for position2 in positions:

first_two_diff = position2 - position1

if first_two_diff > 0:

low = position2 + first_two_diff

high = position2 + first_two_diff * 2

¸ for position3 in positions:

if position3 >= low and position3 <= high:

total = total + 1

output_file.write(str(total) + '\n')

input_file.close()

output_file.close()

You’ll see the telltale of cubic time in this code: three nested loops ¶ ·
¸, each of which depends on the amount of input. As you’ll recall, the time
limit for that problem was four seconds, and we could have up to 1,000 cows.
A cubic-time algorithm, processing a billion triples, is way too slow.

Multiple Variables
In Chapter 5, we solved the Baker Bonus problem. I’ve reproduced our solu-
tion from Listing 5-6 here:

for dataset in range(10):

lst = input().split()

franchisees = int(lst[0])

days = int(lst[1])

grid = []

Big O and Program Efficiency 277

¶ for i in range(days):

row = input().split()

for j in range(franchisees):

row[j] = int(row[j])

grid.append(row)

bonuses = 0

· for row in grid:

total = sum(row)

if total % 13 == 0:

bonuses = bonuses + total // 13

¸ for col_index in range(franchisees):

total = 0

for row_index in range(days):

total = total + grid[row_index][col_index]

if total % 13 == 0:

bonuses = bonuses + total // 13

print(bonuses)

What is the big O efficiency of this algorithm? There are some nested
loops in here, so a first guess is that this algorithm is O(n2). But what is n?

In the problems we’ve discussed to this point in the chapter, we used the
single variable n to represent the amount of input: n could be the number
of swaps or the number of parking spaces or the number of email addresses
or the number of cows. But in the Baker Bonus problem, we’re dealing with
two-dimensional input, so we need two variables to represent its amount.
We’ll call the first variable d, the number of days; we’ll call the second f, the
number of franchisees. More formally, because there are multiple test cases
per input, we’ll let d be the maximum number of days and f the maximum
number of franchisees. We need to give the big O efficiency in terms of both
d and f.

Our algorithm consists of three major components: reading the input,
calculating the number of bonuses from the rows, and calculating the num-
ber of bonuses from the columns. Let’s take a look at each of these.

To read the input ¶, we perform d iterations of the outer loop. On each
of these iterations we read a row and call split, which takes about f steps. We
take another f steps to loop through the values and convert them to integers.
In total, then, each of the d iterations performs a number of steps propor-
tional to f. Reading the input therefore takes O(df) time.

Now for the row bonuses ·. The outer loop here loops d times. Each of
these iterations calls sum, which takes f steps because it has to add up f values.
Like reading the input, then, this part of the algorithm is O(df).

278 Chapter 10

Finally, let’s look at the code for the column bonuses ¸. The outer loop
loops f times. Each of those iterations leads to the inner loop iterating d
times. The total here, again, is O(df).

Each component of this algorithm is O(df). Adding three O(df) compo-
nents together yields an O(df) algorithm overall.

CONCEPT CHECK

What is the big O efficiency of the following algorithm?

for i in range(m):
<do something that takes one step>

for j in range(n):
<do something that takes one step>

A. O(1)
B. O(n)

C. O(n2)
D. O(m+n)
E. O(mn)

Answer: D. The first loop depends on m, and the second depends on n. The
loops are sequential, not nested, so their work is added rather than multiplied.

Log Time
In “Efficiency of Our Program” on page 255, we discussed the difference
between linear search and binary search. A linear search finds a value in a
list by searching the list from beginning to end. That’s an O(n) algorithm. It
works whether or not the list is sorted. A binary search, by contrast, works
only on a sorted list. But if you have a sorted list, then binary search is blaz-
ingly fast.

Binary search works by comparing the value we’re searching for to the
value at the middle of the list. If the value at the middle of the list is larger
than the value we’re searching for, we continue searching in the left half of
the list. If the value at the middle of the list is smaller than the value we’re
searching for, we continue searching in the right half of the list. We keep
doing this, ignoring half of the list each time, until we find the value that
we’re looking for.

Suppose we use binary search to find a value in a list of 512 values.
How many steps does it take? Well, after one step, we’ve ignored half the
list, so we’re left with about 512 / 2 = 256 values. (It doesn’t matter whether
our value is larger than half of the values in the list or smaller than half the

Big O and Program Efficiency 279

values in the list; in each case, we ignore one half of the list.) After two steps,
we’re left with 256/ 2 = 128 values. After three steps, we’re left with 128/ 2
= 64 values. Continuing, after four steps we have 32 values, after five steps
we have 16 values, after six steps we have 8 values, after seven steps we have 4
values, after eight steps we have 2 values, and after nine steps we have only 1
value.

Nine steps—that’s it! That’s way better than taking up to 512 steps using
linear search. Binary search does far less work than a linear-time algorithm.
But what kind of algorithm is it? It’s not constant time: while it takes very
few steps, the number of steps does increase a little as the amount of input
increases.

Binary search is an example of a logarithmic-time or log-time algorithm. In
big O notation, we say that a logarithmic-time algorithm is O(logn).

Logarithmic-time refers to the logarithm function in mathematics.
Given a number, this function tells you the number of times you have to di-
vide that number by a base to get to 1 or less. The base we typically use in
computer science is 2, so we’re looking for the number of times you have to
divide a number by 2 to get to 1 or less. For example, it takes 9 divisions by 2
to take 512 down to 1. We write this as log2 512 = 9.

The logarithm function is the inverse of the exponential function,
the latter of which may be more familiar to you. Another way to calculate
log2 512 is to find the power p so that 2p = 512. Since 29 = 512, we confirm
that log2 512 = 9.

It’s shocking how slowly the logarithm function grows. For example,
consider a list of one million values. How many steps would binary search
take to search that? It takes log2 1,000,000 steps, which is only about 20.
Logarithmic-time is much closer to constant-time than it is to linear-time.
It’s a huge win any time you can replace a linear-time algorithm by a
logarithmic-time one.

n log n Time
In Chapter 5, we solved the Village Neighborhood problem. I’ve reproduced
our solution from Listing 5-1 here:

n = int(input())

positions = []

¶ for i in range(n):

positions.append(int(input()))

· positions.sort()

left = (positions[1] - positions[0]) / 2

right = (positions[2] - positions[1]) / 2

min_size = left + right

280 Chapter 10

¸ for i in range(2, n - 1):

left = (positions[i] - positions[i - 1]) / 2

right = (positions[i + 1] - positions[i]) / 2

size = left + right

if size < min_size:

min_size = size

print(min_size)

Looks like a linear-time algorithm, eh? I mean, there’s a linear-time
loop to read the input ¶ and another linear-time loop to find the minimum
size ¸. Is this code O(n), then?

It’s too early to tell! The reason is that we haven’t yet taken into account
that we sort the positions ·. We can’t just ignore that; we need to know
about the efficiency of sorting. As we’ll see, sorting is slower than linear
time. So, since sorting is the slowest step here, whatever the efficiency is of
sorting will be the efficiency overall.

Programmers and computer scientists have devised many sorting algo-
rithms, and these algorithms can roughly be divided into two groups. The
first group consists of algorithms that take O(n2) time. The three most fa-
mous of these sorting algorithms are bubble sort, selection sort, and inser-
tion sort. You can learn more about these sorting algorithms on your own if
you like, but we won’t need to know anything about them to continue here.
All we have to keep in mind is that O(n2) can be quite slow. For example,
to sort a list of 10,000 values, an O(n2) sorting algorithm would take about
10,0002 = 100,000,000 steps. As we know, this would take any computer at
least a few seconds. That’s pretty disappointing: sorting 10,000 values feels
like something computers should be able to do almost instantly.

Enter the second group of sorting algorithms. This group consists of
algorithms that take only O(n logn) time. There are two famous sorting algo-
rithms in this group: quick sort and merge sort. Again, you’re free to look
them up if you like, but we don’t need the details here.

What does O(n logn) mean? Don’t let the notation confuse you. It’s just
the multiplication of n by logn. Let’s try this out on a list of 10,000 values.
Here, we have 10,000 ∗ log 10,000 steps, which is only about 132,877. This is
a very small number of steps, especially compared to the 100,000,000 steps
taken by the O(n2) sorting algorithms.

Now we can ask the question we really care about: what sorting algo-
rithm is Python using when we ask it to sort a list? Answer: an O(n logn)
one! (It’s called Timsort. If you’d like to learn more, start with merge sort,
because Timsort is a souped-up merge sort.) No slow O(n2) sorting here. In
general, sorting is so fast—so close to linear time—that we can use it without
affecting our efficiency too much.

Returning to Village Neighborhood, now we see that its efficiency is
not O(n) but, because of the sort, O(n logn). In practice, an O(n logn) algo-
rithm only does a little more work than an O(n) algorithm and far less than
an O(n2) algorithm. If your goal is to design an O(n) algorithm, designing
one that’s O(n logn) is probably good enough.

Big O and Program Efficiency 281

Handling Function Calls
Starting in Chapter 6, we wrote our own functions to help us design larger
programs. In our big O analysis, we need to be careful to include the work
done when we call these functions.

Let’s revisit the Card Game problem from Chapter 6. We solved it in
Listing 6-1, and part of our solution involved calling our no_high function.
I’ve reproduced that solution here:

NUM_CARDS = 52

¶ def no_high(lst):

"""

lst is a list of strings representing cards.

Return True if there are no high cards in lst, False otherwise.

"""

if 'jack' in lst:

return False

if 'queen' in lst:

return False

if 'king' in lst:

return False

if 'ace' in lst:

return False

return True

deck = []

· for i in range(NUM_CARDS):

deck.append(input())

score_a = 0

score_b = 0

player = 'A'

¸ for i in range(NUM_CARDS):

card = deck[i]

points = 0

remaining = NUM_CARDS - i - 1

if card == 'jack' and remaining >= 1 and no_high(deck[i+1:i+2]):

points = 1

elif card == 'queen' and remaining >= 2 and no_high(deck[i+1:i+3]):

points = 2

elif card == 'king' and remaining >= 3 and no_high(deck[i+1:i+4]):

points = 3

282 Chapter 10

elif card == 'ace' and remaining >= 4 and no_high(deck[i+1:i+5]):

points = 4

if points > 0:

print(f'Player {player} scores {points} point(s).')

if player == 'A':

score_a = score_a + points

player = 'B'

else:

score_b = score_b + points

player = 'A'

print(f'Player A: {score_a} point(s).')

print(f'Player B: {score_b} point(s).')

We’ll use n to represent the number of cards. The no_high function ¶
takes a list and uses in on it, so we might conclude that it is O(n) time. (in
may have to search the whole list to find what it’s looking for, after all.) How-
ever, we only ever call no_high with lists of constant size—maximum four
cards—so we can treat each call of no_high as O(1) time.

Now that we understand the efficiency of no_high, we can determine the
big O efficiency of the complete program. We begin with a loop that takes
O(n) time to read the cards ·. We then enter another loop that iterates n
times ¸. Each iteration takes just a constant number of steps, possibly in-
cluding a call of no_high that takes a constant number of steps. This loop,
then, takes O(n) time. The program therefore consists of two O(n) pieces, so
it is O(n) overall.

Be careful to accurately judge the amount of work performed when a
function is called. As you just saw with no_high, this may involve looking at
both the function itself and the context in which it is called.

CONCEPT CHECK

What is the big O efficiency of the following algorithm?

def f(lst):
for i in range(len(lst)):

lst[i] = lst[i] + 1

Assume that lst refers to a list of numbers
for i in range(len(lst)):

f(lst)

(continued)

Big O and Program Efficiency 283

A. O(1)
B. O(n)

C. O(n2)

Answer: C. The loop in the main program iterates n times. On each iteration,
we call function f, which itself has a loop that iterates n times.

Summary
The algorithms that do the least work are O(1), followed by O(logn), fol-
lowed by O(n), followed by O(n logn). Have you solved a problem using one
of these four? If so, you’re probably done. If not, then depending on the
time limit, you may have more work to do.

We’re now going to look at two problems where a straightforward solu-
tion will not be efficient enough—it won’t run within the time limit. Using
what we just learned about big O, we’ll be able to predict this inefficiency
even without implementing the code! We’ll then work on a faster solution
and implement it to solve the problem within the time limit.

Problem #24: Longest Scarf
In this problem, we’ll determine the longest desired scarf that we can pro-
duce by cutting an initial scarf. After reading the following description,
pause: how would you solve it? Can you come up with multiple algorithms
whose efficiency you’d like to investigate?

This is DMOJ problem dmopc20c2p2.

The Challenge
You have a scarf whose length is n feet, and each foot has a specific color.

You also have m relatives. Each relative indicates what their desired scarf
looks like by specifying the color of its first foot and last foot.

Your goal is to cut your original scarf in such a way as to produce the
longest desired scarf for one of your relatives.

Input
The input consists of the following lines:

• A line containing the integer scarf length n and integer number of
relatives m, separated by a space. n and m are each between 1 and
100,000.

284 Chapter 10

• A line containing n integers separated by spaces. Each integer spec-
ifies the color of one foot of scarf in order from the first foot to the
last foot. Each integer is between 1 and 1,000,000.

• m lines, one per relative, containing two integers separated by a
space. These numbers describe the relative’s desired scarf: the first
integer is the desired color of the first foot, and the second integer
is the desired color of the last foot.

Output
Output the length of the longest desired scarf that can be produced by cut-
ting your original scarf.

The time limit for solving the test cases is 0.4 seconds.

Exploring a Test Case
Let’s make sure we know exactly what is being asked by working through a
small test case. Here it is:

6 3

18 4 4 2 1 2

1 2

4 2

18 4

We have a scarf that’s 6 feet long and three relatives. The color of each
foot of the scarf is 18, 4, 4, 2, 1, and 2. What’s the longest desired scarf we
can make?

The first relative wants a scarf whose first foot is color 1 and whose last
foot is color 2. The best we can do is give this relative a 2-foot scarf: the 2
feet (colors 1 and 2) at the end of the scarf.

The second relative wants a scarf whose first foot is color 4 and whose
last foot is color 2. We can give them a 5-foot scarf: 4, 4, 2, 1, 2.

The third relative wants a scarf whose first foot is color 18 and whose
last foot is color 4. We can give them a 3-foot scarf: 18, 4, 4.

The maximum length of a desired scarf that we can make is 5, so that’s
the answer for this test case.

Algorithm 1
The way we just processed that test case might immediately suggest to you an
algorithm that we can use to solve this problem. Namely, we should be able
to go through the relatives and figure out the maximum length of a desired
scarf for each one. For example, the maximum length for the first relative
might be 2, so we remember that. The maximum length for the second rela-
tive might be 5. That’s longer than 2, so we remember the 5. The maximum
length for the third relative might be 3. This isn’t greater than 5—no change

Big O and Program Efficiency 285

here. If this reminds you of a complete-search algorithm (Chapter 9): good,
because it is one!

There are m relatives. If we knew how long it would take us to process
each relative, then we’d be able to work out the big O efficiency we’d be
dealing with.

Here’s an idea: for each relative, let’s find the leftmost index of the
color of the first foot and the rightmost index of the color of the last foot.
Once we had these indices, then no matter how long the scarf, we could use
these indices to quickly determine the length of the longest desired scarf for
this relative. For example, if the leftmost index of the color of the first foot
is 100 and the rightmost index of the color of the last foot is 110, then their
longest desired scarf is 110 – 100 + 1 = 11.

Depending on how we try to find these indices, we might be lucky and
find them quickly. For example, we might scan from the left for the left-
most index of the color of the first foot and scan from the right for the
rightmost index of the color of the last foot. Then, if the color of the first
foot is near the beginning of the scarf and the color of the last foot is near
the end, we’ll discover these indices very quickly.

We might not be lucky, though. Finding one or both of the indices could
take up to n steps. For example, suppose that a relative wants a scarf whose
first foot is a color that shows up right at the end of the scarf or that doesn’t
show up in the scarf at all. We will have to check the entire n feet of the
scarf, one foot at a time, to figure this out.

So, about n steps per relative. That’s linear time, and we know that lin-
ear time is fast. Are we good? No, because in this case the linear-time work
is far more menacing than it may appear. Remember that we’d be doing this
O(n) work for each of the m relatives. We therefore have an O(mn) algorithm
overall. m and n can be as big as 100,000. So, mn can be as big as 100,000
∗ 100,000 = 10,000,000,000. That’s 10 billion! Given that we can do about
five million operations per second and that our time limit is 0.4 seconds . . .
yeah, we’re not even close. There’s no need to implement this algorithm.
We’re certain that it will time out on large test cases. We may as well move
on and spend our time implementing something else. (If you’re nevertheless
curious about the code, please see the online resources associated with the
book. Just remember that without even looking at the code, we already fig-
ured out that it would be too slow. The power of big O analysis is in helping
us understand whether an algorithm is doomed even before we implement
it.)

Algorithm 2
We’re going to have to somehow process each of the relatives—there’s no
getting around that. What we’ll focus on optimizing, then, is the amount of
work that we do per relative. Unfortunately, processing a relative in the way
we did in the previous section may cause us to check over a huge portion
of the scarf. It’s this searching through the scarf, once per relative, that’s
crushing us. We need to get that searching under control.

286 Chapter 10

Suppose that we could look through the scarf only once, up-front, be-
fore we knew anything about what the relatives wanted. We could remember
two things about each color in the scarf: its leftmost index and its rightmost
index. Then, no matter what each relative wants, we could figure out the
maximum length of their desired scarf using the left and right indices that
we had already stored.

For example, assume we have this scarf:

18 4 4 2 1 2

We would store the following information for it:

Color Leftmost index Rightmost index

1 4 4
2 3 5
4 1 2
18 0 0

Suppose that a relative wants a scarf whose first foot is color 1 and
whose last foot is color 2. We look up the leftmost index for color 1, which
is 4, and the rightmost index for color 2, which is 5. We then calculate
5 – 4 + 1 = 2, and that’s the length of the longest desired scarf for this
relative.

Amazing: no matter how long the scarf, we can just do a quick calcu-
lation for each relative. No more running through the scarf over and over.
The only tricky thing here is how to calculate all the leftmost and rightmost
indices for the colors and to do so by looking through the scarf only once.

The code is presented in Listing 10-1. Try to figure out how the leftmost

_index and rightmost_index dictionaries are constructed before you continue
reading my explanation that follows.

lst = input().split()

n = int(lst[0])

m = int(lst[1])

scarf = input().split()

for i in range(n):

scarf[i] = int(scarf[i])

¶ leftmost_index = {}

· rightmost_index = {}

¸ for i in range(n):

color = scarf[i]

¹ if not color in leftmost_index:

leftmost_index[color] = i

rightmost_index[color] = i

º else:

Big O and Program Efficiency 287

rightmost_index[color] = i

max_length = 0

for i in range(m):

relative = input().split()

first = int(relative[0])

last = int(relative[1])

if first in leftmost_index and last in leftmost_index:

» length = rightmost_index[last] - leftmost_index[first] + 1

if length > max_length:

max_length = length

print(max_length)

Listing 10-1: Solving Longest Scarf, algorithm 2

This solution uses two dictionaries: one to keep track of the leftmost
index for each color ¶ and one to keep track of the rightmost index for each
color ·.

As promised, we look at each foot of the scarf just once ¸. Here’s how
we keep the leftmost_index and rightmost_index dictionaries up-to-date:

• If the color of the current foot has never been seen before ¹, then
the current index serves as both the leftmost and rightmost index
for this color.

• Otherwise, the color of the current foot has been seen before º. We
don’t want to update the leftmost index for this color, because the
current index is to the right of the old one. We do want to update
the rightmost index, though, because we have found an index to the
right of the old one.

Now for the payoff: for each relative, we can simply look up the leftmost
and rightmost indices from these dictionaries ». The maximum length of
the desired scarf is the rightmost index of the color of the last foot, minus
the leftmost index of the color of the first foot, plus one.

As I’ll argue now, this algorithm is far better than algorithm 1. Read-
ing the scarf takes O(n) time, as does processing the scarf ’s feet. That’s O(n)
time so far. We then take a constant number of steps to process each relative
(not n steps like before!), so that’s O(m) time. In total, we have an O(m + n) al-
gorithm, rather than an O(mn) algorithm. Given that m and n can be at most
100,000, we’re doing only about 100,000 + 100,000 = 200,000 steps, easily
done within the time limit. You can submit our code to the judge to prove it!

Problem #25: Ribbon Painting
Here’s another problem where the first algorithm that we might come up
with is too slow. We won’t waste much time on that algorithm, though, be-
cause our big O analysis will tell us all we need to know before we consider

288 Chapter 10

implementing the code. We’ll then spend our time designing a faster algo-
rithm.

This is DMOJ problem dmopc17c4p1.

The Challenge
You have a purple ribbon whose length is n units. The first unit goes from
position 0 up to but not including position 1, the second unit goes from po-
sition 1 up to but not including position 2, and so on. You then carry out q
paint strokes, each of which colors a segment of the ribbon blue.

Your goal is to determine the number of units of the ribbon that are still
purple and the number of units of the ribbon that are now blue.

Input
The input consists of the following lines:

• A line containing the integer ribbon length n and integer number of
paint strokes q, separated by a space. n and q are each between 1 and
100,000.

• q lines, one per paint stroke, containing two integers separated by
a space. The first integer gives the starting position of the paint
stroke; the second gives the ending position of the paint stroke.
The starting position is guaranteed to be less than the ending po-
sition; each integer is between 0 and n. The paint stroke goes from
the starting position up to but not including the ending position.
As a quick example here, if a paint stroke has a starting position of
5 and an ending position of 12, then the stroke paints the ribbon
from position 5 up to but not including position 12.

Output
Output the number of units of the ribbon that are still purple, a space, and
the number of units of the ribbon that are now blue.

The time limit for solving the test cases is 2 seconds.

Exploring a Test Case
Let’s look at a small test case. This test case will not only ensure that we’ve
interpreted the problem correctly but also highlight the perils of a naive al-
gorithm. Here it is:

20 4

18 19

4 16

4 14

5 12

Big O and Program Efficiency 289

Our ribbon’s length is 20, and there are four paint strokes. How much
of the ribbon do our paint strokes turn blue?

The first paint stroke paints one unit blue, the one that starts at posi-
tion 18.

The second paint stroke paints the units of ribbon starting at positions
4, 5, 6, 7, and so on, all the way up to position 15. That’s 12 units painted
blue by this stroke, and 13 blue units in total.

The third paint stroke paints 10 units blue. But all of those units are al-
ready blue from the second paint stroke! It would be a colossal waste of time
indeed if we spent time “painting” anything with this paint stroke. Whatever
algorithm we come up with better not fall into this time-wasting trap.

The fourth paint stroke paints 7 units blue. But again: all of these units
are already blue!

Now we’re done painting, and we have 13 blue units. There are 20 – 13 =
7 remaining purple units, so the correct output for this test case is:

7 13

Solving the Problem
The maximum length of the ribbon is 100,000, and the maximum number
of paint strokes is 100,000. Recall algorithm 1 from when we solved Longest
Scarf, where we learned that an O(mn) algorithm was too slow with these
bounds. Similarly, here, an O(nq) algorithm would be inadequate, as it would
not finish within the time limit on large test cases.

This means that we cannot afford to process each unit that is painted by
each paint stroke. It would be nice if we could more easily focus on only the
new units that are painted blue by a paint stroke. Then we could go through
each paint stroke and add up the number of blue units that it contributes.

Fair enough, but how can we determine the contribution of each paint
stroke? That’s tricky, because bits and pieces of the next paint stroke may
have already been painted blue by previous paint strokes.

This situation is made much simpler, however, if we sort the paint strokes
first. Remember from “n log n Time” earlier in this chapter that sorting is
extremely fast, taking only O(n logn) time. There’s no efficiency concern in
using sorting, so let’s understand why sorting helps us here.

Sorting the paint strokes from the test case in the prior section gives us
the following list of paint strokes:

4 14

4 16

5 12

18 19

Now that the paint strokes are sorted, we can efficiently process them.
As we do so, we’ll store the rightmost position of any paint stroke that we’ve
processed so far. We’ll start this rightmost position off at 0 to indicate that
we haven’t painted anything.

290 Chapter 10

Our first paint stroke paints 14 – 4 = 10 units blue. Now our stored
rightmost position is 14.

Our second paint stroke paints 12 units blue, yes, but how many of those
12 does it turn from purple to blue? After all, it overlaps the previous paint
stroke, so some of these units were blue already. We can calculate the num-
ber of new blue units by subtracting 14, our stored rightmost position, from
16, the ending position of the current paint stroke. This is how we ignore
the units already painted blue by previous paint strokes. So, there are 16 –
14 = 2 new blue units and 12 blue units in total. Crucially, we just figured
this out without processing the individual units of this paint stroke. Before
we continue, don’t forget to update our stored rightmost position to 16.

Our third paint stroke is like the second in that it starts prior to our
stored rightmost position. Unlike the second paint stroke, however, its end-
ing position does not extend past our stored rightmost position at all. So,
this paint stroke adds no new blue units, and our stored rightmost position
is still 16. Again, we figured this out without grinding through each of this
paint stroke’s positions!

Be careful with the fourth paint stroke. It does not add 19 – 16 = 3 new
blue units. We have to treat this paint stroke differently because its start-
ing position is to the right of our stored rightmost position. In this case, we
don’t use the stored rightmost position at all, calculating instead 19 – 18 = 1
new blue unit, and 13 blue units in total. We also update our stored right-
most position to 19.

The only question is how we sort the paint strokes in our Python code.
We need to sort them by their starting position; if multiple paint strokes
have the same starting position, then we want to sort those by their ending
position.

That is, we want to take a list like this:

[[18, 19], [4, 16], [4, 14], [5, 12]]

and produce this:

[[4, 14], [4, 16], [5, 12], [18, 19]]

Happily, as we discovered in “Task 4: Sort Boxes” in Chapter 6, the list
sort method works in exactly this way. When given a list of lists, sort sorts
using the first values in each list; when those values are tied, the lists are fur-
ther sorted using the second values. Check it out:

>>> strokes = [[18, 19], [4, 16], [4, 14], [5, 12]]

>>> strokes.sort()

>>> strokes

[[4, 14], [4, 16], [5, 12], [18, 19]]

Algorithm: check. Sorting: check. We’re in great shape! Just one more
thing we’d like to know before we see the code: what will be its big O effi-
ciency? We need to read the q queries; that takes O(q) time. Then we need
to sort the queries; that takes O(q log q) time. Finally, we need to process the

Big O and Program Efficiency 291

queries; that takes O(q) time. The slowest of these is the O(q log q) time for
the sorting, so that’s our overall big O efficiency.

Now we have everything we need for a speedy solution. Check it out in
Listing 10-2.

lst = input().split()

n = int(lst[0])

q = int(lst[1])

strokes = []

for i in range(q):

stroke = input().split()

¶ strokes.append([int(stroke[0]), int(stroke[1])])

· strokes.sort()

rightmost_position = 0

blue = 0

for stroke in strokes:

stroke_start = stroke[0]

stroke_end = stroke[1]

¸ if stroke_start <= rightmost_position:

if stroke_end > rightmost_position:

¹ blue = blue + stroke_end - rightmost_position

rightmost_position = stroke_end

º else:

» blue = blue + stroke_end - stroke_start

rightmost_position = stroke_end

print(n - blue, blue)

Listing 10-2: Solving Ribbon Painting

We read each paint stroke, appending it as a list of two values to our
strokes list ¶. We then sort all of the paint strokes ·.

We next need to process each paint stroke from left to right. There are
two key variables that drive this processing: variable rightmost_position stores
the rightmost position that we have painted so far, and variable blue stores
the number of units that we have painted blue so far.

To process a paint stroke, we need to know whether it starts before or
after our stored rightmost position. Let’s think about each of these cases in
turn.

First: what do we do when the paint stroke starts before our stored right-
most position ¸? This paint stroke might give us some new blue units, but
only if it extends past our stored rightmost position. If it does, then the new

292 Chapter 10

blue units are those between the stored rightmost position and the ending
position of the paint stroke ¹.

Second: what do we do when the paint stroke starts after our stored
rightmost position º? This time, the paint stroke is completely separate
from the painting we have done so far; this entire paint stroke is a new blue
segment. As such, the new blue units are those between the ending position
and starting position of this paint stroke ».

Notice in each case that we also correctly update our stored rightmost
position so that we’re ready to process any further paint strokes.

That’s a wrap! Guided by our big O analysis, we were able to dismiss
an algorithm whose implementation we knew would be too slow. We then
thought about a second algorithm—and before implementing it, we knew it
would be plenty fast. It’s time to submit our code to the judge and bask in
our success.

Summary
In this chapter, we learned about big O analysis. Big O is an important ef-
ficiency building block for further study of algorithm design. You’ll see it
everywhere: in tutorials, in books, probably in your next job interview!

We also solved two problems where we needed to design very efficient
algorithms. Not only were we able to do that, but we were also able to use
big O to obtain a satisfying understanding of exactly why our code was so
efficient.

Chapter Exercises
Here are some exercises for you to try. For each, use big O to determine
whether your proposed algorithm is efficient enough to solve the problem
within the time limit. You might also like to implement algorithms that you
know are going to be too slow. That would give you extra practice solidifying
your Python knowledge and confirm that your big O analysis was spot-on!

Some of these problems are quite challenging. There are two reasons.
First, you might agree based on your work throughout the book that coming
up with any algorithm can be tough. Coming up with a faster algorithm can
be even tougher. Second, this is the end of our time together, but only the
beginning of the study of algorithms. I hope that these problems both help
you appreciate what you’ve accomplished and offer evidence that there’s a
lot more beyond this book if you want it.

1. DMOJ problem dmopc17c1p1, Fujo Neko (The problem talks about
using fast input/output. Don’t ignore that!)

2. DMOJ problem coci10c1p2, Profesor

3. DMOJ problem coci19c4p1, Pod starim krovovima (Hint: to maximize
the number of empty glasses, you want to put as much liquid as pos-
sible in the biggest glasses.)

4. DMOJ problem dmopc20c1p2, Victor’s Moral Dilemma

Big O and Program Efficiency 293

5. DMOJ problem avocadotrees, Avocado Trees!

6. DMOJ problem coci11c5p2, Eko (Hint: the maximum number of
trees is far fewer than the maximum number of heights. Consider
each tree from tallest to shortest.)

7. DMOJ problem wac6p2, Cheap Christmas Lights (Hint: don’t try flip-
ping a switch each second—how would you know which one to flip?
Instead, store them up, and use them all as soon as you can shut off
all the lights that are on.)

8. DMOJ problem ioi98p3, Party Lamps (Hint: all that matters for each
button is whether it is pressed an even or odd number of times.)

Notes
Longest Scarf is originally from the DMOPC ’14 March Contest. Ribbon
Painting is originally from the DMOPC ’20 November Contest.

294 Chapter 10

AFTERWORD

Before you jump into whatever is next, I’d
like to take a minute to congratulate you

on what you’ve accomplished to this point.
It’s possible that you hadn’t done any program-

ming before picking up this book. Or maybe you had
done a little programming and wanted to improve
your problem-solving ability. Regardless, if you’ve
made it through the book and spent the necessary
time grinding through the exercises, you now know
how to solve problems using a computer. You learned
how to understand a problem description, design a
solution, and write that solution in code. You learned
about if statements, loops, lists, functions, files, sets,
dictionaries, complete-search algorithms, and big O
analysis. These are the core tools of programming,
and the tools that you’ll turn to again and again. You
can also now call yourself a Python programmer!

Perhaps your next step is to learn more about Python. If that’s the case,
see the notes at the end of Chapter 8.

Perhaps your next step is to learn another programming language. One
of my personal favorites is C. Compared to Python, it brings you much
closer to what’s actually going on inside your computer when programs are
running. If you’d like to learn C, there’s no better book than C Programming:
A Modern Approach, 2nd edition, by K. N. King (W. W. Norton & Company,
2008). I think you’re well positioned to read that book at this point. You
might also consider learning a language such as C++, Java, Go, or Rust, de-
pending on the types of programs you want to write (or simply because of
what you’ve heard about these languages).

Perhaps your next step is to learn more about designing algorithms. If
that’s the case, see the notes at the end of Chapter 9.

Perhaps your next step is to take a break from this. To do something
else. To solve other kinds of problems that may or may not have anything to
do with computing.

Happy problem solving!

296 Afterword

PROBLEM CREDITS

I’m grateful for the time and expertise of-
fered by everyone who helps people learn

through competitive programming. For each
problem in this book, I have sought to identify

its author and where the problem came from. If you
have additional information or credits for any of the
following problems, please let me know. Updates will
be posted on the book’s website.

Here are the abbreviations that are used in the following table:

CCC: Canadian Computing Competition

CCO: Canadian Computing Olympiad

COCI: Croatian Open Competition in Informatics

DMOPC: DMOJ Monthly Open Programming Competition

ECOO: Educational Computing Organization of Ontario Program-
ming Contest

Ural: Ural School Programming Contest

USACO: USA Computing Olympiad

Chapter Section Original title Competition/author

1 Word Count Not a Wall of Text 2015 DMOPC/
FatalEagle

1 Cone Volume Core Drill 2014 DMOPC/
FatalEagle

2 Winning Team Winning Score 2019 CCC
2 Telemarketers Telemarketer or Not? 2018 CCC
3 Three Cups Trik 2006/2007 COCI
3 Occupied Spaces Occupy Parking 2018 CCC
3 Data Plan Tarifa 2016/2017 COCI
4 Slot Machines Slot Machines 2000 CCC
4 Song Playlist Do the Shuffle 2008 CCC
4 Secret Sentence Kemija 2008/2009 COCI
5 Village Neighborhood Voronoi Villages 2018 CCC
5 School Trip Munch ’n’ Brunch 2017 ECOO/

Andrew Seidel
Reyno Tilikaynen

5 Baker Bonus Baker Brie 2017 ECOO/
Andrew Seidel
Reyno Tilikaynen

6 Card Game Card Game 1999 CCC
6 Action Figures Cleaning the Room 2019 Ural/

Ivan Smirnov
7 Essay Formatting Word Processor 2020 USACO/

Nathan Pinsker
7 Farm Seeding The Great 2019 USACO/

Revegetation Dhruv Rohatgi
Brian Dean

8 Email Addresses Email 2019 ECOO/
Andrew Seidel
Reyno Tilikaynen
Tongbo Sui

8 Common Words Common Words 1999 CCO
8 Cities and States Cities and States 2016 USACO/

Brian Dean
9 Lifeguards Lifeguards 2018 USACO/

Brian Dean
9 Ski Hills Ski Course Design 2014 USACO/

Brian Dean
9 Cow Baseball Cow Baseball 2013 USACO/

Brian Dean
10 Longest Scarf Lousy Christmas 2020 DMOPC/

Presents Roger Fu
10 Ribbon Painting Ribbon Colouring 2017 DMOPC/

Fun Jiayi Zhang

CCC and CCO problems are owned by the Centre for Education in
Mathematics and Computing (CEMC) at the University of Waterloo.

298 Appendix: Problem Credits

INDEX

Symbols
!= (inequality operator), 29
' (single quotes), 6
" (double quotes), 6
""" (triple-quoted strings), 150
() (parentheses), 11
* (asterisk operator), 7, 9, 104
** (exponentiation operator), 20
+ (plus sign operator), 7, 9, 104
- (minus sign operator), 9
. (dot operator), 8
/ (floating-point division operator), 10
// (integer division operator), 10
< (less-than operator), 28
<= (less-than-or-equal-to operator), 28
== (equality operator), 29
> (greater-than operator), 28
>= (greater-than-or-equal-to operator),

28
[] (square brackets), 88, 103, 109, 220
% (mod operator), 10, 82–84
\n sequence, 175
{} (curly brackets), 85, 210, 211, 218

A
Action Figures problem, 153

boxes, representation, 154
challenge, 153
input, 154
output, 154
top-down design, 154

check boxes, 158
doing, 155
new boxes, 160
organize boxes, 163
read input, 157
sort boxes, 162
top level, 155

add method, 212, 215
Algorithmic Thinking (Zingaro), 264
algorithms

brute-force, 237

complete-search, 237, 238
constant-time, 268, 269
cubic-time, 277
defined, 237
linear-time, 270, 271, 274
log time, 279
n log n time, 280
quadratic-time, 274, 275

aliases, 107
append method, 111, 115, 139
arguments, 8
assignment statement, 11, 111
Automate the Boring Stuff with Python,

2nd edition (Sweigart), 201

B
Baker Bonus problem, 128

challenge, 128
input, 128
output, 129
problem solving, 132
table, 129

nested lists, 130
big O, 268–284, 295

constant time, 268
cubic time, 276
function call, 282
linear time, 269
log time, 279
multiple variables, 277
n log n time, 280
quadratic time, 273

alternate form, 275
typical form, 274

binary search, 256, 279, 280
bisect module, 258–260
bisect_left, 258, 259, 261, 262
bisect_right, 258, 259, 261, 262
block, 31
Boolean expression, if statement, 31
Boolean expression, while loop, 73
Boolean operators, 37, 38, 78

and, 39
not, 40
or, 38

Boolean type, 27, 28
Boolean values, 28
break, 96
brute-force algorithms. See

complete-search algorithms
bug, 55

C
C Programming: A Modern Approach,

2nd edition (King), 296
calling a method, 8
Card Game problem, 137, 169

challenge, 138
defining and calling functions, 140

functions with arguments, 141
functions without arguments, 141
keyword arguments, 143
local variables, 144
mutable parameters, 145
return values, 147

function documentation, 149
high card, 138
input, 138
output, 138
problem solving, 150
rules, 138
types of cards, 138

cd command, 4
center method, 109
char, 50
choice function, 258
Cities and States problem, 231

challenge, 231
input, 231
output, 231
problem solving, 234

cleaning an email address, 205
closing files, 179
code duplication, avoiding, 116, 137

huge size, 116
list of sizes, building, 117

comment lines, 43
comments, 42, 43
Common Words problem, 215

challenge, 215
dictionaries, 218

indexing dictionaries, 220
input, 216
inverting dictionaries, 225
looping through dictionaries, 222
output, 216
problem solving, 227

code, 227
kth most common words, 229
main program, 230
suffix, adding, 229

complete-search algorithms, 237–239,
245

Cow Baseball problem, 249
Lifeguards problem, 238
Ski Hills problem, 244

Computers and the World of the Future
(Greenberger), 201

conditional execution, 27
Cone Volume problem, 1, 18

challenge, 19
input, 19
math in Python, 19

exponents, 19
pi, 19

output, 19
problem solving, 22
strings and integers, converting, 20

constant-time algorithms, 268, 269
continue, 96, 98
count method, 8, 9, 109
Cow Baseball problem, 249

bisect module, 258
challenge, 249
input, 249
nested loops, 250

code, 250
program efficiency, 252

output, 250
problem solving, 261
Python modules, 256
sorting first, 253

code, 253
program efficiency, 255

cubic-time algorithm, 277
curly brackets, 85, 210, 211, 218

D
Data Plan problem, 63, 102

challenge, 63

300 Index

input, 63
loops, 64
output, 64
problem solving, 64

debugging, 55
decision making. See also if statements

Telemarketers problem, 37
Winning Team problem, 25

def keyword, 141
defining and calling functions, 140
definite loops, 47, 51. See also for loops

Data Plan problem, 63
Occupied Spaces problem, 56
Three Cups problem, 47

dict, 219
dictionaries, 203, 218–220

get method, 221
indexing, 220
inverting, 225
items method, 224
keys, 218
keys method, 223
looping through, 222
values, 218
values method, 223

dir function, 108, 109
division operators, 10
DMOJ judge, xxvi, 18
docstring, 149, 150, 161, 164
documentation string, 149
dot operator (.), 8, 11
double quotes, 6
double-counting, 233, 235

E
Effective Python, 2nd edition (Slatkin),

236
efficiency class, 268
elements, 103
elif, 33, 49
else, 33
Email Addresses problem, 204

challenge, 204
cleaning steps, 205
input, 204
list, efficiency of searching, 208
list, using a, 205

cleaning email address, 205
main program, 207

output, 205
problem solving, 214
sets, 210

efficiency of searching, 213
methods, 212

escape character, 175
Essay Formatting problem, 172

challenge, 172
input, 172
output, 172
problem solving, 179

code, 180
working with files, 172

closing files, 179
opening files, 173
reading from files, 174
writing to files, 177

execution time, 267
exponential function, 280
exponentiation operator (**), 20
exponents, 19
expression, 9
extend method, 112

F
f-strings, 84–86, 139
Farm Seeding problem, 182

challenge, 182
input, 183
output, 183
top-down design, 187

cow identification, 190
grass type elimination, 191
read input, 188
smallest-numbered grass type,

193
top level, 187
write output, 195

files, 172
close method, 179
closing, 179
open function, 173
opening, 173
reading from, 174
readline method, 174, 175
write method, 177–179
writing to, 177

find method, 206
float function, 121

Index 301

floating-point numbers, 9–14, 20
for loops, 49–52, 56, 57, 69, 72, 87,

176, 226, 270
block, 51
if statement inside, 51
iteration, 65
limitations, 72, 92
range, 72
variables, 49

for statement, 49
functions, 15, 137, 140

Action Figures problem, 153
Card Game problem, 137
choice, 258
define and create, 141
dir, 108, 109
documentation, 149–150
exponential, 280
float, 121
help, 109
input, 15, 140, 171, 174
int, 21
invert_dictionary, 226
keyword arguments, 143
len, 50, 211, 219
list, 61
local variables, 144
logarithm, 280
max, 117
min, 117
mutable parameters, 145
nonmodule, 258
open, 173
parameter, 142
print, 16, 31, 32, 44, 51, 85, 140, 171
randint, 257, 258
range, 59
return values, 147
search, 213, 214
str, 22
sum, 126, 130
type, 27
with arguments, 141
without arguments, 141

G
get method, 221
Gmail address, 204. See also Email

Addresses problem

grid variables, 133

H
help function, 109
high card, 138, 139

I
if statements, 25, 27, 30, 31, 49, 78,

141
block of, 31, 32
for loops, inside, 51
if by itself, 31
if with elif, 32
if with else, 33
isupper in, 52
logic, 43, 49

in operator, 96, 208, 213, 215, 260
indefinite loops, 51. See also while

loops
Secret Sentence problem, 91
Slot Machines problem, 69
Song Playlist problem, 86

index error, 89
index method, 126, 260
indexing, 57–59, 89, 93, 105, 107

dictionaries, 220
range for loops, 61

infinite loops, 74
input function, 15, 140, 171, 174
input redirection, 44
input-process-output model, 2
insert method, 112
int function, 21
integer interpretation, 183
integers, 9–14
interactive programs, 2
intersection method, 213
invert_dictionary function, 226
isupper method, 52, 109
items method, 224
iteration of loops, 50

J
join method, 120, 121
judge, 18. See also programming judges

K

302 Index

keys, 218
keys method, 223
keyword, 31
keyword arguments, 143, 144

L
len function, 50, 211, 219
Lifeguards problem, 238

challenge, 238
input, 238
output, 239
problem solving, 240

lifeguard, firing one, 240
main program, 241
program efficiency, 242

linear-time algorithms, 270, 271, 274
linear-time loop, 281
list function, 61
lists, 101

* operator, 104
+ operator, 104
append method, 111, 115, 139
Baker Bonus problem, 128
extend method, 112
index method, 126, 260
indexing, 105
insert method, 112
methods, 110
mutability, 106
parallel, 124
pop method, 112
positions, 115
remove method, 113
School Trip problem, 118
slicing, 105
sort method, 111, 112, 162, 291
sorting, 110
square brackets to delimit, 103
summing, 126
values, 103
Village Neighborhood problem, 101

local variables, 144
logarithm function, 280
logarithmic-time algorithm, 280
logic error, 55
Longest Scarf problem, 284

algorithm 1, 285
algorithm 2, 286
challenge, 284

input, 284
output, 285

loop variables, 49, 62
looping through keys, 223
loops. See definite loops; indefinite

loops
ls command, 4

M
mathematical operators, 9. See also

operators
max function, 117
methods, 8, 108, 110, 212
min function, 117
mod operator (%), 10, 82–84
mutability, 106, 107

N
NameError, 87
negative indices, 58
nested lists, 130
nesting, 51

levels, 81
loops, 77

nondecreasing, 159
nonmodule function, 258

O
object-oriented programming (OOP),

169
Occupied Spaces problem, 56

challenge, 56
indexing, 57
input, 56
loops, 56

range for, 59
range for, indices through, 61

output, 56
problem solving, 62

opening files, 173
operators

!=, 29
*, 7, 9, 104
**, 20
+, 7, 9, 104
-, 9
., 8
/, 10

Index 303

//, 10
<, 28
<=, 28
==, 29
>, 28
>=, 28
%, 10, 82–84
Boolean, 37, 38, 78
in, 96, 104, 208, 213, 215, 260
linear time, 271
relational, 78

P
parallel lists, 124
parentheses, 11
pi (π), 19
pop method, 112
print

calls, 50, 132, 153, 182
function, 16, 31, 32, 44, 51, 85, 140,

171
problem instance, 2
problem solving, xxii

Action Figures problem, 165
Baker Bonus problem, 132
Card Game problem, 150
Cities and States problem, 234
Common Words problem, 227
Cone Volume problem, 22
Cow Baseball problem, 261
Data Plan problems, 64
Email Addresses problem, 214
Essay Formatting problem, 179
Farm Seeding problem, 196
Lifeguards problem, 240
Longest Scarf problem, 286
Occupied Spaces problem, 62
Ribbon Painting problem, 290
School Trip problem, 127
Secret Sentence problem, 95
Ski Hills problem, 246
Slot Machines problem, 79
Song Playlist problem, 90
Telemarketers problem, 41
Three Cups problem, 54
Village Neighborhood problem, 114
Winning Team problem, 35
Word Count problem, 16

problem with timing, 266

execution time, 267
computer, depends on, 266
test case, depends on, 267

program implementation, 267
slowness, 267

programming
defined, 1
folder, 3, 4

programming judges, xxiv
DMOJ judge, xxvi
Timus judge, xxvi
USACO judge, xxvi

programming language, xxii
Python

features, 3
installation, xxiii

Linux, xxiii
macOS, xxiii
Windows, xxiii

learning, xxii
teaching language, xxiii

Python 2, xxiii
Python 3.0, xxiii
Python 3.6, 86
Python Algorithms, 2nd edition

(Hetland), 264
Python Crash Course, 2nd edition

(Matthes), 169, 236
Python modules, 256–258
Python shell, 2–5, 17, 209, 214

defined, 3
launch, 3
Linux, 4
macOS, 4
typing expressions at, 15, 16
Windows, 3

Python types
dictionaries, 218. See also

dictionaries
floating-point numbers, 9, 10
integers, 9
lists, 103. See also lists
sets, 210. See also sets
strings, 6. See also strings

python3 command, 4, 5

Q
quadratic-time algorithm, 274, 275

304 Index

R
r, mode of, 173
randint function, 257, 258
range, 88

for loops, 59, 61, 69
function, 59, 61

range function, 59
readline method, 174, 175
relational operators, 28–30, 78. See also

operators
remove method, 113, 212
return

keyword, 147
statements, 148
values, 8, 147

reverse keyword argument, 144
reverse=true, 112
Ribbon Painting problem, 288

challenge, 289
input, 289
output, 289
problem solving, 290

rstrip method, 175

S
School Trip problem, 118

challenge, 118
index of maximum, 126
input, 119
joining lists, 119
list operations, 126
list values, changing, 121
output, 119
problem solving, 127
splitting strings, 119

joining a list into string, 120
list, into, 120

summing a list, 126
search function, 213, 214
Secret Sentence problem, 91

break, 96
challenge, 91
continue, 96
for loops, limitations, 92
input, 92
output, 92
problem solving, 95
while loops through indices, 93

sets, 210

add method, 212, 215
defined, 210
efficiency of searching, 213
empty, 211
intersection method, 213
methods, 212
mutability, 212
of lists, 211
remove method, 212
update method, 213
values in, 211

sets and dictionaries, 203
Cities and States problem, 231
Common Words problem, 215
Email Addresses problem, 204

short-circuiting evaluation, 95
single quotes, 6
Ski Hills problem, 244

challenge, 244
input, 244
output, 244
problem solving, 246

cost of range, 246
main program, 247

slicing, 88, 89, 91, 105, 107
Slot Machines problem, 69

Boolean operators, 78
challenge, 70
f-strings, 84
for loops, limitations, 72
input, 70
mod operator, 82
nesting loops in loops, 77
output, 70
problem solving, 79
while loops, 73

Song Playlist problem, 86
challenge, 86
input, 86
output, 87
problem solving, 90
string slicing, 87

sort method, 111, 112, 162, 291
sorting first, 253

code, 253
program efficiency, 255

split method, 120
square brackets, 88, 103, 109, 220
standard input, 44

Index 305

str function, 22
strings, 6–9

center method, 109
count method, 8, 9, 109
find method, 206
isupper method, 52, 109
join method, 120, 121
methods, 8
operators, 7
representation, 6
rstrip method, 175
slicing, 87–90
split method, 120
strip method, 8
upper method, 8, 15
value, 6

strip method, 8
sum function, 126, 130
swaps, 48, 49
syntax error, 6

T
Telemarketers problem, 37

Boolean operators, 38
and, 39
not, 40
or, 38

challenge, 37
input, 37
input and output redirection, 43, 44
output, 38
problem solving, 41

Terminal, 4
text editor, launching, 16

Linux, 17
macOS, 16
Windows, 16

thinking, types of, xxii
Three Cups problem, 47

challenge, 48
input, 48
loops, 48, 49
nesting, 51
output, 48
problem solving, 54
swaps, 54

Timsort, 281
Timus judge, xxvi, 153

TLE (time limit exceeded), 208, 265,
268

TODO markings, 157, 187
top-down design, 154–167
tuples, 224, 225
two-player card game. See Card Game

problem
type function, 27
TypeError, 21

U
update method, 213
upper method, 8, 15
USACO (USA Computing Olympiad)

judge, xxvi, 172

V
values, 6, 218
values method, 223
variables, 11, 12

names, 13, 49
values, 13

Village Neighborhood problem, 101
challenge, 102
code duplication, avoiding, 116

huge size, 116
list of sizes, building, 117

input, 102
list methods, 108, 110

adding to, 111
removing values from, 112
sorting, 112

list mutability, 106
lists, 102, 103
output, 102
problem solving, 114
size, 102

W
w, mode of, 173
while loops, 69, 73, 80, 87, 90, 91

Boolean expression, 73, 74, 87, 96
indefinite loops, 73
through indices, 93
using, 73

Boolean operators, 78
nesting loops in loops, 77

variables, 73

306 Index

while statement, 73
Winning Team problem, 25

Boolean type, 27
challenge, 26
conditional execution, 26, 27
if statements, 25, 27, 30

if by itself, 31
if with elif, 32
if with else, 33

input, 26, 35
output, 26, 35
problem solving, 35
relational operators, 28

Word Count problem, 1, 2, 5
challenge, 5
input, 5
input-process-output model, 2
integer and floating-point numbers,

9
assignment statement, 11
changing variable values, 13
variables, 11

output, 5
problem solving, 16

judge, submitting to, 18
program, 17
running the program, 17
text editor, launching, 16, 17

reading input, 15
strings, 6

methods, 8
operators, 7
representation, 6

variable, using, 14
writing output, 15

write method, 177–179

Index 307

RESOURCES
Visit https://nostarch.com/learn-code-solving-problems/ for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

HOW COMPUTERS REALLY
WORK
A Hands-On Guide to the Inner
Workings of the Machine
by matthew justice
392 pp., $39.95
isbn 978-1-7185-0066-2

ALGORITHMIC THINKING
A Problem-Based Introduction
by daniel zingaro
408 pp., $49.95
isbn 978-1-7185-0080-8

EFFECTIVE C
An Introduction to Professional
C Programming
by robert c. seacord
272 pp., $49.95
isbn 978-1-7185-0104-1

REAL-WORLD PYTHON
A Hacker’s Guide to Solving
 Problems with Code
by lee vaughan
360 pp., $34.95
isbn 978-1-7185-0062-4

More no-nonsense books from NO STARCH PRESS

BEYOND THE BASIC STUFF
WITH PYTHON
Best Practices for Writing
Clean Code
by al sweigart
384 pp., $34.95
isbn 978-1-59327-966-0

DIVE INTO ALGORITHMS
A Pythonic Adventure for the
Intrepid Beginner
by bradford tuckfield
248 pp., $39.95
isbn 978-1-7185-0068-6

https://nostarch.com/learn-code-solving-problems/

$34.99 ($45.99 CDN)

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

Computers are capable of solving almost any problem
when given the right instructions. That’s where
programming comes in. This beginner’s book will have
you writing Python programs right away. You’ll solve
interesting problems drawn from real coding competitions
and build your programming skills as you go.

Every chapter presents problems from coding challenge
websites, where online judges test your solutions and
provide targeted feedback. As you practice using
core Python features, functions, and techniques, you’ll
develop a clear understanding of data structures,
algorithms, and other programming basics. Bonus
exercises invite you to explore new concepts on your
own, and multiple-choice questions encourage you to
think about how each piece of code works.

You’ll learn how to:

• Run Python code, work with strings, and use
variables

• Write programs that make decisions

• Make code more efficient with while and
for loops

• Use Python sets, lists, and dictionaries to organize,
sort, and search data

• Design programs using functions and top-down
design

• Create complete-search algorithms and use Big O
notation to design more efficient code

By the end of the book, you’ll not only be proficient in
Python, but you’ll also understand how to think through
problems and tackle them with code. Programming
languages come and go, but this book gives you the
lasting foundation you need to start thinking like a
programmer.

A B O U T T H E A U T H O R

Dr. Daniel Zingaro is an award-winning associate
professor of computer science at University of Toronto
Mississauga. Zingaro is internationally recognized for
his expertise in active learning. He is also the author of
Algorithmic Thinking (No Starch Press, 2021).

B U I LT W I T H
P Y T H O N 3 . x

S K I L L S T O
L A S T U N T I L
T H E C O W S

C O M E H O M E

Requirements: None!

	About the Author
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Online Resources
	Who This Book Is For
	Why Learn Python?
	Installing Python
	Windows
	macOS
	Linux

	How to Read This Book
	Using Programming Judges
	Making Your Programming Judge Accounts
	The DMOG Judge
	The Timus Judge
	The USACO Judge

	About This Book

	Chapter 1: Getting Started
	What We'll Be Doing
	The Python Shell
	Windows
	macOS
	Linux

	Problem #1: Word Count
	The Challenge
	Input
	Output

	Strings
	Representing Strings
	String Operators
	String Methods

	Integer and Floating-Point Numbers
	Variables
	Assignment Statement
	Changing Variable Values

	Counting the Words Using a Variable
	Reading Input
	Writing Output
	Solving the Problem: A Complete Python Program
	Launching a Text Editor
	The Program
	Running the Program
	Submitting to the Judge

	Problem #2: Cone Volume
	The Challenge
	Input
	Output

	More Math in Python
	Accessing Pi
	Exponents

	Converting Between Strings and Integers
	Solving the Problem
	Summary
	Chapter Exercises
	Notes

	Chapter 2: Making Decisions
	Problem #3: Winning Team
	The Challenge
	Input
	Output

	Conditional Execution
	The Boolean Type
	Relational Operators
	The if Statement
	if by Itself
	if with elif
	if with else

	Solving the Problem
	Problem #4: Telemarketers
	The Challenge
	Input
	Output

	Boolean Operators
	or Operator
	and Operator
	not Operator

	Solving the Problem
	Comments
	Input and Output Redirection
	Summary
	Chapter Exercises
	Notes

	Chapter 3: Repeating Code: Definite Loops
	Problem #5: Three Cups
	The Challenge
	Input
	Output

	Why Loops?
	for Loops
	Nesting
	Solving the Problem
	Problem #6: Occupied Spaces
	The Challenge
	Input
	Output

	A New Kind of Loop
	Indexing
	Range for loops
	Range for Loops Through Indices
	Solving the Problem
	Problem #7: Data Plan
	The Challenge
	Input
	Output

	Looping to Read Input
	Solving the Problem
	Summary
	Chapter Exercises
	Notes

	Chapter 4: Repeating Code: Indefinite Loops
	Problem #8: Slot Machines
	The Challenge
	Input
	Output

	Exploring a Test Case
	A Limitation of for Loops
	while loops
	Using while loops
	Nesting Loops in Loops
	Adding Boolean Operators

	Solving the Problem
	The Mod Operator
	F-Strings
	Problem #9: Song Playlist
	The Challenge
	Input
	Output

	String Slicing
	Solving the Problem
	Problem #10: Secret Sentence
	The Challenge
	Input
	Output

	Another Limitation of for loops
	while Loops Through Indices
	Solving the Problem
	break and continue
	break
	continue

	Summary
	Chapter Exercises
	Notes

	Chapter 5: Organizing Values Using Lists
	Problem #11: Village Neighborhood
	The Challenge
	Input
	Output

	Why Lists?
	Lists
	List Mutability
	Learning About Methods
	List Methods
	Adding to a List
	Sorting a List
	Removing Values from a List

	Solving the Problem
	Avoiding Code Duplication: Two More Solutions
	Using a Huge Size
	Building a List of Sizes

	Problem #12: School Trip
	The Challenge
	Input
	Output
	A Catch

	Splitting Strings and Joining Lists
	Splitting a String into a List
	Joining a List into a String

	Changing List Values
	Solving Most of the Problem
	Exploring a Test Case
	The Code

	How to Handle the Catch
	Exploring a Test Case
	More List Operations
	Finding the Index of the Maximum
	Solving the Problem

	Problem #13: Baker Bonus
	The Challenge
	Input
	Output

	Representing a Table
	Exploring a Test Case
	Nested Lists

	Solving the Problem
	Summary
	Chapter Exercises
	Notes

	Chapter 6: Designing Programs with Functions
	Problem #14: Card Game
	The Challenge
	Input
	Output

	Exploring a Test Case
	Defining and Calling Functions
	Functions Without Arguments
	Functions with Arguments
	Keyword Arguments
	Local Variables
	Mutable Parameters
	Return Values

	Function Documentation
	Solving the Problem
	Problem #15: Action Figures
	The Challenge
	Input
	Output

	Representing the Boxes
	Top-Down Design
	Doing Top-Down Design
	The Top Level
	Task 1: Read Input
	Task 2: Check Whether All Boxes Are OK
	Task 3: Obtain a New List of Boxes with Only Left and Right Heights
	Task 4: Sort Boxes
	Task 5: Determine Whether Boxes Are Organized
	Putting It All Together

	Summary
	Chapter Exercises
	Notes

	Chapter 7: Reading and Writing Files
	Problem #16: Essay Formatting
	The Challenge
	Input
	Output

	Working with Files
	Opening a File
	Reading from a File
	Writing to a File

	Solving the Problem
	Exploring a Test Case
	The Code

	Problem #17: Farming Seeding
	The Challenge
	Input
	Output

	Exploring a Test Case
	Top-Down Design
	The Top Level
	Task 1: Read Input
	Task 2: Identify Cows
	Task 3: Eliminate Grass Types
	Task 4: Choose Smallest-Numbered Grass Type
	Task 5: Write Output

	Summary
	Chapter Exercises
	Notes

	Chapter 8: Organizing Values Using Sets and Dictionaries
	Problem #18: Email Addresses
	The Challenge
	Input
	Output

	Using a List
	Cleaning an Email Address
	The Main Program

	Efficiency of Searching a List
	Sets
	Set Methods
	Effiency of Searching a Set
	Solving the Problem
	Problem #19: Common Words
	The Challenge
	Input
	Output

	Dictionaries
	Indexing Dictionaries
	Looping Through Dictionaries
	Inverting a Dictionary
	Solving the Problem
	The Code
	Adding the Suffix
	Finding the kth Most Common Words
	The Main Program

	Problem #20: Cities and States
	The Challenge
	Input
	Output

	Exploring a Test Case
	Solving the Problem
	Summary
	Chapter Exercises
	Notes

	Chapter 9: Designing Algorithms with Complete Search
	Problem #21: Lifeguards
	The Challenge
	Input
	Output

	Exploring a Test Case
	Solving the Problem
	Firing One Lifeguard
	The Main Program
	Efficiency of Our Program

	Problem #22: Ski Hills
	The Challenge
	Input
	Output

	Exploring a Test Case
	Solving the Problem
	Determining the Cost of One Range
	The Main Program

	Problem #23: Cow Baseball
	The Challenge
	Input
	Output

	Using Three Nested Loops
	The Code
	Efficiency of Our Program

	Sorting First
	The Code
	Efficiency of Our Program

	Python Modules
	The bisect Module
	Solving the Problem
	Summary
	Chapter Exercises
	Notes

	Chapter 10: Big O and Program Efficiency
	The Problem with Timing
	Big O
	Constant Time
	Linear Time
	Quadratic Time
	Cubic Time
	Multiple Variables
	Log Time
	n log n Time
	Handling Function Calls

	Problem #24: Longest Scarf
	The Challenge
	Input
	Output

	Exploring a Test Case
	Algorithm 1
	Algorithm 2
	Problem #25: Ribbon Painting
	The Challenge
	Input
	Output

	Exploring a Test Case
	Solving the Problem
	Summary
	Chapter Exercises
	Notes

	Afterword
	Problem Credits
	Index

